Sample records for oxide box layer

  1. Buried Oxide Densification for Low Power, Low Voltage CMOS Applications

    NASA Technical Reports Server (NTRS)

    Allen, L. P.; Anc, M. J.; Dolan, B.; Jiao, J.; Guss, B.; Seraphin, S.; Liu, S. T.; Jenkins, W.

    1998-01-01

    Special technology and circuit architecture are of growing interest for implementation of circuits which operate at low supply voltages and consume low power levels without sacrificing performance[1]. Use of thin buried oxide SOI substrates is a primary approach to simultaneously achieve these goals. A significant aspect regarding SIMOX SOI for low voltage, low power applications is the reliability and performance of the thin buried oxide. In addition, when subjected to high total dose irradiation, the silicon islands within the BOX layer of SIMOX can store charges and significantly effect the back channel threshold voltages of devices. Thus, elimination of the islands within the buried oxide (BOX) layer is preferred in order to prevent leakage through these conductive islands and charge build-up within the buried oxide layer. A differential (2-step) ramp rate as applied to full and 100 nm BOX SIMOX was previously reported to play a significant role in the stoichiometry and island formation within the buried layer[2]. This paper focus is on the properties of a thin (120nm) buried oxide as a function of the anneal ramp rate and the temperature of anneal. In this research, we have found an improvement in the buried oxide stoichiometry with the use of a slower, singular ramp rate for specified thin buried oxides, with slower ramp rates and higher temperatures of anneal suggested for reducing the presence of Si islands within the BOX layer.

  2. SEMICONDUCTOR TECHNOLOGY: Influence of nitrogen dose on the charge density of nitrogen-implanted buried oxide in SOI wafers

    NASA Astrophysics Data System (ADS)

    Zhongshan, Zheng; Zhongli, Liu; Ning, Li; Guohua, Li; Enxia, Zhang

    2010-02-01

    To harden silicon-on-insulator (SOI) wafers fabricated using separation by implanted oxygen (SIMOX) to total-dose irradiation, the technique of nitrogen implantation into the buried oxide (BOX) layer of SIMOX wafers can be used. However, in this work, it has been found that all the nitrogen-implanted BOX layers reveal greater initial positive charge densities, which increased with increasing nitrogen implantation dose. Also, the results indicate that excessively large nitrogen implantation dose reduced the radiation tolerance of BOX for its high initial positive charge density. The bigger initial positive charge densities can be ascribed to the accumulation of implanted nitrogen near the Si-BOX interface after annealing. On the other hand, in our work, it has also been observed that, unlike nitrogen-implanted BOX, all the fluorine-implanted BOX layers show a negative charge density. To obtain the initial charge densities of the BOX layers, the tested samples were fabricated with a metal-BOX-silicon (MBS) structure based on SIMOX wafers for high-frequency capacitance-voltage (C-V) analysis.

  3. Characterization of crystal structure features of a SIMOX substrate

    NASA Astrophysics Data System (ADS)

    Eidelman, K. B.; Shcherbachev, K. D.; Tabachkova, N. Yu.; Podgornii, D. A.; Mordkovich, V. N.

    2015-12-01

    The SIMOX commercial sample (Ibis corp.) was investigated by a high-resolution X-ray diffraction (HRXRD), a high-resolution transmission electron microscopy (HRTEM) and an Auger electron spectroscopy (AES) to determine its actual parameters (the thickness of the top Si and a continuous buried oxide layer (BOX), the crystalline quality of the top Si layer). Under used implantation conditions, the thickness of the top Si and BOX layers was 200 nm and 400 nm correspondingly. XRD intensity distribution near Si(0 0 4) reciprocal lattice point was investigated. According to the oscillation period of the diffraction reflection curve defined thickness of the overtop silicon layer (220 ± 2) nm. HRTEM determined the thickness of the oxide layer (360 nm) and revealed the presence of Si islands with a thickness of 30-40 nm and a length from 30 to 100 nm in the BOX layer nearby "BOX-Si substrate" interface. The Si islands are faceted by (1 1 1) and (0 0 1) faces. No defects were revealed in these islands. The signal from Si, which corresponds to the particles in an amorphous BOX matrix, was revealed by AES in the depth profiles. Amount of Si single crystal phase at the depth, where the particles are deposited, is about 10-20%.

  4. An L-shaped low on-resistance current path SOI LDMOS with dielectric field enhancement

    NASA Astrophysics Data System (ADS)

    Ye, Fan; Xiaorong, Luo; Kun, Zhou; Yuanhang, Fan; Yongheng, Jiang; Qi, Wang; Pei, Wang; Yinchun, Luo; Bo, Zhang

    2014-03-01

    A low specific on-resistance (Ron,sp) SOI NBL TLDMOS (silicon-on-insulator trench LDMOS with an N buried layer) is proposed. It has three features: a thin N buried layer (NBL) on the interface of the SOI layer/buried oxide (BOX) layer, an oxide trench in the drift region, and a trench gate extended to the BOX layer. First, on the on-state, the electron accumulation layer forms beside the extended trench gate; the accumulation layer and the highly doping NBL constitute an L-shaped low-resistance conduction path, which sharply decreases the Ron,sp. Second, in the y-direction, the BOX's electric field (E-field) strength is increased to 154 V/μm from 48 V/μm of the SOI Trench Gate LDMOS (SOI TG LDMOS) owing to the high doping NBL. Third, the oxide trench increases the lateral E-field strength due to the lower permittivity of oxide than that of Si and strengthens the multiple-directional depletion effect. Fourth, the oxide trench folds the drift region along the y-direction and thus reduces the cell pitch. Therefore, the SOI NBL TLDMOS structure not only increases the breakdown voltage (BV), but also reduces the cell pitch and Ron,sp. Compared with the TG LDMOS, the NBL TLDMOS improves the BV by 105% at the same cell pitch of 6 μm, and decreases the Ron,sp by 80% at the same BV.

  5. Effects of BOX engineering on analogue/RF and circuit performance of InGaAs-OI-Si MOSFET

    NASA Astrophysics Data System (ADS)

    Maity, Subir Kr.; Pandit, Soumya

    2017-11-01

    InGaAs is an attractive choice as alternate channel material in n-channel metal oxide semiconductor transistor for high-performance applications. However, electrostatic integrity of such device is poor. In this paper, we present a comprehensive technology computer-aided design simulation-based study of the effect of scaling the thickness of the buried oxide (BOX) region and varying the dielectric constant of BOX material on the electrostatic integrity, analogue/radio frequency (RF) performance and circuit performance of InGaAs-on-Insulator device. Device with thin BOX layer gives better drain-induced barrier lowering performance which enhances output resistance. The carrier mobility remains almost constant with thinning of BOX layer up to certain value. By lowering the dielectric constant of the BOX material, it is further possible to improve the analogue and RF performance. Effect of BOX thickness scaling and role of BOX dielectric material on gain-frequency response of common source amplifier is also studied. It is observed that frequency response of the amplifier improves for thin BOX and with low dielectric constant-based material.

  6. A grating coupler with a trapezoidal hole array for perfectly vertical light coupling between optical fibers and waveguides

    NASA Astrophysics Data System (ADS)

    Mizutani, Akio; Eto, Yohei; Kikuta, Hisao

    2017-12-01

    A grating coupler with a trapezoidal hole array was designed and fabricated for perfectly vertical light coupling between a single-mode optical fiber and a silicon waveguide on a silicon-on-insulator (SOI) substrate. The grating coupler with an efficiency of 53% was computationally designed at a 1.1-µm-thick buried oxide (BOX) layer. The grating coupler and silicon waveguide were fabricated on the SOI substrate with a 3.0-µm-thick BOX layer by a single full-etch process. The measured coupling efficiency was 24% for TE-polarized light at 1528 nm wavelength, which was 0.69 times of the calculated coupling efficiency for the 3.0-µm-thick BOX layer.

  7. Improved Starting Materials for Back-Illuminated Imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata

    2009-01-01

    An improved type of starting materials for the fabrication of silicon-based imaging integrated circuits that include back-illuminated photodetectors has been conceived, and a process for making these starting materials is undergoing development. These materials are intended to enable reductions in dark currents and increases in quantum efficiencies, relative to those of comparable imagers made from prior silicon-on-insulator (SOI) starting materials. Some background information is prerequisite to a meaningful description of the improved starting materials and process. A prior SOI starting material, depicted in the upper part the figure, includes: a) A device layer on the front side, typically between 2 and 20 m thick, made of p-doped silicon (that is, silicon lightly doped with an electron acceptor, which is typically boron); b) A buried oxide (BOX) layer (that is, a buried layer of oxidized silicon) between 0.2 and 0.5 m thick; and c) A silicon handle layer (also known as a handle wafer) on the back side, between about 600 and 650 m thick. After fabrication of the imager circuitry in and on the device layer, the handle wafer is etched away, the BOX layer acting as an etch stop. In subsequent operation of the imager, light enters from the back, through the BOX layer. The advantages of back illumination over front illumination have been discussed in prior NASA Tech Briefs articles.

  8. Improved Thermal Stability of Lithium-Rich Layered Oxide by Fluorine Doping.

    PubMed

    Kapylou, Andrei; Song, Jay Hyok; Missiul, Aleksandr; Ham, Dong Jin; Kim, Dong Han; Moon, San; Park, Jin Hwan

    2018-01-05

    The thermal stability of lithium-rich layered oxide with the composition Li(Li 1/6 Ni 1/6 Co 1/6 Mn 1/2 )O 2-x F x (x=0.00 and 0.05) is evaluated for use as a cathode material in lithium-ion batteries. Thermogravimetric analysis, evolved gas analysis, and differential scanning calorimetry show that, upon fluorine doping, degradation of the lithium-rich layered oxides commences at higher temperatures and the exothermic reaction is suppressed. Hot box tests also reveal that the prismatic cell with the fluorine-doped powder does not explode, whereas that with the undoped one explodes at about 135 °C with a sudden temperature increase. XRD analysis indicates that fluorine doping imparts the lithium-rich layered oxide with better thermal stability by mitigating oxygen release at elevated temperatures that cause an exothermic reaction with the electrolyte. The origin of the reduced oxygen release from the fluorinated lithium-rich layered oxide is also discussed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Using box models to quantify zonal distributions and emissions of halocarbons in the background atmosphere.

    NASA Astrophysics Data System (ADS)

    Elkins, J. W.; Nance, J. D.; Dutton, G. S.; Montzka, S. A.; Hall, B. D.; Miller, B.; Butler, J. H.; Mondeel, D. J.; Siso, C.; Moore, F. L.; Hintsa, E. J.; Wofsy, S. C.; Rigby, M. L.

    2015-12-01

    The Halocarbons and other Atmospheric Trace Species (HATS) of NOAA's Global Monitoring Division started measurements of the major chlorofluorocarbons and nitrous oxide in 1977 from flask samples collected at five remote sites around the world. Our program has expanded to over 40 compounds at twelve sites, which includes six in situ instruments and twelve flask sites. The Montreal Protocol for Substances that Deplete the Ozone Layer and its subsequent amendments has helped to decrease the concentrations of many of the ozone depleting compounds in the atmosphere. Our goal is to provide zonal emission estimates for these trace gases from multi-box models and their estimated atmospheric lifetimes in this presentation and make the emission values available on our web site. We plan to use our airborne measurements to calibrate the exchange times between the boxes for 5-box and 12-box models using sulfur hexafluoride where emissions are better understood.

  10. Imaging of the native inversion layer in Silicon-On-Insulator wafers via Scanning Surface Photovoltage: Implications for RF device performance

    NASA Astrophysics Data System (ADS)

    Dahanayaka, Daminda; Wong, Andrew; Kaszuba, Philip; Moszkowicz, Leon; Slinkman, James; IBM SPV Lab Team

    2014-03-01

    Silicon-On-Insulator (SOI) technology has proved beneficial for RF cell phone technologies, which have equivalent performance to GaAs technologies. However, there is evident parasitic inversion layer under the Buried Oxide (BOX) at the interface with the high resistivity Si substrate. The latter is inferred from capacitance-voltage measurements on MOSCAPs. The inversion layer has adverse effects on RF device performance. We present data which, for the first time, show the extent of the inversion layer in the underlying substrate. This knowledge has driven processing techniques to suppress the inversion.

  11. First-principles theory of cation- and intercalation-ordering in Li_xCoO_2

    NASA Astrophysics Data System (ADS)

    Wolverton, C.; Zunger, Alex

    1998-03-01

    Using a combination of first-principles total energies, a cluster expansion technique, and Monte Carlo simulations, we present a first-principles theory which can predict both cation- and intercalation-ordering patterns at both zero and finite temperatures, and can provide first-principles predictions of battery voltages of Li_xCoO_2/Li cells. The classes of ordering problems that we study are the following: (i) The LiMO2 oxides (M=3d metal) form a series of structures based on an octahedrally-coordinated network with anions (O) on one fcc sublattice and cations (Li and M) on the other, leading to Li/Co ordering in LiCoO2 (x=1). We find the ground state is the CuPt or (111)-layered cation arrangment, in agreement with the observed structure. (ii) In battery applications, Li is (de)intercalated from the compound, creating a vacancy (denoted Box) that can be positioned in different lattice locations; Thus, Box/Co ordering in BoxCoO2 (x=0) is also of interest. We find the ground state for BoxCoO2 is also a (111)-layered structure, although a different stacking sequence (AAA) of close-packed layers is preferred. (iii) The vacancies left behind by Li extraction can form ordered vacancy compounds in partially de-lithiated Li_xCoO_2, leading to a Box/Li ordering problem (0<=x<=1). Our calculations agree with the observed voltage profiles in these systems, and predict the existence of new intercalation-ordered compounds. Supported by BES/OER/DMS under contract DE-AC36-83CH10093.

  12. 7 CFR 51.1527 - Standard pack.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... plums or prunes in the top layer of any package shall be reasonably representative in quality and size... minimum diameter, or number of fruit per package, or in accordance with the arrangement of the top layer... peach boxes, lug boxes and small consumer packages. In layer-packed California peach boxes or lug boxes...

  13. 7 CFR 51.1527 - Standard pack.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... size, 45 size, 50 size, 55 size, etc.). (i) California peach boxes, lug boxes and small consumer packages. In layer-packed California peach boxes or lug boxes, and in small layer packed consumer packages... California peach boxes or lug boxes shall not vary more than 4 from the number indicated on the package...

  14. 7 CFR 51.1527 - Standard pack.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... size, 45 size, 50 size, 55 size, etc.). (i) California peach boxes, lug boxes and small consumer packages. In layer-packed California peach boxes or lug boxes, and in small layer packed consumer packages... California peach boxes or lug boxes shall not vary more than 4 from the number indicated on the package...

  15. Formation of SIMOX-SOI structure by high-temperature oxygen implantation

    NASA Astrophysics Data System (ADS)

    Hoshino, Yasushi; Kamikawa, Tomohiro; Nakata, Jyoji

    2015-12-01

    We have performed oxygen ion implantation in silicon at very high substrate-temperatures (⩽1000 °C) for the purpose of forming silicon-on-insulator (SOI) structure. We have expected that the high-temperature implantation can effectively avoids ion-beam-induced damages in the SOI layer and simultaneously stabilizes the buried oxide (BOX) and SOI-Si layer. Such a high-temperature implantation makes it possible to reduce the post-implantation annealing temperature. In the present study, oxygen ions with 180 keV are incident on Si(0 0 1) substrates at various temperatures from room temperature (RT) up to 1000 °C. The ion-fluencies are in order of 1017-1018 ions/cm2. Samples have been analyzed by atomic force microscope, Rutherford backscattering, and micro-Raman spectroscopy. It is found in the AFM analysis that the surface roughness of the samples implanted at 500 °C or below are significantly small with mean roughness of less than 1 nm, and gradually increased for the 800 °C-implanted sample. On the other hand, a lot of dents are observed for the 1000 °C-implanted sample. RBS analysis has revealed that stoichiometric SOI-Si and BOX-SiO2 layers are formed by oxygen implantation at the substrate temperatures of RT, 500, and 800 °C. However, SiO2-BOX layer has been desorbed during the implantation. Raman spectra shows that the ion-beam-induced damages are fairly suppressed by such a high-temperatures implantation.

  16. Rapid cycling of reactive nitrogen in the marine boundary layer.

    PubMed

    Ye, Chunxiang; Zhou, Xianliang; Pu, Dennis; Stutz, Jochen; Festa, James; Spolaor, Max; Tsai, Catalina; Cantrell, Christopher; Mauldin, Roy L; Campos, Teresa; Weinheimer, Andrew; Hornbrook, Rebecca S; Apel, Eric C; Guenther, Alex; Kaser, Lisa; Yuan, Bin; Karl, Thomas; Haggerty, Julie; Hall, Samuel; Ullmann, Kirk; Smith, James N; Ortega, John; Knote, Christoph

    2016-04-28

    Nitrogen oxides are essential for the formation of secondary atmospheric aerosols and of atmospheric oxidants such as ozone and the hydroxyl radical, which controls the self-cleansing capacity of the atmosphere. Nitric acid, a major oxidation product of nitrogen oxides, has traditionally been considered to be a permanent sink of nitrogen oxides. However, model studies predict higher ratios of nitric acid to nitrogen oxides in the troposphere than are observed. A 'renoxification' process that recycles nitric acid into nitrogen oxides has been proposed to reconcile observations with model studies, but the mechanisms responsible for this process remain uncertain. Here we present data from an aircraft measurement campaign over the North Atlantic Ocean and find evidence for rapid recycling of nitric acid to nitrous acid and nitrogen oxides in the clean marine boundary layer via particulate nitrate photolysis. Laboratory experiments further demonstrate the photolysis of particulate nitrate collected on filters at a rate more than two orders of magnitude greater than that of gaseous nitric acid, with nitrous acid as the main product. Box model calculations based on the Master Chemical Mechanism suggest that particulate nitrate photolysis mainly sustains the observed levels of nitrous acid and nitrogen oxides at midday under typical marine boundary layer conditions. Given that oceans account for more than 70 per cent of Earth's surface, we propose that particulate nitrate photolysis could be a substantial tropospheric nitrogen oxide source. Recycling of nitrogen oxides in remote oceanic regions with minimal direct nitrogen oxide emissions could increase the formation of tropospheric oxidants and secondary atmospheric aerosols on a global scale.

  17. Investigation of processes controlling summertime gaseous elemental mercury oxidation at midlatitudinal marine, coastal, and inland sites

    NASA Astrophysics Data System (ADS)

    Ye, Zhuyun; Mao, Huiting; Lin, Che-Jen; Kim, Su Youn

    2016-07-01

    A box model incorporating a state-of-the-art chemical mechanism for atmospheric mercury (Hg) cycling was developed to investigate the oxidation of gaseous elemental mercury (GEM) at three locations in the northeastern United States: Appledore Island (AI; marine), Thompson Farm (TF; coastal, rural), and Pack Monadnock (PM; inland, rural, elevated). The chemical mechanism in this box model included the most up-to-date Hg and halogen chemistry. As a result, the box model was able to simulate reasonably the observed diurnal cycles of gaseous oxidized mercury (GOM) and chemical speciation bearing distinct differences between the three sites. In agreement with observations, simulated GOM diurnal cycles at AI and TF showed significant daytime peaks in the afternoon and nighttime minimums compared to flat GOM diurnal cycles at PM. Moreover, significant differences in the magnitude of GOM diurnal amplitude (AI > TF > PM) were captured in modeled results. At the coastal and inland sites, GEM oxidation was predominated by O3 and OH, contributing 80-99 % of total GOM production during daytime. H2O2-initiated GEM oxidation was significant (˜ 33 % of the total GOM) at the inland site during nighttime. In the marine boundary layer (MBL) atmosphere, Br and BrO became dominant GEM oxidants, with mixing ratios reaching 0.1 and 1 pptv, respectively, and contributing ˜ 70 % of the total GOM production during midday, while O3 dominated GEM oxidation (50-90 % of GOM production) over the remaining day when Br and BrO mixing ratios were diminished. The majority of HgBr produced from GEM+Br was oxidized by NO2 and HO2 to form brominated GOM species. Relative humidity and products of the CH3O2+BrO reaction possibly significantly affected the mixing ratios of Br or BrO radicals and subsequently GOM formation. Gas-particle partitioning could potentially be important in the production of GOM as well as Br and BrO at the marine site.

  18. Nano-Multiplication-Region Avalanche Photodiodes and Arrays

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu; Pain, Bedabrata; Cunningham, Thomas

    2008-01-01

    Nano-multiplication-region avalanche photodiodes (NAPDs), and imaging arrays of NAPDs integrated with complementary metal oxide/semiconductor (CMOS) active-pixel-sensor integrated circuitry, are being developed for applications in which there are requirements for high-sensitivity (including photoncounting) detection and imaging at wavelengths from about 250 to 950 nm. With respect to sensitivity and to such other characteristics as speed, geometric array format, radiation hardness, power demand of associated circuitry, size, weight, and robustness, NAPDs and arrays thereof are expected to be superior to prior photodetectors and arrays including CMOS active-pixel sensors (APSs), charge-coupled devices (CCDs), traditional APDs, and microchannelplate/ CCD combinations. Figure 1 depicts a conceptual NAPD array, integrated with APS circuitry, fabricated on a thick silicon-on-insulator wafer (SOI). Figure 2 presents selected aspects of the structure of a typical single pixel, which would include a metal oxide/semiconductor field-effect transistor (MOSFET) integrated with the NAPD. The NAPDs would reside in silicon islands formed on the buried oxide (BOX) layer of the SOI wafer. The silicon islands would be surrounded by oxide-filled insulation trenches, which, together with the BOX layer, would constitute an oxide embedding structure. There would be two kinds of silicon islands: NAPD islands for the NAPDs and MOSFET islands for in-pixel and global CMOS circuits. Typically, the silicon islands would be made between 5 and 10 m thick, but, if necessary, the thickness could be chosen outside this range. The side walls of the silicon islands would be heavily doped with electron-acceptor impurities (p+-doped) to form anodes for the photodiodes and guard layers for the MOSFETs. A nanoscale reach-through structure at the front (top in the figures) central position of each NAPD island would contain the APD multiplication region. Typically, the reach-through structure would be about 0.1 microns in diameter and between 0.3 and 0.4 nm high. The top layer in the reach-through structure would be heavily doped with electron-donor impurities (n+-doped) to make it act as a cathode. A layer beneath the cathode, between 0.1 and 0.2 nm thick, would be p-doped to a concentration .10(exp 17)cu cm. A thin n+-doped polysilicon pad would be formed on the top of the cathode to protect the cathode against erosion during a metal-silicon alloying step that would be part of the process of fabricating the array.

  19. Automatic box loader

    DOEpatents

    Eldridge, Harry H.; Jones, Robert A.; Lindner, Gordon M.; Hight, Paul H.

    1976-01-01

    This invention relates to a system for repetitively forming an assembly consisting of a single layer of tubes and a row of ferromagnetic armatures underlying the same, electromagnetically conveying the resulting assembly to a position overlying a storage box, and depositing the assembly in the box. The system includes means for simultaneously depositing a row of the armatures on the inclined surface of a tube retainer. Tubes then are rolled down the surface to form a single tube layer bridging the armatures. A magnet assembly carrying electromagnets respectively aligned with the armatures is advanced close to the tube layer, and in the course of this advance is angularly displaced to bring the pole pieces of the electromagnets into parallelism with the tube layer. The magnets then are energized to pick up the assembly. The loaded magnet assembly is retracted to a position overlying the box, and during this retraction is again displaced to bring the pole pieces of the electromagnets into a horizontal plane. Means are provided for inserting the loaded electromagnets in the box and then de-energizing the electromagnets to deposit the assembly therein. The system accomplishes the boxing of fragile tubes at relatively high rates. Because the tubes are boxed as separated uniform layers, subsequent unloading operations are facilitated.

  20. Impact on electronic structure of donor/acceptor blend in organic photovoltaics by decontamination of molybdenum-oxide surface

    NASA Astrophysics Data System (ADS)

    Ito, Yuta; Akaike, Kouki; Fukuda, Takeshi; Sato, Daisuke; Fuse, Takuya; Iwahashi, Takashi; Ouchi, Yukio; Kanai, Kaname

    2018-05-01

    Molybdenum oxide (MoOx) is widely used as the hole-transport layer in bulk-heterojunction organic photovoltaics (BHJ-OPVs). During the fabrication of solution-processed BHJ-OPVs on vacuum-deposited MoOx film, the film must be exposed to N2 atmosphere in a glove box, where the donor/acceptor blends are spin-coated from a mixed solution. Employing photoelectron spectroscopy, we reveal that the exposure of the MoOx film to such atmosphere contaminates the MoOx surface. Annealing the contaminated MoOx film at 160 °C for 5 min, prior to spin-coating the blend film, can partially remove the carbon and oxygen adsorbed on the MoOx surface during the exposure of MoOx. However, the contamination layer on the MoOx surface does not affect the energy-level alignment at the interface between MoOx and the donor/acceptor blend. Hence, significant improvement in the performance of BHJ-OPVs by mildly annealing the MoOx layer, which was previously reported, can be explained by the reduction of undesired contamination.

  1. 7 CFR 51.1527 - Standard pack.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... peach boxes, lug boxes and small consumer packages. In layer-packed California peach boxes or lug boxes... package. The number of plums or prunes in California peach boxes or lug boxes shall not vary more than 4... container. (ii) Face and fill packs in cartons and lug boxes. In face and fill packs in cartons and lug...

  2. 7 CFR 51.1527 - Standard pack.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... peach boxes, lug boxes and small consumer packages. In layer-packed California peach boxes or lug boxes... package. The number of plums or prunes in California peach boxes or lug boxes shall not vary more than 4... container. (ii) Face and fill packs in cartons and lug boxes. In face and fill packs in cartons and lug...

  3. Polymeric ionic liquid modified graphene oxide-grafted silica for solid-phase extraction to analyze the excretion-dynamics of flavonoids in urine by Box-Behnken statistical design.

    PubMed

    Hou, Xiudan; Liu, Shujuan; Zhou, Panpan; Li, Jin; Liu, Xia; Wang, Licheng; Guo, Yong

    2016-07-22

    A solid-phase extraction method for the efficient analysis of the excretion-dynamics of flavonoids in urine was established and described. In this work, in situ surface radical chain-transfer polymerization and in situ anion exchange were utilized to tune the extraction performance of poly(1-vinyl-3-hexylimidazolium bromide)-graphene oxide-grafted silica (poly(VHIm(+)Br(-))@GO@Sil). Graphene oxide (GO) was first coated onto the silica using a layer-by-layer fabrication method, and then the anion of poly(VHIm(+)Br(-))@GO@Sil was changed into hexafluorophosphate (PF6(-)) by in situ anion exchange. The interaction energies between two PILs and four flavonoids were calculated with the Gaussian09 suite of programs. A Box-Behnken design was used for the optimization of four greatly influential parameters after single-factor experiments to obtain more accurate and precise results. Coupled to high performance liquid chromatography, the poly(VHIm(+)PF6(-))@GO@Sil method showed acceptable extraction recoveries for the four flavonoids, with limits of detection in the range of 0.1-0.5μgL(-1), and wide linear ranges with correlation coefficients (R) ranging from 0.9935 to 0.9987. Under the optimum conditions, the proposed method was applied to analyze the urines collected from a healthy volunteer. The excretion amount-time profiles revealed that 4-15h was the main excretion time for the detected flavonoids. The results indicated that the newly developed method offered the advantages of being feasible, green and cost-effective, and could be successfully applied to the extraction and enrichment of flavonoids in human body systems allowing the study of the metabolic kinetics. Copyright © 2016. Published by Elsevier B.V.

  4. Disposable sludge dewatering container and method

    DOEpatents

    Cole, Clifford M.

    1993-01-01

    A device and method for preparing sludge for disposal comprising a box with a thin layer of gravel on the bottom and a thin layer of sand on the gravel layer, an array of perforated piping deployed throughout the gravel layer, and a sump in the gravel layer below the perforated piping array. Standpipes connect the array and sump to an external ion exchanger/fine particulate filter and a pump. Sludge is deposited on the sand layer and dewatered using a pump connected to the piping array, topping up with more sludge as the aqueous component of the sludge is extracted. When the box is full and the free standing water content of the sludge is acceptable, the standpipes are cut and sealed and the lid secured to the box.

  5. UV light absorption parameters of the pathobiologically implicated bilirubin oxidation products, MVM, BOX A, and BOX B.

    PubMed

    Harris, Nathaniel A; Rapoport, Robert M; Zuccarello, Mario; Maggio, John E

    2018-06-01

    The formation of the bilirubin oxidation products (BOXes), BOX A ([4-methyl-5-oxo-3-vinyl-(1,5-dihydropyrrol-2-ylidene)acetamide]) and BOX B (3-methyl-5-oxo-4-vinyl-(1,5-dihydropyrrol-2-ylidene)acetamide), as well as MVM (4-methyl-3-vinylmaleimide) were synthesized by oxidation of bilirubin with H 2 O 2 without and with FeCl 3 , respectively. Compound identity was confirmed with NMR and mass spectrometry (MS; less than 1 ppm, tandem MS up to MS 4 ). UV absorption profiles, including λ max , and extinction coefficient (ε; estimated using NMR) for BOX A, BOX B, and MVM in H 2 O, 15% CH 3 CN plus 10 mM CF 3 CO 2 H, CH 3 CN, CHCl 3 , CH 2 Cl 2 , and 0.9% NaCl were determined. At longer wavelengths, λ max 's for 1) BOX A were little affected by the solvent, ranging from 295-297 nm; 2) BOX B, less polar solvent yielded λ max 's of lower wavelength, with values ranging from 308-313 nm, and 3) MVM, less polar solvent yielded λ max 's of higher wavelength, with values ranging from 318-327 nm. Estimated ε's for BOX A and BOX B were approximately 5- to 10-fold greater than for MVM.

  6. Low temperature Zn diffusion for GaSb solar cell structures fabrication

    NASA Technical Reports Server (NTRS)

    Sulima, Oleg V.; Faleev, Nikolai N.; Kazantsev, Andrej B.; Mintairov, Alexander M.; Namazov, Ali

    1995-01-01

    Low temperature Zn diffusion in GaSb, where the minimum temperature was 450 C, was studied. The pseudo-closed box (PCB) method was used for Zn diffusion into GaAs, AlGaAs, InP, InGaAs and InGaAsP. The PCB method avoids the inconvenience of sealed ampoules and proved to be simple and reproducible. The special design of the boat for Zn diffusion ensured the uniformality of Zn vapor pressure across the wafer surface, and thus the uniformity of the p-GaSb layer depth. The p-GaSb layers were studied using Raman scattering spectroscopy and the x-ray rocking curve method. As for the postdiffusion processing, an anodic oxidation was used for a precise thinning of the diffused GaSb layers. The results show the applicability of the PCB method for the large-scale production of the GaSb structures for solar cells.

  7. A fourth-order box method for solving the boundary layer equations

    NASA Technical Reports Server (NTRS)

    Wornom, S. F.

    1977-01-01

    A fourth order box method for calculating high accuracy numerical solutions to parabolic, partial differential equations in two variables or ordinary differential equations is presented. The method is the natural extension of the second order Keller Box scheme to fourth order and is demonstrated with application to the incompressible, laminar and turbulent boundary layer equations. Numerical results for high accuracy test cases show the method to be significantly faster than other higher order and second order methods.

  8. Microbe–microbe interactions trigger Mn(II)-oxidizing gene expression

    PubMed Central

    Liang, Jinsong; Bai, Yaohui; Men, Yujie; Qu, Jiuhui

    2017-01-01

    Manganese (Mn) is an important metal in geochemical cycles. Some microorganisms can oxidize Mn(II) to Mn oxides, which can, in turn, affect the global cycles of other elements by strong sorption and oxidation effects. Microbe–microbe interactions have important roles in a number of biological processes. However, how microbial interactions affect Mn(II) oxidation still remains unknown. Here, we investigated the interactions between two bacteria (Arthrobacter sp. and Sphingopyxis sp.) in a co-culture, which exhibited Mn(II)-oxidizing activity, although neither were able to oxidize Mn(II) in isolation. We demonstrated that the Mn(II)-oxidizing activity in co-culture was most likely induced via contact-dependent interactions. The expressed Mn(II)-oxidizing protein in the co-culture was purified and identified as a bilirubin oxidase belonging to strain Arthrobacter. Full sequencing of the bilirubin oxidase-encoding gene (boxA) was performed. The Mn(II)-oxidizing protein and the transcripts of boxA were detected in the co-culture, but not in either of the isolated cultures. This indicate that boxA was silent in Arthrobacter monoculture, and was activated in response to presence of Sphingopyxis in the co-culture. Further, transcriptomic analysis by RNA-Seq, extracellular superoxide detection and cell density quantification by flow cytometry indicate induction of boxA gene expression in Arthrobacter was co-incident with a stress response triggered by co-cultivation with Sphingopyxis. Our findings suggest the potential roles of microbial physiological responses to stress induced by other microbes in Mn(II) oxidation and extracellular superoxide production. PMID:27518809

  9. Biogenic VOC oxidation and organic aerosol formation in an urban nocturnal boundary layer: aircraft vertical profiles in Houston, TX

    NASA Astrophysics Data System (ADS)

    Brown, S. S.; Dubé, W. P.; Bahreini, R.; Middlebrook, A. M.; Brock, C. A.; Warneke, C.; de Gouw, J. A.; Washenfelder, R. A.; Atlas, E.; Peischl, J.; Ryerson, T. B.; Holloway, J. S.; Schwarz, J. P.; Spackman, R.; Trainer, M.; Parrish, D. D.; Fehshenfeld, F. C.; Ravishankara, A. R.

    2013-11-01

    Organic compounds are a large component of aerosol mass, but organic aerosol (OA) sources remain poorly characterized. Recent model studies have suggested nighttime oxidation of biogenic hydrocarbons as a potentially large OA source, but analysis of field measurements to test these predictions is sparse. We present nighttime vertical profiles of nitrogen oxides, ozone, VOCs and aerosol composition measured during low approaches of the NOAA P-3 aircraft to airfields in Houston, TX. This region has large emissions of both biogenic hydrocarbons and nitrogen oxides. The latter category serves as a source of the nitrate radical, NO3, a key nighttime oxidant. Biogenic VOCs (BVOC) and urban pollutants were concentrated within the nocturnal boundary layer (NBL), which varied in depth from 100-400 m. Despite concentrated NOx at low altitude, ozone was never titrated to zero, resulting in rapid NO3 radical production rates of 0.2-2.7 ppbv h-1 within the NBL. Monoterpenes and isoprene were frequently present within the NBL and underwent rapid oxidation (up to 1 ppbv h-1), mainly by NO3 and to a lesser extent O3. Concurrent enhancement in organic and nitrate aerosol on several profiles was consistent with primary emissions and with secondary production from nighttime BVOC oxidation, with the latter equivalent to or slightly larger than the former. Some profiles may have been influenced by biomass burning sources as well, making quantitative attribution of organic aerosol sources difficult. Ratios of organic aerosol to CO within the NBL ranged from 14 to 38 μg m-3 OA/ppmv CO. A box model simulation incorporating monoterpene emissions, oxidant formation rates and monoterpene SOA yields suggested overnight OA production of 0.5 to 9 μg m-3.

  10. Biogenic VOC oxidation and organic aerosol formation in an urban nocturnal boundary layer: aircraft vertical profiles in Houston, TX

    NASA Astrophysics Data System (ADS)

    Brown, S. S.; Dubé, W. P.; Bahreini, R.; Middlebrook, A. M.; Brock, C. A.; Warneke, C.; de Gouw, J. A.; Washenfelder, R. A.; Atlas, E.; Peischl, J.; Ryerson, T. B.; Holloway, J. S.; Schwarz, J. P.; Spackman, R.; Trainer, M.; Parrish, D. D.; Fehshenfeld, F. C.; Ravishankara, A. R.

    2013-05-01

    Organic compounds are a large component of aerosol mass, but organic aerosol (OA) sources remain poorly characterized. Recent model studies have suggested nighttime oxidation of biogenic hydrocarbons as a potentially large OA source, but analysis of field measurements to test these predictions is sparse. We present nighttime vertical profiles of nitrogen oxides, ozone, VOCs and aerosol composition measured during low approaches of the NOAA P-3 aircraft to airfields in Houston, TX. This region has large emissions of both biogenic hydrocarbons and nitrogen oxides. The latter serves as a source of the nitrate radical, NO3, a key nighttime oxidant. Biogenic VOCs (BVOC) and urban pollutants were concentrated within the nocturnal boundary layer (NBL), which varied in depth from 100-400 m. Despite concentrated NOx at low altitude, ozone was never titrated to zero, resulting in rapid NO3 radical production rates of 0.2-2.7ppbv h-1 within the NBL. Monoterpenes and isoprene were frequently present within the NBL and underwent rapid oxidation (up to 1ppbv h-1), mainly by NO3 and to a lesser extent O3. Concurrent enhancement in organic and nitrate aerosol on several profiles was consistent with primary emissions and with secondary production from nighttime BVOC oxidation, with the latter equivalent to or slightly larger than the former. Ratios of organic aerosol to CO within the NBL ranged from 14 to 38 μg m-3 OA/ppmv CO. A box model simulation incorporating monoterpene emissions, oxidant formation rates and monoterpene SOA yields suggested overnight OA production of 0.5 to 9 μg m-3.

  11. SiC Composite for Fuel Structure Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yueh, Ken

    Extensive evaluation was performed to determine the suitability of using SiC composite as a boiling water reactor (BWR) fuel channel material. A thin walled SiC composite box, 10 cm in dimension by approximately 1.5 mm wall thickness was fabricated using chemical vapor deposition (CVD) for testing. Mechanical test results and performance evaluations indicate the material could meet BWR channel mechanical design requirement. However, large mass loss of up to 21% was measured in in-pile corrosion test under BWR-like conditions in under 3 months of irradiation. A fresh sister sample irradiated in a follow-up cycle under PWR conditions showed no measureablemore » weight loss and thus supports the hypothesis that the oxidizing condition of the BWR-like coolant chemistry was responsible for the high corrosion rate. A thermodynamic evaluation showed SiC is not stable and the material may oxidize to form SiO 2 and CO 2. Silica has demonstrated stability in high temperature steam environment and form a protective oxide layer under severe accident conditions. However, it does not form a protective layer in water under normal BWR operational conditions due to its high solubility. Corrosion product stabilization by modifying the SiC CVD surface is an approach evaluated in this study to mitigate the high corrosion rate. Titanium and zirconium have been selected as stabilizing elements since both TiSiO 4 and ZrSiO 4 are insoluble in water. Corrosion test results in oxygenated water autoclave indicate TiSiO4 does not form a protective layer. However, zirconium doped test samples appear to form a stable continuous layer of ZrSiO 4 during the corrosion process. Additional process development is needed to produce a good ZrSiC coating to verify functionality of the mitigation concept.« less

  12. Penetration and survival of riparian tree roots in compacted coarse gravel mixtures

    NASA Astrophysics Data System (ADS)

    Muellner, Michael; Weissteiner, Clemens; Konzel, Christoph; Rauch, Hans Peter

    2016-04-01

    Root growth and penetration of riparian trees along paved cycling paths and service roads of rivers causes often traffic safety problems. Damages occur mostly on street surfaces with thin asphalt layers and especially in the upper part of the pavement structure. The maintainers of these roads are faced with frequent and high annual repair costs in order to guarantee traffic safety and pleasant cycling conditions. Analyses of the dominating process mechanisms demonstrated that mainly the naturally growing pioneer vegetation along rivers is responsible for the asphalt damages caused by their constant and rapid growth. The investigations of the root growth characteristics showed that tree roots mostly penetrate the road structure between the gravel sublayer and the asphalt because of the high compaction of the layer itself. In a second step of the research project the influence of different gravel size mixtures on the root penetration and survival are analysed. Coarse gravel size mixtures with the lowest possible fine granular fraction are suposed to inhibit root growth due to the mechanical impedance and air pruning of roots. Furthermore coarse gravel size mixtures could influence the presence of condensate formed at the underside of the asphalt layer. Therefore seven different compositions of matrix stone gravel size mixtures (0/32, 4/32, 8/32, 16/32, 0/64, 8/64 hydraulic bound mixture and 16/64) as sublayer material were tested in a small scale experimental set-up. Wooden boxes with a dimension of 1x1.5x0.5 m and 0.5x0.5x0.5 m were used as frames for the different matrix stone mixtures. On one side the boxes were delimited to the surrounding soil with a steel mesh followed by a wire mesh and a geotextile. Boxes were located in an 80 cm deep hole on a 30 cm thick drainage layer. Willow and poplar cuttings were planted laterally to the root penetrable side of the boxes. Large boxes were filled and compacted with 6 different gravel size mixtures (all but 4/32) and covered by a 10 cm thick concrete layer, small boxes were filled and compacted with 6 gravel size mixtures (all but hydraulic bound mixture) up to the top of the boxes. In total 18 large boxes and 36 small boxes were constructed. Six month after planting the cuttings, above- and below-ground biomass was analysed for the first 6 large boxes and the first 12 small boxes. Soil moisture conditions were also analysed by 21 soil-moisture sensors (3 in each large box and 3 in the surrounding soil) in order to detect different soil moisture conditions throughout time. First results showed that after six months a slightly increase of root biomass production was detected in the finer gravel size mixtures.

  13. Observations and modeling of bromine induced mercury oxidation in the tropical free troposphere during TORERO

    NASA Astrophysics Data System (ADS)

    Coburn, Sean; Wang, Siyuan; terSchure, Arnout; Evans, Matt; Volkamer, Rainer

    2013-04-01

    The Tropical Ocean tRoposphere Exchange experiment TORERO (Jan/Feb 2012) probed air-sea exchange of very short lived halogens and organic carbon species over the full tropospheric air column above the eastern tropical Pacific Ocean. It is well known that halogens influence the oxidative capacity in the marine boundary layer, but their distribution and abundance is less clear in the tropical free troposphere, where most of tropospheric ozone mass resides, and about 80% of the global methane destruction occurs. The oxidation of elemental mercury (GEM) by halogens (i.e., bromine) further forms gaseous oxidized mercury (GOM), and this oxidation is accelerated at the low temperatures in the free troposphere compared to the boundary layer. Free tropospheric halogen radical abundances are thus of particular importance to understand the entry pathways for GOM deposition from the free troposphere to ecosystem, and the subsequent bio-accumulation of this neurotoxin. This presentation summarizes new observational evidence for halogen vertical distributions over the full tropospheric air column, and their abundance in the tropical troposphere, at mid-latitudes in the Northern and Southern hemisphere. BrO and IO were measured simultaneously by the CU Airborne MAX-DOAS instrument, and organic halogen precursors were measured by online GC-MS (TOGA) during 22 research flights aboard the NSF/NCAR GV aircraft. We employ atmospheric box modeling constrained by observations of gas-phase hydrocarbons, aerosols, photolysis frequencies, and meterological parameters measured aboard the plane to test the observed BrO and IO abundances, and evaluate the rate of GEM oxidation in light of recent updates about the stability of the Hg-Br adduct, and it's fate (Goodsite et al., 2012; Dibble et al., 2012). Finally, we compare our measurements with output from the GEOS-Chem model for selected case studies.

  14. A novel nanoscale SOI MOSFET by embedding undoped region for improving self-heating effect

    NASA Astrophysics Data System (ADS)

    Ghaffari, Majid; Orouji, Ali A.

    2018-06-01

    Because of the low thermal conductivity of the SiO2 (oxide), the Buried Oxide (BOX) layer in a Silicon-On-Insulator Metal-Oxide Semiconductor Field-Effect Transistor (SOI MOSFET) prevents heat dissipation in the silicon layer and causes increase in the device lattice temperature. In this paper, a new technique is proposed for reducing Self-Heating Effects (SHEs). The key idea in the proposed structure is using a Silicon undoped Region (SR) in the nanoscale SOI MOSFET under the drain and channel regions in order to decrease the SHE. The novel transistor is named Silicon undoped Region SOI-MOSFET (SR-SOI). Due to the embedded silicon undoped region in the suitable place, the proposed structure has decreased the device lattice temperature. The location and dimensions of the proposed region have been carefully optimized to achieve the best results. This work has explored enhancement such as decreased maximum lattice temperature, increased electron mobility, increased drain current, lower DC drain conductance and higher DC transconductance and also decreased bandgap energy variations. Also, for modeling of the structure in the SPICE tools, the main characterizations have been extracted such as thermal resistance (RTH), thermal capacitance (CTH), and SHE characteristic frequency (fTH). All parameters are extracted in relation with the AC operation indicate excellent performance of the SR-SOI device. The results show that proposed region is a suitable alternative to oxide as a part of the buried oxide layer in SOI structures and has better performance in high temperature. Using two-dimensional (2-D) and two-carrier device simulation is done comparison of the SR-SOI structure with a Conventional SOI (C-SOI). As a result, the SR-SOI device can be regarded as a useful substitution for the C-SOI device in nanoscale integrated circuits as a reliable device.

  15. Microbial community response reveals underlying mechanism of industrial-scale manganese sand biofilters used for the simultaneous removal of iron, manganese and ammonia from groundwater.

    PubMed

    Zhang, Yu; Sun, Rui; Zhou, Aijuan; Zhang, Jiaguang; Luan, Yunbo; Jia, Jianna; Yue, Xiuping; Zhang, Jie

    2018-01-08

    Most studies have employed aeration-biofiltration process for the simultaneous removal of iron, manganese and ammonia in groundwater. However, what's inside the "black box", i.e., the potential contribution of functional microorganisms behavior and interactions have seldom been investigated. Moreover, little attention has been paid to the correlations between environmental variables and functional microorganisms. In this study, the performance of industrial-scale biofilters for the contaminated groundwater treatment was studied. The effluent were all far below the permitted concentration level in the current drinking water standard. Pyrosequencing illustrated that shifts in microbial community structure were observed in the microbial samples from different depths of filter. Microbial networks showed that the microbial community structure in the middle- and deep-layer samples was similar, in which a wide range of manganese-oxidizing bacteria was identified. By contrast, canonical correlation analysis showed that the bacteria capable of ammonia-oxidizing and nitrification was enriched in the upper-layer, i.e., Propionibacterium, Nitrosomonas, Nitrosomonas and Candidatus Nitrotoga. The stable biofilm on the biofilter media, created by certain microorganisms from the groundwater microflora, played a crucial role in the simultaneous removal of the three pollutants.

  16. XPS-XRF hybrid metrology enabling FDSOI process

    NASA Astrophysics Data System (ADS)

    Hossain, Mainul; Subramanian, Ganesh; Triyoso, Dina; Wahl, Jeremy; Mcardle, Timothy; Vaid, Alok; Bello, A. F.; Lee, Wei Ti; Klare, Mark; Kwan, Michael; Pois, Heath; Wang, Ying; Larson, Tom

    2016-03-01

    Planar fully-depleted silicon-on-insulator (FDSOI) technology potentially offers comparable transistor performance as FinFETs. pFET FDOSI devices are based on a silicon germanium (cSiGe) layer on top of a buried oxide (BOX). Ndoped interfacial layer (IL), high-k (HfO2) layer and the metal gate stacks are then successively built on top of the SiGe layer. In-line metrology is critical in precisely monitoring the thickness and composition of the gate stack and associated underlying layers in order to achieve desired process control. However, any single in-line metrology technique is insufficient to obtain the thickness of IL, high-k, cSiGe layers in addition to Ge% and N-dose in one single measurement. A hybrid approach is therefore needed that combines the capabilities of more than one measurement technique to extract multiple parameters in a given film stack. This paper will discuss the approaches, challenges, and results associated with the first-in-industry implementation of XPS-XRF hybrid metrology for simultaneous detection of high-k thickness, IL thickness, N-dose, cSiGe thickness and %Ge, all in one signal measurement on a FDSOI substrate in a manufacturing fab. Strong correlation to electrical data for one or more of these measured parameters will also be presented, establishing the reliability of this technique.

  17. The involvement of wheat F-box protein gene TaFBA1 in the oxidative stress tolerance of plants.

    PubMed

    Zhou, Shu-Mei; Kong, Xiang-Zhu; Kang, Han-Han; Sun, Xiu-Dong; Wang, Wei

    2015-01-01

    As one of the largest gene families, F-box domain proteins have been found to play important roles in abiotic stress responses via the ubiquitin pathway. TaFBA1 encodes a homologous F-box protein contained in E3 ubiquitin ligases. In our previous study, we found that the overexpression of TaFBA1 enhanced drought tolerance in transgenic plants. To investigate the mechanisms involved, in this study, we investigated the tolerance of the transgenic plants to oxidative stress. Methyl viologen was used to induce oxidative stress conditions. Real-time PCR and western blot analysis revealed that TaFBA1 expression was up-regulated by oxidative stress treatments. Under oxidative stress conditions, the transgenic tobacco plants showed a higher germination rate, higher root length and less growth inhibition than wild type (WT). The enhanced oxidative stress tolerance of the transgenic plants was also indicated by lower reactive oxygen species (ROS) accumulation, malondialdehyde (MDA) content and cell membrane damage under oxidative stress compared with WT. Higher activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD), were observed in the transgenic plants than those in WT, which may be related to the upregulated expression of some antioxidant genes via the overexpression of TaFBA1. In others, some stress responsive elements were found in the promoter region of TaFBA1, and TaFBA1 was located in the nucleus, cytoplasm and plasma membrane. These results suggest that TaFBA1 plays an important role in the oxidative stress tolerance of plants. This is important for understanding the functions of F-box proteins in plants' tolerance to multiple stress conditions.

  18. The Involvement of Wheat F-Box Protein Gene TaFBA1 in the Oxidative Stress Tolerance of Plants

    PubMed Central

    Zhou, Shu-Mei; Kong, Xiang-Zhu; Kang, Han-Han; Sun, Xiu-Dong; Wang, Wei

    2015-01-01

    As one of the largest gene families, F-box domain proteins have been found to play important roles in abiotic stress responses via the ubiquitin pathway. TaFBA1 encodes a homologous F-box protein contained in E3 ubiquitin ligases. In our previous study, we found that the overexpression of TaFBA1 enhanced drought tolerance in transgenic plants. To investigate the mechanisms involved, in this study, we investigated the tolerance of the transgenic plants to oxidative stress. Methyl viologen was used to induce oxidative stress conditions. Real-time PCR and western blot analysis revealed that TaFBA1 expression was up-regulated by oxidative stress treatments. Under oxidative stress conditions, the transgenic tobacco plants showed a higher germination rate, higher root length and less growth inhibition than wild type (WT). The enhanced oxidative stress tolerance of the transgenic plants was also indicated by lower reactive oxygen species (ROS) accumulation, malondialdehyde (MDA) content and cell membrane damage under oxidative stress compared with WT. Higher activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD), were observed in the transgenic plants than those in WT, which may be related to the upregulated expression of some antioxidant genes via the overexpression of TaFBA1. In others, some stress responsive elements were found in the promoter region of TaFBA1, and TaFBA1 was located in the nucleus, cytoplasm and plasma membrane. These results suggest that TaFBA1 plays an important role in the oxidative stress tolerance of plants. This is important for understanding the functions of F-box proteins in plants’ tolerance to multiple stress conditions. PMID:25906259

  19. Purification, crystallization and X-ray diffraction analysis of a novel ring-cleaving enzyme (BoxC{sub C}) from Burkholderia xenovorans LB400

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bains, Jasleen; Boulanger, Martin J., E-mail: mboulang@uvic.ca

    2008-05-01

    Preliminary X-ray diffraction studies of a novel ring-cleaving enzyme from B. xenovorans LB400 encoded by the benzoate-oxidation (box) pathway. The assimilation of aromatic compounds by microbial species requires specialized enzymes to cleave the thermodynamically stable ring. In the recently discovered benzoate-oxidation (box) pathway in Burkholderia xenovorans LB400, this is accomplished by a novel dihydrodiol lyase (BoxC{sub C}). Sequence analysis suggests that BoxC{sub C} is part of the crotonase superfamily but includes an additional uncharacterized region of approximately 115 residues that is predicted to mediate ring cleavage. Processing of X-ray diffraction data to 1.5 Å resolution revealed that BoxC{sub C} crystallizedmore » with two molecules in the asymmetric unit of the P2{sub 1}2{sub 1}2{sub 1} space group, with a solvent content of 47% and a Matthews coefficient of 2.32 Å{sup 3} Da{sup −1}. Selenomethionine BoxC{sub C} has been purified and crystals are currently being refined for anomalous dispersion studies.« less

  20. Finite volume solution of the compressible boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Loyd, B.; Murman, E. M.

    1986-01-01

    A box-type finite volume discretization is applied to the integral form of the compressible boundary layer equations. Boundary layer scaling is introduced through the grid construction: streamwise grid lines follow eta = y/h = const., where y is the normal coordinate and h(x) is a scale factor proportional to the boundary layer thickness. With this grid, similarity can be applied explicity to calculate initial conditions. The finite volume method preserves the physical transparency of the integral equations in the discrete approximation. The resulting scheme is accurate, efficient, and conceptually simple. Computations for similar and non-similar flows show excellent agreement with tabulated results, solutions computed with Keller's Box scheme, and experimental data.

  1. Numerical Characterization of a Composite Bonded Wing-Box

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III; Lovejoy, Andrew E.; Satyanarayana, Arunkumar

    2008-01-01

    The development of composite wing structures has focused on the use of mechanical fasteners to join heavily-loaded areas, while bonded joints have been used only for select locations. The focus of this paper is the examination of the adhesive layer in a generic bonded wing box that represents a "fastenerless" or unitized structure in order to characterize the general behavior and failure mechanisms. A global/local approach was applied to study the response of the adhesive layer using a global shell model and a local shell/solid model. The wing box was analyzed under load to represent a high-g up-bending condition such that the strains in the composite sandwich face sheets are comparable to an expected design allowable. The global/local analysis indicates that at these wing load levels the strains in the adhesive layer are well within the adhesive's elastic region, such that yielding would not be expected in the adhesive layer. The global/local methodology appears to be a promising approach to evaluate the structural integrity of the adhesively bonded structures.

  2. Characterization of silicon-on-insulator wafers

    NASA Astrophysics Data System (ADS)

    Park, Ki Hoon

    The silicon-on-insulator (SOI) is attracting more interest as it is being used for an advanced complementary-metal-oxide-semiconductor (CMOS) and a base substrate for novel devices to overcome present obstacles in bulk Si scaling. Furthermore, SOI fabrication technology has improved greatly in recent years and industries produce high quality wafers with high yield. This dissertation investigated SOI material properties with simple, yet accurate methods. The electrical properties of as-grown wafers such as electron and hole mobilities, buried oxide (BOX) charges, interface trap densities, and carrier lifetimes were mainly studied. For this, various electrical measurement techniques were utilized such as pseudo-metal-oxide-semiconductor field-effect-transistor (PseudoMOSFET) static current-voltage (I-V) and transient drain current (I-t), Hall effect, and MOS capacitance-voltage/capacitance-time (C-V/C-t). The electrical characterization, however, mainly depends on the pseudo-MOSFET method, which takes advantage of the intrinsic SOI structure. From the static current-voltage and pulsed measurement, carrier mobilities, lifetimes and interface trap densities were extracted. During the course of this study, a pseudo-MOSFET drain current hysteresis regarding different gate voltage sweeping directions was discovered and the cause was revealed through systematic experiments and simulations. In addition to characterization of normal SOI, strain relaxation of strained silicon-on-insulator (sSOI) was also measured. As sSOI takes advantage of wafer bonding in its fabrication process, the tenacity of bonding between the sSOI and the BOX layer was investigated by means of thermal treatment and high dose energetic gamma-ray irradiation. It was found that the strain did not relax with processes more severe than standard CMOS processes, such as anneals at temperature as high as 1350 degree Celsius.

  3. Observational Constraints on Glyoxal Production from Isoprene Oxidation and Its Contribution to Organic Aerosol over the Southeast United States

    NASA Technical Reports Server (NTRS)

    Li, Jingyi; Mao, Jingqiu; Min, Kyung-Eun; Washenfelder, Rebecca A.; Brown, Steven S.; Kaiser, Jennifer; Keutsch, Frank N.; Volkamer, Rainer; Wolfe, Glenn M.; Hanisco, Thomas F.

    2016-01-01

    We use a 0-D photochemical box model and a 3-D global chemistry-climate model, combined with observations from the NOAA Southeast Nexus (SENEX) aircraft campaign, to understand the sources and sinks of glyoxal over the Southeast United States. Box model simulations suggest a large difference in glyoxal production among three isoprene oxidation mechanisms (AM3ST, AM3B, and Master Chemical Mechanism (MCM) v3.3.1). These mechanisms are then implemented into a 3-D global chemistry-climate model. Comparison with field observations shows that the average vertical profile of glyoxal is best reproduced by AM3ST with an effective reactive uptake coefficient gamma(sub glyx) of 2 x 10(exp -3) and AM3B without heterogeneous loss of glyoxal. The two mechanisms lead to 0-0.8micrograms m(exp -3) secondary organic aerosol (SOA) from glyoxal in the boundary layer of the Southeast U.S. in summer. We consider this to be the lower limit for the contribution of glyoxal to SOA, as other sources of glyoxal other than isoprene are not included in our model. In addition, we find that AM3B shows better agreement on both formaldehyde and the correlation between glyoxal and formaldehyde (RGF[GLYX]/[HCHO]), resulting from the suppression of delta-isoprene peroxy radicals (delta-ISOPO2). We also find that MCM v3.3.1 may underestimate glyoxal production from isoprene oxidation, in part due to an underestimated yield from the reaction of isoprene epoxydiol (IEPOX) peroxy radicals with HO2. Our work highlights that the gas-phase production of glyoxal represents a large uncertainty in quantifying its contribution to SOA.

  4. Observational constraints on glyoxal production from isoprene oxidation and its contribution to organic aerosol over the Southeast United States

    NASA Astrophysics Data System (ADS)

    Li, Jingyi; Mao, Jingqiu; Min, Kyung-Eun; Washenfelder, Rebecca A.; Brown, Steven S.; Kaiser, Jennifer; Keutsch, Frank N.; Volkamer, Rainer; Wolfe, Glenn M.; Hanisco, Thomas F.; Pollack, Ilana B.; Ryerson, Thomas B.; Graus, Martin; Gilman, Jessica B.; Lerner, Brian M.; Warneke, Carsten; de Gouw, Joost A.; Middlebrook, Ann M.; Liao, Jin; Welti, André; Henderson, Barron H.; McNeill, V. Faye; Hall, Samuel R.; Ullmann, Kirk; Donner, Leo J.; Paulot, Fabien; Horowitz, Larry W.

    2016-08-01

    We use a 0-D photochemical box model and a 3-D global chemistry-climate model, combined with observations from the NOAA Southeast Nexus (SENEX) aircraft campaign, to understand the sources and sinks of glyoxal over the Southeast United States. Box model simulations suggest a large difference in glyoxal production among three isoprene oxidation mechanisms (AM3ST, AM3B, and Master Chemical Mechanism (MCM) v3.3.1). These mechanisms are then implemented into a 3-D global chemistry-climate model. Comparison with field observations shows that the average vertical profile of glyoxal is best reproduced by AM3ST with an effective reactive uptake coefficient γglyx of 2 × 10-3 and AM3B without heterogeneous loss of glyoxal. The two mechanisms lead to 0-0.8 µg m-3 secondary organic aerosol (SOA) from glyoxal in the boundary layer of the Southeast U.S. in summer. We consider this to be the lower limit for the contribution of glyoxal to SOA, as other sources of glyoxal other than isoprene are not included in our model. In addition, we find that AM3B shows better agreement on both formaldehyde and the correlation between glyoxal and formaldehyde (RGF = [GLYX]/[HCHO]), resulting from the suppression of δ-isoprene peroxy radicals. We also find that MCM v3.3.1 may underestimate glyoxal production from isoprene oxidation, in part due to an underestimated yield from the reaction of isoprene epoxydiol (IEPOX) peroxy radicals with HO2. Our work highlights that the gas-phase production of glyoxal represents a large uncertainty in quantifying its contribution to SOA.

  5. Observational constraints on glyoxal production from isoprene oxidation and its contribution to organic aerosol over the Southeast United States

    PubMed Central

    Li, Jingyi; Mao, Jingqiu; Min, Kyung-Eun; Washenfelder, Rebecca A.; Brown, Steven S.; Kaiser, Jennifer; Keutsch, Frank N.; Volkamer, Rainer; Wolfe, Glenn M.; Hanisco, Thomas F.; Pollack, Ilana B.; Ryerson, Thomas B.; Graus, Martin; Gilman, Jessica B.; Lerner, Brian M.; Warneke, Carsten; de Gouw, Joost A.; Middlebrook, Ann M.; Liao, Jin; Welti, André; Henderson, Barron H.; McNeill, V. Faye; Hall, Samuel R.; Ullmann, Kirk; Donner, Leo J.; Paulot, Fabien; Horowitz, Larry W.

    2018-01-01

    We use a 0-D photochemical box model and a 3-D global chemistry-climate model, combined with observations from the NOAA Southeast Nexus (SENEX) aircraft campaign, to understand the sources and sinks of glyoxal over the Southeast United States. Box model simulations suggest a large difference in glyoxal production among three isoprene oxidation mechanisms (AM3ST, AM3B, and MCM v3.3.1). These mechanisms are then implemented into a 3-D global chemistry-climate model. Comparison with field observations shows that the average vertical profile of glyoxal is best reproduced by AM3ST with an effective reactive uptake coefficient γglyx of 2 × 10−3, and AM3B without heterogeneous loss of glyoxal. The two mechanisms lead to 0–0.8 μg m−3 secondary organic aerosol (SOA) from glyoxal in the boundary layer of the Southeast U.S. in summer. We consider this to be the lower limit for the contribution of glyoxal to SOA, as other sources of glyoxal other than isoprene are not included in our model. In addition, we find that AM3B shows better agreement on both formaldehyde and the correlation between glyoxal and formaldehyde (RGF = [GLYX]/[HCHO]), resulting from the suppression of δ-isoprene peroxy radicals (δ-ISOPO2). We also find that MCM v3.3.1 may underestimate glyoxal production from isoprene oxidation, in part due to an underestimated yield from the reaction of IEPOX peroxy radicals (IEPOXOO) with HO2. Our work highlights that the gas-phase production of glyoxal represents a large uncertainty in quantifying its contribution to SOA. PMID:29619286

  6. Observational constraints on glyoxal production from isoprene oxidation and its contribution to organic aerosol over the Southeast United States.

    PubMed

    Li, Jingyi; Mao, Jingqiu; Min, Kyung-Eun; Washenfelder, Rebecca A; Brown, Steven S; Kaiser, Jennifer; Keutsch, Frank N; Volkamer, Rainer; Wolfe, Glenn M; Hanisco, Thomas F; Pollack, Ilana B; Ryerson, Thomas B; Graus, Martin; Gilman, Jessica B; Lerner, Brian M; Warneke, Carsten; de Gouw, Joost A; Middlebrook, Ann M; Liao, Jin; Welti, André; Henderson, Barron H; McNeill, V Faye; Hall, Samuel R; Ullmann, Kirk; Donner, Leo J; Paulot, Fabien; Horowitz, Larry W

    2016-08-27

    We use a 0-D photochemical box model and a 3-D global chemistry-climate model, combined with observations from the NOAA Southeast Nexus (SENEX) aircraft campaign, to understand the sources and sinks of glyoxal over the Southeast United States. Box model simulations suggest a large difference in glyoxal production among three isoprene oxidation mechanisms (AM3ST, AM3B, and MCM v3.3.1). These mechanisms are then implemented into a 3-D global chemistry-climate model. Comparison with field observations shows that the average vertical profile of glyoxal is best reproduced by AM3ST with an effective reactive uptake coefficient γ glyx of 2 × 10 -3 , and AM3B without heterogeneous loss of glyoxal. The two mechanisms lead to 0-0.8 μg m -3 secondary organic aerosol (SOA) from glyoxal in the boundary layer of the Southeast U.S. in summer. We consider this to be the lower limit for the contribution of glyoxal to SOA, as other sources of glyoxal other than isoprene are not included in our model. In addition, we find that AM3B shows better agreement on both formaldehyde and the correlation between glyoxal and formaldehyde ( R GF = [GLYX]/[HCHO]), resulting from the suppression of δ-isoprene peroxy radicals (δ-ISOPO 2 ). We also find that MCM v3.3.1 may underestimate glyoxal production from isoprene oxidation, in part due to an underestimated yield from the reaction of IEPOX peroxy radicals (IEPOXOO) with HO 2 . Our work highlights that the gas-phase production of glyoxal represents a large uncertainty in quantifying its contribution to SOA.

  7. Critical study of higher order numerical methods for solving the boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Wornom, S. F.

    1978-01-01

    A fourth order box method is presented for calculating numerical solutions to parabolic, partial differential equations in two variables or ordinary differential equations. The method, which is the natural extension of the second order box scheme to fourth order, was demonstrated with application to the incompressible, laminar and turbulent, boundary layer equations. The efficiency of the present method is compared with two point and three point higher order methods, namely, the Keller box scheme with Richardson extrapolation, the method of deferred corrections, a three point spline method, and a modified finite element method. For equivalent accuracy, numerical results show the present method to be more efficient than higher order methods for both laminar and turbulent flows.

  8. An Experimental Study of the Dynamics of an Unsteady Turbulent Boundary Layer.

    DTIC Science & Technology

    1982-12-01

    honeycomb combination into the screen box. The screen box is made of plexiglas, and the screens are made of stainless steel wire (24 gauge, 70% porosity...port plug was modified to accommodate at its cen- ter a stainless steel stem with a disk on the end toward the inside of the tunnel. The stem is spring...necessay and Identify by block nomber) * turbulent boundary layers fluid dynamics free stream velocity A B r R CT si royy.rs ebb it ,imseesa nd ideiiit

  9. High breakdown voltage and high driving current in a novel silicon-on-insulator MESFET with high- and low-resistance boxes in the drift region

    NASA Astrophysics Data System (ADS)

    Naderi, Ali; Mohammadi, Hamed

    2018-06-01

    In this paper a novel silicon-on-insulator metal oxide field effect transistor (SOI-MESFET) with high- and low-resistance boxes (HLRB) is proposed. This structure increases the current and breakdown voltage, simultaneously. The semiconductor at the source side of the channel is doped with higher impurity than the other parts to reduce its resistance and increase the driving current as low-resistance box. An oxide box is implemented at the upper part of the channel from the drain region toward the middle of the channel as the high-resistance box. Inserting a high-resistance box increases the breakdown voltage and improves the RF performance of the device because of its higher tolerable electric field and modification in gate-drain capacitance, respectively. The high-resistance region reduces the current density of the device which is completely compensated by low-resistance box. A 92% increase in breakdown voltage and an 11% improvement in the device current have been obtained. Also, maximum oscillation frequency, unilateral power gain, maximum available gain, maximum stable gain, and maximum output power density are improved by 7%, 35%, 23%, 26%, and 150%, respectively. These results show that the HLRB-SOI-MESFET can be considered as a candidate to replace Conventional SOI-MESFET (C-SOI-MESFET) for high-voltage and high-frequency applications.

  10. SSL/TLS Vulnerability Detection Using Black Box Approach

    NASA Astrophysics Data System (ADS)

    Gunawan, D.; Sitorus, E. H.; Rahmat, R. F.; Hizriadi, A.

    2018-03-01

    Socket Secure Layer (SSL) and Transport Layer Security (TLS) are cryptographic protocols that provide data encryption to secure the communication over a network. However, in some cases, there are vulnerability found in the implementation of SSL/TLS because of weak cipher key, certificate validation error or session handling error. One of the most vulnerable SSL/TLS bugs is heartbleed. As the security is essential in data communication, this research aims to build a scanner that detect the SSL/TLS vulnerability by using black box approach. This research will focus on heartbleed case. In addition, this research also gathers information about existing SSL in the server. The black box approach is used to test the output of a system without knowing the process inside the system itself. For testing purpose, this research scanned websites and found that some of the websites still have SSL/TLS vulnerability. Thus, the black box approach can be used to detect the vulnerability without considering the source code and the process inside the application.

  11. High rate buffer layer for IBAD MgO coated conductors

    DOEpatents

    Foltyn, Stephen R [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM; Arendt, Paul N [Los Alamos, NM

    2007-08-21

    Articles are provided including a base substrate having a layer of an oriented material thereon, and, a layer of hafnium oxide upon the layer of an oriented material. The layer of hafnium oxide can further include a secondary oxide such as cerium oxide, yttrium oxide, lanthanum oxide, scandium oxide, calcium oxide and magnesium oxide. Such articles can further include thin films of high temperature superconductive oxides such as YBCO upon the layer of hafnium oxide or layer of hafnium oxide and secondary oxide.

  12. Thermo-mechanical cyclic testing of carbon-carbon primary structure for an SSTO vehicle

    NASA Astrophysics Data System (ADS)

    Croop, Harold C.; Leger, Kenneth B.; Lowndes, Holland B.; Hahn, Steven E.; Barthel, Chris A.

    1999-01-01

    An advanced carbon-carbon structural component is being experimentally evaluated for use as primary load carrying structure for future single-stage-to-orbit (SSTO) vehicles. The component is a wing torque box section featuring an advanced, three-spar design. This design features 3D-woven, angle-interlock skins, 3D integrally woven spar webs and caps, oxidation inhibited matrix, chemical vapor deposited (CVD) oxidation protection coating, and ceramic matrix composite fasteners. The box spar caps are nested into the skins which, when processed together through the carbon-carbon processing cycle, resulted in monolithic box halves. The box half sections were then joined at the spar web intersections using ceramic matrix composite fasteners. This method of fabrication eliminated fasteners through both the upper and lower skins. Development of the carbon-carbon wing box structure was accomplished in a four phase design and fabrication effort, conducted by Boeing, Information, Space and Defense Systems, Seattle, WA, under contract to the Air Force Research Laboratory (AFRL). The box is now set up for testing and will soon begin cyclic loads testing in the AFRL Structural Test Facility at Wright-Patterson Air Force Base (WPAFB), OH. This paper discusses the latest test setup accomplishments and the results of the pre-cyclic loads testing performed to date.

  13. Thermo-mechanical evaluation of carbon-carbon primary structure for SSTO vehicles

    NASA Astrophysics Data System (ADS)

    Croop, Harold C.; Lowndes, Holland B.; Hahn, Steven E.; Barthel, Chris A.

    1998-01-01

    An advanced development program to demonstrate carbon-carbon composite structure for use as primary load carrying structure has entered the experimental validation phase. The component being evaluated is a wing torque box section for a single-stage-to-orbit (SSTO) vehicle. The validation or demonstration component features an advanced carbon-carbon design incorporating 3D woven graphite preforms, integral spars, oxidation inhibited matrix, chemical vapor deposited (CVD) oxidation protection coating, and ceramic matrix composite fasteners. The validation component represents the culmination of a four phase design and fabrication development effort. Extensive developmental testing was performed to verify material properties and integrity of basic design features before committing to fabrication of the full scale box. The wing box component is now being set up for testing in the Air Force Research Laboratory Structural Test Facility at Wright-Patterson Air Force Base, Ohio. One of the important developmental tests performed in support of the design and planned testing of the full scale box was the fabrication and test of a skin/spar trial subcomponent. The trial subcomponent incorporated critical features of the full scale wing box design. This paper discusses the results of the trial subcomponent test which served as a pathfinder for the upcoming full scale box test.

  14. Individual variation in prelaying behaviour and the incidence of floor eggs.

    PubMed

    Cooper, J J; Appleby, M C

    1996-05-01

    1. Floor eggs are a problem in non-cage systems for laying hens, as they require secondary egg collecting. Failure to lay in a well-defined nest site may also be a welfare problem for the hens, but only if their nesting motivation has been thwarted. We investigated the relationships between a hen's prelaying behaviour and its tendency to lay on the floor by recording the behaviour of 20 hens housed individually in wire cages with single littered nest boxes. 3. Most floor eggs (80%) were laid by the same 6 hens. These 6 "floor-layers" performed more nest seeking behaviour, less nest-building behaviour and less sitting prior to oviposition than the 14 hens that consistently laid in nest boxes. 4. The incidence of floor eggs declined with age. Both nest and floor laying hens performed less nest seeking behaviour with age. Floor layers, however, increased their performance of nesting behaviour, whilst nest layers performed less nesting behaviour with age. 5. Floor laying hens behaved as if they found the nest box less attractive than nest-laying hens; perhaps because they had lower nesting motivation, or perhaps because their nesting motivation was as high, but they less readily perceived the nest box as an appropriate nest site.

  15. Actinide oxide photodiode and nuclear battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sykora, Milan; Usov, Igor

    Photodiodes and nuclear batteries may utilize actinide oxides, such a uranium oxide. An actinide oxide photodiode may include a first actinide oxide layer and a second actinide oxide layer deposited on the first actinide oxide layer. The first actinide oxide layer may be n-doped or p-doped. The second actinide oxide layer may be p-doped when the first actinide oxide layer is n-doped, and the second actinide oxide layer may be n-doped when the first actinide oxide layer is p-doped. The first actinide oxide layer and the second actinide oxide layer may form a p/n junction therebetween. Photodiodes including actinide oxidesmore » are better light absorbers, can be used in thinner films, and are more thermally stable than silicon, germanium, and gallium arsenide.« less

  16. Salicylate Treatment Improves Age-Associated Vascular Endothelial Dysfunction: Potential Role of Nuclear Factor κB and Forkhead Box O Phosphorylation

    PubMed Central

    Durrant, Jessica R.; Connell, Melanie L.; Folian, Brian J.; Donato, Anthony J.; Seals, Douglas R.

    2011-01-01

    We hypothesized that I kappa B kinase (IKK)-mediated nuclear factor kappa B and forkhead BoxO3a phosphorylation will be associated with age-related endothelial dysfunction. Endothelium-dependent dilation and aortic protein expression/phosphorylation were determined in young and old male B6D2F1 mice and old mice treated with the IKK inhibitor, salicylate. IKK activation was greater in old mice and was associated with greater nitrotyrosine and cytokines. Endothelium-dependent dilation, nitric oxide (NO), and endothelial NO synthase phosphorylation were lower in old mice. Endothelium-dependent dilation and NO bioavailability were restored by a superoxide dismutase mimetic. Nuclear factor kappa B and forkhead BoxO3a phosphorylation were greater in old and were associated with increased expression/activity of nicotinamide adenine dinucleotide phosphate oxidase and lower manganese superoxide dismutase expression. Salicylate lowered IKK phosphorylation and reversed age-associated changes in nitrotyrosine, endothelium-dependent dilation, NO bioavailability, endothelial NO synthase, nuclear factor kappa B and forkhead BoxO3a phosphorylation, nicotinamide adenine dinucleotide phosphate oxidase, and manganese superoxide dismutase. Increased activation of IKK with advancing age stimulates nuclear factor kappa B and inactivates forkhead BoxO3a. This altered transcription factor activation contributes to a pro-inflammatory/pro-oxidative arterial phenotype that is characterized by increased cytokines and nicotinamide adenine dinucleotide phosphate oxidase and decreased manganese superoxide dismutase leading to oxidative stress-mediated endothelial dysfunction. PMID:21303813

  17. Impact of higher-order heme degradation products on hepatic function and hemodynamics.

    PubMed

    Seidel, Raphael A; Claudel, Thierry; Schleser, Franziska A; Ojha, Navin K; Westerhausen, Matthias; Nietzsche, Sandor; Sponholz, Christoph; Cuperus, Frans; Coldewey, Sina M; Heinemann, Stefan H; Pohnert, Georg; Trauner, Michael; Bauer, Michael

    2017-08-01

    Biliverdin and bilirubin were previously considered end products of heme catabolism; now, however, there is evidence for further degradation to diverse bioactive products. Z-BOX A and Z-BOX B arise upon oxidation with unknown implications for hepatocellular function and integrity. We studied the impact of Z-BOX A and B on hepatic functions and explored their alterations in health and cholestatic conditions. Functional implications and mechanisms were investigated in rats, hepatocytic HepG2 and HepaRG cells, human immortalized hepatocytes, and isolated perfused livers. Z-BOX A and B were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in acute and acute-on-chronic liver failure and hereditary unconjugated hyperbilirubinemia. Z-BOX A and B are found in similar amounts in humans and rodents under physiological conditions. Serum concentrations increased ∼20-fold during cholestatic liver failure in humans (p<0.001) and in hereditary deficiency of bilirubin glucuronidation in rats (p<0.001). Pharmacokinetic studies revealed shorter serum half-life of Z-BOX A compared to its regio-isomer Z-BOX B (p=0.035). While both compounds were taken up by hepatocytes, Z-BOX A was enriched ∼100-fold and excreted in bile. Despite their reported vasoconstrictive properties in the brain vasculature, BOXes did not affect portal hemodynamics. Both Z-BOX A and B showed dose-dependent cytotoxicity, affected the glutathione redox state, and differentially modulated activity of Rev-erbα and Rev-erbβ. Moreover, BOXes-triggered remodeling of the hepatocellular cytoskeleton. Our data provide evidence that higher-order heme degradation products, namely Z-BOX A and B, impair hepatocellular integrity and might mediate intra- and extrahepatic cytotoxic effects previously attributed to hyperbilirubinemia. Degradation of the blood pigment heme yields the bile pigment bilirubin and the oxidation products Z-BOX A and Z-BOX B. Serum concentrations of these bioactive molecules increase in jaundice and can impair liver function and integrity. Amounts of Z-BOX A and Z-BOX B that are observed during liver failure in humans have profound effects on hepatic function when added to cultured liver cells or infused into healthy rats. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  18. Payload bay atmospheric vent airflow testing at the Vibration and Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    Johnston, James D., Jr.

    1988-01-01

    Several concerns related to venting the Space Shuttle Orbiter payload bay during launch led to laboratory experiments with a flight-type vent box installed in the wall of a subsonic wind tunnel. This report describes the test setups and procedures used to acquire data for characterization of airflow through the vent box and acoustic tones radiated from the vent-box cavity. A flexible boundary-layer spoiler which reduced the vent-tone amplitude is described.

  19. Oriented conductive oxide electrodes on SiO2/Si and glass

    DOEpatents

    Jia, Quanxi; Arendt, Paul N.

    2001-01-01

    A thin film structure is provided including a silicon substrate with a layer of silicon dioxide on a surface thereof, and a layer of cubic oxide material deposited upon the layer of silicon dioxide by ion-beam-assisted-deposition, said layer of cubic oxide material characterized as biaxially oriented. Preferably, the cubic oxide material is yttria-stabilized zirconia. Additional thin layers of biaxially oriented ruthenium oxide or lanthanum strontium cobalt oxide are deposited upon the layer of yttria-stabilized zirconia. An intermediate layer of cerium oxide is employed between the yttria-stabilized zirconia layer and the lanthanum strontium cobalt oxide layer. Also, a layer of barium strontium titanium oxide can be upon the layer of biaxially oriented ruthenium oxide or lanthanum strontium cobalt oxide. Also, a method of forming such thin film structures, including a low temperature deposition of a layer of a biaxially oriented cubic oxide material upon the silicon dioxide surface of a silicon dioxide/silicon substrate is provided.

  20. Synthesis of Bis(1,2-Dimethylimidazole)Copper(I)Hexafluorophosphate: An Experiment Using a Glove Box

    ERIC Educational Resources Information Center

    Niewahner, J. H.; Walters, Keith A.

    2007-01-01

    A detailed description of the synthesis of bis(1,2-dimethylimidazole)copper(I) hexafluorophosphate by using techniques in a glove box is presented. The results shows that the synthesis of the copper complex has a distinct color change indicating by-product oxidation by oxygen.

  1. Potential Mapping of an Indium-Tin-Oxide Glass Box in a GEC Reference Cell

    NASA Astrophysics Data System (ADS)

    Kaplan, Rebecca; Carmona-Reyes, Jorge; Hyde, Truell; Matthews, Lorin; Casper Program Team

    The use of indium-tin-oxide (ITO) coated boxes, as well as boxes coated with other substances, placed on or floating above the lower electrode in studies using Gaseous Electronics Conference Radio Frequency Reference Cells have increased in interest, as have the use of plain glass boxes. This increase in interest is due to the greater ability to control the confinement forces and in effect create dust chain structures which aid in studies within other areas of physics such as; entropy, kinetic dust temperature, plasma balls and coulomb explosions. Further analysis of the data obtained using these boxes shows what appear to be at least two different regions of confinement inside the boxes as well as some unexpected phenomena related to anomalous values and behavior of the electric field. These areas affect the dust to dust and dust to plasma interactions independently in the separate regions and are therefore of great interest. In this study electric potential and electric field maps created in MatLab with data obtained using two probes mounted on CASPER's S-100 nano-manipulator will be presented, connecting the information obtained from these maps to the behavior of the dust observed for different experimental conditions. All of this has been made possible by the opportunity and funding from the CASPER program and the National Science Foundation Grant Number PHY-1262031.

  2. Genetic and Genomic Insights into the Role of Benzoate-Catabolic Pathway Redundancy in Burkholderia xenovorans LB400†

    PubMed Central

    Denef, V. J.; Klappenbach, J. A.; Patrauchan, M. A.; Florizone, C.; Rodrigues, J. L. M.; Tsoi, T. V.; Verstraete, W.; Eltis, L. D.; Tiedje, J. M.

    2006-01-01

    Transcriptomic and proteomic analyses of Burkholderia xenovorans LB400, a potent polychlorinated biphenyl (PCB) degrader, have implicated growth substrate- and phase-dependent expression of three benzoate-catabolizing pathways: a catechol ortho cleavage (ben-cat) pathway and two benzoyl-coenzyme A pathways, encoded by gene clusters on the large chromosome (boxC) and the megaplasmid (boxM). To elucidate the significance of this apparent redundancy, we constructed mutants with deletions of the ben-cat pathway (the ΔbenABCD::kan mutant), the boxC pathway (the ΔboxABC::kan mutant), and both pathways (the ΔbenABCDΔ boxABC::kan mutant). All three mutants oxidized benzoate in resting-cell assays. However, the ΔbenABCD::kan and ΔbenABCD ΔboxABC::kan mutants grew at reduced rates on benzoate and displayed increased lag phases. By contrast, growth on succinate, on 4-hydroxybenzoate, and on biphenyl was unaffected. Microarray and proteomic analyses revealed that cells of the ΔbenABCD::kan mutant growing on benzoate expressed both box pathways. Overall, these results indicate that all three pathways catabolize benzoate. Deletion of benABCD abolished the ability of LB400 to grow using 3-chlorobenzoate. None of the benzoate pathways could degrade 2- or 4-chlorobenzoate, indicating that the pathway redundancy does not directly contribute to LB400's PCB-degrading capacities. Finally, an extensive sigmaE-regulated oxidative stress response not present in wild-type LB400 grown on benzoate was detected in these deletion mutants, supporting our earlier suggestion that the box pathways are preferentially active under reduced oxygen tension. Our data further substantiate the expansive network of tightly interconnected and complexly regulated aromatic degradation pathways in LB400. PMID:16391095

  3. Investigation of Processes Controlling Mercury Cycling at Midlatitudinal Marine and Inland Sites: Improvements and Applications of A Mercury Box Model

    NASA Astrophysics Data System (ADS)

    ye, Z.

    2013-12-01

    Mercury (Hg) is a hazardous pollutant due to the bioaccumulation in food chain. It is emitted to the atmosphere primarily as elemental form, and the long lifetime of which allows global transport. Oxidation of gaseous elemental mercury (GEM) generates reactive gaseous mercury (RGM) which plays an important role in the atmospheric mercury cycle by enhancing the rate of mercury deposition to ecosystem. The present study aimed to investigate the midlatitudinal atmospheric Hg cycling. To achieve that, a mercury chemistry box model was improved by employing the most up-to-date kinetic data for gaseous and aqueous reactions, and was applied to summertime clear sky conditions at three specific sites: Appledore Island (marine site), Thompson Farm (coastal site), and Pack Monadnock (inland site). The model was evaluated using observational data of RGM and pHg (particulate mercury) concentrations from these sites. The simulation results for all three sites showed that HgO, which is produced from oxidation of GEM by O3 and OH, contributed the most (>82%) to the total RGM production. Even in the marine boundary layer, halogen species (mainly Br) only contributed less than 12% to total RGM. The importance of reactions in most updated halogen chemistry has been evaluated. Gas and particle partitioning played an important role in coastal and inland environments. Some abnormally high RGM peaks were found at Appledore Island which may be explained by transport and air-sea exchange. Specific reactions and other processes controlling the diurnal cycles of RGM and pHg at the three sites are still being investigated.

  4. COSAL: A black-box compressible stability analysis code for transition prediction in three-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Malik, M. R.

    1982-01-01

    A fast computer code COSAL for transition prediction in three dimensional boundary layers using compressible stability analysis is described. The compressible stability eigenvalue problem is solved using a finite difference method, and the code is a black box in the sense that no guess of the eigenvalue is required from the user. Several optimization procedures were incorporated into COSAL to calculate integrated growth rates (N factor) for transition correlation for swept and tapered laminar flow control wings using the well known e to the Nth power method. A user's guide to the program is provided.

  5. Substrate Structures For Growth Of Highly Oriented And/Or Epitaxial Layers Thereon

    DOEpatents

    Arendt, Paul N.; Foltyn, Stephen R.; Groves, James R.; Jia, Quanxi

    2005-07-26

    A composite substrate structure including a substrate, a layer of a crystalline metal oxide or crystalline metal oxynitride material upon the substrate, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the crystalline metal oxide or crystalline metal oxynitride material layer is provided together with additional layers such as one or more layers of a buffer material upon the oriented cubic oxide material layer. Jc's of 2.3×106 A/cm2 have been demonstrated with projected Ic's of 320 Amperes across a sample 1 cm wide for a superconducting article including a flexible polycrystalline metallic substrate, an inert oxide material layer upon the surface of the flexible polycrystalline metallic substrate, a layer of a crystalline metal oxide or crystalline metal oxynitride material upon the layer of the inert oxide material, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the crystalline metal oxide or crystalline metal oxynitride material layer, a layer of a buffer material upon the oriented cubic oxide material layer, and, a top-layer of a high temperature superconducting material upon the layer of a buffer material.

  6. High Temperature Superconducting Thick Films

    DOEpatents

    Arendt, Paul N.; Foltyn, Stephen R.; Groves, James R.; Holesinger, Terry G.; Jia, Quanxi

    2005-08-23

    An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, (generally the inert oxide material layer has a smooth surface, i.e., a RMS roughness of less than about 2 nm), a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer is provided together with additional layers such as at least one layer of a buffer material upon the oriented cubic oxide material layer or a HTS top-layer of YBCO directly upon the oriented cubic oxide material layer. With a HTS top-layer of YBCO upon at least one layer of a buffer material in such an article, Jc's of 1.4×106 A/cm2 have been demonstrated with projected Ic's of 210 Amperes across a sample 1 cm wide.

  7. 13. VIEW OF A BBOX, WHICH WAS USED IN THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW OF A B-BOX, WHICH WAS USED IN THE FAST RECOVERY PROCESS. URANIUM OXIDE WAS TRANSFERRED FOR DISSOLUTION IN A ROOM WHICH HOUSED 3 ROWS OF B-BOXES. B-BOXES ARE CONTROLLED HOODS, SIMILAR TO LAB HOODS THAT OPERATED WITH HIGH AIR VELOCITIES AT THEIR OPENINGS TO ENSURE THAT THE VAPORS WERE CONTAINED WITHIN THE HOOD. (2/14/79) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  8. Testing density-dependent groundwater models: Two-dimensional steady state unstable convection in infinite, finite and inclined porous layers

    USGS Publications Warehouse

    Weatherill, D.; Simmons, C.T.; Voss, C.I.; Robinson, N.I.

    2004-01-01

    This study proposes the use of several problems of unstable steady state convection with variable fluid density in a porous layer of infinite horizontal extent as two-dimensional (2-D) test cases for density-dependent groundwater flow and solute transport simulators. Unlike existing density-dependent model benchmarks, these problems have well-defined stability criteria that are determined analytically. These analytical stability indicators can be compared with numerical model results to test the ability of a code to accurately simulate buoyancy driven flow and diffusion. The basic analytical solution is for a horizontally infinite fluid-filled porous layer in which fluid density decreases with depth. The proposed test problems include unstable convection in an infinite horizontal box, in a finite horizontal box, and in an infinite inclined box. A dimensionless Rayleigh number incorporating properties of the fluid and the porous media determines the stability of the layer in each case. Testing the ability of numerical codes to match both the critical Rayleigh number at which convection occurs and the wavelength of convection cells is an addition to the benchmark problems currently in use. The proposed test problems are modelled in 2-D using the SUTRA [SUTRA-A model for saturated-unsaturated variable-density ground-water flow with solute or energy transport. US Geological Survey Water-Resources Investigations Report, 02-4231, 2002. 250 p] density-dependent groundwater flow and solute transport code. For the case of an infinite horizontal box, SUTRA results show a distinct change from stable to unstable behaviour around the theoretical critical Rayleigh number of 4??2 and the simulated wavelength of unstable convection agrees with that predicted by the analytical solution. The effects of finite layer aspect ratio and inclination on stability indicators are also tested and numerical results are in excellent agreement with theoretical stability criteria and with numerical results previously reported in traditional fluid mechanics literature. ?? 2004 Elsevier Ltd. All rights reserved.

  9. Determining the Chemical Composition of Corrosion Inhibitor/Metal Interfaces with XPS: Minimizing Post Immersion Oxidation

    PubMed Central

    Walczak, Monika S.; Morales-Gil, Perla; Belashehr, Turia; Kousar, Kiran; Arellanes Lozada, Paulina; Lindsay, Robert

    2017-01-01

    An approach for acquiring more reliable X-ray photoelectron spectroscopy data from corrosion inhibitor/metal interfaces is described. More specifically, the focus is on metallic substrates immersed in acidic solutions containing organic corrosion inhibitors, as these systems can be particularly sensitive to oxidation following removal from solution. To minimize the likelihood of such degradation, samples are removed from solution within a glove box purged with inert gas, either N2 or Ar. The glove box is directly attached to the load-lock of the ultra-high vacuum X-ray photoelectron spectroscopy instrument, avoiding any exposure to the ambient laboratory atmosphere, and thus reducing the possibility of post immersion substrate oxidation. On this basis, one can be more certain that the X-ray photoelectron spectroscopy features observed are likely to be representative of the in situ submerged scenario, e.g. the oxidation state of the metal is not modified. PMID:28362363

  10. Determining the Chemical Composition of Corrosion Inhibitor/Metal Interfaces with XPS: Minimizing Post Immersion Oxidation.

    PubMed

    Walczak, Monika S; Morales-Gil, Perla; Belashehr, Turia; Kousar, Kiran; Arellanes Lozada, Paulina; Lindsay, Robert

    2017-03-15

    An approach for acquiring more reliable X-ray photoelectron spectroscopy data from corrosion inhibitor/metal interfaces is described. More specifically, the focus is on metallic substrates immersed in acidic solutions containing organic corrosion inhibitors, as these systems can be particularly sensitive to oxidation following removal from solution. To minimize the likelihood of such degradation, samples are removed from solution within a glove box purged with inert gas, either N2 or Ar. The glove box is directly attached to the load-lock of the ultra-high vacuum X-ray photoelectron spectroscopy instrument, avoiding any exposure to the ambient laboratory atmosphere, and thus reducing the possibility of post immersion substrate oxidation. On this basis, one can be more certain that the X-ray photoelectron spectroscopy features observed are likely to be representative of the in situ submerged scenario, e.g. the oxidation state of the metal is not modified.

  11. Modeling of yield and environmental impact categories in tea processing units based on artificial neural networks.

    PubMed

    Khanali, Majid; Mobli, Hossein; Hosseinzadeh-Bandbafha, Homa

    2017-12-01

    In this study, an artificial neural network (ANN) model was developed for predicting the yield and life cycle environmental impacts based on energy inputs required in processing of black tea, green tea, and oolong tea in Guilan province of Iran. A life cycle assessment (LCA) approach was used to investigate the environmental impact categories of processed tea based on the cradle to gate approach, i.e., from production of input materials using raw materials to the gate of tea processing units, i.e., packaged tea. Thus, all the tea processing operations such as withering, rolling, fermentation, drying, and packaging were considered in the analysis. The initial data were obtained from tea processing units while the required data about the background system was extracted from the EcoInvent 2.2 database. LCA results indicated that diesel fuel and corrugated paper box used in drying and packaging operations, respectively, were the main hotspots. Black tea processing unit caused the highest pollution among the three processing units. Three feed-forward back-propagation ANN models based on Levenberg-Marquardt training algorithm with two hidden layers accompanied by sigmoid activation functions and a linear transfer function in output layer, were applied for three types of processed tea. The neural networks were developed based on energy equivalents of eight different input parameters (energy equivalents of fresh tea leaves, human labor, diesel fuel, electricity, adhesive, carton, corrugated paper box, and transportation) and 11 output parameters (yield, global warming, abiotic depletion, acidification, eutrophication, ozone layer depletion, human toxicity, freshwater aquatic ecotoxicity, marine aquatic ecotoxicity, terrestrial ecotoxicity, and photochemical oxidation). The results showed that the developed ANN models with R 2 values in the range of 0.878 to 0.990 had excellent performance in predicting all the output variables based on inputs. Energy consumption for processing of green tea, oolong tea, and black tea were calculated as 58,182, 60,947, and 66,301 MJ per ton of dry tea, respectively.

  12. OsBIRH1, a DEAD-box RNA helicase with functions in modulating defence responses against pathogen infection and oxidative stress

    PubMed Central

    Li, Dayong; Liu, Huizhi; Zhang, Huijuan; Wang, Xiaoe; Song, Fengming

    2008-01-01

    DEAD-box proteins comprise a large protein family with members from all kingdoms and play important roles in all types of processes in RNA metabolism. In this study, a rice gene OsBIRH1, which encodes a DEAD-box RNA helicase protein, was cloned and characterized. The predicted OsBIRH1 protein contains a DEAD domain and all conserved motifs that are common characteristics of DEAD-box RNA helicases. Recombinant OsBIRH1 protein purified from Escherichia coli was shown to have both RNA-dependent ATPase and ATP-dependent RNA helicase activities in vitro. Expression of OsBIRH1 was activated in rice seedling leaves after treatment with defence-related signal chemicals, for example benzothiadiazole, salicylic acid, l-aminocyclopropane-1-carboxylic acid, and jasmonic acid, and was also up-regulated in an incompatible interaction between a resistant rice genotype and the blast fungus, Magnaporthe grisea. Transgenic Arabidopsis plants that overexpress the OsBIRH1 gene were generated. Disease resistance phenotype assays revealed that the OsBIRH1-overexpressing transgenic plants showed an enhanced disease resistance against Alternaria brassicicola and Pseudomonas syringae pv. tomato DC3000. Meanwhile, defence-related genes, for example PR-1, PR-2, PR-5, and PDF1.2, showed an up-regulated expression in the transgenic plants. Moreover, the OsBIRH1 transgenic Arabidopsis plants also showed increased tolerance to oxidative stress and elevated expression levels of oxidative defence genes, AtApx1, AtApx2, and AtFSD1. The results suggest that OsBIRH1 encodes a functional DEAD-box RNA helicase and plays important roles in defence responses against biotic and abiotic stresses. PMID:18441339

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, C.

    This profile covers aseptic boxes and paper milk cartons because they are collected together in recycling programs, but statistics are given separately for each product. Aseptic boxes, more commonly known as drink boxes, are used for fruit juices and milk. Aseptic processing involves a high-temperature/short-time treatment in which liquid products are heated quickly to a temperature at which sterilization occurs. The product is then cooled and placed in a sterile container. By weight, aseptic boxes are 70% paper (used for stiffness and strength), 24% polyethylene (used in four different layers to seal the package liquid-tight), and 6% aluminum foil (usedmore » as a barrier against air and light). By weight, milk cartons are 80% paper and 20% polyethylene.« less

  14. Use of segmented constrained layer damping treatment for improved helicopter aeromechanical stability

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Chattopadhyay, Aditi; Gu, Haozhong; Liu, Qiang; Chattopadhyay, Aditi; Zhou, Xu

    2000-08-01

    The use of a special type of smart material, known as segmented constrained layer (SCL) damping, is investigated for improved rotor aeromechanical stability. The rotor blade load-carrying member is modeled using a composite box beam with arbitrary wall thickness. The SCLs are bonded to the upper and lower surfaces of the box beam to provide passive damping. A finite-element model based on a hybrid displacement theory is used to accurately capture the transverse shear effects in the composite primary structure and the viscoelastic and the piezoelectric layers within the SCL. Detailed numerical studies are presented to assess the influence of the number of actuators and their locations for improved aeromechanical stability. Ground and air resonance analysis models are implemented in the rotor blade built around the composite box beam with segmented SCLs. A classic ground resonance model and an air resonance model are used in the rotor-body coupled stability analysis. The Pitt dynamic inflow model is used in the air resonance analysis under hover condition. Results indicate that the surface bonded SCLs significantly increase rotor lead-lag regressive modal damping in the coupled rotor-body system.

  15. Structure for HTS composite conductors and the manufacture of same

    DOEpatents

    Cotton, J.D.; Riley, G.N. Jr.

    1999-06-01

    A superconducting oxide composite structure including a superconducting oxide member, a metal layer surrounding the superconducting oxide member, and an insulating layer of a complex oxide formed in situ adjacent to the superconducting oxide member and the metal layer is provided together with a method of forming such a superconducting oxide composite structure including encapsulating a superconducting oxide member or precursor within a metal matrix layer from the group of: (1) a reactive metal sheath adjacent to the superconducting oxide member or precursor, the reactive metal sheath surrounded by a second metal layer or (2) an alloy containing a reactive metal; to form an intermediate product, and, heating the intermediate product at temperatures and for time sufficient to form an insulating layer of a complex oxide in situ, the insulating layer to the superconducting oxide member or precursor and the metal matrix layer. 10 figs.

  16. Structure for hts composite conductors and the manufacture of same

    DOEpatents

    Cotton, James D.; Riley, Jr., Gilbert Neal

    1999-01-01

    A superconducting oxide composite structure including a superconducting oxide member, a metal layer surrounding the superconducting oxide member, and an insulating layer of a complex oxide formed in situ adjacent to the superconducting oxide member and the metal layer is provided together with a method of forming such a superconducting oxide composite structure including encapsulating a superconducting oxide member or precursor within a metal matrix layer from the group of: (i) a reactive metal sheath adjacent to the superconducting oxide member or precursor, the reactive metal sheath surrounded by a second metal layer or (ii) an alloy containing a reactive metal; to form an intermediate product, and, heating the intermediate product at temperatures and for time sufficient to form an insulating layer of a complex oxide in situ, the insulating layer to the superconducting oxide member or precursor and the metal matrix layer.

  17. 77 FR 15369 - Mobility Fund Phase I Auction GIS Data of Potentially Eligible Census Blocks

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ....fcc.gov/auctions/901/ , are the following: Downloadable shapefile Web mapping service MapBox map tiles... GIS software allows you to add this service as a layer to your session or project. 6. MapBox map tiles are cached map tiles of the data. With this open source software approach, these image tiles can be...

  18. Improved helicopter aeromechanical stability analysis using segmented constrained layer damping and hybrid optimization

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Chattopadhyay, Aditi

    2000-06-01

    Aeromechanical stability plays a critical role in helicopter design and lead-lag damping is crucial to this design. In this paper, the use of segmented constrained damping layer (SCL) treatment and composite tailoring is investigated for improved rotor aeromechanical stability using formal optimization technique. The principal load-carrying member in the rotor blade is represented by a composite box beam, of arbitrary thickness, with surface bonded SCLs. A comprehensive theory is used to model the smart box beam. A ground resonance analysis model and an air resonance analysis model are implemented in the rotor blade built around the composite box beam with SCLs. The Pitt-Peters dynamic inflow model is used in air resonance analysis under hover condition. A hybrid optimization technique is used to investigate the optimum design of the composite box beam with surface bonded SCLs for improved damping characteristics. Parameters such as stacking sequence of the composite laminates and placement of SCLs are used as design variables. Detailed numerical studies are presented for aeromechanical stability analysis. It is shown that optimum blade design yields significant increase in rotor lead-lag regressive modal damping compared to the initial system.

  19. Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean.

    PubMed

    Read, Katie A; Mahajan, Anoop S; Carpenter, Lucy J; Evans, Mathew J; Faria, Bruno V E; Heard, Dwayne E; Hopkins, James R; Lee, James D; Moller, Sarah J; Lewis, Alastair C; Mendes, Luis; McQuaid, James B; Oetjen, Hilke; Saiz-Lopez, Alfonso; Pilling, Michael J; Plane, John M C

    2008-06-26

    Increasing tropospheric ozone levels over the past 150 years have led to a significant climate perturbation; the prediction of future trends in tropospheric ozone will require a full understanding of both its precursor emissions and its destruction processes. A large proportion of tropospheric ozone loss occurs in the tropical marine boundary layer and is thought to be driven primarily by high ozone photolysis rates in the presence of high concentrations of water vapour. A further reduction in the tropospheric ozone burden through bromine and iodine emitted from open-ocean marine sources has been postulated by numerical models, but thus far has not been verified by observations. Here we report eight months of spectroscopic measurements at the Cape Verde Observatory indicative of the ubiquitous daytime presence of bromine monoxide and iodine monoxide in the tropical marine boundary layer. A year-round data set of co-located in situ surface trace gas measurements made in conjunction with low-level aircraft observations shows that the mean daily observed ozone loss is approximately 50 per cent greater than that simulated by a global chemistry model using a classical photochemistry scheme that excludes halogen chemistry. We perform box model calculations that indicate that the observed halogen concentrations induce the extra ozone loss required for the models to match observations. Our results show that halogen chemistry has a significant and extensive influence on photochemical ozone loss in the tropical Atlantic Ocean boundary layer. The omission of halogen sources and their chemistry in atmospheric models may lead to significant errors in calculations of global ozone budgets, tropospheric oxidizing capacity and methane oxidation rates, both historically and in the future.

  20. Chasing quicksilver: modeling the atmospheric lifetime of Hg(0)(g) in the marine boundary layer at various latitudes.

    PubMed

    Hedgecock, Ian M; Pirrone, Nicola

    2004-01-01

    The lifetime of elemental mercury in the marine boundary layer(MBL) has been studied using AMCOTS (Atmospheric Mercury Chemistry Over The Sea), a box model of MBL photochemistry including aerosols and detailed mercury chemistry. Recently measured Hg(0)(g) oxidation reactions have been included, and the studies were performed as a function of latitude, time of year, boundary layer liquid water content (LWC) and cloud optical depth. The results show that Hg has the shortest lifetime when air temperatures are low and sunlight and deliquescent aerosol particles are plentiful. Thus the modeled lifetime for clear-sky conditions is actually shorter at mid-latitudes and high latitudes than near the equator, and for a given latitude and time of year, cooler temperatures enhance the rate of Hg oxidation. Under typical summer conditions (for a given latitude) of temperature and cloudiness, the lifetime (tau) of Hg(0)(g) in the MBL is calculated to be around 10 days at all latitudes between the equator and 60 degrees N. This is much shorter than the generally accepted atmospheric residence time for Hg(0)(g) of a year or more. Given the relatively stable background concentrations of Hg(0)(g) which have been measured, continual replenishment of Hg(0)(g) must take place, suggesting a "multihop" mechanism for the distribution of Hg, rather than solely aeolian transport with little or no chemical transformation between source and receptor. Inclusion of an empirical Hg(0)(g) emission factor related to insolation was used to stabilize the Hg(0)(g) concentration in the model, and the emission rates necessarily agree well with estimated emission fluxes for the open ocean.

  1. Buffer layers on metal alloy substrates for superconducting tapes

    DOEpatents

    Jia, Quanxi; Foltyn, Stephen R.; Arendt, Paul N.; Groves, James R.

    2004-06-29

    An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer, and a layer of a SrRuO.sub.3 buffer material upon the oriented cubic oxide material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon the layer of a SrRuO.sub.3 buffer material layer. With a HTS top-layer of YBCO upon at least one layer of the SrRuO.sub.3 buffer material in such an article, J.sub.c 's of up to 1.3.times.10.sup.6 A/cm.sup.2 have been demonstrated with projected IC's of over 200 Amperes across a sample 1 cm wide.

  2. Chemical Evolution of Ozone and Its Precursors in Asian Pacific Rim Outflow During TRACE-P

    NASA Astrophysics Data System (ADS)

    Hamlin, A.; Crawford, J.; Olson, J.; Pippin, M.; Avery, M.; Sachse, G.; Barrick, J.; Blake, D.; Tan, D.; Sandholm, S.; Kondo, Y.; Singh, H.; Eisele, F.; Zondlo, M.; Flocke, F.; Talbot, R.

    2002-12-01

    During NASA's GTE/TRACE-P (Transport and Chemical Evolution over the Pacific) mission, a widespread stagnant pollution layer was observed between 2 and 4 km over the central Pacific. In this region, high levels of O3 (70~ppbv), CO (210~ppbv), and NOx (130~pptv) were observed. Back trajectories suggest this airmass had been rapidly transported from the Asian coast near the Yellow Sea to the central Pacific where it underwent subsidence. The chemical evolution of ozone and its precursors for this airmass is examined using lagrangian photochemical box model calculations. Simulations are conducted along trajectories which intersect the flight path where predicted mixing ratios are compared to measurements. An analysis of the photochemical processes controlling the cycling of nitrogen oxides and ozone production and destruction during transport will be presented.

  3. Method of making an electrode

    DOEpatents

    Isenberg, Arnold O.

    1986-01-01

    Disclosed is a method of coating an electrode on a solid oxygen conductive oxide layer. A coating of particles of an electronic conductor is formed on one surface of the oxide layer and a source of oxygen is applied to the opposite surface of the oxide layer. A metal halide vapor is applied over the electronic conductor and the oxide layer is heated to a temperature sufficient to induce oxygen to diffuse through the oxide layer and react with the metal halide vapor. This results in the growing of a metal oxide coating on the particles of electronic conductor, thereby binding them to the oxide layer.

  4. Thermoelectric material including conformal oxide layers and method of making the same using atomic layer deposition

    DOEpatents

    Cho, Jung Young; Ahn, Dongjoon; Salvador, James R.; Meisner, Gregory P.

    2016-06-07

    A thermoelectric material includes a substrate particle and a plurality of conformal oxide layers formed on the substrate particle. The plurality of conformal oxide layers has a total oxide layer thickness ranging from about 2 nm to about 20 nm. The thermoelectric material excludes oxide nanoparticles. A method of making the thermoelectric material is also disclosed herein.

  5. Improve oxidation resistance at high temperature by nanocrystalline surface layer

    NASA Astrophysics Data System (ADS)

    Xia, Z. X.; Zhang, C.; Huang, X. F.; Liu, W. B.; Yang, Z. G.

    2015-08-01

    An interesting change of scale sequence occurred during oxidation of nanocrystalline surface layer by means of a surface mechanical attrition treatment. The three-layer oxide structure from the surface towards the matrix is Fe3O4, spinel FeCr2O4 and corundum (Fe,Cr)2O3, which is different from the typical two-layer scale consisted of an Fe3O4 outer layer and an FeCr2O4 inner layer in conventional P91 steel. The diffusivity of Cr, Fe and O is enhanced concurrently in the nanocrystalline surface layer, which causes the fast oxidation in the initial oxidation stage. The formation of (Fe,Cr)2O3 inner layer would inhabit fast diffusion of alloy elements in the nanocrystalline surface layer of P91 steel in the later oxidation stage, and it causes a decrease in the parabolic oxidation rate compared with conventional specimens. This study provides a novel approach to improve the oxidation resistance of heat resistant steel without changing its Cr content.

  6. Method for fabricating solar cells having integrated collector grids

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr. (Inventor)

    1979-01-01

    A heterojunction or Schottky barrier photovoltaic device comprising a conductive base metal layer compatible with and coating predominately the exposed surface of the p-type substrate of the device such that a back surface field region is formed at the interface between the device and the base metal layer, a transparent, conductive mixed metal oxide layer in integral contact with the n-type layer of the heterojunction or Schottky barrier device having a metal alloy grid network of the same metal elements of the oxide constituents of the mixed metal oxide layer embedded in the mixed metal oxide layer, an insulating layer which prevents electrical contact between the conductive metal base layer and the transparent, conductive metal oxide layer, and a metal contact means covering the insulating layer and in intimate contact with the metal grid network embedded in the transparent, conductive oxide layer for conducting electrons generated by the photovoltaic process from the device.

  7. Method of adhesion between an oxide layer and a metal layer

    DOEpatents

    Jennison, Dwight R.; Bogicevic, Alexander; Kelber, Jeffry A.; Chambers, Scott A.

    2004-09-14

    A method of controlling the wetting characteristics and increasing the adhesion between a metal and an oxide layer. By introducing a negatively-charged species to the surface of an oxide layer, layer-by-layer growth of metal deposited onto the oxide surface is promoted, increasing the adhesion strength of the metal-oxide interface. The negatively-charged species can either be deposited onto the oxide surface or a compound can be deposited that dissociates on, or reacts with, the surface to form the negatively-charged species. The deposited metal adatoms can thereby bond laterally to the negatively-charged species as well as vertically to the oxide surface as well as react with the negatively charged species, be oxidized, and incorporated on or into the surface of the oxide.

  8. Effect of thin oxide layers incorporated in spin valve structures

    NASA Astrophysics Data System (ADS)

    Gillies, M. F.; Kuiper, A. E. T.; Leibbrandt, G. W. R.

    2001-06-01

    The enhancement of the magnetoresistance effect, induced by incorporating nano-oxide layers (NOLs) in a bottom-type spin valve, was studied for various preparation conditions. The effect of a NOL in the Co90Fe10 pinned layer was found to depend critically on the oxygen pressure applied to form the thin oxide film. Pressures over 10-3 Torr O2 yield oxides thicker than about 0.7 nm, which apparently deteriorate the biasing field which exists over the oxide. The magnetoresistance values can further be raised by forming a specular reflecting oxide on top of the sense layer. Promising results were obtained with an Al2O3 capping layer formed in a solid-state oxidation reaction that occurs spontaneously when a thin Al layer is deposited on the oxidized surface of the Co90Fe10 sense layer.

  9. Biquadratic coupling through nano-oxide layers in pinned layers of IrMn-based spin valves

    NASA Astrophysics Data System (ADS)

    Lai, Chih-Huang; Lu, K. H.

    2003-05-01

    We have investigated the coupling between top and bottom pinned layers through various nano-oxide layers (NOLs) in IrMn-based spin valves. The NOLs were formed by using oxygen-plasma oxidation or natural oxidation on 1 nm metallic layers. By inserting naturally oxidized Co-NOLs in the pinned layer, strong ferromagnetic coupling through NOLs and high specularity at the NOL interface were achieved. In contrast, when the plasma-oxidized Co-NOLs were inserted, ferromagnetic coupling through NOLs disappeared, plausibly due to the formation of nonferromagnetic oxides, which led to a low magnetoresistance (MR). Insertion of naturally oxidized Ni80Fe20-NOLs showed the same results as that of naturally oxidized Co-NOLs. On the other hand, biquadratic coupling between top and bottom pinned-Co90Fe10 layers was observed by inserting plasma-oxidized Ni80Fe20-NOLs. The highest MR was obtained when the field was applied along the direction perpendicular to the field-annealing direction. Similar biquadratic coupling was also found with naturally oxidized or plasma-oxidized Fe-NOLs. We suggest that the biquadratic coupling between pinned Co90Fe10 layers through NOLs results from the coupling between Fe (or Co90Fe10) and Fe+3 oxides

  10. Earth boring apparatus with multiple welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolton, J.B.; Crews, S.T.

    1981-06-16

    A box tool joint member of generally tubular configuration is adapted for securement by welding to one end of a steel tube to form a drill pipe. The box tool joint member comprises a body having a cylindrical outer periphery, an internally threaded socket at one end of the body, and a weld neck of smaller outer diameter than the body adjacent to the other end of the body. A tapered transition piece connecting the neck with the adjacent end of the body provides an elevator shoulder. A correlative pin tool joint member is welded to the opposite end ofmore » the tube to complete the drill pipe. The box tool joint member has an annular band of hard facing over the outer periphery of the transition piece and extending down over the adjacent part of the weld neck and up around the adjacent part of the body. The hard facing is corrosion resistant and has a smooth finished surface. Underneath the hard facing and extending beyond both ends of the hard facing is an annular butter layer of non-hardenable steel. The tool joint member is hardened and tempered after the butter layer is welded into a body groove and before the hard facing is welded on .The butter layer is grooved before the hard facing is welded on.« less

  11. Theoretical Design and Experimental Evaluation of Molten Carbonate Modified LSM Cathode for Low Temperature Solid Oxide Fuel Cells

    DTIC Science & Technology

    2015-01-07

    Min Lee, Kevin Huang. Mixed Oxide-Ion and Carbonate-Ion Conductors (MOCCs) as Electrolyte Materials for Solid Oxide Fuel Cells, 218th ECS Meeting... Solid Oxide Fuel Cells The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official...ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Solid Oxide Fuel Cell, Oxygen Reduction, Molten Carbonate

  12. Improving metabolic efficiency of the reverse beta-oxidation cycle by balancing redox cofactor requirement.

    PubMed

    Wu, Junjun; Zhang, Xia; Zhou, Peng; Huang, Jiaying; Xia, Xiudong; Li, Wei; Zhou, Ziyu; Chen, Yue; Liu, Yinghao; Dong, Mingsheng

    2017-11-01

    Previous studies have made many exciting achievements on pushing the functional reversal of beta-oxidation cycle (r-BOX) to more widespread adoption for synthesis of a wide variety of fuels and chemicals. However, the redox cofactor requirement for the efficient operation of r-BOX remains unclear. In this work, the metabolic efficiency of r-BOX for medium-chain fatty acid (C 6 -C 10 , MCFA) production was optimized by redox cofactor engineering. Stoichiometric analysis of the r-BOX pathway and further experimental examination identified NADH as a crucial determinant of r-BOX process yield. Furthermore, the introduction of formate dehydrogenase from Candida boidinii using fermentative inhibitor byproduct formate as a redox NADH sink improved MCFA titer from initial 1.2g/L to 3.1g/L. Moreover, coupling of increasing the supply of acetyl-CoA with NADH to achieve fermentative redox balance enabled product synthesis at maximum titers. To this end, the acetate re-assimilation pathway was further optimized to increase acetyl-CoA availability associated with the new supply of NADH. It was found that the acetyl-CoA synthetase activity and intracellular ATP levels constrained the activity of acetate re-assimilation pathway, and 4.7g/L of MCFA titer was finally achieved after alleviating these two limiting factors. To the best of our knowledge, this represented the highest titer reported to date. These results demonstrated that the key constraint of r-BOX was redox imbalance and redox engineering could further unleash the lipogenic potential of this cycle. The redox engineering strategies could be applied to acetyl-CoA-derived products or other bio-products requiring multiple redox cofactors for biosynthesis. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  13. Synchrotron X-ray diffraction investigations on strains in the oxide layer of an irradiated Zircaloy fuel cladding

    NASA Astrophysics Data System (ADS)

    Chollet, Mélanie; Valance, Stéphane; Abolhassani, Sousan; Stein, Gene; Grolimund, Daniel; Martin, Matthias; Bertsch, Johannes

    2017-05-01

    For the first time the microstructure of the oxide layer of a Zircaloy-2 cladding after 9 cycles of irradiation in a boiling water reactor has been analyzed with synchrotron micro-X-ray diffraction. Crystallographic strains of the monoclinic and to some extent of the tetragonal ZrO2 are depicted through the thick oxide layer. Thin layers of sub-oxide at the oxide-metal interface as found for autoclave-tested samples and described in the literature, have not been observed in this material maybe resulting from irradiation damage. Shifts of selected diffraction peaks of the monoclinic oxide show that the uniform strain produced during oxidation is orientated in the lattice and displays variations along the oxide layer. Diffraction peaks and their shifts from families of diffracting planes could be translated into a virtual tensor. This virtual tensor exhibits changes through the oxide layer passing by tensile or compressive components.

  14. TID Simulation of Advanced CMOS Devices for Space Applications

    NASA Astrophysics Data System (ADS)

    Sajid, Muhammad

    2016-07-01

    This paper focuses on Total Ionizing Dose (TID) effects caused by accumulation of charges at silicon dioxide, substrate/silicon dioxide interface, Shallow Trench Isolation (STI) for scaled CMOS bulk devices as well as at Buried Oxide (BOX) layer in devices based on Silicon-On-Insulator (SOI) technology to be operated in space radiation environment. The radiation induced leakage current and corresponding density/concentration electrons in leakage current path was presented/depicted for 180nm, 130nm and 65nm NMOS, PMOS transistors based on CMOS bulk as well as SOI process technologies on-board LEO and GEO satellites. On the basis of simulation results, the TID robustness analysis for advanced deep sub-micron technologies was accomplished up to 500 Krad. The correlation between the impact of technology scaling and magnitude of leakage current with corresponding total dose was established utilizing Visual TCAD Genius program.

  15. Characterization of strain relaxation behavior in Si1- x Ge x epitaxial layers by dry oxidation

    NASA Astrophysics Data System (ADS)

    Jang, Hyunchul; Kim, Byongju; Koo, Sangmo; Park, Seran; Ko, Dae-Hong

    2017-11-01

    We fabricated fully strained Si0.77Ge0.23 epitaxial layers on Si substrates and investigated their strain relaxation behaviors under dry oxidation and the effect of oxidation temperatures and times. After the oxidation process, a Ge-rich layer was formed between the oxide and the remaining Si0.77Ge0.23 layer. Using reciprocal space mapping measurements, we confirmed that the strain of the Si0.77Ge0.23 layers was efficiently relaxed after oxidation, with a maximum relaxation value of 70% after oxidation at 850 °C for 120 min. The surface of Si0.77Ge0.23 layer after strain relaxation by dry oxidation was smoother than a thick Si0.77Ge0.23 layer, which achieved a similar strain relaxation value by increasing the film thickness. Additionally, N2 annealing was performed in order to compare its effect on the relaxation compared to dry oxidation and to identify relaxation mechanisms, other than the thermally driven ones, occurring during dry oxidation.

  16. Inverted bulk-heterojunction organic solar cells with the transfer-printed anodes and low-temperature-processed ultrathin buffer layers

    NASA Astrophysics Data System (ADS)

    Itoh, Eiji; Sakai, Shota; Fukuda, Katsutoshi

    2018-03-01

    We studied the effects of a hole buffer layer [molybdenum oxide (MoO3) and natural copper oxide layer] and a low-temperature-processed electron buffer layer on the performance of inverted bulk-heterojunction organic solar cells in a device consisting of indium-tin oxide (ITO)/poly(ethylene imine) (PEI)/titanium oxide nanosheet (TiO-NS)/poly(3-hexylthiopnehe) (P3HT):phenyl-C61-butyric acid methylester (PCBM)/oxide/anode (Ag or Cu). The insertion of ultrathin TiO-NS (˜1 nm) and oxide hole buffer layers improved the open circuit voltage V OC, fill factor, and rectification properties owing to the effective hole blocking and electron transport properties of ultrathin TiO-NS, and to the enhanced work function difference between TiO-NS and the oxide hole buffer layer. The insertion of the TiO-NS contributed to the reduction in the potential barrier at the ITO/PEI/TiO-NS/active layer interface for electrons, and the insertion of the oxide hole buffer layer contributed to the reduction in the potential barrier for holes. The marked increase in the capacitance under positive biasing in the capacitance-voltage characteristics revealed that the combination of TiO-NS and MoO3 buffer layers contributes to the selective transport of electrons and holes, and blocks counter carriers at the active layer/oxide interface. The natural oxide layer of the copper electrode also acts as a hole buffer layer owing to the increase in the work function of the Cu surface in the inverted cells. The performance of the cell with evaporated MoO3 and Cu layers that were transfer-printed to the active layer was almost comparable to that of the cell with MoO3 and Ag layers directly evaporated onto the active layer. We also demonstrated comparable device performance in the cell with all-printed MoO3 and low-temperature-processed silver nanoparticles as an anode.

  17. Hand portable thin-layer chromatography system

    DOEpatents

    Haas, Jeffrey S.; Kelly, Fredrick R.; Bushman, John F.; Wiefel, Michael H.; Jensen, Wayne A.

    2000-01-01

    A hand portable, field-deployable thin-layer chromatography (TLC) unit and a hand portable, battery-operated unit for development, illumination, and data acquisition of the TLC plates contain many miniaturized features that permit a large number of samples to be processed efficiently. The TLC unit includes a solvent tank, a holder for TLC plates, and a variety of tool chambers for storing TLC plates, solvent, and pipettes. After processing in the TLC unit, a TLC plate is positioned in a collapsible illumination box, where the box and a CCD camera are optically aligned for optimal pixel resolution of the CCD images of the TLC plate. The TLC system includes an improved development chamber for chemical development of TLC plates that prevents solvent overflow.

  18. Documenting the Conversation: A Systematic Review of Library Discovery Layers

    ERIC Educational Resources Information Center

    Bossaller, Jenny S.; Sandy, Heather Moulaison

    2017-01-01

    This article describes the results of a systematic review of peer-reviewed, published research articles about "discovery layers," user-friendly interfaces or systems that provide single-search box access to library content. Focusing on articles in LISTA published 2009-2013, a set of 80 articles was coded for community of users, journal…

  19. Influence of substrate preparation on the shaping of the topography of the surface of nanoceramic oxide layers

    NASA Astrophysics Data System (ADS)

    Bara, Marek; Kubica, Marek

    2014-02-01

    The paper discusses the shaping mechanism and changes occurring in the structure and topography of the surface of nanoceramic oxide layers during their formation. The paper presents the influence of substrate preparation on the surface topography of oxide layers. The layers were produced via hard anodizing on the EN AW-5251 aluminum alloy. The layers obtained were subjected to microscope examinations, image and chemical composition analyses, and stereometric examinations. Heredity of substrate properties in the topography of the surface of nanoceramic oxide layers formed as a result of electrochemical oxidation has been shown.

  20. Impedance of Barrier-Type Oxide Layer on Aluminum

    NASA Astrophysics Data System (ADS)

    Oh, Han-Jun; Kim, Jung-Gu; Jeong, Yong-Soo; Chi, Choong-Soo

    2000-12-01

    The impedance characteristics of barrier-type oxide layers on aluminum was studied using impedance spectroscopy. Since anodic films on Al have a variable stoichiometry with a gradual reduction of oxygen deficiency towards the oxide-electrolyte interface, the interpretation of impedance spectra for oxide layers is complex and the impedance of surface layers differs from those of ideal capacitors. This frequency response of the layer with conductance gradients cannot be described by a single resistance-capacitance (RC) element. The oxide layers of Al are properly described by the Young model of dielectric constant with a vertical decay of conductivity.

  1. Liquid flow cells having graphene on nitride for microscopy

    DOEpatents

    Adiga, Vivekananda P.; Dunn, Gabriel; Zettl, Alexander K.; Alivisatos, A. Paul

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to liquid flow cells for microscopy. In one aspect, a device includes a substrate having a first and a second oxide layer disposed on surfaces of the substrate. A first and a second nitride layer are disposed on the first and second oxide layers, respectively. A cavity is defined in the first oxide layer, the first nitride layer, and the substrate, with the cavity including a third nitride layer disposed on walls of the substrate and the second oxide layer that define the cavity. A channel is defined in the second oxide layer. An inlet port and an outlet port are defined in the second nitride layer and in fluid communication with the channel. A plurality of viewports is defined in the second nitride layer. A first graphene sheet is disposed on the second nitride layer covering the plurality of viewports.

  2. Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof

    DOEpatents

    Sarin, V.K.

    1990-08-21

    An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications is disclosed. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al[sub x]N[sub y]O[sub z] layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al[sub x]N[sub y]O[sub z] layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

  3. Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof

    DOEpatents

    Sarin, Vinod K.

    1990-01-01

    An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al.sub.x N.sub.y O.sub.z layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al.sub.x N.sub.y O.sub.z layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

  4. High Temperature Oxidation of Hot-Dip Aluminized T92 Steels

    NASA Astrophysics Data System (ADS)

    Abro, Muhammad Ali; Hahn, Junhee; Lee, Dong Bok

    2018-03-01

    The T92 steel plate was hot-dip aluminized, and oxidized in order to characterize the high-temperature oxidation behavior of hot-dip aluminized T92 steel. The coating consisted of Al-rich topcoat with scattered Al3Fe grains, Al3Fe-rich upper alloy layer with scattered (Al, Al5Fe2, AlFe)-grains, and Al5Fe2-rich lower alloy layer with scattered (Al5Fe2, AlFe)-grains. Oxidation at 800 °C for 20 h formed (α-Al2O3 scale)/(AlFe layer)/(AlFe3 layer)/(α-Fe(Al) layer), while oxidation at 900 °C for 20 h formed (α-Al2O3 scale plus some Fe2O3)/(AlFe layer)/(AlFe3 layer)/(α-Fe(Al) layer) from the surface. During oxidation, outward migration of all substrate elements, inward diffusion of oxygen, and back and forth diffusion of Al occurred according to concentration gradients. Also, diffusion transformed and broadened AlFe and AlFe3 layers dissolved with some oxygen and substrate alloying elements. Hot-dip aluminizing improved the high-temperature oxidation resistance of T92 steel through preferential oxidation of Al at the surface.

  5. High Temperature Oxidation of Hot-Dip Aluminized T92 Steels

    NASA Astrophysics Data System (ADS)

    Abro, Muhammad Ali; Hahn, Junhee; Lee, Dong Bok

    2018-05-01

    The T92 steel plate was hot-dip aluminized, and oxidized in order to characterize the high-temperature oxidation behavior of hot-dip aluminized T92 steel. The coating consisted of Al-rich topcoat with scattered Al3Fe grains, Al3Fe-rich upper alloy layer with scattered (Al, Al5Fe2, AlFe)-grains, and Al5Fe2-rich lower alloy layer with scattered (Al5Fe2, AlFe)-grains. Oxidation at 800 °C for 20 h formed (α-Al2O3 scale)/(AlFe layer)/(AlFe3 layer)/(α-Fe(Al) layer), while oxidation at 900 °C for 20 h formed (α-Al2O3 scale plus some Fe2O3)/(AlFe layer)/(AlFe3 layer)/(α-Fe(Al) layer) from the surface. During oxidation, outward migration of all substrate elements, inward diffusion of oxygen, and back and forth diffusion of Al occurred according to concentration gradients. Also, diffusion transformed and broadened AlFe and AlFe3 layers dissolved with some oxygen and substrate alloying elements. Hot-dip aluminizing improved the high-temperature oxidation resistance of T92 steel through preferential oxidation of Al at the surface.

  6. Graphene-Based Polymer Bilayers with Superior Light-Driven Properties for Remote Construction of 3D Structures.

    PubMed

    Tang, Zhenhua; Gao, Ziwei; Jia, Shuhai; Wang, Fei; Wang, Yonglin

    2017-05-01

    3D structure assembly in advanced functional materials is important for many areas of technology. Here, a new strategy exploits IR light-driven bilayer polymeric composites for autonomic origami assembly of 3D structures. The bilayer sheet comprises a passive layer of poly(dimethylsiloxane) (PDMS) and an active layer comprising reduced graphene oxides (RGOs), thermally expanding microspheres (TEMs), and PDMS. The corresponding fabrication method is versatile and simple. Owing to the large volume expansion of the TEMs, the two layers exhibit large differences in their coefficients of thermal expansion. The RGO-TEM-PDMS/PDMS bilayers can deflect toward the PDMS side upon IR irradiation via the cooperative effect of the photothermal effect of the RGOs and the expansion of the TEMs, and exhibit excellent light-driven, a large bending deformation, and rapid responsive properties. The proposed RGO-TEM-PDMS/PDMS composites with excellent light-driven bending properties are demonstrated as active hinges for building 3D geometries such as bidirectionally folded columns, boxes, pyramids, and cars. The folding angle (ranging from 0° to 180°) is well-controlled by tuning the active hinge length. Furthermore, the folded 3D architectures can permanently preserve the deformed shape without energy supply. The presented approach has potential in biomedical devices, aerospace applications, microfluidic devices, and 4D printing.

  7. Fabrication of monolithic microfluidic channels in diamond with ion beam lithography

    NASA Astrophysics Data System (ADS)

    Picollo, F.; Battiato, A.; Boarino, L.; Ditalia Tchernij, S.; Enrico, E.; Forneris, J.; Gilardino, A.; Jakšić, M.; Sardi, F.; Skukan, N.; Tengattini, A.; Olivero, P.; Re, A.; Vittone, E.

    2017-08-01

    In the present work, we report on the monolithic fabrication by means of ion beam lithography of hollow micro-channels within a diamond substrate, to be employed for microfluidic applications. The fabrication strategy takes advantage of ion beam induced damage to convert diamond into graphite, which is characterized by a higher reactivity to oxidative etching with respect to the chemically inert pristine structure. This phase transition occurs in sub-superficial layers thanks to the peculiar damage profile of MeV ions, which mostly damage the target material at their end of range. The structures were obtained by irradiating commercial CVD diamond samples with a micrometric collimated C+ ion beam at three different energies (4 MeV, 3.5 MeV and 3 MeV) at a total fluence of 2 × 1016 cm-2. The chosen multiple-energy implantation strategy allows to obtain a thick box-like highly damaged region ranging from 1.6 μm to 2.1 μm below the sample surface. High-temperature annealing was performed to both promote the graphitization of the ion-induced amorphous layer and to recover the pristine crystalline structure in the cap layer. Finally, the graphite was removed by ozone etching, obtaining monolithic microfluidic structures. These prototypal microfluidic devices were tested injecting aqueous solutions and the evidence of the passage of fluids through the channels was confirmed by confocal fluorescent microscopy.

  8. Plasma Oxidation Of Silver And Zinc In Low-Emissivity Stacks

    NASA Astrophysics Data System (ADS)

    Ross, R. C.; Sherman, R.,; Bunger, R. A.; Nadel, S. J.

    1987-11-01

    The oxidation of silver and zinc films was studied by exposing metallic films to low-power 02 plasmas and analyzing the reacted films. This type of oxidation is an important phenomenon near the barrier layer in sputter-deposited metal-oxide/Ag/metal-oxide low-emissivity (low-e) coatings. Barrier layers generally are deposited on the Ag layer to prevent its degradation during subsequent 02 reactive sputtering. Both individual layers and complete stacks were studied. In addition, the thermal stability of plasma-oxidized Ag was examined. There are several important findings for the individual layers. Ag oxidizes rapidly in the plasma, forming Ag≍1.70 after complete reaction. Relative to the original Ag, the 9ide has -l.7 times greater thick-ness, >10 times higher electrical resistiv-ity (p), and increased surface roughness. Zn oxidizes slowly, at only -1% to 0.1% times the rate for Ag, and is thus more difficult to characterize. The results for individual layers are discussed as they relate to practical pro-perties of low-e stacks: the difficulty of obtaining complete barrier layer oxidation without partially degrading the Ag layer as well as the effects of heat treatment and aging.

  9. Depth Profiling Analysis of Aluminum Oxidation During Film Deposition in a Conventional High Vacuum System

    NASA Technical Reports Server (NTRS)

    Kim, Jongmin; Weimer, Jeffrey J.; Zukic, Muamer; Torr, Douglas G.

    1994-01-01

    The oxidation of aluminum thin films deposited in a conventional high vacuum chamber has been investigated using x-ray photoelectron spectroscopy (XPS) and depth profiling. The state of the Al layer was preserved by coating it with a protective MgF2 layer in the deposition chamber. Oxygen concentrations in the film layers were determined as a function of sputter time (depth into the film). The results show that an oxidized layer is formed at the start of Al deposition and that a less extensively oxidized Al layer is deposited if the deposition rate is fast. The top surface of the Al layer oxidizes very quickly. This top oxidized layer may be thicker than has been previously reported by optical methods. Maximum oxygen concentrations measured by XPS at each Al interface are related to pressure to rate ratios determined during the Al layer deposition.

  10. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2013-10-22

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  11. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2015-04-28

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  12. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2014-09-16

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  13. Effect of channelling on water balance, oxygen diffusion and oxidation rate in mine waste rock with an inclined multilayer soil cover

    NASA Astrophysics Data System (ADS)

    Song, Qing; Yanful, Ernest K.

    2010-05-01

    Engineered soil covers provide an option to mitigate acid rock drainage through reduced water flow and gaseous oxygen influx to underlying mine waste. Channels such as fissures, cracks or fractures developed in the barrier may influence the long-term performance of the soil cover. However, limited published information is available on the extent to which soil cover performance is impacted by these fissures and cracks. This study was conducted to investigate the effect of channelling in a barrier layer on water flow and oxygen transport in a soil cover. Two inclined (a slope of 20%) multilayer soil covers were examined under laboratory conditions. One cover had a 10-cm wide sand-filled channel in a compacted barrier layer (silty clay) at the upslope section, while the other cover was a normal one without the channel pathway. The soil covers were installed in plastic boxes measuring 120 cm × 120 cm × 25 cm (width × height × thickness). The sand-filled channel was designed to represent the aggregate of fissures and cracks that may be present in the compacted barrier. The soil covers were subjected to controlled drying and wetting periods selected to simulate field situation at the Whistle mine site near Capreol, Ontario, Canada. The measured results indicated that interflow decreased from 72.8% of the total precipitation in the soil cover without channel flow to 35.3% in the cover with channel flow, and percolation increased from zero in the normal soil cover to 43.0% of the total precipitation in the cover with channel flow. Gaseous oxygen transfer into the waste rock below the cover soils was 1091 times greater in the cover with channel than in the soil cover without channel. The channel pathway present in the barrier layer acted as a major passage for water movement and gaseous oxygen diffusion into the waste rock layer, thus decreasing the performance of the soil cover. The spacing of the channel with respect to the length of the test box is similar to those found in other published fracture networks. The distribution and partitioning of the water balance components would be expected to be similar to other situations with the same cover slope. This, of course, would depend on rainfall intensity.

  14. Delivery of the high-mobility group box 1 box A peptide using heparin in the acute lung injury animal models.

    PubMed

    Song, Ji Hyun; Kim, Ji Yeon; Piao, Chunxian; Lee, Seonyeong; Kim, Bora; Song, Su Jeong; Choi, Joon Sig; Lee, Minhyung

    2016-07-28

    In this study, the efficacy of the high-mobility group box-1 box A (HMGB1A)/heparin complex was evaluated for the treatment of acute lung injury (ALI). HMGB1A is an antagonist against wild-type high-mobility group box-1 (wtHMGB1), a pro-inflammatory cytokine that is involved in ALIs. HMGB1A has positive charges and can be captured in the mucus layer after intratracheal administration. To enhance the delivery and therapeutic efficiency of HMGB1A, the HMGB1A/heparin complex was produced using electrostatic interactions, with the expectation that the nano-sized complex with a negative surface charge could efficiently penetrate the mucus layer. Additionally, heparin itself had an anti-inflammatory effect. Complex formation with HMGB1A and heparin was confirmed by atomic force microscopy. The particle size and surface charge of the HMGB1A/heparin complex at a 1:1 weight ratio were 113nm and -25mV, respectively. Intratracheal administration of the complex was performed into an ALI animal model. The results showed that the HMGB1A/heparin complex reduced pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β, more effectively than HMGB1A or heparin alone. Hematoxylin and eosin staining confirmed the decreased inflammatory reaction in the lungs after delivery of the HMGB1A/heparin complex. In conclusion, the HMGB1A/heparin complex might be useful to treat ALI. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Object detection via eye tracking and fringe restraint

    NASA Astrophysics Data System (ADS)

    Pan, Fei; Zhang, Hanming; Zeng, Ying; Tong, Li; Yan, Bin

    2017-07-01

    Object detection is a computer vision problem which caught a large amount of attention. But the candidate boundingboxes extracted from only image features may end up with false-detection due to the semantic gap between the top-down and the bottom up information. In this paper, we propose a novel method for generating object bounding-boxes proposals using the combination of eye fixation point, saliency detection and edges. The new method obtains a fixation orientated Gaussian map, optimizes the map through single-layer cellular automata, and derives bounding-boxes from the optimized map on three levels. Then we score the boxes by combining all the information above, and choose the box with the highest score to be the final box. We perform an evaluation of our method by comparing with previous state-ofthe art approaches on the challenging POET datasets, the images of which are chosen from PASCAL VOC 2012. Our method outperforms them on small scale objects while comparable to them in general.

  16. Planar ceramic membrane assembly and oxidation reactor system

    DOEpatents

    Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohm, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, deceased, Paul Nigel

    2007-10-09

    Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.

  17. Planar ceramic membrane assembly and oxidation reactor system

    DOEpatents

    Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohrn, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, Paul Nigel

    2009-04-07

    Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.

  18. Buried oxide layer in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  19. A box model study on photochemical interactions between VOCs and reactive halogen species in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Toyota, K.; Kanaya, Y.; Takahashi, M.; Akimoto, H.

    2003-09-01

    A new chemical scheme is developed for the multiphase photochemical box model SEAMAC (size-SEgregated Aerosol model for Marine Air Chemistry) to investigate photochemical interactions between volatile organic compounds (VOCs) and reactive halogen species in the marine boundary layer (MBL). Based primarily on critically evaluated kinetic and photochemical rate parameters as well as a protocol for chemical mechanism development, the new scheme has achieved a near-explicit treatment of oxidative degradation of up to C3-hydrocarbons CH4, C2H6, C3H8, C2H4, C3H6, and C2H2) initiated by reactions with OH radicals, Cl- and Br-atoms, and O3. Rate constants and product yields for reactions involving halogen species are taken from the literature where available, but the majority of them need to be estimated. In particular, addition reactions of halogen atoms with alkenes will result in the formation of halogenated organic intermediates, whose photochemical loss rates are carefully evaluated in the present work. Model calculations with the new chemical scheme reveal that the oceanic emissions of acetaldehyde (CH3CHO) and alkenes (especially C3H6) are important factors for regulating reactive halogen chemistry in the MBL by promoting the conversion of Br atoms into HBr or more stable brominated intermediates in the organic form. The latter include brominated hydroperoxides, bromoacetaldehyde, and bromoacetone, which sequester bromine from reactive inorganic pool. The total mixing ratio of brominated organic species thus produced is likely to reach 10-20% or more of that of inorganic gaseous bromine species over wide regions over the ocean. On the other hand, the reaction between Br atoms and C2H2 is unimportant for determining the degree of bromine activation in the remote MBL. It is suggested that peroxyacetic acid formed via CH3CHO oxidation is one of the important chemical agents for triggering autocatalytic halogen release from sea-salt aerosols. These results imply that reactive halogen chemistry can mediate a link between the oceanic emissions of VOCs and the behaviors of compounds that are sensitive to halogen chemistry such as dimethyl sulfide, NOx, and O3 in the MBL.

  20. Impacts of bromine and iodine chemistry on tropospheric OH and HO2: comparing observations with box and global model perspectives

    NASA Astrophysics Data System (ADS)

    Stone, Daniel; Sherwen, Tomás; Evans, Mathew J.; Vaughan, Stewart; Ingham, Trevor; Whalley, Lisa K.; Edwards, Peter M.; Read, Katie A.; Lee, James D.; Moller, Sarah J.; Carpenter, Lucy J.; Lewis, Alastair C.; Heard, Dwayne E.

    2018-03-01

    The chemistry of the halogen species bromine and iodine has a range of impacts on tropospheric composition, and can affect oxidising capacity in a number of ways. However, recent studies disagree on the overall sign of the impacts of halogens on the oxidising capacity of the troposphere. We present simulations of OH and HO2 radicals for comparison with observations made in the remote tropical ocean boundary layer during the Seasonal Oxidant Study at the Cape Verde Atmospheric Observatory in 2009. We use both a constrained box model, using detailed chemistry derived from the Master Chemical Mechanism (v3.2), and the three-dimensional global chemistry transport model GEOS-Chem. Both model approaches reproduce the diurnal trends in OH and HO2. Absolute observed concentrations are well reproduced by the box model but are overpredicted by the global model, potentially owing to incomplete consideration of oceanic sourced radical sinks. The two models, however, differ in the impacts of halogen chemistry. In the box model, halogen chemistry acts to increase OH concentrations (by 9.8 % at midday at the Cape Verde Atmospheric Observatory), while the global model exhibits a small increase in OH at the Cape Verde Atmospheric Observatory (by 0.6 % at midday) but overall shows a decrease in the global annual mass-weighted mean OH of 4.5 %. These differences reflect the variety of timescales through which the halogens impact the chemical system. On short timescales, photolysis of HOBr and HOI, produced by reactions of HO2 with BrO and IO, respectively, increases the OH concentration. On longer timescales, halogen-catalysed ozone destruction cycles lead to lower primary production of OH radicals through ozone photolysis, and thus to lower OH concentrations. The global model includes more of the longer timescale responses than the constrained box model, and overall the global impact of the longer timescale response (reduced primary production due to lower O3 concentrations) overwhelms the shorter timescale response (enhanced cycling from HO2 to OH), and thus the global OH concentration decreases. The Earth system contains many such responses on a large range of timescales. This work highlights the care that needs to be taken to understand the full impact of any one process on the system as a whole.

  1. Method for implementation of back-illuminated CMOS or CCD imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor)

    2008-01-01

    A method for implementation of back-illuminated CMOS or CCD imagers. An oxide layer buried between silicon wafer and device silicon is provided. The oxide layer forms a passivation layer in the imaging structure. A device layer and interlayer dielectric are formed, and the silicon wafer is removed to expose the oxide layer.

  2. Effect of low current density and low frequency on oxidation resistant and coating activity of coated FeCrAl substrate by γ-Al2O3 powder

    NASA Astrophysics Data System (ADS)

    Leman, A. M.; Feriyanto, Dafit; Zakaria, Supaat; Sebayang, D.; Rahman, Fakhrurrazi; Jajuli, Afiqah

    2017-09-01

    High oxidation resistant is the needed material properties for material that operates in high temperature such as catalytic converter material. FeCrAl alloy acts as metallic material and is used as substrate material that is coated by ceramic material i.e. γ-Al2O3. The main purpose of this research is to increase oxidation resistant of metallic material as it will help improve the life time of metallic catalytic converter. Ultrasonic technique (UB) and Nickel electroplating technique (EL) were used to achieve the objective. UB was carried out using various time of 1, 1.5, 2, 2.5 and 3 h, in low frequency of 35 kHz and ethanol as the electrolyte. Meanwhile, EL was conducted using various times of 15, 30, 45, 60 and 75 minutes, DC power supply was 1.28A and sulphamate type as the solution. The characterization and analysis were carried out using Scanning Electron Microscopy (SEM) and box furnace at various temperature of 1000, 1100 and 1200 °C. SEM analysis shows the surface morphology of treated and untreated samples. Untreated samples shows finer surface structure as compared to UB and EL samples. It was caused by γ-Al2O3 which was embedded during UB and EL process on the surface of FeCrAl substrate to develop protective oxide layer. The layer was used to protect the substrate from extreme environment condition and temperature operation. Oxidation resistant analysis shows that treated samples had lower mass change as compared to untreated samples. Lowest mass change of treated samples were located at UB 1.5 h and EL at 30 minute with 0.00475 g and 0.00243 g for temperature of 1000 °C, 0.00495 g and 000284 g for temperature of 1100 °C and 0.00519 g and 0.00304 g for temperature 1200 °C, Based on the overall results, it can be concluded that EL 30 minute samples was the appropriate parameter to coat FeCrAl by γ-Al2O3 to develop metallic catalytic converter that is high oxidation resistant in high temperature operation.

  3. Oxide film on metal substrate reduced to form metal-oxide-metal layer structure

    NASA Technical Reports Server (NTRS)

    Youngdahl, C. A.

    1967-01-01

    Electrically conductive layer of zirconium on a zirconium-oxide film residing on a zirconium substrate is formed by reducing the oxide in a sodium-calcium solution. The reduced metal remains on the oxide surface as an adherent layer and seems to form a barrier that inhibits further reaction.

  4. Articles including thin film monolayers and multilayers

    DOEpatents

    Li, DeQuan; Swanson, Basil I.

    1995-01-01

    Articles of manufacture including: (a) a base substrate having an oxide surface layer, and a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, (b) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, and a metal species attached to the multidentate ligand, (c) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, a metal species attached to the multidentate ligand, and a multifunctional organic ligand attached to the metal species, and (d) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, a metal species attached to the multidentate ligand, a multifunctional organic ligand attached to the metal species, and a second metal species attached to the multifunctional organic ligand, are provided, such articles useful in detecting the presence of a selected target species, as nonliear optical materials, or as scavengers for selected target species.

  5. Effects of anodic oxidation parameters on a modified titanium surface.

    PubMed

    Park, Il Song; Lee, Min Ho; Bae, Tae Sung; Seol, Kyeong Won

    2008-02-01

    Anodic oxidation is an electrochemical treatment that can be used to control the thickness of an oxide layer formed on a titanium surface. This procedure has the advantage of allowing the ions contained in an electrolyte to deposit onto the oxide layer. The characteristics of a layer treated with anodic oxidation can vary according to the type and concentration of the electrolytes as well as the processing variables used during anodic oxidation. In this study, the constant electrolyte for anodic oxidation was a mixed solution containing 0.02 M DL-alpha-glycerophosphate disodium salt and 0.2M calcium acetate. Anodic oxidation was carried out at different voltages, current densities, and duration of anodic oxidation. The results showed that the current density and variation in the duration of anodic oxidation did not have a large effect on the change in the characteristics of the layer. On the other hand, the size of the micropores was increased with increasing voltage of anodic oxidation, and anatase and rutile phases were found to co-exist in the porous titanium dioxide layer. In addition, the thickness of the oxide layer on titanium and the characteristic of corrosion resistance increased with increasing voltage. The MTT test showed that the cell viability was increased considerably as a result of anodic oxidation. The anodizing voltage is an important parameter that determines the characteristics of the anodic oxide layer of titanium. (c) 2007 Wiley Periodicals, Inc.

  6. Numerical simulation of strong wake/boundary layer interaction

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, Victor; Piomelli, Ugo; Choudhari, Meelan M.

    2003-11-01

    DNS and LES of the strong interaction between an unsteady cylinder wake and a flat-plate boundary layer are carried out. Of the two Reynolds numbers examined, in the lower Reynolds number case (Re=385 based on cylinder diameter) the boundary layer is buffeted by the vortices shed off the cylinder, but the Reynolds number is too low to trigger transition to turbulence. In contrast, in the higher Reyolds number case (Re=1155) we observe the inception of a self-sustained turbulence-generation mechanism triggered by the Karman vortex street behind the cylinder. In previously performed simulations the computational box was not long enough to extend into the turbulent region; therefore, we have lengthened the streamwise domain using a second computational box in order to capture the transition point. In addition to examining turbulence statistics, we look at the Reynolds stress budgets up to and through the transitional regime to obtain further insights into the physics of bypass transition via wake contamination.

  7. Thin film photovoltaic devices with a minimally conductive buffer layer

    DOEpatents

    Barnes, Teresa M.; Burst, James

    2016-11-15

    A thin film photovoltaic device (100) with a tunable, minimally conductive buffer (128) layer is provided. The photovoltaic device (100) may include a back contact (150), a transparent front contact stack (120), and an absorber (140) positioned between the front contact stack (120) and the back contact (150). The front contact stack (120) may include a low resistivity transparent conductive oxide (TCO) layer (124) and a buffer layer (128) that is proximate to the absorber layer (140). The photovoltaic device (100) may also include a window layer (130) between the buffer layer (128) and the absorber (140). In some cases, the buffer layer (128) is minimally conductive, with its resistivity being tunable, and the buffer layer (128) may be formed as an alloy from a host oxide and a high-permittivity oxide. The high-permittivity oxide may further be chosen to have a bandgap greater than the host oxide.

  8. Hydrogen sulfide removal from sediment and water in box culverts/storm drains by iron-based granules.

    PubMed

    Sun, J L; Shang, C; Kikkert, G A

    2013-01-01

    A renewable granular iron-based technology for hydrogen sulfide removal from sediment and water in box culverts and storm drains is discussed. Iron granules, including granular ferric hydroxide (GFH), granular ferric oxide (GFO) and rusted waste iron crusts (RWIC) embedded in the sediment phase removed aqueous hydrogen sulfide formed from sedimentary biological sulfate reduction. The exhausted iron granules were exposed to dissolved oxygen and this regeneration process recovered the sulfide removal capacities of the granules. The recovery is likely attributable to the oxidation of the ferrous iron precipitates film and the formation of new reactive ferric iron surface sites on the iron granules and sand particles. GFH and RWIC showed larger sulfide removal capacities in the sediment phase than GFO, likely due to the less ordered crystal structures on their surfaces. This study demonstrates that the iron granules are able to remove hydrogen sulfide from sediment and water in box culverts and storm drains and they have the potential to be regenerated and reused by contacting with dissolved oxygen.

  9. Parallel SCF Adaptor Capture Proteomics Reveals a Role for SCFFBXL17 in NRF2 Activation via BACH1 Repressor Turnover

    PubMed Central

    Tan, Meng-Kwang Marcus; Lim, Hui-Jun; Bennett, Eric J.; Shi, Yang; Harper, J. Wade

    2014-01-01

    Modular Cullin-RING E3 ubiquitin ligases (CRLs) use substrate binding adaptor proteins to specify target ubiquitylation. Many of the ~200 human CRL adaptor proteins remain poorly studied due to a shortage of efficient methods to identify biologically relevant substrates. Here, we report the development of Parallel Adaptor Capture (PAC) proteomics, and its use to systematically identify candidate targets for the leucine-rich repeat family of F-box proteins (FBXLs) that function with SKP1-CUL1-F-box protein (SCF) E3s. In validation experiments, we identify the unstudied F-box protein FBXL17 as a regulator of the NFR2 oxidative stress pathway. We demonstrate that FBXL17 controls the transcription of the NRF2 target HMOX1 via turnover of the transcriptional repressor BACH1 in the absence or presence of extrinsic oxidative stress. This work identifies a role for SCFFBXL17 in controlling the threshold for NRF2-dependent gene activation and provides a framework for elucidating the functions of CRL adaptor proteins. PMID:24035498

  10. Parallel SCF adaptor capture proteomics reveals a role for SCFFBXL17 in NRF2 activation via BACH1 repressor turnover.

    PubMed

    Tan, Meng-Kwang Marcus; Lim, Hui-Jun; Bennett, Eric J; Shi, Yang; Harper, J Wade

    2013-10-10

    Modular cullin-RING E3 ubiquitin ligases (CRLs) use substrate binding adaptor proteins to specify target ubiquitylation. Many of the ~200 human CRL adaptor proteins remain poorly studied due to a shortage of efficient methods to identify biologically relevant substrates. Here, we report the development of parallel adaptor capture (PAC) proteomics and its use to systematically identify candidate targets for the leucine-rich repeat family of F-box proteins (FBXLs) that function with SKP1-CUL1-F-box protein (SCF) E3s. In validation experiments, we identify the unstudied F-box protein FBXL17 as a regulator of the NFR2 oxidative stress pathway. We demonstrate that FBXL17 controls the transcription of the NRF2 target HMOX1 via turnover of the transcriptional repressor BACH1 in the absence or presence of extrinsic oxidative stress. This work identifies a role for SCF(FBXL17) in controlling the threshold for NRF2-dependent gene activation and provides a framework for elucidating the functions of CRL adaptor proteins. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Mechanical Properties of Degraded PMR-15 Resin

    NASA Technical Reports Server (NTRS)

    Tsuji, Luis C.; McManus, Hugh L.; Bowles, Kenneth J.

    1998-01-01

    Thermo-oxidative aging produces a non-uniform degradation state in PMR-15 resin. A surface layer, usually attributed to oxidative degradation, forms. This surface layer has different properties from the inner material. A set of material tests was designed to separate the properties of the oxidized surface layer from the properties of interior material. Test specimens were aged at 316 C in either air or nitrogen, for durations of up to 800 hours. The thickness of the oxidized surface layer in air aged specimens, and the shrinkage and Coefficient of Thermal Expansion (CTE) of nitrogen aged specimens were measured directly. Four-point-bend tests were performed to determine modulus of both the oxidized surface layer and the interior material. Bimaterial strip specimens consisting of oxidized surface material and unoxidized interior material were constructed and used to determine surface layer shrinkage and CTE. Results confirm that the surface layer and core materials have substantially different properties.

  12. Method of making an apparatus for transpiration cooling of substrates such as turbine airfoils

    DOEpatents

    Alvin, Mary Anne; Anderson, Iver; Heidlof, Andy; White, Emma; McMordie, Bruce

    2017-02-28

    A method and apparatus for generating transpiration cooling using an oxidized porous HTA layer metallurgically bonded to a substrate having micro-channel architectures. The method and apparatus generates a porous HTA layer by spreading generally spherical HTA powder particles on a substrate, partially sintering under O.sub.2 vacuum until the porous HTA layer exhibits a porosity between 20% and 50% and a neck size ratio between 0.1 and 0.5, followed by a controlled oxidation generating an oxidation layer of alumina, chromia, or silica at a thickness of about 20 to about 500 nm. In particular embodiments, the oxidized porous HTA layer and the substrate comprise Ni as a majority element. In other embodiments, the oxidized porous HTA layer and the substrate further comprise Al, and in additional embodiments, the oxidized porous HTA layer and the substrate comprise .gamma.-Ni+.gamma.'-Ni.sub.3Al.

  13. Method of forming buried oxide layers in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2000-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  14. Making Wide-IF SIS Mixers with Suspended Metal-Beam Leads

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama; Bumble, Bruce; Lee, Karen; LeDuc, Henry; Rice, Frank; Zmuidzinas, Jonas

    2005-01-01

    A process that employs silicon-on-insulator (SOI) substrates and silicon (Si) micromachining has been devised for fabricating wide-intermediate-frequency-band (wide-IF) superconductor/insulator/superconductor (SIS) mixer devices that result in suspended gold beam leads used for radio-frequency grounding. The mixers are formed on 25- m-thick silicon membranes. They are designed to operate in the 200 to 300 GHz frequency band, wherein wide-IF receivers for tropospheric- chemistry and astrophysical investigations are necessary. The fabrication process can be divided into three sections: 1. The front-side process, in which SIS devices with beam leads are formed on a SOI wafer; 2. The backside process, in which the SOI wafer is wax-mounted onto a carrier wafer, then thinned, then partitioned into individual devices; and 3. The release process, in which the individual devices are separated using a lithographic dicing technique. The total thickness of the starting 4-in. (10.16-cm)-diameter SOI wafer includes 25 m for the Si device layer, 0.5 m for the buried oxide (BOX) layer, and 350 m the for Si-handle layer. The front-side process begins with deposition of an etch-stop layer of SiO2 or AlN(x), followed by deposition of a Nb/Al- AlN(x) /Nb trilayer in a load-locked DC magnetron sputtering system. The lithography for four of a total of five layers is performed in a commercial wafer-stepping apparatus. Diagnostic test dies are patterned concurrently at certain locations on the wafer, alongside the mixer devices, using a different mask set. The conventional, self-aligned lift-off process is used to pattern the SIS devices up to the wire level.

  15. Atomic layer deposition of insulating nitride interfacial layers for germanium metal oxide semiconductor field effect transistors with high-κ oxide/tungsten nitride gate stacks

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung H.; Gordon, Roy G.; Ritenour, Andrew; Antoniadis, Dimitri A.

    2007-05-01

    Atomic layer deposition (ALD) was used to deposit passivating interfacial nitride layers between Ge and high-κ oxides. High-κ oxides on Ge surfaces passivated by ultrathin (1-2nm) ALD Hf3N4 or AlN layers exhibited well-behaved C-V characteristics with an equivalent oxide thickness as low as 0.8nm, no significant flatband voltage shifts, and midgap density of interface states values of 2×1012cm-1eV-1. Functional n-channel and p-channel Ge field effect transistors with nitride interlayer/high-κ oxide/metal gate stacks are demonstrated.

  16. Oxidation of InP nanowires: a first principles molecular dynamics study.

    PubMed

    Berwanger, Mailing; Schoenhalz, Aline L; Dos Santos, Cláudia L; Piquini, Paulo

    2016-11-16

    InP nanowires are candidates for optoelectronic applications, and as protective capping layers of III-V core-shell nanowires. Their surfaces are oxidized under ambient conditions which affects the nanowire physical properties. The majority of theoretical studies of InP nanowires, however, do not take into account the oxide layer at their surfaces. In this work we use first principles molecular dynamics electronic structure calculations to study the first steps in the oxidation process of a non-saturated InP nanowire surface as well as the properties of an already oxidized surface of an InP nanowire. Our calculations show that the O 2 molecules dissociate through several mechanisms, resulting in incorporation of O atoms into the surface layers. The results confirm the experimental observation that the oxidized layers become amorphous but the non-oxidized core layers remain crystalline. Oxygen related bonds at the oxidized layers introduce defective levels at the band gap region, with greater contributions from defects involving In-O and P-O bonds.

  17. Isolation and characterization of nanosheets containing few layers of the Aurivillius family of oxides and metal-organic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sreedhara, M.B.; Prasad, B.E.; Moirangthem, Monali

    2015-04-15

    Nanosheets containing few-layers of ferroelectric Aurivillius family of oxides, Bi{sub 2}A{sub n−1}B{sub n}O{sub 3n+3} (where A=Bi{sup 3+}, Ba{sup 2+} etc. and B=Ti{sup 4+}, Fe{sup 3+} etc.) with n=3, 4, 5, 6 and 7 have been prepared by reaction with n-butyllithium, followed by exfoliation in water. The few-layer samples have been characterized by Tyndall cones, atomic force microscopy, optical spectroscopy and other techniques. The few-layer species have a thickness corresponding to a fraction of the c-parameter along which axis the perovskite layers are stacked. Magnetization measurements have been carried out on the few-layer samples containing iron. Few-layer species of a fewmore » layered metal-organic compounds have been obtained by ultrasonication and characterized by Tyndall cones, atomic force microscopy, optical spectroscopy and magnetic measurements. Significant changes in the optical spectra and magnetic properties are found in the few-layer species compared to the bulk samples. Few-layer species of the Aurivillius family of oxides may find uses as thin layer dielectrics in photovoltaics and other applications. - Graphical abstract: Exfoliation of the layered Aurivillius oxides into few-layer nanosheets by chemical Li intercalation using n-BuLi followed by reaction in water. Exfoliation of the layered metal-organic compounds into few-layer nanosheets by ultrasonication. - Highlights: • Few-layer nanosheets of Aurivillius family of oxides with perovskite layers have been generated by lithium intercalation. • Few-layer nanosheets of few layered metal-organic compounds have been generated by ultrasonication. • Few-layer nanosheets of the Aurivillius oxides have been characterized by AFM, TEM and optical spectroscopy. • Aurivillius oxides containing Fe show layer dependent magnetic properties. • Exfoliated few-layer metal-organic compounds show changes in spectroscopic and magnetic properties compared with bulk materials.« less

  18. Growth of micrometric oxide layers for the study of metallic surfaces decontamination by laser

    NASA Astrophysics Data System (ADS)

    Carvalho, Luisa; Pacquentin, Wilfried; Tabarant, Michel; Maskrot, Hicham; Semerok, Alexandre

    2017-09-01

    The nuclear industry produces a wide range of radioactive waste in term of level of hazard, contaminants and material. For metallic equipment like steam generators, the radioactivity is mainly located in the oxide surface. In order to study and develop techniques for dismantling and for decontamination in a safe way, it is important to have access to oxide layers with a representative distribution of non-radioactive contaminants. We propose a method of formation of oxide layer on stainless steel 304L with europium (Eu) as contaminant marker. In this method, an Eu-solution is sprayed on the stainless steel samples. The specimen are firstly treated with a pulsed nanosecond laser and secondly the steel samples are exposed to a 600°C furnace for various durations in order to grow an oxide layer. The oxide structure and in-depth distribution of Eu in the oxide layer are analysed by scanning electron microscopy coupled with energy dispersive X-ray microanalyzer, and by glow discharge optical emission or mass spectrometry. The oxide layers were grown to thicknesses in the range of 200 nm to 4.5 μm regarding to the laser treatment parameters and the heating duration. These contaminated oxides have a `duplex structure' with a mean weight percentage of 0.5% of europium in the volume of the oxide layer. It appears that europium implementation prevents the oxide growth by furnace but has no impact on laser heating. These oxide layers are used to study the decontamination of metallic surfaces such as stainless steel 304L using a nanosecond pulsed laser.

  19. Continuous lengths of oxide superconductors

    DOEpatents

    Kroeger, Donald M.; List, III, Frederick A.

    2000-01-01

    A layered oxide superconductor prepared by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon. A continuous length of a second substrate ribbon is overlaid on the first substrate ribbon. Sufficient pressure is applied to form a bound layered superconductor precursor powder between the first substrate ribbon and the second substrate ribbon. The layered superconductor precursor is then heat treated to establish the oxide superconducting phase. The layered oxide superconductor has a smooth interface between the substrate and the oxide superconductor.

  20. Architecture for coated conductors

    DOEpatents

    Foltyn, Stephen R.; Arendt, Paul N.; Wang, Haiyan; Stan, Liliana

    2010-06-01

    Articles are provided including a base substrate having a layer of an oriented cubic oxide material with a rock-salt-like structure layer thereon, and, a layer of epitaxial titanium nitride upon the layer of an oriented cubic oxide material having a rock-salt-like structure. Such articles can further include thin films of high temperature superconductive oxides such as YBCO upon the layer of epitaxial titanium nitride or upon a intermediate buffer layer upon the layer of epitaxial titanium nitride.

  1. Desulfurization apparatus and method

    DOEpatents

    Rong, Charles; Jiang, Rongzhong; Chu, Deryn

    2013-06-18

    A method and system for desulfurization comprising first and second metal oxides; a walled enclosure having an inlet and an exhaust for the passage of gas to be treated; the first and second metal oxide being combinable with hydrogen sulfide to produce a reaction comprising a sulfide and water; the first metal oxide forming a first layer and the second metal oxide forming a second layer within the walled surroundings; the first and second layers being positioned so the first layer removes the bulk amount of the hydrogen sulfide from the treated gas prior to passage through the second layer, and the second layer removes substantially all of the remaining hydrogen sulfide from the treated gas; the first metal oxide producing a stoichiometrical capacity in excess of 500 mg sulfur/gram; the second metal oxide reacts with the hydrogen sulfide more favorably but has a stoichometrical capacity which is less than the first reactant; whereby the optimal amount by weight of the first and second metal oxides is achieved by utilizing two to three units by weight of the first metal oxide for every unit of the second metal oxide.

  2. Young Investigator Proposal, Research Area 7.4 Reactive Chemical Systems: Multifunctional, Bimetallic Nanomaterials Prepared by Atomic Layer Electroless Deposition

    DTIC Science & Technology

    2017-09-30

    Report: Young Investigator Proposal, Research Area 7.4 Reactive Chemical Systems: Multifunctional, Bimetallic Nanomaterials Prepared by Atomic Layer...ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER...Number: W911NF-16-1-0438 Organization: University of Massachusetts - North Dartmouth Title: Young Investigator Proposal, Research Area 7.4 Reactive

  3. Characterization for capillary barriers effects in a sand box test using time-lapsed GPR measurements

    NASA Astrophysics Data System (ADS)

    Kuroda, S.; Ishii, N.; Morii, T.

    2017-12-01

    Capillary barriers have been known as the method to protect subsurface regions against infiltration from soil surface. It is caused by essentially heterogeneous structure in permeability or soil physical property and produce non-uniform infiltration process then, in order to estimate the actual situation of the capillary barrier effect, the site-characterization with imaging technique like geophysical prospecting is effective. In this study, we examine the applicability of GPR to characterization for capillary barriers. We built a sand box with 90x340x90cm in which a thin high-permeable gravel layer was embedded as a capillary barrier. We conducted an infiltration test in the sand box using porous tube array for irrigation. It is expected to lead to non-uniform flow of soil water induced by capillary barrier effects. We monitored this process by various types of GPR measurements, including time-lapsed common offset profiling (COP) with multi- frequency antenna and transmission measurements like cross-borehole radar. At first, we conducted GPR common-offset survey. It could show the depth of capillary barrier in sand box. After that we conducted the infiltration test and GPR monitoring for infiltration process. GPR profiles can detect the wetting front and estimate water content change in the soil layer above the capillary barrier. From spatial change in these results we can estimate the effect of capillary barrier and the zone where the break through occur or not. Based on these results, we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil. At first, we conducted GPR common-offset survey. It could show the depth of capillary barrier in sand box. After that we conducted the infiltration test and GPR monitoring for infiltration process. GPR profiles can detect the wetting front and estimate water content change in the soil layer above the capillary barrier. From spatial change in these results we can estimate the effect of capillary barrier and the zone where the break through occur. Based on these results, we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil.

  4. 1-D Metal Nanobead Arrays within Encapsulated Nanowires via a Red-Ox-Induced Dewetting: Mechanism Study by Atom-Probe Tomography.

    PubMed

    Sun, Zhiyuan; Tzaguy, Avra; Hazut, Ori; Lauhon, Lincoln J; Yerushalmi, Roie; Seidman, David N

    2017-12-13

    Metal nanoparticle arrays are excellent candidates for a variety of applications due to the versatility of their morphology and structure at the nanoscale. Bottom-up self-assembly of metal nanoparticles provides an important complementary alternative to the traditional top-down lithography method and makes it possible to assemble structures with higher-order complexity, for example, nanospheres, nanocubes, and core-shell nanostructures. Here we present a mechanism study of the self-assembly process of 1-D noble metal nanoparticles arrays, composed of Au, Ag, and AuAg alloy nanoparticles. These are prepared within an encapsulated germanium nanowire, obtained by the oxidation of a metal-germanium nanowire hybrid structure. The resulting structure is a 1-D array of equidistant metal nanoparticles with the same diameter, the so-called nanobead (NB) array structure. Atom-probe tomography and transmission electron microscopy were utilized to investigate the details of the morphological and chemical evolution during the oxidation of the encapsulated metal-germanium nanowire hybrid-structures. The self-assembly of nanoparticles relies on the formation of a metal-germanium liquid alloy and the migration of the liquid alloy into the nanowire, followed by dewetting of the liquid during shape-confined oxidation where the liquid column breaks-up into nanoparticles due to the Plateau-Rayleigh instability. Our results demonstrate that the encapsulating oxide layer serves as a structural scaffold, retaining the overall shape during the eutectic liquid formation and demonstrates the relationship between the oxide mechanical properties and the final structural characteristics of the 1-D arrays. The mechanistic details revealed here provide a versatile tool-box for the bottom-up fabrication of 1-D arrays nanopatterning that can be modified for multiple applications according to the RedOx properties of the material system components.

  5. Functionally gradient material for membrane reactors to convert methane gas into value-added products

    DOEpatents

    Balachandran, U.; Dusek, J.T.; Kleefisch, M.S.; Kobylinski, T.P.

    1996-11-12

    A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials. 7 figs.

  6. Functionally gradient material for membrane reactors to convert methane gas into value-added products

    DOEpatents

    Balachandran, Uthamalingam; Dusek, Joseph T.; Kleefisch, Mark S.; Kobylinski, Thadeus P.

    1996-01-01

    A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials.

  7. Oxidation behaviour and electrical properties of cobalt/cerium oxide composite coatings for solid oxide fuel cell interconnects

    NASA Astrophysics Data System (ADS)

    Harthøj, Anders; Holt, Tobias; Møller, Per

    2015-05-01

    This work evaluates the performance of cobalt/cerium oxide (Co/CeO2) composite coatings and pure Co coatings to be used for solid oxide fuel cell (SOFC) interconnects. The coatings are electroplated on the ferritic stainless steels Crofer 22 APU and Crofer 22H. Coated and uncoated samples are exposed in air at 800 °C for 3000 h and oxidation rates are measured and oxide scale microstructures are investigated. Area-specific resistances (ASR) in air at 850 °C of coated and uncoated samples are also measured. A dual layered oxide scale formed on all coated samples. The outer layer consisted of Co, Mn, Fe and Cr oxide and the inner layer consisted of Cr oxide. The CeO2 was present as discrete particles in the outer oxide layer after exposure. The Cr oxide layer thicknesses and oxidations rates were significantly reduced for Co/CeO2 coated samples compared to for Co coated and uncoated samples. The ASR of all Crofer 22H samples increased significantly faster than of Crofer 22 APU samples which was likely due to the presence of SiO2 in the oxide/metal interface of Crofer 22H.

  8. Indium oxide based fiber optic SPR sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Sarika; Sharma, Navneet K., E-mail: navneetk.sharma@jiit.ac.in

    2016-05-06

    Surface plasmon resonance based fiber optic sensor using indium oxide layer is presented and theoretically studied. It has been found that with increase in thickness of indium oxide layer beyond 170 nm, the sensitivity of SPR sensor decreases. 170 nm thick indium oxide layer based SPR sensor holds maximum sensitivity.

  9. Low voltage solid-state lateral coloration electrochromic device

    DOEpatents

    Tracy, C.E.; Benson, D.K.; Ruth, M.R.

    1984-12-21

    A solid-state transition metal oxide device comprising a plurality of layers having a predisposed orientation including an electrochromic oxide layer. Conductive material including anode and cathode contacts is secured to the device. Coloration is actuated within the electrochromic oxide layer after the application of a predetermined potential between the contacts. The coloration action is adapted to sweep or dynamically extend across the length of the electrochromic oxide layer.

  10. Formaldehyde instrument development and boundary layer sulfuric acid: Implications for photochemistry

    NASA Astrophysics Data System (ADS)

    Case Hanks, Anne Theresa

    This work presents the development of a laser-induced fluorescence technique to measure atmospheric formaldehyde. In conjunction with the technique, the design of a compact, narrow linewidth, etalon-tuned titanium: sapphire laser cavity which is pumped by the second harmonic of a kilohertz Nd:YAG laser is also presented. The fundamental tunable range is from 690-1100 nm depending on mirror reflectivities and optics kit used. The conversion efficiency is at least 25% for the fundamental, and 2-3% for intracavity frequency doubling from 3.5-4W 532 nm pump power. The linewidth is <0.1 cm-1, and the pulsewidth is 18 nsec. Applications of this cavity include the measurement of trace gas species by laser-induced fluorescence, cavity ringdown spectroscopy, and micropulse lidar in the UV-visible region. Also presented are observations of gas-phase sulfuric acid from the NEAQS-ITCT 2K4 (New England Air Quality Study--- Intercontinental Transport and Chemical Transformation) field campaign in July and August 2004. Sulfuric acid values are reported for a polluted environment and possible nucleation events as well as particle growth within the boundary layer are explored. Sulfate production rates via gas phase oxidation of sulfur dioxide are also reported. This analysis allows an important test of our ability to predict sulfuric acid concentration and probe its use as a fast time response photochemical tracer for the hydroxyl radical, OH. In comparison, the NASA time-dependent photochemical box model is used to calculate OH concentration. Nighttime H2SO4 values are examined to test our understanding of nocturnal OH levels and oxidation processes. In comparison, sulfuric acid from a large ground based mission in Tecamac, Mexico (near the northern boundary of Mexico City) during MIRAGE-Mex field campaign (March 2006) is presented. This and other measurements are used to characterize atmospheric oxidation and predict sulfuric acid and OH concentrations at the site. The observations in conjunction with the NASA LARc Photochemical box model are used to explore ozone production, nitrate and sulfate formation, and radical levels and radical production rates during the day. The one minute observations of sulfuric acid, sulfur dioxide, and aerosol surface area were again used to calculate OH levels assuming steady state, and are in good agreement with observations of OH (R2 = 0.7). Photochemical activity is found to be a maximum during the morning hours, as seen in ozone and nitrate formation. Although the model predictions capture the observed diurnal profile, the model underpredicts RO2 concentrations in the morning hours and overpredicts in the afternoon (HO 2 + RO2 radical Model/observed (M/O) ˜ 1.15 and OH M/O ˜ 1.2).

  11. Turbulence Model Comparisons for Shear Layers and Axisymmetric Jets.

    DTIC Science & Technology

    1979-10-01

    Fishburne 1 1101 State Road, Bldg : Calspan Corporation Princeton, NJ 08540 Attn: Dr. Dnnald W. Boyer I Dr. Paul V. Marrone I Grumman /Bethpage Dr. Walter...H. Wurster 1 Grumman Aerospace, Inc. PO Box 400 Attn: Dr. Paul D. Del Guidice 1 Buffalo, NY 14221 Dr. Stanley Rudman 1 S. Oyster Bay Road Physics...Naval Air Systems Command PO Box 516 Mr. William Volz 1 St. Louis, MO 63166 Air 320-C, JP-l Washington, DC 20361 Northrop Corporation Electro-Mechanical

  12. Homogeneous-oxide stack in IGZO thin-film transistors for multi-level-cell NAND memory application

    NASA Astrophysics Data System (ADS)

    Ji, Hao; Wei, Yehui; Zhang, Xinlei; Jiang, Ran

    2017-11-01

    A nonvolatile charge-trap-flash memory that is based on amorphous indium-gallium-zinc-oxide thin film transistors was fabricated with a homogeneous-oxide structure for a multi-level-cell application. All oxide layers, i.e., tunneling layer, charge trapping layer, and blocking layer, were fabricated with Al2O3 films. The fabrication condition (including temperature and deposition method) of the charge trapping layer was different from those of the other oxide layers. This device demonstrated a considerable large memory window of 4 V between the states fully erased and programmed with the operation voltage less than 14 V. This kind of device shows a good prospect for multi-level-cell memory applications.

  13. Light-emitting diodes based on solution-processed nontoxic quantum dots: oxides as carrier-transport layers and introducing molybdenum oxide nanoparticles as a hole-inject layer.

    PubMed

    Bhaumik, Saikat; Pal, Amlan J

    2014-07-23

    We report fabrication and characterization of solution-processed quantum dot light-emitting diodes (QDLEDs) based on a layer of nontoxic and Earth-abundant zinc-diffused silver indium disulfide (AIZS) nanoparticles as an emitting material. In the QDLEDs fabricated on indium tin oxide (ITO)-coated glass substrates, we use layers of oxides, such as graphene oxide (GO) and zinc oxide (ZnO) nanoparticles as a hole- and electron-transport layer, respectively. In addition, we introduce a layer of MoO3 nanoparticles as a hole-inject one. We report a comparison of the characteristics of different device architectures. We show that an inverted device architecture, ITO/ZnO/AIZS/GO/MoO3/Al, yields a higher electroluminescence (EL) emission, compared to direct ones, for three reasons: (1) the GO/MoO3 layers introduce barriers for electrons to reach the Al electrode, and, similarly, the ZnO layers acts as a barrier for holes to travel to the ITO electrode; (2) the introduction of a layer of MoO3 nanoparticles as a hole-inject layer reduces the barrier height for holes and thereby balances charge injection in the inverted structure; and (3) the wide-bandgap zinc oxide next to the ITO electrode does not absorb the EL emission during its exit from the device. In the QDLEDs with oxides as carrier inject and transport layers, the EL spectrum resembles the photoluminescence emission of the emitting material (AIZS), implying that excitons are formed in the quaternary nanocrystals and decay radiatively.

  14. Fabrication and characterization of iron oxide dextran composite layers

    NASA Astrophysics Data System (ADS)

    Iconaru, S. L.; Predoi, S. A.; Beuran, M.; Ciobanu, C. S.; Trusca, R.; Ghita, R.; Negoi, I.; Teleanu, G.; Turculet, S. C.; Matei, M.; Badea, Monica; Prodan, A. M.

    2018-02-01

    Super paramagnetic iron oxide nanoparticles such as maghemite have been shown to exhibit antimicrobial properties [1-5]. Moreover, the iron oxide nanoparticles have been proposed as a potential magnetically controllable antimicrobial agent which could be directed to a specific infection [3-5]. The present research has focused on studies of the surface and structure of iron oxide dextran (D-IO) composite layers surface and structure. These composite layers were deposited on Si substrates. The structure of iron oxide dextran composite layers was investigated by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) while the surface morphology was evaluated by Scanning Electron Microscopy (SEM). The structural characterizations of the iron oxide dextran composite layers revealed the basic constituents of both iron and dextran structure. Furthermore, the in vitro evaluation of the antifungal effect of the complex layers, which have been shown revealed to be active against C. albicans cells at distinct intervals of time, is exhibited. Our research came to confirm the fungicidal effect of iron oxide dextran composite layers. Also, our results suggest that iron oxide dextran surface may be used for medical treatment of biofilm associated Candida infections.

  15. Reaction products and oxide thickness formed by Ti out-diffusion and oxidization in poly-Pt/Ti/SiO 2/Si with oxide films deposited

    NASA Astrophysics Data System (ADS)

    Chen, Changhong; Huang, Dexiu; Zhu, Weiguang; Feng, Yi; Wu, Xigang

    2006-08-01

    In the paper, we present experimental results to enhance the understanding of Ti out-diffusion and oxidization in commercial poly-Pt/Ti/SiO 2/Si wafers with perovskite oxide films deposited when heat-treated in flowing oxygen ambient. It indicates that when heat-treated at 550 and 600 °C, PtTi 3+PtTi and PtTi are the reaction products from interfacial interaction, respectively; while heat-treated at 650 °C and above, the products become three layers of titanium oxides instead of the alloys. Confirmed to be rutile TiO 2, the first two layers spaced by 65 nm encapsulate the Pt surface by the first layer with 60 nm thick forming at its surface and by the next layer with 35 nm thick inserting its original layer. In addition, the next layer is formed as a barrier to block up continuous diffusion paths of Ti, and thus results in the last layer of TiO 2- x formed by the residual Ti oxidizing.

  16. Atomic Layer Deposition of Chemical Passivation Layers and High Performance Anti-Reflection Coatings on Back-Illuminated Detectors

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E. (Inventor); Greer, Frank (Inventor); Nikzad, Shouleh (Inventor)

    2014-01-01

    A back-illuminated silicon photodetector has a layer of Al2O3 deposited on a silicon oxide surface that receives electromagnetic radiation to be detected. The Al2O3 layer has an antireflection coating deposited thereon. The Al2O3 layer provides a chemically resistant separation layer between the silicon oxide surface and the antireflection coating. The Al2O3 layer is thin enough that it is optically innocuous. Under deep ultraviolet radiation, the silicon oxide layer and the antireflection coating do not interact chemically. In one embodiment, the silicon photodetector has a delta-doped layer near (within a few nanometers of) the silicon oxide surface. The Al2O3 layer is expected to provide similar protection for doped layers fabricated using other methods, such as MBE, ion implantation and CVD deposition.

  17. Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor

    NASA Astrophysics Data System (ADS)

    Kumar, Rajeev; Kushwaha, Angad S.; Srivastava, Monika; Mishra, H.; Srivastava, S. K.

    2018-03-01

    In the present communication, a highly sensitive surface plasmon resonance (SPR) biosensor with Kretschmann configuration having alternate layers, prism/zinc oxide/silver/gold/graphene/biomolecules (ss-DNA) is presented. The optimization of the proposed configuration has been accomplished by keeping the constant thickness of zinc oxide (32 nm), silver (32 nm), graphene (0.34 nm) layer and biomolecules (100 nm) for different values of gold layer thickness (1, 3 and 5 nm). The sensitivity of the proposed SPR biosensor has been demonstrated for a number of design parameters such as gold layer thickness, number of graphene layer, refractive index of biomolecules and the thickness of biomolecules layer. SPR biosensor with optimized geometry has greater sensitivity (66 deg/RIU) than the conventional (52 deg/RIU) as well as other graphene-based (53.2 deg/RIU) SPR biosensor. The effect of zinc oxide layer thickness on the sensitivity of SPR biosensor has also been analysed. From the analysis, it is found that the sensitivity increases significantly by increasing the thickness of zinc oxide layer. It means zinc oxide intermediate layer plays an important role to improve the sensitivity of the biosensor. The sensitivity of SPR biosensor also increases by increasing the number of graphene layer (upto nine layer).

  18. Covalent modification and exfoliation of graphene oxide using ferrocene

    NASA Astrophysics Data System (ADS)

    Avinash, M. B.; Subrahmanyam, K. S.; Sundarayya, Y.; Govindaraju, T.

    2010-09-01

    Large scale preparation of single-layer graphene and graphene oxide is of great importance due to their potential applications. We report a simple room temperature method for the exfoliation of graphene oxide using covalent modification of graphene oxide with ferrocene to obtain single-layer graphene oxide sheets. The samples were characterized by FESEM, HRTEM, AFM, EDAX, FT-IR, Raman and Mössbauer spectroscopic studies. HRTEM micrograph of the covalently modified graphene oxide showed increased interlayer spacing of ~2.4 nm due to ferrocene intercalation. The presence of single-layer graphene oxide sheets were confirmed by AFM studies. The covalently modified ferrocene-graphene oxide composite showed interesting magnetic behavior.Large scale preparation of single-layer graphene and graphene oxide is of great importance due to their potential applications. We report a simple room temperature method for the exfoliation of graphene oxide using covalent modification of graphene oxide with ferrocene to obtain single-layer graphene oxide sheets. The samples were characterized by FESEM, HRTEM, AFM, EDAX, FT-IR, Raman and Mössbauer spectroscopic studies. HRTEM micrograph of the covalently modified graphene oxide showed increased interlayer spacing of ~2.4 nm due to ferrocene intercalation. The presence of single-layer graphene oxide sheets were confirmed by AFM studies. The covalently modified ferrocene-graphene oxide composite showed interesting magnetic behavior. Electronic supplementary information (ESI) available: Magnetic data; AFM images; TEM micrographs; and Mössbauer spectroscopic data. See DOI: 10.1039/c0nr00024h

  19. Mechanical Properties of Degraded PMR-15 Resin

    NASA Technical Reports Server (NTRS)

    Tsuji, Luis C.

    2000-01-01

    Thermo-oxidative aging produces a nonuniform degradation state in PMR-15 resin. A surface layer, usually attributed to oxidative degradation, forms. This surface layer has different properties from the inner material. A set of material tests was designed to separate the properties of the oxidized surface layer from the properties of interior material. Test specimens were aged at 316 C in either air or nitrogen, for durations of up to 800 hr. The thickness of the oxidized surface layer in air aged specimens, and the shrinkage and coefficient of thermal expansion (CTE) of nitrogen aged specimens were measured directly. The nitrogen-aged specimens were assumed to have the same properties as the interior material in the air-aged specimens. Four-point-bend tests were performed to determine modulus of both the oxidized surface layer and the interior material. Bimaterial strip specimens consisting of oxidized surface material and unoxidized interior material were constructed and used to determine surface layer shrinkage and CTE. Results confirm that the surface layer and core materials have substantially different properties.

  20. Zinc-oxide-based nanostructured materials for heterostructure solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobkov, A. A.; Maximov, A. I.; Moshnikov, V. A., E-mail: vamoshnikov@mail.ru

    Results obtained in the deposition of nanostructured zinc-oxide layers by hydrothermal synthesis as the basic method are presented. The possibility of controlling the structure and morphology of the layers is demonstrated. The important role of the procedure employed to form the nucleating layer is noted. The faceted hexagonal nanoprisms obtained are promising for the fabrication of solar cells based on oxide heterostructures, and aluminum-doped zinc-oxide layers with petal morphology, for the deposition of an antireflection layer. The results are compatible and promising for application in flexible electronics.

  1. Durable metallized polymer mirror

    DOEpatents

    Schissel, Paul O.; Kennedy, Cheryl E.; Jorgensen, Gary J.; Shinton, Yvonne D.; Goggin, Rita M.

    1994-01-01

    A metallized polymer mirror construction having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate.

  2. Solder for oxide layer-building metals and alloys

    DOEpatents

    Kronberg, James W.

    1992-01-01

    A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel. The comosition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than aproximatley 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300.degree. C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.

  3. Solder for oxide layer-building metals and alloys

    DOEpatents

    Kronberg, J.W.

    1992-09-15

    A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel is disclosed. The composition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than approximately 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300 C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.

  4. Solution processed metal oxide thin film hole transport layers for high performance organic solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steirer, K. Xerxes; Berry, Joseph J.; Chesin, Jordan P.

    2017-01-10

    A method for the application of solution processed metal oxide hole transport layers in organic photovoltaic devices and related organic electronics devices is disclosed. The metal oxide may be derived from a metal-organic precursor enabling solution processing of an amorphous, p-type metal oxide. An organic photovoltaic device having solution processed, metal oxide, thin-film hole transport layer.

  5. Illumination box and camera system

    DOEpatents

    Haas, Jeffrey S.; Kelly, Fredrick R.; Bushman, John F.; Wiefel, Michael H.; Jensen, Wayne A.; Klunder, Gregory L.

    2002-01-01

    A hand portable, field-deployable thin-layer chromatography (TLC) unit and a hand portable, battery-operated unit for development, illumination, and data acquisition of the TLC plates contain many miniaturized features that permit a large number of samples to be processed efficiently. The TLC unit includes a solvent tank, a holder for TLC plates, and a variety of tool chambers for storing TLC plates, solvent, and pipettes. After processing in the TLC unit, a TLC plate is positioned in a collapsible illumination box, where the box and a CCD camera are optically aligned for optimal pixel resolution of the CCD images of the TLC plate. The TLC system includes an improved development chamber for chemical development of TLC plates that prevents solvent overflow.

  6. Nano-sized layered Mn oxides as promising and biomimetic water oxidizing catalysts for water splitting in artificial photosynthetic systems.

    PubMed

    Najafpour, Mohammad Mahdi; Heidari, Sima; Amini, Emad; Khatamian, Masoumeh; Carpentier, Robert; Allakhverdiev, Suleyman I

    2014-04-05

    One challenge in artificial photosynthetic systems is the development of artificial model compounds to oxidize water. The water-oxidizing complex of Photosystem II which is responsible for biological water oxidation contains a cluster of four Mn ions bridged by five oxygen atoms. Layered Mn oxides as efficient, stable, low cost, environmentally friendly and easy to use, synthesize, and manufacture compounds could be considered as functional and structural models for the site. Because of the related structure of these Mn oxides and the catalytic centre of the active site of the water oxidizing complex of Photosystem II, the study of layered Mn oxides may also help to understand more about the mechanism of water oxidation by the natural site. This review provides an overview of the current status of layered Mn oxides in artificial photosynthesis and discuss the sophisticated design strategies for Mn oxides as water oxidizing catalysts. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Durable metallized polymer mirror

    DOEpatents

    Schissel, P.O.; Kennedy, C.E.; Jorgensen, G.J.; Shinton, Y.D.; Goggin, R.M.

    1994-11-01

    A metallized polymer mirror construction is disclosed having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate. 6 figs.

  8. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOEpatents

    Jansen, Kai W.; Maley, Nagi

    2000-01-01

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  9. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOEpatents

    Jansen, Kai W.; Maley, Nagi

    2001-01-01

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  10. Electro-deposition of superconductor oxide films

    DOEpatents

    Bhattacharya, Raghu N.

    2001-01-01

    Methods for preparing high quality superconducting oxide precursors which are well suited for further oxidation and annealing to form superconducting oxide films. The method comprises forming a multilayered superconducting precursor on a substrate by providing an electrodeposition bath comprising an electrolyte medium and a substrate electrode, and providing to the bath a plurality of precursor metal salts which are capable of exhibiting superconducting properties upon subsequent treatment. The superconducting precursor is then formed by electrodepositing a first electrodeposited (ED) layer onto the substrate electrode, followed by depositing a layer of silver onto the first electrodeposited (ED) layer, and then electrodepositing a second electrodeposited (ED) layer onto the Ag layer. The multilayered superconducting precursor is suitable for oxidation at a sufficient annealing temperature in air or an oxygen-containing atmosphere to form a crystalline superconducting oxide film.

  11. Effect of water vapor on evolution of a thick Pt-layer modified oxide on the NiCoCrAl alloy at high temperature

    NASA Astrophysics Data System (ADS)

    Song, Peng; He, Xuan; Xiong, Xiping; Ma, Hongqing; Song, Qunling; Lü, Jianguo; Lu, Jiansheng

    2018-03-01

    To investigate the effect of water vapor on the novel Pt-containing oxide growth behavior, Pt-addition within the oxide layer on the surface of NiCoCrAl coating and furnace cycle tests were carried out at 1050 °C in air and air plus water vapor. The thick Pt-containing oxide layer on NiCoCrAl exhibits a different oxidation growth behavior compared to the conventional Pt-diffusion metallic coatings. The Pt-containing oxide after oxidation in air plus water vapor showed a much thicker oxide layer compare to the ones without Pt addition, and also presented a much better coating adhesion. During the oxidation process in air, Pt promotes the spinel (NiCr2O4) formation. However, the Cr2O3 formed in air with water vapor and fixed Pt within the complex oxide layer. The water vapor promoted the Ni and Co outer-diffusion, and combined with Pt to form CoPt compounds on the surface of the NiCoCrAl coating system.

  12. Application of a Three-Layer Photochemical Box Model in an Athens Street Canyon.

    PubMed

    Proyou, Athena G; Ziomas, Loannis C; Stathopoulos, Antony

    1998-05-01

    The aim of this paper is to show that a photochemical box model could describe the air pollution diurnal profiles within a typical street canyon in the city of Athens. As sophisticated three-dimensional dispersion models are computationally expensive and they cannot serve to simulate pollution levels in the scale of an urban street canyon, a suitably modified three-layer photochemical box model was applied. A street canyon of Athens with heavy traffic was chosen to apply the aforementioned model. The model was used to calculate pollutant concentrations during two days with meteorological conditions favoring pollutant accumulation. Road traffic emissions were calculated based on existing traffic load measurements. Meteorological data, as well as various pollutant concentrations, in order to compare with the model results, were provided by available measurements. The calculated concentrations were found to be in good agreement with measured concentration levels and show that, when traffic load and traffic composition data are available, this model can be used to predict pollution episodes. It is noteworthy that high concentrations persisted, even after additional traffic restriction measures were taken on the second day because of the high pollution levels.

  13. A dynamic box model of bioactive elements in the southern Taiwan Strait

    NASA Astrophysics Data System (ADS)

    Hua-Sheng, Hong; Shao-Ling, Shang

    1994-06-01

    A dynamic box model was applied to study the characteristics of biogeochemical cycling of PO4-P, NO3-N, AOU, POC and PON in the southern Taiwan Strait region based on the field data of the “Minnan Taiwan Bank Fishing Ground Upwelling Ecosystem Study” during the period of Dec. 1987-Nov. 1988. According to the unique hydrological and topographical features of the region, six boxes and three layers were considered in the model. The variation rates and fluxes of elements induced by horizontal current, upwelling, by diffusion, sinking of particles and biogeochemical processes were estimated respectively. Results further confirmed that upwellings had important effects in this region. The nearshore upwelling areas had net input fluxes of nutrients brought by upwelling water, also had high depletion rates of nutrients and production rates of particulate organic matter and dissolved oxygen. The abnormal net production of nutrients in the middle layer, (10-30 m) indicated the important role of bacteria in this high production region. The phytoplankton POC contributed about 28% of the total POC. POC settling out from the euphotic zone was estimated to be 2×10-6 g/(m2·s) which was about 35% of the primary production.

  14. Spectroellipsometric detection of silicon substrate damage caused by radiofrequency sputtering of niobium oxide

    NASA Astrophysics Data System (ADS)

    Lohner, Tivadar; Serényi, Miklós; Szilágyi, Edit; Zolnai, Zsolt; Czigány, Zsolt; Khánh, Nguyen Quoc; Petrik, Péter; Fried, Miklós

    2017-11-01

    Substrate surface damage induced by deposition of metal atoms by radiofrequency (rf) sputtering or ion beam sputtering onto single-crystalline silicon (c-Si) surface has been characterized earlier by electrical measurements. The question arises whether it is possible to characterize surface damage using spectroscopic ellipsometry (SE). In our experiments niobium oxide layers were deposited by rf sputtering on c-Si substrates in gas mixture of oxygen and argon. Multiple angle of incidence spectroscopic ellipsometry measurements were performed, a four-layer optical model (surface roughness layer, niobium oxide layer, native silicon oxide layer and ion implantation-amorphized silicon [i-a-Si] layer on a c-Si substrate) was created in order to evaluate the spectra. The evaluations yielded thicknesses of several nm for the i-a-Si layer. Better agreement could be achieved between the measured and the generated spectra by inserting a mixed layer (with components of c-Si and i-a-Si applying the effective medium approximation) between the silicon oxide layer and the c-Si substrate. High depth resolution Rutherford backscattering (RBS) measurements were performed to investigate the interface disorder between the deposited niobium oxide layer and the c-Si substrate. Atomic resolution cross-sectional transmission electron microscopy investigation was applied to visualize the details of the damaged subsurface region of the substrate.

  15. Magnetoresistance enhancement in specular, bottom-pinned, Mn83Ir17 spin valves with nano-oxide layers

    NASA Astrophysics Data System (ADS)

    Veloso, A.; Freitas, P. P.; Wei, P.; Barradas, N. P.; Soares, J. C.; Almeida, B.; Sousa, J. B.

    2000-08-01

    Bottom-pinned Mn83Ir17 spin valves with enhanced specular scattering were fabricated, showing magnetoresistance (MR) values up to 13.6%, lower sheet resistance R□ and higher ΔR□. Two nano-oxide layers (NOL) are grown on both sides of the CoFe/Cu/CoFe spin valve structure by natural oxidation or remote plasma oxidation of the starting CoFe layer. Maximum MR enhancement is obtained after just 1 min plasma oxidation. Rutherford backscattering analysis shows that a 15±2 Å oxide layer grows at the expense of the initial (prior to oxidation) CoFe layer, with ˜12% reduction of the initial 40 Å CoFe thickness. X-ray reflectometry indicates that Kiessig fringes become better defined after NOL growth, indicating smoother inner interfaces, in agreement with the observed decrease of the spin valve ferromagnetic Néel coupling.

  16. Influence of temperature on oxidation mechanisms of fiber-textured AlTiTaN coatings.

    PubMed

    Khetan, Vishal; Valle, Nathalie; Duday, David; Michotte, Claude; Delplancke-Ogletree, Marie-Paule; Choquet, Patrick

    2014-03-26

    The oxidation kinetics of AlTiTaN hard coatings deposited at 265 °C by DC magnetron sputtering were investigated between 700 and 950 °C for various durations. By combining dynamic secondary ion mass spectrometry (D-SIMS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) investigations of the different oxidized coatings, we were able to highlight the oxidation mechanisms involved. The TEM cross-section observations combined with XRD analysis show that a single amorphous oxide layer comprising Ti, Al, and Ta formed at 700 °C. Above 750 °C, the oxide scale transforms into a bilayer oxide comprising an Al-rich upper oxide layer and a Ti/Ta-rich oxide layer at the interface with the coated nitride layer. From the D-SIMS analysis, it could be proposed that the oxidation mechanism was governed primarily by inward diffusion of O for temperatures of ≤700 °C, while at ≥750 °C, it is controlled by outward diffusion of Al and inward diffusion of O. Via a combination of structural and chemical analysis, it is possible to propose that crystallization of rutile lattice favors the outward diffusion of Al within the AlTiTa mixed oxide layer with an increase in the temperature of oxidation. The difference in the mechanisms of oxidation at 700 and 900 °C also influences the oxidation kinetics with respect to oxidation time. Formation of a protective alumina layer decreases the rate of oxidation at 900 °C for long durations of oxidation compared to 700 °C. Along with the oxidation behavior, the enhanced thermal stability of AlTiTaN compared to that of the TiAlN coating is illustrated.

  17. Polymer/graphite oxide composites as high-performance materials for electric double layer capacitors

    NASA Astrophysics Data System (ADS)

    Tien, Chien-Pin; Teng, Hsisheng

    A single graphene sheet represents a carbon material with the highest surface area available to accommodating molecules or ions for physical and chemical interactions. Here we demonstrate in an electric double layer capacitor the outstanding performance of graphite oxide for providing a platform for double layer formation. Graphite oxide is generally the intermediate compound for obtaining separated graphene sheets. Instead of reduction with hydrazine, we incorporate graphite oxide with a poly(ethylene oxide)-based polymer and anchor the graphene oxide sheets with poly(propylene oxide) diamines. This polymer/graphite oxide composite shows in a "dry" gel-electrolyte system a double layer capacitance as high as 130 F g -1. The polymer incorporation developed here can significantly diversify the application of graphene-based materials in energy storage devices.

  18. Solar cell collector and method for producing same

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr. (Inventor)

    1978-01-01

    A transparent, conductive collector layer containing conductive metal channels is formed as a layer on a photovoltaic substrate by coating a photovoltaic substract with a conductive mixed metal layer. A heat sink having portions protruding from one of its surfaces is attached. These protruding portions define a continuous pattern in combination with recessed regions among them such that they are in contact with the conductive layer of the photovoltaic substrate. Heating the substrate while simultaneously oxidizing the portions of the conductive layer exposed to a gaseous oxidizing substance forced into the recessed regions of the heat sink, creates a transparent metal oxide layer on the substrate. A continous pattern of highly conductive metal channels is contained in the metal oxide layer.

  19. Three-dimensional Model of Tissue and Heavy Ions Effects

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem L.; Sundaresan, Alamelu; Huff, Janice L.; Cucinotta, Francis A.

    2007-01-01

    A three-dimensional tissue model was incorporated into a new Monte Carlo algorithm that simulates passage of heavy ions in a tissue box . The tissue box was given as a realistic model of tissue based on confocal microscopy images. The action of heavy ions on the cellular matrix for 2- or 3-dimensional cases was simulated. Cells were modeled as a cell culture monolayer in one example, where the data were taken directly from microscopy (2-d cell matrix), and as a multi-layer obtained from confocal microscopy (3-d case). Image segmentation was used to identify cells with precise areas/volumes in an irradiated cell culture monolayer, and slices of tissue with many cell layers. The cells were then inserted into the model box of the simulated physical space pixel by pixel. In the case of modeled tissues (3-d), the tissue box had periodic boundary conditions imposed, which extrapolates the technique to macroscopic volumes of tissue. For the real tissue (3-d), specific spatial patterns for cell apoptosis and necrosis are expected. The cell patterns were modeled based on action cross sections for apoptosis and necrosis estimated from current experimental data. A spatial correlation function indicating a higher spatial concentration of damaged cells from heavy ions relative to the low-LET radiation cell damage pattern is presented. The spatial correlation effects among necrotic cells can help studying microlesions in organs, and probable effects of directionality of heavy ion radiation on epithelium and endothelium.

  20. Systematic evaluation of deep learning based detection frameworks for aerial imagery

    NASA Astrophysics Data System (ADS)

    Sommer, Lars; Steinmann, Lucas; Schumann, Arne; Beyerer, Jürgen

    2018-04-01

    Object detection in aerial imagery is crucial for many applications in the civil and military domain. In recent years, deep learning based object detection frameworks significantly outperformed conventional approaches based on hand-crafted features on several datasets. However, these detection frameworks are generally designed and optimized for common benchmark datasets, which considerably differ from aerial imagery especially in object sizes. As already demonstrated for Faster R-CNN, several adaptations are necessary to account for these differences. In this work, we adapt several state-of-the-art detection frameworks including Faster R-CNN, R-FCN, and Single Shot MultiBox Detector (SSD) to aerial imagery. We discuss adaptations that mainly improve the detection accuracy of all frameworks in detail. As the output of deeper convolutional layers comprise more semantic information, these layers are generally used in detection frameworks as feature map to locate and classify objects. However, the resolution of these feature maps is insufficient for handling small object instances, which results in an inaccurate localization or incorrect classification of small objects. Furthermore, state-of-the-art detection frameworks perform bounding box regression to predict the exact object location. Therefore, so called anchor or default boxes are used as reference. We demonstrate how an appropriate choice of anchor box sizes can considerably improve detection performance. Furthermore, we evaluate the impact of the performed adaptations on two publicly available datasets to account for various ground sampling distances or differing backgrounds. The presented adaptations can be used as guideline for further datasets or detection frameworks.

  1. Nanoscale lamellar photoconductor hybrids and methods of making same

    DOEpatents

    Stupp, Samuel I; Goldberger, Josh; Sofos, Marina

    2013-02-05

    An article of manufacture and methods of making same. In one embodiment, the article of manufacture has a plurality of zinc oxide layers substantially in parallel, wherein each zinc oxide layer has a thickness d.sub.1, and a plurality of organic molecule layers substantially in parallel, wherein each organic molecule layer has a thickness d.sub.2 and a plurality of molecules with a functional group that is bindable to zinc ions, wherein for every pair of neighboring zinc oxide layers, one of the plurality of organic molecule layers is positioned in between the pair of neighboring zinc oxide layers to allow the functional groups of the plurality of organic molecules to bind to zinc ions in the neighboring zinc oxide layers to form a lamellar hybrid structure with a geometric periodicity d.sub.1+d.sub.2, and wherein d.sub.1 and d.sub.2 satisfy the relationship of d.sub.1.ltoreq.d.sub.2.ltoreq.3d.sub.1.

  2. Air-stable electrical conduction in oxidized poly[2-methoxy-5-(2-ethylhexyloxy)-p-phenylene vinylene] thin films

    NASA Astrophysics Data System (ADS)

    Hossein-Babaei, F.; Shabani, P.; Azadinia, M.

    2013-11-01

    Oxidation-caused electroluminescence and electrical conduction deteriorations in poly[2-methoxy-5-(2-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV) have prevented the material from being used in applications requiring air exposure. Here, we report air-stable electrical conduction in oxidized MEH-PPV layers produced by room temperature annealing of MEH-PPV thin films in air. Oxidized layers exhibit lower, but stable, conductivities. As the process is irreversible, the final conductivity is retained in vacuum, inert gas, hydrogen, and oxygen. The oxidation rates recorded at different conditions for layers of varied thickness and electrode configuration are described by a surface oxidation model. Potentials of the oxidized MEH-PPV layers in sensor technology are demonstrated.

  3. Temporal patterns, sources, and sinks of C8-C16 hydrocarbons in the atmosphere of Mace Head, Ireland

    NASA Astrophysics Data System (ADS)

    Sartin, , J. H.; Halsall, , C. J.; Robertson, , L. A.; Gonard, , R. G.; MacKenzie, , A. R.; Berresheim, , H.; Hewitt, C. N.

    2002-10-01

    During the 1999 New Particle Formation and Fate in the Coastal Environment (PARFORCE) field campaign, 16 C8-C16 volatile organic compounds (VOCs) were identified in the coastal atmosphere of Mace Head, Ireland. Sampling took place over 24 days, with 12 VOCs routinely quantified. Concentrations were observed in the low <10-150 parts per trillion by volume range, with levels typically in the order of aldehydes > ketones ≥ n-alkanes. Concentrations of these compounds were also measured in shoreline surface seawater. No relationship was observed between atmospheric concentrations and high/low tide events. Many VOCs revealed a temporal pattern in the atmosphere, with highest concentrations measured during the early morning and lowest concentrations in the afternoon. The strongest pattern was observed for the n-alkanes. However, this was dependent on the prevailing air mass direction and the local meteorology. A Lagrangian box model was applied to assess this diurnal cycle, using seawater emissions as a source (based on the seawater concentrations and observed wind speeds), and depletion via OH radicals and dilution by entrainment as sinks (using measured [OH] and boundary layer height data). The model gave good agreement to the observed concentrations for selected air mass types, predicting the daytime decrease in VOC concentrations due to OH radical chemistry and boundary layer growth, and the subsequent increase in VOC concentrations toward evening as both oxidation chemistry diminished and the mixing layer height fell.

  4. Thermal oxidation of single crystal aluminum antimonide and materials having the same

    DOEpatents

    Sherohman, John William; Yee, Jick Hong; Coombs, III, Arthur William; Wu, Kuang Jen J.

    2012-12-25

    In one embodiment, a method for forming a non-conductive crystalline oxide layer on an AlSb crystal includes heat treating an AlSb crystal in a partial vacuum atmosphere at a temperature conducive for air adsorbed molecules to desorb, surface molecule groups to decompose, and elemental Sb to evaporate from a surface of the AlSb crystal and exposing the AlSb crystal to an atmosphere comprising oxygen to form a crystalline oxide layer on the surface of the AlSb crystal. In another embodiment, a method for forming a non-conductive crystalline oxide layer on an AlSb crystal includes heat treating an AlSb crystal in a non-oxidizing atmosphere at a temperature conducive for decomposition of an amorphous oxidized surface layer and evaporation of elemental Sb from the AlSb crystal surface and forming stable oxides of Al and Sb from residual surface oxygen to form a crystalline oxide layer on the surface of the AlSb crystal.

  5. Color tone and interfacial microstructure of white oxide layer on commercially pure Ti and Ti-Nb-Ta-Zr alloys

    NASA Astrophysics Data System (ADS)

    Miura-Fujiwara, Eri; Mizushima, Keisuke; Watanabe, Yoshimi; Kasuga, Toshihiro; Niinomi, Mitsuo

    2014-11-01

    In this study, the relationships among oxidation condition, color tone, and the cross-sectional microstructure of the oxide layer on commercially pure (CP) Ti and Ti-36Nb-2Ta-3Zr-0.3O were investigated. “White metals” are ideal metallic materials having a white color with sufficient strength and ductility like a metal. Such materials have long been sought for in dentistry. We have found that the specific biomedical Ti alloys, such as CP Ti, Ti-36Nb-2Ta-3Zr-0.3O, and Ti-29Nb-13Ta-4.6Zr, form a bright yellowish-white oxide layer after a particular oxidation heat treatment. The brightness L* and yellowness +b* of the oxide layer on CP Ti and Ti-36Nb-2Ta-3Zr-0.3O increased with heating time and temperature. Microstructural observations indicated that the oxide layer on Ti-29Nb-13Ta-4.6Zr and Ti-36Nb-2Ta-3Zr-0.3O was dense and firm, whereas a piecrust-like layer was formed on CP Ti. The results obtained in this study suggest that oxide layer coating on Ti-36Nb-2Ta-3Zr-0.3O is an excellent technique for dental applications.

  6. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    PubMed

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  7. Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom

    DOEpatents

    Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.

    2005-10-18

    An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  8. Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom

    DOEpatents

    Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.

    2003-09-09

    An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  9. Structure of oxides prepared by decomposition of layered double Mg–Al and Ni–Al hydroxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherepanova, Svetlana V.; Novosibirsk State University, Novosibirsk; Leont’eva, Natalya N., E-mail: n_n_leonteva@list.ru

    2015-05-15

    Abstracts: Thermal decomposition of Mg–Al and Ni–Al layered double hydroxides LDH at temperatures lower than 800 °C leads to the formation of oxides with different structures. Mg–Al oxide has a very defective structure and consists of octahedral layers as in periclase MgO and mixed octahedral–tetrahedral layers as in spinel MgAl{sub 2}O{sub 4}. Mixed Ni–Al oxide has a sandwich-like structure, consisting of a core with Al-doped NiO-like structure and some surface layers with spinel NiAl{sub 2}O{sub 4} structure epitaxial connected with the core. Suggested models were verified by simulation of X-ray diffraction patterns using DIFFaX code, as well as HRTEM, IR-,more » UV-spectroscopies, and XPS. - Graphical abstract: In the Mg–Al layered double hydroxide Al{sup 3+} ions migrate into interlayers during decomposition. The Mg–Al oxide represents sequence of octahedral and octahedral–tetrahedral spinel layers with vacancies. The Ni–Al oxide has a sandwich-like structure with NiO-like core and surface spinel layers as a result of migration of Al{sup 3+} ions on the surface. The models explain the presence and absence of “memory effect” for the Mg–Al and Ni–Al oxides, respectively. - Highlights: • We study products of Mg(Ni)–Al LDH decomposition by calcination at 500(400)–800 °C. • In Mg–Al/Ni–Al LDH Al ions migrate into interlayers/on the surface during decomposition. • Mg–Al oxide represents sequence of periclase- and spinel-like layers with vacancies. • Ni–Al oxide has a sandwich-like structure with NiO-like core and surface spinel layers. • The models explain the presence/absence of “memory effect” for Mg–Al/Ni–Al oxides.« less

  10. Screening method for selecting semiconductor substrates having defects below a predetermined level in an oxide layer

    DOEpatents

    Warren, William L.; Vanheusden, Karel J. R.; Schwank, James R.; Fleetwood, Daniel M.; Shaneyfelt, Marty R.; Winokur, Peter S.; Devine, Roderick A. B.

    1998-01-01

    A method for screening or qualifying semiconductor substrates for integrated circuit fabrication. The method comprises the steps of annealing at least one semiconductor substrate at a first temperature in a defect-activating ambient (e.g. hydrogen, forming gas, or ammonia) for sufficient time for activating any defects within on oxide layer of the substrate; measuring a defect-revealing electrical characteristic of at least a portion of the oxide layer for determining a quantity of activated defects therein; and selecting substrates for which the quantity of activated defects is below a predetermined level. The defect-revealing electrical characteristic may be a capacitance-versus-voltage (C-V) characteristic or a current-versus-voltage (I-V) characteristic that is dependent on an electrical charge in the oxide layer generated by the activated defects. Embodiments of the present invention may be applied for screening any type of semiconductor substrate or wafer having an oxide layer formed thereon or therein. This includes silicon-on-insulator substrates formed by a separation by the implantation of oxygen (SIMOX) process or the bond and etch back silicon-on-insulator (BESOI) process, as well as silicon substrates having a thermal oxide layer or a deposited oxide layer.

  11. Effect of native oxide layers on copper thin-film tensile properties: A reactive molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skarlinski, Michael D., E-mail: michael.skarlinski@rochester.edu; Quesnel, David J.; Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627

    2015-12-21

    Metal-oxide layers are likely to be present on metallic nano-structures due to either environmental exposure during use, or high temperature processing techniques such as annealing. It is well known that nano-structured metals have vastly different mechanical properties from bulk metals; however, difficulties in modeling the transition between metallic and ionic bonding have prevented the computational investigation of the effects of oxide surface layers. Newly developed charge-optimized many body [Liang et al., Mater. Sci. Eng., R 74, 255 (2013)] potentials are used to perform fully reactive molecular dynamics simulations which elucidate the effects that metal-oxide layers have on the mechanical propertiesmore » of a copper thin-film. Simulated tensile tests are performed on thin-films while using different strain-rates, temperatures, and oxide thicknesses to evaluate changes in yield stress, modulus, and failure mechanisms. Findings indicate that copper-thin film mechanical properties are strongly affected by native oxide layers. The formed oxide layers have an amorphous structure with lower Cu-O bond-densities than bulk CuO, and a mixture of Cu{sub 2}O and CuO charge character. It is found that oxidation will cause modifications to the strain response of the elastic modulii, producing a stiffened modulii at low temperatures (<75 K) and low strain values (<5%), and a softened modulii at higher temperatures. While under strain, structural reorganization within the oxide layers facilitates brittle yielding through nucleation of defects across the oxide/metal interface. The oxide-free copper thin-film yielding mechanism is found to be a tensile-axis reorientation and grain creation. The oxide layers change the observed yielding mechanism, allowing for the inner copper thin-film to sustain an FCC-to-BCC transition during yielding. The mechanical properties are fit to a thermodynamic model based on classical nucleation theory. The fit implies that the oxidation of the films reduces the activation volume for yielding.« less

  12. SOFIA Science Imagery

    NASA Image and Video Library

    2017-09-14

    SCI2017_0003: The column of material at and just below the surface of dwarf planet Ceres (box) – the top layer contains anhydrous (dry) pyroxene dust accumulated from space mixed in with native hydrous (wet) dust, carbonates, and water ice. (Bottom) Cross section of Ceres showing the surface layers that are the subject of this study plus a watery mantle and a rocky-metallic core. Credit: Pierre Vernazza, LAM–CNRS/AMU

  13. W-containing oxide layers obtained on aluminum and titanium by PEO as catalysts in thiophene oxidation

    NASA Astrophysics Data System (ADS)

    Rudnev, V. S.; Lukiyanchuk, I. V.; Vasilyeva, M. S.; Morozova, V. P.; Zelikman, V. M.; Tarkhanova, I. G.

    2017-11-01

    W-containing oxide layers fabricated on titanium and aluminum alloys by Plasma electrolytic oxidation (PEO) have been tested in the reaction of the peroxide oxidation of thiophene. Samples with two types of coatings have been investigated. Coatings I contained tungsten oxide in the matrix and on the surface of amorphous silica-titania or silica-alumina layers, while coatings II comprised crystalline WO3 and/or Al2(WO4)3. Aluminum-supported catalyst containing a smallest amount of transition metals in the form of tungsten oxides and manganese oxides in low oxidation levels showed high activity and stability.

  14. Fabrication technology of CNT-Nickel Oxide based planar pseudocapacitor for MEMS and NEMS

    NASA Astrophysics Data System (ADS)

    Lebedev, E. A.; Kitsyuk, E. P.; Gavrilin, I. M.; Gromov, D. G.; Gruzdev, N. E.; Gavrilov, S. A.; Dronov, A. A.; Pavlov, A. A.

    2015-11-01

    Fabrication technology of planar pseudocapacitor (PsC) based on carbon nanotube (CNT) forest, synthesized using plasma enhanced chemical vapor deposition (PECVD) method, covered with thin nickel oxide layer deposited by successive ionic layer adsorption and reaction (SILAR) method, is demonstrated. Dependences of deposited oxide layers thickness on device specific capacities is studied. It is shown that pseudocapacity of nickel oxide thin layer increases specific capacity of the CNT's based device up to 2.5 times.

  15. Modification of surface oxide layers of titanium targets for increasing lifetime of neutron tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakharov, A. M., E-mail: zam@plasma.mephi.ru; Dvoichenkova, O. A.; Evsin, A. E.

    The peculiarities of interaction of hydrogen ions with a titanium target and its surface oxide layer were studied. Two ways of modification of the surface oxide layers of titanium targets for increasing the lifetime of neutron tubes were proposed: (1) deposition of an yttrium oxide barrier layer on the target surface; (2) implementation of neutron tube work regime in which the target is irradiated with ions with energies lower than 1000 eV between high-energy ion irradiation pulses.

  16. Oxidized film structure and method of making epitaxial metal oxide structure

    DOEpatents

    Gan, Shupan [Richland, WA; Liang, Yong [Richland, WA

    2003-02-25

    A stable oxidized structure and an improved method of making such a structure, including an improved method of making an interfacial template for growing a crystalline metal oxide structure, are disclosed. The improved method comprises the steps of providing a substrate with a clean surface and depositing a metal on the surface at a high temperature under a vacuum to form a metal-substrate compound layer on the surface with a thickness of less than one monolayer. The compound layer is then oxidized by exposing the compound layer to essentially oxygen at a low partial pressure and low temperature. The method may further comprise the step of annealing the surface while under a vacuum to further stabilize the oxidized film structure. A crystalline metal oxide structure may be subsequently epitaxially grown by using the oxidized film structure as an interfacial template and depositing on the interfacial template at least one layer of a crystalline metal oxide.

  17. Thermal conductivity and thermal boundary resistance of atomic layer deposited high-k dielectric aluminum oxide, hafnium oxide, and titanium oxide thin films on silicon

    NASA Astrophysics Data System (ADS)

    Scott, Ethan A.; Gaskins, John T.; King, Sean W.; Hopkins, Patrick E.

    2018-05-01

    The need for increased control of layer thickness and uniformity as device dimensions shrink has spurred increased use of atomic layer deposition (ALD) for thin film growth. The ability to deposit high dielectric constant (high-k) films via ALD has allowed for their widespread use in a swath of optical, optoelectronic, and electronic devices, including integration into CMOS compatible platforms. As the thickness of these dielectric layers is reduced, the interfacial thermal resistance can dictate the overall thermal resistance of the material stack compared to the resistance due to the finite dielectric layer thickness. Time domain thermoreflectance is used to interrogate both the thermal conductivity and the thermal boundary resistance of aluminum oxide, hafnium oxide, and titanium oxide films on silicon. We calculate a representative design map of effective thermal resistances, including those of the dielectric layers and boundary resistances, as a function of dielectric layer thickness, which will be of great importance in predicting the thermal resistances of current and future devices.

  18. Dynamic layer rearrangement during growth of layered oxide films by molecular beam epitaxy

    DOE PAGES

    Lee, J. H.; Luo, G.; Tung, I. C.; ...

    2014-08-03

    The A n+1B nO 3n+1 Ruddlesden–Popper homologous series offers a wide variety of functionalities including dielectric, ferroelectric, magnetic and catalytic properties. Unfortunately, the synthesis of such layered oxides has been a major challenge owing to the occurrence of growth defects that result in poor materials behaviour in the higher-order members. To understand the fundamental physics of layered oxide growth, we have developed an oxide molecular beam epitaxy system with in situ synchrotron X-ray scattering capability. We present results demonstrating that layered oxide films can dynamically rearrange during growth, leading to structures that are highly unexpected on the basis of themore » intended layer sequencing. Theoretical calculations indicate that rearrangement can occur in many layered oxide systems and suggest a general approach that may be essential for the construction of metastable Ruddlesden–Popper phases. Lastly, we demonstrate the utility of the new-found growth strategy by performing the first atomically controlled synthesis of single-crystalline La 3Ni 2O 7.« less

  19. Effects of iron content in Ni-Cr-xFe alloys and immersion time on the oxide films formed in a simulated PWR water environment

    NASA Astrophysics Data System (ADS)

    Ru, Xiangkun; Lu, Zhanpeng; Chen, Junjie; Han, Guangdong; Zhang, Jinlong; Hu, Pengfei; Liang, Xue

    2017-12-01

    The iron content in Ni-Cr-xFe (x = 0-9 at.%) alloys strongly affected the properties of oxide films after 978 h of immersion in the simulated PWR primary water environment at 310 °C. Increasing the iron content in the alloys increased the amount of iron-bearing polyhedral spinel oxide particles in the outer oxide layer and increased the local oxidation penetrations into the alloy matrix from the chromium-rich inner oxide layer. The effects of iron content in the alloys on the oxide film properties after 500 h of immersion were less significant than those after 978 h. Iron content increased, and chromium content decreased, in the outer oxide layer with increasing iron content in the alloys. Increasing the immersion time facilitated the formation of the local oxidation penetrations along the matrix/film interface and the nickel-bearing spinel oxides in the outer oxide layer.

  20. Structure and nano-mechanical characteristics of surface oxide layers on a metallic glass.

    PubMed

    Caron, A; Qin, C L; Gu, L; González, S; Shluger, A; Fecht, H-J; Louzguine-Luzgin, D V; Inoue, A

    2011-03-04

    Owing to their low elastic moduli, high specific strength and excellent processing characteristics in the undercooled liquid state, metallic glasses are promising materials for applications in micromechanical systems. With miniaturization of metallic mechanical components down to the micrometer scale, the importance of a native oxide layer on a glass surface is increasing. In this work we use TEM and XPS to characterize the structure and properties of the native oxide layer grown on Ni(62)Nb(38) metallic glass and their evolution after annealing in air. The thickness of the oxide layer almost doubled after annealing. In both cases the oxide layer is amorphous and consists predominantly of Nb oxide. We investigate the friction behavior at low loads and in ambient conditions (i.e. at T = 295 K and 60% air humidity) of both as-cast and annealed samples by friction force microscopy. After annealing the friction coefficient is found to have significantly increased. We attribute this effect to the increase of the mechanical stability of the oxide layer upon annealing.

  1. Investigations into the structure of PEO-layers for understanding of layer formation

    NASA Astrophysics Data System (ADS)

    Friedemann, A. E. R.; Thiel, K.; Haßlinger, U.; Ritter, M.; Gesing, Th. M.; Plagemann, P.

    2018-06-01

    Plasma electrolytic oxidation (PEO) is a type of high-voltage anodic oxidation process capable of producing a thick oxide layer with a wide variety of structural and chemical properties influenced by the electrolytic system. This process enables the combined adjustment of various characteristics, i.e. the morphology and chemical composition. The procedure facilitates the possibility of generating an individual structure as well as forming a crystalline surface in a single step. A highly porous surface with a high crystalline content consisting of titanium dioxide phases is ensured through the process of plasma electrolytic oxidizing pure titanium. In the present study plasma electrolytic oxidized TiO2-layers were investigated regarding their crystallinity through the layer thickness. The layers were prepared with a high applied voltage of 280 V to obtain a PEO-layer with highly crystalline anatase and rutile amounts. Raman spectroscopy and electron backscatter diffraction (EBSD) were selected to clarify the structure of the oxide layer with regard to its crystallinity and phase composition. The composition of the TiO2-phases is more or less irregularly distributed as a result of the higher energy input on the uppermost side of the layer. Scanning transmission electron microscopy (STEM) provided a deeper understanding of the structure and the effects of plasma discharges on the layer. It was observed that the plasma discharges have a strong influence on crystallite formation on top of the oxide layer and also at the boundary layer to the titanium substrate. Therefore, small crystallites of TiO2 could be detected in these regions. In addition, it was shown that amorphous TiO2 phases are formed around the characteristic pore structures, which allows the conclusion to be drawn that a rapid cooling from the gas phase had to take place in these areas.

  2. Polycrystalline ferroelectric or multiferroic oxide articles on biaxially textured substrates and methods for making same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goyal, Amit; Shin, Junsoo

    A polycrystalline ferroelectric and/or multiferroic oxide article includes a substrate having a biaxially textured surface; at least one biaxially textured buffer layer supported by the substrate; and a biaxially textured ferroelectric or multiferroic oxide layer supported by the buffer layer. Methods for making polycrystalline ferroelectric and/or multiferroic oxide articles are also disclosed.

  3. System and Method for Fabricating Super Conducting Circuitry on Both Sides of an Ultra-Thin Layer

    NASA Technical Reports Server (NTRS)

    Brown, Ari D. (Inventor); Mikula, Vilem (Inventor)

    2017-01-01

    A method of fabricating circuitry in a wafer includes depositing a superconducting metal on a silicon on insulator wafer having a handle wafer, coating the wafer with a sacrificial layer and bonding the wafer to a thermally oxide silicon wafer with a first epoxy. The method includes flipping the wafer, thinning the flipped wafer by removing a handle wafer, etching a buried oxide layer, depositing a superconducting layer, bonding the wafer to a thermally oxidized silicon wafer having a handle wafer using an epoxy, flipping the wafer again, thinning the flipped wafer, etching a buried oxide layer from the wafer and etching the sacrificial layer from the wafer. The result is a wafer having superconductive circuitry on both sides of an ultra-thin silicon layer.

  4. SimpleBox 4.0: Improving the model while keeping it simple….

    PubMed

    Hollander, Anne; Schoorl, Marian; van de Meent, Dik

    2016-04-01

    Chemical behavior in the environment is often modeled with multimedia fate models. SimpleBox is one often-used multimedia fate model, firstly developed in 1986. Since then, two updated versions were published. Based on recent scientific developments and experience with SimpleBox 3.0, a new version of SimpleBox was developed and is made public here: SimpleBox 4.0. In this new model, eight major changes were implemented: removal of the local scale and vegetation compartments, addition of lake compartments and deep ocean compartments (including the thermohaline circulation), implementation of intermittent rain instead of drizzle and of depth dependent soil concentrations, adjustment of the partitioning behavior for organic acids and bases as well as of the value for enthalpy of vaporization. In this paper, the effects of the model changes in SimpleBox 4.0 on the predicted steady-state concentrations of chemical substances were explored for different substance groups (neutral organic substances, acids, bases, metals) in a standard emission scenario. In general, the largest differences between the predicted concentrations in the new and the old model are caused by the implementation of layered ocean compartments. Undesirable high model complexity caused by vegetation compartments and a local scale were removed to enlarge the simplicity and user friendliness of the model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Polyelectrolyte/Graphene Oxide Barrier Film for Flexible OLED.

    PubMed

    Yang, Seung-Yeol; Park, Jongwhan; Kim, Yong-Seog

    2015-10-01

    Ultra-thin flexible nano-composite barrier layer consists of graphene oxide and polyelectrolyte was prepared using the layer-by-layer processing method. Microstructures of the barrier layer was optimized via modifying coating conditions and inducing chemical reactions. Although the barrier layer consists of hydrophilic polyelectrolyte was not effective in blocking the water vapor permeation, the chemical reduction of graphene oxide as well as conversion of polyelectrolyte to hydrophobic nature were very effective in reducing the permeation.

  6. A methodological approach to study the stability of selected watercolours for painting reintegration, through reflectance spectrophotometry, Fourier transform infrared spectroscopy and hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Pelosi, Claudia; Capobianco, Giuseppe; Agresti, Giorgia; Bonifazi, Giuseppe; Morresi, Fabio; Rossi, Sara; Santamaria, Ulderico; Serranti, Silvia

    2018-06-01

    The aim of this work is to investigate the stability to simulated solar radiation of some paintings samples through a new methodological approach adopting non-invasive spectroscopic techniques. In particular, commercial watercolours and iron oxide based pigments were used, these last ones being prepared for the experimental by gum Arabic in order to propose a possible substitute for traditional reintegration materials. Reflectance spectrophotometry in the visible range and Hyperspectral Imaging in the short wave infrared were chosen as non-invasive techniques for evaluation the stability to irradiation of the chosen pigments. These were studied before and after artificial ageing procedure performed in Solar Box chamber under controlled conditions. Data were treated and elaborated in order to evaluate the sensitivity of the chosen techniques in identifying the variations on paint layers, induced by photo-degradation, before they could be observed by eye. Furthermore a supervised classification method for monitoring the painted surface changes adopting a multivariate approach was successfully applied.

  7. Analysis of switching characteristics for negative capacitance ultra-thin-body germanium-on-insulator MOSFETs

    NASA Astrophysics Data System (ADS)

    Pi-Ho Hu, Vita; Chiu, Pin-Chieh

    2018-04-01

    The impact of device parameters on the switching characteristics of negative capacitance ultra-thin-body (UTB) germanium-on-insulator (NC-GeOI) MOSFETs is analyzed. NC-GeOI MOSFETs with smaller gate length (L g), EOT, and buried oxide thickness (T box) and thicker ferroelectric layer thickness (T FE) exhibit larger subthreshold swing improvements over GeOI MOSFETs due to better capacitance matching. Compared with GeOI MOSFETs, NC-GeOI MOSFETs exhibit better switching time due to improvements in effective drive current (I eff) and subthreshold swing. NC-GeOI MOSFET exhibits larger ST improvements at V dd = 0.3 V (-82.9%) than at V dd = 0.86 V (-9.7%), because NC-GeOI MOSFET shows 18.2 times higher I eff than the GeOI MOSFET at V dd = 0.3 V, while 2.5 times higher I eff at V dd = 0.86 V. This work provides the device design guideline of NC-GeOI MOSFETs for ultra-low power applications.

  8. Comprehensive analysis of low-frequency noise variability components in bulk and fully depleted silicon-on-insulator metal–oxide–semiconductor field-effect transistor

    NASA Astrophysics Data System (ADS)

    Maekawa, Keiichi; Makiyama, Hideki; Yamamoto, Yoshiki; Hasegawa, Takumi; Okanishi, Shinobu; Sonoda, Kenichiro; Shinkawata, Hiroki; Yamashita, Tomohiro; Kamohara, Shiro; Yamaguchi, Yasuo

    2018-04-01

    The low-frequency noise (LFN) variability in bulk and fully depleted silicon-on-insulator (FDSOI) metal–oxide–semiconductor field-effect transistor (MOSFET) with silicon on thin box (SOTB) technology was investigated. LFN typically shows a flicker noise component and a signal Lorentzian component by random telegraph noise (RTN). At a weak inversion state, the random dopant fluctuation (RDF) in a channel is strongly affected to not only RTN variability but also flicker noise variability in the bulk MOSFET compared with SOTB MOSFET because of local carrier number fluctuation in the channel. On the other hand, the typical level of LFN in SOTB MOSFET is slightly larger than that in the bulk MOSFET because of an additional interface on the buried oxide layer. However, considering the tailing characteristics of LFN variability, LFN in SOTB MOSFET can be assumed to be smaller than that in the bulk MOSFET, which enables the low-voltage operation of analog circuits.

  9. Effects of retail style or food service style packaging type and storage time on sensory characteristics of bacon manufactured from commercially sourced pork bellies.

    PubMed

    Lowe, B K; Bohrer, B M; Holmer, S F; Boler, D D; Dilger, A C

    2014-06-01

    Objectives were to characterize differences in pork bellies that were stored frozen for different durations prior to processing and characterize sensory properties of the bacon derived from those bellies when stored in either retail or food service style packaging. Bellies (n = 102) were collected from 4 different time periods, fresh bellies (never frozen) and bellies frozen for 2, 5, or 7 mo, and manufactured into bacon under commercial conditions. Food service bacon was packaged in oxygen-permeable polyvinyl lined boxes layered on wax-covered lined paper and blast frozen (-33 °C) for 45 or 90 d after slicing. Retail bacon was vacuum-packaged in retail packages and refrigerated (2 °C) in the dark for 60 or 120 d after slicing. At the end of respective storage times after slicing, bacon was analyzed for sensory attributes and lipid oxidation. Off-flavor and oxidized odor of bacon increased (P < 0.01) with increasing storage time in both packaging types. Lipid oxidation increased (P < 0.01) as storage time increased from day 0 to day 45 in food service packaged bacon from frozen bellies, but was unchanged (P ≥ 0.07) with time in food service packaged bacon from fresh bellies. Lipid oxidation was also unchanged (P ≥ 0.21) over time in retail packaged bacon, with the exception of bellies frozen for 5 mo, which was increased from day 0 to day 90. Overall, off-flavor, oxidized odor, and lipid oxidation increased as storage time after processing increased. Freezing bellies before processing may exacerbate lipid oxidation as storage time after processing was extended. Bacon can be packaged and managed several different ways before it reaches the consumer. This research simulated food service (frozen) and retail packaged (refrigerated) bacon over a range of storage times after slicing. Off-flavor and oxidized odor increased as storage time after processing increased in both packaging types. Lipid oxidation increased as storage time after slicing increased to a greater extent in food service packaging. © 2014 Institute of Food Technologists®

  10. Method for restoring the resistance of indium oxide semiconductors after heating while in sealed structures

    DOEpatents

    Seager, C.H.; Evans, J.T. Jr.

    1998-11-24

    A method is described for counteracting increases in resistivity encountered when Indium Oxide resistive layers are subjected to high temperature annealing steps during semiconductor device fabrication. The method utilizes a recovery annealing step which returns the Indium Oxide layer to its original resistivity after a high temperature annealing step has caused the resistivity to increase. The recovery anneal comprises heating the resistive layer to a temperature between 100 C and 300 C for a period of time that depends on the annealing temperature. The recovery is observed even when the Indium Oxide layer is sealed under a dielectric layer. 1 fig.

  11. Method for restoring the resistance of indium oxide semiconductors after heating while in sealed structures

    DOEpatents

    Seager, Carleton H.; Evans, Jr., Joseph Tate

    1998-01-01

    A method for counteracting increases in resistivity encountered when Indium Oxide resistive layers are subjected to high temperature annealing steps during semiconductor device fabrication. The method utilizes a recovery annealing step which returns the Indium Oxide layer to its original resistivity after a high temperature annealing step has caused the resistivity to increase. The recovery anneal comprises heating the resistive layer to a temperature between 100.degree. C. and 300.degree. C. for a period of time that depends on the annealing temperature. The recovery is observed even when the Indium Oxide layer is sealed under a dielectric layer.

  12. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers.

    PubMed

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-18

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  13. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers

    NASA Astrophysics Data System (ADS)

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-01

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  14. Effect of nano oxide layer on exchange bias and GMR in Mn-Ir-Pt based spin valve

    NASA Astrophysics Data System (ADS)

    Jeon, D. M.; Lee, J. P.; Lee, D. H.; Yoon, S. Y.; Kim, Y. S.; Suh, S. J.

    2004-05-01

    We have investigated the effect of nano oxide layers (NOLs), which were fabricated by a plasma oxidation of CoFe layer on the magnetic properties and magneto-resistance (MR) in a Mn-Ir-Pt based spin valve. The adjusted NOL could result in the high MR and the strong exchange coupling field ( Hex). From a high resolution electron microscopy analysis the oxide was about 1 nm. The strong reflectivity at the interface of a free and oxide capping layer should lead to the decrease of an interlayer coupling field, which could possibly improve the Hex.

  15. Superconducting structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2003-04-01

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  16. Superconducting Structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2005-09-13

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  17. Steam assisted oxide growth on aluminium alloys using oxidative chemistries: Part I Microstructural investigation

    NASA Astrophysics Data System (ADS)

    Din, Rameez Ud; Piotrowska, Kamila; Gudla, Visweswara Chakravarthy; Jellesen, Morten Stendahl; Ambat, Rajan

    2015-11-01

    The surface treatment of aluminium alloys under steam containing KMnO4 and HNO3 resulted in the formation of an oxide layer having a thickness of up to 825 nm. The use of KMnO4 and HNO3 in the steam resulted in incorporation of the respective chemical species into the oxide layer. Steam treatment with solution containing HNO3 caused dissolution of Cu and Si from the intermetallic particles in the aluminium substrate. The growth rate of oxide layer was observed to be a function of MnO4- and NO3- ions present in the aqueous solution. The NO3- ions exhibit higher affinity towards the intermetallic particles resulting in poor coverage by the steam generated oxide layer compared to the coating formed using MnO4- ions. Further, increase in the concentration of NO3- ions in the solution retards precipitation of the steam generated aluminium hydroxide layer.

  18. Formation of a Ge-rich Si1-x Ge x (x > 0.9) fin epitaxial layer condensed by dry oxidation

    NASA Astrophysics Data System (ADS)

    Jang, Hyunchul; Kim, Byongju; Koo, Sangmo; Ko, Dae-Hong

    2017-11-01

    We have selectively grown an epitaxial Si0.35Ge0.65 fin layer in a 65 nm oxide trench pattern array and formed a Ge-rich Si1-x Ge x (x > 0.9) fin layer with condensed Ge using dry oxidation. During oxidation of the SiGe fin structure, we found that the compressive strain of the condensed SiGe layer was increased by about 1.3% while Ge was efficiently condensed due to a two-dimensional oxidation reaction. In this paper, we discussed in detail the diffusion during the two-dimensional condensation reaction as well as the asymmetric biaxial strain of the SiGe fin before and after oxidation using a reciprocal space mapping measurement. The application of dry oxidation on selectively grown SiGe fin layer can be an effective method for increasing hole mobility of SiGe fin with increased Ge content and self-induced compressive strain.

  19. Wet oxidation of GeSi strained layers by rapid thermal processing

    NASA Astrophysics Data System (ADS)

    Nayak, D. K.; Kamjoo, K.; Park, J. S.; Woo, J. C. S.; Wang, K. L.

    1990-07-01

    A cold-wall rapid thermal processor is used for the wet oxidation of the commensurately grown GexSi1-x layers on Si substrates. The rate of oxidation of the GexSi1-x layer is found to be significantly higher than that of pure Si, and the oxidation rate increases with the increase in the Ge content in GexSi1-x layer. The oxidation rate of GexSi1-x appears to decrease with increasing oxidation time for the time-temperature cycles considered here. Employing high-frequency and quasi-static capacitance-voltage measurements, it is found that a fixed negative oxide charge density in the range of 1011- 1012/cm2 and the interface trap level density (in the mid-gap region) of about 1012/cm2 eV are present. Further, the density of this fixed interface charge at the SiO2/GeSi interface is found to increase with the Ge concentration in the commensurately grown GeSi layers.

  20. Oxide Based Transistor for Flexible Displays

    DTIC Science & Technology

    2014-09-15

    thin film transistors (TFTs) for next generation display technologies. A detailed and comprehensive study was carried out to ascertain the process...Box 12211 Research Triangle Park, NC 27709-2211 Thin film transistors , flexible electronics, RF sputtering, Transparent amorphous oxide semiconductors...NC A&T and RTI, International investigated In free GaSnZnO (GSZO) material system, as the active channel in thin film transistors (TFTs) for next

  1. Effects of channel thickness on oxide thin film transistor with double-stacked channel layer

    NASA Astrophysics Data System (ADS)

    Lee, Kimoon; Kim, Yong-Hoon; Yoon, Sung-Min; Kim, Jiwan; Oh, Min Suk

    2017-11-01

    To improve the field effect mobility and control the threshold voltage ( V th ) of oxide thin film transistors (TFTs), we fabricated the oxide TFTs with double-stacked channel layers which consist of thick Zn-Sn-O (ZTO) and very thin In-Zn-O (IZO) layers. We investigated the effects of the thickness of thin conductive layer and the conductivity of thick layer on oxide TFTs with doublestacked channel layer. When we changed the thickness of thin conductive IZO channel layer, the resistivity values were changed. This resistivity of thin channel layer affected on the saturation field effect mobility and the off current of TFTs. In case of the thick ZTO channel layer which was deposited by sputtering in Ar: O2 = 10: 1, the device showed better performances than that which was deposited in Ar: O2 = 1: 1. Our TFTs showed high mobility ( μ FE ) of 40.7 cm2/Vs and V th of 4.3 V. We assumed that high mobility and the controlled V th were caused by thin conductive IZO layer and thick stable ZTO layer. Therefore, this double-stacked channel structure can be very promising way to improve the electrical characteristics of various oxide thin film transistors.

  2. The minimal flow unit in near-wall turbulence

    NASA Technical Reports Server (NTRS)

    Jimeez, Javier; Moin, Parviz

    1991-01-01

    Direct numerical simulations of unsteady channel flow were performed at low to moderate Reynolds numbers on computational boxes chosen small enough so that the flow consists of a doubly periodic (in x and z) array of identical structures. The goal is to isolate the basic flow unit, to study its morphology and dynamics, and to evaluate its contribution to turbulence in fully developed channels. For boxes wider than approximately 100 wall units in the spanwise direction, the flow is turbulent, and the low-order turbulence statistics are in good agreement with experiments in the near-wall region. For a narrow range of widths below that threshold, the flow near only one wall remains turbulent, but its statistics are still in fairly good agreement with experimental data when scaled with the local wall stress. For narrower boxes only laminar solutions are found. In all cases, the elementary box contains a single low-velocity streak, consisting of a longitudinal strip on which a thin layer of spanwise vorticity is lifted away from the wall.

  3. Preparation of TiO(2) layers on cp-Ti and Ti6Al4V by thermal and anodic oxidation and by sol-gel coating techniques and their characterization.

    PubMed

    Velten, D; Biehl, V; Aubertin, F; Valeske, B; Possart, W; Breme, J

    2002-01-01

    The excellent biocompatibility of titanium and its alloys used, for example, for medical devices, is associated with the properties of their surface oxide. For a better understanding of the tissue reaction in contact with the oxide layer, knowledge of the chemical and physical properties of this layer is of increasing interest. In this study, titania films were produced on cp-Ti and Ti6Al4V substrates by thermal oxidation, anodic oxidation, and by the sol-gel process. The thickness and structure of the films produced under different conditions were determined by ellipsometry, infrared spectroscopy, and X-ray diffraction measurements. The corrosion properties of these layers were investigated by current density-potential curves under physiological conditions. The oxide layers produced on cp-Ti and Ti6Al4V by thermal oxidation consist of TiO(2) in the rutile structure. For the anodized samples the structure of TiO(2) is a mixture of amorphous phase and anatase. The structure of the coatings produced by the sol-gel process for a constant annealing time depends on the annealing temperature, and with increasing temperature successively amorphous, anatase, and rutile structure is observed. Compared to the uncoated, polished substrate with a natural oxide layer, the corrosion resistance of cp-Ti and Ti6Al4V is increased for the samples with an oxide layer thickness of about 100 nm, independent of the oxidation procedure. Copyright 2001 John Wiley & Sons, Inc.

  4. Analyzing the effect of carbon fiber reinforced polymer on the crashworthiness of aluminum square hollow beam for crash box application

    NASA Astrophysics Data System (ADS)

    Raman, R.; Jayanth, K.; Sarkar, I.; Ravi, K.

    2017-11-01

    Crashworthiness of a material is a measure of its ability to absorb energy during a crash. A well-designed crash box is instrumental in protecting the costly vehicle components. A square, hollow, hybrid beam of aluminum/CFRP was subjected to dynamic axial load to analyze the effect of five different lay-up sequences on its crashworthiness. The beam was placed between two plates. Boundary conditions were imposed on them to simulate a frontal body crash test model. Modeling and dynamic analysis of composite structures was done on ABAQUS. Different orientation of carbon fibers varies the crashworthiness of the hybrid beam. Addition of CFRP layer showed clear improvement in specific energy absorption and crush force efficiency compared to pure aluminum beam. Two layers of CFRP oriented at 90° on Aluminum showed 52% increase in CFE.

  5. GPR monitoring for non-uniform infiltration through a high permeable gravel layer in the test sand box

    NASA Astrophysics Data System (ADS)

    Kuroda, Seiichiro; Ishii, Nobuyuki; Morii, Toshihiro

    2017-04-01

    Recently capillary barriers have been known as a method to protect subsurface regions against infiltration from soil surface. It has essentially non-uniform structure of permeability or soil physical property. To identify the function of the capillary barrier, the site-characterization technique for non-uniform soil moisture distribution and infiltration process is needed. We built a sand box in which a thin high-permeable gravel layer was embedded and conducted a infiltration test, including non-uniform flow of soil water induced by capillary barrier effects. We monitored this process by various types of GPR measurements, including time-lapsed soundings with multi-frequency antenna and transmission measurements like one using cross-borehole radar. Finally we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil. This work has partially supported by JSPS Grant-in-aid Scientific Research program, No.16H02580.

  6. Effect of interfacial oxide layers on the current-voltage characteristics of Al-Si contacts

    NASA Technical Reports Server (NTRS)

    Porter, W. A.; Parker, D. L.

    1976-01-01

    Aluminum-silicon contacts with very thin interfacial oxide layers and various surface impurity concentrations are studied for both n and p-type silicon. To determine the surface impurity concentrations on p(+)-p and n(+)-n structures, a modified C-V technique was utilized. Effects of interfacial oxide layers and surface impurity concentrations on current-voltage characteristics are discussed based on the energy band diagrams from the conductance-voltage plots. The interfacial oxide and aluminum layer causes image contrasts on X-ray topographs.

  7. Screening method for selecting semiconductor substrates having defects below a predetermined level in an oxide layer

    DOEpatents

    Warren, W.L.; Vanheusden, K.J.R.; Schwank, J.R.; Fleetwood, D.M.; Shaneyfelt, M.R.; Winokur, P.S.; Devine, R.A.B.

    1998-07-28

    A method is disclosed for screening or qualifying semiconductor substrates for integrated circuit fabrication. The method comprises the steps of annealing at least one semiconductor substrate at a first temperature in a defect-activating ambient (e.g. hydrogen, forming gas, or ammonia) for sufficient time for activating any defects within on oxide layer of the substrate; measuring a defect-revealing electrical characteristic of at least a portion of the oxide layer for determining a quantity of activated defects therein; and selecting substrates for which the quantity of activated defects is below a predetermined level. The defect-revealing electrical characteristic may be a capacitance-versus voltage (C-V) characteristic or a current-versus-voltage (I-V) characteristic that is dependent on an electrical charge in the oxide layer generated by the activated defects. Embodiments of the present invention may be applied for screening any type of semiconductor substrate or wafer having an oxide layer formed thereon or therein. This includes silicon-on-insulator substrates formed by a separation by the implantation of oxygen (SIMOX) process or the bond and etch back silicon-on-insulator (BESOI) process, as well as silicon substrates having a thermal oxide layer or a deposited oxide layer. 5 figs.

  8. Ceramic Composite Thin Films

    NASA Technical Reports Server (NTRS)

    Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor); Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  9. Strong White Photoluminescence from Carbon-Incorporated Silicon Oxide Fabricated by Preferential Oxidation of Silicon in Nano-Structured Si:C Layer

    NASA Astrophysics Data System (ADS)

    Vasin, Andriy V.; Ishikawa, Yukari; Shibata, Noriyoshi; Salonen, Jarno; Lehto, Vesa-Pekka

    2007-05-01

    A new approach to development of light-emitting SiO2:C layers on Si wafer is demonstrated. Carbon-incorporated silicon oxide was fabricated by three-step procedure: (1) formation of the porous silicon (por-Si) layer by ordinary anodization in HF:ethanol solution; (2) carbonization at 1000 °C in acetylene flow (formation of por-Si:C layer); (3) oxidation in the flow of moisturized argon at 800 °C (formation of SiO2:C layer). Resulting SiO2:C layer exhibited very strong and stable white photoluminescence at room temperature. It is shown that high reactivity of water vapor with nano-crystalline silicon and inertness with amorphous carbon play a key role in the formation of light-emitting SiO2:C layer.

  10. Doping optimization of polypyrrole with toluenesulfonic acid using Box-Behnken design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syed Draman, Sarifah Fauziah; Daik, Rusli; El-Sheikh, Said M.

    A three-level Box-Behnken design was employed in doping optimization of polypyrrole with toluenesulfonic acid (TSA-doped PPy). The material was synthesized via chemical oxidative polymerization using pyrrole, toluenesulfonic acid (TSA) and ammonium persulfate (APS) as monomer, dopant and oxidant, respectively. The critical factors selected for this study were concentration of dopant, molar ratio between dopant to monomer (pyrrole) and concentration of oxidant. Obtaining adequate doping level of TSA-doped PPy is crucial because it affects the charge carriers for doped PPy and usually be responsible for electronic mobility along polymeric chain. Furthermore, the doping level also affects other properties such as electricalmore » and thermal conductivity. Doping level was calculated using elemental analysis. SEM images shows that the prepared TSA-doped PPy particles are spherical in shape with the diameters of about. The range of nanoparticles size is around 80-100 nm. The statistical analysis based on a Box–Behnken design showed that 0.01 mol of TSA, 1:1 mole ratio TSA to pyrrole and 0.25 M APS were the optimum conditions for sufficient doping level.« less

  11. Towards precise defect control in layered oxide structures by using oxide molecular beam epitaxy

    PubMed Central

    Baiutti, Federico; Christiani, Georg

    2014-01-01

    Summary In this paper we present the atomic-layer-by-layer oxide molecular beam epitaxy (ALL-oxide MBE) which has been recently installed in the Max-Planck Institute for Solid State Research and we report on its present status, providing some examples that demonstrate its successful application in the synthesis of different layered oxides, with particular reference to superconducting La2CuO4 and insulator-to-metal La2− xSrxNiO4. We briefly review the ALL-oxide MBE technique and its unique capabilities in the deposition of atomically smooth single-crystal thin films of various complex oxides, artificial compounds and heterostructures, introducing our goal of pursuing a deep investigation of such systems with particular emphasis on structural defects, with the aim of tailoring their functional properties by precise defects control. PMID:24995148

  12. Insight into self-discharge of layered lithium-rich oxide cathode in carbonate-based electrolytes with and without additive

    NASA Astrophysics Data System (ADS)

    Li, Jianhui; Xing, Lidan; Zhang, Liping; Yu, Le; Fan, Weizhen; Xu, Mengqing; Li, Weishan

    2016-08-01

    Self-discharge behavior of layered lithium-rich oxide as cathode of lithium ion battery in a carbonated-based electrolyte is understood, and a simple boron-containing compound, trimethyl borate (TMB), is used as an electrolyte additive to suppress this self-discharge. It is found that layered lithium-rich oxide charged under 4.8 V in additive-free electrolyte suffers severe self-discharge and TMB is an effective electrolyte additive for self-discharge suppression. Physical characterizations from XRD, SEM, TEM, XPS and ICP-MS demonstrate that the crystal structure of the layered lithium-rich oxide collapses due to the chemical interaction between the charged oxide and electrolyte. When TMB is applied, the structural integrity of the oxide is maintained due to the protective cathode film generated from the preferential oxidation of TMB.

  13. Influence of understory cover on soil water and evaporation fluxes: a trial

    NASA Astrophysics Data System (ADS)

    Jiménez-Rodríguez, César; Magdalena Warter, Maria; Coenders-Gerrits, Miriam

    2017-04-01

    Within a forest ecosystem the litter layer is an important hydrological component and contributes towards the water and energy exchange between the sub-canopy and the soil. Evaporation within a forest is made up of different fractions coming from the dry soil, vegetation and litter layers. The quantification and partitioning of each fraction remains difficult as there is hard to estimate correctly the amount of water moved by evaporation or percolation at ecosystem level. With the aim to determine the influence of forest understory on the evaporation fluxes, four ground cover types were selected from the Speulderbos forest in the Netherlands. The mosses species of "Thamariskmoss" (Thuidium thamariscinum), "Rough Stalked Feathermoss" (Brachythecium rutabulum), and "Haircapmoss" (Polytrichum commune) were compared with a litter layer made up of Douglas-Fir needles (Pseudotsuga menziesii). Four PVC basins with 40cm x 60cm were filled with forest soil and sheltered with the selected ground covers. Each box was equipped with a soil moisture sensor, and a set Temperature and Relative Humidity sensors to determine the VPD during the study period. The study period lasts 4 weeks, while the percolation rates were measured in a daily basis. The rainfall events were simulated in the lab, applying the same rain event to each box at the same time. A total amount of 43.12 mm of rain were added to the boxes during the 4 weeks of the experiment, and distributed in 11 rain events which differ in amount and timing between events. The percolation in all the boxes was more than the 50% of the rain events due to the sandy condition of the soil, while the evaporation rates were affected not only by the room atmospheric conditions, but for the cover type present in each box. Except for the Polytrichum moss, a moss known for its water conducting abilities, all cover types showed a decline before and increase after a rain event. This species showed a steady increase in soil water content over the sampling period due to keeping the water longer in the surface. The evaporation was driven partly by the temperature in the room, while the structural characteristics of the mosses allow the differences in evaporation rates showed along the study period.

  14. Mass fluxes in the Canary Basin (eastern boundary of the North Atlantic subtropical gyre)

    NASA Astrophysics Data System (ADS)

    Burgoa, N.; Machin, F.; Marrero-Díaz, Á.; Rodríguez-Santana, Á.; Martínez-Marrero, A.

    2017-12-01

    The circulation patterns in the Canary Basin are examined with hydrographic data from two cruises carried out in 2002 and 2003 in the eastern boundary of the North Atlantic subtropical gyre (21-27.5ºN, 17.5-26ºW). These cruises were part of the COCA Project (Coastal-Ocean Carbon Exchange in the Canary Region). First we estimate the geostrophic flow within a closed box divided into 12 layers of neutral density surfaces using the thermal wind equation. The geostrophic velocities are initially referenced to a selected neutral surface previously analyzed in deep. Then, the divergence and the convergence of the flow are analyzed in the closed water volume considering the Ekman transport in the surface of this whole region. The accumulated mass transport along the perimeter of the box is estimated with the aim to study transport imbalances in the different water masses. In addition, variables like the anomalies in the transport of the salt and heat are also considered. In general, mass transport results show that more than 50% of this transport takes place in central waters and around 25% in intermediate waters. In the first cruise carried out in late summer, the circulation of the shallowest layers goes into the box along the north and south transects with values which can arrive to 2 Sv and 1 Sv respectively and it flows westward with a maximum value of 2 Sv. At intermediate levels the mass transport changes its direction going out to the north with 0.5 Sv. On the other hand, in the second cruise carried out in late spring, the transport in the shallowest layers also gets in the box through the north transect, but it goes out along the west and south transects with values which can arrive to 1 Sv and 2 Sv, respectively. At intermediate levels the transports are similar to those already described for the summer cruise. Finally, an inverse box model is applied to both datasets to obtain a solution consistent with both the thermal wind equation and with the mass and other properties conservation within the closed volume. AcknowledgmentsThis work was supported by the project FLUXES (CTM2015-69392-C3-3-R) funded by the Spanish National Research Program.

  15. Environmentally-assisted technique for transferring devices onto non-conventional substrates

    DOEpatents

    Lee, Chi-Hwan; Kim, Dong Rip; Zheng, Xiaolin

    2016-05-10

    A device fabrication method includes: (1) providing a growth substrate including an oxide layer; (2) forming a metal layer over the oxide layer; (3) forming a stack of device layers over the metal layer; (4) performing fluid-assisted interfacial debonding of the metal layer to separate the stack of device layers and the metal layer from the growth substrate; and (5) affixing the stack of device layers to a target substrate.

  16. Low voltage solid-state lateral coloration electrochromic device

    DOEpatents

    Tracy, C. Edwin; Benson, David K.; Ruth, Marta R.

    1987-01-01

    A solid-state transition metal oxide device comprising a plurality of lay having a predisposed orientation including an electrochromic oxide layer. Conductive material including anode and cathode contacts is secured to the device. Coloration is actuated within the electrochromic oxide layer after the application of a predetermined potential between the contacts. The coloration action is adapted to sweep or dynamically extend across the length of the electrochromic oxide layer.

  17. Partially Oxidized SnS2 Atomic Layers Achieving Efficient Visible-Light-Driven CO2 Reduction.

    PubMed

    Jiao, Xingchen; Li, Xiaodong; Jin, Xiuyu; Sun, Yongfu; Xu, Jiaqi; Liang, Liang; Ju, Huanxin; Zhu, Junfa; Pan, Yang; Yan, Wensheng; Lin, Yue; Xie, Yi

    2017-12-13

    Unraveling the role of surface oxide on affecting its native metal disulfide's CO 2 photoreduction remains a grand challenge. Herein, we initially construct metal disulfide atomic layers and hence deliberately create oxidized domains on their surfaces. As an example, SnS 2 atomic layers with different oxidation degrees are successfully synthesized. In situ Fourier transform infrared spectroscopy spectra disclose the COOH* radical is the main intermediate, whereas density-functional-theory calculations reveal the COOH* formation is the rate-limiting step. The locally oxidized domains could serve as the highly catalytically active sites, which not only benefit for charge-carrier separation kinetics, verified by surface photovoltage spectra, but also result in electron localization on Sn atoms near the O atoms, thus lowering the activation energy barrier through stabilizing the COOH* intermediates. As a result, the mildly oxidized SnS 2 atomic layers exhibit the carbon monoxide formation rate of 12.28 μmol g -1 h -1 , roughly 2.3 and 2.6 times higher than those of the poorly oxidized SnS 2 atomic layers and the SnS 2 atomic layers under visible-light illumination. This work uncovers atomic-level insights into the correlation between oxidized sulfides and CO 2 reduction property, paving a new way for obtaining high-efficiency CO 2 photoreduction performances.

  18. Corrosion characteristics of Ni-base superalloys in high temperature steam with and without hydrogen

    NASA Astrophysics Data System (ADS)

    Kim, Donghoon; Kim, Daejong; Lee, Ho Jung; Jang, Changheui; Yoon, Duk Joo

    2013-10-01

    The hot steam corrosion behavior of Alloy 617 and Haynes 230 were evaluated in corrosion tests performed at 900 °C in steam and steam + 20 vol.% H2 environments. Corrosion rates of Alloy 617 was faster than that of Haynes 230 at 900 °C in steam and steam + 20 vol.% H2 environments. When hydrogen was added to steam, the corrosion rate was accelerated because added hydrogen increased the concentration of Cr interstitial defects in the oxide layer. Isolated nodular MnTiO3 oxides were formed on the MnCr2O4/Cr2O3 oxide layer and sub-layer Cr2O3 was formed in steam and steam + 20 vol.% H2 for Alloy 617. On the other hand, a MnCr2O4 layer was formed on top of the Cr2O3 oxide layer for Haynes 230. The extensive sub-layer Cr2O3 formation resulted from the oxygen or hydroxide inward diffusion in such environments. When hydrogen was added, the initial surface oxide morphology was changed from a convex shape to platelets because of the accelerated diffusion of cations under the oxide layer.

  19. In-Situ Observation of Nano-Oxide Formation in Magnetic Thin Films

    NASA Astrophysics Data System (ADS)

    McCallum, Andrew; Russek, Stephen

    2004-03-01

    Exposure of a metal surface in a spin valve structure to oxygen creates a nano-oxide layer, or NOL, on that surface. Inclusion of NOLs into spin valve structures has been shown by many researchers to lower the resistance and increase the giant magnetoresistance effect. Four point in-situ conductance measurements were made during the deposition and oxidation of Co layers. These measurements show an initial decrease in conductance followed by an increase in conductance, due to a specularity increase of at least 0.10. RHEED measurements taken simultaneously with conductance measurements show the formation an amorphous oxide while the specularity increases. With further exposure of oxygen to the surface a CoO structure with a (111) texture forms. Magnetoconductance measurements during the oxidation of the free layer of bottom pinned spin valves show increases in the GMR of the spin valves. Estimates of the change in specularity and Co layer thickness were determined from the change in conductance and the change in magnetoconductance. Also determined from the magnetoconductance measurements was an increase in the coercivity of the free layer with oxidation. Adding Co onto the oxide had a strong effect on the coercivity and coupling between free and pinned layers.

  20. Nitrous acid in a street canyon environment: Sources and contributions to local oxidation capacity

    NASA Astrophysics Data System (ADS)

    Yun, Hui; Wang, Zhe; Zha, Qiaozhi; Wang, Weihao; Xue, Likun; Zhang, Li; Li, Qinyi; Cui, Long; Lee, Shuncheng; Poon, Steven C. N.; Wang, Tao

    2017-10-01

    Nitrous acid (HONO) plays an important role in radical formation and photochemical oxidation processes in the boundary layer. However, its impact on the chemistry in a street canyon microenvironment has not been thoroughly investigated. In this study, we measured HONO in a street canyon in urban Hong Kong and used an observation-based box model (OBM) with the Master Chemical Mechanism (MCM v3.3.1) to investigate the contribution of HONO to local oxidation chemistry. The observed HONO mixing ratios were in the range of 0.4-13.9 ppbv, with an average of 3.91 ppbv in the daytime and 2.86 ppbv at night. A mean HONO/NOx emission ratio of 1.0% (±0.5%) from vehicle traffic was derived. OBM simulations constrained by the observed HONO showed that the maximum concentrations of OH, HO2, and RO2 reached 4.65 × 106, 4.40 × 106, and 1.83 × 106 molecules cm-3, which were 7.9, 5.0, and 7.5 times, respectively, the results in the case without HONO constrained. Photolysis of HONO contributed to 86.5% of the total primary radical production rates and led to efficient NO2 and O3 production under the condition of weak regional transport of O3. The formation of HNO3 contributed to 98.4% of the total radical termination rates. Our results suggest that HONO could significantly increase the atmospheric oxidation capacity in a street canyon and enhance the secondary formation of HNO3 and HCHO, which can damage outdoor building materials and pose health risks to pedestrians.

  1. Efficient CH3NH3PbI3 perovskite/fullerene planar heterojunction hybrid solar cells with oxidized Ni/Au/Cu transparent electrode

    NASA Astrophysics Data System (ADS)

    Lai, Wei-Chih; Lin, Kun-Wei; Guo, Tzung-Fang; Chen, Peter; Liao, Yuan-Yu

    2018-02-01

    We demonstrated the performance of inverted CH3NH3PbI3 perovskite-based solar cells (SCs) with a thermally oxidized nickel/gold/copper (Ni/Au/Cu) trilayer transparent electrode. Oxidized Ni/Au/Cu is a high transparent layer and has less resistance than the oxidized Ni/Au layer. Like the oxidized Ni/Au layer, oxidized Ni and Cu in oxidized Ni/Au/Cu could perform as a hole transport layer of the perovskite-based SCs. It leads to improved perovskite SC performance on an open circuit voltage of 1.01 V, a short circuit current density of 14.36 mA/cm2, a fill factor of 76.7%, and a power conversion efficiency (η%) of 11.1%. The η% of perovskite SCs with oxidized Ni (10 nm)/Au (6 nm)/Cu (1 nm) improved by approximately 10% compared with that of perovskite SCs with oxidized Ni/Au.

  2. Structural characterization of nano-oxide layers in PtMn based specular spin valves

    NASA Astrophysics Data System (ADS)

    Zhou, Min; Chen, Lifan; Diao, Zhitao; Park, Chang-Man; Huai, Yiming

    2005-05-01

    A systematic structure characterization of nano-oxide layers (NOLs) and specular spin valves using x-ray diffraction and high-resolution transmission electron microscopy (HRTEM) has been studied. High-angle x-ray diffraction data show almost identical fcc textures for both natural and plasma NOL spin-valves. Low-angle x-ray reflectivity spectrum shows more deteriorated Kiessig fringes at high incident angles for natural oxide sample, indicating rougher interfaces in natural oxidation than in plasma oxidation. Oxygen exposure plays an important role in NOLs process. Fabricating NOLs without any crystal structure degradation is critical to obtain high MR ratio. HRTEM reveals that oxide clusters mixing with insufficiently oxidized CoFe layers prevailed in natural NOL, and the natural oxidation was inhomogeneous. In contrast, plasma NOL has a thinner, more homogeneously oxidized CoFe layers with sharp interfaces. In plasma NOLs, the structures still maintain CoFe crystal structure. The structures and magnetic correlation of the NOL specular spin valves are discussed.

  3. Multilayer Article Characterized by Low Coefficient of Thermal Expansion Outer Layer

    NASA Technical Reports Server (NTRS)

    Lee, Kang N. (Inventor)

    2004-01-01

    A multilayer article comprises a substrate comprising a ceramic or a silicon-containing metal alloy. The ceramic is a Si-containing ceramic or an oxide ceramic with or without silicon. An outer layer overlies the substrate and at least one intermediate layer is located between the outer layer and thc substrate. An optional bond layer is disposed between thc 1 least one intermediate layer and thc substrate. The at least one intermediate layer may comprise an optional chemical barrier layer adjacent the outer layer, a mullite-containing layer and an optional chemical barrier layer adjacent to the bond layer or substrate. The outer layer comprises a compound having a low coefficient of thermal expansion selected from one of the following systems: rare earth (RE) silicates; at least one of hafnia and hafnia-containing composite oxides; zirconia-containing composite oxides and combinations thereof.

  4. Structural characterization of terrestrial microbial Mn oxides from Pinal Creek, AZ

    USGS Publications Warehouse

    Bargar, J.R.; Fuller, C.C.; Marcus, M.A.; Brearley, A.J.; Perez De la Rosa, M.; Webb, S.M.; Caldwell, W.A.

    2009-01-01

    The microbial catalysis of Mn(II) oxidation is believed to be a dominant source of abundant sorption- and redox-active Mn oxides in marine, freshwater, and subsurface aquatic environments. In spite of their importance, environmental oxides of known biogenic origin have generally not been characterized in detail from a structural perspective. Hyporheic zone Mn oxide grain coatings at Pinal Creek, Arizona, a metals-contaminated stream, have been identified as being dominantly microbial in origin and are well studied from bulk chemistry and contaminant hydrology perspectives. This site thus presents an excellent opportunity to study the structures of terrestrial microbial Mn oxides in detail. XRD and EXAFS measurements performed in this study indicate that the hydrated Pinal Creek Mn oxide grain coatings are layer-type Mn oxides with dominantly hexagonal or pseudo-hexagonal layer symmetry. XRD and TEM measurements suggest the oxides to be nanoparticulate plates with average dimensions on the order of 11 nm thick ?? 35 nm diameter, but with individual particles exhibiting thickness as small as a single layer and sheets as wide as 500 nm. The hydrated oxides exhibit a 10-?? basal-plane spacing and turbostratic disorder. EXAFS analyses suggest the oxides contain layer Mn(IV) site vacancy defects, and layer Mn(III) is inferred to be present, as deduced from Jahn-Teller distortion of the local structure. The physical geometry and structural details of the coatings suggest formation within microbial biofilms. The biogenic Mn oxides are stable with respect to transformation into thermodynamically more stable phases over a time scale of at least 5 months. The nanoparticulate layered structural motif, also observed in pure culture laboratory studies, appears to be characteristic of biogenic Mn oxides and may explain the common occurrence of this mineral habit in soils and sediments. ?? 2008 Elsevier Ltd.

  5. Design and fabrication of a reflection far ultraviolet polarizer and retarder

    NASA Technical Reports Server (NTRS)

    Kim, Jongmin; Zukic, Muamer; Wilson, Michele M.; Torr, Douglas G.

    1993-01-01

    New methods have been developed for the design of a far ultraviolet multilayer reflection polarizer and retarder. A MgF2/Al/MgF2 three-layer structure deposited on a thick opaque Al film (substrate) is used for the design of polarizers and retarders. The induced transmission and absorption method is used for the design of a polarizer and layer-by-layer electric field calculation method is used for the design of a quarterwave retarder. In order to fabricate these designs in a conventional high vacuum chamber, we have to minimize the oxidation of the Al layers and somehow characterize the oxidized layer. X-ray photoelectron spectroscopy is used to investigate the amount and profile of oxidation. Depth profiling results and a seven layer oxidation model are presented.

  6. Control of the Structure of Diffusion Layer in Carbon Steels Under Nitriding with Preliminary Deposition of Copper Oxide Catalytic Films

    NASA Astrophysics Data System (ADS)

    Petrova, L. G.; Aleksandrov, V. A.; Malakhov, A. Yu.

    2017-07-01

    The effect of thin films of copper oxide deposited before nitriding on the phase composition and the kinetics of growth of diffusion layers in carbon steels is considered. The process of formation of an oxide film involves chemical reduction of pure copper on the surface of steel specimens from a salt solution and subsequent oxidation under air heating. The oxide film exerts a catalytic action in nitriding of low- and medium-carbon steels, which consists in accelerated growth of the diffusion layer, the nitride zone in the first turn. The kinetics of the nitriding process and the phase composition of the layer are controlled by the thickness of the copper oxide precursor, i.e., the deposited copper film.

  7. Preliminary study of a solar selective coating system using black cobalt oxide for high temperature solar collectors

    NASA Technical Reports Server (NTRS)

    Mcdonald, G.

    1980-01-01

    Black cobalt oxide coatings (high solar absorptance layer) were deposited on thin layers of silver or gold (low emittance layer) which had been previously deposited on oxidized (diffusion barrier layer) stainless steel substrates. The reflectance properties of these coatings were measured at various thicknesses of cobalt for integrated values of the solar and infrared spectrum. The values of absorptance and emittance were calculated from the measured reflectance values, before and after exposure in air at 650 C for approximately 1000 hours. Absorptance and emittance were interdependent functions of the weight of cobalt oxide. Also, these cobalt oxide/noble metal/oxide diffusion barrier coatings have absorptances greater than 0.90 and emittances of approximately 0.20 even after about 1000 hours at 650 C.

  8. Carboxylation of cytosine (5caC) in the CG dinucleotide in the E-box motif (CGCAG|GTG) increases binding of the Tcf3|Ascl1 helix-loop-helix heterodimer 10-fold.

    PubMed

    Golla, Jaya Prakash; Zhao, Jianfei; Mann, Ishminder K; Sayeed, Syed K; Mandal, Ajeet; Rose, Robert B; Vinson, Charles

    2014-06-27

    Three oxidative products of 5-methylcytosine (5mC) occur in mammalian genomes. We evaluated if these cytosine modifications in a CG dinucleotide altered DNA binding of four B-HLH homodimers and three heterodimers to the E-Box motif CGCAG|GTG. We examined 25 DNA probes containing all combinations of cytosine in a CG dinucleotide and none changed binding except for carboxylation of cytosine (5caC) in the strand CGCAG|GTG. 5caC enhanced binding of all examined B-HLH homodimers and heterodimers, particularly the Tcf3|Ascl1 heterodimer which increased binding ~10-fold. These results highlight a potential function of the oxidative products of 5mC, changing the DNA binding of sequence-specific transcription factors. Published by Elsevier Inc.

  9. Solid oxide fuel cell operable over wide temperature range

    DOEpatents

    Baozhen, Li; Ruka, Roswell J.; Singhal, Subhash C.

    2001-01-01

    Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.

  10. Interfacial material for solid oxide fuel cell

    DOEpatents

    Baozhen, Li; Ruka, Roswell J.; Singhal, Subhash C.

    1999-01-01

    Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.

  11. Interfacial layers in high-temperature-oxidized NiCrAl

    NASA Technical Reports Server (NTRS)

    Larson, L. A.; Browning, R.; Poppa, H.; Smialek, J.

    1983-01-01

    The utility of Auger electron spectroscopy combined with ball cratering for depth analysis of oxide and diffusion layers produced in a Ni-14Cr-24Al alloy by oxidation in air at 1180 C for 25 hr is demonstrated. During postoxidation cooling, the oxide layers formed by this alloy spalled profusely. The remaining very thin oxide was primarily Cr2O3 with a trace of Ni. The underlying metal substrate exhibited gamma/gamma-prime and beta phases with a metallic interfacial layer which was similar to the bulk gamma/gamma-prime phase but slightly enriched in Cr and Al. These data are compared to electron microprobe results from a nominally identical alloy. The diffusion layer thickness is modelled with a simple mass balance equation and compared to recent results on the diffusion process in NiCrAl alloys.

  12. Formation of crack-free nanoporous tin oxide layers via simple one-step anodic oxidation in NaOH at low applied voltages

    NASA Astrophysics Data System (ADS)

    Zaraska, Leszek; Gilek, Dominika; Gawlak, Karolina; Jaskuła, Marian; Sulka, Grzegorz D.

    2016-12-01

    A simple anodic oxidation of metallic tin in fluoride-free alkaline electrolyte at low potentials was proposed as a new and effective strategy for fabrication of crack-free nanoporous tin oxide layers. A low-purity Sn foil (98.8%) was used as a starting material, and a series of anodizations were performed in 1 M NaOH at different conditions such as anodizing potential, and duration of the process. It was proved for the first time that nanostructured tin oxides with ultra-small nanochannels having diameters of <15 nm can be synthesized by simple anodization of metallic tin at a potential of 2 V in 1 M NaOH electrolyte. Increasing anodizing potential to 3 and 4 V allowed for formation of tin oxide layers with much larger pores (40-50 nm in diameter) which were still free from internal cracks and transversal pores. Applying such low potentials significantly reduces the oxide growth rate and suppresses vigorous oxygen evolution at the anode. As a result mechanical deterioration of the oxide structure is prevented while strongly alkaline electrolyte is responsible for formation of the porous layer with completely open pores even at such low potentials. On the contrary, when anodization was carried out at potentials of 5 and 6 V, much faster formation of anodic layer, accompanied by vigorous oxygen gas formation, was observed. In consequence, as grown oxide layers exhibited typical cracked or even stacked internal structure. Finally, we demonstrated for the first time that nanoporous tin oxide layers with segments of different channel sizes can be successfully obtained by simple altering potential during anodization.

  13. Environmentally-assisted technique for transferring devices onto non-conventional substrates

    DOEpatents

    Lee, Chi-Hwan; Kim, Dong Rip; Zheng, Xiaolin

    2014-08-26

    A device fabrication method includes: (1) providing a growth substrate including a base and an oxide layer disposed over the base; (2) forming a metal layer over the oxide layer; (3) forming a stack of device layers over the metal layer; (4) performing interfacial debonding of the metal layer to separate the stack of device layers and the metal layer from the growth substrate; and (5) affixing the stack of device layers to a target substrate.

  14. Chromium oxide as a metal diffusion barrier layer: An x-ray absorption fine structure spectroscopy study

    NASA Astrophysics Data System (ADS)

    Ahamad Mohiddon, Md.; Lakshun Naidu, K.; Ghanashyam Krishna, M.; Dalba, G.; Ahmed, S. I.; Rocca, F.

    2014-01-01

    The interaction at the interface between chromium and amorphous Silicon (a-Si) films in the presence of a sandwich layer of chromium oxide is investigated using X-ray absorption fine structure (XAFS) spectroscopy. The oxidized interface was created, in situ, prior to the deposition of a 400 nm tick a-Si layer over a 50 nm tick Cr layer. The entire stack of substrate/metallic Cr/Cr2O3/a-Si was then annealed at temperatures from 300 up to 700 °C. Analysis of the near edge and extended regions of each XAFS spectrum shows that only a small fraction of Cr is able to diffuse through the oxide layer up to 500 °C, while the remaining fraction is buried under the oxide layer in the form of metallic Cr. At higher temperatures, diffusion through the oxide layer is enhanced and the diffused metallic Cr reacts with a-Si to form CrSi2. At 700 °C, the film contains Cr2O3 and CrSi2 without evidence of unreacted metallic Cr. The activation energy and diffusion coefficient of Cr are quantitatively determined in the two temperature regions, one where the oxide acts as diffusion barrier and another where it is transparent to Cr diffusion. It is thus demonstrated that chromium oxide can be used as a diffusion barrier to prevent metal diffusion into a-Si.

  15. Characterization of Ultrathin Ta-oxide Films Formed on Ge(100) by ALD and Layer-by-Layer Methods

    NASA Astrophysics Data System (ADS)

    Mishima, K.; Murakami, H.; Ohta, A.; Sahari, S. K.; Fujioka, T.; Higashi, S.; Miyazaki, S.

    2013-03-01

    Atomic layer deposition (ALD) and Layer-by-Layer deposition of Ta-oxide films on Ge(100) with using tris (tert-butoxy) (tert-butylimido) tantalum have been studied systematically. From the analysis of the chemical bonding features of the interface between TaOx and Ge(100) using x-ray photoelectron spectroscopy (XPS), Ge atom diffusion into the Ta oxide layer and resultant TaGexOy formation during deposition at temperatures higher than 200°C were confirmed. Also, we have demonstrated that nanometer-thick deposition of Tantalum oxide as an interfacial layer effectively suppresses the formation of GeOx in the HfO2 ALD on Ge. By the combination of TaOx pre-deposition on Ge(100) and subsequent ALD of HfO2, a capacitance equivalent thickness (CET) of 1.35 nm and relative dielectric constant of 23 were achieved.

  16. Pd/Ni-WO3 anodic double layer gasochromic device

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland; Liu, Ping

    2004-04-20

    An anodic double layer gasochromic sensor structure for optical detection of hydrogen in improved response time and with improved optical absorption real time constants, comprising: a glass substrate; a tungsten-doped nickel oxide layer coated on the glass substrate; and a palladium layer coated on the tungsten-doped nickel oxide layer.

  17. Intermediate coating layer for high temperature rubbing seals for rotary regenerators

    DOEpatents

    Schienle, James L.; Strangman, Thomas E.

    1995-01-01

    A metallic regenerator seal is provided having multi-layer coating comprising a NiCrAlY bond layer, a yttria stabilized zirconia (YSZ) intermediate layer, and a ceramic high temperature solid lubricant surface layer comprising zinc oxide, calcium fluoride, and tin oxide. Because of the YSZ intermediate layer, the coating is thermodynamically stable and resists swelling at high temperatures.

  18. Ceramic with preferential oxygen reactive layer

    NASA Technical Reports Server (NTRS)

    Wang, Hongyu (Inventor); Luthra, Krishan Lal (Inventor)

    2001-01-01

    An article comprises a silicon-containing substrate and an external environmental/thermal barrier coating. The external environmental/thermal barrier coating is permeable to diffusion of an environmental oxidant and the silicon-containing substrate is oxidizable by reaction with oxidant to form at least one gaseous product. The article comprises an intermediate layer/coating between the silicon-containing substrate and the environmental/thermal barrier coating that is oxidizable to a nongaseous product by reaction with the oxidant in preference to reaction of the silicon-containing substrate with the oxidant. A method of forming an article, comprises forming a silicon-based substrate that is oxidizable by reaction with oxidant to at least one gaseous product and applying an intermediate layer/coating onto the substrate, wherein the intermediate layer/coating is oxidizable to a nongaseous product by reaction with the oxidant in preference to reaction of the silicon-containing substrate with the oxidant.

  19. Bilirubin and its oxidation products damage brain white matter

    PubMed Central

    Lakovic, Katarina; Ai, Jinglu; D'Abbondanza, Josephine; Tariq, Asma; Sabri, Mohammed; Alarfaj, Abdullah K; Vasdev, Punarjot; Macdonald, Robert Loch

    2014-01-01

    Brain injury after intracerebral hemorrhage (ICH) occurs in cortex and white matter and may be mediated by blood breakdown products, including hemoglobin and heme. Effects of blood breakdown products, bilirubin and bilirubin oxidation products, have not been widely investigated in adult brain. Here, we first determined the effect of bilirubin and its oxidation products on the structure and function of white matter in vitro using brain slices. Subsequently, we determined whether these compounds have an effect on the structure and function of white matter in vivo. In all, 0.5 mmol/L bilirubin treatment significantly damaged both the function and the structure of myelinated axons but not the unmyelinated axons in brain slices. Toxicity of bilirubin in vitro was prevented by dimethyl sulfoxide. Bilirubin oxidation products (BOXes) may be responsible for the toxicity of bilirubin. In in vivo experiments, unmyelinated axons were found more susceptible to damage from bilirubin injection. These results suggest that unmyelinated axons may have a major role in white-matter damage in vivo. Since bilirubin and BOXes appear in a delayed manner after ICH, preventing their toxic effects may be worth investigating therapeutically. Dimethyl sulfoxide or its structurally related derivatives may have a potential therapeutic value at antagonizing axonal damage after hemorrhagic stroke. PMID:25160671

  20. Method for producing chemical energy

    DOEpatents

    Jorgensen, Betty S.; Danen, Wayne C.

    2004-09-21

    Fluoroalkylsilane-coated metal particles having a central metal core, a buffer layer surrounding the core, and a fluoroalkylsilane layer attached to the buffer layer are prepared by combining a chemically reactive fluoroalkylsilane compound with an oxide coated metal particle having a hydroxylated surface. The resulting fluoroalkylsilane layer that coats the particles provides them with excellent resistance to aging. The particles can be blended with oxidant particles to form energetic powder that releases chemical energy when the buffer layer is physically disrupted so that the reductant metal core can react with the oxidant.

  1. Energetic powder

    DOEpatents

    Jorgensen, Betty S.; Danen, Wayne C.

    2003-12-23

    Fluoroalkylsilane-coated metal particles. The particles have a central metal core, a buffer layer surrounding the core, and a fluoroalkylsilane layer attached to the buffer layer. The particles may be prepared by combining a chemically reactive fluoroalkylsilane compound with an oxide coated metal particle having a hydroxylated surface. The resulting fluoroalkylsilane layer that coats the particles provides them with excellent resistance to aging. The particles can be blended with oxidant particles to form energetic powder that releases chemical energy when the buffer layer is physically disrupted so that the reductant metal core can react with the oxidant.

  2. Experimental and Modeling Studies on the Microstructures and Properties of Oxidized Aluminum Nitride Ceramic Substrates

    NASA Astrophysics Data System (ADS)

    Cao, Ye; Xu, Haixian; Zhan, Jun; Zhang, Hao; Wei, Xin; Wang, Jianmin; Cui, Song; Tang, Wenming

    2018-05-01

    Oxidation of aluminum nitride (AlN) ceramic substrates doped with 2 wt.% Y2O3 was performed in air at temperatures ranging from 1000 to 1300 °C for various lengths of time. Microstructure, bending strength, and thermal conductivity of the oxidized AlN substrates were studied experimentally and also via mathematical models. The results show that the oxide layer formed on the AlN substrates is composed of α-Al2O3 nanocrystallines and interconnected micropores. Longitudinal and transverse cracks are induced in the oxide layer under tensile and shear stresses, respectively. Intergranular oxidation of the AlN grains close to the oxide layer/AlN interface also occurs, leading to widening and cracking of the AlN grain boundaries. These processes result in the monotonous degradation of bending strength and thermal conductivity of the oxidized AlN substrates. Two mathematic models concerning these properties of the oxidized AlN substrates versus the oxide layer thickness were put forward. They fit well with the experimental results.

  3. Layered CU-based electrode for high-dielectric constant oxide thin film-based devices

    DOEpatents

    Auciello, Orlando

    2010-05-11

    A layered device including a substrate; an adhering layer thereon. An electrical conducting layer such as copper is deposited on the adhering layer and then a barrier layer of an amorphous oxide of TiAl followed by a high dielectric layer are deposited to form one or more of an electrical device such as a capacitor or a transistor or MEMS and/or a magnetic device.

  4. Effect of different alloyed layers on the high temperature oxidation behavior of newly developed Ti 2AlNb-based alloys

    NASA Astrophysics Data System (ADS)

    Wu, Hongyan; Zhang, Pingze; Zhao, Haofeng; Wang, Ling; Xie, Aigen

    2011-01-01

    The application of titanium aluminide orthorhombic alloys (O-phase alloys) as potential materials in aircraft and jet engines was limited by their poor oxidation resistance at high temperature. The Ti 2AlNb-based alloys were chromised (Cr), chromium-tungstened (Cr-W) and nickel-chromised (Ni-Cr) by the double glow plasma surface alloying process to improve their high temperature oxidation resistance. The discontinuous oxidative behavior of Cr, Cr-W and Ni-Cr alloyed layers on Ti 2AlNb-based alloy at 1093 K was explored in this study. After exposing at 1093 K, the TiO 2 layer was formed on the bare alloy and accompanied by the occurrence of crack, which promoted oxidation rate. The oxidation behavior of Ti 2AlNb-based alloys was improved by surface alloying due to the formation of protective Al 2O 3 scale or continuous and dense NiCr 2O 4 film. The Ni-Cr alloyed layer presented the best high-temperature oxidation resistance among three alloyed layers.

  5. Preparation of novel layer-stack hexagonal CdO micro-rods by a pre-oxidation and subsequent evaporation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Kun, E-mail: kpeng@hnu.edu.cn; Hunan Province Key Laboratory for Spray Deposition Technology and Application, Hunan University, Changsha 410082; Jiang, Pan

    2014-12-15

    Graphical abstract: Layer-stack hexagonal cadmium oxide (CdO) micro-rods were prepared. - Highlights: • Novel hexagonal layer-stack structure CdO micro-rods were synthesized by a thermal evaporation method. • The pre-oxidation, vapor pressure and substrate nature play a key role on the formation of CdO rods. • The formation mechanism of CdO micro-rods was explained. - Abstract: Novel layer-stack hexagonal cadmium oxide (CdO) micro-rods were prepared by pre-oxidizing Cd granules and subsequent thermal oxidation under normal atmospheric pressure. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were performed to characterize the phase structure and microstructure. The pre-oxidation process, vapor pressure and substratemore » nature were the key factors for the formation of CdO micro-rods. The diameter of micro-rod and surface rough increased with increasing of thermal evaporation temperature, the length of micro-rod increased with the increasing of evaporation time. The formation of hexagonal layer-stack structure was explained by a vapor–solid mechanism.« less

  6. Streaming potential method for characterizing interaction of electrical double layers between rice roots and Fe/Al oxide-coated quartz in situ.

    PubMed

    Liu, Zhao-Dong; Wang, Hai-Cui; Li, Jiu-Yu; Xu, Ren-Kou

    2017-10-01

    The interaction between rice roots and Fe/Al oxide-coated quartz was investigated through zeta potential measurements and column leaching experiments in present study. The zeta potentials of rice roots, Fe/Al oxide-coated quartz, and the binary systems containing rice roots and Fe/Al oxide-coated quartz were measured by a specially constructed streaming potential apparatus. The interactions between rice roots and Fe/Al oxide-coated quartz particles were evaluated/deduced based on the differences of zeta potentials between the binary systems and the single system of rice roots. The zeta potentials of the binary systems moved in positive directions compared with that of rice roots, suggesting that there were overlapping of diffuse layers of electric double layers on positively charged Fe/Al oxide-coated quartz and negatively charged rice roots and neutralization of positive charge on Fe/Al oxide-coated quartz with negative charge on rice roots. The greater amount of positive charges on Al oxide led to the stronger interaction of Al oxide-coated quartz with rice roots and the more shift of zeta potential compared with Fe oxide. The overlapping of diffuse layers on Fe/Al oxide-coated quartz and rice roots was confirmed by column leaching experiments. The greater overlapping of diffuse layers on Al oxide and rice roots led to more simultaneous adsorptions of K + and NO 3 - and greater reduction in leachate electric conductivity when the column containing Al oxide-coated quartz and rice roots was leached with KNO 3 solution, compared with the columns containing rice roots and Fe oxide-coated quartz or quartz. When the KNO 3 solution was replaced with deionized water to flush the columns, more K + and NO 3 - were desorbed from the binary system containing Al oxide-coated quartz and rice roots than from other two binary systems, suggesting that the stronger electrostatic interaction between Al oxide and rice roots promoted the desorption of K + and NO 3 - from the binary system and enhanced overlapping of diffuse layers on these oppositely charged surfaces compared with other two binary systems. In conclusion, the overlapping of diffuse layers occurred between positively charged Fe/Al oxides and rice roots, which led to neutralization of opposite charge and affected adsorption and desorption of ions onto and from the charged surfaces of Fe/Al oxides and rice roots.

  7. Local oxidation using scanning probe microscope for fabricating magnetic nanostructures.

    PubMed

    Takemura, Yasushi

    2010-07-01

    Local oxidation technique using atomic force microscope (AFM) was studied. The local oxidation of ferromagnetic metal thin films was successfully performed by AFM under both contact and dynamic force modes. Modification of magnetic and electrical properties of magnetic devices fabricated by the AFM oxidation was achieved. Capped oxide layers deposited on the ferromagnetic metal films are advantageous for stable oxidation due to hydrophilic surface of oxide. The oxide layer is also expected to prevent magnetic devices from degradation by oxidation of ferromagnetic metal. As for modification of magnetic property, the isolated region of CoFe layer formed by nanowires of CoFe-oxide exhibited peculiar characteristic attributed to the isolated magnetization property and pinning of domain wall during magnetization reversal. Temperature dependence of current-voltage characteristic of the planar-type tunnel junction consisting of NiFe/NiFe-oxide/NiFe indicated that the observed current was dominated by intrinsic tunneling current at the oxide barrier.

  8. Evaluation of Graphene/WO3 and Graphene/CeO x Structures as Electrodes for Supercapacitor Applications

    NASA Astrophysics Data System (ADS)

    Chaitoglou, Stefanos; Amade, Roger; Bertran, Enric

    2017-12-01

    The combination of graphene with transition metal oxides can result in very promising hybrid materials for use in energy storage applications thanks to its intriguing properties, i.e., highly tunable surface area, outstanding electrical conductivity, good chemical stability, and excellent mechanical behavior. In the present work, we evaluate the performance of graphene/metal oxide (WO3 and CeO x ) layered structures as potential electrodes in supercapacitor applications. Graphene layers were grown by chemical vapor deposition (CVD) on copper substrates. Single and layer-by-layer graphene stacks were fabricated combining graphene transfer techniques and metal oxides grown by magnetron sputtering. The electrochemical properties of the samples were analyzed and the results suggest an improvement in the performance of the device with the increase in the number of graphene layers. Furthermore, deposition of transition metal oxides within the stack of graphene layers further improves the areal capacitance of the device up to 4.55 mF/cm2, for the case of a three-layer stack. Such high values are interpreted as a result of the copper oxide grown between the copper substrate and the graphene layer. The electrodes present good stability for the first 850 cycles before degradation.

  9. Development of Pinhole-Free Amorphous Aluminum Oxide Protective Layers for Biomedical Device Applications

    PubMed Central

    Litvinov, Julia; Wang, Yi-Ju; George, Jinnie; Chinwangso, Pawilai; Brankovic, Stanko; Willson, Richard C.; Litvinov, Dmitri

    2013-01-01

    This paper describes synthesis of ultrathin pinhole-free insulating aluminum oxide layers for electronic device protection in corrosive liquid environments, such as phosphate buffered saline (PBS) or clinical fluids, to enable emerging biomedical applications such as biomolecular sensors. A pinhole-free 25-nm thick amorphous aluminum oxide layer has been achieved using ultra-high vacuum DC magnetron reactive sputtering of aluminum in oxygen/argon plasma followed by oxygen plasma post-processing. Deposition parameters were optimized to achieve the best corrosion protection of lithographically defined device structures. Electrochemical deposition of copper through the aluminum oxide layers was used to detect the presence (or absence) of pinholes. FTIR, XPS, and spectroscopic ellipsometry were used to characterize the material properties of the protective layers. Electrical resistance of the copper device structures protected by the aluminum oxide layers and exposed to a PBS solution was used as a metric to evaluate the long-term stability of these device structures. PMID:23682201

  10. Solid State Research.

    DTIC Science & Technology

    1995-05-15

    cooled to room temperature. Titanium isopropoxide and zirconium n-propoxide were then added (inside a glove box) to levels that correspond to the...ously patterned with a 200-nm-thick evaporated platinum film. In addition to the platinum there was a 40-nm titanium adhesion layer between the...an etch composed of buffered HF, HC1 and H20 [6]. By using a photoresist lift-off process, the top titanium -gold layer is formed, which provides the

  11. Immobilization of bacterial S-layer proteins from Caulobacter crescentus on iron oxide-based nanocomposite: synthesis and spectroscopic characterization of zincite-coated Fe₂O₃ nanoparticles.

    PubMed

    Habibi, Neda

    2014-05-05

    Zinc oxide was coated on Fe2O3 nanoparticles using sol-gel spin-coating. Caulobacter crescentus have a crystalline surface layer (S-layer), which consist of one protein or glycoprotein species. The immobilization of bacterial S-layers obtained from C. crescentus on zincite-coated nanoparticles of iron oxide was investigated. The SDS PAGE results of S-layers isolated from C. crescentus showed the weight of 50 KDa. Nanoparticles of the Fe2O3 and zinc oxide were synthesized by a sol-gel technique. Fe2O3 nanoparticles with an average size of 50 nm were successfully prepared by the proper deposition of zinc oxide onto iron oxide nanoparticles surface annealed at 450 °C. The samples were characterized by field-emission scanning electron microscope (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Numerical analysis of experiments on the generation of shock waves in aluminium under indirect (X-ray) action on the Iskra-5 facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bondarenko, S V; Dolgoleva, G V; Novikova, E A

    The dynamics of laser and X-ray radiation fields in experiments with cylindrical converter boxes (illuminators), which had earlier been carried out on the Iskra-5 laser facility (the second harmonic of iodine laser radiation, {lambda} = 0.66 {mu}m) was investigated in a sector approximation using the SND-LIRA numerical technique. In these experiments, the X-ray radiation temperature in the box was determined by measuring the velocity of the shock wave generated in the sample under investigation, which was located at the end of the cylindrical illuminator. Through simulations were made using the SND-LIRA code, which took into account the absorption of lasermore » driver radiation at the box walls, the production of quasithermal radiation, as well as the formation and propagation of the shock wave in the sample under investigation. An analysis of the experiments permits determining the electron thermal flux limiter f: for f = 0.03 it is possible to match the experimental scaling data for X-ray in-box radiation temperature to the data of our simulations. The shock velocities obtained from the simulations are also consistent with experimental data. In particular, in the experiment with six laser beams (and a laser energy E{sub L} = 1380 J introduced into the box) the velocity of the shock front (determined from the position of a laser mark) after passage through a 50-{mu}m thick base aluminium layer was equal to 35{+-}1.6 km s{sup -1}, and in simulations to 36 km s{sup -1}. In the experiment with four laser beams (for E{sub L} = 850 J) the shock velocity (measured from the difference of transit times through the base aluminium layer and an additional thin aluminium platelet) was equal to 30{+-}3.6 km s{sup -1}, and in simulations to 30 km s{sup -1}. (interaction of laser radiation with matter)« less

  13. The growth of protective ultra-thin alumina layers on γ-TiAl(1 1 1) intermetallic single-crystal surfaces

    NASA Astrophysics Data System (ADS)

    Maurice, V.; Despert, G.; Zanna, S.; Josso, P.; Bacos, M.-P.; Marcus, P.

    2005-12-01

    An XPS and AES study of the early stages of oxidation of γ-TiAl(1 1 1) surfaces at 650 °C under 1.0 × 10 -7-1.0 × 10 -6 mbar O 2 is reported. The data evidence a first regime of oxidation characterized by the growth of a pure alumina layer followed by a second regime of simultaneous oxidation of both alloying elements. In the first regime, continuous alumina layers from ˜0.4 to ˜1.5 nm thick have been observed by angle-resolved XPS. The composition of the metallic phase underneath the growing oxide is modified by a depletion of Al and the injection of Al vacancies in the metal during the growth of the transient alumina formed at 650 °C. The onset of Ti oxidation was repeatedly observed for a critical concentration in the modified region of the alloy underneath the alumina layer: Ti 75±2Al 25±2 (Ti 50Al 17±2V(Al) 33±2), showing that decreasing the number of Ti-Al bonds in the modified intermetallic region increases the activity of Ti up to a critical point where its oxidation at the oxide/metal interface becomes competitive with that of Al. The growth of Ti 3+ and Ti 4+ oxide particles observed above the alumina layer by angle-resolved XPS indicates the transport of titanium cations trough the alumina layer and their subsequent reaction with oxygen at the outer gas/oxide interface. Improving structural ordering in the intermetallic phase slows down the growth kinetics of the alumina layer and the related Al-depletion of the substrate, and increases the resistance of the alloy to the subsequent oxidation of Ti. This is assigned to two combined effects: a slower diffusion of Al in the better ordered metallic phase and the growth of less defective alumina layers allowing to slow down the ionic transport through the oxide. Highly stable and corrosion resistant alloy surfaces covered by a 0.4 nm thick alumina layer have been obtained by slowly oxidizing the alloy at lower partial pressure (<5.0 × 10 -10 mbar O 2).

  14. Selective production of decanoic acid from iterative reversal of β-oxidation pathway.

    PubMed

    Kim, Seohyoung; Gonzalez, Ramon

    2018-05-01

    Decanoic acid is a valuable compound used as precursor for industrial chemicals, pharmaceuticals, and biofuels. Despite efforts to produce it from renewables, only limited achievements have been reported. Here, we report an engineered cell factory able to produce decanoic acid as a major product from glycerol, and abundant and renewable feedstock. We exploit the overlapping chain-length specificity of β-oxidation reversal (r-BOX) and thioesterase enzymes to selectively generate decanoic acid. This was achieved by selecting r-BOX enzymes that support the synthesis of acyl-CoA of up to 10 carbons (thiolase BktB and enoyl-CoA reductase EgTER) and a thioesterase that exhibited high activity toward decanoyl-CoA and longer-chain acyl-CoAs (FadM). Combined chromosomal and episomal expression of r-BOX core enzymes such as enoyl-CoA reductase and thiolase (in the presence of E. coli thioesterase FadM) increased titer and yield of decanoic acid, respectively. The carbon flux toward decanoic acid was substantially increased by the use of an organic overlay, which decreased its intracellular accumulation and presumably increased its concentration gradient across cell membrane, suggesting that decanoic acid transport to the extracellular medium might be a major bottleneck. When cultivated in the presence of a n-dodecane overlay, the final engineered strain produced 2.1 g/L of decanoic acid with a yield of 0.1 g/g glycerol. Collectively, our data suggests that r-BOX can be used as a platform to selectively produce decanoic acid and its derivatives at high yield, titer and productivity. © 2018 Wiley Periodicals, Inc.

  15. Bulk-heterojunction organic solar cells sandwiched by solution processed molybdenum oxide and titania nanosheet layers

    NASA Astrophysics Data System (ADS)

    Itoh, Eiji; Goto, Yoshinori; Fukuda, Katsutoshi

    2014-02-01

    The contributions of ultrathin titania nanosheet (TN) crystallites were studied in both an inverted bulk-heterojunction (BHJ) cell in an indium-tin oxide (ITO)/titania nanosheet (TN)/poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methylester (PCBM) active layer/MoOx/Ag multilayered photovoltaic device and a conventional BHJ cell in ITO/MoOx/P3HT:PCBM active layer/TN/Al multilayered photovoltaic device. The insertion of only one or two layers of poly(diallyldimethylammonium chloride) (PDDA) and TN multilayered film prepared by the layer-by-layer deposition technique effectively decreased the leakage current and increased the open circuit voltage (VOC), fill factor (FF), and power conversion efficiency (η). The conventional cell sandwiched between a solution-processed, partially crystallized molybdenum oxide hole-extracting buffer layer and a TN electron extracting buffer layer showed comparable cell performance to a device sandwiched between vacuum-deposited molybdenum oxide and TN layers, whereas the inverted cell with solution-processed molybdenum oxide showed a poorer performance probably owing to the increment in the leakage current across the film. The abnormal S-shaped curves observed in the inverted BHJ cell above VOC disappeared with the use of a polyfluorene-based cationic semiconducting polymer as a substitute for an insulating PDDA film, resulting in the improved cell performance.

  16. Atomic layer deposition of ultrathin blocking layer for low-temperature solid oxide fuel cell on nanoporous substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Wonjong; Cho, Gu Young; Noh, Seungtak

    2015-01-15

    An ultrathin yttria-stabilized zirconia (YSZ) blocking layer deposited by atomic layer deposition (ALD) was utilized for improving the performance and reliability of low-temperature solid oxide fuel cells (SOFCs) supported by an anodic aluminum oxide substrate. Physical vapor-deposited YSZ and gadolinia-doped ceria (GDC) electrolyte layers were deposited by a sputtering method. The ultrathin ALD YSZ blocking layer was inserted between the YSZ and GDC sputtered layers. To investigate the effects of an inserted ultrathin ALD blocking layer, SOFCs with and without an ultrathin ALD blocking layer were electrochemically characterized. The open circuit voltage (1.14 V) of the ALD blocking-layered SOFC was visiblymore » higher than that (1.05 V) of the other cell. Furthermore, the ALD blocking layer augmented the power density and improved the reproducibility.« less

  17. Fabrication of heterojunction solar cells by improved tin oxide deposition on insulating layer

    DOEpatents

    Feng, Tom; Ghosh, Amal K.

    1980-01-01

    Highly efficient tin oxide-silicon heterojunction solar cells are prepared by heating a silicon substrate, having an insulating layer thereon, to provide a substrate temperature in the range of about 300.degree. C. to about 400.degree. C. and thereafter spraying the so-heated substrate with a solution of tin tetrachloride in a organic ester boiling below about 250.degree. C. Preferably the insulating layer is naturally grown silicon oxide layer.

  18. Evidence of a reduction reaction of oxidized iron/cobalt by boron atoms diffused toward naturally oxidized surface of CoFeB layer during annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Soshi, E-mail: sato.soshi@cies.tohoku.ac.jp; Honjo, Hiroaki; Niwa, Masaaki

    2015-04-06

    We have investigated the redox reaction on the surface of Ta/CoFeB/MgO/CoFeB magnetic tunnel junction stack samples after annealing at 300, 350, and 400 °C for 1 h using angle-resolved X-ray photoelectron spectroscopy for precise analysis of the chemical bonding states. At a capping tantalum layer thickness of 1 nm, both the capping tantalum layer and the surface of the underneath CoFeB layer in the as-deposited stack sample were naturally oxidized. By comparison of the Co 2p and Fe 2p spectra among the as-deposited and annealed samples, reduction of the naturally oxidized cobalt and iron atoms occurred on the surface of the CoFeB layer.more » The reduction reaction was more significant at higher annealing temperature. Oxidized cobalt and iron were reduced by boron atoms that diffused toward the surface of the top CoFeB layer. A single CoFeB layer was prepared on SiO{sub 2}, and a confirmatory evidence of the redox reaction with boron diffusion was obtained by angle-resolved X-ray photoelectron spectroscopy analysis of the naturally oxidized surface of the CoFeB single layer after annealing. The redox reaction is theoretically reasonable based on the Ellingham diagram.« less

  19. Plasma Spray and Pack Cementation Process Optimization and Oxidation Behaviour of Novel Multilayered Coatings

    NASA Astrophysics Data System (ADS)

    Gao, Feng

    The hot section components in gas turbines are subjected to a harsh environment with the temperature being increased continuously. The higher temperature has directly resulted in severe oxidation of these components. Monolithic coatings such as MCrAIY and aluminide have been traditionally used to protect the components from oxidation; however, increased operating temperature quickly deteriorates the coatings due to accelerated diffusion of aluminum in the coatings. To improve the oxidation resistance a group of multilayered coatings are developed in this study. The multilayered coatings consist of a Cr-Si co-deposited layer as the diffusion barrier, a plasma sprayed NiCrA1Y coating as the middle layer and an aluminized top layer. The Cr-Si and aluminized layers are fabricated using pack cementation processes and the NiCrA1Y coatings are produced using the Mettech Axial III(TM) System. All of the coating processes are optimized using the methodology of Design of Experiments (DOE) and the results are analyzed using statistical method. The optimal processes are adopted to fabricate the multilayered coatings for oxidation tests. The coatings are exposed in air at 1050°C and 1150°C for 1000 hr. The results indicate that a Cr layer and a silicon-rich barrier layer have formed on the interface between the Cr-Si coating and the NiCrA1Y coating. This barrier layer not only prevents aluminum and chromium from diffusing into the substrate, but also impedes the diffusion of other elements from the substrate into the coating. The results also reveal that, for optimal oxidation resistance at 1050°C, the top layer in a multilayered coating should have at least Al/Ni ratio of one; whereas the multilayered coating with the All Ni ratio of two in the top layer exhibits the best oxidation resistance at 1150°C. The DOE methodology provides an excellent means for process optimization and the selection of oxidation test matrix, and also offers a more thorough understanding of the effects of process parameters on the coating microstructure, and the effects of layers and their interactions on the oxidation behavior of the multilayered coatings.

  20. Multi-oxide active layer deposition using Applied Materials Pivot array coater for high-mobility metal oxide TFT

    NASA Astrophysics Data System (ADS)

    Park, Hyun Chan; Scheer, Evelyn; Witting, Karin; Hanika, Markus; Bender, Marcus; Hsu, Hao Chien; Yim, Dong Kil

    2015-11-01

    By controlling a thin indium tin oxide (ITO), indium zinc oxide interface layer between gate insulator and indium gallium zinc oxide (IGZO), the thin-film transistor (TFT) performance can reach higher mobility as conventional IGZO as well as superior stability. For large-area display application, Applied Materials static PVD array coater (Applied Materials GmbH & Co. KG, Alzenau, Germany) using rotary targets has been developed to enable uniform thin layer deposition in display industry. Unique magnet motion parameter optimization in Pivot sputtering coater is shown to provide very uniform thin ITO layer to reach TFT performance with high mobility, not only on small scale, but also on Gen8.5 (2500 × 2200 mm glass size) production system.

  1. Research into the use of pyrolytic oxides and polymers for the fabrication of thin film high energy capacitors

    NASA Technical Reports Server (NTRS)

    Nevin, J. H.

    1983-01-01

    Construction, capacitance and dissipation factor, and electrode materials for single layer capacitors are discussed. Basic construction, phosphosilicate glass, ten layer capacitors, twenty layer capacitors, stress measurements, buffered oxide layers, and 30 layer capacitors are also discussed. Spin-on phosphosilicate glass is addressed. Polymers as dielectric materials are also considered.

  2. Oxide-based materials by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Godlewski, Marek; Pietruszka, Rafał; Kaszewski, Jarosław; Witkowski, Bartłomiej S.; Gierałtowska, Sylwia; Wachnicki, Łukasz; Godlewski, Michał M.; Slonska, Anna; Gajewski, Zdzisław

    2017-02-01

    Thin films of wide band-gap oxides grown by Atomic Layer Deposition (ALD) are suitable for a range of applications. Some of these applications will be presented. First of all, ALD-grown high-k HfO2 is used as a gate oxide in the electronic devices. Moreover, ALD-grown oxides can be used in memory devices, in transparent transistors, or as elements of solar cells. Regarding photovoltaics (PV), ALD-grown thin films of Al2O3 are already used as anti-reflection layers. In addition, thin films of ZnO are tested as replacement of ITO in PV devices. New applications in organic photovoltaics, electronics and optoelectronics are also demonstrated Considering new applications, the same layers, as used in electronics, can also find applications in biology, medicine and in a food industry. This is because layers of high-k oxides show antibacterial activity, as discussed in this work.

  3. Effect of protein adsorption on the corrosion behavior of 70Cu-30Ni alloy in artificial seawater.

    PubMed

    Torres Bautista, Blanca E; Carvalho, Maria L; Seyeux, Antoine; Zanna, Sandrine; Cristiani, Pierangela; Tribollet, Bernard; Marcus, Philippe; Frateur, Isabelle

    2014-06-01

    Copper alloys often used in cooling circuits of industrial plants can be affected by biocorrosion induced by biofilm formation. The objective of this work was to study the influence of protein adsorption, which is the first step in biofilm formation, on the electrochemical behavior of 70Cu-30Ni (wt.%) alloy in static artificial seawater and on the chemical composition of oxide layers. For that purpose, electrochemical measurements performed after 1h of immersion were combined to surface analyses. A model is proposed to analyze impedance data. In the presence of bovine serum albumin (BSA, model protein), the anodic charge transfer resistance deduced from EIS data at Ecorr is slightly higher, corresponding to lower corrosion current. Without BSA, two oxidized layers are shown by XPS and ToF-SIMS: an outer layer mainly composed of copper oxide (Cu2O redeposited layer) and an inner layer mainly composed of oxidized nickel, with a global thickness of ~30nm. The presence of BSA leads to a mixed oxide layer (CuO, Cu2O, Ni(OH)2) with a lower thickness (~10nm). Thus, the protein induces a decrease of the dissolution rate at Ecorr and hence a decrease of the amount of redeposited Cu2O and of the oxide layer thickness. © 2013.

  4. α-Tocopherol/Gallic Acid Cooperation in the Protection of Galactolipids Against Ozone-Induced Oxidation.

    PubMed

    Rudolphi-Skórska, Elżbieta; Filek, Maria; Zembala, Maria

    2016-04-01

    The protective ability of α-tocopherol (TOH) and gallic acid (GA) acting simultaneously at the moment of oxidizer application was evaluated by determination of galactolipid layers' oxidation degree. Addition of GA resulted in a significant decrease of ozone-derived radicals shifting the threshold of lipid sensitivity by an amount approximately corresponding to the GA intake in bulk reaction with ozone. TOH presence in lipid layers results in a change of the role of GA which additionally may be involved in the reduction of tocopheroxyl radical formed during oxidation. This leads to a decrease in effectiveness of GA in diminishing the amount of ozone radicals. Such an effect was not observed for mixed layers containing galactolipid and pre-oxidized tocopherol where the ozone threshold level was associated with a stoichiometry of GA + O3 reaction. It was concluded that probably subsequent transformations of tocopheroxyl radical to less reactive forms prevent its reaction with GA the entire quantity of which is used for radicals scavenging. This result shows the role of time parameter in systems where substrates are engaged in various reactions taking place simultaneously. The inactivation of 1,1-diphenyl-2-picrylhydrazyl radical by studied antioxidants in homogeneous system confirmed observations made on the basis of lipid layer properties indicating their antagonistic action (at least at studied conditions). Formation of layers in post-oxidation situation did not depend whether tocopherol was oxidized during oxidation of lipid/tocopherol mixture or was introduced as pre-oxidized. This may be interpreted as indication that products of tocopherol oxidation may stabilize lipid layers.

  5. Nonlocal Poisson-Fermi double-layer models: Effects of nonuniform ion sizes on double-layer structure

    NASA Astrophysics Data System (ADS)

    Xie, Dexuan; Jiang, Yi

    2018-05-01

    This paper reports a nonuniform ionic size nonlocal Poisson-Fermi double-layer model (nuNPF) and a uniform ionic size nonlocal Poisson-Fermi double-layer model (uNPF) for an electrolyte mixture of multiple ionic species, variable voltages on electrodes, and variable induced charges on boundary segments. The finite element solvers of nuNPF and uNPF are developed and applied to typical double-layer tests defined on a rectangular box, a hollow sphere, and a hollow rectangle with a charged post. Numerical results show that nuNPF can significantly improve the quality of the ionic concentrations and electric fields generated from uNPF, implying that the effect of nonuniform ion sizes is a key consideration in modeling the double-layer structure.

  6. A new Information publishing system Based on Internet of things

    NASA Astrophysics Data System (ADS)

    Zhu, Li; Ma, Guoguang

    2018-03-01

    A new information publishing system based on Internet of things is proposed, which is composed of four level hierarchical structure, including the screen identification layer, the network transport layer, the service management layer and the publishing application layer. In the architecture, the screen identification layer has realized the internet of screens in which geographically dispersed independent screens are connected to the internet by the customized set-top boxes. The service management layer uses MQTT protocol to implement a lightweight broker-based publish/subscribe messaging mechanism in constrained environments such as internet of things to solve the bandwidth bottleneck. Meanwhile the cloud-based storage technique is used to storage and manage the promptly increasing multimedia publishing information. The paper has designed and realized a prototype SzIoScreen, and give some related test results.

  7. Cadmium-free junction fabrication process for CuInSe.sub.2 thin film solar cells

    DOEpatents

    Ramanathan, Kannan V.; Contreras, Miguel A.; Bhattacharya, Raghu N.; Keane, James; Noufi, Rommel

    1999-01-01

    The present invention provides an economical, simple, dry and controllable semiconductor layer junction forming process to make cadmium free high efficiency photovoltaic cells having a first layer comprised primarily of copper indium diselenide having a thin doped copper indium diselenide n-type region, generated by thermal diffusion with a group II(b) element such as zinc, and a halide, such as chlorine, and a second layer comprised of a conventional zinc oxide bilayer. A photovoltaic device according the present invention includes a first thin film layer of semiconductor material formed primarily from copper indium diselenide. Doping of the copper indium diselenide with zinc chloride is accomplished using either a zinc chloride solution or a solid zinc chloride material. Thermal diffusion of zinc chloride into the copper indium diselenide upper region creates the thin n-type copper indium diselenide surface. A second thin film layer of semiconductor material comprising zinc oxide is then applied in two layers. The first layer comprises a thin layer of high resistivity zinc oxide. The second relatively thick layer of zinc oxide is doped to exhibit low resistivity.

  8. Density functional theory simulation of titanium migration and reaction with oxygen in the early stages of oxidation of equiatomic NiTi alloy.

    PubMed

    Nolan, Michael; Tofail, Syed A M

    2010-05-01

    The biocompatibility of NiTi shape memory alloys (SMA) has made possible applications in self-expandable cardio-vascular stents, stone extraction baskets, catheter guide wires and other invasive and minimally invasive biomedical devices. The NiTi intermetallic alloy spontaneously forms a thin passive layer of TiO(2), which provides its biocompatibility. The oxide layer is thought to form as the Ti in the alloy surface reacts with oxygen, resulting in a depletion of Ti in the subsurface region - experimental evidence indicates formation of a Ni-rich layer below the oxide film. In this paper, we study the initial stages of oxide growth on the (110) surface of the NiTi alloy to understand the formation of alloy/oxide interface. We initially adsorb atomic and molecular oxygen on the (110) surface and then successively add O(2) molecules, up to 2 monolayer of O(2). Oxygen adsorption always results in a large energy gain. With atomic oxygen, Ti is pulled out of the surface layer leaving behind a Ni-rich subsurface region. Molecular O(2), on the other hand adsorbs dissociatively and pulls a Ti atom farther out of the surface layer. The addition of further O(2) up to 1 monolayer is also dissociative and results in complete removal of Ti from the initial surface layer. When further O(2) is added up to 2 monolayer, Ti is pulled even further out of the surface and a single thin layer of composition O-Ti-O is formed. The electronic structure shows that the metallic character of the alloy is unaffected by interaction with oxygen and formation of the oxide layer, consistent with the oxide layer being a passivant. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. The role of the RB tumour suppressor pathway in oxidative stress responses in the haematopoietic system

    PubMed Central

    Macleod, Kay F.

    2010-01-01

    Exposure to pro-oxidants and defects in the repair of oxidative base damage are associated with disease and ageing and also contribute to the development of anaemia, bone marrow failure and haematopoietic malignancies. This Review assesses emerging data indicative of a specific role for the RB tumour suppressor pathway in the response of the haematopoietic system to oxidative stress. This is mediated through signalling pathways that involve DNA damage sensors, forkhead box O (Foxo) transcription factors and p38 mitogen-activated protein kinases and has downstream consequences for cell cycle progression, antioxidant capacity, mitochondrial mass and cellular metabolism. PMID:18800074

  10. Investigation on Tribological Properties of the Pre-oxidized Ti2AlN/TiAl Composite

    NASA Astrophysics Data System (ADS)

    Wang, Daqun; Sun, Dongli; Han, Xiuli; Wang, Qing; Wang, Guangwei

    2018-03-01

    Different oxidation layers on the Ti2AlN/TiAl substrate which was fabricated by in situ synthesis were prepared through thermal oxidation process. The microstructure, phase identification and elements distribution of the oxidation layers were analyzed. The tribological performance of pre-oxidized composites against Si3N4 ball at 25 and 600 °C, as well as the effect of pre-oxidation layers on tribological performance was systematically investigated. The results show that, compared to Ti2AlN/TiAl, the pre-oxidized composites present more excellent tribological properties, especially the wear resistance at 600 °C. It is a significant finding that, different from severe abrasive wear and plastic deformation of Ti2AlN/TiAl, the tribo-films formed by the pre-oxidation layers on the worn surface of pre-oxidized composites weaken abrasive wear and suppress the development of plastic deformation to protect the underlying composite substrate from wear. Moreover, the stable cooperation on the interface between tribo-films and Si3N4 ball results in the relatively steady friction coefficient.

  11. The role of polymer films on the oxidation of magnetite nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Letti, C.J.; Paterno, L.G.; Pereira-da-Silva, M.A.

    2017-02-15

    A detailed investigation about the role of polymer films on the oxidation process of magnetite nanoparticles (∼7 nm diameter), under laser irradiation is performed employing micro Raman spectroscopy. To support this investigation, Fe{sub 3}O{sub 4}-np are synthesized by the co-precipitation method and assembled layer-by-layer with sodium sulfonated polystyrene (PSS). Polymer films (Fe{sub 3}O{sub 4}-np/PSS){sub n} with n=2,3,5,7,10 and 25 bilayers are employed as a model system to study the oxidation process under laser irradiation. Raman data are further processed by principal component analysis. Our findings suggest that PSS protects Fe{sub 3}O{sub 4}-np from oxidation when compared to powder samples, evenmore » for the sample with the greater number of bilayers. Further, the oxidation of magnetite to maghemite occurs preferably for thinner films up to 7 bilayers, while the onset for the formation of the hematite phase depends on the laser intensity for thicker films. Water takes part on the oxidation processes of magnetite, the oxidation/phase transformation of Fe{sub 3}O{sub 4}-np is intensified in films with more bilayers, since more water is included in those films. Encapsulation of Fe{sub 3}O{sub 4}-np by PSS in layer-by-layer films showed to be very efficient to avoid the oxidation process in nanosized magnetite. - Graphical abstract: Encapsulation of Fe{sub 3}O{sub 4}-np by PSS in layer-by-layer films avoids the oxidation and phase transformation of nanosized magnetite. - Highlights: • (Fe{sub 3}O{sub 4}-np/PSS){sub n} nanofilms, with n=2 up to 25, where layer-by-layer assembled. • The influence of film architecture on the Fe{sub 3}O{sub 4}-np oxidation was investigated through Raman spectroscopy. • Encapsulation of Fe{sub 3}O{sub 4}-np by PSS showed to be very efficient to avoid the Fe{sub 3}O{sub 4}-np oxidation.« less

  12. Duplex aluminized coatings

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A.; Grisaffe, S. J. (Inventor)

    1975-01-01

    The surface of a metallic base system is initially coated with a metallic alloy layer that is ductile and oxidation resistant. An aluminide coating is then applied to the metallic alloy layer. The chemistry of the metallic alloy layer is such that the oxidation resistance of the subsequently aluminized outermost layer is not seriously degraded.

  13. Decolorization and biodegradation of remazol brilliant blue R by bilirubin oxidase.

    PubMed

    Liu, Youxun; Huang, Juan; Zhang, Xiaoyu

    2009-12-01

    The dye-decolorizing potential of bilirubin oxidase (BOX) was demonstrated for an anthraquinone dye, remazol brilliant blue R (RBBR). The dye was decolorized 40% within 4 h by the BOX alone, whereas it was more efficient in the presence of 2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), showing 91.5% decolorization within 25 min. The effects of operational parameters on decolorization were examined. The results showed that the decolorization efficiency decreased with increasing RBBR concentration, and a marked inhibition effect was exhibited when the dye concentrations were above 100 mg l(-1). The optimum temperature for enzymatic decolorization was 40 degrees C. BOX showed efficient decolorization of the dye with a wide pH range of 5-8.5. The maximum decolorization activity occurred at pH 8 with ABTS and at pH 5 without ABTS. Analysis of RBBR ultraviolet and visible (UV-VIS) spectra after BOX treatment indicated that the decolorization of RBBR was due to biodegradation. Our results suggested that ABTS can serve as an electron mediator to facilitate the oxidation of RBBR, and the BOX-ABTS mediator-involved dye decolorization mechanism was similar to that of laccase. Operation over a wide range of pH and efficient decolorization suggested that the BOX can be used to decolorize synthetic dyes from effluents, especially for anthraquinonic dyes.

  14. Corrosion behavior of oxide dispersion strengthened ferritic steels in supercritical water

    NASA Astrophysics Data System (ADS)

    Gao, Wenhua; Guo, Xianglong; Shen, Zhao; Zhang, Lefu

    2017-04-01

    The corrosion resistance of three different Cr content oxide dispersion strengthened (ODS) ferritic steels in supercritical water (SCW) and their passive films formed on the surface have been investigated. The results show that the dissolved oxygen (DO) and chemical composition have significant influence on the corrosion behavior of the ODS ferritic steels. In 2000 ppb DO SCW at 650 °C, the 14Cr-4Al ODS steel forms a tri-layer oxide film and the surface morphologies have experienced four structures. For the tri-layer oxide film, the middle layer is mainly Fe-Cr spinel and the Al is gradually enriched in the inner layer.

  15. Superconductive articles including cerium oxide layer

    DOEpatents

    Wu, X.D.; Muenchausen, R.E.

    1993-11-16

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure. 7 figures.

  16. Superconductive articles including cerium oxide layer

    DOEpatents

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.

  17. In-situ formation of multiphase deposited thermal barrier coatings

    DOEpatents

    Subramanian, Ramesh

    2004-01-13

    A multiphase ceramic thermal barrier coating is provided. The coating is adapted for use in high temperature applications in excess of about 1200.degree. C., for coating superalloy components of a combustion turbine engine. The coating comprises a ceramic single or two oxide base layer disposed on the substrate surface; and a ceramic oxide reaction product material disposed on the base layer, the reaction product comprising the reaction product of the base layer with a ceramic single or two oxide overlay layer.

  18. Use of chemical mechanical polishing in micromachining

    DOEpatents

    Nasby, Robert D.; Hetherington, Dale L.; Sniegowski, Jeffry J.; McWhorter, Paul J.; Apblett, Christopher A.

    1998-01-01

    A process for removing topography effects during fabrication of micromachines. A sacrificial oxide layer is deposited over a level containing functional elements with etched valleys between the elements such that the sacrificial layer has sufficient thickness to fill the valleys and extend in thickness upwards to the extent that the lowest point on the upper surface of the oxide layer is at least as high as the top surface of the functional elements in the covered level. The sacrificial oxide layer is then polished down and planarized by chemical-mechanical polishing. Another layer of functional elements is then formed upon this new planarized surface.

  19. Mössbauer study of oxide phase distributions in rust formed on steel constructions near the Black Sea in Sochi

    NASA Astrophysics Data System (ADS)

    Filippov, V. P.; Lauer, Yu. A.; Goloborodko, P. G.; Polyakov, A. M.

    2016-12-01

    The phase composition of the intermediate oxide layers formed on elements of steel structures at different positions relative to the sea water of the Black Sea near Sochi are investigated. The differences of the phase composition of these oxide layers are shown, depending on the location of the design details in relation to the sea and the abundancies of certain types of oxides in the studied layers are discussed.

  20. Raman Spectra of High-κ Dielectric Layers Investigated with Micro-Raman Spectroscopy Comparison with Silicon Dioxide

    PubMed Central

    Borowicz, P.; Taube, A.; Rzodkiewicz, W.; Latek, M.; Gierałtowska, S.

    2013-01-01

    Three samples with dielectric layers from high-κ dielectrics, hafnium oxide, gadolinium-silicon oxide, and lanthanum-lutetium oxide on silicon substrate were studied by Raman spectroscopy. The results obtained for high-κ dielectrics were compared with spectra recorded for silicon dioxide. Raman spectra suggest the similarity of gadolinium-silicon oxide and lanthanum-lutetium oxide to the bulk nondensified silicon dioxide. The temperature treatment of hafnium oxide shows the evolution of the structure of this material. Raman spectra recorded for as-deposited hafnium oxide are similar to the results obtained for silicon dioxide layer. After thermal treatment especially at higher temperatures (600°C and above), the structure of hafnium oxide becomes similar to the bulk non-densified silicon dioxide. PMID:24072982

  1. Aluminium or copper substrate panel for selective absorption of solar energy

    NASA Technical Reports Server (NTRS)

    Roberts, M. L.; Sharpe, M. H.; Krupnick, A. C. (Inventor)

    1979-01-01

    A method for making panels which selectively absorb solar energy is disclosed. The panels are comprised of an aluminum substrate, a layer of zinc thereon, a layer of nickel over the zinc layer and an outer layer of solar energy absorbing nickel oxide or a copper substrate with a layer of nickel thereon and a layer of solar energy absorbing nickel oxide distal from the copper substrate.

  2. Strain-tolerant ceramic coated seal

    DOEpatents

    Schienle, James L.; Strangman, Thomas E.

    1994-01-01

    A metallic regenerator seal is provided having multi-layer coating comprising a NiCrAlY bond layer, a yttria stabilized zirconia (YSZ) intermediate layer, and a ceramic high temperature solid lubricant surface layer comprising zinc oxide, calcium fluoride, and tin oxide. An array of discontinuous grooves is laser machined into the outer surface of the solid lubricant surface layer making the coating strain tolerant.

  3. Low temperature processed complementary metal oxide semiconductor (CMOS) device by oxidation effect from capping layer.

    PubMed

    Wang, Zhenwei; Al-Jawhari, Hala A; Nayak, Pradipta K; Caraveo-Frescas, J A; Wei, Nini; Hedhili, M N; Alshareef, H N

    2015-04-20

    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190 °C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field.

  4. Low Temperature Processed Complementary Metal Oxide Semiconductor (CMOS) Device by Oxidation Effect from Capping Layer

    PubMed Central

    Wang, Zhenwei; Al-Jawhari, Hala A.; Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Wei, Nini; Hedhili, M. N.; Alshareef, H. N.

    2015-01-01

    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190°C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field. PMID:25892711

  5. Fretting wear behavior of zirconium alloy in B-Li water at 300 °C

    NASA Astrophysics Data System (ADS)

    Zhang, Lefu; Lai, Ping; Liu, Qingdong; Zeng, Qifeng; Lu, Junqiang; Guo, Xianglong

    2018-02-01

    The tangential fretting wear of three kinds of zirconium alloys tube mated with 304 stainless steel (SS) plate was investigated. The tests were conducted in an autoclave containing 300 °C pressurized B-Li water for tube-on-plate contact configuration. The worn surfaces were examined with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and 3D microscopy. The cross-section of wear scar was examined with transmission electron microscope (TEM). The results indicated that the dominant wear mechanism of zirconium alloys in this test condition was delamination and oxidation. The oxide layer on the fretted area consists of outer oxide layer composed of iron oxide and zirconium oxide and inner oxide layer composed of zirconium oxide.

  6. Die singulation method

    DOEpatents

    Swiler, Thomas P.; Garcia, Ernest J.; Francis, Kathryn M.

    2013-06-11

    A method is disclosed for singulating die from a semiconductor substrate (e.g. a semiconductor-on-insulator substrate or a bulk silicon substrate) containing an oxide layer (e.g. silicon dioxide or a silicate glass) and one or more semiconductor layers (e.g. monocrystalline or polycrystalline silicon) located above the oxide layer. The method etches trenches through the substrate and through each semiconductor layer about the die being singulated, with the trenches being offset from each other around at least a part of the die so that the oxide layer between the trenches holds the substrate and die together. The trenches can be anisotropically etched using a Deep Reactive Ion Etching (DRIE) process. After the trenches are etched, the oxide layer between the trenches can be etched away with an HF etchant to singulate the die. A release fixture can be located near one side of the substrate to receive the singulated die.

  7. Die singulation method

    DOEpatents

    Swiler, Thomas P [Albuquerque, NM; Garcia, Ernest J [Albuquerque, NM; Francis, Kathryn M [Rio Rancho, NM

    2014-01-07

    A method is disclosed for singulating die from a semiconductor substrate (e.g. a semiconductor-on-insulator substrate or a bulk silicon substrate) containing an oxide layer (e.g. silicon dioxide or a silicate glass) and one or more semiconductor layers (e.g. monocrystalline or polycrystalline silicon) located above the oxide layer. The method etches trenches through the substrate and through each semiconductor layer about the die being singulated, with the trenches being offset from each other around at least a part of the die so that the oxide layer between the trenches holds the substrate and die together. The trenches can be anisotropically etched using a Deep Reactive Ion Etching (DRIE) process. After the trenches are etched, the oxide layer between the trenches can be etched away with a HF etchant to singulate the die. A release fixture can be located near one side of the substrate to receive the singulated die.

  8. Single-Step Electrophoretic Deposition of Non-noble Metal Catalyst Layer with Low Onset Voltage for Ethanol Electro-oxidation.

    PubMed

    Ahmadi Daryakenari, Ahmad; Hosseini, Davood; Ho, Ya-Lun; Saito, Takumi; Apostoluk, Aleksandra; Müller, Christoph R; Delaunay, Jean-Jacques

    2016-06-29

    A single-step electrophoretic deposition (EPD) process is used to fabricate catalyst layers which consist of nickel oxide nanoparticles attached on the surface of nanographitic flakes. Magnesium ions present in the colloid charge positively the flake's surface as they attach on it and are also used to bind nanographitic flakes together. The fabricated catalyst layers showed a very low onset voltage (-0.2 V vs Ag/AgCl) in the electro-oxidation of ethanol. To clarify the occurring catalytic mechanism, we performed annealing treatment to produce samples having a different electrochemical behavior with a large onset voltage. Temperature dependence measurements of the layer conductivity pointed toward a charge transport mechanism based on hopping for the nonannealed layers, while the drift transport is observed in the annealed layers. The hopping charge transport is responsible for the appearance of the low onset voltage in ethanol electro-oxidation.

  9. Solar cells having integral collector grids

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr. (Inventor)

    1978-01-01

    A heterojunction or Schottky barrier photovoltaic device is described, comprising a conductive base metal layer. A back surface field region was formed at the interface between the device and the base metal layer, a transparent, conductive mixed metal oxide layer in integral contact with the n-type layer of the heterojunction or Schottky barrier device. A metal alloy grid network was included. An insulating layer prevented electrical contact between the conductive metal base layer and the transparent, conductive metal oxide layer.

  10. Acoustic Cavitation Studies

    DTIC Science & Technology

    1981-09-01

    were made of the acoustic cavitation threshold as a function of polymer concentration for additives such as guar gum and polyethelene oxide. The...of California P.O. Box 808 Livermore, California 94550 Harry Diamond Laboratories I copy Technical Library 2800 Powder Mill Road Adelphi, Maryland

  11. Parametric and experimentally informed BWR Severe Accident Analysis Utilizing FeCrAl - M3FT-17OR020205041

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ott, Larry J.; Howell, Michael; Robb, Kevin R.

    Iron-chromium-aluminum (FeCrAl) alloys are being considered as advanced fuel cladding concepts with enhanced accident tolerance. At high temperatures, FeCrAl alloys have slower oxidation kinetics and higher strength compared with zirconium-based alloys. FeCrAl could be used for fuel cladding and spacer or mixing vane grids in light water reactors and/or as channel box material in boiling water reactors (BWRs). There is a need to assess the potential gains afforded by the FeCrAl accident-tolerant-fuel (ATF) concept over the existing zirconium-based materials employed today. To accurately assess the response of FeCrAl alloys under severe accident conditions, a number of FeCrAl properties and characteristicsmore » are required. These include thermophysical properties as well as burst characteristics, oxidation kinetics, possible eutectic interactions, and failure temperatures. These properties can vary among different FeCrAl alloys. Oak Ridge National Laboratory has pursued refined values for the oxidation kinetics of the B136Y FeCrAl alloy (Fe-13Cr-6Al wt %). This investigation included oxidation tests with varying heating rates and end-point temperatures in a steam environment. The rate constant for the low-temperature oxidation kinetics was found to be higher than that for the commercial APMT FeCrAl alloy (Fe-21Cr-5Al-3Mo wt %). Compared with APMT, a 5 times higher rate constant best predicted the entire dataset (root mean square deviation). Based on tests following heating rates comparable with those the cladding would experience during a station blackout, the transition to higher oxidation kinetics occurs at approximately 1,500°C. A parametric study varying the low-temperature FeCrAl oxidation kinetics was conducted for a BWR plant using FeCrAl fuel cladding and channel boxes using the MELCOR code. A range of station blackout severe accident scenarios were simulated for a BWR/4 reactor with Mark I containment. Increasing the FeCrAl low-temperature oxidation rate constant (3 times and 10 times that of the rate constant for APMT) had a negligible impact on the early stages of the accident and minor impacts on the accident progression after the first relocation of the fuel. At temperatures below 1,500°C, increasing the rate constant for APMT by a factor of 10 still resulted in only minor FeCrAl oxidation. In general, the gains afforded by the FeCrAl enhanced ATF concept with respect to accident sequence timing and combustible gas generation are consistent with previous efforts. Compared with the traditional Zircaloy-based cladding and channel box system, the FeCrAl concept could provide a few extra hours of time for operators to take mitigating actions and/or for evacuations to take place. A coolable core geometry is retained longer, enhancing the ability to stabilize an accident. For example, a station blackout was simulated in which cooling water injection was lost 36 hours after shutdown. The timing to first fuel relocation was delayed by approximately 5 h for the FeCrAl ATF concept compared with that of the traditional Zircaloy-based cladding and channel box system.« less

  12. A Readily Accessible Chiral NNN Pincer Ligand with a Pyrrole Backbone and Its Ni(II) Chemistry: Syntheses, Structural Chemistry, and Bond Activations.

    PubMed

    Wenz, Jan; Kochan, Alexander; Wadepohl, Hubert; Gade, Lutz H

    2017-03-20

    A new class of chiral C 2 -symmetric N-donor pincer ligands, 2,5-bis(2-oxazolinyldimethylmethyl)pyrroles (PdmBox)H, was synthesized starting from the readily available ethyl 2,2-dimethyl-3-oxobutanoate (1). The synthesis of the ligand backbone was achieved by oxidative enole coupling with CuC1 2 followed by Paal-Knorr-type pyrrole synthesis. The corresponding protioligands ( R PdmBox)H (R = iPr: 5a; Ph: 5b) were obtained by condensation with amino alcohols and subsequent zinc-catalyzed cyclization. Reaction of the lithiated ligands with [NiCl 2 (dme)] yielded the corresponding square-planar nickel(II) complexes [( R PdmBox)NiCl] (6a/b). Salt metathesis of 6a with the corresponding alkali or cesium salts in acetone led to the formation of air- and moisture-stable [( iPr PdmBox)NiX] (X = F (7), X = Br (8), X = I (9), X = N 3 (10), X = OAc (11). Furthermore, the conversion of [( iPr PdmBox)NiF] (7) with hydride transfer reagents such as PhSiH 3 led to the stable hydrido species [( iPr PdmBox)NiH] (27), the stoichiometric transformations of which were studied. Treatment of 6a with organometallic reagents such as ZnEt 2 , PhLi, PhC≡CLi, NsLi, or ( 4F Bn) 2 Mg(THF) 2 gave the corresponding alkyl, alkynyl, or aryl complexes. The availability of the new nonisomerizable PdmBox pincer ligands allowed the comparative study of their ligation to square-planar complexes as helically twisted spectator ligands as opposed to the enforced planar rigidity of their iso-PmBox analogues and the way this influences the reactivity of the Ni complexes.

  13. Determination of the photolysis rate coefficient of monochlorodimethyl sulfide (MClDMS) in the atmosphere and its implications for the enhancement of SO2 production from the DMS + Cl2 reaction.

    PubMed

    Copeland, G; Lee, E P F; Williams, R G; Archibald, A T; Shallcross, D E; Dyke, J M

    2014-01-01

    In this work, the photolysis rate coefficient of CH3SCH2Cl (MClDMS) in the lower atmosphere has been determined and has been used in a marine boundary layer (MBL) box model to determine the enhancement of SO2 production arising from the reaction DMS + Cl2. Absorption cross sections measured in the 28000-34000 cm(-1) region have been used to determine photolysis rate coefficients of MClDMS in the troposphere at 10 solar zenith angles (SZAs). These have been used to determine the lifetimes of MClDMS in the troposphere. At 0° SZA, a photolysis lifetime of 3-4 h has been obtained. The results show that the photolysis lifetime of MClDMS is significantly smaller than the lifetimes with respect to reaction with OH (≈ 4.6 days) and with Cl atoms (≈ 1.2 days). It has also been shown, using experimentally derived dissociation energies with supporting quantum-chemical calculations, that the dominant photodissocation route of MClDMS is dissociation of the C-S bond to give CH3S and CH2Cl. MBL box modeling calculations show that buildup of MClDMS at night from the Cl2 + DMS reaction leads to enhanced SO2 production during the day. The extra SO2 arises from photolysis of MClDMS to give CH3S and CH2Cl, followed by subsequent oxidation of CH3S.

  14. Improved high temperature integration of Al{sub 2}O{sub 3} on MoS{sub 2} by using a metal oxide buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Son, Seokki; Choi, Moonseok; Kim, Dohyung

    2015-01-12

    We deposited a metal oxide buffer layer before atomic layer deposition (ALD) of Al{sub 2}O{sub 3} onto exfoliated molybdenum disulfide (MoS{sub 2}) in order to accomplish enhanced integration. We demonstrate that even at a high temperature, functionalization of MoS{sub 2} by means of a metal oxide buffer layer can effectively provide nucleation sites for ALD precursors, enabling much better surface coverage of Al{sub 2}O{sub 3}. It is shown that using a metal oxide buffer layer not only allows high temperature ALD process, resulting in highly improved quality of Al{sub 2}O{sub 3}/MoS{sub 2} interface, but also leaves MoS{sub 2} intact.

  15. Alkali resistant optical coatings for alkali lasers and methods of production thereof

    DOEpatents

    Soules, Thomas F; Beach, Raymond J; Mitchell, Scott C

    2014-11-18

    In one embodiment, a multilayer dielectric coating for use in an alkali laser includes two or more alternating layers of high and low refractive index materials, wherein an innermost layer includes a thicker, >500 nm, and dense, >97% of theoretical, layer of at least one of: alumina, zirconia, and hafnia for protecting subsequent layers of the two or more alternating layers of high and low index dielectric materials from alkali attack. In another embodiment, a method for forming an alkali resistant coating includes forming a first oxide material above a substrate and forming a second oxide material above the first oxide material to form a multilayer dielectric coating, wherein the second oxide material is on a side of the multilayer dielectric coating for contacting an alkali.

  16. Oxide Protective Coats for Ir/Re Rocket Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Fortini, Arthur; Tuffias, Robert H.

    2003-01-01

    An improved material system has been developed for rocket engine combustion chambers for burning oxygen/ hydrogen mixtures or novel monopropellants, which are highly oxidizing at operating temperatures. The baseline for developing the improved material system is a prior iridium/rhenium system for chambers burning nitrogen tetroxide/monomethyl hydrazine mixtures, which are less oxidizing. The baseline combustion chamber comprises an outer layer of rhenium that provides structural support, plus an inner layer of iridium that acts as a barrier to oxidation of the rhenium. In the improved material system, the layer of iridium is thin and is coated with a thermal fatigue-resistant refractory oxide (specifically, hafnium oxide) that serves partly as a thermal barrier to decrease the temperature and thus the rate of oxidation of the rhenium. The oxide layer also acts as a barrier against the transport of oxidizing species to the surface of the iridium. Tests in which various oxygen/hydrogen mixtures were burned in iridium/rhenium combustion chambers lined with hafnium oxide showed that the operational lifetimes of combustion chambers of the improved material system are an order of magnitude greater than those of the baseline combustion chambers.

  17. Spin Hall driven domain wall motion in magnetic bilayers coupled by a magnetic oxide interlayer

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Furuta, Masaki; Zhu, Jian-Gang Jimmy

    2018-05-01

    mCell, previously proposed by our group, is a four-terminal magnetoresistive device with isolated write- and read-paths for all-spin logic and memory applications. A mCell requires an electric-insulating magnetic layer to couple the spin Hall driven write-path to the magnetic free layer of the read-path. Both paths are magnetic layers with perpendicular anisotropy and their perpendicularly oriented magnetization needs to be maintained with this insertion layer. We have developed a magnetic oxide (FeOx) insertion layer to serve for these purposes. We show that the FeOx insertion layer provides sufficient magnetic coupling between adjacent perpendicular magnetic layers. Resistance measurement shows that this magnetic oxide layer can act as an electric-insulating layer. In addition, spin Hall driven domain wall motion in magnetic bi-layers coupled by the FeOx insertion layer is significantly enhanced compared to that in magnetic single layer; it also requires low voltage threshold that poses possibility for power-efficient device applications.

  18. Evidence for renoxification in the tropical marine boundary layer

    NASA Astrophysics Data System (ADS)

    Reed, Chris; Evans, Mathew J.; Crilley, Leigh R.; Bloss, William J.; Sherwen, Tomás; Read, Katie A.; Lee, James D.; Carpenter, Lucy J.

    2017-03-01

    We present 2 years of NOx observations from the Cape Verde Atmospheric Observatory located in the tropical Atlantic boundary layer. We find that NOx mixing ratios peak around solar noon (at 20-30 pptV depending on season), which is counter to box model simulations that show a midday minimum due to OH conversion of NO2 to HNO3. Production of NOx via decomposition of organic nitrogen species and the photolysis of HNO3 appear insufficient to provide the observed noontime maximum. A rapid photolysis of nitrate aerosol to produce HONO and NO2, however, is able to simulate the observed diurnal cycle. This would make it the dominant source of NOx at this remote marine boundary layer site, overturning the previous paradigm according to which the transport of organic nitrogen species, such as PAN, is the dominant source. We show that observed mixing ratios (November-December 2015) of HONO at Cape Verde (˜ 3.5 pptV peak at solar noon) are consistent with this route for NOx production. Reactions between the nitrate radical and halogen hydroxides which have been postulated in the literature appear to improve the box model simulation of NOx. This rapid conversion of aerosol phase nitrate to NOx changes our perspective of the NOx cycling chemistry in the tropical marine boundary layer, suggesting a more chemically complex environment than previously thought.

  19. Ultrathin epitaxial barrier layer to avoid thermally induced phase transformation in oxide heterostructures

    DOE PAGES

    Baek, David J.; Lu, Di; Hikita, Yasuyuki; ...

    2016-12-22

    Incorporating oxides with radically different physical and chemical properties into heterostructures offers tantalizing possibilities to derive new functions and structures. Recently, we have fabricated freestanding 2D oxide membranes using the water-soluble perovskite Sr 3Al 2O 6 as a sacrificial buffer layer. Here, with atomic-resolution spectroscopic imaging, we observe that direct growth of oxide thin films on Sr 3Al 2O 6 can cause complete phase transformation of the buffer layer, rendering it water-insoluble. More importantly, we demonstrate that an ultrathin SrTiO 3 layer can be employed as an effective barrier to preserve Sr 3Al 2O 6 during subsequent growth, thus allowingmore » its integration in a wider range of oxide heterostructures.« less

  20. Coating with overlay metallic-cermet alloy systems

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A.; Levine, S. R.; Glasgow, T. K. (Inventor)

    1984-01-01

    A base layer of an oxide dispersed, metallic alloy (cermet) is arc plasma sprayed onto a substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use. A top layer of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then arc plasma sprayed onto the base layer. A heat treatment is used to improve the bonding. The base layer serves as an inhibitor to interdiffusion between the protective top layer and the substrate. Otherwise, the 10 protective top layer would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures.

  1. Novel approaches for fabrication of thin film layers for solid oxide electrolyte fuel cells

    NASA Technical Reports Server (NTRS)

    Murugesamoorthi, K. A.; Srinivasan, S.; Cocke, D. L.; Appleby, A. J.

    1990-01-01

    The main objectives of the SOFC (solid oxide fuel cell) project are to (1) identify viable and cost-effective techniques to prepare cell components for stable MSOFCs (monolithic SOFCs); (2) fabricate half and single cells; and (3) evaluate their performances. The approach used to fabricate stable MSOFCs is as follows: (1) the electrolyte layer is prepared in the form of a honeycomb structure by alloy oxidation and other cell components are deposited on it; (2) the electrolyte and anode layers are deposited on the cathode layer, which has a porous, honeycomb structure; and (3) the electrolyte and cathode layers are deposited on the anode layer. The current status of the project is reported.

  2. Comparative electrochemical analysis of crystalline and amorphous anodized iron oxide nanotube layers as negative electrode for LIB.

    PubMed

    Pervez, Syed Atif; Kim, Doohun; Farooq, Umer; Yaqub, Adnan; Choi, Jung-Hee; Lee, You-Jin; Doh, Chil-Hoon

    2014-07-23

    This work is a comparative study of the electrochemical performance of crystalline and amorphous anodic iron oxide nanotube layers. These nanotube layers were grown directly on top of an iron current collector with a vertical orientation via a simple one-step synthesis. The crystalline structures were obtained by heat treating the as-prepared (amorphous) iron oxide nanotube layers in ambient air environment. A detailed morphological and compositional characterization of the resultant materials was performed via transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and Raman spectroscopy. The XRD patterns were further analyzed using Rietveld refinements to gain in-depth information on their quantitative phase and crystal structures after heat treatment. The results demonstrated that the crystalline iron oxide nanotube layers exhibit better electrochemical properties than the amorphous iron oxide nanotube layers when evaluated in terms of the areal capacity, rate capability, and cycling performance. Such an improved electrochemical response was attributed to the morphology and three-dimensional framework of the crystalline nanotube layers offering short, multidirectional transport lengths, which favor rapid Li(+) ions diffusivity and electron transport.

  3. Oxidation of Alloy 600 and Alloy 690: Experimentally Accelerated Study in Hydrogenated Supercritical Water

    NASA Astrophysics Data System (ADS)

    Moss, Tyler; Cao, Guoping; Was, Gary S.

    2017-04-01

    The objective of this study is to determine whether the oxidation of Alloys 600 and 690 in supercritical water occurs by the same mechanism in subcritical water. Coupons of Alloys 690 and 600 were exposed to hydrogenated subcritical and supercritical water from 633 K to 673 K (360 °C to 400 °C) and the oxidation behavior was observed. By all measures of oxide character and behavior, the oxidation process is the same above and below the supercritical line. Similar oxide morphologies, structures, and chemistries were observed for each alloy across the critical point, indicating that the oxidation mechanism is the same in both subcritical and supercritical water. Oxidation results in a multi-layer oxide structure composed of particles of NiO and NiFe2O4 formed by precipitation on the outer surface and a chromium-rich inner oxide layer formed by diffusion of oxygen to the metal-oxide interface. The inner oxide on Alloy 600 is less chromium rich than that observed on Alloy 690 and is accompanied by preferential oxidation of grain boundaries. The inner oxide on Alloy 690 initially forms by internal oxidation before a protective layer of chromium-rich MO is formed with Cr2O3 at the metal-oxide interface. Grain boundaries in Alloy 690 act as fast diffusion paths for chromium that forms a protective Cr2O3 layer at the surface, preventing grain boundary oxidation from occurring.

  4. The MADS Box Genes ABS, SHP1, and SHP2 Are Essential for the Coordination of Cell Divisions in Ovule and Seed Coat Development and for Endosperm Formation in Arabidopsis thaliana

    PubMed Central

    Tekleyohans, Dawit G.; Wittkop, Benjamin; Snowdon, Rod J.

    2016-01-01

    Seed formation is a pivotal process in plant reproduction and dispersal. It begins with megagametophyte development in the ovule, followed by fertilization and subsequently coordinated development of embryo, endosperm, and maternal seed coat. Two closely related MADS-box genes, SHATTERPROOF 1 and 2 (SHP1 and SHP2) are involved in specifying ovule integument identity in Arabidopsis thaliana. The MADS box gene ARABIDOPSIS BSISTER (ABS or TT16) is required, together with SEEDSTICK (STK) for the formation of endothelium, part of the seed coat and innermost tissue layer formed by the maternal plant. Little is known about the genetic interaction of SHP1 and SHP2 with ABS and the coordination of endosperm and seed coat development. In this work, mutant and expression analysis shed light on this aspect of concerted development. Triple tt16 shp1 shp2 mutants produce malformed seedlings, seed coat formation defects, fewer seeds, and mucilage reduction. While shp1 shp2 mutants fail to coordinate the timely development of ovules, tt16 mutants show less peripheral endosperm after fertilization. Failure in coordinated division of the innermost integument layer in early ovule stages leads to inner seed coat defects in tt16 and tt16 shp1 shp2 triple mutant seeds. An antagonistic action of ABS and SHP1/SHP2 is observed in inner seed coat layer formation. Expression analysis also indicates that ABS represses SHP1, SHP2, and FRUITFUL expression. Our work shows that the evolutionary conserved Bsister genes are required not only for endothelium but also for endosperm development and genetically interact with SHP1 and SHP2 in a partially antagonistic manner. PMID:27776173

  5. Low-temperature reduction of Ge oxide by Si and SiH4 in low-pressure H2 and Ar environment

    NASA Astrophysics Data System (ADS)

    Minami, Kaichiro; Moriya, Atsushi; Yuasa, Kazuhiro; Maeda, Kiyohiko; Yamada, Masayuki; Kunii, Yasuo; Niwano, Michio; Murota, Junichi

    2015-08-01

    Introduction of Ge into ULSIs has become increasingly attractive because of the higher carrier mobility of Ge. Since Ge native oxide is formed easily in cleanroom air, the control of formation and reduction of the Ge oxide is requested for the introduction of Ge layers into Si process. Here, the reactions between gas phase Ge oxide and Si substrate and between the Ge oxide on Ge epitaxial layer and SiH4 are investigated. The native-oxidized Ge amount is obtained by calculating from chemically shifted peak intensity of Ge 3d measured by X-ray photoelectron spectroscopy. By the adsorption of the Ge oxide on Si(1 0 0) surface, pure Ge and Si oxide are formed on the Si surface even at 350 °C and the formed Ge amount tends to correspond to the oxidized Si amount, independently of the heat-treatment environment of H2 and Ar under the condition that Si oxide is not reduced by H2. By SiH4 treatment, the amount of the oxidized Ge on the Ge layer decreases drastically even at 350 °C and Si oxide is formed on the Ge layer. From these results, it is suggested that the Ge oxide is reduced even at 350 °C by Si or SiH4, and the Si oxide and the pure Ge are formed.

  6. Growth and sacrificial oxidation of transition metal nanolayers

    NASA Astrophysics Data System (ADS)

    Tsarfati, Tim; Zoethout, Erwin; van de Kruijs, Robbert; Bijkerk, Fred

    2009-04-01

    Growth and oxidation of Au, Pt, Pd, Rh, Cu, Ru, Ni and Co layers of 0.3-4.3 nm thickness on Mo have been investigated with ARPES and AFM. Co and Ni layers oxidize while the Mo remains metallic. For nobler metals, the on top O and oxidation state of subsurface Mo increase, suggesting sacrificial e - donation by Mo. Au and Cu, in spite of their significantly lower surface free energy, grow in islands on Mo and actually promote Mo oxidation. Applications of the sacrificial oxidation in nanometer thin layers exist in a range of nanoscopic devices, such as nano-electronics and protection of e.g. multilayer X-ray optics for astronomy, medicine and lithography.

  7. CHEMICAL SOLUTION DEPOSITION BASED OXIDE BUFFERS AND YBCO COATED CONDUCTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paranthaman, Mariappan Parans

    We have reviewed briefly the growth of buffer and high temperature superconducting oxide thin films using a chemical solution deposition (CSD) method. In the Rolling-Assisted Biaxially Textured Substrates (RABiTS) process, developed at Oak Ridge National Laboratory, utilizes the thermo mechanical processing to obtain the flexible, biaxially oriented copper, nickel or nickel-alloy substrates. Buffers and Rare Earth Barium Copper Oxide (REBCO) superconductors have been deposited epitaxially on the textured nickel alloy substrates. The starting substrate serves as a template for the REBCO layer, which has substantially fewer weak links. Buffer layers play a major role in fabricating the second generation REBCOmore » wire technology. The main purpose of the buffer layers is to provide a smooth, continuous and chemically inert surface for the growth of the REBCO film, while transferring the texture from the substrate to the superconductor layer. To achieve this, the buffer layers need to be epitaxial to the substrate, i.e. they have to nucleate and grow in the same bi-axial texture provided by the textured metal foil. The most commonly used RABiTS multi-layer architectures consist of a starting template of biaxially textured Ni-5 at.% W (Ni-W) substrate with a seed (first) layer of Yttrium Oxide (Y2O3), a barrier (second) layer of Yttria Stabilized Zirconia (YSZ), and a Cerium Oxide (CeO2) cap (third) layer. These three buffer layers are generally deposited using physical vapor deposition (PVD) techniques such as reactive sputtering. On top of the PVD template, REBCO film is then grown by a chemical solution deposition. This article reviews in detail about the list of oxide buffers and superconductor REBCO films grown epitaxially on single crystal and/or biaxially textured Ni-W substrates using a CSD method.« less

  8. Process for thin film deposition of cadmium sulfide

    DOEpatents

    Muruska, H. Paul; Sansregret, Joseph L.; Young, Archie R.

    1982-01-01

    The present invention teaches a process for depositing layers of cadmium sulfide. The process includes depositing a layer of cadmium oxide by spray pyrolysis of a cadmium salt in an aqueous or organic solvent. The oxide film is then converted into cadmium sulfide by thermal ion exchange of the O.sup.-2 for S.sup.-2 by annealing the oxide layer in gaseous sulfur at elevated temperatures.

  9. Smooth Interfacial Scavenging for Resistive Switching Oxide via the Formation of Highly Uniform Layers of Amorphous TaOx.

    PubMed

    Tsurumaki-Fukuchi, Atsushi; Nakagawa, Ryosuke; Arita, Masashi; Takahashi, Yasuo

    2018-02-14

    We demonstrate that the inclusion of a Ta interfacial layer is a remarkably effective strategy for forming interfacial oxygen defects at metal/oxide junctions. The insertion of an interfacial layer of a reactive metal, that is, a "scavenging" layer, has been recently proposed as a way to create a high concentration of oxygen defects at an interface in redox-based resistive switching devices, and growing interest has been given to the underlying mechanism. Through structural and chemical analyses of Pt/metal/SrTiO 3 /Pt structures, we reveal that the rate and amount of oxygen scavenging are not directly determined by the formation free energies in the oxidation reactions of the scavenging metal and unveil the important roles of oxygen diffusibility. Active oxygen scavenging and highly uniform oxidation via scavenging are revealed for a Ta interfacial layer with high oxygen diffusibility. In addition, the Ta scavenging layer is shown to exhibit a highly uniform structure and to form a very flat interface with SrTiO 3 , which are advantageous for the fabrication of a steep metal/oxide contact.

  10. Modified band alignment effect in ZnO/Cu2O heterojunction solar cells via Cs2O buffer insertion

    NASA Astrophysics Data System (ADS)

    Eom, Kiryung; Lee, Dongyoon; Kim, Seunghwan; Seo, Hyungtak

    2018-02-01

    The effects of a complex buffer layer of cesium oxide (Cs2O) on the photocurrent response in oxide heterojunction solar cells (HSCs) were investigated. A p-n junction oxide HSC was fabricated using p-type copper (I) oxide (Cu2O) and n-type zinc oxide (ZnO); the buffer layer was inserted between the Cu2O and fluorine-doped tin oxide (FTO). Ultraviolet-visible (UV-vis) and x-ray and ultraviolet photoelectron spectroscopy analyses were performed to characterize the electronic band structures of cells, both with and without this buffer layer. In conjunction with the measured band electronic structures, the significantly improved visible-range photocurrent spectra of the buffer-inserted HSC were analyzed in-depth. As a result, the 1 sun power conversion efficiency was increased by about three times by the insertion of buffer layer. The physicochemical origin of the photocurrent enhancement was mainly ascribed to the increased photocarrier density in the buffer layer and modified valence band offset to promote the effective hole transfer at the interface to FTO on the band-alignment model.

  11. Color-selective photodetection from intermediate colloidal quantum dots buried in amorphous-oxide semiconductors.

    PubMed

    Cho, Kyung-Sang; Heo, Keun; Baik, Chan-Wook; Choi, Jun Young; Jeong, Heejeong; Hwang, Sungwoo; Lee, Sang Yeol

    2017-10-10

    We report color-selective photodetection from intermediate, monolayered, quantum dots buried in between amorphous-oxide semiconductors. The proposed active channel in phototransistors is a hybrid configuration of oxide-quantum dot-oxide layers, where the gate-tunable electrical property of silicon-doped, indium-zinc-oxide layers is incorporated with the color-selective properties of quantum dots. A remarkably high detectivity (8.1 × 10 13 Jones) is obtained, along with three major findings: fast charge separation in monolayered quantum dots; efficient charge transport through high-mobility oxide layers (20 cm 2  V -1  s -1 ); and gate-tunable drain-current modulation. Particularly, the fast charge separation rate of 3.3 ns -1 measured with time-resolved photoluminescence is attributed to the intermediate quantum dots buried in oxide layers. These results facilitate the realization of efficient color-selective detection exhibiting a photoconductive gain of 10 7 , obtained using a room-temperature deposition of oxide layers and a solution process of quantum dots. This work offers promising opportunities in emerging applications for color detection with sensitivity, transparency, and flexibility.The development of highly sensitive photodetectors is important for image sensing and optical communication applications. Cho et al., report ultra-sensitive photodetectors based on monolayered quantum dots buried in between amorphous-oxide semiconductors and demonstrate color-detecting logic gates.

  12. Significant HONO concentration at a semi-rural site in the Pearl River Delta during a severe pollution period and its impact on atmospheric oxidation capacity

    NASA Astrophysics Data System (ADS)

    Yun, H.; Wang, T.; Wang, W.; Yu, C.; Xia, M.; Xue, L.; Wang, Z.; Zhang, N.; Poon, S.; Zhou, Y.; Yue, D.; Zhai, Y.

    2017-12-01

    Nitrous acid (HONO) is an important source of hydroxyl radical (OH) in the boundary layer, and has considerable impact on atmospheric oxidation capacity and ozone formation. However, the abundance of HONO and subsequent effects under severe pollution conditions, especially in winter, has not been thoroughly investigated. We conducted an intensive observation at a semi-rural site (Heshan) in the center of the Pearl River Delta (PRD) in January 2017. Extremely high HONO concentrations (up to 9.0 ppbv) were observed with a LOng-Path Absorption Photometer (LOPAP) in a severe pollution episode with especially high PM2.5 ( 400 μg m-3) and O3 ( 160 ppbv). HONO sustained at a relatively high level in the morning and had peaks even in the afternoon. An observation-based box model (OBM) built on Master Chemical Mechanism (MCM v3.3.1) was used to simulate the formation of HONO and its contribution to the radical concentrations. The results showed that HONO was the dominant source of primary radicals (= OH+HO2+RO2) and governed the in-situ production of ozone. Currently-identified HONO sources were added into the model to reveal the formation process of HONO during both the nighttime and daytime, and the relative importance of these sources will be discussed.

  13. Nanoconstricted structure for current-confined path in current-perpendicular-to-plane spin valves with high magnetoresistance

    NASA Astrophysics Data System (ADS)

    Fukuzawa, H.; Yuasa, H.; Koi, K.; Iwasaki, H.; Tanaka, Y.; Takahashi, Y. K.; Hono, K.

    2005-05-01

    We have successfully observed a nanoconstricted structure for current-confined-path (CCP) effect in current-perpendicular-to-plane-giant-magnetoresistance (CPP-GMR) spin valves. By inserting an AlCu nano-oxide layer (NOL) formed by ion-assisted oxidation (IAO) between a pinned layer and a free layer, the MR ratio was increased while maintaining a small area resistance product (RA). The cross-sectional high-resolution transmission electron microscopy image of the sample with RA =380mΩμm2, ΔRA =16mΩμm2, and MR ratio=4.3% showed that an amorphous oxide layer is a main part of the NOL that blocks the electron conduction perpendicular to plane. Some parts of the NOL are punched through crystalline, metallic channels having a diameter of a few nanometers, which are thought to work as nanoconstricted electron conduction paths between the pinned layer and the free layer. Nano-energy-dispersive-x-ray-spectrum analysis also showed that Cu is enriched in the metallic channels, whereas Al is enriched in the amorphous oxide region, indicating that the metallic channel is made of Cu and the oxide is made of Al2O3. The nanoconstricted structure with good segregation between the metallic channel and the oxide layer enables us to realize a large MR ratio in CCP-CPP spin valves.

  14. Characterization of oxide scales grown on alloy 310S stainless steel after long term exposure to supercritical water at 500 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behnamian, Yashar, E-mail: behnamia@ualberta.ca

    The oxide scale grown of static capsules made of alloy 310S stainless steel was investigated by exposure to the supercritical water at 500 °C 25 MPa for various exposure times up to 20,000 h. Characterization techniques such as X-ray diffraction, scanning/transmission electron microscopy, energy dispersive spectroscopy, and fast Fourier transformation were employed on the oxide scales. The elemental and phase analyses indicated that long term exposure to the SCW resulted in the formation of scales identified as Fe{sub 3}O{sub 4} (outer layer), Fe-Cr spinel (inner layer), Cr{sub 2}O{sub 3} (transition layer) on the substrate, and Ni-enrichment (chrome depleted region) inmore » the alloy 310S. It was found that the layer thickness and weight gain vs. exposure time followed parabolic law. The oxidation mechanism and scales grown on the alloy 310S stainless steel exposed to SCW are discussed. - Highlights: •Oxidation of alloy 310S stainless steel exposed to SCW (500 °C/25 MPa) •The layer thickness and weight gain vs. exposure time followed parabolic law. •Oxide layers including Fe{sub 3}O{sub 4} (outer), Fe-Cr spinel (inner) and Cr{sub 2}O{sub 3} (transition) •Ni element is segregated by the selective oxidation of Cr.« less

  15. Ternary Oxides in the TiO2-ZnO System as Efficient Electron-Transport Layers for Perovskite Solar Cells with Efficiency over 15.

    PubMed

    Yin, Xiong; Xu, Zhongzhong; Guo, Yanjun; Xu, Peng; He, Meng

    2016-11-02

    Perovskite solar cells, which utilize organometal-halide perovskites as light-harvesting materials, have attracted great attention due to their high power conversion efficiency (PCE) and potentially low cost in fabrication. A compact layer of TiO 2 or ZnO is generally applied as electron-transport layer (ETL) in a typical perovskite solar cell. In this study, we explored ternary oxides in the TiO 2 -ZnO system to find new materials for the ETL. Compact layers of titanium zinc oxides were readily prepared on the conducting substrate via spray pyrolysis method. The optical band gap, valence band maximum and conduction band minimum of the ternary oxides varied significantly with the ratio of Ti to Zn, surprisingly, in a nonmonotonic way. When a zinc-rich ternary oxide was applied as ETL for the device, a PCE of 15.10% was achieved, comparable to that of the device using conventional TiO 2 ETL. Interestingly, the perovskite layer deposited on the zinc-rich ternary oxide is stable, in sharp contrast with that fabricated on a ZnO layer, which will turn into PbI 2 readily when heated. These results indicate that potentially new materials with better performance can be found for ETL of perovskite solar cells in ternary oxides, which deserve more exploration.

  16. Biogenic precipitation of manganese oxides and enrichment of heavy metals at acidic soil pH

    NASA Astrophysics Data System (ADS)

    Mayanna, Sathish; Peacock, Caroline L.; Schäffner, Franziska; Grawunder, Anja; Merten, Dirk; Kothe, Erika; Büchel, Georg

    2014-05-01

    The precipitation of biogenic Mn oxides at acidic pH is rarely reported and poorly understood, compared to biogenic Mn oxide precipitation at near neutral conditions. Here we identified and investigated the precipitation of biogenic Mn oxides in acidic soil, and studied their role in the retention of heavy metals, at the former uranium mining site of Ronneburg, Germany. The site is characterized by acidic pH, low carbon content and high heavy metal loads including rare earth elements. Specifically, the Mn oxides were present in layers identified by detailed soil profiling and within these layers pH varied from 4.7 to 5.1, Eh varied from 640 to 660 mV and there were enriched total metal contents for Ba, Ni, Co, Cd and Zn in addition to high Mn levels. Using electron microprobe analysis, synchrotron X-ray diffraction and X-ray absorption spectroscopy, we identified poorly crystalline birnessite (δ-MnO2) as the dominant Mn oxide in the Mn layers, present as coatings covering and cementing quartz grains. With geochemical modelling we found that the environmental conditions at the site were not favourable for chemical oxidation of Mn(II), and thus we performed 16S rDNA sequencing to isolate the bacterial strains present in the Mn layers. Bacterial phyla present in the Mn layers belonged to Firmicutes, Actinobacteria and Proteobacteria, and from these phyla we isolated six strains of Mn(II) oxidizing bacteria and confirmed their ability to oxidise Mn(II) in the laboratory. The biogenic Mn oxide layers act as a sink for metals and the bioavailability of these metals was much lower in the Mn layers than in adjacent layers, reflecting their preferential sorption to the biogenic Mn oxide. In this presentation we will report our findings, concluding that the formation of natural biogenic poorly crystalline birnessite can occur at acidic pH, resulting in the formation of a biogeochemical barrier which, in turn, can control the mobility and bioavailability of heavy metals in acidic soil environments.

  17. Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same

    DOEpatents

    Wrenn, Jr., George E.; Holcombe, Jr., Cressie E.

    1988-01-01

    A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

  18. Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same

    DOEpatents

    Wrenn, G.E. Jr.; Holcombe, C.E. Jr.

    1988-09-13

    A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

  19. Molecular orbital imaging of cobalt phthalocyanine on native oxidized copper layers using STM.

    PubMed

    Guo, Qinmin; Huang, Min; Qin, Zhihui; Cao, Gengyu

    2012-07-01

    To observe molecular orbitals using scanning tunneling microscopy, well-ordered oxidized layers on Cu(001) were fabricated to screen the individual adsorbed cobalt phthalocyanine (CoPc) molecules from the electronic influence of the metal surface. Scanning tunneling microscope images of the molecule on this oxidized layer show similarities to the orbital distribution of the free molecule. The good match between the differential conductance mapping images and the calculated charge distribution at energy levels corresponding to the frontier orbitals of CoPc provides more evidence of the screening of the oxidized layer from interactions between the metal surface and supported molecules. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Improving the oxidation resistance of 316L stainless steel in simulated pressurized water reactor primary water by electropolishing treatment

    NASA Astrophysics Data System (ADS)

    Han, Guangdong; Lu, Zhanpeng; Ru, Xiangkun; Chen, Junjie; Xiao, Qian; Tian, Yongwu

    2015-12-01

    The oxidation behavior of 316L stainless steel specimens after emery paper grounding, mechanical polishing, and electropolishing were investigated in simulated pressurized water reactor primary water at 310 °C for 120 and 500 h. Electropolishing afforded improved oxidation resistance especially during the early immersion stages. Duplex oxide films comprising a coarse Fe-rich outer layer and a fine Cr-rich inner layer formed on all specimens after 500 h of immersion. Only a compact layer was observed on the electropolished specimen after 120 h of immersion. The enrichment of chromium in the electropolished layer contributed to the passivity and protectiveness of the specimen.

  1. Conversion coatings prepared or treated with calcium hydroxide solutions

    NASA Technical Reports Server (NTRS)

    Maxey, Jason (Inventor); Nelson, Carl (Inventor); Eylem, Cahit (Inventor); Minevski, Zoran (Inventor); Clarke, Eric (Inventor)

    2002-01-01

    A conversion coating process that forms a stable and corrosion-resistant oxide layer on metal or metal oxide substrates or layers. Particularly, the conversion coating process involves contacting the metal or metal oxide substrate or layer with the aqueous calcium hydroxide solutions in order to convert the surface of the substrate to a stable metal oxide layer or coating. According to the present invention, the calcium hydroxide solution is prepared by removing carbon dioxide from water or an aqueous solution before introducing the calcium hydroxide. In this manner, formation of calcium carbonate particles is avoided and the porosity of the conversion coating produced by the calcium hydroxide solution is reduced to below about 1%.

  2. Fully integrated and encapsulated micro-fabricated vacuum diode and method of manufacturing same

    DOEpatents

    Resnick, Paul J.; Langlois, Eric

    2015-12-01

    Disclosed is an encapsulated micro-diode and a method for producing same. The method comprises forming a plurality columns in the substrate with a respective tip disposed at a first end of the column, the tip defining a cathode of the diode; disposing a sacrificial oxide layer on the substrate, plurality of columns and respective tips; forming respective trenches in the sacrificial oxide layer around the columns; forming an opening in the sacrificial oxide layer to expose a portion of the tips; depositing a conductive material in of the opening and on a surface of the substrate to form an anode of the diode; and removing the sacrificial oxide layer.

  3. Method of manufacturing a fully integrated and encapsulated micro-fabricated vacuum diode

    DOEpatents

    Resnick, Paul J.; Langlois, Eric

    2014-08-26

    Disclosed is an encapsulated micro-diode and a method for producing same. The method comprises forming a plurality columns in the substrate with a respective tip disposed at a first end of the column, the tip defining a cathode of the diode; disposing a sacrificial oxide layer on the substrate, plurality of columns and respective tips; forming respective trenches in the sacrificial oxide layer around the columns; forming an opening in the sacrificial oxide layer to expose a portion of the tips; depositing a conductive material in of the opening and on a surface of the substrate to form an anode of the diode; and removing the sacrificial oxide layer.

  4. Observations on the oxidation of Mn-modified Ni-base Haynes 230 alloy under SOFC exposure conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Z Gary; Xia, Gordon; Stevenson, Jeffry W.

    2005-07-01

    The commercial Ni-base Haynes 230 alloy (Ni-Cr-Mo-W-Mn) was modified with two increased levels of Mn (1 and 2 wt per cent) and evaluated for its oxidation resistance under simulated SOFC interconnect exposure conditions. Oxidation rate, oxide morphology, oxide conductivity and thermal expansion were measured and compared with commercial Haynes 230. It was observed that additions of higher levels of Mn to the bulk alloy facilitated the formation of a bi-layered oxide scale that was comprised of an outer M3O4 (M=Mn, Cr, Ni) spinel-rich layer at the oxide – gas interface over a Cr2O3-rich sub-layer at the metal – oxide interface.more » The modified alloys showed higher oxidation rates and the formation of thicker oxide scales compared to the base alloy. The formation of a spinel-rich top layer improved the scale conductivity, especially during the early stages of the oxidation, but the higher scale growth rate resulted in an increase in the area-specific electrical resistance over time. Due to their face-centered cubic crystal structure, both commercial and modified alloys demonstrated a coefficient of thermal expansion that was higher than that of typical anode-supported and electrolyte-supported SOFCs.« less

  5. Plasma electrolytic oxidation of Titanium Aluminides

    NASA Astrophysics Data System (ADS)

    Morgenstern, R.; Sieber, M.; Grund, T.; Lampke, T.; Wielage, B.

    2016-03-01

    Due to their outstanding specific mechanical and high-temperature properties, titanium aluminides exhibit a high potential for lightweight components exposed to high temperatures. However, their application is limited through their low wear resistance and the increasing high-temperature oxidation starting from about 750 °C. By the use of oxide ceramic coatings, these constraints can be set aside and the possible applications of titanium aluminides can be extended. The plasma electrolytic oxidation (PEO) represents a process for the generation of oxide ceramic conversion coatings with high thickness. The current work aims at the clarification of different electrolyte components’ influences on the oxide layer evolution on alloy TNM-B1 (Ti43.5Al4Nb1Mo0.1B) and the creation of compact and wear resistant coatings. Model experiments were applied using a ramp-wise increase of the anodic potential in order to show the influence of electrolyte components on the discharge initiation and the early stage of the oxide layer growth. The production of PEO layers with technically relevant thicknesses close to 100 μm was conducted in alkaline electrolytes with varying amounts of Na2SiO3·5H2O and K4P2O7 under symmetrically pulsed current conditions. Coating properties were evaluated with regard to morphology, chemical composition, hardness and wear resistance. The addition of phosphates and silicates leads to an increasing substrate passivation and the growth of compact oxide layers with higher thicknesses. Optimal electrolyte compositions for maximum coating hardness and thickness were identified by statistical analysis. Under these conditions, a homogeneous inner layer with low porosity can be achieved. The frictional wear behavior of the compact coating layer is superior to a hard anodized layer on aluminum.

  6. Computational aspects of unsteady flows

    NASA Technical Reports Server (NTRS)

    Cebeci, T.; Carr, L. W.; Khattab, A. A.; Schimke, S. M.

    1985-01-01

    The calculation of unsteady flows and the development of numerical methods for solving unsteady boundary layer equations and their application to the flows around important configurations such as oscillating airfoils are presented. A brief review of recent work is provided with emphasis on the need for numerical methods which can overcome possible problems associated with flow reversal and separation. The zig-zag and characteristic box schemes are described in this context, and when embodied in a method which permits interaction between solutions of inviscid and viscous equations, the characteristic box scheme is shown to avoid the singularity associated with boundary layer equations and prescribed pressure gradient. Calculations were performed for a cylinder started impulsively from rest and oscillating airfoils. The results are presented and discussed. It is conlcuded that turbulence models based on an algebraic specification of eddy viscosity can be adequate, that location of translation is important to the calculation of the location of flow separation and, therefore, to the overall lift of an oscillating airfoil.

  7. Collector-up aluminum gallium arsenide/gallium arsenide heterojunction bipolar transistors using oxidized aluminum arsenide for current confinement

    NASA Astrophysics Data System (ADS)

    Massengale, Alan Ross

    1998-12-01

    The discovery in 1990 that the wet thermal oxidation of AlAs can create a stable native oxide has added a new constituent, AlAs-oxide, to the AlGaAs/GaAs materials system. Native oxides of high Al mole-fraction AlGaAs are being used to confine electrical and/or optical fields in many types of electronic and optoelectronic structures with very promising results. Among these devices are collector-up heterojunction bipolar transistors (HBTs). Collector-up HBTs offer a means to reduce base-collector capacitance relative to their emitter-up counterparts, and thus to improve device performance. A novel method for fabricating collector-up AlGaAs/GaAs HBTs where an AlAs layer is inserted into the emitter layer and is oxidized in water vapor at 450sp°C has been developed. The resulting AlAs-oxide serves as a current confining layer that constricts collector current flow to the intrinsic portion of the device. Compared to previous methods of fabricating these devices, the process of converting AlAs into an insulator requires only one growth, and does not suffer from implant damage in the base. Because the lateral oxidation of AlAs is a process that proceeds at rates of microns per minute, one of the major challenges facing its implementation is the ability to accurately control the oxidation rate over the wafer, and from one wafer to the next. In the course of work on the oxidation of AlAs, a method to lithographically form lateral oxidation stop layers has been achieved. This technique utilizes impurity induced layer disordering (IILD) in heavily Si-doped buried planes, combined with selective surface patterning and thermal annealing, to create a lateral variation in the Al mole-fraction of the layer to be oxidized.

  8. Thin film photovoltaic cells having increased durability and operating life and method for making same

    DOEpatents

    Barnett, Allen M.; Masi, James V.; Hall, Robert B.

    1980-12-16

    A solar cell having a copper-bearing absorber is provided with a composite transparent encapsulating layer specifically designed to prevent oxidation of the copper sulfide. In a preferred embodiment, the absorber is a layer of copper sulfide and the composite layer comprises a thin layer of copper oxide formed on the copper sulfide and a layer of encapsulating glass formed on the oxide. It is anticipated that such devices, when exposed to normal operating conditions of various terrestrial applications, can be maintained at energy conversion efficiencies greater than one-half the original conversion efficiency for periods as long as thirty years.

  9. Use of chemical mechanical polishing in micromachining

    DOEpatents

    Nasby, R.D.; Hetherington, D.L.; Sniegowski, J.J.; McWhorter, P.J.; Apblett, C.A.

    1998-09-08

    A process for removing topography effects during fabrication of micromachines. A sacrificial oxide layer is deposited over a level containing functional elements with etched valleys between the elements such that the sacrificial layer has sufficient thickness to fill the valleys and extend in thickness upwards to the extent that the lowest point on the upper surface of the oxide layer is at least as high as the top surface of the functional elements in the covered level. The sacrificial oxide layer is then polished down and planarized by chemical-mechanical polishing. Another layer of functional elements is then formed upon this new planarized surface. 4 figs.

  10. Influences of urea and sodium nitrite on surface coating of plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Yeh, Shang-Chun; Tsai, Dah-Shyang; Guan, Sheng-Yong; Chou, Chen-Chia

    2015-11-01

    Urea and sodium nitrite are generally viewed as nitridation additives in the electrolyte for plasma electrolytic oxidation (PEO) of aluminum alloys. We study the influences of these two convenient chemicals in presence of sodium aluminate and find very different effects on film growth. Urea addition enhances the nitrogen content of PEO layer, diminishes the layer thickness, increases the porosity, interferes with the α-alumina formation, and promotes precipitation in the electrolyte. Hence, the electrolytic urea content ought to be maintained less than 45 g dm-3. On the other hand, sodium nitrite behaves like an oxidation additive, more than a nitridation additive. NaNO2 addition effectively introduces nitrogen in the PEO layer at low concentration, yet the nitrogen content of oxide layer decreases with increasing NaNO2 concentration. The effects of NaNO2, such as increasing layer thickness, reducing porosity, promoting α-alumina formation are attributed to oxidation enhancement, not because of nitridation.

  11. Materials science and integration bases for fabrication of (BaxSr1-x)TiO3 thin film capacitors with layered Cu-based electrodes

    NASA Astrophysics Data System (ADS)

    Fan, W.; Kabius, B.; Hiller, J. M.; Saha, S.; Carlisle, J. A.; Auciello, O.; Chang, R. P. H.; Ramesh, R.

    2003-11-01

    The synthesis and fundamental material properties of layered TiAl/Cu/Ta electrodes were investigated to achieve the integration of Cu electrodes with high-dielectric constant (κ) oxide thin films for application to the fabrication of high-frequency devices. The Ta layer is an excellent diffusion barrier to inhibit deleterious Cu diffusion into the Si substrate, while the TiAl layer provides an excellent barrier against oxygen diffusion into the Cu layer to inhibit Cu oxidation during the growth of the high-κ layer in an oxygen atmosphere. Polycrystalline (BaxSr1-x)TiO3 (BST) thin films were grown on the Cu-based bottom electrode by rf magnetron sputtering at temperatures in the range 400-600 °C in oxygen, to investigate the performance of BST/Cu-based capacitors. Characterization of the Cu-based layered structure using surface analytical methods showed that two amorphous oxide layers were formed on both sides of the TiAl barrier, such that the oxide layer on the free surface of the TiAl layer correlates with TiAlOx, while the oxide layer at the TiAl/Cu interface is an Al2O3-rich layer. This double amorphous barrier layer structure effectively prevents oxygen penetration towards the underlying Cu and Ta layers. The TiAlOx interfacial layer, which has a relatively low dielectric constant compared with BST, reduced the total capacitance of the BST thin film capacitors. In addition, the layered electrode-oxide interface roughening observed during the growth of BST films at high temperature, due to copper grain growth, resulted in large dielectric loss on the fabricated BST capacitors. These problems were solved by growing the BST layer at 450 °C followed by a rapid thermal annealing at 700 °C. This process significantly reduced the thickness of the TiAlOx layer and interface roughness resulting in BST capacitors exhibiting properties suitable for the fabrication of high-performance high-frequency devices. In summary, relatively high dielectric constant (280), low dielectric loss (0.007), and low leakage current (<2×10-8 A/cm2 at 100 kV/cm) were achieved for BST thin film capacitors with Cu-based electrodes.

  12. High resolution structural characterization of giant magnetoresistance structures containing a nano-oxide layer

    NASA Astrophysics Data System (ADS)

    You, C. Y.; Cerezo, A.; Clifton, P. H.; Folks, L.; Carey, M. J.; Petford-Long, A. K.

    2007-07-01

    The microstructure and chemistry of a current-perpendicular-to-plane giant magnetoresistance structure containing a nano-oxide layer (NOL) have been studied using a combination of high resolution transmission electron microscopy and three-dimensional atom probe analysis. It was found that the morphology of the NOL changes from a planar layer to discrete particles on annealing, indicating the dominance of surface energy on the morphology evolution. Direct evidence was obtained for significant Mn diffusion from the IrMn antiferromagnetic layer and partitioning to the oxide region during annealing.

  13. Method of making low leakage N-channel SOS transistors utilizing positive photoresist masking techniques

    NASA Technical Reports Server (NTRS)

    Policastro, Steven G. (Inventor); Woo, Dae-Shik (Inventor)

    1983-01-01

    A self-aligned method of implanting the edges of NMOS/SOS transistors is described. The method entails covering the silicon islands with a thick oxide layer, applying a protective photoresist layer over the thick oxide layer, and exposing the photoresist layer from the underside of the sapphire substrate thereby using the island as an exposure mask. Only the photoresist on the islands' edges will be exposed. The exposed photoresist is then removed and the thick oxide is removed from the islands edges which are then implanted.

  14. Oxidation mechanism of T91 steel in liquid lead-bismuth eutectic: with consideration of internal oxidation

    PubMed Central

    Ye, Zhongfei; Wang, Pei; Dong, Hong; Li, Dianzhong; Zhang, Yutuo; Li, Yiyi

    2016-01-01

    Clarification of the microscopic events that occur during oxidation is of great importance for understanding and consequently controlling the oxidation process. In this study the oxidation product formed on T91 ferritic/martensitic steel in oxygen saturated liquid lead-bismuth eutectic (LBE) at 823 K was characterized at the nanoscale using focused-ion beam and transmission electron microscope. An internal oxidation zone (IOZ) under the duplex oxide scale has been confirmed and characterized systematically. Through the microscopic characterization of the IOZ and the inner oxide layer, the micron-scale and nano-scale diffusion of Cr during the oxidation in LBE has been determined for the first time. The micron-scale diffusion of Cr ensures the continuous advancement of IOZ and inner oxide layer, and nano-scale diffusion of Cr gives rise to the typical appearance of the IOZ. Finally, a refined oxidation mechanism including the internal oxidation and the transformation of IOZ to inner oxide layer is proposed based on the discussion. The proposed oxidation mechanism succeeds in bridging the gap between the existing models and experimental observations. PMID:27734928

  15. Building blocks for the development of an interface for high-throughput thin layer chromatography/ambient mass spectrometric analysis: a green methodology.

    PubMed

    Cheng, Sy-Chyi; Huang, Min-Zong; Wu, Li-Chieh; Chou, Chih-Chiang; Cheng, Chu-Nian; Jhang, Siou-Sian; Shiea, Jentaie

    2012-07-17

    Interfacing thin layer chromatography (TLC) with ambient mass spectrometry (AMS) has been an important area of analytical chemistry because of its capability to rapidly separate and characterize the chemical compounds. In this study, we have developed a high-throughput TLC-AMS system using building blocks to deal, deliver, and collect the TLC plate through an electrospray-assisted laser desorption ionization (ELDI) source. This is the first demonstration of the use of building blocks to construct and test the TLC-MS interfacing system. With the advantages of being readily available, cheap, reusable, and extremely easy to modify without consuming any material or reagent, the use of building blocks to develop the TLC-AMS interface is undoubtedly a green methodology. The TLC plate delivery system consists of a storage box, plate dealing component, conveyer, light sensor, and plate collecting box. During a TLC-AMS analysis, the TLC plate was sent to the conveyer from a stack of TLC plates placed in the storage box. As the TLC plate passed through the ELDI source, the chemical compounds separated on the plate would be desorbed by laser desorption and subsequently postionized by electrospray ionization. The samples, including a mixture of synthetic dyes and extracts of pharmaceutical drugs, were analyzed to demonstrate the capability of this TLC-ELDI/MS system for high-throughput analysis.

  16. Molecular controlled of quantum nano systems

    NASA Astrophysics Data System (ADS)

    Paltiel, Yossi

    2014-03-01

    A century ago quantum mechanics created a conceptual revolution whose fruits are now seen in almost any aspect of our day-to-day life. Lasers, transistors and other solid state and optical devices represent the core technology of current computers, memory devices and communication systems. However, all these examples do not exploit fully the quantum revolution as they do not take advantage of the coherent wave-like properties of the quantum wave function. Controlled coherent system and devices at ambient temperatures are challenging to realize. We are developing a novel nano tool box with control coupling between the quantum states and the environment. This tool box that combines nano particles with organic molecules enables the integration of quantum properties with classical existing devices at ambient temperatures. The nano particles generate the quantum states while the organic molecules control the coupling and therefore the energy, charge, spin, or quasi particle transfer between the layers. Coherent effects at ambient temperatures can be measured in the strong coupling regime. In the talk I will present our nano tool box and show studies of charge transfer, spin transfer and energy transfer in the hybrid layers as well as collective transfer phenomena. These enable the realization of room temperature operating quantum electro optical devices. For example I will present in details, our recent development of a new type of chiral molecules based magnetless universal memory exploiting selective spin transfer.

  17. Fabrication of Aluminum-Based Thermal Radiation Plate for Thermoelectric Module Using Aluminum Anodic Oxidization and Copper Electroplating.

    PubMed

    Choi, Yi Taek; Bae, Sung Hwa; Son, Injoon; Sohn, Ho Sang; Kim, Kyung Tae; Ju, Young-Wan

    2018-09-01

    In this study, electrolytic etching, anodic oxidation, and copper electroplating were applied to aluminum to produce a plate on which a copper circuit for a thermoelectric module was formed. An oxide film insulating layer was formed on the aluminum through anodic oxidation, and platinum was coated by sputtering to produce conductivity. Finally, copper electroplating was performed directly on the substrate. In this structure, the copper plating layer on the insulating layer served as a conductive layer in the circuit. The adhesion of the copper plating layer was improved by electrolytic etching. As a result, the thermoelectric module fabricated in this study showed excellent adhesion and good insulation characteristics. It is expected that our findings can contribute to the manufacture of plates applicable to thermoelectric modules with high dissipation performance.

  18. Method of making a ceramic with preferential oxygen reactive layer

    NASA Technical Reports Server (NTRS)

    Wang, Hongyu (Inventor); Luthra, Krishan Lal (Inventor)

    2003-01-01

    A method of forming an article. The method comprises forming a silicon-based substrate that is oxidizable by reaction with an oxidant to form at least one gaseous product and applying an intermediate layer/coating onto the substrate, wherein the intermediate layer/coating is oxidizable to a nongaseous product by reaction with the oxidant in preference to reaction of the silicon-containing substrate with the oxidant.

  19. Deformation localization forming and destruction over a decompression zone.

    NASA Astrophysics Data System (ADS)

    Turuntaev, Sergey; Kondratyev, Viktor

    2017-04-01

    Development of a hydrocarbon field is accompanied by deformation processes in the surrounding rocks. In particular, a subsidence of oil strata cap above a decompression zone near producing wells causes changes in the stress-strain state of the upper rocks. It was shown previously, that the stress spatial changes form a kind of arch structures. The shear displacements along the arch surfaces can occur, and these displacements can cause a collapse of casing or even man-made earthquakes. We present here the results of laboratory simulation of such a phenomenon. A laboratory setup was made in the form of narrow box 30x30x5 cm3 in size with a hole (0.6 cm in diameter) in its bottom. As a model of porous strata, a foam-rubber layer of 4.0 -10.5cm in thick was used, which was saturated with water. The foam was sealed to the bottom of the box; the upper part of the box was filled by the dry sand. The sand was separated from the foam by thin polyethylene film to prevent the sand wetting. For visualization the sand deformations, the front wall of the box was made transparent and the sand was marked by horizontal strips of the colored sand. In the experiments, the water was pumped out the foam layer through the bottom hole. After pumping-out 50 ml of the water, the localization of sand deformations above the sink hole became noticeable; after pumping-out 100 ml of the water, the localized deformation forms an arch. At the same time, there was no displacement on the upper surface of the sand. To amplify the localization effect, the foam was additionally squeezed locally. In this case, three surfaces of the localized deformation appeared in the sand. The vertical displacements decreased essentially with height, but they reached the upper layers of the sand. An influence of vibration on arches forming was investigated. Several types of vibrators were used, they were placed inside the sand or on the front side of the box. Resulting accelerations were measured by the accelerometers placed into the sand. It was found, that if the amplitudes of the accelerations are equal or greater than 0.37g, the localized deformation did not appear near the vibrator location, but arose at some distance from it. If the vibration amplitudes exceed the threshold value 0.39g everywhere in the sand, the deformation localization did not occur. When the vibrator is displaced from the center of the model, the localization vanished near its position.

  20. Influence of the domain structure of nano-oxide layers on the transport properties of specular spin valves

    NASA Astrophysics Data System (ADS)

    Ventura, J.; Sousa, J. B.; Veloso, A.; Freitas, P. P.

    2007-05-01

    Specular spin valves show enhanced giant magnetoresistive ratio when compared to other simpler, spin valve structures as a result of specular reflection in nano-oxide layers (NOLs) formed by the partial oxidation of the CoFe pinned and free layers. The oxides forming the NOL were recently shown to order antiferromagnetically below T ˜175K. Here we study the training effect in MnIr /CoFe/NOL/CoFe/Cu/CoFe/NOL specular spin valves at low temperatures (15K). We observed that the training effect is related to the nano-oxide layer antiferromagnet ordering and to the evolution of the corresponding domain structure with the number of cycles performed. This allowed us to study the influence of the NOL domain structure on the magnetotransport of specular spin valves.

  1. TEM and AES investigations of the natural surface nano-oxide layer of an AISI 316L stainless steel microfibre.

    PubMed

    Ramachandran, Dhanya; Egoavil, Ricardo; Crabbe, Amandine; Hauffman, Tom; Abakumov, Artem; Verbeeck, Johan; Vandendael, Isabelle; Terryn, Herman; Schryvers, Dominique

    2016-11-01

    The chemical composition, nanostructure and electronic structure of nanosized oxide scales naturally formed on the surface of AISI 316L stainless steel microfibres used for strengthening of composite materials have been characterised using a combination of scanning and transmission electron microscopy with energy-dispersive X-ray, electron energy loss and Auger spectroscopy. The analysis reveals the presence of three sublayers within the total surface oxide scale of 5.0-6.7 nm thick: an outer oxide layer rich in a mixture of FeO.Fe 2 O 3 , an intermediate layer rich in Cr 2 O 3 with a mixture of FeO.Fe 2 O 3 and an inner oxide layer rich in nickel. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  2. Oxidation of mercury by bromine in the subtropical Pacific free troposphere

    NASA Astrophysics Data System (ADS)

    Gratz, L. E.; Ambrose, J. L.; Jaffe, D. A.; Shah, V.; Jaeglé, L.; Stutz, J.; Festa, J.; Spolaor, M.; Tsai, C.; Selin, N. E.; Song, S.; Zhou, X.; Weinheimer, A. J.; Knapp, D. J.; Montzka, D. D.; Flocke, F. M.; Campos, T. L.; Apel, E.; Hornbrook, R.; Blake, N. J.; Hall, S.; Tyndall, G. S.; Reeves, M.; Stechman, D.; Stell, M.

    2015-12-01

    Mercury is a global toxin that can be introduced to ecosystems through atmospheric deposition. Mercury oxidation is thought to occur in the free troposphere by bromine radicals, but direct observational evidence for this process is currently unavailable. During the 2013 Nitrogen, Oxidants, Mercury and Aerosol Distributions, Sources and Sinks campaign, we measured enhanced oxidized mercury and bromine monoxide in a free tropospheric air mass over Texas. We use trace gas measurements, air mass back trajectories, and a chemical box model to confirm the origin and chemical history of the sampled air mass. We find the presence of elevated oxidized mercury to be consistent with oxidation of elemental mercury by bromine atoms in this subsiding upper tropospheric air mass within the subtropical Pacific High, where dry atmospheric conditions are conducive to oxidized mercury accumulation. Our results support the role of bromine as the dominant oxidant of mercury in the upper troposphere.

  3. Method of protecting the surface of a substrate. [by applying aluminide coating

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A. (Inventor); Grisaffe, S. J.

    1974-01-01

    The surface of a metallic base system is initially coated with a metallic alloy layer that is ductile and oxidation resistant. An aluminide coating is then applied to the metallic alloy layer. The chemistry of the metallic alloy layer is such that the oxidation resistance of the subsequently aluminized outermost layer is not seriously degraded.

  4. Charge Transport in Low-Temperature Processed Thin-Film Transistors Based on Indium Oxide/Zinc Oxide Heterostructures.

    PubMed

    Krausmann, Jan; Sanctis, Shawn; Engstler, Jörg; Luysberg, Martina; Bruns, Michael; Schneider, Jörg J

    2018-06-20

    The influence of the composition within multilayered heterostructure oxide semiconductors has a critical impact on the performance of thin-film transistor (TFT) devices. The heterostructures, comprising alternating polycrystalline indium oxide and zinc oxide layers, are fabricated by a facile atomic layer deposition (ALD) process, enabling the tuning of its electrical properties by precisely controlling the thickness of the individual layers. This subsequently results in enhanced TFT performance for the optimized stacked architecture after mild thermal annealing at temperatures as low as 200 °C. Superior transistor characteristics, resulting in an average field-effect mobility (μ sat. ) of 9.3 cm 2 V -1 s -1 ( W/ L = 500), an on/off ratio ( I on / I off ) of 5.3 × 10 9 , and a subthreshold swing of 162 mV dec -1 , combined with excellent long-term and bias stress stability are thus demonstrated. Moreover, the inherent semiconducting mechanism in such multilayered heterostructures can be conveniently tuned by controlling the thickness of the individual layers. Herein, devices comprising a higher In 2 O 3 /ZnO ratio, based on individual layer thicknesses, are predominantly governed by percolation conduction with temperature-independent charge carrier mobility. Careful adjustment of the individual oxide layer thicknesses in devices composed of stacked layers plays a vital role in the reduction of trap states, both interfacial and bulk, which consequently deteriorates the overall device performance. The findings enable an improved understanding of the correlation between TFT performance and the respective thin-film composition in ALD-based heterostructure oxides.

  5. Method for making an aluminum or copper substrate panel for selective absorption of solar energy

    NASA Technical Reports Server (NTRS)

    Roberts, M. L.; Sharpe, M. H.; Krupnick, A. C. (Inventor)

    1978-01-01

    A panel is described for selectively absorbing solar energy comprising an aluminum substrate. A zinc layer was covered by a layer of nickel and an outer layer of solar energy absorbing nickel oxide or a copper substrate with a nickel layer. A layer of solar energy absorbing nickel oxide distal from the copper substrate was included. A method for making these panels is disclosed.

  6. A box model study on photochemical interactions between VOCs and reactive halogen species in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Toyota, K.; Kanaya, Y.; Takahashi, M.; Akimoto, H.

    2004-09-01

    A new chemical scheme is developed for the multiphase photochemical box model SEAMAC (size-SEgregated Aerosol model for Marine Air Chemistry) to investigate photochemical interactions between volatile organic compounds (VOCs) and reactive halogen species in the marine boundary layer (MBL). Based primarily on critically evaluated kinetic and photochemical rate parameters as well as a protocol for chemical mechanism development, the new scheme has achieved a near-explicit description of oxidative degradation of up to C3-hydrocarbons (CH4, C2H6, C3H8, C2H4, C3H6, and C2H2) initiated by reactions with OH radicals, Cl- and Br-atoms, and O3. Rate constants and product yields for reactions involving halogen species are taken from the literature where available, but the majority of them need to be estimated. In particular, addition reactions of halogen atoms with alkenes will result in forming halogenated organic intermediates, whose photochemical loss rates are carefully evaluated in the present work. Model calculations with the new chemical scheme reveal that the oceanic emissions of acetaldehyde (CH3CHO) and alkenes (especially C3H6) are important factors for regulating reactive halogen chemistry in the MBL by promoting the conversion of Br atoms into HBr or more stable brominated intermediates in the organic form. The latter include brominated hydroperoxides, bromoacetaldehyde, and bromoacetone, which sequester bromine from a reactive inorganic pool. The total mixing ratio of brominated organic species thus produced is likely to reach 10-20% or more of that of inorganic gaseous bromine species over wide regions over the ocean. The reaction between Br atoms and C2H2 is shown to be unimportant for determining the degree of bromine activation in the remote MBL. These results imply that reactive halogen chemistry can mediate a link between the oceanic emissions of VOCs and the behaviors of compounds that are sensitive to halogen chemistry such as dimethyl sulfide, NOx, and O3 in the MBL.

  7. A perspective of laminar-flow control. [aircraft energy efficiency program

    NASA Technical Reports Server (NTRS)

    Braslow, A. L.; Muraca, R. J.

    1978-01-01

    A historical review of the development of laminar flow control technology is presented with reference to active laminar boundary-layer control through suction, the use of multiple suction slots, wind-tunnel tests, continuous suction, and spanwise contamination. The ACEE laminar flow control program is outlined noting the development of three-dimensional boundary-layer codes, cruise-noise prediction techniques, airfoil development, and leading-edge region cleaning. Attention is given to glove flight tests and the fabrication and testing of wing box designs.

  8. INERT GAS SHIELD FOR WELDING

    DOEpatents

    Jones, S.O.; Daly, F.V.

    1958-10-14

    S>An inert gas shield is presented for arc-welding materials such as zirconium that tend to oxidize rapidly in air. The device comprises a rectangular metal box into which the welding electrode is introduced through a rubber diaphragm to provide flexibility. The front of the box is provided with a wlndow having a small hole through which flller metal is introduced. The box is supplied with an inert gas to exclude the atmosphere, and with cooling water to promote the solidification of the weld while in tbe inert atmosphere. A separate water-cooled copper backing bar is provided underneath the joint to be welded to contain the melt-through at the root of the joint, shielding the root of the joint with its own supply of inert gas and cooling the deposited weld metal. This device facilitates the welding of large workpieces of zirconium frequently encountered in reactor construction.

  9. The asymptotic structure of nonpremixed methane-air flames with oxidizer leakage of order unity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seshadri, K.; Ilincic, N.

    1995-04-01

    The asymptotic structure of nonpremixed methane-air flames is analyzed using a reduced three-step mechanism. The three global steps of this reduced mechanism are similar to those used in a previous analysis. The rates of the three steps are related to the rates of the elementary reactions appearing in the C{sub 1}-mechanism for oxidation of methane. The present asymptotic analysis differs from the previous analysis in that oxygen is presumed to leak from the reaction zone to the leading order. Chemical reactions are presumed to occur in three asymptotically thin layers: the fuel-consumption layer, the nonequilibrium layer for the water-gas shiftmore » reaction and the oxidation layer. The structure of the fuel-consumption layer is presumed to be identical to that analyzed previously and in this layer the fuel reacts with the radicals to form primarily CO and H{sub 2} and some CO{sub 2} and H{sub 2}O In the oxidation layer the CO and H{sub 2} formed in the fuel-consumption layer are oxidized to CO{sub 2} and H{sub 2}O. The present analysis of the oxidation layer is simpler than the previous analysis because the variation in the values of the concentration of oxygen can be neglected to the leading order and this is a better representation of the flame structure in the vicinity of the critical conditions of extinction. The predictions of the critical conditions of extinction of the present model are compared with the predictions of previous models. It is anticipated that the present simple model can be easily extended to more complex problems such as pollutant formation in flames or chemical inhibition of flames.« less

  10. Synergistic approach to high-performance oxide thin film transistors using a bilayer channel architecture.

    PubMed

    Yu, Xinge; Zhou, Nanjia; Smith, Jeremy; Lin, Hui; Stallings, Katie; Yu, Junsheng; Marks, Tobin J; Facchetti, Antonio

    2013-08-28

    We report here a bilayer metal oxide thin film transistor concept (bMO TFT) where the channel has the structure: dielectric/semiconducting indium oxide (In2O3) layer/semiconducting indium gallium oxide (IGO) layer. Both semiconducting layers are grown from solution via a low-temperature combustion process. The TFT mobilities of bottom-gate/top-contact bMO TFTs processed at T = 250 °C are ~5tmex larger (~2.6 cm(2)/(V s)) than those of single-layer IGO TFTs (~0.5 cm(2)/(V s)), reaching values comparable to single-layer combustion-processed In2O3 TFTs (~3.2 cm(2)/(V s)). More importantly, and unlike single-layer In2O3 TFTs, the threshold voltage of the bMO TFTs is ~0.0 V, and the current on/off ratio is significantly enhanced to ~1 × 10(8) (vs ~1 × 10(4) for In2O3). The microstructure and morphology of the In2O3/IGO bilayers are analyzed by X-ray diffraction, atomic force microscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy, revealing the polycrystalline nature of the In2O3 layer and the amorphous nature of the IGO layer. This work demonstrates that solution-processed metal oxides can be implemented in bilayer TFT architectures with significantly enhanced performance.

  11. High temperature oxidation of alumina forming cast austenitic stainless steels within an environment of pure steam

    NASA Astrophysics Data System (ADS)

    Prenzlow, Elmer A.

    Steam cracking of hydrocarbons in the petrochemical industry is a multibillion dollar industry. The processes performed in these plants create byproducts that negatively affect the integrity of stainless steel piping through high temperature corrosion. Alloys used presently in industry rely on the formation of chromium oxide (chromia) as a protective layer between the bulk metal pipe and chemical byproducts. However, chromia can become susceptible to attack from aggressive species such as carbon, water vapor, and sulfur compounds, thus creating a need for a better protection method. A new series of austenitic stainless steels have been developed in recent years that, rather than forming chromia, create a protective layer of aluminum oxide (alumina) under oxidative conditions. These alloys have high nickel content for the stabilization of the austenitic phase, and a more thermodynamically stable oxide layer relative to the traditional chromia formers. Consequently, alumina forming alloys have been proposed as replacements for chromia forming alloys in the petrochemical industry. General oxidation testing has been performed on alumina forming alloys under dry and 10% water vapor conditions. However, oxidation conditions in industry resemble a 100% steam environment. Therefore, test methods to mimic such conditions are needed so that alloys can be tested and developed further for these applications. Four alloys with aluminum contents ranging from 2.6 to 3.9 wt% were cut from centrifugally cast pipes and subjected to oxidation in an environment of pure steam for up to 30 hours, at temperatures of 800 °C and 950 °C. Samples were analyzed using Raman, SEM, and EDS and showed a continuous alumina layer free of cracks. The alumina layer thickness increased with time. Additionally, larger thicknesses were observed in samples oxidized at 950 °C from those of 800 °C. Thickness measurements were used to calculate parabolic and non-parabolic oxidation rate constants. Samples were compared using calculated parabolic and modified parabolic rates of oxidation. Plots for the prediction of oxide layer thickness were generated both for the Wagner model of parabolic oxidation, and an experimentally determined modification to said model. Oxide scale thickness as formed in pure steam was shown to be related to the aluminum content of the alloy and the temperature and time of exposure. Further testing of alumina forming stainless steels in other concentrations of steam would allow for the determination of steam's effect on alumina formation kinetics. In addition, tests at additional temperatures between 800 and 950 °C would allow for the calculation of activation energies and full understanding of the oxide layer. Finally, the analysis of alumina layer thickness effects on coking performance in a petrochemical application would allow for the potential transition of these alloys into the commercial market.

  12. Native oxide formation on pentagonal copper nanowires: A TEM study

    NASA Astrophysics Data System (ADS)

    Hajimammadov, Rashad; Mohl, Melinda; Kordas, Krisztian

    2018-06-01

    Hydrothermally synthesized copper nanowires were allowed to oxidize in air at room temperature and 30% constant humidity for the period of 22 days. The growth of native oxide layer was followed up by high-resolution transmission electron microscopy and diffraction to reveal and understand the kinetics of the oxidation process. Copper oxides appear in the form of differently oriented crystalline phases around the metallic core as a shell-like layer (Cu2O) and as nanoscopic islands (CuO) on the top of that. Time dependent oxide thickness data suggests that oxidation follows the field-assisted growth model at the beginning of the process, as practically immediately an oxide layer of ∼2.8 nm thickness develops on the surface. However, after this initial rapid growth, the local field attenuates and the classical parabolic diffusion limited growth plays the main role in the oxidation. Because of the single crystal facets on the side surface of penta-twinned Cu nanowires, the oxidation rate in the diffusion limited regime is lower than in polycrystalline films.

  13. Low-damage direct patterning of silicon oxide mask by mechanical processing

    PubMed Central

    2014-01-01

    To realize the nanofabrication of silicon surfaces using atomic force microscopy (AFM), we investigated the etching of mechanically processed oxide masks using potassium hydroxide (KOH) solution. The dependence of the KOH solution etching rate on the load and scanning density of the mechanical pre-processing was evaluated. Particular load ranges were found to increase the etching rate, and the silicon etching rate also increased with removal of the natural oxide layer by diamond tip sliding. In contrast, the local oxide pattern formed (due to mechanochemical reaction of the silicon) by tip sliding at higher load was found to have higher etching resistance than that of unprocessed areas. The profile changes caused by the etching of the mechanically pre-processed areas with the KOH solution were also investigated. First, protuberances were processed by diamond tip sliding at lower and higher stresses than that of the shearing strength. Mechanical processing at low load and scanning density to remove the natural oxide layer was then performed. The KOH solution selectively etched the low load and scanning density processed area first and then etched the unprocessed silicon area. In contrast, the protuberances pre-processed at higher load were hardly etched. The etching resistance of plastic deformed layers was decreased, and their etching rate was increased because of surface damage induced by the pre-processing. These results show that etching depth can be controlled by controlling the etching time through natural oxide layer removal and mechanochemical oxide layer formation. These oxide layer removal and formation processes can be exploited to realize low-damage mask patterns. PMID:24948891

  14. Synthesizing new types of ultrathin 2D metal oxide nanosheets via half-successive ion layer adsorption and reaction

    NASA Astrophysics Data System (ADS)

    Gao, Linjie; Li, Yaguang; Xiao, Mu; Wang, Shufang; Fu, Guangsheng; Wang, Lianzhou

    2017-06-01

    Two-dimensional (2D) metal oxide nanosheets have demonstrated their great potential in a broad range of applications. The existing synthesis strategies are mainly preparing 2D nanosheets from layered and specific transition metal oxides. How to prepare the other types of metal oxides as ultrathin 2D nanosheets remains unsolved, especially for metal oxides containing alkali, alkaline earth metal, and multiple metal elements. Herein, we developed a half-successive ion layer adsorption and reaction (SILAR) method, which could synthesize those types of metal oxides as ultrathin 2D nanosheets. The synthesized 2D metal oxides nanosheets are within 1 nm level thickness and 500 m2 · g-1 level surface area. This method allows us to develop many new types of ultrathin 2D metal oxides nanosheets that have never been prepared before.

  15. Effects of pretreatment processes for Zr electrorefining of oxidized Zircaloy-4 cladding tubes

    NASA Astrophysics Data System (ADS)

    Hwa Lee, Chang; Lee, Yoo Lee; Jeon, Min Ku; Choi, Yong Taek; Kang, Kweon Ho; Park, Geun Il

    2014-06-01

    The effect of pretreatment processes for the Zr electrorefining of oxidized Zircaloy-4 cladding tubes is examined in LiCl-KCl-ZrCl4 molten salts at 500 °C. The cyclic voltammetries reveal that the Zr dissolution kinetics is highly dependent on the thickness of a Zr oxide layer formed at 500 °C under air atmosphere. For the Zircaloy-4 tube covered with a 1 μm thick oxide layer, the Zr dissolution process is initiated from a non-stoichiometric Zr oxide surface through salt treatment at an open circuit potential in the molten salt electrolyte. The Zr dissolution of the samples in the middle range of oxide layer thickness appears to be more effectively derived by the salt treatment coupled with an anodic potential application at an oxidation potential of Zr. A modification of the process scheme offers an applicability of Zr electrorefining for the treatment of oxidized cladding hull wastes.

  16. The oxidation of Inconel-690 alloy at 600 K in air

    NASA Astrophysics Data System (ADS)

    Allen, G. C.; Dyke, J. M.; Harris, S. J.; Morris, A.

    1988-03-01

    The alloy Inconel-690 has been oxidised at 600 K in air for periods varying between 30 s and 120 h and the composition of the oxide layer formed examined by scanning Auger microscopy (SAM), scanning electron microscopy with energy dispersive analysis of X-rays (SEM/EDAX), secondary ion mass spectrometry (SIMS) and X-ray photoelectron spectroscopy (XPS). Analysis of the spectra revealed the formation of a layer of essentially α-Cr 2O 3 at room temperature. Oxidation at 600 K resulted in the formation of a duplex oxide film with a thin outer layer of iron(III) oxide. Beneath this was a mixed chromium, iron, nickel oxide. Following 8 h of oxidation at 600 K the oxide was approximately 10 nm thick but this was found to vary with the physical surface of the underlying alloy which also appeared to affect the relative rates of diffusion of the ionic species during film growth.

  17. New CVD-based method for the growth of high-quality crystalline zinc oxide layers

    NASA Astrophysics Data System (ADS)

    Huber, Florian; Madel, Manfred; Reiser, Anton; Bauer, Sebastian; Thonke, Klaus

    2016-07-01

    High-quality zinc oxide (ZnO) layers were grown using a new chemical vapour deposition (CVD)-based low-cost growth method. The process is characterized by total simplicity, high growth rates, and cheap, less hazardous precursors. To produce elementary zinc vapour, methane (CH4) is used to reduce a ZnO powder. By re-oxidizing the zinc with pure oxygen, highly crystalline ZnO layers were grown on gallium nitride (GaN) layers and on sapphire substrates with an aluminum nitride (AlN) nucleation layer. Using simple CH4 as precursor has the big advantage of good controllability and the avoidance of highly toxic gases like nitrogen oxides. In photoluminescence (PL) measurements the samples show a strong near-band-edge emission and a sharp line width at 5 K. The good crystal quality has been confirmed in high resolution X-ray diffraction (HRXRD) measurements. This new growth method has great potential for industrial large-scale production of high-quality single crystal ZnO layers.

  18. Perform Tests and Document Results and Analysis of Oxide Layer Effects and Comparisons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, E. D.; DelCul, G. D.; Spencer, B. B.

    2014-08-30

    During the initial feasibility test using actual used nuclear fuel (UNF) cladding in FY 2012, an incubation period of 30–45 minutes was observed in the initial dry chlorination. The cladding hull used in the test had been previously oxidized in a dry air oxidation pretreatment prior to removal of the fuel. The cause of this incubation period was attributed to the resistance to chlorination of an oxide layer imparted by the dry oxidation pretreatment on the cladding. Subsequently in 2013, researchers at the Korea Atomic Energy Institute (KAERI) reported on their chlorination study [R1] on ~9-gram samples of unirradiated ZirloTMmore » cladding tubes that had been previously oxidized in air at 500oC for various time periods to impart oxide layers of varying thickness. In early 2014, discussions with Indefinite Delivery, Indefinite Quantity (IDIQ) contracted technical consultants from Westinghouse described their previous development (and patents) [R2] on methods of chemical washing to remove some or all of the hydrous oxide layer imparted on UNF cladding during irradiation in light water reactors (LWRs) . Thus, the Oak Ridge National Laboratory (ORNL) study, described herein, was planned to extend the KAERI study on the effects of anhydrous oxide layers, but on larger ~100-gram samples of unirradiated zirconium alloy cladding tubes, and to investigate the effects of various methods of chemical pretreatment prior to chlorination with 100% chlorine on the average reaction rates and Cl2 usage efficiencies.« less

  19. Heterojunction PbS nanocrystal solar cells with oxide charge-transport layers.

    PubMed

    Hyun, Byung-Ryool; Choi, Joshua J; Seyler, Kyle L; Hanrath, Tobias; Wise, Frank W

    2013-12-23

    Oxides are commonly employed as electron-transport layers in optoelectronic devices based on semiconductor nanocrystals, but are relatively rare as hole-transport layers. We report studies of NiO hole-transport layers in PbS nanocrystal photovoltaic structures. Transient fluorescence experiments are used to verify the relevant energy levels for hole transfer. On the basis of these results, planar heterojunction devices with ZnO as the photoanode and NiO as the photocathode were fabricated and characterized. Solution-processed devices were used to systematically study the dependence on nanocrystal size and achieve conversion efficiency as high as 2.5%. Optical modeling indicates that optimum performance should be obtained with thinner oxide layers than can be produced reliably by solution casting. Room-temperature sputtering allows deposition of oxide layers as thin as 10 nm, which enables optimization of device performance with respect to the thickness of the charge-transport layers. The best devices achieve an open-circuit voltage of 0.72 V and efficiency of 5.3% while eliminating most organic material from the structure and being compatible with tandem structures.

  20. Stabilization of solar films against hi temperature deactivation

    DOEpatents

    Jefferson, Clinton F.

    1984-03-20

    A multi-layer solar energy collector of improved stability comprising: (1) a solar absorptive film consisting essentially of copper oxide, cobalt oxide and manganese oxide; (2) a substrate of quartz, silicate glass or a stainless steel; and (3) an interlayer of platinum, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of platinum to obtain a stable conductor-dielectric tandem.

  1. Transparent Oxide TFTs Fabricated by Atomic Layer Deposition

    DTIC Science & Technology

    2014-04-17

    Transparent Oxide TFTs Fabricated by Atomic Layer Deposition(FA2386-11-1-114052) Yukiharu Uraoka, Nara Institute of Science and Technology Term...2011.5.1-2012.4.30 Purpose and Background: In recent years, the application of zinc oxide (ZnO) thin films as an active channel layer in TFTs has...or other flexible substrates. Higher field-effect mobility of ZnO TFTs than a-Si:H TFTs has been recently demonstrated. However, reliability for

  2. The Nature of Surface Oxides on Corrosion-Resistant Nickel Alloy Covered by Alkaline Water

    PubMed Central

    2010-01-01

    A nickel alloy with high chrome and molybdenum content was found to form a highly resistive and passive oxide layer. The donor density and mobility of ions in the oxide layer has been determined as a function of the electrical potential when alkaline water layers are on the alloy surface in order to account for the relative inertness of the nickel alloy in corrosive environments. PMID:20672134

  3. Growth of oxide exchange bias layers

    DOEpatents

    Chaiken, Alison; Michel, Richard P.

    1998-01-01

    An oxide (NiO, CoO, NiCoO) antiferromagnetic exchange bias layer produced by ion beam sputtering of an oxide target in pure argon (Ar) sputtering gas, with no oxygen gas introduced into the system. Antiferromagnetic oxide layers are used, for example, in magnetoresistive readback heads to shift the hysteresis loops of ferromagnetic films away from the zero field axis. For example, NiO exchange bia layers have been fabricated using ion beam sputtering of an NiO target using Ar ions, with the substrate temperature at 200.degree. C., the ion beam voltage at 1000V and the beam current at 20 mA, with a deposition rate of about 0.2 .ANG./sec. The resulting NiO film was amorphous.

  4. Growth of oxide exchange bias layers

    DOEpatents

    Chaiken, A.; Michel, R.P.

    1998-07-21

    An oxide (NiO, CoO, NiCoO) antiferromagnetic exchange bias layer produced by ion beam sputtering of an oxide target in pure argon (Ar) sputtering gas, with no oxygen gas introduced into the system. Antiferromagnetic oxide layers are used, for example, in magnetoresistive readback heads to shift the hysteresis loops of ferromagnetic films away from the zero field axis. For example, NiO exchange bias layers have been fabricated using ion beam sputtering of an NiO target using Ar ions, with the substrate temperature at 200 C, the ion beam voltage at 1000V and the beam current at 20 mA, with a deposition rate of about 0.2 {angstrom}/sec. The resulting NiO film was amorphous. 4 figs.

  5. Oxidation of SUS-316 stainless steel for fast breeder reactor fuel cladding under oxygen pressure controlled by Ni/NiO oxygen buffer

    NASA Astrophysics Data System (ADS)

    Saito, Minoru; Furuya, Hirotaka; Sugisaki, Masayasu

    1985-09-01

    Oxidation of SUS-316 stainless steel for a fast breeder reactor fuel cladding was examined in the temperature range of 843-1010 K under the oxygen pressure of 1017 t - 10 t-13 Pa hy use of an experimental technique of a Ni/NiO oxygen buffer. The formation of the duplex oxide layer, i.e. an outer Fe 3O 4 layer and an inner (Fe, Cr, Ni)-spinel layer, was observed and the oxidation kinetics was found to obey the parabolic rate law. The oxygen pressure and temperature dependence of the parabolic rate constant kp( PO2, T) was determined as follows: kp( PO2, T)/ kg2 · m-1 · s-1 = 0.170( PO2/ Pa) 0.141exp[-114 × 10 3/( RT/ J)]. On the basis of the oxidation kinetics and the metallographic information, the outward diffusion of Fe in the outer oxide layer was assigned to be the rate-determining process.

  6. Process for growing a film epitaxially upon an oxide surface and structures formed with the process

    DOEpatents

    McKee, Rodney Allen; Walker, Frederick Joseph

    1998-01-01

    A process and structure wherein a film comprised of a perovskite or a spinel is built epitaxially upon a surface, such as an alkaline earth oxide surface, involves the epitaxial build up of alternating constituent metal oxide planes of the perovskite or spinel. The first layer of metal oxide built upon the surface includes a metal element which provides a small cation in the crystalline structure of the perovskite or spinel, and the second layer of metal oxide built upon the surface includes a metal element which provides a large cation in the crystalline structure of the perovskite or spinel. The layering sequence involved in the film build up reduces problems which would otherwise result from the interfacial electrostatics at the first atomic layers, and these oxides can be stabilized as commensurate thin films at a unit cell thickness or grown with high crystal quality to thicknesses of 0.5-0.7 .mu.m for optical device applications.

  7. Process for growing a film epitaxially upon an oxide surface and structures formed with the process

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    1995-01-01

    A process and structure wherein a film comprised of a perovskite or a spinel is built epitaxially upon a surface, such as an alkaline earth oxide surface, involves the epitaxial build up of alternating constituent metal oxide planes of the perovskite or spinel. The first layer of metal oxide built upon the surface includes a metal element which provides a small cation in the crystalline structure of the perovskite or spinel, and the second layer of metal oxide built upon the surface includes a metal element which provides a large cation in the crystalline structure of the perovskite or spinel. The layering sequence involved in the film build up reduces problems which would otherwise result from the interfacial electrostatics at the first atomic layers, and these oxides can be stabilized as commensurate thin films at a unit cell thickness or grown with high crystal quality to thicknesses of 0.5-0.7 .mu.m for optical device applications.

  8. Self-cleaning and surface chemical reactions during hafnium dioxide atomic layer deposition on indium arsenide.

    PubMed

    Timm, Rainer; Head, Ashley R; Yngman, Sofie; Knutsson, Johan V; Hjort, Martin; McKibbin, Sarah R; Troian, Andrea; Persson, Olof; Urpelainen, Samuli; Knudsen, Jan; Schnadt, Joachim; Mikkelsen, Anders

    2018-04-12

    Atomic layer deposition (ALD) enables the ultrathin high-quality oxide layers that are central to all modern metal-oxide-semiconductor circuits. Crucial to achieving superior device performance are the chemical reactions during the first deposition cycle, which could ultimately result in atomic-scale perfection of the semiconductor-oxide interface. Here, we directly observe the chemical reactions at the surface during the first cycle of hafnium dioxide deposition on indium arsenide under realistic synthesis conditions using photoelectron spectroscopy. We find that the widely used ligand exchange model of the ALD process for the removal of native oxide on the semiconductor and the simultaneous formation of the first hafnium dioxide layer must be significantly revised. Our study provides substantial evidence that the efficiency of the self-cleaning process and the quality of the resulting semiconductor-oxide interface can be controlled by the molecular adsorption process of the ALD precursors, rather than the subsequent oxide formation.

  9. A Modeling Pattern for Layered System Interfaces

    NASA Technical Reports Server (NTRS)

    Shames, Peter M.; Sarrel, Marc A.

    2015-01-01

    Communications between systems is often initially represented at a single, high level of abstraction, a link between components. During design evolution it is usually necessary to elaborate the interface model, defining it from several different, related viewpoints and levels of abstraction. This paper presents a pattern to model such multi-layered interface architectures simply and efficiently, in a way that supports expression of technical complexity, interfaces and behavior, and analysis of complexity. Each viewpoint and layer of abstraction has its own properties and behaviors. System elements are logically connected both horizontally along the communication path, and vertically across the different layers of protocols. The performance of upper layers depends on the performance of lower layers, yet the implementation of lower layers is intentionally opaque to upper layers. Upper layers are hidden from lower layers except as sources and sinks of data. The system elements may not be linked directly at each horizontal layer but only via a communication path, and end-to-end communications may depend on intermediate components that are hidden from them, but may need to be shown in certain views and analyzed for certain purposes. This architectural model pattern uses methods described in ISO 42010, Recommended Practice for Architectural Description of Software-intensive Systems and CCSDS 311.0-M-1, Reference Architecture for Space Data Systems (RASDS). A set of useful viewpoints and views are presented, along with the associated modeling representations, stakeholders and concerns. These viewpoints, views, and concerns then inform the modeling pattern. This pattern permits viewing the system from several different perspectives and at different layers of abstraction. An external viewpoint treats the systems of interest as black boxes and focuses on the applications view, another view exposes the details of the connections and other components between the black boxes. An internal view focuses on the implementation within the systems of interest, either showing external interface bindings and specific standards that define the communication stack profile or at the level of internal behavior. Orthogonally, a horizontal view isolates a single layer and a vertical viewpoint shows all layers at a single interface point between the systems of interest. Each of these views can in turn be described from both behavioral and structural viewpoints.

  10. A methodological approach to study the stability of selected watercolours for painting reintegration, through reflectance spectrophotometry, Fourier transform infrared spectroscopy and hyperspectral imaging.

    PubMed

    Pelosi, Claudia; Capobianco, Giuseppe; Agresti, Giorgia; Bonifazi, Giuseppe; Morresi, Fabio; Rossi, Sara; Santamaria, Ulderico; Serranti, Silvia

    2018-06-05

    The aim of this work is to investigate the stability to simulated solar radiation of some paintings samples through a new methodological approach adopting non-invasive spectroscopic techniques. In particular, commercial watercolours and iron oxide based pigments were used, these last ones being prepared for the experimental by gum Arabic in order to propose a possible substitute for traditional reintegration materials. Reflectance spectrophotometry in the visible range and Hyperspectral Imaging in the short wave infrared were chosen as non-invasive techniques for evaluation the stability to irradiation of the chosen pigments. These were studied before and after artificial ageing procedure performed in Solar Box chamber under controlled conditions. Data were treated and elaborated in order to evaluate the sensitivity of the chosen techniques in identifying the variations on paint layers, induced by photo-degradation, before they could be observed by eye. Furthermore a supervised classification method for monitoring the painted surface changes adopting a multivariate approach was successfully applied. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Strong and reversible modulation of carbon nanotube-silicon heterojunction solar cells by an interfacial oxide layer.

    PubMed

    Jia, Yi; Cao, Anyuan; Kang, Feiyu; Li, Peixu; Gui, Xuchun; Zhang, Luhui; Shi, Enzheng; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai

    2012-06-21

    Deposition of nanostructures such as carbon nanotubes on Si wafers to make heterojunction structures is a promising route toward high efficiency solar cells with reduced cost. Here, we show a significant enhancement in the cell characteristics and power conversion efficiency by growing a silicon oxide layer at the interface between the nanotube film and Si substrate. The cell efficiency increases steadily from 0.5% without interfacial oxide to 8.8% with an optimal oxide thickness of about 1 nm. This systematic study reveals that formation of an oxide layer switches charge transport from thermionic emission to a mixture of thermionic emission and tunneling and improves overall diode properties, which are critical factors for tailoring the cell behavior. By controlled formation and removal of interfacial oxide, we demonstrate oscillation of the cell parameters between two extreme states, where the cell efficiency can be reversibly altered by a factor of 500. Our results suggest that the oxide layer plays an important role in Si-based photovoltaics, and it might be utilized to tune the cell performance in various nanostructure-Si heterojunction structures.

  12. Laccase-Functionalized Graphene Oxide Assemblies as Efficient Nanobiocatalysts for Oxidation Reactions

    PubMed Central

    Patila, Michaela; Kouloumpis, Antonios; Gournis, Dimitrios; Rudolf, Petra; Stamatis, Haralambos

    2016-01-01

    Multi-layer graphene oxide-enzyme nanoassemblies were prepared through the multi-point covalent immobilization of laccase from Trametes versicolor (TvL) on functionalized graphene oxide (fGO). The catalytic properties of the fGO-TvL nanoassemblies were found to depend on the number of the graphene oxide-enzyme layers present in the nanostructure. The fGO-TvL nanoassemblies exhibit an enhanced thermal stability at 60 °C, as demonstrated by a 4.7-fold higher activity as compared to the free enzyme. The multi-layer graphene oxide-enzyme nanoassemblies can efficiently catalyze the oxidation of anthracene, as well as the decolorization of an industrial dye, pinacyanol chloride. These materials retained almost completely their decolorization activity after five reaction cycles, proving their potential as efficient nano- biocatalysts for various applications. PMID:26927109

  13. Drude conductivity exhibited by chemically synthesized reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Younas, Daniyal; Javed, Qurat-ul-Ain; Fatima, Sabeen; Kalsoom, Riffat; Abbas, Hussain; Khan, Yaqoob

    2017-09-01

    Electrical conductance in graphene layers having Drude like response due to massless Dirac fermions have been well explained theoretically as well as experimentally. In this paper Drude like electrical conductivity response of reduced graphene oxide synthesized by chemical route is presented. A method slightly different from conventional methods is used to synthesize graphene oxide which is then converted to reduced graphene oxide. Various analytic techniques were employed to verify the successful oxidation and reductions in the process and were also used to measure various parameters like thickness of layers and conductivity. Obtained reduced graphene oxide has very thin layers of thickness around 13 nm on average and reduced graphene oxide has average thickness below 20 nm. Conductivity of the reduced graphene was observed to have Drude like response which is explained on basis of Drude model for conductors.

  14. Oxidation characteristics of Ti-25Al-10Nb-3V-1Mo intermetallic alloy

    NASA Technical Reports Server (NTRS)

    Wallace, Terryl A.; Clark, Ronald K.; Sankaran, Sankara N.; Wiedemann, Karl E.

    1990-01-01

    Static oxidation kinetics of the super-alpha 2 titanium-aluminide alloy Ti-25Al-10Nb-3V-1Mo (at. percent) were investigated in air over the temperature range of 650 to 1000 C using thermogravimetric analysis. The oxidation kinetics were complex at all exposure temperatures and displayed up to three distinct oxidation rates. Breakaway oxidation occurred after long exposure times at high temperatures. Oxidation products were determined using x ray diffraction techniques, electron microprobe analysis, and energy dispersive x ray analysis. Oxide scale morphology was examined by scanning electron microscopy of the surfaces and cross sections of oxidized specimens. The oxides during the parabolic stages were compact and multilayered, consisting primarily of TiO2 doped with Nb, a top layer of Al2O3, and a thin bottom layer of TiN. The transition between the second and third parabolic stage was found to be linked to the formation of a TiAl layer at the oxide-metal interface. Porosity was formed during the third stage, causing degradation of the oxide and the beginning of breakaway oxidation.

  15. Layered assembly of graphene oxide and Co-Al layered double hydroxide nanosheets as electrode materials for supercapacitors.

    PubMed

    Wang, Lei; Wang, Dong; Dong, Xin Yi; Zhang, Zhi Jun; Pei, Xian Feng; Chen, Xin Jiang; Chen, Biao; Jin, Jian

    2011-03-28

    An innovative strategy of fabricating electrode material by layered assembling two kinds of one-atom-thick sheets, carboxylated graphene oxide (GO) and Co-Al layered double hydroxide nanosheet (Co-Al LDH-NS) for the application as a pseudocapacitor is reported. The Co-Al LDH-NS/GO composite exhibits good energy storage properties.

  16. Passivating overcoat bilayer for multilayer reflective coatings for extreme ultraviolet lithography

    DOEpatents

    Montcalm, Claude; Stearns, Daniel G.; Vernon, Stephen P.

    1999-01-01

    A passivating overcoat bilayer is used for multilayer reflective coatings for extreme ultraviolet (EUV) or soft x-ray applications to prevent oxidation and corrosion of the multilayer coating, thereby improving the EUV optical performance. The overcoat bilayer comprises a layer of silicon or beryllium underneath at least one top layer of an elemental or a compound material that resists oxidation and corrosion. Materials for the top layer include carbon, palladium, carbides, borides, nitrides, and oxides. The thicknesses of the two layers that make up the overcoat bilayer are optimized to produce the highest reflectance at the wavelength range of operation. Protective overcoat systems comprising three or more layers are also possible.

  17. Titanium modified with layer-by-layer sol-gel tantalum oxide and an organodiphosphonic acid: a coating for hydroxyapatite growth.

    PubMed

    Arnould, C; Volcke, C; Lamarque, C; Thiry, P A; Delhalle, J; Mekhalif, Z

    2009-08-15

    Titanium and its alloys are widely used in surgical implants due to their appropriate properties like corrosion resistance, biocompatibility, and load bearing. Unfortunately when metals are used for orthopedic and dental implants there is the possibility of loosening over a long period of time. Surface modification is a good way to counter this problem. A thin tantalum oxide layer obtained by layer-by-layer (LBL) sol-gel deposition on top of a titanium surface is expected to improve biocorrosion resistance in the body fluid, biocompatibility, and radio-opacity. This elaboration step is followed by a modification of the tantalum oxide surface with an organodiphosphonic acid self-assembled monolayer, capable of chemically binding to the oxide surface, and also improving hydroxyapatite growth. The different steps of this proposed process are characterized by surfaces techniques like contact angle, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM).

  18. Convective Patterns under the Indo-Atlantic box

    NASA Astrophysics Data System (ADS)

    Davaille, A.; Stutzmann, E.; Silveira, G.; Besse, J.; Courtillot, V.

    2005-12-01

    Using recent fluid mechanics results as a framework, we reinterpret the images of the Indo-Atlantic mantle obtained from global and regional tomography studies together with geochemical, geological and paleomagnetic observations to unravel the pattern of convection in the Indo-Atlantic box and its temporal evolution over the last 260 Myr. Seismic tomography sections at different depths show that the Earth's mantle seems to be divided in two boxes by the subducted plates, the Pacific and the Indo-Atlantic boxes. The latter presently contains a) a broad slow seismic anomaly at the CMB which has a similar shape to Pangea 250 Myr ago, and which divides into several branches higher in the lower mantle, b) one superswell centered on the western edge of South Africa, c) at least 6 primary hotspots with long tracks related to traps, and d) numerous smaller hotspots. Moreover, in the last 260 Myr, this mantle box has undergone 10 traps events, 7 of them related to continental break up. Several of these past events are spatially correlated with present-day seismic anomalies and/or upwellings, suggesting episodicity. Laboratory experiments show that superswells, long-lived hotspot tracks and traps may represent three evolutionnary stages of the same phenomenon, i.e. the episodic destabilization of a hot, chemically heterogeneous thermal boundary layer, close to the bottom of the mantle. When scaled to the Earth's mantle, the recurrence time of this phenomenon is on the order of 100-200 Myr. Also, at any given time, the Indo-Atlantic box should contain 3 to 9 of these instabilities at different stages of their development. This is in agreement with observations. The return flow of the downwelling slabs, although confined to two main boxes by subduction zone geometry, may therefore not be passive, but rather take the form of active thermochemical instabilities.

  19. Fluorine compounds for doping conductive oxide thin films

    DOEpatents

    Gessert, Tim; Li, Xiaonan; Barnes, Teresa M; Torres, Jr., Robert; Wyse, Carrie L

    2013-04-23

    Methods of forming a conductive fluorine-doped metal oxide layer on a substrate by chemical vapor deposition are described. The methods may include heating the substrate in a processing chamber, and introducing a metal-containing precursor and a fluorine-containing precursor to the processing chamber. The methods may also include adding an oxygen-containing precursor to the processing chamber. The precursors are reacted to deposit the fluorine-doped metal oxide layer on the substrate. Methods may also include forming the conductive fluorine-doped metal oxide layer by plasma-assisted chemical vapor deposition. These methods may include providing the substrate in a processing chamber, and introducing a metal-containing precursor, and a fluorine-containing precursor to the processing chamber. A plasma may be formed that includes species from the metal-containing precursor and the fluorine-containing precursor. The species may react to deposit the fluorine-doped metal oxide layer on the substrate.

  20. Oxidation characteristics of 440 C CRES in gaseous oxygen (GOX) environments. [Corrosion Resistant Steel

    NASA Technical Reports Server (NTRS)

    Dennies, Daniel P.; Parsons, Terry D.

    1986-01-01

    The oxidation characteristics of 440 C corrosion-resistant steel are evaluated. The dependence of oxide color, type, and thickness, material hardness, and microstructure on temperature is examined. The effects of exposure time, passivation layer, and oxygen pressure on the oxide formation are investigated. A direct relationship between temperature and oxide color, formation, and thickness is detected. It is observed that the exposure time does not affect the microstructure or oxide color, type, or thickness; however, the passivation layer does affect oxide color and type.

  1. Electrode electrolyte interlayers containing cerium oxide for electrochemical fuel cells

    DOEpatents

    Borglum, Brian P.; Bessette, Norman F.

    2000-01-01

    An electrochemical cell is made having a porous fuel electrode (16) and a porous air electrode (13), with solid oxide electrolyte (15) therebetween, where the air electrode surface opposing the electrolyte has a separate, attached, dense, continuous layer (14) of a material containing cerium oxide, and where electrolyte (16) contacts the continuous oxide layer (14), without contacting the air electrode (13).

  2. Prediction of Isoelectric Point of Manganese and Cobalt Lamellar Oxides: Application to Controlled Synthesis of Mixed Oxides.

    PubMed

    Tang, Céline; Giaume, Domitille; Guerlou-Demourgues, Liliane; Lefèvre, Grégory; Barboux, Philippe

    2018-05-30

    To design novel layered materials, bottom-up strategy is very promising. It consists of (1) synthesizing various layered oxides, (2) exfoliating them, then (3) restacking them in a controlled way. The last step is based on electrostatic interactions between different layered oxides and is difficult to control. The aim of this study is to facilitate this step by predicting the isoelectric point (IEP) of exfoliated materials. The Multisite Complexation model (MUSIC) was used for this objective and was shown to be able to predict IEP from the mean oxidation state of the metal in the (hydr)oxides, as the main parameter. Moreover, the effect of exfoliation on IEP has also been calculated. Starting from platelets with a high basal surface area over total surface area, we show that the exfoliation process has no impact on calculated IEP value, as verified with experiments. Moreover, the restacked materials containing different monometallic (hydr)oxide layers also have an IEP consistent with values calculated with the model. This study proves that MUSIC model is a useful tool to predict IEP of various complex metal oxides and hydroxides.

  3. Some problems of the calculation of three-dimensional boundary layer flows on general configurations

    NASA Technical Reports Server (NTRS)

    Cebeci, T.; Kaups, K.; Mosinskis, G. J.; Rehn, J. A.

    1973-01-01

    An accurate solution of the three-dimensional boundary layer equations over general configurations such as those encountered in aircraft and space shuttle design requires a very efficient, fast, and accurate numerical method with suitable turbulence models for the Reynolds stresses. The efficiency, speed, and accuracy of a three-dimensional numerical method together with the turbulence models for the Reynolds stresses are examined. The numerical method is the implicit two-point finite difference approach (Box Method) developed by Keller and applied to the boundary layer equations by Keller and Cebeci. In addition, a study of some of the problems that may arise in the solution of these equations for three-dimensional boundary layer flows over general configurations.

  4. Stress Regression Analysis of Asphalt Concrete Deck Pavement Based on Orthogonal Experimental Design and Interlayer Contact

    NASA Astrophysics Data System (ADS)

    Wang, Xuntao; Feng, Jianhu; Wang, Hu; Hong, Shidi; Zheng, Supei

    2018-03-01

    A three-dimensional finite element box girder bridge and its asphalt concrete deck pavement were established by ANSYS software, and the interlayer bonding condition of asphalt concrete deck pavement was assumed to be contact bonding condition. Orthogonal experimental design is used to arrange the testing plans of material parameters, and an evaluation of the effect of different material parameters in the mechanical response of asphalt concrete surface layer was conducted by multiple linear regression model and using the results from the finite element analysis. Results indicated that stress regression equations can well predict the stress of the asphalt concrete surface layer, and elastic modulus of waterproof layer has a significant influence on stress values of asphalt concrete surface layer.

  5. Advanced materials and design for low temperature SOFCs

    DOEpatents

    Wachsman, Eric D.; Yoon, Heesung; Lee, Kang Taek; Camaratta, Matthew; Ahn, Jin Soo

    2016-05-17

    Embodiments of the invention are directed to SOFC with a multilayer structure comprising a porous ceramic cathode, optionally a cathodic triple phase boundary layer, a bilayer electrolyte comprising a cerium oxide comprising layer and a bismuth oxide comprising layer, an anion functional layer, and a porous ceramic anode with electrical interconnects, wherein the SOFC displays a very high power density at temperatures below 700.degree. C. with hydrogen or hydrocarbon fuels. The low temperature conversion of chemical energy to electrical energy allows the fabrication of the fuel cells using stainless steel or other metal alloys rather than ceramic conductive oxides as the interconnects.

  6. Durable silver coating for mirrors

    DOEpatents

    Wolfe, Jesse D.; Thomas, Norman L.

    2000-01-01

    A durable multilayer mirror includes reflective layers of aluminum and silver and has high reflectance over a broad spectral range from ultraviolet to visible to infrared. An adhesion layer of a nickel and/or chromium alloy or nitride is deposited on an aluminum surface, and a thin layer of silver is then deposited on the adhesion layer. The silver layer is protected by a passivation layer of a nickel and/or chromium alloy or nitride and by one or more durability layers made of metal oxides and typically a first layer of metal nitride. The durability layers may include a composite silicon aluminum nitride and an oxinitride transition layer to improve bonding between nitride and oxide layers.

  7. STUDY OF THE OXIDATION OF NON-ALLOYED ZIRCONIUM AND OF OXYGEN DIFFUSION IN THE OXIDE FILM AND IN THE METAL (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debuigne, J.; Lehr, P.

    1963-12-01

    The oxidation processes of zirconium at 600-850 deg C were studied. A micrographic and radiocrystallographic analysis of the oxide layers formed at the surface of the metal was carried out. The kinetic results, weight gains as function nf time, were completed by the study of oxygen diffusion through the oxide layer formed and in the underlying metal. (auth)

  8. Burning Graphene Layer-by-Layer

    PubMed Central

    Ermakov, Victor A.; Alaferdov, Andrei V.; Vaz, Alfredo R.; Perim, Eric; Autreto, Pedro A. S.; Paupitz, Ricardo; Galvao, Douglas S.; Moshkalev, Stanislav A.

    2015-01-01

    Graphene, in single layer or multi-layer forms, holds great promise for future electronics and high-temperature applications. Resistance to oxidation, an important property for high-temperature applications, has not yet been extensively investigated. Controlled thinning of multi-layer graphene (MLG), e.g., by plasma or laser processing is another challenge, since the existing methods produce non-uniform thinning or introduce undesirable defects in the basal plane. We report here that heating to extremely high temperatures (exceeding 2000 K) and controllable layer-by-layer burning (thinning) can be achieved by low-power laser processing of suspended high-quality MLG in air in “cold-wall” reactor configuration. In contrast, localized laser heating of supported samples results in non-uniform graphene burning at much higher rates. Fully atomistic molecular dynamics simulations were also performed to reveal details of oxidation mechanisms leading to uniform layer-by-layer graphene gasification. The extraordinary resistance of MLG to oxidation paves the way to novel high-temperature applications as continuum light source or scaffolding material. PMID:26100466

  9. Polymer thin film as coating layer to prevent corrosion of metal/metal oxide film

    NASA Astrophysics Data System (ADS)

    Sarkar, Suman; Kundu, Sarathi

    2018-04-01

    Thin film of polymer is used as coating layer and the corrosion of metal/metal oxide layer is studied with the variation of the thickness of the coating layer. The thin layer of polystyrene is fabricated using spin coating method on copper oxide (CuO) film which is deposited on glass substrate using DC magnetron sputtering technique. Thickness of the polystyrene and the CuO layers are determined using X-ray reflectivity (XRR) technique. CuO thin films coated with the polystyrene layer are exposed to acetic acid (2.5 v/v% aqueous CH3COOH solution) environments and are subsequently analyzed using UV-Vis spectroscopy and atomic force microscopy (AFM). Surface morphology of the film before and after interaction with the acidic environment is determined using AFM. Results obtained from the XRR and UV-Vis spectroscopy confirm that the thin film of polystyrene acts as an anticorrosion coating layer and the strength of the coating depends upon the polymer layer thickness at a constant acid concentration.

  10. Effect of multiple deposition of NiO layer on the performance of inverted type organic solar cell based on ZnO/P3HT:PCBM

    NASA Astrophysics Data System (ADS)

    Sabri, Nasehah Syamin; Lim, Eng Liang; Yap, Chi Chin; Yahaya, Muhammad; Salleh, Muhamad Mat; Jumali, Mohammad Hafizuddin Haji

    2017-05-01

    In this work, the effect of multiple deposition of nickel oxide (NiO) hole transport layer (HTL) on the performance of inverted type organic solar cell with a configuration of fluorine tin oxide (FTO)/zinc oxide (ZnO) nanorods/ poly(3-hexylthiopene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM)/NiO/silver (Ag) was investigated. The NiO nanoparticles solution was spin-coated on top of the photoactive layer (P3HT:PCBM) prior to deposition of Ag electrode. Different numbers of NiO layers (1, 2, and 4) were deposited on the photoactive layer to obtain the optimum surface morphology of HTL. The device with 2 layers of NiO exhibited the optimum power conversion efficiency of 1.10%. It is believed that the optimum NiO deposition layer gives the complete coverage at photoactive layer and forms ohmic contact between the photoactive layer and Ag electrode.

  11. Silicon microring resonators

    NASA Astrophysics Data System (ADS)

    Tan, Ying; Dai, Daoxin

    2018-05-01

    Silicon microring resonators (MRRs) are very popular for many applications because of the advantages of footprint compactness, easy scalability, and functional versatility. Ultra-compact silicon MRRs with box-like spectral responses are realized with a very large free-spectral range (FSR) by introducing bent directional couplers. The measured box-like spectral response has an FSR of >30 nm. The permanent wavelength-alignment techniques for MRRs are also presented, including the laser-induced local-oxidation technique as well as the local-etching technique. With these techniques, one can control finely the permanent wavelength shift, which is also large enough to compensate the random wavelength variation due to the random fabrication errors.

  12. Preparation and Optimization of Immediate Release/Sustained Release Bilayered Tablets of Loxoprofen Using Box-Behnken Design.

    PubMed

    Tak, Jin Wook; Gupta, Biki; Thapa, Raj Kumar; Woo, Kyu Bong; Kim, Sung Yub; Go, Toe Gyeong; Choi, Yongjoo; Choi, Ju Yeon; Jeong, Jee-Heon; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2017-05-01

    The aim of our current study was to characterize and optimize loxoprofen immediate release (IR)/sustained release (SR) tablet utilizing a three-factor, three-level Box-Behnken design (BBD) combined with a desirability function. The independent factors included ratio of drug in the IR layer to total drug (X 1 ), ratio of HPMC to drug in the SR layer (X 2 ), and ratio of Eudragit RL PO to drug in the SR layer (X 3 ). The dependent variables assessed were % drug released in distilled water at 30 min (Y 1 ), % drug released in pH 1.2 at 2 h (Y 2 ), and % drug released in pH 6.8 at 12 h (Y 3 ). The responses were fitted to suitable models and statistical validation was performed using analysis of variance. In addition, response surface graphs and contour plots were constructed to determine the effects of different factor level combinations on the responses. The optimized loxoprofen IR/SR tablets were successfully prepared with the determined amounts of ingredients that showed close agreement in the predicted and experimental values of tablet characterization and drug dissolution profile. Therefore, BBD can be utilized for successful optimization of loxoprofen IR/SR tablet, which can be regarded as a suitable substitute for the current marketed formulations.

  13. Environmental Technology Verification Report for Private Pallet Security Systems, LLC. MultiTrack™ Layered Tracking Systems

    EPA Science Inventory

    This test simulated shipments of hazardous waste contained in polyethylene (poly) drums, metal drums, and corrugated boxes through routine land transportation routes and across international ports of entry in the El Paso/Ciudad Juarez trade area. RFID tags were attached to four ...

  14. Surface modification of polyethylene by radiation-induced grafting for adhesive bonding. V. Comparison with other surface treatments. [Gamma radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamakawa, S.; Yamamoto, F.

    1980-01-01

    Helium gas plasma treatment of low-density polyethylene (LDPE) yields much lower peel strength than oxidative treatment using chromic acid and oxygen gas plasma. The practical adhesion, the bondability retention, and the bond durability of oxidatively treated LDPE sheets, bonded with epoxy adhesives, have been compared with those of partially hydrolyzed LDPE-methyl acrylate surface grafts. The oxidized surfaces easily lose the bondability by light rubbing with tissue paper, solvent extraction, heat aging, and artificial weathering, whereas the grafted surfaces retain the bondability. The bondability loss is due to removal of the oxidized layer, and the bondability retention is due to retentionmore » of the surface homopolymer layer. Conventional antioxidants stabilize the grafted but not the oxidized surfaces against thermal oxidative degradation. The grafted LDPE joints have much higher bond durability in humid environments than those of the oxidized LDPE joints. The dry and wet peel strengths of oxidized LDPE joints are greatly improved by application of primers consisting of a base epoxy resin and organic solvents. An adhesion mechanism involving penetration of epoxy adhesives into the oxidized layers and subsequent reinforcement of the layers by curing of the penetrated epoxy is proposed. 5 figures, 5 tables.« less

  15. A study of deformation and strain induced in bulk by the oxide layers formation on a Fe-Cr-Al alloy in high-temperature liquid Pb-Bi eutectic

    DOE PAGES

    Popovic, M. P.; Chen, K.; Shen, H.; ...

    2018-03-29

    At elevated temperatures, heavy liquid metals and their alloys are known to create a highly corrosive environment that causes irreversible degradation of most iron-based materials. In this paper, it has been found that an appropriate concentration of oxygen in the liquid alloy can significantly reduce this issue by creating a passivating oxide scale that controls diffusion, especially if Al is present in Fe-based materials (by Al-oxide formation). However, the increase of the temperature and of oxygen content in liquid phase leads to the increase of oxygen diffusion into bulk, and to promotion of the internal Al oxidation. This can causemore » a strain in bulk near the oxide layer, due either to mismatch between the thermal expansion coefficients of the oxides and bulk material, or to misfit of the crystal lattices (bulk vs. oxides). This work investigates the strain induced into proximal bulk of a Fe-Cr-Al alloy by oxide layers formation in liquid lead-bismuth eutectic utilizing synchrotron X-ray Laue microdiffraction. Finally, it is found that internal oxidation is the most likely cause for the strain in the metal rather than thermal expansion mismatch as a two-layer problem.« less

  16. A study of deformation and strain induced in bulk by the oxide layers formation on a Fe-Cr-Al alloy in high-temperature liquid Pb-Bi eutectic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popovic, M. P.; Chen, K.; Shen, H.

    At elevated temperatures, heavy liquid metals and their alloys are known to create a highly corrosive environment that causes irreversible degradation of most iron-based materials. In this paper, it has been found that an appropriate concentration of oxygen in the liquid alloy can significantly reduce this issue by creating a passivating oxide scale that controls diffusion, especially if Al is present in Fe-based materials (by Al-oxide formation). However, the increase of the temperature and of oxygen content in liquid phase leads to the increase of oxygen diffusion into bulk, and to promotion of the internal Al oxidation. This can causemore » a strain in bulk near the oxide layer, due either to mismatch between the thermal expansion coefficients of the oxides and bulk material, or to misfit of the crystal lattices (bulk vs. oxides). This work investigates the strain induced into proximal bulk of a Fe-Cr-Al alloy by oxide layers formation in liquid lead-bismuth eutectic utilizing synchrotron X-ray Laue microdiffraction. Finally, it is found that internal oxidation is the most likely cause for the strain in the metal rather than thermal expansion mismatch as a two-layer problem.« less

  17. Superconducting composite with multilayer patterns and multiple buffer layers

    DOEpatents

    Wu, X.D.; Muenchausen, R.E.

    1993-10-12

    An article of manufacture is described including a substrate, a patterned interlayer of a material selected from the group consisting of magnesium oxide, barium-titanium oxide or barium-zirconium oxide, the patterned interlayer material overcoated with a secondary interlayer material of yttria-stabilized zirconia or magnesium-aluminum oxide, upon the surface of the substrate whereby an intermediate article with an exposed surface of both the overcoated patterned interlayer and the substrate is formed, a coating of a buffer layer selected from the group consisting of cerium oxide, yttrium oxide, curium oxide, dysprosium oxide, erbium oxide, europium oxide, iron oxide, gadolinium oxide, holmium oxide, indium oxide, lanthanum oxide, manganese oxide, lutetium oxide, neodymium oxide, praseodymium oxide, plutonium oxide, samarium oxide, terbium oxide, thallium oxide, thulium oxide, yttrium oxide and ytterbium oxide over the entire exposed surface of the intermediate article, and, a ceramic superconductor. 5 figures.

  18. Passivation of uranium towards air corrosion by N 2+ and C + ion implantation

    NASA Astrophysics Data System (ADS)

    Arkush, R.; Mintz, M. H.; Shamir, N.

    2000-10-01

    The passivation of uranium surfaces against air corrosion, by ion implantation processes was studied, using surface analysis methods. Implanting 45 keV N +2 and C + ions produces thin modified surface layers with gradual gradients of the corresponding compounds (i.e., nitrides and carbides, respectively), which avoid the formation of discontinuous interfaces typical to coatings. Such gradual interfaces impart excellent mechanical stability and adhesion to the modified layers, in spite of the large misfit between the metal substrate and the implantation on induced compounds. It turns out that these layers provide an almost absolute protection against air corrosion. A rapid initial stage of oxidation of the modified surface layers takes place, forming very thin protective oxidation zones (1-4 nm thick), which practically stop further air oxidation for years. The mechanism of the initial oxidation stage of the modified layers seems to vary with the type of surface (i.e., either nitrides or carbides). However, in any case the protection ability of the formed oxidation products is excellent, probably due to the close match between these compounds and the underlying nitrides or carbides.

  19. A versatile single molecular precursor for the synthesis of layered oxide cathode materials for Li-ion batteries.

    PubMed

    Li, Maofan; Liu, Jiajie; Liu, Tongchao; Zhang, Mingjian; Pan, Feng

    2018-02-01

    A carbonyl-bridged single molecular precursor LiTM(acac) 3 [transition metal (TM) = cobalt/manganese/nickel (Co/Mn/Ni), acac = acetylacetone], featuring a one-dimensional chain structure, was designed and applied to achieve the layered oxide cathode materials: LiTMO 2 (TM = Ni/Mn/Co, NMC). As examples, layered oxides, primary LiCoO 2 , binary LiNi 0.8 Co 0.2 O 2 and ternary LiNi 0.5 Mn 0.3 Co 0.2 O 2 were successfully prepared to be used as cathode materials. When they are applied to lithium-ion batteries (LIBs), all exhibit good electrochemical performance because of their unique morphology and great uniformity of element distribution. This versatile precursor is predicted to accommodate many other metal cations, such as aluminum (Al 3+ ), iron (Fe 2+ ), and sodium (Na + ), because of the flexibility of organic ligand, which not only facilitates the doping-modification of the NMC system, but also enables synthesis of Na-ion layered oxides. This opens a new direction of research for the synthesis of high-performance layered oxide cathode materials for LIBs.

  20. Numerical investigation of metal-semiconductor-insulator-semiconductor passivated hole contacts based on atomic layer deposited AlO x

    NASA Astrophysics Data System (ADS)

    Ke, Cangming; Xin, Zheng; Ling, Zhi Peng; Aberle, Armin G.; Stangl, Rolf

    2017-08-01

    Excellent c-Si tunnel layer surface passivation has been obtained recently in our lab, using atomic layer deposited aluminium oxide (ALD AlO x ) in the tunnel layer regime of 0.9 to 1.5 nm, investigated to be applied for contact passivation. Using the correspondingly measured interface properties, this paper compares the theoretical collection efficiency of a conventional metal-semiconductor (MS) contact on diffused p+ Si to a metal-semiconductor-insulator-semiconductor (MSIS) contact on diffused p+ Si or on undoped n-type c-Si. The influences of (1) the tunnel layer passivation quality at the tunnel oxide interface (Q f and D it), (2) the tunnel layer thickness and the electron and hole tunnelling mass, (3) the tunnel oxide material, and (4) the semiconductor capping layer material properties are investigated numerically by evaluation of solar cell efficiency, open-circuit voltage, and fill factor.

  1. The performances of different overlay mark types at 65nm node on 300-mm wafers

    NASA Astrophysics Data System (ADS)

    Tseng, H. T.; Lin, Ling-Chieh; Huang, I. H.; Lin, Benjamin S.; Huang, Chin-Chou K.; Huang, Chien-Jen

    2005-05-01

    The integrated circuit (IC) manufacturing factories have measured overlay with conventional "box-in-box" (BiB) or "frame-in-frame" (FiF) structures for many years. Since UMC played as a roll of world class IC foundry service provider, tighter and tighter alignment accuracy specs need to be achieved from generation to generation to meet any kind of customers' requirement, especially according to International Technology Roadmap for Semiconductors (ITRS) 2003 METROLOGY section1. The process noises resulting from dishing, overlay mark damaging by chemical mechanism polishing (CMP), and the variation of film thickness during deposition are factors which can be very problematic in mark alignment. For example, the conventional "box-in-box" overlay marks could be damaged easily by CMP, because the less local pattern density and wide feature width of the box induce either dishing or asymmetric damages for the measurement targets, which will make the overlay measurement varied and difficult. After Advanced Imaging Metrology (AIM) overlay targets was introduced by KLA-Tencor, studies in the past shown AIM was more robust in overlay metrology than conventional FiF or BiB targets. In this study, the applications of AIM overlay marks under different process conditions will be discussed and compared with the conventional overlay targets. To evaluate the overlay mark performance against process variation on 65nm technology node in 300-mm wafer, three critical layers were chosen in this study. These three layers were Poly, Contact, and Cu-Metal. The overlay targets used for performance comparison were BiB and Non-Segmented AIM (NS AIM) marks. We compared the overlay mark performance on two main areas. The first one was total measurement uncertainty (TMU)3 related items that include Tool Induced Shift (TIS) variability, precision, and matching. The other area is the target robustness against process variations. Based on the present study AIM mark demonstrated an equal or better performance in the TMU related items under our process conditions. However, when non-optimized tungsten CMP was introduced in the tungsten contact process, due to the dense grating line structure design, we found that AIM mark was much more robust than BiB overlay target.

  2. Correction: One-step coelectrodeposition-assisted layer-by-layer assembly of gold nanoparticles and reduced graphene oxide and its self-healing three-dimensional nanohybrid for an ultrasensitive DNA sensor.

    PubMed

    Jayakumar, Kumarasamy; Camarada, María Belén; Dharuman, Venkataraman; Ju, Huangxian; Dey, Ramendra Sundar; Wen, Yangping

    2018-02-01

    Correction for 'One-step coelectrodeposition-assisted layer-by-layer assembly of gold nanoparticles and reduced graphene oxide and its self-healing three-dimensional nanohybrid for an ultrasensitive DNA sensor' by Jayakumar Kumarasamy, et al., Nanoscale, 2018, DOI: 10.1039/c7nr06952a.

  3. Continuous gaseous and total ammonia measurements from the southeastern aerosol research and characterization (SEARCH) study

    NASA Astrophysics Data System (ADS)

    Saylor, Rick D.; Edgerton, Eric S.; Hartsell, Benjamin E.; Baumann, Karsten; Hansen, D. Alan

    2010-12-01

    Continuous ammonia (NH 3) measurements with a temporal resolution of 5 min were implemented at selected SEARCH sites in the southeastern U. S. during 2007. The SEARCH continuous NH 3 instrument uses a citric acid denuder difference technique employing a dual-channel nitric oxide-ozone chemiluminescence analyzer. Data from two SEARCH sites are presented, Jefferson Street, Atlanta (JST) (urban), and Yorkville, Georgia (YRK) (rural), for the period July-December, 2007. Highest NH x (total ammonia = gaseous NH 3 + PM 2.5 NH 4+) values were observed in August and September at both JST and YRK. Highest NH 3 values occurred in August and September at JST, but in August through October at YRK. Lowest NH 3 and NH x values occurred in December at both sites. YRK is significantly impacted by nearby poultry sources, routinely experiencing hourly average NH 3 mixing ratios above 20 ppbv. Wind sector analysis clearly implicates the nearby poultry operations as the source of the high NH 3 values. Weekday versus weekend differences in composite hourly mean diurnal profiles of NH 3 at JST indicate that mobile sources have a measurable but relatively small impact on NH 3 observed at that site, and little or no impact on NH 3 observed at YRK. A distinctive composite mean hourly diurnal variation was observed at both JST and YRK, exhibiting maxima in the morning and evening with a broad minimum during midday. Analysis of observed NH 3 diurnal variations from the literature suggests a hypothesized mechanism for the observed behavior based on interaction of local emissions and dry deposition with the formation and collapse of the dynamically mixed atmospheric boundary layer during the day and shallow nocturnal layer at night. Simple mixed layer concentration box model simulations confirm the plausibility of the suggested mechanism.

  4. Fabrication of oxide layer on zirconium by micro-arc oxidation: Structural and antimicrobial characteristics.

    PubMed

    Fidan, S; Muhaffel, F; Riool, M; Cempura, G; de Boer, L; Zaat, S A J; Filemonowicz, A Czyrska-; Cimenoglu, H

    2017-02-01

    The aim of this study was to cover the surfaces of zirconium (Zr) with an antimicrobial layer for biomedical applications. For this purpose, the micro-arc oxidation (MAO) process was employed in a sodium silicate and sodium hydroxide containing base electrolyte with and without addition of silver acetate (AgC 2 H 3 O 2 ). In general, synthesized MAO layers were composed of zirconium oxide (ZrO 2 ) and zircon (ZrSiO 4 ). Addition of AgC 2 H 3 O 2 into the base electrolyte caused homogenous precipitation of silver-containing particles in the MAO layer, which exhibited excellent antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) as compared to the untreated and MAO-treated Zr. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Highly scaled equivalent oxide thickness of 0.66 nm for TiN/HfO2/GaSb MOS capacitors by using plasma-enhanced atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Tsai, Ming-Li; Wang, Shin-Yuan; Chien, Chao-Hsin

    2017-08-01

    Through in situ hydrogen plasma treatment (HPT) and plasma-enhanced atomic-layer-deposited TiN (PEALD-TiN) layer capping, we successfully fabricated TiN/HfO2/GaSb metal-oxide-semiconductor capacitors with an ultrathin equivalent oxide thickness of 0.66 nm and a low density of states of approximately 2 × 1012 cm-2 eV-1 near the valence band edge. After in situ HPT, a native oxide-free surface was obtained through efficient etching. Moreover, the use of the in situ PEALD-TiN layer precluded high-κ dielectric damage that would have been caused by conventional sputtering, thereby yielding a superior high-κ dielectric and low gate leakage current.

  6. High temperature cooling system and method

    DOEpatents

    Loewen, Eric P.

    2006-12-12

    A method for cooling a heat source, a method for preventing chemical interaction between a vessel and a cooling composition therein, and a cooling system. The method for cooling employs a containment vessel with an oxidizable interior wall. The interior wall is oxidized to form an oxide barrier layer thereon, the cooling composition is monitored for excess oxidizing agent, and a reducing agent is provided to eliminate excess oxidation. The method for preventing chemical interaction between a vessel and a cooling composition involves introducing a sufficient quantity of a reactant which is reactive with the vessel in order to produce a barrier layer therein that is non-reactive with the cooling composition. The cooling system includes a containment vessel with oxidizing agent and reducing agent delivery conveyances and a monitor of oxidation and reduction states so that proper maintenance of a vessel wall oxidation layer occurs.

  7. Surface functionalization of magnetic nanoparticles formed by self-associating hydrophobized oxidized dextrans

    NASA Astrophysics Data System (ADS)

    Farber, Shimon; Ickowicz, Diana E.; Melnik, Kristie; Yudovin-Farber, Ira; Recko, Daniel; Rampersaud, Arfaan; Domb, Abraham J.

    2014-06-01

    Magnetic iron oxide nanoparticles surface covered with oleic acid layer followed by a second layer of hydrophobized oxidized dextran aldehyde were prepared and tested for physico-chemical properties and ligand- and cell-specific binding. It was demonstrated that oleic acid-iron oxide nanoparticles coated with an additional layer of hydrophobized oxidized dextran were dispersible in buffer solutions and possess surface aldehyde active groups available for further binding of ligands or markers via imine or amine bond formation. Hydrophobized dextrans were synthesized by periodate oxidation and conjugation of various alkanamines to oxidized dextran by imination. Physico-chemical properties, as separation using magnetic field, magnetite concentration, and particle diameter, of the prepared magnetic samples are reported. The biotin-binding protein, neutravidin, was coupled to the particle surface by a simple reductive amination procedure. The particles were used for specific cell separation with high specificity.

  8. Emissivity model of steel 430 during the growth of oxide layer at 800-1100 K and 1.5 μm

    NASA Astrophysics Data System (ADS)

    Xing, Wei; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue

    2018-01-01

    This work studied the variation in spectral emissivity with growth of oxide layer at the different temperatures. For this reason, we measured the normal spectral emissivity during the growth of oxide layer on the sample surface at a wavelength of 1.5 μm over a temperature range 800-1100 K. In the experiment, the temperature was measured by the two thermocouples, which were symmetrically welded onto the front surface of specimens. The average of their readings was regarded as the true temperature. The detector should be perpendicular to the specimen surface as accurately as possible. The variation in spectral emissivity with growth of oxide layer was evaluated at a certain temperature. Altogether 11 emissivity models were evaluated. The conclusion was gained that the more the number of parameters used in the models was, the better the fitting accuracy became. On the whole, all the PEE models, the four-parameter LEE model and the five-parameter PFE, PLE and LEE models could be employed to well fit this kind of variation. The variation in spectral emissivity with temperature was determined at a certain thickness of oxide film. Almost all the models studied in this paper could be used to accurately evaluate this variation. The approximate models of spectral emissivity as a function of temperature and oxide-layer thickness were proposed. The strong oscillations of spectral emissivity were observed, which were affirmed to arise from the interference effect between the two radiations stemming from the oxide layer and from the substrate. The uncertainties in the temperature of steel 430 generated only by the surface oxidization were approximately 4.1-10.7 K in this experiment.

  9. Formation of ZrO{sub 2} in coating on Mg–3 wt.%Al–1 wt.%Zn alloy via plasma electrolytic oxidation: Phase and structure of zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kang Min; Kim, Yeon Sung; Yang, Hae Woong

    2015-01-15

    An investigation of the coating structure formed on Mg–3 wt.%Al–1 wt.%Zn alloy sample subjected to plasma electrolytic oxidation was examined by field-emission transmission electron microscopy. The plasma electrolytic oxidation process was conducted in a phosphoric acid electrolyte containing K{sub 2}ZrF{sub 6} for 600 s. Microstructural observations showed that the coating consisting of MgO, MgF{sub 2}, and ZrO{sub 2} phases was divided into three distinctive parts, the barrier, intermediate, and outer layers. Nanocrystalline MgO and MgF{sub 2} compounds were observed mainly in the barrier layer of ~ 1 μm thick near to the substrate. From the intermediate to outer layers, variousmore » ZrO{sub 2} polymorphs appeared due to the effects of the plasma arcing temperature on the phase transition of ZrO{sub 2} compounds during the plasma electrolytic oxidation process. In the outer layer, MgO compound grew in the form of a dendrite-like structure surrounded by cubic ZrO{sub 2}. - Highlights: • The barrier layer containing MgO and MgF{sub 2} was observed near to the Mg substrate. • In the intermediate layer, m-, t-, and o-ZrO{sub 2} compounds were additionally detected. • The outer layer contained MgO with the dendrite-like structure surrounded by c-ZrO{sub 2}. • The grain sizes of compounds in oxide layer increased from barrier to outer layer.« less

  10. Nitrous Oxide: A Greenhouse Gas That is Also an Ozone Layer Depleting Gas

    NASA Astrophysics Data System (ADS)

    Reed, S.; Uriarte, M.; Wood, T. E.; Cavaleri, M. A.; Lugo, A. E.

    2014-12-01

    Nitrous oxide, N2O, is the major source of nitrogen oxides in the stratosphere, where these oxides playa critical roles in ozone layer depletion by itself and moderating ozone layer depletion by chlorinated chemicals. Thus N2O plays a complex role in the stratosphere. Nitrous oxide is also a greenhouse gas and it contributes to the radiative forcing of climate. Indeed, it is considered the third most important greenhouse gas next to carbon dioxide and methane. This dual role of nitrous oxide makes it an interesting gas for the atmosphere- it bridges the issue of ozone layer depletion and climate change. Nitrous oxide has both natural and anthropogenic sources. Therefore, one needs to consider this important distinction between natural and anthropogenic sources as well as its role in two related but separate environmental issues. Further, the sources of nitrous oxide are varied and diffuse, which makes it difficult to quantify different sources. However, it is clear that a majority of anthropogenic nitrous oxide comes from food production (including agricultural and animal growth practices), an activity that is at the heart of human existence. Thus, limiting N2O emissions is not a simple task! I will briefly summarize our understanding of these roles of nitrous oxide in the earth's atmosphere and touch on the possible ways to limit N2O emissions.

  11. Nitrous Oxide: A Greenhouse Gas That is Also an Ozone Layer Depleting Gas

    NASA Astrophysics Data System (ADS)

    Ravishankara, A. R.

    2015-12-01

    Nitrous oxide, N2O, is the major source of nitrogen oxides in the stratosphere, where these oxides playa critical roles in ozone layer depletion by itself and moderating ozone layer depletion by chlorinated chemicals. Thus N2O plays a complex role in the stratosphere. Nitrous oxide is also a greenhouse gas and it contributes to the radiative forcing of climate. Indeed, it is considered the third most important greenhouse gas next to carbon dioxide and methane. This dual role of nitrous oxide makes it an interesting gas for the atmosphere- it bridges the issue of ozone layer depletion and climate change. Nitrous oxide has both natural and anthropogenic sources. Therefore, one needs to consider this important distinction between natural and anthropogenic sources as well as its role in two related but separate environmental issues. Further, the sources of nitrous oxide are varied and diffuse, which makes it difficult to quantify different sources. However, it is clear that a majority of anthropogenic nitrous oxide comes from food production (including agricultural and animal growth practices), an activity that is at the heart of human existence. Thus, limiting N2O emissions is not a simple task! I will briefly summarize our understanding of these roles of nitrous oxide in the earth's atmosphere and touch on the possible ways to limit N2O emissions.

  12. Bond layer for a solid oxide fuel cell, and related processes and devices

    DOEpatents

    Wu, Jian; Striker, Todd-Michael; Renou, Stephane; Gaunt, Simon William

    2017-03-21

    An electrically-conductive layer of material having a composition comprising lanthanum and strontium is described. The material is characterized by a microstructure having bimodal porosity. Another concept in this disclosure relates to a solid oxide fuel cell attached to at least one cathode interconnect by a cathode bond layer. The bond layer includes a microstructure having bimodal porosity. A fuel cell stack which incorporates at least one of the cathode bond layers is also described herein, along with related processes for forming the cathode bond layer.

  13. Reduction of channel resistance in amorphous oxide thin-film transistors with buried layer

    NASA Astrophysics Data System (ADS)

    Chong, Eugene; Kim, Bosul; Lee, Sang Yeol

    2012-04-01

    A silicon-indium-zinc-oxide (SIZO) thin film transistor (TFT) with low channel-resistance (RCH) indium-zinc-oxide (In2O3:ZnO = 9:1) buried layer annealed at low temperature of 200°C exhibited high field-effect mobility (μFE) over 55.8 cm2/V·s which is 5 times higher than that of the conventional TFTs due to small threshold voltage (Vth) change of 1.8 V under bias-temperature stress (BTS) condition for 420 minutes. The low-RCH buried-layer allows more strong current-path formed in channel layer well within relatively high-RCH channel-layer since it is less affected by the channel bulk and/or back interface trap with high carrier concentration.

  14. Electrical Characteristics of Organic Field Effect Transistor Formed by Gas Treatment of High-k Al2O3 at Low Temperature

    NASA Astrophysics Data System (ADS)

    Lee, Sunwoo; Yoon, Seungki; Park, In-Sung; Ahn, Jinho

    2009-04-01

    We studied the electrical characteristics of an organic field effect transistor (OFET) formed by the hydrogen (H2) and nitrogen (N2) mixed gas treatment of a gate dielectric layer. We also investigated how device mobility is related to the length and width variations of the channel. Aluminum oxide (Al2O3) was used as the gate dielectric layer. After the treatment, the mobility and subthreshold swing were observed to be significantly improved by the decreased hole carrier localization at the interfacial layer between the gate oxide and pentacene channel layers. H2 gas plays an important role in removing the defects of the gate oxide layer at temperatures below 100 °C.

  15. Depletion of atmospheric gaseous elemental mercury by plant uptake at Mt. Changbai, Northeast China

    NASA Astrophysics Data System (ADS)

    Fu, Xuewu; Zhu, Wei; Zhang, Hui; Sommar, Jonas; Yu, Ben; Yang, Xu; Wang, Xun; Lin, Che-Jen; Feng, Xinbin

    2016-10-01

    There exists observational evidence that gaseous elemental mercury (GEM) can be readily removed from the atmosphere via chemical oxidation followed by deposition in the polar and sub-polar regions, free troposphere, lower stratosphere, and marine boundary layer under specific environmental conditions. Here we report GEM depletions in a temperate mixed forest at Mt. Changbai, Northeast China. The strong depletions occurred predominantly at night during the leaf-growing season and in the absence of gaseous oxidized mercury (GOM) enrichment (GOM < 3 pg m-3). Vertical gradients of decreasing GEM concentrations from layers above to under forest canopy suggest in situ loss of GEM to forest canopy at Mt. Changbai. Foliar GEM flux measurements showed that the foliage of two predominant tree species is a net sink of GEM at night, with a mean flux of -1.8 ± 0.3 ng m2 h-1 over Fraxinus mandshurica (deciduous tree species) and -0.1 ± 0.2 ng m2 h-1 over Pinus Koraiensis (evergreen tree species). Daily integrated GEM δ202Hg, Δ199Hg, and Δ200Hg at Mt. Changbai during 8-18 July 2013 ranged from -0.34 to 0.91 ‰, from -0.11 to -0.04 ‰ and from -0.06 to 0.01 ‰, respectively. A large positive shift in GEM δ202Hg occurred during the strong GEM depletion events, whereas Δ199Hg and Δ200Hg remained essentially unchanged. The observational findings and box model results show that uptake of GEM by forest canopy plays a predominant role in the GEM depletion at Mt. Changbai forest. Such depletion events of GEM are likely to be a widespread phenomenon, suggesting that the forest ecosystem represents one of the largest sinks ( ˜ 1930 Mg) of atmospheric Hg on a global scale.

  16. Large eddy simulation of reactive pollutants in a deep urban street canyon: Coupling dynamics with O3-NOx-VOC chemistry.

    PubMed

    Zhong, Jian; Cai, Xiao-Ming; Bloss, William James

    2017-05-01

    A large eddy simulation (LES) model coupled with O 3 -NO x -VOC chemistry is implemented to simulate the coupled effects of emissions, mixing and chemical pre-processing within an idealised deep (aspect ratio = 2) urban street canyon under a weak wind condition. Reactive pollutants exhibit significant spatial variations in the presence of two vertically aligned unsteady vortices formed in the canyon. Comparison of the LES results from two chemical schemes (simple NO x -O 3 chemistry and a more comprehensive Reduced Chemical Scheme (RCS) chemical mechanism) shows that the concentrations of NO 2 and O x inside the street canyon are enhanced by approximately 30-40% via OH/HO 2 chemistry. NO, NO x , O 3 , OH and HO 2 are chemically consumed, while NO 2 and O x (total oxidant) are chemically produced within the canyon environment. Within-canyon pre-processing increases oxidant fluxes from the canyon to the overlying boundary layer, and this effect is greater for deeper street canyons (as found in many traditional European urban centres) than shallower (lower aspect ratio) streets. There is clear evidence of distinct behaviours for emitted chemical species and entrained chemical species, and positive (or negative) values of intensities of segregations are found between pairs of species with similar (or opposite) behaviour. The simplified two-box model underestimated NO and O 3 levels, but overestimated NO 2 levels for both the lower and upper canyon compared with the more realistic LES-chemistry model. This suggests that the segregation effect due to incomplete mixing reduces the chemical conversion rate of NO to NO 2 . This study reveals the impacts of nonlinear O 3 -NO x -VOC photochemical processes in the incomplete mixing environment and provides a better understanding of the pre-processing of emissions within canyons, prior to their release to the urban boundary layer, through the coupling of street canyon dynamics and chemistry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. High Performance and Highly Reliable ZnO Thin Film Transistor Fabricated by Atomic Layer Deposition for Next Generation Displays

    DTIC Science & Technology

    2011-08-19

    zinc oxide ( ZnO ) thin film as an active channel layer in TFT has become of great interest owing to their specific...630-0192 Japan Phone: +81-743-72-6060 Fax: +81-743-72-6069 E-mail: uraoka@ms.naist.jp Keywords: zinc oxide , thin film transistors , atomic layer...deposition Symposium topic: Transparent Semiconductors Oxides [Abstract] In this study, we fabricated TFTs using ZnO thin film as the

  18. Method of coating an iron-based article

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magdefrau, Neal; Beals, James T.; Sun, Ellen Y.

    A method of coating an iron-based article includes a first heating step of heating a substrate that includes an iron-based material in the presence of an aluminum source material and halide diffusion activator. The heating is conducted in a substantially non-oxidizing environment, to cause the formation of an aluminum-rich layer in the iron-based material. In a second heating step, the substrate that has the aluminum-rich layer is heated in an oxidizing environment to oxidize the aluminum in the aluminum-rich layer.

  19. An unusual temperature dependence in the oxidation of oxycarbide layers on uranium

    NASA Astrophysics Data System (ADS)

    Ellis, Walton P.

    1981-09-01

    An anomalous temperature dependence has been observed for the oxidation kinetics of outermost oxycarbide layers on polycrystalline uranium metal. Normally, oxidation or corrosion reactions are expected to proceed more rapidly as the temperature is elevated. Thus, it came as a surprise when we observed that the removal of the outermost atomic layers of carbon from uranium oxycarbide by O 2 reproducibly proceeds at a much faster rate at 25°C than at 280°C.

  20. An unusual temperature dependence in the oxidation of oxycarbide layers on uranium

    NASA Astrophysics Data System (ADS)

    Ellis, Walton P.

    An anomalous temperature dependence has been observed for the oxidation kinetics of outermost oxycarbide layers on polycrystalline uranium metal. Normally, oxidation or corrosion reactions are expected to proceed more rapidly as the temperature is elevated. Thus, it came as a surprise when we observed that the removal of the outermost atomic layers of carbon from uranium oxycarbide by O 2 reproducibly proceeds at a much faster rate at 25°C than at 280°C.

  1. Effect of layer-by-layer coatings and localization of antioxidant on oxidative stability of a model encapsulated bioactive compound in oil-in-water emulsions.

    PubMed

    Pan, Yuanjie; Nitin, N

    2015-11-01

    Oxidation of encapsulated bioactives in emulsions is one of the key challenges that limit shelf-life of many emulsion containing products. This study seeks to quantify the role of layer-by-layer coatings and localization of antioxidant molecules at the emulsion interface in influencing oxidation of the encapsulated bioactives. Oxidative barrier properties of the emulsions were simulated by measuring the rate of reaction of peroxyl radicals generated in the aqueous phase with the encapsulated radical sensitive dye in the lipid core of the emulsions. The results of peroxyl radical permeation were compared to the stability of encapsulated retinol (model bioactive) in emulsions. To evaluate the role of layer-by-layer coatings in influencing oxidative barrier properties, radical permeation rates and retinol stability were evaluated in emulsion formulations of SDS emulsion and SDS emulsion with one or two layers of polymers (ϵ-polylysine and dextran sulfate) coated at the interface. To localize antioxidant molecules to the interface, gallic acid (GA) was chemically conjugated with ϵ-polylysine and subsequently deposited on SDS emulsion based on electrostatic interactions. Emulsion formulations with localized GA molecules at the interface were compared with SDS emulsion with GA molecules in the bulk aqueous phase. The results of this study demonstrate the advantage of localization of antioxidant at the interface and the limited impact of short chain polymer coatings at the interface of emulsions in reducing permeation of radicals and oxidation of a model encapsulated bioactive in oil-in-water emulsions. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Three-dimensional atom probe tomography of oxide, anion, and alkanethiolate coatings on gold.

    PubMed

    Zhang, Yi; Hillier, Andrew C

    2010-07-15

    We have used three-dimensional atom probe tomography to analyze several nanometer-thick and monomolecular films on gold surfaces. High-purity gold wire was etched by electropolishing to create a sharp tip suitable for field evaporation with a radius of curvature of <100 nm. The near-surface region of a freshly etched gold tip was examined with the atom probe at subnanometer spatial resolution and with atom-level composition accuracy. A thin contaminant layer, primarily consisting of water and atmospheric gases, was observed on a fresh tip. This sample exhibited crystalline lattice spacings consistent with the interlayer spacing of {200} lattice planes of bulk gold. A thin oxide layer was created on the gold surface via plasma oxidation, and the thickness and composition of this layer was measured. Clear evidence of a nanometer-thick oxide layer was seen coating the gold tip, and the atomic composition of the oxide layer was consistent with the expected stoichiometry for gold oxide. Monomolecular anions layers of Br(-) and I(-) were created via adsorption from aqueous solutions onto the gold. Atom probe data verified the presence of the monomolecular anion layers on the gold surface, with ion density values consistent with literature values. A hexanethiolate monolayer was coated onto the gold tip, and atom probe analysis revealed a thin film whose ion fragments were consistent with the molecular composition of the monolayer and a surface coverage similar to that expected from literature. Details of the various coating compositions and structures are presented, along with discussion of the reconstruction issues associated with properly analyzing these thin-film systems.

  3. Structural and optical studies of porous silicon buried waveguides: Effects of oxidation and pore filling using DR1 dyes

    NASA Astrophysics Data System (ADS)

    Charrier, J.; Kloul, M.; Pirasteh, P.; Bardeau, J.-F.; Guendouz, M.; Bulou, A.; Haji, L.

    2007-11-01

    This paper deals with the structural and optical properties of buried waveguides manufactured from mesoporous silicon films (as-formed porous silicon layers, after oxidation, after filling with active DR1 dyes). It is shown that the oxidation process only induced a weak morphology transformation. The 2D profiles of cross-sections of the waveguides by micro-Raman mapping were done in order to check the oxidation rate and to probe the DR1 filling of the layers. This latter appeared homogeneous but surprisingly is greater in the weaker porosity layer. The light propagation through these different waveguides was observed and losses were measured and analyzed. The losses decreased after oxidation but they increased after filling.

  4. The effect of surface oxide layer on the rate of hydrogen emission from aluminum and its alloys in a high vacuum

    NASA Technical Reports Server (NTRS)

    Makarova, V. I.; Zyabrev, A. A.

    1979-01-01

    The influence of surface oxide layers on the kinetics of hydrogen emission at the high vacuum of 10 to the minus 8th power torr was investigated at temperatures from 20 to 450 C using samples of pure AB00 aluminum and the cast alloy AMg. Cast and deformed samples of AMts alloy were used to study the effect of oxide film thickness on the rate of hydrogen emission. Thermodynamic calculations of the reactions of the generation and dissociation of aluminum oxide show that degasification at elevated temperatures (up to 600 C) and high vacuum will not reduce the thickness of artificially-generated surface oxide layers on aluminum and its alloys.

  5. Glow discharge spectrometry for the characterization of nuclear and radioactively contaminated environmental samples

    NASA Astrophysics Data System (ADS)

    Betti, Maria; Aldave de las Heras, Laura

    2004-09-01

    Glow discharge (GD) spectrometry as applied to characterize nuclear samples as well as for the determination of radionuclides in environmental samples is reviewed. The use of instrumentation for direct current (d.c.) glow discharge mass spectrometry (GDMS) and radio frequency glow discharge optical emission spectrometry (rf GDOES), installed inside a glove-box for the handling of radioactive samples as well as the two installations and their analytical possibilities, is described in detail. The applications of GD techniques for the characterization of samples of nuclear concern both with respect to their major and trace elements, as well as to the matrix isotopic composition are presented. Procedures for quantitative determination of major, minor, and trace elements in conductive samples are reported. As for non-conductive samples three different approaches for their measurement can be followed. Namely, the use of rf sources, the mixing of the sample with a binder conducting host matrix, and the use of a secondary cathode. In the case of oxide-based samples, the employment of a tantalum secondary cathode, acting as an oxygen getter, reduces the availability of oxygen to form polyatomic species and to produce quenching. Considerations on the use of the relative sensitivity factors (RSFs) in different matrices are reported. The analytical capabilities of GDMS are compared with ICP-MS in terms of accuracy, precision, and detection limit for the determination of trace elements in uranium oxide specimens. As for the determination of isotopic composition, GDMS was found to be competitive with thermal ionisation mass spectrometry (TIMS) as well as for bulk determinations of major elements with titration methods. Applications of GDMS to the determination of radioisotopes in environmental samples, as well for depth profiling of trace elements in oxide layers, are discussed.

  6. Manganese oxide nanowires, films, and membranes and methods of making

    DOEpatents

    Suib, Steven Lawrence [Storrs, CT; Yuan, Jikang [Storrs, CT

    2008-10-21

    Nanowires, films, and membranes comprising ordered porous manganese oxide-based octahedral molecular sieves, and methods of making, are disclosed. A single crystal ultra-long nanowire includes an ordered porous manganese oxide-based octahedral molecular sieve, and has an average length greater than about 10 micrometers and an average diameter of about 5 nanometers to about 100 nanometers. A film comprises a microporous network comprising a plurality of single crystal nanowires in the form of a layer, wherein a plurality of layers is stacked on a surface of a substrate, wherein the nanowires of each layer are substantially axially aligned. A free standing membrane comprises a microporous network comprising a plurality of single crystal nanowires in the form of a layer, wherein a plurality of layers is aggregately stacked, and wherein the nanowires of each layer are substantially axially aligned.

  7. Convective patterns under the Indo-Atlantic << box >> [rapid communication

    NASA Astrophysics Data System (ADS)

    Davaille, Anne; Stutzmann, Eléonore; Silveira, Graça; Besse, Jean; Courtillot, Vincent

    2005-11-01

    Using fluid mechanics, we reinterpret the mantle images obtained from global and regional tomography together with geochemical, geological and paleomagnetic observations, and attempt to unravel the pattern of convection in the Indo-Atlantic "box" and its temporal evolution over the last 260 Myr. The « box » presently contains a) a broad slow seismic anomaly at the CMB which has a shape similar to Pangea 250 Myr ago, and which divides into several branches higher in the lower mantle, b) a "superswell" centered on the western edge of South Africa, c) at least 6 "primary hotspots" with long tracks related to traps, and d) numerous smaller hotspots. In the last 260 Myr, this mantle box has undergone 10 trap events, 7 of them related to continental breakup. Several of these past events are spatially correlated with present-day seismic anomalies and/or upwellings. Laboratory experiments show that superswells, long-lived hotspot tracks and traps may represent three evolutionary stages of the same phenomenon, i.e. episodic destabilization of a hot, chemically heterogeneous thermal boundary layer, close to the bottom of the mantle. When scaled to the Earth's mantle, its recurrence time is on the order of 100-200 Myr. At any given time, the Indo-Atlantic box should contain 3 to 9 of these instabilities at different stages of their development, in agreement with observations. The return flow of the downwelling slabs, although confined to two main « boxes » (Indo-Atlantic and Pacific) by subduction zone geometry, may therefore not be passive, but rather take the form of active thermochemical instabilities.

  8. Expression of nitric oxide synthase in the developing eye of Zebrafish Danio rerio

    NASA Astrophysics Data System (ADS)

    Wang, Yongjun; Zhang, Shicui; Sawant, M. S.

    2004-12-01

    Expression of nitric oxide synthase (NOS) in the developing eye of zebrafish was studied by NADPH-diaphorase staining technique. NOS activity was first observed in the optic primordium and the lens placode at 5-somite stage, and remained basically unchanged up to the prim-5 stage. Upon hatching, NOS activity was nearly equally detected in the gangalion cell layer and the photoreceptor layer in the developing retina. However, it began declining in the inner plexiform layer and the inner nuclear layer at this stage. NOS activity disappeared in the lens although the anterior lens epithelium was strongly stained. Two days after hatching, NOS activity was still strong in the photoreceptor layer, but decreased markedly in the gangalion cell layer, the inner plexiform layer and the inner nuclear layer with the retinal patterning. These suggested that nitric oxide (NO), the product of NOS, is not only involved in the modulation of patterning and differentiation of the retinal cells but also in the regulation of proliferation, and differentiation of the lens fibrocytes.

  9. Surface-interface exploration of Mg deposited on Si(100) and oxidation effect on interfacial layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarpi, B.; Daineche, R.; Girardeaux, C.

    Using scanning tunneling microscopy and spectroscopy, Auger electron spectroscopy, and low energy electron diffraction, we have studied the growth of Mg deposited on Si(100)-(2 × 1). Coverage from 0.05 monolayer (ML) to 3 ML was investigated at room temperature. The growth mode of the magnesium is a two steps process. At very low coverage, there is formation of an amorphous ultrathin silicide layer with a band gap of 0.74 eV, followed by a layer-by-layer growth of Mg on top of this silicide layer. Topographic images reveal that each metallic Mg layer is formed by 2D islands coalescence process on top of the silicidemore » interfacial layer. During oxidation of the Mg monolayer, the interfacial silicide layer acts as diffusion barrier for the oxygen atoms with a decomposition of the silicide film to a magnesium oxide as function of O{sub 2} exposure.« less

  10. Design of a Three-Layer Antireflection Coating for High Efficiency Indium Phosphide Solar Cells Using a Chemical Oxide as First Layer

    NASA Technical Reports Server (NTRS)

    Moulot, Jacques; Faur, Mircea; Faur, Maria; Goradia, Chandra; Goradia, Manju; Bailey, Sheila

    1995-01-01

    It is well known that the behavior of III-V compound based solar cells is largely controlled by their surface, since the majority of light generated carriers (63% for GaAs and 79% for InP) are created within 0.2 microns of the illuminated surface of the cell. Consequently, the always observed high surface recombination velocity (SRV) on these cells is a serious limiting factor for their high efficiency performance, especially for those with the p-n junction made by either thermal diffusion or ion implantation. A good surface passivation layer, ideally, a grown oxide as opposed to a deposited one, will cause a significant reduction in the SRV without adding interface problems, thus improving the performance of III-V compound based solar cells. Another significant benefit to the overall performance of the solar cells can be achieved by a substantial reduction of their large surface optical reflection by the use of a well designed antireflection (AR) coating. In this paper, we demonstrate the effectiveness of using a chemically grown, thermally and chemically stable oxide, not only for surface passivation but also as an integral part of a 3- layer AR coating for thermally diffused p(+)n InP solar cells. A phosphorus-rich interfacial oxide, In(PO3)3, is grown at the surface of the p(+) emitter using an etchant based on HNO3, o-H3PO4 and H2O2. This oxide has the unique properties of passivating the surface as well as serving as a fairly efficient antireflective layer yielding a measured record high AM0, 25 C, open-circuit voltage of 890.3 mV on a thermally diffused InP(Cd,S) solar cell. Unlike conventional single layer AR coatings such as ZnS, Sb2O3, SiO or double layer AR coatings such as ZnS/MgF2 deposited by e-beam or resistive evaporation, this oxide preserves the stoichiometry of the InP surface. We show that it is possible to design a three-layer AR coating for a thermally diffused InP solar cell using the In(PO3)3 grown oxide as the first layer and Al2O3, MgF2 or ZnS, MgF2 as the second and third layers respectively, so as to yield an overall theoretical reflectance of less than 2%. Since chemical oxides are readily grown on III-V semiconductor materials, the technique of using the grown oxide layer to both passivate the surface as well as serve as the first of a multilayer AR coating, should work well for essentially all III-V compound-based solar cells.

  11. Design of a three-layer antireflection coating for high efficiency indium phosphide solar cells using a chemical oxide as first layer

    NASA Technical Reports Server (NTRS)

    Moulot, Jacques; Faur, M.; Faur, M.; Goradia, C.; Goradia, M.; Bailey, S.

    1995-01-01

    It is well known that the behavior of III-V compound based solar cells is largely controlled by their surface, since the majority of light generated carriers (63% for GaAs and 79% for InP) are created within 0.2 mu m of the surface of the illuminated cell. Consequently, the always observed high surface recombination velocity (SRV) on these cells is a serious limiting factor for their high efficiency performance, especially for those with p-n junction made by either thermal diffusion or ion implantation. A good surface passivation layer, ideally a grown oxide as opposed to a deposited one, will cause a significant reduction in the SRV without adding interface problems, thus improving the performance of III-V compound based solar cells. Another significant benefit to the overall performance of the solar cells can be achieved by a substantial reduction of their large surface optical reflection by the use of a well designed antireflection (AR) coating. In this paper, we demonstrate the effectiveness of using a chemically grown thermally and chemically stable oxide, not only for surface passivation but also as an integral part of a 3-layer AR coating for thermally diffused p+n InP solar cells. A phosphorus-rich interfacial oxide, In(PO3)3, is grown at the surface of the p+ emitter using an etchant based on HNO3, o-H3PO4 and H2O2. This oxide has the unique properties of passivating the surface as well as serving as an efficient antireflective layer yielding a measured record high AMO open-circuit voltage of 890.3 mV on a thermally diffused InP(Cd,S) solar cell. Unlike conventional single layer AR coatings such as ZnS, Sb2O3, SiO or double layer AR coatings such as ZnS/MgF2 deposited by e-beam or resistive evaporation, this oxide preserves the stoichiometry of the InP surface. We show that it is possible to design a three-layer AR coating for a thermally diffused InP solar cell using the In(PO3)3 grown oxide as the first layer and Al2O3 and MgF2 as the second and third layers respectively, so as to yield an overall theoretical reflectance of less than 2%. Since chemical oxides are readily grown on III-V semiconductors materials, the technique of using the grown oxide layer to both passivate the surface as well as serve as the first of a multilayer AR coating should work well for all III-V compound-based solar cells.

  12. Cu-rGO subsurface layer creation on copper substrate and its resistance to oxidation

    NASA Astrophysics Data System (ADS)

    Pietrzak, Katarzyna; Strojny-Nędza, Agata; Olesińska, Wiesława; Bańkowska, Anna; Gładki, Andrzej

    2017-11-01

    On the basis of a specially designed experiment, this paper presents a model, which is an attempt to explain the mechanism of formatting and creating oxidation resistance of Cu-rGO subsurface layers. Practically zero chemical affinity of copper to carbon is a fundamental difficulty in creating composite structures of Cu-C, properties which are theoretically possible to estimate. In order to bind the thermally reduced graphene oxide with copper surface, the effect of structural rebuilding of the copper oxide, in the process of annealing in a nitrogen atmosphere, have been used. On intentionally oxidized and anoxic copper substrates the dispersed graphene oxide (GO) and thermally reduced graphene oxide (rGO) were loaded. Annealing processes after the binding effects of both graphene oxide forms to Cu substrates were tested. The methods for high-resolution electron microscopy were found subsurface rGO-Cu layer having a substantially greater resistance to oxidation than pure copper. The mechanism for the effective resistance to oxidation of the Cu-rGO has been presented in a hypothetical form.

  13. Effect of N2 annealing on AlZrO oxide

    NASA Astrophysics Data System (ADS)

    Pétry, J.; Richard, O.; Vandervorst, W.; Conard, T.; Chen, J.; Cosnier, V.

    2003-07-01

    In the path to the introduction of high-k dielectric into integrated circuit components, a large number of challenges has to be solved. Subsequent to the film deposition, the high-k film is exposed to additional high-temperature anneals for polycrystalline Si activation but also to improve its own electrical properties. Hence, concerns can be raised regarding the thermal stability of these stacks upon annealing. In this study, we investigated the effect of N2 annealing (700 to 900 °C) of atomic layer chemical vapor deposition AlZrO layers using x-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (TOFSIMS), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The effect of the Si surface preparation [H-Si, 0.5 nm rapid thermal oxide (RTO), Al2O3] on the modification of the high-k oxide and the interfacial layer upon annealing was also analyzed. Compositional changes can be observed for all temperature and surface preparations. In particular, we observe a segregation of Al(oxide) toward the surface of the mixed oxide. In addition, an increase of the Si concentration in the high-k film itself can be seen with a diffusion profile extending toward the surface of the film. On the other hand, the modification of the interfacial layer is strongly dependent on the system considered. In the case of mixed oxide grown on 0.5 nm RTO, no differences are observed between the as-deposited layer and the layer annealed at 700 °C. At 800 °C, a radical change occurs: The initial RTO layer seems to be converted into a mixed layer composed of the initial SiO2 and Al2O3 coming from the mixed oxide, however without forming an Al-silicate layer. A similar situation is found for anneals at 900 °C, as well. When grown on 1.5 nm Al2O3 on 0.5 nm RTO, the only difference with the previous system is the observation of an Al-silicate fraction in the interfacial layer for the as-deposited and 700 °C annealed samples, which disappears at higher temperatures. Finally, considering layers deposited on a H-Si surface, we observe a slight increase of the interfacial thickness after annealing at 700 °C and no further changes for a higher annealing temperature.

  14. Electrochromic device containing metal oxide nanoparticles and ultraviolet blocking material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Guillermo; Koo, Bonil; Gregoratto, Ivano

    An electrochromic device includes a nanostructured transition metal oxide bronze layer that includes one or more transition metal oxide and one or more dopant. The electrochromic device also includes nanoparticles containing one or more transparent conducting oxide (TCO), a solid state electrolyte, a counter electrode, and at least one protective layer to prevent degradation of the one or more nanostructured transition metal oxide bronze. The nanostructured transition metal oxide bronze selectively modulates transmittance of near-infrared (NIR) and visible radiation as a function of an applied voltage to the device.

  15. Nanostructured antistatic and antireflective thin films made of indium tin oxide and silica over-coat layer

    NASA Astrophysics Data System (ADS)

    Cho, Young-Sang; Hong, Jeong-Jin; Yang, Seung-Man; Choi, Chul-Jin

    2010-08-01

    Stable dispersion of colloidal indium tin oxide nanoparticles was prepared by using indium tin oxide nanopowder, organic solvent, and suitable dispersants through attrition process. Various comminution parameters during the attrition step were studied to optimize the process for the stable dispersion of indium tin oxide sol. The transparent and conductive films were fabricated on glass substrate using the indium tin oxide sol by spin coating process. To obtain antireflective function, partially hydrolyzed alkyl silicate was deposited as over-coat layer on the pre-fabricated indium tin oxide film by spin coating technique. This double-layered structure of the nanostructured film was characterized by measuring the surface resistance and reflectance spectrum in the visible wavelength region. The final film structure was enough to satisfy the TCO regulations for EMI shielding purposes.

  16. Low temperature production of large-grain polycrystalline semiconductors

    DOEpatents

    Naseem, Hameed A [Fayetteville, AR; Albarghouti, Marwan [Loudonville, NY

    2007-04-10

    An oxide or nitride layer is provided on an amorphous semiconductor layer prior to performing metal-induced crystallization of the semiconductor layer. The oxide or nitride layer facilitates conversion of the amorphous material into large grain polycrystalline material. Hence, a native silicon dioxide layer provided on hydrogenated amorphous silicon (a-Si:H), followed by deposited Al permits induced crystallization at temperatures far below the solid phase crystallization temperature of a-Si. Solar cells and thin film transistors can be prepared using this method.

  17. Thermal barrier coating resistant to sintering

    DOEpatents

    Subramanian, Ramesh; Sabol, Stephen M.

    2001-01-01

    A device (10) having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10) and is not soluble with the underlying ceramic layer (16). For a YSZ ceramic layer (16) the sintering resistant layer (22) may preferably be aluminum oxide or yttrium aluminum oxide, deposited as a continuous layer or as nodules.

  18. Impedance spectroscopy of the oxide films formed during high temperature oxidation of a cobalt-plated ferritic alloy

    NASA Astrophysics Data System (ADS)

    Velraj, S.; Zhu, J. H.; Painter, A. S.; Du, S. W.; Li, Y. T.

    2014-02-01

    Impedance spectroscopy was used to evaluate the oxide films formed on cobalt-coated Crofer 22 APU ferritic stainless steel after thermal oxidation at 800 °C in air for different times (i.e. 2, 50, 100 and 500 h). Impedance spectra of the oxide films exhibited two or three semicircles depending on the oxidation time, which correspond to the presence of two or three individual oxide layers. Coupled with scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS) and X-ray diffraction (XRD), the individual oxide layer corresponding to each semicircle was determined unambiguously. Impedance spectrum analysis of the oxide films formed on the sample after thermal exposure at 800 °C in air for 2 h led to the identification of the low-frequency and high-frequency semicircles as being from Cr2O3 and Co3O4, respectively. SEM/EDS and XRD analysis of the 500-h sample clearly revealed the presence of three oxide layers, analyzed to be Co3-xCrxO4, CoCr2O4, and Cr2O3. Although the SEM images of the 50-h and 100-h samples did not clearly show the CoCr2O4 layer, impedance plots implied their presence. The oxide scales were assigned to their respective semicircles and the electrical properties of Co3-xCrxO4, CoCr2O4 and Cr2O3 were determined from the impedance data.

  19. Analysis of the FeCrAl Accident Tolerant Fuel Concept Benefits during BWR Station Blackout Accidents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robb, Kevin R

    2015-01-01

    Iron-chromium-aluminum (FeCrAl) alloys are being considered for fuel concepts with enhanced accident tolerance. FeCrAl alloys have very slow oxidation kinetics and good strength at high temperatures. FeCrAl could be used for fuel cladding in light water reactors and/or as channel box material in boiling water reactors (BWRs). To estimate the potential safety gains afforded by the FeCrAl concept, the MELCOR code was used to analyze a range of postulated station blackout severe accident scenarios in a BWR/4 reactor employing FeCrAl. The simulations utilize the most recently known thermophysical properties and oxidation kinetics for FeCrAl. Overall, when compared to the traditionalmore » Zircaloy-based cladding and channel box, the FeCrAl concept provides a few extra hours of time for operators to take mitigating actions and/or for evacuations to take place. A coolable core geometry is retained longer, enhancing the ability to stabilize an accident. Finally, due to the slower oxidation kinetics, substantially less hydrogen is generated, and the generation is delayed in time. This decreases the amount of non-condensable gases in containment and the potential for deflagrations to inhibit the accident response.« less

  20. Electrochromic window with high reflectivity modulation

    DOEpatents

    Goldner, Ronald B.; Gerouki, Alexandra; Liu, Te-Yang; Goldner, Mark A.; Haas, Terry E.

    2000-01-01

    A multi-layered, active, thin film, solid-state electrochromic device having a high reflectivity in the near infrared in a colored state, a high reflectivity and transmissivity modulation when switching between colored and bleached states, a low absorptivity in the near infrared, and fast switching times, and methods for its manufacture and switching are provided. In one embodiment, a multi-layered device comprising a first indium tin oxide transparent electronic conductor, a transparent ion blocking layer, a tungsten oxide electrochromic anode, a lithium ion conducting-electrically resistive electrolyte, a complimentary lithium mixed metal oxide electrochromic cathode, a transparent ohmic contact layer, a second indium oxide transparent electronic conductor, and a silicon nitride encapsulant is provided. Through elimination of optional intermediate layers, simplified device designs are provided as alternative embodiments. Typical colored-state reflectivity of the multi-layered device is greater than 50% in the near infrared, bleached-state reflectivity is less than 40% in the visible, bleached-state transmissivity is greater than 60% in the near infrared and greater than 40% in the visible, and spectral absorbance is less than 50% in the range from 0.65-2.5 .mu.m.

  1. Superconductivity-induced magnetization depletion in a ferromagnet through an insulator in a ferromagnet-insulator-superconductor hybrid oxide heterostructure.

    PubMed

    Prajapat, C L; Singh, Surendra; Paul, Amitesh; Bhattacharya, D; Singh, M R; Mattauch, S; Ravikumar, G; Basu, S

    2016-05-21

    Coupling between superconducting and ferromagnetic states in hybrid oxide heterostructures is presently a topic of intense research. Such a coupling is due to the leakage of the Cooper pairs into the ferromagnet. However, tunneling of the Cooper pairs though an insulator was never considered plausible. Using depth sensitive polarized neutron reflectivity we demonstrate the coupling between superconductor and magnetic layers in epitaxial La2/3Ca1/3MnO3 (LCMO)/SrTiO3/YBa2Cu3O7-δ (YBCO) hybrid heterostructures, with SrTiO3 as an intervening oxide insulator layer between the ferromagnet and the superconductor. Measurements above and below the superconducting transition temperature (TSC) of YBCO demonstrate a large modulation of magnetization in the ferromagnetic layer below the TSC of YBCO in these heterostructures. This work highlights a unique tunneling phenomenon between the epitaxial layers of an oxide superconductor (YBCO) and a magnetic layer (LCMO) through an insulating layer. Our work would inspire further investigations on the fundamental aspect of a long range order of the triplet spin-pairing in hybrid structures.

  2. Enhanced kinetics of Al{sub 0.97}Ga{sub 0.03}As wet oxidation through the use of hydrogenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Du, M.; Sagnes, I.; Beaudoin, G.

    2006-09-11

    This letter reports on a different kinetic behavior of the wet thermal oxidation process resulting in Al{sub x}O{sub y} material depending on the AlAs material growth method, molecular beam epitaxy (MBE) or metal organic vapor phase epitaxy (MOVPE). A higher oxidation rate for MOVPE-grown materia is systemically found. Considering the major role of hydrogen in the wet oxidation reaction, it is believed this observation could be linked with the higher hydrogen residual concentration in MOVPE layers. Using a hydrogen plasma, MBE-grown Al{sub 0.97}Ga{sub 0.03}As layers were hydrogened prior to oxidation. This hydrogenated sample showed a ten times enhanced oxidation ratemore » as compared to the nonhydrogenated Al{sub 0.97}Ga{sub 0.03}As sample. This behavior is mainly attributed to a hydrogen induced modification of the diffusion limited regime, enhancing the diffusion length of oxidizing species and reaction products in the oxidized layers.« less

  3. Cr incorporated phase transformation in Y 2O 3 under ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Nan; Yadav, Satyesh Kumar; Xu, Yun

    Under irradiation, chemical species can redistribute in ways not expected from equilibrium behavior. In oxide-dispersed ferritic alloys, the phenomenon of irradiation-induced Cr redistribution at the metal/oxide interfaces has drawn recent attention. Here, the thermal and irradiation stability of the FeCr/Y 2O 3 interface has been systematically studied. Trilayer thin films of 90 nm Fe - 20 at.% Cr (1 st layer)/100 nm Y 2O 3 (2 nd layer)/135 nm Fe - 20 at.% Cr (3 rd layer) were deposited on MgO substrates at 500 °C. After irradiation, Cr diffuses towards and enriches the FeCr/Y 2O 3 interface. Further, correlated withmore » Cr redistributed into the oxide, an amorphous layer is generated at the interface. In the Y 2O 3 layer, the original cubic phase is observed to transform to the monoclinic phase after irradiation. Meanwhile, nanosized voids, with relatively larger size at interfaces, are also observed in the oxide layer. First-principles calculations reveal that Cr substitution of Y interstitials in Y 2O 3 containing excess Y interstitials is favored and the irradiation-induced monoclinic phase enhances this process. Lastly, our findings provide new insights that may aid in the development of irradiation resistant oxide-dispersed ferritic alloys.« less

  4. Cr incorporated phase transformation in Y2O3 under ion irradiation

    PubMed Central

    Li, N.; Yadav, S. K.; Xu, Y.; Aguiar, J. A.; Baldwin, J. K.; Wang, Y. Q.; Luo, H. M.; Misra, A.; Uberuaga, B. P.

    2017-01-01

    Under irradiation, chemical species can redistribute in ways not expected from equilibrium behavior. In oxide-dispersed ferritic alloys, the phenomenon of irradiation-induced Cr redistribution at the metal/oxide interfaces has drawn recent attention. Here, the thermal and irradiation stability of the FeCr/Y2O3 interface has been systematically studied. Trilayer thin films of 90 nm Fe - 20 at.% Cr (1st layer)/100 nm Y2O3 (2nd layer)/135 nm Fe - 20 at.% Cr (3rd layer) were deposited on MgO substrates at 500 °C. After irradiation, Cr diffuses towards and enriches the FeCr/Y2O3 interface. Further, correlated with Cr redistributed into the oxide, an amorphous layer is generated at the interface. In the Y2O3 layer, the original cubic phase is observed to transform to the monoclinic phase after irradiation. Meanwhile, nanosized voids, with relatively larger size at interfaces, are also observed in the oxide layer. First-principles calculations reveal that Cr substitution of Y interstitials in Y2O3 containing excess Y interstitials is favored and the irradiation-induced monoclinic phase enhances this process. Our findings provide new insights that may aid in the development of irradiation resistant oxide-dispersed ferritic alloys. PMID:28091522

  5. Surface texture of single-crystal silicon oxidized under a thin V{sub 2}O{sub 5} layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikitin, S. E., E-mail: nikitin@mail.ioffe.ru; Verbitskiy, V. N.; Nashchekin, A. V.

    The process of surface texturing of single-crystal silicon oxidized under a V{sub 2}O{sub 5} layer is studied. Intense silicon oxidation at the Si–V{sub 2}O{sub 5} interface begins at a temperature of 903 K which is 200 K below than upon silicon thermal oxidation in an oxygen atmosphere. A silicon dioxide layer 30–50 nm thick with SiO{sub 2} inclusions in silicon depth up to 400 nm is formed at the V{sub 2}O{sub 5}–Si interface. The diffusion coefficient of atomic oxygen through the silicon-dioxide layer at 903 K is determined (D ≥ 2 × 10{sup –15} cm{sup 2} s{sup –1}). A modelmore » of low-temperature silicon oxidation, based on atomic oxygen diffusion from V{sub 2}O{sub 5} through the SiO{sub 2} layer to silicon, and SiO{sub x} precipitate formation in silicon is proposed. After removing the V{sub 2}O{sub 5} and silicon-dioxide layers, texture is formed on the silicon surface, which intensely scatters light in the wavelength range of 300–550 nm and is important in the texturing of the front and rear surfaces of solar cells.« less

  6. Cr incorporated phase transformation in Y 2O 3 under ion irradiation

    DOE PAGES

    Li, Nan; Yadav, Satyesh Kumar; Xu, Yun; ...

    2017-01-16

    Under irradiation, chemical species can redistribute in ways not expected from equilibrium behavior. In oxide-dispersed ferritic alloys, the phenomenon of irradiation-induced Cr redistribution at the metal/oxide interfaces has drawn recent attention. Here, the thermal and irradiation stability of the FeCr/Y 2O 3 interface has been systematically studied. Trilayer thin films of 90 nm Fe - 20 at.% Cr (1 st layer)/100 nm Y 2O 3 (2 nd layer)/135 nm Fe - 20 at.% Cr (3 rd layer) were deposited on MgO substrates at 500 °C. After irradiation, Cr diffuses towards and enriches the FeCr/Y 2O 3 interface. Further, correlated withmore » Cr redistributed into the oxide, an amorphous layer is generated at the interface. In the Y 2O 3 layer, the original cubic phase is observed to transform to the monoclinic phase after irradiation. Meanwhile, nanosized voids, with relatively larger size at interfaces, are also observed in the oxide layer. First-principles calculations reveal that Cr substitution of Y interstitials in Y 2O 3 containing excess Y interstitials is favored and the irradiation-induced monoclinic phase enhances this process. Lastly, our findings provide new insights that may aid in the development of irradiation resistant oxide-dispersed ferritic alloys.« less

  7. Biocompatible Nb2O5 thin films prepared by means of the sol-gel process.

    PubMed

    Velten, D; Eisenbarth, E; Schanne, N; Breme, J

    2004-04-01

    Thin biocompatible oxide films with an optimised composition and structure on the surface of titanium and its alloys can improve the implant integration. The preparation of these thin oxide layers with the intended improvement of the surface properties can be realised by means of the sol-gel process. Nb2O5 is a promising coating material for this application because of its extremely high corrosion resistance and thermodynamic stability. In this study, thin Nb2O5 layers ( < 200 nm) were prepared by spin coating of polished discs of cp-titanium with a sol consisting of a mixture of niobium ethoxide, butanol and acetylacetone. The thickness, phase composition, corrosion resistance and the wettability of the oxide layers were determined after an optimisation of the processing parameters for deposition of oxide without any organic impurities. The purity of the oxide layer is an important aspect in order to avoid a negative response to the cell adhesion. The biocompatibility of the oxide layers which was investigated by in vitro tests (morphology, proliferation rate, WST-1, cell spreading) is improved as compared to uncoated and TiO2 sol-gel coated cp-titanium concerning the spreading of cells, collagen I synthesis and wettability.

  8. Insights into Chemical Transport and Oxidative Processing in the Arctic Springtime

    NASA Astrophysics Data System (ADS)

    Apel, E. C.; Hornbrook, R. S.; Flocke, F. M.; Hall, S. R.; Hills, A. J.; Montzka, D.; Orlando, J. J.; Turnipseed, A. A.; Ullmann, K.; Weinheimer, A. J.; Mauldin, L.; Riemer, D. D.; Shepson, P. B.; Sive, B. C.; Staebler, R. M.; Blake, N. J.

    2015-12-01

    Gas-phase volatile organic compounds (VOCs) were measured at several levels between the snow surface and 6 m in the Arctic boundary layer in Barrow, Alaska for the OASIS-2009 field campaign during March and April 2009, as part of the International Polar Year (IPY). Nonmethane hydrocarbons (NMHCs) from C4-C8 and oxygenated VOCs, including alcohols, aldehydes and ketones were quantified multiple times per hour, day and night during the campaign using in-situ fast gas chromatography-mass spectrometry (fast-GC/MS). Samples were also collected in canisters two to three times daily and subsequently analyzed for C2-C8 NMHCs. The NMHCs and aldehydes all showed decreasing mixing ratios with time during the experiment whereas acetone and MEK showed increases. These results are interpreted in the context of a box model and a 3D chemical transport model. After adjusting for seasonal trends in the VOCs, acetone, MEK and 2-pentanone were all negatively correlated with O3, while NMHCs, methanol, ethanol, acetaldehyde, propanal and butanal were all positively correlated with O3. Several ozone depletion events (ODEs) during the study provided an opportunity to investigate the large perturbations due to halogen chemistry on the production and loss of VOCs in the air masses at the sampling site. Notably, aldehyde mixing ratios dropped below the detection limit of the instrument (< 3 pptv) during the ODEs. The NCAR Master Mechanism (MM) (0-D box model), which was updated to include halogen chemistry, was able to reproduce the bromine explosion and showed consistency with key observations including the aldehyde data. Further, no clear positive or negative air-snow flux could be identified for any of the VOCs observed by fast-GC/MS during the study.

  9. Direct electron injection into an oxide insulator using a cathode buffer layer

    PubMed Central

    Lee, Eungkyu; Lee, Jinwon; Kim, Ji-Hoon; Lim, Keon-Hee; Seok Byun, Jun; Ko, Jieun; Dong Kim, Young; Park, Yongsup; Kim, Youn Sang

    2015-01-01

    Injecting charge carriers into the mobile bands of an inorganic oxide insulator (for example, SiO2, HfO2) is a highly complicated task, or even impossible without external energy sources such as photons. This is because oxide insulators exhibit very low electron affinity and high ionization energy levels. Here we show that a ZnO layer acting as a cathode buffer layer permits direct electron injection into the conduction bands of various oxide insulators (for example, SiO2, Ta2O5, HfO2, Al2O3) from a metal cathode. Studies of current–voltage characteristics reveal that the current ohmically passes through the ZnO/oxide-insulator interface. Our findings suggests that the oxide insulators could be used for simply fabricated, transparent and highly stable electronic valves. With this strategy, we demonstrate an electrostatic discharging diode that uses 100-nm SiO2 as an active layer exhibiting an on/off ratio of ∼107, and protects the ZnO thin-film transistors from high electrical stresses. PMID:25864642

  10. Structure and method for controlling band offset and alignment at a crystalline oxide-on-semiconductor interface

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    2003-11-25

    A crystalline oxide-on-semiconductor structure and a process for constructing the structure involves a substrate of silicon, germanium or a silicon-germanium alloy and an epitaxial thin film overlying the surface of the substrate wherein the thin film consists of a first epitaxial stratum of single atomic plane layers of an alkaline earth oxide designated generally as (AO).sub.n and a second stratum of single unit cell layers of an oxide material designated as (A'BO.sub.3).sub.m so that the multilayer film arranged upon the substrate surface is designated (AO).sub.n (A'BO.sub.3).sub.m wherein n is an integer repeat of single atomic plane layers of the alkaline earth oxide AO and m is an integer repeat of single unit cell layers of the A'BO.sub.3 oxide material. Within the multilayer film, the values of n and m have been selected to provide the structure with a desired electrical structure at the substrate/thin film interface that can be optimized to control band offset and alignment.

  11. Scavenging of oxygen from SrTiO3 by metals and its implications for oxide thin film deposition

    NASA Astrophysics Data System (ADS)

    Posadas, Agham; Kormondy, Kristy; Guo, Wei; Ponath, Patrick; Kremer, Jacqueline; Hadamek, Tobias; Demkov, Alexander

    SrTiO3 is a widely used substrate for the growth of other functional oxide thin films. However, SrTiO3 loses oxygen very easily during oxide thin film deposition even under relatively high oxygen pressures. In some cases, there will be an interfacial layer of oxygen-deficient SrTiO3 formed at the interface with the deposited oxide film, depending on the metals present in the film. By depositing a variety of metals layer by layer and measuring the evolution of the core level spectra of both the deposited metal and SrTiO3 using x-ray photoelectron spectroscopy, we show that there are three distinct types of behavior that occur for thin metal films on SrTiO3. We discuss the implications of these types of behavior for the growth of complex oxide thin films on SrTiO3, and which oxide thin films are expected to produce an interfacial oxygen-deficient layer depending on their elemental constituents.

  12. Graphene Oxide Nanoribbon as Hole Extraction Layer to Enhance Efficiency and Stability of Polymer Solar Cells

    DTIC Science & Technology

    2013-01-01

    Oxide Nanoribbon as Hole Extraction Layer to Enhance Effi ciency and Stability of Polymer Solar Cells Jun Liu , Gi-Hwan Kim , Yuhua Xue , Jin...circumvented by oxidizing graphene with acids (e.g., H 2 SO 4 /KMnO 4 ) to produce graphene oxide (GO) with oxygen-containing groups (e.g., –COOH, –OH...introducing the oxygen-rich groups around a graphene nanoribbon, the resultant graphene oxide nanoribbon (GOR) should show a synergistic effect to have

  13. Inorganic Substrates and Encapsulation Layers for Transient Electronics

    DTIC Science & Technology

    2014-07-01

    surface oxidation of the nitrides, the measurements were conducted shortly after oxide removal in buffered oxide etchant (BOE) 6:1 (Transene Company Inc...values for the time-dependent dissolution of thermally grown SiO2 (dry oxidation) in buffer solutions (black, pH 7.4; red, pH 8; blue, pH 10...22 5.1.3 Contractor will Identify and Measure Key Performance Characteristics of Candidate Metal Conductive Layers for

  14. Corrosion of NiTi Wires with Cracked Oxide Layer

    NASA Astrophysics Data System (ADS)

    Racek, Jan; Šittner, Petr; Heller, Luděk; Pilch, Jan; Petrenec, Martin; Sedlák, Petr

    2014-07-01

    Corrosion behavior of superelastic NiTi shape memory alloy wires with cracked TiO2 surface oxide layers was investigated by electrochemical corrosion tests (Electrochemical Impedance Spectroscopy, Open Circuit Potential, and Potentiodynamic Polarization) on wires bent into U-shapes of various bending radii. Cracks within the oxide on the surface of the bent wires were observed by FIB-SEM and TEM methods. The density and width of the surface oxide cracks dramatically increase with decreasing bending radius. The results of electrochemical experiments consistently show that corrosion properties of NiTi wires with cracked oxide layers (static load keeps the cracks opened) are inferior compared to the corrosion properties of the straight NiTi wires covered by virgin uncracked oxides. Out of the three methods employed, the Electrochemical Impedance Spectroscopy seems to be the most appropriate test for the electrochemical characterization of the cracked oxide layers, since the impedance curves (Nyquist plot) of differently bent NiTi wires can be associated with increasing state of the surface cracking and since the NiTi wires are exposed to similar conditions as the surfaces of NiTi implants in human body. On the other hand, the potentiodynamic polarization test accelerates the corrosion processes and provides clear evidence that the corrosion resistance of bent superelastic NiTi wires degrades with oxide cracking.

  15. Implementation of new integrated evaporation equipment for the preparation of 238U targets and improvement of the deposition process

    NASA Astrophysics Data System (ADS)

    Vanleeuw, D.; Lewis, D.; Moens, A.; Sibbens, G.; Wiss, T.

    2018-05-01

    Measurement of neutron cross section data is a core activity of the JRC-Directorate G for Nuclear Safety and Security in Geel. After a period of reduced activity and in line with a renewed interest for nuclear data required for GenIV reactors and waste minimization, the demand for high quality actinide targets increased. Physical vapour deposition by thermal evaporation is a key technique to prepare homogeneous thin actinide layers, but due to ageing effects the earlier in-house developed equipment can no longer provide the required quality. Because of a current lack of experience and human resources cooperation with private companies is required for the development of new deposition equipment directly integrated in a glove box. In this paper we describe the design, implementation and validation of the first commercial actinide evaporator in a glove box as well as the optimization of the deposition process. Highly enriched 238U3O8 was converted to 238UF4 powder and several deposition runs were performed on different substrates. The deposition parameters were varied and defined in order to guarantee physical and chemical stable homogeneous UF4 layers, even on polished substrates which was not longer feasible with the older equipment. The stability problem is discussed in view of the thin layer growth by physical vapour deposition and the influence of the deposition parameters on the layer quality. The deposits were characterized for the total mass by means of substitution weighing and for the areal density of 238U by means of alpha particle counting and thermal ionization mass spectrometry (TIMS). The quality of the layer was visually evaluated and by means of stereo microscopy and auto radiography.

  16. A model study of laboratory photooxidation experiments of mono- and sesquiterpenes

    NASA Astrophysics Data System (ADS)

    Capouet, M.; Vereecken, L.; Peeters, J.; Müller, J.

    2006-12-01

    The importance of monoterpenes in the atmosphere stems from their large emissions from plants, their high reactivity, and their role as precursors for Secondary Organic Aerosol (SOA) production. In order to quantify the impact of α-pinene oxidation (as representative of the monoterpenes) using a CTM, a detailed understanding of its oxidation mechanism is necessary. Past studies have investigated successfully the gas- phase OH-oxidation mechanism of α-pinene [Peeters et al., 2001; Vereecken and Peeters 2004; Capouet et al., 2004]. However, the SOA formation measured in laboratory experiments remains difficult to model, partly due to a poor understanding of the ozonolysis mechanism believed to be the dominant path to formation of condensable compounds. Very recently, Peeters and co-workers have developed a detailed mechanism for the α-pinene ozonolysis based on objective theoretical grounds. Both OH- and O3- oxidation mechanisms have been implemented in a box model and coupled to a module describing the gas/particle partitioning of the semi-volatile products on the basis of a vapour pressure prediction method [Capouet and Müller, 2006]. The photooxidation of primary products has been parameterized in order to evaluate the role of condensable compounds formed by secondary reactions. Simulations of a wide set of α-pinene photooxidation experiments reported in the literature have been performed. Results indicate that the calculated SOA contain a significant fraction of second generation products. Note in particular that our box model simulations as well as theoretical arguments contradict the gas-phase formation routes for pinic acid proposed in the literature and suggest a secondary origin for this compound. Contribution of the sesquiterpenes to biogenic non methane hydrocarbon emissions has been estimated from 9% to 28% in some regions in the U.S. Their high reactivity towards ozone and their complex chemistry make these compounds hardly accessible to theoretical and experimental study. Lately an increasing number of laboratory experiments have been performed and have reported that sesquiterpenes such as β- caryophyllene and α-humulene have much higher aerosol formation potentials than α-pinene on a mass basis. Using parameterizations similar to those developed previously for α-pinene, a simplified box model describing the oxidation of the sesquiterpenes and the related aerosol formation has been developed. Preliminary simulations of photooxidation experiments have been performed and are compared with the monoterpenes model results.

  17. Materials science, integration, and performance characterization of high-dielectric constant thin film based devices

    NASA Astrophysics Data System (ADS)

    Fan, Wei

    To overcome the oxidation and diffusion problems encountered during Copper integration with oxide thin film-based devices, TiAl/Cu/Ta heterostructure has been first developed in this study. Investigation on the oxidation and diffusion resistance of the laminate structure showed high electrical conductance and excellent thermal stability in oxygen environment. Two amorphous oxide layers that were formed on both sides of the TiAl barrier after heating in oxygen have been revealed as the structure that effectively prevents oxygen penetration and protects the integrity of underlying Cu layer. Polycrystalline (BaxSr1-x)TiO3 (BST) thin films were subsequently deposited on the Cu-based bottom electrode by RF magnetron sputtering to investigate the interaction between the oxide and Cu layers. The thickness of the interfacial layer and interface roughness play critical roles in the optimization of the electrical performance of the BST capacitors using Cu-based electrode. It was determined that BST deposition at moderate temperature followed by rapid thermal annealing in pure oxygen yields BST/Cu capacitors with good electrical properties for application to high frequency devices. The knowledge obtained on the study of barrier properties of TiAl inspired a continuous research on the materials science issues related to the application of the hybrid TiAlOx, as high-k gate dielectric in MOSFET devices. Novel fabrication process such as deposition of ultra-thin TiAl alloy layer followed by oxidation with atomic oxygen has been established in this study. Stoichiometric amorphous TiAlOx layers, exhibiting only Ti4+ and Al3+ states, were produced with a large variation of oxidation temperature (700°C to room temperature). The interfacial SiOx formation between TiAlOx and Si was substantially inhibited by the use of the low temperature oxidation process. Electrical characterization revealed a large permittivity of 30 and an improved band structure for the produced TiAlOx layers, compared with pure TiO2. A modified 3-element model was adopted to extract the true C-V behavior of the TiAlOx-based MOS capacitor. Extremely small equivalent oxide thickness (EOT) less than 0.5 nm with dielectric leakage 4˜5 magnitude lower than that for SiO2 has been achieved on TiAlOx layer as a result of its excellent dielectric properties.

  18. Effect of chemical composition of Ni-Cr dental casting alloys on the bonding characterization between porcelain and metal.

    PubMed

    Huang, H-H; Lin, M-C; Lee, T-H; Yang, H-W; Chen, F-L; Wu, S-C; Hsu, C-C

    2005-03-01

    The purpose of this study was to investigate the influence of chemical composition of Ni-Cr dental casting alloys on the bonding behaviour between porcelain and metal. A three-point bending test was used to measure the fracture load of alloy after porcelain firing. A scanning electron microscope, accompanied by an energy dispersion spectrometer, was used to analyse the morphology and chemical composition of the fracture surface. An X-ray photoelectron spectrometer and glow discharge spectrometer were used to identify the structure and cross-sectional chemical composition, respectively, of oxide layers on Ni-Cr alloys after heat treatment at 990 degrees C for 5 min. Results showed that the oxide layers formed on all Ni-Cr alloys contained mainly Cr2O3, NiO, and trace MoO3. The Ni-Cr alloy with a higher Cr content had a thicker oxide layer, as well as a weaker bonding behaviour of porcelain/metal interface. The presence of Al (as Al2O3) and Be (as BeO) on the oxide layer suppressed the growth of the oxide layer, leading to a better porcelain/metal bonding behaviour. However, the presence of a small amount of Ti (as TiO2) on the oxide layer did not have any influence on the bonding behaviour. The fracture propagated along the interface between the opaque porcelain and metal, and exhibited an adhesive type of fracture morphology.

  19. Structures and electrochemical performances of pyrolized carbons from graphite oxides for electric double-layer capacitor

    NASA Astrophysics Data System (ADS)

    Kim, Ick-Jun; Yang, Sunhye; Jeon, Min-Je; Moon, Seong-In; Kim, Hyun-Soo; Lee, Yoon-Pyo; An, Kye-Hyeok; Lee, Young-Hee

    The structural features and the electrochemical performances of pyrolized needle cokes from oxidized cokes are examined and compared with those of KOH-activated needle coke. The structure of needle coke is changed to a single phase of graphite oxide after oxidation treatment with an acidic solution having an NaClO 3/needle coke composition ratio of above 7.5, and the inter-layer distance of the oxidized needle coke is expanded to 6.9 Å with increasing oxygen content. After heating at 200 °C, the oxidized needle coke is reduced to a graphite structure with an inter-layer distance of 3.6 Å. By contrast, a change in the inter-layer distance in KOH-activated needle coke is not observed. An intercalation of pyrolized needle coke, observed on first charge, occurs at 1.0 V. This value is lower than that of KOH-activation needle coke. A capacitor using pyrolized needle coke exhibits a lower internal resistance of 0.57 Ω in 1 kHz, and a larger capacitance per weight and volume of 30.3 F g -1 and 26.9 F ml -1, in the two-electrode system over the potential range 0-2.5 V compared with those of a capacitor using KOH-activation of needle coke. This better electrochemical performance is attributed to a distorted graphene layer structure derived from the process of the inter-layer expansion and shrinkage.

  20. Thermal boundary layer due to sudden heating of fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurkal, K.R.; Munukutla, S.

    This paper proposes to solve computationally the heat-transfer problems (introduced by Munukutla and Venkataraman, 1988) related to a closed-cycle pulsed high-power laser flow loop. The continuity and the momentum equations as well as the unsteady energy equation are solved using the Keller-Box method. The solutions were compared with the steady-state solutions at large times, and the comparison was found to be excellent. Empirical formulas are proposed for calculating the time-dependent boundary-layer thickness and mass-heat transfer, that can be used by laser flow loop designers. 6 refs.

  1. Thermal boundary layer due to sudden heating of fluid

    NASA Astrophysics Data System (ADS)

    Kurkal, K. R.; Munukutla, S.

    1989-10-01

    This paper proposes to solve computationally the heat-transfer problems (introduced by Munukutla and Venkataraman, 1988) related to a closed-cycle pulsed high-power laser flow loop. The continuity and the momentum equations as well as the unsteady energy equation are solved using the Keller-Box method. The solutions were compared with the steady-state solutions at large times, and the comparison was found to be excellent. Empirical formulas are proposed for calculating the time-dependent boundary-layer thickness and mass-heat transfer, that can be used by laser flow loop designers.

  2. Surface Modification Enhanced Reflection Intensity of Quartz Crystal Microbalance Sensors upon Molecular Adsorption.

    PubMed

    Kojima, Taisuke

    2018-01-01

    Molecular adsorption on a sensing surface involves molecule-substrate and molecule-molecule interactions. Combining optical systems and a quartz crystal microbalance (QCM) on the same sensing surface allows the quantification of such interactions and reveals the physicochemical properties of the adsorbed molecules. However, low sensitivity of the current reflection-based techniques compared to the QCM technique hinders the quantitative analysis of the adsorption events. Here, a layer-by-layer surface modification of a QCM sensor is studied to increase the optical sensitivity. The intermediate layers of organic-inorganic molecules and metal-metal oxide were explored on a gold (Au) surface of a QCM sensor. First, polyhedral oligomeric silsesquioxane-derivatives that served as the organic-inorganic intermediate layer were synthesized and modified on the Au-QCM surface. Meanwhile, titanium oxide, fabricated by anodic oxidation of titanium, was used as a metal-metal oxide intermediate layer on a titanium-coated QCM surface. The developed technique enabled interrogation of the molecular adsorption owing to the enhanced optical sensitivity.

  3. [Apatite-forming ability of pure titanium implant after micro-arc oxidation treatment].

    PubMed

    Tian, Zhihui; Zhang, Yu; Wang, Lichao; Nan, Kaihui

    2013-10-01

    To investigate the apatite forming ability of pure titanium implant after micro-arc oxidation treatment in simulated body fluid (SBF) and obtain implants with calcium phosphate (Ca-P) layers. The implants were immersed in (SBF) after micro-arc oxidation treatment for different time lengths, and their apatite forming ability and the morphology and constituents of the Ca-P layers formed on the sample surface were analyzed using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive electron probe. After immersion in SBF, large quantities of Ca-P layers were induced on the surface of the samples. The Ca-P layers were composed of octacalcium phosphate and carbonated hydroxyapatite, and the crystals showed a plate-like morphology with an oriented growth. The implants with micro-arc oxidation treatment show good apatite forming ability on the surface with rich calcium and phosphorus elements. The formed layers are composed of bone-like apatite including octacalcium phosphate and carbonated hydroxyapatite.

  4. Effect of oxide insertion layer on resistance switching properties of copper phthalocyanine

    NASA Astrophysics Data System (ADS)

    Joshi, Nikhil G.; Pandya, Nirav C.; Joshi, U. S.

    2013-02-01

    Organic memory device showing resistance switching properties is a next-generation of the electrical memory unit. We have investigated the bistable resistance switching in current-voltage (I-V) characteristics of organic diode based on copper phthalocyanine (CuPc) film sandwiched between aluminum (Al) electrodes. Pronounced hysteresis in the I-V curves revealed a resistance switching with on-off ratio of the order of 85%. In order to control the charge injection in the CuPc, nanoscale indium oxide buffer layer was inserted to form Al/CuPc/In2O3/Al device. Analysis of I-V measurements revealed space charge limited switching conduction at the Al/CuPc interface. The traps in the organic layer and charge blocking by oxide insertion layer have been used to explain the absence of resistance switching in the oxide buffer layered memory device cell. Present study offer potential applications for CuPc organic semiconductor in low power non volatile resistive switching memory and logic circuits.

  5. Surface Modifications of Materials by Electrochemical Methods to Improve the Properties for Industrial and Medical Applications

    NASA Astrophysics Data System (ADS)

    Benea, Lidia

    2018-06-01

    There are two applied electrochemical methods in our group in order to obtain advanced functional surfaces on materials: (i) direct electrochemical synthesis by electro-codeposition process and (ii) anodization of materials to form nanoporous oxide layers followed by electrodeposition of hydroxyapatite or other bioactive molecules and compounds into porous film. Electrodeposition is a process of low energy consumption, and therefore very convenient for the surface modification of various types of materials. Electrodeposition is a powerful method compared with other methods, which led her to be adopted and spread rapidly in nanotechnology to obtain nanostructured layers and films. Nanoporous thin oxide layers on titanum alloys as support for hydroxyapatite or other biomolecules electrodeposition in view of biomedical applications could be obtained by electrochemical methods. For surface modification of titanium or titanium alloys to improve the biocompatibility or osseointegration, the two steps must be fulfilled; the first is controlled growth of oxide layer followed by second being biomolecule electrodeposition into nanoporous formed titanium oxide layer.

  6. Transmission electron microscopy characterization of the interfacial structure of a galvanized dual-phase steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aslam, I., E-mail: ia31@msstate.edu

    2016-10-15

    Site-specific studies were carried out to characterize the interface of a galvanized dual-phase (DP) steel. Focused ion beam (FIB) was used to prepare specimens in the interface region (~ 100 nm thick) between the coating and the substrate. Transmission electron microscopy (TEM), scanning TEM (STEM), and high resolution TEM (HRTEM) were performed to resolve the phases and the structures at the interface between the zinc (Zn) coating and the steel substrate. The STEM and TEM results showed that a continuous manganese oxide (MnO) film with a thickness of ~ 20 nm was present on the surface of the substrate whilemore » no silicon (Si) oxides were resolved. Internal oxide particles were observed as well in the sub-surface region. Despite the presence of the continuous oxide film, a well-developed inhibition layer was observed right on top of the oxide film. The inhibition layer has a thickness of ~ 100 nm. Possible mechanisms for the growth of the inhibition layer were discussed. - Highlights: •Site-specific examinations were performed on the Zn/steel interface. •Continuous external MnO oxides (20 nm) were observed at the interface. •No Si oxides were observed at the interface. •Internal oxide particles were distributed in the subsurface. •A continuous inhibition layer grew on top of the external oxides.« less

  7. Surface Modification of Thermal Barrier Coatings by Single-Shot Defocused Laser Treatments

    NASA Astrophysics Data System (ADS)

    Akdoğan, Vakur; Dokur, Mehmet M.; Göller, Gültekin; Keleş, Özgül

    2013-09-01

    Thermal barrier coatings (TBC) consisting of atmospheric plasma-sprayed ZrO2-8 wt.% Y2O3 and a high velocity oxygen fuel-sprayed metallic bond coat were subjected to CO2 continuous wave laser treatments. The effects of laser power on TBCs were investigated as was the thermally grown oxide (TGO) layer development of all as-sprayed and laser-treated coatings after thermal oxidation tests in air environment for 50, 100, and 200 h at 1100 °C. The effects of laser power on TBCs were investigated. TGO layer development was examined on all as-sprayed and laser-treated coatings after thermal oxidation tests in air environment for 50, 100, and 200 h at 1100 °C. Melted and heat-affected zone regions were observed in all the laser-treated samples. Oxidation tests showed a stable alumina layer and mixed spinel oxides in the TGO layers of the as-sprayed and laser-treated TBCs.

  8. Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals

    NASA Astrophysics Data System (ADS)

    Carey, Benjamin J.; Ou, Jian Zhen; Clark, Rhiannon M.; Berean, Kyle J.; Zavabeti, Ali; Chesman, Anthony S. R.; Russo, Salvy P.; Lau, Desmond W. M.; Xu, Zai-Quan; Bao, Qiaoliang; Kevehei, Omid; Gibson, Brant C.; Dickey, Michael D.; Kaner, Richard B.; Daeneke, Torben; Kalantar-Zadeh, Kourosh

    2017-02-01

    A variety of deposition methods for two-dimensional crystals have been demonstrated; however, their wafer-scale deposition remains a challenge. Here we introduce a technique for depositing and patterning of wafer-scale two-dimensional metal chalcogenide compounds by transforming the native interfacial metal oxide layer of low melting point metal precursors (group III and IV) in liquid form. In an oxygen-containing atmosphere, these metals establish an atomically thin oxide layer in a self-limiting reaction. The layer increases the wettability of the liquid metal placed on oxygen-terminated substrates, leaving the thin oxide layer behind. In the case of liquid gallium, the oxide skin attaches exclusively to a substrate and is then sulfurized via a relatively low temperature process. By controlling the surface chemistry of the substrate, we produce large area two-dimensional semiconducting GaS of unit cell thickness (~1.5 nm). The presented deposition and patterning method offers great commercial potential for wafer-scale processes.

  9. Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals.

    PubMed

    Carey, Benjamin J; Ou, Jian Zhen; Clark, Rhiannon M; Berean, Kyle J; Zavabeti, Ali; Chesman, Anthony S R; Russo, Salvy P; Lau, Desmond W M; Xu, Zai-Quan; Bao, Qiaoliang; Kevehei, Omid; Gibson, Brant C; Dickey, Michael D; Kaner, Richard B; Daeneke, Torben; Kalantar-Zadeh, Kourosh

    2017-02-17

    A variety of deposition methods for two-dimensional crystals have been demonstrated; however, their wafer-scale deposition remains a challenge. Here we introduce a technique for depositing and patterning of wafer-scale two-dimensional metal chalcogenide compounds by transforming the native interfacial metal oxide layer of low melting point metal precursors (group III and IV) in liquid form. In an oxygen-containing atmosphere, these metals establish an atomically thin oxide layer in a self-limiting reaction. The layer increases the wettability of the liquid metal placed on oxygen-terminated substrates, leaving the thin oxide layer behind. In the case of liquid gallium, the oxide skin attaches exclusively to a substrate and is then sulfurized via a relatively low temperature process. By controlling the surface chemistry of the substrate, we produce large area two-dimensional semiconducting GaS of unit cell thickness (∼1.5 nm). The presented deposition and patterning method offers great commercial potential for wafer-scale processes.

  10. Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals

    PubMed Central

    Carey, Benjamin J.; Ou, Jian Zhen; Clark, Rhiannon M.; Berean, Kyle J.; Zavabeti, Ali; Chesman, Anthony S. R.; Russo, Salvy P.; Lau, Desmond W. M.; Xu, Zai-Quan; Bao, Qiaoliang; Kavehei, Omid; Gibson, Brant C.; Dickey, Michael D.; Kaner, Richard B.; Daeneke, Torben; Kalantar-Zadeh, Kourosh

    2017-01-01

    A variety of deposition methods for two-dimensional crystals have been demonstrated; however, their wafer-scale deposition remains a challenge. Here we introduce a technique for depositing and patterning of wafer-scale two-dimensional metal chalcogenide compounds by transforming the native interfacial metal oxide layer of low melting point metal precursors (group III and IV) in liquid form. In an oxygen-containing atmosphere, these metals establish an atomically thin oxide layer in a self-limiting reaction. The layer increases the wettability of the liquid metal placed on oxygen-terminated substrates, leaving the thin oxide layer behind. In the case of liquid gallium, the oxide skin attaches exclusively to a substrate and is then sulfurized via a relatively low temperature process. By controlling the surface chemistry of the substrate, we produce large area two-dimensional semiconducting GaS of unit cell thickness (∼1.5 nm). The presented deposition and patterning method offers great commercial potential for wafer-scale processes. PMID:28211538

  11. Selective oxidation of cube textured Ni and Ni-Cr substrate for the formation of cube textured NiO as a component buffer layer for REBa 2Cu 3O 7+ x (REBCO) coated conductors

    NASA Astrophysics Data System (ADS)

    Lockman, Z.; Goldacker, W.; Nast, R.; deBoer, B.; MacManus-Driscoll, J. L.

    2002-08-01

    Thermal oxidation of cube textured, pure Ni and Ni-Cr tapes was undertaken under different oxidation conditions to form cube textured NiO for the use as a first component of buffer layer for the coated conductor. Cube textured NiO was formed on pure Ni after oxidising for more than 130 min in O 2 at 1250 °C. The oxide thickness was >30 μm. Much shorter oxidation times (20-40 min, NiO thickness of ∼5 μm) and lower temperature (1050 °C) were required to form a similar texture on Ni-Cr foils. In addition, NiO formed on Ni-13%Cr was more highly textured than Ni-10%Cr. A Cr 2O 3 inner layer and NiO outer layer was formed on the Ni-Cr alloys.

  12. Correlation between the oxide impedance and corrosion behavior of Zr-Nb-Sn-Fe-Cu alloys

    NASA Astrophysics Data System (ADS)

    Park, Sang-Yoon; Lee, Myung-Ho; Jeong, Yong-Hwan; Jung, Youn-Ho

    2004-12-01

    The correlation between the oxide impedance and corrosion behavior of two series of Zr-Nb-Sn-Fe-Cu alloys was evaluated. Corrosion tests were performed in a 70 ppm LiOH aqueous solution at 360°C for 300 days. The results of the corrosion tests revealed that the corrosion behavior of the alloys depended on the Nb and Sn content. The impedance characteristics for the pre- and post-transition oxide layers formed on the surface of the alloys were investigated in sulfuric acid at room temperature. From the results, a pertinent equivalent circuit model was preferably established, explaining the properties of double oxide layers. The impedance of the oxide layers correlated with the corrosion behavior; better corrosion resistance always showed higher electric resistance for the inner layers. It is thus concluded that a pertinent equivalent circuit model would be useful for evaluating the long-term corrosion behavior of Zr-Nb-Sn-Fe-Cu alloys.

  13. Air purification equipment combining a filter coated by silver nanoparticles with a nano-TiO2 photocatalyst for use in hospitals

    NASA Astrophysics Data System (ADS)

    Son Le, Thanh; Hien Dao, Trong; Nguyen, Dinh Cuong; Chau Nguyen, Hoai; Balikhin, I. L.

    2015-03-01

    X-ray diffraction, scanning electron microscopy and transmission electron microscopy showed that TiO2 particles synthesized by a sol-gel procedure exhibited uniform size about 16-20 nm. This nanopowder was deposited on a porous quartz tube (D = 74 mm, L = 418 mm, deposit density ˜16.4 mg cm-2) through an intermediate adhesive polymethylmethacrylate layer to manufacture a photocatalytic filter tube. A polypropylene pre-filter was coated with a nanosilver layer (particle size ˜20 nm) prepared by aqueous molecular solution method. An air cleaner of 250 m3 h-1 capacity equipped with this pre-filter, an electrostatic air filter, 4 photocatalytic filter tubes and 4 UV-A lamps (36 W) presented the high degradation ability for certain volatile organic compounds (VOCs), bacteria and fungi. The VOCs degradation performances of the equipment with respect to divers compounds are different: in a 10 m3 box, 91.6% of butanol was removed within 55 min, 80% of acetone within 100 min, 70.1% of diethyl ether within 120 min and only 43% of benzene was oxidized within 150 min. Over 99% of bacteria and fungi were killed after the air passage through the equipment. For application, it was placed in the intensive care room (volume of 125 m3) of E hospital in Hanoi; 69% of bacteria and 63% of fungi were killed within 6 h.

  14. Post-depositional redistribution processes and their effects on middle rare earth element precipitation and the cerium anomaly in sediments in the South Korea Plateau, East Sea

    NASA Astrophysics Data System (ADS)

    Kang, Jeongwon; Jeong, Kap-Sik; Cho, Jin Hyung; Lee, Jun Ho; Jang, Seok; Kim, Seong Ryul

    2014-03-01

    We sampled two box-core sediments from the slope of the eastern South Korea Plateau (SKP) in the East Sea (Sea of Japan) at water depths of 1400 and 1700 m. Two chemical fractions of extractable (hydroxylamine/acetic acid) and residual rare earth elements (REEs) together with Al, Ca, Fe, Mg, Mn, P, S, As, Mo, and U were analyzed to assess the post-depositional redistribution of REEs. Extractable Fe and Mn are noticeably abundant in the oxic topmost sediment layer (<3 cm). However, some trace elements (e.g., S, As, Mo, U) are more abundant at depth, where redox conditions are different. Analysis of upper continental crust (UCC)-normalized (La/Gd)UCC, (La/Yb)UCC, and (Ce/Ce*)UCC revealed that the extractable REE is characterized by middle REE (MREE) enrichment and a positive cerium (Ce) anomaly, different from the case of the residual fraction which shows slight enrichment in light REEs (LREEs) with no Ce anomaly. The extractable MREEs seem to have been incorporated into high-Mg calcite during reductive dissolution of Fe oxyhydroxides. In the top sediment layer, the positive Ce anomaly is attributed to Ce oxide, which can be mobilized in deeper oxygen-poor environments and redistributed in the sediment column. In addition, differential concentrations of Ce and other LREEs in pore water appear to result in variable (Ce/Ce*)UCC ratios in the extractable fraction at depth.

  15. Layer Control of WSe2 via Selective Surface Layer Oxidation.

    PubMed

    Li, Zhen; Yang, Sisi; Dhall, Rohan; Kosmowska, Ewa; Shi, Haotian; Chatzakis, Ioannis; Cronin, Stephen B

    2016-07-26

    We report Raman and photoluminescence spectra of mono- and few-layer WSe2 and MoSe2 taken before and after exposure to a remote oxygen plasma. For bilayer and trilayer WSe2, we observe an increase in the photoluminescence intensity and a blue shift of the photoluminescence peak positions after oxygen plasma treatment. The photoluminescence spectra of trilayer WSe2 exhibit features of a bilayer after oxygen plasma treatment. Bilayer WSe2 exhibits features of a monolayer, and the photoluminescence of monolayer WSe2 is completely absent after the oxygen plasma treatment. These changes are observed consistently in more than 20 flakes. The mechanism of the changes observed in the photoluminescence spectra of WSe2 is due to the selective oxidation of the topmost layer. As a result, N-layer WSe2 is reduced to N-1 layers. Raman spectra and AFM images taken from the WSe2 flakes before and after the oxygen treatment corroborate these findings. Because of the low kinetic energy of the oxygen radicals in the remote oxygen plasma, the oxidation is self-limiting. By varying the process duration from 1 to 10 min, we confirmed that the oxidation will only affect the topmost layer of the WSe2 flakes. X-ray photoelectron spectroscopy shows that the surface layer WOx of the sample can be removed by a quick dip in KOH solution. Therefore, this technique provides a promising way of controlling the thickness of WSe2 layer by layer.

  16. A photosynthesis-based two-leaf canopy stomatal conductance model for meteorology and air quality modeling with WRF/CMAQ PX LSM

    EPA Science Inventory

    A coupled photosynthesis-stomatal conductance model with single-layer sunlit and shaded leaf canopy scaling is implemented and evaluated in a diagnostic box model with the Pleim-Xiu land surface model (PX LSM) and ozone deposition model components taken directly from the meteorol...

  17. SURFACTANT ENHANCED RECOVERY OF TETRACHLOROETHYLENE FROM A POROUS MEDIUM CONTAINING LOW PERMEABILITY LENSES. 1. EXPERIMENTAL STUDIES. (R825409)

    EPA Science Inventory

    Abstract

    A matrix of batch, column and two-dimensional (2-D) box experiments was conducted to investigate the coupled effects of rate-limited solubilization and layering on the entrapment and subsequent recovery of a representative dense NAPL, tetrachloroethylene (PCE)...

  18. A food contaminant detection system based on high-Tc SQUIDs

    NASA Astrophysics Data System (ADS)

    Tanaka, Saburo; Fujita, H.; Hatsukade, Y.; Nagaishi, T.; Nishi, K.; Ota, H.; Otani, T.; Suzuki, S.

    2006-05-01

    We have designed and constructed a computer controlled food contaminant detection system for practical use, based on high-Tc SQUID detectors. The system, which features waterproof stainless steel construction, is acceptable under the HACCP (Hazard Analysis and Critical Control Point) programme guidelines. The outer dimensions of the system are 1500 mm length × 477 mm width × 1445 mm height, and it can accept objects up to 200 mm wide × 80 mm high. An automatic liquid nitrogen filling system was installed in the standard model. This system employed a double-layered permeable metallic shield with a thickness of 1 mm as a magnetically shielded box. The distribution of the magnetic field in the box was simulated by FEM; the gap between each shield layer was optimized before fabrication. A shielding factor of 732 in the Z-component was achieved. This value is high enough to safely operate the system in a non-laboratory environment, i.e., a factory. During testing, we successfully detected a steel contaminant as small as 0.3 mm in diameter at a distance of 75 mm.

  19. "Egg-Box"-Assisted Fabrication of Porous Carbon with Small Mesopores for High-Rate Electric Double Layer Capacitors.

    PubMed

    Kang, Danmiao; Liu, Qinglei; Gu, Jiajun; Su, Yishi; Zhang, Wang; Zhang, Di

    2015-11-24

    Here we report a method to fabricate porous carbon with small mesopores around 2-4 nm by simple activation of charcoals derived from carbonization of seaweed consisting of microcrystalline domains formed by the "egg-box" model. The existence of mesopores in charcoals leads to a high specific surface area up to 3270 m(2) g(-1), with 95% surface area provided by small mesopores. This special pore structure shows high adaptability when used as electrode materials for an electric double layer capacitor, especially at high charge-discharge rate. The gravimetric capacitance values of the porous carbon are 425 and 210 F g(-1) and volumetric capacitance values are 242 and 120 F cm(-3) in 1 M H2SO4 and 1 M TEA BF4/AN, respectively. The capacitances even remain at 280 F g(-1) (160 F cm(-3)) at 100 A g(-1) and 156 F g(-1) (90 F cm(-3)) at 50 A g(-1) in the aqueous and organic electrolytes, demonstrating excellent high-rate capacitive performance.

  20. METHOD FOR MANUFACTURING LAMINATED SHEETS FOR PROTECTION AGAINST RADIOACTIVE WASTES, AND PROTECTING AND PACKAGING MEANS MANUFACTURED WITH THESE SHEETS; Papierfabrik Wilhemstal Wilhelm Ernst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1959-07-15

    A description is given of laminated sheet, consisting of a first layer of absorbing and preferably fibrous material (e.g., filter or blotting paper, or felt), a second layer of adhesive, impermeable, and hydrophobic material (e.g., wax, bitumen, a polyvinyl or polyacrylic compound, or a polyhydrocarbon), and a third (and fourth) layer of rigid material more or less impermeable to liquids (e.g., metal (aluminum), polyvinyl chloride, polyethylene, or cardboard). These sheets can be used for covering laboratory tables and walls, for radiation protection (manufacture of clothes, etc.), or for packaging radioactive waste (manufacture of boxes, bags, etc.). (NPO)

Top