Science.gov

Sample records for oxide depletion dyspnoea

  1. Dyspnoea with activities of daily living versus peak dyspnoea during exercise in male patients with COPD.

    PubMed

    Oga, Toru; Nishimura, Koichi; Tsukino, Mitsuhiro; Hajiro, Takashi; Mishima, Michiaki

    2006-06-01

    Dyspnoea measurements in chronic obstructive pulmonary disease (COPD) can be broadly divided into two categories: those that assess breathlessness during exercise, and those that assess breathlessness during daily activities. We investigated the relationships between dyspnoea at the end of exercise and during daily activities with clinical measurements and mortality in COPD patients. We examined 143 male outpatients with moderate to very severe COPD. The peak Borg score at the end of progressive cycle ergometry was used for the assessment of peak dyspnoea rating during exercise, and the Baseline Dyspnea Index (BDI) score was used for dyspnoea with activities of daily living. Relationships between these dyspnoea ratings with other clinical measurements of pulmonary function, exercise indices, health status and psychological status were then investigated. In addition, their relationship with the 5-year mortality of COPD patients was also analyzed to examine their predictive ability. Although the BDI score was significantly correlated with airflow limitation, diffusing capacity, exercise indices, health status and psychological status, the Borg score at the end of exercise had non-existent or only weak correlations with them. The BDI score was strongly significantly correlated with mortality, whereas the Borg score was not. Dyspnoea during daily activities was more significantly correlated with objective and subjective measurements of COPD than dyspnoea at the end of exercise. In addition, the former was more predictive of mortality. Dyspnoea with activities of daily living is considered to be a better measurement for evaluating the disease severity of COPD than peak dyspnoea during exercise.

  2. Ultrafiltration evaluation with depleted uranium oxide

    SciTech Connect

    Weisbrod, K.R.; Schake, A.R.; Morgan, A.N.; Purdy, G.M.; Martinez, H.E.; Nelson, T.O.

    1998-03-01

    Scientists at the Los Alamos National Laboratory Plutonium Facility are using electrodissolution in neutral to alkaline solutions to decontaminate oralloy parts that have surface plutonium contamination. Ultrafiltration of the electrolyte stream removes precipitate so that the electrolyte stream to the decontamination fixture is precipitate free. This report describes small-scale laboratory ultrafiltration experiments that the authors performed to determine conditions necessary for full-scale operation of an ultrafiltration module. Performance was similar to what they observed in the ferric hydroxide system. At 12 psi transmembrane pressure, a shear rate of 12,000 sec{sup {minus}1} was sufficient to sustain membrane permeability. Ultrafiltration of uranium(VI) oxide appears to occur as easily as ultrafiltration of ferric hydroxide. Considering the success reported in this study, the authors plan to add ultrafiltration to the next decontamination system for oralloy parts.

  3. Semiconductor neutron detectors using depleted uranium oxide

    NASA Astrophysics Data System (ADS)

    Kruschwitz, Craig A.; Mukhopadhyay, Sanjoy; Schwellenbach, David; Meek, Thomas; Shaver, Brandon; Cunningham, Taylor; Auxier, Jerrad Philip

    2014-09-01

    This paper reports on recent attempts to develop and test a new type of solid-state neutron detector fabricated from uranium compounds. It has been known for many years that uranium oxide (UO2), triuranium octoxide (U3O8) and other uranium compounds exhibit semiconducting characteristics with a broad range of electrical properties. We seek to exploit these characteristics to make a direct-conversion semiconductor neutron detector. In such a device a neutron interacts with a uranium nucleus, inducing fission. The fission products deposit energy-producing, detectable electron-hole pairs. The high energy released in the fission reaction indicates that noise discrimination in such a device has the potential to be excellent. Schottky devices were fabricated using a chemical deposition coating technique to deposit UO2 layers a few microns thick on a sapphire substrate. Schottky devices have also been made using a single crystal from UO2 samples approximately 500 microns thick. Neutron sensitivity simulations have been performed using GEANT4. Neutron sensitivity for the Schottky devices was tested experimentally using a 252Cf source.

  4. Inhomogeneous depletion of oxygen ions in metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Vykhodets, Vladimir B.; Jarvis, Emily A. A.; Kurennykh, Tatiana E.; Beketov, Igor V.; Obukhov, Sviatoslav I.; Samatov, Oleg M.; Medvedev, Anatoly I.; Davletshin, Andrey E.; Whyte, Travis H.

    2016-02-01

    Zirconia and yttria stabilized zirconia (YSZ) have multiple uses, including catalysis, fuel cells, dental applications, and thermal coatings. We employ nuclear reaction analysis to determine elemental composition of YSZ nanoparticles synthesized by laser evaporation including 18O studies to distinguish between oxide and adsorbed oxygen content as a function of surface area. We see dramatic deviation from stoichiometry that can be traced to loss of oxygen from the oxide near the surface of these nanopowders. Density functional calculations are coupled with these experimental studies to explore the electronic structure of nonstoichiometric surfaces achieved through depletion of oxygen. Our results show oxygen-depleted surfaces present under oxygen potentials where stoichiometric, oxygen-terminated surfaces would be favored thermodynamically for crystalline systems. Oxygen depletion at nanopowder surfaces can create effective two-dimensional surface metallic states while maintaining stoichiometry in the underlying nanoparticle core. This insight into nanopowder surfaces applies to dissimilar oxides of aluminum and zirconium indicating synthesis conditions may be more influential than the inherent oxide properties and displaying need for distinct models for nanopowders of these important engineering materials where surface chemistry dominates performance.

  5. Heliox, dyspnoea and exercise in COPD.

    PubMed

    Hunt, T; Williams, M T; Frith, P; Schembri, D

    2010-03-01

    One of the most important determinants of physical and mental well-being of people with chronic obstructive pulmonary disease (COPD) is participation in physical activity. The ability to alter the sensation of dyspnoea during exercise may improve both exercise duration and intensity. Despite the low density, inert nature, strong safety profile and multiple applications of helium gas, the potential benefit of helium-oxygen gas mixtures as an adjunct therapy to modify disease symptoms and exercise capabilities in obstructive lung diseases has only recently been explored. This is a systematic review of the available peer-reviewed evidence exploring whether symptom modification (perceived levels of dyspnoea) and exercise performance in COPD (either intensity or duration of work) are modified by inhalation of Heliox. Eight experimental studies met inclusion for this review. A variety of methodologies and outcome variables were used negating meta-analysis and hampering direct comparison between interventions. Overall, there was high level of evidence with a low risk of bias supporting Heliox's effectiveness in improving the intensity and endurance of exercise when compared to room air for people with COPD. Little conclusive evidence was found to determine whether Heliox altered the sensation of dyspnoea during exercise.

  6. Oxidation states of uranium in depleted uranium particles from Kuwait.

    PubMed

    Salbu, B; Janssens, K; Lind, O C; Proost, K; Gijsels, L; Danesi, P R

    2005-01-01

    The oxidation states of uranium in depleted uranium (DU) particles were determined by synchrotron radiation based mu-XANES, applied to individual particles isolated from selected samples collected at different sites in Kuwait. Based on scanning electron microscopy with X-ray microanalysis prior to mu-XANES, DU particles ranging from submicrons to several hundred micrometers were observed. The median particle size depended on sources and sampling sites; small-sized particles (median 13 microm) were identified in swipes taken from the inside of DU penetrators holes in tanks and in sandy soil collected below DU penetrators, while larger particles (median 44 microm) were associated with fire in a DU ammunition storage facility. Furthermore, the (236)U/(235)U ratios obtained from accelerator mass spectrometry demonstrated that uranium in the DU particles originated from reprocessed fuel (about 10(-2) in DU from the ammunition facility, about 10(-3) for DU in swipes). Compared to well-defined standards, all investigated DU particles were oxidized. Uranium particles collected from swipes were characterized as UO(2), U(3)O(8) or a mixture of these oxidized forms, similar to that observed in DU affected areas in Kosovo. Uranium particles formed during fire in the DU ammunition facility were, however, present as oxidation state +5 and +6, with XANES spectra similar to solid uranyl standards. Environmental or health impact assessments for areas affected by DU munitions should therefore take into account the presence of respiratory UO(2), U(3)O(8) and even UO(3) particles, their corresponding weathering rates and the subsequent mobilisation of U from oxidized DU particles.

  7. Linkages Between Ozone-depleting Substances, Tropospheric Oxidation and Aerosols

    NASA Technical Reports Server (NTRS)

    Voulgarakis, A.; Shindell, D. T.; Faluvegi, G.

    2013-01-01

    Coupling between the stratosphere and the troposphere allows changes in stratospheric ozone abundances to affect tropospheric chemistry. Large-scale effects from such changes on chemically produced tropospheric aerosols have not been systematically examined in past studies. We use a composition-climate model to investigate potential past and future impacts of changes in stratospheric ozone depleting substances (ODS) on tropospheric oxidants and sulfate aerosols. In most experiments, we find significant responses in tropospheric photolysis and oxidants, with small but significant effects on methane radiative forcing. The response of sulfate aerosols is sizeable when examining the effect of increasing future nitrous oxide (N2O) emissions. We also find that without the regulation of chlorofluorocarbons (CFCs) through the Montreal Protocol, sulfate aerosols could have increased by 2050 by a comparable amount to the decreases predicted due to relatively stringent sulfur emissions controls. The individual historical radiative forcings of CFCs and N2O through their indirect effects on methane (-22.6mW/sq. m for CFCs and -6.7mW/sq. m for N2O) and sulfate aerosols (-3.0mW/sq. m for CFCs and +6.5mW/sq. m for N2O when considering the direct aerosol effect) discussed here are non-negligible when compared to known historical ODS forcing. Our results stress the importance of accounting for stratosphere-troposphere, gas-aerosol and composition-climate interactions when investigating the effects of changing emissions on atmospheric composition and climate.

  8. Dyspnoea management in acute coronary syndrome patients treated with ticagrelor

    PubMed Central

    Parodi, Guido; Storey, Robert F

    2015-01-01

    The occurrence of dyspnoea in acute coronary syndrome (ACS) patients has always been considered a challenging diagnostic and therapeutic clinical scenario. P2Y12 platelet receptor inhibitors (i.e., clopidogrel, prasugrel and ticagrelor) are currently the cornerstone of treatment of ACS patients. Thus, in the last few years, the potential association between ACS and dyspnoea has also become more challenging with the increasing use of ticagrelor in these patients due to its beneficial effects on ischaemic event prevention and mortality, since ticagrelor can induce dyspnoea as a side effect. The present article is intended to review the current literature regarding dyspnoea occurrence in ACS patients, especially those treated with ticagrelor, and to propose ticagrelor-associated dyspnoea management recommendations based on current knowledge. PMID:25267878

  9. Development of a dyspnoea word cue set for studies of emotional processing in COPD.

    PubMed

    Herigstad, Mari; Hayen, Anja; Reinecke, Andrea; Pattinson, Kyle T S

    2016-03-01

    Patients with chronic dyspnoea may learn to fear situations that cue dyspnoea onset. Such dyspnoea-specific cues may then cause anxiety, and worsen or trigger dyspnoea even before commencement of physical activity. We therefore developed an experimental tool to probe emotional processing of dyspnoea for use with neuroimaging in COPD. The tool consists of a computerised task comprising multiple presentations of dyspnoea-related word cues with subsequent rating of dyspnoea and dyspnoea-anxiety with a visual analogue scale. Following 3 development stages, sensitivity to clinical change was tested in 34 COPD patients undergoing pulmonary rehabilitation. We measured internal consistency, sensitivity to clinical change and convergence with established dyspnoea measures (including Dyspnoea-12). Cronbach's alpha was 0.90 for dyspnoea and 0.94 for anxiety ratings. Ratings correlated with Dyspnoea-12 (dyspnoea: r=0.51, P=0.002; anxiety: r=0.54, P=0.001). Reductions in anxiety ratings following pulmonary rehabilitation correlated with reductions in Dyspnoea-12 (r=0.51, P=0.002). We conclude that the word-cue task is reliable, and is thus a potentially useful tool for neuroimaging dyspnoea research.

  10. Depletion of Vandium in Planetary Mantles: Controlled by Metal, Oxide, or Silicate?

    NASA Technical Reports Server (NTRS)

    Righter, Kevin

    2006-01-01

    Vanadium concentrations in planetary mantles can provide information about the conditions during early accretion and differentiation. Because V is a slightly siderophile element, it is usually assumed that any depletion would be due to core formation and metal-silicate equilibrium. However, V is typically more compatible in phases such as spinel, magnesiowuestite and garnet. Fractionation of all of these phases would cause depletions more marked than those from metal. In this paper consideration of depletions due to metal, oxide and silicate are critically evaluated.

  11. Nitrous Oxide: A Greenhouse Gas That is Also an Ozone Layer Depleting Gas

    NASA Astrophysics Data System (ADS)

    Ravishankara, A. R.

    2015-12-01

    Nitrous oxide, N2O, is the major source of nitrogen oxides in the stratosphere, where these oxides playa critical roles in ozone layer depletion by itself and moderating ozone layer depletion by chlorinated chemicals. Thus N2O plays a complex role in the stratosphere. Nitrous oxide is also a greenhouse gas and it contributes to the radiative forcing of climate. Indeed, it is considered the third most important greenhouse gas next to carbon dioxide and methane. This dual role of nitrous oxide makes it an interesting gas for the atmosphere- it bridges the issue of ozone layer depletion and climate change. Nitrous oxide has both natural and anthropogenic sources. Therefore, one needs to consider this important distinction between natural and anthropogenic sources as well as its role in two related but separate environmental issues. Further, the sources of nitrous oxide are varied and diffuse, which makes it difficult to quantify different sources. However, it is clear that a majority of anthropogenic nitrous oxide comes from food production (including agricultural and animal growth practices), an activity that is at the heart of human existence. Thus, limiting N2O emissions is not a simple task! I will briefly summarize our understanding of these roles of nitrous oxide in the earth's atmosphere and touch on the possible ways to limit N2O emissions.

  12. Extreme (13)C depletion of carbonates formed during oxidation of biogenic methane in fractured granite.

    PubMed

    Drake, Henrik; Åström, Mats E; Heim, Christine; Broman, Curt; Åström, Jan; Whitehouse, Martin; Ivarsson, Magnus; Siljeström, Sandra; Sjövall, Peter

    2015-05-07

    Precipitation of exceptionally 13C-depleted authigenic carbonate is a result of, and thus a tracer for, sulphate-dependent anaerobic methane oxidation, particularly in marine sediments. Although these carbonates typically are less depleted in 13C than in the source methane, because of incorporation of C also from other sources, they are far more depleted in 13C (δ13C as light as -69‰ V-PDB) than in carbonates formed where no methane is involved. Here we show that oxidation of biogenic methane in carbon-poor deep groundwater in fractured granitoid rocks has resulted in fracture-wall precipitation of the most extremely 13C-depleted carbonates ever reported, δ13C down to -125‰ V-PDB. A microbial consortium of sulphate reducers and methane oxidizers has been involved, as revealed by biomarker signatures in the carbonates and S-isotope compositions of co-genetic sulphide. Methane formed at shallow depths has been oxidized at several hundred metres depth at the transition to a deep-seated sulphate-rich saline water. This process is so far an unrecognized terrestrial sink of methane.

  13. Extreme 13C depletion of carbonates formed during oxidation of biogenic methane in fractured granite

    PubMed Central

    Drake, Henrik; Åström, Mats E.; Heim, Christine; Broman, Curt; Åström, Jan; Whitehouse, Martin; Ivarsson, Magnus; Siljeström, Sandra; Sjövall, Peter

    2015-01-01

    Precipitation of exceptionally 13C-depleted authigenic carbonate is a result of, and thus a tracer for, sulphate-dependent anaerobic methane oxidation, particularly in marine sediments. Although these carbonates typically are less depleted in 13C than in the source methane, because of incorporation of C also from other sources, they are far more depleted in 13C (δ13C as light as −69‰ V-PDB) than in carbonates formed where no methane is involved. Here we show that oxidation of biogenic methane in carbon-poor deep groundwater in fractured granitoid rocks has resulted in fracture-wall precipitation of the most extremely 13C-depleted carbonates ever reported, δ13C down to −125‰ V-PDB. A microbial consortium of sulphate reducers and methane oxidizers has been involved, as revealed by biomarker signatures in the carbonates and S-isotope compositions of co-genetic sulphide. Methane formed at shallow depths has been oxidized at several hundred metres depth at the transition to a deep-seated sulphate-rich saline water. This process is so far an unrecognized terrestrial sink of methane. PMID:25948095

  14. Extreme 13C depletion of carbonates formed during oxidation of biogenic methane in fractured granite

    NASA Astrophysics Data System (ADS)

    Drake, Henrik; Åström, Mats E.; Heim, Christine; Broman, Curt; Åström, Jan; Whitehouse, Martin; Ivarsson, Magnus; Siljeström, Sandra; Sjövall, Peter

    2015-05-01

    Precipitation of exceptionally 13C-depleted authigenic carbonate is a result of, and thus a tracer for, sulphate-dependent anaerobic methane oxidation, particularly in marine sediments. Although these carbonates typically are less depleted in 13C than in the source methane, because of incorporation of C also from other sources, they are far more depleted in 13C (δ13C as light as -69‰ V-PDB) than in carbonates formed where no methane is involved. Here we show that oxidation of biogenic methane in carbon-poor deep groundwater in fractured granitoid rocks has resulted in fracture-wall precipitation of the most extremely 13C-depleted carbonates ever reported, δ13C down to -125‰ V-PDB. A microbial consortium of sulphate reducers and methane oxidizers has been involved, as revealed by biomarker signatures in the carbonates and S-isotope compositions of co-genetic sulphide. Methane formed at shallow depths has been oxidized at several hundred metres depth at the transition to a deep-seated sulphate-rich saline water. This process is so far an unrecognized terrestrial sink of methane.

  15. Positron annihilation studies in the field induced depletion regions of metal-oxide-semiconductor structures

    SciTech Connect

    Asoka-Kumar, P.; Leung, T.C.; Lynn, K.G.; Nielsen, B.; Forcier, M.P. ); Weinberg, Z.A.; Rubloff, G.W. )

    1992-06-01

    The centroid shifts of positron annihilation spectra are reported from the depletion regions of metal-oxide-semiconductor (MOS) capacitors at room temperature and at 35 K. The centroid shift measurement can be explained using the variation of the electric field strength and depletion layer thickness as a function of the applied gate bias. An estimate for the relevant MOS quantities is obtained by fitting the centroid shift versus beam energy data with a steady-state diffusion-annihilation equation and a derivative-gaussian positron implantation profile. Inadequacy of the present analysis scheme is evident from the derived quantities and alternate methods are required for better predictions.

  16. Auranofin induces apoptosis and necrosis in HeLa cells via oxidative stress and glutathione depletion.

    PubMed

    You, Bo Ra; Shin, Hye Rim; Han, Bo Ram; Kim, Suhn Hee; Park, Woo Hyun

    2015-02-01

    Auranofin (Au), an inhibitor of thioredoxin reductase, is a known anti‑cancer drug. In the present study, the anti‑growth effect of Au on HeLa cervical cancer cells was examined in association with levels of reactive oxygen species (ROS) and glutathione (GSH). Au inhibited the growth of HeLa cells with an IC50 of ~2 µM at 24 h. This agent induced apoptosis and necrosis, accompanied by the cleavage of poly (ADP‑ribose) polymerase and loss of mitochondrial membrane potential. The pan‑caspase inhibitor, benzyloxycarbonyl‑Val‑Ala‑Asp‑fluoromethylketone, prevented apoptotic cell death and each of the assessed caspase inhibitors inhibited necrotic cell death induced by Au. With respect to the levels of ROS and GSH, Au increased intracellular O2•- in the HeLa cells and induced GSH depletion. The pan‑caspase inhibitor reduced the levels of O2•- and GSH depletion in Au‑treated HeLa cells. The antioxidant, N‑acetyl cysteine, not only attenuated apoptosis and necrosis in the Au‑treated HeLa cells, but also decreased the levels of O2•- and GSH depletion in the cells. By contrast, L‑buthionine sulfoximine, a GSH synthesis inhibitor, intensified cell death O2•- and GSH depletion in the Au‑treated HeLa cells. In conclusion, Au induced apoptosis and necrosis in HeLa cells via the induction of oxidative stress and the depletion of GSH.

  17. Comparison of two lung clearance models based on the dissolution rates of oxidized depleted uranium

    SciTech Connect

    Crist, K.C.

    1984-10-01

    An in-vitro dissolution study was conducted on two respirable oxidized depleted uranium samples. The dissolution rates generated from this study were then utilized in the International Commission on Radiological Protection Task Group lung clearance model and a lung clearance model proposed by Cuddihy. Predictions from both models based on the dissolution rates of the amount of oxidized depleted uranium that would be cleared to blood from the pulmonary region following an inhalation exposure were compared. It was found that the predictions made by both models differed considerably. The difference between the predictions was attributed to the differences in the way each model perceives the clearance from the pulmonary region. 33 references, 11 figures, 9 tables.

  18. Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus

    SciTech Connect

    Ric De Vos, C.H.; Vonk, M.J.; Vooijs, R.; Schat, H. )

    1992-03-01

    The relation between loss of glutathione due to metal-induced phytochelatin synthesis and oxidative stress was studied in the roots of copper-sensitive and tolerant Silene cucubalus (L.) Wib., resistant to 1 and 40 micromolar Cu, respectively. The amount of nonprotein sulfhydryl compounds other then glutathione was taken as a measure of phytochelatins. At a supply of 20 micromolar Cu, which is toxic for sensitive plants only, phytochelatin synthesis and loss of total glutathione were observed only in sensitive plants within 6 h of exposure. When the plants were exposed to a range of copper concentrations for 3 d, a marked production of phytochelatins in sensitive plants was already observed at 0.5 micromolar Cu, whereas the production in tolerant plants was negligible at 40 micromolar or lower. The highest production in tolerant plants was only 40% of that in sensitive plants. In both varieties, the synthesis of phytochelatins was coupled to a loss of glutathione. Copper at toxic concentrations caused oxidative stress, as was evidenced by both the accumulation of lipid peroxidation products and a shift in the glutathione redox couple to a more oxidized state. Depletion of glutathione by pretreatment with buthionine sulfoximine significantly increased the oxidative damage by copper. At a comparably low glutathione level, cadmium had no effect on either lipid peroxidation or the glutathione redox couple in buthionine sulfoximine-treated plants. These results indicate that copper may specifically cause oxidative stress by depletion of the antioxidant glutathione due to phytochelatin synthesis.

  19. Oxidation of depleted uranium penetrators and aerosol dispersal at high temperatures

    SciTech Connect

    Elder, J.C.; Tinkle, M.C.

    1980-12-01

    Aerosols dispersed from depleted uranium penetrators exposed to air and air-CO/sub 2/ mixtures at temperatures ranging from 500 to 1000/sup 0/C for 2- or 4-h periods were characterized. These experiments indicated dispersal of low concentrations of aerosols in the respirable size range (typically <10/sup -3/% of penetrator mass at 223 cm/s (5 mph) windspeed). Oxidation was maximum at 700/sup 0/C in air and 800/sup 0/C in 50% air-50% CO/sub 2/, indicating some self-protection developed at higher temperatures. No evidence of self-sustained burning was observed, although complete oxidation can be expected in fires significantly exceeding 4 h, the longest exposure of this series. An outdoor burning experiment using 10 batches of pine wood and paper packing material as fuel caused the highest oxidation rate, probably accelerated by disruption of the oxide layer accompanying broad temperature fluctuation as each fuel batch was added.

  20. Heterogeneous OH oxidation of motor oil particles causes selective depletion of branched and less cyclic hydrocarbons.

    PubMed

    Isaacman, Gabriel; Chan, Arthur W H; Nah, Theodora; Worton, David R; Ruehl, Chris R; Wilson, Kevin R; Goldstein, Allen H

    2012-10-02

    Motor oil serves as a useful model system for atmospheric oxidation of hydrocarbon mixtures typical of anthropogenic atmospheric particulate matter, but its complexity often prevents comprehensive chemical speciation. In this work we fully characterize this formerly "unresolved complex mixture" at the molecular level using recently developed soft ionization gas chromatography techniques. Nucleated motor oil particles are oxidized in a flow tube reactor to investigate the relative reaction rates of observed hydrocarbon classes: alkanes, cycloalkanes, bicycloalkanes, tricycloalkanes, and steranes. Oxidation of hydrocarbons in a complex aerosol is found to be efficient, with approximately three-quarters (0.72 ± 0.06) of OH collisions yielding a reaction. Reaction rates of individual hydrocarbons are structurally dependent: compared to normal alkanes, reaction rates increased by 20-50% with branching, while rates decreased ∼20% per nonaromatic ring present. These differences in rates are expected to alter particle composition as a function of oxidation, with depletion of branched and enrichment of cyclic hydrocarbons. Due to this expected shift toward ring-opening reactions heterogeneous oxidation of the unreacted hydrocarbon mixture is less likely to proceed through fragmentation pathways in more oxidized particles. Based on the observed oxidation-induced changes in composition, isomer-resolved analysis has potential utility for determining the photochemical age of atmospheric particulate matter with respect to heterogeneous oxidation.

  1. Prevention by alpha-tocopherol and rutin of glutathione and ATP depletion induced by oxidized LDL in cultured endothelial cells.

    PubMed Central

    Schmitt, A.; Salvayre, R.; Delchambre, J.; Nègre-Salvayre, A.

    1995-01-01

    1. Oxidized low density lipoproteins (LDL) are thought to play an important role in atherogenesis. Mildly oxidized LDL are cytotoxic to cultured endothelial cells. Toxic doses of oxidized LDL promote the peroxidation of cellular lipids (beginning at 6 h and being maximal after 12 h of pulse with oxidized LDL) and glutathione and ATP depletion (beginning after 15 h of pulse and evolving concurrently with the cytotoxicity). 2. Antioxidants from 3 different classes (rutin, ascorbic acid and alpha-tocopherol) were compared as to their ability to inhibit the cytotoxic effect of oxidized LDL to endothelial cells. 3. Effective concentrations of alpha-tocopherol inhibited cellular lipid peroxidation, glutathione and ATP depletion and the cytotoxic effect. 4. Ascorbic acid was less effective than alpha-tocopherol and rutin, and exhibited a dose-dependent biphasic effect in the presence of oxidized LDL. 5. Effective concentrations of rutin inhibited glutathione and ATP depletion as well as cytotoxicity, but did not block cellular lipid peroxidation. This suggests that the glutathione and ATP depletion is directly correlated to the cytotoxicity of oxidized LDL, whereas cellular lipid peroxidation is probably not directly the cause of cellular damage leading to cell death. 6. The association of antioxidants of 3 different classes allowed the suppression of the biphasic effect of ascorbic acid and increased the efficacy of the protective effect. The potential consequences for prevention of the pathogenic role of oxidized LDL in endothelial injury are discussed. PMID:8640336

  2. Physicochemical characterization of Capstone depleted uranium aerosols III: morphologic and chemical oxide analyses.

    PubMed

    Krupka, Kenneth M; Parkhurst, Mary Ann; Gold, Kenneth; Arey, Bruce W; Jenson, Evan D; Guilmette, Raymond A

    2009-03-01

    The impact of depleted uranium (DU) penetrators against an armored target causes erosion and fragmentation of the penetrators, the extent of which is dependent on the thickness and material composition of the target. Vigorous oxidation of the DU particles and fragments creates an aerosol of DU oxide particles and DU particle agglomerations combined with target materials. Aerosols from the Capstone DU aerosol study, in which vehicles were perforated by DU penetrators, were evaluated for their oxidation states using x-ray diffraction (XRD), and particle morphologies were examined using scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS). The oxidation state of a DU aerosol is important as it offers a clue to its solubility in lung fluids. The XRD analysis showed that the aerosols evaluated were a combination primarily of U3O8 (insoluble) and UO3 (relatively more soluble) phases, though intermediate phases resembling U4O9 and other oxides were prominent in some samples. Analysis of particle residues in the micrometer-size range by SEM/EDS provided microstructural information such as phase composition and distribution, fracture morphology, size distribution, and material homogeneity. Observations from SEM analysis show a wide variability in the shapes of the DU particles. Some of the larger particles were spherical, occasionally with dendritic or lobed surface structures. Others appear to have fractures that perhaps resulted from abrasion and comminution, or shear bands that developed from plastic deformation of the DU material. Amorphous conglomerates containing metals other than uranium were also common, especially with the smallest particle sizes. A few samples seemed to contain small bits of nearly pure uranium metal, which were verified by EDS to have a higher uranium content exceeding that expected for uranium oxides. Results of the XRD and SEM/EDS analyses were used in other studies described in this issue of Health Physics to interpret the

  3. [Results of a structural diagnosis of patients with chronic dyspnoea recruited from two cardiological practices].

    PubMed

    Ewert, R; Obst, A; Bahr, C; Weirich, C; Henschel, F; Rink, A

    2013-01-01

    While well validated algorithms exist for the diagnosis of patients with acute dyspnoea, such generally valid procedural instructions are lacking for patients with chronic dyspnoea. The diagnostic approach presented here is based on investigations of 246 patients with chronic dyspnoea recruited from two cardiological practices using a self-developed multi-level procedure. Besides anamnestic and clinical examinations, different diagnostic procedures, available in the ambulant range, are included. The results suggest that in over 50 % of the cases the cause of chronic dyspnoea can be determined from anamnestic and clinical examinations as well as from electrocardiogram and echocardiography. Additional inclusion of lung function and capillary blood gas analysis permitted a sufficient clarification in over 80 % of the cases. In a further step, cardiopulmonary exercise testing clarified the reasons for chronic dyspnoea in approximately 10 % of the remaining patients. Threshold values of lung function parameters as used for the differentiation of acute dyspnoea, do not seem suitable for the diagnosis of patients with chronic dyspnoea. By means of a simple step-wise diagnostic algorithm, applicable under ambulant conditions, the cause of chronic dyspnoea could sufficiently be clarified in more than 95 % of the cases.

  4. Arsenic exposure from drinking water and dyspnoea risk in Araihazar, Bangladesh: a population-based study.

    PubMed

    Pesola, Gene R; Parvez, Faruque; Chen, Yu; Ahmed, Alauddin; Hasan, Rabiul; Ahsan, Habibul

    2012-05-01

    Bangladesh has high well water arsenic exposure. Chronic arsenic ingestion may result in diseases that manifest as dyspnoea, although information is sparse. Baseline values were obtained from an arsenic study. Trained physicians ascertained data on dyspnoea among 11,746 subjects. Data were collected on demographic factors, including smoking, blood pressure and arsenic exposure. Logistic regression models estimated odds ratios and confidence intervals for the association between arsenic exposure and dyspnoea. The adjusted odds of having dyspnoea was 1.32-fold (95% CI 1.15-1.52) greater in those exposed to high well water arsenic concentrations (≥ 50 μg · L(-1)) compared with low-arsenic-exposed nonsmokers (p<0.01). A significant dose-response relationship was found for arsenic (as well as smoking) in relation to dyspnoea. In nonsmokers, the adjusted odds of having dyspnoea were 1.36, 1.96, 2.34 and 1.80-fold greater for arsenic concentrations of 7-38, 39-90, 91-178 and 179-864 μg · L(-1), respectively, compared with the reference arsenic concentration of <7 μg · L(-1) (p<0.01; Chi-squared test for trend). Arsenic exposure through well water is associated with dyspnoea, independently of smoking status. This study suggests that mandated well water testing for arsenic with reduction in exposure may significantly reduce diseases that manifest as dyspnoea, usually cardiac or pulmonary.

  5. Heterojunction fully depleted SOI-TFET with oxide/source overlap

    NASA Astrophysics Data System (ADS)

    Chander, Sweta; Bhowmick, B.; Baishya, S.

    2015-10-01

    In this work, a hetero-junction fully depleted (FD) Silicon-on-Insulator (SOI) Tunnel Field Effect Transistor (TFET) nanostructure with oxide overlap on the Germanium-source region is proposed. Investigations using Synopsys Technology Computer Aided Design (TCAD) simulation tools reveal that the simple oxide overlap on the Germanium-source region increases the tunneling area as well as the tunneling current without degrading the band-to-band tunneling (BTBT) and improves the device performance. More importantly, the improvement is independent of gate overlap. Simulation study shows improvement in ON current, subthreshold swing (SS), OFF current, ION/IOFF ration, threshold voltage and transconductance. The proposed device with hafnium oxide (HfO2)/Aluminium Nitride (AlN) stack dielectric material offers an average subthreshold swing of 22 mV/decade and high ION/IOFF ratio (∼1010) at VDS = 0.4 V. Compared to conventional TFET, the Miller capacitance of the device shows the enhanced performance. The impact of the drain voltage variation on different parameters such as threshold voltage, subthreshold swing, transconductance, and ION/IOFF ration are also found to be satisfactory. From fabrication point of view also it is easy to utilize the existing CMOS process flows to fabricate the proposed device.

  6. Depleted uranium induces disruption of energy homeostasis and oxidative stress in isolated rat brain mitochondria.

    PubMed

    Shaki, Fatemeh; Hosseini, Mir-Jamal; Ghazi-Khansari, Mahmoud; Pourahmad, Jalal

    2013-06-01

    Depleted uranium (DU) is emerging as an environmental pollutant primarily due to its military applications. Gulf War veterans with embedded DU showed cognitive disorders that suggest that the central nervous system is a target of DU. Recent evidence has suggested that DU could induce oxidative stress and mitochondrial dysfunction in brain tissue. However, the underlying mechanisms of DU toxicity in brain mitochondria are not yet well understood. Brain mitochondria were obtained using differential centrifugation and were incubated with different concentrations (50, 100 and 200 μM) of uranyl acetate (UA) as a soluble salt of U(238) for 1 h. In this research, mitochondrial ROS production, collapse of mitochondrial membrane potential and mitochondrial swelling were examined by flow cytometry following the addition of UA. Meanwhile, mitochondrial sources of ROS formation were determined using specific substrates and inhibitors. Complex II and IV activity and also the extent of lipid peroxidation and glutathione (GSH) oxidation were detected via spectroscopy. Furthermore, we investigated the concentration of ATP and ATP/ADP ratio using luciferase enzyme and cytochrome c release from mitochondria which was detected by ELISA kit. UA caused concentration-dependent elevation of succinate-linked mitochondrial ROS production, lipid peroxidation, GSH oxidation and inhibition of mitochondrial complex II. UA also induced mitochondrial permeability transition, ATP production decrease and increase in cytochrome c release. Pre-treatment with antioxidants significantly inhibited all the above mentioned toxic effects of UA. This study suggests that mitochondrial oxidative stress and impairment of oxidative phosphorylation in brain mitochondria may play a key role in DU neurotoxicity as reported in Gulf War Syndrome.

  7. High concentrations of stavudine impair fatty acid oxidation without depleting mitochondrial DNA in cultured rat hepatocytes.

    PubMed

    Igoudjil, Anissa; Massart, Julie; Begriche, Karima; Descatoire, Véronique; Robin, Marie-Anne; Fromenty, Bernard

    2008-06-01

    The antiretroviral nucleoside reverse-transcriptase inhibitor (NRTI) stavudine (d4T) can induce mild to severe liver injuries such as steatosis (i.e. triglyceride accumulation), steatohepatitis and liver failure. NRTI-induced toxicity has been ascribed to the inhibition of mitochondrial DNA (mtDNA) replication causing mtDNA depletion and respiratory chain dysfunction. This can secondarily impair the tricarboxylic acid cycle and fatty acid oxidation (FAO), thus leading to lactic acidosis and hepatic steatosis. However, NRTIs could also impair mitochondrial function and induce hepatic steatosis through other mechanisms. In this study, we sought to determine whether d4T could inhibit mitochondrial FAO and induce triglyceride accumulation through a mtDNA-independent mechanism. Since human tumoral and non-tumoral hepatic cell lines were unable to efficiently oxidize palmitic acid, the effects of d4T on mitochondrial FAO were assessed on cultured rat hepatocytes. Our results showed that 750 microM of d4T significantly inhibited palmitic acid oxidation after 48 or 72 h of culture, without inducing cell death. Importantly, high concentrations of zidovudine and zalcitabine (two other NRTIs that can induce hepatic steatosis), or beta-aminoisobutyric acid (a d4T metabolite), did not impair FAO in rat hepatocytes. D4T-induced FAO inhibition was observed without mtDNA depletion and lactate production, and was fully prevented with l-carnitine or clofibrate coincubation. l-carnitine also prevented the accretion of neutral lipids within rat hepatocytes. High concentrations of d4T were unable to inhibit FAO on freshly isolated liver mitochondria. Moreover, a microarray analysis was performed to clarify the mechanism whereby d4T can inhibit mitochondrial FAO and induce triglyceride accumulation in rat hepatocytes. The microarray data, confirmed by quantitative real-time PCR analysis, showed that d4T increased the expression of sterol regulatory element-binding protein-1c (SREBP1c

  8. Nitric oxide and DOPAC-induced cell death: from GSH depletion to mitochondrial energy crisis.

    PubMed

    Nunes, Carla; Barbosa, Rui M; Almeida, Leonor; Laranjinha, João

    2011-09-01

    The molecular mechanisms inherent to cell death associated with Parkinson's disease are not clearly understood. Diverse pathways, sequence of events and models have been explored in several studies. Recently, we have proposed an integrative mechanism, encompassing the interaction of nitric oxide (•NO) and a major dopamine metabolite, dihydroxyphenylacetic (DOPAC), leading to a synergistic mitochondrial dysfunction and cell death that may be operative in PD. In this study, we have studied the sequence of events underlying the mechanisms of cell death in PC12 cells exposed to •NO and DOPAC in terms of: a) free radical production; b) modulation by glutathione (GSH); c) energetic status and d) outer membrane mitochondria permeability. Using Electron Paramagnetic Resonance (EPR) it is shown the early production of oxygen free radicals followed by a depletion of GSH reflected by an increase of GSSG/GSH ratio in the cells treated with the mixture of •NO/DOPAC, as compared with the cells individually exposed to each of the stimulus. Glutathione ethyl ester (GSH-EE) and N-acetylcysteine (NAC) may rescue cells from death, increasing GSH content and preventing ATP loss in cells treated with the mixture DOPAC/•NO but failed to exert similar effects in the cells challenged only with •NO. The depletion of GSH is accompanied by a decreased activity of mitochondrial complex I. At a later stage, the concerted action of DOPAC and •NO include a rise in the ratio Bax/Bcl-2, an observation not evident when cells were exposed only to •NO. The results support a free radical-induced pathway leading to cell death involving the concerted action of DOPAC and •NO and the critical role of GSH in maintaining a functional mitochondria.

  9. Contrasting Sensitivities of Escherichia coli Aconitases A and B to Oxidation and Iron Depletion

    PubMed Central

    Varghese, Shery; Tang, Yue; Imlay, James A.

    2003-01-01

    Superoxide damages dehydratases that contain catalytic [4Fe-4S]2+ clusters. Aconitases are members of that enzyme family, and previous work showed that most aconitase activity is lost when Escherichia coli is exposed to superoxide stress. More recently it was determined that E. coli synthesizes at least two isozymes of aconitase, AcnA and AcnB. Synthesis of AcnA, the less-abundant enzyme, is positively controlled by SoxS, a protein that is activated in the presence of superoxide-generating chemicals. We have determined that this arrangement exists because AcnA is resistant to superoxide in vivo. Surprisingly, purified AcnA is extremely sensitive to superoxide and other chemical oxidants unless it is combined with an uncharacterized factor that is present in cell extracts. In contrast, AcnB is highly sensitive to a variety of chemical oxidants in vivo, in extracts, and in its purified form. Thus, the induction of AcnA during oxidative stress provides a mechanism to circumvent a block in the tricarboxylic acid cycle. AcnA appears to be as catalytically competent as AcnB, so the retention of the latter as the primary housekeeping enzyme must provide some other advantage. We observed that the [4Fe-4S] cluster of AcnB is in dynamic equilibrium with the surrounding iron pool, so that AcnB is rapidly demetallated when intracellular iron pools drop. AcnA and other dehydratases do not show this trait. Demetallated AcnB is known to bind its cognate mRNA. The absence of AcnB activity also causes the accumulation and excretion of citrate, an iron chelator for which E. coli synthesizes a transport system. Thus, AcnB may be retained as the primary aconitase because the lability of its exposed cluster allows E. coli to sense and respond to iron depletion. PMID:12486059

  10. Pulmonary artery sarcoma: a rare cause of dyspnoea.

    PubMed

    Chaachoui, Najia; Haik, William; Tournoux, François

    2011-03-01

    A 72-year-old woman with no significant medical history presented to the emergency room for severe dyspnoea. The initial clinical diagnosis was acute pulmonary embolism. Heparin infusion was initiated while awaiting a computed tomographic scan but the patient's condition deteriorated dramatically and stat echocardiogram showed tamponade. Post-evacuation echo showed a dilated right ventricle with pulmonary hypertension and obstruction of the right pulmonary artery by a homogeneous mass attached to the pulmonary artery, suggesting a tumour rather than a thrombus. Computed tomographic scan confirmed the presence of an obstructive mass with almost no perfusion of the right lung. The patient was referred to cardiac surgery and the mass was removed, with anatomo-pathological diagnosis of a typical pulmonary artery sarcoma. Unfortunately, the patient died a few days after surgery. Primary pulmonary artery sarcoma is a rare tumour that arises in the central pulmonary arteries. Clinical presentation is often attributed to other causes of pulmonary hypertension, like pulmonary embolism. Magnetic resonance imaging could help to distinguish a soft tissue mass from a thrombus but definitive diagnosis is almost always made at surgery or autopsy since patients usually present in acute and unstable situations. Prognosis is poor, from several months to a few years, and depends on how early the diagnosis is made, the presence of recurrence or metastasis after surgical resection, and the use of adjuvant therapy like radiation and chemotherapy.

  11. Severe dyspnoea with alteration of the diffusion capacity of the lung associated with fingolimod treatment.

    PubMed

    Bianco, Assunta; Patanella, Agata Katia; Nociti, Viviana; De Fino, Chiara; Lucchini, Matteo; Savio, Francesco Lo; Rossini, Paolo Maria; Mirabella, Massimiliano

    2016-09-01

    In phase II clinical trial, fingolimod at a dose of 5.0mg (ten times higher than the currently approved dose) induced dyspnoea and decreased forced expiratory flow in some patients, probably trought an airways constriction S1P4-mediated. In phase III trials, respiratory adverse events associated with fingolimod treatment as dyspnoea, cough, oropharingeal pain and nasal congestion are reported with the same incidence of placebo. Here we report two cases of severe dyspnoea with alteration of the diffusion capacity of the lung associated with fingolimod treatment, which led to permanent treatment withdrawal.

  12. Hypoxia and Reoxygenation Induce Endothelial Nitric Oxide Synthase Uncoupling in Endothelial Cells through Tetrahydrobiopterin Depletion and S-Glutathionylation

    PubMed Central

    2015-01-01

    Ischemia-reperfusion injury is accompanied by endothelial hypoxia and reoxygenation that trigger oxidative stress with enhanced superoxide generation and diminished nitric oxide (NO) production leading to endothelial dysfunction. Oxidative depletion of the endothelial NO synthase (eNOS) cofactor tetrahydrobiopterin can trigger eNOS uncoupling, in which the enzyme generates superoxide rather than NO. Recently, it has also been shown that oxidative stress can induce eNOS S-glutathionylation at critical cysteine residues of the reductase site that serves as a redox switch to control eNOS coupling. While superoxide can deplete tetrahydrobiopterin and induce eNOS S-glutathionylation, the extent of and interaction between these processes in the pathogenesis of eNOS dysfunction in endothelial cells following hypoxia and reoxygenation remain unknown. Therefore, studies were performed on endothelial cells subjected to hypoxia and reoxygenation to determine the severity of eNOS uncoupling and the role of cofactor depletion and S-glutathionylation in this process. Hypoxia and reoxygenation of aortic endothelial cells triggered xanthine oxidase-mediated superoxide generation, causing both tetrahydrobiopterin depletion and S-glutathionylation with resultant eNOS uncoupling. Replenishing cells with tetrahydrobiopterin along with increasing intracellular levels of glutathione greatly preserved eNOS activity after hypoxia and reoxygenation, while targeting either mechanism alone only partially ameliorated the decrease in NO. Endothelial oxidative stress, secondary to hypoxia and reoxygenation, uncoupled eNOS with an altered ratio of oxidized to reduced glutathione inducing eNOS S-glutathionylation. These mechanisms triggered by oxidative stress combine to cause eNOS dysfunction with shift of the enzyme from NO to superoxide production. Thus, in endothelial reoxygenation injury, normalization of both tetrahydrobiopterin levels and the glutathione pool are needed for maximal

  13. Effects of depleted uranium on oxidative stress, detoxification, and defence parameters of zebrafish Danio rerio.

    PubMed

    Gagnaire, Beatrice; Cavalie, Isabelle; Camilleri, Virginie; Adam-Guillermin, Christelle

    2013-01-01

    In this study, we investigated the effects of depleted uranium (DU), the by-product of nuclear enrichment of uranium, on several parameters related to oxidative stress, detoxification, and the defence system in the zebrafish Danio rerio. Several parameters were recorded: phenoloxidase-like (PO) activity, reactive oxygen species (ROS) production, and 7-ethoxyresrufin-O-deethylase (EROD) activity. Experiments were performed on adult and larvae D. rerio. Adult fish were exposed for 28 days at 20 μg U/L followed by a 27-day depuration period. Eggs of D. rerio were exposed for 4 days at 0, 20, 100, 250, 500, and 1,000 μg U/L. Results showed that DU increased ROS production both in adult and in larvae even at the low concentrations tested and even during the depuration period for adult D. rerio. DU also modified PO-like activity, both in the D. rerio adult and larvae experiments, but in a more transient manner. EROD activity was not modified by DU, but sex effects were shown. Results are discussed by way of comparison with other known effects of uranium in fish. Overall, these results show that the mechanisms of action of DU in fish tend to be similar to the ones existing for mammals. These results encourage the development and use of innate immune biomarkers to understand the effects of uranium and, more generally, radionuclides on the fish immune system.

  14. Stratospheric ozone depletion due to nitrous oxide: influences of other gases.

    PubMed

    Portmann, R W; Daniel, J S; Ravishankara, A R

    2012-05-05

    The effects of anthropogenic emissions of nitrous oxide (N(2)O), carbon dioxide (CO(2)), methane (CH(4)) and the halocarbons on stratospheric ozone (O(3)) over the twentieth and twenty-first centuries are isolated using a chemical model of the stratosphere. The future evolution of ozone will depend on each of these gases, with N(2)O and CO(2) probably playing the dominant roles as halocarbons return towards pre-industrial levels. There are nonlinear interactions between these gases that preclude unambiguously separating their effect on ozone. For example, the CH(4) increase during the twentieth century reduced the ozone losses owing to halocarbon increases, and the N(2)O chemical destruction of O(3) is buffered by CO(2) thermal effects in the middle stratosphere (by approx. 20% for the IPCC A1B/WMO A1 scenario over the time period 1900-2100). Nonetheless, N(2)O is expected to continue to be the largest anthropogenic emission of an O(3)-destroying compound in the foreseeable future. Reductions in anthropogenic N(2)O emissions provide a larger opportunity for reduction in future O(3) depletion than any of the remaining uncontrolled halocarbon emissions. It is also shown that 1980 levels of O(3) were affected by halocarbons, N(2)O, CO(2) and CH(4), and thus may not be a good choice of a benchmark of O(3) recovery.

  15. Subjective evaluation of experimental dyspnoea – Effects of isocapnia and repeated exposure

    PubMed Central

    Hayen, Anja; Herigstad, Mari; Wiech, Katja; Pattinson, Kyle T.S.

    2015-01-01

    Resistive respiratory loading is an established stimulus for the induction of experimental dyspnoea. In comparison to unloaded breathing, resistive loaded breathing alters end-tidal CO2 (PETCO2), which has independent physiological effects (e.g. upon cerebral blood flow). We investigated the subjective effects of resistive loaded breathing with stabilized PETCO2 (isocapnia) during manual control of inspired gases on varying baseline levels of mild hypercapnia (increased PETCO2). Furthermore, to investigate whether perceptual habituation to dyspnoea stimuli occurs, the study was repeated over four experimental sessions. Isocapnic hypercapnia did not affect dyspnoea unpleasantness during resistive loading. A post hoc analysis revealed a small increase of respiratory unpleasantness during unloaded breathing at +0.6 kPa, the level that reliably induced isocapnia. We did not observe perceptual habituation over the four sessions. We conclude that isocapnic respiratory loading allows stable induction of respiratory unpleasantness, making it a good stimulus for multi-session studies of dyspnoea. PMID:25578628

  16. Effects of different forms of dyspnoea on pain perception induced by cold-pressor test.

    PubMed

    Yashiro, Eiko; Nozaki-Taguchi, Natsuko; Isono, Shiroh; Nishino, Takashi

    2011-08-15

    Although dyspnoea has been shown to attenuate pain, whether different forms of dyspnoea exert a similar inhibitory effect on pain has never been tested. We examined the effects of two different forms of dyspnoea, i.e., "air hunger" sensation (AIR HUNGER) and "work/effort" sensation (WORK/EFFORT), on pain induced by a cold-pressor test. Dyspnoea was induced by two different dyspnoea stimuli (i.e., AIR HUNGER and WORK/EFFORT stimuli) and the magnitudes of both sensations were evaluated by using a visual analogue scale (VAS). At equi-dyspneic VAS levels of two different forms of dyspnoea, pain was induced and the unpleasantness of pain was assessed by pain VAS, pain threshold time (PTT) and pain endurance time (PET). Both AIR HUNGER and WORK/EFFORT caused an increase in PTT and an increase in PET or a decrease in maximal pain VAS. Our findings suggest that AIR HUNGER and WORK/EFFORT exert a similar analgesic effect although the WORK/EFFORT-induced analgesia was slightly more effective.

  17. Serum depletion induced cancer stem cell-like phenotype due to nitric oxide synthesis in oncogenic HRas transformed cells

    PubMed Central

    Monji, Keisuke; Uchiumi, Takeshi; Hoshizawa, Saki; Yagi, Mikako; Matsumoto, Takashi; Setoyama, Daiki; Matsushima, Yuichi; Gotoh, Kazuhito; Amamoto, Rie; Kang, Donchon

    2016-01-01

    Cancer cells rewire their metabolism and mitochondrial oxidative phosphorylation (OXPHOS) to promote proliferation and maintenance. Cancer cells use multiple adaptive mechanisms in response to a hypo-nutrient environment. However, little is known about how cancer mitochondria are involved in the ability of these cells to adapt to a hypo-nutrient environment. Oncogenic HRas leads to suppression of the mitochondrial oxygen consumption rate (OCR), but oxygen consumption is essential for tumorigenesis. We found that in oncogenic HRas transformed cells, serum depletion reversibly increased the OCR and membrane potential. Serum depletion promoted a cancer stem cell (CSC)-like phenotype, indicated by an increase in CSC markers expression and resistance to anticancer agents. We also found that nitric oxide (NO) synthesis was significantly induced after serum depletion and that NO donors modified the OCR. An NOS inhibitor, SEITU, inhibited the OCR and CSC gene expression. It also reduced anchorage-independent growth by promoting apoptosis. In summary, our data provide new molecular findings that serum depletion induces NO synthesis and promotes mitochondrial OXPHOS, leading to tumor progression and a CSC phenotype. These results suggest that mitochondrial OCR inhibitors can be used as therapy against CSC. PMID:27655692

  18. Serum depletion induced cancer stem cell-like phenotype due to nitric oxide synthesis in oncogenic HRas transformed cells.

    PubMed

    Monji, Keisuke; Uchiumi, Takeshi; Hoshizawa, Saki; Yagi, Mikako; Matsumoto, Takashi; Setoyama, Daiki; Matsushima, Yuichi; Gotoh, Kazuhito; Amamoto, Rie; Kang, Donchon

    2016-11-15

    Cancer cells rewire their metabolism and mitochondrial oxidative phosphorylation (OXPHOS) to promote proliferation and maintenance. Cancer cells use multiple adaptive mechanisms in response to a hypo-nutrient environment. However, little is known about how cancer mitochondria are involved in the ability of these cells to adapt to a hypo-nutrient environment. Oncogenic HRas leads to suppression of the mitochondrial oxygen consumption rate (OCR), but oxygen consumption is essential for tumorigenesis. We found that in oncogenic HRas transformed cells, serum depletion reversibly increased the OCR and membrane potential. Serum depletion promoted a cancer stem cell (CSC)-like phenotype, indicated by an increase in CSC markers expression and resistance to anticancer agents. We also found that nitric oxide (NO) synthesis was significantly induced after serum depletion and that NO donors modified the OCR. An NOS inhibitor, SEITU, inhibited the OCR and CSC gene expression. It also reduced anchorage-independent growth by promoting apoptosis. In summary, our data provide new molecular findings that serum depletion induces NO synthesis and promotes mitochondrial OXPHOS, leading to tumor progression and a CSC phenotype. These results suggest that mitochondrial OCR inhibitors can be used as therapy against CSC.

  19. Centroid shift of. gamma. rays from positron annihilation in the depletion region of metal-oxide-semiconductor structures

    SciTech Connect

    Leung, T.C.; Kong, Y.; Lynn, K.G.; Nielsen, B. ); Weinberg, Z.A.; Rubloff, G.W. )

    1991-01-07

    Using metal-oxide-semiconductor (MOS) structures, the shift of centroid (peak) of {gamma}-ray energy distributions emitted from positron annihilation has been measured as a function of incident positron energy. The Doppler centroid shift was found to be consistent with the positron motion in the MOS depletion region. The results are described by a one-dimensional positron diffusion model, and provide information on effective'' positron diffusion length under applied field.

  20. PARK2 Depletion Connects Energy and Oxidative Stress to PI3K/Akt Activation via PTEN S-Nitrosylation.

    PubMed

    Gupta, Amit; Anjomani-Virmouni, Sara; Koundouros, Nikos; Dimitriadi, Maria; Choo-Wing, Rayman; Valle, Adamo; Zheng, Yuxiang; Chiu, Yu-Hsin; Agnihotri, Sameer; Zadeh, Gelareh; Asara, John M; Anastasiou, Dimitrios; Arends, Mark J; Cantley, Lewis C; Poulogiannis, George

    2017-03-16

    PARK2 is a gene implicated in disease states with opposing responses in cell fate determination, yet its contribution in pro-survival signaling is largely unknown. Here we show that PARK2 is altered in over a third of all human cancers, and its depletion results in enhanced phosphatidylinositol 3-kinase/Akt (PI3K/Akt) activation and increased vulnerability to PI3K/Akt/mTOR inhibitors. PARK2 depletion contributes to AMPK-mediated activation of endothelial nitric oxide synthase (eNOS), enhanced levels of reactive oxygen species, and a concomitant increase in oxidized nitric oxide levels, thereby promoting the inhibition of PTEN by S-nitrosylation and ubiquitination. Notably, AMPK activation alone is sufficient to induce PTEN S-nitrosylation in the absence of PARK2 depletion. Park2 loss and Pten loss also display striking cooperativity to promote tumorigenesis in vivo. Together, our findings reveal an important missing mechanism that might account for PTEN suppression in PARK2-deficient tumors, and they highlight the importance of PTEN S-nitrosylation in supporting cell survival and proliferation under conditions of energy deprivation.

  1. Common causes of dyspnoea in athletes: a practical approach for diagnosis and management

    PubMed Central

    Mohseni, Zahra S.; Berwager, Jeffrey D.; Hegedus, Eric J.

    2016-01-01

    Key points “Dyspnoea” during exercise is a common complaint in seemingly otherwise healthy athletes, which may be associated with fatigue and underperformance. Because dyspnoea is an general term and may be caused by numerous factors, ranging from poor aerobic fitness to serious, potentially fatal respiratory and nonrespiratory pathologies, it is important for clinicians to obtain an appropriate case history and ask relevant exercise-specific questions to fully characterise the nature of the complaint so that a targeted diagnostic plan can be developed. Exercise-induced bronchoconstriction and exercise-induced laryngeal obstruction are two common causes of dyspnoea in athletes, and both are regularly misdiagnosed and mismanaged due to poor adherence to available practice parameters. Aside from airway dysfunction, iron deficiency and anaemia, infectious disease, and musculoskeletal conditions are common problems in athletes which ultimately may lead to complaints of dyspnoea. Educational aims To inform readers of the common causes of dyspnoea encountered in athletes. To highlight that airway diseases, such as asthma and exercise-induced bronchoconstriction, are commonly misdiagnosed and mismanaged. To introduce readers to common nonairway causes of dyspnoea in athletes, including clinical features and general principles of diagnosis, and management. To emphasise the importance of a detailed case history and proper adherence to established protocols in evaluating and managing the dyspnoeic athlete. To provide readers with a general framework of appropriate questions that are useful for developing a targeted diagnostic plan for evaluating dyspnoeic athletes. Dyspnoea during exercise is a common chief complaint in athletes and active individuals. It is not uncommon for dyspnoeic athletes to be diagnosed with asthma, “exercise-induced asthma” or exercise-induced bronchoconstriction based on their symptoms, but this strategy regularly leads to misdiagnosis and

  2. Underweight and overweight men have greater exercise-induced dyspnoea than normal weight men

    PubMed Central

    Ali, Syed a.; Bokhari, Syed S. I.; Khan, Mohammed n.; Ahmad, Hakimuddin r.

    2012-01-01

    Introduction. Persons with high or low body mass index (BMI), involved in clinical or mechanistic trials involving exercise testing, might estimate dyspnoea differently from persons with a normal BMI. Aims. Our objective was to investigate the relationship between BMI and dyspnoea during exercise in normal subjects with varying BMI. Material and methods. A total of 37 subjects undertook progressive exercise testing. Subjects were divided into three groups: underweight (UW), normal weight (NW), and overweight (OW). Dyspnoea was estimated using the visual analogue scale (VAS). Spirometry, maximum voluntary ventilation (MVV), and respiratory muscle strength (RMS) were measured. Results and discussion. The intercept of the VAS/ventilation relationship was significantly higher in NW subjects compared to UW (P = 0.029) and OW subjects (P = 0.040). Relative to the OW group, FVC (P = 0.020), FEV1 (P = 0.024), MVV (P = 0.019), and RMS (P = 0.003) were significantly decreased in the UW group. The greater levels of dyspnoea in UW subjects could possibly be due to decreased RMS. Healthy persons should aim to achieve an optimum BMI range to have the lowest exercise-induced dyspnoea. PMID:22931098

  3. Exertional Dyspnoea in Chronic Respiratory Diseases: From Physiology to Clinical Application.

    PubMed

    Dubé, Bruno-Pierre; Vermeulen, François; Laveneziana, Pierantonio

    2017-02-01

    Dyspnoea is a complex, highly personalized and multidimensional sensory experience, and its underlying cause and mechanisms are still being investigated. Exertional dyspnoea is one of the most frequently encountered symptoms of patients with cardiopulmonary diseases, and is a common reason for seeking medical help. As the symptom usually progresses with the underlying disease, it can lead to an avoidance of physical activity, peripheral muscle deconditioning and decreased quality of life. Dyspnoea is closely associated with quality of life, exercise (in)tolerance and prognosis in various conditions, including chronic obstructive pulmonary disease, heart failure, interstitial lung disease and pulmonary hypertension, and is therefore an important therapeutic target. Effective management and treatment of dyspnoea is an important challenge for caregivers, and therapeutic options that attempt to reverse its underlying cause have been only partially successful This "review" will attempt to shed light on the physiological mechanisms underlying dyspnoea during exercise and to translate/apply them to a broad clinical spectrum of cardio-respiratory disorders.

  4. Acute depletion of plasma glutamine increases leucine oxidation in prednisone-treated humans.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine whether depletion in plasma glutamine worsens the catabolic response to corticosteroids, seven healthy volunteers received oral prednisone for 6 days on two separate occasions, at least 2 weeks apart, and in random order. On the sixth day of each treatment course, they received 5 h intr...

  5. Depleted uranium oxides as spent-nuclear-fuel waste-package fill materials

    SciTech Connect

    Forsberg, C.W.

    1997-07-07

    Depleted uranium dioxide fill inside the waste package creates the potential for significant improvements in package performance based on uranium geochemistry, reduces the potential for criticality in a repository, and consumes DU inventory. As a new concept, significant uncertainties exist: fill properties, impacts on package design, post- closure performance.

  6. Tidal expiratory flow limitation, dyspnoea and exercise capacity in patients with bilateral bronchiectasis.

    PubMed

    Koulouris, N G; Retsou, S; Kosmas, E; Dimakou, K; Malagari, K; Mantzikopoulos, G; Koutsoukou, A; Milic-Emili, J; Jordanoglou, J

    2003-05-01

    In this study the authors investigated whether expiratory flow limitation (FL) is present during tidal breathing in patients with bilateral bronchiectasis (BB) and whether it is related to the severity of chronic dyspnoea (Medical Research Council (MRC) dyspnoea scale), exercise capacity (maximal mechanical power output (WRmax)) and severity of the disease, as assessed by high-resolution computed tomography (HRCT) scoring. Lung function, MRC dyspnoea, HRCT score, WRmax and FL were assessed in 23 stable caucasian patients (six males) aged 56 +/- 17 yrs. FL was assessed at rest both in seated and supine positions. To detect FL, the negative expiratory pressure (NEP) technique was used. The degree of FL was rated using a five-point FL score. WRmax was measured using a cyclo-ergometer. According to the NEP technique, five patients were FL during resting breathing when supine but not seated, four were FL both seated and supine, and 14 were NFL both seated and supine. Furthermore, it was shown that: 1) in stable BB patients FL during resting breathing is common, especially in the supine position; 2) the degree of MRC dyspnoea is closely related to the five-point FL score; 3) WRmax (% pred) is more closely correlated with the MRC dyspnoea score than with the five-point FL score; and 4) HRCT score is closely related to forced expiratory volume in one second % pred but not five-point FL score. In conclusion, flow limitation is common at rest in sitting and supine positions in patients with bilateral bronchiectasis. Flow limitation and reduced exercise capacity are both associated with more severe dyspnoea. Finally, high-resolution computed tomography scoring correlates best with forced expiratory volume in one second.

  7. Bioconjugates of curcumin display improved protection against glutathione depletion mediated oxidative stress in a dopaminergic neuronal cell line: Implications for Parkinson's disease.

    PubMed

    Harish, G; Venkateshappa, C; Mythri, Rajeswara Babu; Dubey, Shiv Kumar; Mishra, Krishna; Singh, Neetu; Vali, Shireen; Bharath, M M Srinivas

    2010-04-01

    Oxidative stress is implicated in mitochondrial dysfunction associated with neurodegeneration in Parkinson's disease (PD). Depletion of the cellular antioxidant glutathione (GSH) resulting in oxidative stress is considered as an early event in neurodegeneration. We previously showed that curcumin, a dietary polyphenol from turmeric induced GSH synthesis in experimental models and protected against oxidative stress. Here we tested the effect of three bioconjugates of curcumin (involving diesters of demethylenated piperic acid, valine and glutamic acid) against GSH depletion mediated oxidative stress in dopaminergic neuronal cells and found that the glutamic acid derivative displayed improved neuroprotection compared to curcumin.

  8. Depleted Nanocrystal-Oxide Heterojunctions for High-Sensitivity Infrared Detection

    DTIC Science & Technology

    2015-08-28

    Colloidal PbS QDs with the first excitonic absorption peak from 850-1050 nm were synthesized, and ZnO thin films were prepared by two different...The goal of this project is to explore a new IR photodetector architecture based on a depleted ZnO/PbS QD heterojunction. Colloidal PbS QDs with the...reasonable cost. Monodispersed colloidal nanocrystal quantum dots (QDs) synthesized and processed by low-cost solution methods has offered a new

  9. PX-12-induced HeLa cell death is associated with oxidative stress and GSH depletion.

    PubMed

    Shin, Hye Rim; You, Bo Ra; Park, Woo Hyun

    2013-12-01

    PX-12, as an inhibitor of thioredoxin (Trx), has antitumor activity. However, little is known about the toxicological effect of PX-12 on cervical cancer cells. In the present study, the growth inhibitory effects of PX-12 on HeLa cervical cancer cells in association with reactive oxygen species (ROS) and glutathione (GSH) levels were investigated. Based on MTT assays, PX-12 inhibited the growth of HeLa cells with an IC50 value of ~7 μM at 72 h. DNA flow cytometry analysis indicated that 5 and 10 μM PX-12 significantly induced a G2/M phase arrest of the cell cycle. PX-12 also increased the number of dead cells and annexin V-fluorescein isothiocyanate-positive cells, which was accompanied by the loss of mitochondrial membrane potential. All the investigated caspase inhibitors significantly rescued certain cells from PX-12-induced HeLa cell death. With respect to ROS and GSH levels, PX-12 increased ROS levels (including O2(•-)) in HeLa cells and induced GSH depletion. N-acetyl cysteine markedly reduced the levels of O2(•-) in PX-12-treated HeLa cells, and prevented apoptotic cell death and GSH depletion in these cells. By contrast, L-buthionine sulfoximine intensified cell death and GSH depletion in PX-12-treated HeLa cells. To conclude, this is the first study to demonstrate that PX-12 inhibits the growth of HeLa cells via G2/M phase arrest, as well as inhibiting apoptosis; the effect was associated with intracellular increases in ROS levels and GSH depletion.

  10. Depletion of human stratum corneum vitamin E: an early and sensitive in vivo marker of UV induced photo-oxidation.

    PubMed

    Thiele, J J; Traber, M G; Packer, L

    1998-05-01

    As the outermost barrier of the body, the stratum corneum (SC) is frequently and directly exposed to a pro-oxidative environment, including ultraviolet solar radiation (UVR). Therefore, we hypothesized that the SC is susceptible to UVR induced depletion of vitamin E, the major lipophilic antioxidant. To test this, we investigated (i) the susceptibility of SC tocopherols to solar simulated UVR in hairless mice, (ii) the baseline levels and distribution patterns of tocopherols in human SC, and (iii) the impact of a suberythemogenic dose of solar simulated UVR on human SC tocopherols. SC tocopherol levels were measured by high performance liquid chromotography analysis of SC extracts from tape strippings. In murine SC, overall tocopherol concentrations were determined, whereas in human SC, 10 consecutive layers were analyzed for each individual. The results on SC tocopherols demonstrated (i) their concentration dependent depletion by solar simulated UVR in hairless mice; (ii) a gradient distribution within untreated human SC, with the lowest levels at the surface (alpha-tocopherol 6.5 +/- 1.4 pmol per mg, and gamma-tocopherol 2.2 +/- 1.3 pmol per mg) and the highest levels in the deepest layers (alpha-tocopherol 76 +/- 12 pmol per mg, and gamma-tocopherol 7.9 +/- 3.7 pmol per mg, n = 10; p < 0.0001); and (iii) the depletion of tocopherols in human SC by a single suberythemogenic dose of solar simulated UVR (alpha-tocopherol by 45%, and gamma-tocopherol by 35% as compared with controls; n = 6; both p < 0.01). These results demonstrate that the SC is a remarkably susceptible site for UVR induced depletion of vitamin E.

  11. Testosterone depletion increases the susceptibility of brain tissue to oxidative damage in a restraint stress mouse model.

    PubMed

    Son, Seung-Wan; Lee, Jin-Seok; Kim, Hyeong-Geug; Kim, Dong-Woon; Ahn, Yo-Chan; Son, Chang-Gue

    2016-01-01

    in brain tissues, especially in the hippocampus. These findings are the first evidence that testosterone depletion makes the brain prone to oxidative injury.

  12. Cognitive behaviour therapy reduces dyspnoea ratings in patients with chronic obstructive pulmonary disease (COPD).

    PubMed

    Livermore, Nicole; Dimitri, Andrew; Sharpe, Louise; McKenzie, David K; Gandevia, Simon C; Butler, Jane E

    2015-09-15

    There is evidence that psychological factors contribute to the perception of increased difficulty of breathing in patients with chronic obstructive pulmonary disease (COPD), and increase morbidity. We tested the hypothesis that cognitive behaviour therapy (CBT) decreases ratings of perceived dyspnoea in response to resistive loading in patients with COPD. From 31 patients with COPD, 18 were randomised to four sessions of specifically targeted CBT and 13 to routine care. Prior to randomisation, participants were tested with an inspiratory external resistive load protocol (loads between 5 and 45cmH2O/L/s). Six months later, we re-measured perceived dyspnoea in response to the same inspiratory resistive loads and compared results to measurements prior to randomisation. There was a significant 17% reduction in dyspnoea ratings across the loads for the CBT group, and no reduction for the routine care group. The decrease in ratings of dyspnoea suggests that CBT to alleviate breathing discomfort may have a role in the routine treatment of people with COPD.

  13. Grain boundary depletion and migration during selective oxidation of Cr in a Ni-5Cr binary alloy exposed to high-temperature hydrogenated water

    SciTech Connect

    Schreiber, Daniel K.; Olszta, Matthew J.; Bruemmer, Stephen M.

    2014-10-01

    High-resolution microscopy of a high-purity Ni-5Cr alloy exposed to 360°C hydrogenated water reveals intergranular selective oxidation of Cr accompanied by local Cr depletion and diffusion-induced grain boundary migration (DIGM). The corrosion-product oxide consists of a porous, interconnected network of Cr2O3 platelets with no further O ingress into the metal ahead. Extensive grain boundary depletion of Cr (to <0.05at.%) is observed typically 20–100 nm wide as a result of DIGM and reaching depths of many micrometers beyond the oxidation front.

  14. Assessment at the single-cell level identifies neuronal glutathione depletion as both a cause and effect of ischemia-reperfusion oxidative stress.

    PubMed

    Won, Seok Joon; Kim, Ji-Eun; Cittolin-Santos, Giordano Fabricio; Swanson, Raymond A

    2015-05-06

    Oxidative stress contributes to neuronal death in brain ischemia-reperfusion. Tissue levels of the endogenous antioxidant glutathione (GSH) are depleted during ischemia-reperfusion, but it is unknown whether this depletion is a cause or an effect of oxidative stress, and whether it occurs in neurons or other cell types. We used immunohistochemical methods to evaluate glutathione, superoxide, and oxidative stress in mouse hippocampal neurons after transient forebrain ischemia. GSH levels in CA1 pyramidal neurons were normally high relative to surrounding neuropil, and exhibited a time-dependent decrease during the first few hours of reperfusion. Colabeling for superoxide in the neurons showed a concurrent increase in detectable superoxide over this interval. To identify cause-effect relationships between these changes, we independently manipulated superoxide production and GSH metabolism during reperfusion. Mice in which NADPH oxidase activity was blocked to prevent superoxide production showed preservation of neuronal GSH content, thus demonstrating that neuronal GSH depletion is result of oxidative stress. Conversely, mice in which neuronal GSH levels were maintained by N-acetyl cysteine treatment during reperfusion showed less neuronal superoxide signal, oxidative stress, and neuronal death. At 3 d following ischemia, GSH content in reactive astrocytes and microglia was increased in the hippocampal CA1 relative to surviving neurons. Results of these studies demonstrate that neuronal GSH depletion is both a result and a cause of neuronal oxidative stress after ischemia-reperfusion, and that postischemic restoration of neuronal GSH levels can be neuroprotective.

  15. [Pre-hospital management of patients with chest pain and/or dyspnoea of cardiac origin.

    PubMed

    Beygui, Farzin; Castren, Maaret; Brunetti, Natale Daniele; Rosell-Ortiz, Fernando; Christ, Michael; Zeymer, Uwe; Huber, Kurt; Folke, Fredrik; Svensson, Leif; Bueno, Hector; Van't Hof, Arnoud; Nikolaou, Nikolaos; Nibbe, Lutz; Charpentier, Sandrine; Swahn, Eva; Tubaro, Marco; Goldstein, Patrick

    2017-01-01

    Chest pain and acute dyspnoea are frequent causes of emergency medical services activation. The pre-hospital management of these conditions is heterogeneous across different regions of the world and Europe, as a consequence of the variety of emergency medical services and absence of specific practical guidelines. This position paper focuses on the practical aspects of the pre-hospital treatment on board and transfer of patients taken in charge by emergency medical services for chest pain and dyspnoea of suspected cardiac aetiology after the initial assessment and diagnostic work-up. The objective of the paper is to provide guidance, based on evidence, where available, or on experts' opinions, for all emergency medical services' health providers involved in the pre-hospital management of acute cardiovascular care.

  16. Pulmonary arteriovascular malformation: a rare cause of unexplained hypoxia and acute dyspnoea in young patients

    PubMed Central

    Iqbal, Nousheen; Rehman, Karim Abdur; Khan, Javaid Ahmed; Haq, Tanveer Ul

    2014-01-01

    Pulmonary arteriovenous malformations (PAVMs) are anomalous vascular connections between arteries and veins in the lung and comprise of two types, simple and complex. PAVMs are associated with congenital conditions such as hereditary haemorrhagic telengiectasia along with acquired causes. We present a case of a 26-year-old man who presented with dyspnoea, palpitations and decreased oxygen saturation as an initial presentation of PAVM, which was treated successively with embolisation. PMID:25527686

  17. Depletion of a discrete nuclear glutathione pool by oxidative stress, but not by buthionine sulfoximine. Correlation with enhanced alkylating agent cytotoxicity to human melanoma cells in vitro.

    PubMed

    Jevtović-Todorović, V; Guenthner, T M

    1992-10-06

    The existence of a distinct pool of glutathione in the nucleus of cultured human melanoma cells was demonstrated. Melanoma cell nuclei contained 13-35 pmol of glutathione/10(6) nuclei, or approximately 0.4-1.3% of the total cellular glutathione. This nuclear glutathione pool resisted depletion by buthionine sulfoximine, an agent that inhibits glutathione synthesis, but was rapidly and reversibly depleted by subtoxic concentrations of Adriamycin plus carmustine, two agents that promote oxidation of glutathione without permitting its regeneration through enzymatic reduction of glutathione disulfide. The ability of Adriamycin plus carmustine to deplete this small but significant pool of glutathione in the cell nucleus may explain why these agents potentiate the cytotoxic effects of the DNA-alkylating agent melphalan to a much higher degree than does buthionine sulfoximine at concentrations that are equipotent in depleting cytosolic glutathione.

  18. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event.

    PubMed

    Konhauser, Kurt O; Pecoits, Ernesto; Lalonde, Stefan V; Papineau, Dominic; Nisbet, Euan G; Barley, Mark E; Arndt, Nicholas T; Zahnle, Kevin; Kamber, Balz S

    2009-04-09

    It has been suggested that a decrease in atmospheric methane levels triggered the progressive rise of atmospheric oxygen, the so-called Great Oxidation Event, about 2.4 Gyr ago. Oxidative weathering of terrestrial sulphides, increased oceanic sulphate, and the ecological success of sulphate-reducing microorganisms over methanogens has been proposed as a possible cause for the methane collapse, but this explanation is difficult to reconcile with the rock record. Banded iron formations preserve a history of Precambrian oceanic elemental abundance and can provide insights into our understanding of early microbial life and its influence on the evolution of the Earth system. Here we report a decline in the molar nickel to iron ratio recorded in banded iron formations about 2.7 Gyr ago, which we attribute to a reduced flux of nickel to the oceans, a consequence of cooling upper-mantle temperatures and decreased eruption of nickel-rich ultramafic rocks at the time. We measured nickel partition coefficients between simulated Precambrian sea water and diverse iron hydroxides, and subsequently determined that dissolved nickel concentrations may have reached approximately 400 nM throughout much of the Archaean eon, but dropped below approximately 200 nM by 2.5 Gyr ago and to modern day values ( approximately 9 nM) by approximately 550 Myr ago. Nickel is a key metal cofactor in several enzymes of methanogens and we propose that its decline would have stifled their activity in the ancient oceans and disrupted the supply of biogenic methane. A decline in biogenic methane production therefore could have occurred before increasing environmental oxygenation and not necessarily be related to it. The enzymatic reliance of methanogens on a diminishing supply of volcanic nickel links mantle evolution to the redox state of the atmosphere.

  19. Resistance of mitochondrial DNA-depleted cells against oxidized low-density lipoprotein-induced macrophage pyroptosis.

    PubMed

    Yan, Hai; Li, Yunyun; Peng, Xue; Huang, Dake; Gui, Li; Huang, Baojun

    2016-05-01

    Oxidized low-density lipoprotein (Ox-LDL)-induced macrophage pyroptosis is critical in atherosclerosis inflammation and plaque instability. It has been reported that mitochondrial (mt)DNA-depleted (rho0) cells demonstrate resistance to apoptosis. However, little is known about the susceptibility of rho0 cells to Ox-LDL-induced macrophage pyroptosis. Pyroptosis, a caspase-1-dependent programmed cell death, which compromises membrane integrity, cleaves pro-interleukin (IL)‑1β and pro‑IL‑18 into IL‑1β and IL‑18, respectively and releases damage‑associated molecular pattern molecules, is triggered by a variety of stimuli, including Ox‑LDL. In the present study, the expression levels of cleaved caspase‑1 and IL‑1β in Ox‑LDL‑treated J774A.1 rho0 cells were observed to be significantly decreased when compared with Ox‑LDL‑treated J774A.1 normal cells. Furthermore, J774A.1 rho0 cells exhibited a significant reduction in the ratios of dead cells and lactate dehydrogenase release following Ox‑LDL stimulation compared with the J774A.1 normal cells. In addition, the loss of mtDNA did not influence Ox‑LDL‑induced cholesterol accumulation in J774A.1 rho0 cells, which was observed by Oil Red O staining and CHOD‑PAP assay. Finally, J774A.1 rho0 cells exhibited reduced reactive oxygen species (ROS) production and were capable of maintaining the mitochondrial membrane potential following Ox‑LDL treatment. Thus, the results indicate that the loss of mtDNA potentially rendered murine macrophage J774A.1 resistant to Ox‑LDL‑induced pyroptosis by mitigating NACHT, LRR and PYD domains-containing protein 3 inflammasome activation through reducing ROS production. In addition, mtDNA depletion did not interrupt Ox-LDL-induced intracellular lipid accumulation and continued to maintain the mitochondrial membrane potential.

  20. Zinc Oxide Nanoparticle Induces Microglial Death by NADPH-Oxidase-Independent Reactive Oxygen Species as well as Energy Depletion.

    PubMed

    Sharma, Anuj Kumar; Singh, Vikas; Gera, Ruchi; Purohit, Mahaveer Prasad; Ghosh, Debabrata

    2016-10-06

    Zinc oxide nanoparticle (ZnO-NP) is one of the most widely used engineered nanoparticles. Upon exposure, nanoparticle can eventually reach the brain through various routes, interact with different brain cells, and alter their activity. Microglia is the fastest glial cell to respond to any toxic insult. Nanoparticle exposure can activate microglia and induce neuroinflammation. Simultaneous to activation, microglial death can exacerbate the scenario. Therefore, we focused on studying the effect of ZnO-NP on microglia and finding out the pathway involved in the microglial death. The present study showed that the 24 h inhibitory concentration 50 (IC50) of ZnO-NP for microglia is 6.6 μg/ml. Early events following ZnO-NP exposure involved increase in intracellular calcium level as well as reactive oxygen species (ROS). Neither of NADPH oxidase inhibitors, apocynin, (APO) and diphenyleneiodonium chloride (DPIC) were able to reduce the ROS level and rescue microglia from ZnO-NP toxicity. In contrary, N-acetyl cysteine (NAC) showed opposite effect. Exogenous supplementation of superoxide dismutase (SOD) reduced ROS significantly even beyond control level but partially rescued microglial viability. Interestingly, pyruvate supplementation rescued microglia near to control level. Following 10 h of ZnO-NP exposure, intracellular ATP level was measured to be almost 50 % to the control. ZnO-NP-induced ROS as well as ATP depletion both disturbed mitochondrial membrane potential and subsequently triggered the apoptotic pathway. The level of apoptosis-inducing proteins was measured by western blot analysis and found to be upregulated. Taken together, we have deciphered that ZnO-NP induced microglial apoptosis by NADPH oxidase-independent ROS as well as ATP depletion.

  1. Vascular oxidative stress and nitric oxide depletion in HIV-1 transgenic rats are reversed by glutathione restoration

    PubMed Central

    Kline, Erik R.; Kleinhenz, Dean J.; Liang, Bill; Dikalov, Sergey; Guidot, David M.; Hart, C. Michael; Jones, Dean P.; Sutliff, Roy L.

    2008-01-01

    Human immunodeficiency virus (HIV)-infected patients have a higher incidence of oxidative stress, endothelial dysfunction, and cardiovascular disease than uninfected individuals. Recent reports have demonstrated that viral proteins upregulate reactive oxygen species, which may contribute to elevated cardiovascular risk in HIV-1 patients. In this study we employed an HIV-1 transgenic rat model to investigate the physiological effects of viral protein expression on the vasculature. Markers of oxidative stress in wild-type and HIV-1 transgenic rats were measured using electron spin resonance, fluorescence microscopy, and various molecular techniques. Relaxation studies were completed on isolated aortic rings, and mRNA and protein were collected to measure changes in expression of nitric oxide (NO) and superoxide sources. HIV-1 transgenic rats displayed significantly less NO-hemoglobin, serum nitrite, serum S-nitrosothiols, aortic tissue NO, and impaired endothelium-dependent vasorelaxation than wild-type rats. NO reduction was not attributed to differences in endothelial NO synthase (eNOS) protein expression, eNOS-Ser1177 phosphorylation, or tetrahydrobiopterin availability. Aortas from HIV-1 transgenic rats had higher levels of superoxide and 3-nitrotyrosine but did not differ in expression of superoxide-generating sources NADPH oxidase or xanthine oxidase. However, transgenic aortas displayed decreased superoxide dismutase and glutathione. Administering the glutathione precursor procysteine decreased superoxide, restored aortic NO levels and NO-hemoglobin, and improved endothelium-dependent relaxation in HIV-1 transgenic rats. These results show that HIV-1 protein expression decreases NO and causes endothelial dysfunction. Diminished antioxidant capacity increases vascular superoxide levels, which reduce NO bioavailability and promote peroxynitrite generation. Restoring glutathione levels reverses HIV-1 protein-mediated effects on superoxide, NO, and vasorelaxation

  2. Low frequency noise and radiation response in the partially depleted SOI MOSFETs with ion implanted buried oxide

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Chen, Hai-Bo; Liu, Yu-Rong; Wang, Xin; En, Yun-Fei; Li, Bin; Lu, Yu-Dong

    2015-08-01

    Low frequency noise behaviors of partially depleted silicon-on-insulator (PDSOI) n-channel metal-oxide semiconductors (MOS) transistors with and without ion implantation into the buried oxide are investigated in this paper. Owing to ion implantation-induced electron traps in the buried oxide and back interface states, back gate threshold voltage increases from 44.48 V to 51.47 V and sub-threshold swing increases from 2.47 V/dec to 3.37 V/dec, while electron field effect mobility decreases from 475.44 cm2/V·s to 363.65 cm2/V·s. In addition, the magnitude of normalized low frequency noise also greatly increases, which indicates that the intrinsic electronic performances are degenerated after ion implantation processing. According to carrier number fluctuation theory, the extracted flat-band voltage noise power spectral densities in the PDSOI devices with and without ion implantation are equal to 7×10-10 V2·Hz-1 and 2.7×10-8 V2·Hz-1, respectively, while the extracted average trap density in the buried oxide increases from 1.42×1017 cm-3·eV-1 to 6.16×1018 cm-3·eV-1. Based on carrier mobility fluctuation theory, the extracted average Hooge’s parameter in these devices increases from 3.92×10-5 to 1.34×10-2 after ion implantation processing. Finally, radiation responses in the PDSOI devices are investigated. Owing to radiation-induced positive buried oxide trapped charges, back gate threshold voltage decreases with the increase of the total dose. After radiation reaches up to a total dose of 1 M·rad(si), the shifts of back gate threshold voltage in the SOI devices with and without ion implantation are -10.82 V and -31.84 V, respectively. The low frequency noise behaviors in these devices before and after radiation are also compared and discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 61204112 and 61204116).

  3. Characterization of dyspnoea in PLATO study patients treated with ticagrelor or clopidogrel and its association with clinical outcomes.

    PubMed

    Storey, Robert F; Becker, Richard C; Harrington, Robert A; Husted, Steen; James, Stefan K; Cools, Frank; Steg, Philippe Gabriel; Khurmi, Nardev S; Emanuelsson, Håkan; Cooper, Anna; Cairns, Richard; Cannon, Christopher P; Wallentin, Lars

    2011-12-01

    AIMS To describe the incidence of dyspnoea and its associations with demographic characteristics and clinical outcomes in patients with acute coronary syndromes (ACS) treated with ticagrelor or clopidogrel in the PLATelet inhibition and patient Outcomes (PLATO) study. METHODS AND RESULTS In the PLATO study, 18 624 patients were randomized to receive either clopidogrel [300-600 mg loading dose (LD), 75 mg daily] or ticagrelor (180 mg LD, 90 mg b.i.d.). The occurrence of reported dyspnoea adverse events (AEs) was analysed in the 18 421 patients who received at least one dose of study medication in relation to demographic characteristics, clinical outcomes and other associations of patients with and without dyspnoea. A total of 1339 ticagrelor-treated patients (14.5%) and 798 clopidogrel-treated patients (8.7%) had a dyspnoea AE following randomization, with respectively 39 (0.4%) and 24 (0.3%) classified as severe in intensity. Excluding dyspnoea AEs occurring after the secondary endpoint of myocardial infarction (MI), the yearly rates of the efficacy endpoints in dyspnoea AE patients in the ticagrelor and clopidogrel groups were: for the primary composite of CV death, MI, and stroke, 8.8 and 10.4% (unadjusted P = 0.25; adjusted P = 0.54); for CV death, 3.1 and 4.8% (unadjusted P = 0.024; adjusted P = 0.18); and for total death 3.7 and 6.2% (unadjusted P = 0.004; adjusted P = 0.06), respectively. CONCLUSIONS Ticagrelor-related dyspnoea is usually mild or moderate in intensity and does not appear to be associated with differences concerning any efficacy or safety outcomes with ticagrelor compared with clopidogrel therapy in ACS patients.

  4. Mechanisms to dyspnoea and dynamic hyperinflation related exercise intolerance in COPD.

    PubMed

    Varga, Janos

    2015-06-01

    Expiratory flow limitation can develop in parallel with the progression of COPD, and as a consequence, dynamic hyperinflation and lung mechanical abnormalities can develop. Dynamic hyperinflation can cause increased breathlessness and reduction in exercise tolerance. Achievement of critical inspiratory reserve volume is one of the main factors in exercise intolerance. Obesity has specific lung mechanical effects. There is also a difference concerning gender and dyspnoea. Increased nerve activity is characteristic in hyperinflation. Bronchodilator therapy, lung volume reduction surgery, endurance training at submaximal intensity, and heliox or oxygen breathing can decrease the degree of dynamic hyperinflation.

  5. Tryptophan depletion under conditions that imitate insulin resistance enhances fatty acid oxidation and induces endothelial dysfunction through reactive oxygen species-dependent and independent pathways.

    PubMed

    Eleftheriadis, Theodoros; Pissas, Georgios; Sounidaki, Maria; Antoniadi, Georgia; Rountas, Christos; Liakopoulos, Vassilios; Stefanidis, Loannis

    2017-04-01

    In atherosclerosis-associated pathologic entities characterized by malnutrition and inflammation, L-tryptophan (TRP) levels are low. Insulin resistance is an independent cardiovascular risk factor and induces endothelial dysfunction by increasing fatty acid oxidation. It is also associated with inflammation and low TRP levels. Low TRP levels have been related to worse cardiovascular outcome. This study evaluated the effect of TRP depletion on endothelial dysfunction under conditions that imitate insulin resistance. Fatty acid oxidation, harmful pathways due to increased fatty acid oxidation, and endothelial dysfunction were assessed in primary human aortic endothelial cells cultured under normal glucose, low insulin conditions in the presence or absence of TRP. TRP depletion activated general control non-derepressible 2 kinase and inhibited aryl hydrocarbon receptor. It increased fatty acid oxidation by increasing expression and activity of carnitine palmitoyltransferase 1. Elevated fatty acid oxidation increased the formation of reactive oxygen species (ROS) triggering the polyol and hexosamine pathways, and enhancing protein kinase C activity and methylglyoxal production. TRP absence inhibited nitric oxide synthase activity in a ROS-dependent way, whereas it increased the expression of ICAM-1 and VCAM-1 in a ROS independent and possibly p53-dependent manner. Thus, TRP depletion, an amino acid whose low levels have been related to worse cardiovascular outcome and to inflammatory atherosclerosis-associated pathologic entities, under conditions that imitate insulin resistance enhances fatty acid oxidation and induces endothelial dysfunction through ROS-dependent and independent pathways. These findings may offer new insights at the molecular mechanisms involved in accelerated atherosclerosis that frequently accompanies malnutrition and inflammation.

  6. Predictors of early dyspnoea relief in acute heart failure and the association with 30-day outcomes: findings from ASCEND-HF

    PubMed Central

    Mentz, Robert J.; Hernandez, Adrian F.; Stebbins, Amanda; Ezekowitz, Justin A.; Felker, G. Michael; Heizer, Gretchen M.; Atar, Dan; Teerlink, John R.; Califf, Robert M.; Massie, Barry M.; Hasselblad, Vic; Starling, Randall C.; O'Connor, Christopher M.; Ponikowski, Piotr

    2013-01-01

    Aims To examine the characteristics associated with early dyspnoea relief during acute heart failure (HF) hospitalization, and its association with 30-day outcomes. Methods and results ASCEND-HF was a randomized trial of nesiritide vs. placebo in 7141 patients hospitalized with acute HF in which dyspnoea relief at 6 h was measured on a 7-point Likert scale. Patients were classified as having early dyspnoea relief if they experienced moderate or marked dyspnoea improvement at 6 h. We analysed the clinical characteristics, geographical variation, and outcomes (mortality, mortality/HF hospitalization, and mortality/hospitalization at 30 days) associated with early dyspnoea relief. Early dyspnoea relief occurred in 2984 patients (43%). In multivariable analyses, predictors of dyspnoea relief included older age and oedema on chest radiograph; higher systolic blood pressure, respiratory rate, and natriuretic peptide level; and lower serum blood urea nitrogen (BUN), sodium, and haemoglobin (model mean C index = 0.590). Dyspnoea relief varied markedly across countries, with patients enrolled from Central Europe having the lowest risk-adjusted likelihood of improvement. Early dyspnoea relief was associated with lower risk-adjusted 30-day mortality/HF hospitalization [hazard ratio (HR) 0.81; 95% confidence interval (CI) 0.68–0.96] and mortality/hospitalization (HR 0.85; 95% CI 0.74–0.99), but similar mortality. Conclusion Clinical characteristics such as respiratory rate, pulmonary oedema, renal function, and natriuretic peptide levels are associated with early dyspnoea relief, and moderate or marked improvement in dyspnoea was associated with a lower risk for 30-day outcomes. PMID:23159547

  7. INFORMATION: Management Alert on Environmental Management's Select Strategy for Disposition of Savannah River Site Depleted Uranium Oxides

    SciTech Connect

    2010-04-01

    The Administration and the Congress, through policy statements and passage of the American Recovery and Reinvestment Act of 2009 (Recovery Act), have signaled that they hope that proactive actions by agency Inspectors General will help ensure that Federal Recovery Act activities are transparent, effective and efficient. In that context, the purpose of this management alert is to share with you concerns that have been raised to the Office of Inspector General regarding the planned disposition of the Savannah River Site's (SRS) inventory of Depleted Uranium (DU) oxides. This inventory, generated as a by-product of the nuclear weapons production process and amounting to approximately 15,600 drums of DU oxides, has been stored at SRS for decades. A Department source we deem reliable and credible recently came to the Office of Inspector General expressing concern that imminent actions are planned that may not provide for the most cost effective disposition of these materials. During April 2009, the Department chose to use funds provided under the Recovery Act to accelerate final disposition of the SRS inventory of DU oxides. After coordination with State of Utah regulators, elected officials and the U.S. Nuclear Regulatory Commission, the Department initiated a campaign to ship the material to a facility operated by EnergySolutions in Clive, Utah. Although one shipment of a portion of the material has already been sent to the EnergySolutions facility, the majority of the product remains at SRS. As had been planned, both for the shipment already made and those planned in the near term, the EnergySolutions facility was to have been the final disposal location for the material. Recently, a member of Congress and various Utah State officials raised questions regarding the radioactive and other constituents present in the DU oxides to be disposed of at the Clive, Utah, facility. These concerns revolved around the characterization of the material and its acceptability under

  8. Sustained accumulation of prelamin A and depletion of lamin A/C both cause oxidative stress and mitochondrial dysfunction but induce different cell fates

    PubMed Central

    Sieprath, Tom; Corne, Tobias DJ; Nooteboom, Marco; Grootaert, Charlotte; Rajkovic, Andreja; Buysschaert, Benjamin; Robijns, Joke; Broers, Jos LV; Ramaekers, Frans CS; Koopman, Werner JH; Willems, Peter HGM; De Vos, Winnok H

    2015-01-01

    The cell nucleus is structurally and functionally organized by lamins, intermediate filament proteins that form the nuclear lamina. Point mutations in genes that encode a specific subset of lamins, the A-type lamins, cause a spectrum of diseases termed laminopathies. Recent evidence points to a role for A-type lamins in intracellular redox homeostasis. To determine whether lamin A/C depletion and prelamin A accumulation differentially induce oxidative stress, we have performed a quantitative microscopy-based analysis of reactive oxygen species (ROS) levels and mitochondrial membrane potential (Δψm) in human fibroblasts subjected to sustained siRNA-mediated knockdown of LMNA and ZMPSTE24, respectively. We measured a highly significant increase in basal ROS levels and an even more prominent rise of induced ROS levels in lamin A/C depleted cells, eventually resulting in Δψm hyperpolarization and apoptosis. Depletion of ZMPSTE24 on the other hand, triggered a senescence pathway that was associated with moderately increased ROS levels and a transient Δψm depolarization. Both knockdowns were accompanied by an upregulation of several ROS detoxifying enzymes. Taken together, our data suggest that both persistent prelamin A accumulation and lamin A/C depletion elevate ROS levels, but to a different extent and with different effects on cell fate. This may contribute to the variety of disease phenotypes witnessed in laminopathies. PMID:25996284

  9. Chest pain, dyspnoea and elevated D-dimer in a recent air traveller.

    PubMed

    Lima, Joaquim Santos; Sandler, Belinda; McWilliams, Eric

    2011-08-17

    A previously asymptomatic 69-year-old lady, who recently travelled on a 4 h flight, presented with acute left-sided pleuritic pain, dyspnoea and calf pain. Blood gases revealed hypoxaemia and D-dimer was significantly elevated. She also had low-grade fever, leukocytosis and a small left-sided pleural effusion on chest x-ray. The working diagnosis was pulmonary embolism and chest infection and she received low molecular weight heparin and antibiotics. A subsequent CT pulmonary angiogram ruled out pulmonary embolism but revealed an abnormal finding in the ascending aorta, suggestive of a penetrating aortic ulcer. Urgent transoesophageal echocardiography was consistent with an intramural haematoma and the patient underwent emergency aortic root replacement with imminent aortic rupture confirmed at surgery. This case highlights the fact that acute aortic syndromes may have atypical presentations and also emphasises the fact that D-dimer levels are elevated in aortic syndromes.

  10. Diagnostic and Prognostic Properties of Osteoprotegerin in Patients with Acute Dyspnoea: Observations from the Akershus Cardiac Examination (ACE) 2 Study

    PubMed Central

    Pervez, Mohammed Osman; Pedersen, Marit Holmefjord; Brynildsen, Jon; Høiseth, Arne Didrik; Hagve, Tor-Arne; Røsjø, Helge; Omland, Torbjørn

    2016-01-01

    Background Circulating osteoprotegerin (OPG) levels are increased in patients with chronic heart failure (HF). The diagnostic and prognostic merit of OPG measurement in patients admitted with acute dyspnoea is unknown. Objectives To evaluate the diagnostic and prognostic value of measuring OPG in patients admitted to hospital with acute dyspnoea. Methods OPG was analysed by ELISA in 308 patients admitted due to acute dyspnoea. Investigators blinded to OPG results adjudicated the diagnosis for the index hospitalization. Clinical outcomes were obtained from hospital records. Results In total, 139 patients (45%) were hospitalized with acute HF. OPG levels on hospital admission were higher in patients with acute HF vs. no acute HF, 7.8 (5.5–10.4) vs. 5.4 (3.8–7.2) pmol/L, p<0.001. The area under the receiver operator characteristic curve (ROC AUC) of OPG to discriminate between HF vs. non-HF was 0.695 [95% CI 0.636–0.754]. OPG did not provide incremental information to the ED physician’s prediction or N-terminal pro-B-type natriuretic peptide regarding the diagnosis of acute HF. OPG levels (log transformed) were associated with mortality in crude analysis (HR (95% CI) 1.87 (1.34 to 2.61), p<0.001), but this association was attenuated and no longer significant after including established cardiac biomarkers into the model. Conclusion In patients admitted to hospital with acute dyspnoea, OPG levels are higher in patients with acute HF than in those with dyspnoea from other causes. However, OPG does not provide incremental information beyond ED physician assessment for the diagnosis of acute HF or beyond clinical risk variables and established cardiac biomarkers concerning prognosis. PMID:27463973

  11. Homocysteine and cytosolic GSH depletion induce apoptosis and oxidative toxicity through cytosolic calcium overload in the hippocampus of aged mice: involvement of TRPM2 and TRPV1 channels.

    PubMed

    Övey, I S; Naziroğlu, M

    2015-01-22

    Oxidative stress and apoptosis were induced in neuronal cultures by inhibition of glutathione (GSH) biosynthesis with d,l-buthionine-S,R-sulfoximine (BSO). Transient receptor potential melastatin 2 (TRPM2) and transient receptor potential vanilloid 1 (TRPV1) cation channels are gated by oxidative stress. The oxidant effects of homocysteine (Hcy) may induce activation of TRPV1 and TRPM2 channels in aged mice as a model of Alzheimer's disease (AD). We tested the effects of Hcy, BSO and GSH on oxidative stress, apoptosis and Ca2+ and influx via TRPM2 and TRPV1 channels in the hippocampus of mice. Native mice hippocampal neurons were divided into five groups as follows; control, Hcy, BSO, Hcy+BSO and Hcy+BSO+GSH groups. The neurons in TRPM2 and TRPV1 experiments were stimulated by hydrogen peroxide and capsaicin, respectively. BSO and Hcy incubations increased intracellular free Ca2+ concentrations, reactive oxygen species, apoptosis, mitochondrial depolarization, and levels of caspase 3 and 9. All of these increases were reduced by GSH treatments. Treatment with 2-aminoethoxydiphenyl borate (2-APB) and N-(p-amylcinnamoyl)anthranilic acid (ACA) as potent inhibitors of TRPM2, capsazepine as a potent inhibitor of TRPV1, verapamil+diltiazem (V+D) as inhibitors of the voltage-gated Ca2+ channels (VGCC) and MK-801 as a N-methyl-d-aspartate (NMDA) channel antagonist indicated that GSH depletion and Hcy elevation activated Ca2+ entry into the neurons through TRPM2, TRPV1, VGCC and NMDA channels. Inhibitor roles of 2-APB and capsazepine on the Ca2+ entry higher than in V+D and MK-801 antagonists. In conclusion, these findings support the idea that GSH depletion and Hcy elevation can have damaging effects on hippocampal neurons by perturbing calcium homeostasis, mainly through TRPM2 and TRPV1 channels. GSH treatment can partially reverse these effects.

  12. Effect Of Calcium Chelators on the Formation and Oxidation of the Slowly Relaxing Reduced Plastoquinone Pool in Calcium-Depleted PSII Membranes. Investigation of the F0 Yield

    SciTech Connect

    Semin, B. K.; Davletshina, L. N.; Bulychev, A. A.; Ivanov, I. I.; Seibert, M.; Rubin, A. B.

    2007-01-01

    The F{sub 0} fluorescence yield in intact photosystem II (PSII), Ca-depleted PSII (PSII(-Ca/NaCl)), and Mn-depleted PSII membranes was measured before and after dim light treatment (1-2 min), using flash-probe fluorescence and fluorescence induction kinetic measurements. The value of F{sub 0} after the light treatment (F{sup '}{sub 0}) was larger than F{sub 0} in dark-adapted PSII membranes and depended on the appearance of the slowly relaxing, reduced plastoquinone pool (t{sub 1/2} = 4 min) formed during preillumination, which was not totally reoxidized before the F{sup '}{sub 0} measurement. In PSII(-Ca/NaCl) such a pool also appeared, but the F{sup '}{sub 0} yield was even higher than in intact PSII membranes. In Mn-depleted PSII membranes, the pool did not form. Interestingly, the yield of F{sup '}{sub 0} in Ca-depleted PSII membranes prepared using chelators (EGTA and citrate) or containing 5 mM EGTA was significantly lower than in PSII(-Ca/NaCl) samples prepared without chelators. These data indicate that chelators inhibit the reduction of QA and QB and formation of the slowly relaxing plastoquinone pool, or alternatively they increase the rate of its oxidation. Such an effect can be explained by coordination of the chelator molecule to the Mn cluster in PSII(-Ca/NaCl) membranes, rather than different amounts of residual Ca{sup 2+} in the membranes (with or without the chelator), since the remaining oxygen-evolving activity ({approx}15%) in PSII(-Ca/NaCl) samples did not depend on the presence of the chelator. Thus, chelators of calcium cations not only have an effect on the EPR properties of the S2 state in PSII(-Ca/NaCl) samples, but can also influence the PSII properties determining the rate of plastoquinone pool reduction and/or oxidation. The effect of some toxic metal cations (Cd, Cu, Hg) on the formation of the slowly relaxing pool in PSII membranes was also studied.

  13. Hyperoxia depletes (6R)-5,6,7,8-tetrahydrobiopterin levels in the neonatal retina: implications for nitric oxide synthase function in retinopathy.

    PubMed

    Edgar, Kevin S; Matesanz, Nuria; Gardiner, Tom A; Katusic, Zvonimir S; McDonald, Denise M

    2015-06-01

    Retinopathy of prematurity is a sight-threatening complication of premature birth caused by nitro-oxidative insult to the developing retinal vasculature during therapeutic hyperoxia exposure and later ischemia-induced neovascularization on supplemental oxygen withdrawal. In the vasodegenerative phase, during hyperoxia, defective endothelial nitric oxide synthase (NOS) produces reactive oxygen and nitrogen free radicals rather than vasoprotective nitric oxide for unclear reasons. Crucially, normal NOS function depends on availability of the cofactor (6R)-5,6,7,8-tetrahydrobiopterin (BH4). Because BH4 synthesis is controlled enzymatically by GTP cyclohydrolase (GTPCH), we used GTPCH-depleted mice [hyperphenylalaninemia strain (hph1)] to investigate the impact of hyperoxia on BH4 bioavailability and retinal vascular pathology in the neonate. Hyperoxia decreased BH4 in retinas, lungs, and aortas in all experimental groups, resulting in a dose-dependent decrease in NOS activity and, in the wild-type group, elevated NOS-derived superoxide. Retinal dopamine levels were similarly diminished, consistent with the dependence of tyrosine hydroxylase on BH4. Despite greater depletion of BH4, the hph(+/-) and hph1(-/-) groups did not show exacerbated hyperoxia-induced vessel closure, but exhibited greater vascular protection and reduced progression to neovascular disease. This vasoprotective effect was independent of enhanced circulating vascular endothelial growth factor (VEGF), which was reduced by hyperoxia, but to local retinal ganglion cell layer-derived VEGF. In conclusion, a constitutively higher level of VEGF expression associated with retinal development protects GTPCH-deficient neonates from oxygen-induced vascular damage.

  14. Dyspnoea assessed by visual analogue scale in patients with chronic obstructive lung disease during progressive and high intensity exercise.

    PubMed Central

    Noseda, A; Carpiaux, J P; Schmerber, J; Yernault, J C

    1992-01-01

    BACKGROUND: A study was carried out to determine whether rating of dyspnoea by means of a visual analogue scale during a progressive exercise test is affected by the subject's awareness of the progressive nature of the protocol. METHODS: Nineteen patients with chronic obstructive lung disease (FEV1 mean (SE) 1.06 (0.07) 1) were studied. A preliminary incremental test was carried out with a work rate increasing by 10 watts every minute until the subject could no longer exercise, to determine the maximum work load (Wmax) and to anchor the upper end of the visual analogue scale. This was followed by two exercise tests performed one day apart in randomised sequence, with two different protocols. One was a 12 minute protocol that included two sudden bursts of three minute high intensity exercise, up to the subject's Wmax, each preceded by three minutes of low level exercise. The other test was a conventional three minute incremental test lasting 12 minutes. On both study days the only information given to the subject about the temporal profile of load was that a change would be made every three minutes. The relation between dyspnoea, as assessed by the visual analogue scale, and ventilation, measured during high intensity or progressive exercise, was studied. RESULTS: The mean (SE) rates of increase of dyspnoea with increasing ventilation (% of line length 1(-1) min) obtained by linear regression analysis were similar for the two tests (2.86 (0.20) for progressive exercise and 2.87 (0.25) for high intensity exercise); it was 2.59 (0.25) for the initial burst of high intensity exercise when the data on this were analysed separately. In six subjects with stable disease studied again two months later the reproducibility of the rating of dyspnoea was reasonably good for both protocols. CONCLUSION: The results suggest that in most patients with chronic obstructive lung disease the assessment of exercise induced dyspnoea by means of a visual analogue scale during a

  15. Up-regulation of miR-31 in human atrial fibrillation begets the arrhythmia by depleting dystrophin and neuronal nitric oxide synthase.

    PubMed

    Reilly, Svetlana N; Liu, Xing; Carnicer, Ricardo; Recalde, Alice; Muszkiewicz, Anna; Jayaram, Raja; Carena, Maria Cristina; Wijesurendra, Rohan; Stefanini, Matilde; Surdo, Nicoletta C; Lomas, Oliver; Ratnatunga, Chandana; Sayeed, Rana; Krasopoulos, George; Rajakumar, Timothy; Bueno-Orovio, Alfonso; Verheule, Sander; Fulga, Tudor A; Rodriguez, Blanca; Schotten, Ulrich; Casadei, Barbara

    2016-05-25

    Atrial fibrillation (AF) is a growing public health burden, and its treatment remains a challenge. AF leads to electrical remodeling of the atria, which in turn promotes AF maintenance and resistance to treatment. Although remodeling has long been a therapeutic target in AF, its causes remain poorly understood. We show that atrial-specific up-regulation of microRNA-31 (miR-31) in goat and human AF depletes neuronal nitric oxide synthase (nNOS) by accelerating mRNA decay and alters nNOS subcellular localization by repressing dystrophin translation. By shortening action potential duration and abolishing rate-dependent adaptation of the action potential duration, miR-31 overexpression and/or disruption of nNOS signaling recapitulates features of AF-induced remodeling and significantly increases AF inducibility in mice in vivo. By contrast, silencing miR-31 in atrial myocytes from patients with AF restores dystrophin and nNOS and normalizes action potential duration and its rate dependency. These findings identify atrial-specific up-regulation of miR-31 in human AF as a key mechanism causing atrial dystrophin and nNOS depletion, which in turn contributes to the atrial phenotype begetting this arrhythmia. miR-31 may therefore represent a potential therapeutic target in AF.

  16. Up-regulation of miR-31 in human atrial fibrillation begets the arrhythmia by depleting dystrophin and neuronal nitric oxide synthase

    PubMed Central

    Carnicer, Ricardo; Recalde, Alice; Muszkiewicz, Anna; Jayaram, Raja; Carena, Maria Cristina; Wijesurendra, Rohan; Stefanini, Matilde; Surdo, Nicoletta C.; Lomas, Oliver; Ratnatunga, Chandana; Sayeed, Rana; Krasopoulos, George; Rajakumar, Timothy; Bueno-Orovio, Alfonso; Verheule, Sander; Fulga, Tudor A.; Rodriguez, Blanca; Schotten, Ulrich

    2016-01-01

    Atrial fibrillation (AF) is a growing public health burden, and its treatment remains a challenge. AF leads to electrical remodeling of the atria, which in turn promotes AF maintenance and resistance to treatment. Although remodeling has long been a therapeutic target in AF, its causes remain poorly understood. We show that atrial-specific up-regulation of microRNA-31 (miR-31) in goat and human AF depletes neuronal nitric oxide synthase (nNOS) by accelerating mRNA decay and alters nNOS subcellular localization by repressing dystrophin translation. By shortening action potential duration and abolishing rate-dependent adaptation of the action potential duration, miR-31 overexpression and/or disruption of nNOS signaling recapitulates features of AF-induced remodeling and significantly increases AF inducibility in mice in vivo. By contrast, silencing miR-31 in atrial myocytes from patients with AF restores dystrophin and nNOS and normalizes action potential duration and its rate dependency. These findings identify atrial-specific up-regulation of miR-31 in human AF as a key mechanism causing atrial dystrophin and nNOS depletion, which in turn contributes to the atrial phenotype begetting this arrhythmia. miR-31 may therefore represent a potential therapeutic target in AF. PMID:27225184

  17. Scaling characteristics of depletion type, fully transparent amorphous indium-gallium-zinc-oxide thin-film transistors and inverters following Ar plasma treatment

    NASA Astrophysics Data System (ADS)

    Kim, Joonwoo; Jeong, Soon Moon; Jeong, Jaewook

    2015-11-01

    We fabricated depletion type, transparent amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) and inverters with an Ar plasma treatment and analyzed their scaling characteristics with channel lengths ranging from 2 to 100 µm. The improvement of the field-effect mobility of a-IGZO TFTs is apparent only for short channel lengths. There is also an unexpected side effect of the Ar plasma treatment, which introduces back-channel interfacial states and induces a positive shift in the threshold voltage of a-IGZO TFTs. The resulting increase in the field-effect mobility and the positive shift in the threshold voltage of each TFT increase the differential gain up to 3 times and the positive shift in the transient point of the transparent inverters.

  18. Regulation of death induction and chemosensitizing action of 3-bromopyruvate in myeloid leukemia cells: energy depletion, oxidative stress, and protein kinase activity modulation.

    PubMed

    Calviño, Eva; Estañ, María Cristina; Sánchez-Martín, Carlos; Brea, Rocío; de Blas, Elena; Boyano-Adánez, María del Carmen; Rial, Eduardo; Aller, Patricio

    2014-02-01

    3-Bromopyruvate (3-BrP) is an alkylating, energy-depleting drug that is of interest in antitumor therapies, although the mechanisms underlying its cytotoxicity are ill-defined. We show here that 3-BrP causes concentration-dependent cell death of HL60 and other human myeloid leukemia cells, inducing both apoptosis and necrosis at 20-30 μM and a pure necrotic response at 60 μM. Low concentrations of 3-BrP (10-20 μM) brought about a rapid inhibition of glycolysis, which at higher concentrations was followed by the inhibition of mitochondrial respiration. The combination of these effects causes concentration-dependent ATP depletion, although this cannot explain the lethality at intermediate 3-BrP concentrations (20-30 μM). The oxidative stress caused by exposure to 3-BrP was evident as a moderate overproduction of reactive oxygen species and a concentration-dependent depletion of glutathione, which was an important determinant of 3-BrP toxicity. In addition, 3-BrP caused glutathione-dependent stimulation of p38 mitogen-activated protein kinase (MAPK), mitogen-induced extracellular kinase (MEK)/extracellular signal-regulated kinase (ERK), and protein kinase B (Akt)/mammalian target of rapamycin/p70S6K phosphorylation or activation, as well as rapid LKB-1/AMP kinase (AMPK) activation, which was later followed by Akt-mediated inactivation. Experiments with pharmacological inhibitors revealed that p38 MAPK activation enhances 3-BrP toxicity, which is conversely restrained by ERK and Akt activity. Finally, 3-BrP was seen to cooperate with antitumor agents like arsenic trioxide and curcumin in causing cell death, a response apparently mediated by both the generation of oxidative stress induced by 3-BrP and the attenuation of Akt and ERK activation by curcumin. In summary, 3-BrP cytotoxicity is the result of several combined regulatory mechanisms that might represent important targets to improve therapeutic efficacy.

  19. Superconductivity-induced magnetization depletion in a ferromagnet through an insulator in a ferromagnet-insulator-superconductor hybrid oxide heterostructure

    NASA Astrophysics Data System (ADS)

    Prajapat, C. L.; Singh, Surendra; Paul, Amitesh; Bhattacharya, D.; Singh, M. R.; Mattauch, S.; Ravikumar, G.; Basu, S.

    2016-05-01

    Coupling between superconducting and ferromagnetic states in hybrid oxide heterostructures is presently a topic of intense research. Such a coupling is due to the leakage of the Cooper pairs into the ferromagnet. However, tunneling of the Cooper pairs though an insulator was never considered plausible. Using depth sensitive polarized neutron reflectivity we demonstrate the coupling between superconductor and magnetic layers in epitaxial La2/3Ca1/3MnO3 (LCMO)/SrTiO3/YBa2Cu3O7-δ (YBCO) hybrid heterostructures, with SrTiO3 as an intervening oxide insulator layer between the ferromagnet and the superconductor. Measurements above and below the superconducting transition temperature (TSC) of YBCO demonstrate a large modulation of magnetization in the ferromagnetic layer below the TSC of YBCO in these heterostructures. This work highlights a unique tunneling phenomenon between the epitaxial layers of an oxide superconductor (YBCO) and a magnetic layer (LCMO) through an insulating layer. Our work would inspire further investigations on the fundamental aspect of a long range order of the triplet spin-pairing in hybrid structures.

  20. Superconductivity-induced magnetization depletion in a ferromagnet through an insulator in a ferromagnet-insulator-superconductor hybrid oxide heterostructure.

    PubMed

    Prajapat, C L; Singh, Surendra; Paul, Amitesh; Bhattacharya, D; Singh, M R; Mattauch, S; Ravikumar, G; Basu, S

    2016-05-21

    Coupling between superconducting and ferromagnetic states in hybrid oxide heterostructures is presently a topic of intense research. Such a coupling is due to the leakage of the Cooper pairs into the ferromagnet. However, tunneling of the Cooper pairs though an insulator was never considered plausible. Using depth sensitive polarized neutron reflectivity we demonstrate the coupling between superconductor and magnetic layers in epitaxial La2/3Ca1/3MnO3 (LCMO)/SrTiO3/YBa2Cu3O7-δ (YBCO) hybrid heterostructures, with SrTiO3 as an intervening oxide insulator layer between the ferromagnet and the superconductor. Measurements above and below the superconducting transition temperature (TSC) of YBCO demonstrate a large modulation of magnetization in the ferromagnetic layer below the TSC of YBCO in these heterostructures. This work highlights a unique tunneling phenomenon between the epitaxial layers of an oxide superconductor (YBCO) and a magnetic layer (LCMO) through an insulating layer. Our work would inspire further investigations on the fundamental aspect of a long range order of the triplet spin-pairing in hybrid structures.

  1. Depletion of cytosolic or mitochondrial thioredoxin increases CYP2E1 induced oxidative stress via an ASK-1-JNK1 pathway in HepG2 cells

    PubMed Central

    Yang, Lili; Wu, Defeng; Wang, Xiaodong; Cederbaum, Arthur I

    2011-01-01

    Thioredoxin is an important reducing molecule in biological systems. Increasing CYP2E1 activity induces oxidative stress and cell toxicity. However, whether thioredoxin protects cells against CYP2E1 induced oxidative stress and toxicity is unknown. SiRNA were used to knockdown either cytosolic (TRX-1) or mitochondrial thioredoxin (TRX-2) in HepG2 cells expressing CYP2E1 (E47 cells) or without expressing CYP2E1 (C34 cells). Cell viability decreased 40–60% in E47 but not C34 cells with 80–90% knockdown of either TRX-1 or TRX-2. Depletion of either thioredoxin also potentiated the toxicity by either a glutathione synthesis inhibitor or TNFα in E47 cells. Generation of reactive oxygen species and 4-HNE protein adducts increased in E47 but not C34 cells with either thioredoxin knockdown. GSH was decreased and adding GSH completely blocked E47 cell death induced by either thioredoxin knockdown. Lowering TRX-1 or TRX-2 in E47 cells caused an early activation of ASK-1, followed by phosphorylation of JNK1 after 48 hrs of siRNA treatment. JNK inhibitor caused a partial recovery of E47 cell viability after thioredoxin knockdown. In conclusion, knockdown of TRX-1 or TRX-2 sensitizes cells to CYP2E1 induced oxidant stress partially via ASK-1 and JNK1 signaling pathways. Both TRX-1 and TRX-2 are important for defense against CYP2E1-induced oxidative stress. PMID:21557999

  2. Effects of an aging pulmonary system on expiratory flow limitation and dyspnoea during exercise in healthy women.

    PubMed

    Wilkie, Sabrina S; Guenette, Jordan A; Dominelli, Paolo B; Sheel, A William

    2012-06-01

    Aging related changes in pulmonary function may make older women (OW) more susceptible to expiratory flow limitation (EFL) and lead to higher dyspnoea ratings during exercise relative to young women (YW). Accordingly, the purpose of this study was to compare sensory responses and EFL susceptibility and magnitude in 8 YW (29 ± 7 years) and 8 healthy OW (64 ± 3 years) matched for percentage-predicted forced vital capacity (% predicted FVC) and % predicted forced expiratory volume in 1 s. EFL was calculated as the percent overlap between tidal flow-volume loops during maximal exercise and the maximal expiratory flow-volume (MEFV) curve. Peak oxygen consumption (V'O(2peak)) was lower in the OW compared to the YW (29.4 ± 3.6 vs. 49.1 ± 8.9 ml kg(-1) min(-1), P < 0.05) as was maximal ventilation (73.7 ± 18.4 vs. 108.7 ± 14.1 l min(-1), P < 0.05). EFL at maximal exercise was present in 2 of 8 YW and in 5 of 8 OW. There were no significant differences in the magnitude of EFL between OW (23 ± 24, range: 0-69 %EFL) and YW (9 ± 18, range: 0-46 %EFL, P = 0.21). The magnitude of EFL in OW was inversely related to % predicted FVC (r = -0.69, P = 0.06), but this relationships was not observed in the YW (r = -0.23, P = 0.59). The OW consistently reported greater dyspnoea and leg discomfort for any given absolute work rate, but not when work was expressed as a percentage of maximum. Reduced ventilatory and exercise capacities may cause OW to be more susceptible to EFL during exercise and experience greater dyspnoea relative to YW for a standardized physical task.

  3. Heart failure in patients presenting with dyspnoea to the emergency department in the Asia Pacific region: an observational study

    PubMed Central

    Kelly, Anne-Maree; Cullen, Louise; Klim, Sharon; Craig, Simon; Kuan, Win Sen; Jones, Peter; Holdgate, Anna; Lawoko, Charles; Laribi, Said

    2017-01-01

    Objectives To describe demographic features, assessment, management and outcomes of patients who were diagnosed with heart failure after presenting to an emergency department (ED) with a principal symptom of dyspnoea. Design Planned substudy of the prospective, descriptive cohort study: Asia, Australia and New Zealand Dyspnoea in Emergency Departments (AANZDEM). Setting 46 EDs in Australia, New Zealand, Singapore, Hong Kong and Malaysia collected data over 3 72-hour periods in May, August and October 2014. Participants Patients with an ED diagnosis of heart failure. Outcome measures Outcomes included patient epidemiology, investigations ordered, treatment modalities used and patient outcomes (hospital length of stay (LOS) and mortality). Results 455 (14.9%) of the 3044 patients had an ED diagnosis of heart failure. Median age was 79 years, half were male and 62% arrived via ambulance. 392 (86%) patients were admitted to hospital. ED diagnosis was concordant with hospital discharge diagnosis in 81% of cases. Median hospital LOS was 6 days (IQR 4–9) and in-hospital mortality was 5.1%. Natriuretic peptide levels were ordered in 19%, with lung ultrasound (<1%) and echocardiography (2%) uncommonly performed. Treatment modalities included non-invasive ventilation (12%), diuretics (73%), nitrates (25%), antibiotics (16%), inhaled β-agonists (13%) and corticosteroids (6%). Conclusions In the Asia Pacific region, heart failure is a common diagnosis among patients presenting to the ED with a principal symptom of dyspnoea. Admission rates were high and ED diagnostic accuracy was good. Despite the seemingly suboptimal adherence to investigation and treatment guidelines, patient outcomes were favourable compared with other registries. PMID:28246137

  4. Ethacrynic-acid-induced glutathione depletion and oxidative stress in normal and Mrp2-deficient rat liver.

    PubMed

    Ji, Bin; Ito, Kousei; Sekine, Shuichi; Tajima, Ai; Horie, Toshiharu

    2004-12-01

    Oxidative stress in the liver is sometimes accompanied by cholestasis. We investigated the localization and role of multidrug-resistance-associated protein (Mrp) 2, a biliary transporter involved in bile-salt-independent bile flow, under ethacrynic acid (EA)-induced acute oxidative stress. Normal Sprague-Dawley rat (SDR) and Mrp2-deficient Eisai hyperbilirubinemic rat (EHBR) livers were perfused with 500 microM EA. The release of glutamic pyruvic transaminase (GPT) and thiobarbituric-acid-reactive substances (TBARS) from EHBR liver was markedly delayed compared with that from SDR liver. This is mainly due to the higher basal level of glutathione (GSH) in EHBR liver (59.1 +/- 0.3 nmol/mg protein) compared with SDR liver (39.7 +/- 1.5 nmol/mg protein). EA similarly induced a rapid reduction in GSH followed by mitochondrial permeability transition in the isolated mitochondria from both SDR and EHBR. Internalization of Mrp2 was detected before nonspecific disruption of the canalicular membrane and GPT release in SDR liver perfused with 100 microM EA. SDR liver preperfused with hyperosmolar buffer (405 mosmol/L) for 30 min induced internalization of Mrp2 without changing the basal GSH level, while elimination of hepatic GSH by 300 microM EA perfusion was significantly delayed thereafter. Concomitantly, hepatotoxicity assessed by the release of GPT and TBARS was also significantly attenuated under hyperosmolar conditions. In conclusion, preserved cytosolic and intramitochondrial GSH is the key factor involved in the acute hepatotoxicity induced by EA and its susceptibility could be altered by the presence of Mrp2.

  5. Edaravone mitigates hexavalent chromium-induced oxidative stress and depletion of antioxidant enzymes while estrogen restores antioxidant enzymes in the rat ovary in F1 offspring.

    PubMed

    Stanley, Jone A; Sivakumar, Kirthiram K; Arosh, Joe A; Burghardt, Robert C; Banu, Sakhila K

    2014-07-01

    Environmental contamination of drinking water with chromium (Cr) has been increasing in more than 30 cities in the United States. Previous studies from our group have shown that Cr affects reproductive functions in female Sprague Dawley rats. Although it is impossible to completely remove Cr from the drinking water, it is imperative to develop effective intervention strategies to inhibit Cr-induced deleterious health effects. Edaravone (EDA), a potential inhibitor of free radicals, has been clinically used to treat cancer and cardiac ischemia. This study evaluated the efficacy of EDA against Cr-induced ovarian toxicity. Results showed that maternal exposure to CrVI in rats increased follicular atresia, decreased steroidogenesis, and delayed puberty in F1 offspring. CrVI increased oxidative stress and decreased antioxidant (AOX) enzyme levels in the ovary. CrVI increased follicle atresia by increased expression of cleaved caspase 3, and decreased expression of Bcl2 and Bcl2l1 in the ovary. EDA mitigated or inhibited the effects of CrVI on follicle atresia, pubertal onset, steroid hormone levels, and AOX enzyme activity, as well as the expression of Bcl2 and Bcl2l1 in the ovary. In a second study, CrVI treatment was withdrawn, and F1 rats were injected with estradiol (E₂) (10 μg in PBS/ethanol per 100 g body weight) for a period of 2 wk to evaluate whether E₂ treatment will restore Cr-induced depletion of AOX enzymes. E₂ restored CrVI-induced depletion of glutathione peroxidase 1, catalase, thioredoxin 2, and peroxiredoxin 3 in the ovary. This is the first study to demonstrate the protective effects of EDA against any toxicant in the ovary.

  6. Edaravone Mitigates Hexavalent Chromium-Induced Oxidative Stress and Depletion of Antioxidant Enzymes while Estrogen Restores Antioxidant Enzymes in the Rat Ovary in F1 Offspring1

    PubMed Central

    Stanley, Jone A.; Sivakumar, Kirthiram K.; Arosh, Joe A.; Burghardt, Robert C.; Banu, Sakhila K.

    2014-01-01

    ABSTRACT Environmental contamination of drinking water with chromium (Cr) has been increasing in more than 30 cities in the United States. Previous studies from our group have shown that Cr affects reproductive functions in female Sprague Dawley rats. Although it is impossible to completely remove Cr from the drinking water, it is imperative to develop effective intervention strategies to inhibit Cr-induced deleterious health effects. Edaravone (EDA), a potential inhibitor of free radicals, has been clinically used to treat cancer and cardiac ischemia. This study evaluated the efficacy of EDA against Cr-induced ovarian toxicity. Results showed that maternal exposure to CrVI in rats increased follicular atresia, decreased steroidogenesis, and delayed puberty in F1 offspring. CrVI increased oxidative stress and decreased antioxidant (AOX) enzyme levels in the ovary. CrVI increased follicle atresia by increased expression of cleaved caspase 3, and decreased expression of Bcl2 and Bcl2l1 in the ovary. EDA mitigated or inhibited the effects of CrVI on follicle atresia, pubertal onset, steroid hormone levels, and AOX enzyme activity, as well as the expression of Bcl2 and Bcl2l1 in the ovary. In a second study, CrVI treatment was withdrawn, and F1 rats were injected with estradiol (E2) (10 μg in PBS/ethanol per 100 g body weight) for a period of 2 wk to evaluate whether E2 treatment will restore Cr-induced depletion of AOX enzymes. E2 restored CrVI-induced depletion of glutathione peroxidase 1, catalase, thioredoxin 2, and peroxiredoxin 3 in the ovary. This is the first study to demonstrate the protective effects of EDA against any toxicant in the ovary. PMID:24804965

  7. Sulfate-driven anaerobic oxidation of methane as the origin of extremely 13C-depleted calcite in the Doushantuo cap carbonates in South China

    NASA Astrophysics Data System (ADS)

    Peng, Y.; Bao, H.; Jiang, G.; Kaufman, A. J.; Xiao, S.; Zhou, C.; Wang, J.

    2015-12-01

    The cap carbonate in Doushantuo Formation (ca. 635 Ma) has been extensively studied for Earth systems change following the Marinoan 'snowball Earth' glaciation. An important feature of this cap carbonate is the local occurrence of extremely negative δ13Ccarb values (down to -50‰) from dark-colored calcite cements. These calcites have been interpreted as carbonate cements precipitated from cold methane seeps or as hydrothermally induced diagenetic carbonates. To test these contrasting interpretations, we mechanically separated the calcite cements from host dolostones and analyzed stable isotope compositions of pyrite, carbonate-associated sulfate (CAS), and organic carbon in both components of the Doushantuo cap carbonate in the Yangtze Gorges area, South China. The data show that δ34Spyrtie of extremely 13C-depleted calcite (22.8-73.9‰) are up to 34‰ higher than those of the dolomite (14.7-39.9‰). Similarly, δ34SCAS of calcite (37.1-80.1‰) are up to 40‰ higher than those of the dolomite (24.5-41.5‰). The δ18OCAS of calcite (12.9-22.2‰; VSMOW) are also systematically higher than those of dolomite (13.3-16.8‰; VSMOW). In contrast, δ13Corg of calcite cements (-27.2 ‰ to -46.1‰) are lower than those of the dolostones (-26.5‰ to -31.7‰). In addition, there is a strong positive correlation between δ34SCAS and δ18OCAS and a negative correlation between δ13Corg and δ34Spyrtie of the calcite (Figure 1). The data demonstrated convincingly that the 13C-depleted calcites were formed in a environment facilitated by sulfate-driven anaeorobic oxidation of methane (AOM). The co-occurrence of unusually low δ13Corg and high δ34S values requires presence of active flow of both methane and sulfate, a condition not far away from conducive seawater sulfate supply. Figure 1: Cross plots of δ34SCAS vs. δ18OCAS and δ13Corg vs δ34Spyrtie in host dolomite and in the extremely 13C-depleted calcite cements.

  8. Long-Term Effects of Maternal Citrulline Supplementation on Renal Transcriptome Prevention of Nitric Oxide Depletion-Related Programmed Hypertension: The Impact of Gene-Nutrient Interactions

    PubMed Central

    Tain, You-Lin; Lee, Chien-Te; Huang, Li-Tung

    2014-01-01

    Maternal malnutrition can elicit gene expression leading to fetal programming. l-citrulline (CIT) can be converted to l-arginine to generate nitric oxide (NO). We examined whether maternal CIT supplementation can prevent NG-nitro-l-arginine-methyl ester (l-NAME, NO synthase inhibitor)-induced programmed hypertension and examined their effects on the renal transcriptome in male offspring using next generation RNA sequencing (RNA-Seq) technology. Pregnant Sprague-Dawley rats received l-NAME administration at 60mg/kg/day subcutaneously via osmotic minipump during pregnancy alone or with additional 0.25% l-citrulline solution in drinking water during the whole period of pregnancy and lactation. Male offspring were assigned to three groups: control, l-NAME, and l-NAME + CIT. l-NAME exposure induced hypertension in the 12-week-old offspring, which CIT therapy prevented. Identified differentially expressed genes in l-NAME and CIT-treated offspring kidneys, including Guca2b, Hmox1, Hba2, Hba-a2, Dusp1, and Serpine1 are related to regulation of blood pressure (BP) and oxidative stress. In conclusion, our data suggests that the beneficial effects of CIT supplementation are attributed to alterations in expression levels of genes related to BP control and oxidative stress. Our results suggest that early nutritional intervention by CIT has long-term impact on the renal transcriptome to prevent NO depletion-related programmed hypertension. However, our RNA-Seq results might be a secondary phenomenon. The implications of epigenetic regulation at an early stage of programming deserve further clarification. PMID:25517031

  9. Sensor systems for precise location of depleted uranium in soil and for enhancing the recovery of both zero valence and uranium oxides

    SciTech Connect

    Etheridge, J.A.; Monts, D.L.; Su, Y.; Waggoner, C.A.

    2007-07-01

    Depleted uranium (DU) has been the primary material used for the past two decades by the US military in armor piercing rounds. Domestic firing ranges that have been used for DU training purposes are located around the country and vary with regard to soil type, depth of vadose zone, and extent of contamination with other types of projectiles. A project is underway to develop a set of sensor systems to locate expended DU rounds and to process soil and debris to recover the material. Reactivity of zero valence DU material, even in dry sandy soils, results in rapid oxidation and diffusion of uranium minerals within the soil column. Detection techniques must be robust for both metallic and uranyl species. Radiological sensor techniques including both gamma spectroscopy and prompt gamma neutron analysis are being used in conjunction with electromagnetic imaging to locate the DU for excavation. Detection limits for both zero valence DU (ZVDU) and oxidized material will be discussed. Applicability of active and passive optical methods, such as spectral imaging and fluorescence spectroscopy, will be discussed as aids for achieving clean soil margins while excavating DU materials. Instrumentation selection for controlling processing equipment used to separate ZVDU and uranyl species from contaminated soil and debris will also be discussed. Preliminary findings for use of sodium iodide detectors and multichannel analyzer software are discussed for locating 25 and 105 mm DU penetrators. Optimum detector height of 15 cm (six inches) and detection depths up to 15 cm are discussed. A comparison of detector response of the Geonics EM61 MKII electromagnetic induction unit for DU and ferrous materials is reported. Difficulty of locating small DU penetrators using the one meter detection coil and differences in detector response for target orientation relative to the detection coil are reported. (authors)

  10. Disposition of Depleted Uranium Oxide

    SciTech Connect

    Crandall, J.L.

    2001-08-13

    This document summarizes environmental information which has been collected up to June 1983 at Savannah River Plant. Of particular interest is an updating of dose estimates from changes in methodology of calculation, lower cesium transport estimates from Steel Creek, and new sports fish consumption data for the Savannah River. The status of various permitting requirements are also discussed.

  11. Functional variables associated with the clinical grade of dyspnoea in coal miners with pneumoconiosis and mild bronchial obstruction

    PubMed Central

    Bauer, T; Schultze-Werningh..., G; Kollmeier, J; Weber, A; Eibel, R; Lemke, B; Schmidt, E

    2001-01-01

    OBJECTIVES—Dyspnoea is a common symptom in coal miners with pneumoconiosis. Among others, gas exchange disturbances due to airway obstruction or mismatch between ventilation and perfusion may be underlying mechanisms. The validation of dyspnoea by the degree of airway obstruction is controversial, because the extent of airway obstruction often does not correlate with the clinical grade of breathlessness.
METHODS—The association was investigated between breathlessness (self reported, on a six point scale) and indices of submaximal spiroergometry in 66 coal workers with radiographically confirmed pneumoconiosis (International Labour Organisation (ILO) grade of profusion ⩾1/0, mean (SD) age 64 (5.5) years, mean (SD) forced expired volume in 1 second (FEV1) 77.5 (22.9) % predicted).
RESULTS—The clinical degree of breathlessness was independently associated with minute ventilation/oxygen consumption (V̇E/V̇O2) ratio (β 0.423, 95% confidence interval (95% CI) 0.18 to 0.67, p=0.001) and smoking (β 0.318, 95% CI 0.21 to 1.79, p=0.014) in a multiple linear regression analysis. The V̇E/V̇O2 ratio (β 0.556, 95% CI 0.20 to 0.90, p=0.003) was also the best predictor of breathlessness when only coal miners with airway obstruction (FEV1 < 80% predicted) were analyzed.
CONCLUSION—The V̇E/V̇O2 ratio as a measurement of mismatch between ventilation and perfusion predicted the clinical grade of breathlessness better than measurements of bronchial obstruction at rest in coal workers with pneumoconiosis.


Keywords: coal workers' pneumoconiosis; bronchial obstruction; ventilation PMID:11706146

  12. Spermine oxidase is a regulator of macrophage host response to Helicobacter pylori: enhancement of antimicrobial nitric oxide generation by depletion of spermine

    PubMed Central

    Chaturvedi, Rupesh; Asim, Mohammad; Barry, Daniel P.; Frye, Jeanetta W.; Casero, Robert A.; Wilson, Keith T.

    2013-01-01

    The gastric pathogen Helicobacter pylori causes peptic ulcer disease and gastric cancer. We have reported that in H. pylori-activated macrophages, nitric oxide (NO) derived from inducible NO synthase (iNOS) can kill the bacterium, iNOS protein expression is dependent on uptake of its substrate L-arginine (L-Arg), the polyamine spermine can inhibit iNOS translation by inhibiting L-Arg uptake, and inhibition of polyamine synthesis enhances NO-mediated bacterial killing. Because spermine oxidase (SMO), which back-converts spermine to spermidine, is induced in macrophages by H. pylori, we determined its role in iNOS-dependent host defense. SMO shRNA knockdown in RAW 264.7 murine macrophages resulted in a marked decrease in H. pylori-stimulated iNOS protein, but not mRNA expression, and a 90% reduction in NO levels; NO production was also inhibited in primary murine peritoneal macrophages with SMO knockdown. There was an increase in spermine levels after H. pylori stimulation that rapidly decreased, while SMO knockdown caused a greater increase in spermine that was sustained. With SMO knockdown, L-Arg uptake and killing of H. pylori by macrophages was prevented. Overexpression of SMO by transfection of an expression plasmid prevented the H. pylori-stimulated increase in spermine levels, and led to increased L-Arg uptake, iNOS protein expression and NO production, and H. pylori killing. In two human monocytic cell lines, U937 and THP-1, overexpression of SMO caused a significant enhancement of NO production with H. pylori stimulation. By depleting spermine, SMO can abrogate the inhibitory effect of polyamines on innate immune responses to H. pylori by enhancing antimicrobial NO production. PMID:23820617

  13. Spermine oxidase is a regulator of macrophage host response to Helicobacter pylori: enhancement of antimicrobial nitric oxide generation by depletion of spermine.

    PubMed

    Chaturvedi, Rupesh; Asim, Mohammad; Barry, Daniel P; Frye, Jeanetta W; Casero, Robert A; Wilson, Keith T

    2014-03-01

    The gastric pathogen Helicobacter pylori causes peptic ulcer disease and gastric cancer. We have reported that in H. pylori-activated macrophages, nitric oxide (NO) derived from inducible NO synthase (iNOS) can kill the bacterium, iNOS protein expression is dependent on uptake of its substrate L-arginine (L-Arg), the polyamine spermine can inhibit iNOS translation by inhibiting L-Arg uptake, and inhibition of polyamine synthesis enhances NO-mediated bacterial killing. Because spermine oxidase (SMO), which back-converts spermine to spermidine, is induced in macrophages by H. pylori, we determined its role in iNOS-dependent host defense. SMO shRNA knockdown in RAW 264.7 murine macrophages resulted in a marked decrease in H. pylori-stimulated iNOS protein, but not mRNA expression, and a 90% reduction in NO levels; NO production was also inhibited in primary murine peritoneal macrophages with SMO knockdown. There was an increase in spermine levels after H. pylori stimulation that rapidly decreased, while SMO knockdown caused a greater increase in spermine that was sustained. With SMO knockdown, L-Arg uptake and killing of H. pylori by macrophages was prevented. The overexpression of SMO by transfection of an expression plasmid prevented the H. pylori-stimulated increase in spermine levels, and led to increased L-Arg uptake, iNOS protein expression and NO production, and H. pylori killing. In two human monocytic cell lines, U937 and THP-1, overexpression of SMO caused a significant enhancement of NO production with H. pylori stimulation. By depleting spermine, SMO can abrogate the inhibitory effect of polyamines on innate immune responses to H. pylori by enhancing antimicrobial NO production.

  14. Sub-lethal concentrations of activated complement increase rat lymphocyte glutamine utilization and oxidation while lethal concentrations cause death by a mechanism involving ATP depletion.

    PubMed

    Bacurau, R F P; O'Toole, C E; Newsholme, P; Costa Rosa, L F B P

    2002-09-01

    Nucleated cells are more resistant to complement-mediated cell death than anucleated cells such as erythrocytes. There are few reports concerning the metabolic response of nucleated cells subjected to sub-lethal complement attack. It is possible that the rate of utilization of specific metabolic fuels by the cell is increased to enhance cell defence. We have measured the maximum activity of hexokinase, citrate synthase, glucose 6-phosphate dehydrogenase and glutaminase in rat mesenteric lymphocytes exposed to sub-lethal concentrations of activated complement (present in zymosan-activated serum, ZAS). These enzymes were carefully selected as they indicate changes of flux in glycolysis, TCA cycle, pentose phosphate pathway and glutaminolysis, respectively. The only enzyme activity to change on exposure of lymphocytes to ZAS was glutaminase, which was enhanced approximately by two-fold. Although rates of both glutamine and glucose utilization were enhanced by exposure to ZAS, only the rate of oxidation of glutamine was increased. Complement kills anucleated cells by simple osmotic lysis. However, it is likely that some nucleated cells will display characteristics of an ordered death mechanism and we have demonstrated that the concentration of lymphocyte ATP is dramatically decreased by activated complement. Nevertheless, the extent of cell death could be significantly reduced by the addition of inhibitors of the nuclear enzyme poly (ADP-ribose) polymerase (PARP). We conclude that glutamine metabolism is not only important for lymphocyte proliferative responses but is also important for cell defence from sub-lethal concentrations of activated complement. The rapid rate of complement-induced lymphocyte death reported here is suggested to be a consequence of over-activation of the nuclear enzyme PARP and ATP depletion.

  15. The novel marker LTBP2 predicts all-cause and pulmonary death in patients with acute dyspnoea.

    PubMed

    Breidthardt, Tobias; Vanpoucke, Griet; Potocki, Mihael; Mosimann, Tamina; Ziller, Ronny; Thomas, Gregoire; Laroy, Wouter; Moerman, Piet; Socrates, Thenral; Drexler, Beatrice; Mebazaa, Alexandre; Kas, Koen; Mueller, Christian

    2012-11-01

    The risk stratification in patients presenting with acute dyspnoea remains a challenge. We therefore conducted a prospective, observational cohort study enrolling 292 patients presenting to the emergency department with acute dyspnoea. A proteomic approach for antibody-free targeted protein quantification based on high-end MS was used to measure LTBP2 [latent TGF (transforming growth factor)-binding protein 2] levels. Final diagnosis and death during follow-up were adjudicated blinded to LTBP2 levels. AHF (acute heart failure) was the final diagnosis in 54% of patients. In both AHF (P<0.001) and non-AHF (P=0.015) patients, LTBP2 levels at presentation were significantly higher in non-survivors compared with survivors with differences on median levels being 2.2- and 1.5-fold respectively. When assessing the cause of death, LTBP2 levels were significantly higher in patients dying from pulmonary causes (P=0.0005). Overall, LTBP2 powerfully predicted early pulmonary death {AUC (area under the curve), 0.95 [95% CI (confidence interval), 0.91-0.98]}. In ROC (receiver operating characteristic) curve analyses for the prediction of 1-year mortality LTBP2 achieved an AUC of 0.77 (95% CI, 0.71-0.84); comparable with the predictive potential of NT-proBNP [N-terminal pro-B-type natriuruetic peptide; 0.77 (95% CI, 0.72-0.82)]. Importantly, the predictive potential of LTBP2 persisted in patients with AHF as the cause of dypnea (AUC 0.78) and was independent of renal dysfunction (AUC 0.77). In a multivariate Cox regression analysis, LTBP2 was the strongest independent predictor of death [HR (hazard ratio), 3.76 (95% CI, 2.13-6.64); P<0.0001]. In conclusion, plasma levels of LTBP2 present a novel and powerful predictor of all-cause mortality, and particularly pulmonary death. Cause-specific prediction of death would enable targeted prevention, e.g. with pre-emptive antibiotic therapy.

  16. Depleted Uranium in Repositories

    SciTech Connect

    Haire, M.J.; Croff, A.G.

    1997-12-31

    For uranium to be useful in most fission nuclear reactors, it must be enriched (i.e. the concentration of the fissile isotope 235U must be increased). Therefore, depleted uranium (DU)-uranium which has less than naturally occurring concentrations of 235U-is a co-product of the enrichment process. Four to six tons of DU exist for every ton of fresh light water reactor fuel. There were 407,006 MgU 407,000 metric tons (t) of DU stored on U.S. Department of Energy (DOE) sites as of July 1993. If this DU were to be declared surplus, converted to a stable oxide form, and emplaced in a near surface disposal facility, the costs are estimated to be several billion dollars. However, the U.S. Nuclear Regulatory Commission has stated that near surface disposal of large quantities of DU tails is not appropriate. Thus, there is the possibility that disposition via disposal will be in a deep geological repository. One alternative that may significantly reduce the cost of DU disposition is to use it beneficially. In fact, DOE has begun the Beneficial Uses of DU Project to identify large scale uses of DU and to encourage its reuse. Several beneficial uses, many of which involve applications in the repository per se or in managing the wastes to go into the repository, are discussed in this report.

  17. Depletion in Antarctic Ozone and Associated Climatic Change,

    DTIC Science & Technology

    ANTARCTIC REGIONS, *CLIMATE, *DEPLETION, *OZONE, AGREEMENTS, ATMOSPHERES, ATMOSPHERICS, CARBON, CARBON DIOXIDE, COMPUTATIONS, DIOXIDES, GREENHOUSE ... EFFECT , GREENHOUSES, HIGH LATITUDES, LATITUDE, LOSSES, MEAN, METHANE, MODELS, NETS, NITROUS OXIDE, OBSERVATION, OXIDES, PERTURBATIONS, REGIONS, STEADY

  18. The extrinsic PsbO protein modulates the oxidation/reduction rate of the exogenous Mn cation at the high-affinity Mn-binding site of Mn-depleted PSII membranes.

    PubMed

    Semin, Boris K; Podkovirina, Tatiana E; Davletshina, Lira N; Timofeev, Kirill N; Ivanov, Il'ya I; Rubin, Andrei B

    2015-08-01

    The oxidation of exogenous Mn(II) cations at the high-affinity (HA) Mn-binding site in Mn-depleted photosystem II (PSII) membranes with or without the presence of the extrinsic PsbO polypeptide was studied by EPR. The six-lines EPR spectrum of Mn(II) cation disappears in the absence of the PsbO protein in membranes under illumination, but there was no effect when PSII preparations bound the PsbO protein. Our study demonstrates that such effect is determined by significant influence of the PsbO protein on the ratio between the rates of Mn oxidation and reduction at the HA site when the membranes are illuminated.

  19. Possible ozone depletions following nuclear explosions

    NASA Technical Reports Server (NTRS)

    Whitten, R. C.; Borucki, W. J.; Turco, R. P.

    1975-01-01

    The degree of depletion of the ozone layer ensuing after delivery of strategic nuclear warheads (5000 and 10,000 Mton) due to production of nitrogen oxides is theoretically assessed. Strong depletions are calculated for 16-km and 26-km altitudes, peaking 1-2 months after detonation and lasting for three years, while a significant depletion at 36 km would peak after one year. Assuming the explosions occur between 30 and 70 deg N, these effects should be much more pronounced in this region than over the Northern Hemisphere as a whole. It is concluded that Hampson's concern on this matter (1974) is well-founded.-

  20. Depletion of Bcl-2 by an antisense oligonucleotide induces apoptosis accompanied by oxidation and externalization of phosphatidylserine in NCI-H226 lung carcinoma cells.

    PubMed

    Koty, Patrick P; Tyurina, Yulia Y; Tyurin, Vladimir A; Li, Shang-Xi; Kagan, Valerian E

    2002-01-01

    Oxidant-induced apoptosis involves oxidation of many different and essential molecules including phospholipids. As a result of this non-specific oxidation, any signaling role of a particular phospholipid-class of molecules is difficult to elucidate. To determine whether preferential oxidation of phosphatidylserine (PS) is an early event in apoptotic signaling related to PS externalization and is independent of direct oxidant exposure, we chose a genetic-based induction of apoptosis. Apoptosis was induced in the lung cancer cell line NCI-H226 by decreasing the amount of Bcl-2 protein expression by preventing the translation of bcl-2 mRNA using an antisense bcl-2 oligonucleotide. Peroxidation of phospholipids was assayed using a fluorescent technique based on metabolic integration of an oxidation-sensitive and fluorescent fatty acid, cis-parinaric acid (PnA), into cellular phospholipids and subsequent HPLC separation of cis-PnA-labeled phospholipids. We found a decrease in Bcl-2 was associated with a selective oxidation of PS in a sub-population of the cells with externalized PS. No significant difference in oxidation of cis-PnA-labeled phospholipids was observed in cells treated with medium alone or a nonsense oligonucleotide. Treatment with either nonsensc or antisense bcl-2 oligonucleotides was not associated with changes in the pattern of individual phospholipid classes as determined by HPTLC. These metabolic and topographical changes in PS arrangement in plasma membrane appear to be early responses to antisense bcl-2 exposure that trigger a PS-dependent apoptotic signaling pathway. This observed externalization of PS may facilitate the 'labeling' of apoptotic cells for recognition by macrophage scavenger receptors and subsequent phagocytic clearance.

  1. Water Depletion Threatens Agriculture

    NASA Astrophysics Data System (ADS)

    Brauman, K. A.; Richter, B. D.; Postel, S.; Floerke, M.; Malsy, M.

    2014-12-01

    Irrigated agriculture is the human activity that has by far the largest impact on water, constituting 85% of global water consumption and 67% of global water withdrawals. Much of this water use occurs in places where water depletion, the ratio of water consumption to water availability, exceeds 75% for at least one month of the year. Although only 17% of global watershed area experiences depletion at this level or more, nearly 30% of total cropland and 60% of irrigated cropland are found in these depleted watersheds. Staple crops are particularly at risk, with 75% of global irrigated wheat production and 65% of irrigated maize production found in watersheds that are at least seasonally depleted. Of importance to textile production, 75% of cotton production occurs in the same watersheds. For crop production in depleted watersheds, we find that one half to two-thirds of production occurs in watersheds that have not just seasonal but annual water shortages, suggesting that re-distributing water supply over the course of the year cannot be an effective solution to shortage. We explore the degree to which irrigated production in depleted watersheds reflects limitations in supply, a byproduct of the need for irrigation in perennially or seasonally dry landscapes, and identify heavy irrigation consumption that leads to watershed depletion in more humid climates. For watersheds that are not depleted, we evaluate the potential impact of an increase in irrigated production. Finally, we evaluate the benefits of irrigated agriculture in depleted and non-depleted watersheds, quantifying the fraction of irrigated production going to food production, animal feed, and biofuels.

  2. Halo Star Lithium Depletion

    SciTech Connect

    Pinsonneault, M. H.; Walker, T. P.; Steigman, G.; Narayanan, Vijay K.

    1999-12-10

    The depletion of lithium during the pre-main-sequence and main-sequence phases of stellar evolution plays a crucial role in the comparison of the predictions of big bang nucleosynthesis with the abundances observed in halo stars. Previous work has indicated a wide range of possible depletion factors, ranging from minimal in standard (nonrotating) stellar models to as much as an order of magnitude in models that include rotational mixing. Recent progress in the study of the angular momentum evolution of low-mass stars permits the construction of theoretical models capable of reproducing the angular momentum evolution of low-mass open cluster stars. The distribution of initial angular momenta can be inferred from stellar rotation data in young open clusters. In this paper we report on the application of these models to the study of lithium depletion in main-sequence halo stars. A range of initial angular momenta produces a range of lithium depletion factors on the main sequence. Using the distribution of initial conditions inferred from young open clusters leads to a well-defined halo lithium plateau with modest scatter and a small population of outliers. The mass-dependent angular momentum loss law inferred from open cluster studies produces a nearly flat plateau, unlike previous models that exhibited a downward curvature for hotter temperatures in the 7Li-Teff plane. The overall depletion factor for the plateau stars is sensitive primarily to the solar initial angular momentum used in the calibration for the mixing diffusion coefficients. Uncertainties remain in the treatment of the internal angular momentum transport in the models, and the potential impact of these uncertainties on our results is discussed. The 6Li/7Li depletion ratio is also examined. We find that the dispersion in the plateau and the 6Li/7Li depletion ratio scale with the absolute 7Li depletion in the plateau, and we use observational data to set bounds on the 7Li depletion in main-sequence halo

  3. Battery depletion monitor

    SciTech Connect

    Lee, Y.S.

    1982-01-26

    A cmos inverter is used to compare pacemaker battery voltage to a referenced voltage. When the reference voltage exceeds the measured battery voltage, the inverter changes state to indicate battery depletion.

  4. Addressing Ozone Layer Depletion

    EPA Pesticide Factsheets

    Access information on EPA's efforts to address ozone layer depletion through regulations, collaborations with stakeholders, international treaties, partnerships with the private sector, and enforcement actions under Title VI of the Clean Air Act.

  5. Depleted Uranium: Technical Brief

    EPA Pesticide Factsheets

    This technical brief provides accepted data and references to additional sources for radiological and chemical characteristics, health risks and references for both the monitoring and measurement, and applicable treatment techniques for depleted uranium.

  6. Exogenous NO depletes Cd-induced toxicity by eliminating oxidative damage, re-establishing ATPase activity, and maintaining stress-related hormone equilibrium in white clover plants.

    PubMed

    Liu, S L; Yang, R J; Pan, Y Z; Wang, M H; Zhao, Y; Wu, M X; Hu, J; Zhang, L L; Ma, M D

    2015-11-01

    Various nitric oxide (NO) regulators [including the NO donor sodium nitroprusside (SNP), the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), the NO-synthase inhibitor N (G)-nitro-L-Arg-methyl ester (L-NAME), and the SNP analogues sodium nitrite/nitrate and sodium ferrocyanide] were investigated to elucidate the role of NO in white clover (Trifolium repens L.) plants after long-term (5 days) exposure to cadmium (Cd). A dose of 100 μM Cd stress significantly restrained plant growth and decreased the concentrations of chlorophyll and NO in vivo, whereas it disrupted the balance of stress-related hormones and enhanced the accumulation of Cd, thereby inducing reactive oxygen species (ROS) burst. However, the inhibition of plant growth was relieved by 50 μM SNP through its stimulation of ROS-scavenging compounds (ascorbic acid, ascorbate peroxidase, catalase, glutathione reductase, non-protein thiol, superoxide dismutase, and total glutathione), regulation of H(+)-ATPase activity of proton pumps, and increasing jasmonic acid and proline but decreasing ethylene in plant tissues. Even so, the alleviating effect of SNP on plant growth was counteracted by cPTIO and L-NAME and was not observed with SNP analogues, suggesting that the protective roles of SNP are related to the induction of NO. These results suggest that NO may improve the Cd tolerance of white clover plants by eliminating oxidative damage, re-establishing ATPase activity, and maintaining hormone equilibrium. Improving our understanding of the role of NO in white clover plants is key to expanding the plantations to various regions and the recovery of pasture species in the future.

  7. Depleted uranium: A DOE management guide

    SciTech Connect

    1995-10-01

    The U.S. Department of Energy (DOE) has a management challenge and financial liability in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. The annual storage and maintenance cost is approximately $10 million. This report summarizes several studies undertaken by the DOE Office of Technology Development (OTD) to evaluate options for long-term depleted uranium management. Based on studies conducted to date, the most likely use of the depleted uranium is for shielding of spent nuclear fuel (SNF) or vitrified high-level waste (HLW) containers. The alternative to finding a use for the depleted uranium is disposal as a radioactive waste. Estimated disposal costs, utilizing existing technologies, range between $3.8 and $11.3 billion, depending on factors such as applicability of the Resource Conservation and Recovery Act (RCRA) and the location of the disposal site. The cost of recycling the depleted uranium in a concrete based shielding in SNF/HLW containers, although substantial, is comparable to or less than the cost of disposal. Consequently, the case can be made that if DOE invests in developing depleted uranium shielded containers instead of disposal, a long-term solution to the UF{sub 6} problem is attained at comparable or lower cost than disposal as a waste. Two concepts for depleted uranium storage casks were considered in these studies. The first is based on standard fabrication concepts previously developed for depleted uranium metal. The second converts the UF{sub 6} to an oxide aggregate that is used in concrete to make dry storage casks.

  8. Cholesterol depletion induces autophagy

    SciTech Connect

    Cheng, Jinglei; Ohsaki, Yuki; Tauchi-Sato, Kumi; Fujita, Akikazu; Fujimoto, Toyoshi . E-mail: tfujimot@med.nagoya-u.ac.jp

    2006-12-08

    Autophagy is a mechanism to digest cells' own components, and its importance in many physiological and pathological processes is being recognized. But the molecular mechanism that regulates autophagy is not understood in detail. In the present study, we found that cholesterol depletion induces macroautophagy. The cellular cholesterol in human fibroblasts was depleted either acutely using 5 mM methyl-{beta}-cyclodextrin or 10-20 {mu}g/ml nystatin for 1 h, or metabolically by 20 {mu}M mevastatin and 200 {mu}M mevalonolactone along with 10% lipoprotein-deficient serum for 2-3 days. By any of these protocols, marked increase of LC3-II was detected by immunoblotting and by immunofluorescence microscopy, and the increase was more extensive than that caused by amino acid starvation, i.e., incubation in Hanks' solution for several hours. The induction of autophagic vacuoles by cholesterol depletion was also observed in other cell types, and the LC3-positive membranes were often seen as long tubules, >50 {mu}m in length. The increase of LC3-II by methyl-{beta}-cyclodextrin was suppressed by phosphatidylinositol 3-kinase inhibitors and was accompanied by dephosphorylation of mammalian target of rapamycin. By electron microscopy, autophagic vacuoles induced by cholesterol depletion were indistinguishable from those seen after amino acid starvation. These results demonstrate that a decrease in cholesterol activates autophagy by a phosphatidylinositol 3-kinase-dependent mechanism.

  9. Iron-dependent formation of reactive oxygen species and glutathione depletion after accumulation of magnetic iron oxide nanoparticles by oligodendroglial cells

    NASA Astrophysics Data System (ADS)

    Hohnholt, Michaela C.; Dringen, Ralf

    2011-12-01

    Magnetic iron oxide nanoparticles (IONP) are currently used for various neurobiological applications. To investigate the consequences of a treatment of brain cells with such particles, we have applied dimercaptosuccinate (DMSA)-coated IONP that had an average hydrodynamic diameter of 60 nm to oligodendroglial OLN-93 cells. After exposure to 4 mM iron applied as DMSA-IONP, these cells increased their total specific iron content within 8 h 600-fold from 7 to 4,200 nmol/mg cellular protein. The strong iron accumulation was accompanied by a change in cell morphology, although the cell viability was not compromized. DMSA-IONP treatment caused a concentration-dependent increase in the iron-dependent formation of reactive oxygen species and a decrease in the specific content of the cellular antioxidative tripeptide glutathione. During a 16 h recovery phase in IONP-free culture medium following exposure to DMSA-IONP, OLN-93 cells maintained their high iron content and replenished their cellular glutathione content. These data demonstrate that viable OLN-93 cells have a remarkable potential to deal successfully with the consequences of an accumulation of large amounts of iron after exposure to DMSA-IONP.

  10. Progressive dyspnoea following the treatment of Mycobacterium abscessus infection in an individual with relapsing granulamatosis with polyangitis (Wegener’s), complicated by hearing loss requiring cochlear implantation

    PubMed Central

    2012-01-01

    Backgound Granulomatosis with polyangitis (Wegener’s) is a vasculitic disease predominantly affecting the lungs, skin, kidneys, ears, nose and throat. Mycobacterium abscessus is an uncommon rapidly growing mycobacterium causing sporadic lung disease. This is the first report of both GPA and Mycobacterium abscessus pulmonary disease reported in literature. Case Presentation We present a case report of a 33 year old Caucasian man with relapsing disease complicated by pulmonary infection with Mycobacterium abscessus. He subsequently required bilateral cochlear implantation for progressive sensori-neural hearing loss. His M. abscessus was treated successfully with a prolonged course of antimicrobial therapy. His Granulomatosis with polyangitis (Wegener’s) relapsed towards the end of antimicrobial therapy and required treatment. Shortly after completing his antimicrobial therapy and relapse, he developed progressive dyspnea due to pulmonary fibrosis. Conclusion The potential causes of his progressive dyspnoea are discussed including the potential role of his underlying disease and treatment. PMID:22947057

  11. Effectiveness of γ-oryzanol in reducing neuromotor deficits, dopamine depletion and oxidative stress in a Drosophila melanogaster model of Parkinson's disease induced by rotenone.

    PubMed

    Araujo, Stífani Machado; de Paula, Mariane Trindade; Poetini, Marcia Rósula; Meichtry, Luana; Bortolotto, Vandreza Cardoso; Zarzecki, Micheli Stefani; Jesse, Cristiano Ricardo; Prigol, Marina

    2015-12-01

    The γ-orizanol present in rice bran oil contains a mix of steryl triterpenyl esters of ferulic acid, which is believed to be linked to its antioxidant potential. In this study we investigated the neuroprotective actions of γ-orizanol (ORY) against the toxicity induced by rotenone (ROT) in Drosophila melanogaster. The flies (both genders) aged between 1 and 5 days old were divided into four groups of 50 flies each: (1) control, (2) ORY 25 μM, (3) ROT 500 μM, (4) ORY 25 μM+ROT 500 μM. Flies were concomitantly exposed to a diet containing ROT and ORY for 7 days according to their respective groups. Survival and behavior analyses were carried out in vivo, and ex vivo analyses involved acetylcholinesterase activity (AChE), determination of dopaminergic levels, cellular viability and mitochondrial viability, activities of superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), reactive species levels (RS), lipid peroxidation (TBARS) and contents of total thiols and non-proteic thiols (NPSH). Our results show for the first time that ORY not only acts as an endogenous activator of the cellular antioxidant defenses, but it also ameliorates rotenone induced mortality, oxidative stress and mitochondrial dysfunction. Our salient findings regarded the restoration of cholinergic deficits, dopamine levels and improved motor function provided by ORY. These results demonstrate the neuroprotective potential of ORY and that this effect can be potentially due to its antioxidant action. In conclusion, the present results show that ORY is effective in reducing the ROT induced toxicity in D. melanogaster, which showed a neuroprotective action, possibly due to the presence of the antioxidant constituents such as the ferulic acid.

  12. Postnatal exposure to chromium through mother's milk accelerates follicular atresia in F1 offspring through increased oxidative stress and depletion of antioxidant enzymes.

    PubMed

    Stanley, Jone A; Sivakumar, Kirthiram K; Nithy, Thamizh K; Arosh, Joe A; Hoyer, Patricia B; Burghardt, Robert C; Banu, Sakhila K

    2013-08-01

    female offspring by altering the ratio of ROS and AOXs in the ovary. Vitamin C is able to protect the ovary from CrIII-induced oxidative stress and follicle atresia through protective effects on GCs rather than TCs.

  13. Postnatal exposure to chromium through mother’s milk accelerates follicular atresia in F1 offspring through increased oxidative stress and depletion of antioxidant enzymes

    PubMed Central

    Stanley, Jone A.; Sivakumar, Kirthiram K.; Nithy, Thamizh K.; Arosh, Joe A.; Hoyer, Patricia B.; Burghardt, Robert C.; Banu, Sakhila K.

    2013-01-01

    female offspring by altering the ratio of ROS and AOXs in the ovary. Vitamin C is able to protect the ovary from CrIII-induced oxidative stress and follicle atresia through protective effects on GCs rather than TCs. PMID:23470461

  14. Ultra-low temperature radio-frequency performance of partially depleted silicon-on-insulator n-type metal-oxide-semiconductor field-effect transistors with tunnel diode body contact structures

    NASA Astrophysics Data System (ADS)

    Lu, Kai; Chen, Jing; Huang, Yuping; Liu, Jun; Luo, Jiexin; Wang, Xi

    2016-11-01

    Radio-frequency (RF) characteristics under ultra-low temperature of multi-finger partially depleted silicon-on-insulator (PD SOI) n-type metal-oxide-semiconductor field-effect transistors (nMOSFETs) with tunnel diode body-contact (TDBC) structure and T-gate body-contact (TB) structure are investigated in this paper. When operating at 77 K, TDBC device suppresses floating-body effect (FBE) as well as the TB device. For TB device and TDBC device, cut-off frequency (f T) improves as the temperature decreases to liquid-helium temperature (77 K) while that of the maximum oscillation frequency (f MAX) is opposite due to the decrease of the unilateral power gain. While operating under 77 K, f T and f MAX of TDBC device reach to 125 GHz and 77 GHz, representing 8% and 15% improvements compared with those of TB device, respectively, which is mainly due to the lower parasitic resistances and capacitances. The results indicate that TDBC SOI MOSFETs could be considered as promising candidates for analog and RF applications over a wide range of temperatures and there is immense potential for the development of RF CMOS integrated circuits for cryogenic applications.

  15. Tank depletion flow controller

    DOEpatents

    Georgeson, Melvin A.

    1976-10-26

    A flow control system includes two bubbler tubes installed at different levels within a tank containing such as radioactive liquid. As the tank is depleted, a differential pressure transmitter monitors pressure differences imparted by the two bubbler tubes at a remote, shielded location during uniform time intervals. At the end of each uniform interval, balance pots containing a dense liquid are valved together to equalize the pressures. The resulting sawtooth-shaped signal generated by the differential pressure transmitter is compared with a second sawtooth signal representing the desired flow rate during each time interval. Variations in the two signals are employed by a control instrument to regulate flow rate.

  16. Depletion of intense fields

    NASA Astrophysics Data System (ADS)

    Bulanov, S. S.; Seipt, D.; Heinzl, T.; Marklund, M.

    2017-03-01

    The problem of backreaction of quantum processes on the properties of the background field still remains on the list of outstanding questions of high intensity particle physics. Usually, photon emission by an electron or positron, photon decay into electron-positron pairs in strong electromagnetic fields, or electron-positron pair production by such fields are described in the framework of the external field approximation. It is assumed that the external field has infinite energy and is not affected by these processes. However, the above-mentioned processes have a multi-photon nature, i.e., they occur with the absorption of a significant number of field photons. As a result, the interaction of an intense electromagnetic field with either a highly charged electron bunch or a fast growing population of electrons, positrons, and gamma photons (as in the case of an electromagnetic cascade) may lead to a depletion of the field energy, thus making the external field approximation invalid. Taking the multi-photon Compton process as an example, we estimate the threshold of depletion and find it to become significant at field strengths (a0˜103) and electron bunch charge of about tens of nC.

  17. Beneficial Uses of Depleted Uranium

    SciTech Connect

    Brown, C.; Croff, A.G.; Haire, M. J.

    1997-08-01

    Naturally occurring uranium contains 0.71 wt% {sup 235}U. In order for the uranium to be useful in most fission reactors, it must be enriched the concentration of the fissile isotope {sup 235}U must be increased. Depleted uranium (DU) is a co-product of the processing of natural uranium to produce enriched uranium, and DU has a {sup 235}U concentration of less than 0.71 wt%. In the United States, essentially all of the DU inventory is in the chemical form of uranium hexafluoride (UF{sub 6}) and is stored in large cylinders above ground. If this co-product material were to be declared surplus, converted to a stable oxide form, and disposed, the costs are estimated to be several billion dollars. Only small amounts of DU have at this time been beneficially reused. The U.S. Department of Energy (DOE) has begun the Beneficial Uses of DU Project to identify large-scale uses of DU and encourage its reuse for the primary purpose of potentially reducing the cost and expediting the disposition of the DU inventory. This paper discusses the inventory of DU and its rate of increase; DU disposition options; beneficial use options; a preliminary cost analysis; and major technical, institutional, and regulatory issues to be resolved.

  18. 12. VIEW OF DEPLETED URANIUM INGOT AND MOLDS. DEPLETED URANIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW OF DEPLETED URANIUM INGOT AND MOLDS. DEPLETED URANIUM CASTING OPERATIONS CEASED IN 1988. (11/14/57) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  19. The Toxicity of Depleted Uranium

    PubMed Central

    Briner, Wayne

    2010-01-01

    Depleted uranium (DU) is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a clear and defined set of symptoms. Chronic low-dose, or subacute, exposure to depleted uranium alters the appearance of milestones in developing organisms. Adult animals that were exposed to depleted uranium during development display persistent alterations in behavior, even after cessation of depleted uranium exposure. Adult animals exposed to depleted uranium demonstrate altered behaviors and a variety of alterations to brain chemistry. Despite its reduced level of radioactivity evidence continues to accumulate that depleted uranium, if ingested, may pose a radiologic hazard. The current state of knowledge concerning DU is discussed. PMID:20195447

  20. Ego depletion impairs implicit learning.

    PubMed

    Thompson, Kelsey R; Sanchez, Daniel J; Wesley, Abigail H; Reber, Paul J

    2014-01-01

    Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing) can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL) task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent.

  1. Stratospheric ozone depletion

    PubMed Central

    Rowland, F. Sherwood

    2006-01-01

    Solar ultraviolet radiation creates an ozone layer in the atmosphere which in turn completely absorbs the most energetic fraction of this radiation. This process both warms the air, creating the stratosphere between 15 and 50 km altitude, and protects the biological activities at the Earth's surface from this damaging radiation. In the last half-century, the chemical mechanisms operating within the ozone layer have been shown to include very efficient catalytic chain reactions involving the chemical species HO, HO2, NO, NO2, Cl and ClO. The NOX and ClOX chains involve the emission at Earth's surface of stable molecules in very low concentration (N2O, CCl2F2, CCl3F, etc.) which wander in the atmosphere for as long as a century before absorbing ultraviolet radiation and decomposing to create NO and Cl in the middle of the stratospheric ozone layer. The growing emissions of synthetic chlorofluorocarbon molecules cause a significant diminution in the ozone content of the stratosphere, with the result that more solar ultraviolet-B radiation (290–320 nm wavelength) reaches the surface. This ozone loss occurs in the temperate zone latitudes in all seasons, and especially drastically since the early 1980s in the south polar springtime—the ‘Antarctic ozone hole’. The chemical reactions causing this ozone depletion are primarily based on atomic Cl and ClO, the product of its reaction with ozone. The further manufacture of chlorofluorocarbons has been banned by the 1992 revisions of the 1987 Montreal Protocol of the United Nations. Atmospheric measurements have confirmed that the Protocol has been very successful in reducing further emissions of these molecules. Recovery of the stratosphere to the ozone conditions of the 1950s will occur slowly over the rest of the twenty-first century because of the long lifetime of the precursor molecules. PMID:16627294

  2. Stratospheric ozone depletion.

    PubMed

    Rowland, F Sherwood

    2006-05-29

    Solar ultraviolet radiation creates an ozone layer in the atmosphere which in turn completely absorbs the most energetic fraction of this radiation. This process both warms the air, creating the stratosphere between 15 and 50 km altitude, and protects the biological activities at the Earth's surface from this damaging radiation. In the last half-century, the chemical mechanisms operating within the ozone layer have been shown to include very efficient catalytic chain reactions involving the chemical species HO, HO2, NO, NO2, Cl and ClO. The NOX and ClOX chains involve the emission at Earth's surface of stable molecules in very low concentration (N2O, CCl2F2, CCl3F, etc.) which wander in the atmosphere for as long as a century before absorbing ultraviolet radiation and decomposing to create NO and Cl in the middle of the stratospheric ozone layer. The growing emissions of synthetic chlorofluorocarbon molecules cause a significant diminution in the ozone content of the stratosphere, with the result that more solar ultraviolet-B radiation (290-320 nm wavelength) reaches the surface. This ozone loss occurs in the temperate zone latitudes in all seasons, and especially drastically since the early 1980s in the south polar springtime-the 'Antarctic ozone hole'. The chemical reactions causing this ozone depletion are primarily based on atomic Cl and ClO, the product of its reaction with ozone. The further manufacture of chlorofluorocarbons has been banned by the 1992 revisions of the 1987 Montreal Protocol of the United Nations. Atmospheric measurements have confirmed that the Protocol has been very successful in reducing further emissions of these molecules. Recovery of the stratosphere to the ozone conditions of the 1950s will occur slowly over the rest of the twenty-first century because of the long lifetime of the precursor molecules.

  3. Use of procalcitonin for the diagnosis of pneumonia in patients presenting with a chief complaint of dyspnoea: results from the BACH (Biomarkers in Acute Heart Failure) trial

    PubMed Central

    Maisel, Alan; Neath, Sean-Xavier; Landsberg, Judd; Mueller, Christian; Nowak, Richard M.; Peacock, W. Frank; Ponikowski, Piotr; Möckel, Martin; Hogan, Christopher; Wu, Alan H.B.; Richards, Mark; Clopton, Paul; Filippatos, Gerasimos S.; Di Somma, Salvatore; Anand, Inder; Ng, Leong L.; Daniels, Lori B.; Christenson, Robert H.; Potocki, Mihael; McCord, James; Terracciano, Garret; Hartmann, Oliver; Bergmann, Andreas; Morgenthaler, Nils G.; Anker, Stefan D.

    2012-01-01

    Aims Biomarkers have proven their ability in the evaluation of cardiopulmonary diseases. We investigated the utility of concentrations of the biomarker procalcitonin (PCT) alone and with clinical variables for the diagnosis of pneumonia in patients presenting to emergency departments (EDs) with a chief complaint of shortness of breath. Methods and results The BACH trial was a prospective, international, study of 1641 patients presenting to EDs with dyspnoea. Blood samples were analysed for PCT and other biomarkers. Relevant clinical data were also captured. Patient outcomes were assessed at 90 days. The diagnosis of pneumonia was made using strictly validated guidelines. A model using PCT was more accurate [area under the curve (AUC) 72.3%] than any other individual clinical variable for the diagnosis of pneumonia in all patients, in those with obstructive lung disease, and in those with acute heart failure (AHF). Combining physician estimates of the probability of pneumonia with PCT values increased the accuracy to >86% for the diagnosis of pneumonia in all patients. Patients with a diagnosis of AHF and an elevated PCT concentration (>0.21 ng/mL) had a worse outcome if not treated with antibiotics (P = 0.046), while patients with low PCT values (<0.05 ng/mL) had a better outcome if they did not receive antibiotic therapy (P = 0.049). Conclusion Procalcitonin may aid in the diagnosis of pneumonia, particularly in cases with high diagnostic uncertainty. Importantly, PCT may aid in the decision to administer antibiotic therapy to patients presenting with AHF in which clinical uncertainty exists regarding a superimposed bacterial infection. Trial registration: NCT00537628 PMID:22302662

  4. Capstone Depleted Uranium Aerosols: Generation and Characterization

    SciTech Connect

    Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray; Holmes, Tom; Cheng, Yung-Sung; Kenoyer, Judson L.; Collins, John W.; Sanderson, T. Ellory; Fliszar, Richard W.; Gold, Kenneth; Beckman, John C.; Long, Julie

    2004-10-19

    In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

  5. Testing fully depleted CCD

    NASA Astrophysics Data System (ADS)

    Casas, Ricard; Cardiel-Sas, Laia; Castander, Francisco J.; Jiménez, Jorge; de Vicente, Juan

    2014-08-01

    The focal plane of the PAU camera is composed of eighteen 2K x 4K CCDs. These devices, plus four spares, were provided by the Japanese company Hamamatsu Photonics K.K. with type no. S10892-04(X). These detectors are 200 μm thick fully depleted and back illuminated with an n-type silicon base. They have been built with a specific coating to be sensitive in the range from 300 to 1,100 nm. Their square pixel size is 15 μm. The read-out system consists of a Monsoon controller (NOAO) and the panVIEW software package. The deafualt CCD read-out speed is 133 kpixel/s. This is the value used in the calibration process. Before installing these devices in the camera focal plane, they were characterized using the facilities of the ICE (CSIC- IEEC) and IFAE in the UAB Campus in Bellaterra (Barcelona, Catalonia, Spain). The basic tests performed for all CCDs were to obtain the photon transfer curve (PTC), the charge transfer efficiency (CTE) using X-rays and the EPER method, linearity, read-out noise, dark current, persistence, cosmetics and quantum efficiency. The X-rays images were also used for the analysis of the charge diffusion for different substrate voltages (VSUB). Regarding the cosmetics, and in addition to white and dark pixels, some patterns were also found. The first one, which appears in all devices, is the presence of half circles in the external edges. The origin of this pattern can be related to the assembly process. A second one appears in the dark images, and shows bright arcs connecting corners along the vertical axis of the CCD. This feature appears in all CCDs exactly in the same position so our guess is that the pattern is due to electrical fields. Finally, and just in two devices, there is a spot with wavelength dependence whose origin could be the result of a defectous coating process.

  6. Transequatorial Propagation and Depletion Precursors

    NASA Astrophysics Data System (ADS)

    Miller, E. S.; Bust, G. S.; Kaeppler, S. R.; Frissell, N. A.; Paxton, L. J.

    2014-12-01

    The bottomside equatorial ionosphere in the afternoon and evening sector frequently evolves rapidly from smoothly stratified to violently unstable with large wedges of depleted plasma growing through to the topside on timescales of a few tens of minutes. These depletions have numerous practical impacts on radio propagation, including amplitude scintillation, field-aligned irregularity scatter, HF blackouts, and long-distance transequatorial propagation at frequencies above the MUF. Practical impacts notwithstanding, the pathways and conditions under which depletions form remain a topic of vigorous inquiry some 80 years after their first report. Structuring of the pre-sunset ionosphere---morphology of the equatorial anomalies and long-wavelength undulations of the isodensity contours on the bottomside---are likely to hold some clues to conditions that are conducive to depletion formation. The Conjugate Depletion Experiment is an upcoming transequatorial forward-scatter HF/VHF experiment to investigate pre-sunset undulations and their connection with depletion formation. We will present initial results from the Conjugate Depletion Experiment, as well as a companion analysis of a massive HF propagation data set.

  7. Halocarbon ozone depletion and global warming potentials

    NASA Technical Reports Server (NTRS)

    Cox, Richard A.; Wuebbles, D.; Atkinson, R.; Connell, Peter S.; Dorn, H. P.; Derudder, A.; Derwent, Richard G.; Fehsenfeld, F. C.; Fisher, D.; Isaksen, Ivar S. A.

    1990-01-01

    Concern over the global environmental consequences of fully halogenated chlorofluorocarbons (CFCs) has created a need to determine the potential impacts of other halogenated organic compounds on stratospheric ozone and climate. The CFCs, which do not contain an H atom, are not oxidized or photolyzed in the troposphere. These compounds are transported into the stratosphere where they decompose and can lead to chlorine catalyzed ozone depletion. The hydrochlorofluorocarbons (HCFCs or HFCs), in particular those proposed as substitutes for CFCs, contain at least one hydrogen atom in the molecule, which confers on these compounds a much greater sensitivity toward oxidation by hydroxyl radicals in the troposphere, resulting in much shorter atmospheric lifetimes than CFCs, and consequently lower potential for depleting ozone. The available information is reviewed which relates to the lifetime of these compounds (HCFCs and HFCs) in the troposphere, and up-to-date assessments are reported of the potential relative effects of CFCs, HCFCs, HFCs, and halons on stratospheric ozone and global climate (through 'greenhouse' global warming).

  8. Alpha-lipoic acid and N-acetylcysteine protects intensive swimming exercise-mediated germ-cell depletion, pro-oxidant generation, and alteration of steroidogenesis in rat testis.

    PubMed

    Jana, Kuladip; Dutta, Ananya; Chakraborty, Pratip; Manna, Indranil; Firdaus, Syed Benazir; Bandyopadhyay, Debasish; Chattopadhyay, Ratna; Chakravarty, Baidyanath

    2014-09-01

    Prolonged and strenuous exercise has been proposed as a possible source of male-factor infertility. Forced intensive swimming has also been identified as one source of a dysfunctional male reproduction system. The present study evaluated the possible protective role of α-lipoic acid and N-acetylcysteine (NAC) on intensive swimming-induced germ-cell depletion in adult male rats. Forced exhaustive swimming of 1 hr/day, 6 days/week for 8 consecutive weeks resulted in a significant (P < 0.05) reduction in epididymal sperm; testicular androgenic enzyme activities; and plasma and intra-testicular testosterone; and produced different types of germ cells in the seminiferous epithelium cycle. Conversely, plasma corticosterone levels and sperm-head abnormalities increased. Western-blot analysis showed a considerable decrease in testicular StAR protein expression whereas reverse-transcriptase PCR analysis showed no significant change in cytochrome P450scc (Cyp11a1) gene expression. Significant (P < 0.05) elevation in testicular reactive oxygen species (ROS), lipid peroxidation, protein carbonyl content versus reduction in glucose-6-phosphate dehydrogenase, glutathione peroxidase, glutathione S-transferase, and caspase-3 activities along with a depletion in the glutathione pool, mitochondrial membrane potential (▵ψm ), and intracellular ATP generation. A considerable level of DNA damage in testicular spermatogenic cells were also noted following forced extensive swimming. Alpha-lipoic acid and NAC supplementation prevented the swimming-induced testicular spermatogenic and steroidogenic disorders by lowering ROS generation. We therefore conclude that intensive forced swimming causes germ-cell depletion through the generation of ROS and depletion of steroidogenesis in the testis, which can be protected by the co-administration of α-lipoic acid and NAC.

  9. Depleting depletion: Polymer swelling in poor solvent mixtures

    NASA Astrophysics Data System (ADS)

    Mukherji, Debashish; Marques, Carlos; Stuehn, Torsten; Kremer, Kurt

    A polymer collapses in a solvent when the solvent particles dislike monomers more than the repulsion between monomers. This leads to an effective attraction between monomers, also referred to as depletion induced attraction. This attraction is the key factor behind standard polymer collapse in poor solvents. Strikingly, even if a polymer exhibits poor solvent condition in two different solvents, it can also swell in mixtures of these two poor solvents. This collapse-swelling-collapse scenario is displayed by poly(methyl methacrylate) (PMMA) in aqueous alcohol. Using molecular dynamics simulations of a thermodynamically consistent generic model and theoretical arguments, we unveil the microscopic origin of this phenomenon. Our analysis suggests that a subtle interplay of the bulk solution properties and the local depletion forces reduces depletion effects, thus dictating polymer swelling in poor solvent mixtures.

  10. Antarctic winter mercury and ozone depletion events over sea ice

    NASA Astrophysics Data System (ADS)

    Nerentorp Mastromonaco, M.; Gårdfeldt, K.; Jourdain, B.; Abrahamsson, K.; Granfors, A.; Ahnoff, M.; Dommergue, A.; Méjean, G.; Jacobi, H.-W.

    2016-03-01

    During atmospheric mercury and ozone depletion events in the springtime in polar regions gaseous elemental mercury and ozone undergo rapid declines. Mercury is quickly transformed into oxidation products, which are subsequently removed by deposition. Here we show that such events also occur during Antarctic winter over sea ice areas, leading to additional deposition of mercury. Over four months in the Weddell Sea we measured gaseous elemental, oxidized, and particulate-bound mercury, as well as ozone in the troposphere and total and elemental mercury concentrations in snow, demonstrating a series of depletion and deposition events between July and September. The winter depletions in July were characterized by stronger correlations between mercury and ozone and larger formation of particulate-bound mercury in air compared to later spring events. It appears that light at large solar zenith angles is sufficient to initiate the photolytic formation of halogen radicals. We also propose a dark mechanism that could explain observed events in air masses coming from dark regions. Br2 that could be the main actor in dark conditions was possibly formed in high concentrations in the marine boundary layer in the dark. These high concentrations may also have caused the formation of high concentrations of CHBr3 and CH2I2 in the top layers of the Antarctic sea ice observed during winter. These new findings show that the extent of depletion events is larger than previously believed and that winter depletions result in additional deposition of mercury that could be transferred to marine and terrestrial ecosystems.

  11. Fully depleted back illuminated CCD

    DOEpatents

    Holland, Stephen Edward

    2001-01-01

    A backside illuminated charge coupled device (CCD) is formed of a relatively thick high resistivity photon sensitive silicon substrate, with frontside electronic circuitry, and an optically transparent backside ohmic contact for applying a backside voltage which is at least sufficient to substantially fully deplete the substrate. A greater bias voltage which overdepletes the substrate may also be applied. One way of applying the bias voltage to the substrate is by physically connecting the voltage source to the ohmic contact. An alternate way of applying the bias voltage to the substrate is to physically connect the voltage source to the frontside of the substrate, at a point outside the depletion region. Thus both frontside and backside contacts can be used for backside biasing to fully deplete the substrate. Also, high resistivity gaps around the CCD channels and electrically floating channel stop regions can be provided in the CCD array around the CCD channels. The CCD array forms an imaging sensor useful in astronomy.

  12. Ozone depletion over the polar caps caused by solar protons

    SciTech Connect

    Stephenson, J.A.E.; Scourfield, M.W.J. )

    1992-12-24

    Energetic solar protons are a natural source of ozone depletion due to nitric oxides they produce in the earth's atmosphere. In March 1989, following a period of intense solar activity, the TOMS instrument aboard the Nimbus 7 satellite recorded very similar ozone losses over both polar caps for areas extending from 90[degrees] to 70[degrees]. Ozone depletions of 7.4 [times] 10[sup 9] kg for the south polar cap and 8.0 [times] 10[sup 9] kg for the north polar cap indicate the degree of symmetry over the polar caps. 11 refs., 6 figs.

  13. Ozone depletion, paradigms, and politics

    SciTech Connect

    Iman, R.L.

    1993-10-01

    The destruction of the Earth`s protective ozone layer is a prime environmental concern. Industry has responded to this environmental problem by: implementing conservation techniques to reduce the emission of ozone-depleting chemicals (ODCs); using alternative cleaning solvents that have lower ozone depletion potentials (ODPs); developing new, non-ozone-depleting solvents, such as terpenes; and developing low-residue soldering processes. This paper presents an overview of a joint testing program at Sandia and Motorola to evaluate a low-residue (no-clean) soldering process for printed wiring boards (PWBs). Such processes are in widespread use in commercial applications because they eliminate the cleaning operation. The goal of this testing program was to develop a data base that could be used to support changes in the mil-specs. In addition, a joint task force involving industry and the military has been formed to conduct a follow-up evaluation of low-residue processes that encompass the concerns of the tri-services. The goal of the task force is to gain final approval of the low-residue technology for use in military applications.

  14. Ozone Depletion from Nearby Supernovae

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Laird, Claude M.; Jackman, Charles H.; Cannizzo, John K.; Mattson, Barbara J.; Chen, Wan; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Estimates made in the 1970's indicated that a supernova occurring within tens of parsecs of Earth could have significant effects on the ozone layer. Since that time improved tools for detailed modeling of atmospheric chemistry have been developed to calculate ozone depletion, and advances have been made also in theoretical modeling of supernovae and of the resultant gamma ray spectra. In addition, one now has better knowledge of the occurrence rate of supernovae in the galaxy, and of the spatial distribution of progenitors to core-collapse supernovae. We report here the results of two-dimensional atmospheric model calculations that take as input the spectral energy distribution of a supernova, adopting various distances from Earth and various latitude impact angles. In separate simulations we calculate the ozone depletion due to both gamma rays and cosmic rays. We find that for the combined ozone depletion from these effects roughly to double the 'biologically active' UV flux received at the surface of the Earth, the supernova must occur at approximately or less than 8 parsecs.

  15. Issues in Stratospheric Ozone Depletion.

    NASA Astrophysics Data System (ADS)

    Lloyd, Steven Andrew

    Following the announcement of the discovery of the Antarctic ozone hole in 1985 there have arisen a multitude of questions pertaining to the nature and consequences of polar ozone depletion. This thesis addresses several of these specific questions, using both computer models of chemical kinetics and the Earth's radiation field as well as laboratory kinetic experiments. A coupled chemical kinetic-radiative numerical model was developed to assist in the analysis of in situ field measurements of several radical and neutral species in the polar and mid-latitude lower stratosphere. Modeling was used in the analysis of enhanced polar ClO, mid-latitude diurnal variation of ClO, and simultaneous measurements of OH, HO_2, H_2 O and O_3. Most importantly, such modeling was instrumental in establishing the link between the observed ClO and BrO concentrations in the Antarctic polar vortex and the observed rate of ozone depletion. The principal medical concern of stratospheric ozone depletion is that ozone loss will lead to the enhancement of ground-level UV-B radiation. Global ozone climatology (40^circS to 50^ circN latitude) was incorporated into a radiation field model to calculate the biologically accumulated dosage (BAD) of UV-B radiation, integrated over days, months, and years. The slope of the annual BAD as a function of latitude was found to correspond to epidemiological data for non-melanoma skin cancers for 30^circ -50^circN. Various ozone loss scenarios were investigated. It was found that a small ozone loss in the tropics can provide as much additional biologically effective UV-B as a much larger ozone loss at higher latitudes. Also, for ozone depletions of > 5%, the BAD of UV-B increases exponentially with decreasing ozone levels. An important key player in determining whether polar ozone depletion can propagate into the populated mid-latitudes is chlorine nitrate, ClONO_2 . As yet this molecule is only indirectly accounted for in computer models and field

  16. Partial substitution of Mo{sup 6+} by S{sup 6+} in the fast oxide ion conductor La{sub 2}Mo{sub 2}O{sub 9}: Synthesis, structure and sulfur depletion

    SciTech Connect

    Mhadhbi, Noureddine; Corbel, Gwenaeel; Lacorre, Philippe; Bulou, Alain

    2012-06-15

    Powder-solid state reaction route using La{sub 2}(SO{sub 4}){sub 3} as sulfur source was used to prepare compositions of the solid solution La{sub 2}Mo{sub 2-y}S{sub y}O{sub 9}. Single phases were only obtained in the substitution range extending up to y=0.8 (40 mol% S) at the annealing temperature of 850 Degree-Sign C with regard to the limit of stability of the lanthanum sulphate reactant. Within the synthesis conditions, a stabilization of the high temperature {beta}-form is observed from and above y=0.1 (5 mol% S). Temperature-controlled X-ray diffraction and thermogravimetric analyses have shown that La{sub 2}Mo{sub 2-y}S{sub y}O{sub 9} raw powders undergo thermal decompositions in two steps. Heating above 900 Degree-Sign C, a sulfur depletion to the benefit of molybdenum in La{sub 2}Mo{sub 2-y}S{sub y}O{sub 9} raw powders leads to the formation of La{sub 2}SO{sub 6}. At higher temperature, the exsolved La{sub 2}SO{sub 6} phase then decomposes into La{sub 2}O{sub 3}, which in turn reacts with the sulfur-depleted La{sub 2}Mo{sub 2}O{sub 9} phase to form La{sub 2}MoO{sub 6}. The present study also reveals that depending on the substitution rate y, the sulfur depletion can be induced by ball-milling of raw powders. Along the La{sub 2}Mo{sub 2-y}S{sub y}O{sub 9} series, the isovalent substitution of molybdenum by sulfur tends to restrict in magnitude, or even to suppress above 400 Degree-Sign C, the distortive thermal expansion of the cubic {beta}-type structure, thus strongly decreasing the conductance at high temperature. - Graphical abstract: La{sub 2}O{sub 3}-MoO{sub 3}-'SO{sub 3}' ternary phase diagram showing the exsolution path at low temperature (white arrows) and the total decomposition path at high temperature (black arrows) of {beta}-La{sub 2}Mo{sub 2-y}S{sub y}O{sub 9} raw powders. Highlights: Black-Right-Pointing-Pointer Isovalent substitution of molybdenum by sulfur in La{sub 2}Mo{sub 2}O{sub 9} up to 40 mol%. Black

  17. Ichnologic signature of oxygen-depleted deposits

    SciTech Connect

    Ekdale, A.A.; Mason, T.R.

    1987-05-01

    The sedimentologic record of oxygen-poor depositional environments commonly includes trace fossils, especially those produced by deposit-feeding organisms that must have had broad oxygen tolerances. Endostratal fodinichnial and pascichnial traces indicate lack of oxygen within the substrate. Complex fodinichnia, such as Chondrites and Zoophycos, may form in anoxic sediment some distance below the water-sediment interface. The deposit-feeding animals can circulate oxygenated bottom water from the sea floor down through semipermanent shafts to permit respiration while they feed on unoxidized organic matter in the subsurface. Endostratal pascichnia, such as Helminthoida and Spirophycus, typically lack a continuous connection with the water-sediment interface, so interstitial water cannot be totally devoid of oxygen or else the animals cannot respire. However, endostratal pascichnia normally do not occur in oxidized sediment where digestible organic detritus has decomposed completely. In totally oxidized substrates, which typify higher energy depositional environments, permanent dwellings (domichnia) of filter-feeding organisms predominate. The ichnologic signature of oxygen-depleted deposits is a very high-density, very low-diversity association of deposit-feeding trace fossils. They suggest an oxygen-controlled trace fossil model in which increasing oxygen concentration of the interstitial water parallels a transition from fodinichnia-dominated through pascichnia-dominated to domichnia-dominated trace fossil associations. This model provides an alternative to the more traditional depth-controlled trace fossil distribution model in certain situations.

  18. A young man with intractable ascites and effort dyspnoea without echocardiographic signs of pericardial thickening: the importance of clinical investigation, CT scan and MRI in the diagnosis of constrictive pericarditis.

    PubMed

    Dato, Ilaria; Coluzzi, Giulio; Al-Mohanni, Ghalia; Della Bona, Roberta; Piro, Maddalena; Natale, Luigi; Luciani, Nicola; Biasucci, Luigi M; Crea, Filippo

    2008-08-18

    A 35-year-old male patient suffering from dyspnoea on effort for 8 months, with abdominal and jugular venous distension, was previously studied in another hospital and discharged with a diagnosis of restrictive cardiomyopathy. Physical examination revealed a blood pressure of 110/60 mm Hg and absence of pericardial knock and also of paradoxical pulse. Chest X-ray showed no cardio-pulmonary alterations. Transthoracic echocardiography showed mild LV dysfunction (LVEF 46%) and lack of pericardial effusion and thickening. Doppler interrogation of transmitral flow showed a restrictive pattern. Computed tomography showed diffusely thickened pericardium, with the absence of calcification and of pericardial effusion. Cardiac magnetic resonance confirmed pericardial thickening and showed lack of myocardial alterations. Mild LV dysfunction was noted with dyskinesia of interventricular septum. The patient underwent cardiac catheterization, demonstrating an equalisation of RV and LV diastolic pressures with "square root" sign. The patient underwent pericardiectomy with consequent resolution of his symptoms and improvement of LV function.

  19. Mercury depletion events over Antarctic and Arctic oceans

    NASA Astrophysics Data System (ADS)

    Nerentorp Mastromonaco, M. G.; Gardfeldt, K.; Wangberg, I.; Jourdain, B.; Dommergue, A.; Kuronen, P.; Pirrone, N.; Jacobi, H.

    2013-12-01

    Mercury is a global pollutant and in its elemental form it is spread by air to remote areas far away from point sources. In Antarctic and Arctic regions the airborne mercury may be oxidized, followed by deposition of the metal on land and sea surfaces. It is previously known that during early spring in these regions, processes involving halogen radical photochemistry induce an oxidation of gaseous elemental mercury (GEM) in air. This phenomenon is known as an atmospheric mercury depletion event (AMDE) and is characterized by sudden and remarkable decreases in GEM that occurs within hours or days. All or most part of the GEM in air is transformed into gaseous oxidized mercury (GOM) and particulate mercury (HgP). Equivalent ozone depletion events (ODE) do also occur in Antarctic and Arctic regions and the halogen radical photolytic processes involved for AMDEs and ODEs are interrelated. During two oceanographic campaigns at the Weddell Sea onboard RV Polarstern, ANTXXIX/6 (130608-130812) and ANTXXIX/7 (130814-131016), continuous measurements of GEM, GOM and HgP in air were performed using the Tekran mercury speciation system 1130/35. This is the first time such long time series of GEM-, GOM- and HgP data has been achieved over water in the Antarctic during winter and spring. Several mercury depletion events were detected as early as in the middle of July and are correlated and verified with ozone measurements onboard the ship. The observed depletion events were characterised by sudden major decreases in both GEM and ozone concentrations and highly elevated values of HgP. A depletion event is a local phenomenon but evidences show that traces of such events can be detected far away from its origin. During a spring campaign at the Pallas-Matorova station in northern Finland (68o00'N, 24o14'E), GEM, GOM and HgP were measured during three weeks in April 2012 using the Tekran mercury speciation system 1130/35. Traces of remote AMDEs were observed by sudden decreases of GEM

  20. The Case of Ozone Depletion

    NASA Technical Reports Server (NTRS)

    Lambright, W. Henry

    2005-01-01

    While the National Aeronautics and Space Administration (NASA) is widely perceived as a space agency, since its inception NASA has had a mission dedicated to the home planet. Initially, this mission involved using space to better observe and predict weather and to enable worldwide communication. Meteorological and communication satellites showed the value of space for earthly endeavors in the 1960s. In 1972, NASA launched Landsat, and the era of earth-resource monitoring began. At the same time, in the late 1960s and early 1970s, the environmental movement swept throughout the United States and most industrialized countries. The first Earth Day event took place in 1970, and the government generally began to pay much more attention to issues of environmental quality. Mitigating pollution became an overriding objective for many agencies. NASA's existing mission to observe planet Earth was augmented in these years and directed more toward environmental quality. In the 1980s, NASA sought to plan and establish a new environmental effort that eventuated in the 1990s with the Earth Observing System (EOS). The Agency was able to make its initial mark via atmospheric monitoring, specifically ozone depletion. An important policy stimulus in many respects, ozone depletion spawned the Montreal Protocol of 1987 (the most significant international environmental treaty then in existence). It also was an issue critical to NASA's history that served as a bridge linking NASA's weather and land-resource satellites to NASA s concern for the global changes affecting the home planet. Significantly, as a global environmental problem, ozone depletion underscored the importance of NASA's ability to observe Earth from space. Moreover, the NASA management team's ability to apply large-scale research efforts and mobilize the talents of other agencies and the private sector illuminated its role as a lead agency capable of crossing organizational boundaries as well as the science-policy divide.

  1. Action orientation overcomes the ego depletion effect.

    PubMed

    Dang, Junhua; Xiao, Shanshan; Shi, Yucai; Mao, Lihua

    2015-04-01

    It has been consistently demonstrated that initial exertion of self-control had negative influence on people's performance on subsequent self-control tasks. This phenomenon is referred to as the ego depletion effect. Based on action control theory, the current research investigated whether the ego depletion effect could be moderated by individuals' action versus state orientation. Our results showed that only state-oriented individuals exhibited ego depletion. For individuals with action orientation, however, their performance was not influenced by initial exertion of self-control. The beneficial effect of action orientation against ego depletion in our experiment results from its facilitation for adapting to the depleting task.

  2. Mouse Liver Protein Sulfhydryl Depletion after Acetaminophen Exposure

    PubMed Central

    Yang, Xi; Greenhaw, James; Shi, Qiang; Roberts, Dean W.; Hinson, Jack A.; Muskhelishvili, Levan; Davis, Kelly

    2013-01-01

    Acetaminophen (APAP)-induced liver injury is the leading cause of acute liver failure in many countries. This study determined the extent of liver protein sulfhydryl depletion not only in whole liver homogenate but also in the zonal pattern of sulfhydryl depletion within the liver lobule. A single oral gavage dose of 150 or 300 mg/kg APAP in B6C3F1 mice produced increased serum alanine aminotransferase levels, liver necrosis, and glutathione depletion in a dose-dependent manner. Free protein sulfhydryls were measured in liver protein homogenates by labeling with maleimide linked to a near infrared fluorescent dye followed by SDS-polyacrylamide gel electrophoresis. Global protein sulfhydryl levels were decreased significantly (48.4%) starting at 1 hour after the APAP dose and maintained at this reduced level through 24 hours. To visualize the specific hepatocytes that had reduced protein sulfhydryl levels, frozen liver sections were labeled with maleimide linked to horseradish peroxidase. The centrilobular areas exhibited dramatic decreases in free protein sulfhydryls while the periportal regions were essentially spared. These protein sulfhydryl-depleted regions correlated with areas exhibiting histopathologic injury and APAP binding to protein. The majority of protein sulfhydryl depletion was due to reversible oxidation since the global- and lobule-specific effects were essentially reversed when the samples were reduced with tris(2-carboxyethy)phosphine before maleimide labeling. These temporal and zonal pattern changes in protein sulfhydryl oxidation shed new light on the importance that changes in protein redox status might play in the pathogenesis of APAP hepatotoxicity. PMID:23093024

  3. Biomedical consequences of ozone depletion

    NASA Astrophysics Data System (ADS)

    Coohill, Thomas P.

    1994-07-01

    It is widely agreed that a portion of the earth's protective stratospheric ozone layer is being depleted. The major effect of this ozone loss will be an increase in the amount of ultraviolet radiation (UV reaching the biosphere. This increase will be completely contained within the UVB (290nm - 320nm). It is imperative that assessments be made of the effects of this additional UVB on living organisms. This requires a detailed knowledge of the UVB photobiology of these life forms. One analytical technique to aid in the approximations is the construction of UV action spectra for such important biological end-points as human skin cancer, cataracts, immune suppression; plant photosynthesis and crop yields; and aquatic organism responses to UVB, especially the phytoplankton. Combining these action spectra with the known solar spectrum (and estimates for various ozone depletion scenarios) can give rise to a series of effectiveness spectra for these parameters. This manuscript gives a first approximation, rough estimate, for the effectiveness spectra for some of these bioresponses, and a series of crude temporary values for how a 10% ozone loss would affect the above end-points. These are not intended to masquerade as final answers, but rather, to serve as beginning attempts for a process which should be continually refined. It is hoped that these estimates will be of some limited use to agencies, such as government and industry, that have to plan now for changes in human activities that might alter future atmospheric chemistry in a beneficial manner.

  4. Depleted Argon from Underground Sources

    SciTech Connect

    Back, H. O.; Galbiati, C.; Goretti, A.; Loer, B.; Montanari, D.; Mosteiro, P.; Alexander, T.; Alton, A.; Rogers, H.; Kendziora, C.; Pordes, S.

    2011-04-27

    Argon is a strong scintillator and an ideal target for Dark Matter detection; however {sup 39}Ar contamination in atmospheric argon from cosmic ray interactions limits the size of liquid argon dark matter detectors due to pile-up. Argon from deep underground is depleted in {sup 39}Ar due to the cosmic ray shielding of the earth. In Cortez, Colorado, a CO{sub 2} well has been discovered to contain approximately 600 ppm of argon as a contamination in the CO{sub 2}. We first concentrate the argon locally to 3% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation, and then the N{sub 2} and He will be removed by continuous distillation to purify the argon. We have collected 26 kg of argon from the CO{sub 2} facility and a cryogenic distillation column is under construction at Fermilab to further purify the argon.

  5. Radionuclide inventories : ORIGEN2.2 isotopic depletion calculation for high burnup low-enriched uranium and weapons-grade mixed-oxide pressurized-water reactor fuel assemblies.

    SciTech Connect

    Gauntt, Randall O.; Ross, Kyle W.; Smith, James Dean; Longmire, Pamela

    2010-04-01

    The Oak Ridge National Laboratory computer code, ORIGEN2.2 (CCC-371, 2002), was used to obtain the elemental composition of irradiated low-enriched uranium (LEU)/mixed-oxide (MOX) pressurized-water reactor fuel assemblies. Described in this report are the input parameters for the ORIGEN2.2 calculations. The rationale for performing the ORIGEN2.2 calculation was to generate inventories to be used to populate MELCOR radionuclide classes. Therefore the ORIGEN2.2 output was subsequently manipulated. The procedures performed in this data reduction process are also described herein. A listing of the ORIGEN2.2 input deck for two-cycle MOX is provided in the appendix. The final output from this data reduction process was three tables containing the radionuclide inventories for LEU/MOX in elemental form. Masses, thermal powers, and activities were reported for each category.

  6. Preventing NAD+ Depletion Protects Neurons against Excitotoxicity

    PubMed Central

    Liu, Dong; Pitta, Michael; Mattson, Mark P.

    2008-01-01

    Neurons are excitable cells that require large amounts of energy to support their survival and functions and are therefore prone to excitotoxicity, which involves energy depletion. By examining bioenergetic changes induced by glutamate, we found that the cellular nicotinamide adenine dinucleotide (NAD+) level is a critical determinant of neuronal survival. The bioenergetic effects of mitochondrial uncoupling and caloric restriction were also examined in cultured neurons and rodent brain. 2, 4-dinitrophenol (DNP) is a chemical mitochondrial uncoupler that stimulates glucose uptake and oxygen consumption on cultured neurons, which accelerates oxidation of NAD(P)H to NAD+ in mitochondria. The NAD+-dependent histone deacetylase sirtulin 1 (SIRT1) and glucose transporter 1 (GLUT1) mRNA are upregulated mouse brain under caloric restriction. To examine whether NAD+ mediates neuroprotective effects, nicotinamide, a precursor of NAD+ and inhibitor of SIRT1 and poly (ADP-ribose) polymerase 1 (PARP1) (two NAD+-dependent enzymes), was employed. Nicotinamide attenuated excitotoxic death and preserved cellular NAD+ levels to support SIRT1 and PARP 1 activities. Our findings suggest that mild mitochondrial uncoupling and caloric restriction exert hormetic effects by stimulating bioenergetics in neurons thereby increasing tolerance of neurons to metabolic stress. PMID:19076449

  7. High-voltage-compatible, fully depleted CCDs

    SciTech Connect

    Holland, Stephen E.; Bebek, Chris J.; Dawson, Kyle S.; Emes, JohnE.; Fabricius, Max H.; Fairfield, Jessaym A.; Groom, Don E.; Karcher, A.; Kolbe, William F.; Palaio, Nick P.; Roe, Natalie A.; Wang, Guobin

    2006-05-15

    We describe charge-coupled device (CCD) developmentactivities at the Lawrence Berkeley National Laboratory (LBNL).Back-illuminated CCDs fabricated on 200-300 mu m thick, fully depleted,high-resistivity silicon substrates are produced in partnership with acommercial CCD foundry.The CCDs are fully depleted by the application ofa substrate bias voltage. Spatial resolution considerations requireoperation of thick, fully depleted CCDs at high substrate bias voltages.We have developed CCDs that are compatible with substrate bias voltagesof at least 200V. This improves spatial resolution for a given thickness,and allows for full depletion of thicker CCDs than previously considered.We have demonstrated full depletion of 650-675 mu m thick CCDs, withpotential applications in direct x-ray detection. In this work we discussthe issues related to high-voltage operation of fully depleted CCDs, aswell as experimental results on high-voltage-compatible CCDs.

  8. Ego depletion increases risk-taking.

    PubMed

    Fischer, Peter; Kastenmüller, Andreas; Asal, Kathrin

    2012-01-01

    We investigated how the availability of self-control resources affects risk-taking inclinations and behaviors. We proposed that risk-taking often occurs from suboptimal decision processes and heuristic information processing (e.g., when a smoker suppresses or neglects information about the health risks of smoking). Research revealed that depleted self-regulation resources are associated with reduced intellectual performance and reduced abilities to regulate spontaneous and automatic responses (e.g., control aggressive responses in the face of frustration). The present studies transferred these ideas to the area of risk-taking. We propose that risk-taking is increased when individuals find themselves in a state of reduced cognitive self-control resources (ego-depletion). Four studies supported these ideas. In Study 1, ego-depleted participants reported higher levels of sensation seeking than non-depleted participants. In Study 2, ego-depleted participants showed higher levels of risk-tolerance in critical road traffic situations than non-depleted participants. In Study 3, we ruled out two alternative explanations for these results: neither cognitive load nor feelings of anger mediated the effect of ego-depletion on risk-taking. Finally, Study 4 clarified the underlying psychological process: ego-depleted participants feel more cognitively exhausted than non-depleted participants and thus are more willing to take risks. Discussion focuses on the theoretical and practical implications of these findings.

  9. CO depletion in the Gould Belt clouds

    NASA Astrophysics Data System (ADS)

    Christie, H.; Viti, S.; Yates, J.; Hatchell, J.; Fuller, G. A.; Duarte-Cabral, A.; Sadavoy, S.; Buckle, J. V.; Graves, S.; Roberts, J.; Nutter, D.; Davis, C.; White, G. J.; Hogerheijde, M.; Ward-Thompson, D.; Butner, H.; Richer, J.; Di Francesco, J.

    2012-05-01

    We present a statistical comparison of CO depletion in a set of local molecular clouds within the Gould Belt using Sub-millimetre Common User Bolometer Array (SCUBA) and Heterodyne Array Receiver Programme (HARP) data. This is the most wide-ranging study of depletion thus far within the Gould Belt. We estimate CO column densities assuming local thermodynamic equilibrium and, for a selection of sources, using the radiative transfer code RADEX in order to compare the two column density estimation methods. High levels of depletion are seen in the centres of several dust cores in all the clouds. We find that in the gas surrounding protostars, levels of depletion are somewhat lower than for starless cores with the exception of a few highly depleted protostellar cores in Serpens and NGC 2024. There is a tentative correlation between core mass and core depletion, particularly in Taurus and Serpens. Taurus has, on average, the highest levels of depletion. Ophiuchus has low average levels of depletion which could perhaps be related to the anomalous dust grain size distribution observed in this cloud. High levels of depletion are often seen around the edges of regions of optical emission (Orion) or in more evolved or less dynamic regions such as the bowl of L1495 in Taurus and the north-western region of Serpens.

  10. Fully-depleted, back-illuminated charge-coupled devices fabricated on high-resistivity silicon

    SciTech Connect

    Holland, Stephen E.; Groom, Donald E.; Palaio, Nick P.; Stover, Richard J.; Wei, Mingzhi

    2002-03-28

    Charge-coupled devices (CCD's) have been fabricated on high-resistivity silicon. The resistivity, on the order of 10,000 {Omega}-cm, allows for depletion depths of several hundred microns. Fully-depleted, back-illuminated operation is achieved by the application of a bias voltage to a ohmic contact on the wafer back side consisting of a thin in-situ doped polycrystalline silicon layer capped by indium tin oxide and silicon dioxide. This thin contact allows for good short wavelength response, while the relatively large depleted thickness results in good near-infrared response.

  11. Novel Pharmacological Approaches for Treatment of Neurotoxicity Induced by Chronic Exposure to Depleted Uranium

    DTIC Science & Technology

    2009-09-01

    an anti- oxidant agent and/or an NMDA receptor antagonist will reduce neurotoxicity resulting from chronic exposure to DU. This hypothesis is based...DU-induced oxidative stress. As prescribed by the Statement of Work, efforts continued in year 2 on Tasks 1 (drug therapies to reverse DU-induced...SUBJECT TERMS depleted uranium, glutamate release, military disease, hippocampus, oxidative stress, neuroprotectant drugs 16. SECURITY

  12. Novel Pharmacological Approaches for Treatment of Neurotoxicity Induced by Chronic Exposure to Depleted Uranium

    DTIC Science & Technology

    2010-09-01

    NOTES 15. SUBJECT TERMS depleted uranium, glutamate release, military disease, hippocampus, oxidative stress, neuroprotectant drugs 16. SECURITY...bases of DU neurotoxicity are proposed to be cellular oxidative stress and the consequent increased production of reactive oxygen species, leading to... oxidative stress has previously been reported in rat kidney, testis, and lung (3-4). Studies will identify various biochemical markers of metal-induced

  13. Depleted uranium hexafluoride: The source material for advanced shielding systems

    SciTech Connect

    Quapp, W.J.; Lessing, P.A.; Cooley, C.R.

    1997-02-01

    The U.S. Department of Energy (DOE) has a management challenge and financial liability problem in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. DOE is evaluating several options for the disposition of this UF{sub 6}, including continued storage, disposal, and recycle into a product. Based on studies conducted to date, the most feasible recycle option for the depleted uranium is shielding in low-level waste, spent nuclear fuel, or vitrified high-level waste containers. Estimates for the cost of disposal, using existing technologies, range between $3.8 and $11.3 billion depending on factors such as the disposal site and the applicability of the Resource Conservation and Recovery Act (RCRA). Advanced technologies can reduce these costs, but UF{sub 6} disposal still represents large future costs. This paper describes an application for depleted uranium in which depleted uranium hexafluoride is converted into an oxide and then into a heavy aggregate. The heavy uranium aggregate is combined with conventional concrete materials to form an ultra high density concrete, DUCRETE, weighing more than 400 lb/ft{sup 3}. DUCRETE can be used as shielding in spent nuclear fuel/high-level waste casks at a cost comparable to the lower of the disposal cost estimates. Consequently, the case can be made that DUCRETE shielded casks are an alternative to disposal. In this case, a beneficial long term solution is attained for much less than the combined cost of independently providing shielded casks and disposing of the depleted uranium. Furthermore, if disposal is avoided, the political problems associated with selection of a disposal location are also avoided. Other studies have also shown cost benefits for low level waste shielded disposal containers.

  14. Depleted argon from underground sources

    SciTech Connect

    Back, H.O.; Alton, A.; Calaprice, F.; Galbiati, C.; Goretti, A.; Kendziora, C.; Loer, B.; Montanari, D.; Mosteiro, P.; Pordes, S.; /Fermilab

    2011-09-01

    Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic {sup 39}Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in {sup 39}Ar. In Cortez Colorado a CO{sub 2} well has been discovered to contain approximately 500ppm of argon as a contamination in the CO{sub 2}. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation. The N{sub 2} and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

  15. Mechanism-based biomarker gene sets for glutathione depletion-related hepatotoxicity in rats

    SciTech Connect

    Gao Weihua; Mizukawa, Yumiko; Nakatsu, Noriyuki; Minowa, Yosuke; Yamada, Hiroshi; Ohno, Yasuo; Urushidani, Tetsuro

    2010-09-15

    Chemical-induced glutathione depletion is thought to be caused by two types of toxicological mechanisms: PHO-type glutathione depletion [glutathione conjugated with chemicals such as phorone (PHO) or diethyl maleate (DEM)], and BSO-type glutathione depletion [i.e., glutathione synthesis inhibited by chemicals such as L-buthionine-sulfoximine (BSO)]. In order to identify mechanism-based biomarker gene sets for glutathione depletion in rat liver, male SD rats were treated with various chemicals including PHO (40, 120 and 400 mg/kg), DEM (80, 240 and 800 mg/kg), BSO (150, 450 and 1500 mg/kg), and bromobenzene (BBZ, 10, 100 and 300 mg/kg). Liver samples were taken 3, 6, 9 and 24 h after administration and examined for hepatic glutathione content, physiological and pathological changes, and gene expression changes using Affymetrix GeneChip Arrays. To identify differentially expressed probe sets in response to glutathione depletion, we focused on the following two courses of events for the two types of mechanisms of glutathione depletion: a) gene expression changes occurring simultaneously in response to glutathione depletion, and b) gene expression changes after glutathione was depleted. The gene expression profiles of the identified probe sets for the two types of glutathione depletion differed markedly at times during and after glutathione depletion, whereas Srxn1 was markedly increased for both types as glutathione was depleted, suggesting that Srxn1 is a key molecule in oxidative stress related to glutathione. The extracted probe sets were refined and verified using various compounds including 13 additional positive or negative compounds, and they established two useful marker sets. One contained three probe sets (Akr7a3, Trib3 and Gstp1) that could detect conjugation-type glutathione depletors any time within 24 h after dosing, and the other contained 14 probe sets that could detect glutathione depletors by any mechanism. These two sets, with appropriate scoring

  16. Depleted uranium--the growing concern.

    PubMed

    Abu-Qare, Aqel W; Abou-Donia, Mohamed B

    2002-01-01

    Recently, several studies have reported on the health and environmental consequences of the use of depleted uranium. Depleted uranium is a heavy metal that is also radioactive. It is commonly used in missiles as a counterweight because of its very high density (1.6 times more than lead). Immediate health risks associated with exposure to depleted uranium include kidney and respiratory problems, with conditions such as kidney stones, chronic cough and severe dermatitis. Long-term risks include lung and bone cancer. Several published reports implicated exposure to depleted uranium in kidney damage, mutagenicity, cancer, inhibition of bone, neurological deficits, significant decrease in the pregnancy rate in mice and adverse effects on the reproductive and central nervous systems. Acute poisoning with depleted uranium elicited renal failure that could lead to death. The environmental consequences of its residue will be felt for thousands of years. It is inhaled and passed through the skin and eyes, transferred through the placenta into the fetus, distributed into tissues and eliminated in urine. The use of depleted uranium during the Gulf and Kosovo Wars and the crash of a Boeing airplane carrying depleted uranium in Amsterdam in 1992 were implicated in a health concern related to exposure to depleted uranium.

  17. High homocysteine induces betaine depletion

    PubMed Central

    Imbard, Apolline; Benoist, Jean-François; Esse, Ruben; Gupta, Sapna; Lebon, Sophie; de Vriese, An S; de Baulny, Helene Ogier; Kruger, Warren; Schiff, Manuel; Blom, Henk J.

    2015-01-01

    Betaine is the substrate of the liver- and kidney-specific betaine-homocysteine (Hcy) methyltransferase (BHMT), an alternate pathway for Hcy remethylation. We hypothesized that BHMT is a major pathway for homocysteine removal in cases of hyperhomocysteinaemia (HHcy). Therefore, we measured betaine in plasma and tissues from patients and animal models of HHcy of genetic and acquired cause. Plasma was collected from patients presenting HHcy without any Hcy interfering treatment. Plasma and tissues were collected from rat models of HHcy induced by diet and from a mouse model of cystathionine β-synthase (CBS) deficiency. S-adenosyl-methionine (AdoMet), S-adenosyl-homocysteine (AdoHcy), methionine, betaine and dimethylglycine (DMG) were quantified by ESI—LC–MS/MS. mRNA expression was quantified using quantitative real-time (QRT)-PCR. For all patients with diverse causes of HHcy, plasma betaine concentrations were below the normal values of our laboratory. In the diet-induced HHcy rat model, betaine was decreased in all tissues analysed (liver, brain, heart). In the mouse CBS deficiency model, betaine was decreased in plasma, liver, heart and brain, but was conserved in kidney. Surprisingly, BHMT expression and activity was decreased in liver. However, in kidney, BHMT and SLC6A12 expression was increased in CBS-deficient mice. Chronic HHcy, irrespective of its cause, induces betaine depletion in plasma and tissues (liver, brain and heart), indicating a global decrease in the body betaine pool. In kidney, betaine concentrations were not affected, possibly due to overexpression of the betaine transporter SLC6A12 where betaine may be conserved because of its crucial role as an osmolyte. PMID:26182429

  18. Gulf war depleted uranium risks.

    PubMed

    Marshall, Albert C

    2008-01-01

    US and British forces used depleted uranium (DU) in armor-piercing rounds to disable enemy tanks during the Gulf and Balkan Wars. Uranium particulate is generated by DU shell impact and particulate entrained in air may be inhaled or ingested by troops and nearby civilian populations. As uranium is slightly radioactive and chemically toxic, a number of critics have asserted that DU exposure has resulted in a variety of adverse health effects for exposed veterans and nearby civilian populations. The study described in this paper used mathematical modeling to estimate health risks from exposure to DU during the 1991 Gulf War for both US troops and nearby Iraqi civilians. The analysis found that the risks of DU-induced leukemia or birth defects are far too small to result in an observable increase in these health effects among exposed veterans or Iraqi civilians. The analysis indicated that only a few ( approximately 5) US veterans in vehicles accidentally targeted by US tanks received significant exposure levels, resulting in about a 1.4% lifetime risk of DU radiation-induced fatal cancer (compared with about a 24% risk of a fatal cancer from all other causes). These veterans may have also experienced temporary kidney damage. Iraqi children playing for 500 h in DU-destroyed vehicles are predicted to incur a cancer risk of about 0.4%. In vitro and animal tests suggest the possibility of chemically induced health effects from DU internalization, such as immune system impairment. Further study is needed to determine the applicability of these findings for Gulf War exposure to DU. Veterans and civilians who did not occupy DU-contaminated vehicles are unlikely to have internalized quantities of DU significantly in excess of normal internalization of natural uranium from the environment.

  19. High homocysteine induces betaine depletion.

    PubMed

    Imbard, Apolline; Benoist, Jean-François; Esse, Ruben; Gupta, Sapna; Lebon, Sophie; de Vriese, An S; de Baulny, Helene Ogier; Kruger, Warren; Schiff, Manuel; Blom, Henk J

    2015-04-28

    Betaine is the substrate of the liver- and kidney-specific betaine-homocysteine (Hcy) methyltransferase (BHMT), an alternate pathway for Hcy remethylation. We hypothesized that BHMT is a major pathway for homocysteine removal in cases of hyperhomocysteinaemia (HHcy). Therefore, we measured betaine in plasma and tissues from patients and animal models of HHcy of genetic and acquired cause. Plasma was collected from patients presenting HHcy without any Hcy interfering treatment. Plasma and tissues were collected from rat models of HHcy induced by diet and from a mouse model of cystathionine β-synthase (CBS) deficiency. S-adenosyl-methionine (AdoMet), S-adenosyl-homocysteine (AdoHcy), methionine, betaine and dimethylglycine (DMG) were quantified by ESI-LC-MS/MS. mRNA expression was quantified using quantitative real-time (QRT)-PCR. For all patients with diverse causes of HHcy, plasma betaine concentrations were below the normal values of our laboratory. In the diet-induced HHcy rat model, betaine was decreased in all tissues analysed (liver, brain, heart). In the mouse CBS deficiency model, betaine was decreased in plasma, liver, heart and brain, but was conserved in kidney. Surprisingly, BHMT expression and activity was decreased in liver. However, in kidney, BHMT and SLC6A12 expression was increased in CBS-deficient mice. Chronic HHcy, irrespective of its cause, induces betaine depletion in plasma and tissues (liver, brain and heart), indicating a global decrease in the body betaine pool. In kidney, betaine concentrations were not affected, possibly due to overexpression of the betaine transporter SLC6A12 where betaine may be conserved because of its crucial role as an osmolyte.

  20. Specification for the VERA Depletion Benchmark Suite

    SciTech Connect

    Kim, Kang Seog

    2015-12-17

    CASL-X-2015-1014-000 iii Consortium for Advanced Simulation of LWRs EXECUTIVE SUMMARY The CASL neutronics simulator MPACT is under development for the neutronics and T-H coupled simulation for the pressurized water reactor. MPACT includes the ORIGEN-API and internal depletion module to perform depletion calculations based upon neutron-material reaction and radioactive decay. It is a challenge to validate the depletion capability because of the insufficient measured data. One of the detoured methods to validate it is to perform a code-to-code comparison for benchmark problems. In this study a depletion benchmark suite has been developed and a detailed guideline has been provided to obtain meaningful computational outcomes which can be used in the validation of the MPACT depletion capability.

  1. Removal of depleted uranium from contaminated soils.

    PubMed

    Choy, Christine Chin; Korfiatis, George P; Meng, Xiaoguang

    2006-08-10

    Contamination of soil and water with depleted uranium (DU) has increased public health concerns due to the chemical toxicity of DU at elevated dosages. For this reason, there is great interest in developing methods for DU removal from contaminated sources. Two DU laden soils, taken from U.S. Army sites, were characterized for particle size distribution, total uranium concentration and removable uranium. Soil A was found to be a well graded sand containing a total of 3210 mg/kg DU (3.99 x 10(4) Bq/kg, where a Becquerel (Bq) is a unit of radiation). About 83% of the DU in the fines fraction (particle diameter <0.075 mm, total DU 7732 mg/kg (9.61 x 10(4) Bq/kg)) was associated with the carbonate, iron and manganese oxide and organic matter fractions of the material. Soil B was classified as a sandy silt with total DU of 1560 mg/kg (1.94 x 10(4) Bq/kg). The DU content in the fines fraction was 5171 mg/kg (6.43 x 10(4) Bq/kg). Sequential extraction of the Soil B fines fraction indicated that 64% of the DU was present either as soluble U(VI) minerals or as insoluble U(IV). Citric acid, sodium bicarbonate and hydrogen peroxide were used in batch experiments to extract DU from the fines fraction of both soils. Citric acid and sodium bicarbonate were relatively successful for Soil A (50-60% DU removal), but not for Soil B (20-35% DU removal). Hydrogen peroxide was found to significantly increase DU extraction from both soils, attaining removals up to 60-80%.

  2. Fully Depleted Charge-Coupled Devices

    SciTech Connect

    Holland, Stephen E.

    2006-05-15

    We have developed fully depleted, back-illuminated CCDs thatbuild upon earlier research and development efforts directed towardstechnology development of silicon-strip detectors used inhigh-energy-physics experiments. The CCDs are fabricated on the same typeof high-resistivity, float-zone-refined silicon that is used for stripdetectors. The use of high-resistivity substrates allows for thickdepletion regions, on the order of 200-300 um, with corresponding highdetection efficiency for near-infrared andsoft x-ray photons. We comparethe fully depleted CCD to thep-i-n diode upon which it is based, anddescribe the use of fully depleted CCDs in astronomical and x-ray imagingapplications.

  3. Depleted-heterojunction colloidal quantum dot solar cells.

    PubMed

    Pattantyus-Abraham, Andras G; Kramer, Illan J; Barkhouse, Aaron R; Wang, Xihua; Konstantatos, Gerasimos; Debnath, Ratan; Levina, Larissa; Raabe, Ines; Nazeeruddin, Mohammad K; Grätzel, Michael; Sargent, Edward H

    2010-06-22

    Colloidal quantum dot (CQD) photovoltaics combine low-cost solution processability with quantum size-effect tunability to match absorption with the solar spectrum. Rapid recent advances in CQD photovoltaics have led to impressive 3.6% AM1.5 solar power conversion efficiencies. Two distinct device architectures and operating mechanisms have been advanced. The first-the Schottky device-was optimized and explained in terms of a depletion region driving electron-hole pair separation on the semiconductor side of a junction between an opaque low-work-function metal and a p-type CQD film. The second-the excitonic device-employed a CQD layer atop a transparent conductive oxide (TCO) and was explained in terms of diffusive exciton transport via energy transfer followed by exciton separation at the type-II heterointerface between the CQD film and the TCO. Here we fabricate CQD photovoltaic devices on TCOs and show that our devices rely on the establishment of a depletion region for field-driven charge transport and separation, and that they also exploit the large bandgap of the TCO to improve rectification and block undesired hole extraction. The resultant depleted-heterojunction solar cells provide a 5.1% AM1.5 power conversion efficiency. The devices employ infrared-bandgap size-effect-tuned PbS CQDs, enabling broadband harvesting of the solar spectrum. We report the highest open-circuit voltages observed in solid-state CQD solar cells to date, as well as fill factors approaching 60%, through the combination of efficient hole blocking (heterojunction) and very small minority carrier density (depletion) in the large-bandgap moiety.

  4. Greenhouse gases and ozone depleting compounds in the earth`s atmosphere

    SciTech Connect

    Khalil, M.A.K.

    1996-12-31

    Global warming and ozone depletion are the main environmental problems caused by changes in atmospheric composition. These changes come from human activities that add to the natural cycles of atmospheric gases or put entirely new compounds into the earth`s atmosphere. At present only a few gases play a major role in global climate change and ozone depletion. These are carbon dioxide, methane, nitrous oxide, trichlorofluoromethane (F-11), and dichlorofluoromethane (F-12). There are other gases that also add to these problems but to a lesser extent. This paper is about global warming, ozone depletion and the trends and budgets of the gases that can change the climate or deplete the ozone layer. 8 refs., 3 tabs.

  5. Exhaustible Resource Depletion: A Modified Graphical Approach.

    ERIC Educational Resources Information Center

    Tisato, Peter

    1995-01-01

    Presents a graphical analysis of the exhaustible resource depletion problem. Applies Hotelling's "r percent rule" as a new approach that operates in an "N"-period context. Includes two figures illustrating the approach. (CFR)

  6. Polar stratospheric clouds and ozone depletion

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Turco, Richard P.

    1991-01-01

    A review is presented of investigations into the correlation between the depletion of ozone and the formation of polar stratospheric clouds (PSCs). Satellite measurements from Nimbus 7 showed that over the years the depletion from austral spring to austral spring has generally worsened. Approximately 70 percent of the ozone above Antarctica, which equals about 3 percent of the earth's ozone, is lost during September and October. Various hypotheses for ozone depletion are discussed including the theory suggesting that chlorine compounds might be responsible for the ozone hole, whereby chlorine enters the atmosphere as a component of chlorofluorocarbons produced by humans. The three types of PSCs, nitric acid trihydrate, slowly cooling water-ice, and rapidly cooling water-ice clouds act as important components of the Antarctic ozone depletion. It is indicated that destruction of the ozone will be more severe each year for the next few decades, leading to a doubling in area of the Antarctic ozone hole.

  7. A definition of depletion of fish stocks

    USGS Publications Warehouse

    Van Oosten, John

    1949-01-01

    Attention was focused on the need of a common and better understanding of the term depletion as applied to the fisheries in order to eliminate if possible the existing inexactness of thought on the subject. Depletion has been confused at various times with at least ten different ideas associated with it but which, as has has heen pointed out, are not synonymous at all. In defining depletion we must recognize that the term represents a condition and must not he confounded with the cause (overfishing) that leads to this condition or with the symptoms that identify it. Depletion was defined as a reduction, through overfishing, in the level of abundance of the exploitable segment of a stock that prevents the realization of the maximum productive capacity.

  8. Anatomy of Depleted Interplanetary Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Kocher, M.; Lepri, S. T.; Landi, E.; Zhao, L.; Manchester, W. B., IV

    2017-01-01

    We report a subset of interplanetary coronal mass ejections (ICMEs) containing distinct periods of anomalous heavy-ion charge state composition and peculiar ion thermal properties measured by ACE/SWICS from 1998 to 2011. We label them “depleted ICMEs,” identified by the presence of intervals where C6+/C5+ and O7+/O6+ depart from the direct correlation expected after their freeze-in heights. These anomalous intervals within the depleted ICMEs are referred to as “Depletion Regions.” We find that a depleted ICME would be indistinguishable from all other ICMEs in the absence of the Depletion Region, which has the defining property of significantly low abundances of fully charged species of helium, carbon, oxygen, and nitrogen. Similar anomalies in the slow solar wind were discussed by Zhao et al. We explore two possibilities for the source of the Depletion Region associated with magnetic reconnection in the tail of a CME, using CME simulations of the evolution of two Earth-bound CMEs described by Manchester et al.

  9. Intestinal barrier function in response to abundant or depleted mucosal glutathione in Salmonella-infected rats

    PubMed Central

    van Ampting, Marleen TJ; Schonewille, Arjan J; Vink, Carolien; Brummer, Robert Jan M; Meer, Roelof van der; Bovee-Oudenhoven, Ingeborg MJ

    2009-01-01

    Background Glutathione, the main antioxidant of intestinal epithelial cells, is suggested to play an important role in gut barrier function and prevention of inflammation-related oxidative damage as induced by acute bacterial infection. Most studies on intestinal glutathione focus on oxidative stress reduction without considering functional disease outcome. Our aim was to determine whether depletion or maintenance of intestinal glutathione changes susceptibility of rats to Salmonella infection and associated inflammation. Rats were fed a control diet or the same diet supplemented with buthionine sulfoximine (BSO; glutathione depletion) or cystine (glutathione maintenance). Inert chromium ethylenediamine-tetraacetic acid (CrEDTA) was added to the diets to quantify intestinal permeability. At day 4 after oral gavage with Salmonella enteritidis (or saline for non-infected controls), Salmonella translocation was determined by culturing extra-intestinal organs. Liver and ileal mucosa were collected for analyses of glutathione, inflammation markers and oxidative damage. Faeces was collected to quantify diarrhoea. Results Glutathione depletion aggravated ileal inflammation after infection as indicated by increased levels of mucosal myeloperoxidase and interleukin-1β. Remarkably, intestinal permeability and Salmonella translocation were not increased. Cystine supplementation maintained glutathione in the intestinal mucosa but inflammation and oxidative damage were not diminished. Nevertheless, cystine reduced intestinal permeability and Salmonella translocation. Conclusion Despite increased infection-induced mucosal inflammation upon glutathione depletion, this tripeptide does not play a role in intestinal permeability, bacterial translocation and diarrhoea. On the other hand, cystine enhances gut barrier function by a mechanism unlikely to be related to glutathione. PMID:19374741

  10. New Approach For Prediction Groundwater Depletion

    NASA Astrophysics Data System (ADS)

    Moustafa, Mahmoud

    2017-01-01

    Current approaches to quantify groundwater depletion involve water balance and satellite gravity. However, the water balance technique includes uncertain estimation of parameters such as evapotranspiration and runoff. The satellite method consumes time and effort. The work reported in this paper proposes using failure theory in a novel way to predict groundwater saturated thickness depletion. An important issue in the failure theory proposed is to determine the failure point (depletion case). The proposed technique uses depth of water as the net result of recharge/discharge processes in the aquifer to calculate remaining saturated thickness resulting from the applied pumping rates in an area to evaluate the groundwater depletion. Two parameters, the Weibull function and Bayes analysis were used to model and analyze collected data from 1962 to 2009. The proposed methodology was tested in a nonrenewable aquifer, with no recharge. Consequently, the continuous decline in water depth has been the main criterion used to estimate the depletion. The value of the proposed approach is to predict the probable effect of the current applied pumping rates on the saturated thickness based on the remaining saturated thickness data. The limitation of the suggested approach is that it assumes the applied management practices are constant during the prediction period. The study predicted that after 300 years there would be an 80% probability of the saturated aquifer which would be expected to be depleted. Lifetime or failure theory can give a simple alternative way to predict the remaining saturated thickness depletion with no time-consuming processes such as the sophisticated software required.

  11. The New MCNP6 Depletion Capability

    SciTech Connect

    Fensin, Michael Lorne; James, Michael R.; Hendricks, John S.; Goorley, John T.

    2012-06-19

    The first MCNP based inline Monte Carlo depletion capability was officially released from the Radiation Safety Information and Computational Center as MCNPX 2.6.0. Both the MCNP5 and MCNPX codes have historically provided a successful combinatorial geometry based, continuous energy, Monte Carlo radiation transport solution for advanced reactor modeling and simulation. However, due to separate development pathways, useful simulation capabilities were dispersed between both codes and not unified in a single technology. MCNP6, the next evolution in the MCNP suite of codes, now combines the capability of both simulation tools, as well as providing new advanced technology, in a single radiation transport code. We describe here the new capabilities of the MCNP6 depletion code dating from the official RSICC release MCNPX 2.6.0, reported previously, to the now current state of MCNP6. NEA/OECD benchmark results are also reported. The MCNP6 depletion capability enhancements beyond MCNPX 2.6.0 reported here include: (1) new performance enhancing parallel architecture that implements both shared and distributed memory constructs; (2) enhanced memory management that maximizes calculation fidelity; and (3) improved burnup physics for better nuclide prediction. MCNP6 depletion enables complete, relatively easy-to-use depletion calculations in a single Monte Carlo code. The enhancements described here help provide a powerful capability as well as dictate a path forward for future development to improve the usefulness of the technology.

  12. The new MCNP6 depletion capability

    SciTech Connect

    Fensin, M. L.; James, M. R.; Hendricks, J. S.; Goorley, J. T.

    2012-07-01

    The first MCNP based in-line Monte Carlo depletion capability was officially released from the Radiation Safety Information and Computational Center as MCNPX 2.6.0. Both the MCNP5 and MCNPX codes have historically provided a successful combinatorial geometry based, continuous energy, Monte Carlo radiation transport solution for advanced reactor modeling and simulation. However, due to separate development pathways, useful simulation capabilities were dispersed between both codes and not unified in a single technology. MCNP6, the next evolution in the MCNP suite of codes, now combines the capability of both simulation tools, as well as providing new advanced technology, in a single radiation transport code. We describe here the new capabilities of the MCNP6 depletion code dating from the official RSICC release MCNPX 2.6.0, reported previously, to the now current state of MCNP6. NEA/OECD benchmark results are also reported. The MCNP6 depletion capability enhancements beyond MCNPX 2.6.0 reported here include: (1) new performance enhancing parallel architecture that implements both shared and distributed memory constructs; (2) enhanced memory management that maximizes calculation fidelity; and (3) improved burnup physics for better nuclide prediction. MCNP6 depletion enables complete, relatively easy-to-use depletion calculations in a single Monte Carlo code. The enhancements described here help provide a powerful capability as well as dictate a path forward for future development to improve the usefulness of the technology. (authors)

  13. Ego depletion in visual perception: Ego-depleted viewers experience less ambiguous figure reversal.

    PubMed

    Wimmer, Marina C; Stirk, Steven; Hancock, Peter J B

    2017-02-22

    This study examined the effects of ego depletion on ambiguous figure perception. Adults (N = 315) received an ego depletion task and were subsequently tested on their inhibitory control abilities that were indexed by the Stroop task (Experiment 1) and their ability to perceive both interpretations of ambiguous figures that was indexed by reversal (Experiment 2). Ego depletion had a very small effect on reducing inhibitory control (Cohen's d = .15) (Experiment 1). Ego-depleted participants had a tendency to take longer to respond in Stroop trials. In Experiment 2, ego depletion had small to medium effects on the experience of reversal. Ego-depleted viewers tended to take longer to reverse ambiguous figures (duration to first reversal) when naïve of the ambiguity and experienced less reversal both when naïve and informed of the ambiguity. Together, findings suggest that ego depletion has small effects on inhibitory control and small to medium effects on bottom-up and top-down perceptual processes. The depletion of cognitive resources can reduce our visual perceptual experience.

  14. The modality effect of ego depletion: Auditory task modality reduces ego depletion.

    PubMed

    Li, Qiong; Wang, Zhenhong

    2016-08-01

    An initial act of self-control that impairs subsequent acts of self-control is called ego depletion. The ego depletion phenomenon has been observed consistently. The modality effect refers to the effect of the presentation modality on the processing of stimuli. The modality effect was also robustly found in a large body of research. However, no study to date has examined the modality effects of ego depletion. This issue was addressed in the current study. In Experiment 1, after all participants completed a handgrip task, one group's participants completed a visual attention regulation task and the other group's participants completed an auditory attention regulation task, and then all participants again completed a handgrip task. The ego depletion phenomenon was observed in both the visual and the auditory attention regulation task. Moreover, participants who completed the visual task performed worse on the handgrip task than participants who completed the auditory task, which indicated that there was high ego depletion in the visual task condition. In Experiment 2, participants completed an initial task that either did or did not deplete self-control resources, and then they completed a second visual or auditory attention control task. The results indicated that depleted participants performed better on the auditory attention control task than the visual attention control task. These findings suggest that altering task modality may reduce ego depletion.

  15. Ozone depletion and chlorine loading potentials

    NASA Technical Reports Server (NTRS)

    Pyle, John A.; Wuebbles, Donald J.; Solomon, Susan; Zvenigorodsky, Sergei; Connell, Peter; Ko, Malcolm K. W.; Fisher, Donald A.; Stordal, Frode; Weisenstein, Debra

    1991-01-01

    The recognition of the roles of chlorine and bromine compounds in ozone depletion has led to the regulation or their source gases. Some source gases are expected to be more damaging to the ozone layer than others, so that scientific guidance regarding their relative impacts is needed for regulatory purposes. Parameters used for this purpose include the steady-state and time-dependent chlorine loading potential (CLP) and the ozone depletion potential (ODP). Chlorine loading potentials depend upon the estimated value and accuracy of atmospheric lifetimes and are subject to significant (approximately 20-50 percent) uncertainties for many gases. Ozone depletion potentials depend on the same factors, as well as the evaluation of the release of reactive chlorine and bromine from each source gas and corresponding ozone destruction within the stratosphere.

  16. Self-regulation, ego depletion, and inhibition.

    PubMed

    Baumeister, Roy F

    2014-12-01

    Inhibition is a major form of self-regulation. As such, it depends on self-awareness and comparing oneself to standards and is also susceptible to fluctuations in willpower resources. Ego depletion is the state of reduced willpower caused by prior exertion of self-control. Ego depletion undermines inhibition both because restraints are weaker and because urges are felt more intensely than usual. Conscious inhibition of desires is a pervasive feature of everyday life and may be a requirement of life in civilized, cultural society, and in that sense it goes to the evolved core of human nature. Intentional inhibition not only restrains antisocial impulses but can also facilitate optimal performance, such as during test taking. Self-regulation and ego depletion- may also affect less intentional forms of inhibition, even chronic tendencies to inhibit. Broadly stated, inhibition is necessary for human social life and nearly all societies encourage and enforce it.

  17. Neutral depletion and the helicon density limit

    SciTech Connect

    Magee, R. M.; Galante, M. E.; Carr, J. Jr.; Lusk, G.; McCarren, D. W.; Scime, E. E.

    2013-12-15

    It is straightforward to create fully ionized plasmas with modest rf power in a helicon. It is difficult, however, to create plasmas with density >10{sup 20} m{sup −3}, because neutral depletion leads to a lack of fuel. In order to address this density limit, we present fast (1 MHz), time-resolved measurements of the neutral density at and downstream from the rf antenna in krypton helicon plasmas. At the start of the discharge, the neutral density underneath the antenna is reduced to 1% of its initial value in 15 μs. The ionization rate inferred from these data implies that the electron temperature near the antenna is much higher than the electron temperature measured downstream. Neutral density measurements made downstream from the antenna show much slower depletion, requiring 14 ms to decrease by a factor of 1/e. Furthermore, the downstream depletion appears to be due to neutral pumping rather than ionization.

  18. Long-term ocean oxygen depletion caused by decomposition of submarine methane hydrate

    NASA Astrophysics Data System (ADS)

    Yamamoto, Akitomo; Yamanaka, Yasuhiro; Oka, Akira; Abe-Ouchi, Ayako

    2014-05-01

    Ocean oxygen depletion associated with global warming significantly affects macrofauna and ocean biogeochemical cycles over thousands of years. Methane released from the decomposition of submarine methane hydrates accelerates oxygen depletion via oxidation in seawater; however, the global impact of this process is yet to be quantitatively investigated. We have projected the potential impact of oxygen depletion due to methane hydrate decomposition via numerical modeling. We find that the global methane hydrate inventory decreases by approximately 70% under four times CO2 concentration and is accompanied by significant global oxygen depletion on a timescale of thousands of years. In particular, we demonstrate the great expansion of suboxic and hypoxic regions, having adverse impact on marine organisms and ocean biogeochemical cycles. The expansion induced by methane release is half (same) of that induced by oxygen solubility decrease due to seawater warming, under the condition that half (all) the methane decomposed into free gas is released from the seafloor to the ocean. This is because methane hydrate decomposition primarily occurs in the Pacific Ocean, where present-day seawater has low oxygen concentration. Consequently, severe oxygen depletion occurs in this region, particularly in so-called oxygen minimum zones. Besides the decrease in oxygen solubility and reduced ventilation associated with global warming, the process described in this study is also important in oxygen depletion.

  19. D0 Decomissioning : Storage of Depleted Uranium Modules Inside D0 Calorimeters after the Termination of D0 Experiment

    SciTech Connect

    Sarychev, Michael; /Fermilab

    2011-09-21

    Dzero liquid Argon calorimeters contain hadronic modules made of depleted uranium plates. After the termination of DO detector's operation, liquid Argon will be transferred back to Argon storage Dewar, and all three calorimeters will be warmed up. At this point, there is no intention to disassemble the calorimeters. The depleted uranium modules will stay inside the cryostats. Depleted uranium is a by-product of the uranium enrichment process. It is slightly radioactive, emits alpha, beta and gamma radiation. External radiation hazards are minimal. Alpha radiation has no external exposure hazards, as dead layers of skin stop it; beta radiation might have effects only when there is a direct contact with skin; and gamma rays are negligible - levels are extremely low. Depleted uranium is a pyrophoric material. Small particles (such as shavings, powder etc.) may ignite with presence of Oxygen (air). Also, in presence of air and moisture it can oxidize. Depleted uranium can absorb moisture and keep oxidizing later, even after air and moisture are excluded. Uranium oxide can powder and flake off. This powder is also pyrographic. Uranium oxide may create health problems if inhaled. Since uranium oxide is water soluble, it may enter the bloodstream and cause toxic effects.

  20. 48 CFR 52.223-11 - Ozone-Depleting Substances.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Ozone-Depleting Substances....223-11 Ozone-Depleting Substances. As prescribed in 23.804(a), insert the following clause: Ozone-Depleting Substances (MAY 2001) (a) Definition. Ozone-depleting substance, as used in this clause, means...

  1. 48 CFR 52.223-11 - Ozone-Depleting Substances.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 2 2013-10-01 2013-10-01 false Ozone-Depleting Substances....223-11 Ozone-Depleting Substances. As prescribed in 23.804(a), insert the following clause: Ozone-Depleting Substances (MAY 2001) (a) Definition. Ozone-depleting substance, as used in this clause, means...

  2. 48 CFR 52.223-11 - Ozone-Depleting Substances.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Ozone-Depleting Substances....223-11 Ozone-Depleting Substances. As prescribed in 23.804(a), insert the following clause: Ozone-Depleting Substances (MAY 2001) (a) Definition. Ozone-depleting substance, as used in this clause, means...

  3. 48 CFR 52.223-11 - Ozone-Depleting Substances.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Ozone-Depleting Substances....223-11 Ozone-Depleting Substances. As prescribed in 23.804(a), insert the following clause: Ozone-Depleting Substances (MAY 2001) (a) Definition. Ozone-depleting substance, as used in this clause, means...

  4. 48 CFR 52.223-11 - Ozone-Depleting Substances.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Ozone-Depleting Substances....223-11 Ozone-Depleting Substances. As prescribed in 23.804(a), insert the following clause: Ozone-Depleting Substances (MAY 2001) (a) Definition. Ozone-depleting substance, as used in this clause, means...

  5. Body factor conscious modeling of single gate fully depleted SOI MOSFETs for low power applications

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Nagumo, Toshiharu; Tsutsui, Gen; Ohtou, Tetsu; Hiramoto, Toshiro

    2005-06-01

    Degradation of body factor (γ) and subthreshold factor (S) of single gate fully depleted SOI MOSFETs due to short channel effects has been studied analytically. The effect of source/drain fringing fields in buried oxide is found to play a more significant role in the reduction of body factor at smaller gate lengths. Present work provides the analytical expressions of effective back gate voltage, body factor and subthreshold factor of short channel fully depleted SOI MOSFETs. The results obtained are found in good approximation with 2D simulation.

  6. Dissolution Treatment of Depleted Uranium Waste

    SciTech Connect

    Gates-Anderson, D D; Laue, C A; Fitch, T E

    2004-02-09

    Researchers at LLNL have developed a 3-stage process that converts pyrophoric depleted uranium metal turnings to a solidified final product that can be transported to and buried at a permitted land disposal site. The three process stages are: (1) pretreatment; (2) dissolution; and (3) solidification. Each stage was developed following extensive experimentation. This report presents the results of their experimental studies.

  7. Demonstration of jackhammer incorporating depleted uranium

    SciTech Connect

    Fischer, L E; Hoard, R W; Carter, D L; Saculla, M D; Wilson, G V

    2000-04-01

    The United States Government currently has an abundance of depleted uranium (DU). This surplus of about 1 billion pounds is the result of an enrichment process using gaseous diffusion to produce enriched and depleted uranium. The enriched uranium has been used primarily for either nuclear weapons for the military or nuclear fuel for the commercial power industry. Most of the depleted uranium remains at the enrichment process plants in the form of depleted uranium hexafluoride (DUF{sub 6}). The Department of Energy (DOE) recently began a study to identify possible commercial applications for the surplus material. One of these potential applications is to use the DU in high-density strikers/hammers in pneumatically driven tools, such as jack hammers and piledrivers to improve their impulse performance. The use of DU could potentially increase tunneling velocity and excavation into target materials with improved efficiency. This report describes the efforts undertaken to analyze the particulars of using DU in two specific striking applications: the jackhammer and chipper tool.

  8. Contrasts between Antarctic and Arctic ozone depletion.

    PubMed

    Solomon, Susan; Portmann, Robert W; Thompson, David W J

    2007-01-09

    This work surveys the depth and character of ozone depletion in the Antarctic and Arctic using available long balloon-borne and ground-based records that cover multiple decades from ground-based sites. Such data reveal changes in the range of ozone values including the extremes observed as polar air passes over the stations. Antarctic ozone observations reveal widespread and massive local depletion in the heart of the ozone "hole" region near 18 km, frequently exceeding 90%. Although some ozone losses are apparent in the Arctic during particular years, the depth of the ozone losses in the Arctic are considerably smaller, and their occurrence is far less frequent. Many Antarctic total integrated column ozone observations in spring since approximately the 1980s show values considerably below those ever observed in earlier decades. For the Arctic, there is evidence of some spring season depletion of total ozone at particular stations, but the changes are much less pronounced compared with the range of past data. Thus, the observations demonstrate that the widespread and deep ozone depletion that characterizes the Antarctic ozone hole is a unique feature on the planet.

  9. Neutral depletion versus repletion due to ionization

    SciTech Connect

    Fruchtman, A.; Makrinich, G.; Raimbault, J.-L.; Liard, L.; Rax, J.-M.; Chabert, P.

    2008-05-15

    Recent theoretical analyses which predicted unexpected effects of neutral depletion in both collisional and collisionless plasmas are reviewed. We focus on the depletion of collisionless neutrals induced by strong ionization of a collisionless plasma and contrast this depletion with the effect of strong ionization on thermalized neutrals. The collisionless plasma is analyzed employing a kinetic description. The collisionless neutrals and the plasma are coupled through volume ionization and wall recombination only. The profiles of density and pressure both of the plasma and of the neutral-gas and the profile of the ionization rate are calculated. It is shown that for collisionless neutrals the ionization results in neutral depletion, while when neutrals are thermalized the ionization induces a maximal neutral-density at the discharge center, which we call neutral repletion. The difference between the two cases stems from the relation between the neutral density and pressure. The pressure of the collisionless neutral-gas turns out to be maximal where its density is minimal, in contrast to the case of a thermalized neutral gas.

  10. Global Warming: Lessons from Ozone Depletion

    ERIC Educational Resources Information Center

    Hobson, Art

    2010-01-01

    My teaching and textbook have always covered many physics-related social issues, including stratospheric ozone depletion and global warming. The ozone saga is an inspiring good-news story that's instructive for solving the similar but bigger problem of global warming. Thus, as soon as students in my physics literacy course at the University of…

  11. Direct Visualization of an Impurity Depletion Zone

    NASA Technical Reports Server (NTRS)

    Chernov, Alex A.; Garcia-Ruiz, Juan Ma; Thomas, Bill R.

    2000-01-01

    When a crystal incorporates more impurity per unit of its volume than the impurity concentration in solution, the solution in vicinity of the growing crystal is depleted with respect to the impurity I,2. With a stagnant solution, e. g. in microgravity or gels, an impurity depletion zone expands as the crystal grows and results in greater purity in most of the outer portion of the crystal than in the core. Crystallization in gel provides an opportunity to mimic microgravity conditions and visualize the impurity depletion zone. Colorless, transparent apoferritin (M congruent to 450 KDa) crystals were grown in the presence of red holoferritin dimer as a microheterogeneous impurity (M congruent to 900 KDa) within agarose gel by counterdiffusion with Cd(2+) precipitant. Preferential trapping of dimers, (distribution coefficient K = 4 (exp 1,2)) results in weaker red color around the crystals grown in the left tube in the figure as compared to the control middle tube without crystals. The left and the middle tubes contain colored ferritin dimers, the right tube contains colored trimers. The meniscus in the left tube separate gel (below) and liquid solution containing Cd(2+) (above). Similar solutions, though without precipitants, were present on top of the middle and right tube allowing diffusion of dimers and trimers. The area of weaker color intensity around crystals directly demonstrates overlapped impurity depletion zones.

  12. S-nitrosothiol depletion in amyotrophic lateral sclerosis.

    PubMed

    Schonhoff, Christopher M; Matsuoka, Masaaki; Tummala, Hemachand; Johnson, Michael A; Estevéz, Alvaro G; Wu, Rui; Kamaid, Andrés; Ricart, Karina C; Hashimoto, Yuichi; Gaston, Benjamin; Macdonald, Timothy L; Xu, Zuoshang; Mannick, Joan B

    2006-02-14

    Recent data suggest that either excessive or deficient levels of protein S-nitrosylation may contribute to disease. Disruption of S-nitrosothiol (SNO) homeostasis may result not only from altered nitric oxide (NO) synthase activity but also from alterations in the activity of denitrosylases that remove NO groups. A subset of patients with familial amyotrophic lateral sclerosis (ALS) have mutations in superoxide dismutase 1 (SOD1) that increase the denitrosylase activity of SOD1. Here, we show that the increased denitrosylase activity of SOD1 mutants leads to an aberrant decrease in intracellular protein and peptide S-nitrosylation in cell and animal models of ALS. Deficient S-nitrosylation is particularly prominent in the mitochondria of cells expressing SOD1 mutants. Our results suggest that SNO depletion disrupts the function and/or subcellular localization of proteins that are regulated by S-nitrosylation such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and thereby contributes to ALS pathogenesis. Repletion of intracellular SNO levels with SNO donor compounds rescues cells from mutant SOD1-induced death. These results suggest that aberrant depletion of intracellular SNOs contributes to motor neuron death in ALS, and raises the possibility that deficient S-nitrosylation is a general mechanism of disease pathogenesis. SNO donor compounds may provide new therapeutic options for diseases such as ALS that are associated with deficient S-nitrosylation.

  13. Potential behavior of depleted uranium penetrators under shipping and bulk storage accident conditions

    SciTech Connect

    Mishima, J.; Parkhurst, M.A.; Scherpelz, R.I.

    1985-03-01

    An investigation of the potential hazard from airborne releases of depleted uranium (DU) from the Army's M829 munitions was conducted at the Pacific Northwest Laboratory. The study included: (1) assessing the characteristics of DU oxide from an April 1983 burn test, (2) postulating conditions of specific accident situations, and (3) reviewing laboratory and theoretical studies of oxidation and airborne transport of DU from accidents. Results of the experimental measurements of the DU oxides were combined with atmospheric transport models and lung and kidney exposure data to help establish reasonable exclusion boundaries to protect personnel and the public at an accident site. 121 references, 44 figures, 30 tables.

  14. How Depleted is the MORB mantle?

    NASA Astrophysics Data System (ADS)

    Hofmann, A. W.; Hart, S. R.

    2015-12-01

    Knowledge of the degree of mantle depletion of highly incompatible elements is critically important for assessing Earth's internal heat production and Urey number. Current views of the degree of MORB source depletion are dominated by Salters and Stracke (2004), and Workman and Hart (2005). The first is based on an assessment of average MORB compositions, whereas the second considers trace element data of oceanic peridotites. Both require an independent determination of one absolute concentration, Lu (Salters & Stracke), or Nd (Workman & Hart). Both use parent-daughter ratios Lu/Hf, Sm/Nd, and Rb/Sr calculated from MORB isotopes combined with continental-crust extraction models, as well as "canonical" trace element ratios, to boot-strap the full range of trace element abundances. We show that the single most important factor in determining the ultimate degree of incompatible element depletion in the MORB source lies in the assumptions about the timing of continent extraction, exemplified by continuous extraction versus simple two-stage models. Continued crust extraction generates additional, recent mantle depletion, without affecting the isotopic composition of the residual mantle significantly. Previous emphasis on chemical compositions of MORB and/or peridotites has tended to obscure this. We will explore the effect of different continent extraction models on the degree of U, Th, and K depletion in the MORB source. Given the uncertainties of the two most popular models, the uncertainties of U and Th in DMM are at least ±50%, and this impacts the constraints on the terrestrial Urey ratio. Salters, F.J.M. and Stracke, A., 2004, Geochem. Geophys. Geosyst. 5, Q05004. Workman, R.K. and Hart, S.R., 2005, EPSL 231, 53-72.

  15. Using carrier-depletion silicon modulators for optical power monitoring.

    PubMed

    Yu, Hui; Korn, Dietmar; Pantouvaki, Marianna; Van Campenhout, Joris; Komorowska, Katarzyna; Verheyen, Peter; Lepage, Guy; Absil, Philippe; Hillerkuss, David; Alloatti, Luca; Leuthold, Juerg; Baets, Roel; Bogaerts, Wim

    2012-11-15

    Defect-mediated subbandgap absorption is observed in ion-implanted silicon-on-oxide waveguides that experience a rapid thermal annealing at 1075°C. With this effect, general carrier-depletion silicon modulators exhibit the capability of optical power monitoring. Responsivity is measured to be 22 mA/W for a 3 mm long Mach-Zehnder modulator of 2×10(18) cm(-3) doping concentration at -7.1 V bias voltage and 5.9 mA/W for a ring modulator of 1×10(18) cm(-3) doping concentration at -10 V bias voltage. The former is used to demonstrate data detection of up to 35 Gbits/s.

  16. Highly isotopically depleted isoprenoids: Molecular markers for ancient methane venting

    SciTech Connect

    Thiel, V.; Peckmann, J.; Seifert, R.; Wehrung, P.; Reitner, J.; Michaelis, W.

    1999-12-01

    The authors propose that organic compounds found in a Miocene limestone from Marmorito (Northern Italy) are source markers for organic matter present in ancient methane vent systems (cold seeps). The limestone contains high concentrations of the tail-to-tail linked, acyclic C{sub 20} isoprenoid 2,6,11,15-tetramethylhexadecane (crocetane), a C{sub 25} homolog 2,6,10,15,19-pentamethylicosane (PME), and a distinctive glycerol ether lipid containing 3,7,11,15-tetramethylhexadecyl (phytanyl-) moieties. The chemical structures of these biomarkers indicate a common origin from archaea. Their extremely {sup 13}C-depleted isotope compositions ({delta}{sup 13}C {approximately} {minus}108 to {minus}115.6% PDB) suggest that the respective archaea have directly or indirectly introduced isotopically depleted, methane-derived carbon into their biomass. The authors postulate that a second major cluster of biomarkers showing heavier isotope values ({delta}{sup 13}C {approximately} {minus}88%) is derived from sulfate-reducing bacteria (SRB). The observed biomarkers sustain the idea that methanogenic bacteria, in a syntrophic community with SRB, are responsible for the anaerobic oxidation of methane in marine sediments. Marmorito may thus represent a conceivable ancient scenario for methane consumption performed by a defined, two-membered bacterial consortium: (1) archaea that perform reversed methanogenesis by oxidizing methane and producing CO{sub 2} and H{sub 2}; and (2) SRB that consume the resulting H{sub 2}. Furthermore, the respective organic molecules are, unlike other compounds, tightly bound to the crystalline carbonate phase. The Marmorito carbonates can thus be regarded as cold seep microbialites rather than mere antigenic carbonates.

  17. Iron isotope composition of depleted MORB

    NASA Astrophysics Data System (ADS)

    Labidi, J.; Sio, C. K. I.; Shahar, A.

    2015-12-01

    In terrestrial basalts, iron isotope ratios are observed to weakly fractionate as a function of olivine and pyroxene crystallization. However, a ~0.1‰ difference between chondrites and MORB had been reported (Dauphas et al. 2009, Teng et al. 2013 and ref. therein). This observation could illustrate an isotope fractionation occurring during partial melting, as a function of the Fe valence in melt versus crystals. Here, we present high-precision Fe isotopic data measured by MC-ICP-MS on well-characterized samples from the Pacific-Antarctic Ridge (PAR, n=9) and from the Garrett Transform Fault (n=8). These samples allow exploring the Fe isotope fractionation between melt and magnetite, and the role of partial melting on Fe isotope fractionation. Our average δ56Fe value is +0.095±0.013‰ (95% confidence, n=17), indistinguishable from a previous estimate of +0.105±0.006‰ (95% confidence, n=43, see ref. 2). Our δ56Fe values correlate weakly with MgO contents, and correlate positively with K/Ti ratios. PAC1 DR10 shows the largest Ti and Fe depletion after titanomagnetite fractionation, with a δ56Fe value of +0.076±0.036‰. This is ~0.05‰ below other samples at a given MgO. This may illustrate a significant Fe isotope fractionation between the melt and titanomagnetite, in agreement with experimental determination (Shahar et al. 2008). GN09-02, the most incompatible-element depleted sample, has a δ56Fe value of 0.037±0.020‰. This is the lowest high-precision δ56Fe value recorded for a MORB worldwide. This basalt displays an incompatible-element depletion consistent with re-melting beneath the transform fault of mantle source that was depleted during a first melting event, beneath the ridge axis (Wendt et al. 1999). The Fe isotope observation could indicate that its mantle source underwent 56Fe depletion after a first melting event. It could alternatively indicate a lower Fe isotope fractionation during re-melting, if the source was depleted of its Fe3

  18. Copenhagen delegates advance phaseout of ozone depleters

    SciTech Connect

    Kirschner, E.

    1992-12-09

    As expected, delegates at the United Nations Ozone Layer Conference in Copenhagen sped up ozone depleter phaseouts from the 1987 Montreal Protocol and the 1990 London amendments. The changes bring the worldwide production phaseout of chlorofluorocarbons (CFCs) and other ozone depleters in developed countries in line with U.S. and European plans announced earlier this year. Adjustments to the protocol, which are binding on the signatories, change the phaseout for CFC, carbon tetrachloride, and methyl chloroform production and consumption to January 1, 1996 from 2000. The 75% reduction of 1986 levels from CFCs by January 1, 1994 is a compromise between European pressure for an 85% cut and the US goal of 70%. Halon production is to end January 1, 1994, as anticipated. Developing countries continue to have a 10-year grace period. Friends of the Earth ozone campaign director Liz Cook counters that the phaseout dates were scheduled with concern for the chemical industry, not for the ozone layer.

  19. Endoplasmic-Reticulum Calcium Depletion and Disease

    PubMed Central

    Mekahli, Djalila; Bultynck, Geert; Parys, Jan B.; De Smedt, Humbert; Missiaen, Ludwig

    2011-01-01

    The endoplasmic reticulum (ER) as an intracellular Ca2+ store not only sets up cytosolic Ca2+ signals, but, among other functions, also assembles and folds newly synthesized proteins. Alterations in ER homeostasis, including severe Ca2+ depletion, are an upstream event in the pathophysiology of many diseases. On the one hand, insufficient release of activator Ca2+ may no longer sustain essential cell functions. On the other hand, loss of luminal Ca2+ causes ER stress and activates an unfolded protein response, which, depending on the duration and severity of the stress, can reestablish normal ER function or lead to cell death. We will review these various diseases by mainly focusing on the mechanisms that cause ER Ca2+ depletion. PMID:21441595

  20. Ozone depletion in tropospheric volcanic plumes

    NASA Astrophysics Data System (ADS)

    Vance, Alan; McGonigle, Andrew J. S.; Aiuppa, Alessandro; Stith, Jeffrey L.; Turnbull, Kate; von Glasow, Roland

    2010-11-01

    We measured ozone (O3) concentrations in the atmospheric plumes of the volcanoes St. Augustine (1976), Mt. Etna (2004, 2009) and Eyjafjallajökull (2010) and found O3 to be strongly depleted compared to the background at each volcano. At Mt. Etna O3 was depleted within tens of seconds from the crater, the age of the St. Augustine plumes was on the order of hours, whereas the O3 destruction in the plume of Eyjafjallajökull was maintained in 1-9 day old plumes. The most likely cause for this O3 destruction are catalytic bromine reactions as suggested by a model that manages to reproduce the very early destruction of O3 but also shows that O3 destruction is ongoing for several days. Given the observed rapid and sustained destruction of O3, heterogeneous loss of O3 on ash is unlikely to be important.

  1. Replacements For Ozone-Depleting Foaming Agents

    NASA Technical Reports Server (NTRS)

    Blevins, Elana; Sharpe, Jon B.

    1995-01-01

    Fluorinated ethers used in place of chlorofluorocarbons and hydrochlorofluorocarbons. Replacement necessary because CFC's and HCFC's found to contribute to depletion of ozone from upper atmosphere, and manufacture and use of them by law phased out in near future. Two fluorinated ethers do not have ozone-depletion potential and used in existing foam-producing equipment, designed to handle liquid blowing agents soluble in chemical ingredients that mixed to make foam. Any polyurethane-based foams and several cellular plastics blown with these fluorinated ethers used in processes as diverse as small batch pours, large sprays, or double-band lamination to make insulation for private homes, commercial buildings, shipping containers, and storage tanks. Fluorinated ethers proved useful as replacements for CFC refrigerants and solvents.

  2. Depleted uranium plasma reduction system study

    SciTech Connect

    Rekemeyer, P.; Feizollahi, F.; Quapp, W.J.; Brown, B.W.

    1994-12-01

    A system life-cycle cost study was conducted of a preliminary design concept for a plasma reduction process for converting depleted uranium to uranium metal and anhydrous HF. The plasma-based process is expected to offer significant economic and environmental advantages over present technology. Depleted Uranium is currently stored in the form of solid UF{sub 6}, of which approximately 575,000 metric tons is stored at three locations in the U.S. The proposed system is preconceptual in nature, but includes all necessary processing equipment and facilities to perform the process. The study has identified total processing cost of approximately $3.00/kg of UF{sub 6} processed. Based on the results of this study, the development of a laboratory-scale system (1 kg/h throughput of UF6) is warranted. Further scaling of the process to pilot scale will be determined after laboratory testing is complete.

  3. The ultimate disposition of depleted uranium

    SciTech Connect

    Lemons, T.R.

    1991-12-31

    Depleted uranium (DU) is produced as a by-product of the uranium enrichment process. Over 340,000 MTU of DU in the form of UF{sub 6} have been accumulated at the US government gaseous diffusion plants and the stockpile continues to grow. An overview of issues and objectives associated with the inventory management and the ultimate disposition of this material is presented.

  4. Alternatives for Disposal of Depleted Uranium Waste.

    DTIC Science & Technology

    1985-11-01

    originating activity by DTIC. Address your request for additional copies to: Defense Technical Information Center Cameron Station Alexandria, Virginia 22314 0...LIST OF TABLES Table Title Page 1 Specific Activity of Depleted Uranium Sand Mixture ......... .................. 8 2 Disposal at Department of Energy...exceed the allowable limits for on-site disposal. This material must be disposed of at a commercial low-level radio- active waste disposal site. Because

  5. Carbon sequestration in depleted oil shale deposits

    DOEpatents

    Burnham, Alan K; Carroll, Susan A

    2014-12-02

    A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.

  6. The ultimate disposition of depleted uranium

    SciTech Connect

    Not Available

    1990-12-01

    Significant amounts of the depleted uranium (DU) created by past uranium enrichment activities have been sold, disposed of commercially, or utilized by defense programs. In recent years, however, the demand for DU has become quite small compared to quantities available, and within the US Department of Energy (DOE) there is concern for any risks and/or cost liabilities that might be associated with the ever-growing inventory of this material. As a result, Martin Marietta Energy Systems, Inc. (Energy Systems), was asked to review options and to develop a comprehensive plan for inventory management and the ultimate disposition of DU accumulated at the gaseous diffusion plants (GDPs). An Energy Systems task team, under the chairmanship of T. R. Lemons, was formed in late 1989 to provide advice and guidance for this task. This report reviews options and recommends actions and objectives in the management of working inventories of partially depleted feed (PDF) materials and for the ultimate disposition of fully depleted uranium (FDU). Actions that should be considered are as follows. (1) Inspect UF{sub 6} cylinders on a semiannual basis. (2) Upgrade cylinder maintenance and storage yards. (3) Convert FDU to U{sub 3}O{sub 8} for long-term storage or disposal. This will include provisions for partial recovery of costs to offset those associated with DU inventory management and the ultimate disposal of FDU. Another recommendation is to drop the term tails'' in favor of depleted uranium'' or DU'' because the tails'' label implies that it is waste.'' 13 refs.

  7. Depletion modeling of liquid dominated geothermal reservoirs

    SciTech Connect

    Olsen, G.

    1984-06-01

    Depletion models for liquid-dominated geothermal reservoirs are derived and presented. The depletion models are divided into two categories: confined and unconfined. For both cases depletion models with no recharge (or influx), and depletion models including recharge, are used to match field data from the Svartsengi high temperature geothermal field in Iceland. The influx models included with the mass and energy balances are adopted from the petroleum engineering literature. The match to production data from Svartsengi is improved when influx was included. The Schilthuis steady-state influx gives a satisfactory match. The finite aquifer method of Fetkovitch, and the unsteady state method of Hurst gave reasonable answers, but not as good. The best match is obtained using Hurst simplified solution when lambda = 1.3 x 10{sup -4} m{sup -1}. From the match the cross-sectional area of the aquifer was calculated as 3.6 km{sup 2}. The drawdown was predicted using the Hurst simplified method, and compared with predicted drawdown from a boiling model and an empirical log-log model. A large difference between the models was obtained. The predicted drawdown using the Hurst simplified method falls between the other two. Injection has been considered by defining the net rate as being the production rate minus the injection rate. No thermal of transient effects were taken into account. Prediction using three different net rates shows that the pressure can be maintained using the Hurst simplified method if there is significant fluid reinjection. 32 refs., 44 figs., 2 tabs.

  8. Long-term ocean oxygen depletion due to decomposition of methane hydrate

    NASA Astrophysics Data System (ADS)

    Yamamoto, A.; Yamanaka, Y.; Oka, A.; Abe-Ouchi, A.

    2014-12-01

    Global warming could decompose submarine methane hydrate and cause methane release into the ocean. The released methane causes oxygen depletion via oxidation; however, the global impact of this process is yet to be quantitatively investigated. We have projected the potential impact of oxygen depletion due to methane hydrate decomposition via numerical modeling. We find that the global methane hydrate inventory decreases by approximately 70% under four times CO2 concentration and is accompanied by significant global oxygen depletion on a timescale of thousands of years. In particular, we demonstrate the great expansion of suboxic and hypoxic regions, having adverse impact on marine organisms and ocean biogeochemical cycles. The expansion induced by methane release is half (same) of that induced by oxygen solubility decrease due to seawater warming, under the condition that half (all) the methane decomposed into free gas is released from the seafloor to the ocean. This is because methane hydrate decomposition primarily occurs in the Pacific Ocean, where present-day seawater has low oxygen concentration. Consequently, severe oxygen depletion occurs in this region, particularly in so-called oxygen minimum zones. Besides the decrease in oxygen solubility and reduced ventilation associated with global warming, the process described in this study is also important in oxygen depletion. We conclude that the ongoing emission of anthropogenic CO2 triggers ocean oxygen depletion on millennial timescales. Reference Yamamoto, A., Y. Yamanaka, A. Oka, and A. Abe-Ouchi (2014), Ocean oxygen depletion due to decomposition of submarine methane hydrate, Geophys. Res. Lett., 41, doi:10.1002/2014GL060483.

  9. Biophysical Characterization of the Iron in Mitochondria from Atm1p-depleted Saccharomyces cerevisiae

    PubMed Central

    Miao, Ren; Kim, Hansoo; Koppolu, Uma Mahendra Kumar; Ellis, E. Ann; Scott, Robert A.; Lindahl, Paul A.

    2009-01-01

    Atm1p is an ABC transporter localized in the mitochondrial inner membrane; it functions to export an unknown species into the cytosol and is involved in cellular iron metabolism. Depletion or deletion of Atm1p causes Fe accumulation in mitochondria and a defect in cytosolic Fe/S cluster assembly, but reportedly not a defect in mitochondrial Fe/S cluster assembly. In this study the nature of the accumulated Fe was examined using Mössbauer spectroscopy, EPR, electronic absorption spectroscopy, X-ray absorption spectroscopy, and electron microscopy. The Fe that accumulated in aerobically grown cells was in the form of Fe(III) phosphate nanoparticles similar to that which accumulates in yeast frataxin Yfh1p-deleted or yeast ferredoxin Yah1p-depleted cells. Relative to WT mitochondria, Fe/S cluster and heme levels in Atm1p-depleted mitochondria from aerobic cells were significantly diminished. Atm1p-depletion also caused a build-up of nonheme Fe(II) ions in the mitochondria and an increase in oxidative damage. Atm1p-depleted mitochondria isolated from anaerobically grown cells exhibited WT levels of Fe/S clusters and hemes, and they did not hyper-accumulate Fe. Atm1p-depleted cells lacked Leu1p activity, regardless of whether they were grown aerobically or anaerobically. These results indicate that Atm1p does not participate in mitochondrial Fe/S cluster assembly, and that the species exported by Atm1p is required for cytosolic Fe/S cluster assembly. The Fe/S cluster defect and the Fe-accumulation phenotype, resulting from the depletion of Atm1p in aerobic cells (but not in anaerobic cells), may be secondary effects that are observed only when cells are exposed to oxygen during growth. Reactive oxygen species generated under these conditions might degrade iron-sulfur clusters and lower heme levels in the organelle. PMID:19761223

  10. Renal cortical pyruvate depletion during AKI.

    PubMed

    Zager, Richard A; Johnson, Ali C M; Becker, Kirsten

    2014-05-01

    Pyruvate is a key intermediary in energy metabolism and can exert antioxidant and anti-inflammatory effects. However, the fate of pyruvate during AKI remains unknown. Here, we assessed renal cortical pyruvate and its major determinants (glycolysis, gluconeogenesis, pyruvate dehydrogenase [PDH], and H2O2 levels) in mice subjected to unilateral ischemia (15-60 minutes; 0-18 hours of vascular reflow) or glycerol-induced ARF. The fate of postischemic lactate, which can be converted back to pyruvate by lactate dehydrogenase, was also addressed. Ischemia and glycerol each induced persistent pyruvate depletion. During ischemia, decreasing pyruvate levels correlated with increasing lactate levels. During early reperfusion, pyruvate levels remained depressed, but lactate levels fell below control levels, likely as a result of rapid renal lactate efflux. During late reperfusion and glycerol-induced AKI, pyruvate depletion corresponded with increased gluconeogenesis (pyruvate consumption). This finding was underscored by observations that pyruvate injection increased renal cortical glucose content in AKI but not normal kidneys. AKI decreased PDH levels, potentially limiting pyruvate to acetyl CoA conversion. Notably, pyruvate therapy mitigated the severity of AKI. This renoprotection corresponded with increases in cytoprotective heme oxygenase 1 and IL-10 mRNAs, selective reductions in proinflammatory mRNAs (e.g., MCP-1 and TNF-α), and improved tissue ATP levels. Paradoxically, pyruvate increased cortical H2O2 levels. We conclude that AKI induces a profound and persistent depletion of renal cortical pyruvate, which may induce additional injury.

  11. Barium depletion in hollow cathode emitters

    SciTech Connect

    Polk, James E. Mikellides, Ioannis G.; Katz, Ira; Capece, Angela M.

    2016-01-14

    Dispenser hollow cathodes rely on a consumable supply of Ba released by BaO-CaO-Al{sub 2}O{sub 3} source material in the pores of a tungsten matrix to maintain a low work function surface. The examination of cathode emitters from long duration tests shows deposits of tungsten at the downstream end that appear to block the flow of Ba from the interior. In addition, a numerical model of Ba transport in the cathode plasma indicates that the Ba partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant Ba-producing reaction, and it was postulated previously that this would suppress Ba loss in the upstream part of the emitter. New measurements of the Ba depletion depth from a cathode insert operated for 8200 h reveal that Ba loss is confined to a narrow region near the downstream end, confirming this hypothesis. The Ba transport model was modified to predict the depletion depth with time. A comparison of the calculated and measured depletion depths gives excellent qualitative agreement, and quantitative agreement was obtained assuming an insert temperature 70 °C lower than measured beginning-of-life values.

  12. Pumping test evaluation of stream depletion parameters.

    PubMed

    Lough, Hilary K; Hunt, Bruce

    2006-01-01

    Descriptions are given of a pumping test and a corresponding analysis that permit calculation of all five hydrogeological parameters appearing in the Hunt (2003) solution for stream depletion caused by ground water abstraction from a well beside a stream. This solution assumes that flow in the pumped aquifer is horizontal, flow in the overlying aquitard or system of aquitards is vertical, and the free surface in the top aquitard is allowed to draw down. The definition of an aquitard in this paper is any layer with a vertical hydraulic conductivity much lower than the horizontal hydraulic conductivity of the pumped aquifer. These "aquitards" may be reasonably permeable layers but are distinguished from the pumped aquifer by their hydraulic conductivity contrast. The pumping test requires a complete set of drawdown measurements from at least one observation well. This well must be deep enough to penetrate the pumped aquifer, and pumping must continue for a sufficient time to ensure that depleted streamflow becomes a significant portion of the well abstraction rate. Furthermore, two of the five parameters characterize an aquitard that overlies the pumped aquifer, and values for these parameters are seen to be dependent upon the initial water table elevation in the aquitard. The field test analyzed herein used a total of eight observation wells screened in the pumped aquifer, and measurements from these wells gave eight sets of parameters that are used in a sensitivity analysis to determine the relative importance of each parameter in the stream depletion calculations.

  13. Formaldehyde fixation is detrimental to actin cables in glucose-depleted S. cerevisiae cells

    PubMed Central

    Vasicova, Pavla; Rinnerthaler, Mark; Haskova, Danusa; Novakova, Lenka; Malcova, Ivana; Breitenbach, Michael; Hasek, Jiri

    2016-01-01

    Actin filaments form cortical patches and emanating cables in fermenting cells of Saccharomyces cerevisiae. This pattern has been shown to be depolarized in glucose-depleted cells after formaldehyde fixation and staining with rhodamine-tagged phalloidin. Loss of actin cables in mother cells was remarkable. Here we extend our knowledge on actin in live glucose-depleted cells co-expressing the marker of actin patches (Abp1-RFP) with the marker of actin cables (Abp140-GFP). Glucose depletion resulted in appearance of actin patches also in mother cells. However, even after 80 min of glucose deprivation these cells showed a clear network of actin cables labeled with Abp140-GFP in contrast to previously published data. In live cells with a mitochondrial dysfunction (rho0 cells), glucose depletion resulted in almost immediate appearance of Abp140-GFP foci partially overlapping with Abp1-RFP patches in mother cells. Residual actin cables were clustered in patch-associated bundles. A similar overlapping “patchy” pattern of both actin markers was observed upon treatment of glucose-deprived rho+ cells with FCCP (the inhibitor of oxidative phosphorylation) and upon treatment with formaldehyde. While the formaldehyde-targeted process stays unknown, our results indicate that published data on yeast actin cytoskeleton obtained from glucose-depleted cells after fixation should be considered with caution.

  14. Incorporation of copper ions into crystals of T2 copper-depleted laccase from Botrytis aclada

    SciTech Connect

    Osipov, E. M.; Polyakov, K. M.; Tikhonova, T. V.; Kittl, R.; Dorovatovskii, P.V.; Shleev, S. V.; Popov, V. O.; Ludwig, R.

    2015-11-18

    The restoration of the native form of laccase from B. aclada from the type 2 copper-depleted form of the enzyme was investigated. Copper ions were found to be incorporated into the active site after soaking the depleted enzyme in a Cu{sup +}-containing solution. Laccases belong to the class of multicopper oxidases catalyzing the oxidation of phenols accompanied by the reduction of molecular oxygen to water without the formation of hydrogen peroxide. The activity of laccases depends on the number of Cu atoms per enzyme molecule. The structure of type 2 copper-depleted laccase from Botrytis aclada has been solved previously. With the aim of obtaining the structure of the native form of the enzyme, crystals of the depleted laccase were soaked in Cu{sup +}- and Cu{sup 2+}-containing solutions. Copper ions were found to be incorporated into the active site only when Cu{sup +} was used. A comparative analysis of the native and depleted forms of the enzymes was performed.

  15. Ab Initio Studies of Stratospheric Ozone Depletion Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    An overview of the current understanding of ozone depletion chemistry, particularly with regards the formation of the so-called Antarctic ozone hole, will be presented together with an outline as to how ab initio quantum chemistry can be used to further our understanding of stratospheric chemistry. The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results will be shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.

  16. Full-Swing InGaZnO Thin Film Transistor Inverter with Depletion Load

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Min; Cho, In-Tak; Lee, Jong-Ho; Kwon, Hyuck-In

    2009-10-01

    A high performance amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistor (TFT) inverter is implemented using the enhancement mode driver and the depletion mode load. The threshold voltage of the TFT is easily controlled by adjusting the active layer thickness in a-IGZO TFTs. The proposed inverter shows much improved switching characteristics including higher voltage gain, wider swing range, and higher noise margins compared to the conventional inverter with an enhancement load.

  17. 26 CFR 1.613-1 - Percentage depletion; general rule.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... TAX (CONTINUED) INCOME TAXES (CONTINUED) Natural Resources § 1.613-1 Percentage depletion; general rule. (a) In general. In the case of a taxpayer computing the deduction for depletion under section 611... 26 Internal Revenue 7 2010-04-01 2010-04-01 true Percentage depletion; general rule....

  18. 26 CFR 1.613-1 - Percentage depletion; general rule.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... TAX (CONTINUED) INCOME TAXES (CONTINUED) Natural Resources § 1.613-1 Percentage depletion; general rule. (a) In general. In the case of a taxpayer computing the deduction for depletion under section 611... 26 Internal Revenue 7 2013-04-01 2013-04-01 false Percentage depletion; general rule....

  19. 26 CFR 1.613-1 - Percentage depletion; general rule.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... TAX (CONTINUED) INCOME TAXES (CONTINUED) Natural Resources § 1.613-1 Percentage depletion; general rule. (a) In general. In the case of a taxpayer computing the deduction for depletion under section 611... 26 Internal Revenue 7 2014-04-01 2013-04-01 true Percentage depletion; general rule....

  20. 26 CFR 1.613-1 - Percentage depletion; general rule.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... TAX (CONTINUED) INCOME TAXES (CONTINUED) Natural Resources § 1.613-1 Percentage depletion; general rule. (a) In general. In the case of a taxpayer computing the deduction for depletion under section 611... 26 Internal Revenue 7 2012-04-01 2012-04-01 false Percentage depletion; general rule....

  1. 26 CFR 52.4682-1 - Ozone-depleting chemicals.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 17 2013-04-01 2013-04-01 false Ozone-depleting chemicals. 52.4682-1 Section 52... EXCISE TAXES (CONTINUED) ENVIRONMENTAL TAXES § 52.4682-1 Ozone-depleting chemicals. (a) Overview. This section provides rules relating to the tax imposed on ozone-depleting chemicals (ODCs) under section...

  2. 26 CFR 52.4682-1 - Ozone-depleting chemicals.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 17 2011-04-01 2011-04-01 false Ozone-depleting chemicals. 52.4682-1 Section 52... EXCISE TAXES (CONTINUED) ENVIRONMENTAL TAXES § 52.4682-1 Ozone-depleting chemicals. (a) Overview. This section provides rules relating to the tax imposed on ozone-depleting chemicals (ODCs) under section...

  3. 26 CFR 52.4682-1 - Ozone-depleting chemicals.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 17 2014-04-01 2014-04-01 false Ozone-depleting chemicals. 52.4682-1 Section 52... EXCISE TAXES (CONTINUED) ENVIRONMENTAL TAXES § 52.4682-1 Ozone-depleting chemicals. (a) Overview. This section provides rules relating to the tax imposed on ozone-depleting chemicals (ODCs) under section...

  4. 26 CFR 52.4682-1 - Ozone-depleting chemicals.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 17 2012-04-01 2012-04-01 false Ozone-depleting chemicals. 52.4682-1 Section 52... EXCISE TAXES (CONTINUED) ENVIRONMENTAL TAXES § 52.4682-1 Ozone-depleting chemicals. (a) Overview. This section provides rules relating to the tax imposed on ozone-depleting chemicals (ODCs) under section...

  5. Children's Models of the Ozone Layer and Ozone Depletion.

    ERIC Educational Resources Information Center

    Christidou, Vasilia; Koulaidis, Vasilis

    1996-01-01

    The views of 40 primary students on ozone and its depletion were recorded through individual, semi-structured interviews. The data analysis resulted in the formation of a limited number of models concerning the distribution and role of ozone in the atmosphere, the depletion process, and the consequences of ozone depletion. Identifies five target…

  6. 26 CFR 1.642(e)-1 - Depreciation and depletion.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 8 2010-04-01 2010-04-01 false Depreciation and depletion. 1.642(e)-1 Section 1... (CONTINUED) INCOME TAXES Estates, Trusts, and Beneficiaries § 1.642(e)-1 Depreciation and depletion. An estate or trust is allowed the deductions for depreciation and depletion, but only to the extent...

  7. A modern depleted uranium manufacturing facility

    SciTech Connect

    Zagula, T.A.

    1995-07-01

    The Specific Manufacturing Capabilities (SMC) Project located at the Idaho National Engineering Laboratory (INEL) and operated by Lockheed Martin Idaho Technologies Co. (LMIT) for the Department of Energy (DOE) manufactures depleted uranium for use in the U.S. Army MIA2 Abrams Heavy Tank Armor Program. Since 1986, SMC has fabricated more than 12 million pounds of depleted uranium (DU) products in a multitude of shapes and sizes with varying metallurgical properties while maintaining security, environmental, health and safety requirements. During initial facility design in the early 1980`s, emphasis on employee safety, radiation control and environmental consciousness was gaining momentum throughout the DOE complex. This fact coupled with security and production requirements forced design efforts to focus on incorporating automation, local containment and computerized material accountability at all work stations. The result was a fully automated production facility engineered to manufacture DU armor packages with virtually no human contact while maintaining security, traceability and quality requirements. This hands off approach to handling depleted uranium resulted in minimal radiation exposures and employee injuries. Construction of the manufacturing facility was complete in early 1986 with the first armor package certified in October 1986. Rolling facility construction was completed in 1987 with the first certified plate produced in the fall of 1988. Since 1988 the rolling and manufacturing facilities have delivered more than 2600 armor packages on schedule with 100% final product quality acceptance. During this period there was an annual average of only 2.2 lost time incidents and a single individual maximum radiation exposure of 150 mrem. SMC is an example of designing and operating a facility that meets regulatory requirements with respect to national security, radiation control and personnel safety while achieving production schedules and product quality.

  8. Correlation between cosmic rays and ozone depletion.

    PubMed

    Lu, Q-B

    2009-03-20

    This Letter reports reliable satellite data in the period of 1980-2007 covering two full 11-yr cosmic ray (CR) cycles, clearly showing the correlation between CRs and ozone depletion, especially the polar ozone loss (hole) over Antarctica. The results provide strong evidence of the physical mechanism that the CR-driven electron-induced reaction of halogenated molecules plays the dominant role in causing the ozone hole. Moreover, this mechanism predicts one of the severest ozone losses in 2008-2009 and probably another large hole around 2019-2020, according to the 11-yr CR cycle.

  9. Depletion of the Outer Asteroid Belt

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi; Malhotra, Renu

    1997-01-01

    During the early history of the solar system, it is likely that the outer planets changed their distance from the sun, and hence, their influence on the asteroid belt evolved with time. The gravitational influence of Jupiter and Saturn on the orbital evolution of asteroids in the outer asteroid belt was calculated. The results show that the sweeping of mean motion resonances associated with planetary migration efficiently destabilizes orbits in the outer asteroid belt on a time scale of 10 million years. This mechanism provides an explanation for the observed depletion of asteroids in that region.

  10. Ozone depletion: implications for the veterinarian.

    PubMed

    Kopecky, K E

    1978-09-15

    Man has inadvertently modified the stratosphere. There is a good possibility that the ozone layer is being depleted by the use of jet aircraft (SST), chlorofluoromethane propellants, and nitrogen fertilizers. Under unpolluted conditions, the production of ozone equals its destruction. By man's intervention, however, the destruction may exceed the production. The potential outcome is increased intensity of solar ultraviolet (280-400 nm) radiation and penetration to the earth's surface of previously absorbed wavelengths below about 280 nm. The increased ultraviolet radiation would increase the likelihood of skin cancer in man and ocular squamous cell carcinoma in cattle. The climate also might be modified, possibly in an undesirable way.

  11. Commercialisation of full depletion scientific CCDs

    NASA Astrophysics Data System (ADS)

    Jorden, Paul; Ball, Kevin; Bell, Ray; Burt, David; Guyatt, Neil; Hadfield, Kevin; Jerram, Paul; Pool, Peter; Pike, Andrew; Holland, Andrew; Murray, Neil

    2006-06-01

    Following successful manufacture of small-format trial devices we have now designed and manufactured large-format scientific CCDs in high resistivity silicon ('high-rho'). These devices are intended for 'full depletion' operation as backside illuminated sensors for very high red wavelength sensitivity and X-ray imaging spectroscopy at extended energies. Devices of 2k*512 and 2k*4k format, with both single and dual stage output circuits have been manufactured and tested. Design considerations, test results, and commercial manufacturing considerations will be addressed.

  12. Scientific assessment of ozone depletion: 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Over the past few years, there have been highly significant advances in the understanding of the impact of human activities on the Earth's stratospheric ozone layer and the influence of changes in chemical composition of the radiative balance of the climate system. Specifically, since the last international scientific review (1989), there have been five major advances: (1) global ozone decreases; (2) polar ozone; (3) ozone and industrial halocarbons; (4) ozone and climate relations; and (5) ozone depletion potentials (ODP's) and global warming potentials (GWP's). These topics and others are discussed.

  13. Simulations and observations of plasma depletion, ion composition, and airglow emissions in two auroral ionospheric depletion experiments

    NASA Technical Reports Server (NTRS)

    Yau, A. W.; Whalen, B. A.; Harris, F. R.; Gattinger, R. L.; Pongratz, M. B.

    1985-01-01

    Observations of plasma depletion, ion composition modification, and airglow emissions in the Waterhole experiments are presented. The detailed ion chemistry and airglow emission processes related to the ionospheric hole formation in the experiment are examined, and observations are compared with computer simulation results. The latter indicate that the overall depletion rates in different parts of the depletion region are governed by different parameters.

  14. Ego depletion results in an increase in spontaneous false memories.

    PubMed

    Otgaar, Henry; Alberts, Hugo; Cuppens, Lesly

    2012-12-01

    The primary aim of the current study was to examine whether depleted cognitive resources might have ramifications for the formation of neutral and negative spontaneous false memories. To examine this, participants received neutral and negative Deese/Roediger-McDermott false memory wordlists. Also, for half of the participants, cognitive resources were depleted by use of an ego depletion manipulation (solving difficult calculations while being interfered with auditory noise). Our chief finding was that depleted cognitive resources made participants more vulnerable for the production of false memories. Our results shed light on how depleted cognitive resources affect neutral and negative correct and errant memories.

  15. Decline and depletion rates of oil production: a comprehensive investigation.

    PubMed

    Höök, Mikael; Davidsson, Simon; Johansson, Sheshti; Tang, Xu

    2014-01-13

    Two of the most fundamental concepts in the current debate about future oil supply are oilfield decline rates and depletion rates. These concepts are related, but not identical. This paper clarifies the definitions of these concepts, summarizes the underlying theory and empirically estimates decline and depletion rates for different categories of oilfield. A database of 880 post-peak fields is analysed to determine typical depletion levels, depletion rates and decline rates. This demonstrates that the size of oilfields has a significant influence on decline and depletion rates, with generally high values for small fields and comparatively low values for larger fields. These empirical findings have important implications for oil supply forecasting.

  16. Depletion of atmospheric gaseous elemental mercury by plant uptake at Mt. Changbai, Northeast China

    NASA Astrophysics Data System (ADS)

    Fu, Xuewu; Zhu, Wei; Zhang, Hui; Sommar, Jonas; Yu, Ben; Yang, Xu; Wang, Xun; Lin, Che-Jen; Feng, Xinbin

    2016-10-01

    There exists observational evidence that gaseous elemental mercury (GEM) can be readily removed from the atmosphere via chemical oxidation followed by deposition in the polar and sub-polar regions, free troposphere, lower stratosphere, and marine boundary layer under specific environmental conditions. Here we report GEM depletions in a temperate mixed forest at Mt. Changbai, Northeast China. The strong depletions occurred predominantly at night during the leaf-growing season and in the absence of gaseous oxidized mercury (GOM) enrichment (GOM < 3 pg m-3). Vertical gradients of decreasing GEM concentrations from layers above to under forest canopy suggest in situ loss of GEM to forest canopy at Mt. Changbai. Foliar GEM flux measurements showed that the foliage of two predominant tree species is a net sink of GEM at night, with a mean flux of -1.8 ± 0.3 ng m2 h-1 over Fraxinus mandshurica (deciduous tree species) and -0.1 ± 0.2 ng m2 h-1 over Pinus Koraiensis (evergreen tree species). Daily integrated GEM δ202Hg, Δ199Hg, and Δ200Hg at Mt. Changbai during 8-18 July 2013 ranged from -0.34 to 0.91 ‰, from -0.11 to -0.04 ‰ and from -0.06 to 0.01 ‰, respectively. A large positive shift in GEM δ202Hg occurred during the strong GEM depletion events, whereas Δ199Hg and Δ200Hg remained essentially unchanged. The observational findings and box model results show that uptake of GEM by forest canopy plays a predominant role in the GEM depletion at Mt. Changbai forest. Such depletion events of GEM are likely to be a widespread phenomenon, suggesting that the forest ecosystem represents one of the largest sinks ( ˜ 1930 Mg) of atmospheric Hg on a global scale.

  17. Imaging neurotransmitter uptake and depletion in astrocytes

    SciTech Connect

    Tan, W. |; Haydon, P.G.; Yeung, E.S.

    1997-08-01

    An ultraviolet (UV) laser-based optical microscope and charge-coupled device (CCD) detection system was used to obtain chemical images of biological cells. Subcellular structures can be easily seen in both optical and fluorescence images. Laser-induced native fluorescence detection provides high sensitivity and low limits of detection, and it does not require coupling to fluorescent dyes. We were able to quantitatively monitor serotonin that has been taken up into and released from individual astrocytes on the basis of its native fluorescence. Different regions of the cells took up different amounts of serotonin with a variety of uptake kinetics. Similarly, we observed different serotonin depletion dynamics in different astrocyte regions. There were also some astrocyte areas where no serotonin uptake or depletion was observed. Potential applications include the mapping of other biogenic species in cells as well as the ability to image their release from specific regions of cells in response to external stimuli. {copyright} {ital 1997} {ital Society for Applied Spectroscopy}

  18. Stratospheric ozone depletion and animal health.

    PubMed

    Mayer, S J

    1992-08-08

    There is an increasing concern over ozone depletion and its effects on the environment and human health. However, the increase in ultraviolet-B radiation (UV-B) that would result from significant losses of ozone is also potentially harmful to animals. Any increase in disease in domestic species would not only have serious animal welfare implications but may also be economically important. The diseases which are likely to increase if ozone depletion continues include the squamous cell carcinomas of the exposed, non-pigmented areas of cats, cattle, sheep and horses. Uberreiter's syndrome in dogs is also associated with exposure to UV-B and may be expected to increase, as may the severity of conditions such as infectious keratoconjunctivitis (New Forest eye) in cattle. Aquaculture systems in which fish often have little or no protection by shading may also be at risk. Cataracts and skin lesions have been associated with the exposure of farmed fish to ultraviolet radiation and have resulted in significant losses.

  19. Effects of diffusion on aluminum depletion and degradation of NiAl coatings

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Lowell, C. E.

    1973-01-01

    Experiments were performed to critically demonstrate the effects of diffusion on the aluminum depletion and degradation of NiAl coatings on superalloys. Pack aluminized IN 100 and Mar-M200 were diffusion annealed in 0.0005 torr vacuum at 1100 C for 300 hours. Aluminum losses due to oxidation and vaporization were minimal. Metallographic and electron microprobe analyses showed considerable interdiffusion of the coating with the substrate, which caused a large decrease in the original aluminum level of the coating. Subsequent cyclic furnace oxidation tests were performed at 1100 C using 1 hour cycles on pre-diffused and as-coated specimens. The pre-diffusion treatment decreased the oxidation protection for both alloys, but more dramatically for IN 100. Identical oxidation tests of bulk NiAl, where such diffusion effects are precluded, showed no signs of degradation at twice the time needed to degrade the coated superalloys.

  20. DEPLETION OF CELLULAR PROTEIN THIOLS AS AN INDICATOR OF ARYLATION IN ISOLATED TROUT HEPATOCYTES EXPOSED TO 1,4-BENZOQUINONE

    EPA Science Inventory

    A method for the measurement of protein thiols (PrSH), un-reacted as well as oxidized, i.e. dithiothreitol recoverable, was adapted for the determination of PrSH depletion in isolated rainbow trout hepatocytes exposed to an arylating agent, 1,4-benzoquinone (BQ). Toxicant analysi...

  1. Neurotoxicity From Chronic Exposure to Depleted Utanium

    DTIC Science & Technology

    2005-04-01

    Technologies, San Antonio, TX) or uranium (VI) oxide (Ultra Scientific, North Kingstown, RI) at concentrations ranging from 10-3. 5 to 10-8 M. 200pt of...system described above possesses sufficient sensitivity to measure these latter concentrations. The presence of uranium (VI) oxide or uranium oxynitrate...systematically alter these response magnitudes. This suggests that UO2 +2 does not possess Ca 2-mimetic properties, but it could also be explained if

  2. Modeling Selective Intergranular Oxidation of Binary Alloys

    SciTech Connect

    Xu, Zhijie; Li, Dongsheng; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.

    2015-01-07

    Intergranular attack of alloys under hydrothermal conditions is a complex problem that depends on metal and oxygen transport kinetics via solid-state and channel-like pathways to an advancing oxidation front. Experiments reveal very different rates of intergranular attack and minor element depletion distances ahead of the oxidation front for nickel-based binary alloys depending on the minor element. For example, a significant Cr depletion up to 9 µm ahead of grain boundary crack tips were documented for Ni-5Cr binary alloy, in contrast to relatively moderate Al depletion for Ni-5Al (~100s of nm). We present a mathematical kinetics model that adapts Wagner’s model for thick film growth to intergranular attack of binary alloys. The transport coefficients of elements O, Ni, Cr, and Al in bulk alloys and along grain boundaries were estimated from the literature. For planar surface oxidation, a critical concentration of the minor element can be determined from the model where the oxide of minor element becomes dominant over the major element. This generic model for simple grain boundary oxidation can predict oxidation penetration velocities and minor element depletion distances ahead of the advancing front that are comparable to experimental data. The significant distance of depletion of Cr in Ni-5Cr in contrast to the localized Al depletion in Ni-5Al can be explained by the model due to the combination of the relatively faster diffusion of Cr along the grain boundary and slower diffusion in bulk grains, relative to Al.

  3. Policies on global warming and ozone depletion

    SciTech Connect

    Green, B.

    1987-04-01

    The recent discovery of a dramatic seasonal drop in the amount of ozone over Antarctica has catalyzed concern for protection of stratospheric ozone, the layer of gas that shields the entire planet from excess ultraviolet radiation. Conservative scientific models predict about a 5% reduction in the amount of global ozone by the middle of the next century, with large local variations. The predicted global warming from increased emissions of greenhouse gases will also have differing effects on local climate and weather conditions and consequently on agriculture. Although numerous uncertainties are associated with both ozone depletion and a global warming, there is a consensus that world leaders need to address the problems. The US Congress is now beginning to take note of the task. In this article, one representative outlines some perceptions of the problems and the policy options available to Congress.

  4. Arctic Ozone Depletion from UARS MLS Measurements

    NASA Technical Reports Server (NTRS)

    Manney, G. L.

    1995-01-01

    Microwave Limb Sounder (MLS) measurements of ozone during four Arctic winters are compared. The evolution of ozone in the lower stratosphere is related to temperature, chlorine monoxide (also measured by MLS), and the evolution of the polar vortex. Lagrangian transport calculations using winds from the United Kingdom Meteorological Office's Stratosphere-Troposphere Data Assimilation system are used to estimate to what extent the evolution of lower stratospheric ozone is controlled by dynamics. Observations, along with calculations of the expected dynamical behavior, show evidence for chemical ozone depletion throughout most of the Arctic lower stratospheric vortex during the 1992-93 middle and late winter, and during all of the 1994-95 winter that was observed by MLS. Both of these winters were unusually cold and had unusually cold and had unusually strong Arctic polar vortices compared to meteorological data over the past 17 years.

  5. Tylosin depletion from edible pig tissues.

    PubMed

    Prats, C; El Korchi, G; Francesch, R; Arboix, M; Pérez, B

    2002-12-01

    The depletion of tylosin from edible pig tissues was studied following 5 days of intramuscular (i.m.) administration of 10 mg/kg of tylosin to 16 crossbreed pigs. Animals were slaughtered at intervals after treatment and samples of muscle, kidney, liver, skin+fat, and injection site were collected and analysed by high-performance liquid chromatography (HPLC). Seven days after the completion of treatment, the concentration of tylosin in kidney, skin+fat, and at the injection site was higher than the European Union maximal residue limit (MRL) of 100 microg/kg. Tylosin residues in all tissues were below the quantification limit (50 microg/kg) at 10 and 14 days post-treatment.

  6. Processing depleted uranium quad alloy penetrator rods

    SciTech Connect

    Bokan, S.L.

    1987-02-19

    Two depleted uranium (DU) quad alloys were cast, extruded and rolled to produce penetrator rods. The two alloy combinations were (1) 1 wt % molybdenum (Mo), 1 wt % niobium (Nb), and 0.75 wt % titanium (Ti); and (2) 1 wt % tantalum (Ta), 1 wt % Nb, and 0.75 wt % Ti. This report covers the processing and results with limited metallographic information available. The two alloys were each vacuum induction melted (VIM) into an 8-in. log, extruded into a 3-in. log, then cut into 4 logs and extruded at 4 different temperatures into 0.8-in. bars. From the 8 conditions (2 alloys, 4 extrusion temperatures each), 10 to 13 16-in. rods were cut for rolling and swaging. Due to cracking problems, the final processing changed from rolling and swaging to limited rolling and heat treating. The contracted work was completed with the delivery of 88 rods to Dr. Zabielski. 28 figs.

  7. Chemical and radiological toxicity of depleted uranium.

    PubMed

    Sztajnkrycer, Matthew D; Otten, Edward J

    2004-03-01

    A by-product of the uranium enrichment process, depleted uranium (DU) contains approximately 40% of the radioactivity of natural uranium yet retains all of its chemical properties. After its use in the 1991 Gulf War, public concern increased regarding its potential radiotoxicant properties. Whereas in vitro and rodent data have suggested the potential for uranium-induced carcinogenesis, human cohort studies assessing the health effects of natural and DU have failed to validate these findings. Heavy-metal nephrotoxicity has not been noted in either animal studies or Gulf War veteran cohort studies despite markedly elevated urinary uranium excretion. No significant residual environmental contamination has been found in geographical areas exposed to DU. As such, although continued surveillance of exposed cohorts and environments (particularly water sources) are recommended, current data would support the position that DU poses neither a radiological nor chemical threat.

  8. Anxiety, ego depletion, and sports performance.

    PubMed

    Englert, Chris; Bertrams, Alex

    2012-10-01

    In the present article, we analyzed the role of self-control strength and state anxiety in sports performance. We tested the hypothesis that self-control strength and state anxiety interact in predicting sports performance on the basis of two studies, each using a different sports task (Study 1: performance in a basketball free throw task, N = 64; Study 2: performance in a dart task, N = 79). The patterns of results were as expected in both studies: Participants with depleted self-control strength performed worse in the specific tasks as their anxiety increased, whereas there was no significant relation for participants with fully available self-control strength. Furthermore, different degrees of available self-control strength did not predict performance in participants who were low in state anxiety, but did in participants who were high in state anxiety. Thus increasing self-control strength could reduce the negative anxiety effects in sports and improve athletes' performance under pressure.

  9. Gaseous elemental mercury depletion events observed at Cape Point during 2007-2008

    NASA Astrophysics Data System (ADS)

    Brunke, E.-G.; Labuschagne, C.; Ebinghaus, R.; Kock, H. H.; Slemr, F.

    2010-02-01

    Gaseous mercury in the marine boundary layer has been measured with a 15 min temporal resolution at the Global Atmosphere Watch station Cape Point since March 2007. The most prominent features of the data until July 2008 are the frequent occurrences of pollution (PEs) and depletion events (DEs). Both types of events originate mostly within a short transport distance (up to about 100 km), which are embedded in air masses ranging from marine background to continental. The Hg/CO emission ratios observed during the PEs are within the range reported for biomass burning and industrial/urban emissions. The depletion of gaseous mercury during the DEs is in many cases almost complete and suggests an atmospheric residence time of elemental mercury as short as a few dozens of hours, which is in contrast to the commonly used estimate of approximately 1 year. The DEs observed at Cape Point are not accompanied by simultaneous depletion of ozone which distinguishes them from the halogen driven atmospheric mercury depletion events (AMDEs) observed in Polar Regions. Nonetheless, DEs similar to those observed at Cape Point have also been observed at other places in the marine boundary layer. Additional measurements of mercury speciation and of possible mercury oxidants are hence called for to reveal the chemical mechanism of the newly observed DEs and to assess its importance on larger scales.

  10. Enhancement by glutathione depletion of ethanol-induced acute hepatotoxicity in vitro and in vivo.

    PubMed

    Strubelt, O; Younes, M; Pentz, R

    1987-08-01

    Ethanol at initial concentrations between 0.75 and 6 g/l produced a dose-dependent release of the enzymes glutamic-pyruvic-transaminase and sorbitol dehydrogenase (GPT, SDH) from the isolated perfused rat liver. At the concentration of 6 g/l, it also decreased the oxygen consumption and elevated the calcium content of the isolated livers. These toxic effects of ethanol were significantly enhanced in livers, the glutathione content of which had been depleted by pretreatment with phorone. Ethanol-induced toxicity in glutathione-depleted isolated livers could be prevented both by inhibition of alcohol dehydrogenase with 4-methylpyrazole and of xanthine oxidase with allopurinol. In rats, in vivo, 1.6 g/kg ethanol injected intravenously produced a small increase in serum GPT and SDH concentrations 4 h after its administration. This increase in enzyme activities was several-fold higher and longer lasting in rats pretreated with phorone. Glutathione depletion per se did not induce hepatotoxicity in vitro or in vivo. Since glutathione is involved in several lines of defense against oxidative damage, our results of an enhanced susceptibility of glutathione-depleted livers to ethanol toxicity favour the hypothesis that ethanol exerts its hepatotoxic action via an activation of molecular oxygen.

  11. OXYGEN DEPLETION IN THE INTERSTELLAR MEDIUM: IMPLICATIONS FOR GRAIN MODELS AND THE DISTRIBUTION OF ELEMENTAL OXYGEN

    SciTech Connect

    Whittet, D. C. B.

    2010-02-20

    This paper assesses the implications of a recent discovery that atomic oxygen is being depleted from diffuse interstellar gas at a rate that cannot be accounted for by its presence in silicate and metallic oxide particles. To place this discovery in context, the uptake of elemental O into dust is considered over a wide range of environments, from the tenuous intercloud gas and diffuse clouds sampled by the depletion observations to dense clouds where ice mantles and gaseous CO become important reservoirs of O. The distribution of O in these contrasting regions is quantified in terms of a common parameter, the mean number density of hydrogen (n{sub H}). At the interface between diffuse and dense phases (just before the onset of ice-mantle growth) as much as {approx}160 ppm of the O abundance is unaccounted for. If this reservoir of depleted oxygen persists to higher densities it has implications for the oxygen budget in molecular clouds, where a shortfall of the same order is observed. Of various potential carriers, the most plausible appears to be a form of O-bearing carbonaceous matter similar to the organics found in cometary particles returned by the Stardust mission. The 'organic refractory' model for interstellar dust is re-examined in the light of these findings, and it is concluded that further observations and laboratory work are needed to determine whether this class of material is present in quantities sufficient to account for a significant fraction of the unidentified depleted oxygen.

  12. Modelling chemical depletion profiles in regolith

    USGS Publications Warehouse

    Brantley, S.L.; Bandstra, J.; Moore, J.; White, A.F.

    2008-01-01

    Chemical or mineralogical profiles in regolith display reaction fronts that document depletion of leachable elements or minerals. A generalized equation employing lumped parameters was derived to model such ubiquitously observed patterns:C = frac(C0, frac(C0 - Cx = 0, Cx = 0) exp (??ini ?? over(k, ??) ?? x) + 1)Here C, Cx = 0, and Co are the concentrations of an element at a given depth x, at the top of the reaction front, or in parent respectively. ??ini is the roughness of the dissolving mineral in the parent and k???? is a lumped kinetic parameter. This kinetic parameter is an inverse function of the porefluid advective velocity and a direct function of the dissolution rate constant times mineral surface area per unit volume regolith. This model equation fits profiles of concentration versus depth for albite in seven weathering systems and is consistent with the interpretation that the surface area (m2 mineral m- 3 bulk regolith) varies linearly with the concentration of the dissolving mineral across the front. Dissolution rate constants can be calculated from the lumped fit parameters for these profiles using observed values of weathering advance rate, the proton driving force, the geometric surface area per unit volume regolith and parent concentration of albite. These calculated values of the dissolution rate constant compare favorably to literature values. The model equation, useful for reaction fronts in both steady-state erosional and quasi-stationary non-erosional systems, incorporates the variation of reaction affinity using pH as a master variable. Use of this model equation to fit depletion fronts for soils highlights the importance of buffering of pH in the soil system. Furthermore, the equation should allow better understanding of the effects of important environmental variables on weathering rates. ?? 2008.

  13. Human podocyte depletion in association with older age and hypertension.

    PubMed

    Puelles, Victor G; Cullen-McEwen, Luise A; Taylor, Georgina E; Li, Jinhua; Hughson, Michael D; Kerr, Peter G; Hoy, Wendy E; Bertram, John F

    2016-04-01

    Podocyte depletion plays a major role in the development and progression of glomerulosclerosis. Many kidney diseases are more common in older age and often coexist with hypertension. We hypothesized that podocyte depletion develops in association with older age and is exacerbated by hypertension. Kidneys from 19 adult Caucasian American males without overt renal disease were collected at autopsy in Mississippi. Demographic data were obtained from medical and autopsy records. Subjects were categorized by age and hypertension as potential independent and additive contributors to podocyte depletion. Design-based stereology was used to estimate individual glomerular volume and total podocyte number per glomerulus, which allowed the calculation of podocyte density (number per volume). Podocyte depletion was defined as a reduction in podocyte number (absolute depletion) or podocyte density (relative depletion). The cortical location of glomeruli (outer or inner cortex) and presence of parietal podocytes were also recorded. Older age was an independent contributor to both absolute and relative podocyte depletion, featuring glomerular hypertrophy, podocyte loss, and thus reduced podocyte density. Hypertension was an independent contributor to relative podocyte depletion by exacerbating glomerular hypertrophy, mostly in glomeruli from the inner cortex. However, hypertension was not associated with podocyte loss. Absolute and relative podocyte depletion were exacerbated by the combination of older age and hypertension. The proportion of glomeruli with parietal podocytes increased with age but not with hypertension alone. These findings demonstrate that older age and hypertension are independent and additive contributors to podocyte depletion in white American men without kidney disease.

  14. Development of DU-AGG (Depleted Uranium Aggregate)

    SciTech Connect

    Lessing, P.A.

    1995-09-01

    Depleted uranium oxide (UO{sub 2} or U0{sub 3}) powder was mixed with fine mineral additives, pressed, and heated to about 1,250{degree}C. The additives were chemically constituted to result in an iron-enriched basalt (IEB). Melting and wetting of the IEB phase caused the urania powder compact to densify (sinter) via a liquid phase sintering mechanism. An inorganic lubricant was found to aid in green-forming of the body. Sintering was successful in oxidizing (air), inert (argon), or reducing (dry hydrogen containing) atmospheres. The use of ground U0{sub 3} powders (93 vol %) followed by sintering in a dry hydrogen-containing atmosphere significantly increased the density of samples (bulk density of 8.40 g/cm{sup 3} and apparent density of 9.48 g/cm{sup 3}, open porosity of 11.43%). An improvement in the microstructure (reduction in open porosity) was achieved when the vol % of U0{sub 3} was decreased to 80%. The bulk density increased to 8.59 g/cm{sup 3}, the apparent density decreased slightly to 8.82 g/cm{sup 3} (due to increase of low density IEB content), while the open porosity decreased to an excellent number of 2.78%. A representative sample derived from 80 vol % U0{sub 3} showed that most pores were closed pores and that, overall, the sample achieved the excellent relative density value of 94.1% of the estimated theoretical density (composite of U0{sub 2} and IEB). It is expected that ground powders of U0{sub 3} could be successfully used to mass produce lowcost aggregate using the green-forming technique of briquetting.

  15. Transpassive electrodissolution of depleted uranium in alkaline electrolytes

    SciTech Connect

    Weisbrod, K.R.; Schake, A.R.; Morgan, A.N.; Purdy, G.M.; Martinez, H.E.; Nelson, T.O.

    1998-03-01

    To aid in removal of oralloy from the nuclear weapons stockpile, scientists at the Los Alamos National Laboratory Plutonium Facility are decontaminating oralloy parts by electrodissolution in neutral to alkaline electrolytes composed of sodium nitrate and sodium sulfate. To improve the process, electrodissolution experiments were performed with depleted uranium to understand the effects of various operating parameters. Sufficient precipitate was also produced to evaluate the feasibility of using ultrafiltration to separate the uranium oxide precipitates from the electrolyte before it enters the decontamination fixture. In preparation for the experiments, a potential-pH diagram for uranium was constructed from thermodynamic data for fully hydrated species. Electrodissolution in unstirred solutions showed that uranium dissolution forms two layers, an acidic bottom layer rich in uranium and an alkaline upper layer. Under stirred conditions results are consistent with the formation of a yellow precipitate of composition UO{sub 3}{center_dot}2H{sub 2}O, a six electron process. Amperometric experiments showed that current efficiency remained near 100% over a wide range of electrolytes, electrolyte concentrations, pH, and stirring conditions.

  16. Allyl isothiocyanate depletes glutathione and upregulates expression of glutathione S-transferases in Arabidopsis thaliana

    PubMed Central

    Øverby, Anders; Stokland, Ragni A.; Åsberg, Signe E.; Sporsheim, Bjørnar; Bones, Atle M.

    2015-01-01

    Allyl isothiocyanate (AITC) is a phytochemical associated with plant defense in plants from the Brassicaceae family. AITC has long been recognized as a countermeasure against external threats, but recent reports suggest that AITC is also involved in the onset of defense-related mechanisms such as the regulation of stomatal aperture. However, the underlying cellular modes of action in plants remain scarcely investigated. Here we report evidence of an AITC-induced depletion of glutathione (GSH) and the effect on gene expression of the detoxification enzyme family glutathione S-transferases (GSTs) in Arabidopsis thaliana. Treatment of A. thaliana wild-type with AITC resulted in a time- and dose-dependent depletion of cellular GSH. AITC-exposure of mutant lines vtc1 and pad2-1 with elevated and reduced GSH-levels, displayed enhanced and decreased AITC-tolerance, respectively. AITC-exposure also led to increased ROS-levels in the roots and loss of chlorophyll which are symptoms of oxidative stress. Following exposure to AITC, we found that GSH rapidly recovered to the same level as in the control plant, suggesting an effective route for replenishment of GSH or a rapid detoxification of AITC. Transcriptional analysis of genes encoding GSTs showed an upregulation in response to AITC. These findings demonstrate cellular effects by AITC involving a reversible depletion of the GSH-pool, induced oxidative stress, and elevated expression of GST-encoding genes. PMID:25954298

  17. Depletion of Cyclophilins B and C Leads to Dysregulation of Endoplasmic Reticulum Redox Homeostasis*

    PubMed Central

    Stocki, Pawel; Chapman, Daniel C.; Beach, Lori A.; Williams, David B.

    2014-01-01

    Protein folding within the endoplasmic reticulum is assisted by molecular chaperones and folding catalysts that include members of the protein-disulfide isomerase and peptidyl-prolyl isomerase families. In this report, we examined the contributions of the cyclophilin subset of peptidyl-prolyl isomerases to protein folding and identified cyclophilin C as an endoplasmic reticulum (ER) cyclophilin in addition to cyclophilin B. Using albumin and transferrin as models of cis-proline-containing proteins in human hepatoma cells, we found that combined knockdown of cyclophilins B and C delayed transferrin secretion but surprisingly resulted in more efficient oxidative folding and secretion of albumin. Examination of the oxidation status of ER protein-disulfide isomerase family members revealed a shift to a more oxidized state. This was accompanied by a >5-fold elevation in the ratio of oxidized to total glutathione. This “hyperoxidation” phenotype could be duplicated by incubating cells with the cyclophilin inhibitor cyclosporine A, a treatment that triggered efficient ER depletion of cyclophilins B and C by inducing their secretion to the medium. To identify the pathway responsible for ER hyperoxidation, we individually depleted several enzymes that are known or suspected to deliver oxidizing equivalents to the ER: Ero1αβ, VKOR, PRDX4, or QSOX1. Remarkably, none of these enzymes contributed to the elevated oxidized to total glutathione ratio induced by cyclosporine A treatment. These findings establish cyclophilin C as an ER cyclophilin, demonstrate the novel involvement of cyclophilins B and C in ER redox homeostasis, and suggest the existence of an additional ER oxidative pathway that is modulated by ER cyclophilins. PMID:24990953

  18. Brief mindfulness induction could reduce aggression after depletion.

    PubMed

    Yusainy, Cleoputri; Lawrence, Claire

    2015-05-01

    Many experiments have shown that one's ability to refrain from acting on aggressive impulses is likely to decrease following a prior act of self-control. This temporary state of self-control failure is known as ego-depletion. Although mindfulness is increasingly used to treat and manage aggressive behaviour, the extent to which mindfulness may counteract the depletion effect on aggression is yet to be determined. This study (N=110) investigated the effect of a laboratory induced one-time mindfulness meditation session on aggression following depletion. Aggression was assessed by the intensity of aversive noise blast participants delivered to an opponent on a computerised task. Depleted participants who received mindfulness induction behaved less aggressively than depleted participants with no mindfulness induction. Mindfulness also improved performance on a second measure of self-control (i.e., handgrip perseverance); however, this effect was independent of depletion condition. Motivational factors may help explain the dynamics of mindfulness, self-control, and aggression.

  19. Depletion of NADP(H) due to CD38 activation triggers endothelial dysfunction in the postischemic heart

    PubMed Central

    Reyes, Levy A.; Boslett, James; Varadharaj, Saradhadevi; De Pascali, Francesco; Hemann, Craig; Druhan, Lawrence J.; Ambrosio, Giuseppe; El-Mahdy, Mohamed; Zweier, Jay L.

    2015-01-01

    In the postischemic heart, coronary vasodilation is impaired due to loss of endothelial nitric oxide synthase (eNOS) function. Although the eNOS cofactor tetrahydrobiopterin (BH4) is depleted, its repletion only partially restores eNOS-mediated coronary vasodilation, indicating that other critical factors trigger endothelial dysfunction. Therefore, studies were performed to characterize the unidentified factor(s) that trigger endothelial dysfunction in the postischemic heart. We observed that depletion of the eNOS substrate NADPH occurs in the postischemic heart with near total depletion from the endothelium, triggering impaired eNOS function and limiting BH4 rescue through NADPH-dependent salvage pathways. In isolated rat hearts subjected to 30 min of ischemia and reperfusion (I/R), depletion of the NADP(H) pool occurred and was most marked in the endothelium, with >85% depletion. Repletion of NADPH after I/R increased NOS-dependent coronary flow well above that with BH4 alone. With combined NADPH and BH4 repletion, full restoration of NOS-dependent coronary flow occurred. Profound endothelial NADPH depletion was identified to be due to marked activation of the NAD(P)ase-activity of CD38 and could be prevented by inhibition or specific knockdown of this protein. Depletion of the NADPH precursor, NADP+, coincided with formation of 2’-phospho-ADP ribose, a CD38-derived signaling molecule. Inhibition of CD38 prevented NADP(H) depletion and preserved endothelium-dependent relaxation and NO generation with increased recovery of contractile function and decreased infarction in the postischemic heart. Thus, CD38 activation is an important cause of postischemic endothelial dysfunction and presents a novel therapeutic target for prevention of this dysfunction in unstable coronary syndromes. PMID:26297248

  20. ELEMENTAL DEPLETIONS IN THE MAGELLANIC CLOUDS AND THE EVOLUTION OF DEPLETIONS WITH METALLICITY

    SciTech Connect

    Tchernyshyov, Kirill; Meixner, Margaret; Seale, Jonathan; Fox, Andrew; Friedman, Scott D.; Dwek, Eli; Galliano, Frédéric

    2015-10-01

    We present a study of the composition of gas and dust in the Large and Small Magellanic Clouds (LMC and SMC) using UV absorption spectroscopy. We measure P ii and Fe ii along 84 spatially distributed sightlines toward the MCs using archival Far Ultraviolet Spectroscopic Explorer observations. For 16 of those sightlines, we also measure Si ii, Cr ii, and Zn ii from new Hubble Space Telescope Cosmic Origins Spectrograph observations. We analyze these spectra using a new spectral line analysis technique based on a semi-parametric Voigt profile model. We have combined these measurements with H i and H{sub 2} column densities and reference stellar abundances from the literature to derive gas-phase abundances, depletions, and gas-to-dust ratios (GDRs). Of our 84 P and 16 Zn measurements, 80 and 13, respectively, are depleted by more than 0.1 dex, suggesting that P and Zn abundances are not accurate metallicity indicators at and above the metallicity of the SMC. Si, Cr, and Fe are systematically less depleted in the SMC than in the Milky Way (MW) or LMC. The minimum Si depletion in the SMC is consistent with zero. We find GDR ranges of 190–565 in the LMC and 480–2100 in the SMC, which is broadly consistent with GDRs from the literature. These ranges represent actual location to location variation and are evidence of dust destruction and/or growth in the diffuse neutral phase of the interstellar medium. Where they overlap in metallicity, the gas-phase abundances of the MW, LMC, and SMC and damped Lyα systems evolve similarly with metallicity.

  1. Gas generation matrix depletion quality assurance project plan

    SciTech Connect

    1998-05-01

    The Los Alamos National Laboratory (LANL) is to provide the necessary expertise, experience, equipment and instrumentation, and management structure to: Conduct the matrix depletion experiments using simulated waste for quantifying matrix depletion effects; and Conduct experiments on 60 cylinders containing simulated TRU waste to determine the effects of matrix depletion on gas generation for transportation. All work for the Gas Generation Matrix Depletion (GGMD) experiment is performed according to the quality objectives established in the test plan and under this Quality Assurance Project Plan (QAPjP).

  2. Producing, Importing, and Exporting Ozone-Depleting Substances

    EPA Pesticide Factsheets

    Overview page provides links to information on producing, importing, and exporting ozone-depleting substances, including information about the HCFC allowance system, importing, labeling, recordkeeping and reporting.

  3. Regret causes ego-depletion and finding benefits in the regrettable events alleviates ego-depletion.

    PubMed

    Gao, Hongmei; Zhang, Yan; Wang, Fang; Xu, Yan; Hong, Ying-Yi; Jiang, Jiang

    2014-01-01

    This study tested the hypotheses that experiencing regret would result in ego-depletion, while finding benefits (i.e., "silver linings") in the regret-eliciting events counteracted the ego-depletion effect. Using a modified gambling paradigm (Experiments 1, 2, and 4) and a retrospective method (Experiments 3 and 5), five experiments were conducted to induce regret. Results revealed that experiencing regret undermined performance on subsequent tasks, including a paper-and-pencil calculation task (Experiment 1), a Stroop task (Experiment 2), and a mental arithmetic task (Experiment 3). Furthermore, finding benefits in the regret-eliciting events improved subsequent performance (Experiments 4 and 5), and this improvement was mediated by participants' perceived vitality (Experiment 4). This study extended the depletion model of self-regulation by considering emotions with self-conscious components (in our case, regret). Moreover, it provided a comprehensive understanding of how people felt and performed after experiencing regret and after finding benefits in the events that caused the regret.

  4. If ego depletion cannot be studied using identical tasks, it is not ego depletion.

    PubMed

    Lange, Florian

    2015-01-01

    The hypothesis that human self-control capacities are fueled by glucose has been challenged on multiple grounds. A recent study by Lange and Eggert adds to this criticism by presenting two powerful but unsuccessful attempts to replicate the effect of sugar drinks on ego depletion. The dual-task paradigms employed in these experiments have been criticized for involving identical self-control tasks, a methodology that has been argued to reduce participants' willingness to exert self-control. The present article addresses this criticism by demonstrating that there is no indication to believe that the study of glucose effects on ego depletion should be restricted to paradigms using dissimilar acts of self-control. Failures to observe such effects in paradigms involving identical tasks pose a serious problem to the proposal that self-control exhaustion might be reversed by rinsing or ingesting glucose. In combination with analyses of statistical credibility, the experiments by Lange and Eggert suggest that the influence of sugar on ego depletion has been systematically overestimated.

  5. Characterization and speciation of depleted uranium in individual soil particles using microanalytical methods

    NASA Astrophysics Data System (ADS)

    Török, S.; Osán, J.; Vincze, L.; Kurunczi, S.; Tamborini, G.; Betti, M.

    2004-05-01

    Microanalytical techniques for elemental composition and nuclide-specific analysis have been used to identify the origin and the leachability of depleted uranium particles. The soil particle samples were collected from Kosovo area a few years after the war, the presence of fine particles with depleted uranium as major component was easily identified by EPMA and SIMS. The ultrafine uranium particles were often attached to larger soil particles and contained Ti and Al, being typical components of the penetrator and its cladding. The oxidation state of uranium in the single particles was measured by micro-XANES and found to be in the less soluble form IV while every particle contained a small fraction of mobile uranium VI as well.

  6. Sedimentary constraints on the duration of the Marinoan Oxygen-17 Depletion (MOSD) event.

    PubMed

    Killingsworth, Bryan A; Hayles, Justin A; Zhou, Chuanming; Bao, Huiming

    2013-10-29

    The ~635 Ma Marinoan glaciation is marked by dramatic Earth system perturbations. Deposition of nonmass-dependently (17)O-depleted sulfate (SO4(2-)) in worldwide postglacial sediments is, thus far, unique to this glaciation. It is proposed that an extremely high-pCO2 atmosphere can result in highly (17)O-depleted atmospheric O2, or the Marinoan Oxygen-17 Depletion (MOSD) event. This anomalous (17)O signal was imparted to sulfate of oxidative weathering origin. However, (17)O-depleted sulfate occurs in limited sedimentary intervals, suggesting that Earth surface conditions conducive to the MOSD had a finite duration. An MOSD duration can, therefore, provide much needed constraint on modeling Earth system responses at that time. Unfortunately, the sulfate (17)O record is often sparse or lacks radiometric dates. Here, we report 11 barite layers from a post-Marinoan dolostone sequence at Wushanhu in the South China Block. The (17)O depletion fluctuates in magnitude in lower layers but is persistently absent up section, providing the most confident first and last sedimentary appearance of the anomaly. δ(13)C chemostratigraphy is used to correlate the Wushanhu section to two proximal sections on the same shallow platform that lack barite layers but have published U-Pb dates that occur in dolostone and shale. Assuming a similar pattern and rate for carbonate and shale deposition among the different sections, we estimate the MOSD duration at 0-0.99 My. This number can be further constrained by new radiometric dates from equivalent sequences worldwide, thus underpinning models on the nonsteady-state Earth system response in the immediate aftermath of the Marinoan meltdown.

  7. Sedimentary constraints on the duration of the Marinoan Oxygen-17 Depletion (MOSD) event

    NASA Astrophysics Data System (ADS)

    Killingsworth, Bryan A.; Hayles, Justin A.; Zhou, Chuanming; Bao, Huiming

    2013-10-01

    The ∼635 Ma Marinoan glaciation is marked by dramatic Earth system perturbations. Deposition of nonmass-dependently 17O-depleted sulfate (SO42-) in worldwide postglacial sediments is, thus far, unique to this glaciation. It is proposed that an extremely high-pCO2 atmosphere can result in highly 17O-depleted atmospheric O2, or the Marinoan Oxygen-17 Depletion (MOSD) event. This anomalous 17O signal was imparted to sulfate of oxidative weathering origin. However, 17O-depleted sulfate occurs in limited sedimentary intervals, suggesting that Earth surface conditions conducive to the MOSD had a finite duration. An MOSD duration can, therefore, provide much needed constraint on modeling Earth system responses at that time. Unfortunately, the sulfate 17O record is often sparse or lacks radiometric dates. Here, we report 11 barite layers from a post-Marinoan dolostone sequence at Wushanhu in the South China Block. The 17O depletion fluctuates in magnitude in lower layers but is persistently absent up section, providing the most confident first and last sedimentary appearance of the anomaly. δ13C chemostratigraphy is used to correlate the Wushanhu section to two proximal sections on the same shallow platform that lack barite layers but have published U-Pb dates that occur in dolostone and shale. Assuming a similar pattern and rate for carbonate and shale deposition among the different sections, we estimate the MOSD duration at 0-0.99 My. This number can be further constrained by new radiometric dates from equivalent sequences worldwide, thus underpinning models on the nonsteady-state Earth system response in the immediate aftermath of the Marinoan meltdown.

  8. Sedimentary constraints on the duration of the Marinoan Oxygen-17 Depletion (MOSD) event

    PubMed Central

    Killingsworth, Bryan A.; Hayles, Justin A.; Zhou, Chuanming; Bao, Huiming

    2013-01-01

    The ∼635 Ma Marinoan glaciation is marked by dramatic Earth system perturbations. Deposition of nonmass-dependently 17O-depleted sulfate (SO42−) in worldwide postglacial sediments is, thus far, unique to this glaciation. It is proposed that an extremely high-pCO2 atmosphere can result in highly 17O-depleted atmospheric O2, or the Marinoan Oxygen-17 Depletion (MOSD) event. This anomalous 17O signal was imparted to sulfate of oxidative weathering origin. However, 17O-depleted sulfate occurs in limited sedimentary intervals, suggesting that Earth surface conditions conducive to the MOSD had a finite duration. An MOSD duration can, therefore, provide much needed constraint on modeling Earth system responses at that time. Unfortunately, the sulfate 17O record is often sparse or lacks radiometric dates. Here, we report 11 barite layers from a post-Marinoan dolostone sequence at Wushanhu in the South China Block. The 17O depletion fluctuates in magnitude in lower layers but is persistently absent up section, providing the most confident first and last sedimentary appearance of the anomaly. δ13C chemostratigraphy is used to correlate the Wushanhu section to two proximal sections on the same shallow platform that lack barite layers but have published U-Pb dates that occur in dolostone and shale. Assuming a similar pattern and rate for carbonate and shale deposition among the different sections, we estimate the MOSD duration at 0–0.99 My. This number can be further constrained by new radiometric dates from equivalent sequences worldwide, thus underpinning models on the nonsteady-state Earth system response in the immediate aftermath of the Marinoan meltdown. PMID:23386719

  9. Thermal stress depletes energy reserves in Drosophila

    PubMed Central

    Klepsatel, Peter; Gáliková, Martina; Xu, Yanjun; Kühnlein, Ronald P.

    2016-01-01

    Understanding how environmental temperature affects metabolic and physiological functions is of crucial importance to assess the impacts of climate change on organisms. Here, we used different laboratory strains and a wild-caught population of the fruit fly Drosophila melanogaster to examine the effect of temperature on the body energy reserves of an ectothermic organism. We found that permanent ambient temperature elevation or transient thermal stress causes significant depletion of body fat stores. Surprisingly, transient thermal stress induces a lasting “memory effect” on body fat storage, which also reduces survivorship of the flies upon food deprivation later after stress exposure. Functional analyses revealed that an intact heat-shock response is essential to protect flies from temperature-dependent body fat decline. Moreover, we found that the temperature-dependent body fat reduction is caused at least in part by apoptosis of fat body cells, which might irreversibly compromise the fat storage capacity of the flies. Altogether, our results provide evidence that thermal stress has a significant negative impact on organismal energy reserves, which in turn might affect individual fitness. PMID:27641694

  10. Ozone depletion: 20 Years after the alarm

    SciTech Connect

    Not Available

    1994-08-15

    Scientific curiosity in 1973 led to the challenge of determining the ultimate atmospheric fate of the chlorofluoromethanes, CFC-11 (CCl[sub 3]F) and CFC-12 (CCl[sub 2]F[sub 2]), whose presence at measurable levels in surface air had been detected only two years earlier. In retrospect, the decision to pursue the chemistry of CFC molecules to their final destruction and beyond foreordained an unusual outcome because CFCs are chemically inert and easily survive under almost all natural conditions. By midsummer 1994, the world is well on its way in transition to a CFC-free economy, although not yet to a CFC-free atmosphere. The rates of increase in atmospheric concentration for the three major CFCs (CFC-11, -12, and -113) have all slowed markedly in response to the restrictions of the revised Montreal protocol. Because of their long lifetimes, however, significant but gradually diminishing quantities of CFCs will remain in the atmosphere throughout the 21st century. Atomic chlorine will continue to be released into the stratosphere as long as CFCs persist, and ozone depletion will follow. The existence of the Montreal protocol and the agreement among industrial, governmental, and university scientists on its wisdom offers considerable promise for the handling of future global environmental problems.

  11. Levels of depleted uranium in Kosovo soils.

    PubMed

    Sansone, U; Stellato, L; Jia, G; Rosamilia, S; Gaudino, S; Barbizzi, S; Belli, M

    2001-01-01

    The United Nations Environment Programme (UNEP) has performed a field survey at 11 sites located in Kosovo, where depleted uranium (DU) ammunitions were used by the North Atlantic Treaty Organization (NATO) during the last Balkans conflict (1999). Soil sampling was performed to assess the spread of DU ground contamination around and within the NATO target sites and the migration of DU along the soil profile. The 234U/238U and 235U/238U activity concentration ratios have been used as an indicator of natural against anthropogenic sources of uranium. The results show that levels of 238U activity concentrations in soils above 100 Bq x kg(-1) can be considered a 'tracer' of the presence of DU in soils. The results also indicate that detectable ground surface contamination by DU is limited to areas within a few metres from localised points of concentrated contamination caused by penetrator impacts. Vertical distribution of DU along the soil profile is measurable up to a depth of 10-20 cm. This latter aspect is of particular relevance for the potential risk of future contamination of groundwater.

  12. Thermal stress depletes energy reserves in Drosophila.

    PubMed

    Klepsatel, Peter; Gáliková, Martina; Xu, Yanjun; Kühnlein, Ronald P

    2016-09-19

    Understanding how environmental temperature affects metabolic and physiological functions is of crucial importance to assess the impacts of climate change on organisms. Here, we used different laboratory strains and a wild-caught population of the fruit fly Drosophila melanogaster to examine the effect of temperature on the body energy reserves of an ectothermic organism. We found that permanent ambient temperature elevation or transient thermal stress causes significant depletion of body fat stores. Surprisingly, transient thermal stress induces a lasting "memory effect" on body fat storage, which also reduces survivorship of the flies upon food deprivation later after stress exposure. Functional analyses revealed that an intact heat-shock response is essential to protect flies from temperature-dependent body fat decline. Moreover, we found that the temperature-dependent body fat reduction is caused at least in part by apoptosis of fat body cells, which might irreversibly compromise the fat storage capacity of the flies. Altogether, our results provide evidence that thermal stress has a significant negative impact on organismal energy reserves, which in turn might affect individual fitness.

  13. Recovery of Depleted Uranium Fragments from Soil

    SciTech Connect

    Farr, C.P.; Alecksen, T.J.; Heronimus, R.S.; Simonds, M.H.; Farrar, D.R.; Baker, K.R.; Miller, M.L.

    2008-07-01

    A cost-effective method was demonstrated for recovering depleted uranium (DU) fragments from soil. A compacted clean soil pad was prepared adjacent to a pile of soil containing DU fragments. Soil from the contaminated pile was placed on the pad in three-inch lifts using conventional construction equipment. Each lift was scanned with an automatic scanning system consisting of an array of radiation detectors coupled to a detector positioning system. The data were downloaded into ArcGIS for data presentation. Areas of the pad exhibiting scaler counts above the decision level were identified as likely locations of DU fragments. The coordinates of these locations were downloaded into a PDA that was wirelessly connected to the positioning system. The PDA guided technicians to the locations where hand-held trowels and shovels were used to remove the fragments. After DU removal, the affected areas were re-scanned and the new data patched into the data base to replace the original data. This new data set along with soil sample results served as final status survey data. (authors)

  14. Podocyte Depletion in Thin GBM and Alport Syndrome

    PubMed Central

    Wang, Su Q.; Afshinnia, Farsad; Kershaw, David; Wiggins, Roger C.

    2016-01-01

    The proximate genetic cause of both Thin GBM and Alport Syndrome (AS) is abnormal α3, 4 and 5 collagen IV chains resulting in abnormal glomerular basement membrane (GBM) structure/function. We previously reported that podocyte detachment rate measured in urine is increased in AS, suggesting that podocyte depletion could play a role in causing progressive loss of kidney function. To test this hypothesis podometric parameters were measured in 26 kidney biopsies from 21 patients aged 2–17 years with a clinic-pathologic diagnosis including both classic Alport Syndrome with thin and thick GBM segments and lamellated lamina densa [n = 15] and Thin GBM cases [n = 6]. Protocol biopsies from deceased donor kidneys were used as age-matched controls. Podocyte depletion was present in AS biopsies prior to detectable histologic abnormalities. No abnormality was detected by light microscopy at <30% podocyte depletion, minor pathologic changes (mesangial expansion and adhesions to Bowman’s capsule) were present at 30–50% podocyte depletion, and FSGS was progressively present above 50% podocyte depletion. eGFR did not change measurably until >70% podocyte depletion. Low level proteinuria was an early event at about 25% podocyte depletion and increased in proportion to podocyte depletion. These quantitative data parallel those from model systems where podocyte depletion is the causative event. This result supports a hypothesis that in AS podocyte adherence to the GBM is defective resulting in accelerated podocyte detachment causing progressive podocyte depletion leading to FSGS-like pathologic changes and eventual End Stage Kidney Disease. Early intervention to reduce podocyte depletion is projected to prolong kidney survival in AS. PMID:27192434

  15. Podocyte Depletion in Thin GBM and Alport Syndrome.

    PubMed

    Wickman, Larysa; Hodgin, Jeffrey B; Wang, Su Q; Afshinnia, Farsad; Kershaw, David; Wiggins, Roger C

    2016-01-01

    The proximate genetic cause of both Thin GBM and Alport Syndrome (AS) is abnormal α3, 4 and 5 collagen IV chains resulting in abnormal glomerular basement membrane (GBM) structure/function. We previously reported that podocyte detachment rate measured in urine is increased in AS, suggesting that podocyte depletion could play a role in causing progressive loss of kidney function. To test this hypothesis podometric parameters were measured in 26 kidney biopsies from 21 patients aged 2-17 years with a clinic-pathologic diagnosis including both classic Alport Syndrome with thin and thick GBM segments and lamellated lamina densa [n = 15] and Thin GBM cases [n = 6]. Protocol biopsies from deceased donor kidneys were used as age-matched controls. Podocyte depletion was present in AS biopsies prior to detectable histologic abnormalities. No abnormality was detected by light microscopy at <30% podocyte depletion, minor pathologic changes (mesangial expansion and adhesions to Bowman's capsule) were present at 30-50% podocyte depletion, and FSGS was progressively present above 50% podocyte depletion. eGFR did not change measurably until >70% podocyte depletion. Low level proteinuria was an early event at about 25% podocyte depletion and increased in proportion to podocyte depletion. These quantitative data parallel those from model systems where podocyte depletion is the causative event. This result supports a hypothesis that in AS podocyte adherence to the GBM is defective resulting in accelerated podocyte detachment causing progressive podocyte depletion leading to FSGS-like pathologic changes and eventual End Stage Kidney Disease. Early intervention to reduce podocyte depletion is projected to prolong kidney survival in AS.

  16. Transient Treg depletion enhances therapeutic anti‐cancer vaccination

    PubMed Central

    Aston, Wayne J.; Chee, Jonathan; Khong, Andrea; Cleaver, Amanda L.; Solin, Jessica N.; Ma, Shaokang; Lesterhuis, W. Joost; Dick, Ian; Holt, Robert A.; Creaney, Jenette; Boon, Louis; Robinson, Bruce; Lake, Richard A.

    2016-01-01

    Abstract Introduction Regulatory T cells (Treg) play an important role in suppressing anti‐ immunity and their depletion has been linked to improved outcomes. To better understand the role of Treg in limiting the efficacy of anti‐cancer immunity, we used a Diphtheria toxin (DTX) transgenic mouse model to specifically target and deplete Treg. Methods Tumor bearing BALB/c FoxP3.dtr transgenic mice were subjected to different treatment protocols, with or without Treg depletion and tumor growth and survival monitored. Results DTX specifically depleted Treg in a transient, dose‐dependent manner. Treg depletion correlated with delayed tumor growth, increased effector T cell (Teff) activation, and enhanced survival in a range of solid tumors. Tumor regression was dependent on Teffs as depletion of both CD4 and CD8 T cells completely abrogated any survival benefit. Severe morbidity following Treg depletion was only observed, when consecutive doses of DTX were given during peak CD8 T cell activation, demonstrating that Treg can be depleted on multiple occasions, but only when CD8 T cell activation has returned to base line levels. Finally, we show that even minimal Treg depletion is sufficient to significantly improve the efficacy of tumor‐peptide vaccination. Conclusions BALB/c.FoxP3.dtr mice are an ideal model to investigate the full therapeutic potential of Treg depletion to boost anti‐tumor immunity. DTX‐mediated Treg depletion is transient, dose‐dependent, and leads to strong anti‐tumor immunity and complete tumor regression at high doses, while enhancing the efficacy of tumor‐specific vaccination at low doses. Together this data highlight the importance of Treg manipulation as a useful strategy for enhancing current and future cancer immunotherapies. PMID:28250921

  17. Cold blast furnace syndrome: a new source of toxic inhalation by nitrogen oxides

    PubMed Central

    Tague, I; Llewellin, P; Burton, K; Buchan, R; Yates, D

    2004-01-01

    Methods: Fourteen workers developed acute respiratory symptoms shortly after exposure to "air blast" from blast furnace tuyeres. These included chest tightness, dyspnoea, rigors, and diaphoresis. Chest radiographs showed pulmonary infiltrates, and lung function a restrictive abnormality. This report includes a description of clinical features of the affected workers and elucidation of the probable cause of the outbreak. Results: Clinical features and occupational hygiene measurements suggested the most likely cause was inhalation of nitrogen oxides at high pressure and temperature. While the task could not be eliminated, engineering controls were implemented to control the hazard. No further cases have occurred. Conclusions: "Cold blast furnace syndrome" represents a previously undescribed hazard of blast furnace work, probably due to inhalation of nitrogen oxides. It should be considered in the differential diagnosis of acute toxic inhalational injuries in blast furnace workers. PMID:15090669

  18. Impact of subjacent rocks at the water and air regime of the depleted peat deposits

    NASA Astrophysics Data System (ADS)

    Rakovich, V. A.

    2009-04-01

    At the depleted peat deposits (after peat extraction), where the residual layer of peat with the thickness of about 0,5 meters is laid at the well water permeable rocks, vegetation typical for dry conditions is developed in case of good drainage conditions; birch trees, willow, alder-trees and buckthorn prevail in this vegetation. Water and air regime is characterized here by good aeration with prevailing of oxidative processes. If water regime is regulated, these depleted peat areas are suitable for agricultural and forest lands; however, necessity of transformation of these depleted lands into forest and agricultural lands must be ecologically and economically justified. If the residual layer of peat with the thickness of 0,05-0,3 m is based at the sapropel or peat sapropel, contrast amphibiotic water and air regime with strong fluctuation of oxidative and restoration process depending on the weather conditions is formed; this regime is formed without artificial increase of the ground waters level. This does not allow bog vegetation or vegetation typical for dry conditions to develop. Thus, within 20 and more years after completion of peat extraction, such areas are not covered by vegetation in spite of favorable agro-chemical qualities of peat layer and favorable for vegetation chemical composition of soil and ground waters. Depleted peat deposits, that are based at the sapropel, are not suitable for agricultural use, because agricultural vegetation requires stable water and air regime with good aeration and oxidative and restoration potential within 400-750 mV. Contrast amphibiotic water and air regime of the depleted peat deposits that are based at sapropel excludes possibility to use them as agricultural lands. Because of this reason, areas with residual peat layer that are based at sapropel are not suitable for forest planting. Due to periodic increase of ground waters level, rot systems of the plants can not penetrate into the required depth, and mechanical

  19. [Internal contamination with depleted uranium and health disorders].

    PubMed

    Pranjić, Nurka; Karamehić, Jasenko; Ljuca, Farid; Zigić, Zlata; Ascerić, Mensura

    2002-01-01

    In this review we used the published data on depleted uranium (experimental and epidemiological) from the current literature. Depleted uranium is a toxic heavy metal that in high dose may cause poisoning and health effects as those caused by lead, mercury, and chromium. It is slightly radioactive. The aim of this review was to select, to arrange, to present references of scientific papers, and to summarise the data in order to give a comprehensive image of the results of toxicological studies on depleted uranium that have been done on animals (including carcinogenic activity). We have also used epidemiological posted study results related to occupational and environmental exposure to depleted uranium. The toxicity of uranium has been studied extensively. The results of the studies indicated primarily its chemical toxicity, particularly renal effects, but depleted uranium is not radiological hazard. Uranium is not metal determined to be carcinogenic (the International Agency of Research on Cancer). The military use of depleted uranium will give additional insight into the toxicology of depleted uranium. The present controversy over the radiological and chemical toxicity of depleted uranium used in the Gulf War requests further experimental and clinical investigations of its effects on the biosphere and human beings.

  20. Whistler waves guided by density depletion ducts in a magnetoplasma

    SciTech Connect

    Bakharev, P. V.; Zaboronkova, T. M.; Kudrin, A. V.; Krafft, C.

    2010-11-15

    The guided propagation of whistler waves along cylindrical density depletion ducts in a magneto-plasma is studied. It is shown that, under certain conditions, such ducts can support volume and surface eigenmodes. The dispersion properties and field structure of whistler modes guided by density depletion ducts are analyzed. The effect of collisional losses in the plasma on the properties of modes is discussed.

  1. Optimal Allocation of Sampling Effort in Depletion Surveys

    EPA Science Inventory

    We consider the problem of designing a depletion or removal survey as part of estimating animal abundance for populations with imperfect capture or detection rates. In a depletion survey, animals are captured from a given area, counted, and withheld from the population. This proc...

  2. 26 CFR 1.613-1 - Percentage depletion; general rule.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 7 2011-04-01 2009-04-01 true Percentage depletion; general rule. 1.613-1 Section 1.613-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Natural Resources § 1.613-1 Percentage depletion;...

  3. Depletion of Appalachian coal reserves - how soon?

    USGS Publications Warehouse

    Milici, R.C.

    2000-01-01

    Much of the coal consumed in the US since the end of the last century has been produced from the Pennsylvanian strata of the Appalachian basin. Even though quantities mined in the past are less than they are today, this basin yielded from 70% to 80% of the nation's annual coal production from the end of the last century until the early 1970s. During the last 25 years, the proportion of the nation's coal that was produced annually from the Appalachian basin has declined markedly, and today it is only about 40% of the total. The amount of coal produced annually in the Appalachian basin, however, has been rising slowly over the last several decades, and has ranged generally from 400 to 500 million tons (Mt) per year. A large proportion of Appalachian historical production has come from relatively few counties in southwestern Pennsylvania, northern and southern West Virginia, eastern Kentucky, Virginia and Alabama. Many of these counties are decades past their years of peak production and several are almost depleted of economic deposits of coal. Because the current major consumer of Appalachian coal is the electric power industry, coal quality, especially sulfur content, has a great impact on its marketability. High-sulfur coal deposits in western Pennsylvania and Ohio are in low demand when compared with the lower sulfur coals of Virginia and southern West Virginia. Only five counties in the basin that have produced 500 Mt or more exhibit increasing rates of production at relatively high levels. Of these, six are in the central part of the basin and only one, Greene County, Pennsylvania, is in the northern part of the basin. Decline rate models, based on production decline rates and the decline rate of the estimated, 'potential' reserve, indicate that Appalachian basin annual coal production will be 200 Mt or less by the middle of the next century. Published by Elsevier Science B.V.Much of the coal consumed in the US since the end of the last century has been produced

  4. Ozone Depletion Potential of CH3Br

    NASA Technical Reports Server (NTRS)

    Sander, Stanley P.; Ko, Malcolm K. W.; Sze, Nien Dak; Scott, Courtney; Rodriquez, Jose M.; Weisenstein, Debra K.

    1998-01-01

    The ozone depletion potential (ODP) of methyl bromide (CH3Br) can be determined by combining the model-calculated bromine efficiency factor (BEF) for CH3Br and its atmospheric lifetime. This paper examines how changes in several key kinetic data affect BEF. The key reactions highlighted in this study include the reaction of BrO + H02, the absorption cross section of HOBr, the absorption cross section and the photolysis products of BrON02, and the heterogeneous conversion of BrON02 to HOBR and HN03 on aerosol particles. By combining the calculated BEF with the latest estimate of 0.7 year for the atmospheric lifetime of CH3Br, the likely value of ODP for CH3Br is 0.39. The model-calculated concentration of HBr (approximately 0.3 pptv) in the lower stratosphere is substantially smaller than the reported measured value of about I pptv. Recent publications suggested models can reproduce the measured value if one assumes a yield for HBr from the reaction of BrO + OH or from the reaction of BrO + H02. Although the DeAlore et al. evaluation concluded any substantial yield of HBr from BrO + HO2 is unlikely, for completeness, we calculate the effects of these assumed yields on BEF for CH3Br. Our calculations show that the effects are minimal: practically no impact for an assumed 1.3% yield of HBr from BrO + OH and 10% smaller for an assumed 0.6% yield from BrO + H02.

  5. Impact of ozone depletion on immune function

    SciTech Connect

    Jeevan, A.; Kripke, M.L. . Dept. of Immunology)

    1993-06-01

    Depletion of stratospheric ozone is expected to lead to an increase in the amount of UV-B radiation present in sunlight. In addition to its well known ability to cause skin cancer, UV-B radiation has been shown to alter the immune system. The immune system is the body's primary defense mechanism against infectious diseases and protects against the development of certain types of cancer. Any impairment of immune function may jeopardize health by increasing susceptibility to infectious diseases, increasing the severity of infections, or delaying recovery for infections. In addition, impaired immune function can increase the incidence of certain cancers, particularly cancers of the skin. Research carried out with laboratory animals over the past 15 years has demonstrated that exposure of the skin to UV-B radiation can suppress certain types of immune responses. These include rejection of UV-induced skin cancers and melanomas, contact allergy reactions to chemicals, delayed-type hypersensitivity responses to microbial and other antigens, and phagocytosis and elimination of certain bacteria from lymphoid tissues. Recent studies with mycobacterial infection of mice demonstrated that exposure to UV-B radiation decreased the delayed hypersensitivity response to mycobacterial antigens and increased the severity of infection. In humans, UV-B radiation has also been shown to impair the contact allergy response. These studies demonstrate that UV radiation can decrease immune responses in humans and laboratory and raise the possibility that increased exposure to UV-B radiation could adversely affect human health by increasing the incidence or severity of certain infectious diseases.

  6. Barium Depletion in Hollow Cathode Emitters

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Capece, Angela M.; Mikellides, Ioannis G.; Katz, Ira

    2009-01-01

    The effect of tungsten erosion, transport and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from an 8200 hour and a 30,352 hour ion engine wear test. Erosion and subsequent re-deposition of tungsten in the electron emission zone at the downstream end of the insert reduces the porosity of the tungsten matrix, preventing the ow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushed back to the emitter surface by the electric field and drag from the xenon ion flow. This barium ion flux is sufficient to maintain a barium surface coverage at the downstream end greater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length, so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollow cathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.

  7. Recovery of depleted uranium fragments from soil.

    PubMed

    Farr, C P; Alecksen, T J; Heronimus, R S; Simonds, M H; Farrar, D R; Miller, M L; Baker, K R

    2010-02-01

    A "proof of concept" was conducted to determine the effectiveness of a survey method for cost-effective recovery of depleted uranium (DU) fragments from contaminated soil piles at Sandia National Laboratories. First, DU fragments ranging from less than a gram up to 48 g were covered by various thicknesses of soil and used for detector efficiency measurements. The efficiencies were measured for three different sodium iodide detectors: a 5.1-cm by 5.1-cm (2-inch by 2-inch) detector, a 7.6-cm by 7.6-cm (3-inch by 3-inch) detector, and a Field Instrument for the Detection of Low Energy Radiation (FIDLER) detector. The FIDLER detector was found to be superior to the other detectors in each measurement. Next, multiple 7.6-cm (3-inch) layers of soil, taken from the contaminated piles, were applied to a clean pad of soil. Each layer was scanned by an array of eight FIDLER detectors pulled by a tractor. The array, moving 10.2 to 12.7 cm s(-1) (4 to 5 inches per second), automatically recorded radiation count data along with associated detector coordinates at 3-s intervals. The DU fragments were located and identified with a handheld system consisting of a FIDLER detector and a positioning system and then removed. After DU removal, the affected areas were re-scanned and a new lift of contaminated soil was applied. The detection capability of the system as a function of DU fragment mass and burial depth was modeled and determined to be sufficient to ensure that the dose-based site concentration goals would be met. Finally, confirmation soil samples were taken from random locations and from decontaminated soil areas. All samples had concentrations of U that met the goal of 400-500 pCi g(-1).

  8. Direct antidiabetic effect of leptin through triglyceride depletion of tissues

    PubMed Central

    Shimabukuro, Michio; Koyama, Kazunori; Chen, Guoxun; Wang, May-Yun; Trieu, Falguni; Lee, Young; Newgard, Christopher B.; Unger, Roger H.

    1997-01-01

    Leptin is currently believed to control body composition largely, if not entirely, via hypothalamic receptors that regulate food intake and thermogenesis. Here we demonstrate direct extraneural effects of leptin to deplete fat content of both adipocytes and nonadipocytes to levels far below those of pairfed controls. In cultured pancreatic islets, leptin lowered triglyceride (TG) content by preventing TG formation from free fatty acids (FFA) and by increasing FFA oxidation. In vivo hyperleptinemia, induced in normal rats by adenovirus gene transfer, depleted TG content in liver, skeletal muscle, and pancreas without increasing plasma FFA or ketones, suggesting intracellular oxidation. In islets of obese Zucker Diabetic Fatty rats with leptin receptor mutations, leptin had no effect in vivo or in vitro. The TG content was ≈20 times normal, and esterification capacity was increased 3- to 4-fold. Thus, in rats with normal leptin receptors but not in Zucker Diabetic Fatty rats, nonadipocytes and adipocytes esterify FFA, store them as TG, and later oxidize them intracellularly via an “indirect pathway” of intracellular fatty acid metabolism controlled by leptin. By maintaining insulin sensitivity and preventing islet lipotoxicity, this activity of leptin may prevent adipogenic diabetes. PMID:9114043

  9. The effect of ego depletion on sprint start reaction time.

    PubMed

    Englert, Chris; Bertrams, Alex

    2014-10-01

    In the current study, we consider that optimal sprint start performance requires the self-control of responses. Therefore, start performance should depend on athletes' self-control strength. We assumed that momentary depletion of self-control strength (ego depletion) would either speed up or slow down the initiation of a sprint start, where an initiation that was sped up would carry the increased risk of a false start. Applying a mixed between- (depletion vs. nondepletion) and within- (before vs. after manipulation of depletion) subjects design, we tested the start reaction times of 37 sport students. We found that participants' start reaction times decelerated after finishing a depleting task, whereas it remained constant in the nondepletion condition. These results indicate that sprint start performance can be impaired by unrelated preceding actions that lower momentary self-control strength. We discuss practical implications in terms of optimizing sprint starts and related overall sprint performance.

  10. The timing and mechanism of depletion in Lewisian granulites

    NASA Technical Reports Server (NTRS)

    Cohen, A. S.; Onions, R. K.; Ohara, M. J.

    1988-01-01

    Large Ion Lithophile (LIL) depletion in Lewisian granulites is discussed. Severe depletions in U, Th, and other LIL have been well documented in Lewisan mafic and felsic gneisses, but new Pb isotopic analyses show little or no depletion in lithologies with high solidus temperatures, such as peridotite. This suggests that LIL transport in this terrane took place by removal of partial melts rather than by pervasive flooding with externally derived CO2. The Pb and Nd isotopic data gathered on these rocks show that the depletion and granulite metamorphism are distinct events about 250 Ma apart. Both fluid inclusions and cation exchange geothermometers date from the later metamorphic event and therefore have little bearing on the depletion event, suggesting a note of caution for interpretations of other granulite terranes.

  11. Extreme Vulnerability of IDH1 Mutant Cancers to NAD+ Depletion.

    PubMed

    Tateishi, Kensuke; Wakimoto, Hiroaki; Iafrate, A John; Tanaka, Shota; Loebel, Franziska; Lelic, Nina; Wiederschain, Dmitri; Bedel, Olivier; Deng, Gejing; Zhang, Bailin; He, Timothy; Shi, Xu; Gerszten, Robert E; Zhang, Yiyun; Yeh, Jing-Ruey J; Curry, William T; Zhao, Dan; Sundaram, Sudhandra; Nigim, Fares; Koerner, Mara V A; Ho, Quan; Fisher, David E; Roider, Elisabeth M; Kemeny, Lajos V; Samuels, Yardena; Flaherty, Keith T; Batchelor, Tracy T; Chi, Andrew S; Cahill, Daniel P

    2015-12-14

    Heterozygous mutation of IDH1 in cancers modifies IDH1 enzymatic activity, reprogramming metabolite flux and markedly elevating 2-hydroxyglutarate (2-HG). Here, we found that 2-HG depletion did not inhibit growth of several IDH1 mutant solid cancer types. To identify other metabolic therapeutic targets, we systematically profiled metabolites in endogenous IDH1 mutant cancer cells after mutant IDH1 inhibition and discovered a profound vulnerability to depletion of the coenzyme NAD+. Mutant IDH1 lowered NAD+ levels by downregulating the NAD+ salvage pathway enzyme nicotinate phosphoribosyltransferase (Naprt1), sensitizing to NAD+ depletion via concomitant nicotinamide phosphoribosyltransferase (NAMPT) inhibition. NAD+ depletion activated the intracellular energy sensor AMPK, triggered autophagy, and resulted in cytotoxicity. Thus, we identify NAD+ depletion as a metabolic susceptibility of IDH1 mutant cancers.

  12. Mitochondrial dysfunction and death in motor neurons exposed to the glutathione-depleting agent ethacrynic acid.

    PubMed

    Rizzardini, M; Lupi, M; Bernasconi, S; Mangolini, A; Cantoni, L

    2003-03-15

    This study investigated the mechanisms of toxicity of glutathione (GSH) depletion in one cell type, the motor neuron. Ethacrynic acid (EA) (100 microM) was added to immortalized mouse motor neurons (NSC-34) to deplete both cytosolic and mitochondrial glutathione rapidly. This caused a drop in GSH to 25% of the initial level in 1 h and complete loss in 4 h. This effect was accompanied by enhanced generation of reactive oxygen species (ROS) with a peak after 2 h of exposure, and by signs of mitochondrial dysfunction such as a decrease in 3-(4,5-dimethyl-2-thiazoyl)-2,5-diphenyltetrazolium bromide (MTT) (30% less after 4 h). The increase in ROS and the MTT reduction were both EA concentration-dependent. Expression of heme oxygenase-1 (HO-1), a marker of oxidative stress, also increased. The mitochondrial damage was monitored by measuring the mitochondrial membrane potential (MMP) from the uptake of rhodamine 123 into mitochondria. MMP dropped (20%) after only 1 h exposure to EA, and slowly continued to decline until 3 h, with a steep drop at 5 h (50% decrease), i.e. after the complete GSH loss. Quantification of DNA fragmentation by the TUNEL technique showed that the proportion of cells with fragmented nuclei rose from 10% after 5 h EA exposure to about 65% at 18 h. These results indicate that EA-induced GSH depletion rapidly impairs the mitochondrial function of motor neurons, and this precedes cell death. This experimental model of oxidative toxicity could be useful to study mechanisms of diseases like spinal cord injury (SCI) and amyotrophic lateral sclerosis (ALS), where motor neurons are the vulnerable population and oxidative stress has a pathogenic role.

  13. Serotonin and social norms: tryptophan depletion impairs social comparison and leads to resource depletion in a multiplayer harvesting game.

    PubMed

    Bilderbeck, Amy C; Brown, Gordon D A; Read, Judi; Woolrich, Mark; Cowen, Phillip J; Behrens, Tim E J; Rogers, Robert D

    2014-07-01

    How do people sustain resources for the benefit of individuals and communities and avoid the tragedy of the commons, in which shared resources become exhausted? In the present study, we examined the role of serotonin activity and social norms in the management of depletable resources. Healthy adults, alongside social partners, completed a multiplayer resource-dilemma game in which they repeatedly harvested from a partially replenishable monetary resource. Dietary tryptophan depletion, leading to reduced serotonin activity, was associated with aggressive harvesting strategies and disrupted use of the social norms given by distributions of other players' harvests. Tryptophan-depleted participants more frequently exhausted the resource completely and also accumulated fewer rewards than participants who were not tryptophan depleted. Our findings show that rank-based social comparisons are crucial to the management of depletable resources, and that serotonin mediates responses to social norms.

  14. Glutathione Depletion and Carbon Ion Radiation Potentiate Clustered DNA Lesions, Cell Death and Prevent Chromosomal Changes in Cancer Cells Progeny

    PubMed Central

    Hanot, Maïté; Boivin, Anthony; Malésys, Céline; Beuve, Michaël; Colliaux, Anthony; Foray, Nicolas; Douki, Thierry; Ardail, Dominique; Rodriguez-Lafrasse, Claire

    2012-01-01

    Poor local control and tumor escape are of major concern in head-and-neck cancers treated by conventional radiotherapy or hadrontherapy. Reduced glutathione (GSH) is suspected of playing an important role in mechanisms leading to radioresistance, and its depletion should enable oxidative stress insult, thereby modifying the nature of DNA lesions and the subsequent chromosomal changes that potentially lead to tumor escape. This study aimed to highlight the impact of a GSH-depletion strategy (dimethylfumarate, and l-buthionine sulfoximine association) combined with carbon ion or X-ray irradiation on types of DNA lesions (sparse or clustered) and the subsequent transmission of chromosomal changes to the progeny in a radioresistant cell line (SQ20B) expressing a high endogenous GSH content. Results are compared with those of a radiosensitive cell line (SCC61) displaying a low endogenous GSH level. DNA damage measurements (γH2AX/comet assay) demonstrated that a transient GSH depletion in resistant SQ20B cells potentiated the effects of irradiation by initially increasing sparse DNA breaks and oxidative lesions after X-ray irradiation, while carbon ion irradiation enhanced the complexity of clustered oxidative damage. Moreover, residual DNA double-strand breaks were measured whatever the radiation qualities. The nature of the initial DNA lesions and amount of residual DNA damage were similar to those observed in sensitive SCC61 cells after both types of irradiation. Misrepaired or unrepaired lesions may lead to chromosomal changes, estimated in cell progeny by the cytome assay. Both types of irradiation induced aberrations in nondepleted resistant SQ20B and sensitive SCC61 cells. The GSH-depletion strategy prevented the transmission of aberrations (complex rearrangements and chromosome break or loss) in radioresistant SQ20B only when associated with carbon ion irradiation. A GSH-depleting strategy combined with hadrontherapy may thus have considerable advantage in the

  15. Glutathione depletion and carbon ion radiation potentiate clustered DNA lesions, cell death and prevent chromosomal changes in cancer cells progeny.

    PubMed

    Hanot, Maïté; Boivin, Anthony; Malésys, Céline; Beuve, Michaël; Colliaux, Anthony; Foray, Nicolas; Douki, Thierry; Ardail, Dominique; Rodriguez-Lafrasse, Claire

    2012-01-01

    Poor local control and tumor escape are of major concern in head-and-neck cancers treated by conventional radiotherapy or hadrontherapy. Reduced glutathione (GSH) is suspected of playing an important role in mechanisms leading to radioresistance, and its depletion should enable oxidative stress insult, thereby modifying the nature of DNA lesions and the subsequent chromosomal changes that potentially lead to tumor escape.This study aimed to highlight the impact of a GSH-depletion strategy (dimethylfumarate, and L-buthionine sulfoximine association) combined with carbon ion or X-ray irradiation on types of DNA lesions (sparse or clustered) and the subsequent transmission of chromosomal changes to the progeny in a radioresistant cell line (SQ20B) expressing a high endogenous GSH content. Results are compared with those of a radiosensitive cell line (SCC61) displaying a low endogenous GSH level. DNA damage measurements (γH2AX/comet assay) demonstrated that a transient GSH depletion in resistant SQ20B cells potentiated the effects of irradiation by initially increasing sparse DNA breaks and oxidative lesions after X-ray irradiation, while carbon ion irradiation enhanced the complexity of clustered oxidative damage. Moreover, residual DNA double-strand breaks were measured whatever the radiation qualities. The nature of the initial DNA lesions and amount of residual DNA damage were similar to those observed in sensitive SCC61 cells after both types of irradiation. Misrepaired or unrepaired lesions may lead to chromosomal changes, estimated in cell progeny by the cytome assay. Both types of irradiation induced aberrations in nondepleted resistant SQ20B and sensitive SCC61 cells. The GSH-depletion strategy prevented the transmission of aberrations (complex rearrangements and chromosome break or loss) in radioresistant SQ20B only when associated with carbon ion irradiation. A GSH-depleting strategy combined with hadrontherapy may thus have considerable advantage in the

  16. Phytomediated Biostimulation of the Autochthonous Bacterial Community for the Acceleration of the Depletion of Polycyclic Aromatic Hydrocarbons in Contaminated Sediments

    PubMed Central

    Gentini, Alessandro; Becarelli, Simone; Azaizeh, Hassan

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are a large group of organic contaminants causing hazards to organisms including humans. The objective of the study was to validate the vegetation of dredged sediments with Phragmites australis as an exploitable biostimulation approach to accelerate the depletion of PAHs in nitrogen spiked sediments. Vegetation with Phragmites australis resulted in being an efficient biostimulation approach for the depletion of an aged PAHs contamination (229.67 ± 15.56 μg PAHs/g dry weight of sediment) in dredged sediments. Phragmites australis accelerated the oxidation of the PAHs by rhizodegradation. The phytobased approach resulted in 58.47% of PAHs depletion. The effects of the treatment have been analyzed in terms of both contaminant depletion and changes in relative abundance of the metabolically active Gram positive and Gram negative PAHs degraders. The metabolically active degraders were quantified both in the sediments and in the root endospheric microbial community. Quantitative real-time PCR reactions have been performed on the retrotranscribed transcripts encoding the Gram positive and Gram negative large α subunit (RHDα) of the aromatic ring hydroxylating dioxygenases. The Gram positive degraders resulted in being selectively favored by vegetation with Phragmites australis and mandatory for the depletion of the six ring condensed indeno[1,2,3-cd]pyrene and benzo[g,h,i]perylene. PMID:25170516

  17. Long-term groundwater depletion in the United States

    USGS Publications Warehouse

    Konikow, Leonard F.

    2015-01-01

    The volume of groundwater stored in the subsurface in the United States decreased by almost 1000 km3 during 1900–2008. The aquifer systems with the three largest volumes of storage depletion include the High Plains aquifer, the Mississippi Embayment section of the Gulf Coastal Plain aquifer system, and the Central Valley of California. Depletion rates accelerated during 1945–1960, averaging 13.6 km3/year during the last half of the century, and after 2000 increased again to about 24 km3/year. Depletion intensity is a new parameter, introduced here, to provide a more consistent basis for comparing storage depletion problems among various aquifers by factoring in time and areal extent of the aquifer. During 2001–2008, the Central Valley of California had the largest depletion intensity. Groundwater depletion in the United States can explain 1.4% of observed sea-level rise during the 108-year study period and 2.1% during 2001–2008. Groundwater depletion must be confronted on local and regional scales to help reduce demand (primarily in irrigated agriculture) and/or increase supply.

  18. Adjoint simulation of stream depletion due to aquifer pumping.

    PubMed

    Neupauer, Roseanna M; Griebling, Scott A

    2012-01-01

    If an aquifer is hydraulically connected to an adjacent stream, a pumping well operating in the aquifer will draw some water from aquifer storage and some water from the stream, causing stream depletion. Several analytical, semi-analytical, and numerical approaches have been developed to estimate stream depletion due to pumping. These approaches are effective if the well location is known. If a new well is to be installed, it may be desirable to install the well at a location where stream depletion is minimal. If several possible locations are considered for the location of a new well, stream depletion would have to be estimated for all possible well locations, which can be computationally inefficient. The adjoint approach for estimating stream depletion is a more efficient alternative because with one simulation of the adjoint model, stream depletion can be estimated for pumping at a well at any location. We derive the adjoint equations for a coupled system with a confined aquifer, an overlying unconfined aquifer, and a river that is hydraulically connected to the unconfined aquifer. We assume that the stage in the river is known, and is independent of the stream depletion, consistent with the assumptions of the MODFLOW river package. We describe how the adjoint equations can be solved using MODFLOW. In an illustrative example, we show that for this scenario, the adjoint approach is as accurate as standard forward numerical simulation methods, and requires substantially less computational effort.

  19. Associative Interactions in Crowded Solutions of Biopolymers Counteract Depletion Effects.

    PubMed

    Groen, Joost; Foschepoth, David; te Brinke, Esra; Boersma, Arnold J; Imamura, Hiromi; Rivas, Germán; Heus, Hans A; Huck, Wilhelm T S

    2015-10-14

    The cytosol of Escherichia coli is an extremely crowded environment, containing high concentrations of biopolymers which occupy 20-30% of the available volume. Such conditions are expected to yield depletion forces, which strongly promote macromolecular complexation. However, crowded macromolecule solutions, like the cytosol, are very prone to nonspecific associative interactions that can potentially counteract depletion. It remains unclear how the cytosol balances these opposing interactions. We used a FRET-based probe to systematically study depletion in vitro in different crowded environments, including a cytosolic mimic, E. coli lysate. We also studied bundle formation of FtsZ protofilaments under identical crowded conditions as a probe for depletion interactions at much larger overlap volumes of the probe molecule. The FRET probe showed a more compact conformation in synthetic crowding agents, suggesting strong depletion interactions. However, depletion was completely negated in cell lysate and other protein crowding agents, where the FRET probe even occupied slightly more volume. In contrast, bundle formation of FtsZ protofilaments proceeded as readily in E. coli lysate and other protein solutions as in synthetic crowding agents. Our experimental results and model suggest that, in crowded biopolymer solutions, associative interactions counterbalance depletion forces for small macromolecules. Furthermore, the net effects of macromolecular crowding will be dependent on both the size of the macromolecule and its associative interactions with the crowded background.

  20. Long-term groundwater depletion in the United States.

    PubMed

    Konikow, Leonard F

    2015-01-01

    The volume of groundwater stored in the subsurface in the United States decreased by almost 1000 km3 during 1900-2008. The aquifer systems with the three largest volumes of storage depletion include the High Plains aquifer, the Mississippi Embayment section of the Gulf Coastal Plain aquifer system, and the Central Valley of California. Depletion rates accelerated during 1945-1960, averaging 13.6 km3/year during the last half of the century, and after 2000 increased again to about 24 km3/year. Depletion intensity is a new parameter, introduced here, to provide a more consistent basis for comparing storage depletion problems among various aquifers by factoring in time and areal extent of the aquifer. During 2001-2008, the Central Valley of California had the largest depletion intensity. Groundwater depletion in the United States can explain 1.4% of observed sea-level rise during the 108-year study period and 2.1% during 2001-2008. Groundwater depletion must be confronted on local and regional scales to help reduce demand (primarily in irrigated agriculture) and/or increase supply.

  1. Semiconductor-based photoelectrochemical water splitting at the limit of very wide depletion region

    SciTech Connect

    Liu, Mingzhao; Lyons, John L.; Yan, Danhua H.; Hybertsen, Mark S.

    2015-11-23

    In semiconductor-based photoelectrochemical (PEC) water splitting, carrier separation and delivery largely relies on the depletion region formed at the semiconductor/water interface. As a Schottky junction device, the trade-off between photon collection and minority carrier delivery remains a persistent obstacle for maximizing the performance of a water splitting photoelectrode. Here, it is demonstrated that the PEC water splitting efficiency for an n-SrTiO3 (n-STO) photoanode is improved very significantly despite its weak indirect band gap optical absorption (α < 10⁴ cm⁻¹), by widening the depletion region through engineering its doping density and profile. Graded doped n-SrTiO3 photoanodes are fabricated with their bulk heavily doped with oxygen vacancies but their surface lightly doped over a tunable depth of a few hundred nanometers, through a simple low temperature re-oxidation technique. The graded doping profile widens the depletion region to over 500 nm, thus leading to very efficient charge carrier separation and high quantum efficiency (>70%) for the weak indirect transition. As a result, this simultaneous optimization of the light absorption, minority carrier (hole) delivery, and majority carrier (electron) transport by means of a graded doping architecture may be useful for other indirect band gap photocatalysts that suffer from a similar problem of weak optical absorption.

  2. Semiconductor-based photoelectrochemical water splitting at the limit of very wide depletion region

    DOE PAGES

    Liu, Mingzhao; Lyons, John L.; Yan, Danhua H.; ...

    2015-11-23

    In semiconductor-based photoelectrochemical (PEC) water splitting, carrier separation and delivery largely relies on the depletion region formed at the semiconductor/water interface. As a Schottky junction device, the trade-off between photon collection and minority carrier delivery remains a persistent obstacle for maximizing the performance of a water splitting photoelectrode. Here, it is demonstrated that the PEC water splitting efficiency for an n-SrTiO3 (n-STO) photoanode is improved very significantly despite its weak indirect band gap optical absorption (α < 10⁴ cm⁻¹), by widening the depletion region through engineering its doping density and profile. Graded doped n-SrTiO3 photoanodes are fabricated with their bulkmore » heavily doped with oxygen vacancies but their surface lightly doped over a tunable depth of a few hundred nanometers, through a simple low temperature re-oxidation technique. The graded doping profile widens the depletion region to over 500 nm, thus leading to very efficient charge carrier separation and high quantum efficiency (>70%) for the weak indirect transition. As a result, this simultaneous optimization of the light absorption, minority carrier (hole) delivery, and majority carrier (electron) transport by means of a graded doping architecture may be useful for other indirect band gap photocatalysts that suffer from a similar problem of weak optical absorption.« less

  3. Rapid depletion of muscle progenitor cells in dystrophic mdx/utrophin-/- mice.

    PubMed

    Lu, Aiping; Poddar, Minakshi; Tang, Ying; Proto, Jonathan D; Sohn, Jihee; Mu, Xiaodong; Oyster, Nicholas; Wang, Bing; Huard, Johnny

    2014-09-15

    Duchenne muscular dystrophy (DMD) patients lack dystrophin from birth; however, muscle weakness becomes apparent only at 3-5 years of age, which happens to coincide with the depletion of the muscle progenitor cell (MPC) pools. Indeed, MPCs isolated from older DMD patients demonstrate impairments in myogenic potential. To determine whether the progression of muscular dystrophy is a consequence of the decline in functional MPCs, we investigated two animal models of DMD: (i) dystrophin-deficient mdx mice, the most commonly utilized model of DMD, which has a relatively mild dystrophic phenotype and (ii) dystrophin/utrophin double knock-out (dKO) mice, which display a similar histopathologic phenotype to DMD patients. In contrast to age-matched mdx mice, we observed that both the number and regeneration potential of dKO MPCs rapidly declines during disease progression. This occurred in MPCs at both early and late stages of myogenic commitment. In fact, early MPCs isolated from 6-week-old dKO mice have reductions in proliferation, resistance to oxidative stress and multilineage differentiation capacities compared with age-matched mdx MPCs. This effect may potentially be mediated by fibroblast growth factor overexpression and/or a reduction in telomerase activity. Our results demonstrate that the rapid disease progression in the dKO model is associated, at least in part, with MPC depletion. Therefore, alleviating MPC depletion could represent an approach to delay the onset of the histopathologies associated with DMD patients.

  4. A Multilab Preregistered Replication of the Ego-Depletion Effect.

    PubMed

    Hagger, Martin S; Chatzisarantis, Nikos L D; Alberts, Hugo; Anggono, Calvin Octavianus; Batailler, Cédric; Birt, Angela R; Brand, Ralf; Brandt, Mark J; Brewer, Gene; Bruyneel, Sabrina; Calvillo, Dustin P; Campbell, W Keith; Cannon, Peter R; Carlucci, Marianna; Carruth, Nicholas P; Cheung, Tracy; Crowell, Adrienne; De Ridder, Denise T D; Dewitte, Siegfried; Elson, Malte; Evans, Jacqueline R; Fay, Benjamin A; Fennis, Bob M; Finley, Anna; Francis, Zoë; Heise, Elke; Hoemann, Henrik; Inzlicht, Michael; Koole, Sander L; Koppel, Lina; Kroese, Floor; Lange, Florian; Lau, Kevin; Lynch, Bridget P; Martijn, Carolien; Merckelbach, Harald; Mills, Nicole V; Michirev, Alexej; Miyake, Akira; Mosser, Alexandra E; Muise, Megan; Muller, Dominique; Muzi, Milena; Nalis, Dario; Nurwanti, Ratri; Otgaar, Henry; Philipp, Michael C; Primoceri, Pierpaolo; Rentzsch, Katrin; Ringos, Lara; Schlinkert, Caroline; Schmeichel, Brandon J; Schoch, Sarah F; Schrama, Michel; Schütz, Astrid; Stamos, Angelos; Tinghög, Gustav; Ullrich, Johannes; Dellen, Michelle van; Wimbarti, Supra; Wolff, Wanja; Yusainy, Cleoputri; Zerhouni, Oulmann; Zwienenberg, Maria; Howe, Mark L

    2016-07-01

    Good self-control has been linked to adaptive outcomes such as better health, cohesive personal relationships, success in the workplace and at school, and less susceptibility to crime and addictions. In contrast, self-control failure is linked to maladaptive outcomes. Understanding the mechanisms by which self-control predicts behavior may assist in promoting better regulation and outcomes. A popular approach to understanding self-control is the strength or resource depletion model. Self-control is conceptualized as a limited resource that becomes depleted after a period of exertion resulting in self-control failure. The model has typically been tested using a sequential-task experimental paradigm, in which people completing an initial self-control task have reduced self-control capacity and poorer performance on a subsequent task, a state known as ego depletion Although a meta-analysis of ego-depletion experiments found a medium-sized effect, subsequent meta-analyses have questioned the size and existence of the effect and identified instances of possible bias. The analyses served as a catalyst for the current Registered Replication Report of the ego-depletion effect. Multiple laboratories (k = 23, total N = 2,141) conducted replications of a standardized ego-depletion protocol based on a sequential-task paradigm by Sripada et al. Meta-analysis of the studies revealed that the size of the ego-depletion effect was small with 95% confidence intervals (CIs) that encompassed zero (d = 0.04, 95% CI [-0.07, 0.15]. We discuss implications of the findings for the ego-depletion effect and the resource depletion model of self-control.

  5. Depletion of mesospheric sodium during extended period of pulsating aurora

    NASA Astrophysics Data System (ADS)

    Takahashi, T.; Hosokawa, K.; Nozawa, S.; Tsuda, T. T.; Ogawa, Y.; Tsutsumi, M.; Hiraki, Y.; Fujiwara, H.; Kawahara, T. D.; Saito, N.; Wada, S.; Kawabata, T.; Hall, C.

    2017-01-01

    We quantitatively evaluated the Na density depletion due to charge transfer reactions between Na atoms and molecular ions produced by high-energy electron precipitation during a pulsating aurora (PsA). An extended period of PsA was captured by an all-sky camera at the European Incoherent Scatter (EISCAT) radar Tromsø site (69.6°N, 19.2°E) during a 2 h interval from 00:00 to 02:00 UT on 25 January 2012. During this period, using the EISCAT very high frequency (VHF) radar, we detected three intervals of intense ionization below 100 km that were probably caused by precipitation of high-energy electrons during the PsA. In these intervals, the sodium lidar at Tromsø observed characteristic depletion of Na density at altitudes between 97 and 100 km. These Na density depletions lasted for 8 min and represented 5-8% of the background Na layer. To examine the cause of this depletion, we modeled the depletion rate based on charge transfer reactions with NO+ and O2+ while changing the R value which is defined as the ratio of NO+ to O2+ densities, from 1 to 10. The correlation coefficients between observed and modeled Na density depletion calculated with typical value R = 3 for time intervals T1, T2, and T3 were 0.66, 0.80, and 0.67, respectively. The observed Na density depletion rates fall within the range of modeled depletion rate calculated with R from 1 to 10. This suggests that the charge transfer reactions triggered by the auroral impact ionization at low altitudes are the predominant process responsible for Na density depletion during PsA intervals.

  6. Challenges dealing with depleted uranium in Germany - Reuse or disposal

    SciTech Connect

    Moeller, Kai D.

    2007-07-01

    During enrichment large amounts of depleted Uranium are produced. In Germany every year 2.800 tons of depleted uranium are generated. In Germany depleted uranium is not classified as radioactive waste but a resource for further enrichment. Therefore since 1996 depleted Uranium is sent to ROSATOM in Russia. However it still has to be dealt with the second generation of depleted Uranium. To evaluate the alternative actions in case a solution has to be found in Germany, several studies have been initiated by the Federal Ministry of the Environment. The work that has been carried out evaluated various possibilities to deal with depleted uranium. The international studies on this field and the situation in Germany have been analyzed. In case no further enrichment is planned the depleted uranium has to be stored. In the enrichment process UF{sub 6} is generated. It is an international consensus that for storage it should be converted to U{sub 3}O{sub 8}. The necessary technique is well established. If the depleted Uranium would have to be characterized as radioactive waste, a final disposal would become necessary. For the planned Konrad repository - a repository for non heat generating radioactive waste - the amount of Uranium is limited by the licensing authority. The existing license would not allow the final disposal of large amounts of depleted Uranium in the Konrad repository. The potential effect on the safety case has not been roughly analyzed. As a result it may be necessary to think about alternatives. Several possibilities for the use of depleted uranium in the industry have been identified. Studies indicate that the properties of Uranium would make it useful in some industrial fields. Nevertheless many practical and legal questions are open. One further option may be the use as shielding e.g. in casks for transport or disposal. Possible techniques for using depleted Uranium as shielding are the use of the metallic Uranium as well as the inclusion in concrete

  7. Temperature Dependent Residual Stress Models for Ultra-High-Temperature Ceramics on High Temperature Oxidation

    NASA Astrophysics Data System (ADS)

    Wang, Ruzhuan; Li, Weiguo

    2016-11-01

    The strength of SiC-depleted layer of ultra-high-temperature ceramics on high temperature oxidation degrades seriously. The research for residual stresses developed within the SiC-depleted layer is important and necessary. In this work, the residual stress evolutions in the SiC-depleted layer and the unoxidized substrate in various stages of oxidation are studied by using the characterization models. The temperature and oxidation time dependent mechanical/thermal properties of each phase in SiC-depleted layer are considered in the models. The study shows that the SiC-depleted layer would suffer from large tensile stresses due to the great temperature changes and the formation of pores on high temperature oxidation. The stresses may lead to the cracking and even the delamination of the oxidation layer.

  8. Lignin Depletion Enhances the Digestibility of Cellulose in Cultured Xylem Cells

    PubMed Central

    Lacayo, Catherine I.; Hwang, Mona S.; Ding, Shi-You; Thelen, Michael P.

    2013-01-01

    Plant lignocellulose constitutes an abundant and sustainable source of polysaccharides that can be converted into biofuels. However, the enzymatic digestion of native plant cell walls is inefficient, presenting a considerable barrier to cost-effective biofuel production. In addition to the insolubility of cellulose and hemicellulose, the tight association of lignin with these polysaccharides intensifies the problem of cell wall recalcitrance. To determine the extent to which lignin influences the enzymatic digestion of cellulose, specifically in secondary walls that contain the majority of cellulose and lignin in plants, we used a model system consisting of cultured xylem cells from Zinniaelegans. Rather than using purified cell wall substrates or plant tissue, we have applied this system to study cell wall degradation because it predominantly consists of homogeneous populations of single cells exhibiting large deposits of lignocellulose. We depleted lignin in these cells by treating with an oxidative chemical or by inhibiting lignin biosynthesis, and then examined the resulting cellulose digestibility and accessibility using a fluorescent cellulose-binding probe. Following cellulase digestion, we measured a significant decrease in relative cellulose content in lignin-depleted cells, whereas cells with intact lignin remained essentially unaltered. We also observed a significant increase in probe binding after lignin depletion, indicating that decreased lignin levels improve cellulose accessibility. These results indicate that lignin depletion considerably enhances the digestibility of cellulose in the cell wall by increasing the susceptibility of cellulose to enzymatic attack. Although other wall components are likely to contribute, our quantitative study exploits cultured Zinnia xylem cells to demonstrate the dominant influence of lignin on the enzymatic digestion of the cell wall. This system is simple enough for quantitative image analysis, but realistic enough

  9. Theophylline prevents NAD{sup +} depletion via PARP-1 inhibition in human pulmonary epithelial cells

    SciTech Connect

    Moonen, Harald J.J. . E-mail: h.moonen@grat.unimaas.nl; Geraets, Liesbeth; Vaarhorst, Anika; Bast, Aalt; Wouters, Emiel F.M.; Hageman, Geja J.

    2005-12-30

    Oxidative DNA damage, as occurs during exacerbations in chronic obstructive pulmonary disease (COPD), highly activates the nuclear enzyme poly(ADP-ribose)polymerase-1 (PARP-1). This can lead to cellular depletion of its substrate NAD{sup +}, resulting in an energy crisis and ultimately in cell death. Inhibition of PARP-1 results in preservation of the intracellular NAD{sup +} pool, and of NAD{sup +}-dependent cellular processes. In this study, PARP-1 activation by hydrogen peroxide decreased intracellular NAD{sup +} levels in human pulmonary epithelial cells, which was found to be prevented in a dose-dependent manner by theophylline, a widely used compound in the treatment of COPD. This enzyme inhibition by theophylline was confirmed in an ELISA using purified human PARP-1 and was found to be competitive by nature. These findings provide new mechanistic insights into the therapeutic effect of theophylline in oxidative stress-induced lung pathologies.

  10. 10. VIEW OF DEPLETED URANIUM INGOT AND MOLD IN FOUNDRY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW OF DEPLETED URANIUM INGOT AND MOLD IN FOUNDRY. (11/11/56) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  11. Individual differences in dopamine level modulate the ego depletion effect.

    PubMed

    Dang, Junhua; Xiao, Shanshan; Liu, Ying; Jiang, Yumeng; Mao, Lihua

    2016-01-01

    Initial exertion of self-control impairs subsequent self-regulatory performance, which is referred to as the ego depletion effect. The current study examined how individual differences in dopamine level, as indexed by eye blink rate (EBR), would moderate ego depletion. An inverted-U-shaped relationship between EBR and subsequent self-regulatory performance was found when participants initially engaged in self-control but such relationship was absent in the control condition where there was no initial exertion, suggesting individuals with a medium dopamine level may be protected from the typical ego depletion effect. These findings are consistent with a cognitive explanation which considers ego depletion as a phenomenon similar to "switch costs" that would be neutralized by factors promoting flexible switching.

  12. Stimulated Emission Depletion Lithography with Mercapto-Functional Polymers

    PubMed Central

    2016-01-01

    Surface reactive nanostructures were fabricated using stimulated emission depletion (STED) lithography. The functionalization of the nanostructures was realized by copolymerization of a bifunctional metal oxo cluster in the presence of a triacrylate monomer. Ligands of the cluster surface cross-link to the monomer during the lithographic process, whereas unreacted mercapto functionalized ligands are transferred to the polymer and remain reactive after polymer formation of the surface of the nanostructure. The depletion efficiency in dependence of the cluster loading was investigated and full depletion of the STED effect was observed with a cluster loading exceeding 4 wt %. A feature size by λ/11 was achieved by using a donut-shaped depletion beam. The reactivity of the mercapto groups on the surface of the nanostructure was tested by incubation with mercapto-reactive fluorophores. PMID:26816204

  13. STRATOSPHERIC OZONE DEPLETION: A FOCUS ON EPA'S RESEARCH

    EPA Science Inventory

    In September of 1987 the United States, along with 26 other countries, signed a landmark treaty to limit and subsequently, through revisions, phase out the production of all significant ozone depleting substances. Many researchers suspected that these chemicals, especially chl...

  14. Hyperspectral stimulated emission depletion microscopy and methods of use thereof

    SciTech Connect

    Timlin, Jerilyn A; Aaron, Jesse S

    2014-04-01

    A hyperspectral stimulated emission depletion ("STED") microscope system for high-resolution imaging of samples labeled with multiple fluorophores (e.g., two to ten fluorophores). The hyperspectral STED microscope includes a light source, optical systems configured for generating an excitation light beam and a depletion light beam, optical systems configured for focusing the excitation and depletion light beams on a sample, and systems for collecting and processing data generated by interaction of the excitation and depletion light beams with the sample. Hyperspectral STED data may be analyzed using multivariate curve resolution analysis techniques to deconvolute emission from the multiple fluorophores. The hyperspectral STED microscope described herein can be used for multi-color, subdiffraction imaging of samples (e.g., materials and biological materials) and for analyzing a tissue by Forster Resonance Energy Transfer ("FRET").

  15. Background suppression in fluorescence nanoscopy with stimulated emission double depletion

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Prunsche, Benedikt; Zhou, Lu; Nienhaus, Karin; Nienhaus, G. Ulrich

    2017-01-01

    Stimulated emission depletion (STED) fluorescence nanoscopy is a powerful super-resolution imaging technique based on the confinement of fluorescence emission to the central subregion of an observation volume through de-excitation of fluorophores in the periphery via stimulated emission. Here, we introduce stimulated emission double depletion (STEDD) as a method to selectively remove artificial background intensity. In this approach, a first, conventional STED pulse is followed by a second, delayed Gaussian STED pulse that specifically depletes the central region, thus leaving only background. Thanks to time-resolved detection we can remove this background intensity voxel by voxel by taking the weighted difference of photons collected before and after the second STED pulse. STEDD thus yields background-suppressed super-resolved images as well as STED-based fluorescence correlation spectroscopy data. Furthermore, the proposed method is also beneficial when considering lower-power, less redshifted depletion pulses.

  16. Atmosphere Assisted Machining of Depleted Uranium (DU) Penetrators

    DTIC Science & Technology

    1987-05-01

    tooling should be approximately $75,000 each. Lessons learned in the Vacuum Induction Remelt MM&T and the chip melts made on this program point out the...AD-E-401 528 Cutwator Report ARCCD-CR-6600S (V) ATMOSPHERE ASSISTED MACMINING DEPLETED URANIUM (DU) PENETRATORS DTic Charles E. Lathe"rOwn ELECTE...E-401 528 Contractor Report ARCCD-CR-86008 ATMOSPHERE ASSISTED MACHINING OF DEPLETED URANIUM (DU) PENETRATORS Charles E. Latham-Brown Frank Porter

  17. Lithium Depletion in the Beta Pictoris Moving Group

    NASA Astrophysics Data System (ADS)

    Yee, Jennifer C.; Jensen, E. L.; Reaser, B. E.

    2006-12-01

    We present a study of lithium depletion in twelve late-type pre-main-sequence stars in the coeval Beta Pictoris Moving Group (BPMG). The age of this group ( 12 Myr) is well constrained because all of the stars in the sample have Hipparcos distances. We have determined Li abundances for these K and M stars using equivalent width measurements of the 6707.8 Angstrom Li I line from new high-resolution, high-S/N echelle spectra, and we compare these abundances to models of pre-main-sequence Li depletion by Baraffe et al. (1998), D'Antona & Mazzitelli (1997, 1998), and Siess, Dufour, & Forestini (2000). Significantly more lithium depletion is observed in the sample than is predicted for a group of this age. In particular, the discrepancy between the predicted and the observed lithium abundances increases with decreasing effective temperature, suggesting a problem with theories describing pre-main-sequence lithium depletion. Our data indicate that M stars deplete lithium more rapidly than predicted, which could make M-type post-T-Tauri stars difficult to identify. In addition, we compare our results to the work of Song, Bessell, & Zuckerman (2002) on HIP 112312. In contrast to that work, we did not observe the lithium depletion boundary of the BPMG; none of the three M4.5 stars in the sample showed evidence of lithium (log N(Li) < -0.5), indicating a lithium depletion boundary later than M4.5, further underscoring the gap between age estimates from lithium depletion and those from theoretical evolutionary tracks. We gratefully acknowledge the support of the National Science Foundation through grant AST-0307830.

  18. Observed and Simulated Depletion Layers with Southward IMF

    DTIC Science & Technology

    2007-11-02

    characteristics of an event on 12 March 2001, in ionosphere , follow magnetic field lines to near the mag- which a depletion layer was observed just...depletion layers 2153 region. The second type inhibits dayside merging and is a ionosphere /thermosphere. The simulations discussed here possible...mechanism for understanding the saturation of the contain specifically selected parameters and simplifying ap- ionospheric potential under strongly driven

  19. Retrieval of buried depleted uranium from the T-1 trench

    SciTech Connect

    Burmeister, M.; Castaneda, N.; Greengard, T. |; Hull, C.; Barbour, D.; Quapp, W.J.

    1998-07-01

    The Trench 1 remediation project will be conducted this year to retrieve depleted uranium and other associated materials from a trench at Rocky Flats Environmental Technology Site. The excavated materials will be segregated and stabilized for shipment. The depleted uranium will be treated at an offsite facility which utilizes a novel approach for waste minimization and disposal through utilization of a combination of uranium recycling and volume efficient uranium stabilization.

  20. Antioxidant Protection of NADPH-Depleted Oligodendrocyte Precursor Cells Is Dependent on Supply of Reduced Glutathione

    PubMed Central

    Kilanczyk, Ewa; Saraswat Ohri, Sujata; Whittemore, Scott R.

    2016-01-01

    The pentose phosphate pathway is the main source of NADPH, which by reducing oxidized glutathione, contributes to antioxidant defenses. Although oxidative stress plays a major role in white matter injury, significance of NADPH for oligodendrocyte survival has not been yet investigated. It is reported here that the NADPH antimetabolite 6-amino-NADP (6AN) was cytotoxic to cultured adult rat spinal cord oligodendrocyte precursor cells (OPCs) as well as OPC-derived oligodendrocytes. The 6AN-induced necrosis was preceded by increased production of superoxide, NADPH depletion, and lower supply of reduced glutathione. Moreover, survival of NADPH-depleted OPCs was improved by the antioxidant drug trolox. Such cells were also protected by physiological concentrations of the neurosteroid dehydroepiandrosterone (10−8 M). The protection by dehydroepiandrosterone was associated with restoration of reduced glutathione, but not NADPH, and was sensitive to inhibition of glutathione synthesis. A similar protective mechanism was engaged by the cAMP activator forskolin or the G protein-coupled estrogen receptor (GPER/GPR30) ligand G1. Finally, treatment with the glutathione precursor N-acetyl cysteine reduced cytotoxicity of 6AN. Taken together, NADPH is critical for survival of OPCs by supporting their antioxidant defenses. Consequently, injury-associated inhibition of the pentose phosphate pathway may be detrimental for the myelination or remyelination potential of the white matter. Conversely, steroid hormones and cAMP activators may promote survival of NADPH-deprived OPCs by increasing a NADPH-independent supply of reduced glutathione. Therefore, maintenance of glutathione homeostasis appears as a critical effector mechanism for OPC protection against NADPH depletion and preservation of the regenerative potential of the injured white matter. PMID:27449129

  1. Depletion optimization of lumped burnable poisons in pressurized water reactors

    SciTech Connect

    Kodah, Z.H.

    1982-01-01

    Techniques were developed to construct a set of basic poison depletion curves which deplete in a monotonical manner. These curves were combined to match a required optimized depletion profile by utilizing either linear or non-linear programming methods. Three computer codes, LEOPARD, XSDRN, and EXTERMINATOR-2 were used in the analyses. A depletion routine was developed and incorporated into the XSDRN code to allow the depletion of fuel, fission products, and burnable poisons. The Three Mile Island Unit-1 reactor core was used in this work as a typical PWR core. Two fundamental burnable poison rod designs were studied. They are a solid cylindrical poison rod and an annular cylindrical poison rod with water filling the central region.These two designs have either a uniform mixture of burnable poisons or lumped spheroids of burnable poisons in the poison region. Boron and gadolinium are the two burnable poisons which were investigated in this project. Thermal self-shielding factor calculations for solid and annular poison rods were conducted. Also expressions for overall thermal self-shielding factors for one or more than one size group of poison spheroids inside solid and annular poison rods were derived and studied. Poison spheroids deplete at a slower rate than the poison mixture because each spheroid exhibits some self-shielding effects of its own. The larger the spheroid, the higher the self-shielding effects due to the increase in poison concentration.

  2. Intracellular energy depletion triggers programmed cell death during petal senescence in tulip

    PubMed Central

    Azad, A. K.; Ishikawa, Takayuki; Ishikawa, Takahiro; Shibata, H.

    2008-01-01

    Programmed cell death (PCD) in petals provides a model system to study the molecular aspects of organ senescence. In this study, the very early triggering signal for PCD during the senescence process from young green buds to 14-d-old petals of Tulipa gesneriana was determined. The opening and closing movement of petals of intact plants increased for the first 3 d and then gradually decreased. DNA degradation and cytochrome c (Cyt c) release were clearly observed in 6-d-old flowers. Oxidative stress or ethylene production can be excluded as the early signal for petal PCD. In contrast, ATP was dramatically depleted after the first day of flower opening. Sucrose supplementation to cut flowers maintained their ATP levels and the movement ability for a longer time than in those kept in water. The onset of DNA degradation, Cyt c release, and petal senescence was also delayed by sucrose supplementation to cut flowers. These results suggest that intracellular energy depletion, rather than oxidative stress or ethylene production, may be the very early signal to trigger PCD in tulip petals. PMID:18515833

  3. Intracellular energy depletion triggers programmed cell death during petal senescence in tulip.

    PubMed

    Azad, A K; Ishikawa, Takayuki; Ishikawa, Takahiro; Sawa, Y; Shibata, H

    2008-01-01

    Programmed cell death (PCD) in petals provides a model system to study the molecular aspects of organ senescence. In this study, the very early triggering signal for PCD during the senescence process from young green buds to 14-d-old petals of Tulipa gesneriana was determined. The opening and closing movement of petals of intact plants increased for the first 3 d and then gradually decreased. DNA degradation and cytochrome c (Cyt c) release were clearly observed in 6-d-old flowers. Oxidative stress or ethylene production can be excluded as the early signal for petal PCD. In contrast, ATP was dramatically depleted after the first day of flower opening. Sucrose supplementation to cut flowers maintained their ATP levels and the movement ability for a longer time than in those kept in water. The onset of DNA degradation, Cyt c release, and petal senescence was also delayed by sucrose supplementation to cut flowers. These results suggest that intracellular energy depletion, rather than oxidative stress or ethylene production, may be the very early signal to trigger PCD in tulip petals.

  4. Transient glutathione depletion in the substantia nigra compacta is associated with neuroinflammation in rats.

    PubMed

    Díaz-Hung, Mei-Li; Yglesias-Rivera, Arianna; Hernández-Zimbrón, Luis Fernando; Orozco-Suárez, Sandra; Ruiz-Fuentes, Jenny Laura; Díaz-García, Alexis; León-Martínez, Rilda; Blanco-Lezcano, Lisette; Pavón-Fuentes, Nancy; Lorigados-Pedre, Lourdes

    2016-10-29

    Glutathione (GSH) deficiency has been identified as an early event in the progression of Parkinson's disease. However, the role of GSH in the etiology and pathogenesis of this neurodegenerative disorder is not well established. The aim of this study is to assess the effect of transient GSH depletion in the substantia nigra pars compacta (SNpc) on neuroinflammation after the injection of a single dose of l-buthionine sulfoximine (BSO) into the SNpc of male Sprague-Dawley rats. The results showed that BSO treatment stimulates microglia (p<0.01) and astroglial response (p<0.01), c-Jun N-terminal kinase and inducible nitric oxide synthase (iNOS) (p<0.001) in the SNpc, accompanied by dopaminergic dysfunction. In addition, high levels of tumor necrosis factor α (p<0.01), interleukins IL-1β p<0.01), IL-6 p<0.001) and nitric oxide p<0.01) were found in the treated animals compared to control groups, while no significant differences were found in IL-10 levels. These results suggest that transient GSH depletion can increase the susceptibility of SNpc to degeneration by promoting an inflammatory response and nitrosative stress, reinforcing the possible role of GSH unbalance, oxygen/nitrogen reactive species and neuroinflammation as causal factors on the degeneration of the SNpc.

  5. Genetics Home Reference: TK2-related mitochondrial DNA depletion syndrome, myopathic form

    MedlinePlus

    ... DNA depletion syndrome, myopathic form TK2-related mitochondrial DNA depletion syndrome, myopathic form Enable Javascript to view ... Open All Close All Description TK2 -related mitochondrial DNA depletion syndrome, myopathic form ( TK2 -MDS) is an ...

  6. Genetics Home Reference: MPV17-related hepatocerebral mitochondrial DNA depletion syndrome

    MedlinePlus

    ... mitochondrial DNA depletion syndrome MPV17-related hepatocerebral mitochondrial DNA depletion syndrome Enable Javascript to view the expand/ ... All Close All Description MPV17 -related hepatocerebral mitochondrial DNA depletion syndrome is an inherited disorder that can ...

  7. A robust TEC depletion detector algorithm for satellite based navigation in Indian zone and depletion analysis for GAGAN

    NASA Astrophysics Data System (ADS)

    Dashora, Nirvikar

    2012-07-01

    Equatorial plasma bubble (EPB) and associated plasma irregularities are known to cause severe scintillation for the satellite signals and produce range errors, which eventually result either in loss of lock of the signal or in random fluctuation in TEC, respectively, affecting precise positioning and navigation solutions. The EPBs manifest as sudden reduction in line of sight TEC, which are more often called TEC depletions, and are spread over thousands of km in meridional direction and a few hundred km in zonal direction. They change shape and size while drifting from one longitude to another in nighttime ionosphere. For a satellite based navigation system, like GAGAN in India that depends upon (i) multiple satellites (i.e. GPS) (ii) multiple ground reference stations and (iii) a near real time data processing, such EPBs are of grave concern. A TEC model generally provides a near real-time grid based ionospheric vertical errors (GIVEs) over hypothetically spread 5x5 degree latitude-longitude grid points. But, on night when a TEC depletion occurs in a given longitude sector, it is almost impossible for any system to give a forecast of GIVEs. If loss-of-lock events occur due to scintillation, there is no way to improve the situation. But, when large and random depletions in TEC occur with scintillations and without loss-of-lock, it affects low latitude TEC in two ways. (a) Multiple satellites show depleted TEC which may be very different from model-TEC values and hence the GIVE would be incorrect over various grid points (ii) the user may be affected by depletions which are not sampled by reference stations and hence interpolated GIVE within one square would be grossly erroneous. The most general solution (and the far most difficult as well) is having advance knowledge of spatio-temporal occurrence and precise magnitude of such depletions. While forecasting TEC depletions in spatio-temporal domain are a scientific challenge (as we show below), operational systems

  8. Metallothionein deficiency aggravates depleted uranium-induced nephrotoxicity

    SciTech Connect

    Hao, Yuhui; Huang, Jiawei; Gu, Ying; Liu, Cong; Li, Hong; Liu, Jing; Ren, Jiong; Yang, Zhangyou; Peng, Shuangqing; Wang, Weidong; Li, Rong

    2015-09-15

    Depleted uranium (DU) has been widely used in both civilian and military activities, and the kidney is the main target organ of DU during acute high-dose exposures. In this study, the nephrotoxicity caused by DU in metallothionein-1/2-null mice (MT −/−) and corresponding wild-type (MT +/+) mice was investigated to determine any associations with MT. Each MT −/− or MT +/+ mouse was pretreated with a single dose of DU (10 mg/kg, intraperitoneal injection) or an equivalent volume of saline. After 4 days of DU administration, kidney changes were assessed. After DU exposure, serum creatinine and serum urea nitrogen in MT −/− mice significantly increased than in MT +/+ mice, with more severe kidney pathological damage. Moreover, catalase and superoxide dismutase (SOD) decreased, and generation of reactive oxygen species and malondialdehyde increased in MT −/− mice. The apoptosis rate in MT −/− mice significantly increased, with a significant increase in both Bax and caspase 3 and a decrease in Bcl-2. Furthermore, sodium-glucose cotransporter (SGLT) and sodium-phosphate cotransporter (NaPi-II) were significantly reduced after DU exposure, and the change of SGLT was more evident in MT −/− mice. Finally, exogenous MT was used to evaluate the correlation between kidney changes induced by DU and MT doses in MT −/− mice. The results showed that, the pathological damage and cell apoptosis decreased, and SOD and SGLT levels increased with increasing dose of MT. In conclusion, MT deficiency aggravated DU-induced nephrotoxicity, and the molecular mechanisms appeared to be related to the increased oxidative stress and apoptosis, and decreased SGLT expression. - Highlights: • MT −/− and MT +/+ mice were used to evaluate nephrotoxicity of DU. • Renal damage was more evident in the MT −/− mice after exposure to DU. • Exogenous MT also protects against DU-induced nephrotoxicity. • MT deficiency induced more ROS and apoptosis after exposure to

  9. Ego depletion decreases trust in economic decision making

    PubMed Central

    Ainsworth, Sarah E.; Baumeister, Roy F.; Vohs, Kathleen D.; Ariely, Dan

    2014-01-01

    Three experiments tested the effects of ego depletion on economic decision making. Participants completed a task either requiring self-control or not. Then participants learned about the trust game, in which senders are given an initial allocation of $10 to split between themselves and another person, the receiver. The receiver receives triple the amount given and can send any, all, or none of the tripled money back to the sender. Participants were assigned the role of the sender and decided how to split the initial allocation. Giving less money, and therefore not trusting the receiver, is the safe, less risky response. Participants who had exerted self-control and were depleted gave the receiver less money than those in the non-depletion condition (Experiment 1). This effect was replicated and moderated in two additional experiments. Depletion again led to lower amounts given (less trust), but primarily among participants who were told they would never meet the receiver (Experiment 2) or who were given no information about how similar they were to the receiver (Experiment 3). Amounts given did not differ for depleted and non-depleted participants who either expected to meet the receiver (Experiment 2) or were led to believe that they were very similar to the receiver (Experiment 3). Decreased trust among depleted participants was strongest among neurotics. These results imply that self-control facilitates behavioral trust, especially when no other cues signal decreased social risk in trusting, such as if an actual or possible relationship with the receiver were suggested. PMID:25013237

  10. Microanalytical X-ray imaging of depleted uranium speciation in environmentally aged munitions residues.

    PubMed

    Crean, Daniel E; Livens, Francis R; Stennett, Martin C; Grolimund, Daniel; Borca, Camelia N; Hyatt, Neil C

    2014-01-01

    Use of depleted uranium (DU) munitions has resulted in contamination of the near-surface environment with penetrator residues. Uncertainty in the long-term environmental fate of particles produced by impact of DU penetrators with hard targets is a specific concern. In this study DU particles produced in this way and exposed to the surface terrestrial environment for longer than 30 years at a U.K. firing range were characterized using synchrotron X-ray chemical imaging. Two sites were sampled: a surface soil and a disposal area for DU-contaminated wood, and the U speciation was different between the two areas. Surface soil particles showed little extent of alteration, with U speciated as oxides U3O7 and U3O8. Uranium oxidation state and crystalline phase mapping revealed these oxides occur as separate particles, reflecting heterogeneous formation conditions. Particles recovered from the disposal area were substantially weathered, and U(VI) phosphate phases such as meta-ankoleite (K(UO2)(PO4) · 3H2O) were dominant. Chemical imaging revealed domains of contrasting U oxidation state linked to the presence of both U3O7 and meta-ankoleite, indicating growth of a particle alteration layer. This study demonstrates that substantial alteration of DU residues can occur, which directly influences the health and environmental hazards posed by this contamination.

  11. About ozone depletion in stratosphere over Brazil in last decade

    NASA Astrophysics Data System (ADS)

    Martin, Inácio M.; Imai, Takeshi; Seguchi, Tomio

    The depletion of stratospheric ozone, resulting from the emission of chlorofluorocarbons (CFCs), has become a major issue since 1980. The decrease in stratospheric ozone over the polar regions has been pronounced at the South Pole than at the North Pole. In mid-latitude and equatorial regions, ozone depletion becomes less important; it depends on seasonal effects and on the characteristics of a particular region. The detailed mechanism by which the polar ozone holes form is different from that for the mid-latitude thinning, but the most important process in both trends is the catalytic destruction of ozone by atomic chlorine and bromine. The main source of these halogen atoms in the stratosphere is photodissociation of CFC compounds, commonly called freons, and of bromofluorocarbon compounds known as halons. These compounds are transported into the stratosphere after being emitted at the surface. Both ozone depletion mechanisms strengthened as emissions of CFCs and halons increased [1]. Measurements of stratospheric ozone carried out on several locations in Brazil and on the South Pole in the last decade (1996-2005), using detectors placed on ground, stratospheric balloons and Earth Probe TOMS satellites, are presented here. Detailed series analysis from 1980 up to the present describes a mean ozone depletion of 4[1] http://en.wikipedia.org/wiki/Ozone/depletion.

  12. Surface depletion induced quantum confinement in CdS nanobelts.

    PubMed

    Li, Dehui; Zhang, Jun; Xiong, Qihua

    2012-06-26

    We investigate the surface depletion induced quantum confinement in CdS nanobelts beyond the quantum confinement regime, where the thickness is much larger than the bulk exciton Bohr radius. From room temperature to 77 K, the emission energy of free exciton A scales linearly versus 1/L(2) when the thickness L is less than 100 nm, while a deviation occurs for those belts thicker than 100 nm due to the reabsorption effect. The 1/L(2) dependence can be explained by the surface depletion induced quantum confinement, which modifies the confinement potential leading to a quasi-square potential well smaller than the geometric thickness of nanobelts, giving rise to the confinement effect to exciton emission beyond the quantum confinement regime. The surface depletion is sensitive to carrier concentration and surface states. As the temperature decreases, the decrease of the electrostatic potential drop in the surface depletion region leads to a weaker confinement due to the decrease of carrier concentration. With a layer of polymethyl methacrylate (PMMA) passivation, PL spectra exhibit pronounced red shifts due to the decrease of the surface states at room temperature. No shift is found at 10 K both with or without PMMA passivation, suggesting a much weaker depletion field due to the freezing-out of donors.

  13. Cholesterol depletion impairs contractile machinery in neonatal rat cardiomyocytes

    PubMed Central

    Hissa, Barbara; Oakes, Patrick W.; Pontes, Bruno; Ramírez-San Juan, Guillermina; Gardel, Margaret L.

    2017-01-01

    Cholesterol regulates numerous cellular processes. Depleting its synthesis in skeletal myofibers induces vacuolization and contraction impairment. However, little is known about how cholesterol reduction affects cardiomyocyte behavior. Here, we deplete cholesterol by incubating neonatal cardiomyocytes with methyl-beta-cyclodextrin. Traction force microscopy shows that lowering cholesterol increases the rate of cell contraction and generates defects in cell relaxation. Cholesterol depletion also increases membrane tension, Ca2+ spikes frequency and intracellular Ca2+ concentration. These changes can be correlated with modifications in caveolin-3 and L-Type Ca2+ channel distributions across the sarcolemma. Channel regulation is also compromised since cAMP-dependent PKA activity is enhanced, increasing the probability of L-Type Ca2+ channel opening events. Immunofluorescence reveals that cholesterol depletion abrogates sarcomeric organization, changing spacing and alignment of α-actinin bands due to increase in proteolytic activity of calpain. We propose a mechanism in which cholesterol depletion triggers a signaling cascade, culminating with contraction impairment and myofibril disruption in cardiomyocytes. PMID:28256617

  14. Recovery of the Ozone Layer: The Ozone Depleting Gas Index

    NASA Astrophysics Data System (ADS)

    Hofmann, David J.; Montzka, Stephen A.

    2009-01-01

    The stratospheric ozone layer, through absorption of solar ultraviolet radiation, protects all biological systems on Earth. In response to concerns over the depletion of the global ozone layer, the U.S. Clean Air Act as amended in 1990 mandates that NASA and NOAA monitor stratospheric ozone and ozone-depleting substances. This information is critical for assessing whether the Montreal Protocol on Substances That Deplete the Ozone Layer, an international treaty that entered into force in 1989 to protect the ozone layer, is having its intended effect of mitigating increases in harmful ultraviolet radiation. To provide the information necessary to satisfy this congressional mandate, both NASA and NOAA have instituted and maintained global monitoring programs to keep track of ozone-depleting gases as well as ozone itself. While data collected for the past 30 years have been used extensively in international assessments of ozone layer depletion science, the language of scientists often eludes the average citizen who has a considerable interest in the health of Earth's protective ultraviolet radiation shield. Are the ozone-destroying chemicals declining in the atmosphere? When will these chemicals decline to pre-ozone hole levels so that the Antarctic ozone hole might disappear? Will this timing be different in the stratosphere above midlatitudes?

  15. Global Depletion of Groundwater Resources: Past and Future Analyses

    NASA Astrophysics Data System (ADS)

    Bierkens, M. F.; de Graaf, I. E. M.; Van Beek, L. P.; Wada, Y.

    2014-12-01

    Globally, about 17% of the crops are irrigated, yet irrigation accounts for 40% of the global food production. As more than 40% of irrigation water comes from groundwater, groundwater abstraction rates are large and exceed natural recharge rates in many regions of the world, thus leading to groundwater depletion. In this paper we provide an overview of recent research on global groundwater depletion. We start with presenting various estimates of global groundwater depletion, both from flux based as well as volume based methods. We also present estimates of the contribution of non-renewable groundwater to irrigation water consumption and how this contribution developed during the last 50 years. Next, using a flux based method, we provide projections of groundwater depletion for the coming century under various socio-economic and climate scenarios. As groundwater depletion contributes to sea-level rise, we also provide estimates of this contribution from the past as well as for future scenarios. Finally, we show recent results of groundwater level changes and change in river flow as a result of global groundwater abstractions as obtained from a global groundwater flow model.

  16. Wall depletion length of a channel-confined polymer

    NASA Astrophysics Data System (ADS)

    Cheong, Guo Kang; Li, Xiaolan; Dorfman, Kevin D.

    2017-02-01

    Numerous experiments have taken advantage of DNA as a model system to test theories for a channel-confined polymer. A tacit assumption in analyzing these data is the existence of a well-defined depletion length characterizing DNA-wall interactions such that the experimental system (a polyelectrolyte in a channel with charged walls) can be mapped to the theoretical model (a neutral polymer with hard walls). We test this assumption using pruned-enriched Rosenbluth method (PERM) simulations of a DNA-like semiflexible polymer confined in a tube. The polymer-wall interactions are modeled by augmenting a hard wall interaction with an exponentially decaying, repulsive soft potential. The free energy, mean span, and variance in the mean span obtained in the presence of a soft wall potential are compared to equivalent simulations in the absence of the soft wall potential to determine the depletion length. We find that the mean span and variance about the mean span have the same depletion length for all soft potentials we tested. In contrast, the depletion length for the confinement free energy approaches that for the mean span only when depletion length no longer depends on channel size. The results have implications for the interpretation of DNA confinement experiments under low ionic strengths.

  17. Magnetic flux pileup and plasma depletion in Mercury's subsolar magnetosheath

    NASA Astrophysics Data System (ADS)

    Gershman, Daniel J.; Slavin, James A.; Raines, Jim M.; Zurbuchen, Thomas H.; Anderson, Brian J.; Korth, Haje; Baker, Daniel N.; Solomon, Sean C.

    2013-11-01

    from the Fast Imaging Plasma Spectrometer (FIPS) and Magnetometer (MAG) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft during 40 orbits about Mercury are used to characterize the plasma depletion layer just exterior to the planet's dayside magnetopause. A plasma depletion layer forms at Mercury as a result of piled-up magnetic flux that is draped around the magnetosphere. The low average upstream Alfvénic Mach number (MA ~3-5) in the solar wind at Mercury often results in large-scale plasma depletion in the magnetosheath between the subsolar magnetopause and the bow shock. Flux pileup is observed to occur downstream under both quasi-perpendicular and quasi-parallel shock geometries for all orientations of the interplanetary magnetic field (IMF). Furthermore, little to no plasma depletion is seen during some periods with stable northward IMF. The consistently low value of plasma β, the ratio of plasma pressure to magnetic pressure, at the magnetopause associated with the low average upstream MA is believed to be the cause for the high average reconnection rate at Mercury, reported to be nearly 3 times that observed at Earth. Finally, a characteristic depletion length outward from the subsolar magnetopause of ~300 km is found for Mercury. This value scales among planetary bodies as the average standoff distance of the magnetopause.

  18. Depleted uranium as a backfill for nuclear fuel waste package

    DOEpatents

    Forsberg, Charles W.

    1998-01-01

    A method for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package.

  19. Depleted uranium as a backfill for nuclear fuel waste package

    DOEpatents

    Forsberg, C.W.

    1998-11-03

    A method is described for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package. 6 figs.

  20. Effect of Shim Arm Depletion in the NBSR

    SciTech Connect

    Hanson A. H.; Brown N.; Diamond, D.J.

    2013-02-22

    The cadmium shim arms in the NBSR undergo burnup during reactor operation and hence, require periodic replacement. Presently, the shim arms are replaced after every 25 cycles to guarantee they can maintain sufficient shutdown margin. Two prior reports document the expected change in the 113Cd distribution because of the shim arm depletion. One set of calculations was for the present high-enriched uranium fuel and the other for the low-enriched uranium fuel when it was in the COMP7 configuration (7 inch fuel length vs. the present 11 inch length). The depleted 113Cd distributions calculated for these cores were applied to the current design for an equilibrium low-enriched uranium core. This report details the predicted effects, if any, of shim arm depletion on the shim arm worth, the shutdown margin, power distributions and kinetics parameters.

  1. Tuning of depletion interaction in nanoparticle-surfactant systems

    SciTech Connect

    Ray, D. Aswal, V. K.

    2014-04-24

    The interaction of anionic silica nanoparticles (Ludox LS30) and non-ionic surfactants decaethylene glycol monododecylether (C12E10) without and with anionic sodium dodecyl sulfate (SDS) in aqueous electrolyte solution has been studied by small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations of nanoparticle (1 wt%), surfactants (1 wt%) and electrolyte (0.1 M NaCl). Each of these nanoparticlesurfactant systems has been examined for different contrast conditions where individual components (nanoparticle or surfactant) are made visible. It is observed that the nanoparticle-C12E10 system leads to the depletion-induced aggregation of nanoparticles. The system however behaves very differently on addition of SDS where depletion interaction gets suppressed and aggregation of nanoparticles can be prevented. We show that C12E10 and SDS form mixed micelles and the charge on these micelles plays important role in tuning the depletion interaction.

  2. Depleted uranium as a backfill for nuclear fuel waste package

    SciTech Connect

    Forsberg, Charles W.

    1997-12-01

    A method is described for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotonically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package.

  3. Coherent quantum depletion of an interacting atom condensate.

    PubMed

    Kira, M

    2015-03-13

    Sufficiently strong interactions promote coherent quantum transitions in spite of thermalization and losses, which are the adversaries of delicate effects such as reversibility and correlations. In atomic Bose-Einstein condensates (BECs), strong atom-atom interactions can eject atoms from the BEC to the normal component, yielding quantum depletion instead of temperature depletion. A recent experiment has already been verified to overcome losses. Here I show that it also achieves coherent quantum-depletion dynamics in a BEC swept fast enough from weak to strong atom-atom interactions. The elementary coherent process first excites the normal component into a liquid state that evolves into a spherical shell state, where the atom occupation peaks at a finite momentum to shield 50% of the BEC atoms from annihilation. The identified coherent processes resemble ultrafast semiconductor excitations expanding the scope of BEC explorations to many-body non-equilibrium studies.

  4. Transient Effects And Pump Depletion In Stimulated Raman Scattering

    NASA Astrophysics Data System (ADS)

    Carlsten, J. L.; Wenzel, R. G...; Druhl, K.

    1983-11-01

    Stimulated rotational Raman scattering in a 300-K multipass cell filled with para-H2 with a single-mode CO2-pumped laser is studied using a frequency-narrowed optical parametric oscillator (OPO) as a probe laser at the Stokes frequency for the So(0) transition. Amplification and pump depletion are examined as a function of incident pump energy. The pump depletion shows clear evidence of transient behavior. A theoretical treatment of transient stimulated Raman scattering, including effects of both pump depletion and medium saturation is presented. In a first approximation, diffraction effects are neglected, and only plane-wave interactions are considered. The theoretical results are compared to the experimental pulse shapes.

  5. Processable high internal phase Pickering emulsions using depletion attraction

    NASA Astrophysics Data System (ADS)

    Kim, Kyuhan; Kim, Subeen; Ryu, Jiheun; Jeon, Jiyoon; Jang, Se Gyu; Kim, Hyunjun; Gweon, Dae-Gab; Im, Won Bin; Han, Yosep; Kim, Hyunjung; Choi, Siyoung Q.

    2017-02-01

    High internal phase emulsions have been widely used as templates for various porous materials, but special strategies are required to form, in particular, particle-covered ones that have been more difficult to obtain. Here, we report a versatile strategy to produce a stable high internal phase Pickering emulsion by exploiting a depletion interaction between an emulsion droplet and a particle using water-soluble polymers as a depletant. This attractive interaction facilitating the adsorption of particles onto the droplet interface and simultaneously suppressing desorption once adsorbed. This technique can be universally applied to nearly any kind of particle to stabilize an interface with the help of various non- or weakly adsorbing polymers as a depletant, which can be solidified to provide porous materials for many applications.

  6. Processable high internal phase Pickering emulsions using depletion attraction

    PubMed Central

    Kim, KyuHan; Kim, Subeen; Ryu, Jiheun; Jeon, Jiyoon; Jang, Se Gyu; Kim, Hyunjun; Gweon, Dae-Gab; Im, Won Bin; Han, Yosep; Kim, Hyunjung; Choi, Siyoung Q.

    2017-01-01

    High internal phase emulsions have been widely used as templates for various porous materials, but special strategies are required to form, in particular, particle-covered ones that have been more difficult to obtain. Here, we report a versatile strategy to produce a stable high internal phase Pickering emulsion by exploiting a depletion interaction between an emulsion droplet and a particle using water-soluble polymers as a depletant. This attractive interaction facilitating the adsorption of particles onto the droplet interface and simultaneously suppressing desorption once adsorbed. This technique can be universally applied to nearly any kind of particle to stabilize an interface with the help of various non- or weakly adsorbing polymers as a depletant, which can be solidified to provide porous materials for many applications. PMID:28145435

  7. Depletion induced clustering of red blood cells in microchannels

    NASA Astrophysics Data System (ADS)

    Wagner, Christian; Brust, Mathias; Podgorski, Thomas; Coupier, Gwennou

    2012-11-01

    The flow properties of blood are determined by the physical properties of its main constituents, the red blood cells (RBC's). At low shear rates RBC's form aggregates, so called rouleaux. Higher shear rates can break them up and the viscosity of blood shows a shear thinning behavior. The physical origin of the rouleaux formation is not yet fully resolved and there are two competing models available. One predicts that the adhesion is induced by bridging of the plasma (macromolecular) proteins in-between two RBC's. The other is based on the depletion effect and thus predicts the absence of macromolecules in-between the cells of a rouleaux. Recent single cell force measurements by use of an AFM support strongly the depletion model. By varying the concentration of Dextran at different molecular weights we can control the adhesions strength. Measurements at low hematocrit in a microfluidic channel show that the number of size of clusters is determined by the depletion induced adhesion strength.

  8. International aspects of restrictions of ozone-depleting substances

    SciTech Connect

    McDonald, S.C.

    1989-10-01

    This report summarizes international efforts to protect stratospheric ozone. Also included in this report is a discussion of activities in other countries to meet restrictions in the production and use of ozone-depleting substances. Finally, there is a brief presentation of trade and international competitiveness issues relating to the transition to alternatives for the regulated chlorofluorocarbons (CFCs) and halons. The stratosphere knows no international borders. Just as the impact of reduced stratospheric ozone will be felt internationally, so protection of the ozone layer is properly an international effort. Unilateral action, even by a country that produces and used large quantities of ozone-depleting substances, will not remedy the problem of ozone depletion if other countries do not follow suit. 32 refs., 7 tabs.

  9. Programmable nanometer-scale electrolytic metal deposition and depletion

    DOEpatents

    Lee, James Weifu [Oak Ridge, TN; Greenbaum, Elias [Oak Ridge, TN

    2002-09-10

    A method of nanometer-scale deposition of a metal onto a nanostructure includes the steps of: providing a substrate having thereon at least two electrically conductive nanostructures spaced no more than about 50 .mu.m apart; and depositing metal on at least one of the nanostructures by electric field-directed, programmable, pulsed electrolytic metal deposition. Moreover, a method of nanometer-scale depletion of a metal from a nanostructure includes the steps of providing a substrate having thereon at least two electrically conductive nanostructures spaced no more than about 50 .mu.m apart, at least one of the nanostructures having a metal disposed thereon; and depleting at least a portion of the metal from the nanostructure by electric field-directed, programmable, pulsed electrolytic metal depletion. A bypass circuit enables ultra-finely controlled deposition.

  10. Geodynamic evidence for a chemically depleted continental tectosphere.

    PubMed

    Forte, A M; Perry, H K

    2000-12-08

    The tectosphere, namely the portions of Earth's mantle lying below cratons, has a thermochemical structure that differs from average suboceanic mantle. The tectosphere is thought to be depleted in its basaltic components and to have an intrinsic buoyancy that balances the mass increase associated with its colder temperature relative to suboceanic mantle. Inversions of a large set of geodynamic data related to mantle convection, using tomography-based mantle flow models, indicate that the tectosphere is chemically depleted and relatively cold to 250 kilometers depth below Earth's surface. The approximate equilibrium between thermal and chemical buoyancy contributes to cratonic stability over geological time.

  11. ROLE OF NUCLEONIC FERMI SURFACE DEPLETION IN NEUTRON STAR COOLING

    SciTech Connect

    Dong, J. M.; Zuo, W.; Lombardo, U.; Zhang, H. F.

    2016-01-20

    The Fermi surface depletion of beta-stable nuclear matter is calculated to study its effects on several physical properties that determine the neutron star (NS) thermal evolution. The neutron and proton Z factors measuring the corresponding Fermi surface depletions are calculated within the Brueckner–Hartree–Fock approach, employing the AV18 two-body force supplemented by a microscopic three-body force. Neutrino emissivity, heat capacity, and in particular neutron {sup 3}PF{sub 2} superfluidity, turn out to be reduced, especially at high baryonic density, to such an extent that the cooling rates of young NSs are significantly slowed.

  12. Digestion and depletion of abundant proteins improves proteomic coverage

    PubMed Central

    Fonslow, Bryan R.; Stein, Benjamin D.; Webb, Kristofor J.; Xu, Tao; Choi, Jeong; Park, Sung Kyu; Yates, John R.

    2012-01-01

    Two major challenges in proteomics are the large number of proteins and their broad dynamic range within the cell. We exploited the abundance-dependent Michaelis-Menten kinetics of trypsin digestion to selectively digest and deplete abundant proteins with a method we call DigDeAPr. We validated the depletion mechanism with known yeast protein abundances and observed greater than 3-fold improvement in low abundance human protein identification and quantitation metrics. This methodology should be broadly applicable to many organisms, proteases, and proteomic pipelines. PMID:23160281

  13. Summer time Fe depletion in the Antarctic mesopause region

    NASA Astrophysics Data System (ADS)

    Viehl, T. P.; Höffner, J.; Lübken, F.-J.; Plane, J. M. C.; Kaifler, B.; Morris, R. J.

    2015-05-01

    We report common volume measurements of Fe densities, temperatures and ice particle occurrence in the mesopause region at Davis Station, Antarctica (69°S) in the years 2011-2012. Our observations show a strong correlation of the Fe-layer summer time depletion with temperature, but no clear causal relation with the onset or occurrence of ice particles measured as noctilucent clouds (NLC) or polar mesosphere summer echoes (PMSE). The combination of these measurements indicates that the strong summer depletion can be explained by gas-phase chemistry alone and does not require heterogeneous removal of Fe and its compounds on ice particles.

  14. Exploring Organic Matter Sources Through δ13C Depletion of Lipid Biomarkers at Lake El'gygytgyn, NE Siberia

    NASA Astrophysics Data System (ADS)

    Holland, A. R.; Wilkie, K. M.; Petsch, S.; Brigham-Grette, J.; Lake El'Gygytgyn Scientific Party

    2010-12-01

    Through studies of compound-specific δ13C, Lake El’gygytgyn pilot core LZ1029 has revealed unexpected information regarding organic matter source and carbon cycling in the lake throughout the past 50 kyr. Compound-specific δ13C of alkanes, fatty acids, and alcohols were analyzed to determine the changing sources of organic matter as well as the cause of a strong negative isotopic shift in the bulk sediment δ13C (-26‰ to -33‰) over the past 50 kyr. Compounds indicative of terrestrial, aquatic, bacterial, and archaeal sources were identified. An increase in lipid concentrations during the local last glacial maximum (LLGM) is interpreted to represent increased preservation due to decreasing dissolved oxygen in the water column and sediments. The majority of alkanes, fatty acids, and alcohols are long chain compounds consistent with a terrestrial plant origin, with a slight increase in aquatic (mid-chain) contribution during the LLGM. However, isotopic results indicate that long chain fatty acids (except C30) and alcohols cannot be entirely associated with terrestrial sources, as demonstrated by an average 5‰ carbon isotope excursion from interglacial to LLGM conditions. Both mid-chain (C19-C23) and short-chain (C14-C18) fatty acids display a 10‰ excursion, but mid-chain fatty acids are consistently ~7‰ depleted compared with short-chain fatty acids. Long chain n-alkanes and the C30 fatty acid demonstrate constant isotopic values throughout the LLGM, as expected from a terrestrial source. The strongest δ13C excursion from autochthonous mid- and short-chain fatty acids (average LLGM mid-chain fatty acid δ13C = -43‰) is interpreted to result from recycling of oxidized carbon within the lake with little or no exchange with atmospheric carbon. If the lake is permanently covered by ice, isotopically depleted dissolved carbon might build up in the water column from either oxidized organic matter or oxidized methane. The presence of diplopterol (LLGM δ13C

  15. mTORC2 Signaling Regulates Nox4-Induced Podocyte Depletion in Diabetes

    PubMed Central

    Eid, Stéphanie; Boutary, Suzan; Braych, Kawthar; Sabra, Ramzi; Massaad, Charbel; Hamdy, Ahmed; Rashid, Awad; Moodad, Sarah; Block, Karen; Gorin, Yves; Abboud, Hanna E.

    2016-01-01

    Abstract Aim: Podocyte apoptosis is a critical mechanism for excessive loss of urinary albumin that eventuates in kidney fibrosis. Oxidative stress plays a critical role in hyperglycemia-induced glomerular injury. We explored the hypothesis that mammalian target of rapamycin complex 2 (mTORC2) mediates podocyte injury in diabetes. Results: High glucose (HG)-induced podocyte injury reflected by alterations in the slit diaphragm protein podocin and podocyte depletion/apoptosis. This was paralleled by activation of the Rictor/mTORC2/Akt pathway. HG also increased the levels of Nox4 and NADPH oxidase activity. Inhibition of mTORC2 using small interfering RNA (siRNA)-targeting Rictor in vitro decreased HG-induced Nox1 and Nox4, NADPH oxidase activity, restored podocin levels, and reduced podocyte depletion/apoptosis. Inhibition of mTORC2 had no effect on mammalian target of rapamycin complex 1 (mTORC1) activation, described by our group to be increased in diabetes, suggesting that the mTORC2 activation by HG could mediate podocyte injury independently of mTORC1. In isolated glomeruli of OVE26 mice, there was a similar activation of the Rictor/mTORC2/Akt signaling pathway with increase in Nox4 and NADPH oxidase activity. Inhibition of mTORC2 using antisense oligonucleotides targeting Rictor restored podocin levels, reduced podocyte depletion/apoptosis, and attenuated glomerular injury and albuminuria. Innovation: Our data provide evidence for a novel function of mTORC2 in NADPH oxidase-derived reactive oxygen species generation and podocyte apoptosis that contributes to urinary albumin excretion in type 1 diabetes. Conclusion: mTORC2 and/or NADPH oxidase inhibition may represent a therapeutic modality for diabetic kidney disease. Antioxid. Redox Signal. 25, 703–719. PMID:27393154

  16. Mitochondrial Hyperpolarization and ATP Depletion in Patients With Systemic Lupus Erythematosus

    PubMed Central

    Gergely, Peter; Grossman, Craig; Niland, Brian; Puskas, Ferenc; Neupane, Hom; Allam, Fatme; Banki, Katalin; Phillips, Paul E.; Perl, Andras

    2014-01-01

    Objective Peripheral blood lymphocytes (PBLs) from systemic lupus erythematosus (SLE) patients exhibit increased spontaneous and diminished activation-induced apoptosis. We tested the hypothesis that key biochemical checkpoints, the mitochondrial transmembrane potential (ΔΨm) and production of reactive oxygen intermediates (ROIs), mediate the imbalance of apoptosis in SLE. Methods We assessed the ΔΨm with potentiometric dyes, measured ROI production with oxidation-sensitive fluorochromes, and monitored cell death by annexin V and propidium iodide staining of lymphocytes, using flow cytometry. Intracellular glutathione levels were measured by high-performance liquid chromatography, while ATP and ADP levels were assessed by the luciferin–luciferase assay. Results Both ΔΨm and ROI production were elevated in the 25 SLE patients compared with the 25 healthy subjects and the 10 rheumatoid arthritis patients. Intracellular glutathione contents were diminished, suggesting increased utilization of reducing equivalents in SLE. H2O2, a precursor of ROIs, increased ΔΨm and caused apoptosis in normal PBLs. In contrast, H2O2-induced apoptosis and ΔΨm elevation were diminished, particularly in T cells, and the rate of necrotic cell death was increased in patients with SLE. The intracellular ATP content and the ATP:ADP ratio were reduced and correlated with the ΔΨm elevation in lupus. CD3:CD28 costimulation led to transient elevation of the ΔΨm, followed by ATP depletion, and sensitization of normal PBLs to H2O2-induced necrosis. Depletion of ATP by oligomycin, an inhibitor of F0F1–ATPase, had similar effects. Conclusion T cell activation and apoptosis are mediated by ΔΨm elevation and increased ROI production. Mitochondrial hyperpolarization and the resultant ATP depletion sensitize T cells for necrosis, which may significantly contribute to inflammation in patients with SLE. PMID:11817589

  17. OrigenArp Primer: How to Perform Isotopic Depletion and Decay Calculations with SCALE/ORIGEN

    SciTech Connect

    Bowman, Stephen M; Gauld, Ian C

    2010-08-01

    The SCALE (Standardized Computer Analyses for Licensing Evaluation) computer software system developed at Oak Ridge National Laboratory is widely used and accepted around the world for nuclear analyses. ORIGEN-ARP is a SCALE isotopic depletion and decay analysis sequence used to perform point-depletion calculations with the well-known ORIGEN-S code using problem-dependent cross sections. Problem-dependent cross-section libraries are generated using the ARP (Automatic Rapid Processing) module using an interpolation algorithm that operates on pre-generated libraries created for a range of fuel properties and operating conditions. Methods are provided in SCALE to generate these libraries using one-, two-, and three-dimensional transport codes. The interpolation of cross sections for uranium-based fuels may be performed for the variables burnup, enrichment, and water density. An option is also available to interpolate cross sections for mixed-oxide (MOX) fuels using the variables burnup, plutonium content, plutonium isotopic vector, and water moderator density. This primer is designed to help a new user understand and use ORIGEN-ARP with the OrigenArp Windows graphical user interface in SCALE. It assumes that the user has a college education in a technical field. There is no assumption of familiarity with nuclear depletion codes in general or with SCALE/ORIGEN-ARP in particular. The primer is based on SCALE 6 but should be applicable to earlier or later versions of SCALE. Information is included to help new users, along with several sample problems that walk the user through the different input forms and menus and illustrate the basic features. References to related documentation are provided. The primer provides a starting point for the nuclear analyst who uses SCALE/ORIGEN-ARP. Complete descriptions are provided in the SCALE documentation. Although the primer is self-contained, it is intended as a companion volume to the SCALE documentation. The SCALE Manual is

  18. New Insights into Fully-Depleted SOI Transistor Response During Total-Dose Irradiation

    SciTech Connect

    BURNS,J.A.; DODD,PAUL E.; KEAST,C.L.; SCHWANK,JAMES R.; SHANEYFELT,MARTY R.; WYATT,P.W.

    1999-09-14

    Previous work showed the possible existence of a total-dose latch effect in fully-depleted SOI transistors that could severely limit the radiation hardness of SOI devices. Other work showed that worst-case bias configuration during irradiation was the transmission gate bias configuration. In this work we further explore the effects of total-dose ionizing irradiation on fully-depleted SOI transistors. Closed-geometry and standard transistors fabricated in two fully-depleted processes were irradiated with 10-keV x rays. Our results show no evidence for a total-dose latch effect as proposed by others. Instead, in absence of parasitic trench sidewall leakage, our data suggests that the increase in radiation-induced leakage current is caused by positive charge trapping in the buried oxide inverting the back-channel interface. At moderate levels of trapped charge, the back-channel interface is slightly inverted causing a small leakage current to flow. This leakage current is amplified to considerably higher levels by impact ionization. Because the back-channel interface is in weak inversion, the top-gate bias can modulate the back-channel interface and turn the leakage current off at large, negative voltage levels. At high levels of trapped charge, the back-channel interface is fully inverted and the gate bias has little effect on leakage current. However, it is likely that this current also is amplified by impact ionization. For these transistors, the worst-case bias configuration was determined to be the ''ON'' bias configuration. These results have important implication on hardness assurance.

  19. Burn and Smoke Inhalation Injury in Sheep Depletes Vitamin E: Kinetic studies using deuterated tocopherols

    PubMed Central

    Traber, M.G.; Shimoda, K.; Murakami, K.; Leonard, S. W.; Enkhbaatar, P.; Traber, L.D.; Traber, D.L.

    2007-01-01

    To test the hypothesis that burn and smoke injury will deplete tissue α-tocopherol and cause its faster plasma disappearance, deuterium-labeled vitamin E was administered to sheep exposed to both surface skin burn and smoke insufflation that causes injury similar to human victims of fire accidents. Two different protocols were used: 1) deuterated vitamin E was administered orally with food at 0 time (just prior to injury), or 2) the labeled vitamin E was administered orally with food the day prior to injury. The animals that had been operatively prepared seven days before, were anaesthetized, then received both 40% body surface area 3rd° burn and 48 breaths of cotton smoke, or sham injuries. All were resuscitated with Ringer’s lactate solution (4 ml/kg/% BSA burn/24h) and mechanically ventilated. Blood samples were collected at various times after vitamin E dosing. In both studies the depletion of plasma α-tocopherol was faster in the injured sheep. The sheep given deuterated vitamin E 24 h prior to injury had similar maximum α-tocopherol concentrations at similar times. The exponential rates of α -tocopherol disappearance were 1.5 times greater and half-lives were 12 h shorter (p<0.05) in the injured sheep. In separate studies, various tissues were obtained from sheep that were sacrificed from 4 h to 48 h after injury. The liver α -tocopherol concentrations in sheep killed at various times after injury appear to show a linear decrease at a rate of 0.1 nmol α -tocopherol/g liver per hour, suggesting that the liver is supplying α -tocopherol to maintain the plasma and lung α -tocopherol concentrations, but that this injury is so severe that the liver is unable to maintain lung α -tocopherol concentrations. These findings suggest that α -tocopherol should be administered to burn patients to prevent vitamin E depletion and to protect against oxidative stress from burn injury. PMID:17395015

  20. Fully depleted back-illuminated p-channel CCD development

    SciTech Connect

    Bebek, Chris J.; Bercovitz, John H.; Groom, Donald E.; Holland, Stephen E.; Kadel, Richard W.; Karcher, Armin; Kolbe, William F.; Oluseyi, Hakeem M.; Palaio, Nicholas P.; Prasad, Val; Turko, Bojan T.; Wang, Guobin

    2003-07-08

    An overview of CCD development efforts at Lawrence Berkeley National Laboratory is presented. Operation of fully-depleted, back-illuminated CCD's fabricated on high resistivity silicon is described, along with results on the use of such CCD's at ground-based observatories. Radiation damage and point-spread function measurements are described, as well as discussion of CCD fabrication technologies.

  1. 11. VIEW OF DEPLETED URANIUM INGOT. THE METALS WERE PLACED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW OF DEPLETED URANIUM INGOT. THE METALS WERE PLACED IN CRUCIBLES, LOADED INTO ONE OF EIGHT INDUCTION FURNACES AND MELTED IN A VACUUM ATMOSPHERE. (11/11/57) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  2. Depleting methyl bromide residues in soil by reaction with bases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite generally being considered the most effective soil fumigant, methyl bromide (MeBr) use is being phased out because its emissions from soil can lead to stratospheric ozone depletion. However, a large amount is still currently used due to Critical Use Exemptions. As strategies for reducing the...

  3. The Mutual Intertemporal Benefits from Depletable Resource Use.

    ERIC Educational Resources Information Center

    Wiseman, Clark

    2002-01-01

    Offers graphical proof of the proposition that the dynamically efficient allocation of a depletable, nonrenewable resource allows higher net benefits to users in both time periods than any other allocation. States that in this proof the result is more general and does not require the numerical specification of other previous models. (JEH)

  4. Abrupt Depletion Layer Approximation for the Metal Insulator Semiconductor Diode.

    ERIC Educational Resources Information Center

    Jones, Kenneth

    1979-01-01

    Determines the excess surface change carrier density, surface potential, and relative capacitance of a metal insulator semiconductor diode as a function of the gate voltage, using the precise questions and the equations derived with the abrupt depletion layer approximation. (Author/GA)

  5. 9. VIEW OF FOUNDRY FURNACE, DEPLETED URANIUM INGOTS, BERYLLIUM INGOTS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF FOUNDRY FURNACE, DEPLETED URANIUM INGOTS, BERYLLIUM INGOTS, AND ALUMINUM SHAPES WERE PRODUCED IN THE FOUNDRY. (10/30/56) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  6. Spearfishing to depletion: evidence from temperate reef fishes in Chile.

    PubMed

    Godoy, Natalio; Gelcich, L Stefan; Vásquez, Julio A; Castilla, Juan Carlos

    2010-09-01

    Unreliable and data-poor marine fishery landings can lead to a lack of regulatory action in fisheries management. Here we use official Chilean landing reports and non-conventional indicators, such as fishers' perceptions and spearfishing competition results, to provide evidence of reef fishes depletions caused by unregulated spearfishing. Results show that the three largest and most emblematic reef fishes targeted mainly by spearfishers (> 98% of landings) [Graus nigra (vieja negra), Semicossyphus darwini (sheephead or pejeperro), and Medialuna ancietae (acha)] show signs of depletion in terms of abundance and size and that overall the catches of reef fishes have shifted from large carnivore species toward smaller-sized omnivore and herbivore species. Information from two snorkeling speargun world championships (1971 and 2004, Iquique, Chile) and from fishers' perceptions shows the mean size of reef fish to be declining. Although the ecological consequences of reef fish depletion are not fully understood in Chile, evidence of spearfishing depleting temperate reef fishes must be explicitly included in policy debates. This would involve bans or strong restrictions on the use of SCUBA and hookah diving gear for spearfishing, and minimum size limits. It may also involve academic and policy discussions regarding conservation and fisheries management synergies within networks of no-take and territorial user-rights fisheries areas, as a strategy for the sustainable management of temperate and tropical reef fisheries.

  7. Depletion of penicillin G residues in sows after intramuscular injection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A penicillin G procaine residue depletion study was conducted in heavy sows to estimate the pre-slaughter withdrawal periods necessary to clear penicillin from kidney and muscle. Heavy sows (n = 126) were treated with penicillin G procaine at a 5x dose (33,000 IU/kg) for 3 consecutive days by intra...

  8. GLOBAL CHANGE RESEARCH NEWS #7: ENVIRONMENTAL EFFECTS OF OZONE DEPLETION

    EPA Science Inventory

    This edition focuses on a recent UNEP report entitled, "Environmental Effects of Ozone Depletion: 1998 Assessment." Dr. Richard Zepp (ORD/NERL) is one of the Lead Authors of this report. The 1998 assessment focuses on new information produced since 1994. It also includes earlie...

  9. Tumor promotion by depleting cells of protein kinase C delta.

    PubMed Central

    Lu, Z; Hornia, A; Jiang, Y W; Zang, Q; Ohno, S; Foster, D A

    1997-01-01

    Tumor-promoting phorbol esters activate, but then deplete cells of, protein kinase C (PKC) with prolonged treatment. It is not known whether phorbol ester-induced tumor promotion is due to activation or depletion of PKC. In rat fibroblasts overexpressing the c-Src proto-oncogene, the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) induced anchorage-independent growth and other transformation-related phenotypes. The appearance of transformed phenotypes induced by TPA in these cells correlated not with activation but rather with depletion of expressed PKC isoforms. Consistent with this observation, PKC inhibitors also induced transformed phenotypes in c-Src-overexpressing cells. Bryostatin 1, which inhibited the TPA-induced down-regulation of the PKCdelta isoform specifically, blocked the tumor-promoting effects of TPA, implicating PKCdelta as the target of the tumor-promoting phorbol esters. Consistent with this hypothesis, expression of a dominant negative PKCdelta mutant in cells expressing c-Src caused transformation of these cells, and rottlerin, a protein kinase inhibitor with specificity for PKCdelta, like TPA, caused transformation of c-Src-overexpressing cells. These data suggest that the tumor-promoting effect of phorbol esters is due to depletion of PKCdelta, which has an apparent tumor suppressor function. PMID:9154841

  10. Large-Scale Physical Separation of Depleted Uranium from Soil

    DTIC Science & Technology

    2012-09-01

    ER D C/ EL T R -1 2 - 2 5 Army Range Technology Program Large-Scale Physical Separation of Depleted Uranium from Soil E nv ir on m en ta l...Separation ................................................................................................................ 2   Project Background...5  2   Materials and Methods

  11. 5.0. Depletion, activation, and spent fuel source terms

    SciTech Connect

    Wieselquist, William A.

    2016-04-01

    SCALE’s general depletion, activation, and spent fuel source terms analysis capabilities are enabled through a family of modules related to the main ORIGEN depletion/irradiation/decay solver. The nuclide tracking in ORIGEN is based on the principle of explicitly modeling all available nuclides and transitions in the current fundamental nuclear data for decay and neutron-induced transmutation and relies on fundamental cross section and decay data in ENDF/B VII. Cross section data for materials and reaction processes not available in ENDF/B-VII are obtained from the JEFF-3.0/A special purpose European activation library containing 774 materials and 23 reaction channels with 12,617 neutron-induced reactions below 20 MeV. Resonance cross section corrections in the resolved and unresolved range are performed using a continuous-energy treatment by data modules in SCALE. All nuclear decay data, fission product yields, and gamma-ray emission data are developed from ENDF/B-VII.1 evaluations. Decay data include all ground and metastable state nuclides with half-lives greater than 1 millisecond. Using these data sources, ORIGEN currently tracks 174 actinides, 1149 fission products, and 974 activation products. The purpose of this chapter is to describe the stand-alone capabilities and underlying methodology of ORIGEN—as opposed to the integrated depletion capability it provides in all coupled neutron transport/depletion sequences in SCALE, as described in other chapters.

  12. Stored mafic/ultramafic crust and early Archean mantle depletion

    NASA Technical Reports Server (NTRS)

    Chase, Clement G.; Patchett, P. J.

    1990-01-01

    Both early and late Archean rocks from greenstone belts and felsic gneiss complexes exhibit positive epsilon(Nd) values of +1 to +5 by 3.5 Ga, demonstrating that a depleted mantle reservoir existed very early. The amount of preserved pre-3.0 Ga continental crust cannot explain such high epsilon values in the depleted residue unless the volume of residual mantle was very small: a layer less than 70 km thick by 3.0 Ga. Repeated and exclusive sampling of such a thin layer, especially in forming the felsic gneiss complexes, is implausible. Extraction of enough continental crust to deplete the early mantle and its destructive recycling before 3.0 Ga ago requires another implausibility, that the sites of crustal generation of recycling were substantially distinct. In contrast, formation of mafic or ultramafic crust analogous to present-day oceanic crust was continuous from very early times. Recycled subducted oceanic lithosphere is a likely contributor to present-day hotspot magmas, and forms a reservoir at least comparable in volume to continental crust. Subduction of an early mafic/ultramafic oceanic crust and temporary storage rather than immediate mixing back into undifferentiated mantle may be responsible for the depletion and high epsilon(Nd) values of the Archean upper mantle.

  13. Depleted Uranium | RadTown USA | US EPA

    EPA Pesticide Factsheets

    2016-12-13

    Depleted uranium is the material left after most of the highly radioactive uranium-235 is removed from uranium ore for nuclear power and weapons. DU is used for tank armor, armor-piercing bullets and as weights to help balance aircraft. DU is both a toxic chemical and radiation health hazard when inside the body.

  14. A method to estimate groundwater depletion from confining layers

    USGS Publications Warehouse

    Konikow, L.F.; Neuzil, C.E.

    2007-01-01

    Although depletion of storage in low-permeability confining layers is the source of much of the groundwater produced from many confined aquifer systems, it is all too frequently overlooked or ignored. This makes effective management of groundwater resources difficult by masking how much water has been derived from storage and, in some cases, the total amount of water that has been extracted from an aquifer system. Analyzing confining layer storage is viewed as troublesome because of the additional computational burden and because the hydraulic properties of confining layers are poorly known. In this paper we propose a simplified method for computing estimates of confining layer depletion, as well as procedures for approximating confining layer hydraulic conductivity (K) and specific storage (Ss) using geologic information. The latter makes the technique useful in developing countries and other settings where minimal data are available or when scoping calculations are needed. As such, our approach may be helpful for estimating the global transfer of groundwater to surface water. A test of the method on a synthetic system suggests that the computational errors will generally be small. Larger errors will probably result from inaccuracy in confining layer property estimates, but these may be no greater than errors in more sophisticated analyses. The technique is demonstrated by application to two aquifer systems: the Dakota artesian aquifer system in South Dakota and the coastal plain aquifer system in Virginia. In both cases, depletion from confining layers was substantially larger than depletion from the aquifers.

  15. Depletion analysis of the UMLRR reactor core using MCNP6

    NASA Astrophysics Data System (ADS)

    Odera, Dim Udochukwu

    Accurate knowledge of the neutron flux and temporal nuclide inventory in reactor physics calculations is necessary for a variety of application in nuclear engineering such as criticality safety, safeguards, and spent fuel storage. The Monte Carlo N- Particle (MCNP6) code with integrated buildup depletion code (CINDER90) provides a high-fidelity tool that can be used to perform 3D, full core simulation to evaluate fissile material utilization, and nuclide inventory calculations as a function of burnup. The University of Massachusetts Lowell Research Reactor (UMLRR) reactor has been modeled with the deterministic based code, VENTURE and with an older version of MCNP (MCNP5). The MIT developed MCODE (MCNP ORIGEN DEPLETION CODE) was used previously to perform some limited depletion calculations. This work chronicles the use of MCNP6, released in June 2013, to perform coupled neutronics and depletion calculation. The results are compared to previously benchmarked results. Furthermore, the code is used to determine the ratio of fission products 134Cs and 137Cs (burnup indicators), and the resultant ratio is compared to the burnup of the UMLRR.

  16. Packaging and Disposal of a Radium-beryllium Source using Depleted Uranium Polyethylene Composite Shielding

    SciTech Connect

    Keith Rule; Paul Kalb; Pete Kwaschyn

    2003-02-11

    Two, 111-GBq (3 Curie) radium-beryllium (RaBe) sources were in underground storage at the Brookhaven National Laboratory (BNL) since 1988. These sources originated from the Princeton Plasma Physics Laboratory (PPPL) where they were used to calibrate neutron detection diagnostics. In 1999, PPPL and BNL began a collaborative effort to expand the use of an innovative pilot-scale technology and bring it to full-scale deployment to shield these sources for eventual transport and burial at the Hanford Burial site. The transport/disposal container was constructed of depleted uranium oxide encapsulated in polyethylene to provide suitable shielding for both gamma and neutron radiation. This new material can be produced from recycled waste products (depleted uranium and polyethylene), is inexpensive, and can be disposed with the waste, unlike conventional lead containers, thus reducing exposure time for workers. This paper will provide calculations and information that led to the initial design of the shielding. We will also describe the production-scale processing of the container, cost, schedule, logistics, and many unforeseen challenges that eventually resulted in the successful fabrication and deployment of this shield. We will conclude with a description of the final configuration of the shielding container and shipping package along with recommendations for future shielding designs.

  17. Monitoring of singlet oxygen in the lower troposphere and processes of ozone depletion.

    NASA Astrophysics Data System (ADS)

    Iasenko, Egor; Chelibanov, Vladimir; Marugin, Alexander; Kozliner, Marat

    2016-04-01

    The processes of ozone depletion in the atmosphere are widely discussed now in a connection with the problem of a global climate changes. It is known fact that photolysis of ozone in the upper atmosphere is the source of metastable molecules of oxygen. But, metastable molecules of oxygen can be formed as a result of photo initiated heterogeneous oxidation of molecules adsorbed on the surface of natural aerosol particles. During the outdoor experiment, we observed a formation of Singlet oxygen (1Δg) at concentration level of 2 ... 5 ppb when ice crystals have been exposed to the sun light. In experiments, we used Analyzers of Singlet oxygen and Ozone (produced by JSC "OPTEC") that utilize solid-state chemiluminescence technology. We assumed that the singlet oxygen is formed in the active centers on the surface of ice crystals in the presence or absence of anthropogenic pollutants in the atmosphere. Identified efficiency of heterogeneous reaction of O2 (1Δg) formation suggests the importance of the additional channel O3 + O2 (1Δg) → 2O2 + O (3P) of atmospheric ozone removal comparable with other well known cycles of ozone depletion.

  18. Global Storm-Time Depletion of the Outer Electron Belt

    NASA Astrophysics Data System (ADS)

    Ukhorskiy, A. Y.; Sitnov, M. I.; Millan, R. M.; Kress, B. T.; Fennell, J. F.

    2014-12-01

    The outer radiation belt consists of relativistic (≳0.5 MeV) electrons trapped on closed trajectories around Earth where its magnetic field is nearly dipolar. During increased geomagnetic activity electron intensities in the belt can vary by orders of magnitude at different spatial and temporal scale. The main phase of geomagnetic storms often produces deep depletions of electron intensities over broad regions of the outer belt. Previous studies identified three possible processes that can contribute to the depletions: fully adiabatic inflation of electron drift orbits caused the ring current growth, electron loss into the atmosphere due to pitch-angle scattering by plasma waves (e.g., EMIC and whistler waves), and electron escape through the magnetopause boundary. In this paper we investigate the relative importance of the magnetopause losses to the rapid depletion of the outer belt observed at the Van Allen Probes spacecraft during the main phase of March 17, 2013 storm. The intensities of > 1 MeV electrons were depleted by more that an order of magnitude over the entire radial extent of the belt in less than 6 hours after the sudden storm commencement. For the analysis we used three-dimensional test-particle simulations of global evolution of the outer belt in the Tsyganenko-Sitnov (TS07D) magnetic field model with the inductive electric field. The comparison of the simulation results with electron measurements from the MagEIS experiment shows that the magnetopause losses in the model accounts for most of the observed depletion. The individual electron motion the process is non-adiabatic; the third invariant is violated by global variations of the inner magnetospheric fields caused by the magnetopause compressions and the buildup of ring current, while the second invariant is violated at drift orbit bifurcations. The analysis shows that the observed deep depletion of radiation belt intensities is enabled by the change in the global configuration of magnetic

  19. Ozone depletion, related UVB changes and increased skin cancer incidence

    NASA Astrophysics Data System (ADS)

    Kane, R. P.

    1998-03-01

    Stratospheric ozone at middle latitudes shows a seasonal variation of about +/-20%, a quasi-biennial oscillation of 1-10% range and a long-term variation in which the level was almost steady up to about 1979 and declined thereafter to the present day by about 10%. These variations are expected to be reflected in solar UVB observed at the ground, but in an opposite direction. Thus UVB should have had a long-term increase of about 10-20%, which should cause an increase in skin cancer incidence of about 20-40%. Skin cancer incidence has increased all over the world, e.g. about 90% in USA during 1974-1990. It is popularly believed that this increase in skin cancer incidence is related to the recent ozone depletion. This seems to be incorrect, for two reasons. Firstly, the observed skin cancer increase is too large (90%) compared with the expected value (40%) from ozone depletion. Secondly, cancer does not develop immediately after exposure to solar UVB. The sunburns may occur within hours; but cancer development and detection may take years, even decades. Hence the observed skin cancer increase since 1974 (no data available for earlier periods) must have occurred due to exposure to solar UVB in the 1950s and 1960s, when there was no ozone depletion. Thus, the skin cancer increase must be attributed to harmful solar UVB levels existing even in the 1960s, accentuated later not by ozone depletion (which started only much later, by 1979) but by other causes, such as a longer human life span, better screening, increasing tendencies of sunbathing at beaches, etc., in affluent societies. On the other hand, the recent ozone depletion and the associated UVB increases will certainly take their toll; only that the effects will not be noticed now but years or decades from now. The concern for the future expressed in the Montreal Protocol for reducing ozone depletion by controlling CFC production is certainly justified, especially because increased UVB is harmful to animal and

  20. Calcium depletion in a Southeastern United States forest ecosystem

    USGS Publications Warehouse

    Huntington, T.G.; Hooper, R.P.; Johnson, C.E.; Aulenbach, Brent T.; Cappellato, R.; Blum, A.E.

    2000-01-01

    Forest soil Ca depletion through leaching and vegetation uptake may threaten long-term sustainability of forest productivity in the southeastern USA. This study was conducted to assess Ca pools and fluxes in a representative southern Piedmont forest to determine the soil Ca depletion rate. Soil Ca storage, Ca inputs in atmospheric deposition, and outputs in soil leaching and vegetation uptake were investigated at the Panola Mountain Research Watershed (PMRW) near Atlanta, GA. Average annual outputs of 12.3 kg ha-1 yr-1 in uptake into merchantable wood and 2.71 kg ha-1 yr-1 soil leaching exceeded inputs in atmospheric deposition of 2.24 kg ha-1 yr-1. The annual rate of Ca uptake into merchantable wood exceeds soil leaching losses by a factor of more than five. The potential for primary mineral weathering to provide a substantial amount of Ca inputs is low. Estimates of Ca replenishment through mineral weathering in the surface 1 m of soil and saprolite was estimated to be 0.12 kg ha-1 yr-1. The weathering rate in saprolite and partially weathered bedrock below the surface 1 m is similarly quite low because mineral Ca is largely depleted. The soil Ca depletion rate at PMRW is estimated to be 12.7 kg ha-1 yr-1. At PMRW and similar hardwood-dominated forests in the Piedmont physiographic province, Ca depletion will probably reduce soil reserves to less than the requirement for a merchantable forest stand in ???80 yr. This assessment and comparable analyses at other southeastern USA forest sites suggests that there is a strong potential for a regional problem in forest nutrition in the long term.Forest soil Ca depletion through leaching and vegetation uptake may threaten long-term sustainability of forest productivity in the southeastern USA. This study was conducted to assess Ca pools and fluxes in a representative southern Piedmont forest to determine the soil Ca depletion rate. Soil Ca storage, Ca inputs in atmospheric deposition, and outputs in soil leaching and

  1. Coupled evolution of BrOx-ClOx-HOx-NOx chemistry during bromine-catalyzed ozone depletion events in the arctic boundary layer

    NASA Astrophysics Data System (ADS)

    Evans, M. J.; Jacob, D. J.; Atlas, E.; Cantrell, C. A.; Eisele, F.; Flocke, F.; Fried, A.; Mauldin, R. L.; Ridley, B. A.; Wert, B.; Talbot, R.; Blake, D.; Heikes, B.; Snow, J.; Walega, J.; Weinheimer, A. J.; Dibb, J.

    2003-02-01

    Extensive chemical characterization of ozone (O3) depletion events in the Arctic boundary layer during the TOPSE aircraft mission in March-May 2000 enables analysis of the coupled chemical evolution of bromine (BrOx), chlorine (ClOx), hydrogen oxide (HOx) and nitrogen oxide (NOx) radicals during these events. We project the TOPSE observations onto an O3 chemical coordinate to construct a chronology of radical chemistry during O3 depletion events, and we compare this chronology to results from a photochemical model simulation. Comparison of observed trends in ethyne (oxidized by Br) and ethane (oxidized by Cl) indicates that ClOx chemistry is only active during the early stage of O3 depletion (O3 > 10 ppbv). We attribute this result to the suppression of BrCl regeneration as O3 decreases. Formaldehyde and peroxy radical concentrations decline by factors of 4 and 2 respectively during O3 depletion and we explain both trends on the basis of the reaction of CH2O with Br. Observed NOx concentrations decline abruptly in the early stages of O3 depletion and recover as O3 drops below 10 ppbv. We attribute the initial decline to BrNO3 hydrolysis in aerosol, and the subsequent recovery to suppression of BrNO3 formation as O3 drops. Under halogen-free conditions we find that HNO4 heterogeneous chemistry could provide a major NOx sink not included in standard models. Halogen radical chemistry in the model can produce under realistic conditions an oscillatory system with a period of 3 days, which we believe is the fastest oscillation ever reported for a chemical system in the atmosphere.

  2. Endoplasmic Reticulum Thiol Oxidase Deficiency Leads to Ascorbic Acid Depletion and Noncanonical Scurvy in Mice

    PubMed Central

    Zito, Ester; Hansen, Henning Gram; Yeo, Giles S.H.; Fujii, Junichi; Ron, David

    2012-01-01

    Summary Endoplasmic reticulum (ER) thiol oxidases initiate a disulfide relay to oxidatively fold secreted proteins. We found that combined loss-of-function mutations in genes encoding the ER thiol oxidases ERO1α, ERO1β, and PRDX4 compromised the extracellular matrix in mice and interfered with the intracellular maturation of procollagen. These severe abnormalities were associated with an unexpectedly modest delay in disulfide bond formation in secreted proteins but a profound, 5-fold lower procollagen 4-hydroxyproline content and enhanced cysteinyl sulfenic acid modification of ER proteins. Tissue ascorbic acid content was lower in mutant mice, and ascorbic acid supplementation improved procollagen maturation and lowered sulfenic acid content in vivo. In vitro, the presence of a sulfenic acid donor accelerated the oxidative inactivation of ascorbate by an H2O2-generating system. Compromised ER disulfide relay thus exposes protein thiols to competing oxidation to sulfenic acid, resulting in depletion of ascorbic acid, impaired procollagen proline 4-hydroxylation, and a noncanonical form of scurvy. PMID:22981861

  3. Endoplasmic reticulum thiol oxidase deficiency leads to ascorbic acid depletion and noncanonical scurvy in mice.

    PubMed

    Zito, Ester; Hansen, Henning Gram; Yeo, Giles S H; Fujii, Junichi; Ron, David

    2012-10-12

    Endoplasmic reticulum (ER) thiol oxidases initiate a disulfide relay to oxidatively fold secreted proteins. We found that combined loss-of-function mutations in genes encoding the ER thiol oxidases ERO1α, ERO1β, and PRDX4 compromised the extracellular matrix in mice and interfered with the intracellular maturation of procollagen. These severe abnormalities were associated with an unexpectedly modest delay in disulfide bond formation in secreted proteins but a profound, 5-fold lower procollagen 4-hydroxyproline content and enhanced cysteinyl sulfenic acid modification of ER proteins. Tissue ascorbic acid content was lower in mutant mice, and ascorbic acid supplementation improved procollagen maturation and lowered sulfenic acid content in vivo. In vitro, the presence of a sulfenic acid donor accelerated the oxidative inactivation of ascorbate by an H(2)O(2)-generating system. Compromised ER disulfide relay thus exposes protein thiols to competing oxidation to sulfenic acid, resulting in depletion of ascorbic acid, impaired procollagen proline 4-hydroxylation, and a noncanonical form of scurvy.

  4. Dihydroartemisinin Exerts Its Anticancer Activity through Depleting Cellular Iron via Transferrin Receptor-1

    PubMed Central

    Ba, Qian; Zhou, Naiyuan; Duan, Juan; Chen, Tao; Hao, Miao; Yang, Xinying; Li, Junyang; Yin, Jun; Chu, Ruiai; Wang, Hui

    2012-01-01

    Artemisinin and its main active metabolite dihydroartemisinin, clinically used antimalarial agents with low host toxicity, have recently shown potent anticancer activities in a variety of human cancer models. Although iron mediated oxidative damage is involved, the mechanisms underlying these activities remain unclear. In the current study, we found that dihydroartemisinin caused cellular iron depletion in time- and concentration-dependent manners. It decreased iron uptake and disturbed iron homeostasis in cancer cells, which were independent of oxidative damage. Moreover, dihydroartemisinin reduced the level of transferrin receptor-1 associated with cell membrane. The regulation of dihydroartemisinin to transferrin receptor-1 could be reversed by nystatin, a cholesterol-sequestering agent but not the inhibitor of clathrin-dependent endocytosis. Dihydroartemisinin also induced transferrin receptor-1 palmitoylation and colocalization with caveolin-1, suggesting a lipid rafts mediated internalization pathway was involved in the process. Also, nystatin reversed the influences of dihydroartemisinin on cell cycle and apoptosis related genes and the siRNA induced downregulation of transferrin receptor-1 decreased the sensitivity to dihydroartemisinin efficiently in the cells. These results indicate that dihydroartemisinin can counteract cancer through regulating cell-surface transferrin receptor-1 in a non-classical endocytic pathway, which may be a new action mechanism of DHA independently of oxidative damage. PMID:22900042

  5. Lycopene Pretreatment Ameliorates Acute Ethanol Induced NAD+ Depletion in Human Astroglial Cells

    PubMed Central

    Guest, Jade; Heng, Benjamin; Grant, Ross

    2015-01-01

    Excessive alcohol consumption is associated with reduced brain volume and cognition. While the mechanisms by which ethanol induces these deleterious effects in vivo are varied most are associated with increased inflammatory and oxidative processes. In order to further characterise the effect of acute ethanol exposure on oxidative damage and NAD+ levels in the brain, human U251 astroglioma cells were exposed to physiologically relevant doses of ethanol (11 mM, 22 mM, 65 mM, and 100 mM) for ≤ 30 minutes. Ethanol exposure resulted in a dose dependent increase in both ROS and poly(ADP-ribose) polymer production. Significant decreases in total NAD(H) and sirtuin 1 activity were also observed at concentrations ≥ 22 mM. Similar to U251 cells, exposure to ethanol (≥22 mM) decreased levels of NAD(H) in primary human astrocytes. NAD(H) depletion in primary astrocytes was prevented by pretreatment with 1 μM of lycopene for 3.5 hours. Unexpectedly, in U251 cells lycopene treatment at concentrations ≥ 5 μM resulted in significant reductions in [NAD(H)]. This study suggests that exposure of the brain to alcohol at commonly observed blood concentrations may cause transitory oxidative damage which may be at least partly ameliorated by lycopene. PMID:26075038

  6. Exogenous reactive oxygen species deplete the isolated rat heart of antioxidants.

    PubMed

    Vaage, J; Antonelli, M; Bufi, M; Irtun, O; DeBlasi, R A; Corbucci, G G; Gasparetto, A; Semb, A G

    1997-01-01

    The effects of reactive oxygen species (ROS) on myocardial antioxidants and on the activity of oxidative mitochondrial enzymes were investigated in the following groups of isolated, perfused rat hearts. I: After stabilization the hearts freeze clamped in liquid nitrogen (n = 7). II: Hearts frozen after stabilization and perfusion for 10 min with xanthine oxidase (XO) (25 U/l) and hypoxanthine (HX) (1 mM) as a ROS-producing system (n = 7). III: Like group II, but recovered for 30 min after perfusion with XO + HX (n = 9). IV: The hearts were perfused and freeze-clamped as in group III, but without XO + HX (n = 7). XO + HX reduced left ventricular developed pressure and coronary flow to approximately 50% of the baseline value. Myocardial content of hydrogen peroxide (H2O2) and malondialdehyde (MDA) increased at the end of XO + HX perfusion, indicating that generation of ROS and lipid peroxidation occurred. Levels of H2O2 and MDA normalized during recovery. Superoxide dismutase, reduced glutathione and alpha-tocopherol were all reduced after ROS-induced injury. ROS did not significantly influence the tissue content of coenzyme Q10 (neither total, oxidized, nor reduced), cytochrome c oxidase, and succinate cytochrome c reductase. The present findings indicate that the reduced contractile function was not correlated to reduced activity of the mitochondrial electron transport chain. ROS depleted the myocardium of antioxidants, leaving the heart more sensitive to the action of oxidative injury.

  7. Origin of LREE-depleted amphiboles in the subcontinental mantle

    NASA Astrophysics Data System (ADS)

    Vannucci, R.; Piccardo, G. B.; Rivalenti, G.; Zanetti, A.; Rampone, E.; Ottolini, L.; Oberti, R.; Mazzucchelli, M.; Bottazzi, P.

    1995-05-01

    Ion-microprobe analyses of interstitial kaersutite and Ti-pargasite grains from orogenic peridotites and lherzolite xenoliths reveal that LREE-depleted amphiboles are common in the subcontinental mantle samples. Incompatibility diagrams for the investigated amphiboles show that REEs almost parallel those of coexisting clinopyroxenes, whereas Sr, Zr, and Ti show variable anomalies (i.e., Sr/Sr ∗ and Ti/Ti ∗ > 1 and Zr/Zr ∗ < 1). In the chondrite-normalized incompatibility diagrams, Sr lies almost a factor of two above Ce and Nd and is usually depleted relative to HREEs. Average amphibole/clinopyroxene partition coefficients for spinel-bearing assemblages range from 1.4-1.8 for LREEs and from 1.8-2.2 for HREEs. Corresponding D values for Zr, Sr, and Ti are about 1, 3, and 5, respectively. Present data apparently contrast with the conventional wisdom that the presence of amphibole in mantle rocks is related to the introduction of melt or fluids enriched in incompatible elements. In the absence of experimental evidence that aqueous fluids in equilibrium with deep mantle are LREE-, Sr-depleted, we propose either a diffusive redistribution (near solidus or at subsolidus) or a chromatographic process to account for the formation of depleted amphibole from LREE-, Sr-enriched fluids. The crystallization of LREE-, Sr-depleted kaersutite and Ti-pargasite has important geodynamic implications, since it refers, at least for some peridotite massifs (i.e., Zabargad, External Ligurides, Eastern Pyrenees) to the steady-state equilibration under spinel-facies conditions and is related to the early evolution of peridotites. This stage is broadly related to the timing of lithospheric accretion.

  8. Fundamental differences between Arctic and Antarctic ozone depletion.

    PubMed

    Solomon, Susan; Haskins, Jessica; Ivy, Diane J; Min, Flora

    2014-04-29

    Antarctic ozone depletion is associated with enhanced chlorine from anthropogenic chlorofluorocarbons and heterogeneous chemistry under cold conditions. The deep Antarctic "hole" contrasts with the generally weaker depletions observed in the warmer Arctic. An unusually cold Arctic stratospheric season occurred in 2011, raising the question of how the Arctic ozone chemistry in that year compares with others. We show that the averaged depletions near 20 km across the cold part of each pole are deeper in Antarctica than in the Arctic for all years, although 2011 Arctic values do rival those seen in less-depleted years in Antarctica. We focus not only on averages but also on extremes, to address whether or not Arctic ozone depletion can be as extreme as that observed in the Antarctic. This information provides unique insights into the contrasts between Arctic and Antarctic ozone chemistry. We show that extreme Antarctic ozone minima fall to or below 0.1 parts per million by volume (ppmv) at 18 and 20 km (about 70 and 50 mbar) whereas the lowest Arctic ozone values are about 0.5 ppmv at these altitudes. At a higher altitude of 24 km (30-mbar level), no Arctic data below about 2 ppmv have been observed, including in 2011, in contrast to values more than an order of magnitude lower in Antarctica. The data show that the lowest ozone values are associated with temperatures below -80 °C to -85 °C depending upon altitude, and are closely associated with reduced gaseous nitric acid concentrations due to uptake and/or sedimentation in polar stratospheric cloud particles.

  9. Fundamental differences between Arctic and Antarctic ozone depletion

    PubMed Central

    Solomon, Susan; Haskins, Jessica; Ivy, Diane J.; Min, Flora

    2014-01-01

    Antarctic ozone depletion is associated with enhanced chlorine from anthropogenic chlorofluorocarbons and heterogeneous chemistry under cold conditions. The deep Antarctic “hole” contrasts with the generally weaker depletions observed in the warmer Arctic. An unusually cold Arctic stratospheric season occurred in 2011, raising the question of how the Arctic ozone chemistry in that year compares with others. We show that the averaged depletions near 20 km across the cold part of each pole are deeper in Antarctica than in the Arctic for all years, although 2011 Arctic values do rival those seen in less-depleted years in Antarctica. We focus not only on averages but also on extremes, to address whether or not Arctic ozone depletion can be as extreme as that observed in the Antarctic. This information provides unique insights into the contrasts between Arctic and Antarctic ozone chemistry. We show that extreme Antarctic ozone minima fall to or below 0.1 parts per million by volume (ppmv) at 18 and 20 km (about 70 and 50 mbar) whereas the lowest Arctic ozone values are about 0.5 ppmv at these altitudes. At a higher altitude of 24 km (30-mbar level), no Arctic data below about 2 ppmv have been observed, including in 2011, in contrast to values more than an order of magnitude lower in Antarctica. The data show that the lowest ozone values are associated with temperatures below −80 °C to −85 °C depending upon altitude, and are closely associated with reduced gaseous nitric acid concentrations due to uptake and/or sedimentation in polar stratospheric cloud particles. PMID:24733920

  10. Milk fat composition of Holstein and Jersey cows with control or depleted copper status and fed whole soybeans or tallow.

    PubMed

    Sol Morales, M; Palmquist, D L; Weiss, W P

    2000-09-01

    We studied effects of breed, dietary fat source, and dietary copper intake as factors known to influence unsaturation of milk fat and its potential for development of spontaneous oxidized flavor in milk. Twelve Holstein and 12 Jersey cows were allotted to three blocks with four cows of each breed. Cows within breed were allotted randomly within blocks and fed control or copper-depleting diets for 2 mo to achieve stable or depleted liver copper stores. Cows then were fed tallow or roasted whole soybeans in a two-period switchback (5 wk per period); during the last week of each period additional vitamin E (2000 IU/d) was added. Copper depletion for 2 mo decreased concentrations of copper in liver. Feed intake and milk yield were influenced only by breed. The proportions of C4:0 to C14:0 and C18:0 in milk fat were higher, whereas C16:1 and cis-C18:1 were lower in Jersey cows. Feeding soybeans increased C4:0 to C14:0, C18:0, C18:2, and C18:3 in milk, and decreased C14:1, C16:0, C16:1, trans-C18:1, and cis-C18:1. Depleted copper status increased conjugated linoleic acid in milk. Several breed x fat source interactions for individual milk fatty acids occurred. Feeding soybeans decreased plasma concentrations of copper and zinc, and increased concentrations of alpha-tocopherol in plasma and milk. The concentration of zinc was higher in milk of Jersey cows. Depleted copper status tended to increase copper concentration in plasma and decreased copper in milk. Fat source did not influence plasma copper concentration when status was adequate, but plasma copper concentration was higher when tallow was fed to cows with depleted copper status. Supplementing vitamin E increased concentration of alpha-tocopherol in plasma and milk and decreased concentration of zinc in milk. Factors influencing the potential for oxidized flavor development in milk can be manipulated by changing the diet of the cow.

  11. Steep subthreshold slope characteristics of body tied to gate NMOSFET in partially depleted SOI

    NASA Astrophysics Data System (ADS)

    Song, Lei; Hu, Zhiyuan; Liu, Zhangli; Xin, Haiwei; Zhang, Zhengxuan; Zou, Shichang

    2017-04-01

    A new body tied to gate (BTG) n-channel metal-oxide-semiconductor field-effect-transistor (NMOSFET) with a diode in partially depleted SOI (PD SOI) is proposed and investigated. We first compare the transfer and output characteristics between the regular and BTG NMOSFETs with grounded body and floating body. The steep subthreshold slope (<6 mV/dec) and low OFF current (∼0.01 pA/μm) of the BTG NMOSFET with floating body are observed at VD = 3.3 V. Mechanisms of the floating body effect (FBE) and the diode are analyzed to explain the outstanding performance. The hysteresis characteristics of BTG NMOSFETs are also presented in comparison to regular ones. Finally, the steep subthreshold characteristics of the BTG NMOSFET with floating body at low drain voltage are studied for ultralow power application.

  12. STZ causes depletion of immune cells in sciatic nerve and dorsal root ganglion in experimental diabetes.

    PubMed

    Hidmark, Asa S; Nawroth, Peter P; Fleming, Thomas

    2017-05-15

    Streptozotocin (STZ) treatment, a common model for inducing diabetes in rodent models, induces thermal hyperalgesia and neuronal toxicity independently of hyperglycemia by oxidizing and activating TRPA1 and TRPV1. Following treatment with STZ, CD45(+) immune cells were found to be depleted in sciatic nerve (SN) and DRG in mice, prior to hyperglycemia. Macrophages were also lost in DRG and NFκB-p65-activation was increased in SN macrophages. Immune cells were significantly reduced in both SN and DRG up to three weeks, post-treatment. Loss of PNS-resident macrophages in response to STZ-mediated toxicity may affect the regenerative capacity of the nerve in response to further injury caused by diabetes.

  13. Aldehyde dehydrogenase inhibition combined with phenformin treatment reversed NSCLC through ATP depletion

    PubMed Central

    Lee, Jae-Seon; Nam, Boas; Seong, Tae Wha; Son, Jaekyoung; Jang, Hyonchol; Hong, Kyeong Man; Lee, Cheolju; Kim, Soo-Youl

    2016-01-01

    Among ALDH isoforms, ALDH1L1 in the folate pathway showed highly increased expression in non-small-cell lung cancer cells (NSCLC). Based on the basic mechanism of ALDH converting aldehyde to carboxylic acid with by-product NADH, we suggested that ALDH1L1 may contribute to ATP production using NADH through oxidative phosphorylation. ALDH1L1 knockdown reduced ATP production by up to 60% concomitantly with decrease of NADH in NSCLC. ALDH inhibitor, gossypol, also reduced ATP production in a dose dependent manner together with decrease of NADH level in NSCLC. A combination treatment of gossypol with phenformin, mitochondrial complex I inhibitor, synergized ATP depletion, which efficiently induced cell death. Pre-clinical xenograft model using human NSCLC demonstrated a remarkable therapeutic response to the combined treatment of gossypol and phenformin. PMID:27384481

  14. Depletion-mode ZnO nanowire field-effect transistor

    SciTech Connect

    Heo, Y.W.; Tien, L.C.; Kwon, Y.; Norton, D.P.; Pearton, S.J.; Kang, B.S.; Ren, F.

    2004-09-20

    Single ZnO nanowire metal-oxide-semiconductor field-effect transistors (MOSFETs) were fabricated using nanowires grown by site selective molecular-beam epitaxy. When measured in the dark at 25 deg. C, he depletion-mode transistors exhibit good saturation behavior, a threshold voltage of {approx}-3 V, and a maximum transconductance of order 0.3 mS/mm. Under ultraviolet (366 nm) illumination, the drain-source current increase by approximately a factor of 5 and the maximum transconductance is {approx}5 mS/mm. The channel mobility is estimated to be {approx}3 cm{sup 2}/V s, which is comparable to that reported for thin film ZnO enhancement mode MOSFETs, and the on/off ratio was {approx}25 in the dark and {approx}125 under UV illumination.

  15. A new role for glutathione: protection of vitamin B12 from depletion by xenobiotics.

    PubMed

    Watson, William P; Munter, Tony; Golding, Bernard T

    2004-12-01

    NADPH in microsomes reduces the hydroxocob(III)alamin form of vitamin B12 to cob(II)alamin and the supernucleophilic cob(I)alamin, which are both highly reactive toward xenobiotic epoxides formed by mammalian metabolism of dienes such as the industrially important chemicals chloroprene and 1,3-butadiene. With styrene, the metabolically formed styrene oxide is reactive toward cob(I)alamin but not cob(II)alamin. Such reactions in humans could lead to vitamin B12 deficiency, which is implicated in pernicious anemia, cancer, and degenerative diseases. However, glutathione inhibits the reduction of hydroxocob(III)alamin by formation of the 1:1 complex glutathionylcobalamin. This blocks reactions of the cobalamins with metabolically formed epoxides. The interaction between glutathione and vitamin B12 could protect against diseases related to vitamin B12 depletion.

  16. Measuring Aerosols Generated Inside Armoured Vehicles Perforated by Depleted Uranium Ammunition

    SciTech Connect

    Parkhurst, MaryAnn

    2003-01-01

    In response to questions raised after the Gulf War about the health significance of exposure to depleted uranium (DU), a study was initiated to provide an improved scientific basis for assessment of possible health effects of soldiers in vehicles struck by these munitions. As part of this experimental study, a series of DU penetrators were fired at an Abrams tank and a Bradley fighting vehicle, and the aerosols generated by vehicle perforation were collected and characterized. The aerosol sampling system designed for these tests consisted of filter cassettes, cascade impactors, a five-stage cyclone, and a moving filter. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. The aerosol samples were also analyzed for uranium oxide phases, particle morphology, and in vitro solubility. These data will provide input for use in future prospective and retrospective dose and health risk assessments of DU aerosols.

  17. Use of nitric oxide inhalation in chronic obstructive pulmonary disease

    PubMed Central

    Ashutosh, K.; Phadke, K.; Jackson, J. F.; Steele, D.

    2000-01-01

    BACKGROUND—Inhalation of nitric oxide with oxygen could be a promising treatment in patients with chronic obstructive pulmonary disease (COPD) and pulmonary hypertension. However, the current methods of delivery of NO are cumbersome and unsuitable for long term use. The present study was undertaken to investigate the safety and efficacy of a mixture of nitric oxide (NO) and oxygen administered via a nasal cannula for 24 hours in patients with oxygen dependent COPD.
METHODS—Twenty five parts per million (ppm) of NO was administered by inhalation combined with supplemental oxygen at a flow rate of 2 l/min via a nasal cannula for 24 hours to 11 ambulatory men with stable, oxygen dependent COPD. Room air with supplemental oxygen at 2 l/min was administered in an identical manner for another 24 hours as control therapy in a randomised, double blind, crossover fashion to all patients. Pulmonary function tests, exercise tolerance, dyspnoea grade, and lung volumes were measured at baseline, 24, and 48 hours. Pulmonary artery pressure (PAP), cardiac output (CO), pulmonary vascular resistance (PVR), arterial blood gas tensions, and minute ventilation were measured at baseline, after 30 minutes and 24 hours of breathing NO and oxygen. Venous admixture ratio (Qs/Qt) and dead space ratio (Vd/Vt) were also calculated. Concentrations of nitrogen dioxide (NO2) and NO in the inhaled and ambient air were monitored continuously. Differences in pulmonary function, arterial blood gas tensions, pulmonary haemodynamics, exercise tolerance, and dyspnoea between oxygen and NO breathing periods were analysed for significance using paired t tests.
RESULTS—A significant (p<0.05) fall was observed in PVR (183.1 (116.05) and 137.2 (108.4) dynes.s.cm-3 before and after breathing NO for 24 hours, respectively) with NO administration without significant changes in symptoms, pulmonary function, arterial oxygen tension, or exercise tolerance.
CONCLUSIONS—NO at a concentration of 25 ppm

  18. Long-term effects of histidine depletion on whole-body protein metabolism in healthy adults.

    PubMed

    Kriengsinyos, Wantanee; Rafii, Mahroukh; Wykes, Linda J; Ball, Ronald O; Pencharz, Paul B

    2002-11-01

    The essentiality of histidine in healthy adults is a controversial topic. To study the potential metabolic effects of a lack of exogenous histidine, four healthy adults consumed a histidine-free diet, with adequate energy and 1.0 g/(kg. d) of an L-amino acid mixture for 48 d. Protein metabolism was monitored every 4 d by using indicator amino acid (L-[1-(13)C]phenylalanine) oxidation (in four subjects) and [(15)N]glycine (in one subject). Urine samples (24-h) were collected for measurement of urea, total nitrogen, creatinine, 3-methylhistidine (3-MH), histidine and beta-alanine. Albumin, transferrin and hematologic concentrations were measured on d 0, 24 and 48. Urinary excretion of nitrogen, urea, creatinine and 3-MH were not affected by the histidine-free diet. However, there was a significant (P < 0.001) linear decline (24-28%) in whole-body protein turnover. Significant (P < 0.05) decreases in albumin (12%), transferrin (17%) and hemoglobin (Hb) (11%) concentrations occurred slowly over the histidine depletion period. The urinary excretion of beta-alanine (an index of carnosine catabolism) generally increased in the smallest subject during the consumption of histidine-free diet. This study demonstrates that a lack of histidine in the diet for a prolonged period resulted in an accommodation of protein turnover and phenylalanine oxidation, measured by the (13)C-phenylalanine indicator amino acid. The extensive metabolic accommodation, together with decreases in Hb, albumin and transferrin during histidine depletion, leaves unresolved the issue of whether histidine is a dietary essential amino acid in healthy adults.

  19. Deferoxamine prevents cerebral glutathione and vitamin E depletions in asphyxiated neonatal rats: role of body temperature.

    PubMed

    Kletkiewicz, Hanna; Nowakowska, Anna; Siejka, Agnieszka; Mila-Kierzenkowska, Celestyna; Woźniak, Alina; Caputa, Michał; Rogalska, Justyna

    2016-01-01

    Hypoxic-ischaemic brain injury involves increased oxidative stress. In asphyxiated newborns iron deposited in the brain catalyses formation of reactive oxygen species. Glutathione (GSH) and vitamin E are key factors protecting cells against such agents. Our previous investigation has demonstrated that newborn rats, showing physiological low body temperature as well as their hyperthermic counterparts injected with deferoxamine (DF) are protected against iron-mediated, delayed neurotoxicity of perinatal asphyxia. Therefore, we decided to study the effects of body temperature and DF on the antioxidant status of the brain in rats exposed neonatally to critical anoxia. Two-day-old newborn rats were exposed to anoxia in 100% nitrogen atmosphere for 10 min. Rectal temperature was kept at 33 °C (physiological to rat neonates), or elevated to the level typical of healthy adult rats (37 °C), or of febrile adult rats (39 °C). Half of the rats exposed to anoxia under extremely hyperthermic conditions (39 °C) were injected with DF. Cerebral concentrations of malondialdehyde (MDA, lipid peroxidation marker) and the levels of GSH and vitamin E were determined post-mortem, (1) immediately after anoxia, (2) 3 days, (3) 7 days, and (4) 2 weeks after anoxia. There were no post-anoxic changes in MDA, GSH and vitamin E concentrations in newborn rats kept at body temperature of 33 °C. In contrast, perinatal anoxia at elevated body temperatures intensified oxidative stress and depleted the antioxidant pool in a temperature-dependent manner. Both the depletion of antioxidants and lipid peroxidation were prevented by post-anoxic DF injection. The data support the idea that hyperthermia may extend perinatal anoxia-induced brain lesions.

  20. LINE-1 hypomethylation induced by reactive oxygen species is mediated via depletion of S-adenosylmethionine.

    PubMed

    Kloypan, Chiraphat; Srisa-art, Monpicha; Mutirangura, Apiwat; Boonla, Chanchai

    2015-08-01

    Whether long interspersed nuclear element-1 (LINE-1) hypomethylation induced by reactive oxygen species (ROS) was mediated through the depletion of S-adenosylmethionine (SAM) was investigated. Bladder cancer (UM-UC-3 and TCCSUP) and human kidney (HK-2) cell lines were exposed to 20 μM H2O2 for 72 h to induce oxidative stress. Level of LINE-1 methylation, SAM and homocysteine (Hcy) was measured in the H2O2 -exposed cells. Effects of α-tocopheryl acetate (TA), N-acetylcysteine (NAC), methionine, SAM and folic acid on oxidative stress and LINE-1 methylation in the H2O2 -treated cells were explored. Viabilities of cells treated with H2O2 were not significantly changed. Intracellular ROS production and protein carbonyl content were significantly increased, but LINE-1 methylation was significantly decreased in the H2O2 -treated cells. LINE-1 methylation was restored by TA, NAC, methionine, SAM and folic acid. SAM level in H2O2 -treated cells was significantly decreased, while total glutathione was significantly increased. SAM level in H2O2 -treated cells was restored by NAC, methionine, SAM and folic acid; while, total glutathione level was normalized by TA and NAC. Hcy was significantly decreased in the H2O2 -treated cells and subsequently restored by NAC. In conclusion, in bladder cancer and normal kidney cells exposed to H2O2 , SAM and Hcy were decreased, but total glutathione was increased. Treatments with antioxidants (TA and NAC) and one-carbon metabolites (SAM, methionine and folic acid) restored these changes. This pioneer finding suggests that exposure of cells to ROS activates glutathione synthesis via the transsulfuration pathway leading to deficiency of Hcy, which consequently causes SAM depletion and eventual hypomethylation of LINE-1.

  1. Depletion layer formation in suspensions of elastic capsules in Newtonian and viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Pranay, Pratik; Henríquez-Rivera, Rafael G.; Graham, Michael D.

    2012-06-01

    Motivated by observations of the effects of drag-reducing polymer additives on various aspects of blood flow, suspensions of fluid-filled elastic capsules in Newtonian fluids and dilute solutions of high molecular weight (drag-reducing) polymers are investigated during plane Couette flow in a slit geometry. A simple model is presented to describe the cross-stream distribution of capsules as a balance of shear-induced diffusion and wall-induced migration due to capsule deformability. The model provides a theoretical prediction of the dependence of capsule-depleted layer thickness on the capillary number. A computational approach is then used to directly study the motion of elastic capsules in a Newtonian fluid and in polymer solutions. Capsule membranes are modeled using a neo-Hookean constitutive model and polymer molecules are modeled as bead-spring chains with finitely extensible nonlinearly elastic springs, with parameters chosen to loosely approximate 4000 kDa poly(ethylene oxide). Simulations are performed with a Stokes flow formulation of the immersed boundary method for the capsules, combined with Brownian dynamics for the polymer molecules. Results for an isolated capsule near a wall indicate that the wall-induced migration depends on the capillary number and is strongly reduced by addition of polymer. Numerical simulations of suspensions of capsules in Newtonian fluid illustrate the formation of a capsule-depleted layer near the walls. The thickness of this layer is found to be strongly dependent on the capillary number. The shear-induced diffusivity of the capsules, on the other hand, shows only a weak dependence on capillary number. These results thus indicate that the mechanism of wall-induced migration is the primary source for determining the capillary number dependence of the depletion layer thickness. Both the wall-induced migration and the shear-induced diffusive motion of the capsules are attenuated under the influence of polymer; reduction of

  2. Oxygen Depletion and Formation of Toxic Gases following Sea Transportation of Logs and Wood Chips

    PubMed Central

    Svedberg, Urban; Petrini, Caroline; Johanson, Gunnar

    2009-01-01

    Several recent accidents with fatal outcomes occurring during discharge of logs and wood chips from ships in Swedish ports indicate the need to better understand the atmospheric conditions in holds and connecting stairways. The principal aim of the present study was to assess the air levels of oxygen and toxic gases in confined spaces following sea transportation of logs and wood chips. The focus of the study was the conditions in the stairways, as this was the location of the reported accidents. Forty-one shipments of logs (pulpwood) and wood chips carried by 10 different ships were investigated before discharge in ports in northern Sweden. A full year was covered to accommodate variations due to seasonal temperature changes. The time from completion of loading to discharge was estimated to be 37–66 h (mean 46 h). Air samples were collected in the undisturbed air of altogether 76 stairways before the hatch covers were removed. The oxygen level was measured on-site by handheld direct-reading multi-gas monitors. On 16 of the shipments, air samples were additionally collected in Tedlar® bags for later analysis for carbon dioxide, carbon monoxide, and hydrocarbons by fourier transform infrared spectroscopy. The mean oxygen level was 10% (n = 76) but in 17% of the samples the oxygen level was 0%. The oxygen depletion was less pronounced during the cold season. The mean CO2 and CO levels were 7.5% (n = 26) and 46 p.p.m. (n = 28), respectively. More than 90% of the hydrocarbons were explained by monoterpenes, mainly α-pinene (mean 41 p.p.m., (n = 26). In conclusion, the measurements show that transport of logs and wood chips in confined spaces may result in rapid and severe oxygen depletion and CO2 formation. Thus, apparently harmless cargoes may create potentially life-threatening conditions. The oxygen depletion and CO2 formation are seemingly primarily caused by microbiological activity, in contrast to the oxidative processes with higher CO formation that

  3. Oxygen depletion and formation of toxic gases following sea transportation of logs and wood chips.

    PubMed

    Svedberg, Urban; Petrini, Caroline; Johanson, Gunnar

    2009-11-01

    Several recent accidents with fatal outcomes occurring during discharge of logs and wood chips from ships in Swedish ports indicate the need to better understand the atmospheric conditions in holds and connecting stairways. The principal aim of the present study was to assess the air levels of oxygen and toxic gases in confined spaces following sea transportation of logs and wood chips. The focus of the study was the conditions in the stairways, as this was the location of the reported accidents. Forty-one shipments of logs (pulpwood) and wood chips carried by 10 different ships were investigated before discharge in ports in northern Sweden. A full year was covered to accommodate variations due to seasonal temperature changes. The time from completion of loading to discharge was estimated to be 37-66 h (mean 46 h). Air samples were collected in the undisturbed air of altogether 76 stairways before the hatch covers were removed. The oxygen level was measured on-site by handheld direct-reading multi-gas monitors. On 16 of the shipments, air samples were additionally collected in Tedlar bags for later analysis for carbon dioxide, carbon monoxide, and hydrocarbons by fourier transform infrared spectroscopy. The mean oxygen level was 10% (n = 76) but in 17% of the samples the oxygen level was 0%. The oxygen depletion was less pronounced during the cold season. The mean CO2 and CO levels were 7.5% (n = 26) and 46 p.p.m. (n = 28), respectively. More than 90% of the hydrocarbons were explained by monoterpenes, mainly alpha-pinene (mean 41 p.p.m., (n = 26). In conclusion, the measurements show that transport of logs and wood chips in confined spaces may result in rapid and severe oxygen depletion and CO(2) formation. Thus, apparently harmless cargoes may create potentially life-threatening conditions. The oxygen depletion and CO(2) formation are seemingly primarily caused by microbiological activity, in contrast to the oxidative processes with higher CO formation that

  4. Iron(II) Initiation of Lipid and Protein Oxidation in Pork: The Role of Oxymyoglobin.

    PubMed

    Zhou, Feibai; Jongberg, Sisse; Zhao, Mouming; Sun, Weizheng; Skibsted, Leif H

    2016-06-08

    Iron(II), added as FeSO4·7H2O, was found to increase the rate of oxygen depletion as detected electrochemically in a pork homogenate from Longissimus dorsi through an initial increase in metmyoglobin formation from oxymyoglobin and followed by formation of primary and secondary lipid oxidation products and protein oxidation as detected as thiol depletion in myofibrillar proteins. Without added iron(II), under the same conditions at 37 °C, oxygen consumption corresponded solely to the slow oxymyoglobin autoxidation. Long-lived myofibrillar protein radicals as detected by ESR spectroscopy in the presence of iron(II) were formed subsequently to oxymyoglobin oxidation, and their level was increased by lipid oxidation when oxygen was completely depleted. Similarly, the time profile for formation of lipid peroxide indicated that oxymyoglobin oxidation initiates both protein oxidation and lipid oxidation.

  5. Evaluating groundwater depletion as computed by a global water model

    NASA Astrophysics Data System (ADS)

    Schuh, Carina; Doell, Petra; Mueller Schmied, Hannes; Portmann, Felix

    2013-04-01

    When groundwater abstraction occurs faster than its replenishment over a long time and in a large area, the result is an overexploitation or depletion of groundwater. The problem is aggravated in areas where a growing population relies on freshwater resources for an intensive irrigation agriculture that is meant to guarantee food security. Especially in semi-arid and arid regions, the dominant use for groundwater is irrigation, reaching more than 95% of total water use. Therefore, the hot spots for groundwater depletion are the world's major irrigation areas like the central United States, north-western India and north China. Groundwater depletion presents a major threat to securing agricultural productivity and domestic water supply in these parts of the world. Besides, the environmental consequences that accompany the abstraction of groundwater are severe. Within the scientific community there is a common understanding that high-quality data on globally existing groundwater resources are deficient. In order to allow a sustainable management of the world's available groundwater resources, especially in areas under current water stress, the quantification of groundwater depletion is of high importance. WaterGAP (Water - Global Assessment and Prognosis) is a global model of water availability and water use which can serve to estimate the impact of groundwater and surface water withdrawals on groundwater storage. The new WaterGAP version 2.2a was modified to allow for an improved analysis of groundwater storage changes in semi-arid and arid regions. Now, groundwater recharge from surface water bodies is simulated in semi-arid and arid areas. Estimation of net groundwater abstractions was modified with respect of irrigation water use efficiency for groundwater and return flow fractions. In addition, irrigation consumptive use has been set to 70% of optimal irrigation consumptive use, assuming deficit irrigation to prevail in these parts of the world. Based on time

  6. CRDIAC: Coupled Reactor Depletion Instrument with Automated Control

    SciTech Connect

    Steven K. Logan

    2012-08-01

    When modeling the behavior of a nuclear reactor over time, it is important to understand how the isotopes in the reactor will change, or transmute, over that time. This is especially important in the reactor fuel itself. Many nuclear physics modeling codes model how particles interact in the system, but do not model this over time. Thus, another code is used in conjunction with the nuclear physics code to accomplish this. In our code, Monte Carlo N-Particle (MCNP) codes and the Multi Reactor Transmutation Analysis Utility (MRTAU) were chosen as the codes to use. In this way, MCNP would produce the reaction rates in the different isotopes present and MRTAU would use cross sections generated from these reaction rates to determine how the mass of each isotope is lost or gained. Between these two codes, the information must be altered and edited for use. For this, a Python 2.7 script was developed to aid the user in getting the information in the correct forms. This newly developed methodology was called the Coupled Reactor Depletion Instrument with Automated Controls (CRDIAC). As is the case in any newly developed methodology for modeling of physical phenomena, CRDIAC needed to be verified against similar methodology and validated against data taken from an experiment, in our case AFIP-3. AFIP-3 was a reduced enrichment plate type fuel tested in the ATR. We verified our methodology against the MCNP Coupled with ORIGEN2 (MCWO) method and validated our work against the Post Irradiation Examination (PIE) data. When compared to MCWO, the difference in concentration of U-235 throughout Cycle 144A was about 1%. When compared to the PIE data, the average bias for end of life U-235 concentration was about 2%. These results from CRDIAC therefore agree with the MCWO and PIE data, validating and verifying CRDIAC. CRDIAC provides an alternative to using ORIGEN-based methodology, which is useful because CRDIAC's depletion code, MRTAU, uses every available isotope in its depletion

  7. Investigation of Hydrodynamic and Depletion Interactions in Binary Colloidal Dispersions

    NASA Astrophysics Data System (ADS)

    James, Gregory K.

    Within a colloidal dispersion, the presence of negatively adsorbing material can produce a variety of effects on the dispersion properties and interactions. With increasing concentration, the negatively adsorbing material induces both depletion and structural forces on the dispersion, which can dramatically affect both colloidal stability and near-contact hydrodynamics. This project focused on expanding our understanding of the effects of such negatively adsorbing materials on both equilibrium and dynamic interactions between particles. The effects of charged, hard spheres (silica nanoparticle) on the hydrodynamic drag force a particle experiences as it approaches a flat plate were measured experimentally using colloid probe atomic force microscopy (CP-AFM). Deviation was found between the measured drag force and predictions for the drag force in a simple, Newtonian fluid. The measured drag force was always smaller than the predicted drag force as the particle approached contact with the plate. An effective viscosity, that approached the dispersing fluid viscosity at contact and the bulk viscosity at large separations, was determined for the system. This effective viscosity displayed similar characteristics to those predicted theoretically by Bhattacharya and Blawzdziewicz ( J. Chem. Phys. 2008, 128, 214704.). The effects of both anionic and cationic micelles on the depletion and structural forces in a colloidal dispersion were studied both experimentally (with CP-AFM) and theoretically. The depletion and structural forces between a microparticle and a flat plate were measured and compared with the depletion force predicted by the force-balance model of Walz and Sharma (J. Colloid Interface Sci. 1994, 168, 485-496.). Consistent with previous work, the measured depletion force for both micelles was smaller in magnitude than that predicted by the Walz and Sharma model for hard, charged spheres. It is theorized that rearrangement of the micelle surfaces charges or

  8. Magmatic Degassing and the Volatile Depletion of the Moon

    NASA Astrophysics Data System (ADS)

    Rutherford, M. J.; Saal, A. E.; Hauri, E.

    2015-12-01

    The detection of highly volatile elements in lunar volcanic glasses and melt inclusions has provided the first definitive evidence for the accretion and retention of these elements in the Moon's interior1,2. Measurement of H in lunar apatite, at levels similar to terrestrial apatite, has added weight to this discovery3,4. These results are at odds with the longest-standing observations that the abundances of highly- and moderately-volatile elements in lunar basalts are as much as 1000 times more depleted than in terrestrial basalts5. We will show that most of these apparent contradictions have arisen due to the previously unappreciated importance of a single widespread process, magmatic degassing. Degassing occurs in all eruptions of magma, with the consequent release of volatile elements into an exsolved vapor phase. We use ours and previously published results to evaluate lunar magmatic degassing and to show that A) volatile element contents for the bulk silicate Moon (BSM) are only moderately depleted compared with the bulk silicate Earth (range 0.5-0.1, avg. 0.25 x BSE), B) they essentially overlap the composition of the terrestrial depleted MORB source and C) the volatile depletion pattern for the BSM is largely flat, and so does not correlate with condensation temperature at 10-4 bars, nor with bond energy for likely ligands. Published high-precision Sr and Pb isotope ratios on well-dated lunar rocks6-8 reveal 87Rb/86Sr and 238U/204Pb ratios of the lunar mantle a factor of 0.3-0.5 and 0.28-0.85 depleted compared to those of the BSE, respectively; lending support to our estimates for the abundances of Rb (0.245 x BSE) and Pb (0.187 x BSE) in the BSM. Before the Moon's extent of volatile depletion can be confidently attributed to the accretion processes, magmatic degassing must be examined and critically evaluated. References [1] Saal et al., 2008. Nature 454, 192. [2] Hauri et al., 2015. FEPS 409, 252. [3] Boyce et al., 2014. Sc. 344, 400. [4] Anand et al

  9. The influence of ego depletion on sprint start performance in athletes without track and field experience

    PubMed Central

    Englert, Chris; Persaud, Brittany N.; Oudejans, Raôul R. D.; Bertrams, Alex

    2015-01-01

    We tested the assumption that ego depletion would affect the sprint start in a sample of N = 38 athletes without track and field experience in an experiment by applying a mixed between- (depletion vs. non-depletion) within- (T1: before manipulation of ego depletion vs. T2: after manipulation of ego depletion) subjects design. We assumed that ego depletion would increase the possibility for a false start, as regulating the impulse to initiate the sprinting movement too soon before the starting signal requires self-control. In line with our assumption, we found a significant interaction as there was only a significant increase in the number of false starts from T1 to T2 for the depletion group while this was not the case for the non-depletion group. We conclude that ego depletion has a detrimental influence on the sprint start in athletes without track and field experience. PMID:26347678

  10. Changes in tropospheric composition and air quality due to stratospheric ozone depletion and climate change.

    PubMed

    Wilson, S R; Solomon, K R; Tang, X

    2007-03-01

    It is well-understood that reductions in air quality play a significant role in both environmental and human health. Interactions between ozone depletion and global climate change will significantly alter atmospheric chemistry which, in turn, will cause changes in concentrations of natural and human-made gases and aerosols. Models predict that tropospheric ozone near the surface will increase globally by up to 10 to 30 ppbv (33 to 100% increase) during the period 2000 to 2100. With the increase in the amount of the stratospheric ozone, increased transport from the stratosphere to the troposphere will result in different responses in polluted and unpolluted areas. In contrast, global changes in tropospheric hydroxyl radical (OH) are not predicted to be large, except where influenced by the presence of oxidizable organic matter, such as from large-scale forest fires. Recent measurements in a relatively clean location over 5 years showed that OH concentrations can be predicted by the intensity of solar ultraviolet radiation. If this relationship is confirmed by further observations, this approach could be used to simplify assessments of air quality. Analysis of surface-level ozone observations in Antarctica suggests that there has been a significant change in the chemistry of the boundary layer of the atmosphere in this region as a result of stratospheric ozone depletion. The oxidation potential of the Antarctic boundary layer is estimated to be greater now than before the development of the ozone hole. Recent modeling studies have suggested that iodine and iodine-containing substances from natural sources, such as the ocean, may increase stratospheric ozone depletion significantly in polar regions during spring. Given the uncertainty of the fate of iodine in the stratosphere, the results may also be relevant for stratospheric ozone depletion and measurements of the influence of these substances on ozone depletion should be considered in the future. In agreement with

  11. Currents through Hv1 channels deplete protons in their vicinity.

    PubMed

    De-la-Rosa, Víctor; Suárez-Delgado, Esteban; Rangel-Yescas, Gisela E; Islas, León D

    2016-02-01

    Proton channels have evolved to provide a pH regulatory mechanism, affording the extrusion of protons from the cytoplasm at all membrane potentials. Previous evidence has suggested that channel-mediated acid extrusion could significantly change the local concentration of protons in the vicinity of the channel. In this work, we directly measure the proton depletion caused by activation of Hv1 proton channels using patch-clamp fluorometry recordings from channels labeled with the Venus fluorescent protein at intracellular domains. The fluorescence of the Venus protein is very sensitive to pH, thus behaving as a genetically encoded sensor of local pH. Eliciting outward proton currents increases the fluorescence intensity of Venus. This dequenching is related to the magnitude of the current and not to channel gating and is dependent on the pH gradient. Our results provide direct evidence of local proton depletion caused by flux through the proton-selective channel.

  12. Impact of polar ozone depletion on subtropical precipitation.

    PubMed

    Kang, S M; Polvani, L M; Fyfe, J C; Sigmond, M

    2011-05-20

    Over the past half-century, the ozone hole has caused a poleward shift of the extratropical westerly jet in the Southern Hemisphere. Here, we argue that these extratropical circulation changes, resulting from ozone depletion, have substantially contributed to subtropical precipitation changes. Specifically, we show that precipitation in the southern subtropics in austral summer increases significantly when climate models are integrated with reduced polar ozone concentrations. Furthermore, the observed patterns of subtropical precipitation change, from 1979 to 2000, are very similar to those in our model integrations, where ozone depletion alone is prescribed. In both climate models and observations, the subtropical moistening is linked to a poleward shift of the extratropical westerly jet. Our results highlight the importance of polar regions for the subtropical hydrological cycle.

  13. Visualization of stratospheric ozone depletion and the polar vortex

    NASA Technical Reports Server (NTRS)

    Treinish, Lloyd A.

    1995-01-01

    Direct analysis of spacecraft observations of stratospheric ozone yields information about the morphology of annual austral depletion. Visual correlation of ozone with other atmospheric data illustrates the diurnal dynamics of the polar vortex and contributions from the upper troposphere, including the formation and breakup of the depletion region each spring. These data require care in their presentation to minimize the introduction of visualization artifacts that are erroneously interpreted as data features. Non geographically registered data of differing mesh structures can be visually correlated via cartographic warping of base geometries without interpolation. Because this approach is independent of the realization technique, it provides a framework for experimenting with many visualization strategies. This methodology preserves the fidelity of the original data sets in a coordinate system suitable for three-dimensional, dynamic examination of atmospheric phenomena.

  14. The sensitivity of polar ozone depletion to proposed geoengineering schemes.

    PubMed

    Tilmes, Simone; Müller, Rolf; Salawitch, Ross

    2008-05-30

    The large burden of sulfate aerosols injected into the stratosphere by the eruption of Mount Pinatubo in 1991 cooled Earth and enhanced the destruction of polar ozone in the subsequent few years. The continuous injection of sulfur into the stratosphere has been suggested as a "geoengineering" scheme to counteract global warming. We use an empirical relationship between ozone depletion and chlorine activation to estimate how this approach might influence polar ozone. An injection of sulfur large enough to compensate for surface warming caused by the doubling of atmospheric CO2 would strongly increase the extent of Arctic ozone depletion during the present century for cold winters and would cause a considerable delay, between 30 and 70 years, in the expected recovery of the Antarctic ozone hole.

  15. Neutrophil depletion delays wound repair in aged mice

    PubMed Central

    Nishio, Naomi; Okawa, Yayoi; Sakurai, Hidetoshi

    2008-01-01

    One of the most important clinical problems in caring for elderly patients is treatment of pressure ulcers. One component of normal wound healing is the generation of an inflammatory reaction, which is characterized by the sequential infiltration of neutrophils, macrophages and lymphocytes. Neutrophils migrate early in the wound healing process. In aged C57BL/6 mice, wound healing is relatively inefficient. We examined the effects of neutrophil numbers on wound healing in both young and aged mice. We found that the depletion of neutrophils by anti-Gr-1 antibody dramatically delayed wound healing in aged mice. The depletion of neutrophils in young mice had less effect on the kinetics of wound healing. Intravenous G-CSF injection increased the migration of neutrophils to the wound site. While the rate of wound repair did not change significantly in young mice following G-CSF injection, it increased significantly in old mice. PMID:19424869

  16. Anthropogenic and climate-driven water depletion in Asia

    NASA Astrophysics Data System (ADS)

    Yi, Shuang; Sun, Wenke; Feng, Wei; Chen, Jianli

    2016-09-01

    Anthropogenic depletion of terrestrial water storage (TWS) can be alleviated in wet years and intensified in dry years, and this wet/dry pattern spanning seasons to years is termed climate variability. However, the anthropogenic and climate-driven changes have not been isolated in previous studies; thus, the estimated trend of changes in TWS is strongly dependent on the study period. Here we try to remove the influence of climate variability from the estimation of the anthropogenic contribution, which is an indicator of the environmental burden and important for TWS projections. Toward this end, we propose a linear relationship between the variation in water storage and precipitation. Factors related to the sensitivity of water storage to precipitation are given to correct for the climate variability, and the anthropogenic depletion of terrestrial water and groundwater in Asia is estimated to be -187 ± 38 Gt/yr and -100 ± 47 Gt/yr, respectively.

  17. Shock induced multi-mode damage in depleted uranium

    SciTech Connect

    Koller, Darcie D; Cerreta, Ellen K; Gray, Ill, George T

    2009-01-01

    Recent dynamic damage studies on depleted uranium samples have revealed mixed mode failure mechanisms leading to incipient cracking as well as ductile failure processes. Results show that delamination of inclusions upon compression may provide nucleation sites for damage initiation in the form of crack tip production. However, under tension the material propagates cracks in a mixed shear localization and mode-I ductile tearing and cracking. Cracks tips appear to link up through regions of severe, shear dominated plastic flow. Shock recovery experiments were conducted on a 50 mm single stage light gas gun. Serial metallographic sectioning was conducted on the recovered samples to characterize the bulk response of the sample. Experiments show delaminated inclusions due to uniaxial compression without damage propagation. Further results show the propagation of the damage through tensile loading to the incipient state, illustrating ductile processes coupled with mixed mode-I tensile ductile tearing, shear localization, and mode-I cracking in depleted uranium.

  18. A MODFLOW Package to Linearize Stream Depletion Analysis

    NASA Astrophysics Data System (ADS)

    Ou, G.

    2015-12-01

    The conventional numerical method is computationally intensive and prone to numerical noises for stream depletion analysis using MODFLOW. In this study, a new MODFLOW package has been developed to improve the computational efficiency and reduce the noises for each simulation of stream depletion analysis. Under the assumption of unchanged flow coefficients between the baseline and scenario runs, the nonlinear groundwater flow system is linearized for solving the flow equations. The new package has been successfully applied to a regional groundwater model in Nebraska. The results shows the numerical noises, commonly identified in conventional approach, have been significantly reduced and a twentyfold speedup achieved. The results suggest this package can be adapted to be a component of optimization tools for water management scenario analyses especially when a large number of scenario model runs are involved.

  19. Effects of Stratospheric Ozone Depletion the Environment and Agriculture

    NASA Astrophysics Data System (ADS)

    Ali, S. M.; Dash, Nutan Ku; Pradhan, Arjyadhara; Mishra, Sthita Prajna

    2012-09-01

    Ozone depletion results in greater amounts of UV-B radiation that had an impact on terrestrial and aquatic biogeochemical systems. Biogeochemical cycles were the complex interactions of physical, chemical, geological and biological processes that control the transport and transformation of substances in the natural environment and therefore the conditions that humans experience in Earth's system. The increased UV-B radiation impinging on terrestrial and aquatic systems, due to ozone depletion, results in changes in the trace gas exchange between the continents, oceans and the atmosphere. This had result in complex alterations to atmospheric chemistry, the global elemental cycles such as the carbon cycle, and had an impact on the survival and health of all organisms on Earth, including humans.

  20. High pressure elasticity and thermal properties of depleted uranium

    NASA Astrophysics Data System (ADS)

    Jacobsen, M. K.; Velisavljevic, N.

    2016-04-01

    Studies of the phase diagram of uranium have revealed a wealth of high pressure and temperature phases. Under ambient conditions the crystal structure is well defined up to 100 gigapascals (GPa), but very little information on thermal conduction or elasticity is available over this same range. This work has applied ultrasonic interferometry to determine the elasticity, mechanical, and thermal properties of depleted uranium to 4.5 GPa. Results show general strengthening with applied load, including an overall increase in acoustic thermal conductivity. Further implications are discussed within. This work presents the first high pressure studies of the elasticity and thermal properties of depleted uranium metal and the first real-world application of a previously developed containment system for making such measurements.

  1. Nuclear structure and depletion of nuclear isomers using electron linacs

    SciTech Connect

    Carroll, J. J.; Litz, M. S.; Henriquez, S. L.; Burns, D. A.; Netherton, K. A.; Pereira, N. R.; Karamian, S. A.

    2013-04-19

    Long-lived nuclear excited states (isomers) have proven important to understanding nuclear structure. With some isomers having half-lives of decades or longer, and intrinsic energy densities reaching 10{sup 12} J/kg, they have also been suggested for a wide range of applications. The ability to effectively transfer a population of nuclei from an isomer to shorter-lived levels will determine the feasibility of any applications. Here is described a first demonstration of the induced depletion of a population of the 438 year isomer of {sup 108}Ag to its 2.38 min ground state, using 6 MeV bremsstrahlung from a modified medical electron linac. The experiment suggests refinements to be implemented in the future and how a similar approach might be applied to study induced depletion of the 1200 year isomer of {sup 166}Ho.

  2. Somatostatin depletion by cysteamine: mechanism and implication for duodenal ulceration

    SciTech Connect

    Szabo, S.; Reichlin, S.

    1985-06-01

    Cysteamine (CSH) and its close derivatives deplete immunoreactive somatostatin (SS) in rat organs. The effect of CSH is dose and time dependent and reversible. Structural requirements of the analogs are the presence of either -SH or -NH2 on a two- or three-carbon alkyl molecule; both radicals together increase, whereas insertion of carboxyl abolishes potency. The duodenal ulcerogenic potency of CSH derivatives is correlated significantly with their SS-depleting activity in the gastric mucosa. The mechanism of this action of CSH is poorly understood, but it is not caused by increased release, enhanced degradation of the peptide, or selective necrosis of SS cells. It is likely that in the intracellular environment CSH causes a conformational change in the peptide that affects the antigenic and functional properties of SS.

  3. A search for relativistic electron induced stratospheric ozone depletion

    NASA Technical Reports Server (NTRS)

    Aikin, Arthur C.

    1994-01-01

    Possible ozone changes at 1 mb associated with the time variation and precipitation of relativistic electrons are investigated by examining the NIMBUS 7 SBUV ozone data set and corresponding temperatures derived from NMC data. No ozone depletion was observed in high-latitude summer when temperature fluctuations are small. In winter more variation in ozone occurs, but large temperature changes make it difficult to identify specific ozone decreases as being the result of relativistic electron precipitation.

  4. Heterogeneous reactions important in atmospheric ozone depletion: a theoretical perspective.

    PubMed

    Bianco, Roberto; Hynes, James T

    2006-02-01

    Theoretical studies of the mechanisms of several heterogeneous reactions involving ClONO(2), H(2)O, HCl, HBr, and H(2)SO(4) important in atmospheric ozone depletion are described, focused primarily on reactions on aqueous aerosol surfaces. Among the insights obtained is the active chemical participation of the surface water molecules in several of these reactions. The general methodology adopted allows reduction of these complex chemical problems to meaningful model systems amenable to quantum chemical calculations.

  5. Safety evaluation for packaging (onsite) depleted uranium waste boxes

    SciTech Connect

    McCormick, W.A.

    1997-08-27

    This safety evaluation for packaging (SEP) allows the one-time shipment of ten metal boxes and one wooden box containing depleted uranium material from the Fast Flux Test Facility to the burial grounds in the 200 West Area for disposal. This SEP provides the analyses and operational controls necessary to demonstrate that the shipment will be safe for the onsite worker and the public.

  6. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle.

    PubMed

    McCarthy, John J; Mula, Jyothi; Miyazaki, Mitsunori; Erfani, Rod; Garrison, Kelcye; Farooqui, Amreen B; Srikuea, Ratchakrit; Lawson, Benjamin A; Grimes, Barry; Keller, Charles; Van Zant, Gary; Campbell, Kenneth S; Esser, Karyn A; Dupont-Versteegden, Esther E; Peterson, Charlotte A

    2011-09-01

    An important unresolved question in skeletal muscle plasticity is whether satellite cells are necessary for muscle fiber hypertrophy. To address this issue, a novel mouse strain (Pax7-DTA) was created which enabled the conditional ablation of >90% of satellite cells in mature skeletal muscle following tamoxifen administration. To test the hypothesis that satellite cells are necessary for skeletal muscle hypertrophy, the plantaris muscle of adult Pax7-DTA mice was subjected to mechanical overload by surgical removal of the synergist muscle. Following two weeks of overload, satellite cell-depleted muscle showed the same increases in muscle mass (approximately twofold) and fiber cross-sectional area with hypertrophy as observed in the vehicle-treated group. The typical increase in myonuclei with hypertrophy was absent in satellite cell-depleted fibers, resulting in expansion of the myonuclear domain. Consistent with lack of nuclear addition to enlarged fibers, long-term BrdU labeling showed a significant reduction in the number of BrdU-positive myonuclei in satellite cell-depleted muscle compared with vehicle-treated muscle. Single fiber functional analyses showed no difference in specific force, Ca(2+) sensitivity, rate of cross-bridge cycling and cooperativity between hypertrophied fibers from vehicle and tamoxifen-treated groups. Although a small component of the hypertrophic response, both fiber hyperplasia and regeneration were significantly blunted following satellite cell depletion, indicating a distinct requirement for satellite cells during these processes. These results provide convincing evidence that skeletal muscle fibers are capable of mounting a robust hypertrophic response to mechanical overload that is not dependent on satellite cells.

  7. Depletion-induced structure and dynamics in bimodal colloidal suspensions.

    SciTech Connect

    Sikorski, M.; Sandy, A. R.; Narayanan, S.

    2011-05-03

    Combined small angle x-ray scattering and x-ray photon correlation spectroscopy studies of moderately concentrated bimodal hard-sphere colloidal suspensions in the fluid phase show that depletion-induced demixing introduces spatially heterogeneous dynamics with two distinct time scales. The adhesive nature, as well as the mobility, of the large particles is determined by the level of interaction within the monomodal domains. This interaction is driven by osmotic forces, which are governed by the relative concentration of the constituents.

  8. The International Science and Politics of Depleted Uranium (Briefing charts)

    DTIC Science & Technology

    2010-11-01

    Cabrera 3 mrem/y These results for non- carcinogenic risks indicate that there are no adverse impacts expected due to chemical exposure to DU. Iraq...on the health effects of uranium (to include depleted uranium) • The dose makes the poison • Uranium is a weak carcinogen • There are safe levels of...blatant lies”* “ Tobacco industry hired- gun”* * Haleakala Times – December 4th, 2007 What I Actually Do … Science Real The Press • Rediscovers the issue

  9. Stimulated emission depletion microscopy to study amyloid fibril formation

    NASA Astrophysics Data System (ADS)

    Mahou, Pierre; Curry, Nathan; Pinotsi, Dorothea; Kaminski Schierle, Gabriele; Kaminski, Clemens

    2015-03-01

    Aggregation of misfolded proteins is a characteristic hallmark of many neurodegenerative disorders, such as Parkinson's, Alzheimer's and Huntington's diseases. The ability to observe these aggregation processes and the corresponding structures formed in vitro or in situ is therefore a key requirement to understand the molecular mechanisms of these diseases. We report here on the implementation and application of Stimulated Emission Depletion (STED) microscopy to visualize the formation of amyloid fibrils in vitro.

  10. 1,2,3-D Diffusion Depletion Multi-Group

    SciTech Connect

    Milgram, Mike

    1992-04-20

    CITATION is designed to solve problems using the finite difference representation of neutron diffusion theory, treating up to three space dimensions with arbitrary group to group scattering. X-y-z, theta-r-z, hexagonal z, and triagonal z geometries may be treated. Depletion problems may be solved and fuel managed for multi-cycle analysis. Extensive first order perturbation results may be obtained given microscopic data and nuclide concentrations. Statics problems may be solved and perturbation results obtained with microscopic data.

  11. Gamma-ray line intensities for depleted uranium

    SciTech Connect

    Moss, C.E.

    1985-01-01

    Measurements of the gamma-ray line intensities from depleted uranium allowed us to determine which of two conflicting previous experiments was correct. For the 1001-keV line we obtain a branching ratio of 0.834 +- 0.007, in good agreement with one of the previous experiments. A table compares our intensities for several lines with those obtained in previous experiments. 5 refs., 2 figs., 1 tab.

  12. Glutathione depletion by valproic acid in sandwich-cultured rat hepatocytes: Role of biotransformation and temporal relationship with onset of toxicity

    SciTech Connect

    Kiang, Tony K.L.; Teng Xiaowei; Surendradoss, Jayakumar; Karagiozov, Stoyan; Abbott, Frank S.; Chang, Thomas K.H.

    2011-05-01

    The present study was conducted in sandwich-cultured rat hepatocytes to investigate the chemical basis of glutathione (GSH) depletion by valproic acid (VPA) and evaluate the role of GSH depletion in VPA toxicity. Among the synthetic metabolites of VPA investigated, 4-ene-VPA and (E)-2,4-diene-VPA decreased cellular levels of total GSH, but only (E)-2,4-diene-VPA was more effective and more potent than the parent drug. The in situ generated, cytochrome P450-dependent 4-ene-VPA did not contribute to GSH depletion by VPA, as suggested by the experiment with a cytochrome P450 inhibitor, 1-aminobenzotriazole, to decrease the formation of this metabolite. In support of a role for metabolites, alpha-F-VPA and octanoic acid, which do not undergo biotransformation to form a 2,4-diene metabolite, CoA ester, or glucuronide, did not deplete GSH. A time course experiment showed that GSH depletion did not occur prior to the increase in 2',7'-dichlorofluorescein (a marker of oxidative stress), the decrease in [2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium] (WST-1) product formation (a marker of cell viability), or the increase in lactate dehydrogenase (LDH) release (a marker of necrosis) in VPA-treated hepatocytes. In conclusion, the cytochrome P450-mediated 4-ene-VPA pathway does not play a role in the in situ depletion of GSH by VPA, and GSH depletion is not an initiating event in VPA toxicity in sandwich-cultured rat hepatocytes.

  13. Basophil depletion downregulates Schistosoma mansoni egg-induced granuloma formation.

    PubMed

    Anyan, William K; Seki, Takenori; Kumagai, Takashi; Obata-Ninomiya, Kazushige; Furushima-Shimogawara, Rieko; Kwansa-Bentum, Bethel; Akao, Nobuaki; Bosompem, Kwabena M; Boakye, Daniel A; Wilson, Michael D; Karasuyama, Hajime; Ohta, Nobuo

    2013-12-01

    Granuloma formation around parasite eggs during schistosomal infection is considered to be controlled by Th2 cytokines. However, it is still controversial which cell populations are responsible for the host Th2 cytokine-dependent granuloma formation. Basophils have recently attracted attention because of their ability to produce large amounts of IL-4. Therefore, we investigated whether basophils play an essential role in the induction of granuloma formation induced by Schistosoma mansoni eggs. Together with our previous observation that basophil numbers increased markedly in the spleen at 7 weeks postinfection, immunohistochemical staining using anti-mMCP8 monoclonal antibody (mAb) showed basophil infiltration in the granulomatous lesions formed around parasite eggs. To examine the roles of basophils more directly, we treated mice with anti-CD200R3 mAb to deplete basophils. Depletion of basophils resulted in a reduction of basophil number with concomitant downregulation of egg granuloma formation at 7 weeks postinfection. Moreover, we observed a significant reduction in the size of egg granulomas formed in basophil-depleted mice in the pulmonary granuloma model. Taken together, these findings indicated that basophils are essential for S. mansoni egg-induced granuloma formation, and this may serve as a novel therapeutic target in ameliorating the pathology of schistosomiasis.

  14. Dopamine depletion impairs precursor cell proliferation in Parkinson disease.

    PubMed

    Höglinger, Günter U; Rizk, Pamela; Muriel, Marie P; Duyckaerts, Charles; Oertel, Wolfgang H; Caille, Isabelle; Hirsch, Etienne C

    2004-07-01

    Cerebral dopamine depletion is the hallmark of Parkinson disease. Because dopamine modulates ontogenetic neurogenesis, depletion of dopamine might affect neural precursors in the subependymal zone and subgranular zone of the adult brain. Here we provide ultrastructural evidence showing that highly proliferative precursors in the adult subependymal zone express dopamine receptors and receive dopaminergic afferents. Experimental depletion of dopamine in rodents decreases precursor cell proliferation in both the subependymal zone and the subgranular zone. Proliferation is restored completely by a selective agonist of D2-like (D2L) receptors. Experiments with neural precursors from the adult subependymal zone grown as neurosphere cultures confirm that activation of D2L receptors directly increases the proliferation of these precursors. Consistently, the numbers of proliferating cells in the subependymal zone and neural precursor cells in the subgranular zone and olfactory bulb are reduced in postmortem brains of individuals with Parkinson disease. These observations suggest that the generation of neural precursor cells is impaired in Parkinson disease as a consequence of dopaminergic denervation.

  15. Depletion region surface effects in electron beam induced current measurements

    PubMed Central

    Haney, Paul M.; Yoon, Heayoung P.; Gaury, Benoit; Zhitenev, Nikolai B.

    2016-01-01

    Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Current models of EBIC assume that excitations in the p-n junction depletion region result in perfect charge collection efficiency. However we find that in CdTe and Si samples prepared by focused ion beam (FIB) milling, there is a reduced and nonuniform EBIC lineshape for excitations in the depletion region. Motivated by this, we present a model of the EBIC response for excitations in the depletion region which includes the effects of surface recombination from both charge-neutral and charged surfaces. For neutral surfaces we present a simple analytical formula which describes the numerical data well, while the charged surface response depends qualitatively on the location of the surface Fermi level relative to the bulk Fermi level. We find the experimental data on FIB-prepared Si solar cells is most consistent with a charged surface, and discuss the implications for EBIC experiments on polycrystalline materials. PMID:27881882

  16. Accounting for Depletion of Oil and Gas Resources in Malaysia

    SciTech Connect

    Othman, Jamal Jafari, Yaghoob

    2012-12-15

    Since oil and gas are non-renewable resources, it is important to identify the extent to which they have been depleted. Such information will contribute to the formulation and evaluation of appropriate sustainable development policies. This paper provides an assessment of the changes in the availability of oil and gas resources in Malaysia by first compiling the physical balance sheet for the period 2000-2007, and then assessing the monetary balance sheets for the said resource by using the Net Present Value method. Our findings show serious reduction in the value of oil reserves from 2001 to 2005, due to changes in crude oil prices, and thereafter the depletion rates decreased. In the context of sustainable development planning, albeit in the weak sustainability sense, it will be important to ascertain if sufficient reinvestments of the estimated resource rents in related or alternative capitals are being attempted by Malaysia. For the study period, the cumulative resource rents were to the tune of RM61 billion. Through a depletion or resource rents policy, the estimated quantum may guide the identification of a reinvestment threshold (after considering needed capital investment for future development of the industry) in light of ensuring the future productive capacity of the economy at the time when the resource is exhausted.

  17. [Phosphorus rhizosphere depletion effect of four aquatic plants].

    PubMed

    Wang, Zhen-yu; Wen, Sheng-fang; Xing, Bao-shan; Gao, Dong-mei; Li, Feng-min; Hu, Hong-ying; Sakoda, Akiyoshi; Sagehashi, Masaki

    2008-09-01

    Four aquatic plants (Alternanthera philoxeroides, Typha latifolia, Sagittaria sagittifolia, Phragmites communis ) were cultured on P-enriched soil in a pot experiment to assess the phosphorus rhizosphere depletion effect and analysis the ratio of root to shoot, root morphology, phosphorus uptake efficiency and phosphorus use efficiency. An obvious variation in P concentration of the soil in the rhizophere and non- rhizophere was observed. Compared with the non-rhizosphere (available P: 167.53 microg x g(-1)), the available P in the rhizosphere soil of Alternanthera philoxeroides, Typha latifolia, Sagittaria sagittifolia and Phragmites communis was reduced to 80.17, 124.37, 155.38 and 161.75 microg x g(-1) respectively, with 81%, 42%, 18% and 16% reduction ratio of water-soluble phosphorus. More effective phosphorus depletion was achieved in Alternanthera philoxeroides by higher phosphorus uptake efficiency (1.32 mg x m(-1)), while rooting system was small and phosphorus use efficiency was low (0.34 g x mg(-1)). Phosphorus uptake efficiency of Typha latjfolia is much lower (0.52 mg x m(-1)) than that of Alternanthera philoxeroides, however, its strong rooting system enhanced soil exploration, with higher phosphorus use efficiency (0.64 g x mg(-1)) and the ratio of root to shoot (0.35). Alternantshera philoxeroides and Typha latfolia were more effective in phosphorus depletion of the rhizosphere soil than that in Sagittaria sagittifolia and Phragmites communis.

  18. Population pressure and land resource depletion in southeastern Nigeria.

    PubMed

    Okafor, F C

    1987-07-01

    This paper measures farmland size per capita, fallow index and fragmentation index as indices of land resource depletion and population pressure in the heavily populated southeastern Awka-Nnewi of Nigeria. Population density in the area ranges from 574-2403 persons per square km, increasing annually at 3%. The soils are porous, sandy, with extensive gully erosion. Land is subdivided in each generation such that each male child receives a parcel of his father's land. There are other pressures on land parcels, notably for residential use. Soils have become depleted from intense cropping such that yams can no longer be grown and people subsist on cassava. Data were collected from 290 households in 36 towns and villages. The 3 variables were defined mathematically, and tabulated for each village. Then a correlation matrix was computed between the independent and dependent variables. All 3 variables, land per capita, fallow and land depletion, were significantly inversely correlated with population density (p.01), the fragmentation index to the greatest degree. All dependent variables were significantly and positively correlated. Scatter diagrams suggested that the worst hit areas were the central towns, and the least affected areas were the peripheral zones along the rivers and floodplains. Although federal regulations have been passed to make land redistribution easier, local custom makes it unlikely that people will resettle voluntarily to outlying areas because of traditions of land ownership. Similarly, government measures to encourage conservation and recovery of eroded land have not been successful, and food shortages are beginning to occur.

  19. Alignment of gold nanorods by angular photothermal depletion

    NASA Astrophysics Data System (ADS)

    Taylor, Adam B.; Chow, Timothy T. Y.; Chon, James W. M.

    2014-02-01

    In this paper, we demonstrate that a high degree of alignment can be imposed upon randomly oriented gold nanorod films by angular photothermal depletion with linearly polarized laser irradiation. The photothermal reshaping of gold nanorods is observed to follow quadratic melting model rather than the threshold melting model, which distorts the angular and spectral hole created on 2D distribution map of nanorods to be an open crater shape. We have accounted these observations to the alignment procedures and demonstrated good agreement between experiment and simulations. The use of multiple laser depletion wavelengths allowed alignment criteria over a large range of aspect ratios, achieving 80% of the rods in the target angular range. We extend the technique to demonstrate post-alignment in a multilayer of randomly oriented gold nanorod films, with arbitrary control of alignment shown across the layers. Photothermal angular depletion alignment of gold nanorods is a simple, promising post-alignment method for creating future 3D or multilayer plasmonic nanorod based devices and structures.

  20. Frost Induces Respiration and Accelerates Carbon Depletion in Trees

    PubMed Central

    Sperling, Or; Earles, J. Mason; Secchi, Francesca; Godfrey, Jessie; Zwieniecki, Maciej A.

    2015-01-01

    Cellular respiration depletes stored carbohydrates during extended periods of limited photosynthesis, e.g. winter dormancy or drought. As respiration rate is largely a function of temperature, the thermal conditions during such periods may affect non-structural carbohydrate (NSC) availability and, ultimately, recovery. Here, we surveyed stem responses to temperature changes in 15 woody species. For two species with divergent respirational response to frost, P. integerrima and P. trichocarpa, we also examined corresponding changes in NSC levels. Finally, we simulated respiration-induced NSC depletion using historical temperature data for the western US. We report a novel finding that tree stems significantly increase respiration in response to near freezing temperatures. We observed this excess respiration in 13 of 15 species, deviating 10% to 170% over values predicted by the Arrhenius equation. Excess respiration persisted at temperatures above 0°C during warming and reoccurred over multiple frost-warming cycles. A large adjustment of NSCs accompanied excess respiration in P. integerrima, whereas P. trichocarpa neither excessively respired nor adjusted NSCs. Over the course of the years included in our model, frost-induced respiration accelerated stem NSC consumption by 8.4 mg (glucose eq.) cm-3 yr-1 on average in the western US, a level of depletion that may continue to significantly affect spring NSC availability. This novel finding revises the current paradigm of low temperature respiration kinetics. PMID:26629819

  1. Follicle Depletion Provides a Permissive Environment for Ovarian Carcinogenesis

    PubMed Central

    Wang, Ying; Cai, Kathy Qi; Smith, Elizabeth R.; Yeasky, Toni M.; Moore, Robert; Ganjei-Azar, Parvin; Klein-Szanto, Andres J.; Godwin, Andrew K.; Hamilton, Thomas C.

    2016-01-01

    We modeled the etiology of postmenopausal biology on ovarian cancer risk using germ cell-deficient white-spotting variant (Wv) mice, incorporating oncogenic mutations. Ovarian cancer incidence is highest in peri- and postmenopausal women, and epidemiological studies have established the impact of reproductive factors on ovarian cancer risk. Menopause as a result of ovarian follicle depletion is thought to contribute to higher cancer risk. As a consequence of follicle depletion, female Wv mice develop ovarian tubular adenomas, a benign epithelial tumor corresponding to surface epithelial invaginations and papillomatosis frequently found in postmenopausal human ovaries. Lineage tracing using MISR2-Cre indicated that the tubular adenomas that developed in Wv mice were largely derived from the MISR2 lineage, which marked only a fraction of ovarian surface and oviduct epithelial cells in wild-type tissues. Deletion of p27, either heterozygous or homozygous, was able to convert the benign tubular adenomas into more proliferative tumors. Restricted deletion of p53 in Wv/Wv mice by either intrabursal injection of adenoviral Cre or inclusion of the MISR2-Cre transgene also resulted in augmented tumor growth. This finding suggests that follicle depletion provides a permissive ovarian environment for oncogenic transformation of epithelial cells, presenting a mechanism for the increased ovarian cancer risk in postmenopausal women. PMID:27354067

  2. Ozone depletion in the Austral spring from UV microsatellite instrument

    NASA Astrophysics Data System (ADS)

    Fernandez-Saldivar, J. A.; Underwood, C. I.; Mackin, S.

    2007-10-01

    The Ozone Mapping Detector (OMAD) on board FASat-Bravo micro-satellite observed backscattered UV radiation to retrieve atmospheric ozone with low-spatial-resolution (150 x 150 km). This relatively coarse resolution with continuous global coverage allowed the observation of the seasonal ozone layer depletion over Antarctica in the austral spring in 1998. Previous analysis of this instrument have shown agreement in the radiances observed by OMAD and NASA's Total Ozone Mapping Spectrometer (TOMS-EP); these have even indicated the detection of an apparently higher ozone content anomaly due to a volcanic cloud of Nyamuragira volcano during its eruption in October 1998 [1]. A new improved version of the simplified algorithm used in OMAD data has been applied to the austral region to determine the total Ozone content. The new data processing allowed the observation of the development of the ozone depletion in 1998 from September to early December when ozone depletion normally occurs. The OMAD results showed good agreement overall when compared with those obtained from TOMS-EP despite their intrinsic instrumental differences. Results indicate Ozone contents lower than 150 Dobson Units (DU) in the Antarctic region with absolute errors less than 10 % in the vertical column content and high cross-correlations when compared with TOMS-EP. The value of this low-cost earth observation approach is discussed on the potential of such missions to provide additional atmospheric observations of large-scale phenomena.

  3. Feeling depleted and powerless: the construal-level mechanism.

    PubMed

    Kim, Junha; Lee, Sujin; Rua, Tuvana

    2015-04-01

    Individuals exercise self-control daily to achieve desired goals; at the same time, people engage in social interaction daily and influence (feel powerful) or are influenced (feel powerless) by others. Does controlling the self have an unforeseen consequence for people's perception of their capacity to control others? Five studies-one correlational and four experimental-demonstrate that ego depletion from prior self-control determines one's personal sense of power; low-level, concrete mental construals account for this relationship. Our results showed that people with higher trait self-control reported a greater sense of power (Study 1). People who had depleted their self-control-related regulatory resources (vs. those who had not) experienced a lower sense of power (Study 2). The relationship between ego depletion and low sense of power was mediated by construal level (Study 3) and observed only when low-level, concrete construals were present, but not under high-level, abstract construals (Studies 4 and 5).

  4. [Biomedical and economic consequences of stratosphere ozone depletion].

    PubMed

    Strzhizhovskiĭ, A D

    1998-01-01

    Information on possible human health-changes associated with stratosphere ozone depletion and amplification factor (% increase of the stick rate by 1% decrease of ozone) values for acute (erythema, keratitis, cataract, immunosuppression) and chronic (skin cancer, cataract) effects of natural UV-radiation was analysed. Amplification factor (AF) values for acute UV-effects increase with degree of ozone depletion. For degrees less than 12.5% they are independent of latitude and equal to 1.9 for erythema, 1.3-1.5 for keratitis, 1.7-2.3 for cataract and 0.9-1.1 for immunosuppression. AF values for incidence of non-melanoma skin cancer are independent of age, higher in males than females, and higher for squamous cell carcinoma, than for basal cell carcinoma. Their optimal estimations for whites equal to 2.7 for basal cell and 4.6 for squamous cell carcinoma. AF values for incidence of cutaneous malignant melanoma range between 1 and 2, for melanoma mortality--between 0.3 and 2. AF values for incidence of cataract range between 0.3 and 1.2 with optimal estimations between 0.6 and 0.8. Prognosis of non-melanoma skin cancer and cataract incidences, melanoma mortality and economic loss for different scenarios of stratosphere ozone depletion are presented.

  5. Regional strategies for the accelerating global problem of groundwater depletion

    NASA Astrophysics Data System (ADS)

    Aeschbach-Hertig, Werner; Gleeson, Tom

    2012-12-01

    Groundwater--the world's largest freshwater resource--is critically important for irrigated agriculture and hence for global food security. Yet depletion is widespread in large groundwater systems in both semi-arid and humid regions of the world. Excessive extraction for irrigation where groundwater is slowly renewed is the main cause of the depletion, and climate change has the potential to exacerbate the problem in some regions. Globally aggregated groundwater depletion contributes to sea-level rise, and has accelerated markedly since the mid-twentieth century. But its impacts on water resources are more obvious at the regional scale, for example in agriculturally important parts of India, China and the United States. Food production in such regions can only be made sustainable in the long term if groundwater levels are stabilized. To this end, a transformation is required in how we value, manage and characterize groundwater systems. Technical approaches--such as water diversion, artificial groundwater recharge and efficient irrigation--have failed to balance regional groundwater budgets. They need to be complemented by more comprehensive strategies that are adapted to the specific social, economic, political and environmental settings of each region.

  6. Frost Induces Respiration and Accelerates Carbon Depletion in Trees.

    PubMed

    Sperling, Or; Earles, J Mason; Secchi, Francesca; Godfrey, Jessie; Zwieniecki, Maciej A

    2015-01-01

    Cellular respiration depletes stored carbohydrates during extended periods of limited photosynthesis, e.g. winter dormancy or drought. As respiration rate is largely a function of temperature, the thermal conditions during such periods may affect non-structural carbohydrate (NSC) availability and, ultimately, recovery. Here, we surveyed stem responses to temperature changes in 15 woody species. For two species with divergent respirational response to frost, P. integerrima and P. trichocarpa, we also examined corresponding changes in NSC levels. Finally, we simulated respiration-induced NSC depletion using historical temperature data for the western US. We report a novel finding that tree stems significantly increase respiration in response to near freezing temperatures. We observed this excess respiration in 13 of 15 species, deviating 10% to 170% over values predicted by the Arrhenius equation. Excess respiration persisted at temperatures above 0 °C during warming and reoccurred over multiple frost-warming cycles. A large adjustment of NSCs accompanied excess respiration in P. integerrima, whereas P. trichocarpa neither excessively respired nor adjusted NSCs. Over the course of the years included in our model, frost-induced respiration accelerated stem NSC consumption by 8.4 mg (glucose eq.) cm(-3) yr(-1) on average in the western US, a level of depletion that may continue to significantly affect spring NSC availability. This novel finding revises the current paradigm of low temperature respiration kinetics.

  7. Alignment of gold nanorods by angular photothermal depletion

    SciTech Connect

    Taylor, Adam B.; Chow, Timothy T. Y.; Chon, James W. M.

    2014-02-24

    In this paper, we demonstrate that a high degree of alignment can be imposed upon randomly oriented gold nanorod films by angular photothermal depletion with linearly polarized laser irradiation. The photothermal reshaping of gold nanorods is observed to follow quadratic melting model rather than the threshold melting model, which distorts the angular and spectral hole created on 2D distribution map of nanorods to be an open crater shape. We have accounted these observations to the alignment procedures and demonstrated good agreement between experiment and simulations. The use of multiple laser depletion wavelengths allowed alignment criteria over a large range of aspect ratios, achieving 80% of the rods in the target angular range. We extend the technique to demonstrate post-alignment in a multilayer of randomly oriented gold nanorod films, with arbitrary control of alignment shown across the layers. Photothermal angular depletion alignment of gold nanorods is a simple, promising post-alignment method for creating future 3D or multilayer plasmonic nanorod based devices and structures.

  8. Production of reactive oxygen species in decoupled, Ca(2+)-depleted PSII and their use in assigning a function to chloride on both sides of PSII.

    PubMed

    Semin, Boris K; Davletshina, Lira N; Timofeev, Kirill N; Ivanov, Il'ya I; Rubin, Andrei B; Seibert, Michael

    2013-11-01

    Extraction of Ca(2+) from the oxygen-evolving complex of photosystem II (PSII) in the absence of a chelator inhibits O2 evolution without significant inhibition of the light-dependent reduction of the exogenous electron acceptor, 2,6-dichlorophenolindophenol (DCPIP) on the reducing side of PSII. The phenomenon is known as "the decoupling effect" (Semin et al. Photosynth Res 98:235-249, 2008). Extraction of Cl(-) from Ca(2+)-depleted membranes (PSII[-Ca]) suppresses the reduction of DCPIP. In the current study we investigated the nature of the oxidized substrate and the nature of the product(s) of the substrate oxidation. After elimination of all other possible donors, water was identified as the substrate. Generation of reactive oxygen species HO, H2O2, and O 2 (·-) , as possible products of water oxidation in PSII(-Ca) membranes was examined. During the investigation of O 2 (·-) production in PSII(-Ca) samples, we found that (i) O 2 (·-) is formed on the acceptor side of PSII due to the reduction of O2; (ii) depletion of Cl(-) does not inhibit water oxidation, but (iii) Cl(-) depletion does decrease the efficiency of the reduction of exogenous electron acceptors. In the absence of Cl(-) under aerobic conditions, electron transport is diverted from reducing exogenous acceptors to reducing O2, thereby increasing the rate of O 2 (·-) generation. From these observations we conclude that the product of water oxidation is H2O2 and that Cl(-) anions are not involved in the oxidation of water to H2O2 in decoupled PSII(-Ca) membranes. These results also indicate that Cl(-) anions are not directly involved in water oxidation by the Mn cluster in the native PSII membranes, but possibly provide access for H2O molecules to the Mn4CaO5 cluster and/or facilitate the release of H(+) ions into the lumenal space.

  9. Carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP) as an O2(*-) generator induces apoptosis via the depletion of intracellular GSH contents in Calu-6 cells.

    PubMed

    Han, Yong Hwan; Kim, Suhn Hee; Kim, Sung Zoo; Park, Woo Hyun

    2009-02-01

    Carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP) is an uncoupler of mitochondrial oxidative phosphorylation in eukaryotic cells. Here, we investigated an involvement of O(2)(*-) and GSH in FCCP-induced Calu-6 cell death and examined whether ROS scavengers rescue cells from FCCP-induced cell death. Levels of intracellular O(2)(*-) were markedly increased depending on the concentrations (5-100 microM) of FCCP. A depletion of intracellular GSH content was also observed after exposing cells to FCCP. Stable SOD mimetics, Tempol and Tiron did not change the levels of intracellular O(2)(*-), apoptosis and the loss of mitochondrial membrane potential (DeltaPsi(m)). Treatment with thiol antioxidants, NAC and DTT, showed the recovery of GSH depletion and the reduction of O(2)(*-) levels in FCCP-treated cells, which were accompanied by the inhibition of apoptosis. In contrast, BSO, a well-known inhibitor of GSH synthesis, aggravated GSH depletion, oxidative stress of O(2)(*-) and cell death in FCCP-treated cells. Taken together, our data suggested that FCCP as an O(2)(*-) generator, induces apoptosis via the depletion of intracellular GSH contents in Calu-6 cells.

  10. Estimation of Carbon Dioxide Storage Capacity for Depleted Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Lai, Yen Ting; Shen, Chien-Hao; Tseng, Chi-Chung; Fan, Chen-Hui; Hsieh, Bieng-Zih

    2015-04-01

    A depleted gas reservoir is one of the best options for CO2 storage for many reasons. First of all, the storage safety or the caprock integrity has been proven because the natural gas was trapped in the formation for a very long period of time. Also the formation properties and fluid flow characteristics for the reservoir have been well studied since the discovery of the gas reservoir. Finally the surface constructions and facilities are very useful and relatively easy to convert for the use of CO2 storage. The purpose of this study was to apply an analytical approach to estimate CO2 storage capacity in a depleted gas reservoir. The analytical method we used is the material balance equation (MBE), which have been widely used in natural gas storage. We proposed a modified MBE for CO2 storage in a depleted gas reservoir by introducing the z-factors of gas, CO2 and the mixture of the two. The MBE can be derived to a linear relationship between the ratio of pressure to gas z-factor (p/z) and the cumulative term (Gp-Ginj, where Gp is the cumulative gas production and Ginj is the cumulative CO2 injection). The CO2 storage capacity can be calculated when constraints of reservoir recovery pressure are adopted. The numerical simulation was also used for the validation of the theoretical estimation of CO2 storage capacity from the MBE. We found that the quantity of CO2 stored is more than that of gas produced when the reservoir pressure is recovered from the abandon pressure to the initial pressure. This result was basically from the fact that the gas- CO2 mixture z-factors are lower than the natural gas z-factors in reservoir conditions. We also established a useful p/z plot to easily observe the pressure behavior of CO2 storage and efficiently calculate the CO2 storage capacity. The application of the MBE we proposed was demonstrated by a case study of a depleted gas reservoir in northwestern Taiwan. The estimated CO2 storage capacities from conducting reservoir simulation

  11. Submolecular regulation of cell transformation by deuterium depleting water exchange reactions in the tricarboxylic acid substrate cycle

    PubMed Central

    Boros, László G; D’Agostino, Dominic P.; Katz, Howard E.; Roth, Justine P.; Meuillet, Emmanuelle J.; Somlyai, Gábor

    2016-01-01

    The naturally occurring isotope of hydrogen (1H), deuterium (2H), could have an important biological role. Deuterium depleted water delays tumor progression in mice, dogs, cats and humans. Hydratase enzymes of the tricarboxylic acid (TCA) cycle control cell growth and deplete deuterium from redox cofactors, fatty acids and DNA, which undergo hydride ion and hydrogen atom transfer reactions. A model is proposed that emphasizes the terminal complex of mitochondrial electron transport chain reducing molecular oxygen to deuterium depleted water (DDW); this affects gluconeogenesis as well as fatty acid oxidation. In the former, the DDW is thought to diminish the deuteration of sugar-phosphates in the DNA backbone, helping to preserve stability of hydrogen bond networks, possibly protecting against aneuploidy and resisting strand breaks, occurring upon exposure to radiation and certain anticancer chemotherapeutics. DDW is proposed here to link cancer prevention and treatment using natural ketogenic diets, low deuterium drinking water, as well as DDW production as the mitochondrial downstream mechanism of targeted anti-cancer drugs such as Avastin and Glivec. The role of 2H in biology is a potential missing link to the elusive cancer puzzle seemingly correlated with cancer epidemiology in western populations as a result of excessive 2H loading from processed carbohydrate intake in place of natural fat consumption. PMID:26826644

  12. Alterations in the energy metabolism of the isolated perfused frog heart during calcium depletion and subsequent repletion.

    PubMed

    Touraki, M; Beis, I

    1991-01-01

    The changes in myocardial energy metabolism of isolated perfused Rana ridibunda hearts subjected to prolonged calcium depletion and reperfusion with calcium-containing medium were studied. Calcium-free perfusion resulted in an increase in the concentrations of glucose, glucose-6-phosphate, alpha-ketoglutarate and malate. The myocardial contents of high-energy phosphates were maintained while concentrations of key amino acids were significantly altered. During the reperfusion period the tissue high-energy phosphate content fell abruptly. A marked increase in glycolytic flux and lactate production was observed. The tissue contents of citric acid cycle intermediates and key amino acids decreased. Examination of the activities of marker enzymes during the calcium-free and reperfusion periods showed that only cytoplasmic enzymes are lost during reperfusion, while the activities of other enzymes remained unchanged. The results suggest that the fluxes of both glycolysis and the citric acid cycle are significantly altered during calcium depletion and following repletion in the amphibian heart. The major characteristics of calcium paradox-induced damage in Rana ridibunda heart are the depletion of high-energy stores, the impairment of mitochondrial oxidative metabolism, and a significant increase in anaerobic metabolism.

  13. Submolecular regulation of cell transformation by deuterium depleting water exchange reactions in the tricarboxylic acid substrate cycle.

    PubMed

    Boros, László G; D'Agostino, Dominic P; Katz, Howard E; Roth, Justine P; Meuillet, Emmanuelle J; Somlyai, Gábor

    2016-02-01

    The naturally occurring isotope of hydrogen ((1)H), deuterium ((2)H), could have an important biological role. Deuterium depleted water delays tumor progression in mice, dogs, cats and humans. Hydratase enzymes of the tricarboxylic acid (TCA) cycle control cell growth and deplete deuterium from redox cofactors, fatty acids and DNA, which undergo hydride ion and hydrogen atom transfer reactions. A model is proposed that emphasizes the terminal complex of mitochondrial electron transport chain reducing molecular oxygen to deuterium depleted water (DDW); this affects gluconeogenesis as well as fatty acid oxidation. In the former, the DDW is thought to diminish the deuteration of sugar-phosphates in the DNA backbone, helping to preserve stability of hydrogen bond networks, possibly protecting against aneuploidy and resisting strand breaks, occurring upon exposure to radiation and certain anticancer chemotherapeutics. DDW is proposed here to link cancer prevention and treatment using natural ketogenic diets, low deuterium drinking water, as well as DDW production as the mitochondrial downstream mechanism of targeted anti-cancer drugs such as Avastin and Glivec. The role of (2)H in biology is a potential missing link to the elusive cancer puzzle seemingly correlated with cancer epidemiology in western populations as a result of excessive (2)H loading from processed carbohydrate intake in place of natural fat consumption.

  14. Ozone depletion and climate change: impacts on UV radiation.

    PubMed

    McKenzie, R L; Aucamp, P J; Bais, A F; Björn, L O; Ilyas, M; Madronich, S

    2011-02-01

    The Montreal Protocol is working, but it will take several decades for ozone to return to 1980 levels. The atmospheric concentrations of ozone depleting substances are decreasing, and ozone column amounts are no longer decreasing. Mid-latitude ozone is expected to return to 1980 levels before mid-century, slightly earlier than predicted previously. However, the recovery rate will be slower at high latitudes. Springtime ozone depletion is expected to continue to occur at polar latitudes, especially in Antarctica, in the next few decades. Because of the success of the Protocol, increases in UV-B radiation have been small outside regions affected by the Antarctic ozone hole, and have been difficult to detect. There is a large variability in UV-B radiation due to factors other than ozone, such as clouds and aerosols. There are few long-term measurements available to confirm the increases that would have occurred as a result of ozone depletion. At mid-latitudes UV-B irradiances are currently only slightly greater than in 1980 (increases less than ~5%), but increases have been substantial at high and polar latitudes where ozone depletion has been larger. Without the Montreal Protocol, peak values of sunburning UV radiation could have been tripled by 2065 at mid-northern latitudes. This would have had serious consequences for the environment and for human health. There are strong interactions between ozone depletion and changes in climate induced by increasing greenhouse gases (GHGs). Ozone depletion affects climate, and climate change affects ozone. The successful implementation of the Montreal Protocol has had a marked effect on climate change. The calculated reduction in radiative forcing due to the phase-out of chlorofluorocarbons (CFCs) far exceeds that from the measures taken under the Kyoto protocol for the reduction of GHGs. Thus the phase-out of CFCs is currently tending to counteract the increases in surface temperature due to increased GHGs. The amount of

  15. MYC-driven inhibition of the glutamate-cysteine ligase promotes glutathione depletion in liver cancer.

    PubMed

    Anderton, Brittany; Camarda, Roman; Balakrishnan, Sanjeev; Balakrishnan, Asha; Kohnz, Rebecca A; Lim, Lionel; Evason, Kimberley J; Momcilovic, Olga; Kruttwig, Klaus; Huang, Qiang; Xu, Guowang; Nomura, Daniel K; Goga, Andrei

    2017-04-01

    How MYC reprograms metabolism in primary tumors remains poorly understood. Using integrated gene expression and metabolite profiling, we identify six pathways that are coordinately deregulated in primary MYC-driven liver tumors: glutathione metabolism; glycine, serine, and threonine metabolism; aminoacyl-tRNA biosynthesis; cysteine and methionine metabolism; ABC transporters; and mineral absorption. We then focus our attention on glutathione (GSH) and glutathione disulfide (GSSG), as they are markedly decreased in MYC-driven tumors. We find that fewer glutamine-derived carbons are incorporated into GSH in tumor tissue relative to non-tumor tissue. Expression of GCLC, the rate-limiting enzyme of GSH synthesis, is attenuated by the MYC-induced microRNA miR-18a. Inhibition of miR-18a in vivo leads to increased GCLC protein expression and GSH abundance in tumor tissue. Finally, MYC-driven liver tumors exhibit increased sensitivity to acute oxidative stress. In summary, MYC-dependent attenuation of GCLC by miR-18a contributes to GSH depletion in vivo, and low GSH corresponds with increased sensitivity to oxidative stress in tumors. Our results identify new metabolic pathways deregulated in primary MYC tumors and implicate a role for MYC in regulating a major antioxidant pathway downstream of glutamine.

  16. Environmental assessment of depleted uranium used in military armor-piercing rounds in terrestrial systems.

    PubMed

    Stanley, Jacob K; Coleman, Jessica G; Brasfield, Sandra M; Bednar, Anthony J; Ang, Choo Y

    2014-06-01

    Depleted uranium (DU) from the military testing and use of armor-piercing kinetic energy penetrators has been shown to accumulate in soils; however, little is known about the toxicity of DU geochemical species created through corrosion or weathering. The purpose of the present study was to assess the toxic effects and bioaccumulation potential of field-collected DU oxides to the model terrestrial invertebrates Eisenia fetida (earthworm) and Porcellio scaber (isopod). Earthworm studies were acute (72 h) dermal exposures or 28-d spiked soil exposures that used noncontaminated field-collected soils from the US Army's Yuma and Aberdeen Proving Grounds. Endpoints assessed in earthworm testing included bioaccumulation, growth, reproduction, behavior (soil avoidance), and cellular stress (neutral red uptake in coelomocytes). Isopod testing used spiked food, and endpoints assessed included bioaccumulation, survival, and feeding behavior. Concentration-dependent bioaccumulation of DU in earthworms was observed with a maximum bioaccumulation factor of 0.35; however, no significant reductions in survival or impacts to cellular stress were observed. Reproduction lowest-observed-effect concentrations (LOEC) of 158 mg/kg and 96 mg/kg were observed in Yuma Proving Ground and a Mississippi reference soil (Karnac Ferry), respectively. Earthworm avoidance of contaminated soils was not observed in 48-h soil avoidance studies; however, isopods were shown to avoid food spiked with 12.7% by weight DU oxides through digital tracking studies.

  17. Depletion of reduction potential and key energy generation metabolic enzymes underlies tellurite toxicity in Deinococcus radiodurans.

    PubMed

    Anaganti, Narasimha; Basu, Bhakti; Gupta, Alka; Joseph, Daisy; Apte, Shree Kumar

    2015-01-01

    Oxidative stress resistant Deinococcus radiodurans surprisingly exhibited moderate sensitivity to tellurite induced oxidative stress (LD50 = 40 μM tellurite, 40 min exposure). The organism reduced 70% of 40 μM potassium tellurite within 5 h. Tellurite exposure significantly modulated cellular redox status. The level of ROS and protein carbonyl contents increased while the cellular reduction potential substantially decreased following tellurite exposure. Cellular thiols levels initially increased (within 30 min) of tellurite exposure but decreased at later time points. At proteome level, tellurite resistance proteins (TerB and TerD), tellurite reducing enzymes (pyruvate dehydrogense subunits E1 and E3), ROS detoxification enzymes (superoxide dismutase and thioredoxin reductase), and protein folding chaperones (DnaK, EF-Ts, and PPIase) displayed increased abundance in tellurite-stressed cells. However, remarkably decreased levels of key metabolic enzymes (aconitase, transketolase, 3-hydroxy acyl-CoA dehydrogenase, acyl-CoA dehydrogenase, electron transfer flavoprotein alpha, and beta) involved in carbon and energy metabolism were observed upon tellurite stress. The results demonstrate that depletion of reduction potential in intensive tellurite reduction with impaired energy metabolism lead to tellurite toxicity in D. radiodurans.

  18. Intact protein folding in the glutathione-depleted endoplasmic reticulum implicates alternative protein thiol reductants

    PubMed Central

    Tsunoda, Satoshi; Avezov, Edward; Zyryanova, Alisa; Konno, Tasuku; Mendes-Silva, Leonardo; Pinho Melo, Eduardo; Harding, Heather P; Ron, David

    2014-01-01

    Protein folding homeostasis in the endoplasmic reticulum (ER) requires efficient protein thiol oxidation, but also relies on a parallel reductive process to edit disulfides during the maturation or degradation of secreted proteins. To critically examine the widely held assumption that reduced ER glutathione fuels disulfide reduction, we expressed a modified form of a cytosolic glutathione-degrading enzyme, ChaC1, in the ER lumen. ChaC1CtoS purged the ER of glutathione eliciting the expected kinetic defect in oxidation of an ER-localized glutathione-coupled Grx1-roGFP2 optical probe, but had no effect on the disulfide editing-dependent maturation of the LDL receptor or the reduction-dependent degradation of misfolded alpha-1 antitrypsin. Furthermore, glutathione depletion had no measurable effect on induction of the unfolded protein response (UPR); a sensitive measure of ER protein folding homeostasis. These findings challenge the importance of reduced ER glutathione and suggest the existence of alternative electron donor(s) that maintain the reductive capacity of the ER. DOI: http://dx.doi.org/10.7554/eLife.03421.001 PMID:25073928

  19. Nature gives us strength: exposure to nature counteracts ego-depletion.

    PubMed

    Chow, Jason T; Lau, Shun

    2015-01-01

    Previous research rarely investigated the role of physical environment in counteracting ego-depletion. In the present research, we hypothesized that exposure to natural environment counteracts ego-depletion. Three experiments were conducted to test this hypothesis. In Experiment 1, initially depleted participants who viewed pictures of nature scenes showed greater persistence on a subsequent anagram task than those who were given a rest period. Experiment 2 expanded upon this finding by showing that natural environment enhanced logical reasoning performance after ego-depleting task. Experiment 3 adopted a two- (depletion vs. no-depletion) -by-two (nature exposure vs. urban exposure) factorial design. We found that nature exposure moderated the effect of depletion on anagram task performance. Taken together, the present studies offer a viable and novel strategy to mitigate the negative impacts of ego-depletion.

  20. 77 FR 53236 - Proposed International Isotopes Fluorine Extraction Process and Depleted Uranium Deconversion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-31

    ... COMMISSION Proposed International Isotopes Fluorine Extraction Process and Depleted Uranium Deconversion... International Isotopes Fluorine Extraction Process and Depleted Uranium Deconversion Plant (INIS) in Lea County, New Mexico. On December 30, 2009, International Isotopes Fluorine Products, Inc. (IIFP), a...

  1. DNAPL Source Zone Depletion During In Situ Chemical Oxidation (ISCO): Experimental and Modeling Studies

    DTIC Science & Technology

    2005-10-01

    16 pp., http://gwtf.cluin.org/docs/options/dnapl_goals_paper.pdf. USHHS. (2002). “Report on Carcinogens , Tenth Edition” U.S. Department of Health...Report on Carcinogens , Tenth Edition. U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program, December 2002...intermediate-scale 2D tank was constructed (L x W x H = 243.5cm x 8.0cm x 45.5cm) of clear acrylic, with 1.5mm diameter sampling ports (sealed with rubber

  2. Assessing the Renal Toxicity of Capstone Depleted Uranium Oxides and Other Uranium Compounds

    SciTech Connect

    Roszell, Laurie E.; Hahn, Fletcher; Lee, Robyn B.; Parkhurst, MaryAnn

    2009-02-26

    The primary target for uranium toxicity is the kidney. The most frequently used guideline for uranium kidney burdens is the International Commission on Radiation Protection (ICRP) value of 3 µg U/g kidney, a value that is based largely upon chronic studies in animals. In the present effort, we have developed a risk model equation to assess potential outcomes of acute uranium exposure. Twenty-seven previously published case studies in which workers were acutely exposed to soluble compounds of uranium (as a result of workplace accidents) were analyzed. Kidney burdens of uranium for these individuals were determined based on uranium in the urine, and correlated with health effects observed over a period of up to 38 years. Based upon the severity of health effects, each individual was assigned a score (- to +++) and then placed into an Effect Group. A discriminant analysis was used to build a model equation to predict the Effect Group based on the amount of uranium in the kidneys. The model equation was able to predict the Effect Group with 85% accuracy. The risk model was used to predict the Effect Group for Soldiers exposed to DU as a result of friendly fire incidents during the 1991 Gulf War. This model equation can also be used to predict the Effect Group of new cases in which acute exposures to uranium have occurred.

  3. DNA damage response in renal ischemia-reperfusion and ATP-depletion injury of renal tubular cells.

    PubMed

    Ma, Zhengwei; Wei, Qingqing; Dong, Guie; Huo, Yuqing; Dong, Zheng

    2014-07-01

    Renal ischemia-reperfusion leads to acute kidney injury (AKI) that is characterized pathologically by tubular damage and cell death, followed by tubular repair, atrophy and interstitial fibrosis. Recent work suggested the possible presence of DNA damage response (DDR) in AKI. However, the evidence is sketchy and the role and regulation of DDR in ischemic AKI remain elusive. In this study, we demonstrated the induction of phosphorylation of ATM, H2AX, Chk2 and p53 during renal ischemia-reperfusion in mice, suggesting DDR in kidney tissues. DDR was also induced in vitro during the recovery or "reperfusion" of renal proximal tubular cells (RPTCs) after ATP depletion. DDR in RPTCs was abrogated by supplying glucose to maintain ATP via glycolysis, indicating that the DDR depends on ATP depletion. The DDR was also suppressed by the general caspase inhibitor z-VAD and the overexpression of Bcl-2, supporting a role of apoptosis-associated DNA damage in the DDR. N-acetylcysteine (NAC), an antioxidant, suppressed the phosphorylation of ATM and p53 and, to a less extent, Chk2, but NAC increased the phosphorylation and nuclear foci formation of H2AX. Interestingly, NAC increased apoptosis, which may account for the observed H2AX activation. Ku55933, an ATM inhibitor, blocked ATM phosphorylation and ameliorated the phosphorylation of Chk2 and p53, but it increased H2AX phosphorylation and nuclear foci formation. Ku55933 also increased apoptosis in RPTCs following ATP depletion. The results suggest that DDR occurs during renal ischemia-reperfusion in vivo and ATP-depletion injury in vitro. The DDR is partially induced by apoptosis and oxidative stress-related DNA damage. ATM, as a sensor in the DDR, may play a cytoprotective role against tubular cell injury and death.

  4. 26 CFR 1.612-1 - Basis for allowance of cost depletion.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... TAX (CONTINUED) INCOME TAXES (CONTINUED) Natural Resources § 1.612-1 Basis for allowance of cost depletion. (a) In general. The basis upon which the deduction for cost depletion under section 611 is to be... 26 Internal Revenue 7 2013-04-01 2013-04-01 false Basis for allowance of cost depletion....

  5. 26 CFR 1.612-1 - Basis for allowance of cost depletion.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... TAX (CONTINUED) INCOME TAXES (CONTINUED) Natural Resources § 1.612-1 Basis for allowance of cost depletion. (a) In general. The basis upon which the deduction for cost depletion under section 611 is to be... 26 Internal Revenue 7 2014-04-01 2013-04-01 true Basis for allowance of cost depletion....

  6. 26 CFR 1.612-1 - Basis for allowance of cost depletion.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... TAX (CONTINUED) INCOME TAXES (CONTINUED) Natural Resources § 1.612-1 Basis for allowance of cost depletion. (a) In general. The basis upon which the deduction for cost depletion under section 611 is to be... 26 Internal Revenue 7 2010-04-01 2010-04-01 true Basis for allowance of cost depletion....

  7. 26 CFR 1.612-1 - Basis for allowance of cost depletion.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... TAX (CONTINUED) INCOME TAXES (CONTINUED) Natural Resources § 1.612-1 Basis for allowance of cost depletion. (a) In general. The basis upon which the deduction for cost depletion under section 611 is to be... 26 Internal Revenue 7 2012-04-01 2012-04-01 false Basis for allowance of cost depletion....

  8. 26 CFR 1.611-1 - Allowance of deduction for depletion.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... TAX (CONTINUED) INCOME TAXES (CONTINUED) Natural Resources § 1.611-1 Allowance of deduction for depletion. (a) Depletion of mines, oil and gas wells, other natural deposits, and timber—(1) In general... of the property. In the case of other exhaustible natural resources the allowance for depletion...

  9. 26 CFR 52.4681-1 - Taxes imposed with respect to ozone-depleting chemicals.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 17 2014-04-01 2014-04-01 false Taxes imposed with respect to ozone-depleting... to ozone-depleting chemicals. (a) Taxes imposed. Sections 4681 and 4682 impose the following taxes with respect to ozone-depleting chemicals (ODCs): (1) Tax on ODCs. Section 4681(a)(1) imposes a tax...

  10. 48 CFR 211.271 - Elimination of use of class I ozone-depleting substances.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... class I ozone-depleting substances. 211.271 Section 211.271 Federal Acquisition Regulations System... Using and Maintaining Requirements Documents 211.271 Elimination of use of class I ozone-depleting substances. See subpart 223.8 for restrictions on contracting for ozone-depleting substances....

  11. 26 CFR 52.4681-1 - Taxes imposed with respect to ozone-depleting chemicals.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 17 2011-04-01 2011-04-01 false Taxes imposed with respect to ozone-depleting... to ozone-depleting chemicals. (a) Taxes imposed. Sections 4681 and 4682 impose the following taxes with respect to ozone-depleting chemicals (ODCs): (1) Tax on ODCs. Section 4681(a)(1) imposes a tax...

  12. 48 CFR 211.271 - Elimination of use of class I ozone-depleting substances.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... class I ozone-depleting substances. 211.271 Section 211.271 Federal Acquisition Regulations System... Using and Maintaining Requirements Documents 211.271 Elimination of use of class I ozone-depleting substances. See subpart 223.8 for restrictions on contracting for ozone-depleting substances....

  13. 26 CFR 52.4681-1 - Taxes imposed with respect to ozone-depleting chemicals.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 17 2012-04-01 2012-04-01 false Taxes imposed with respect to ozone-depleting... to ozone-depleting chemicals. (a) Taxes imposed. Sections 4681 and 4682 impose the following taxes with respect to ozone-depleting chemicals (ODCs): (1) Tax on ODCs. Section 4681(a)(1) imposes a tax...

  14. 26 CFR 52.4681-1 - Taxes imposed with respect to ozone-depleting chemicals.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 17 2013-04-01 2013-04-01 false Taxes imposed with respect to ozone-depleting... to ozone-depleting chemicals. (a) Taxes imposed. Sections 4681 and 4682 impose the following taxes with respect to ozone-depleting chemicals (ODCs): (1) Tax on ODCs. Section 4681(a)(1) imposes a tax...

  15. 48 CFR 211.271 - Elimination of use of class I ozone-depleting substances.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... class I ozone-depleting substances. 211.271 Section 211.271 Federal Acquisition Regulations System... Using and Maintaining Requirements Documents 211.271 Elimination of use of class I ozone-depleting substances. See subpart 223.8 for restrictions on contracting for ozone-depleting substances....

  16. 48 CFR 211.271 - Elimination of use of class I ozone-depleting substances.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... class I ozone-depleting substances. 211.271 Section 211.271 Federal Acquisition Regulations System... Using and Maintaining Requirements Documents 211.271 Elimination of use of class I ozone-depleting substances. See subpart 223.8 for restrictions on contracting for ozone-depleting substances....

  17. 48 CFR 211.271 - Elimination of use of class I ozone-depleting substances.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... class I ozone-depleting substances. 211.271 Section 211.271 Federal Acquisition Regulations System... Using and Maintaining Requirements Documents 211.271 Elimination of use of class I ozone-depleting substances. See subpart 223.8 for restrictions on contracting for ozone-depleting substances....

  18. Depletable resources: necessary, in need of fair treatment, and multi-functional.

    PubMed

    Harvey, Nigel

    2013-12-01

    I make three points. First, processors and depletable resources should not be regarded as alternative means of processing information: they are both necessary. Second, comparing a processor account with a rational allocation mechanism to a depletable-resources account without one is not a fair comparison. Third, depletable resources can act as signals as well as fuels.

  19. 26 CFR 1.611-1 - Allowance of deduction for depletion.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... TAX (CONTINUED) INCOME TAXES (CONTINUED) Natural Resources § 1.611-1 Allowance of deduction for depletion. (a) Depletion of mines, oil and gas wells, other natural deposits, and timber—(1) In general... of the property. In the case of other exhaustible natural resources the allowance for depletion...

  20. Depletion in the Star-Forming Core IRAM04191

    NASA Astrophysics Data System (ADS)

    Wootten, A.; Mangum, J. G.; Wiseman, J.; Fuller, G. A.

    2002-12-01

    IRAM 04191+1522 numbers among the least evolved low mass protostars known. Belloche, André, Despois, and Blinder (Astronomy and Astrophysics, v393, 927, 2002) found the envelope to lie in a transition stage, with one portion showing constant rotational velocity mediated by magnetic braking and another inner region showing conserved angular momentum suggestive of protostellar collapse. Imaging of the interior 10000 AU in the ammonia lines (Wootten, Wiseman, and Fuller 2001, BAAS v33, 1394) revealed a 2100 AU region devoid of ammonia emission centered on the star. Here we present images made on similar scales with the OVRO Millimeter Array in the 1->0 lines of the molecular ions N2H+ and H13CO+. The former shows a ringlike structure coincident with the hole in the ammonia distribution. The latter shows only amorphous structure more distant from the central protostar. A sufficient explanation of these morphologies is that the nitrogen-bearing molecules vanish owing to depletion onto grains in the cold (13K) central region of high (n>1.5 x 106 cm-3) density. We expected that N2H+ should survive depletion to higher densities. If N2 is also depleted, as seems likely, kinematics of the central portion of this young protostar will be extremely difficult to measure. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. Observations at the OVRO Millimeter Array are supported by the National Science Foundation under Grant No.9981546

  1. MESSENGER observations of the plasma depletion layer in Mercury's magnetosphere

    NASA Astrophysics Data System (ADS)

    Gershman, D. J.; Slavin, J. A.; Raines, J. M.; Zurbuchen, T.; Anderson, B. J.; Korth, H.; Baker, D. N.; Solomon, S. C.

    2012-12-01

    Measurements made with the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft's Fast Imaging Plasma Spectrometer (FIPS) and Magnetometer (MAG) are used to determine the properties of the plasma depletion layer (PDL) that is found just exterior to Mercury's dayside magnetopause. PDLs form when interplanetary magnetic flux tubes drape around and are compressed against an obstacle to the solar wind. Such obstacles include not only planetary magnetic fields such as that of Mercury, but also the ionospheres of comets and planets without internal fields such as Venus. It is this compression of the draped flux tubes against the magnetopause that causes the solar wind plasma to flow away from the subsolar region and deplete the flux tubes of plasma. Observations of the PDL at Earth have shown that such properties of this layer as its thickness and its reduction in density are strong functions of the solar wind Alfvénic Mach number and the orientation of the interplanetary magnetic field (IMF). The MESSENGER measurements show that a PDL is indeed present at Mercury and confirm the theoretical prediction that the thickness and degree of depletion is enhanced for the very low Alfvénic Mach numbers in the inner Solar System, on average a factor of ~2 smaller than those at Earth. For several transits of the spacecraft through the magnetosheath near local noon, each lasting only a few minutes, the plasma and magnetic field of the PDL have been sampled, capturing a snapshot of the shocked solar wind near the stagnation point. The relative density reduction and thickness of the PDL are examined for each magnetospheric pass and placed into context with the set of available solar wind forcing conditions and IMF orientations in order to study the formation of these layers at Mercury with and without the presence of dayside magnetic reconnection.

  2. The relationship between skin cancers, solar radiation and ozone depletion.

    PubMed Central

    Moan, J.; Dahlback, A.

    1992-01-01

    During the period 1957-1984 the annual age-adjusted incidence rate of cutaneous malignant melanoma (CMM) increased by 350% for men and 440% for women in Norway. The annual exposure to carcinogenic sunlight in Norway, calculated by use of measured ozone levels, showed no increasing trend during the same period. Thus, ozone depletion is not a cause of the increasing trend of the incidence rates of skin cancers. The incidence rates of basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) increase with decreasing latitude in Norway. The same is true for CMM in Norway, Sweden, and Finland. Our data were used to estimate the implications of a future ozone depletion for the incidence rates of skin cancer: a 10% ozone depletion was found to give rise to a 16-18% increase in the incidence rate of SCC (men and women), a 19% increase in the incidence rate of CMM for men and a 32% increase in the incidence rate of CMM for women. The difference between the numbers for men and women is almost significant and may be related to a different intermittent exposure pattern to sunlight of the two sexes. The increasing trend in the incidence rates of CMM is strongest for the trunk and lower extremities of women, followed by that for the trunk of men. The increasing incidence rates of skin cancers as well as the changing pattern of incidence on different parts of the body is most likely due to changing habits of sun exposure. Comparisons of relative densities of CMM, SCC, LMM and SCC falling per unit area of skin at different parts of the body indicate that sun exposure is the main cause of these cancer forms although other unknown factors may play significant roles as well. For the population as a whole sun exposure during vacations to sunny countries has so far been of minor importance in skin cancer induction. PMID:1616864

  3. Complement depletion aggravates Staphylococcus aureus septicaemia and septic arthritis

    PubMed Central

    Sakiniene, E; Bremell, T; Tarkowski, A

    1999-01-01

    The aim of the study was to assess the role of the complement system in Staphylococcus aureus arthritis and septicaemia. The murine model of haematogenously acquired septic arthritis was used, injecting intravenously toxic shock syndrome toxin-1 (TSST-1), producing S. aureus LS-1. Complement was depleted using cobra venom factor (CVF). Evaluation of arthritis was performed clinically and histopathologically. In addition, the effect of complement depletion on the phagocytic activity of leucocytes was assessed in vivo and in vitro. Six days after inoculation of S. aureus the prevalence of arthritis in decomplemented mice was three-fold higher than that in controls (91% versus 25%). The clinical severity of arthritis at the end of the experiment, expressed as arthritic index, was 7.3 and 1.9, respectively. These findings were confirmed by histological index of synovitis as well as of cartilage and/or bone destruction being significantly higher in decomplemented mice than in controls (9.8 ± 1.7 versus 4.9 ± 1.2, P < 0.05; and 7.9 ± 1.7 versus 3.0 ± 0.9, P < 0.05, respectively). Also, the septicaemia-induced mortality was clearly higher in decomplemented mice compared with the controls. CVF treatment significantly reduced in vivo polymorphonuclear cell-dependent inflammation induced by subcutaneous injection of olive oil and mirroring the capacity of polymorphonuclear cells (PMNC) to migrate and/or extravasate. Besides, the decomplementation procedure significantly impaired phagocytic activity of peripheral blood leucocytes in vitro, since the number of phagocytes being able to ingest bacteria decreased by 50% when the cells were maintained in decomplemented serum compared with those in intact serum. The conclusion is that complement depletion aggravates the clinical course of S. aureus arthritis and septicaemia, possibly by a combination of decreased migration/extravasation of PMNC and an impairment of phagocytosis. PMID:9933426

  4. Satellite-based estimates of groundwater depletion in India.

    PubMed

    Rodell, Matthew; Velicogna, Isabella; Famiglietti, James S

    2009-08-20

    Groundwater is a primary source of fresh water in many parts of the world. Some regions are becoming overly dependent on it, consuming groundwater faster than it is naturally replenished and causing water tables to decline unremittingly. Indirect evidence suggests that this is the case in northwest India, but there has been no regional assessment of the rate of groundwater depletion. Here we use terrestrial water storage-change observations from the NASA Gravity Recovery and Climate Experiment satellites and simulated soil-water variations from a data-integrating hydrological modelling system to show that groundwater is being depleted at a mean rate of 4.0 +/- 1.0 cm yr(-1) equivalent height of water (17.7 +/- 4.5 km(3) yr(-1)) over the Indian states of Rajasthan, Punjab and Haryana (including Delhi). During our study period of August 2002 to October 2008, groundwater depletion was equivalent to a net loss of 109 km(3) of water, which is double the capacity of India's largest surface-water reservoir. Annual rainfall was close to normal throughout the period and we demonstrate that the other terrestrial water storage components (soil moisture, surface waters, snow, glaciers and biomass) did not contribute significantly to the observed decline in total water levels. Although our observational record is brief, the available evidence suggests that unsustainable consumption of groundwater for irrigation and other anthropogenic uses is likely to be the cause. If measures are not taken soon to ensure sustainable groundwater usage, the consequences for the 114,000,000 residents of the region may include a reduction of agricultural output and shortages of potable water, leading to extensive socioeconomic stresses.

  5. PKCι depletion initiates mitotic slippage-induced senescence in glioblastoma

    PubMed Central

    Restall, Ian J; Parolin, Doris A E; Daneshmand, Manijeh; Hanson, Jennifer E L; Simard, Manon A; Fitzpatrick, Megan E; Kumar, Ritesh; Lavictoire, Sylvie J; Lorimer, Ian A J

    2015-01-01

    Cellular senescence is a tumor suppressor mechanism where cells enter a permanent growth arrest following cellular stress. Oncogene-induced senescence (OIS) is induced in non-malignant cells following the expression of an oncogene or inactivation of a tumor suppressor. Previously, we have shown that protein kinase C iota (PKCι) depletion induces cellular senescence in glioblastoma cells in the absence of a detectable DNA damage response. Here we demonstrate that senescent glioblastoma cells exhibit an aberrant centrosome morphology. This was observed in basal levels of senescence, in p21-induced senescence, and in PKCι depletion-induced senescence. In addition, senescent glioblastoma cells are polyploid, Ki-67 negative and arrest at the G1/S checkpoint, as determined by expression of cell cycle regulatory proteins. These markers are all consistent with cells that have undergone mitotic slippage. Failure of the spindle assembly checkpoint to function properly can lead to mitotic slippage, resulting in the premature exit of mitotic cells into the G1 phase of the cell cycle. Although in G1, these cells have the replicated DNA and centrosomal phenotype of a cell that has entered mitosis and failed to divide. Overall, we demonstrate that PKCι depletion initiates mitotic slippage-induced senescence in glioblastoma cells. To our knowledge, this is the first evidence of markers of mitotic slippage directly in senescent cells by co-staining for senescence-associated β-galactosidase and immunofluorescence markers in the same cell population. We suggest that markers of mitotic slippage be assessed in future studies of senescence to determine the extent of mitotic slippage in the induction of cellular senescence. PMID:26208522

  6. PKCι depletion initiates mitotic slippage-induced senescence in glioblastoma.

    PubMed

    Restall, Ian J; Parolin, Doris A E; Daneshmand, Manijeh; Hanson, Jennifer E L; Simard, Manon A; Fitzpatrick, Megan E; Kumar, Ritesh; Lavictoire, Sylvie J; Lorimer, Ian A J

    2015-01-01

    Cellular senescence is a tumor suppressor mechanism where cells enter a permanent growth arrest following cellular stress. Oncogene-induced senescence (OIS) is induced in non-malignant cells following the expression of an oncogene or inactivation of a tumor suppressor. Previously, we have shown that protein kinase C iota (PKCι) depletion induces cellular senescence in glioblastoma cells in the absence of a detectable DNA damage response. Here we demonstrate that senescent glioblastoma cells exhibit an aberrant centrosome morphology. This was observed in basal levels of senescence, in p21-induced senescence, and in PKCι depletion-induced senescence. In addition, senescent glioblastoma cells are polyploid, Ki-67 negative and arrest at the G1/S checkpoint, as determined by expression of cell cycle regulatory proteins. These markers are all consistent with cells that have undergone mitotic slippage. Failure of the spindle assembly checkpoint to function properly can lead to mitotic slippage, resulting in the premature exit of mitotic cells into the G1 phase of the cell cycle. Although in G1, these cells have the replicated DNA and centrosomal phenotype of a cell that has entered mitosis and failed to divide. Overall, we demonstrate that PKCι depletion initiates mitotic slippage-induced senescence in glioblastoma cells. To our knowledge, this is the first evidence of markers of mitotic slippage directly in senescent cells by co-staining for senescence-associated β-galactosidase and immunofluorescence markers in the same cell population. We suggest that markers of mitotic slippage be assessed in future studies of senescence to determine the extent of mitotic slippage in the induction of cellular senescence.

  7. Inhibition of lytic infection of pseudorabies virus by arginine depletion

    SciTech Connect

    Wang, H.-C.; Kao, Y.-C.; Chang, T-J.; Wong, M.-L. . E-mail: mlwong@dragon.nchu.edu.tw

    2005-08-26

    Pseudorabies virus (PRV) is a member of Alphahepesviruses; it is an enveloped virus with a double-stranded DNA genome. Polyamines (such as spermine and spermidine) are ubiquitous in animal cells and participate in cellular proliferation and differentiation. Previous results of our laboratory showed that the PRV can accomplish lytic infection either in the presence of exogenous spermine (or spermidine) or depletion of cellular polyamines. The amino acid arginine is a precursor of polyamine biosynthesis. In this work, we investigated the role of arginine in PRV infection. It was found that the plaque formation of PRV was inhibited by arginase (enzyme catalyzing the conversion of arginine into ornithine and urea) treatment whereas this inhibition can be reversed by exogenous arginine, suggesting that arginine is essential for PRV proliferation. Western blotting was conducted to study the effect of arginine depletion on the levels of structural proteins of PRV in virus-infected cells. Four PRV structural proteins (gB, gE, UL47, and UL48) were chosen for examination, and results revealed that the levels of viral proteins were obviously reduced in long time arginase treatment. However, the overall protein synthesis machinery was apparently not influenced by arginase treatment either in mock or PRV-infected cells. Analyzing with native gel, we found that arginase treatment affected the mobility of PRV structural proteins, suggesting the conformational change of viral proteins by arginine depletion. Heat shock proteins, acting as molecular chaperons, participate in protein folding and translocation. Our results demonstrated that long time arginase treatment could reduce the expression of cellular heat shock proteins 70 (hsc70 and hsp70), and transcriptional suppression of heat shock protein 70 gene promoter was one of the mechanisms involved in this reduced expression.

  8. Nanoscale field effect optical modulators based on depletion of epsilon-near-zero films

    NASA Astrophysics Data System (ADS)

    Lu, Zhaolin; Shi, Kaifeng; Yin, Peichuan

    2016-12-01

    The field effect in metal-oxide-semiconductor (MOS) capacitors plays a key role in field-effect transistors (FETs), which are the fundamental building blocks of modern digital integrated circuits. Recent works show that the field effect can also be used to make optical/plasmonic modulators. In this paper, we report the numerical investigation of field effect electro-absorption modulators each made of an ultrathin epsilon-near-zero (ENZ) film, as the active material, sandwiched in a silicon or plasmonic waveguide. Without a bias, the ENZ films maximize the attenuation of the waveguides and the modulators work at the OFF state; on the other hand, depletion of the carriers in the ENZ films greatly reduces the attenuation and the modulators work at the ON state. The double capacitor gating scheme with two 10-nm HfO2 films as the insulator is used to enhance the modulation by the field effect. The depletion requires about 10 V across the HfO2 layers. According to our simulation, extinction ratio up to 3.44 dB can be achieved in a 500-nm long Si waveguide with insertion loss only 0.71 dB (85.0% pass); extinction ratio up to 7.86 dB can be achieved in a 200-nm long plasmonic waveguide with insertion loss 1.11 dB (77.5% pass). The proposed modulators may find important applications in future on-chip or chip-to-chip optical interconnection.

  9. High-Temperature, Oxidation-Resistant Thermocouples

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Gedwill, Michael A.

    1994-01-01

    Aluminum substituted for rhodium, which is scarce and expensive. Electromotive force increases with aluminum content in Pt/Al leg of Pt(Pt/Al) thermocouple. Wires baked longer in aluminizing bed produce larger voltages. Thermocouples containing platinum/aluminum legs used instead of thermocouples of type R in furnaces, heat engines, and chemical reactors. Expecially suited to high-velocity oxidizing environments. Constructed as thin-film sensors on turbine blades and vanes, where pre-oxidation provides insulating film needed between thermocouple legs. Because aluminum content slowly depleted by oxidation, long-term use recommended only where maximum temperature is 1,200 degrees C or less.

  10. Fabrication options for depleted uranium components in shielded containers

    SciTech Connect

    Derrington, S.B.; Thompson, J.E.; Coates, C.W.

    1994-01-27

    Depleted uranium (DU) is an attractive material for the gamma-shielding components in containers designed for the storage, transport, and disposal of high-level radioactive wastes or spent nuclear fuel. The size and weight of these components present fabrication challenges. A broad range of technical expertise, capabilities, and facilities for uranium manufacturing and technology development exist at the Department of Energy laboratories and production facilities and within commercial industry. Several cast and wrought processes are available to fabricate the DU components. Integration of the DU fabrication capabilities and physical limitations for handling the DU components into the early design phase will ensure a fabricable product.

  11. Consistent cosmic microwave background spectra from quantum depletion

    SciTech Connect

    Casadio, Roberto; Orlandi, Alessio; Kühnel, Florian E-mail: florian.kuhnel@fysik.su.se

    2015-09-01

    Following a new quantum cosmological model proposed by Dvali and Gomez, we quantitatively investigate possible modifications to the Hubble parameter and following corrections to the cosmic microwave background spectrum. In this model, scalar and tensor perturbations are generated by the quantum depletion of the background inflaton and graviton condensate respectively. We show how the inflaton mass affects the power spectra and the tensor-to-scalar ratio. Masses approaching the Planck scale would lead to strong deviations, while standard spectra are recovered for an inflaton mass much smaller than the Planck mass.

  12. Indirect Measurement of Evapotranspiration from Soil Moisture Depletion

    NASA Astrophysics Data System (ADS)

    Li, M.; Chen, Y.

    2007-12-01

    Direct and in situ measurement of evapotranspiration (ET), such as the eddy covariance (EC) method, is often expensive and complicated, especially over tall canopy. In view of soil water balance, depletion of soil moisture can be attributed to canopy ET when horizontal soil moisture movement is negligible and percolation ceases. This study computed the daily soil moisture depletion at the Lien-Hua-Chih (LHC) station (23°55'52"N, 120°53'39"E, 773 m elevation) from July, 2004 to June, 2007 to estimate daily ET. The station is inside an experimental watershed of a natural evergreen forest and the canopy height is about 17 m. Rainfall days are assumed to be no ET. For those days with high soil moisture content, normally 2 to 3 days after significant rainfall input, ET is estimated by potential ET. Soil moistures were measured by capacitance probes at -10 cm, - 30 cm, -50 cm, -70 cm, and -90 cm. A soil heat flux plate was placed at -5 cm. In the summer of 2006, a 22 m tall observation tower was constructed. Temperature and relative humidity sensors were placed every 5 m from ground surface to 20 m for inner and above canopy measurements. Net radiation and wind speed/directions were also installed. A drainage gauge was installed at -50 cm to collect infiltrated water. Continuous measurements of low response instruments were recorded every 30-minute averaged from 10-minute samplings. A nearby weather station provides daily pan evaporation and precipitation data. Since the response of soil water variations is relatively slow to the fluctuations of atmospheric forcing, only daily ET is estimated from daily soil moisture depletion. The annual average precipitation is 2902 mm and the annual average ET is 700 mm. The seasonal ET patterns of the first two water years are similar. The third year has a higher ET because soil moisture was recharged frequently by rainfall In order to examine the applicability of this approach, an EC system, including a 3-D sonic anemometer (Young

  13. Depleted uranium storage and disposal trade study: Summary report

    SciTech Connect

    Hightower, J.R.; Trabalka, J.R.

    2000-02-01

    The objectives of this study were to: identify the most desirable forms for conversion of depleted uranium hexafluoride (DUF6) for extended storage, identify the most desirable forms for conversion of DUF6 for disposal, evaluate the comparative costs for extended storage or disposal of the various forms, review benefits of the proposed plasma conversion process, estimate simplified life-cycle costs (LCCs) for five scenarios that entail either disposal or beneficial reuse, and determine whether an overall optimal form for conversion of DUF6 can be selected given current uncertainty about the endpoints (specific disposal site/technology or reuse options).

  14. Human Health Effects of Ozone Depletion From Stratospheric Aircraft

    NASA Technical Reports Server (NTRS)

    Wey, Chowen (Technical Monitor)

    2001-01-01

    This report presents EPA's initial response to NASA's request to advise on potential environmental policy issues associated with the future development of supersonic flight technologies. Consistent with the scope of the study to which NASA and EPA agreed, EPA has evaluated only the environmental concerns related to the stratospheric ozone impacts of a hypothetical HSCT fleet, although recent research indicates that a fleet of HSCT is predicted to contribute to climate warming as well. This report also briefly describes the international and domestic institutional frameworks established to address stratospheric ozone depletion, as well as those established to control pollution from aircraft engine exhaust emissions.

  15. High temperature spice modeling of partially depleted SOI MOSFETs

    SciTech Connect

    Osman, M.A.; Osman, A.A.

    1996-03-01

    Several partially depleted SOI N- and P-mosfets with dimensions ranging from W/L=30/10 to 15/3 were characterized from room temperature up to 300 C. The devices exhibited a well defined and sharp zero temperature coefficient biasing point up to 573 K in both linear and saturation regions. Simulation of the I-V characteristics using a temperature dependent SOI SPICE were in excellent agreement with measurements. Additionally, measured ZTC points agreed favorably with the predicted ZTC points using expressions derived from the temperature dependent SOI model for the ZTC {copyright} {ital 1996 American Institute of Physics.}

  16. Methanogenic calcite, 13C-depleted bivalve shells, and gas hydrate from a mud volcano offshore southern California

    USGS Publications Warehouse

    Hein, J.R.; Normark, W.R.; McIntyre, B.R.; Lorenson, T.D.; Powell, C.L.

    2006-01-01

    Methane and hydrogen sulfide vent from a cold seep above a shallowly buried methane hydrate in a mud volcano located 24 km offshore southern California in?? 800 m of water. Bivalves, authigenic calcite, and methane hydrate were recovered in a 2.1 m piston core. Aragonite shells of two bivalve species are unusually depleted in 13C (to -91??? ??13C), the most 13C-depleted shells of marine macrofauna yet discovered. Carbon isotopes for both living and dead specimens indicate that they used, in part, carbon derived from anaerobically oxidized methane to construct their shells. The ??13C values are highly variable, but most are within the range -12??? to -91???. This variability may be diagnostic for identifying cold-seep-hydrate systems in the geologic record. Authigenic calcite is abundant in the cores down to ???1.5 m subbottom, the top of the methane hydrate. The calcite is depleted in 13C (??13C = -46??? to -58???), indicating that carbon produced by anaerobically oxidized methane is the main source of the calcite. Methane sources include a geologic hydrocarbon reservoir from Miocene source rocks, and biogenic and thermogenic degradation of organic matter in basin sediments. Oxygen isotopes indicate that most calcite formed out of isotopic equilibrium with ambient bottom water, under the influence of gas hydrate dissociation and strong methane flux. High metal content in the mud volcano sediment indicates leaching of basement rocks by fluid circulating along an underlying fault, which also allows for a high flux of fossil methane. ?? 2006 Geological Society of America.

  17. Thymidine Kinase 2 Deficiency-Induced Mitochondrial DNA Depletion Causes Abnormal Development of Adipose Tissues and Adipokine Levels in Mice

    PubMed Central

    Villarroya, Joan; Dorado, Beatriz; Vilà, Maya R.; Garcia-Arumí, Elena; Domingo, Pere; Giralt, Marta; Hirano, Michio; Villarroya, Francesc

    2011-01-01

    Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS) are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA) is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT) and brown (BAT) adipose tissues in thymidine kinase 2 (Tk2) H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues. PMID:22216345

  18. Attenuation and Transport Mechanisms of Depleted Uranium in Groundwater at Lawrence Livermore National Laboratory Site 300

    NASA Astrophysics Data System (ADS)

    Danny, K. R.; Taffet, M. J.; Brusseau, M. L. L.; Chorover, J.

    2015-12-01

    Lawrence Livermore National Laboratory (LLNL) Site 300 was established in 1955 to support weapons research and development. Depleted uranium was used as a proxy for fissile uranium-235 (235U) in open-air explosives tests conducted at Building 812. As a result, oxidized depleted uranium was deposited on the ground, eventually migrating to the underlying sandstone aquifer. Uranium (U) groundwater concentrations exceed the California and Federal Maximum Contaminant Level of 20 pCi L-1 (30 ug L-1). However, the groundwater plume appears to attenuate within 60 m of the source, beyond which no depleted U is detected. This study will determine the relative contribution of physical (e.g. dilution), chemical (e.g. surface adsorption, mineral precipitation), and biological (e.g. biotransformation) processes that contribute to the apparent attenuation of U, which exists as uranyl (UO22+) complexes, at the site. Methods of investigation include evaluating 15 yr of hydrogeologic and chemical data, creating a site conceptual model, and applying equilibrium (e.g. aqueous species complexation, mineral saturation indices) and reactive transport models using Geochemist's WorkbenchTM. Reactive transport results are constrained by direct field observations, including U major ion, and dissolved O2 concentrations, pH, and others, under varying chemical and hydraulic conditions. Aqueous speciation calculations indicate that U primarily exists as anionic CaUO2(CO3)32- or neutral Ca2UO2(CO3)30 species. Additionally, nucleation and growth of Ca/Mg uranyl carbonate solids are predicted to affect attenuation. Initial reactive transport results suggest surface adsorption (e.g. ion exchange, surface complexation) to layer silicate clays is limited under the aqueous geochemical conditions of the site. Current and future work includes XRD analysis of aquifer solids to constrain iron and aluminum (oxy)hydroxides, and coupling advective-dispersive transport with the chemical and physical processes

  19. Depleted uranium dust from fired munitions: physical, chemical and biological properties.

    PubMed

    Mitchel, R E J; Sunder, S

    2004-07-01

    This paper reports physical, chemical and biological analyses of samples of dust resulting from munitions containing depleted uranium (DU) that had been live-fired and had impacted an armored target. Mass spectroscopic analysis indicated that the average atom% of U was 0.198 +/- 0.10, consistent with depleted uranium. Other major elements present were iron, aluminum, and silicon. About 47% of the total mass was particles with diameters <300 microm, of which about 14% was <10 microm. X-ray diffraction analysis indicated that the uranium was present in the sample as uranium oxides-mainly U3O7 (47%), U3O8 (44%) and UO2 (9%). Depleted uranium dust, instilled into the lungs or implanted into the muscle of rats, contained a rapidly soluble uranium component and a more slowly soluble uranium component. The fraction that underwent dissolution in 7 d declined exponentially with increasing initial burden. At the lower lung burdens tested (<15 microg DU dust/lung) about 14% of the uranium appeared in urine within 7 d. At the higher lung burdens tested (~80-200 microg DU dust/lung) about 5% of the DU appeared in urine within 7 d. In both cases about 50% of that total appeared in urine within the first day. DU implanted in muscle similarly showed that about half of the total excreted within 7 d appeared in the first day. At the lower muscle burdens tested (<15 microg DU dust/injection site) about 9% was solubilized within 7 d. At muscle burdens >35 microg DU dust/injection site about 2% appeared in urine within 7 d. Natural uranium (NU) ore dust was instilled into rat lungs for comparison. The fraction dissolving in lung showed a pattern of exponential decline with increasing initial burden similar to DU. However, the decline was less steep, with about 14% appearing in urine for lung burdens up to about 200 microg NU dust/lung and 5% at lung burdens >1,100 microg NU dust/lung. NU also showed both a fast and a more slowly dissolving component. At the higher lung burdens of both

  20. Sediment Mobilization From Reservoirs Can Cause Short Term Oxygen Depletion In Downstream Receiving Waters

    NASA Astrophysics Data System (ADS)

    Anderson, C.; Schenk, L.; Bragg, H.; Singer, M.; Hume, N.

    2013-12-01

    depletion stemming from a combination of chemical (< 2 hr) and biological (days-weeks) oxidation processes, depending on rates of sediment mobilization. Such depletion could contribute to fish stress or mortality for tens of kilometers downstream of the dams and for the duration of the sediment mobilization. Although modeling DO demand and measuring stream DO response during periods of elevated sediment concentration remains an area requiring further research, planning for large sediment mobilizing events could better anticipate and mitigate short-term, acute stresses on fish and aquatic life by recognizing the potential for transient, but significant, DO-related impacts.