Science.gov

Sample records for oxide electrochemical sensors

  1. Hydrophilic graphene surface prepared by electrochemically reduced micellar graphene oxide as a platform for electrochemical sensor.

    PubMed

    Akkarachanchainon, Nontapol; Rattanawaleedirojn, Pranee; Chailapakul, Orawon; Rodthongkum, Nadnudda

    2017-04-01

    Graphene is one of the promising hydrophobic carbon-based nanomaterials used for electrode modification in electrochemical sensor. However, hydrophobicity of graphene makes it incompatible with aqueous electrolyte solution, leading to significant impediment to the electron transfer process. Here, we aim to alter graphene property to be hydrophilicity by using an electrochemically reduced micellar graphene oxide for electrode surface modification. Then, this system was applied for the simultaneous determination of toxic pesticides (e.g. carbofuran and carbendazim). Interestingly, the modified electrode offers an improved electrochemical sensitivity, verified by a drastic increase in current signal of carbofuran (4 times) and carbendazim (12 times) compared to an unmodified electrode. Under the optimal conditions, low detection limits of carbofuran and carbendazim were found to be 10µgL(-1) and 5µgL(-1), respectively. Ultimately, this system was successfully applied for the sensitive and simultaneous determination of carbofuran and carbendazim residues in various agricultural products.

  2. Electrochemical micro sensor

    DOEpatents

    Setter, Joseph R.; Maclay, G. Jordan

    1989-09-12

    A micro-amperometric electrochemical sensor for detecting the presence of a pre-determined species in a fluid material is disclosed. The sensor includes a smooth substrate having a thin coating of solid electrolytic material deposited thereon. The working and counter electrodes are deposited on the surface of the solid electrolytic material and adhere thereto. Electrical leads connect the working and counter electrodes to a potential source and an apparatus for measuring the change in an electrical signal caused by the electrochemical oxidation or reduction of the species. Alternatively, the sensor may be fabricated in a sandwich structure and also may be cylindrical, spherical or other shapes.

  3. The sensor based on oxidized multi-walled carbon nanotubes prepared by electrochemical method and its application

    NASA Astrophysics Data System (ADS)

    Song, Y. Z.; Yang, L.; Jiang, Q. Y.

    2015-07-01

    The sensor based on oxidized multi-walled carbon nanotubes was prepared by electrochemical method. The behavior of norepinephrine tartrate at the modified electrode was studied. It was demonstrated that modified sensor is a good electrocatalyst for norepinephrine tartrate.

  4. Direct electrochemistry and electrocatalysis of lobetyolin via magnetic functionalized reduced graphene oxide film fabricated electrochemical sensor.

    PubMed

    Sun, Bolu; Gou, Xiaodan; Bai, Ruibin; Abdelmoaty, Ahmed Attia Ahmed; Ma, Yuling; Zheng, Xiaoping; Hu, Fangdi

    2017-05-01

    A novel lobetyolin electrochemical sensor based on a magnetic functionalized reduced graphene oxide/Nafion nanohybrid film has been introduced in this work. The magnetic functionalized reduced graphene oxide was characterized by fourier transform infrared spectroscopy, atomic force microscope, X-ray diffraction, transmission electron microscopy and thermogravimetric analysis. The scanning electron microscopy characterized the morphology and microstructure of the prepared sensors, and the electrochemical effective surface areas of the prepared sensors were also calculated by chronocoulometry method. The electrochemical behavior of lobetyolin on the magnetic functionalized reduced graphene oxide/Nafion nanohybrid modified glassy carbon electrode was investigated by cyclic voltammetry and differential pulse voltammetry in a phosphate buffer solution of pH6.0. The electron-transfer coefficient (α), electron transfer number (n), and electrode reaction rate constant (Κs) were calculated as 0.78, 0.73, and 4.63s(-1), respectively. Under the optimized conditions, the sensor based on magnetic functionalized reduced graphene oxide/Nafion showed a linear voltammetric response to the lobetyolin concentration at 1.0×10(-7) to 1.0×10(-4)mol/L with detection limit (S/N=3)of 4.3×10(-8)mol/L. The proposed sensor also displayed acceptable reproducibility, long-term stability, and high selectivity, and performs well for analysis of lobetyolin in real samples. The voltammetric sensor was successfully applied to detect lobetyolin in Codonopsis pilosula with recovery values in the range of 96.12%-102.66%.

  5. Exhaled nitric oxide monitoring by quantum cascade laser: comparison with chemiluminescent and electrochemical sensors.

    PubMed

    Mandon, Julien; Högman, Marieann; Merkus, Peter J F M; van Amsterdam, Jan; Harren, Frans J M; Cristescu, Simona M

    2012-01-01

    Fractional exhaled nitric oxide (F(E)NO) is considered an indicator in the diagnostics and management of asthma. In this study we present a laser-based sensor for measuring F(E)NO. It consists of a quantum cascade laser (QCL) combined with a multi-pass cell and wavelength modulation spectroscopy for the detection of NO at the sub-part-per-billion by volume (ppbv, 110(-9)) level. The characteristics and diagnostic performance of the sensor were assessed. A detection limit of 0.5 ppbv was demonstrated with a relatively simple design. The QCL-based sensor was compared with two market sensors, a chemiluminescent analyzer (NOA 280, Sievers) and a portable hand-held electrochemical analyzer (MINO, Aerocrine AB, Sweden). F(E)NO from 20 children diagnosed with asthma and treated with inhaled corticosteroids were measured. Data were found to be clinically acceptable within 1.1 ppbv between the QCL-based sensor and chemiluminescent sensor and within 1.7 ppbv when compared to the electrochemical sensor. The QCL-based sensor was tested on healthy subjects at various expiratory flow rates for both online and offline sampling procedures. The extended NO parameters, i.e. the alveolar region, airway wall, diffusing capacity, and flux were calculated and showed a good agreement with the previously reported values.

  6. Exhaled nitric oxide monitoring by quantum cascade laser: comparison with chemiluminescent and electrochemical sensors

    NASA Astrophysics Data System (ADS)

    Mandon, Julien; Högman, Marieann; Merkus, Peter J. F. M.; van Amsterdam, Jan; Harren, Frans J. M.; Cristescu, Simona M.

    2012-01-01

    Fractional exhaled nitric oxide (FENO) is considered an indicator in the diagnostics and management of asthma. In this study we present a laser-based sensor for measuring FENO. It consists of a quantum cascade laser (QCL) combined with a multi-pass cell and wavelength modulation spectroscopy for the detection of NO at the sub-part-per-billion by volume (ppbv, 1∶10-9) level. The characteristics and diagnostic performance of the sensor were assessed. A detection limit of 0.5 ppbv was demonstrated with a relatively simple design. The QCL-based sensor was compared with two market sensors, a chemiluminescent analyzer (NOA 280, Sievers) and a portable hand-held electrochemical analyzer (MINO®, Aerocrine AB, Sweden). FENO from 20 children diagnosed with asthma and treated with inhaled corticosteroids were measured. Data were found to be clinically acceptable within 1.1 ppbv between the QCL-based sensor and chemiluminescent sensor and within 1.7 ppbv when compared to the electrochemical sensor. The QCL-based sensor was tested on healthy subjects at various expiratory flow rates for both online and offline sampling procedures. The extended NO parameters, i.e. the alveolar region, airway wall, diffusing capacity, and flux were calculated and showed a good agreement with the previously reported values.

  7. A Zinc Oxide Nanoflower-Based Electrochemical Sensor for Trace Detection of Sunset Yellow

    PubMed Central

    Ya, Yu; Jiang, Cuiwen; Li, Tao; Liao, Jie; Fan, Yegeng; Wei, Yuning; Yan, Feiyan; Xie, Liping

    2017-01-01

    Zinc oxide nanoflower (ZnONF) was synthesized by a simple process and was used to construct a highly sensitive electrochemical sensor for the detection of sunset yellow (SY). Due to the large surface area and high accumulation efficiency of ZnONF, the ZnONF-modified carbon paste electrode (ZnONF/CPE) showed a strong enhancement effect on the electrochemical oxidation of SY. The electrochemical behaviors of SY were investigated using voltammetry with the ZnONF-based sensor. The optimized parameters included the amount of ZnONF, the accumulation time, and the pH value. Under optimal conditions, the oxidation peak current was linearly proportional to SY concentration in the range of 0.50–10 μg/L and 10–70 μg/L, while the detection limit was 0.10 μg/L (signal-to-noise ratio = 3). The proposed method was used to determine the amount of SY in soft drinks with recoveries of 97.5%–103%, and the results were in good agreement with the results obtained by high-performance liquid chromatography. PMID:28282900

  8. A dual electrochemical sensor for nitrite and nitric oxide.

    PubMed

    Zen, J M; Kumar, A S; Wang, H F

    2000-12-01

    Nafion/lead-ruthenate pyrochlore chemically modified electrode (NPyCME) showed a remarkable dual sensing activity toward NO2- oxidation and NO reduction as demonstrated by cyclic voltammetry (CV), ac-impedance spectroscopy and flow injection analysis (FIA). The mechanistic parameters of current function, charge transfer resistance and exchange current for the NPyCME, GCE and Nafion-coated GCE were evaluated and compared. The disproportionation reaction of NIIIO2- into NIVO3- + NIIO in acidic solution was used as a model system for testing the dual sensing ability of the NPyCME. The obtained crossover peak response for NO2- oxidation and NO reduction in pH 1.65 buffer solution gave the direct proof for the applicability of the NPyCME in the dual electrocatalytic action. By flow injection analysis, under optimized conditions, the calibration curve was linear in the range of 100 nM-100 microM and 800 nM-63.3 microM and the detection limit (S/N = 3) was 4.8 nM and 15.6 nM for NO2- and NO, respectively.

  9. A facile graphene oxide based sensor for electrochemical detection of neonicotinoids.

    PubMed

    Urbanová, Veronika; Bakandritsos, Aristides; Jakubec, Petr; Szambó, Tamás; Zbořil, Radek

    2017-03-15

    The increasing use of neonicotinoids in systematic seed treatment to crops is a serious cause of pollution of water resources and environment. Consequently, food sources can get eventually contaminated. To this end, it is desirable to develop suitable and effective platforms in order to obtain low-cost and sensitive sensors for neonicotinoids detection. In this work, graphene oxide modified electrodes were used as highly efficient electrochemical sensors for detection of two common insecticides - thiamethoxam and imidacloprid. The proposed sensor responded linearly in the concentration range of 10-200µmolL(-1) for both analytes and the detection limits were determined as low as 8.3µmolL(-1) and 7.9µmolL(-1) for thiamethoxam and imidacloprid, respectively. Analytical performance was also evaluated on spiked water and honey samples.

  10. Electrochemical methane sensor

    DOEpatents

    Zaromb, S.; Otagawa, T.; Stetter, J.R.

    1984-08-27

    A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about 1.4 volts vs R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

  11. Design of a new nanocomposite between bismuth nanoparticles and graphene oxide for development of electrochemical sensors.

    PubMed

    Bindewald, Eduardo H; Schibelbain, Arthur F; Papi, Maurício A P; Neiva, Eduardo G C; Zarbin, Aldo J G; Bergamini, Márcio F; Marcolino-Júnior, Luiz H

    2017-10-01

    This study describes a new route for preparation of a nanocomposite between graphene oxide (GO) and bismuth nanoparticles (BiNPs) and its evaluation as modifier electrode for development of electrochemical sensors. BiNPs were synthesized under ultrasound conditions using Bi(NO3)3 as metal precursor and ascorbic acid (AA) as reducing agent/passivating. Some experimental parameters of BiNPs synthesis such as Bi(3+):AA molar ratio and reaction time were conducted aiming the best voltammetric performance of the sensor. Glassy carbon electrodes (GCE) were modified by drop-casting with the BiNPs dispersions and anodic stripping voltammetry measurements were performed and revealed an improvement in the sensitivityfor determination of Cd(II) and Pb(II) compared to an unmodified electrode. The best electrochemical response was obtained for a BiNPs synthesis with Bi(3+):AA molar ratio of 1:6 and reaction time of 10min, which yielded Bi metallic nanoparticles with average size of 5.4nm confirmed by XRD and TEM images, respectively. GO was produced by graphite oxidation using potassium permanganate and exfoliated with an ultrasound tip. GO-BiNPs nanocomposite was obtained by a simple mixture of GO and BiNPs dispersions in water and kept under ultrasonic bath for 1h. GCE were modified with a nanocomposite suspension containing 0.3 and 1.5mgmL(-1) of GO and BiNPs in water, respectively. Under optimized conditions, the proposed nanocomposite was evaluated on the voltammetric determination of Pb (II) and Cd (II), leading to a linear response range between 0.1 and 1.4μmolL(-1) for both cations, with limit of detection of 30 and 27nmolL(-1), respectively. These results indicate the great potential of the GO-BiNPs nanocomposite for improving the sensitivity of voltammetric procedures. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Graphene oxide integrated sensor for electrochemical monitoring of mitomycin C-DNA interaction.

    PubMed

    Erdem, Arzum; Muti, Mihrican; Papakonstantinou, Pagona; Canavar, Ece; Karadeniz, Hakan; Congur, Gulsah; Sharma, Surbhi

    2012-05-07

    We present a graphene oxide (GO) integrated disposable electrochemical sensor for the enhanced detection of nucleic acids and the sensitive monitoring of the surface-confined interactions between the anticancer drug mitomycin C (MC) and DNA. Interfacial interactions between immobilized calf thymus double-stranded (dsDNA) and anticancer drug MC were investigated using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) techniques. Based on three repetitive voltammetric measurements of 120 μg mL(-1) DNA immobilized on GO-modified electrodes, the RSD % (n = 3) was calculated as 10.47% and the detection limit (DL) for dsDNA was found to be 9.06 μg mL(-1). EIS studies revealed that the binding of the drug MC to dsDNA leads to a gradual decrease of its negative charge. As a consequence of this interaction, the negative redox species were allowed to approach the electrode, and thus increase the charge transfer kinetics. On the other hand, DPV studies exploited the decrease of the guanine signal due to drug binding as the basis for specifically probing the biointeraction process between MC and dsDNA.

  13. Electrochemically reduced graphene oxide-based electrochemical sensor for the sensitive determination of ferulic acid in A. sinensis and biological samples.

    PubMed

    Liu, Linjie; Gou, Yuqiang; Gao, Xia; Zhang, Pei; Chen, Wenxia; Feng, Shilan; Hu, Fangdi; Li, Yingdong

    2014-09-01

    An electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE) was used as a new voltammetric sensor for the determination of ferulic acid (FA). The morphology and microstructure of the modified electrodes were characterized by scanning electron microscopy (SEM) and Raman spectroscopy analysis, and the electrochemical effective surface areas of the modified electrodes were also calculated by chronocoulometry method. Sensing properties of the electrochemical sensor were investigated by means of cyclic voltammetry (CV) and differential pulse voltammetry (DPV). It was found that ERGO was electrodeposited on the surface of GCE by using potentiostatic method. The proposed electrode exhibited electrocatalytic activity to the redox of FA because of excellent electrochemical properties of ERGO. The transfer electron number (n), electrode reaction rate constant (ks) and electron-transfer coefficient (α) were calculated as 1.12, 1.24s(-1), and 0.40, respectively. Under the optimized conditions, the oxidation peak current was proportional to FA concentration at 8.49 × 10(-8)mol L(-1) to 3.89 × 10(-5)mol L(-1) with detection limit of 2.06 × 10(-8)mol L(-1). This fabricated sensor also displayed acceptable reproducibility, long-term stability, and high selectivity with negligible interferences from common interfering species. The voltammetric sensor was successfully applied to detect FA in A. sinensis and biological samples with recovery values in the range of 99.91%-101.91%.

  14. Nano-scale islands of ruthenium oxide as an electrochemical sensor for iodate and periodate determination.

    PubMed

    Chatraei, Fatemeh; Zare, Hamid R

    2013-03-01

    In this study, a promising electrochemical sensor was fabricated by the electrodeposition of nano-scale islands of ruthenium oxide (ruthenium oxide nanoparticles, RuON) on a glassy carbon electrode (RuON-GCE). Then, the electrocatalytic oxidation of iodate and periodate was investigated on it, using cyclic voltammetry, chronoamperometry and amperometry as diagnostic techniques. The charge transfer coefficient, α, and the charge transfer rate constant, ks, for electron transfer between RuON and GCE were calculated as 0.5 ± 0.03 and 9.0 ± 0.7 s(-1) respectively. A comparison of the data obtained from the electrocatalytic reduction of iodate and periodate at a bare GCE (BGCE) and RuON-GCE clearly shows that the unique electronic properties of nanoparticles definitely improve the characteristics of iodate and periodate electrocatalytic reduction. The kinetic parameters such as the electron transfer coefficient, α, and the heterogeneous electron transfer rate constant, k', for the reduction of iodate and periodate at RuON-GCE surface were determined using cyclic voltammetry. Amperometry revealed a good linear relationship between the peak current and the concentration of iodate and periodate. The detection limits of 0.9 and 0.2 μM were calculated for iodate and periodate respectively.

  15. Remote electrochemical sensor

    DOEpatents

    Wang, Joseph; Olsen, Khris; Larson, David

    1997-01-01

    An electrochemical sensor for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis.

  16. Electrochemical enzyme-less urea sensor based on nano-tin oxide synthesized by hydrothermal technique.

    PubMed

    Ansari, S G; Fouad, H; Shin, Hyung-Shik; Ansari, Z A

    2015-12-05

    Nano-Tin oxide was synthesized using hydrothermal method at 150 °C for 6 h and then thin films were deposited by electrophoretic method at an optimized voltage of 100 V for 5 min on electropolished aluminum substrate. Spherical particles of about 30-50 nm diameters are observed with partial agglomeration when observed under electron microscope, which are tetragonal rutile structure. XPS results showed peaks related to Sn 4d, Sn 3d, O 1s & C 1s with spin-orbit splitting of 8.4 eV for Sn 3d. Feasibility studies of enzyme less urea sensing characteristics of nano-tin oxide thin films are exhibited herein. The deposited films have been used for enzyme less urea sensing from 1 to 20 mM concentration in buffer solution. The sensors were characterized electrochemically to obtain cyclic voltammogram as a function of urea concentration and scan rate. The sensitivity is estimated as 18.9 μA/mM below 5 mM and 2.31 μA/mM above 5 mM with a limit of detection of 0.6 mM.

  17. Remote electrochemical sensor

    DOEpatents

    Wang, J.; Olsen, K.; Larson, D.

    1997-10-14

    An electrochemical sensor is described for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis. 21 figs.

  18. Electrochemical oxidation of cholesterol

    PubMed Central

    2015-01-01

    Summary Indirect cholesterol electrochemical oxidation in the presence of various mediators leads to electrophilic addition to the double bond, oxidation at the allylic position, oxidation of the hydroxy group, or functionalization of the side chain. Recent studies have proven that direct electrochemical oxidation of cholesterol is also possible and affords different products depending on the reaction conditions. PMID:25977713

  19. Electrochemical sensor based on magnetic graphene oxide@gold nanoparticles-molecular imprinted polymers for determination of dibutyl phthalate.

    PubMed

    Li, Xiangjun; Wang, Xiaojiao; Li, Leilei; Duan, Huimin; Luo, Chuannan

    2015-01-01

    A novel composite of magnetic graphene oxide @ gold nanoparticles-molecular imprinted polymers (MGO@AuNPs-MIPs) was synthesized and applied as a molecular recognition element to construct dibutyl phthalate (DBP) electrochemical sensor. The composite of MGO@AuNPs was first synthesized using coprecipitation and self-assembly technique. Then the template molecules (DBP) were absorbed at the MGO@AuNPs surface due to their excellent affinity, and subsequently, selective copolymerization of methacrylic acid and ethylene glycol dimethacrylate was further achieved at the MGO@AuNPs surface. Potential scanning was presented to extract DBP molecules from the imprinted polymers film rapidly and completely. As a consequence, an electrochemical sensor for highly sensitive and selective detection of DBP was successfully constructed as demonstration based on the synthesized MGO@AuNPs-MIPs composite. Under optimal experimental conditions, selective detection of DBP in a linear concentration range of 2.5 × 10(-9)-5.0 × 10(-6)mol/L was obtained. The new DBP electrochemical sensor also exhibited excellent repeatability, which expressed as relative standard deviation (RSD) was about 2.50% for 30 repeated analyses of 2.0 × 10(-6)mol/L DBP.

  20. Zinc oxide/redox mediator composite films-based sensor for electrochemical detection of important biomolecules.

    PubMed

    Tang, Chun-Fang; Kumar, S Ashok; Chen, Shen-Ming

    2008-09-15

    Electrochemical oxidation of serotonin (SN) onto zinc oxide (ZnO)-coated glassy carbon electrode (GCE) results in the generation of redox mediators (RMs) that are strongly adsorbed on electrode surface. The electrochemical properties of zinc oxide-electrogenerated redox mediator (ZnO/RM) (inorganic/organic) hybrid film-coated electrode has been studied using cyclic voltammetry (CV). The scanning electron microscope (SEM), atomic force microscope (AFM), and electrochemical techniques proved the immobilization of ZnO/RM core/shell microparticles on the electrode surface. The GCE modified with ZnO/RM hybrid film showed two reversible redox peaks in acidic solution, and the redox peaks were found to be pH dependent with slopes of -62 and -60 mV/pH, which are very close to the Nernst behavior. The GCE/ZnO/RM-modified electrode exhibited excellent electrocatalytic activity toward the oxidations of ascorbic acid (AA), dopamine (DA), and uric acid (UA) in 0.1M phosphate buffer solution (PBS, pH 7.0). Indeed, ZnO/RM-coated GCE separated the anodic oxidation waves of DA, AA, and UA with well-defined peak separations in their mixture solution. Consequently, the GCE/ZnO/RMs were used for simultaneous detection of DA, AA, and UA in their mixture solution. Using CV, calibration curves for DA, AA, and UA were obtained over the range of 6.0 x 10(-6) to 9.6 x 10(-4)M, 1.5 x 10(-5) to 2.4 x 10(-4)M, and 5.0 x 10(-5) to 8 x 10(-4)M with correlation coefficients of 0.992, 0.991, and 0.989, respectively. Moreover, ZnO/RM-modified GCE had good stability and antifouling properties.

  1. Developing electrochemical sensor for point-of-care diagnostics of oxidative stress marker using imprinted bimetallic Fe/Pd nanoparticle.

    PubMed

    Roy, Ekta; Patra, Santanu; Madhuri, Rashmi; Sharma, Prashant K

    2015-01-01

    A novel electrochemical-sensing platform based on imprinted bimetallic Fe/Pd (BI-Fe/Pd) nanoparticle has been fabricated for point-of-care diagnostics of oxidative stress marker (3-nitrotyrosine) in biological fluids. Herein, BI-Fe/Pd nanoparticles are used as a platform on which 3-nitrotyrosine imprinted cavities are created using acrylamide as monomer and N-N'-methylene bisacrylamide as cross-linker. The performance of the obtained imprinted sensor is investigated by cyclic, differential pulse, and square wave voltammetry in stripping mode. The imprinted sensor exhibits high recognition ability and affinity for 3-nitrotyrosine in comparison with the non-imprinted one. In addition, the proposed sensor is capable of measuring 3-nitrotyrosine in aqueous as well as in human blood serum, plasma, and urine samples within the range of 4.90-867.57 µg L(-1) and 9.90-867.57 µg L(-1) with detection limit of 1.20 µg L(-1) and 3.25 µg L(-1) by square wave and differential pulse stripping voltammetry, respectively. Imprinted BI-Fe/Pd nanoparticle modified sensor shows high affinity and no interference from blood or urine components. Modified sensor was stored for 45 days at room temperature without any detrimental effects to their binding properties. The high affinity of proposed sensor and the lack of requirement for cold chain logistics make them an attractive alternative to the enzyme-linked immunosorbent assay (ELISA) technique.

  2. Electrochemical Sensors for Clinic Analysis

    PubMed Central

    Wang, You; Xu, Hui; Zhang, Jianming; Li, Guang

    2008-01-01

    Demanded by modern medical diagnosis, advances in microfabrication technology have led to the development of fast, sensitive and selective electrochemical sensors for clinic analysis. This review addresses the principles behind electrochemical sensor design and fabrication, and introduces recent progress in the application of electrochemical sensors to analysis of clinical chemicals such as blood gases, electrolytes, metabolites, DNA and antibodies, including basic and applied research. Miniaturized commercial electrochemical biosensors will form the basis of inexpensive and easy to use devices for acquiring chemical information to bring sophisticated analytical capabilities to the non-specialist and general public alike in the future. PMID:27879810

  3. Electrochemical sensor for Isoniazid based on the glassy carbon electrode modified with reduced graphene oxide-Au nanomaterials.

    PubMed

    Guo, Zhuo; Wang, Ze-Yu; Wang, Hui-Hua; Huang, Guo-Qing; Li, Meng-Meng

    2015-12-01

    A sensitive electrochemical sensor has been fabricated to detect Isoniazid (INZ) using reduced graphene oxide (RGO) and Au nanocomposites (RGO-Au). RGO-Au nanocomposites were synthesized by a solution-based approach of chemical co-reduction of Au(III) and graphene oxide (GO), and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and Fourier transform infrared (FT-IR). The Au nanoparticles separate the RGO sheets in the precipitate and prevent RGO sheets from aggregation upon π-π stacking interactions. RGO-Au nanocomposites were used to modify the glassy carbon electrode (GCE). The electrochemical properties of RGO-Au/GCE were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), and the RGO-Au/GCE exhibited remarkably strong electrocatalytic activities towards INZ. Under the optimized conditions, there was linear relationships between the peak currents and the concentrations in the range of 1.0×10(-7)M to 1.0×10(-3)M for INZ, with the limit of detection (LOD) (based on S/N=3) of 1.0×10(-8)M for INZ.

  4. An electrochemical acetylcholine sensor based on lichen-like nickel oxide nanostructure.

    PubMed

    Sattarahmady, N; Heli, H; Vais, R Dehdari

    2013-10-15

    Lichen-like nickel oxide nanostructure was synthesized by a simple method and characterized. The nanostructure was then applied to modify a carbon paste electrode and for the fabrication of a sensor, and the electrocatalytic oxidation of acetylcholine (ACh) on the modified electrode was investigated. The electrocatalytic efficiency of the nickel oxide nanostructure was compared with nickel micro- and nanoparticles, and the lichen-like nickel oxide nanostructure showed the highest efficiency. The mechanism and kinetics of the electrooxidation process were investigated by cyclic voltammetry, steady-state polarization curve and chronoamperometry. The catalytic rate constant and the charge transfer coefficient of ACh electrooxidation by the active nickel species, and the diffusion coefficient of ACh were reported. A sensitive and time-saving hydrodynamic amperometry method was developed for the determination of ACh. ACh was determined with a sensitivity of 392.4 mA M⁻¹ cm⁻² and a limit of detection of 26.7 μM. The sensor had the advantages of simple fabrication method without using any enzyme or reagent and immobilization step, high electrocatalytic activity, very high sensitivity, long-term stability, and antifouling surface property toward ACh and its oxidation product.

  5. Electrochemical non-enzymatic glucose sensors.

    PubMed

    Park, Sejin; Boo, Hankil; Chung, Taek Dong

    2006-01-18

    The electrochemical determination of glucose concentration without using enzyme is one of the dreams that many researchers have been trying to make come true. As new materials have been reported and more knowledge on detailed mechanism of glucose oxidation has been unveiled, the non-enzymatic glucose sensor keeps coming closer to practical applications. Recent reports strongly imply that this progress will be accelerated in 'nanoera'. This article reviews the history of unraveling the mechanism of direct electrochemical oxidation of glucose and making attempts to develop successful electrochemical glucose sensors. The electrochemical oxidation of glucose molecules involves complex processes of adsorption, electron transfer, and subsequent chemical rearrangement, which are combined with the surface reactions on the metal surfaces. The information about the direct oxidation of glucose on solid-state surfaces as well as new electrode materials will lead us to possible breakthroughs in designing the enzymeless glucose sensing devices that realize innovative and powerful detection. An example of those is to introduce nanoporous platinum as an electrode, on which glucose is oxidized electrochemically with remarkable sensitivity and selectivity. Better model of such glucose sensors is sought by summarizing and revisiting the previous reports on the electrochemistry of glucose itself and new electrode materials.

  6. Bioapplications of Electrochemical Sensors and Biosensors.

    PubMed

    Dumitrescu, Eduard; Andreescu, Silvana

    2017-01-01

    Recent progress in the electrochemical field enabled development of miniaturized sensing devices that can be used in biological settings to obtain fundamental and practical biochemically relevant information on physiology, metabolism, and disease states in living systems. Electrochemical sensors and biosensors have demonstrated potential for rapid, real-time measurements of biologically relevant molecules. This chapter provides an overview of the most recent advances in the development of miniaturized sensors for biological investigations in living systems, with focus on the detection of neurotransmitters and oxidative stress markers. The design of electrochemical (bio)sensors, including their detection mechanism and functionality in biological systems, is described as well as their advantages and limitations. Application of these sensors to studies in live cells, embryonic development, and rodent models is discussed.

  7. Constructing a novel 8-hydroxy-2'-deoxyguanosine electrochemical sensor and application in evaluating the oxidative damages of DNA and guanine.

    PubMed

    Guo, Zhipan; Liu, Xiuhui; Liu, Yuelin; Wu, Guofan; Lu, Xiaoquan

    2016-12-15

    8-Hydroxy-2'-deoxyguanosine (8-OHdG) is commonly identified as a biomarker of oxidative DNA damage. In this work, a novel and facile 8-OHdG sensor was developed based on the multi-walled carbon nanotubes (MWCNTs) modified glassy carbon electrode (GCE). It exhibited good electrochemical responses toward the oxidation of 8-OHdG, and the linear ranges were 5.63×10(-8)-6.08×10(-6)M and 6.08×10(-6)-1.64×10(-5)M, with the detection limit of 1.88×10(-8)M (S/N=3). Moreover, the fabricated sensor was applied for the determination of 8-OHdG generated from damaged DNA and guanine, respectively, and the oxidation currents of 8-OHdG increased along with the damaged DNA and guanine within certain concentrations. These results could be used to evaluate the DNA damage, and provide useful information on diagnosing diseases caused by mutation and deficiency of the immunity system.

  8. Polyaniline-iron oxide nanohybrid film as multi-functional label-free electrochemical and biomagnetic sensor for catechol.

    PubMed

    Chandra, Sudeshna; Lang, Heinrich; Bahadur, Dhirendra

    2013-09-17

    Polyaniline-iron oxide magnetic nanohybrid was synthesized and characterized using various spectroscopic, microstructural and electrochemical techniques. The smart integration of Fe3O4 nanoparticles within the polyaniline (PANI) matrix yielded a mesoporous nanohybrid (Fe3O4@PANI) with high surface area (94 m(2) g(-1)) and average pore width of 12.8 nm. Catechol is quasi-reversibly oxidized to o-quinone and reduced at the Fe3O4@PANI modified electrodes. The amperometric current response toward catechol was evaluated using the nanohybrid and the sensitivity and detection limit were found to be 312 μA μL(-1) and 0.2 nM, respectively. The results from electrochemical impedance spectroscopy (EIS) indicated that the increased solution resistance (Rs) was due to elevated adsorption of catechol on the modified electrodes. Photoluminescence spectra showed ligand-to-metal charge transfer (LMCT) between p-π orbitals of the phenolate oxygen in catechol and the d-σ* metal orbital of Fe3O4@PANI nanohybrid. Potential dependent spectroelectrochemical behavior of Fe3O4@PANI nanohybrid toward catechol was studied using UV/vis/NIR spectroscopy. The binding activity of the biomagnetic particles to catechol through Brownian relaxation was evident from AC susceptibility measurements. The proposed sensor was used for successful recovery of catechol in tap water samples.

  9. Highly sensitive and selective non enzymatic electrochemical glucose sensors based on Graphene Oxide-Molecular Imprinted Polymer.

    PubMed

    Alexander, Sheeba; Baraneedharan, P; Balasubrahmanyan, Shriya; Ramaprabhu, S

    2017-09-01

    Graphene Oxide-Molecular Imprinted Polymer (GO-MIP) based electrochemical sensor was developed for the first time towards enzyme less determination of glucose. This GO-MIP was obtained from a series of fictionalization, polymerization and template molecule introduction/removal during the synthesizing process. The proposed GO-MIP based electrode showed excellent electrocatalytic activity towards glucose oxidation at optimized conditions and possessing detection limit of 0.1nM with a response time of ~2min. The current response of GO-MIP based glucose sensor was linearly related to the concentration of glucose. The results obtained from the real time usability of electrodes in human blood matches well with commercially available glucose monitors. Further, the reusability of the material is checked up to eight cycles and interference of glucose with ascorbic acid (AA), uric acid (UA) and dopamine (DA) were also studied. The obtained results endorse the promising application of GO-MIP towards superior glucose sensing with long term stability. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Applications of ionic liquids in electrochemical sensors.

    PubMed

    Wei, Di; Ivaska, Ari

    2008-01-28

    Ionic liquids (ILs) are molten salts with the melting point close to or below room temperature. They are composed of two asymmetrical ions of opposite charges that only loosely fit together (usually bulky organic cations and smaller anions). The good solvating properties, high conductivity, non-volatility, low toxicity, large electrochemical window (i.e. the electrochemical potential range over which the electrolyte is neither reduced nor oxidized on electrodes) and good electrochemical stability, make ILs suitable for many applications. Recently, novel ion selective sensors, gas sensors and biosensors based on ILs have been developed. IL gels were found to have good biocompatibility with enzymes, proteins and even living cells. Besides a brief discussion of the properties of ILs and their general applications based on these properties, this review focuses on the application of ILs in electroanalytical sensors.

  11. Orientation Insensitivity for Electrochemical Sensor

    NASA Technical Reports Server (NTRS)

    Cromer, R. B.

    1982-01-01

    Using a wettable polypropylene wick, performance of an electro-chemical hydrazine sensor is made independent of its orientation. Wick keeps all electrodes in constant contact with electrolyte solution so that one or more of the electrodes do not become isolated from the electrolyte if the sensor is tilted or vibrated.

  12. The utilization of SiNWs/AuNPs-modified indium tin oxide (ITO) in fabrication of electrochemical DNA sensor.

    PubMed

    Rashid, Jahwarhar Izuan Abdul; Yusof, Nor Azah; Abdullah, Jaafar; Hashim, Uda; Hajian, Reza

    2014-12-01

    This work describes the incorporation of SiNWs/AuNPs composite as a sensing material for DNA detection on indium tin-oxide (ITO) coated glass slide. The morphology of SiNWs/AuNPs composite as the modifier layer on ITO was studied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The morphological studies clearly showed that SiNWs were successfully decorated with 20 nm-AuNPs using self-assembly monolayer (SAM) technique. The effective surface area for SiNWs/AuNPs-modified ITO enhanced about 10 times compared with bare ITO electrode. SiNWs/AuNPs nanocomposite was further explored as a matrix for DNA probe immobilization in detection of dengue virus as a bio-sensing model to evaluate its performance in electrochemical sensors. The hybridization of complementary DNA was monitored by differential pulse voltammetry (DPV) using methylene blue (MB) as the redox indicator. The fabricated biosensor was able to discriminate significantly complementary, non-complementary and single-base mismatch oligonucleotides. The electrochemical biosensor was sensitive to target DNA related to dengue virus in the range of 9.0-178.0 ng/ml with detection limit of 3.5 ng/ml. In addition, SiNWs/AuNPs-modified ITO, regenerated up to 8 times and its stability was up to 10 weeks at 4°C in silica gel. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A novel electrochemical biomimetic sensor based on poly(Cu-AMT) with reduced graphene oxide for ultrasensitive detection of dopamine.

    PubMed

    Li, Yaru; Gu, Yue; Zheng, Bo; Luo, Lan; Li, Cong; Yan, Xiaoyi; Zhang, Tingting; Lu, Nannan; Zhang, Zhiquan

    2017-01-01

    A polymerized film of copper-2-amino-5-mercapto-1,3,4-thiadiazole (Cu(II)-AMT) complex (poly(Cu-AMT)) was successfully achieved via a simple and low-cost electrochemical methodology. Subsequently, a noncovalent nanohybrid of poly(Cu-AMT) with reduced graphene oxide (rGO) (rGO-poly(Cu-AMT)) was prepared through π-π stacking interaction as an efficient mimetic enzyme for the ultrasensitive and selective detection of dopamine (DA). The rGO-poly(Cu-AMT) nanocomposites showed considerable mimetic enzyme catalytic activity, which may be attributed to the significant promotion of the electron transfer between the substrate and graphene-based carbon materials, and also the synergistic electrocatalytic effect in mimetic enzyme between rGO sheet and poly(Cu-AMT). The electrocatalytic and sensing performances of the biomimetic sensor based on the rGO-poly(Cu-AMT) nanocomposites were evaluated in detail. The biomimetic sensor enables a reliable and sensitive determination of DA with a linear range of 0.01-40μM and a detection limit of 3.48nM at a signal-to-noise ratio of 3. In addition, we applied the proposed method to detect DA in real sample with satisfactory results. Accordingly, the rGO-poly(Cu-AMT) is one of the promising mimetic enzyme for electrocatalysis and biosensing.

  14. Iridium Oxide-reduced Graphene Oxide Nanohybrid Thin Film Modified Screen-printed Electrodes as Disposable Electrochemical Paper Microfluidic pH Sensors.

    PubMed

    Yang, Jiang; Kwak, Tae-Joon; Zhang, Xiaodong; McClain, Robert; Chang, Woo-Jin; Gunasekaran, Sundaram

    2016-11-22

    A facile, controllable, inexpensive and green electrochemical synthesis of IrO2-graphene nanohybrid thin films is developed to fabricate an easy-to-use integrated paper microfluidic electrochemical pH sensor for resource-limited settings. Taking advantages from both pH meters and strips, the pH sensing platform is composed of hydrophobic barrier-patterned paper micropad (µPAD) using polydimethylsiloxane (PDMS), screen-printed electrode (SPE) modified with IrO2-graphene films and molded acrylonitrile butadiene styrene (ABS) plastic holder. Repetitive cathodic potential cycling was employed for graphene oxide (GO) reduction which can completely remove electrochemically unstable oxygenated groups and generate a 2D defect-free homogeneous graphene thin film with excellent stability and electronic properties. A uniform and smooth IrO2 film in nanoscale grain size is anodically electrodeposited onto the graphene film, without any observable cracks. The resulting IrO2-RGO electrode showed slightly super-Nernstian responses from pH 2-12 in Britton-Robinson (B-R) buffers with good linearity, small hysteresis, low response time and reproducibility in different buffers, as well as low sensitivities to different interfering ionic species and dissolved oxygen. A simple portable digital pH meter is fabricated, whose signal is measured with a multimeter, using high input-impedance operational amplifier and consumer batteries. The pH values measured with the portable electrochemical paper-microfluidic pH sensors were consistent with those measured using a commercial laboratory pH meter with a glass electrode.

  15. Renewable-reagent electrochemical sensor

    DOEpatents

    Wang, Joseph; Olsen, Khris B.

    1999-01-01

    A new electrochemical probe(s) design allowing for continuous (renewable) reagent delivery. The probe comprises an integrated membrane-sampling/electrochemical sensor that prevents interferences from surface-active materials and greatly extends the linear range. The probe(s) is useful for remote or laboratory-based monitoring in connection with microdialysis sampling and electrochemical measurements of metals and organic compounds that are not readily detected in the absence of reacting with the compound. Also disclosed is a method of using the probe(s).

  16. Renewable-reagent electrochemical sensor

    DOEpatents

    Wang, J.; Olsen, K.B.

    1999-08-24

    A new electrochemical probe(s) design allowing for continuous (renewable) reagent delivery is described. The probe comprises an integrated membrane sampling/electrochemical sensor that prevents interferences from surface-active materials and greatly extends the linear range. The probe(s) is useful for remote or laboratory-based monitoring in connection with microdialysis sampling and electrochemical measurements of metals and organic compounds that are not readily detected in the absence of reacting with the compound. Also disclosed is a method of using the probe(s). 19 figs.

  17. Synthesis of Ultrastable Ag Nanoplates/Polyethylenimine-Reduced Graphene Oxide and Its Application as a Versatile Electrochemical Sensor.

    PubMed

    Wang, Jindi; Zhang, Guoxin; Sun, Wanxia; Sun, Jingsong; Luo, Liang; Chang, Zheng; Sun, Xiaoming

    2016-07-25

    Investigations on Ag nanostructures/reduced graphene oxide composites have been frequently reported, yet the morphology control of those loaded Ag nanocrystals is still challenging. We herein develop a facile method to grow triangular Ag nanoplates (AgP) on polyethylenimine-modified reduced graphene oxide (AgP/PEI-rGO). The AgP/PEI-rGO hybrids show unexpected high stability against chloride ions (Cl(-) ) and hydrogen peroxide (H2 O2 ), which is possibly due to the strong interaction between surface Ag atoms with the amine groups of PEI. In the chronoamperometry measurements for detecting H2 O2 , N2 H4 , and NaNO2 , the AgP/PEI-rGO hybrid shows very wide linear ranges (usually 10(-6) -10(-2)  mol L(-1) for H2 O2 , N2 H4 , and NaNO2 ) and low detection limits (down to ≈1×10(-7)  mol L(-1) ), which demonstrate the promising electrochemical sensor applications of these metal/graphene hybrids with well-defined morphologies and facets. In addition, this strategy could be extended to the deposition of other noble metals on rGO with controlled morphologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Electrochemical Oxygen Sensor Development for Liquid Sodium

    NASA Astrophysics Data System (ADS)

    Nollet, Billy K.

    Safe operation of a sodium-cooled fast reactor (SFR) requires in-depth understanding of the corrosion implications of liquid sodium coolant on reactor materials. Dissolved oxygen concentration is of particular importance in characterizing sodium attack, so an accurate means of measuring and controlling oxygen is crucial. There is significant room for improvement in current oxygen sensing technology, so extensive research has been conducted at the University of Wisconsin-Madison to address this issue. Experimental facilities and electrochemical oxygen sensors have been developed, tested, and analyzed. This research is discussed in detail in this report. The oxygen sensors tested in this research were developed using a yttria stabilized zirconia (YSZ) electrolyte whereas many of the past research in this field was conducted with yttria doped thoria (YDT or YST) electrolytes. Thorium, an alpha emitter, is expensive and increasingly difficult to acquire, so motivation to switch to a new material exists. YSZ is commonly used as the electrolyte for solid oxide fuel cells, and ample data is available for high temperature ionic conduction of this material. While some work has been done with YSZ in oxygen sensors (the automotive field, for example, uses YSZ O2 sensors), research on YSZ sensors in sodium is limited. A thorough study of YSZ-based electrochemical oxygen sensors must include detailed corrosion testing and analysis of YSZ in liquid sodium, careful oxygen sensor development and testing, and finally, a comprehensive analysis of the acquired sensor data. The research presented in this report describes the design and development of an electrochemical oxygen sensor for use in sodium using a YSZ electrolyte through the previously-mentioned steps. The designed sensors were subjected to a series of hypotheses which advance common understanding of oxygen sensor signal. These results were used in conjunction with past research to form reliable conclusions.

  19. An electrochemical sensor for gallic acid based on Fe₂O₃/electro-reduced graphene oxide composite: Estimation for the antioxidant capacity index of wines.

    PubMed

    Gao, Feng; Zheng, Delun; Tanaka, Hidekazu; Zhan, Fengping; Yuan, Xiaoning; Gao, Fei; Wang, Qingxiang

    2015-12-01

    A highly sensitive electrochemical sensor for gallic acid (GA), an important polyphenolic compound, was fabricated using the hybrid material of chitosan (CS), fishbone-shaped Fe2O3 (fFe2O3), and electrochemically reduced graphene oxide (ERGO) as the sensing matrix. The electrochemical characterization experiments showed that the CS-fFe2O3-ERGO modified glassy carbon electrode (CS-fFe2O3-ERGO/GCE) had large surface area, excellent electronic conductivity and high stability. The GA presented a superior electrochemical response on CS-fFe2O3-ERGO/GCE in comparison with the single-component modified electrode. The electrochemical mechanism and optimal test conditions of GA on the electrode surface were carefully investigated. Under the optimal conditions, the oxidation peak currents in differential pulse voltammetry (DPV) experiments exhibited a good linear relationship with the logarithmic values of GA concentration over the range from 1.0×10(-6)M to 1.0×10(-4)M. Based on signal-to-noise (S/N) characteristic of 3, the detection limit was estimated to be 1.5×10(-7)M. The proposed sensor has also been applied for estimating the antioxidant capacity index of real samples of red and white wines.

  20. Bacterial Detection & Identification Using Electrochemical Sensors

    PubMed Central

    Halford, Colin; Gau, Vincent; Churchill, Bernard M.; Haake, David A.

    2013-01-01

    Electrochemical sensors are widely used for rapid and accurate measurement of blood glucose and can be adapted for detection of a wide variety of analytes. Electrochemical sensors operate by transducing a biological recognition event into a useful electrical signal. Signal transduction occurs by coupling the activity of a redox enzyme to an amperometric electrode. Sensor specificity is either an inherent characteristic of the enzyme, glucose oxidase in the case of a glucose sensor, or a product of linkage between the enzyme and an antibody or probe. Here, we describe an electrochemical sensor assay method to directly detect and identify bacteria. In every case, the probes described here are DNA oligonucleotides. This method is based on sandwich hybridization of capture and detector probes with target ribosomal RNA (rRNA). The capture probe is anchored to the sensor surface, while the detector probe is linked to horseradish peroxidase (HRP). When a substrate such as 3,3',5,5'-tetramethylbenzidine (TMB) is added to an electrode with capture-target-detector complexes bound to its surface, the substrate is oxidized by HRP and reduced by the working electrode. This redox cycle results in shuttling of electrons by the substrate from the electrode to HRP, producing current flow in the electrode. PMID:23644406

  1. A reagentless non-enzymatic hydrogen peroxide sensor presented using electrochemically reduced graphene oxide modified glassy carbon electrode.

    PubMed

    Mutyala, Sankararao; Mathiyarasu, Jayaraman

    2016-12-01

    Herein, we report a simple, facile and reproducible non-enzymatic hydrogen peroxide (H2O2) sensor using electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The modified electrode was characterized by Fourier transform infrared (FT-IR), UV-Visible, scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. Cyclic voltammetric (CV) analysis revealed that ERGO/GCE exhibited virtuous charge transfer properties for a standard redox systems and showed excellent performance towards electroreduction of H2O2. Amperometric study using ERGO/GCE showed high sensitivity (0.3μA/μM) and faster response upon the addition of H2O2 at an applied potential of -0.25V vs. Ag/AgCl. The detection limit is assessed to be 0.7μM (S/N=3) and the time to reach a stable study state current is <3s for a linear range of H2O2 concentration (1-16μM). In addition, the modified electrode exhibited good reproducibility and long-term stability. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Layer-by-layer assembly sensitive electrochemical sensor for selectively probing L-histidine based on molecular imprinting sol-gel at functionalized indium tin oxide electrode.

    PubMed

    Zhang, Zhaohui; Hu, Yufang; Zhang, Huabin; Luo, Lijuan; Yao, Shouzhuo

    2010-10-15

    A novel sensitive and selective imprinted electrochemical sensor was successfully constructed for the direct detection of L-histidine by combination of a molecular imprinting film and multi-walled carbon nanotubes (MWNTs). The sensor was fabricated onto an indium tin oxide (ITO) electrode via stepwise modification of MWNTs and a thin film of molecularly imprinted polymers (MIPs) via sol-gel technology. The introduced MWNTs exhibited noticeable enhancement on the sensitivity of the MIPs sensor. Meanwhile, the molecularly imprinted film displayed high sensitivity and excellent selectivity for the target molecule L-histidine. The proposed imprinted sensor was characterized by using scanning electron microscope (SEM) and electrochemical methods involving cyclic voltammetry (CV), differential pulse voltammetry (DPV) and amperometric i-t curve. A linear ranging from 2.0 μmol L(-1) to 1.0 mmol L(-1) for the detection of L-histidine was observed with the detection limit of 5.8×10(-9) mol L(-1) for S/N=3. This imprinted electrochemical sensor was successfully employed to detect L-histidine in human blood serum.

  3. Wireless powering for electrochemical sensor

    NASA Astrophysics Data System (ADS)

    Peplowski, Andrzej; Janczak, Daniel; Jakubowska, Małgorzata

    2016-09-01

    System of wireless energy supply for a electrochemical sensor is presented. As a first step, various theoretical models of the sensor were considered and a new model, proper for the application studied, was proposed to enable further design stages. In the experiment conducted, it was verified, that the sensor, working in an amperometric mode and in the presence of constant or quasi-constant voltage supply, could be electrically approximated as element of the constant impedance value. Given this, power-consumption was calculated for the sensor using Ohm's law and the proof of concept device was fabricated to evaluate performance of the sensor under theoretically calculated conditions. The results obtained were comparable to the data previously recorded using conventional laboratory potentiostat. For verification of the resistive character of the sensor, chronoamperometric method was employed, with sensor's response complying with the theoretical prediction for quasi-constant powering signal and being influenced only by major voltage changes. Calculated power consumption of the sensor was Pmax. = 18.23μW. Concerning sensor's requirement for quasiconstant voltage, simple half-wave rectifier was designed that was connected to the antenna used for powering signal reception. In the second experiment, calibration of the sensor was performed, yielding sensitivity s = 2.03 μA/μmol/L and linear correlation coefficient ρ = 0.986 and thus confirming proper operation of the device in the conditions considered.

  4. Electrochemically Grown Single Nanowire Sensors

    NASA Technical Reports Server (NTRS)

    Yun, Minhee; Lee, Choonsup; Vasquez, Richard P.; Penner, Reginald; Bangar, Mangesh; Mulchandani, Ashok; Myung, Nosang V.

    2004-01-01

    We report a fabrication technique that is potentially capable of producing arrays of individually addressable nanowire sensors with controlled dimensions, positions, alignments, and chemical compositions. The concept has been demonstrated with electrodeposition of palladium wires with 75 nm to 350 nm widths. We have also fabricated single and double conducting polymer nanowires (polyaniline and polypyrrole) with 100nm and 200nm widths using electrochemical direct growth. Using single Pd nanowires, we have also demonstrated hydrogen sensing. It is envisioned that these are the first steps towards nanowire sensor arrays capable of simultaneously detecting multiple chemical species.

  5. Electrochemical oxidation of methylenedioxyamphetamines.

    PubMed

    Squella, J A; Cassels, B K; Arata, M; Bavestrello, M P; Nuñez-Vergara, L J

    1993-09-01

    Four amphetamine derivatives bearing a methylenedioxy group at positions 3 and 4 of the benzene ring and differing in their substitution at C(6) were studied by differential pulse voltammetry in aqueous media. These experiments showed a single oxidation peak for the C(6)-H, -Br and -Cl compounds, while the C(6)-NO(2) analogue was not oxidized. The oxidation peak is interpreted as due to the removal of one electron from the aromatic electrophore with formation of a radical cation stabilized by the dioxole ring. The linear relationship between the peak current and the concentration of the derivatives is appropriate for development of a quantitative method for their determination. pK' values were determined using both electrochemical and spectrophotometric methods.

  6. Preparation and characterization of zinc oxide nanoparticles and their sensor applications for electrochemical monitoring of nucleic acid hybridization.

    PubMed

    Yumak, Tugrul; Kuralay, Filiz; Muti, Mihrican; Sinag, Ali; Erdem, Arzum; Abaci, Serdar

    2011-09-01

    In this study, ZnO nanoparticles (ZNP) of approximately 30 nm in size were synthesized by the hydrothermal method and characterized by X-ray diffraction (XRD), Braun-Emmet-Teller (BET) N2 adsorption analysis and transmission electron microscopy (TEM). ZnO nanoparticles enriched with poly(vinylferrocenium) (PVF+) modified single-use graphite electrodes were then developed for the electrochemical monitoring of nucleic acid hybridization related to the Hepatitis B Virus (HBV). Firstly, the surfaces of polymer modified and polymer-ZnO nanoparticle modified single-use pencil graphite electrodes (PGEs) were characterized using scanning electron microscopy (SEM). The electrochemical behavior of these electrodes was also investigated using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Subsequently, the polymer-ZnO nanoparticle modified PGEs were evaluated for the electrochemical detection of DNA based on the changes at the guanine oxidation signals. Various modifications in DNA oligonucleotides and probe concentrations were examined in order to optimize the electrochemical signals that were generated by means of nucleic acid hybridization. After the optimization studies, the sequence-selective DNA hybridization was investigated in the case of a complementary amino linked probe (target), or noncomplementary (NC) sequences, or target and mismatch (MM) mixture in the ratio of (1:1).

  7. Computer-assisted electrochemical fabrication of a highly selective and sensitive amperometric nitrite sensor based on surface decoration of electrochemically reduced graphene oxide nanosheets with CoNi bimetallic alloy nanoparticles.

    PubMed

    Gholivand, Mohammad-Bagher; Jalalvand, Ali R; Goicoechea, Hector C

    2014-07-01

    For the first time, a novel, robust and very attractive statistical experimental design (ED) using minimum-run equireplicated resolution IV factorial design (Min-Run Res IV FD) coupled with face centered central composite design (FCCCD) and Derringer's desirability function (DF) was developed to fabricate a highly selective and sensitive amperometric nitrite sensor based on electrodeposition of CoNi bimetallic alloy nanoparticles (NPs) on electrochemically reduced graphene oxide (ERGO) nanosheets. The modifications were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), energy dispersive X-ray spectroscopic (EDS), scanning electron microscopy (SEM) techniques. The CoNi bimetallic alloy NPs were characterized using digital image processing (DIP) for particle counting (density estimation) and average diameter measurement. Under the identified optimal conditions, the novel sensor detects nitrite in concentration ranges of 0.1-30.0 μM and 30.0-330.0 μM with a limit of detection (LOD) of 0.05 μM. This sensor selectively detects nitrite even in the presence of high concentration of common ions and biological interferents therefore, we found that the sensor is highly selective. The sensor also demonstrated an excellent operational stability and good antifouling properties. The proposed sensor was used to the determination of nitrite in several foodstuff and water samples.

  8. Electrochemical sensor for monitoring electrochemical potentials of fuel cell components

    DOEpatents

    Kunz, Harold R.; Breault, Richard D.

    1993-01-01

    An electrochemical sensor comprised of wires, a sheath, and a conduit can be utilized to monitor fuel cell component electric potentials during fuel cell shut down or steady state. The electrochemical sensor contacts an electrolyte reservoir plate such that the conduit wicks electrolyte through capillary action to the wires to provide water necessary for the electrolysis reaction which occurs thereon. A voltage is applied across the wires of the electrochemical sensor until hydrogen evolution occurs at the surface of one of the wires, thereby forming a hydrogen reference electrode. The voltage of the fuel cell component is then determined with relation to the hydrogen reference electrode.

  9. Electrochemical Sensors Based on Organic Conjugated Polymers

    PubMed Central

    Rahman, Md. Aminur; Kumar, Pankaj; Park, Deog-Su; Shim, Yoon-Bo

    2008-01-01

    Organic conjugated polymers (conducting polymers) have emerged as potential candidates for electrochemical sensors. Due to their straightforward preparation methods, unique properties, and stability in air, conducting polymers have been applied to energy storage, electrochemical devices, memory devices, chemical sensors, and electrocatalysts. Conducting polymers are also known to be compatible with biological molecules in a neutral aqueous solution. Thus, these are extensively used in the fabrication of accurate, fast, and inexpensive devices, such as biosensors and chemical sensors in the medical diagnostic laboratories. Conducting polymer-based electrochemical sensors and biosensors play an important role in the improvement of public health and environment because rapid detection, high sensitivity, small size, and specificity are achievable for environmental monitoring and clinical diagnostics. In this review, we summarized the recent advances in conducting polymer-based electrochemical sensors, which covers chemical sensors (potentiometric, voltammetric, amperometric) and biosensors (enzyme based biosensors, immunosensors, DNA sensors). PMID:27879698

  10. Electrochemical functionalization of vertically aligned carbon nanotube arrays with molybdenum oxides for the development of a surface-charge-controlled sensor

    NASA Astrophysics Data System (ADS)

    Ye, Jian-Shan; Wen, Ying; Wei-DeZhang; Cui, Hui Fang; Xu, Guo Qin; Sheu, Fwu-Shan

    2006-08-01

    The modification of inorganic polymeric oxides at the surface of carbon nanotubes is of paramount importance for developing new sensors. In this study, molybdenum oxide (MoOx) film was electrodeposited on the surface of multi-walled carbon nanotubes (MWNTs) by cycling the potential between +0.20 and -0.80 V (versus 3 M KCl-Ag|AgCl) in Na2MoO4 solution. The MoOx-modified nanotube (MoOx/MWNT) electrode displays well-defined redox transitions in 5 mM H2SO4 or in phosphate buffer solution (PBS), which can be attributed to the reductive formation and the re-oxidation of hydrogen molybdenum oxides. X-ray photoelectron spectra (XPS) showed that the deposited MoOx films are mainly Mo6+ complexes. Both MWNT and MoOx/MWNT electrodes have ideal reversibility in 5 mM K3[Fe(CN)6] in 1 M KCl as supporting electrolytes at all sweep rates (0.02-1.00 V s-1) by cyclic voltammetry. The negatively charged surface of MoOx/MWNTs can further attract molecular cations such as Ru(NH3)63+. The MoOx/MWNT electrode exhibited electrocatalytic ability towards the reduction of bromate due to high surface area and the fast electron transfer rate of nanotubes. Thus, electrochemical modification of inorganic polymeric oxides on the carbon nanotube provides a simple method for the preparation of novel sensors.

  11. Electrochemical techniques and sensors for ocean research

    NASA Astrophysics Data System (ADS)

    Denuault, G.

    2009-12-01

    This paper presents a review of applications of electrochemical methods in ocean sensing. It follows the white paper presented at the OceanSensors08 workshop held at the Leibniz-Institut für Ostseeforschung, Warnemünde, Germany, from 31 March to 4 April 2008. The principles of electrochemical techniques are briefly recalled and described. For each technique, relevant electrochemical sensors are discussed; known successful deployments of electrochemical sensors are recalled; challenges experienced when taking sensors from the research lab to the field are raised; future trends in development and applications are proposed and assessed for their potential for oceanographic applications; where possible technological readiness levels are estimated. The document is supported with references drawn from both the electrochemical and oceanographic literature.

  12. Electrochemical techniques and sensors for ocean research

    NASA Astrophysics Data System (ADS)

    Denuault, G.

    2009-08-01

    This paper presents a review of applications of electrochemical methods in ocean sensing. It follows the white paper presented at the OceanSensors08 workshop held at the Leibniz-Institut für Ostseeforschung, Warnemünde, Germany, from 31 March to 4 April 2008. The principles of electrochemical techniques are briefly recalled and described. For each technique, relevant electrochemical sensors are discussed; known successful deployments of electrochemical sensors are recalled; challenges experienced when taking sensors from the research lab to the field are raised; future trends in development and applications are proposed and assessed for their potential for oceanographic applications; where possible technological readiness levels are estimated. The document is supported with references drawn from both the electrochemical and oceanographic literature.

  13. Facile one-step electrochemical deposition of copper nanoparticles and reduced graphene oxide as nonenzymatic hydrogen peroxide sensor

    NASA Astrophysics Data System (ADS)

    Moozarm Nia, Pooria; Woi, Pei Meng; Alias, Yatimah

    2017-08-01

    For several decades, hydrogen peroxide has exhibited to be an extremely significant analyte as an intermediate in several biological devices as well as in many industrial systems. A straightforward and novel one-step technique was employed to develop a sensitive non-enzymatic hydrogen peroxide (H2O2) sensor by simultaneous electrodeposition of copper nanoparticles (CuNPs) and reduced graphene oxide (rGO). The electroreduction performance of the CuNPs-rGO for hydrogen peroxide detection was studied by cyclic voltammetry (CV) and chronoamperometry (AMP) methods The CuNPs-rGO showed a synergistic effect of reduced graphene oxide and copper nanoparticles towards the electroreduction of hydrogen peroxide, indicating high reduction current. At detection potential of -0.2 V, the CuNPs-rGO sensor demonstrated a wide linear range up to 18 mM with a detection limit of 0.601 mM (S/N = 3). Furthermore, with addition of hydrogen peroxide, the sensor responded very quickly (<3 s). The CuNPs-rGO presents high selectivity, sensitivity, stability and fast amperometric sensing towards hydrogen peroxide which makes it favorable for the development of non-enzymatic hydrogen peroxide sensor.

  14. Direct electrochemical oxidation of polyacrylates.

    PubMed

    Bellagamba, Riccardo; Comninellis, Christos; Vatistas, Nicolaos

    2002-10-01

    A promising elimination treatment of non-biodegradable organic pollutants is the direct electro-oxidation. In this work has been proposed the electrochemical elimination of polyacrylates by using boron-doped diamond (BDD) as anodic material. The complete elimination of organic contaminants has been obtained and this is the first case of successful electrochemical treatment of polymeric and bio-refractory species. The tests of the electrochemical oxidation have been conducted at constant current conditions and a complete elimination of organic species has been reached. The decrease of the COD value with time follows the behaviour of an ideal anode as in the case of low molecular organic compounds.

  15. Sensitive electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, and uric acid based on Au@Pd-reduced graphene oxide nanocomposites

    NASA Astrophysics Data System (ADS)

    Jiang, Jingjing; Du, Xuezhong

    2014-09-01

    Sensitive electrochemical sensors were fabricated with reduced graphene oxide-supported Au@Pd (Au@Pd-RGO) nanocomposites by one-step synthesis for individual and simultaneous determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA) with low detection limits and wide concentration ranges. From the Au@Pd-RGO-modified electrodes, well-separated oxidation peaks and enhanced peak currents of AA, DA, and UA were observed owing to the superior conductivity of RGO and the excellent catalytic activity of Au@Pd nanoparticles. For individual detection, the linear responses of AA, DA, and UA were in the concentration ranges of 0.1-1000, 0.01-100, and 0.02-500 μM with detection limits of 0.02, 0.002, and 0.005 μM (S/N = 3), respectively. For simultaneous detection by synchronous change of the concentrations of AA, DA, and UA, the linear response ranges were 1-800, 0.1-100, and 0.1-350 μM with detection limits of 0.28, 0.024, and 0.02 μM (S/N = 3), respectively. The fabricated sensors were further applied to the detection of AA, DA, and UA in urine samples. The Au@Pd-RGO nanocomposites have promising applications in highly sensitive and selective electrochemical sensing.Sensitive electrochemical sensors were fabricated with reduced graphene oxide-supported Au@Pd (Au@Pd-RGO) nanocomposites by one-step synthesis for individual and simultaneous determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA) with low detection limits and wide concentration ranges. From the Au@Pd-RGO-modified electrodes, well-separated oxidation peaks and enhanced peak currents of AA, DA, and UA were observed owing to the superior conductivity of RGO and the excellent catalytic activity of Au@Pd nanoparticles. For individual detection, the linear responses of AA, DA, and UA were in the concentration ranges of 0.1-1000, 0.01-100, and 0.02-500 μM with detection limits of 0.02, 0.002, and 0.005 μM (S/N = 3), respectively. For simultaneous detection by synchronous change of the

  16. Dopamine and uric acid electrochemical sensor based on a glassy carbon electrode modified with cubic Pd and reduced graphene oxide nanocomposite.

    PubMed

    Wang, Jin; Yang, Beibei; Zhong, Jiatai; Yan, Bo; Zhang, Ke; Zhai, Chunyang; Shiraishi, Yukihide; Du, Yukou; Yang, Ping

    2017-03-02

    A cubic Pd and reduced graphene oxide modified glassy carbon electrode (Pd/RGO/GCE) was fabricated to simultaneously detect dopamine (DA) and uric acid (UA) by cyclic voltammetry (CV) and different pulse voltammetry (DPV) methods. Compared with Pd/GCE and RGO/GCE, the Pd/RGO/GCE exhibited excellent electrochemical activity in electrocatalytic behaviors. Performing the Pd/RGO/GCE in CV measurement, the well-defined oxidation peak potentials separation between DA and UA reached to 145mV. By using the differential pulse voltammetry (DPV) technique, the calibration curves for DA and UA were found linear with the concentration range of 0.45-421μM and 6-469.5μM and the detection limit (S/N =3) were calculated to be 0.18μM and 1.6μM, respectively. Furthermore, the Pd/RGO/GCE displayed high selectivity when it was applied into the determination of DA and UA even though in presence of high concentration of interferents. Additionally, the prepared electrochemical sensor of Pd/RGO/GCE demonstrated a practical feasibility in rat urine and serum samples determination.

  17. Electrochemical Sensors for Vanadium Determination

    NASA Astrophysics Data System (ADS)

    Gogol, Ellina V.; Denisov, Evgenii S.; Lunev, Ivan V.; Egorova, Olga S.; Sharipova, Lyudmila; Gusev, Yury A.

    2017-08-01

    This paper is dedicated to the problem of vanadium (V) determination by the means of voltammetry. The comparison of results obtained for two types of sensor: volume glassy-carbon electrode and screen printed carbon electrode are presented. The experimental data is recorded using the hardware and software of «Novocontrol» (Germany): electrochemical interface POT/GAL 15V 10A, frequency response analyzer Alpha-A, and software for data collection and data processing WinDETA. Two three-electrode cells has been studied: for the first one the bulk glassy carbon electrode, and for the second one the screen printed electrodes has been used as the working electrode. In the first case the reference electrode has been made from silver chloride and the counter electrode from steel wire. In case of the screen printed electrodes, the electrodes were placed on the same plate. The peak of vanadium (V) was obtained under the potential of 1.3 V. It was found that the growth of the vanadium concentration increases magnitude of the cathode current measured then the mentioned potential is applied. The screen printed carbon electrodes provides better sensitivity in comparison with the volume glassy-carbon electrodes due to the more explicit vanadium potential peak.

  18. Electrochemical Sensors Based on Carbon Nanotubes

    PubMed Central

    Saleh Ahammad, A. J.; Lee, Jae-Joon; Rahman, Md. Aminur

    2009-01-01

    This review focuses on recent contributions in the development of the electrochemical sensors based on carbon nanotubes (CNTs). CNTs have unique mechanical and electronic properties, combined with chemical stability, and behave electrically as a metal or semiconductor, depending on their structure. For sensing applications, CNTs have many advantages such as small size with larger surface area, excellent electron transfer promoting ability when used as electrodes modifier in electrochemical reactions, and easy protein immobilization with retention of its activity for potential biosensors. CNTs play an important role in the performance of electrochemical biosensors, immunosensors, and DNA biosensors. Various methods have been developed for the design of sensors using CNTs in recent years. Herein we summarize the applications of CNTs in the construction of electrochemical sensors and biosensors along with other nanomaterials and conducting polymers. PMID:22574013

  19. Beyond graphene: Electrochemical sensors and biosensors for biomarkers detection.

    PubMed

    Bollella, Paolo; Fusco, Giovanni; Tortolini, Cristina; Sanzò, Gabriella; Favero, Gabriele; Gorton, Lo; Antiochia, Riccarda

    2017-03-15

    Graphene's success has stimulated great interest and research in the synthesis and characterization of graphene-like 2D materials, single and few-atom-thick layers of van der Waals materials, which show fascinating and technologically useful properties. This review presents an overview of recent electrochemical sensors and biosensors based on graphene and on graphene-like 2D materials for biomarkers detection. Initially, we will outline different electrochemical sensors and biosensors based on chemically derived graphene, including graphene oxide and reduced graphene oxide, properly functionalized for improved performances and we will discuss the various strategies to prepare graphene modified electrodes. Successively, we present electrochemical sensors and biosensors based on graphene-like 2D materials, such as boron nitride (BN), graphite-carbon nitride (g-C3N4), transition metal dichalcogenides (TMDs), transition metal oxides and graphane, outlining how the new modified 2D nanomaterials will improve the electrochemical performances. Finally, we will compare the results obtained with different sensors and biosensors for the detection of important biomarkers such as glucose, hydrogen peroxide and cancer biomarkers and highlight the advantages and disadvantages of the use of graphene and graphene-like 2D materials in different sensing platforms. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Electrochemical NOx Sensor for Monitoring Diesel Emissions

    SciTech Connect

    Woo, L Y; Glass, R S

    2008-11-14

    Increasingly stringent emissions regulations will require the development of advanced gas sensors for a variety of applications. For example, compact, inexpensive sensors are needed for detection of regulated pollutants, including hydrocarbons (HCs), CO, and NO{sub x}, in automotive exhaust. Of particular importance will be a sensor for NO{sub x} to ensure the proper operation of the catalyst system in the next generation of diesel (CIDI) automobiles. Because many emerging applications, particularly monitoring of automotive exhaust, involve operation in harsh, high-temperature environments, robust ceramic-oxide-based electrochemical sensors are a promising technology. Sensors using yttria-stabilized zirconia (YSZ) as an oxygen-ion-conducting electrolyte have been widely reported for both amperometric and potentiometric modes of operation. These include the well-known exhaust gas oxygen (EGO) sensor. More recently, ac impedance-based (i.e., impedance-metric) sensing techniques using YSZ have been reported for sensing water vapor, hydrocarbons, CO, and NO{sub x}. Typically small-amplitude alternating signal is applied, and the sensor response is measured at a specified frequency. Most impedance-metric techniques have used the modulus (or magnitude) at low frequencies (< 1 Hz) as the sensing signal and attribute the measured response to interfacial phenomena. Work by our group has also investigated using phase angle as the sensing signal at somewhat higher frequencies (10 Hz). The higher frequency measurements would potentially allow for reduced sampling times during sensor operation. Another potential advantage of impedance-metric NO{sub x} sensing is the similarity in response to NO and NO{sub 2} (i.e., total-NO{sub x} sensing). Potentiometric NO{sub x} sensors typically show higher sensitivity to NO2 than NO, and responses that are opposite in sign. However, NO is more stable than NO{sub 2} at temperatures > 600 C, and thermodynamic calculations predict {approx}90

  1. The first electrochemical MIP sensor for tamoxifen.

    PubMed

    Yarman, Aysu; Scheller, Frieder W

    2014-04-25

    We present an electrochemical MIP sensor for tamoxifen (TAM)-a nonsteroidal anti-estrogen-which is based on the electropolymerisation of an O-phenylenediamine‒resorcinol mixture directly on the electrode surface in the presence of the template molecule. Up to now only "bulk" MIPs for TAM have been described in literature, which are applied for separation in chromatography columns. Electro-polymerisation of the monomers in the presence of TAM generated a film which completely suppressed the reduction of ferricyanide. Removal of the template gave a markedly increased ferricyanide signal, which was again suppressed after rebinding as expected for filling of the cavities by target binding. The decrease of the ferricyanide peak of the MIP electrode depended linearly on the TAM concentration between 1 and 100 nM. The TAM-imprinted electrode showed a 2.3 times higher recognition of the template molecule itself as compared to its metabolite 4-hydroxytamoxifen and no cross-reactivity with the anticancer drug doxorubucin was found. Measurements at +1.1 V caused a fouling of the electrode surface, whilst pretreatment of TAM with peroxide in presence of HRP generated an oxidation product which was reducible at 0 mV, thus circumventing the polymer formation and electrochemical interferences.

  2. The First Electrochemical MIP Sensor for Tamoxifen

    PubMed Central

    Yarman, Aysu; Scheller, Frieder W.

    2014-01-01

    We present an electrochemical MIP sensor for tamoxifen (TAM)—a nonsteroidal anti-estrogen—which is based on the electropolymerisation of an O-phenylenediamine–resorcinol mixture directly on the electrode surface in the presence of the template molecule. Up to now only “bulk” MIPs for TAM have been described in literature, which are applied for separation in chromatography columns. Electro-polymerisation of the monomers in the presence of TAM generated a film which completely suppressed the reduction of ferricyanide. Removal of the template gave a markedly increased ferricyanide signal, which was again suppressed after rebinding as expected for filling of the cavities by target binding. The decrease of the ferricyanide peak of the MIP electrode depended linearly on the TAM concentration between 1 and 100 nM. The TAM-imprinted electrode showed a 2.3 times higher recognition of the template molecule itself as compared to its metabolite 4-hydroxytamoxifen and no cross-reactivity with the anticancer drug doxorubucin was found. Measurements at +1.1 V caused a fouling of the electrode surface, whilst pretreatment of TAM with peroxide in presence of HRP generated an oxidation product which was reducible at 0 mV, thus circumventing the polymer formation and electrochemical interferences. PMID:24776936

  3. Electrochemical oxidation of chemical weapons

    SciTech Connect

    Surma, J.E.

    1994-05-01

    Catalyzed electrochemical oxidation (CEO), a low-temperature electrochemical oxidation technique, is being examined for its potential use in destroying chemical warfare agents. The CEO process oxidizes organic compounds to form carbon dioxide and water. A bench-scale CEO system was used in three separate tests sponsored by the US Department of Energy`s (DOE) Office of Intelligence and National Security through the Advanced Concepts Program. The tests examined the effectiveness of CEO in destroying sarin (GB), a chemical nerve agent. The tests used 0.5 mL, 0.95 mL, and 1.0 mL of GB, corresponding to 544 mg, 816 mg, and 1,090 mg, respectively, of GB. Analysis of the off gas showed that, under continuous processing of the GB agent, destruction efficiencies of better than six 9s (99.9999% destroyed) could be achieved.

  4. Poly(ionic liquids) functionalized polypyrrole/graphene oxide nanosheets for electrochemical sensor to detect dopamine in the presence of ascorbic acid.

    PubMed

    Mao, Hui; Liang, Jiachen; Zhang, Haifeng; Pei, Qi; Liu, Daliang; Wu, Shuyao; Zhang, Yu; Song, Xi-Ming

    2015-08-15

    Novel poly(ionic liquids) functionalized polypyrrole/graphene oxide nanosheets (PILs/PPy/GO) were prepared by the polymerization of 1-vinyl-3-ethylimidazole bromide (VEIB) on the surface of N-vinyl imidazolium modified PPy/GO nanosheets. Due to the synergistic effects of GO with well-defined lamellar structures, conductive PPy and biocompatible PILs, PILs/PPy/GO modified glassy carbon electrode (GCE) presented the excellent electrochemical catalytic activity towards dopamine (DA) with good stability, high sensitivity and wide linear range in the present of ascorbic acid (AA) with high concentration. PILs played an essential role for the simultaneous determination of DA and AA in a mixture, whose existence effectively improved the transmission mode of electrons and resulted in the different electrocatalytic performance towards the oxidation of DA and AA. It is indicated that PILs/PPy/GO nanosheets can act as a good steady and sensitive electrode material for the development of improved DA sensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Electrochemical sensor based on conductive polymer electrolyte

    SciTech Connect

    Ribes, C.; Cisneros, B.; Noding, S.A.; Ribes, A.J.

    1995-12-31

    A novel conductive polymer film has been incorporated into an electrochemical sensor for the determination of toxic gases. The conductive film consists of an inert polymer, a completing agent, and a salt. A variety of gases can be determined with this sensor. The specific detection of sulfuryl fluoride (SO{sub 2}F{sub 2}) in air will be discussed as an example of the capability and flexibility of technology.

  6. Solid oxide electrochemical reactor science.

    SciTech Connect

    Sullivan, Neal P.; Stechel, Ellen Beth; Moyer, Connor J.; Ambrosini, Andrea; Key, Robert J.

    2010-09-01

    Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

  7. Determining Performance Acceptability of Electrochemical Oxygen Sensors

    NASA Technical Reports Server (NTRS)

    Gonzales, Daniel

    2012-01-01

    A method has been developed to screen commercial electrochemical oxygen sensors to reduce the failure rate. There are three aspects to the method: First, the sensitivity over time (several days) can be measured and the rate of change of the sensitivity can be used to predict sensor failure. Second, an improvement to this method would be to store the sensors in an oxygen-free (e.g., nitrogen) environment and intermittently measure the sensitivity over time (several days) to accomplish the same result while preserving the sensor lifetime by limiting consumption of the electrode. Third, the second time derivative of the sensor response over time can be used to determine the point in time at which the sensors are sufficiently stable for use.

  8. Folic Acid Determination Using Electrochemical Sensors

    PubMed Central

    Mirmoghtadaie, Leila; Shamaeizadeh, Nahal; Mirzanasiri, Nooshin

    2015-01-01

    Folic acid (FA) is a water soluble vitamin that exists in many natural species. The lack of FA causes some deficiencies in the human body, so finding a simple and sensitive method for determining the FA is important. One of the modern techniques which overcome the disadvantages of conventional determination methods is the sensors. Possibility of miniaturization, the development of microfabricated electrochemical (EC) sensors has resulted in high sensitivity, portability, improved performance and spatial resolution, low power consumption, and the opportunity for integration with other technologies made Micro-Electrical-Mechanical Systems-based EC sensors suitable to identify low concentration analytes and microorganisms in a variety of mediums. PMID:26605021

  9. Folic Acid Determination Using Electrochemical Sensors.

    PubMed

    Mirmoghtadaie, Leila; Shamaeizadeh, Nahal; Mirzanasiri, Nooshin

    2015-01-01

    Folic acid (FA) is a water soluble vitamin that exists in many natural species. The lack of FA causes some deficiencies in the human body, so finding a simple and sensitive method for determining the FA is important. One of the modern techniques which overcome the disadvantages of conventional determination methods is the sensors. Possibility of miniaturization, the development of microfabricated electrochemical (EC) sensors has resulted in high sensitivity, portability, improved performance and spatial resolution, low power consumption, and the opportunity for integration with other technologies made Micro-Electrical-Mechanical Systems-based EC sensors suitable to identify low concentration analytes and microorganisms in a variety of mediums.

  10. Electrochemical Nanoparticle-Based Sensors

    NASA Astrophysics Data System (ADS)

    Wang, Joseph

    Electrochemical devices are extremely useful for delivering analytical information in a fast, simple, and low-cost fashion, and are thus uniquely qualified for meeting the demands of point-of-care diagnostics. In particular, nanoparticles offer elegant ways for interfacing biomolecular recognition events with electronic signal transduction, for dramatically amplifying the resulting electrical response, and for designing novel coding strategies. Nanoparticles, such as colloidal gold or inorganic nanocrystals, offer considerable promise as quantitation tags for biological assays owing to their unique amplification and coding capabilities.

  11. Electrochemical Biosensors - Sensor Principles and Architectures

    PubMed Central

    Grieshaber, Dorothee; MacKenzie, Robert; Vörös, Janos; Reimhult, Erik

    2008-01-01

    Quantification of biological or biochemical processes are of utmost importance for medical, biological and biotechnological applications. However, converting the biological information to an easily processed electronic signal is challenging due to the complexity of connecting an electronic device directly to a biological environment. Electrochemical biosensors provide an attractive means to analyze the content of a biological sample due to the direct conversion of a biological event to an electronic signal. Over the past decades several sensing concepts and related devices have been developed. In this review, the most common traditional techniques, such as cyclic voltammetry, chronoamperometry, chronopotentiometry, impedance spectroscopy, and various field-effect transistor based methods are presented along with selected promising novel approaches, such as nanowire or magnetic nanoparticle-based biosensing. Additional measurement techniques, which have been shown useful in combination with electrochemical detection, are also summarized, such as the electrochemical versions of surface plasmon resonance, optical waveguide lightmode spectroscopy, ellipsometry, quartz crystal microbalance, and scanning probe microscopy. The signal transduction and the general performance of electrochemical sensors are often determined by the surface architectures that connect the sensing element to the biological sample at the nanometer scale. The most common surface modification techniques, the various electrochemical transduction mechanisms, and the choice of the recognition receptor molecules all influence the ultimate sensitivity of the sensor. New nanotechnology-based approaches, such as the use of engineered ion-channels in lipid bilayers, the encapsulation of enzymes into vesicles, polymersomes, or polyelectrolyte capsules provide additional possibilities for signal amplification. In particular, this review highlights the importance of the precise control over the delicate

  12. Microfabricated electrochemical sensors for chronic physiologic monitoring

    NASA Astrophysics Data System (ADS)

    Somps, C. J.; Madou, Marc J.; Hines, John W.

    1998-05-01

    NASA is developing miniaturized electrolyte and blood gas sensors to aid investigations into the influence of space flight on physiologic systems. These sensors are being applied in ex vivo blood flow loops as well as in in vivo wireless telemetric configurations. Our development approach is to first implement sensors in simple hand-made miniaturized catheter shaped configurations, and then migrate to micro planar configurations compatible with low- cost mass production. Catheter-based sensors are used for materials performance and biocompatibility testing, and for systems level integration, demonstration, and evaluation. For example, we have shown that pH sensitive polymer membranes cast on miniaturized catheters survive chronic implantation in rat subcutaneous tissue for periods up to 12 weeks with little loss in performance characteristics such as drift, sensitivity, selectivity, and response time. Microfabrication options for electrochemical sensors are based on a combination of thin and thick film technology with inexpensive non-silicon substrates. For the inorganic layers we are working with thin film technology with inexpensive non-silicon substrates. For the inorganic layers we are working with thin film evaporation and silk- screening, and for the organic layers we are comparing drop delivery and silk-screen approaches. The electrochemical cells are contacted from the back-side and each type of sensor is optimized on a separately fabricated substrate. Sensor combinations are then put into any desired array configuration with pick-and-place technology. This modular approach has many advantages over the integrated sensor approach which has been promoted as the ideal sensor solution for many years.

  13. Wearable electrochemical sensors for monitoring performance athletes

    NASA Astrophysics Data System (ADS)

    Fraser, Kevin J.; Curto, Vincenzo F.; Coyle, Shirley; Schazmann, Benjamin; Byrne, Robert; Benito-Lopez, Fernando; Owens, Róisín M.; Malliaras, George G.; Diamond, Dermot

    2011-10-01

    Nowadays, wearable sensors such as heart rate monitors and pedometers are in common use. The use of wearable systems such as these for personalized exercise regimes for health and rehabilitation is particularly interesting. In particular, the true potential of wearable chemical sensors, which for the real-time ambulatory monitoring of bodily fluids such as tears, sweat, urine and blood has not been realized. Here we present a brief introduction into the fields of ionogels and organic electrochemical transistors, and in particular, the concept of an OECT transistor incorporated into a sticking-plaster, along with a printable "ionogel" to provide a wearable biosensor platform.

  14. Nanomaterials based electrochemical sensors for biomedical applications.

    PubMed

    Chen, Aicheng; Chatterjee, Sanghamitra

    2013-06-21

    A growing variety of sensors have increasingly significant impacts on everyday life. Key issues to take into consideration toward the integration of biosensing platforms include the demand for minimal costs and the potential for real time monitoring, particularly for point-of-care applications where simplicity must also be considered. In light of these developmental factors, electrochemical approaches are the most promising candidate technologies due to their simplicity, high sensitivity and specificity. The primary focus of this review is to highlight the utility of nanomaterials, which are currently being studied for in vivo and in vitro medical applications as robust and tunable diagnostic and therapeutic platforms. Highly sensitive and precise nanomaterials based biosensors have opened up the possibility of creating novel technologies for the early-stage detection and diagnosis of disease related biomarkers. The attractive properties of nanomaterials have paved the way for the fabrication of a wide range of electrochemical sensors that exhibit improved analytical capacities. This review aims to provide insights into nanomaterials based electrochemical sensors and to illustrate their benefits in various key biomedical applications. This emerging discipline, at the interface of chemistry and the life sciences, offers a broad palette of opportunities for researchers with interests that encompass nanomaterials synthesis, supramolecular chemistry, controllable drug delivery and targeted theranostics in biology and medicine.

  15. Novel sensors for detection of azide and dopamine: Electrochemical studies

    NASA Astrophysics Data System (ADS)

    Dalmia, Avinash

    Electrochemical amperometric sensors have been used sucessfully for monitoring a wide variety of hazardous species. Electrochemical studies of azides have been conducted at carbon, platinum and gold to evaluate their sensing properties. The differences in electrochemical behavior of azides at carbon, platinum and gold are elucidated with rotating disc, ring-disc and DEMS (Differential Electrochemical mass spectroscopy). It has been observed that the electrooxidation of azides at carbon electrode results in formation of only nitrogen, whereas at platinum electrode, the electrooxidation of azides results in formation of both nitrogen and nitrogen oxides. Gold in presence of azide ions undergoes electrooxidation forming soluble gold azide complexes at lower potentials and nitrogen and nitrogen oxides at higher potentials. It was demonstrated that azides are much more electroactive than hydrazoic acid. This work has implication for design of electrochemical sensors to detect and monitor azide ions. Gold electrodes modified with self assembled monolayers offer possibilities of sensors with higher selectivity, stability, fast response time and higher sensitivity. In the second part of this thesis, gold electrodes modified with SAM (self assembled monolayer) with acidic end group for selective detection of catecholamines were evaluated. SAM modified substrates have been characterized using different techniques, i.e., electrochemical desorption, capacitance measurements, angle resolved XPS measurements, potentiometric measurements and cyclic voltammetric measurements. The electrochemical desorption measurements show that the coverage of SAM molecules corresponds to a monolayer. Capacitance measurements demonstrate that the capacitance depends on the length, end group and defects present in monolayers. Angle resolved XPS has been demonstrated as a powerful tool for studying the anisotropic atomic distribution in monolayer film. The cyclic voltammetric measurements show that

  16. Application of a Nitric Oxide Sensor in Biomedicine

    PubMed Central

    Saldanha, Carlota; Lopes de Almeida, José Pedro; Silva-Herdade, Ana Santos

    2014-01-01

    In the present study, we describe the biochemical properties and effects of nitric oxide (NO) in intact and dysfunctional arterial and venous endothelium. Application of the NO electrochemical sensor in vivo and in vitro in erythrocytes of healthy subjects and patients with vascular disease are reviewed. The electrochemical NO sensor device applied to human umbilical venous endothelial cells (HUVECs) and the description of others NO types of sensors are also mentioned. PMID:25587407

  17. Electrochemical Hydrogen Sensor for Safety Monitoring

    SciTech Connect

    Martin, L P; Pham, A-Q; Glass, R S

    2003-04-25

    A hydrogen safety sensor is presented which provides high sensitivity and fast response time when operated in air. The target application for the sensor is external deployment near systems using or producing high concentrations of hydrogen. The sensor is composed of a catalytically active metal-oxide sensing electrode and a noble metal reference electrode attached to an yttria-stabilized zirconia (YSZ) electrolyte. The sensing approach is based on the difference in oxidation rate of hydrogen on the different electrode materials. Results will be presented for a sensor using a sensing electrode of tin-doped indium oxide (ITO). Response to H{sub 2}, and cross-sensitivity to hydrocarbon and H{sub 2}O are discussed.

  18. Electrochemical oxidation for landfill leachate treatment

    SciTech Connect

    Deng, Yang Englehardt, James D.

    2007-07-01

    This paper aims at providing an overview of electrochemical oxidation processes used for treatment of landfill leachate. The typical characteristics of landfill leachate are briefly reviewed, and the reactor designs used for electro-oxidation of leachate are summarized. Electrochemical oxidation can significantly reduce concentrations of organic contaminants, ammonia, and color in leachate. Pretreatment methods, anode materials, pH, current density, chloride concentration, and other additional electrolytes can considerably influence performance. Although high energy consumption and potential chlorinated organics formation may limit its application, electrochemical oxidation is a promising and powerful technology for treatment of landfill leachate.

  19. Imprinting Technology in Electrochemical Biomimetic Sensors

    PubMed Central

    Frasco, Manuela F.; Truta, Liliana A. A. N. A.; Sales, M. Goreti F.; Moreira, Felismina T. C.

    2017-01-01

    Biosensors are a promising tool offering the possibility of low cost and fast analytical screening in point-of-care diagnostics and for on-site detection in the field. Most biosensors in routine use ensure their selectivity/specificity by including natural receptors as biorecognition element. These materials are however too expensive and hard to obtain for every biochemical molecule of interest in environmental and clinical practice. Molecularly imprinted polymers have emerged through time as an alternative to natural antibodies in biosensors. In theory, these materials are stable and robust, presenting much higher capacity to resist to harsher conditions of pH, temperature, pressure or organic solvents. In addition, these synthetic materials are much cheaper than their natural counterparts while offering equivalent affinity and sensitivity in the molecular recognition of the target analyte. Imprinting technology and biosensors have met quite recently, relying mostly on electrochemical detection and enabling a direct reading of different analytes, while promoting significant advances in various fields of use. Thus, this review encompasses such developments and describes a general overview for building promising biomimetic materials as biorecognition elements in electrochemical sensors. It includes different molecular imprinting strategies such as the choice of polymer material, imprinting methodology and assembly on the transduction platform. Their interface with the most recent nanostructured supports acting as standard conductive materials within electrochemical biomimetic sensors is pointed out. PMID:28272314

  20. Imprinting Technology in Electrochemical Biomimetic Sensors.

    PubMed

    Frasco, Manuela F; Truta, Liliana A A N A; Sales, M Goreti F; Moreira, Felismina T C

    2017-03-06

    Biosensors are a promising tool offering the possibility of low cost and fast analytical screening in point-of-care diagnostics and for on-site detection in the field. Most biosensors in routine use ensure their selectivity/specificity by including natural receptors as biorecognition element. These materials are however too expensive and hard to obtain for every biochemical molecule of interest in environmental and clinical practice. Molecularly imprinted polymers have emerged through time as an alternative to natural antibodies in biosensors. In theory, these materials are stable and robust, presenting much higher capacity to resist to harsher conditions of pH, temperature, pressure or organic solvents. In addition, these synthetic materials are much cheaper than their natural counterparts while offering equivalent affinity and sensitivity in the molecular recognition of the target analyte. Imprinting technology and biosensors have met quite recently, relying mostly on electrochemical detection and enabling a direct reading of different analytes, while promoting significant advances in various fields of use. Thus, this review encompasses such developments and describes a general overview for building promising biomimetic materials as biorecognition elements in electrochemical sensors. It includes different molecular imprinting strategies such as the choice of polymer material, imprinting methodology and assembly on the transduction platform. Their interface with the most recent nanostructured supports acting as standard conductive materials within electrochemical biomimetic sensors is pointed out.

  1. Edible Electrochemistry: Food Materials Based Electrochemical Sensors.

    PubMed

    Kim, Jayoung; Jeerapan, Itthipon; Ciui, Bianca; Hartel, Martin C; Martin, Aida; Wang, Joseph

    2017-08-07

    This study demonstrates the first example of completely food-based edible electrochemical sensors. The new edible composite electrodes consist of food materials and supplements serving as the edible conductor, corn, and olive oils as edible binders, vegetables as biocatalysts, and food-based packing sleeves. These edible composite electrodes are systematically characterized for their attractive electrochemical properties, such as potential window, capacitance, redox activity using various electrochemical techniques. The sensing performance of the edible carbon composite electrodes compares favorably with that of "traditional" carbon paste electrodes. Well defined voltammetric detection of catechol, uric acid, ascorbic acid, dopamine, and acetaminophen is demonstrated, including sensitive measurements in simulated saliva, gastric fluid, and intestinal fluid. Furthermore, successful biosensing applications are realized by incorporating a mushroom and horseradish vegetable tissues with edible carbon pastes for imparting biocatalytic activity toward the biosensing of phenolic and peroxide compounds. The attractive sensing performance of the new edible sensors indicates considerable promise for physiological monitoring applications and for developing edible and ingestible devices for diverse biomedical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures

    DOE PAGES

    Zhu, Chengzhou; Yang, Guohai; Li, He; ...

    2014-10-29

    We report that considerable attention has been devoted to the integration of recognition elements with electronic elements to develop electrochemical sensors and biosensors.Various electrochemical devices, such as amperometric sensors, electrochemical impedance sensors, and electrochemical luminescence sensors as well as photoelectrochemical sensors, provide wide applications in the detection of chemical and biological targets in terms of electrochemical change of electrode interfaces. Here, this review focuses on recent advances in electrochemical sensors and biosensors based on nanomaterials and nanostructures during 2013 to 2014. The aim of this effort is to provide the reader with a clear and concise view of new advancesmore » in areas ranging from electrode engineering, strategies for electrochemical signal amplification, and novel electroanalytical techniques used in the miniaturization and integration of the sensors. Moreover, the authors have attempted to highlight areas of the latest and significant development of enhanced electrochemical nanosensors and nanobiosensors that inspire broader interests across various disciplines. Electrochemical sensors for small molecules, enzyme-based biosensors, genosensors, immunosensors, and cytosensors are reviewed herein (Figure 1). Such novel advances are important for the development of electrochemical sensors that open up new avenues and methods for future research. In conclusion, we recommend readers interested in the general principles of electrochemical sensors and electrochemical methods to refer to other excellent literature for a broad scope in this area.(3, 4) However, due to the explosion of publications in this active field, we do not claim that this Review includes all of the published works in the past two years and we apologize to the authors of excellent work, which is unintentionally left out.« less

  3. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures

    SciTech Connect

    Zhu, Chengzhou; Yang, Guohai; Li, He; Du, Dan; Lin, Yuehe

    2014-10-29

    We report that considerable attention has been devoted to the integration of recognition elements with electronic elements to develop electrochemical sensors and biosensors.Various electrochemical devices, such as amperometric sensors, electrochemical impedance sensors, and electrochemical luminescence sensors as well as photoelectrochemical sensors, provide wide applications in the detection of chemical and biological targets in terms of electrochemical change of electrode interfaces. Here, this review focuses on recent advances in electrochemical sensors and biosensors based on nanomaterials and nanostructures during 2013 to 2014. The aim of this effort is to provide the reader with a clear and concise view of new advances in areas ranging from electrode engineering, strategies for electrochemical signal amplification, and novel electroanalytical techniques used in the miniaturization and integration of the sensors. Moreover, the authors have attempted to highlight areas of the latest and significant development of enhanced electrochemical nanosensors and nanobiosensors that inspire broader interests across various disciplines. Electrochemical sensors for small molecules, enzyme-based biosensors, genosensors, immunosensors, and cytosensors are reviewed herein (Figure 1). Such novel advances are important for the development of electrochemical sensors that open up new avenues and methods for future research. In conclusion, we recommend readers interested in the general principles of electrochemical sensors and electrochemical methods to refer to other excellent literature for a broad scope in this area.(3, 4) However, due to the explosion of publications in this active field, we do not claim that this Review includes all of the published works in the past two years and we apologize to the authors of excellent work, which is unintentionally left out.

  4. A novel electrochemical sensor for the analysis of β-agonists: the poly(acid chrome blue K)/graphene oxide-nafion/glassy carbon electrode.

    PubMed

    Lin, Xiaoyun; Ni, Yongnian; Kokot, Serge

    2013-09-15

    A novel modified electrode was constructed by the electro-polymerization of 4,5-dihydroxy-3-[(2-hydroxy-5-sulfophenyl)azo]-2,7-naphthalenedisulfonic acid trisodium salt (acid chrome blue K (ACBK)) at a graphene oxide (GO)-nafion modified glassy carbon electrode (GCE). The characterization of an electrochemically synthesized poly-ACBK/GO-nafion film was investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), atomic force microscopy (AFM) and scanning electron microscopy (SEM) techniques, and the results were interpreted and compared at each stage of the electrode construction. Electrochemical oxidation of eight β-agonists - clenbuterol, salbutamol, terbutaline, ractopamine, dopamine, dobutamine, adrenaline, and isoprenaline, was investigated by CV at the different electrodes. At the poly-ACBK/GO-nafion/GCE, the linear sweep voltammetry peak currents of the eight β-agonists increased linearly with their concentrations in the range of 1.0-36.0 ng mL(-1), respectively, and their corresponding limits of detection (LODs) were within the 0.58-1.46 ng mL(-1) range. This electrode showed satisfactory reproducibility and stability, and was used successfully for the quantitative analysis of clenbuterol in pork samples.

  5. Sensor apparatus using an electrochemical cell

    DOEpatents

    Thakur, Mrinal

    2003-07-01

    A method for sensing mechanical quantities such as force, stress, strain, pressure and acceleration is disclosed. This technology is based on a change in the electrochemically generated voltage (electromotive force) with application of force, stress, strain, pressure or acceleration. The change in the voltage is due to a change in the internal resistance of the electrochemical cell with a change in the relative position or orientation of the electrodes (anode and cathode) in the cell. The signal to be detected (e.g. force, stress, strain, pressure or acceleration) is applied to one of the electrodes to cause a change in the relative position or orientation between the electrodes. Various materials, solid, semisolid, gel, paste or liquid can be utilized as the electrolyte. The electrolyte must be an ion conductor. The examples of solid electrolytes include specific polymer conductors, polymer composites, ion conducting glasses and ceramics. The electrodes are made of conductors such as metals with dissimilar electro negativities. Significantly enhanced sensitivities, up to three orders of magnitude higher than that of comparable commercial sensors, are obtained. The materials are substantially less expensive than commercially used materials for mechanical sensors. An apparatus for sensing such mechanical quantities using materials such as doped 1,4 cis-polyisopropene and nafion. The 1,4 cis-polyisopropene may be doped with lithium perchlorate or iodine. The output voltage signal increases with an increase of the sensing area for a given stress. The device can be used as an intruder alarm, among other applications.

  6. Sensor apparatus using an electrochemical cell

    DOEpatents

    Thakur, Mrinal

    2002-01-01

    A novel technology for sensing mechanical quantities such as force, stress, strain, pressure and acceleration has been invented. This technology is based on a change in the electrochemically generated voltage (electromotive force) with application of force, stress, strain, pressure or acceleration. The change in the voltage is due to a change in the internal resistance of the electrochemical cell with a change in the relative position or orientation of the electrodes (anode and cathode) in the cell. The signal to be detected (e.g. force, stress, strain, pressure or acceleration) is applied to one of the electrodes to cause a change in the relative position or orientation between the electrodes. Various materials, solid, semisolid, gel, paste or liquid can be utilized as the electrolyte. The electrolyte must be an ion conductor. The examples of solid electrolytes include specific polymer conductors, polymer composites, ion conducting glasses and ceramics. The electrodes are made of conductors such as metals with dissimilar electronegativities. Significantly enhanced sensitivities, up to three orders of magnitude higher than that of comparable commercial sensors, are obtained. The materials are substantially less expensive than commercially used materials for mechanical sensors.

  7. Innovative oxide materials for electrochemical energy conversion

    NASA Astrophysics Data System (ADS)

    Wachsman, Eric D.

    2012-02-01

    Research in functional materials has progressed from those materials exhibiting structural to electronic functionality. The study of ion conducting ceramics ushers in a new era of ``chemically functional materials.'' This chemical functionality arises out of the defect equilibria of these materials, and results in the ability to transport chemical species and actively participate in chemical reactions at their surface. Moreover, this chemical functionality provides a promise for the future whereby the harnessing of our natural hydrocarbon energy resources can shift from inefficient and polluting combustion - mechanical methods to direct electrochemical conversion. The unique properties of these materials and their applications will be described. The focus will be on the application of ion conducting ceramics to energy conversion and storage, chemical sensors, chemical separation and conversion, and life support systems. Results presented will include development of record high power density (3 kW/kg) solid oxide fuel cells, NOx/CO species selective solid-state sensors, high yield membrane reactors, and regenerative life support systems that reduce CO2 to O2 and solid C.

  8. Woven electrochemical fabric-based test sensors (WEFTS): a new class of multiplexed electrochemical sensors.

    PubMed

    Choudhary, Tripurari; Rajamanickam, G P; Dendukuri, Dhananjaya

    2015-05-07

    We present textile weaving as a new technique for the manufacture of miniature electrochemical sensors with significant advantages over current fabrication techniques. Biocompatible silk yarn is used as the material for fabrication instead of plastics and ceramics used in commercial sensors. Silk yarns are coated with conducting inks and reagents before being handloom-woven as electrodes into patches of fabric to create arrays of sensors, which are then laminated, cut and packaged into individual sensors. Unlike the conventionally used screen-printing, which results in wastage of reagents, yarn coating uses only as much reagent and ink as required. Hydrophilic and hydrophobic yarns are used for patterning so that sample flow is restricted to a small area of the sensor. This simple fluidic control is achieved with readily available materials. We have fabricated and validated individual sensors for glucose and hemoglobin and a multiplexed sensor, which can detect both analytes. Chronoamperometry and differential pulse voltammetry (DPV) were used to detect glucose and hemoglobin, respectively. Industrial quantities of these sensors can be fabricated at distributed locations in the developing world using existing skills and manufacturing facilities. We believe such sensors could find applications in the emerging area of wearable sensors for chemical testing.

  9. Electrochemical Molecular Imprinted Sensors Based on Electrospun Nanofiber and Determination of Ascorbic Acid.

    PubMed

    Zhai, Yunyun; Wang, Dandan; Liu, Haiqing; Zeng, Yanbo; Yin, Zhengzhi; Li, Lei

    2015-01-01

    In this study, electrochemical molecularly imprinted sensors were fabricated and used for the determination of ascorbic acid (AA). Nanofiber membranes of cellulose acetate (CA)/multi-walled carbon nanotubes (MWCNTs)/polyvinylpyrrolidone (PVP) (CA/MWCNTs/PVP) were prepared by electrospinning technique. After being transferred to a glass carbon electrode (GC), the nanofiber interface was further polymerized with pyrrole through electrochemical cyclic voltammetry (CV) technique. Meanwhile, target molecules (such as AA) were embedded into the polypyrrole through the hydrogen bond. The effects of monomer concentration (pyrrole), the number of scan cycles and scan rates of polymerization were optimized. Differential pulse voltammetry (DPV) tests indicated that the oxidation current of AA (the selected target) were higher than that of the structural analogues, which illustrated the selective recognition of AA by molecularly imprinted sensors. Simultaneously, the molecularly imprinted sensors had larger oxidation current of AA than non-imprinted sensors in the processes of rebinding. The electrochemical measurements showed that the molecularly imprinted sensors demonstrated good identification behavior for the detection of AA with a linear range of 10.0 - 1000 μM, a low detection limit down to 3 μM (S/N = 3), and a recovery rate range from 94.0 to 108.8%. Therefore, the electrochemical molecularly imprinted sensors can be used for the recognition and detection of AA without any time-consuming elution. The method presented here demonstrates the great potential for electrospun nanofibers and MWCNTs to construct electrochemical sensors.

  10. Real-time, multiplexed electrochemical DNA detection using an active complementary metal-oxide-semiconductor biosensor array with integrated sensor electronics.

    PubMed

    Levine, Peter M; Gong, Ping; Levicky, Rastislav; Shepard, Kenneth L

    2009-03-15

    Optical biosensing based on fluorescence detection has arguably become the standard technique for quantifying extents of hybridization between surface-immobilized probes and fluorophore-labeled analyte targets in DNA microarrays. However, electrochemical detection techniques are emerging which could eliminate the need for physically bulky optical instrumentation, enabling the design of portable devices for point-of-care applications. Unlike fluorescence detection, which can function well using a passive substrate (one without integrated electronics), multiplexed electrochemical detection requires an electronically active substrate to analyze each array site and benefits from the addition of integrated electronic instrumentation to further reduce platform size and eliminate the electromagnetic interference that can result from bringing non-amplified signals off chip. We report on an active electrochemical biosensor array, constructed with a standard complementary metal-oxide-semiconductor (CMOS) technology, to perform quantitative DNA hybridization detection on chip using targets conjugated with ferrocene redox labels. A 4 x 4 array of gold working electrodes and integrated potentiostat electronics, consisting of control amplifiers and current-input analog-to-digital converters, on a custom-designed 5 mm x 3 mm CMOS chip drive redox reactions using cyclic voltammetry, sense DNA binding, and transmit digital data off chip for analysis. We demonstrate multiplexed and specific detection of DNA targets as well as real-time monitoring of hybridization, a task that is difficult, if not impossible, with traditional fluorescence-based microarrays.

  11. Real-time, multiplexed electrochemical DNA detection using an active complementary metal-oxide-semiconductor biosensor array with integrated sensor electronics

    PubMed Central

    Levine, Peter M.; Gong, Ping; Levicky, Rastislav; Shepard, Kenneth L.

    2009-01-01

    Optical biosensing based on fluorescence detection has arguably become the standard technique for quantifying extents of hybridization between surface-immobilized probes and fluorophore-labeled analyte targets in DNA microarrays. However, electrochemical detection techniques are emerging which could eliminate the need for physically bulky optical instrumentation, enabling the design of portable devices for point-of-care applications. Unlike fluorescence detection, which can function well using a passive substrate (one without integrated electronics), multiplexed electrochemical detection requires an electronically-active substrate to analyze each array site and benefits from the addition of integrated electronic instrumentation to further reduce platform size and eliminate the electromagnetic interference that can result from bringing non-amplified signals off chip. We report on an active electrochemical biosensor array, constructed with a standard complementary metal-oxide-semiconductor (CMOS) technology, to perform quantitative DNA hybridization detection on chip using targets conjugated with ferrocene redox labels. A 4×4 array of gold working electrodes and integrated potentiostat electronics, consisting of control amplifiers and current-input analog-to-digital converters, on a custom-designed 5×3 mm2 CMOS chip drive redox reactions using cyclic voltammetry, sense DNA binding, and transmit digital data off chip for analysis. We demonstrate multiplexed and specific detection of DNA targets as well as real-time monitoring of hybridization, a task that is difficult, if not impossible, with traditional fluorescence-based microarrays. PMID:19054661

  12. Dechlorination by combined electrochemical reduction and oxidation*

    PubMed Central

    Cong, Yan-qing; Wu, Zu-cheng; Tan, Tian-en

    2005-01-01

    Chlorophenols are typical priority pollutants listed by USEPA (U.S. Environmental Protection Agency). The removal of chlorophenol could be carried out by a combination of electrochemical reduction and oxidation method. Results showed that it was feasible to degrade contaminants containing chlorine atoms by electrochemical reduction to form phenol, which was further degraded on the anode by electrochemical oxidation. Chlorophenol removal rate was more than 90% by the combined electrochemical reduction and oxidation at current of 6 mA and pH 6. The hydrogen atom is a powerful reducing agent that reductively dechlorinates chlorophenols. The instantaneous current efficiency was calculated and the results indicated that cathodic reduction was the main contributor to the degradation of chlorophenol. PMID:15909345

  13. Dechlorination by combined electrochemical reduction and oxidation.

    PubMed

    Cong, Yan-qing; Wu, Zu-cheng; Tan, Tian-en

    2005-06-01

    Chlorophenols are typical priority pollutants listed by USEPA (U.S. Environmental Protection Agency). The removal of chlorophenol could be carried out by a combination of electrochemical reduction and oxidation method. Results showed that it was feasible to degrade contaminants containing chlorine atoms by electrochemical reduction to form phenol, which was further degraded on the anode by electrochemical oxidation. Chlorophenol removal rate was more than 90% by the combined electrochemical reduction and oxidation at current of 6 mA and pH 6. The hydrogen atom is a powerful reducing agent that reductively dechlorinates chlorophenols. The instantaneous current efficiency was calculated and the results indicated that cathodic reduction was the main contributor to the degradation of chlorophenol.

  14. Electrochemical high-temperature gas sensors

    NASA Astrophysics Data System (ADS)

    Saruhan, B.; Stranzenbach, M.; Yüce, A.; Gönüllü, Y.

    2012-06-01

    Combustion produced common air pollutant, NOx associates with greenhouse effects. Its high temperature detection is essential for protection of nature. Component-integration capable high-temperature sensors enable the control of combustion products. The requirements are quantitative detection of total NOx and high selectivity at temperatures above 500°C. This study reports various approaches to detect NO and NO2 selectively under lean and humid conditions at temperatures from 300°C to 800°C. All tested electrochemical sensors were fabricated in planar design to enable componentintegration. We suggest first an impedance-metric gas sensor for total NOx-detection consisting of NiO- or NiCr2O4-SE and PYSZ-electrolyte. The electrolyte-layer is about 200μm thickness and constructed of quasi-single crystalline columns. The sensing-electrode (SE) is magnetron sputtered thin-layers of NiO or NiCr2O4. Sensor sensitivity for detection of total NOx has been measured by applying impedance analysis. The cross-sensitivity to other emission gases such as CO, CO2, CH4 and oxygen (5 vol.%) has been determined under 0-1000ppm NO. Sensor maintains its high sensitivity at temperatures up to 550°C and 600°C, depending on the sensing-electrode. NiO-SE yields better selectivity to NO in the presence of oxygen and have shorter response times comparing to NiCr2O4-SE. For higher temperature NO2-sensing capability, a resistive DC-sensor having Al-doped TiO2-sensing layers has been employed. Sensor-sensitivity towards NO2 and cross-sensitivity to CO has been determined in the presence of H2O at temperatures 600°C and 800°C. NO2 concentrations varying from 25 to 100ppm and CO concentrations from 25 to 75ppm can be detected. By nano-tubular structuring of TiO2, NO2 sensitivity of the sensor was increased.

  15. Highly selective dopamine electrochemical sensor based on electrochemically pretreated graphite and nafion composite modified screen printed carbon electrode.

    PubMed

    Ku, Shuhao; Palanisamy, Selvakumar; Chen, Shen-Ming

    2013-12-01

    Herein, we report a highly selective dopamine electrochemical sensor based on electrochemically pretreated graphite/nafion composite modified screen printed carbon (SPC) electrode. Electrochemically activated graphite/nafion composite was prepared by using a simple electrochemical method. Scanning electron microscope (SEM) used to characterize the surface morphology of the fabricated composite electrode. The SEM result clearly indicates that the graphitic basal planes were totally disturbed and leads to the formation of graphite nanosheets. The composite modified electrode showed an enhanced electrocatalytic activity toward the oxidation of DA when compared with either electrochemical pretreated graphite or nafion SPC electrodes. The fabricated composite electrode exhibits a good electrocatalytic oxidation toward DA in the linear response range from 0.5 to 70 μM with the detection limit of 0.023 μM. The proposed sensor also exhibits very good selectivity and stability, with the appreciable sensitivity. In addition, the proposed sensor showed satisfactory recovery results toward the commercial pharmaceutical DA samples. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Electrochemical Oxidation of Cysteine at a Film Gold Modified Carbon Fiber Microelectrode Its Application in a Flow—Through Voltammetric Sensor

    PubMed Central

    Wang, Lai-Hao; Huang, Wen-Shiuan

    2012-01-01

    A flow-electrolytical cell containing a strand of micro Au modified carbon fiber electrodes (CFE) has been designedand characterized for use in a voltammatric detector for detecting cysteine using high-performance liquid chromatography. Cysteine is more efficiently electrochemical oxidized on a Au /CFE than a bare gold and carbon fiber electrode. The possible reaction mechanism of the oxidation process is described from the relations to scan rate, peak potentials and currents. For the pulse mode, and measurements with suitable experimental parameters, a linear concentration from 0.5 to 5.0 mg·L−1 was found. The limit of quantification for cysteine was below 60 ng·mL−1. PMID:22737024

  17. Electrochemical oxidation of cysteine at a film gold modified carbon fiber microelectrode its application in a flow-through voltammetric sensor.

    PubMed

    Wang, Lai-Hao; Huang, Wen-Shiuan

    2012-01-01

    A flow-electrolytical cell containing a strand of micro Au modified carbon fiber electrodes (CFE) has been designedand characterized for use in a voltammatric detector for detecting cysteine using high-performance liquid chromatography. Cysteine is more efficiently electrochemical oxidized on a Au /CFE than a bare gold and carbon fiber electrode. The possible reaction mechanism of the oxidation process is described from the relations to scan rate, peak potentials and currents. For the pulse mode, and measurements with suitable experimental parameters, a linear concentration from 0.5 to 5.0 mg·L(-1) was found. The limit of quantification for cysteine was below 60 ng·mL(-1).

  18. Niobium oxide dispersed on a carbon-ceramic matrix, SiO2/C/Nb2O5, used as an electrochemical ascorbic acid sensor.

    PubMed

    Arenas, Leliz T; Villis, Paulo C M; Arguello, Jacqueline; Landers, Richard; Benvenutti, Edilson V; Gushikem, Yoshitaka

    2010-11-15

    A film of niobium oxide was immobilized on a SiO(2)/C carbon-ceramic matrix (specific surface area 270 m(2)g(-1)) and characterized by N(2) adsorption-desorption isotherms, scanning electron microscopy, X-ray photoelectron spectroscopy and atomic force microscopy. This new carbon-ceramic material, SiO(2)/C/Nb(2)O(5), was used for construction of electrodes, and it shows ability to improve the electron-transfer between the electrode surface and ascorbic acid. The electrocatalytic oxidation of ascorbic acid was made by differential pulse and cyclic voltammetry techniques, making it potentially useful for developing a new ascorbic acid sensor.

  19. Molecularly imprinted electrochemical sensor based on amine group modified graphene covalently linked electrode for 4-nonylphenol detection.

    PubMed

    Chen, Hong-Jun; Zhang, Zhao-Hui; Cai, Rong; Chen, Xing; Liu, Yu-Nan; Rao, Wei; Yao, Shou-Zhuo

    2013-10-15

    In this work, an imprinted electrochemical sensor based on electrochemical reduced graphene covalently modified carbon electrode was developed for the determination of 4-nonylphenol (NP). An amine-terminated functional graphene oxide was covalently modified onto the electrode surface with diazonium salt reactions to improve the stability and reproducibility of the imprinted sensor. The electrochemical properties of each modified electrodes were investigated with differential pulse voltammetry (DPV). The electrochemical characteristic of the imprinted sensor was also investigated using electrochemical impedance spectroscopy (EIS) in detail. The response currents of the imprinted electrode exhibited a linear relationship toward 4-nonylphenol concentration ranging from 1.0 × 10(-11) to 1.0 × 10(-8) gm L(-1) with the detection limit of 3.5 × 10(-12) gm L(-1) (S/N=3). The fabricated electrochemical imprinted sensor was successfully applied to the detection of 4-nonylphenol in rain and lake water samples.

  20. Photocatalytically Renewable Micro-electrochemical Sensor for Real-Time Monitoring of Cells.

    PubMed

    Xu, Jia-Quan; Liu, Yan-Ling; Wang, Qian; Duo, Huan-Huan; Zhang, Xin-Wei; Li, Yu-Tao; Huang, Wei-Hua

    2015-11-23

    Electrode fouling and passivation is a substantial and inevitable limitation in electrochemical biosensing, and it is a great challenge to efficiently remove the contaminant without changing the surface structure and electrochemical performance. Herein, we propose a versatile and efficient strategy based on photocatalytic cleaning to construct renewable electrochemical sensors for cell analysis. This kind of sensor was fabricated by controllable assembly of reduced graphene oxide (RGO) and TiO2 to form a sandwiching RGO@TiO2 structure, followed by deposition of Au nanoparticles (NPs) onto the RGO shell. The Au NPs-RGO composite shell provides high electrochemical performance. Meanwhile, the encapsulated TiO2 ensures an excellent photocatalytic cleaning property. Application of this renewable microsensor for detection of nitric oxide (NO) release from cells demonstrates the great potential of this strategy in electrode regeneration and biosensing.

  1. Smart Microfluidic Electrochemical DNA Sensors with Signal Processing Circuits

    NASA Astrophysics Data System (ADS)

    Sawada, Kazuaki; Oda, Chigusa; Takao, Hidekuni; Ishida, Makoto

    2007-05-01

    A smart microfluidic DNA sensor with an integrated signal-processing circuit for electrochemical analysis has been successfully fabricated. The sensor comprises an integrated electrochemical sensing electrode, a microfluidic channel-type reactor, and operational amplifiers for electrochemical measurement. The microfluidic reactor employs a laminar flow principle. Generally, a relatively large and expensive system is necessary for electrochemical measurement. In the fabricated smart chip, signal-processing circuits for measuring cyclic-voltammogram characteristics are integrated, permitting cyclic-voltammograms to be successively measured, using only two simple sources of electrical power.

  2. Disposable Screen Printed Electrochemical Sensors: Tools for Environmental Monitoring

    PubMed Central

    Hayat, Akhtar; Marty, Jean Louis

    2014-01-01

    Screen printing technology is a widely used technique for the fabrication of electrochemical sensors. This methodology is likely to underpin the progressive drive towards miniaturized, sensitive and portable devices, and has already established its route from “lab-to-market” for a plethora of sensors. The application of these sensors for analysis of environmental samples has been the major focus of research in this field. As a consequence, this work will focus on recent important advances in the design and fabrication of disposable screen printed sensors for the electrochemical detection of environmental contaminants. Special emphasis is given on sensor fabrication methodology, operating details and performance characteristics for environmental applications. PMID:24932865

  3. Graphene oxide-DNA based sensors.

    PubMed

    Gao, Li; Lian, Chaoqun; Zhou, Yang; Yan, Lirong; Li, Qin; Zhang, Chunxia; Chen, Liang; Chen, Keping

    2014-10-15

    Since graphene oxide (GO) is readily available and exhibits exceptional optical, electrical, mechanical and chemical properties, it has attracted increasing interests for use in GO-DNA based sensors. This paper reviews the advances in GO-DNA based sensors using DNA as recognition elements. In solution, GO is as an excellent acceptor of fluorescence resonance energy transfer (FRET) to quench the fluorescence in dye labeled DNA sequences. This review discusses the emerging GO-DNA based sensors related to FRET for use in the detection of DNA, proteins, metal ions, cysteine (Cys), and others. The application of the electrochemical GO-DNA based sensors is also summarized because GO possesses exceptional electrochemical properties. The detection mechanisms and the advantages of GO are also revealed and discussed. GO-DNA based sensors perform well at low cost, and high sensitivity, and provide low detection limits. Additionally, GO-DNA based sensors should appear in the near future as scientists explore their usefulness and properties. Finally, future perspectives and possible challenges in this area are outlined. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate.

    PubMed

    Bagheri, Hasan; Hajian, Ali; Rezaei, Mosayeb; Shirzadmehr, Ali

    2017-02-15

    In the present research, we aimed to fabricate a novel electrochemical sensor based on Cu metal nanoparticles on the multiwall carbon nanotubes-reduced graphene oxide nanosheets (Cu/MWCNT/RGO) for individual and simultaneous determination of nitrite and nitrate ions. The morphology of the prepared nanocomposite on the surface of glassy carbon electrode (GCE) was characterized using various methods including scanning electron microscopy (SEM), atomic force microscopy (AFM), and electrochemical impedance spectroscopy. Under optimal experimental conditions, the modified GCE showed excellent catalytic activity toward the electro-reduction of nitrite and nitrate ions (pH=3.0) with a significant increase in cathodic peak currents in comparison with the unmodified GCE. By square wave voltammetry (SWV) the fabricated sensor demonstrated wide dynamic concentration ranges from 0.1 to 75μM with detection limits (3Sb/m) of 30nM and 20nM method for nitrite and nitrate ions, respectively. Furthermore, the applicability of the proposed modified electrode was demonstrated by measuring the concentration of nitrite and nitrate ions in the tap and mineral waters, sausages, salami, and cheese samples.

  5. Electrochemical sensors based on magnetic molecularly imprinted polymers: A review.

    PubMed

    Yáñez-Sedeño, Paloma; Campuzano, Susana; Pingarrón, José M

    2017-04-01

    Participation of magnetic component in molecularly imprinted polymers (MIPs) has facilitated enormously the incorporation of these polymeric materials on electrode surfaces allowing the design of electrochemical sensors with very attractive analytical characteristics in terms of simplicity, reproducibility, low fabrication cost, high sensitivity and selectivity and rapid assay time. The magnetically susceptible resultant MIPs (MMIPs) allowed a simple and fast elution of the template molecules from MMIPs, are easily and faster collected without filtration, centrifugation or other complex operations and are also faster assembled and removed from the electrode surface by simply using an external magnetic field. A wide range of different (nano)materials such as gold nanoparticles (AuNPs), graphene oxide, single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs) as well as different electrode modifiers (ionic liquids (ILs) and surfactants/dispersants) have been incorporated into the MMIPs to improve the analytical performance of the resulting electrochemical sensors which have demonstrated great promise for determination of relevant analytes in environmental, food and clinical analyses.

  6. CD/AuNPs/MWCNTs based electrochemical sensor for quercetin dual-signal detection.

    PubMed

    Kan, Xianwen; Zhang, Tingting; Zhong, Min; Lu, Xiaojing

    2016-03-15

    A dual-signal strategy was developed in the present work for quercetin (QR) electrochemical recognition and detection. Mercapto-β-cyclodextrin (HS-β-CD) self-assembled on gold nanoparticles and multi-walled carbon nanotubes modified electrode surface to fabricate an electrochemical sensor. Scanning electron microscope, electrochemical impedance spectroscopy, and cyclic voltammetry were employed to characterize the preparation process of the sensor. Hydroquinone (HQ) was chosen as an electrochemical marker for QR detection due to its small molecular size for the formation of inclusion with HS-β-CD. The results of UV-vis and differential pulse voltammetry demonstrate that the added QR can replace the included HQ in CD cavities, resulting in the dual-signal in electrochemical experiments composed of the decrease of oxidized current of HQ and the increase of oxidized current of QR. Compared with the sensor for QR detection in the absence of HQ, the sensor based dual-signal strategy exhibited a higher sensitivity with a wider detection range from 5.0 × 10(-9) to 7.0 × 10(-6)mol/L. With good selectivity, reproducibility, and stability, the sensor was applied for real samples detection with satisfactory results. The proposed dual-signal strategy can be readily extended to the selective recognition and sensitive detection of other molecules.

  7. Method of determining methane and electrochemical sensor therefor

    DOEpatents

    Zaromb, Solomon; Otagawa, Takaaki; Stetter, Joseph R.

    1986-01-01

    A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about about 1.4 volts versus R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

  8. Electro-chemical sensors, sensor arrays and circuits

    DOEpatents

    Katz, Howard E.; Kong, Hoyoul

    2014-07-08

    An electro-chemical sensor includes a first electrode, a second electrode spaced apart from the first electrode, and a semiconductor channel in electrical contact with the first and second electrodes. The semiconductor channel includes a trapping material. The trapping material reduces an ability of the semiconductor channel to conduct a current of charge carriers by trapping at least some of the charge carriers to localized regions within the semiconductor channel. The semiconductor channel includes at least a portion configured to be exposed to an analyte to be detected, and the trapping material, when exposed to the analyte, interacts with the analyte so as to at least partially restore the ability of the semiconductor channel to conduct the current of charge carriers.

  9. Electrochemical Sensors for Detection of Acetylsalicylic Acid

    PubMed Central

    Supalkova, Veronika; Petrek, Jiri; Havel, Ladislav; Krizkova, Sona; Petrlova, Jitka; Adam, Vojtech; Potesil, David; Babula, Petr; Beklova, Miroslava; Horna, Ales; Kizek, Rene

    2006-01-01

    Acetylsalicylic acid (AcSA), or aspirin, was introduced in the late 1890s and has been used to treat a variety of inflammatory conditions. The aim of this work was to suggest electrochemical sensor for acetylsalicylic detection. Primarily, we utilized square wave voltammetry (SWV) using both carbon paste electrode (CPE) and of graphite pencil electrode (GPE) as working ones to indirect determination of AcSA. The principle of indirect determination of AcSA bases in its hydrolysis on salicylic acid (SA), which is consequently detected. Thus, we optimized both determination of SA and conditions for AcSA hydrolysis and found out that the most suitable frequency, amplitude, step potential and the composition and pH of the supporting electrolyte for the determination of SA was 260 Hz, 50 mV, 10 mV and Britton-Robinson buffer (pH 1.81), respectively. The detection limit (S/N = 3) of the SA was 1.3 ng/ml. After that, we aimed on indirect determination of AcSA by SWV CPE. We tested the influence of pH of Britton-Robinson buffer and temperature on yield of hydrolysis, and found out that 100% hydrolysis of AcSA was reached after 80 minutes at pH 1.81 and 90°C. The method for indirect determination of AcSA has been utilized to analyse pharmaceutical drug. The determined amount of AcSA in the pharmaceutical drug was in good agreement with the declared amounts. Moreover, we used GPE for determination of AcSA in a pharmaceutical drug. Base of the results obtained from stationary electrochemical instrument we used flow injection analysis with electrochemical detection to determine of salicylates (SA, AcSA, thiosalicylic acid, 3,5-dinitrosalicylic acid and 5-sulfosalicylic acid – SuSA). We found out that we are able to determine all of detected salicylates directly without any pre-treatment, hydrolysis and so on at units of femtomoles per injection (5 μl).

  10. Electrochemical DNA Sensors for Detection of DNA Damage

    PubMed Central

    Diculescu, Victor Constantin; Paquim, Ana-Maria Chiorcea; Brett, Ana Maria Oliveira

    2005-01-01

    Electrochemical devices have received particular attention due to their rapid detection and great sensitivity for the evaluation of DNA-hazard compounds interaction mechanisms. Several types of bioanalytical method use nucleic acids probes to detect DNA damage. This article reviews current directions and strategies in the development and applications of electrochemical DNA sensors for the detection of DNA damage.

  11. Low cost electrochemical sensor module for measurement of gas concentration

    NASA Astrophysics Data System (ADS)

    Jasinski, Grzegorz; Strzelczyk, Anna; Koscinski, Piotr

    2016-01-01

    This paper describes a low cost electrochemical sensor module for gas concentration measurement. A module is universal and can be used for many types of electrochemical gas sensors. Device is based on AVR ATmega8 microcontroller. As signal processing circuit a specialized integrated circuit LMP91000 is used. The proposed equipment will be used as a component of electronic nose system employed for classifying and distinguishing different levels of air contamination.

  12. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds.

    PubMed

    Adhikari, Bal-Ram; Govindhan, Maduraiveeran; Chen, Aicheng

    2015-09-04

    Electrochemical sensors and biosensors have attracted considerable attention for the sensitive detection of a variety of biological and pharmaceutical compounds. Since the discovery of carbon-based nanomaterials, including carbon nanotubes, C60 and graphene, they have garnered tremendous interest for their potential in the design of high-performance electrochemical sensor platforms due to their exceptional thermal, mechanical, electronic, and catalytic properties. Carbon nanomaterial-based electrochemical sensors have been employed for the detection of various analytes with rapid electron transfer kinetics. This feature article focuses on the recent design and use of carbon nanomaterials, primarily single-walled carbon nanotubes (SWCNTs), reduced graphene oxide (rGO), SWCNTs-rGO, Au nanoparticle-rGO nanocomposites, and buckypaper as sensing materials for the electrochemical detection of some representative biological and pharmaceutical compounds such as methylglyoxal, acetaminophen, valacyclovir, β-nicotinamide adenine dinucleotide hydrate (NADH), and glucose. Furthermore, the electrochemical performance of SWCNTs, rGO, and SWCNT-rGO for the detection of acetaminophen and valacyclovir was comparatively studied, revealing that SWCNT-rGO nanocomposites possess excellent electrocatalytic activity in comparison to individual SWCNT and rGO platforms. The sensitive, reliable and rapid analysis of critical disease biomarkers and globally emerging pharmaceutical compounds at carbon nanomaterials based electrochemical sensor platforms may enable an extensive range of applications in preemptive medical diagnostics.

  13. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds

    PubMed Central

    Adhikari, Bal-Ram; Govindhan, Maduraiveeran; Chen, Aicheng

    2015-01-01

    Electrochemical sensors and biosensors have attracted considerable attention for the sensitive detection of a variety of biological and pharmaceutical compounds. Since the discovery of carbon-based nanomaterials, including carbon nanotubes, C60 and graphene, they have garnered tremendous interest for their potential in the design of high-performance electrochemical sensor platforms due to their exceptional thermal, mechanical, electronic, and catalytic properties. Carbon nanomaterial-based electrochemical sensors have been employed for the detection of various analytes with rapid electron transfer kinetics. This feature article focuses on the recent design and use of carbon nanomaterials, primarily single-walled carbon nanotubes (SWCNTs), reduced graphene oxide (rGO), SWCNTs-rGO, Au nanoparticle-rGO nanocomposites, and buckypaper as sensing materials for the electrochemical detection of some representative biological and pharmaceutical compounds such as methylglyoxal, acetaminophen, valacyclovir, β-nicotinamide adenine dinucleotide hydrate (NADH), and glucose. Furthermore, the electrochemical performance of SWCNTs, rGO, and SWCNT-rGO for the detection of acetaminophen and valacyclovir was comparatively studied, revealing that SWCNT-rGO nanocomposites possess excellent electrocatalytic activity in comparison to individual SWCNT and rGO platforms. The sensitive, reliable and rapid analysis of critical disease biomarkers and globally emerging pharmaceutical compounds at carbon nanomaterials based electrochemical sensor platforms may enable an extensive range of applications in preemptive medical diagnostics. PMID:26404304

  14. Electrochemical sensors and biosensors based on less aggregated graphene.

    PubMed

    Bo, Xiangjie; Zhou, Ming; Guo, Liping

    2017-03-15

    As a novel single-atom-thick sheet of sp(2) hybridized carbon atoms, graphene (GR) has attracted extensive attention in recent years because of its unique and remarkable properties, such as excellent electrical conductivity, large theoretical specific surface area, and strong mechanical strength. However, due to the π-π interaction, GR sheets are inclined to stack together, which may seriously degrade the performance of GR with the unique single-atom layer. In recent years, an increasing number of GR-based electrochemical sensors and biosensors are reported, which may reflect that GR has been considered as a kind of hot and promising electrode material for electrochemical sensor and biosensor construction. However, the active sites on GR surface induced by the irreversible GR aggregations would be deeply secluded inside the stacked GR sheets and therefore are not available for the electrocatalysis. So the alleviation or the minimization of the aggregation level for GR sheets would facilitate the exposure of active sites on GR and effectively upgrade the performance of GR-based electrochemical sensors and biosensors. Less aggregated GR with low aggregation and high dispersed structure can be used in improving the electrochemical activity of GR-based electrochemical sensors or biosensors. In this review, we summarize recent advances and new progress for the development of electrochemical sensors based on less aggregated GR. To achieve such goal, many strategies (such as the intercalation of carbon materials, surface modification, and structural engineering) have been applied to alleviate the aggregation level of GR in order to enhance the performance of GR-based electrochemical sensors and biosensors. Finally, the challenges associated with less aggregated GR-based electrochemical sensors and biosensors as well as related future research directions are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Reagentless, Structure-Switching, Electrochemical Aptamer-Based Sensors

    NASA Astrophysics Data System (ADS)

    Schoukroun-Barnes, Lauren R.; Macazo, Florika C.; Gutierrez, Brenda; Lottermoser, Justine; Liu, Juan; White, Ryan J.

    2016-06-01

    The development of structure-switching, electrochemical, aptamer-based sensors over the past ˜10 years has led to a variety of reagentless sensors capable of analytical detection in a range of sample matrices. The crux of this methodology is the coupling of target-induced conformation changes of a redox-labeled aptamer with electrochemical detection of the resulting altered charge transfer rate between the redox molecule and electrode surface. Using aptamer recognition expands the highly sensitive detection ability of electrochemistry to a range of previously inaccessible analytes. In this review, we focus on the methods of sensor fabrication and how sensor signaling is affected by fabrication parameters. We then discuss recent studies addressing the fundamentals of sensor signaling as well as quantitative characterization of the analytical performance of electrochemical aptamer-based sensors. Although the limits of detection of reported electrochemical aptamer-based sensors do not often reach that of gold-standard methods such as enzyme-linked immunosorbent assays, the operational convenience of the sensor platform enables exciting analytical applications that we address. Using illustrative examples, we highlight recent advances in the field that impact important areas of analytical chemistry. Finally, we discuss the challenges and prospects for this class of sensors.

  16. Electrochemical Oxidation of Alkylnitro Compounds PP-1345

    DTIC Science & Technology

    2004-08-17

    dinitropropanol (DNPOH, the precursor to the energetic plasticizer BDNPA/F) yield as byproducts large amounts of chemical process waste in the form...these chemistries and the significantly large resulting waste streams requiring treatment and disposal after the manufacturing chemistry is completed...fielded materials and many others, and thus avoid their byproducts and large waste streams. This proven electrochemical oxidation technology, employed

  17. Ultrafast graphene oxide humidity sensors.

    PubMed

    Borini, Stefano; White, Richard; Wei, Di; Astley, Michael; Haque, Samiul; Spigone, Elisabetta; Harris, Nadine; Kivioja, Jani; Ryhänen, Tapani

    2013-12-23

    Sensors allow an electronic device to become a gateway between the digital and physical worlds, and sensor materials with unprecedented performance can create new applications and new avenues for user interaction. Graphene oxide can be exploited in humidity and temperature sensors with a number of convenient features such as flexibility, transparency and suitability for large-scale manufacturing. Here we show that the two-dimensional nature of graphene oxide and its superpermeability to water combine to enable humidity sensors with unprecedented response speed (∼30 ms response and recovery times). This opens the door to various applications, such as touchless user interfaces, which we demonstrate with a 'whistling' recognition analysis.

  18. Electrochemical fabrication and amperometric sensor application of graphene sheets

    NASA Astrophysics Data System (ADS)

    Öztürk, Ayşe; Alanyalıoğlu, Murat

    2016-07-01

    Graphene sheets have been fabricated by applying two-step electrochemical processes in two-electrode cell system containing 0.1 M sodium dodecyl sulfate (SDS). First step is intercalation of SDS into graphite anode electrode and this process has been applied at different intercalation potential values of 1, 3, 5, and 7 V. Second step includes exfoliation of SDS-intercalated graphite electrode in the same medium by acting as cathode. Stable graphene dispersions are obtained after these two electrochemical steps. Characterization of graphene sheets have been carried out using scanning electron microscopy, electron dispersive spectroscopy, fourier transform infrared spectroscopy, UV-Vis. absorption spectroscopy, X-ray diffraction, and cyclic voltammetry techniques. Graphene sheets have been modified onto glassy carbon electrode (GCE) by drop-casting of graphene dispersion. Graphene/GCE having a good electrocatalytic activity has been used for amperometric determination of nitrite in both standard laboratory and real samples. The oxidation current density was linearly proportional to the nitrite concentration in a range between 1 and 250 μM. The sensitivity of the sensor was calculated as 0.843 μAμM-1 cm-2 with a detection limit of 0.24 μM at a signal-to-noise ratio of 3.0.

  19. An improved sensor for electrochemical microcalorimetry, based on lithiumtantalate.

    PubMed

    Frittmann, Stefan; Halka, Vadym; Jaramillo, Carlos; Schuster, Rolf

    2015-06-01

    We have developed a pyroelectric sensor for electrochemical microcalorimetry, based on LiTaO3, which provides unprecedented sensitivity for the detection of electrochemically induced heat effects. Deterioration of the heat signal by electrostriction effects on the electrode surface is suppressed by a multilayered construction, where an intermediate sapphire sheet dampens mechanical deformations. Thus, well textured thin metal films become viable candidates as electrodes. We demonstrate the sensor performance for Cu underpotential deposition on (111)-textured Au films on sapphire. The sensor signal compares well with a purely thermal signal induced by heating with laser pulses. The high sensitivity of the sensor is demonstrated by measuring heat effects upon double layer charging in perchloric acid, i.e., in the absence of electrochemical charge- or ion-transfer reactions.

  20. An improved sensor for electrochemical microcalorimetry, based on lithiumtantalate

    NASA Astrophysics Data System (ADS)

    Frittmann, Stefan; Halka, Vadym; Jaramillo, Carlos; Schuster, Rolf

    2015-06-01

    We have developed a pyroelectric sensor for electrochemical microcalorimetry, based on LiTaO3, which provides unprecedented sensitivity for the detection of electrochemically induced heat effects. Deterioration of the heat signal by electrostriction effects on the electrode surface is suppressed by a multilayered construction, where an intermediate sapphire sheet dampens mechanical deformations. Thus, well textured thin metal films become viable candidates as electrodes. We demonstrate the sensor performance for Cu underpotential deposition on (111)-textured Au films on sapphire. The sensor signal compares well with a purely thermal signal induced by heating with laser pulses. The high sensitivity of the sensor is demonstrated by measuring heat effects upon double layer charging in perchloric acid, i.e., in the absence of electrochemical charge- or ion-transfer reactions.

  1. Folding- and Dynamics-Based Electrochemical DNA Sensors.

    PubMed

    Lai, Rebecca Y

    2017-01-01

    A number of electrochemical DNA sensors based on the target-induced change in the conformation and/or flexibility of surface-bound oligonucleotides have been developed in recent years. These sensors, which are often termed E-DNA sensors, are comprised of an oligonucleotide probe modified with a redox label (e.g., methylene blue) at one terminus and attached to a gold electrode via a thiol-gold bond at the other. Binding of the target to the DNA probe changes its structure and dynamics, which, in turn, influences the efficiency of electron transfer to the interrogating electrode. Since electrochemically active contaminants are less common, these sensors are resistant to false-positive signals arising from the nonspecific adsorption of contaminants and perform well even when employed directly in serum, whole blood, and other realistically complex sample matrices. Moreover, because all of the sensor components are chemisorbed to the electrode, the E-DNA sensors are essentially label-free and readily reusable. To date, these sensors have achieved state-of-the-art sensitivity, while offering the unprecedented selectivity, reusability, and the operational convenience of direct electrochemical detection. This chapter reviews the recent advances in the development of both "signal-off" and "signal-on" E-DNA sensors. Critical aspects that dictate the stability and performance of these sensors are also addressed so as to provide a realistic overview of this oligonucleotide detection platform. © 2017 Elsevier Inc. All rights reserved.

  2. Multiple frequency method for operating electrochemical sensors

    DOEpatents

    Martin, Louis P [San Ramon, CA

    2012-05-15

    A multiple frequency method for the operation of a sensor to measure a parameter of interest using calibration information including the steps of exciting the sensor at a first frequency providing a first sensor response, exciting the sensor at a second frequency providing a second sensor response, using the second sensor response at the second frequency and the calibration information to produce a calculated concentration of the interfering parameters, using the first sensor response at the first frequency, the calculated concentration of the interfering parameters, and the calibration information to measure the parameter of interest.

  3. Synthesis and utilisation of graphene for fabrication of electrochemical sensors.

    PubMed

    Lawal, Abdulazeez T

    2015-01-01

    This review summarises the most recent contributions in the fabrication of graphene-based electrochemical biosensors in recent years. It discusses the synthesis and application of graphene to the fabrication of graphene-based electrochemical sensors, its analytical performance and future prospects. An increasing number of reviews and publications involving graphene sensors have been reported ever since the first design of graphene electrochemical biosensor. The large surface area and good electrical conductivity of graphene allow it to act as an "electron wire" between the redox centres of an enzyme or protein and an electrode's surface, which make it a very excellent material for the design of electrochemical biosensors. Graphene promotes the different rapid electron transfers that facilitate accurate and selective detection of cytochrome-c, β-nicotinamide adenine dinucleotide, haemoglobin, biomolecules such as glucose, cholesterol, ascorbic acid, uric acid, dopamine and hydrogen peroxide. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Phytic acid/graphene oxide nanocomposites modified electrode for electrochemical sensing of dopamine.

    PubMed

    Wang, Donglei; Xu, Fei; Hu, Jiajie; Lin, Meng

    2017-02-01

    An electrochemical sensor for determining dopamine was developed by modifying phytic acid/graphene oxide (PA/GO) nanocomposites onto a glassy carbon electrode (GCE). PA functionalized GO was prepared by an ultra-sonication method. Subsequently, the PA/GO nanocomposites were drop-casted on a glassy carbon substrate. The structural feature of the PA/GO modified GCE was confirmed by attenuated total reflection infrared (ATR-IR) spectroscopy. The proposed electrochemical sensor was applied to detect various concentrations of DA by differential pulse voltammetry (DPV). The PA/GO/GCE was considered to be highly sensitive to DA in the range of 0.05-10μM. In addition, the PA/GO/GCE demonstrated high electrochemical selectivity toward DA in the presence of ascorbic acid (AA) and uric acid (UA). The prepared electrochemical DA sensor was applied for detection of DA in dopamine hydrochloride injection and spiked samples of human urine with satisfactory results.

  5. Improved electrochemical biosensor response via metal oxide pre-oxidation of chemical interferents

    NASA Astrophysics Data System (ADS)

    Houseknecht, Jamie G.; Tapsak, Mark A.

    2007-09-01

    Typical biological samples are inherently complicated. They may contain a myriad of compounds that are electroactive at the same potential as that used in many electrochemical biosensors. Therefore, a biosensor design feature must be included that either eliminates or blocks the interferents from generating false positive signals. The ability to use an insoluble compound, that of MnO II, in order to oxidize interferents such as ascorbic acid, acetaminophen and uric acid, was investigated in a prototype sensor system at a bias potential of 0.6 V versus Ag/AgCl. Unlike previous work with these materials, a difference between the ability for the metal oxide to oxidize the interferents was observed. Most effective was the capability of MnO II to oxidize uric acid. Alternatively, the MnO II had little effect on acetaminophen. The study is both introduced and results are discussed within the context of an implantable glucose sensor.

  6. Recent Trends on Electrochemical Sensors Based on Ordered Mesoporous Carbon

    PubMed Central

    Walcarius, Alain

    2017-01-01

    The past decade has seen an increasing number of extensive studies devoted to the exploitation of ordered mesoporous carbon (OMC) materials in electrochemistry, notably in the fields of energy and sensing. The present review summarizes the recent achievements made in field of electroanalysis using electrodes modified with such nanomaterials. On the basis of comprehensive tables, the interest in OMC for designing electrochemical sensors is illustrated through the various applications developed to date. They include voltammetric detection after preconcentration, electrocatalysis (intrinsically due to OMC or based on suitable catalysts deposited onto OMC), electrochemical biosensors, as well as electrochemiluminescence and potentiometric sensors. PMID:28800106

  7. Recent Trends on Electrochemical Sensors Based on Ordered Mesoporous Carbon.

    PubMed

    Walcarius, Alain

    2017-08-11

    The past decade has seen an increasing number of extensive studies devoted to the exploitation of ordered mesoporous carbon (OMC) materials in electrochemistry, notably in the fields of energy and sensing. The present review summarizes the recent achievements made in field of electroanalysis using electrodes modified with such nanomaterials. On the basis of comprehensive tables, the interest in OMC for designing electrochemical sensors is illustrated through the various applications developed to date. They include voltammetric detection after preconcentration, electrocatalysis (intrinsically due to OMC or based on suitable catalysts deposited onto OMC), electrochemical biosensors, as well as electrochemiluminescence and potentiometric sensors.

  8. Evaluation for Electrochemical Impedance Measurement of Carbon Nanotube Taste Sensor

    NASA Astrophysics Data System (ADS)

    Takeda, Naoki; Hirata, Takamichi; Akiya, Masahiro

    In our laboratory, a nano-bio taste sensor based on carbon nanotubes has been developed. However, previous technique cannot separate elements such as CNT random network or electrode surface etc., because of sensor impedance change in fixed frequency. Electrochemical impedance spectroscopy (EIS) revealed CNT taste sensor with two R/C parallel circuits. Experimental complex plane plots were reproduced using a computer simulation program based upon the lumped equivalent circuit approach. It was found that the sensor has two relaxation times, and also that these circuits consist of two elements such as electrode surface and CNT random network.

  9. Non-invasive wearable electrochemical sensors: a review.

    PubMed

    Bandodkar, Amay J; Wang, Joseph

    2014-07-01

    Wearable sensors have garnered considerable recent interest owing to their tremendous promise for a plethora of applications. Yet the absence of reliable non-invasive chemical sensors has greatly hindered progress in the area of on-body sensing. Electrochemical sensors offer considerable promise as wearable chemical sensors that are suitable for diverse applications owing to their high performance, inherent miniaturization, and low cost. A wide range of wearable electrochemical sensors and biosensors has been developed for real-time non-invasive monitoring of electrolytes and metabolites in sweat, tears, or saliva as indicators of a wearer's health status. With continued innovation and attention to key challenges, such non-invasive electrochemical sensors and biosensors are expected to open up new exciting avenues in the field of wearable wireless sensing devices and body-sensor networks, and thus find considerable use in a wide range of personal health-care monitoring applications, as well as in sport and military applications. Published by Elsevier Ltd.

  10. Advantages of electrodes with dendrimer-protected platinum nanoparticles and carbon nanotubes for electrochemical methanol oxidation.

    PubMed

    Siriviriyanun, Ampornphan; Imae, Toyoko

    2013-04-14

    Electrochemical sensors consisting of electrodes loaded with carbon nanotubes and Pt nanoparticles (PtNPs) protected by dendrimers have been developed using a facile method to fabricate them on two types of disposable electrochemical printed chips with a screen-printed circular gold or a screen-printed circular glassy carbon working electrode. The electrochemical performance of these sensors in the oxidation of methanol was investigated by cyclic voltammetry. It was revealed that such sensors possess stable durability and high electrocatalytic activity: the potential and the current density of an anodic peak in the oxidation of methanol increased with increasing content of PtNPs on the electrodes, indicating the promotion of electrocatalytic activity in relation to the amount of catalyst. The low anodic potential suggests the easy electrochemical reaction, and the high catalyst tolerance supports the almost complete oxidation of methanol to carbon dioxide. The significant performance of these sensors in the detection of methanol oxidation comes from the high electrocatalytic ability of PtNPs, excellent energy transfer of carbon nanotubes and the remarkable ability of dendrimers to act as binders. Thus these systems are effective for a wide range of applications as chemical, biomedical, energy and environmental sensors and as units of direct methanol fuel cells.

  11. Integrated Magneto-Electrochemical Sensor for Exosome Analysis.

    PubMed

    Jeong, Sangmoo; Park, Jongmin; Pathania, Divya; Castro, Cesar M; Weissleder, Ralph; Lee, Hakho

    2016-02-23

    Extracellular vesicles, including exosomes, are nanoscale membrane particles that carry molecular information on parental cells. They are being pursued as biomarkers of cancers that are difficult to detect or serially follow. Here we present a compact sensor technology for rapid, on-site exosome screening. The sensor is based on an integrated magneto-electrochemical assay: exosomes are immunomagnetically captured from patient samples and profiled through electrochemical reaction. By combining magnetic enrichment and enzymatic amplification, the approach enables (i) highly sensitive, cell-specific exosome detection and (ii) sensor miniaturization and scale-up for high-throughput measurements. As a proof-of-concept, we implemented a portable, eight-channel device and applied it to screen extracellular vesicles in plasma samples from ovarian cancer patients. The sensor allowed for the simultaneous profiling of multiple protein markers within an hour, outperforming conventional methods in assay sensitivity and speed.

  12. Integrated Magneto-Electrochemical Sensor for Exosome Analysis

    PubMed Central

    Jeong, Sangmoo; Park, Jongmin; Pathania, Divya; Castro, Cesar M.; Weissleder, Ralph; Lee, Hakho

    2016-01-01

    Extracellular vesicles, including exosomes, are nanoscale vesicles that carry molecular information of parental cells. They are being pursued as biomarkers of cancers that are difficult to detect or serially follow. Here we present a compact sensor technology for rapid, on-site exosome screening. The sensor is based on an integrated magnetic-electrochemical assay: exosomes are immunomagnetically captured from patient samples, and profiled through electrochemical reaction. By combining magnetic enrichment and enzymatic amplification, the approach enables i) highly sensitive, cell-specific exosome detection, and ii) sensor miniaturization and scale-up for high throughput measurements. As a proof-of-concept, we implemented a portable, eight-channel device, and applied it to screen extracellular vesicles in plasma samples from ovarian cancer patients. The sensor allowed for the profiling of multiple protein markers simultaneously within an hour, outperforming conventional methods in assay sensitivity and speed. PMID:26808216

  13. Cyclodextrins based electrochemical sensors for biomedical and pharmaceutical analysis.

    PubMed

    Lenik, Joanna

    2016-12-12

    Electrochemical sensors are very convenient devices, as they may be used in a lot of fields starting from the food industry to environmental monitoring and medical diagnostics. They offer the values of simple design, reversible and reproducible measurements as well as ensuring precise and accurate analytical information. Compared with other methods, electrochemical sensors are relatively simple as well as having low costs, which has led to intensive development, especially in the field of medicine and pharmacy within the last decade. Recently, the number of publications covering the determination of amino-acids, dopamine, cholesterol, uric acid, biomarkers, vitamins and other pharmaceutical and biological compounds have significantly increased. Many possible types of such sensors and biosensors have been proposed: owing to the kind of the detection-potentiometric voltametric, amperometry, and the materials they can be used for, e.g. designing molecular architecture of the electrode/solution interface, carbon paste, carbon nanotubes, glass carbon, graphite, graphene, PVC, conductive polymers and/or nanoparticles. The active compounds which provide the complex formation with analyte (in the case of non-current techniques) or activate biomolecules electrochemically by particle recognition and selective preconcentration of analyte on the electrode surface (in the case of current techniques) are the most recently used cyclodextrins. These macrocyclic compounds have the ability to interact with a large diversity of guest particles to form complexes of type guest host, for example with particles from drugs, biomolecules, through their hydrophilic outer surface and lipophilic inner cavities. Cyclodextrins have been the subject of frequent electrochemical studies that focused mostly on both their interactions in a solid state and in solution. The process of preparing of CDs modified electrodes would, consequently, open new avenues for new electrochemical sensors and

  14. Disposable Copper-Based Electrochemical Sensor for Anodic Stripping Voltammetry

    PubMed Central

    2015-01-01

    In this work, we report the first copper-based point-of-care sensor for electrochemical measurements demonstrated by zinc determination in blood serum. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Electrochemistry offers a simple approach to metal detection on the microscale, but traditional carbon, gold (Au), or platinum (Pt) electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor features a new low-cost electrode material, copper, which offers simple fabrication and compatibility with microfabrication and PCB processing, while maintaining competitive performance in electrochemical detection. Anodic stripping voltammetry of zinc using our new copper-based sensors exhibited a 140 nM (9.0 ppb) limit of detection (calculated) and sensitivity greater than 1 μA/μM in the acetate buffer. The sensor was also able to determine zinc in a bovine serum extract, and the results were verified with independent sensor measurements. These results demonstrate the advantageous qualities of this lab-on-a-chip electrochemical sensor for clinical applications, which include a small sample volume (μL scale), reduced cost, short response time, and high accuracy at low concentrations of analyte. PMID:24773513

  15. A novel electrochemical sensor based on a molecularly imprinted polymer for the determination of epigallocatechin gallate.

    PubMed

    Liu, Yanrui; Zhu, Lili; Hu, Yue; Peng, Xinsheng; Du, Jiangyan

    2017-04-15

    A novel electrochemical sensor based on the molecularly imprinted polymer (MIP) was fabricated by electrochemical polymerization of β-cyclodextrins (β-CD) and epigallocatechin-gallate (EGCG) on the graphene oxide (GO) modified glassy carbon (GO/GC) electrode for the first time. The MIP/GO/GC electrode exhibits an excellent ability of specific binding of EGCG and a rapid electrochemical response, high sensitivity and selectivity for determination of EGCG. This prepared MIP sensor presents distinct advantages over conventional electrochemical methods for EGCG determination because it is a one-step preparation and the template molecule can be easily removed by cyclic voltammetry scans, and no elution reagent is required. Under the optimal experimental conditions, the linear response range for EGCG concentrations by the sensor was 3×10(-8)mol/L to 1×10(-5)mol/L and the detection limit was 8.78×10(-9)mol/L(S/N=3). The results demonstrate that the proposed MIP sensor can be a potential alternative for the determination of EGCG in tea samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    SciTech Connect

    Marina, Olga A; Stevenson, Jeffry W

    2010-03-02

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  17. Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices

    DOEpatents

    Rieke, Peter C [Pasco, WA; Coffey, Gregory W [Richland, WA; Pederson, Larry R [Kennewick, WA; Marina, Olga A [Richland, WA; Hardy, John S [Richland, WA; Singh, Prabhaker [Richland, WA; Thomsen, Edwin C [Richland, WA

    2010-07-20

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.

  18. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    DOEpatents

    Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

    2010-11-23

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  19. Recent Updates of DNA Incorporated in Carbon Nanotubes and Nanoparticles for Electrochemical Sensors and Biosensors

    PubMed Central

    Yogeswaran, Umasankar; Thiagarajan, Soundappan; Chen, Shen-Ming

    2008-01-01

    Innovations in the field of electrochemical sensors and biosensors are of much importance nowadays. These devices are designed with probes and micro electrodes. The miniaturized designs of these sensors allow analyses of materials without damaging the samples. Some of these sensors are also useful for real time analysis within the host system, so these sensors are considered to be more advantageous than other types of sensors. The active sensing materials used in these types of sensors can be any material that acts as a catalyst for the oxidation or reduction of particular analyte or set of analytes. Among various kinds of sensing materials, deoxyribonucleic acid (DNA), carbon nanotubes (CNTs) and nanoparticles have received considerable attraction in recent years. DNA is one of the classes of natural polymers, which can interact with CNTs and nanoparticles to form new types of composite materials. These composite materials have also been used as sensing materials for sensor applications. They have advantages in characteristics such as extraordinary low weight and multifunctional properties. In this article, advantages of DNA incorporated in CNT and nanoparticle hybrids for electrochemical sensors and biosensors are presented in detail, along with some key results noted from the literature. PMID:27873923

  20. Recent Updates of DNA Incorporated in Carbon Nanotubes and Nanoparticles for Electrochemical Sensors and Biosensors.

    PubMed

    Yogeswaran, Umasankar; Thiagarajan, Soundappan; Chen, Shen-Ming

    2008-11-13

    Innovations in the field of electrochemical sensors and biosensors are of much importance nowadays. These devices are designed with probes and micro electrodes. The miniaturized designs of these sensors allow analyses of materials without damaging the samples. Some of these sensors are also useful for real time analysis within the host system, so these sensors are considered to be more advantageous than other types of sensors. The active sensing materials used in these types of sensors can be any material that acts as a catalyst for the oxidation or reduction of particular analyte or set of analytes. Among various kinds of sensing materials, deoxyribonucleic acid (DNA), carbon nanotubes (CNTs) and nanoparticles have received considerable attraction in recent years. DNA is one of the classes of natural polymers, which can interact with CNTs and nanoparticles to form new types of composite materials. These composite materials have also been used as sensing materials for sensor applications. They have advantages in characteristics such as extraordinary low weight and multifunctional properties. In this article, advantages of DNA incorporated in CNT and nanoparticle hybrids for electrochemical sensors and biosensors are presented in detail, along with some key results noted from the literature.

  1. Boron-doped diamond nanograss array for electrochemical sensors.

    PubMed

    Wei, Min; Terashima, Chiaki; Lv, Mei; Fujishima, Akira; Gu, Zhong-Ze

    2009-06-28

    A novel BDD nanograss array has been prepared simply on a heavily doped BDD film by reactive ion etching for use as an electrochemical sensor, which improved the reactive site, promoted the electrocatalytic activity, accelerated the electron transfer, and enhanced the selectivity.

  2. Recent Electrochemical and Optical Sensors in Flow-Based Analysis

    PubMed Central

    Chailapakul, Orawon; Ngamukot, Passapol; Yoosamran, Alongkorn; Siangproh, Weena; Wangfuengkanagul, Nattakarn

    2006-01-01

    Some recent analytical sensors based on electrochemical and optical detection coupled with different flow techniques have been chosen in this overview. A brief description of fundamental concepts and applications of each flow technique, such as flow injection analysis (FIA), sequential injection analysis (SIA), all injection analysis (AIA), batch injection analysis (BIA), multicommutated FIA (MCFIA), multisyringe FIA (MSFIA), and multipumped FIA (MPFIA) were reviewed.

  3. Reduced graphene oxide molecular sensors.

    PubMed

    Robinson, Jeremy T; Perkins, F Keith; Snow, Eric S; Wei, Zhongqing; Sheehan, Paul E

    2008-10-01

    We demonstrate reduced graphene oxide as the active material for high-performance molecular sensors. Sensors are fabricated from exfoliated graphene oxide platelets that are deposited to form an ultrathin continuous network. These graphene oxide networks are tunably reduced toward graphene by varying the exposure time to a hydrazine hydrate vapor. The conductance change of the networks upon exposure to trace levels of vapor is measured as a function of the chemical reduction. The level of reduction affects both the sensitivity and the level of 1/ f noise. The sensors are capable of detecting 10 s exposures to simulants of the three main classes of chemical-warfare agents and an explosive at parts-per-billion concentrations.

  4. Electrochemical amperometric gas sensors for environmental monitoring and control

    NASA Technical Reports Server (NTRS)

    Venkatasetty, H. V.

    1990-01-01

    Theoretical considerations and experimental results regarding a unique class of vapor sensors are presented, and the sensors are compared to semiconductor-based sensors. The electrochemical sensors are based on nonaquaeous electrolytes, and gas-detection selectivity achieved by applying a known potential to the sensing electrode using a reference electrode and a counter electrode. Results are given regarding the detection of oxygen and carbon dioxide using one cell, the detection of 3-percent carbon dioxide in nitrogen, and the detection of carbon dioxide in air at percentages ranging from 3 to 6. The sensors are found to be effective in the detection of toxic chemical species including CO, NO2, and formaldehyde; the sensors are further found to require minimal power, operate over long periods of time, and function over a wide temperature range.

  5. Electrochemical amperometric gas sensors for environmental monitoring and control

    NASA Technical Reports Server (NTRS)

    Venkatasetty, H. V.

    1990-01-01

    Theoretical considerations and experimental results regarding a unique class of vapor sensors are presented, and the sensors are compared to semiconductor-based sensors. The electrochemical sensors are based on nonaquaeous electrolytes, and gas-detection selectivity achieved by applying a known potential to the sensing electrode using a reference electrode and a counter electrode. Results are given regarding the detection of oxygen and carbon dioxide using one cell, the detection of 3-percent carbon dioxide in nitrogen, and the detection of carbon dioxide in air at percentages ranging from 3 to 6. The sensors are found to be effective in the detection of toxic chemical species including CO, NO2, and formaldehyde; the sensors are further found to require minimal power, operate over long periods of time, and function over a wide temperature range.

  6. Phosphines as Efficient Dioxygen Scavengers in Nitrous Oxide Sensors.

    PubMed

    Sveegaard, Steffen Gralert; Nielsen, Michael; Andersen, Mikkel Holmen; Gothelf, Kurt Vesterager

    2017-05-26

    A current challenge for development of amperometric sensors for the greenhouse gas nitrous oxide (N2O) is their sensitivity toward dioxygen and trace water. The need for aqueous dioxygen scavengers in front of the sensor implies a background signal from penetrating water vapor. In this paper, we introduce substituted phosphines as dioxygen scavengers and demonstrate the application in a dioxygen-insensitive N2O sensor. Suitably substituted phosphines have been synthesized to achieve good solubility properties in the electrochemically inert solvent propylene carbonate. Several sensors with and without physical separation of the sensing and dioxygen scavenging compartments were made and compared to current commercial sensors. The use of phosphines soluble in organic solvents as dioxygen scavengers yielded a higher sensitivity, albeit with longer response time. Proof-of-concept N2O sensors without the physically separated dioxygen scavenger chamber showed a greatly enhanced sensitivity with a comparable response time, thus demonstrating the possibility for greatly simplified sensor construction.

  7. Solid oxide electrochemical cell fabrication process

    DOEpatents

    Dollard, Walter J.; Folser, George R.; Pal, Uday B.; Singhal, Subhash C.

    1992-01-01

    A method to form an electrochemical cell (12) is characterized by the steps of thermal spraying stabilized zirconia over a doped lanthanum manganite air electrode tube (14) to provide an electrolyte layer (15), coating conductive particles over the electrolyte, pressurizing the outside of the electrolyte layer, feeding halide vapors of yttrium and zirconium to the outside of the electrolyte layer and feeding a source of oxygen to the inside of the electrolyte layer, heating to cause oxygen reaction with the halide vapors to close electrolyte pores if there are any and to form a metal oxide coating on and between the particles and provide a fuel electrode (16).

  8. Carbon fibre composites: integrated electrochemical sensors for wound management.

    PubMed

    Sharp, Duncan; Forsythe, Stephen; Davis, James

    2008-07-01

    The applicability of employing a carbon fibre mesh as an electrochemical sensing substructure for assessing urate transformations within wound exudates is evaluated. Prototype sensor assemblies have been designed and their response characteristics towards uric acid and other common physiological components are detailed. Modification of the carbon fibre sensor through surface anodization and the application of cellulose acetate permselective barriers have been shown to lead to optimized responses and much greater sensitivity (1440% increase) and specificity. These could enable the accurate periodic monitoring of uric acid in wound fluid. The performance characteristics of the composite sensors in whole blood, serum and blister fluid have been investigated.

  9. Electrochemical sensor/detector system and method

    DOEpatents

    Glass, Robert S.; Perone, Sam P.; Ciarlo, Dino R.; Kimmons, James F.

    1992-01-01

    An electrochemical detection system is described comprising in combination: (a) a multielement, microelectrode array detector containing means for acquiring a plurality of signals; (b) electronic means for receiving said signals and converting said signals into a readout or display providing information with respect to the nature and concentration of elements present in a solution being tested. Also described is the means of making the above described microelectrode detector.

  10. Electrochemical sensor/detector system and method

    DOEpatents

    Glass, Robert S.; Perone, Sam P.; Ciarlo, Dino R.; Kimmons, James F.

    1994-01-01

    An electrochemical detection system is described comprising in combination: (a) a multielement, microelectrode array detector containing means for acquiring a plurality of signals; (b) electronic means for receiving said signals and converting said signals into a readout or display providing information with respect to the nature and concentration of elements present in a solution being tested. Also described is the means of making the above described microelectrode detector.

  11. Single particle electrochemical sensors and methods of utilization

    DOEpatents

    Schoeniger, Joseph; Flounders, Albert W.; Hughes, Robert C.; Ricco, Antonio J.; Wally, Karl; Kravitz, Stanley H.; Janek, Richard P.

    2006-04-04

    The present invention discloses an electrochemical device for detecting single particles, and methods for using such a device to achieve high sensitivity for detecting particles such as bacteria, viruses, aggregates, immuno-complexes, molecules, or ionic species. The device provides for affinity-based electrochemical detection of particles with single-particle sensitivity. The disclosed device and methods are based on microelectrodes with surface-attached, affinity ligands (e.g., antibodies, combinatorial peptides, glycolipids) that bind selectively to some target particle species. The electrodes electrolyze chemical species present in the particle-containing solution, and particle interaction with a sensor element modulates its electrolytic activity. The devices may be used individually, employed as sensors, used in arrays for a single specific type of particle or for a range of particle types, or configured into arrays of sensors having both these attributes.

  12. Aptamer based electrochemical sensors for emerging environmental pollutants

    NASA Astrophysics Data System (ADS)

    Hayat, Akhtar; Marty, Jean Louis

    2014-06-01

    Environmental contaminants monitoring is one of the key issues in understanding and managing hazards to human health and ecosystems. In this context, aptamer based electrochemical sensors have achieved intense significance because of their capability to resolve a potentially large number of problems and challenges in environmental contamination. An aptasensor is a compact analytical device incorporating an aptamer (oligonulceotide) as the sensing element either integrated within or intimately associated with a physiochemical transducer surface. Nucleic acid is well known for the function of carrying and passing genetic information, however, it has found a key role in analytical monitoring during recent years. Aptamer based sensors represent a novelty in environmental analytical science and there are great expectations for their promising performance as alternative to conventional analytical tools. This review paper focuses on the recent advances in the development of aptamer based electrochemical sensors for environmental applications with special emphasis on emerging pollutants.

  13. Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors

    PubMed Central

    Behera, Kamalakanta; Pandey, Shubha; Kadyan, Anu; Pandey, Siddharth

    2015-01-01

    Due to their unusual physicochemical properties (e.g., high thermal stability, low volatility, high intrinsic conductivity, wide electrochemical windows and good solvating ability), ionic liquids have shown immense application potential in many research areas. Applications of ionic liquid in developing various sensors, especially for the sensing of biomolecules, such as nucleic acids, proteins and enzymes, gas sensing and sensing of various important ions, among other chemosensing platforms, are currently being explored by researchers worldwide. The use of ionic liquids for the detection of carbon dioxide (CO2) gas is currently a major topic of research due to the associated importance of this gas with daily human life. This review focuses on the application of ionic liquids in optical and electrochemical CO2 sensors. The design, mechanism, sensitivity and detection limit of each type of sensor are highlighted in this review. PMID:26690155

  14. Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors.

    PubMed

    Behera, Kamalakanta; Pandey, Shubha; Kadyan, Anu; Pandey, Siddharth

    2015-12-04

    Due to their unusual physicochemical properties (e.g., high thermal stability, low volatility, high intrinsic conductivity, wide electrochemical windows and good solvating ability), ionic liquids have shown immense application potential in many research areas. Applications of ionic liquid in developing various sensors, especially for the sensing of biomolecules, such as nucleic acids, proteins and enzymes, gas sensing and sensing of various important ions, among other chemosensing platforms, are currently being explored by researchers worldwide. The use of ionic liquids for the detection of carbon dioxide (CO₂) gas is currently a major topic of research due to the associated importance of this gas with daily human life. This review focuses on the application of ionic liquids in optical and electrochemical CO₂ sensors. The design, mechanism, sensitivity and detection limit of each type of sensor are highlighted in this review.

  15. Electrochemical and photocatalytic oxidation of hydrocarbons

    NASA Astrophysics Data System (ADS)

    Rismanchian, Azadeh

    This study demonstrates the development of a stable anode for electrochemical oxidation of hydrocarbons in solid oxide fuel cell (SOFC) and a highly active TiO2 based catalyst for photocatalytic reactions. The Ni/YSZ anode of SOFC was modified by Cu electroless plating. The catalytic activity toward H2 and CH4 oxidation were compared by the Faraday resistance (RF) obtained from the impedance spectroscopy. The RF ratio of Cu-Ni/YSZ in CH4 to H2 was greater than that of Ni/YSZ, indicating low catalytic activity of Cu-Ni/YSZ toward CH4 oxidation. The addition of Cu decreased the catalytic activity, but increased stability to 138 h in dry CH4. Characterization of the carbon type with Raman spectroscopy and temperature programmed oxidation showed that Cu formed disordered carbon rather than graphitic carbon which is the precursor to coking. Addition of CO2 to CH4 was studied as another approach to prevent coking. Electrochemical performance and mass spectrometry of the reactor effluent showed that the CH4-CO2 SOFC generated electricity from CO and H2, products of dry reforming reaction, with CO as the major contributor to current generation. CH4-CO 2 decreased the activation polarization but showed a limiting current due to the fuel depletion at the interlayer-electrolyte interface. Anode interlayer was modified by reducing the particle size to 2 mum. The fine microstructure increased the three phase boundary length and reduced the activation polarization. The pore loss in the fine microstructure resulted in diffusion limitation and a limiting current in CH4 which was eliminated by adding 4 wt% of pore former at interlayer. Further addition of pore former lowered the performance by creating discontinuity at electrolyte-interlayer interface. The photocatalytic oxidation of ethanol on TiO2 and TiO 2 modified with Ag and Au nanoparticles was studied by in-situ IR spectroscopy. Au and Ag increased the surface hydroxyl groups, which further served as active species to

  16. Advances in carbon nanotube based electrochemical sensors for bioanalytical applications.

    PubMed

    Vashist, Sandeep Kumar; Zheng, Dan; Al-Rubeaan, Khalid; Luong, John H T; Sheu, Fwu-Shan

    2011-01-01

    Electrochemical (EC) sensing approaches have exploited the use of carbon nanotubes (CNTs) as electrode materials owing to their unique structures and properties to provide strong electrocatalytic activity with minimal surface fouling. Nanofabrication and device integration technologies have emerged along with significant advances in the synthesis, purification, conjugation and biofunctionalization of CNTs. Such combined efforts have contributed towards the rapid development of CNT-based sensors for a plethora of important analytes with improved detection sensitivity and selectivity. The use of CNTs opens an opportunity for the direct electron transfer between the enzyme and the active electrode area. Of particular interest are also excellent electrocatalytic activities of CNTs on the redox reaction of hydrogen peroxide and nicotinamide adenine dinucleotide, two major by-products of enzymatic reactions. This excellent electrocatalysis holds a promising future for the simple design and implementation of on-site biosensors for oxidases and dehydrogenases with enhanced selectivity. To date, the use of an anti-interference layer or an artificial electron mediator is critically needed to circumvent unwanted endogenous electroactive species. Such interfering species are effectively suppressed by using CNT based electrodes since the oxidation of NADH, thiols, hydrogen peroxide, etc. by CNTs can be performed at low potentials. Nevertheless, the major future challenges for the development of CNT-EC sensors include miniaturization, optimization and simplification of the procedure for fabricating CNT based electrodes with minimal non-specific binding, high sensitivity and rapid response followed by their extensive validation using "real world" samples. A high resistance to electrode fouling and selectivity are the two key pending issues for the application of CNT-based biosensors in clinical chemistry, food quality and control, waste water treatment and bioprocessing.

  17. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review.

    PubMed

    Yang, Cheng; Denno, Madelaine E; Pyakurel, Poojan; Venton, B Jill

    2015-08-05

    Carbon nanomaterials are advantageous for electrochemical sensors because they increase the electroactive surface area, enhance electron transfer, and promote adsorption of molecules. Carbon nanotubes (CNTs) have been incorporated into electrochemical sensors for biomolecules and strategies have included the traditional dip coating and drop casting methods, direct growth of CNTs on electrodes and the use of CNT fibers and yarns made exclusively of CNTs. Recent research has also focused on utilizing many new types of carbon nanomaterials beyond CNTs. Forms of graphene are now increasingly popular for sensors including reduced graphene oxide, carbon nanohorns, graphene nanofoams, graphene nanorods, and graphene nanoflowers. In this review, we compare different carbon nanomaterial strategies for creating electrochemical sensors for biomolecules. Analytes covered include neurotransmitters and neurochemicals, such as dopamine, ascorbic acid, and serotonin; hydrogen peroxide; proteins, such as biomarkers; and DNA. The review also addresses enzyme-based electrodes that are used to detect non-electroactive species such as glucose, alcohols, and proteins. Finally, we analyze some of the future directions for the field, pointing out gaps in fundamental understanding of electron transfer to carbon nanomaterials and the need for more practical implementation of sensors.

  18. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review

    PubMed Central

    Yang, Cheng; Denno, Madelaine E.; Pyakurel, Poojan; Venton, B. Jill

    2015-01-01

    Carbon nanomaterials are advantageous for electrochemical sensors because they increase the electroactive surface area, enhance electron transfer, and promote adsorption of molecules. Carbon nanotubes (CNTs) have been incorporated into electrochemical sensors for biomolecules and strategies have included the traditional dip coating and drop casting methods, direct growth of CNTs on electrodes and the use of CNT fibers and yarns made exclusively of CNTs. Recent research has also focused on utilizing many new types of carbon nanomaterials beyond CNTs. Forms of graphene are now increasingly popular for sensors including reduced graphene oxide, carbon nanohorns, graphene nanofoams, graphene nanorods, and graphene nanoflowers. In this review, we compare different carbon nanomaterial strategies for creating electrochemical sensors for biomolecules. Analytes covered include neurotransmitters and neurochemicals, such as dopamine, ascorbic acid, and serotonin; hydrogen peroxide; proteins, such as biomarkers; and DNA. The review also addresses enzyme-based electrodes that are used to detect non-electroactive species such as glucose, alcohols, and proteins. Finally, we analyze some of the future directions for the field, pointing out gaps in fundamental understanding of electron transfer to carbon nanomaterials and the need for more practical implementation of sensors. PMID:26320782

  19. Electrochemical, morphological and microstructural characterization of carbon film resistor electrodes for application in electrochemical sensors

    NASA Astrophysics Data System (ADS)

    Gouveia-Caridade, Carla; Soares, David M.; Liess, Hans-Dieter; Brett, Christopher M. A.

    2008-08-01

    The electrochemical and microstructural properties of carbon film electrodes made from carbon film electrical resistors of 1.5, 15, 140 Ω and 2.0 kΩ nominal resistance have been investigated before and after electrochemical pre-treatment at +0.9 V vs SCE, in order to assess the potential use of these carbon film electrodes as electrochemical sensors and as substrates for sensors and biosensors. The results obtained are compared with those at electrodes made from previously investigated 2 Ω carbon film resistors. Cyclic voltammetry was performed in acetate buffer and phosphate buffer saline electrolytes and the kinetic parameters of the model redox system Fe(CN) 63-/4- obtained. The 1.5 Ω resistor electrodes show the best properties for sensor development with wide potential windows, similar electrochemical behaviour to those of 2 Ω and close-to-reversible kinetic parameters after electrochemical pre-treatment. The 15 and 140 Ω resistor electrodes show wide potential windows although with slower kinetics, whereas the 2.0 kΩ resistor electrodes show poor cyclic voltammetric profiles even after pre-treatment. Electrochemical impedance spectroscopy related these findings to the interfacial properties of the electrodes. Microstructural and morphological studies were carried out using contact mode Atomic Force Microscopy (AFM), Confocal Raman spectroscopy and X-ray diffraction. AFM showed more homogeneity of the films with lower nominal resistances, related to better electrochemical characteristics. X-ray diffraction and Confocal Raman spectroscopy indicate the existence of a graphitic structure in the carbon films.

  20. Annealing of indium tin oxide (ITO) coated optical fibers for optical and electrochemical sensing purposes

    NASA Astrophysics Data System (ADS)

    Dominik, Magdalena; Siuzdak, Katarzyna; Niedziałkowski, Paweł; Stranak, Vitezslav; Sezemsky, Petr; Sobaszek, Michał; Bogdanowicz, Robert; Ossowski, Tadeusz; Śmietana, Mateusz

    2016-12-01

    Glass and fiber structures with Indium Tin Oxide (ITO) coating were subjected to annealing in order to identify impact of the thermal treatment on their optical and electrochemical properties. It is shown that the annealing process significantly modifies optical properties and thickness of the films, which are crucial for performance of optical fiber sensors. Moreover, it visibly improves electrochemical activity of ITO on glass slides and thicker (∅=400 μm) ITO-coated fibers, whereas in the case of thinner fibers (∅=125 μm) it could lead to a loss of their electrochemical activity. Depending on the applied substrate and the annealing process, the investigated structures with ITO coating can be further used as fiber-based sensors with integrated opto-electrochemical readout.

  1. An Overview of Label-free Electrochemical Protein Sensors

    PubMed Central

    Vestergaard, Mun'delanji; Kerman, Kagan; Tamiya, Eiichi

    2007-01-01

    Electrochemical-based protein sensors offer sensitivity, selectivity and reliability at a low cost, making them very attractive tools for protein detection. Although the sensors use a broad range of different chemistries, they all depend on the solid electrode surface, interactions with the target protein and the molecular recognition layer. Traditionally, redox enzymes have provided the molecular recognition elements from which target proteins have interacted with. This necessitates that the redox-active enzymes couple with electrode surfaces and usually requires the participation of added diffusional components, or assembly of the enzymes in functional chemical matrices. These complications, among many others, have seen a trend towards non-enzymatic-based electrochemical protein sensors. Several electrochemical detection approaches have been exploited. Basically, these have fallen into two categories: labeled and label-free detection systems. The former rely on a redox-active signal from a reporter molecule or a label, which changes upon the interaction of the target protein. In this review, we discuss the label-free electrochemical detection of proteins, paying particular emphasis to those that exploit intrinsic redox-active amino acids.

  2. Corrosion monitoring of reinforcing steel in concrete by electrochemical sensors

    NASA Astrophysics Data System (ADS)

    Qiao, Guofu; Hong, Yi; Ou, Jinping

    2010-04-01

    Health degradation by corrosion of steel in civil engineering, especially in rough environment, is a persistent problem. Structural health monitoring (SHM) techniques can lead to improved estimates of structural safety and serviceability. A novel all solid state-current confined corrosion sensor has been developed to provide the platform for corrosion monitoring of the steel bar in concrete beam by electrochemical method. Finite element method has been used to certify the current confined effect of the sensor. The sensors have been used in concrete beams to monitor the corrosion of the steel bar. Also, half-cell potential of the beam has obtained. The results shows that the corrosion sensor can effectively confine the current in the fixed area which is 45mm×π×Dsteel bar and the monitoring results of the corrosion sensor are accurate.

  3. Zinc oxide nanostructures for electrochemical cortisol biosensing

    NASA Astrophysics Data System (ADS)

    Vabbina, Phani Kiran; Kaushik, Ajeet; Tracy, Kathryn; Bhansali, Shekhar; Pala, Nezih

    2014-05-01

    In this paper, we report on fabrication of a label free, highly sensitive and selective electrochemical cortisol immunosensors using one dimensional (1D) ZnO nanorods (ZnO-NRs) and two dimensional nanoflakes (ZnO-NFs) as immobilizing matrix. The synthesized ZnO nanostructures (NSs) were characterized using scanning electron microscopy (SEM), selective area diffraction (SAED) and photoluminescence spectra (PL) which showed that both ZnO-NRs and ZnO-NFs are single crystalline and oriented in [0001] direction. Anti-cortisol antibody (Anti-Cab) are used as primary capture antibodies to detect cortisol using electrochemical impedance spectroscopy (EIS). The charge transfer resistance increases linearly with increase in cortisol concentration and exhibits a sensitivity of 3.078 KΩ. M-1 for ZnO-NRs and 540 Ω. M -1 for ZnO-NFs. The developed ZnO-NSs based immunosensor is capable of detecting cortisol at 1 pM. The observed sensing parameters are in physiological range. The developed sensors can be integrated with microfluidic system and miniaturized potentiostat to detect cortisol at point-of-care.

  4. Development of the electrochemical fatigue sensor for evaluating fatigue damage

    SciTech Connect

    Li, Y.F.; Wang, J.; Wang, M.Z.; DeLuccia, J.; Laird, C.

    1999-07-01

    The Electrochemical Fatigue Sensor (EFS) is a device which operates by an electrochemical-mechanical interaction and which can sense the type and extent of fatigue damage both before and after crack initiation. It was initially explored through studies on soft metals. Here the authors report efforts to determine the ability of the device to read damage in hardened commercial alloys: 7075 aluminum alloy, 4130 steel and Ti-6Al-4V. They also demonstrate that the device, which uses an electrolytic medium, does not degrade the fatigue properties if care is used in electrolyte selection.

  5. Simple and novel electrochemical sensor for the determination of tetracycline based on iron/zinc cations-exchanged montmorillonite catalyst.

    PubMed

    Gan, Tian; Shi, Zhaoxia; Sun, Junyong; Liu, Yanming

    2014-04-01

    A simple and novel electrochemical sensor for the determination of tetracycline (TC), a kind of antibiotic that may induce residue in the food chain, was developed by the modification of iron/zinc cation-exchanged montmorillonite (Fe/Zn-MMT) catalyst on glassy carbon electrode (GCE). The morphology and the structure of the Fe/Zn-MMT nanomaterial were characterized by scanning electron microscopy and X-ray diffraction, respectively. The results of electrochemical experiments demonstrated that the sensor exhibited excellent electrocatalytic activity to the oxidation of TC in the presence of sodium dodecyl sulfate. The sensor displayed a wide linear range from 0.30 to 52.0 μM and a low detection limit of 0.10 μM by using the derivative differential pulse voltammetry. Moreover, the electrochemical sensor was applied to the detection of TC in feedstuff and meat samples.

  6. Electrochemical sensor based on molecular imprinting by photo-sensitive polymers.

    PubMed

    Fang, Cheng; Yi, Chenglin; Wang, Yang; Cao, Yuhua; Liu, Xiaoya

    2009-06-15

    A novel voltammetric sensor based on molecularly imprinted polymers (MIPs) by a kind of photo-sensitive functional polymer was developed for determination of glucose in this work. Without the cross-linker and the initiator, a MIPs film on the surface of a gold electrode was easily formed by in-situ cross-link within 10 min under UV light irradiation. In alkaline medium, electrochemical oxidation behaviors of glucose on the MIPs sensor, as well as on a bare gold electrode have been investigated with square wave voltammetry. At oxidation potential of -0.50 V (vs. SCE), the peak currents on the MIPs sensor were proportional to the concentration of glucose in the range of 5.0-120 microM with the detection limit of 0.2 microg ml(-1) (S/N=3), whereas the extremely small responses of the control electrode were observed and independent of the analyte concentration. MIPs sensor displayed specific selectivity toward glucose in comparison to structurally similar analogues. The selective coefficient of glucose MIPs sensor with respect to maltose, arabinose and mannose was 9.17, 1.51 and 1.25, respectively. Fructose and inositol would not interfere with the determination of glucose because they could not be electrochemically oxidized at the potential of -0.50 V. Relative rapid response of the MIPs sensor was obtained within 7 min, and the RSD of peak currents was 5.0% (n=5). MIPs sensor was applied to determine glucose in the simulative blood serum samples, the average recoveries was 92.6%. The experimental results showed that the sensor for glucose, based on MIPs by photo-sensitive polymers, was simpler to construct and operate, and provided an adequate sensitivity, good repeatability and accuracy and acceptable selectivity.

  7. Determination of Lead with a Copper-Based Electrochemical Sensor.

    PubMed

    Kang, Wenjing; Pei, Xing; Rusinek, Cory A; Bange, Adam; Haynes, Erin N; Heineman, William R; Papautsky, Ian

    2017-03-21

    This work demonstrates determination of lead (Pb) in surface water samples using a low-cost copper (Cu)-based electrochemical sensor. Heavy metals require careful monitoring due to their toxicity, yet current methods are too complex or bulky for point-of-care (POC) use. Electrochemistry offers a convenient alternative for metal determination, but the traditional electrodes, such as carbon or gold/platinum, are costly and difficult to microfabricate. Our copper-based sensor features a low-cost electrode material-copper-that offers simple fabrication and competitive performance in electrochemical detection. For anodic stripping voltammetry (ASV) of Pb, our sensor shows 21 nM (4.4 ppb) limit of detection, resistance to interfering metals such as cadmium (Cd) and zinc (Zn), and stable response in natural water samples with minimum sample pretreatment. These results suggest this electrochemical sensor is suitable for environmental and potentially biological applications, where accurate and rapid, yet inexpensive, on-site monitoring is necessary.

  8. Vanadium oxide electrode synthesized by electroless deposition for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Wu, Haoran; Lian, Keryn

    2014-12-01

    A thin film vanadium oxide electrode was synthesized by a simple electroless deposition method. Surface and structural analyses revealed that the deposited oxide is a mixture of amorphous V2O5 and VO2. Electrochemical characterizations of the synthesized vanadium oxide showed capacitive behavior with good cycle life. The electroless deposition of vanadium oxide is inexpensive, easy to process, and environmentally benign, offering a promising route for electrode development for electrochemical capacitors.

  9. Engineering New Aptamer Geometries for Electrochemical Aptamer-Based Sensors

    PubMed Central

    White, Ryan J.; Plaxco, Kevin W.

    2010-01-01

    Electrochemical aptamer-based sensors (E-AB sensors) represent a promising new approach to the detection of small molecules. E-AB sensors comprise an aptamer that is attached at one end to an electrode surface. The distal end of the aptamer probed is modified with an electroactive redox marker for signal transduction. Herein we report on the optimization of a cocaine-detecting E-AB sensor via optimization of the geometry of the aptamer. We explore two new aptamer architectures, one in which we concatenate three cocaine aptamers into a poly-aptamer and a second in which we divide the cocaine aptamer into pieces connected via an unstructured, 60-thymine linker. Both of these structures are designed such that the reporting redox tag will be located farther from the electrode in the unfolded, target-free conformation. Consistent with this, we find that signal gains of these two constructs are two to three times higher than that of the original E-AB architecture. Likewise all three architectures are selective enough to deploy directly in complex sample matrices, such as undiluted whole blood, with all three sensors successfully detecting the presence of cocaine. The findings in this ongoing study should be of value in future efforts to optimize the signaling of electrochemical aptamer-based sensors. PMID:20436792

  10. Engineering new aptamer geometries for electrochemical aptamer-based sensors

    NASA Astrophysics Data System (ADS)

    White, Ryan J.; Plaxco, Kevin W.

    2009-05-01

    Electrochemical aptamer-based sensors (E-AB sensors) represent a promising new approach to the detection of small molecules. E-AB sensors comprise an aptamer that is attached at one end to an electrode surface. The distal end of the aptamer probed is modified with an electroactive redox marker for signal transduction. Herein we report on the optimization of a cocaine-detecting E-AB sensor via optimization of the geometry of the aptamer. We explore two new aptamer architectures, one in which we concatenate three cocaine aptamers into a poly-aptamer and a second in which we divide the cocaine aptamer into pieces connected via an unstructured, 60-thymine linker. Both of these structures are designed such that the reporting redox tag will be located farther from the electrode in the unfolded, target-free conformation. Consistent with this, we find that signal gains of these two constructs are two to three times higher than that of the original E-AB architecture. Likewise all three architectures are selective enough to deploy directly in complex sample matrices, such as undiluted whole blood, with all three sensors successfully detecting the presence of cocaine. The findings in this ongoing study should be of value in future efforts to optimize the signaling of electrochemical aptamer-based sensors.

  11. Indium oxide based fiber optic SPR sensor

    SciTech Connect

    Shukla, Sarika; Sharma, Navneet K.

    2016-05-06

    Surface plasmon resonance based fiber optic sensor using indium oxide layer is presented and theoretically studied. It has been found that with increase in thickness of indium oxide layer beyond 170 nm, the sensitivity of SPR sensor decreases. 170 nm thick indium oxide layer based SPR sensor holds maximum sensitivity.

  12. Electrochemical oxidation of phenol using graphite anodes

    SciTech Connect

    Awad, Y.M.; Abuzaid, N.S.

    1999-02-01

    The effects of current and pH on the electrochemical oxidation of phenol on graphite electrodes is investigated in this study. There was no sign of deterioration of the graphite bed after 5 months of operation. Phenol removal efficiency was a function of the current applied and was around 70% at a current of 2.2 A. The increase of phenol removal efficiency with current is attributed to the increase of ionic transport which increases the rate of electrode reactions responsible for the removal process. The percentage of complete oxidation of phenol increases with current, with a maximum value of about 50%. However, at pH 0.2 it is slightly higher than that at pH 0.5 at all currents. The phenol removal rate increases with increases of current and pH. While the current (CO{sub 2}) efficiency reaches a maximum value in the current range of 1.0--1.2 A, it increases with an increase of acid concentration. The findings of this study have important implications: while anodic oxidation of phenol on graphite can achieve acceptable removal of phenol, the extent of oxidation should not be overlooked.

  13. Electrochemical sensor having suspended element counter electrode and deflection method for current sensing

    DOEpatents

    Thundat, Thomas G.; Brown, Gilbert M.

    2010-05-18

    An electrochemical suspended element-based sensor system includes a solution cell for holding an electrolyte comprising solution including at least one electrochemically reducible or oxidizable species. A working electrode (WE), reference electrode (RE) and a counter electrode (CE) are disposed in the solution. The CE includes an asymmetric suspended element, wherein one side of the suspended element includes a metal or a highly doped semiconductor surface. The suspended element bends when current associated with reduction or oxidation of the electrochemically reducible or oxidizable species at the WE passes through the suspended element. At least one measurement system measures the bending of the suspended element or a parameter which is a function of the bending.

  14. The electrochemical effect of acid functionalisation of carbon nanotubes to be used in sensors development

    NASA Astrophysics Data System (ADS)

    Moraes, F. C.; Cabral, M. F.; Mascaro, L. H.; Machado, S. A. S.

    2011-02-01

    The electrochemical behaviour of multi-walled carbon nanotubes was compared with that of glassy carbon, and the differences were investigated by cyclic voltammetry and electrochemical impedance spectroscopy before and after acid pre-treatment. The electrochemical techniques showed that acid functionalisation significantly improves the electrocatalytic properties of carbon nanotubes. These electrocatalytic properties enhance the analytical signal, shift the oxidation peak potential to a less positive value, and the charge-transfers rate increase of both dopamine and K 4[Fe(CN) 6]. The functionalisation step and the resulting appearance of edge planes covered with different chemical groups were confirmed by FTIR measurements. Carbon nanotubes after acid pre-treatment are a potentially powerful analytical tool for sensor development.

  15. Graphene oxide sheet-prussian blue nanocomposites: green synthesis and their extraordinary electrochemical properties.

    PubMed

    Liu, Xiao-Wang; Yao, Zi-Jian; Wang, Yue-Feng; Wei, Xian-Wen

    2010-12-01

    A facile and green method for the synthesis of graphene oxide sheets (GOs)-prussian blue nanocomposites has been presented via a spontaneous redox reaction in a aqueous solution containing FeCl3, K3[Fe(CN)6] and graphene oxide sheets. Electrochemical property investigation demonstrates PB nanocubes formed on the surface of GOs retain their excellent electrochemical activity and the GOs can enhance the electron transfer between PB and GC electrode. Moreover, the obtained nanocomposites even have shown a higher sensitivity toward the electrocatalytical reduction of H2O2 than that of multiwalled carbon nanotube/PB nanocomposites. Given their extraordinary electrochemical properties and the green preparation, as-prepared GO-PB nanocomposites have great potential in the field of electrochemical sensor and biofuel cell.

  16. Electrochemical sensor based on magnetic molecularly imprinted nanoparticles modified magnetic electrode for determination of Hb.

    PubMed

    Sun, Binghua; Ni, Xinjiong; Cao, Yuhua; Cao, Guangqun

    2017-05-15

    A fast and selective electrochemical sensor for determination of hemoglobin (Hb) was developed based on magnetic molecularly imprinted nanoparticles modified on the magnetic glassy carbon electrode. The nanoparticles Fe3O4@SiO2 with a magnetic core and a molecularly imprinted shell had regular structures and good monodispersity. Hb could be determined directly by electrochemical oxidization with the modified electrode. A magnetic field increased electrochemical response to Hb by two times. Imprinting Hb on the surface of Fe3O4@SiO2 shortened the response time within 7min. Under optimum conditions, the imprinting factor toward the non-imprinted sensor was 2.8, and the separation factor of Hb to horseradish peroxidase was 2.6. The oxidation peak current had a linear relationship with Hb concentration ranged from 0.005mg/ml to 0.1mg/ml with a detection limit (S/N =3) of 0.0010mg/ml. The sensors were successfully applied to analysis of Hb in whole blood samples with recoveries between 95.7% and 105%.

  17. Heterogeneity and Fluctuations in Electrochemical Sensors

    NASA Astrophysics Data System (ADS)

    Fraikin, Jean-Luc; Requa, Michael; Stanton, Michael; Cleland, Andrew

    2008-03-01

    Metal electrodes submerged in aqueous electrolytes biased with very small voltages frequently display a capacitive low-frequency electrical impedance, which is primarily imaginary but typically displays a 1/f ^α frequency dependence, with 0.7 <= α <= 1. This electrode-electrolyte interface is phenomenologically modeled as a constant phase element (CPE). There are a number of explanations for the observed frequency dependence, including geometric arguments based on the assumption of fractal surface geometries, but it is difficult to quantitatively match such models to experiment. We propose a new model to explain this phenomenon, as well as other low frequency electrical characteristics of the electrode-electrolyte interface, using a model that relies on microscopic heterogeneity, allowing for local variations in capacitance and diffusion coefficients. We will present the basic aspects of our model, and describe measurements under way to validate this model, using a combination of impedance measurements and electrochemical noise spectroscopy.

  18. Fabrication of highly sensitive gold nanourchins based electrochemical sensor for nanomolar determination of primaquine.

    PubMed

    Thapliyal, Neeta Bachheti; Chiwunze, Tirivashe Elton; Karpoormath, Rajshekhar; Cherukupalli, Srinivasulu

    2017-05-01

    A gold nanourchins modified glassy carbon electrode (AuNu/GCE) was developed for the determination of antimalarial drug, primaquine (PQ). The surface of AuNu/GCE was characterized by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and cyclic voltammetry (CV). EIS results indicated that the electron transfer process at AuNu/GCE was faster as compared to the bare electrode. The SEM and TEM image confirmed the presence and uniform dispersion of gold nanourchins on the GCE surface. Upon investigating the electrochemical behavior of PQ at AuNu/GCE, the developed sensor was found to exhibit high electrocatalytic activity towards the oxidation of PQ. Under optimal experimental conditions, the sensor showed fast and sensitive current response to PQ over a linear concentration range of 0.01-1μM and 0.001-1μM with a detection limit of 3.5nM and 0.9nM using differential pulse voltammetry (DPV) and square wave voltammetry (SWV), respectively. The AuNu/GCE showed good selectivity, reproducibility and stability. Further, the developed sensor was successfully applied to determine the drug in human urine samples and pharmaceutical formulations demonstrating its analytical applicability in clinical analysis as well as quality control. The proposed method thus provides a promising alternative in routine sensing of PQ as well as promotes the application of gold nanourchins in electrochemical sensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Stretchable Electrochemical Sensor for Real-Time Monitoring of Cells and Tissues.

    PubMed

    Liu, Yan-Ling; Jin, Zi-He; Liu, Yan-Hong; Hu, Xue-Bo; Qin, Yu; Xu, Jia-Quan; Fan, Cui-Fang; Huang, Wei-Hua

    2016-03-24

    Stretchable electrochemical sensors are conceivably a powerful technique that provides important chemical information to unravel elastic and curvilinear living body. However, no breakthrough was made in stretchable electrochemical device for biological detection. Herein, we synthesized Au nanotubes (NTs) with large aspect ratio to construct an effective stretchable electrochemical sensor. Interlacing network of Au NTs endows the sensor with desirable stability against mechanical deformation, and Au nanostructure provides excellent electrochemical performance and biocompatibility. This allows for the first time, real-time electrochemical monitoring of mechanically sensitive cells on the sensor both in their stretching-free and stretching states as well as sensing of the inner lining of blood vessels. The results demonstrate the great potential of this sensor in electrochemical detection of living body, opening a new window for stretchable electrochemical sensor in biological exploration.

  20. Electrochemical degradation of carbaryl on oxide electrodes.

    PubMed

    Miwa, D W; Malpass, G R P; Machado, S A S; Motheo, A J

    2006-10-01

    This paper presents the study of a prospective electrochemical treatment system for the pesticide carbaryl. Three different dimensionally stable anodes were employed (Ti/Ru0.3 Ti0.7 O2, Ti/Ru0.3 Sn0.7 O2 and Ti/Ir0.3 Ti0.7 O2) and the effect of current density (10, 20, 40 and 60 mA cm(-2)) and supporting electrolyte (0.1 mol L(-1) NaCl and 0.033 mol L(-1) H2SO4) is discussed. All the electrodes present a low level of carbaryl and total organic carbon removal in H2SO4, even at highly positive potentials, indicating that the application of current is not, in itself, sufficient to promote effective oxidation of the pesticide and its products. However, in the presence of NaCl all the electrodes used present rapid diminishing of the carbaryl and total organic carbon content, thus suggesting enhanced activity. The results demonstrate the participation of partially oxidised Cl- species at the electrode surface, which act as an intermediate in the electron transfer between the pesticide molecule and the electrode. Thus, under such conditions, the feasibility of the electrochemical route for the treatment (total or partial) of waste that contains carbaryl is evident.

  1. Mediated electrochemical oxidation of mixed wastes

    SciTech Connect

    Chiba, Z.

    1993-04-01

    The Mediated Electrochemical Oxidation (MEO) process was studied for destroying low-level combustible mixed wastes at Rocky Flats Plant. Tests were performed with non-radioactive surrogate materials: Trimsol for contaminated cutting oils, and reagent-grade cellulose for contaminated cellulosic wastes. Extensive testing was carried out on Trimsol in both small laboratory-scale apparatus and on a large-scale system incorporating an industrial-size electrochemical cell. Preliminary tests were also carried out in the small-scale system with cellulose. Operating and system parameters that were studied were: use of a silver-nitric acid versus a cobalt-sulfuric acid system, effect of electrolyte temperature, effect of acid concentration, and effect of current density. Destruction and coulombic efficiencies were calculated using data obtained from continuous carbon dioxide monitors and total organic carbon (TOC) analysis of electrolyte samples. For Trimsol, the best performance was achieved with the silver-nitrate system at high acid concentrations, temperatures, and current densities. Destruction efficiencies of 99% or greater, and coulombic efficiencies up to 70% were obtained. For the cellulose, high destruction efficiencies and reasonable coulombic efficiencies were obtained for both silver-nitrate and cobalt-sulfate systems.

  2. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    PubMed Central

    Rahman, Md. Mahbubur; Li, Xiao-Bo; Lopa, Nasrin Siraj; Ahn, Sang Jung; Lee, Jae-Joon

    2015-01-01

    Conducting polymers (CPs) are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective. PMID:25664436

  3. Nanotechnology-Based Electrochemical Sensors for Biomonitoring Chemical Exposures

    PubMed Central

    Barry, Richard C.; Lin, Yuehe; Wang, Jun; Liu, Guodong; Timchalk, Charles A.

    2009-01-01

    The coupling of dosimetry measurements and modeling represents a promising strategy for deciphering the relationship between chemical exposure and disease outcome. To support the development and implementation of biological monitoring programs, quantitative technologies for measuring xenobiotic exposure are needed. The development of portable nanotechnology-based electrochemical sensors has the potential to meet the needs for low cost, rapid, high-throughput and ultrasensitive detectors for biomonitoring an array of chemical markers. Highly selective electrochemical (EC) sensors capable of pM sensitivity, high-throughput and low sample requirements (<50uL) are discussed. These portable analytical systems have many advantages over currently available technologies, thus potentially representing the next-generation of biomonitoring analyzers. This manuscript highlights research focused on the development of field-deployable analytical instruments based on EC detection. Background information and a general overview of EC detection methods and integrated use of nanomaterials in the development of these sensors are provided. New developments in EC sensors using various types of screen-printed electrodes, integrated nanomaterials, and immunoassays are presented. Recent applications of EC sensors for assessing exposure to pesticides or detecting biomarkers of disease are highlighted to demonstrate the ability to monitor chemical metabolites, enzyme activity, or protein biomarkers of disease. In addition, future considerations and opportunities for advancing the use of EC platforms for dosimetric studies are discussed. PMID:19018275

  4. Electrocatalytic oxidation and voltammetric determination of levodopa in the presence of carbidopa at the surface of a nanostructure based electrochemical sensor.

    PubMed

    Mazloum-Ardakani, Mohammad; Taleat, Zahra; Khoshroo, Alireza; Beitollahi, Hadi; Dehghani, Hossein

    2012-05-15

    In the present paper, the use of a carbon paste electrode modified by meso-tetrakis(3-methylphenyl) cobalt porphyrin (CP) and TiO(2) nanoparticles for the determination of levodopa (LD) and carbidopa (CD) was described. Initially, cyclic voltammetry was used to investigate the redox properties of this modified electrode at various scan rates. Next, the mediated oxidation of LD at the modified electrode was described. At the optimum pH of 7.0, the oxidation of LD occurs at a potential about 150 mV less positive than that of an unmodified carbon paste electrode. Based on differential pulse voltammetry (DPV), the oxidation of LD exhibited a dynamic range between 0.1 and 100.0 μM and a detection limit (3σ) of 69 ± 2 nM. DPV was used for simultaneous determination of LD and CD at the modified electrode, and quantitation of LD and CD in some real samples (such as tablets of Parkin-C Fort and Madopar, water, urine, and human blood serum) by the standard addition method.

  5. Methane-oxygen electrochemical coupling in an ionic liquid: a robust sensor for simultaneous quantification.

    PubMed

    Wang, Zhe; Guo, Min; Baker, Gary A; Stetter, Joseph R; Lin, Lu; Mason, Andrew J; Zeng, Xiangqun

    2014-10-21

    Current sensor devices for the detection of methane or natural gas emission are either expensive and have high power requirements or fail to provide a rapid response. This report describes an electrochemical methane sensor utilizing a non-volatile and conductive pyrrolidinium-based ionic liquid (IL) electrolyte and an innovative internal standard method for methane and oxygen dual-gas detection with high sensitivity, selectivity, and stability. At a platinum electrode in bis(trifluoromethylsulfonyl)imide (NTf2)-based ILs, methane is electro-oxidized to produce CO2 and water when an oxygen reduction process is included. The in situ generated CO2 arising from methane oxidation was shown to provide an excellent internal standard for quantification of the electrochemical oxygen sensor signal. The simultaneous quantification of both methane and oxygen in real time strengthens the reliability of the measurements by cross-validation of two ambient gases occurring within a single sample matrix and allows for the elimination of several types of random and systematic errors in the detection. We have also validated this IL-based methane sensor employing both conventional solid macroelectrodes and flexible microfabricated electrodes using single- and double-potential step chronoamperometry.

  6. Electrochemically reduced graphene oxide / sulfonated polyether ether ketone composite membrane for electrochemical applications

    NASA Astrophysics Data System (ADS)

    Seetharaman, S.; Ramya, K.; Dhathathreyan, K. S.

    2013-06-01

    A simple and effective method for the preparation of sulfonated polyether ether ketone (SPEEK) based composites with electrochemical reduced graphene oxide (EGO) as inorganic fillers has been described. The resulting dispersions are homogeneous and the cast membranes show significant improvement on tensile strength and thermal properties. It has high ionic conductivity and is cost effective making it a promising alternative membrane for electrochemical applications.

  7. Sensitive amperometric detection of riboflavin with a whole-cell electrochemical sensor.

    PubMed

    Yu, Yang-Yang; Wang, Jing-Xian; Si, Rong-Wei; Yang, Yuan; Zhang, Chun-Lian; Yong, Yang-Chun

    2017-09-08

    A novel whole-cell electrochemical sensor was developed and applied for sensitive amperometric detection of riboflavin. In this work, a whole-cell based riboflavin redox cycling system was characterized, in which electroactive bacteria Shewanella oneidensis MR-1 was employed as the biocatalyst to regenerate the reduced riboflavin after the electrode oxidation. This redox cycling system efficiently enhanced the electrochemical response of riboflavin and enabled a stable current output at poised electrode potential. Thus, a sensitive amperometric biosensing system for riboflavin detection was developed by integrating this whole-cell redox cycling system with the conventional riboflavin electrochemical sensor. Remarkably, this riboflavin biosensor exhibited high sensitivity (LOD = 0.85 ± 0.09 nM, S/N = 3), excellent selectivity and stability. Additionally, reliable analysis of real samples (food and pharmaceutical samples) by this biosensor was achieved. This work provided sensitive and practical tool for riboflavin detection, and demonstrated that the integration of electroactive bacteria and using its outwards electron transfer for redox cycling would be a powerful and promising strategy to improve the performance of electrochemical sensing system. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Broadband Seismometers with Electrochemical Motion Sensors: Past, Present, Future.

    NASA Astrophysics Data System (ADS)

    Abramovich, I. A.; Kharlamov, A. V.

    2004-05-01

    First conceived in the fifties, electrochemical seismic sensors (ESS), despite their many attractive features, until relatively recently could not compete successfully with traditional electromechanical instruments. ESS are characterized by ruggedness, low to extremely low power consumption, no need in any maintenance (mass locking and centering), ability to operate normally at large installation tilts. The main shortcoming was ESS insuffi-cient parameter stability and limited dynamic range. The only way to overcome these deficiencies was to introduce a force-balancing feedback. A seemingly more suitable (both physics- and design-wise ) magnetohydrodynamic feedback was thorough investigated and while provided for adequate stability, proved highly ineffective in expanding the dy-namic range on higher frequencies. Finally, after many unsuccessful attempts, we man-aged to incorporate an electrodynamic feedback which solved both problems. In order to enable using such a feedback it was necessary to completely re-evaluate the hydrodynamic and electrochemical properties of the motion sensor and work around numerous parasitic effects which required re-evaluation of the sensor's mathematical model and exhaustive experimentation. This work resulted in the development of a family of high-performance seismometers. Further R&D effort is two-fold: improvement of the present sensors and development of a broadband seismometer with noise below the NLNM across the whole passband.

  9. Electrochemical oxidation of perfluorinated compounds in water.

    PubMed

    Niu, Junfeng; Li, Yang; Shang, Enxiang; Xu, Zesheng; Liu, Jinzi

    2016-03-01

    Perfluorinated compounds (PFCs) are persistent and refractory organic pollutants that have been detected in various environmental matrices and municipal wastewater. Electrochemical oxidation (EO) is a promising remediation technique for wastewater contaminated with PFCs. A number of recent studies have demonstrated that the "non-active" anodes, including boron-doped diamond, tin oxide, and lead dioxide, are effective in PFCs elimination in wastewater due to their high oxygen evolution potential. Many researchers have conducted experiments to investigate the optimal conditions (i.e., potential, current density, pH value, plate distance, initial PFCs concentration, electrolyte, and other factors) for PFCs elimination to obtain the maximal elimination efficiency and current efficiency. The EO mechanism and pathways of PFCs have been clearly elucidated, which undergo electron transfer, Kolbe decarboxylation or desulfonation, hydrolysis, and radical reaction. In addition, the safety evaluation and energy consumption evaluation of the EO technology have also been summarized to decrease toxic ion release from electrode and reduce the cost of this technique. Although the ultrasonication and hydrothermal techniques combined with the EO process can improve the removal efficiency and current efficiency significantly, these coupled techniques have not been commercialized and applied in industrial wastewater treatment. Finally, key challenges facing EO technology are listed and the directions for further research are pointed out (such as combination with other techniques, treatment for natural waters contaminated by low levels of PFCs, and reactor design).

  10. Oxalic acid mineralization by electrochemical oxidation processes.

    PubMed

    Huang, Yao-Hui; Shih, Yu-Jen; Liu, Cheng-Hong

    2011-04-15

    In this study, two electrochemical oxidation processes were utilized to mineralize oxalic acid which was a major intermediate compound in the oxidation of phenols and other aromatic compounds. The anode rod and cathode net were made of a titanium coated with RuO(2)/IrO(2) (Ti-DSA) and stainless steel (S.S. net, SUS304), respectively. First, the Fered-Fenton process, which used H(2)O(2) and Fe(2+) as additive reagents, achieved 85% of TOC removal. It proceeded with ligand-to-metal charge-transfer (LMCT), which was evidenced by the accumulation of metallic foil on the selected cathode. However, in the absence of H(2)O(2)/Fe(2+), it showed a higher TOC removal efficiency while using Cl(-) only as an additive reagent due to the formation of hypochlorite on the anode. It was also found that the mineralization of oxalic acid by electrolysis generated hypochlorite better than the dosage of commercial hypochlorite without electricity. Also, pH value was a major factor that affected the mineralization efficiency of the oxalic acid due to the chlorine chemistry. 99% TOC removal could be obtained by Cl(-) electrolysis in an acidic environment.

  11. Fabrication and Characterization of a Nanocoax-Based Electrochemical Sensor

    NASA Astrophysics Data System (ADS)

    Rizal, Binod; Archibald, Michelle M.; Naughton, Jeffrey R.; Connolly, Timothy; Shepard, Stephen C.; Burns, Michael J.; Chiles, Thomas C.; Naughton, Michael J.

    2014-03-01

    We used an imprint lithography process to fabricate three dimensional electrochemical sensors comprising arrays of vertically-oriented coaxial electrodes, with the coax cores and shields serving as working and counter electrodes, respectively, and with nanoscale separation gaps.[2] Arrays of devices with different electrode gaps (coax annuli) were prepared, yielding increasing sensitivity with decreasing annulus thickness. A coax-based sensor with a 100 nm annulus was found to have sensitivity 100 times greater than that of a conventional planar sensor control, which had millimeter-scale electrode gap spacing. We suggest that this enhancement is due to an increase in the diffusion of molecules between electrodes, which improves the current per unit surface area compared to the planar device. Supported by NIH (National Cancer Institute and the National Institute of Allergy and Infectious Diseases).

  12. An electrochemical sensor for phenylephrine based on molecular imprinting.

    PubMed

    Yao, Liuduan; Tang, Youwen; Zeng, Weipeng; Huang, Zhaofa

    2009-09-01

    Molecularly imprinted polymers (MIPs) were applied as molecular recognition elements to an electrochemical sensor for phenylephrine. A MIPs membrane was created on a glassy carbon electrode. SEM revealed a gradual change on the morphology of modified electrodes as the ratios of function monomer and cross-linking varied. When the ratio was 4:40, the surface morphology between the imprinted electrode (M-electrode) and the control electrode (N-electrode) became unambiguously different. This artificial receptor exhibited high selectivity for the template compared to closely related analogue. The response of the sensor varied in different concentration range might due to the heterogeneity of the MIPs membrane. This sensor was also used to determine phenylephrine in tablet samples.

  13. A novel and simple electrochemical sensor for electrocatalytic reduction of nitrite and oxidation of phenylhydrazine based on poly (o-anisidine) film using ionic liquid carbon paste electrode

    NASA Astrophysics Data System (ADS)

    Ojani, Reza; Raoof, Jahan-Bakhsh; Zamani, Saeed

    2013-04-01

    In this study, nitrite electroreduction and phenylhydrazine electrooxidation were investigated on poly(o-anisidine) formed by cyclic voltammetry at the surface of ionic liquid carbon paste electrode. The films were characterized by cyclic voltammetry and scanning electron microscopy (SEM) and were contrasted with poly(o-anisidine) prepared under identical conditions in the absence of ionic liquid in carbon paste electrode. This carbon paste modified electrode exhibits a good electrocatalytic capability (via an EC' mechanism) for both electrooxidation and electroreduction of some important molecules. The obtained results showed that the catalytic oxidation peak currents of phenylhydrazine and catalytic reduction peak currents of nitrite at the surface of this simple (unfunctionalized) polymeric electrode were linearly dependent on their concentrations. Electrode was successfully applied for determination of nitrite and phenylhydrazine in real samples.

  14. Synthesis and electrochemical behavior of nanostructured cauliflower-shape Co-Ni/Co-Ni oxides composites

    SciTech Connect

    Gupta, Vinay Kawaguchi, Toshikazu; Miura, Norio

    2009-01-08

    Nanostructured Co-Ni/Co-Ni oxides were electrochemically deposited onto stainless steel electrode by electrochemical method and characterized for their structural and supercapacitive properties. The SEM images indicated that the obtained Co-Ni/Co-Ni oxides had cauliflower-type nanostructure. The X-ray diffraction pattern showed the formation of Co{sub 3}O{sub 4}, NiO, Co and Ni. The EDX elemental mapping images indicated that Ni, Co and O are distributed uniformly. The deposited Co-Ni/Co-Ni oxides showed good supercapacitive characteristics with a specific capacitance of 331 F/g at 1 mA/cm{sup 2} current density in 1 M KOH electrolyte. A mechanism of the formation of cauliflower-shape Co-Ni/Co-Ni oxides was proposed. A variety of promising applications in the fields such as energy storage devices and sensors can be envisioned from Co-Ni/Co-Ni oxides.

  15. Electrochemical glucose sensors--developments using electrostatic assembly and carbon nanotubes for biosensor construction.

    PubMed

    Harper, Alice; Anderson, Mark R

    2010-01-01

    In 1962, Clark and Lyons proposed incorporating the enzyme glucose oxidase in the construction of an electrochemical sensor for glucose in blood plasma. In their application, Clark and Lyons describe an electrode in which a membrane permeable to glucose traps a small volume of solution containing the enzyme adjacent to a pH electrode, and the presence of glucose is detected by the change in the electrode potential that occurs when glucose reacts with the enzyme in this volume of solution. Although described nearly 50 years ago, this seminal development provides the general structure for constructing electrochemical glucose sensors that is still used today. Despite the maturity of the field, new developments that explore solutions to the fundamental limitations of electrochemical glucose sensors continue to emerge. Here we discuss two developments of the last 15 years; confining the enzyme and a redox mediator to a very thin molecular films at electrode surfaces by electrostatic assembly, and the use of electrodes modified by carbon nanotubes (CNTs) to leverage the electrocatalytic effect of the CNTs to reduce the oxidation overpotential of the electrode reaction or for the direct electron transport to the enzyme.

  16. Synthesis of surface roughed Pt nanowires and their application as electrochemical sensors for hydrogen peroxide detection.

    PubMed

    Gao, Fan; Li, Zhiyang; Ruan, Dajiang; Gu, Zhiyong

    2014-09-01

    In this paper, platinum nanowires with roughed surface textures were fabricated by a galvanostatic electrodeposition method for electrochemical sensors toward hydrogen peroxide detection. The electrochemical behavior of the glassy carbon electrode modified with these nanowires has been studied for oxidation of hydrogen peroxide by using cyclic voltammetry and amperometry in phosphate buffer solution. Surface roughness was found to enhance the sensitivity of the Pt nanowire based electrochemical sensor towards H2O2. The Pt nanowires with rough surfaces displayed higher electrocatalytic response compared to nanowires with smooth surfaces, with a sensitivity of 171 μA mM(-1) cm(-2), and linear dynamic range up to 35 mM. The nanowire concentration effect on the sensing behavior was investigated with the best sensitivity output found at a nanowire concentration of roughly 8.6 x 10(7) number of nanowires/cm2. The new sensor also showed good anti-interference property and exhibited high accuracy when a real water sample containing H2O2 was measured.

  17. Volatile organic compound specific detection by electrochemical signals using a cell-based sensor.

    PubMed

    Chung, Sang Gwi; Kim, Jo Chun; Park, Chong-Ho; Ahn, Woong-Shick; Kim, Yong-Wan; Choi, Jeong-Woo

    2008-01-01

    A cell-based in vitro exposure system was developed to determine whether oxidative stress plays a role in the cytotoxic effects of volatile organic compounds (VOCs) such as benzene, toluene, xylene, and chlorobenzene, using human epithelial HeLa cells. Thin films based on cysteine-terminated synthetic oligopeptides were fabricated for immobilization of the HeLa cells on a gold (Au) substrate. In addition, an immobilized cell-based sensor was applied to the electrochemical detection of the VOCs. Layer formation and immobilization of the cells were investigated with surface plasmon resonance (SPR), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The adhered living cells were exposed to VOCs; this caused a change in the SPR angle and the VOC-specific electrochemical signal. In addition, VOC toxicity was found to correlate with the degree of nitric oxide (NO) generation and EIS. The primary reason for the marked increase in impedance was the change of aqueous electrolyte composition as a result of cell responses. The p53 and NF-kappaB downregulation were closely related to the magnitude of growth inhibition associated with increasing concentrations of each VOC. Therefore, the proposed cell immobilization method, using a self-assembly technique and VOC-specific electrochemical signals, can be applied to construct a cell microarray for onsite VOC monitoring.

  18. Fabrication and Characterization of a-Si Micro and Nano-Gap Structure for Electrochemical Sensor

    NASA Astrophysics Data System (ADS)

    Dhahi, Th. S.; Hashim, U.; Ahmed, N. M.; Ali, Md. Eaqub

    2011-05-01

    The development and application of micro gap for electrochemical sensors and biomolecule detection are reviewed in this article. The preparation methods for micro- and nano-gaps and their properties are discussed along with their advantages in electrochemical sensors and biomolecule detection. Biology and medicine have seen great advances in biosensors and biochips capable of characterizing and quantifying electrochemical sensor. To understand the important relationship between sensibility and nano structure, we introduce the fabrication and characterization of micro- and nano-gap structures for electrochemical sensor. In this paper, two mask designs are proposed. The first is the lateral micro- and nano-gap with aluminum (Al) electrode, and the second mask is for pad Al electrode pattern. Lateral micro-gaps are introduced in the fabrication process using amorphous silicon (a-Si) and Al as an electrode. Conventional ultraviolet lithography technique and dry etching for a-Si layer with wet etching for Al surface processes are used to fabricate the micro- and nano-gaps based on the standard complementary metal-oxide-semiconductor technology and characterization of its conductivity. Electrical characterization is applied using Semiconductor Parameter Analyzer, Spectrum Analyzer, current-voltage (IV)-capacitance-voltage (CV) station for electrical characteristics. Conductivity, resistance, and capacitance tests are performed to characterize and verify the structure of the device, resulting in a small micro-gap as revealed by a further IV curve result showing a current in nano amps. The characteristics of the fabricated gap are close to those of a micro-gap, as verified by the literature.

  19. Enzyme electrochemical sensor electrode and method of making it

    DOEpatents

    Rishpon, Judith; Zawodzinski, Thomas A.; Gottesfeld, Shimshon

    1992-01-01

    An electrochemical sensor electrode is formed from an electronic conductor coated with a casting solution containing a perfluorosulfonic acid ionomer and a selected enzyme. The selected enzyme catalyzes a reaction between a predetermined substance in a solution and oxygen to form an electrochemically active compound that is detected at the electronic conductor. The resulting perfluorosulfonic acid polymer provides a stable matrix for the enzyme for long lived enzyme activity, wherein only thin coatings are required on the metal conductor. The polymer also advantageously repels interfering substances from contacting the enzyme and contains quantities of oxygen to maintain a sensing capability during conditions of oxygen depletion in the sample. In one particular embodiment, glucose oxidase is mixed with the perfluorosulfonic acid ionomer to form an electrode for glucose detection.

  20. Electrode electrolyte interlayers containing cerium oxide for electrochemical fuel cells

    DOEpatents

    Borglum, Brian P.; Bessette, Norman F.

    2000-01-01

    An electrochemical cell is made having a porous fuel electrode (16) and a porous air electrode (13), with solid oxide electrolyte (15) therebetween, where the air electrode surface opposing the electrolyte has a separate, attached, dense, continuous layer (14) of a material containing cerium oxide, and where electrolyte (16) contacts the continuous oxide layer (14), without contacting the air electrode (13).

  1. Oxide modified air electrode surface for high temperature electrochemical cells

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.

    1992-01-01

    An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.

  2. Electrochemical Sensors Based on Nanomaterials for Environmental Monitoring

    SciTech Connect

    Yantasee, Wassana; Lin, Yuehe; Fryxell, Glen E.

    2012-12-10

    This article review work relevant to the two fastest growing nanomaterials in electrochemical sensing of metal ions: organically modified ordered mesoporous silicas (OMSs) and carbon nanotubes (CNTs). Nanostructured self-assembled monolayers on mesoporous silicas (SAMMS) materials are highly effective as electrode modifiers; they can be either mixed with conductive materials or spin-cast as a thin-film on electrode surface. The interfacial chemistry of SAMMS can be fine-tuned to selectively preconcentrate the specific metal ions of interest. The functional groups on SAMMS materials enable the preconcentration to be done without mercury, supporting electrolytes, applied potential, and solution degassing, all of which are often required in conventional adsorptive stripping voltammetric sensors. Since it was first introduced in 1991, CNTs have been widely investigated for electrochemical sensors of many important biomolecules because of their electrocatalytic and antifouling properties, biocompatibility, high surface, and mechanical strength. For trace metal analysis, CNT thin-film created by drop-coating of CNT-solvent suspensions on electrode surfaces has been explored in order to develop mercury-free sensors by exploiting the bulk properties of the CNTs. Array of low-site-density aligned carbon nanotubes has been grown on metal substrates by a non-lithographic method. Each CNT serves as a nanoelectrode which normally has greater mass transfer rate and higher mass sensitivity than conventional macroelectrodes. The array of millions of CNT nanoelectrodes provides magnified voltammetric signals for trace metal ions without the need for a signal amplifier.

  3. Electrochemical water oxidation with carbon-grafted iridium complexes.

    PubMed

    deKrafft, Kathryn E; Wang, Cheng; Xie, Zhigang; Su, Xin; Hinds, Bruce J; Lin, Wenbin

    2012-02-01

    Hydrogen production from water splitting provides a potential solution to storing harvested solar energy in chemical fuels, but this process requires active and robust catalysts that can oxidize water to provide a source of electrons for proton reduction. Here we report the direct, covalent grafting of molecular Ir complexes onto carbon electrodes, with up to a monolayer coverage. Carbon-grafted Ir complexes electrochemically oxidize water with a turnover frequency of up to 3.3 s(-1) and a turnover number of 644 during the first hour. Electrochemical water oxidation with grafted catalysts gave enhanced rates and stability compared to chemically driven water oxidation with the corresponding molecular catalysts. This strategy provides a way to systematically evaluate catalysts under tunable conditions, potentially providing new insights into electrochemical water oxidation processes and water oxidation catalyst design.

  4. Highly Sensitive Glucose Sensor Based on Organic Electrochemical Transistor with Modified Gate Electrode.

    PubMed

    Ji, Xudong; Chan, Paddy K L

    2017-01-01

    An organic electrochemical transistor (OECT) with a glucose oxidase (GOx) and poly(n-vinyl-2-pyrrolidone)-capped platinum nanoparticles (Pt NPs) gate electrode was successfully integrated with a microfluidic channel to act as a highly sensitive chip-based glucose sensor. The sensing mechanism relies on the enzymatic reaction between glucose and GOx followed by electrochemical oxidation of hydrogen peroxide (H2O2) produced in the enzymatic reaction. This process largely increases the electrolyte potential that applies on PEDOT:PSS channel and causes more cations penetrate into PEDOT:PSS film to reduce it to semi-conducting state resulting in lower electric current between the source and the drain. The extremely high sensitivity and low detection limit (0.1 μM) of the sensor was achievable due to highly efficient Pt NPs catalysis in oxidation of H2O2. Pt NPs were deposited by a bias-free two-step dip coating method followed by a UV-Ozone post-treatment to enhance catalytic ability. A polydimethylsiloxane (PDMS) microfluidic channel was directly attached to the OECT active layer, providing a short detection time (~1 min) and extremely low analyte consumption (30 μL). Our sensor has great potential for real-time, noninvasive, and portable glucose sensing applications due to its compact size and high sensitivity.

  5. A Facile Electrochemical Sensor for Nonylphenol Determination Based on the Enhancement Effect of Cetyltrimethylammonium Bromide

    PubMed Central

    Lu, Qing; Zhang, Weina; Wang, Zhihui; Yu, Guangxia; Yuan, Yuan; Zhou, Yikai

    2013-01-01

    A facile electrochemical sensor for the determination of nonylphenol (NP) was fabricated in this work. Cetyltrimethylammonium bromide (CTAB), which formed a bilayer on the surface of the carbon paste (CP) electrode, displayed a remarkable enhancement effect for the electrochemical oxidation of NP. Moreover, the oxidation peak current of NP at the CTAB/CP electrode demonstrated a linear relationship with NP concentration, which could be applied in the direct determination of NP. Some experimental parameters were investigated, such as external solution pH, mode and time of accumulation, concentration and modification time of CTAB and so on. Under optimized conditions, a wide linear range from 1.0 × 10−7 mol·L−1 to 2.5 × 10−5 mol·L−1 was obtained for the sensor, with a low limit of detection at 1.0 × 10−8 mol·L−1. Several distinguishing advantages of the as-prepared sensor, including facile fabrication, easy operation, low cost and so on, suggest a great potential for its practical applications. PMID:23296332

  6. Solution synthesis of metal oxides for electrochemical energy storage applications.

    PubMed

    Xia, Xinhui; Zhang, Yongqi; Chao, Dongliang; Guan, Cao; Zhang, Yijun; Li, Lu; Ge, Xiang; Bacho, Ignacio Mínguez; Tu, Jiangping; Fan, Hong Jin

    2014-05-21

    This article provides an overview of solution-based methods for the controllable synthesis of metal oxides and their applications for electrochemical energy storage. Typical solution synthesis strategies are summarized and the detailed chemical reactions are elaborated for several common nanostructured transition metal oxides and their composites. The merits and demerits of these synthesis methods and some important considerations are discussed in association with their electrochemical performance. We also propose the basic guideline for designing advanced nanostructure electrode materials, and the future research trend in the development of high power and energy density electrochemical energy storage devices.

  7. Graphene Based Electrochemical Sensors and Biosensors: A Review

    SciTech Connect

    Shao, Yuyan; Wang, Jun; Wu, Hong; Liu, Jun; Aksay, Ilhan A.; Lin, Yuehe

    2010-05-01

    Graphene, emerging as a true 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass production). This article selectively reviews recent advances in graphene-based electrochemical sensors and biosensors. In particular, graphene for direct electrochemistry of enzyme, its electrocatalytic activity toward small biomolecules (hydrogen peroxide, NADH, dopamine, etc.), and graphene-based enzyme biosensors have been summarized in more detail; Graphene-based DNA sensing and environmental analysis have been discussed. Future perspectives in this rapidly developing field are also discussed.

  8. Nano-TiO₂ modified carbon paste sensor for electrochemical nicotine detection using anionic surfactant.

    PubMed

    Shehata, M; Azab, S M; Fekry, A M; Ameer, M A

    2016-05-15

    A newly competitive electrochemical sensor for nicotine (NIC) detection was successfully achieved. Nano-TiO2 with a carbon paste electrode (CPE) were used for the sensor construction, where Nano-TiO2 was considered as one of the richest and highly variable class of materials. The sensor showed electrocatalytic activity in both aqueous and micellar media toward the oxidation of NIC at Britton-Robinson (B-R) buffer solution (4×10(-2)M) of pH range (2.0-8.0) containing (1.0mM) sodium dodecylsulfate (SDS) using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Scanning electron microscope (SEM) and Energy Dispersive X-Ray Analysis (EDX) techniques were also used. The linear range of detection for NIC using the new Nano-TiO2 Modified Carbon Paste sensor (NTMCP) was detected using diffrential pulse voltammetry (DPV) technique and it was found between 2×10(-6)M and 5.4×10(-4)M with a detection limit of 1.34×10(-8)M. The obtained results clarified the simplicity, high sensitivity and selectivity of the new NTMCPE for nicotine determination in real cigarettes and urine samples.

  9. Three-dimensional graphene micropillar based electrochemical sensor for phenol detection.

    PubMed

    Liu, Fei; Piao, Yunxian; Choi, Jong Seob; Seo, Tae Seok

    2013-12-15

    A three-dimensional (3D) graphene incorporated electrochemical sensor was constructed for sensitive enzyme based phenol detection. To form the 3D graphene structure, polydimethylsiloxane (PDMS) micropillars were fabricated in the microchannel by using a conventional photolithography and the surface was modified with 3-aminopropyltriethoxysilane. Then, the negatively charged graphene oxide sheets were electrostatically adsorbed on the PDMS micropillar surface, and reduced in the hydrazine vapor. The resultant 3D graphene film provides a conductive working electrode as well as an enzyme-mediated sensor with a large surface area. After bonded with an electrode patterned glass wafer, the 3D graphene based electrochemical sensor was produced. Using the 3D graphene as a working electrode, an excellent electron transfer property was demonstrated by cyclic voltammetry measurement in an electrolyte solution containing 1mM K3Fe(CN)6 and 0.1 M KCl. To utilize the 3D graphene as an enzyme sensor, tyrosinase enzymes were immobilized on the surface of the graphene micropillar, and the target phenol was injected in the microchannel. The enzyme catalytic reaction process was monitored by amperometric responses and the limit of detection for phenol was obtained as 50 nM, thereby suggesting that the 3D graphene micropillar structure enhances the enzyme biosensing capability not only by increasing the surface area for enzyme immobilization, but also by the superlative graphene conductivity property.

  10. Graphene oxide functionalized with silver nanoparticles as conducting electrodes for solar cells and electrochemical energy storage devices

    NASA Astrophysics Data System (ADS)

    Reddy, Kakarla Raghava; Alonso-Marroquin, Fernando

    2017-06-01

    We present the development of novel electrochemical supercapacitor and sensor based on silver (Ag) nanoparticles coated graphene oxide (GO). 10-20 nm diameter of Ag nanoparticles were well dispersed on the surface of graphene oxide through the chemical reduction method. Ag-coated GO nanohybrids were characterized by transmission electron microscopy (TEM), X-ray diffraction, Raman spectroscopy, electrical and an electrochemical analysis for the energy storage (supercapacitors), energy conversion (solar cells) and sensor applications. It is found that nanohybrid electrodes showed good specific capacitance and electrochemical sensing performance in comparison to pristine GO. The improvement in the electrochemical characteristics can be attributed to the sensitizing effect between Ag nanparticles and GO. These GO/Ag hybrid transparent conducting films also show low resistance and good transmittance, suggesting they are good electrodes for the opto-electronic devices (e.g. solar cells).

  11. Enhanced catalytic and dopamine sensing properties of electrochemically reduced conducting polymer nanocomposite doped with pure graphene oxide.

    PubMed

    Wang, Wenting; Xu, Guiyun; Cui, Xinyan Tracy; Sheng, Ge; Luo, Xiliang

    2014-08-15

    Significantly enhanced catalytic activity of a nanocomposite composed of conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) doped with graphene oxide (GO) was achieved through a simple electrochemical reduction process. The nanocomposite (PEDOT/GO) was electrodeposited on an electrode and followed by electrochemical reduction, and the obtained reduced nanocomposite (PEDOT/RGO) modified electrode exhibited lowered electrochemical impedance and excellent electrocatalytic activity towards the oxidation of dopamine. Based on the excellent catalytic property of PEDOT/RGO, an electrochemical sensor capable of sensitive and selective detection of DA was developed. The fabricated sensor can detect DA in a wide linear range from 0.1 to 175μM, with a detection limit of 39nM, and it is free from common interferences such as uric acid and ascorbic acid. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Porous nickel oxide films for electrochemical capacitors

    SciTech Connect

    Liu, K.C.; Anderson, M.A.

    1995-12-31

    NiO/Ni composite thin films consisting of nano-sized particles have been found to perform as good electrodes in electrochemical capacitor applications. These films can provide a specific capacitance of 25--40 F/g. The low cost of raw materials and easy manufacturing process of this system should allow one to produce low-cost electrochemical capacitors.

  13. An electrochemical fungicide pyrimethanil sensor based on carbon nanotubes/ionic-liquid construction modified electrode.

    PubMed

    Yang, Jichun; Wang, Qiong; Zhang, Minhui; Zhang, Shuming; Zhang, Lei

    2015-11-15

    In this study, a simple, rapid, sensitive and environmentally friendly electroanalytical detection method for pyrimethanil (PMT) was developed, which was based on multi-walled carbon nanotubes (MWCNTs) and ionic liquids (IL) 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) modified glassy carbon electrode (GCE). MWCNTs-IL modified electrode significantly enhanced the oxidation peak current of PMT by combining the excellent electrochemical properties of MWCNTs and IL, suggesting that the modified electrode can remarkably improve the sensitivity of PMT detection. Under the optimum conditions, this electrochemical sensor exhibited a linear concentration range for PMT of 1.0 × 10(-7)-1.0 × 10(-4) mol L(-1) and the detection limit was 1.6 × 10(-8) mol L(-1) (S/N = 3). The fabricated electrode showed good reproducibility, stability and anti-interference, and also it was successfully employed to detect PMT in real samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Molecular beacon mediated circular strand displacement strategy for constructing a ratiometric electrochemical deoxyribonucleic acid sensor.

    PubMed

    Gao, Fenglei; Du, Lili; Zhang, Yu; Tang, Daoquan; Du, Yan

    2015-07-09

    A novel ratiometric electrochemical sensor for sensitive and selective determination of deoxyribonucleic acid (DNA) had been developed based on signal-on and signal-off strategy. The target DNA hybridized with the loop portion of ferrocene (Fc) labeled hairpin probe immobilized on the gold electrode (GE), the Fc away from the surface of GE and the methylene blue (MB) was attached to an electrode surface by hybridization between hairpin probe and MB labeled primer. Such conformational changes resulted in the oxidation peak current of Fc decreased and that of MB increased, and the changes of dual signals are linear with the concentration of DNA. Furthermore, with the help of strand-displacement polymerization, polymerase catalyzed the extension of the primer and the sequential displacement of the target DNA, which led to the release of target and another polymerization cycle. Thus the circular strand displacement produced the multiplication of the MB confined near the GE surface and Fc got away from the GE surface. Therefore, the recognition of target DNA resulted in both the "signal-off" of Fc and the "signal-on" of MB for dual-signal electrochemical ratiometric readout. The dual signal strategy offered a dramatic enhancement of the stripping response. The dynamic range of the target DNA detection was from 10(-13) to 10(-8) mol L(-1) with a detection limit down to 28 fM level. Compared with the single signaling electrochemical sensor, the dual-signaling electrochemical sensing strategy developed in this paper was more selective. It would have important applications in the sensitive and selective electrochemical determination of other small molecules and proteins.

  15. Electrochemical immunochip sensor for aflatoxin M1 detection.

    PubMed

    Parker, Charlie O; Lanyon, Yvonne H; Manning, Mary; Arrigan, Damien W M; Tothill, Ibtisam E

    2009-07-01

    An investigation into the fabrication, electrochemical characterization, and development of a microelectrode array (MEA) immunosensor for aflatoxin M(1) is presented in this paper. Gold MEAs (consisting of 35 microsquare electrodes with 20 microm x 20 microm dimensions and edge-to-edge spacing of 200 microm) together with on-chip reference and counter electrodes were fabricated using standard photolithographic methods. The MEAs were then characterized by cyclic voltammetry, and the behavior of the on-chip electrodes were evaluated. The microarray sensors were assessed for their applicability to the development of an immunosensor for the analysis of aflatoxin M(1) directly in milk samples. Following the sensor surface silanization, antibodies were immobilized by cross-linking with 1,4-phenylene diisothiocyanate (PDITC). Surface characterization was conducted by electrochemistry, fluorescence microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). A competitive enzyme linked immunosorbent assay (ELISA) assay format was developed on the microarray electrode surface using the 3,3,5',5'-tetramethylbenzidine dihyrochloride (TMB)/H(2)O(2) electrochemical detection scheme with horseradish peroxidase (HRP) as the enzyme label. The performance of the assay and the microarray sensor were characterized in pure buffer conditions before applying to the milk samples. With the use of this approach, the detection limit for aflatoxin M(1) in milk was estimated to be 8 ng L(-1), with a dynamic detection range of 10-100 ng L(-1), which meets present legislative limits of 50 ng L(-1). The milk interference with the sensor surface was also found to be minimal. These devices show high potential for development of a range of new applications which have previously only been detected using elaborate instrumentation.

  16. Electrochemical and partial oxidation of methane

    NASA Astrophysics Data System (ADS)

    Singh, Rahul

    2008-10-01

    Hydrogen has been the most common fuel used for the fuel cell research but there remains challenging technological hurdles and storage issues with hydrogen fuel. The direct electrochemical oxidation of CH4 (a major component of natural gas) in a solid oxide fuel cell (SOFC) to generate electricity has a potential of commercialization in the area of auxiliary and portable power units and battery chargers. They offer significant advantages over an external reformer based SOFC, namely, (i) simplicity in the overall system architecture and balance of plant, (ii) more efficient and (iii) availability of constant concentration of fuel in the anode compartment of SOFC providing stability factor. The extreme operational temperature of a SOFC at 700-1000°C provides a thermodynamically favorable pathway to deposit carbon on the most commonly used Ni anode from CH4 according to the following reaction (CH4 = C + 2H2), thus deteriorating the cell performance, stability and durability. The coking problem on the anode has been a serious and challenging issue faced by the catalyst research community worldwide. This dissertation presents (i) a novel fabricated bi-metallic Cu-Ni anode by electroless plating of Cu on Ni anode demonstrating significantly reduced or negligible coke deposition on the anode for CH4 and natural gas fuel after long term exposure, (ii) a thorough microstructural examination of Ni and Cu-Ni anode exposed to H2, CH4 and natural gas after long term exposure at 750°C by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction and (iii) in situ electrochemical analysis of Ni and Cu-Ni for H2, CH4 and natural gas during long term exposure at 750°C by impedance spectroscopy. A careful investigation of variation in the microstructure and performance characteristics (voltage-current curve and impedance) of Ni and Cu-Ni anode before and after a long term exposure of CH4 and natural gas would allow us to test the validation of a

  17. An electrochemical sensor based on cellulose nanocrystal for the enantioselective discrimination of chiral amino acids.

    PubMed

    Bi, Qing; Dong, Shuqing; Sun, Yaming; Lu, Xiaoquan; Zhao, Liang

    2016-09-01

    A novel electrochemical sensor based on 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanocrystals (TOCNCs) and l-cystines (l-Cys) modified Au electrode (TOCNC/l-Cys/Au) has been fabricated for detection and discrimination of the enantiomers of phenylalanine (Phe), leucine (Leu), and valine (Val). The three amino acids are in connection with metabolism diseases. The TOCNC/l-Cys/Au electrode exhibited obvious peak current difference for the amino acid enantiomers by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The TOCNCs on the electrode surface expressed different interactions with d- and l-amino acids, so the electrochemical recognitions of the three amino acid enantiomers were achieved. TOCNCs were characterized by Fourier transform infrared (FT-IR) and scanning electron microscopy (SEM). The modified electrodes were characterized by SEM and electrochemical techniques. According to DPV, peak currents of the two enantiomers decreased linearly with their concentrations. Furthermore, satisfactory results were obtained when this electrode was applied to measure the d- and l-Phe mixture. The experimental results show that TOCNCs are suitable material for chiral sensor. The contrast of serum sample of healthy people and patients with type 2 diabetes also was proposed, and significant difference was exhibited on the modified electrode. This work is significant for the screening, diagnosis, and treatment of multiple metabolic diseases.

  18. Nanoparticle-based electrochemical sensors for the detection of lactate and hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Uzunoglu, Aytekin

    In the present study, electrochemical sensors for the detection of lactate and hydrogen peroxide were constructed by exploiting the physicochemical properties of metal ad metal oxide nanoparticles. This study can be divided into two main sections. While chapter 2, 3, and 4 report on the construction of electrochemical lactate biosensors using CeO2 and CeO2-based mixed metal oxide nanoparticles, chapter 5 and 6 show the development of electrochemical hydrogen peroxide sensors by the decoration of the electrode surface with palladium-based nanoparticles. First generation oxidase enzyme-based sensors suffer from oxygen dependency which results in errors in the response current of the sensors in O2-lean environments. To address this challenge, the surface of the sensors must be modified with oxygen rich materials. In this regard, we developed a novel electrochemical lactate biosensor design by exploiting the oxygen storage capacity of CeO2 and CeO 2-CuO nanoparticles. By the introduction of CeO2 nanoparticles into the enzyme layer of the sensors, negative interference effect of ascorbate which resulted from the formation of oxygen-lean regions was eliminated successfully. When CeO2-based design was exposed to higher degree of O2 -depleted environments, however, the response current of the biosensors experienced an almost 21 % decrease, showing that the OSC of CeO2 was not high enough to sustain the enzymatic reactions. When CeO2-CuO nanoparticles, which have 5 times higher OSC than pristine CeO2, were used as an oxygen supply in the enzyme layer, the biosensors did not show any drop in the performance when moving from oxygen-rich to oxygen-lean conditions. In the second part of the study, PdCu/SPCE and PdAg/rGO-based electrochemical H2O2 sensors were designed and their performances were evaluated to determine their sensitivity, linear range, detection limit, and storage stability. In addition, practical applicability of the sensors was studied in human serum. The

  19. Electrochemical As(III) whole-cell based biochip sensor.

    PubMed

    Cortés-Salazar, Fernando; Beggah, Siham; van der Meer, Jan Roelof; Girault, Hubert H

    2013-09-15

    The development of a whole-cell based sensor for arsenite detection coupling biological engineering and electrochemical techniques is presented. This strategy takes advantage of the natural Escherichia coli resistance mechanism against toxic arsenic species, such as arsenite, which consists of the selective intracellular recognition of arsenite and its pumping out from the cell. A whole-cell based biosensor can be produced by coupling the intracellular recognition of arsenite to the generation of an electrochemical signal. Hereto, E. coli was equipped with a genetic circuit in which synthesis of beta-galactosidase is under control of the arsenite-derepressable arsR-promoter. The E. coli reporter strain was filled in a microchip containing 16 independent electrochemical cells (i.e. two-electrode cell), which was then employed for analysis of tap and groundwater samples. The developed arsenic-sensitive electrochemical biochip is easy to use and outperforms state-of-the-art bacterial bioreporters assays specifically in its simplicity and response time, while keeping a very good limit of detection in tap water, i.e. 0.8ppb. Additionally, a very good linear response in the ranges of concentration tested (0.94ppb to 3.75ppb, R(2)=0.9975 and 3.75 ppb to 30ppb, R(2)=0.9991) was obtained, complying perfectly with the acceptable arsenic concentration limits defined by the World Health Organization for drinking water samples (i.e. 10ppb). Therefore, the proposed assay provides a very good alternative for the portable quantification of As (III) in water as corroborated by the analysis of natural groundwater samples from Swiss mountains, which showed a very good agreement with the results obtained by atomic absorption spectroscopy. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Direct Drawing Method of Graphite onto Paper for High-Performance Flexible Electrochemical Sensors.

    PubMed

    Santhiago, Murilo; Strauss, Mathias; Pereira, Mariane P; Chagas, Andréia S; Bufon, Carlos C B

    2017-04-05

    A simple and fast fabrication method to create high-performance pencil-drawn electrochemical sensors is reported for the first time. The sluggish electron transfer observed on bare pencil-drawn surfaces was enhanced using two electrochemical steps: first oxidizing the surface and then reducing it in a subsequent step. The heterogeneous rate constant was found to be 5.1 × 10(-3) cm s(-1), which is the highest value reported so far for pencil-drawn surfaces. We mapped the origin of such performance by atomic force microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. Our results suggest that the oxidation process leads to chemical and structural transformations on the electrode surface. As a proof-of-concept, we modified the pencil-drawn surface with Meldola's blue to electrocatalytically detect nicotinamide adenine dinucleotide (NADH). The electrochemical device exhibited the highest catalytic constant (1.7 × 10(5) L mol(-1) s(-1)) and the lowest detection potential for NADH reported so far in paper-based electrodes.

  1. Graphene nanoflakes on transparent glass electrode sensor for electrochemical sensing of anti-diabetic drug.

    PubMed

    Narang, Jagriti; Malhotra, Nitesh; Singhal, Chaitali; Bhatia, Rishabh; Kathuria, Vikas; Jain, Manan

    2017-04-01

    Metformin (Mf) plays a major role in controlling insulin level of individuals at risk of developing diabetes mellitus. Overdose of Mf can cause lactic acidosis, diarrhoea, cough, or hoarseness, etc. These particulars point out the identification for selective and sensitive methods of Mf determination. In the present work, graphene nanoflakes-polymethylene blue (GNF-PMB) nano-composites were developed onto fluorine-doped tin oxide (SnO2/F) coated glass substrates for electrochemical sensing of Mf using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The developed sensor shows quick response time (10 s), linearity as 10-10(3) µM, LOD (0.1 nM), and good shelf life (10 weeks). Attempts have been made to utilize this electrode for estimation of Mf in urine samples. Configured as a highly responsive, reproducible Mf sensor, it combines the electrical properties of GNF and stable electron transfer of PMB. The newly developed Mf sensor presents a promising candidate in point-of-care diagnosis.

  2. Electrochemical sensor for discrimination tyrosine enantiomers using graphene quantum dots and β-cyclodextrins composites.

    PubMed

    Dong, Shuqing; Bi, Qing; Qiao, Chengdong; Sun, Yaming; Zhang, Xia; Lu, Xiaoquan; Zhao, Liang

    2017-10-01

    An electrochemical sensor using the composites of graphene quantum dots (GQDs) and β-cyclodextrins (β-CDs) functionalized glassy carbon electrode (GCE) was developed for determination and recognition of tyrosine (Tyr) enantiomers which are biomarker of depression. The modified electrode is simple to fabricate and rapid, sensitive, selective to detect the Tyr enantiomers. In order to further validate the feasibility of the electrochemical sensor in real samples, the sensor was applied to the detection of L-Tyr in blood serum samples of healthy people and depression patients, and found that the quantities of L-Tyr of depression patients in serum is less than healthy people. The β-CDs-GQDs composites were fabricated as modification layer of electrodes. GQDs were used as substrate and functionalized with β-CDs. The β-CDs-GQDs composites utilized nanosize of GQDs and enantioselectivity of β-CDs to realize chiral recognition of Tyr. The β-CDs-GQDs modified electrode presented significant difference in the oxidation peak current with ratio of L to D-Tyr reaching 2.35. The detection limits of L-Tyr and D-Tyr were 6.07×10(-9) M and 1.03×10(-7) M, respectively and superior to detection limits of the reported methods. In addition, the stability and reproducibility of the prepared modified electrode were investigated, and achieved good results. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Graphene-based polyaniline arrays for deoxyribonucleic acid electrochemical sensor: effect of nanostructure on sensitivity.

    PubMed

    Yang, Tao; Meng, Le; Zhao, Jinlong; Wang, Xinxing; Jiao, Kui

    2014-01-01

    DNA detection sensitivity can be improved by carefully controlling the texture of the sensor substrate, which was normally investigated on metal or metal oxide nanostructured platform. Morphology effects on the biofunctionalization of polymer micro/nanoelectrodes have not been investigated in detail. To extend this topic, we used graphene oxide (GNO) as the supporting material to prepare graphene-based polyaniline nanocomposites with different morphologies as a model for comparing their DNA sensing behaviors. Owing to GNO serving as an excellent support or template for nucleation and growth of polyaniline (PANI), PANI nanostructures grown on GNO substrate were successfully obtained. However, if GNO supporting was absent, the obtained PANI nanowires showed a connected network. Furthermore, adjustment of reaction time can be used for dominating the topographies of PANI-GNO nanocomposites, meaning that different reaction times resulted in various formations of PANI-GNO nanocomposites, including small horns (5 and 12 h), vertical arrays (18 h), and nanotips (24 h). The next-step electrochemical data showed that the DNA electrochemical sensors constructed on the different morphologies possessed different ssDNA surface coverage and hybridization efficiency. Compared with other morphologies of PANI-GNO nanocomposite (5, 12, and 24 h), vertical arrays (18 h) exhibited the highest sensitivity (2.08 × 10(-16) M, 2 orders of magnitude lower than others). It is can be concluded that this nanocomposite with higher surface area and more accessible space can provide an optimal balance for DNA immobilization and DNA hybridization detection.

  4. Performance of an electrochemical COD (chemical oxygen demand) sensor with an electrode-surface grinding unit.

    PubMed

    Geun Jeong, Bong; Min Yoon, Seok; Ho Choi, Chang; Koang Kwon, Kil; Sik Hyun, Moon; Heui Yi, Dong; Soo Park, Hyung; Kim, Mia; Joo Kim, Hyung

    2007-12-01

    An electrochemical COD (chemical oxygen demand) sensor using an electrode-surface grinding unit was investigated. The electrolyzing (oxidizing) action of copper on an organic species was used as the basis of the COD measuring sensor. Using a simple three-electrode cell and a surface grinding unit, the organic species is activated by the catalytic action of copper and oxidized at a working electrode, poised at a positive potential. When synthetic wastewater was fed into the system, the measured Coulombic yields were found to be dependent on the COD of the synthetic wastewater. A linear correlation between the Coulombic yields and the COD of the synthetic wastewater was established (10-1000 mg L(-1)) when the electrode-surface grinding procedure was activated briefly at 8 h intervals. When various kinds of wastewater samples obtained from various sewage treatment plants were measured, linear correlations (r(2)> or = 0.92) between the measured EOD (electrochemical oxygen demand) value and COD of the samples were observed. At a practical wastewater treatment plant, the measurement system was successfully operated with high accuracy and good stability over 3 months. These experimental results show that the application of the measurement system would be a rapid and practical method for the determination of COD in water industries.

  5. The fabrication of carbon nanotubes array-based electrochemical chiral sensor by electrosynthesis.

    PubMed

    Zhu, Hong; Chang, Fengxia; Zhu, Zhiwei

    2017-05-01

    How to align the single-walled carbon nanotubes (SWCNTs) onto the electrode vertically and to control their density and orientation are still a major challenge. Theoretically, properly selected chiral SWCNTs can discriminate enantiomers through their different dielectric response to the adsorption of chiral species, few reports can confirm this theoretic model. Herein, we presented a new strategy to fabricate SWCNTs array-based electrochemical chiral sensor. Carboxylated chiral SWCNTs were vertically attached to the oxidized glass carbon electrode with ethylenediamine as a linker by electrosynthesis. The electrode surface was characterized with atomic force microscope (AFM) and X-ray photoelectron spectroscopy (XPS). The practicability of the sensor was validated by chirally recognizing 3,4-dihydroxyphenylalanine as a model molecule. We found that both the highly ordered standing of SWCNTs and the application of square wave voltammetry (SWV) amplified the intrinsic chirality of chiral SWCNTs.

  6. A double signal electrochemical human immunoglobulin G immunosensor based on gold nanoparticles-polydopamine functionalized reduced graphene oxide as a sensor platform and AgNPs/carbon nanocomposite as signal probe and catalytic substrate.

    PubMed

    Zhang, Si; Huang, Na; Lu, Qiujun; Liu, Meiling; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2016-03-15

    In this paper, a double signal electrochemical Human immunoglobulin G (HIgG) immunosensor based on AgNPs/carbon nanocomposite (Ag/C NC) as the signal probe and catalytic substrate was developed for fast and sensitive detection of HIgG. The as-prepared AuNPs-PDA-rGO nanocomposite and Ag/C NC were confirmed by UV-vis, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. Electrochemical impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical properties of the proposed immunosensor. The AuNPs-PDA-rGO nanocomposite can improve the electron transfer rate and capture more Ab1. In the sandwich-type immunoassay process, the Ag/C NC functionalized bioconjugates were captured on HIgG/Ab1/AuNPs-PDA-rGO surface and the electrochemical double-signal strategy was employed. These double electrochemical detection signals were directly monitored the oxidation current originated from Ag/C NC and indirectly detected the reduction current of benzoquinone which was produced from the reaction of H2O2 and HQ by catalysis of Ag/C NC in electrochemical detection of HIgG. Under the optimized conditions, the current responses were changed with the concentrations of HIgG for the proposed immunosensor with wide linear ranges of 0.1 to 100 ngmL(-1) and 0.01-100 ngmL(-1) with the lowest detection concentration of 0.001 ng mL(-1) in the absence and presence of H2O2 and HQ. The double-signal strategy is used for detection of HIgG, and the results came from the two signals were well consistent with each other. The proposed immunosensor was successfully applied in analysis of human IgG in real samples and this strategy may provide a relative simple and effective method for construction of other immunsensors in detection of other biomarkers in clinical medicine. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. An electrochemically reduced graphene oxide-based electrochemical immunosensing platform for ultrasensitive antigen detection.

    PubMed

    Haque, Al-Monsur Jiaul; Park, Hyejin; Sung, Daekyung; Jon, Sangyong; Choi, Sung-Yool; Kim, Kyuwon

    2012-02-21

    We present an electrochemically reduced graphene oxide (ERGO)-based electrochemical immunosensing platform for the ultrasensitive detection of an antigen by the sandwich enzyme-linked immunosorbent assay (ELISA) protocol. Graphene oxide (GO) sheets were initially deposited on the amine-terminated benzenediazonium-modified indiun tin oxide (ITO) surfaces through both electrostatic and π-π interactions between the modified surfaces and GO. This deposition was followed by the electrochemical reduction of graphene oxide (GO) for preparing ERGO-modified ITO surfaces. These surfaces were then coated with an N-acryloxysuccinimide-activated amphiphilic polymer, poly(BMA-r-PEGMA-r-NAS), through π-π stacking interactions between the benzene ring tethered to the polymer and ERGO. After covalent immobilization of a primary antibody on the polymer-modified surfaces, sandwich ELISA was carried out for the detection of an antigen by use of a horseradish peroxidase (HRP)-labeled secondary antibody. Under the optimized experimental conditions, the developed electrochemical immunosensor exhibited a linear response over a wide range of antigen concentrations with a very low limit of detection (ca. 100 fg/mL, which corresponds to ca. 700 aM). The high sensitivity of the electrochemical immunosensor may be attributed not only to the enhanced electrocatalytic activity owing to ERGO but also to the minimized background current owing to the reduced nonspecific binding of proteins.

  8. Amperometric electrochemical sensor array for on-chip simultaneous imaging

    NASA Astrophysics Data System (ADS)

    Kuno, Tsuyoshi; Niitsu, Kiichi; Nakazato, Kazuo

    2014-01-01

    We propose an amperometric electrochemical sensor array for high-speed measurement of microelectrode currents. The biosensor was fabricated using CMOS technology and a contact photolithographic process to incorporate gold microelectrodes (256 electrodes) on a chip. The sensor circuit employed a current buffer circuit and dual switch. During measurement, all electrodes were kept at a constant potential, currents were at steady-state levels, and rapid switching was performed while maintaining the steady-state current. The measured current range of the current buffer circuit was approximately 1 pA to 1 µA. A microelectrode array (MEA) with auxiliary electrode (AE) was used to suppress expansion of the diffusion layer over the MEA. Steady-state current was obtained and amplified by redox cycling, greatly reducing the time for reaching the steady-state level. The sensor successfully simultaneously measured multipoint cyclic voltammetry and amperometry, and will be useful for measuring local concentration and analyzing the diffusion processes of target molecules.

  9. Disposable screen-printed sensors for the electrochemical detection of TNT and DNT.

    PubMed

    Caygill, J Sarah; Collyer, Stuart D; Holmes, Joanne L; Davis, Frank; Higson, Séamus P J

    2013-01-07

    Due to the heightened level of national security currently prevalent due to the possibility of terrorist incidents, highly portable, miniaturised and sensitive monitoring devices for trace levels of injurious materials, such as explosives are now of the upmost importance. One method that offers a possible route for the development of a detection system for such species is via an electrochemical regime, coupled to the use of disposable sensor technology. Within this study, the use of carbon screen-printed sensors for the detection and analysis of the classical explosive trinitrotoluene (TNT) and the related dinitrotoluene (DNT) is described, with the eventual objective to develop an inexpensive, accurate and sensitive detection system for trace quantities of explosives in field settings. Commercially available screen-printed carbon sensors have been used as the base platform for this investigation and the electrochemistry of both TNT and DNT studied at these surfaces. Two reductive peaks and one oxidative peak were observed for both analytes. The best linear fits and sensitivities were obtained using the reductive peak at -0.72 V vs. Ag/AgCl. A linear range from 1 to 200 μM could be obtained for TNT and DNT in pH 7.0 phosphate buffer with limits of detection as low as 0.4 μM (TNT) and 0.7 μM (DNT). A second system which utilised the addition of the enzyme, nitroreductase, and the coenzyme, NADPH, into the solution matrix prior to electrochemical interrogations with screen-printed carbon electrodes was found to increase the resulting signal magnitude at the oxidation peak at +0.3 V, improving the performance of the sensor at these values.

  10. In Situ Electrochemical Oxidation Tuning of Transition Metal Disulfides to Oxides for Enhanced Water Oxidation

    PubMed Central

    2015-01-01

    The development of catalysts with earth-abundant elements for efficient oxygen evolution reactions is of paramount significance for clean and sustainable energy storage and conversion devices. Our group demonstrated recently that the electrochemical tuning of catalysts via lithium insertion and extraction has emerged as a powerful approach to improve catalytic activity. Here we report a novel in situ electrochemical oxidation tuning approach to develop a series of binary, ternary, and quaternary transition metal (e.g., Co, Ni, Fe) oxides from their corresponding sulfides as highly active catalysts for much enhanced water oxidation. The electrochemically tuned cobalt–nickel–iron oxides grown directly on the three-dimensional carbon fiber electrodes exhibit a low overpotential of 232 mV at current density of 10 mA cm–2, small Tafel slope of 37.6 mV dec–1, and exceptional long-term stability of electrolysis for over 100 h in 1 M KOH alkaline medium, superior to most non-noble oxygen evolution catalysts reported so far. The materials evolution associated with the electrochemical oxidation tuning is systematically investigated by various characterizations, manifesting that the improved activities are attributed to the significant grain size reduction and increase of surface area and electroactive sites. This work provides a promising strategy to develop electrocatalysts for large-scale water-splitting systems and many other applications. PMID:27162978

  11. In Situ Electrochemical Oxidation Tuning of Transition Metal Disulfides to Oxides for Enhanced Water Oxidation

    DOE PAGES

    Chen, Wei; Wang, Haotian; Li, Yuzhang; ...

    2015-07-15

    The development of catalysts with earth-abundant elements for efficient oxygen evolution reactions is of paramount significance for clean and sustainable energy storage and conversion devices. Our group demonstrated recently that the electrochemical tuning of catalysts via lithium insertion and extraction has emerged as a powerful approach to improve catalytic activity. Here we report a novel in situ electrochemical oxidation tuning approach to develop a series of binary, ternary, and quaternary transition metal (e.g., Co, Ni, Fe) oxides from their corresponding sulfides as highly active catalysts for much enhanced water oxidation. The electrochemically tuned cobalt–nickel–iron oxides grown directly on the three-dimensionalmore » carbon fiber electrodes exhibit a low overpotential of 232 mV at current density of 10 mA cm–2, small Tafel slope of 37.6 mV dec–1, and exceptional long-term stability of electrolysis for over 100 h in 1 M KOH alkaline medium, superior to most non-noble oxygen evolution catalysts reported so far. The materials evolution associated with the electrochemical oxidation tuning is systematically investigated by various characterizations, manifesting that the improved activities are attributed to the significant grain size reduction and increase of surface area and electroactive sites. This work provides a promising strategy to develop electrocatalysts for large-scale water-splitting systems and many other applications.« less

  12. [Research on synergy of combining electrochemical oxidation and catalytic wet oxidation].

    PubMed

    Wang, Hua; Li, Guang-Ming; Zhang, Fang; Huang, Ju-Wen

    2009-07-15

    A new catalytic wet oxidation fixed-bed reactor combined with three-dimensional electric-field was developed to investigate catalytic wet oxidation, electrochemical oxidation and electroassisted catalytic wet oxidation of the solution containing phenol in the presence of a catalyst Mn-Sn-Sb-3/gamma-Al2O3. Good electroassisted catalytic wet oxidation efficiency was obtained in the setup for the combination system even at mild conditions (T = 130 degrees C, po2 = 1.0 MPa) that the phenol conversion and TOC reduction were up to 94.0% and 88.4% after 27 min treatment, respectively. The result also shows that the rate constants of electroassisted catalytic wet oxidation are much higher than that of not only both catalytic wet oxidation and electrochemical oxidation process alone but also additive efficiencies of catalytic wet oxidation and electrochemical oxidation processes, which indicates an apparent synergetic effect between CWO and ECO processes.

  13. Enhancing electrochemical detection on graphene oxide-CNT nanostructured electrodes using magneto-nanobioprobes

    PubMed Central

    Sharma, Priyanka; Bhalla, Vijayender; Dravid, Vinayak; Shekhawat, Gajendera; Jinsong-Wu, J W; Prasad, E. Senthil; Suri, C. Raman

    2012-01-01

    Graphene and related materials have come to the forefront of research in electrochemical sensors during recent years due to the promising properties of these nanomaterials. Further applications of these nanomaterials have been hampered by insufficient sensitivity offered by these nanohybrids for the type of molecules requiring lower detection ranges. Here, we report a signal amplification strategy based on magneto-electrochemical immunoassay which combines the advantages of carbon nanotube and reduced graphene oxide together with electrochemical bursting of magnetic nanoparticles into a large number of metal ions. Sensitive detection was achieved by precisely designing the nanohybrid and correlating the available metal ions with analyte concentration. We confirmed the ultrahigh sensitivity of this method for a new generation herbicide diuron and its analogues up to sub-picomolar concentration in standard water samples. The novel immune-detection platform showed the excellent potential applicability in rapid and sensitive screening of environmental pollutants or toxins in samples. PMID:23166860

  14. Utilization of Electrochemical Sensors and Biosensors in Biochemistry and Molecular Biology

    PubMed Central

    Adam, Vojtech; Kizek, Rene

    2008-01-01

    A special issue of Sensors entitled “Utilization of Electrochemical Sensors and Biosensors in Biochemistry and Molecular Biology” has been prepared over a period of three years. In this Editorial Note we would like to highlight one of the possible directions for electrochemical sensor and biosensor research resulting from the ideas of Czechoslovakian Nobel Prize winner Jaroslav Heyrovsky and his colleague Rudolf Brdicka. PMID:27873861

  15. Electrochemical preparation of activated graphene oxide for the simultaneous determination of hydroquinone and catechol.

    PubMed

    Velmurugan, Murugan; Karikalan, Natarajan; Chen, Shen-Ming; Cheng, Yi-Hui; Karuppiah, Chelladurai

    2017-03-31

    This paper describes the electrochemical preparation of highly electrochemically active and conductive activated graphene oxide (aGO). Afterwards, the electrochemical properties of aGO was studied towards the simultaneous determination of hydroquinone (HQ) and catechol (CC). This aGO is prepared by the electrochemical activation of GO by various potential treatments. The resultant aGOs are examined by various physical and electrochemical characterizations. The high potential activation (1.4 to -1.5) process results a highly active GO (aGO1), which manifest a good electrochemical behavior towards the determination of HQ and CC. This aGO1 modified screen printed carbon electrode (SPCE) was furnished the sensitive detection of HQ and CC with linear concentration range from 1 to 312μM and 1 to 350μM. The aGO1 modified SPCE shows the lowest detection limit of 0.27μM and 0.182μM for the HQ and CC, respectively. The aGO1 modified SPCE reveals an excellent selectivity towards the determination of HQ and CC in the presence of 100 fold of potential interferents. Moreover, the fabricated disposable aGO1/SPCE sensor was demonstrated the determination of HQ and CC in tap water and industrial waste water.

  16. Ultrasensitive Electrochemical Sensors for PSA Detection: Related Surface Functionalization Strategies.

    PubMed

    Blel, Nesrine; Fourati, Najla; Souiri, Mina; Zerrouki, Chouki; Omezzine, Asma; Bouslama, Ali; Othmane, Ali

    2017-08-21

    Prostate cancer is the most common male cancer in the world. The diagnosis, staging, prognosis and monitoring are usually done with Prostate Specific Antigen (PSA). Biosensors have emerging as a novel analytical technology for PSA detection. They provide several advantages for clinical applications and will benefit clinicians, patients and forensic workers in the future. Among them, electrochemical immunosensors have gained growing interests. Hence, their sensitivity is often improved by modifying them with nanoparticles especially iron oxide (IONP). Functionalized IONP attracted much attention in the fabrication of biosensing systems, due to their multiple properties, such as biocompatibility and signal amplification, and their ability to bind covalently to antibodies via their functional groups. In the present study, two electrochemical immunosensors were investigated for PSA detection. The first one was functionalized with 3- glycidoxypropyltrimethoxysilane self-assembled monolayer, while the second one was based on iron oxide nanoparticles functionalized with 3-aminopropyltriethoxysilane. Square wave voltammetry (SWV) has been investigated to follow-up the PSA detection in a phosphate buffer solution, in an artificial serum and in a human serum. The limit of detection (LOD) of both immunosensors was found of order of 10 fg/ml. When estimated in human serum this value increases up to 50 pg/ml. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Laser patterning of thin-film electrochemical gas sensors

    NASA Astrophysics Data System (ADS)

    Lecours, A.; Caron, M.; Ciureanu, P.; Turcotte, G.; Ivanov, D.; Yelon, A.; Currie, J. F.

    1996-04-01

    We have patterned a CO 2 thin film electrochemical sensor using Xe laser ablation of Pt, Nasicon and Na 2CO 3 thin films. A thin metallic absorbing layer on Nasicon is used to achieve reproducible ablation of the ionic conductor with no piercing of the buried Pt electrode. Processing conditions are 10 J/cm 2 pulses with a scanning velocity of 500 μm/s for Pt and 6.3 J/cm 2 pulses with a scanning velocity of 100 μm/s for Nasicon. Nasicon is ablated in the form of flakes suggesting an ablation in the solid phase. Fabrication of an integrated heating element and a micro-thermometer by laser ablation is also presented.

  18. Reduced graphene oxide-yttria nanocomposite modified electrode for enhancing the sensitivity of electrochemical genosensor.

    PubMed

    Rasheed, P Abdul; Radhakrishnan, Thulasi; Shihabudeen, P K; Sandhyarani, N

    2016-09-15

    Reduced graphene oxide-yttria nanocomposite (rGO:Y) is applied as electrochemical genosensor platform for ultrahigh sensitive detection of breast cancer 1 (BRCA1) gene for the first time. The sensor is based on the sandwich assay in which gold nanoparticle cluster labeled reporter DNA hybridize to the target DNA. Glassy carbon electrode modified with rGO-yttria serves as the immobilization platform for capture probe DNA. The sensor exhibited a fine capability of sensing BRCA1 gene with linear range of 10attomolar (aM) to 1nanomolar (nM) and a detection limit of 5.95attomolar. The minimum distinguishable response concentration is down to the attomolar level with a high sensitivity and selectivity. We demonstrated that the use of rGO:Y modified electrode along with gold nanoparticle cluster (AuNPC) label leads to the highly sensitive electrochemical detection of BRCA1 gene.

  19. White blood cell counting on smartphone paper electrochemical sensor.

    PubMed

    Wang, Xinhao; Lin, Guohong; Cui, Guangzhe; Zhou, Xiangfei; Liu, Gang Logan

    2017-04-15

    White blood cell (WBC) analysis provides rich information in rapid diagnosis of acute bacterial and viral infections as well as chronic disease management. For patients with immune deficiency or leukemia WBC should be persistently monitored. Current WBC counting method relies on bulky instrument and trained personnel and is time consuming. Rapid, low-cost and portable solution is in highly demand for point of care test. Here we demonstrate a label-free smartphone based electrochemical WBC counting device on microporous paper with patterned gold microelectrodes. WBC separated from whole blood was trapped by the paper with microelectrodes. WBC trapped on the paper leads to the ion diffusion blockage on microelectrodes, therefore cell concentration is determined by peak current on the microelectrodes measured by a differential pulse voltammeter and the quantitative results are collected by a smartphone wirelessly within 1min. We are able to rapidly quantify WBC concentrations covering the common physiological and pathological range (200-20000μL(-1)) with only 10μL sample and high repeatability as low as 10% in CoV (Coefficient of Variation). The unique smartphone paper electrochemical sensor ensures fast cell quantification to achieve rapid and low-cost WBC analysis at the point-of-care under resource limited conditions.

  20. Lab-on-CMOS integration of microfluidics and electrochemical sensors.

    PubMed

    Huang, Yue; Mason, Andrew J

    2013-10-07

    This paper introduces a CMOS-microfluidics integration scheme for electrochemical microsystems. A CMOS chip was embedded into a micro-machined silicon carrier. By leveling the CMOS chip and carrier surface to within 100 nm, an expanded obstacle-free surface suitable for photolithography was achieved. Thin film metal planar interconnects were microfabricated to bridge CMOS pads to the perimeter of the carrier, leaving a flat and smooth surface for integrating microfluidic structures. A model device containing SU-8 microfluidic mixers and detection channels crossing over microelectrodes on a CMOS integrated circuit was constructed using the chip-carrier assembly scheme. Functional integrity of microfluidic structures and on-CMOS electrodes was verified by a simultaneous sample dilution and electrochemical detection experiment within multi-channel microfluidics. This lab-on-CMOS integration process is capable of high packing density, is suitable for wafer-level batch production, and opens new opportunities to combine the performance benefits of on-CMOS sensors with lab-on-chip platforms.

  1. Nucleophilic aromatic substitution for heteroatoms: an oxidative electrochemical approach.

    PubMed

    Gallardo, Iluminada; Guirado, Gonzalo; Marquet, Jordi

    2002-04-19

    The nucleophilic aromatic substitution for heteroatom through electrochemical oxidation of the intermediate sigma-complexes (Meisenheimer complexes) in simple nitroaromatic compounds is reported for the first time (NASX process). The studies have been carried out with hydride, cyanide, fluoride, methoxy, and ethanethiolate anions and n-butylamine as a nucleophile, at the cyclic voltammetry (CV) and preparative electrolysis level. The cyclic voltammetry experiments allow for detection and characterization of the sigma-complexes and they have led us to a proposal for the mechanism of the oxidation step. Furthermore, the power of the CV technique in the analysis of the reaction mixture throughout the whole chemical and electrochemical process is described.

  2. DEVELOPMENT OF ELECTROCHEMICAL REDUCTION TECHNOLOGY FOR SPENT OXIDE FUELS

    SciTech Connect

    Hur, Jin-Mok; Seo, Chung-Seok; Kim, Ik-Soo; Hong, Sun-Seok; Kang, Dae-Seung; Park, Seong-Won

    2003-02-27

    The Advanced Spent Fuel Conditioning Process (ACP) has been under development at Korea Atomic Energy Research Institute (KAERI) since 1997. The concept is to convert spent oxide fuel into metallic form and to remove high heat-load fission products such as Cs and Sr from the spent fuel. The heat power, volume, and radioactivity of spent fuel can decrease by a factor of a quarter via this process. For the realization of ACP, a concept of electrochemical reduction of spent oxide fuel in Li2O-LiCl molten salt was proposed and several cold tests using fresh uranium oxides have been carried out. In this new electrochemical reduction process, electrolysis of Li2O and reduction of uranium oxide are taking place simultaneously at the cathode part of electrolysis cell. The conversion of uranium oxide to uranium metal can reach more than 99% ensuring the feasibility of this process.

  3. Controllable Synthesis of Formaldehyde Modified Manganese Oxide Based on Gas-Liquid Interfacial Reaction and Its Application of Electrochemical Sensing.

    PubMed

    Bai, Wushuang; Sheng, Qinglin; Nie, Fei; Zheng, Jianbin

    2015-12-30

    Controllable synthesis of manganese oxides was performed via a simple one-step synthetic method. Then obtained manganese oxides which exhibit flower-like, cloud-like, hexagon-like, and rod-like morphologies were modified by formaldehyde based on a simple self-made gas-liquid reaction device respectively and the modified manganese oxides with coral-like, scallop-like and rod-like morphology were synthesized accordingly. The obtained materials were characterized and the formation mechanism was also researched. Then the modified manganese oxides were used to fabricate electrochemical sensors to detect H2O2. Comparison of electrochemical properties between three kinds of modified manganese oxides was investigated and the best one has been successfully employed as H2O2 sensor which shows a low detection limit of 0.01 μM, high sensitivity of 162.69 μA mM(-1) cm(-2), and wide linear range of 0.05 μM-12.78 mM. The study provides a new method for controllable synthesis of metal oxides, and electrochemical application of formaldehyde modified manganese oxides will provides a new strategy for electrochemical sensing with high performance, low cost, and simple fabrication.

  4. A Review on the Electrochemical Sensors and Biosensors Composed of Nanowires as Sensing Material

    PubMed Central

    Yogeswaran, Umasankar; Chen, Shen-Ming

    2008-01-01

    The development and application of nanowires for electrochemical sensors and biosensors are reviewed in this article. Next generation sensor platforms will require significant improvements in sensitivity, specificity and parallelism in order to meet the future needs in variety of fields. Sensors made of nanowires exploit some fundamental nanoscopic effect in order to meet these requirements. Nanowires are new materials, which have the characteristic of low weight with extraordinary mechanical, electrical, thermal and multifunctional properties. The advantages such as size scale, aspect ratio and other properties of nanowires are especially apparent in the use of electrical sensors such as electrochemical sensors and in the use of field-effect transistors. The preparation methods of nanowires and their properties are discussed along with their advantages towards electrochemical sensors and biosensors. Some key results from each article are summarized, relating the concept and mechanism behind each sensor, with experimental conditions as well as their behavior at different conditions. PMID:27879709

  5. Hydrothermal preparation of reduced graphene oxide-silver nanocomposite using Plectranthus amboinicus leaf extract and its electrochemical performance.

    PubMed

    Zheng, Yuhong; Wang, Aiwu; Cai, Wen; Wang, Zhong; Peng, Feng; Liu, Zhong; Fu, Li

    2016-12-01

    Graphene based nanocomposites are receiving increasing attention in many fields such as material chemistry, environmental science and pharmaceutical science. In this study, a facial synthesis of a reduced graphene oxide-silver nanocomposite (RGO-Ag) was carried out from Plectranthus amboinicus leaf extract. The synthesized nanocomposite was characterized by using X-ray diffraction, scanning electron microscope, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscope and UV-vis spectroscopy for structural confirmation. The reduction of graphene oxide and silver ions was achieved simultaneously due to the reducibility of the Plectranthus amboinicus leaf extract. We further investigated the electrochemical properties of the biosynthesized RGO-Ag nanocomposite. A nonenzymatic H2O2 electrochemical sensor was shown to be successfully fabricated by using biosynthesized RGO-Ag nanocomposite. Moreover, the fabricated electrochemical sensor also showed good selectivity.

  6. Metal/Metal Oxide Differential Electrode pH Sensors

    NASA Technical Reports Server (NTRS)

    West, William; Buehler, Martin; Keymeulen, Didier

    2007-01-01

    Solid-state electrochemical sensors for measuring the degrees of acidity or alkalinity (in terms of pH values) of liquid solutions are being developed. These sensors are intended to supplant older electrochemical pH sensors that include glass electrode structures and reference solutions. The older sensors are fragile and subject to drift. The present developmental solid-state sensors are more rugged and are expected to be usable in harsh environments. The present sensors are based on a differential-electrode measurement principle. Each sensor includes two electrodes, made of different materials, in equilibrium with the solution of interest.

  7. A Hg(II)-mediated "signal-on" electrochemical glutathione sensor.

    PubMed

    Lotfi Zadeh Zhad, Hamid R; Lai, Rebecca Y

    2014-08-07

    We report the design and fabrication of a DNA-based electrochemical sensor for detection of glutathione. Sensor signaling relies on glutathione's ability to chelate mercury Hg(II), displacing it from the thymine-Hg(II)-thymine complex formed between the surface-immobilized DNA probes. Our results show that this sensor is sensitive and selective enough to be employed in saliva.

  8. Pin-based electrochemical glucose sensor with multiplexing possibilities.

    PubMed

    Rama, Estefanía C; Costa-García, Agustín; Fernández-Abedul, M Teresa

    2017-02-15

    This work describes the use of mass-produced stainless-steel pins as low-cost electrodes to develop simple and portable amperometric glucose biosensors. A potentiostatic three-electrode configuration device is designed using two bare pins as reference and counter electrodes, and a carbon-ink coated pin as working electrode. Conventional transparency film without any pretreatment is used to punch the pins and contain the measurement solution. The interface to the potentiostat is very simple since it is based on a commercial female connection. This electrochemical system is applied to glucose determination using a bienzymatic sensor phase (glucose oxidase/horseradish peroxidase) with ferrocyanide as electron-transfer mediator, achieving a linear range from 0.05 to 1mM. It shows analytical characteristics comparable to glucose sensors previously reported using conventional electrodes, and its application for real food samples provides good results. The easy modification of the position of the pins allows designing different configurations with possibility of performing simultaneous measurements. This is demonstrated through a specific design that includes four pin working-electrodes. Different concentrations of antibody labeled with alkaline phosphatase are immobilized on the pin-heads and after enzymatic conversion of 3-indoxylphosphate and silver nitrate, metallic silver is determined by anodic stripping voltammetry.

  9. Surface functionalisation of carbon for low cost fabrication of highly stable electrochemical DNA sensors.

    PubMed

    Debela, Ahmed M; Ortiz, Mayreli; Beni, Valerio; O'Sullivan, Ciara K

    2015-09-15

    An alternative strategy for surface tethering of DNA probes, where highly reactive glassy carbon (GC) substrates are prepared via electrochemical hydrogenation and electrochemical/chemical chlorination is reported. Thiolated DNA probes and alkanethiols were stably immobilised on the halogenated carbon, with electrochemical chlorination being milder, thus producing less damage to the surface. Electrochemical DNA sensors prepared using this surface chemistry on carbon with electrochemical chlorination providing an improved performance, producing a highly ordered surface and the use of lateral spacers to improve steric accessibility to immobilised probes was not required.

  10. Electrochemical sensing of glucose by reduced graphene oxide-zinc ferrospinels

    NASA Astrophysics Data System (ADS)

    Shahnavaz, Zohreh; Woi, Pei Meng; Alias, Yatimah

    2016-08-01

    We have developed ZnFe2O4 magnetic nanoparticles/reduced graphene oxide nanosheets modified glassy carbon (ZnFe2O4/rGO/GCE) electrode as a novel system for the electrochemical glucose sensing. Via a facile in situ hydrothermal route, the reduction of GO and the formation of ZnFe2O4 nanoparticles occurred simultaneously. This enables the ZnFe2O4 nanoparticles dispersed on the reduced graphene sheet. Characterization of nanocomposite by X-ray diffraction (XRD) and transmission electron microscopy (TEM) clearly demonstrate the successful attachment of ZnFe2O4 nanoparticles to graphene sheets. Electrochemical studies revealed that the ZnFe2O4/rGO/GCE possess excellent electrocatalytic activities toward the oxidation of glucose and the performance of sensor is enhanced by integration of graphene nanosheets with ZnFe2O4 nanoparticles.

  11. Ag Nanoparticles-Modified 3D Graphene Foam for Binder-Free Electrodes of Electrochemical Sensors.

    PubMed

    Han, Tao; Jin, Jianli; Wang, Congxu; Sun, Youyi; Zhang, Yinghe; Liu, Yaqing

    2017-02-16

    Ag nanoparticles-modified 3D graphene foam was synthesized through a one-step in-situ approach and then directly applied as the electrode of an electrochemical sensor. The composite foam electrode exhibited electrocatalytic activity towards Hg(II) oxidation with high limit of detection and sensitivity of 0.11 μM and 8.0 μA/μM, respectively. Moreover, the composite foam electrode for the sensor exhibited high cycling stability, long-term durability and reproducibility. These results were attributed to the unique porous structure of the composite foam electrode, which enabled the surface of Ag nanoparticles modified reduced graphene oxide (Ag NPs modified rGO) foam to become highly accessible to the metal ion and provided more void volume for the reaction with metal ion. This work not only proved that the composite foam has great potential application in heavy metal ions sensors, but also provided a facile method of gram scale synthesis 3D electrode materials based on rGO foam and other electrical active materials for various applications.

  12. Ag Nanoparticles-Modified 3D Graphene Foam for Binder-Free Electrodes of Electrochemical Sensors

    PubMed Central

    Han, Tao; Jin, Jianli; Wang, Congxu; Sun, Youyi; Zhang, Yinghe; Liu, Yaqing

    2017-01-01

    Ag nanoparticles-modified 3D graphene foam was synthesized through a one-step in-situ approach and then directly applied as the electrode of an electrochemical sensor. The composite foam electrode exhibited electrocatalytic activity towards Hg(II) oxidation with high limit of detection and sensitivity of 0.11 µM and 8.0 µA/µM, respectively. Moreover, the composite foam electrode for the sensor exhibited high cycling stability, long-term durability and reproducibility. These results were attributed to the unique porous structure of the composite foam electrode, which enabled the surface of Ag nanoparticles modified reduced graphene oxide (Ag NPs modified rGO) foam to become highly accessible to the metal ion and provided more void volume for the reaction with metal ion. This work not only proved that the composite foam has great potential application in heavy metal ions sensors, but also provided a facile method of gram scale synthesis 3D electrode materials based on rGO foam and other electrical active materials for various applications. PMID:28336878

  13. Electrochemical study of DNA damaged by oxidation stress.

    PubMed

    Zitka, Ondrej; Krizkova, Sona; Skalickova, Sylvie; Kopel, Pavel; Babula, Petr; Adam, Vojtech; Kizek, Rene

    2013-02-01

    Many compounds can interact with DNA leading to changes of DNA structure as point mutation and bases excision, which could trigger some metabolic failures, which leads to the changes in DNA structure resulting in cancer. Oxidation of nucleic acid bases belongs to the one of the mostly occurred type of DNA damaging leading to the above mentioned phenomena. The investigation of processes of DNA oxidation damage is topical and electrochemical methods include a versatile and sensitive tool for these purposes. 8-hydroxydeoxyguanosine (8-OHdG) is the most widely accepted marker of DNA damage. Oxidative damage to DNA by free radicals and exposure to ionizing radiation generate several other products within the double helix besides mentioned oxidation products of nucleic acid bases. The basic electrochemical behaviour of nucleic acids bases on various types of carbon electrodes is reviewed. Further, we address our attention on description of oxidation mechanisms and on detection of the most important products of nucleic bases oxidation. The miniaturization of detector coupled with some microfluidic devices is suggested and discussed. The main aim of this review is to report the advantages and features of the electrochemical detection of guanine oxidation product as 8-OHdG and other similarly produced molecules as markers for DNA damage.

  14. Treatment of Radioactive Organic Wastes by an Electrochemical Oxidation

    SciTech Connect

    Kim, K.H.; Ryue, Y.G.; Kwak, K.K.; Hong, K.P.; Kim, D.H.

    2007-07-01

    A waste treatment system by using an electrochemical oxidation (MEO, Mediated Electrochemical Oxidation) was installed at KAERI (Korea Atomic Energy Research Institute) for the treatment of radioactive organic wastes, especially EDTA (Ethylene Diamine Tetraacetic Acid) generated during the decontamination activity of nuclear installations. A cerium and silver mediated electrochemical oxidation technique method has been developed as an alternative for an incineration process. An experiment to evaluate the applicability of the above two processes and to establish the conditions to operate the pilot-scale system has been carried out by changing the concentration of the catalyst and EDTA, the operational current density, the operating temperature, and the electrolyte concentration. As for the results, silver mediated oxidation was more effective in destructing the EDTA wastes than the cerium mediated oxidation process. For a constant volume of the EDTA wastes, the treatment time for the cerium-mediated oxidation was 9 hours and its conversion ratio of EDTA to water and CO{sub 2} was 90.2 % at 80 deg. C, 10 A, but the treatment time for the silver-mediated oxidation was 3 hours and its conversion ratio was 89.2 % at 30 deg. C, 10 A. (authors)

  15. A new simple electrochemical Moxifloxacin Hydrochloride sensor built on carbon paste modified with silver nanoparticles.

    PubMed

    Fekry, Amany M

    2017-01-15

    A new sensitive simple electrochemical sensor for Moxifloxacin Hydrochloride (MOXI) detection has been successfully performed. The sensor built on carbon paste (CP) modified with silver nanoparticles (AgNPs). AgNPs are biocompatible stable noble materials especially in biological sensing. The silver nanoparticles modified carbon paste electrode (SNMCPE) displayed high electrocatalytic activity towards oxidation of 1.0mM MOXI in Britton Robinson (BR) buffer of pH range (2.0-9.0). The techniques used to do this work are cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). Surface characteristics were achieved using scanning electron microscopic (SEM) and Energy Dispersive X-Ray Analysis (EDX) techniques. The effect of changing MOXI concentration (7.0×10(-7) to 1.8×10(-4)M) was studied in BR buffer (pH =7.4) at a scan rate of 50mV/s using SNMCPE. The detection and quantification limits were found to be 2.9×10(-9)M and 9.6×10(-8)M, respectively. In order to assess the applicability of MOXI detection method in real samples; this method was tested in Delmoxa tablet and human urine sample. Good sensible results were attained for MOXI detection. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Ultrasensitive Detection of Ferulic Acid Using Poly(diallyldimethylammonium chloride) Functionalized Graphene-Based Electrochemical Sensor

    PubMed Central

    Liu, Lin-jie; Gao, Xia; Zhang, Pei; Feng, Shi-lan; Hu, Fang-di; Li, Ying-dong; Wang, Chun-ming

    2014-01-01

    The electrochemical redox of ferulic acid (FA) was investigated systematically by cyclic voltammetry (CV) with a poly(diallyldimethylammonium chloride) functionalized graphene-modified glassy carbon electrode (PDDA-G/GCE) as a working electrode. A simple and sensitive differential pulse voltammetry (DPV) technique was proposed for the direct quantitative determination of FA in Angelica sinensis and spiked human urine samples for the first time. The dependence of the intensities of currents and potentials on nature of the supporting electrolyte, pH, scan rate, and concentration was investigated. Under optimal conditions, the proposed sensor exhibited excellent electrochemical sensitivity to FA, and the oxidation peak current was proportional to FA concentration in the range of 8.95 × 10−8 M ~5.29 × 10−5 M, with a relatively low detection limit of 4.42 × 10−8 M. This fabricated sensor also displayed acceptable reproducibility, long-term stability, and high selectivity with negligible interferences from common interfering species. Besides, it was applied to detect FA in Angelica sinensis and biological samples with satisfactory results, making it a potential alternative tool for the quantitative detection of FA in pharmaceutical analysis. PMID:24900937

  17. Effect of Electrode Configuration on Nitric Oxide Gas Sensor Behavior

    PubMed Central

    Cui, Ling; Murray, Erica P.

    2015-01-01

    The influence of electrode configuration on the impedancemetric response of nitric oxide (NO) gas sensors was investigated for solid electrochemical cells [Au/yttria-stabilized zirconia (YSZ)/Au)]. Fabrication of the sensors was carried out at 1050 °C in order to establish a porous YSZ electrolyte that enabled gas diffusion. Two electrode configurations were studied where Au wire electrodes were either embedded within or wrapped around the YSZ electrolyte. The electrical response of the sensors was collected via impedance spectroscopy under various operating conditions where gas concentrations ranged from 0 to 100 ppm NO and 1%–18% O2 at temperatures varying from 600 to 700 °C. Gas diffusion appeared to be a rate-limiting mechanism in sensors where the electrode configuration resulted in longer diffusion pathways. The temperature dependence of the NO sensors studied was independent of the electrode configuration. Analysis of the impedance data, along with equivalent circuit modeling indicated the electrode configuration of the sensor effected gas and ionic transport pathways, capacitance behavior, and NO sensitivity. PMID:26404312

  18. Development of an automated on-line electrochemical chlorite ion sensor.

    PubMed

    Myers, John N; Steinecker, William H; Sandlin, Zechariah D; Cox, James A; Gordon, Gilbert; Pacey, Gilbert E

    2012-05-30

    A sensor system for the automatic, in-line, determination of chlorite ion is reported. Electroanalytical measurements were performed in electrolyte-free liquids by using an electrochemical probe (EC), which enables in-line detection in high-resistance media such as disinfected water. Cyclic voltammetry scan rate studies suggest that the current arising from the oxidation of chlorite ion at an EC probe is mass-transfer limited. By coupling FIA with an EC probe amperometric cell, automated analysis was achieved. This sensor is intended to fulfill the daily monitoring requirements of the EPA DBP regulations for chlorite ion. Detection limits of 0.02-0.13 mg/L were attained, which is about one order of magnitude below the MRDL. The sensor showed no faradaic signal for perchlorate, chlorate, or nitrate. The lifetime and stability of the sensor were investigated by measuring calibration curves over time under constant-flow conditions. Detection limits of <0.1 mg/L were repeatedly achieved over a period of three weeks.

  19. Corrosion and Electrochemical Oxidation of a Pyrite by Thiobacillus ferrooxidans

    PubMed Central

    Mustin, C.; Berthelin, J.; Marion, P.; de Donato, P.

    1992-01-01

    The oxidation of a pure pyrite by Thiobacillus ferrooxidans is not really a constant phenomenon; it must be considered to be more like a succession of different steps which need characterization. Electrochemical studies using a combination of a platinum electrode and a specific pyrite electrode (packed-ground-pyrite electrode) revealed four steps in the bioleaching process. Each step can be identified by the electrochemical behavior (redox potentials) of pyrite, which in turn can be related to chemical (leachate content), bacterial (growth), and physical (corrosion patterns) parameters of the leaching process. A comparison of the oxidation rates of iron and sulfur indicated the nonstoichiometric bacterial oxidation of a pure pyrite in which superficial phenomena, aqueous oxidation, and deep crystal dissolution are successively involved. Images PMID:16348688

  20. Synthesis of (Nano)fibers via Electrospinning and Their Application in Electrochemical Sensors

    NASA Astrophysics Data System (ADS)

    Ding, Yu

    2011-12-01

    This Ph.D. project aims at developing novel electrochemical sensors for fast, sensitive, selective, reproducible, stable and cost-effective detection of glucose, hydrazine and H2O2, which are of paramount importance to environmental monitoring and clinical diagnostics. The main objective of this research is to fabricate novel functionalized (nano)fibers via electrospinning and then explore their application in the development of enhanced electrochemical sensors, with major effort focusing on nonenzymatic glucose sensors. Co3O4 and NiO nanofibers were firstly successfully prepared and investigated for glucose detection. The mechanism for enhanced glucose detection and excellent anti-interference property were discussed. In order to further improve the glucose sensing performance, noble metals (including Ag, Au and Pt) and a conducting metal oxide, CdO, were incorporated into NiO nanofibers which have good glucose electrocatalytic capability and better anti-interference property than Co3O4 nanofibers. The noble metals-doped NiO nanofibers showed a synergistic effect towards glucose oxidation, which greatly improved the glucose sensing performance, with lower onset potential, lower detection limit and higher sensitivity. Moreover, our study indicated the CdO incorporation can greatly enhance the conductivity of NiO nanofibers. The dislocated NiO-CdO hybrid nanofibers showed even higher sensitivity towards glucose electrooxidation than those of noble metals-doped NiO, suggesting that CdO was a good substitute for noble metals. In addition, the applications of the novel functionalized nanofibers in the sensitive and selective detection of hydrazine and H2O2 were also explored. Studies on Pt-doping in TiO2 nanofibers for hydrazine detection, SWNTs-doping in hemoglobin microbelts and Fe2O 3-doping in carbon nanofibers for H2O2 detection were also conducted and all showed enhanced sensing performance. These results reveal the great potential applications of electrospun

  1. Improved in vivo performance of amperometric oxygen (PO2) sensing catheters via electrochemical nitric oxide generation/release.

    PubMed

    Ren, Hang; Coughlin, Megan A; Major, Terry C; Aiello, Salvatore; Rojas Pena, Alvaro; Bartlett, Robert H; Meyerhoff, Mark E

    2015-08-18

    A novel electrochemically controlled release method for nitric oxide (NO) (based on electrochemical reduction of nitrite ions) is combined with an amperometric oxygen sensor within a dual lumen catheter configuration for the continuous in vivo sensing of the partial pressure of oxygen (PO2) in blood. The on-demand electrochemical NO generation/release method is shown to be fully compatible with amperometric PO2 sensing. The performance of the sensors is evaluated in rabbit veins and pig arteries for 7 and 21 h, respectively. Overall, the NO releasing sensors measure both venous and arterial PO2 values more accurately with an average deviation of -2 ± 11% and good correlation (R(2) = 0.97) with in vitro blood measurements, whereas the corresponding control sensors without NO release show an average deviation of -31 ± 28% and poor correlation (R(2) = 0.43) at time points >4 h after implantation in veins and >6 h in arteries. The NO releasing sensors induce less thrombus formation on the catheter surface in both veins and arteries (p < 0.05). This electrochemical NO generation/release method could offer a new and attractive means to improve the biocompatibility and performance of implantable chemical sensors.

  2. Improved in Vivo Performance of Amperometric Oxygen (PO2) Sensing Catheters via Electrochemical Nitric Oxide Generation/Release

    PubMed Central

    2016-01-01

    A novel electrochemically controlled release method for nitric oxide (NO) (based on electrochemical reduction of nitrite ions) is combined with an amperometric oxygen sensor within a dual lumen catheter configuration for the continuous in vivo sensing of the partial pressure of oxygen (PO2) in blood. The on-demand electrochemical NO generation/release method is shown to be fully compatible with amperometric PO2 sensing. The performance of the sensors is evaluated in rabbit veins and pig arteries for 7 and 21 h, respectively. Overall, the NO releasing sensors measure both venous and arterial PO2 values more accurately with an average deviation of −2 ± 11% and good correlation (R2 = 0.97) with in vitro blood measurements, whereas the corresponding control sensors without NO release show an average deviation of −31 ± 28% and poor correlation (R2 = 0.43) at time points >4 h after implantation in veins and >6 h in arteries. The NO releasing sensors induce less thrombus formation on the catheter surface in both veins and arteries (p < 0.05). This electrochemical NO generation/release method could offer a new and attractive means to improve the biocompatibility and performance of implantable chemical sensors. PMID:26201351

  3. High Temperature Oxidation and Electrochemical Studies Related to Hot Corrosion

    DTIC Science & Technology

    1989-12-01

    thin film of liquid sodium sulfate. It appears that the initial formation of metal oxides is necessary for the initial reaction and the transport of...compounds in the silica film allow transport of alkali metal cations under an electrochemical driving force with essentially no electronic conduction

  4. Electrochemical advanced oxidation processes: today and tomorrow. A review.

    PubMed

    Sirés, Ignasi; Brillas, Enric; Oturan, Mehmet A; Rodrigo, Manuel A; Panizza, Marco

    2014-01-01

    In recent years, new advanced oxidation processes based on the electrochemical technology, the so-called electrochemical advanced oxidation processes (EAOPs), have been developed for the prevention and remediation of environmental pollution, especially focusing on water streams. These methods are based on the electrochemical generation of a very powerful oxidizing agent, such as the hydroxyl radical ((•)OH) in solution, which is then able to destroy organics up to their mineralization. EAOPs include heterogeneous processes like anodic oxidation and photoelectrocatalysis methods, in which (•)OH are generated at the anode surface either electrochemically or photochemically, and homogeneous processes like electro-Fenton, photoelectro-Fenton, and sonoelectrolysis, in which (•)OH are produced in the bulk solution. This paper presents a general overview of the application of EAOPs on the removal of aqueous organic pollutants, first reviewing the most recent works and then looking to the future. A global perspective on the fundamentals and experimental setups is offered, and laboratory-scale and pilot-scale experiments are examined and discussed.

  5. Electrochemical oxidation of imazapyr with BDD electrode in titanium substrate.

    PubMed

    Souza, F L; Teodoro, T Q; Vasconcelos, V M; Migliorini, F L; Lima Gomes, P C F; Ferreira, N G; Baldan, M R; Haiduke, R L A; Lanza, M R V

    2014-12-01

    In this work we have studied the treatment of imazapyr by electrochemical oxidation with boron-doped diamond anode. Electrochemical degradation experiments were performed in a one-compartment cell containing 0.45 L of commercial formulations of herbicide in the pH range 3.0-10.0 by applying a density current between 10 and 150 mA cm(-2) and in the temperature range 25-45 °C. The maximum current efficiencies were obtained at lower current densities since the electrochemical system is under mass transfer control. The mineralization rate increased in acid medium and at higher temperatures. The treatment was able to completely degrade imazapyr in the range 4.6-100.0 mg L(-1), although the current charge required rises along with the increasing initial concentration of the herbicide. Toxicity analysis with the bioluminescent bacterium Vibrio fischeri showed that at higher pollutant concentrations the toxicity was reduced after the electrochemical treatment. To clarify the reaction pathway for imazapyr mineralization by OH radicals, LC-MS/MS analyses we performed together with a theoretical study. Ions analysis showed the formation of high levels of ammonium in the cathode. The main final products of the electrochemical oxidation of imazapyr with diamond thin film electrodes are formic, acetic and butyric acids.

  6. Electrochemical sensor for rapid detection of triclosan using a multiwall carbon nanotube film.

    PubMed

    Yang, Jinquan; Wang, Peng; Zhang, Xiaojun; Wu, Kangbing

    2009-10-28

    It is of great importance to develop a rapid analytical method for triclosan because it has been widely added in household products and can form highly toxic dioxin-type derivatives. Herein, an electrochemical sensor based on a multiwall carbon nanotube (MWCNT) film was developed for the rapid detection of triclosan. The electrochemical responses of triclosan were examined, given that its oxidation is irreversible and involves one electron. At the MWCNT film, the oxidation signals of triclosan remarkably increase, suggesting that the MWCNT film exhibits a considerable enhancement effect with triclosan. The analytical parameters, such as pH value, amount of MWCNT suspension, and accumulation time, were optimized. The linear range is from 50 microg L(-1) to 1.75 mg L(-1), and the limit of detection is 16.5 microg L(-1) (about 57 nM). Finally, the new method was successfully employed to detect triclosan in different toothpaste samples, which was testified using high-performance liquid chromatography (HPLC).

  7. Method of electrode fabrication for solid oxide electrochemical cells

    DOEpatents

    Jensen, Russell R.

    1990-01-01

    A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used.

  8. Method of electrode fabrication for solid oxide electrochemical cells

    DOEpatents

    Jensen, R.R.

    1990-11-20

    A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used. 5 figs.

  9. Based on magnetic graphene oxide highly sensitive and selective imprinted sensor for determination of sunset yellow.

    PubMed

    Li, Jianbo; Wang, Xiaojiao; Duan, Huimin; Wang, Yanhui; Bu, Yanan; Luo, Chuannan

    2016-01-15

    A new imprinted material based on β-cyclodextrin/ionic liquid/gold nanoparticles functionalized magnetic graphene oxide has been successfully synthesized and modified to the glassy carbon electrode surface to constructed imprinted electrochemical sensor to detect sunset yellow. The sensitivity and electrochemical response of the electrode can be improved by nanomaterials. The surface morphology and crystal structure of the hybrid nanomaterial has been characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy. The electrochemical behaviors of the hybrid nanomaterials based sensor were evaluated through cyclic voltammetry and electrochemical impedance spectroscopy. Under the optimized conditions, the proposed electrochemical sensor showed a fast rebinding dynamics, which was successfully applied to sunset yellow detection with a wide linear range from 5.0×10(-9) to 2.0×10(-6)mol L(-1) and a detection limit of 2.0×10(-9)mol L(-1). The electrochemical sensor has been successfully applied in the determination of SY in spiked water samples, mirinda drink and minute maid, and the recoveries for the standards added are 97-105%.

  10. Chemical Sensors Based on Metal Oxide Nanostructures

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Mike J.; Liu, Chung-Chiun

    2006-01-01

    This paper is an overview of sensor development based on metal oxide nanostructures. While nanostructures such as nanorods show significan t potential as enabling materials for chemical sensors, a number of s ignificant technical challenges remain. The major issues addressed in this work revolve around the ability to make workable sensors. This paper discusses efforts to address three technical barriers related t o the application of nanostructures into sensor systems: 1) Improving contact of the nanostructured materials with electrodes in a microse nsor structure; 2) Controling nanostructure crystallinity to allow co ntrol of the detection mechanism; and 3) Widening the range of gases that can be detected by using different nanostructured materials. It is concluded that while this work demonstrates useful tools for furt her development, these are just the beginning steps towards realizati on of repeatable, controlled sensor systems using oxide based nanostr uctures.

  11. Comparison between Field Effect Transistors and Bipolar Junction Transistors as Transducers in Electrochemical Sensors

    NASA Astrophysics Data System (ADS)

    Zafar, Sufi; Lu, Minhua; Jagtiani, Ashish

    2017-01-01

    Field effect transistors (FET) have been widely used as transducers in electrochemical sensors for over 40 years. In this report, a FET transducer is compared with the recently proposed bipolar junction transistor (BJT) transducer. Measurements are performed on two chloride electrochemical sensors that are identical in all details except for the transducer device type. Comparative measurements show that the transducer choice significantly impacts the electrochemical sensor characteristics. Signal to noise ratio is 20 to 2 times greater for the BJT sensor. Sensitivity is also enhanced: BJT sensing signal changes by 10 times per pCl, whereas the FET signal changes by 8 or less times. Also, sensor calibration curves are impacted by the transducer choice. Unlike a FET sensor, the calibration curve of the BJT sensor is independent of applied voltages. Hence, a BJT sensor can make quantitative sensing measurements with minimal calibration requirements, an important characteristic for mobile sensing applications. As a demonstration for mobile applications, these BJT sensors are further investigated by measuring chloride levels in artificial human sweat for potential cystic fibrosis diagnostic use. In summary, the BJT device is demonstrated to be a superior transducer in comparison to a FET in an electrochemical sensor.

  12. Comparison between Field Effect Transistors and Bipolar Junction Transistors as Transducers in Electrochemical Sensors

    PubMed Central

    Zafar, Sufi; Lu, Minhua; Jagtiani, Ashish

    2017-01-01

    Field effect transistors (FET) have been widely used as transducers in electrochemical sensors for over 40 years. In this report, a FET transducer is compared with the recently proposed bipolar junction transistor (BJT) transducer. Measurements are performed on two chloride electrochemical sensors that are identical in all details except for the transducer device type. Comparative measurements show that the transducer choice significantly impacts the electrochemical sensor characteristics. Signal to noise ratio is 20 to 2 times greater for the BJT sensor. Sensitivity is also enhanced: BJT sensing signal changes by 10 times per pCl, whereas the FET signal changes by 8 or less times. Also, sensor calibration curves are impacted by the transducer choice. Unlike a FET sensor, the calibration curve of the BJT sensor is independent of applied voltages. Hence, a BJT sensor can make quantitative sensing measurements with minimal calibration requirements, an important characteristic for mobile sensing applications. As a demonstration for mobile applications, these BJT sensors are further investigated by measuring chloride levels in artificial human sweat for potential cystic fibrosis diagnostic use. In summary, the BJT device is demonstrated to be a superior transducer in comparison to a FET in an electrochemical sensor. PMID:28134275

  13. Comparison between Field Effect Transistors and Bipolar Junction Transistors as Transducers in Electrochemical Sensors.

    PubMed

    Zafar, Sufi; Lu, Minhua; Jagtiani, Ashish

    2017-01-30

    Field effect transistors (FET) have been widely used as transducers in electrochemical sensors for over 40 years. In this report, a FET transducer is compared with the recently proposed bipolar junction transistor (BJT) transducer. Measurements are performed on two chloride electrochemical sensors that are identical in all details except for the transducer device type. Comparative measurements show that the transducer choice significantly impacts the electrochemical sensor characteristics. Signal to noise ratio is 20 to 2 times greater for the BJT sensor. Sensitivity is also enhanced: BJT sensing signal changes by 10 times per pCl, whereas the FET signal changes by 8 or less times. Also, sensor calibration curves are impacted by the transducer choice. Unlike a FET sensor, the calibration curve of the BJT sensor is independent of applied voltages. Hence, a BJT sensor can make quantitative sensing measurements with minimal calibration requirements, an important characteristic for mobile sensing applications. As a demonstration for mobile applications, these BJT sensors are further investigated by measuring chloride levels in artificial human sweat for potential cystic fibrosis diagnostic use. In summary, the BJT device is demonstrated to be a superior transducer in comparison to a FET in an electrochemical sensor.

  14. Cobalt vanadium oxide thin nanoplates: primary electrochemical capacitor application

    PubMed Central

    Zhang, Youjuan; Liu, Yuanying; Chen, Jing; Guo, Qifei; Wang, Ting; Pang, Huan

    2014-01-01

    Co3V2O8 thin nanoplates are firstly described as a kind of electrode material for supercapacitors. More importantly, from electrochemical measurements, the obtained Co3V2O8 nanoplate electrode shows a good specific capacitance (0.5 A g−1, 739 F g−1) and cycling stability (704 F g−1 retained after 2000 cycles). This study essentially offers a new kind of metal vanadium oxides as electrochemical active material for the development of supercapacitors. PMID:25023373

  15. Design and Electrochemical Study of Platinum-Based Nanomaterials for Sensitive Detection of Nitric Oxide in Biomedical Applications

    PubMed Central

    Govindhan, Maduraiveeran; Liu, Zhonggang; Chen, Aicheng

    2016-01-01

    The extensive physiological and regulatory roles of nitric oxide (NO) have spurred the development of NO sensors, which are of critical importance in neuroscience and various medical applications. The development of electrochemical NO sensors is of significant importance, and has garnered a tremendous amount of attention due to their high sensitivity and selectivity, rapid response, low cost, miniaturization, and the possibility of real-time monitoring. Nanostructured platinum (Pt)-based materials have attracted considerable interest regarding their use in the design of electrochemical sensors for the detection of NO, due to their unique properties and the potential for new and innovative applications. This review focuses primarily on advances and insights into the utilization of nanostructured Pt-based electrode materials, such as nanoporous Pt, Pt and PtAu nanoparticles, PtAu nanoparticle/reduced graphene oxide (rGO), and PtW nanoparticle/rGO-ionic liquid (IL) nanocomposites, for the detection of NO. The design, fabrication, characterization, and integration of electrochemical NO sensing performance, selectivity, and durability are addressed. The attractive electrochemical properties of Pt-based nanomaterials have great potential for increasing the competitiveness of these new sensors and open up new opportunities in the creation of novel NO-sensing technologies for biological and medical applications. PMID:28335341

  16. Sensitive determination of citrinin based on molecular imprinted electrochemical sensor

    NASA Astrophysics Data System (ADS)

    Atar, Necip; Yola, Mehmet Lütfi; Eren, Tanju

    2016-01-01

    In this report, a novel molecular imprinted voltammetric sensor based on glassy carbon electrode (GCE) modified with platinum nanoparticles (PtNPs) involved in a polyoxometalate (H3PW12O40, POM) functionalized reduced graphene oxide (rGO) was prepared for the determination of citrinin (CIT). The developed surfaces were characterized by using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. CIT imprinted GCE was prepared via electropolymerization process of 80.0 mM pyrrole as monomer in the presence of phosphate buffer solution (pH 6.0) containing 20.0 mM CIT. The linearity range and the detection limit of the developed method were calculated as 1.0 × 10-12-1.0 × 10-10 M and 2.0 × 10-13 M, respectively. In addition, the voltammetric sensor was applied to rye samples. The stability and selectivity of the voltammetric sensor were also reported.

  17. Selective determination of arbutin in cosmetic products through online derivatization followed by disposable electrochemical sensor.

    PubMed

    Zen, Jyh-Myng; Yang, Hsueh-Hui; Chiu, Mei-Hsin; Yang, Chao-Hsun; Shih, Ying

    2011-01-01

    An online derivatization followed by a disposable electrochemical sensor was used for the determination of arbutin (AR) in cosmetic products. The AR was chemically oxidized by MnO2 and subsequently reduced at inexpensive screen-printed carbon electrodes using a low detection potential which improved the selectivity of the method. The effects of various parameters, such as solution pH, detection potential, and flow rate of the mobile phase, were studied in detail. Under optimal conditions [pH 1.6 (0.1 M H3PO4), detection potential 0.0 V (versus Ag/AgCl), flow rate 0.6 mL/min], the linear range for AR was 0.1-1500 ppm (r2 = 0.999) with LOD of 30.06 ppb (S/N = 3). The practical application of the proposed method was demonstrated by the determination of arbutin concentration in commercial cosmetic products.

  18. A CMOS analog front-end chip for amperometric electrochemical sensors

    NASA Astrophysics Data System (ADS)

    Zhichao, Li; Yuntao, Liu; Min, Chen; Jingbo, Xiao; Jie, Chen

    2015-07-01

    This paper reports a complimentary metal-oxide-semiconductor (CMOS) analog front-end chip for amperometric electrochemical sensors. The chip includes a digital configuration circuit, which can communicate with an external microcontroller by employing an I2C interface bus, and thus is highly programmable. Digital correlative double samples technique and an incremental sigma-delta analog to digital converter (Σ-Δ ADC) are employed to achieve a new proposed system architecture with double samples. The chip has been fabricated in a standard 0.18-μm CMOS process with high-precision and high-linearity performance occupying an area of 1.3 × 1.9 mm2. Sample solutions with various phosphate concentrations have been detected with a step concentration of 0.01 mg/L. Project supported by the National Key Basic Research and Development Project (No. 2015CB352103).

  19. Solid oxide materials research accelerated electrochemical testing

    SciTech Connect

    Windisch, C.; Arey, B.

    1995-08-01

    The objectives of this work were to develop methods for accelerated testing of cathode materials for solid oxide fuel cells under selected operating conditions. The methods would be used to evaluate the performance of LSM cathode material.

  20. A review on direct electrochemistry of catalase for electrochemical sensors.

    PubMed

    Prakash, Periasamy Arun; Yogeswaran, Umasankar; Chen, Shen-Ming

    2009-01-01

    Catalase (CAT) is a heme enzyme with a Fe((III/II)) prosthetic group at its redox centre. CAT is present in almost all aerobic living organisms, where it catalyzes the disproportionation of H(2)O(2) into oxygen and water without forming free radicals. In order to study this catalytic mechanism in detail, the direct electrochemistry of CAT has been investigated at various modified electrode surfaces with and without nanomaterials. The results show that CAT immobilized on nanomaterial modified electrodes shows excellent catalytic activity, high sensitivity and the lowest detection limit for H(2)O(2) determination. In the presence of nanomaterials, the direct electron transfer between the heme group of the enzyme and the electrode surface improved significantly. Moreover, the immobilized CAT is highly biocompatible and remains extremely stable within the nanomaterial matrices. This review discusses about the versatile approaches carried out in CAT immobilization for direct electrochemistry and electrochemical sensor development aimed as efficient H(2)O(2) determination. The benefits of immobilizing CAT in nanomaterial matrices have also been highlighted.

  1. Improved Electrochemical Detection of Zinc Ions Using Electrode Modified with Electrochemically Reduced Graphene Oxide

    PubMed Central

    Kudr, Jiri; Richtera, Lukas; Nejdl, Lukas; Xhaxhiu, Kledi; Vitek, Petr; Rutkay-Nedecky, Branislav; Hynek, David; Kopel, Pavel; Adam, Vojtech; Kizek, Rene

    2016-01-01

    Increasing urbanization and industrialization lead to the release of metals into the biosphere, which has become a serious issue for public health. In this paper, the direct electrochemical reduction of zinc ions is studied using electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The graphene oxide (GO) was fabricated using modified Hummers method and was electrochemically reduced on the surface of GCE by performing cyclic voltammograms from 0 to −1.5 V. The modification was optimized and properties of electrodes were determined using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The determination of Zn(II) was performed using differential pulse voltammetry technique, platinum wire as a counter electrode, and Ag/AgCl/3 M KCl reference electrode. Compared to the bare GCE the modified GCE/ERGO shows three times better electrocatalytic activity towards zinc ions, with an increase of reduction current along with a negative shift of reduction potential. Using GCE/ERGO detection limit 5 ng·mL−1 was obtained. PMID:28787832

  2. Electrochemical phase diagrams for Ti oxides from density functional calculations

    NASA Astrophysics Data System (ADS)

    Huang, Liang-Feng; Rondinelli, James M.

    2015-12-01

    Developing an accurate simulation method for the electrochemical stability of solids, as well as understanding the physics related with its accuracy, is critically important for improving the performance of compounds and predicting the stability of new materials in aqueous environments. Herein we propose a workflow for the accurate calculation of first-principles electrochemical phase (Pourbaix) diagrams. With this scheme, we study the electrochemical stabilities of Ti and Ti oxides using density-functional theory. First, we find the accuracy of an exchange-correlation functional in predicting formation energies and electrochemical stabilities is closely related with the electronic exchange interaction therein. Second, the metaGGA and hybrid functionals with a more precise description of the electronic exchange interaction lead to a systematic improvement in the accuracy of the Pourbaix diagrams. Furthermore, we show that accurate Ti Pourbaix diagrams also require that thermal effects are included through vibrational contributions to the free energy. We then use these diagrams to explain various experimental electrochemical phenomena for the Ti-O system, and show that if experimental formation energies for Ti oxides, which contain contributions from defects owing to their generation at high (combustion) temperatures, are directly used to predict room temperature Pourbaix diagrams then significant inaccuracies result. In contrast, the formation energies from accurate first-principles calculations, e.g., using metaGGA and hybrid functionals, are found to be more reliable. Finally, to facilitate the future application of our accurate electrochemical phase equilibria diagrams, the variation of the Ti Pourbaix diagrams with aqueous ion concentration is also provided.

  3. Electrochemical behavior of palmatine and its sensitive determination based on an electrochemically reduced L-methionine functionalized graphene oxide modified electrode.

    PubMed

    Qiao, Wenhua; Wang, Lu; Ye, Baoxian; Li, Gaiping; Li, Jianjun

    2015-12-07

    A new and sensitive voltammetric sensor for palmatine, based on an electrochemically reduced L-methionine functionalized graphene oxide modified glassy carbon electrode (L-Met-ERGO/GCE), is reported. The electrochemical characteristics of palmatine at the proposed sensor were studied systematically and some dynamic parameters were calculated for the first time. A reasonable reaction mechanism for palmatine on the L-Met-ERGO/GCE electrode was proposed and discussed, and this could be a reference for the pharmacological action of palmatine in clinical study. Under optimized conditions, the peak current had a linear relationship with palmatine concentration in the range of 1 × 10(-7) to 5 × 10(-5) mol L(-1) with a detection limit of 6 × 10(-8) mol L(-1). Additionally, the proposed method was also used to detect palmatine in human urine samples, medicinal tablets and the Chinese herb Fibraurea recisa Pierre with satisfactory results.

  4. Electrochemical Sensor Array and Its Application to Real Time Imaging of a Brain Slice

    NASA Astrophysics Data System (ADS)

    Kasai, Nahoko; Shimada, Akiyoshi; Nyberg, Tobias; Torimitsu, Keiichi

    An electrochemical sensing system using a planar microelectrode array has been developed to monitor biological molecules with relatively high special and temporal resolutions. This enables us a real time imaging of the biological molecules release from a tissue invasively. In this study, we have established a multichannel hydrogen peroxide (H2O2) sensing system to monitor the real time H2O2 distribution in a tissue using a planar sensor array. H2O2 has been recognized in association with the pathology of neurological diseases because it is a by-product of a degenerative reaction of reactive oxygen species, one of the major causes of oxidative stress in mammalian cells. The sensor array is based on a 64-channel ITO electrode array of 50x50 μm electrodes modified with an enzyme, horseradish peroxidase, and an electron transfer mediator. Then we place a cultured rat hippocampal slice on the array and measure the current at each sensor using a multipotentiostat. When we introduce bicuculline into the solution as a stimulant, in the presence of a catalase inhibitor, we can observe a distinct increase in the H2O2 concentration. This real-time H2O2 distribution monitoring system will be a powerful tool with which to explore the neuronal cell death mechanism in biological systems.

  5. Facile and novel electrochemical preparation of a graphene-transition metal oxide nanocomposite for ultrasensitive electrochemical sensing of acetaminophen and phenacetin

    NASA Astrophysics Data System (ADS)

    Jiang, Lin; Gu, Shuqing; Ding, Yaping; Jiang, Feng; Zhang, Zhen

    2013-12-01

    A facile and novel preparation strategy based on electrochemical techniques for the fabrication of electrodeposited graphene (EGR) and zinc oxide (ZnO) nanocomposite was developed. The morphology and structure of the EGR-based nanocomposite were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (XPS) and Raman spectroscopy. Meanwhile, the electrochemical performance of the nanocomposite was demonstrated with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Due to the synergistic effect of EGR and ZnO nanoparticles, an ultrasensitive electrochemical sensor for acetaminophen (AC) and phenacetin (PCT) was successfully fabricated. The linearity ranged from 0.02 to 10 μM for AC and 0.06 to 10 μM for PCT with high sensitivities of 54 295.82 μA mM-1 cm2 for AC and 21 344.66 μA mM-1 cm2 for PCT, respectively. Moreover, the practical applicability was validated to be reliable and desirable in pharmaceutical detections. The excellent results showed the promise of the proposed preparation strategy of EGR-transition metal oxide nanocomposite in the field of electroanalytical chemistry.A facile and novel preparation strategy based on electrochemical techniques for the fabrication of electrodeposited graphene (EGR) and zinc oxide (ZnO) nanocomposite was developed. The morphology and structure of the EGR-based nanocomposite were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (XPS) and Raman spectroscopy. Meanwhile, the electrochemical performance of the nanocomposite was demonstrated with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Due to the synergistic effect of EGR and ZnO nanoparticles, an ultrasensitive electrochemical sensor for acetaminophen (AC) and phenacetin (PCT) was successfully fabricated. The linearity ranged from 0.02 to 10 μM for AC and 0.06 to 10

  6. Electrochemical deposition of conducting ruthenium oxide films from solution

    SciTech Connect

    Anderson, D.P.; Warren, L.F.

    1984-02-01

    In the last decade, ruthenium oxide, RuO /sub x/ (x less than or equal to 2), has been used extensively as the active anode electrocatalyst constituent for Cl/sub 2/ and O/sub 2/ evolution reactions, in chlorate production, and in metal electrowinning from mixed chloride-sulfate solutions. More recently, this material has been incorporated in several light-induced water electrolysis schemes and apparently possesses the ability to inhibit CdS photocorrosion by acting as a hole scavenger. The numerous applications for this catalyst material certainly warrant further studies of its electrochemical properties on a variety of substrates, e.g., semiconductors. The lack of a simple technique for controlled deposition of ruthenium oxide onto conducting substrates prompted us to investigate an electrochemical approach to this problem. We describe here a new way to electrochemically deposit conducting films of hydrated ruthenium oxide from an aqueous solution of the benzeneruthenium (II)aqua complex. The films slowly dissolve in aqueous electrolytes upon potential cycling, yet appear to be catalytic with regards to water oxidation.

  7. Electrochemical properties of inorganic nanoporous oxide coated electrodes

    NASA Astrophysics Data System (ADS)

    Leonard, Kevin C.

    The ability to produce clean water and produce and store clean energy is essential to society. Hence, technologies that facilitate clean energy and clean water are of great importance. This study focused on utilizing nanoporous insulating oxide materials to alter the chemistry at the electrode/electrolyte interface to improve the performance of a number of clean energy and clean water technologies. Here we have shown that applying a thin-film of SiO2 nanoparticles to an electrochemical capacitor electrode can increase the energy storage capacity by up to 50% at high power ratings. We have developed a geometric model to describe the coating of the porous electrode to explain the increased performance at high power ratings. We have also shown that the coated electrochemical capacitor exhibits a higher capacitance when normalized to BET surface area, suggesting that the coated surface is behaving fundamentally differently than the uncoated surface. We attribute the increase in capacitance to the inherent surface potential of the oxide coating and have shown that if we alter the surface potential of the oxide, we can in turn alter the electrochemical capacitance. In addition, we have determined that when used in capacitive deionization systems, these coatings can increase ion removal and accelerate regeneration, allowing for higher efficiency and less waste water. We have demonstrated that a nanoporous oxide coating can increase the gas production rate and lower the overpotential of the hydrogen evolution reaction via water electrolysis on both stainless steel and carbon electrodes. In addition, this work presents data on utilizing nanoporous oxide coatings on Li-Ion battery cathodes to improve high temperature capacity fade. We also introduce a novel thin-film battery/electrochemical capacitor hybrid device, which can improve the performance of simple thin-film batteries.

  8. Microelectrode miRNA sensors enabled by enzymeless electrochemical signal amplification.

    PubMed

    Wang, Tanyu; Viennois, Emilie; Merlin, Didier; Wang, Gangli

    2015-08-18

    Better detections of circulating microRNAs (miRNAs) as disease biomarkers could advance diseases diagnosis and treatment. Current analysis methods or sensors for research and applications are challenged by the low concentrations and wide dynamic range (from aM to nM) of miRNAs in a physiological sample. Here, we report a one-step label-free electrochemical sensor comprising a triple-stem DNA-redox probe structure on a gold microelectrode. A new signal amplification mechanism without the need of a redox enzyme is introduced. The novel strategy overcomes the fundamental limitations of microelectrode DNA sensors that fail to generate detectable current, which is primarily due to the limited amount of redox probes in response to the target analyte binding. By employing a reductant, tris(2-carboxyethyl) phosphine hydrochloride (TCEP) in the detection buffer solution, each redox molecule on the detection probe is cyclically oxidized at the electrode and reduced by the reductant; thus, the signal is amplified in situ during the detection period. The combined merits in the diagnosis power of cyclic voltammetry and the high sensitivity of pulse voltammetry enable parallel analysis for method validation and optimization previously inaccessible. As such, the detection limit of miRNA-122 was 0.1 fM via direct readout, with a wide detection range from sub fM to nM. The detection time is within minutes, which is a significant improvement over other macroscopic sensors and other relevant techniques such as quantitative reverse transcription polymerase chain reaction (qRT-PCR). The high selectivity of the developed sensors is demonstrated by the discrimination against two most similar family sequences: miR-122-3p present in serum and 2-mismatch synthetic RNA sequence. Interference such as nonspecific adsorption, a common concern in sensor development, is reduced to a negligible amount by adopting a multistep surface modification strategy. Importantly, unlike qRT-PCR, the

  9. Direct electrochemical reduction of metal-oxides

    DOEpatents

    Redey, Laszlo I.; Gourishankar, Karthick

    2003-01-01

    A method of controlling the direct electrolytic reduction of a metal oxide or mixtures of metal oxides to the corresponding metal or metals. A non-consumable anode and a cathode and a salt electrolyte with a first reference electrode near the non-consumable anode and a second reference electrode near the cathode are used. Oxygen gas is produced and removed from the cell. The anode potential is compared to the first reference electrode to prevent anode dissolution and gas evolution other than oxygen, and the cathode potential is compared to the second reference electrode to prevent production of reductant metal from ions in the electrolyte.

  10. Thermal Annealing Effect on Structural, Morphological, and Sensor Performance of PANI-Ag-Fe Based Electrochemical E. coli Sensor for Environmental Monitoring.

    PubMed

    Mohammad Naim, Norshafadzila; Abdullah, H; Umar, Akrajas Ali; Abdul Hamid, Aidil; Shaari, Sahbudin

    2015-01-01

    PANI-Ag-Fe nanocomposite thin films based electrochemical E. coli sensor was developed with thermal annealing. PANI-Ag-Fe nanocomposite thin films were prepared by oxidative polymerization of aniline and the reduction process of Ag-Fe bimetallic compound with the presence of nitric acid and PVA. The films were deposited on glass substrate using spin-coating technique before they were annealed at 300 °C. The films were characterized using XRD, UV-Vis spectroscopy, and FESEM to study the structural and morphological properties. The electrochemical sensor performance was conducted using I-V measurement electrochemical impedance spectroscopy (EIS). The sensitivity upon the presence of E. coli was measured in clean water and E. coli solution. From XRD analysis, the crystallite sizes were found to become larger for the samples after annealing. UV-Vis absorption bands for samples before and after annealing show maximum absorbance peaks at around 422 nm-424 nm and 426 nm-464 nm, respectively. FESEM images show the diameter size for nanospherical Ag-Fe alloy particles increases after annealing. The sensor performance of PANI-Ag-Fe nanocomposite thin films upon E. coli cells in liquid medium indicates the sensitivity increases after annealing.

  11. Conductive Polymer-Coated Carbon Nanotubes To Construct Stretchable and Transparent Electrochemical Sensors.

    PubMed

    Jin, Zi-He; Liu, Yan-Ling; Chen, Jing-Jing; Cai, Si-Liang; Xu, Jia-Quan; Huang, Wei-Hua

    2017-02-07

    Carbon nanotube (CNT)-based flexible sensors have been intensively developed for physical sensing. However, great challenges remain in fabricating stretchable CNT films with high electrochemical performance for real-time chemical sensing, due to large sheet resistance of CNT film and further resistance increase caused by separation between each CNT during stretching. Herein, we develop a facile and versatile strategy to construct single-walled carbon nanotubes (SWNTs)-based stretchable and transparent electrochemical sensors, by coating and binding each SWNT with conductive polymer. As a polymer with high conductivity, good electrochemical activity, and biocompatibility, poly(3,4-ethylenedioxythiophene) (PEDOT) acting as a superior conductive coating and binder reduces contact resistance and greatly improves the electrochemical performance of SWNTs film. Furthermore, PEDOT protects the SWNTs junctions from separation during stretching, which endows the sensor with highly mechanical compliance and excellent electrochemical performance during big deformation. These unique features allow real-time monitoring of biochemical signals from mechanically stretched cells. This work represents an important step toward construction of a high performance CNTs-based stretchable electrochemical sensor, therefore broadening the way for stretchable sensors in a diversity of biomedical applications.

  12. Electrochemical deposition of zinc oxide nanorods for hybrid solar cells

    NASA Astrophysics Data System (ADS)

    Torres Damasco Ty, Jennifer; Yanagi, Hisao

    2015-04-01

    Zinc oxide (ZnO) nanorod arrays for inorganic/organic hybrid solar cells were electrochemically deposited on indium tin oxide (ITO) substrates with a rotating disk electrode setup. The addition of a ZnO seed layer on the ITO prior to electrochemical deposition improved the morphology of the nanorods, resulting in nanorods with smaller and homogenous diameters as well as a higher degree of vertical orientation on to the substrate. The ZnO films deposited on the seeded ITO substrates had higher optical transmittance and lower concentration of defects. Chronoamperometric transient curves show that nucleation and coalescence occurred later for bare ITO substrates, indicating lower densities of initial nuclei, resulting in the growth of nanorods with larger diameters. The solar cell characteristics of the devices fabricated from the seeded ITO substrates were better. The seed layer also acts as a hole-blocking layer, preventing the direct contact between the hole-transporting polymer material and the ITO.

  13. Indicator-based and indicator-free magnetic assays connected with disposable electrochemical nucleic acid sensor system.

    PubMed

    Karadeniz, Hakan; Erdem, Arzum; Kuralay, Filiz; Jelen, Frantisek

    2009-04-15

    An indicator-based and indicator-free magnetic assays connected with a disposable pencil graphite electrode (PGE) were successfully developed, and also compared for the electrochemical detection of DNA hybridization. The oxidation signals of echinomycin (ECHI) and electroactive DNA bases, guanine and adenine, respectively were monitored in the presence of DNA hybridization by using differential pulse voltammetry (DPV) technique. The biotinylated probe was immobilized onto the magnetic beads (magnetic particles, microspheres) and hybridization with its complementary target at the surface of particles within the medium was exhibited successfully using electrochemical sensor system. For the selectivity studies, the results represent that both indicator-based and indicator-free magnetic assays provide a better discrimination for DNA hybridization compared to duplex with one-base or more mismatches. The detection limits (S/N=3) of the magnetic assays based on indicator or indicator-free were found in nM concentration level of target using disposable sensor technology with good reproducibility. The characterization and advantages of both proposed magnetic assays connected with a disposable electrochemical sensor are also discussed and compared with those methods previously reported in the literature.

  14. Cobalt hexacyanoferrate modified multi-walled carbon nanotubes/graphite composite electrode as electrochemical sensor on microfluidic chip.

    PubMed

    Li, Xinchun; Chen, Zuanguang; Zhong, Yuwen; Yang, Fan; Pan, Jianbin; Liang, Yajing

    2012-01-13

    Nanomaterial-based electrochemical sensor has received significant interest. In this work, cobalt hexacyanoferrate modified multi-walled carbon nanotubes/graphite composite electrode was electrochemically prepared and exploited as an amperometric detector for microchip electrophoresis. The prepared sensor displayed rapid and sensitive response towards hydrazine and isoniazid oxidation, which was attributed to synergetic electrocatalytic effect of cobalt hexacyanoferrate and multi-walled carbon nanotubes. The sensitivity enhancement with nearly two orders of magnitude was gained, compared with the bare carbon paste electrode, with the detection limit of 0.91 μM (S/N=3) for hydrazine. Acceptable repeatability of the microanalysis system was verified by consecutive eleven injections of hydrazine without chip and electrode treatments, the RSDs for peak current and migration time were 3.4% and 2.1%, respectively. Meanwhile, well-shaped electrophoretic peaks were observed, mainly due to fast electron transfer of electroactive species on the modified electrode. The developed microchip-electrochemistry setup was successfully applied to the determination of hydrazine and isoniazid in river water and pharmaceutical preparation, respectively. Several merits of the novel electrochemical sensor coupled with microfluidic platform, such as comparative stability, easy fabrication and high sensitivity, hold great potential for hydrazine compounds assay in the lab-on-a-chip system. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Electrochemical Oxidation of l-selenomethionine and Se-methylseleno-l-cysteine at a Thiol-Compound-Modified Gold Electrode: Its Application in a Flow-Through Voltammetric Sensor.

    PubMed

    Wang, Lai-Hao; Zhang, Yu-Han

    2017-02-16

    A flow-electrolytic cell that consists of a bare gold wire or of different thiol-compound-modified gold electrodes (such as 2,4-thiazolidinedione, 2-mercapto-5-thiazoline, 2-mercaptothiazoline, l-cysteine, thioglycolic acid) was designed to be used in a voltammetric detector to identify l-selenomethionine and Se-methylseleno-l-cysteine using high-performance liquid chromatography. Both l-selenomethionine and Se-methylseleno-l-cysteine are more efficiently electrochemically oxidized on a thiol/gold than on a bare gold electrode. For the DC mode, and for measurements with suitable experimental parameters, a linear concentration from 10 to 1600 ng·mL(-1) was found. The limits of quantification for l-selenomethionine and Se-methylseleno-l-cysteine were below 10 ng·mL(-1). The method can be applied to the quantitative determination of l-selenomethionine and Se-methylseleno-l-cysteine in commercial selenium-containing supplement products. Findings using high-performance liquid chromatography with a flow-through voltammetric detector and ultraviolet detector are comparable.

  16. Electrochemical Oxidation of l-selenomethionine and Se-methylseleno-l-cysteine at a Thiol-Compound-Modified Gold Electrode: Its Application in a Flow-Through Voltammetric Sensor

    PubMed Central

    Wang, Lai-Hao; Zhang, Yu-Han

    2017-01-01

    A flow-electrolytic cell that consists of a bare gold wire or of different thiol-compound-modified gold electrodes (such as 2,4-thiazolidinedione, 2-mercapto-5-thiazoline, 2-mercaptothiazoline, l-cysteine, thioglycolic acid) was designed to be used in a voltammetric detector to identify l-selenomethionine and Se-methylseleno-l-cysteine using high-performance liquid chromatography. Both l-selenomethionine and Se-methylseleno-l-cysteine are more efficiently electrochemically oxidized on a thiol/gold than on a bare gold electrode. For the DC mode, and for measurements with suitable experimental parameters, a linear concentration from 10 to 1600 ng·mL−1 was found. The limits of quantification for l-selenomethionine and Se-methylseleno-l-cysteine were below 10 ng·mL−1. The method can be applied to the quantitative determination of l-selenomethionine and Se-methylseleno-l-cysteine in commercial selenium-containing supplement products. Findings using high-performance liquid chromatography with a flow-through voltammetric detector and ultraviolet detector are comparable. PMID:28212326

  17. Nitrogen-doped reduced graphene oxide electrodes for electrochemical supercapacitors.

    PubMed

    Nolan, Hugo; Mendoza-Sanchez, Beatriz; Ashok Kumar, Nanjundan; McEvoy, Niall; O'Brien, Sean; Nicolosi, Valeria; Duesberg, Georg S

    2014-02-14

    Herein we use Nitrogen-doped reduced Graphene Oxide (N-rGO) as the active material in supercapacitor electrodes. Building on a previous work detailing the synthesis of this material, electrodes were fabricated via spray-deposition of aqueous dispersions and the electrochemical charge storage mechanism was investigated. Results indicate that the functionalised graphene displays improved performance compared to non-functionalised graphene. The simplicity of fabrication suggests ease of up-scaling of such electrodes for commercial applications.

  18. Engineered Carbon-Nanomaterial-Based Electrochemical Sensors for Biomolecules.

    PubMed

    Tiwari, Jitendra N; Vij, Varun; Kemp, K Christian; Kim, Kwang S

    2016-01-26

    The study of electrochemical behavior of bioactive molecules has become one of the most rapidly developing scientific fields. Biotechnology and biomedical engineering fields have a vested interest in constructing more precise and accurate voltammetric/amperometric biosensors. One rapidly growing area of biosensor design involves incorporation of carbon-based nanomaterials in working electrodes, such as one-dimensional carbon nanotubes, two-dimensional graphene, and graphene oxide. In this review article, we give a brief overview describing the voltammetric techniques and how these techniques are applied in biosensing, as well as the details surrounding important biosensing concepts of sensitivity and limits of detection. Building on these important concepts, we show how the sensitivity and limit of detection can be tuned by including carbon-based nanomaterials in the fabrication of biosensors. The sensing of biomolecules including glucose, dopamine, proteins, enzymes, uric acid, DNA, RNA, and H2O2 traditionally employs enzymes in detection; however, these enzymes denature easily, and as such, enzymeless methods are highly desired. Here we draw an important distinction between enzymeless and enzyme-containing carbon-nanomaterial-based biosensors. The review ends with an outlook of future concepts that can be employed in biosensor fabrication, as well as limitations of already proposed materials and how such sensing can be enhanced. As such, this review can act as a roadmap to guide researchers toward concepts that can be employed in the design of next generation biosensors, while also highlighting the current advancements in the field.

  19. An Easily Fabricated Electrochemical Sensor Based on a Graphene-Modified Glassy Carbon Electrode for Determination of Octopamine and Tyramine.

    PubMed

    Zhang, Yang; Zhang, Meiqin; Wei, Qianhui; Gao, Yongjie; Guo, Lijuan; Al-Ghanim, Khalid A; Mahboob, Shahid; Zhang, Xueji

    2016-04-13

    A simple electrochemical sensor has been developed for highly sensitive detection of octopamine and tyramine by electrodepositing reduced graphene oxide (ERGO) nanosheets onto the surface of a glassy carbon electrode (GCE). The electrocatalytic oxidation of octopamine and tyramine is individually investigated at the surface of the ERGO modified glassy carbon electrode (ERGO/GCE) by using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Several essential factors including the deposition cycle of reduced graphene oxide nanosheets and the pH of the running buffer were investigated in order to determine the optimum conditions. Furthermore, the sensor was applied to the quantification of octopamine and tyramine by DPV in the concentration ranges from 0.5 to 40 μM and 0.1 to 25 μM, respectively. In addition, the limits of detection of octopamine and tyramine were calculated to be 0.1 μM and 0.03 μM (S/N = 3), respectively. The sensor showed good reproducibility, selectivity and stability. Finally, the sensor successfully detected octopamine and tyramine in commercially available beer with satisfactory recovery ranges which were 98.5%-104.7% and 102.2%-103.1%, respectively. These results indicate the ERGO/GCE based sensor is suitable for the detection of octopamine and tyramine.

  20. An Easily Fabricated Electrochemical Sensor Based on a Graphene-Modified Glassy Carbon Electrode for Determination of Octopamine and Tyramine

    PubMed Central

    Zhang, Yang; Zhang, Meiqin; Wei, Qianhui; Gao, Yongjie; Guo, Lijuan; Al-Ghanim, Khalid A.; Mahboob, Shahid; Zhang, Xueji

    2016-01-01

    A simple electrochemical sensor has been developed for highly sensitive detection of octopamine and tyramine by electrodepositing reduced graphene oxide (ERGO) nanosheets onto the surface of a glassy carbon electrode (GCE). The electrocatalytic oxidation of octopamine and tyramine is individually investigated at the surface of the ERGO modified glassy carbon electrode (ERGO/GCE) by using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Several essential factors including the deposition cycle of reduced graphene oxide nanosheets and the pH of the running buffer were investigated in order to determine the optimum conditions. Furthermore, the sensor was applied to the quantification of octopamine and tyramine by DPV in the concentration ranges from 0.5 to 40 μM and 0.1 to 25 μM, respectively. In addition, the limits of detection of octopamine and tyramine were calculated to be 0.1 μM and 0.03 μM (S/N = 3), respectively. The sensor showed good reproducibility, selectivity and stability. Finally, the sensor successfully detected octopamine and tyramine in commercially available beer with satisfactory recovery ranges which were 98.5%–104.7% and 102.2%–103.1%, respectively. These results indicate the ERGO/GCE based sensor is suitable for the detection of octopamine and tyramine. PMID:27089341

  1. Electrochemical Oxidation of Synthetic Dyes in Simulated Wastewaters

    NASA Astrophysics Data System (ADS)

    Gallios, G.; Violintzis, X.; Voinovskii, I.; Voulgaropoulos, A.

    An electrochemical oxidation method for the degradation of synthetic reactive azodyes found in textile wastewaters is discussed. Four commercial synthetic dyes (black, blue, red and yellow) commonly used in dying operations were studied in single, binary and ternary mixtures. Low (100 mg/L) and high (500, 1,000 and 2,000 mg/L) initial dye concentrations were studied. The effect of various sodium chloride concentrations (as supporting electrolyte) on the effectiveness of electrochemical oxidation was examined. The effect of current intensity (1.5, 2.5 and 3.0 A) and pH (vales 3, 5, 7 and 10) was studied as well. The kinetics of the electrochemical oxidation for each dye were studied and compared. The conditions for effective dye degradation even from 2,000 mg/L initial concentration were established. The method was proved very effective even with binary and ternary mixtures of basic synthetic dyes. The Chemical Oxygen Demand (COD) and the Total Organic Carbon (TOC) were reduced by 60% and 25% respectively, meaning that the treated solutions were friendlier to the environment.

  2. Simultaneous Electrochemical Detection of Dopamine and Ascorbic Acid Using an Iron Oxide/Reduced Graphene Oxide Modified Glassy Carbon Electrode

    PubMed Central

    Peik-See, Teo; Pandikumar, Alagarsamy; Nay-Ming, Huang; Hong-Ngee, Lim; Sulaiman, Yusran

    2014-01-01

    The fabrication of an electrochemical sensor based on an iron oxide/graphene modified glassy carbon electrode (Fe3O4/rGO/GCE) and its simultaneous detection of dopamine (DA) and ascorbic acid (AA) is described here. The Fe3O4/rGO nanocomposite was synthesized via a simple, one step in-situ wet chemical method and characterized by different techniques. The presence of Fe3O4 nanoparticles on the surface of rGO sheets was confirmed by FESEM and TEM images. The electrochemical behavior of Fe3O4/rGO/GCE towards electrocatalytic oxidation of DA was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) analysis. The electrochemical studies revealed that the Fe3O4/rGO/GCE dramatically increased the current response against the DA, due to the synergistic effect emerged between Fe3O4 and rGO. This implies that Fe3O4/rGO/GCE could exhibit excellent electrocatalytic activity and remarkable electron transfer kinetics towards the oxidation of DA. Moreover, the modified sensor electrode portrayed sensitivity and selectivity for simultaneous determination of AA and DA. The observed DPVs response linearly depends on AA and DA concentration in the range of 1–9 mM and 0.5–100 μM, with correlation coefficients of 0.995 and 0.996, respectively. The detection limit of (S/N = 3) was found to be 0.42 and 0.12 μM for AA and DA, respectively. PMID:25195850

  3. A high-performance hydrazine electrochemical sensor based on gold nanoparticles/single-walled carbon nanohorns composite film

    NASA Astrophysics Data System (ADS)

    Zhao, Shuang; Wang, Liangliang; Wang, Tingting; Han, Qinghua; Xu, Shukun

    2016-04-01

    A novel electrochemical sensor was developed by electrodepositing gold nanoparticles on the single-walled carbon nanohorns modified glassy carbon electrode. We used the prepared sensor to determine hydrazine for the first time. The results show that the modified electrode has good electrocatalytic activity toward the oxidation of hydrazine. Under the optimized conditions, two wide linear segments were observed between the catalytic currents and the concentration of hydrazine within the range of 0.005-3.345 mM with a detection limit of 1.1 μM (s/n = 3). The diffusion coefficient of hydrazine was also estimated using chronoamperometry. Additionally, the sensor showed excellent sensitivity, selectivity, and reproducibility properties.

  4. 2,4-Toluene Diisocyanate Detection in Liquid and Gas Environments through Electrochemical Oxidation in an Ionic Liquid

    PubMed Central

    Lin, Lu; Rehman, Abdul; Chi, Xiaowei; Zeng, Xiangqun

    2016-01-01

    The electrochemical oxidation of 2,4-toluene diisocyanate (2,4-TDI) in an ionic liquid (IL) has been systematically characterized to determine plausible electrochemical and chemical reaction mechanisms and to define the optimal detection methods for such a highly significant analyte. It has been found that the use of an IL as the electrolyte allows the oxidation of 2,4-TDI to occur at a less positive anodic potential with no side reactions as compared to traditional acetonitrile based electrolytes. UV-Vis, FT-IR, Cyclic Voltammetry and Electrochemical Impedance Spectroscopy (EIS) studies have revealed the unique mechanisms of dimerization of 2,4-TDI at the electrode interface by self-addition reactions, which can be utilized to improve the selectivity of detection. The study of 2,4-TDI redox chemistry further facilitates the development of a robust amperometric sensing methodology by selecting a hydrophobic IL ([C4mpy][NTf2]) and by restricting the potential window to only include the oxidation process. Thus, this innovative electrochemical sensor is capable of avoiding the two most ubiquitous interferents in ambient conditions (i.e. humidity and oxygen), thereby enhancing the sensor performance and reliability for real world applications. The method was established to detect 2,4–TDI in both liquid and gas phases. The limits of detection (LOD) values were 130.2 ppm and 0.7862 ppm, respectively, for the two phases, and are comparable to the safety standards reported by NIOSH. The as-developed 2.4-TDI amperometric sensor exhibits a sensitivity of 1.939 μA/ppm. Moreover, due to the simplicity of design and the use of an IL both as a solvent and non-volatile electrolyte, the sensor has the potential to be miniaturized for smart sensing protocols in distributed sensor applications. PMID:26763507

  5. Observable Electrochemical Oxidation of Carbon Promoted by Platinum Nanoparticles.

    PubMed

    Kou, Zongkui; Cheng, Kun; Wu, Hui; Sun, Ronghui; Guo, Beibei; Mu, Shichun

    2016-02-17

    The radical degradation of Pt-based catalysts toward oxygen reduction reaction (ORR), predominantly caused by the oxidation of carbon supports, heavily blocks the commercialization of polymer electrolyte membrane fuel cells (PEMFCs). As reported, the electrochemical oxidation of carbon could be accelerated by Pt catalysts; however, hitherto no direct evidence is present for the promotion of Pt catalysts. Herein, a unique ultrathin carbon layer (approximately 2.9 nm in thickness) covered Pt catalyst (Pt/C-GC) is designed and synthesized by a chemical vapor deposition (CVD) method. This magnifies the catalysis effect of Pt to carbon oxidation due to the greatly increased contact sites between the metal-support, making it easy to investigate the carbon oxidation process by observing the thinning of the carbon layer on Pt nanoparticles from TEM observations. Undoubtedly, this finding can better guide the structural design of the durable metal catalysts for PEMFCs and other applications.

  6. A high performance nonenzymatic electrochemical glucose sensor based on polyvinylpyrrolidone-graphene nanosheets-nickel nanoparticles-chitosan nanocomposite.

    PubMed

    Liu, Zhiguang; Guo, Yujing; Dong, Chuan

    2015-05-01

    In this report, a new nanocomposite was successfully synthesized by chemical deposition of nickel nanoparticles (NiNPs) on polyvinylpyrrolidone (PVP) stabilized graphene nanosheets (GNs) with chitosan (CS) as the protective coating. The as obtained nanocomposite (PVP-GNs-NiNPs-CS) was characterized by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Benefiting from the synergistic effect of GNs (large surface area and high conductivity), NiNPs (high electrocatalytic activity towards the glucose oxidation) and CS (good film-forming and antifouling ability), a nonenzymatic electrochemical glucose sensor was established. The nanocomposite displays greatly enhanced electrocatalytic activity towards the glucose oxidation in NaOH solution. The PVP-GNs-NiNPs-CS based electrochemical glucose sensor demonstrates good sensitivity, wide linear range (0.1 μM-0.5 mM), outstanding detection limit (30 nM), attractive selectivity, good reproducibility, high stability as well as prominent feasibility for the real sample analysis. The proposed experiment might open up a new possibility for widespread use of non-enzymatic sensors for monitoring blood glucose owing to its advantages of low cost, simple preparation and excellent properties for glucose detection.

  7. Tin oxide nanocluster hydrogen and ammonia sensors.

    PubMed

    Lassesson, A; Schulze, M; van Lith, J; Brown, S A

    2008-01-09

    We have prepared sensitive hydrogen and ammonia sensors from thin films of tin nanoclusters with diameters between 3 and 10 nm. By baking the samples at 200 °C in ambient air the clusters were oxidized, resulting in very stable films of tin oxide clusters with similar diameters to the original Sn clusters. By monitoring the electrical resistance, it is shown that the cluster films are highly responsive to hydrogen and ammonia at relatively low temperatures, thereby making them attractive for commercial applications in which low power consumption is required. Doping of the films by depositing Pd on top of the clusters resulted in much improved sensor response and response times. It is shown that optimal sensor properties are achieved for very thin cluster films (a few monolayers of clusters).

  8. Biomaterial based sulphur di oxide gas sensor

    NASA Astrophysics Data System (ADS)

    Ghosh, P. K.; Sarkar, A.

    2013-06-01

    Biomaterials are getting importance in the present research field of sensors. In this present paper performance of biomaterial based gas sensor made of gum Arabica and garlic extract had been studied. Extract of garlic clove with multiple medicinal and chemical utility can be proved to be useful in sensing Sulphur di Oxide gas. On exposure to Sulphur di Oxide gas the material under observation suffers some temporary structural change, which can be observed in form of amplified potentiometric change through simple electronic circuitry. Exploiting this very property a potentiometric gas sensor of faster response and recovery time can be designed. In this work sensing property of the said material has been studied through DC conductance, FTIR spectrum etc.

  9. A brief review on recent developments of electrochemical sensors in environmental application for PGMs.

    PubMed

    Silwana, Bongiwe; Van Der Horst, Charlton; Iwuoha, Emmanuel; Somerset, Vernon

    2016-12-05

    This study offers a brief review of the latest developments and applications of electrochemical sensors for the detection of Platinum Group Metals (PGMs) using electrochemical sensors. In particular, significant advances in electrochemical sensors made over the past decade and sensing methodologies associated with the introduction of nanostructures are highlighted. Amongst a variety of detection methods that have been developed for PGMs, nanoparticles offer the unrivaled merits of high sensitivity. Rapid detection of PGMs is a key step to promote improvement of the public health and individual quality of life. Conventional methods to detect PGMs rely on time-consuming and labor intensive procedures such as extraction, isolation, enrichment, counting, etc., prior to measurement. This results in laborious sample preparation and testing over several days. This study reviewed the state-of-the-art application of nanoparticles (NPs) in electrochemical analysis of environmental pollutants. This review is intended to provide environmental scientists and engineers an overview of current rapid detection methods, a close look at the nanoparticles based electrodes and identification of knowledge gaps and future research needs. We summarize electrodes that have been used in the past for detection of PGMs. We describe several examples of applications in environmental electrochemical sensors and performance in terms of sensitivity and selectivity for all the sensors utilized for PGMs detection. NPs have promising potential to increase competitiveness of electrochemical sensors in environmental monitoring, though this review has focused mainly on sensors used in the past decade for PGMs detection. This review therefore provides a synthesis of outstanding performances in recent advances in the nanosensor application for PGMs determination.

  10. Electrochemical detection of Cu2+ through Ag nanoparticle assembly regulated by copper-catalyzed oxidation of cysteamine.

    PubMed

    Cui, Lin; Wu, Jie; Li, Jie; Ge, Yanqiu; Ju, Huangxian

    2014-05-15

    A highly sensitive and selective electrochemical sensor was developed for the detection of Cu(2+) by the assembly of Ag nanoparticles (AgNPs) at dithiobis[succinimidylpropionate] encapsulated Au nanoparticles (DSP-AuNPs), which was regulated by copper-catalyzed oxidation of cysteamine (Cys). The electrochemical sensor was constructed by layer-by-layer modification of glassy carbon electrode with carbon nanotubes, poly(amidoamine) dendrimers and DSP-AuNPs. In the absence of Cu(2+), Cys could bind to the surface of citrate-stabilized AgNPs via Ag-S bond, thus AgNPs could be assembled on the sensor surface through the reaction between DSP and Cys. In contrast, the copper-catalyzed oxidation of Cys by dissolved oxygen in the presence of Cu(2+) inhibited the Cys-induced aggregation of AgNPs, leading to the decrease of the electrochemical stripping signal of AgNPs. Under the optimized conditions, this method could detect Cu(2+) in the range of 1.0-1000 nM with a detection limit of 0.48 nM. The proposed Cu(2+) sensor showed good reproducibility, stability and selectivity. It has been satisfactorily applied to determine Cu(2+) in water samples.

  11. A sensitive electrochemical sensor for in vitro detection of parathyroid hormone based on a MoS2-graphene composite

    NASA Astrophysics Data System (ADS)

    Kim, Hyeong-U.; Kim, Hye Youn; Kulkarni, Atul; Ahn, Chisung; Jin, Yinhua; Kim, Yeongseok; Lee, Kook-Nyung; Lee, Min-Ho; Kim, Taesung

    2016-10-01

    This paper reports a biosensor based on a MoS2-graphene (MG) composite that can measure the parathyroid hormone (PTH) concentration in serum samples from patients. The interaction between PTH and MG was analysed via an electrochemical sensing technique. The MG was functionalized using L-cysteine. Following this, PTH could be covalently immobilized on the MG sensing electrode. The properties of MG were evaluated using scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectrometry. Following optimization of immobilized materials—such as MG, PTH, and alkaline phosphatase (ALP)—the performance of the MG sensor was investigated via cyclic voltammetry, to assess its linearity, repeatability, and reproducibility. Electrochemical impedance spectroscopy was performed on graphene oxide (GO) and MG-modified electrodes to confirm the capture of a monoclonal antibody (MAb) targeting PTH. Furthermore, the ALP-PTH-MG sensor exhibits a linear response towards PTH from artificial serum over a range of 1–50 pg mL‑1. Moreover, patient sera (n = 30) were evaluated using the ALP-PTH-MG sensor and compared using standard equipment (Roche E 170). The P-value is less than 0.01 when evaluated with a t-test using Welch’s correction. This implies that the fabricated sensor can be deployed for medical diagnosis.

  12. A sensitive electrochemical sensor for in vitro detection of parathyroid hormone based on a MoS2-graphene composite

    PubMed Central

    Kim, Hyeong-U; Kim, Hye Youn; Kulkarni, Atul; Ahn, Chisung; Jin, Yinhua; Kim, Yeongseok; Lee, Kook-Nyung; Lee, Min-Ho; Kim, Taesung

    2016-01-01

    This paper reports a biosensor based on a MoS2-graphene (MG) composite that can measure the parathyroid hormone (PTH) concentration in serum samples from patients. The interaction between PTH and MG was analysed via an electrochemical sensing technique. The MG was functionalized using l-cysteine. Following this, PTH could be covalently immobilized on the MG sensing electrode. The properties of MG were evaluated using scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectrometry. Following optimization of immobilized materials—such as MG, PTH, and alkaline phosphatase (ALP)—the performance of the MG sensor was investigated via cyclic voltammetry, to assess its linearity, repeatability, and reproducibility. Electrochemical impedance spectroscopy was performed on graphene oxide (GO) and MG-modified electrodes to confirm the capture of a monoclonal antibody (MAb) targeting PTH. Furthermore, the ALP-PTH-MG sensor exhibits a linear response towards PTH from artificial serum over a range of 1–50 pg mL−1. Moreover, patient sera (n = 30) were evaluated using the ALP-PTH-MG sensor and compared using standard equipment (Roche E 170). The P-value is less than 0.01 when evaluated with a t-test using Welch’s correction. This implies that the fabricated sensor can be deployed for medical diagnosis. PMID:27694822

  13. Portable Hand-Held Electrochemical Sensor for the Transuranics

    SciTech Connect

    Dale D. Russell, William B. Knowlton, Ph.D.; Russel Hertzog, Ph.D

    2005-11-25

    During the four-year period of the grant all of the goals of the originally proposed work were achieved, and some additional accomplishments are here reported. Two types of sensors were designed and built in the lab, capable of detecting uranium, plutonium and thorium at the 10 part-per-trillion level. The basis of both sensor types is a specially designed polymer having selective binding sites for actinyl ions of the form MO{sub 2}{sup 2+}(aq), where M is any actinide in the +6 oxidation state. This binding site also traps ions of the form MO{sub 2}{sup +}(aq), where M is any actinide in the +4 oxidation state. In this way, the polymer is responsive to the two most common water-soluble ions of the actinide series. The chelating ring responsible for binding the actinyl ions was identified from the literature, calix[n]arene where n = 6. Several versions of this sensing polymer were coated on conductive substrates and demonstrated for actinide sensing. An optimized sensor was developed and is fully described in this report. It has a polymer bilayer, fabricated under the particular conditions given below. Two different operating modes were demonstrated having different capabilities. One is the chemFET mode (a FET is a field effect transistor) and the other is the voltammetric mode. These two sensors give complementary information regarding the actinide species in a sample. Therefore our recommendation is that both be used together in a probe. A detailed design for such a probe has been filed as a patent application with the United States Patent Office, and is patent pending. The sensing polymer incorporating this actinyl-chelating ring was tested under a variety of conditions and the operating limits were determined. A full factorial experiment testing the polymerization method was conducted to optimize performance and characteristics of this polymer. The actinyl-sensing polymer was also deposited on the gate of a field effect transistor (FET) and demonstrated as a

  14. New supramolecular interactions for electrochemical sensors development: different cucurbit[8]uril sensing platform designs.

    PubMed

    Pozo, María del; Blanco, Elías; Fatás, Enrique; Hernández, Pedro; Quintana, Carmen

    2012-09-21

    Three different strategies for cucurbit[8]uril immobilization on a glassy carbon electrode have been assayed. The electrochemical properties of the resulting modified electrodes in solutions containing neutral, positively and negatively charged potential cucurbit[8]uril guests were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The comparison of the electrochemical behaviour exhibited by the unmodified electrodes against various probes, with respect to that of each modified electrode, resulted in an appropriate method to choose among different strategies for the development of electrochemical sensors. These sensors are based on the incorporation of the cucurbit[8]uril molecular selection properties that depend on the chemical characteristics of the potential analytes. Furthermore, atomic force microscopy was employed for the characterization of the different surfaces developed.

  15. Development of paper-based electrochemical sensors for water quality monitoring

    NASA Astrophysics Data System (ADS)

    Smith, Suzanne; Bezuidenhout, Petroné; Mbanjwa, Mesuli; Zheng, Haitao; Conning, Mariette; Palaniyandy, Nithyadharseni; Ozoemena, Kenneth; Land, Kevin

    2016-02-01

    We present a method for the development of paper-based electrochemical sensors for detection of heavy metals in water samples. Contaminated water leads to serious health problems and environmental issues. Paper is ideally suited for point-of-care testing, as it is low cost, disposable, and multi-functional. Initial sensor designs were manufactured on paper substrates using combinations of inkjet printing and screen printing technologies using silver and carbon inks. Bismuth onion-like carbon nanoparticle ink was manufactured and used as the active material of the sensor for both commercial and paper-based sensors, which were compared using standard electrochemical analysis techniques. The results highlight the potential of paper-based sensors to be used effectively for rapid water quality monitoring at the point-of-need.

  16. Characterization of an electrochemical mercury sensor using alternating current, cyclic, square wave and differential pulse voltammetry.

    PubMed

    Guerreiro, Gabriela V; Zaitouna, Anita J; Lai, Rebecca Y

    2014-01-31

    Here we report the characterization of an electrochemical mercury (Hg(2+)) sensor constructed with a methylene blue (MB)-modified and thymine-containing linear DNA probe. Similar to the linear probe electrochemical DNA sensor, the resultant sensor behaved as a "signal-off" sensor in alternating current voltammetry and cyclic voltammetry. However, depending on the applied frequency or pulse width, the sensor can behave as either a "signal-off" or "signal-on" sensor in square wave voltammetry (SWV) and differential pulse voltammetry (DPV). In SWV, the sensor showed "signal-on" behavior at low frequencies and "signal-off" behavior at high frequencies. In DPV, the sensor showed "signal-off" behavior at short pulse widths and "signal-on" behavior at long pulse widths. Independent of the sensor interrogation technique, the limit of detection was found to be 10nM, with a linear dynamic range between 10nM and 500nM. In addition, the sensor responded to Hg(2+) rather rapidly; majority of the signal change occurred in <20min. Overall, the sensor retains all the characteristics of this class of sensors; it is reagentless, reusable, sensitive, specific and selective. This study also highlights the feasibility of using a MB-modified probe for real-time sensing of Hg(2+), which has not been previously reported. More importantly, the observed "switching" behavior in SWV and DPV is potentially generalizable and should be applicable to most sensors in this class of dynamics-based electrochemical biosensors. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Oxidation of enrofloxacin with conductive-diamond electrochemical oxidation, ozonation and Fenton oxidation: a comparison.

    PubMed

    Guinea, Elena; Brillas, Enric; Centellas, Francesc; Cañizares, Pablo; Rodrigo, Manuel A; Sáez, Cristina

    2009-05-01

    The treatment of enrofloxacin synthetic wastewaters using conductive-diamond electrochemical oxidation (CDEO), ozonation and Fenton oxidation has been studied. Results show that the three technologies can reduce the organic content of enrofloxacin synthetic wastewaters but with different performances. CDEO was the most efficient technology in terms of mineralization but not on COD removal, which was more efficiently achieved by ozonation. This indicates that ozonation is efficient in the breakage of the complex molecules but not on the removal of final carboxylic acids. The high initial efficiency in terms of oxidant-use obtained by Fenton oxidation evidences that it is very efficient in the removal of the enrofloxacin, although it rapidly leads to the formation of refractory compounds to the treatment. This indicates the significance of other oxidation mechanisms (e.g. coagulation) that enhance the results obtained by the expected hydroxyl-mediated oxidation. Ammonium ions were the primary product species in CDEO and nitrate ions in ozonation, whereas Fenton effluents contained similar amounts of both nitrogen ionic species.

  18. Chemical and Biological Sensors Based on Organic Electrochemical Transistors

    NASA Astrophysics Data System (ADS)

    Lin, Peng

    Organic thin film transistors (OTFTs) have been explored for sensing applications for several decades due to their many advantages like easy fabrication, low cost, flexibility, and biocompatibility. Among these OTFTs, organic electrochemical transistors (OECTs) have attracted a great deal of interest in recent years since the devices can operate stably in aqueous environment with relatively low working voltages and are suitable for applications in chemical and biological sensing. In this thesis, ion-sensitive properties of OECTs based on poly(3,4- ethylenedioxythiophene):poly(styrene sulfonic acid) (PEDOT:PSS) have been systematically studied. It was found that the gate electrode played an important role on the ion-sensitive properties of OECTs. For the devices with Ag/AgCl gate electrode, Nernstian relationships between the shift of gate voltage and the concentrations of cations were obtained. For the devices with Pt and Au gate electrodes, the ion sensitivities were higher than that given by Nernst equation, which could be attributed to the interface between the metal gate electrode and the electrolyte. Moreover, OECTs based on PEDOT:PSS were integrated into flexible microfluidic systems. Then a novel label-free DNA sensor was developed, in which single-stranded DNA probes were immobilized on the surface of Au gate electrode. These devices successfully detected complementary DNA targets at concentrations as low as 1 nM. The detection limit was also extended to 10 pM by pulse-enhanced hybridization process of DNA. OECTs based on PEDOT:PSS were also exploited as cell-based biosensors. Human esophageal squamous epithelial cancer cell lines (KYSE30) and fibroblast cell lines (HFFI) were successfully grown on the surface of PEDOT:PSS film. Then the devices were used for in-vitro monitoring cell activities when the living cells were treated by trypsin and an anti-cancer drug, retinoic acid. It was found that the devices were sensitive to the change of surface charge

  19. [Effect of pH for the electrochemical oxidation products and oxidation pathways of ammonia].

    PubMed

    Chen, Jin-luan; Shi, Han-chang; Xu, Li-li

    2008-08-01

    The electrochemical oxidation of ammonia in wastewater was investigated in a flow electrochemical cell. The effect of pH on ammonia removal efficiency, oxidation products and oxidation pathways was elucidated. The experimental results indicated that, the higher production efficiency of free chlorine and hydroxyl radical can be obtained under the moderate alkaline condition, and the electrochemical oxidation rate of ammonia was higher in this condition. In existence of chloride ions, chloramines produced during the electrolysis of ammonia. The constituent of chloramines related with the pH of reaction system. When pH was higher than 9, monochloramine was dominant; When pH was equal to 7, monochloramine and dichloramine existed at the same time and the concentration of the two chloramines was an approximation of the same; When pH was smaller than 5, most of the production was dichloramine. The production of nitrogen trichloride can be avoided when pH was higher than 5. Under the current density of 20 mA/cm2, the concentration of hydroxyl radical produced by electrolysis was smaller than 5 x 10(-15) mol/L. The indirect oxidation was the dominant reaction in the two pathways of electrochemical oxidation of ammonia.

  20. An electrochemical sensor for detection of neurotransmitter-acetylcholine using metal nanoparticles, 2D material and conducting polymer modified electrode.

    PubMed

    Chauhan, Nidhi; Chawla, Sheetal; Pundir, C S; Jain, Utkarsh

    2017-03-15

    An essential biological sensor for acetylcholine (ACh) detection is constructed by immobilizing enzymes, acetylcholinesterase (AChE) and choline oxidase (ChO), on the surface of iron oxide nanoparticles (Fe2O3NPs), poly(3,4-ethylenedioxythiophene) (PEDOT)-reduced graphene oxide (rGO) nanocomposite modified fluorine doped tin oxide (FTO). The qualitative and quantitative measurements of nanocomposites properties were accomplished by scanning electron microscope (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). This prepared biological sensor delineated a wide linear range of 4.0nM to 800μM with a response time less than 4s and detection limit (based on S/N ratio) of 4.0nM. The sensor showed perfect sensitivity, excessive selectivity and stability for longer period of time during storage. Besides its very high-sensitivity, the biosensor has displayed a low detection limit which is reported for the first time in comparison to previously reported ACh sensors. By fabricating Fe2O3NPs/rGO/PEDOT modified FTO electrode for determining ACh level in serum samples, the applicability of biosensor has increased immensely as the detection of the level neurotransmitter is first priority for patients suffering from memory loss or Alzheimer's disease (AD).

  1. Electrochemical oxidation by square-wave potential pulses in the imitation of oxidative drug metabolism.

    PubMed

    Nouri-Nigjeh, Eslam; Permentier, Hjalmar P; Bischoff, Rainer; Bruins, Andries P

    2011-07-15

    Electrochemistry combined with mass spectrometry (EC-MS) is an emerging analytical technique in the imitation of oxidative drug metabolism at the early stages of new drug development. Here, we present the benefits of electrochemical oxidation by square-wave potential pulses for the oxidation of lidocaine, a test drug compound, on a platinum electrode. Lidocaine was oxidized at constant potential and by square-wave potential pulses with different cycle times, and the reaction products were analyzed by liquid chromatography-mass spectrometry [LC-MS(/MS)]. Application of constant potentials of up to +5.0 V resulted in relatively low yields of N-dealkylation and 4-hydroxylation products, while oxidation by square-wave potential pulses generated up to 50 times more of the 4-hydroxylation product at cycle times between 0.2 and 12 s (estimated yield of 10%). The highest yield of the N-dealkylation product was obtained at cycle times shorter than 0.2 s. Tuning of the cycle time is thus an important parameter to modulate the selectivity of electrochemical oxidation reactions. The N-oxidation product was only obtained by electrochemical oxidation under air atmosphere due to reaction with electrogenerated hydrogen peroxide. Square-wave potential pulses may also be applicable to modulate the selectivity of electrochemical reactions with other drug compounds in order to generate oxidation products with greater selectivity and higher yield based on the optimization of cycle times and potentials. This considerably widens the scope of direct electrochemistry-based oxidation reactions for the imitation of in vivo oxidative drug metabolism.

  2. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOEpatents

    Brian, Riley; Szreders, Bernard E.

    1989-01-01

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  3. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOEpatents

    Riley, B.; Szreders, B.E.

    1988-04-26

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  4. Scalable and sustainable electrochemical allylic C-H oxidation.

    PubMed

    Horn, Evan J; Rosen, Brandon R; Chen, Yong; Tang, Jiaze; Chen, Ke; Eastgate, Martin D; Baran, Phil S

    2016-05-05

    New methods and strategies for the direct functionalization of C-H bonds are beginning to reshape the field of retrosynthetic analysis, affecting the synthesis of natural products, medicines and materials. The oxidation of allylic systems has played a prominent role in this context as possibly the most widely applied C-H functionalization, owing to the utility of enones and allylic alcohols as versatile intermediates, and their prevalence in natural and unnatural materials. Allylic oxidations have featured in hundreds of syntheses, including some natural product syntheses regarded as "classics". Despite many attempts to improve the efficiency and practicality of this transformation, the majority of conditions still use highly toxic reagents (based around toxic elements such as chromium or selenium) or expensive catalysts (such as palladium or rhodium). These requirements are problematic in industrial settings; currently, no scalable and sustainable solution to allylic oxidation exists. This oxidation strategy is therefore rarely used for large-scale synthetic applications, limiting the adoption of this retrosynthetic strategy by industrial scientists. Here we describe an electrochemical C-H oxidation strategy that exhibits broad substrate scope, operational simplicity and high chemoselectivity. It uses inexpensive and readily available materials, and represents a scalable allylic C-H oxidation (demonstrated on 100 grams), enabling the adoption of this C-H oxidation strategy in large-scale industrial settings without substantial environmental impact.

  5. Electrochemical performance of Ag nanoparticle decorated reduced graphene oxide in determination of anticancer drug flutamide

    NASA Astrophysics Data System (ADS)

    Banerjee, Sanchari; Mondal, Shrabani; Madhuri, Rashmi; Sharma, Prashant K.

    2017-05-01

    Ag nanoparticle decorated reduced graphene oxide (rGO-Ag) have been synthesized successfully by simultaneously reducing graphene oxide and AgNO3 with hydrazine hydrate as reducing agent. The synthesized rGO-Ag has been characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and fourier transformed infrared (FTIR) spectroscopy to study the structural properties and finally utilized for the electrochemical detection of anti-cancer drug flutamide (FLT). The prominent peak at the position of around 0.07 V is observed in the voltammogram which indicates the catalytic reduction of NO2 group of FLT by rGO-Ag. The fabricated sensor posses a linear detection range of 0.1 to 0.3 mM with a detection limit as low as 1.16 μM.

  6. Use of thiolated oligonucleotides as anti-fouling diluents in electrochemical peptide-based sensors.

    PubMed

    McQuistan, Adam; Zaitouna, Anita J; Echeverria, Elena; Lai, Rebecca Y

    2014-05-11

    We incorporated short thiolated oligonucleotides as passivating diluents in the fabrication of electrochemical peptide-based (E-PB) sensors, with the goal of creating a negatively charged layer capable of resisting non-specific adsorption of matrix contaminants. The E-PB HIV sensors fabricated using these diluents were found to be more specific and selective, while retaining attributes similar to the sensor fabricated without these diluents. Overall, these results highlight the advantages of using oligonucleotides as anti-fouling diluents in self-assembled monolayer-based sensors.

  7. Label-free detection of telomerase activity using guanine electrochemical oxidation signal.

    PubMed

    Eskiocak, Ugur; Ozkan-Ariksoysal, Dilsat; Ozsoz, Mehmet; Oktem, Huseyin Avni

    2007-11-15

    Telomerase is an important biomarker for cancer cells and its activation in 85% of all cancer types confers a clinical diagnostic value. A label-free electrochemical assay based on guanine oxidation signal to measure telomerase activity is described. This developed technology combined with a disposable sensor, carbon graphite electrode (CGE), and differential pulse voltammetry (DPV) was performed by using PCR amplicons with/without telomeric repeats as the guanine oxidation signal observed at +1.0 V measured after the immobilization of PCR products. Guanine oxidation signal was chosen as a measure of telomerase activity because a substantial increase in the number of guanines was introduced by the action of telomerase which adds hexameric repeats (TTAGGG)n that contain 50% guanine. The developed assay was shown to specifically measure telomerase activity from cell extracts, and elongation rates increased linearly in a concentration dependent manner. Telomerase activity could be detected in cell extracts containing as low as 100 ng/microL of protein. All of the electrochemical measurements were also confirmed with the conventional TRAP-silver staining assay. Rapidity, simplicity, and the label-free nature of the developed assay make it suitable for practical use in quantitative determination of telomerase activity from clinical samples for diagnosis of cancer.

  8. Electrochemical determination of estradiol using a thin film containing reduced graphene oxide and dihexadecylphosphate.

    PubMed

    Janegitz, Bruno C; dos Santos, Fabrício A; Faria, Ronaldo C; Zucolotto, Valtencir

    2014-04-01

    Graphene is a material that has attracted attention with regard to sensing and biosensing applications in recent years. Here, we report a novel treatment (using ultrasonic bath and ultrasonic tip) to obtain graphene oxide (GO) and a new stable conducting film using reduced graphene oxide (RGO) and dihexadecylphosphate film (DHP). The GO was obtained by chemical exfoliation and it was reduced using NaBH4. Subsequently, RGO-DHP dispersion was prepared and it was dropped onto a glassy carbon electrode by casting technique. The electrode was characterized by cyclic voltammetry and electrochemical spectroscopy impedance. The voltammetric behavior of the RGO-DHP/GC electrode in the presence of estradiol was studied, and the results reported an irreversible oxidation peak current at 0.6V. Under the optimal experimental conditions, using linear sweep adsorptive stripping voltammetry, the detection limit obtained for this hormone was 7.7×10(-8)mol L(-1). The proposed electrode can be attractive for applications as electrochemical sensors and biosensors.

  9. Enzyme-free electrochemical immunosensor based on methylene blue and the electro-oxidation of hydrazine on Pt nanoparticles.

    PubMed

    Dutta, Gorachand; Nagarajan, Sureshbabu; Lapidus, Lisa J; Lillehoj, Peter B

    2017-06-15

    Enzyme-free electrochemical sensors enable rapid, high sensitivity measurements without the limitations associated with enzyme reporters. However, the performance of non-enzymatic electrochemical sensors tends to suffer from slow electrode kinetics and poor signal stability. We report a new enzyme-free electrochemical immunosensor based on a unique competitive detection scheme using methylene blue (MB), hydrazine and platinum nanoparticles (Pt NPs). This scheme is coupled with a robust immunosandwich format employing a MB-labelled detection antibody as a non-enzymatic reporter. In the presence of the target antigen, surface-immobilized MB consumes interfacial hydrazine thereby diminishing the electro-oxidation of hydrazine on Pt NPs. Thus, the concentration of the antigen is directly proportional to the reduction in the electrochemical signal. For proof-of-concept, this sensor was used to detect Plasmodium falciparum histidine-rich protein 2 (PfHRP2), an important malaria biomarker, in unadulterated human saliva samples. Chronocoulometric measurements showed that this platform exhibits pM-range sensitivity, high specificity and good reproducibility, making it well suited for many biosensing applications including noninvasive diagnostic testing.

  10. Electrospun manganese (III) oxide nanofiber based electrochemical DNA-nanobiosensor for zeptomolar detection of dengue consensus primer.

    PubMed

    Tripathy, Suryasnata; Krishna Vanjari, Siva Rama; Singh, Vikrant; Swaminathan, S; Singh, Shiv Govind

    2017-04-15

    Nanoscale biosensors, owing to their high-sensitivity and extremely low limits-of-detection, have enabled the realization of highly complex and sophisticated miniaturized platforms for several important healthcare applications, the most predominant one being disease diagnosis. In particular, nanomaterial facilitated electrochemical detection of DNA hybridization has had an exceptional impact on fields such as genetics and cancerous mutation detection Here we report an ultrasensitive electrochemical platform using electrospun semi-conducting Manganese (III) Oxide (Mn2O3) nanofibers for DNA Hybridization detection. The proposed platform coalesces the inherent advantages of metal-oxide nanofibers and electrochemical transduction techniques, resulting in label-free zeptomolar detection of DNA hybridization. As proof of concept, we demonstrate zeptomolar detection of Dengue consensus primer (limit of detection: 120×10(-21)M) both in control as well as spiked serum samples. Our reported detection limit is superior in comparison with previously reported electrochemical DNA hybridization sensors for Dengue virus detection, spanning both labeled and label-free transductions. This ultra-sensitivity, we believe, is a result of synthesizing a low bandgap electrospun metal-oxide nanomaterial corresponding to a specific oxidation state of Manganese. This methodology can be extended for detection of any hybridization of interest by simply adapting an appropriate functionalization protocol and thus is very generic in nature. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Electrochemical Detection of Nitric Oxide in Plant Cell Suspensions.

    PubMed

    Griveau, Sophie; Besson-Bard, Angélique; Bedioui, Fethi; Wendehenne, David

    2016-01-01

    Nitric oxide is a hydrophobic radical acting as a physiological mediator in plants. Because of its unique properties, the detection of NO in plant tissues and cell suspensions remains a challenge. For this purpose, several techniques are used, each having certain advantages and limitations such as interferences with other species, questionable sensitivity, and/or selectivity or ex situ measurement. Here we describe a very attractive approach for tracking NO in plant cell suspensions using a NO-sensitive homemade platinum/iridium-based electrochemical microsensor. This method constitutes the absolute real-time proof of the production of free NO in physiological conditions.

  12. Corner heating in rectangular solid oxide electrochemical cell generators

    DOEpatents

    Reichner, Philip

    1989-01-01

    Disclosed is an improvement in a solid oxide electrochemical cell generator 1 having a rectangular design with four sides that meet at corners, and containing multiplicity of electrically connected fuel cells 11, where a fuel gas is passed over one side of said cells and an oxygen containing gas is passed into said cells, and said fuel is burned to form heat, electricity, and an exhaust gas. The improvement comprises passing the exhaust gases over the multiplicity of cells 11 in such a way that more of the heat in said exhaust gases flows at the corners of the generator, such as through channels 19.

  13. Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform.

    PubMed

    Teymourian, Hazhir; Salimi, Abdollah; Khezrian, Somayeh

    2013-11-15

    We have developed Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets modified glassy carbon (Fe3O4/r-GO/GC) electrode as a novel system for the preparation of electrochemical sensing platform. Decorating Fe3O4 nanoparticles on graphene sheets was performed via a facile one-step chemical reaction strategy, where the reduction of GO and the in-situ generation of Fe3O4 nanoparticles occurred simultaneously. Characterization of as-made nanocomposite using X-ray diffraction (XRD), transmission electron microscopy (TEM) and alternative gradient force magnetometry (AGFM) clearly demonstrate the successful attachment of monodisperse Fe3O4 nanoparticles to graphene sheets. Electrochemical studies revealed that the Fe3O4/r-GO/GC electrode possess excellent electrocatalytic activities toward the low potential oxidation of NADH (0.05 V vs. Ag/AgCl) as well as the catalytic reduction of O2 and H2O2 at reduced overpotentials. Via immobilization of lactate dehydrogenase (LDH) as a model dehydrogenase enzyme onto the Fe3O4/r-GO/GC electrode surface, the ability of modified electrode for biosensing lactate was demonstrated. In addition, using differential pulse voltammetry (DPV) to investigate the electrochemical oxidation behavior of ascorbic acid (AA), dopamine (DA) and uric acid (UA) at Fe3O4/r-GO/GC electrode, the high electrocatalytic activity of the modified electrode toward simultaneous detection of these compounds was indicated. Finally, based on the strong electrocatalytic action of Fe3O4/r-GO/GC electrode toward both oxidation and reduction of nitrite, a sensitive amperometric sensor for nitrite determination was proposed. The Fe3O4/r-GO hybrid presented here showing favorable electrochemical features may hold great promise to the development of electrochemical sensors, molecular bioelectronic devices, biosensors and biofuel cells.

  14. Scalable and Sustainable Electrochemical Allylic C–H Oxidation

    PubMed Central

    Chen, Yong; Tang, Jiaze; Chen, Ke; Eastgate, Martin D.; Baran, Phil S.

    2016-01-01

    New methods and strategies for the direct functionalization of C–H bonds are beginning to reshape the fabric of retrosynthetic analysis, impacting the synthesis of natural products, medicines, and even materials1. The oxidation of allylic systems has played a prominent role in this context as possibly the most widely applied C–H functionalization due to the utility of enones and allylic alcohols as versatile intermediates, along with their prevalence in natural and unnatural materials2. Allylic oxidations have been featured in hundreds of syntheses, including some natural product syntheses regarded as “classics”3. Despite many attempts to improve the efficiency and practicality of this powerful transformation, the vast majority of conditions still employ highly toxic reagents (based around toxic elements such as chromium, selenium, etc.) or expensive catalysts (palladium, rhodium, etc.)2. These requirements are highly problematic in industrial settings; currently, no scalable and sustainable solution to allylic oxidation exists. As such, this oxidation strategy is rarely embraced for large-scale synthetic applications, limiting the adoption of this important retrosynthetic strategy by industrial scientists. In this manuscript, we describe an electrochemical solution to this problem that exhibits broad substrate scope, operational simplicity, and high chemoselectivity. This method employs inexpensive and readily available materials, representing the first example of a scalable allylic C–H oxidation (demonstrated on 100 grams), finally opening the door for the adoption of this C–H oxidation strategy in large-scale industrial settings without significant environmental impact. PMID:27096371

  15. Ascorbic Acid Assisted Synthesis of Cobalt Oxide Nanostructures, Their Electrochemical Sensing Application for the Sensitive Determination of Hydrazine

    NASA Astrophysics Data System (ADS)

    Tahira, Aneela; Nafady, Ayman; Baloach, Quarratulain; Sirajuddin; Sherazi, Syed Tufail Hussain; Shaikh, Tayyaba; Arain, Munazza; Willander, Magnus; Ibupoto, Zafar Hussain

    2016-07-01

    This study describes, the synthesis of cobalt oxide nanostructures using ascorbic acid as a growth directing agent by the hydrothermal method. Ascorbic acid is used for the first time for the synthesis of cobalt oxide nanostructures and a unique morphology is prepared in the present study. The cobalt oxide nanostructures were characterized by scanning electron microcopy, x-ray diffraction, and x-ray photoelectron spectroscopy techniques. These analytical techniques demonstrated well defined morphology, good crystalline quality, and high purity of as prepared cobalt oxide nanostructures. The glassy carbon electrode was modified with cobalt oxide nanostructures for the development of a sensitive and selective electrochemical hydrazine sensor. The developed hydrazine sensor exhibits a linear range of 2-24 μM. The sensitivity and limit of detection of presented hydrazine sensors are 12,734 μA/mM/cm2 and 0.1 μM respectively. The developed hydrazine sensor is highly selective, stable, and reproducible. The proposed sensor is successfully applied for the detection of hydrazine from different water samples. The present study provides the development of an alternative tool for the reliable monitoring of hydrazine from environmental and biological samples.

  16. Effect of redox label tether length and flexibility on sensor performance of displacement-based electrochemical DNA sensors.

    PubMed

    Yu, Zhi-gang; Zaitouna, Anita J; Lai, Rebecca Y

    2014-02-17

    This article summarizes the sensor performance of four electrochemical DNA sensors that exploit the recently developed displacement-replacement sensing motif. In the absence of the target, the capture probe is partially hybridized to the signaling probe at the distal end, positioning the redox label, methylene blue (MB), away from the electrode. In the presence of the target, the MB-modified signaling probe is released; one type of probe is capable of assuming a stem-loop probe (SLP) conformation, whereas the other type adopts a linear probe (LP) conformation. Independent of the sensor architecture, all four sensors showed "signal-on" sensor behavior. Unlike the previous report, here we focused on elucidating the effect of the redox label tether length and flexibility on sensor sensitivity, specificity, selectivity, and reusability. For both SLP and LP sensors, the limit of detection was 10 pM for sensors fabricated using a signaling probe with three extra thymine (T3) bases linked to the MB label. A limit of detection of 100 pM was determined for sensors fabricated using a signaling probe with five extra thymine (T5) bases. The linear dynamic range was between 10 pM and 100 nM for the T3 sensors, and between 100 pM and 100 nM for the T5 sensors. When compared to the LP sensors, the SLP sensors showed higher signal enhancement in the presence of the full-complement target. More importantly, the SLP-T5 sensor was found to be highly specific; it is capable of discriminating between the full complement and single-base mismatch targets even when employed in undiluted blood serum. Overall, these results highlight the advantages of using oligo-T(s) as a tunable linker to control flexibility of the tethered redox label, so as to achieve the desired sensor response.

  17. Electrochemical degradation, kinetics & performance studies of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Das, Debanjan

    Linear and Non-linear electrochemical characterization techniques and equivalent circuit modelling were carried out on miniature and sub-commercial Solid Oxide Fuel Cell (SOFC) stacks as an in-situ diagnostic approach to evaluate and analyze their performance under the presence of simulated alternative fuel conditions. The main focus of the study was to track the change in cell behavior and response live, as the cell was generating power. Electrochemical Impedance Spectroscopy (EIS) was the most important linear AC technique used for the study. The distinct effects of inorganic components usually present in hydrocarbon fuel reformates on SOFC behavior have been determined, allowing identification of possible "fingerprint" impedance behavior corresponding to specific fuel conditions and reaction mechanisms. Critical electrochemical processes and degradation mechanisms which might affect cell performance were identified and quantified. Sulfur and siloxane cause the most prominent degradation and the associated electrochemical cell parameters such as Gerisher and Warburg elements are applied respectively for better understanding of the degradation processes. Electrochemical Frequency Modulation (EFM) was applied for kinetic studies in SOFCs for the very first time for estimating the exchange current density and transfer coefficients. EFM is a non-linear in-situ electrochemical technique conceptually different from EIS and is used extensively in corrosion work, but rarely used on fuel cells till now. EFM is based on exploring information obtained from non-linear higher harmonic contributions from potential perturbations of electrochemical systems, otherwise not obtained by EIS. The baseline fuel used was 3 % humidified hydrogen with a 5-cell SOFC sub-commercial planar stack to perform the analysis. Traditional methods such as EIS and Tafel analysis were carried out at similar operating conditions to verify and correlate with the EFM data and ensure the validity of the

  18. HME powder detection using space sampling and electrochemical sensors

    NASA Astrophysics Data System (ADS)

    Cagan, Avi; Wang, Joseph; Cizek, Karel; Lu, Donglai; La Belle, Jeffrey

    2009-05-01

    A new concept for effective sampling and detecting HME powder traces is described. The collection is based on the particles mobility under rotation into an accumulation collector unit, followed by sequential transfer to the electrochemical detection system where surface washing yields a higher concentration at room temperature. The electrochemical detection of the peroxide explosives is based on photochemical degradation or acid treatment resulting in hydrogen peroxide which is sensed by a Prussian-blue (PB) modified strip electrode at a low potential. Nitrates such as Urea Nitrate are detected using unique reactions which generate one product which has a specific electrochemical signature. Nitroaromatics, nitramines and nitroesters are detected. The new "Add and Detect" procedure is operator independent and is the safest as the operator.

  19. Functionalised ZnO-nanorod-based selective electrochemical sensor for intracellular glucose.

    PubMed

    Asif, Muhammad H; Ali, Syed M Usman; Nur, Omer; Willander, Magnus; Brännmark, Cecilia; Strålfors, Peter; Englund, Ulrika H; Elinder, Fredrik; Danielsson, Bengt

    2010-06-15

    In this article, we report a functionalised ZnO-nanorod-based selective electrochemical sensor for intracellular glucose. To adjust the sensor for intracellular glucose measurements, we grew hexagonal ZnO nanorods on the tip of a silver-covered borosilicate glass capillary (0.7 microm diameter) and coated them with the enzyme glucose oxidase. The enzyme-coated ZnO nanorods exhibited a glucose-dependent electrochemical potential difference versus an Ag/AgCl reference microelectrode. The potential difference was linear over the concentration range of interest (0.5-1000 microM). The measured glucose concentration in human adipocytes or frog oocytes using our ZnO-nanorod sensor was consistent with values of glucose concentration reported in the literature; furthermore, the sensor was able to show that insulin increased the intracellular glucose concentration. This nanoelectrode device demonstrates a simple technique to measure intracellular glucose concentration. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Effect of morphology and defect density on electron transfer of electrochemically reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Hao, Huilian; Wang, Linlin

    2016-12-01

    Electrochemically reduced graphene oxide (ERGO) is widely used to construct electrochemical sensors. Understanding the electron transfer behavior of ERGO is essential for its electrode material applications. In this paper, different morphologies of ERGO were prepared via two different methods. Compared to ERGO/GCEs prepared by electrochemical reduction of pre-deposited GO, more exposed edge planes of ERGO are observed on the surface of ERGO-GCE that was constructed by electrophoretic deposition of GO. The defect densities of ERGO were controlled by tuning the mass or concentration of GO. The electron transfer kinetics (k0) of GCE with different ERGOs was comparatively investigated. Owing to increased surface areas and decreased defect density, the k0 values of ERGO/GCE initially increase and then decrease with incrementing of GO mass. When the morphology and surface real areas of ERGO-GCE are the same, an increased defect density induces an accelerated electron transfer rate. k0 valuesof ERGO-GCEs are about 1 order of magnitude higher than those of ERGO/GCEs due to the difference in the amount of edge planes. This work demonstrates that both defect densities and edge planes of ERGO play crucial roles in electron transfer kinetics.

  1. Ammonia sensors based on metal oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Sekhar Rout, Chandra; Hegde, Manu; Govindaraj, A.; Rao, C. N. R.

    2007-05-01

    Ammonia sensing characteristics of nanoparticles as well as nanorods of ZnO, In2O3 and SnO2 have been investigated over a wide range of concentrations (1 800 ppm) and temperatures (100 300 °C). The best values of sensitivity are found with ZnO nanoparticles and SnO2 nanostructures. Considering all the characteristics, the SnO2 nanostructures appear to be good candidates for sensing ammonia, with sensitivities of 222 and 19 at 300 °C and 100 °C respectively for 800 ppm of NH3. The recovery and response times are respectively in the ranges 12 68 s and 22 120 s. The effect of humidity on the performance of the sensors is not marked up to 60% at 300 °C. With the oxide sensors reported here no interference for NH3 is found from H2, CO, nitrogen oxides, H2S and SO2.

  2. Construction of an Electrochemical Sensor Based on Carbon Nanotubes/Gold Nanoparticles for Trace Determination of Amoxicillin in Bovine Milk

    PubMed Central

    Muhammad, Aliyu; Yusof, Nor Azah; Hajian, Reza; Abdullah, Jaafar

    2016-01-01

    In this work, a novel electrochemical sensor was fabricated for determination of amoxicillin in bovine milk samples by decoration of carboxylated multi-walled carbon nanotubes (MWCNTs) with gold nanoparticles (AuNPs) using ethylenediamine (en) as a cross linker (AuNPs/en-MWCNTs). The constructed nanocomposite was homogenized in dimethylformamide and drop casted on screen printed electrode. Field emission scanning electron microscopy (FESEM), energy dispersive X-Ray (EDX), X-Ray diffraction (XRD) and cyclic voltammetry were used to characterize the synthesized nanocomposites. The results show that the synthesized nanocomposites induced a remarkable synergetic effect for the oxidation of amoxicillin. Effect of some parameters, including pH, buffer, scan rate, accumulation potential, accumulation time and amount of casted nanocomposites, on the sensitivity of fabricated sensor were optimized. Under the optimum conditions, there was two linear calibration ranges from 0.2–10 µM and 10–30 µM with equations of Ipa (µA) = 2.88C (µM) + 1.2017; r = 0.9939 and Ipa (µA) = 0.88C (µM) + 22.97; r = 0.9973, respectively. The limit of detection (LOD) and limit of quantitation (LOQ) were calculated as 0.015 µM and 0.149 µM, respectively. The fabricated electrochemical sensor was successfully applied for determination of Amoxicillin in bovine milk samples and all results compared with high performance liquid chromatography (HPLC) standard method. PMID:26805829

  3. Construction of an Electrochemical Sensor Based on Carbon Nanotubes/Gold Nanoparticles for Trace Determination of Amoxicillin in Bovine Milk.

    PubMed

    Muhammad, Aliyu; Yusof, Nor Azah; Hajian, Reza; Abdullah, Jaafar

    2016-01-20

    In this work, a novel electrochemical sensor was fabricated for determination of amoxicillin in bovine milk samples by decoration of carboxylated multi-walled carbon nanotubes (MWCNTs) with gold nanoparticles (AuNPs) using ethylenediamine (en) as a cross linker (AuNPs/en-MWCNTs). The constructed nanocomposite was homogenized in dimethylformamide and drop casted on screen printed electrode. Field emission scanning electron microscopy (FESEM), energy dispersive X-Ray (EDX), X-Ray diffraction (XRD) and cyclic voltammetry were used to characterize the synthesized nanocomposites. The results show that the synthesized nanocomposites induced a remarkable synergetic effect for the oxidation of amoxicillin. Effect of some parameters, including pH, buffer, scan rate, accumulation potential, accumulation time and amount of casted nanocomposites, on the sensitivity of fabricated sensor were optimized. Under the optimum conditions, there was two linear calibration ranges from 0.2-10 µM and 10-30 µM with equations of Ipa (µA) = 2.88C (µM) + 1.2017; r = 0.9939 and Ipa (µA) = 0.88C (µM) + 22.97; r = 0.9973, respectively. The limit of detection (LOD) and limit of quantitation (LOQ) were calculated as 0.015 µM and 0.149 µM, respectively. The fabricated electrochemical sensor was successfully applied for determination of Amoxicillin in bovine milk samples and all results compared with high performance liquid chromatography (HPLC) standard method.

  4. Fabrication of copper nanoparticles decorated multiwalled carbon nanotubes as a high performance electrochemical sensor for the detection of neotame.

    PubMed

    Bathinapatla, Ayyappa; Kanchi, Suvardhan; Singh, Parvesh; Sabela, Myalowenkosi I; Bisetty, Krishna

    2015-05-15

    A highly sensitive and novel electrochemical sensor for the detection of neotame using differential pulse voltammetry with a modified glassy carbon electrode is presented. The method was further customized by the fabrication of the electrode surface with copper nanoparticles-ammonium piperidine dithiocarbamate-mutiwalled carbon nanotubes assimilated with β-cyclodextrin. The multiwalled carbon nanotubes assimilated with β-cyclodextrin/glassy carbon electrode exhibited catalytic activity towards the oxidation of neotame at a potential of 1.3 V at pH 3.0. The transmission electron microscopy, thermogravimetric analysis, frontier transform infrared spectroscopy and cyclic voltammetry were employed to characterize the electrochemical sensor. The sensitivity and detection limits of the electrode increased two-fold in contrast to the β-CD-MWCNTs/GCE sensor. The developed method was successfully applied for the determination of neotame in food samples, with results similar to those achieved by our modified capillary electrophoresis method with a 96% confidence level. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. State-of-the-art review of electrochemical noise sensors

    SciTech Connect

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Eden, D.

    2001-09-01

    There are a number of different techniques capable of being used to measure corrosion within equipment. The most simple, the use of metal coupons, usually causes the process to be shut down, is manpower intensive, and has a time delay in getting the required corrosion information. Electrical Resistance (ER) techniques are often used but their response is very sensitive to temperature and they cannot differentiate between general and localized corrosion. Electrochemical techniques, such as linear polarization resistance (LPR), electrochemical noise (EN), electrochemical impedance spectroscopy (EIS), harmonic distortion analysis (HDA), and electrochemical frequency modulation (EFM), have the capability of solving most of those drawbacks. Electrochemical probes can be mounted permanently in most equipment, give regular measurements of the intensity of corrosion, and some can detect localized corrosion. Of all of the electrochemical techniques, EN has the most potential for being used successfully to measure general and localized corrosion rates of equipment. The EN technique was studied in the late 1970s and early 80s as a means of detecting localized (stochastic) corrosion phenomena, such as occurs with pitting, crevice and cavitation attack. EN measurements are based on fluctuations in electrochemical potential and corrosion current that occur during corrosion. Electrochemical potential is related to the driving force (thermodynamics) of the reaction, while corrosion current is related to the rate of reaction (kinetics) of the reaction. The idea is that random electrochemical events on the surface of a corroding metal will generate noise in the overall potential and current signals. Each type of corrosion (for example general corrosion, pitting corrosion, crevice corrosion, and stress corrosion cracking) will have a characteristic “fingerprint” or “signature” in the signal noise. This “fingerprint” can be used to predict the type and severity of

  6. A Dual Electrochemical Sensor Based on a Test-strip Assay for the Quantitative Determination of Albumin and Creatinine.

    PubMed

    Yasukawa, Tomoyuki; Kiba, Yuya; Mizutani, Fumio

    2015-01-01

    A dual-electrochemical sensor based on a test-strip assay with immunochemistry and enzyme reactions has been developed for the determination of albumin and creatinine. Each nitrocellulose membrane with an immobilization area of an anti-albumin antibody or three enzymes was prepared in the device with three working electrodes for measuring albumin, creatinine, and ascorbic acid, as well as an Ag/AgCl electrode used as a counter/pseudo-reference electrode. The reactions of three enzymes were initiated by flowing a solution containing creatinine to detect an oxidation current of hydrogen peroxide. A sandwich-type immunocomplex was formed by albumin and antibody labeled with glucose oxidase (GOx). Captured GOx catalyzed the reduction of Fe(CN)6(3-) to Fe(CN)6(4-), which was oxidized electrochemically to determine the captured albumin. The responses for creatinine and albumin increased with the concentrations in millimolar order and over the range 18.75 - 150 μg mL(-1), respectively. The present sensor would be a distinct demonstration for producing quantitative dual-assays for various biomolecules used for clinical diagnoses.

  7. Applications of carbon nanotubes to electrochemical DNA sensors: a new strategy to make direct and selective hybridization detection from SWNTs

    NASA Astrophysics Data System (ADS)

    Zhang, Qi Dong; Piro, Benoît; Noël, Vincent; Reisberg, Steeve; Pham, Minh-Chau

    2010-12-01

    In this paper, we first review different strategies reported in the literature to elaborate electrochemical DNA sensors based on carbon nanotubes. Then we report a new strategy to graft both redox and DNA probes onto carbon nanotubes to make a label-free DNA sensor. Oxidized single-walled carbon nanotubes are first immobilized on a self-assembled monolayer of cysteamine. Then a redox probe, a quinone derivative 3-[(2-aminoethyl) sulfanyl-5-hydroxy-1,4-naphthoquinone], is grafted onto the free carboxylic groups of the nanotubes. After that, for DNA probe grafting, new carboxylic sites are generated via an aryl diazonium route. After hybridization with a complementary sequence, the conformational changes of DNA could influence the redox kinetics of quinone, leading to a current increase in the redox signal, detected by square wave voltammetry. The system is selective, as it can distinguish a single mismatched sequence from the complementary one.

  8. Single Microfluidic Electrochemical Sensor System for Simultaneous Multi-Pulmonary Hypertension Biomarker Analyses.

    PubMed

    Lee, GeonHui; Lee, JuKyung; Kim, JeongHoon; Choi, Hak Soo; Kim, Jonghan; Lee, SangHoon; Lee, HeaYeon

    2017-08-08

    Miniaturized microfluidic biosensors have recently been advanced for portable point-of-care diagnostics by integrating lab-on-a-chip technology and electrochemical analysis. However, the design of a small, integrated, and reliable biosensor for multiple and simultaneous electrochemical analyses in a single device remains a challenge. Here, we present a simultaneous microfluidic electrochemical biosensing system to detect multiple biomarkers of pulmonary hypertension diseases in a single device. The miniaturized biosensor, which is composed of five chambers, is precisely and individually controlled using in-house-built pneumatic microvalves to manipulate the flow pathway. Each chamber is connected to an electrochemical sensor designed to detect four different biomarkers plus a reference control. Our design allows for loading of multiple reagents for simultaneous analyses. On the basis of the developed microfluidic electrochemical sensor system, we successfully detected four well-defined pulmonary hypertension-associated biomarkers, namely, fibrinogen, adiponectin, low-density lipoprotein, and 8-isoprostane. This novel approach offers a new platform for a rapid, miniaturized, and sensitive diagnostic sensor in a single device for various human diseases.

  9. Molecularly imprinted electrochemical luminescence sensor based on signal amplification for selective determination of trace gibberellin A3.

    PubMed

    Li, Jianping; Li, Shuhuai; Wei, Xiaoping; Tao, Huilin; Pan, Hongcheng

    2012-11-20

    A new molecularly imprinted electrochemical luminescence (MIP-ECL) sensor was developed for Gibberellin A3 (GA3) determination. This sensor is based on competitive binding between the GA3 and the Rhodamine B (RhB)-labeled GA3 (RhB-GA3) to the MIP film. After the competitive binding, the residual RhB-GA3 on the MIP was electro-oxidized to produce RhB oxide, which could greatly amplify the weak electrochemiluminescence (ECL) signal of luminol. The ECL intensity decreased when the RhB-GA3 was replaced by GA3 molecules in the samples. Accordingly, GA3 was determined in the concentration range from 1 × 10(-11) to 3 × 10(-9) mol/L with a detection limit of 3.45 × 10(-12) mol/L. The sensor shows high sensitivity and selectivity, wide response range, good accuracy, and fast response. Beer samples were assayed by using the sensors, and the recoveries ranging from 96.0% to 103.2% were obtained.

  10. Mediated Electrochemical Oxidation (MEO) based technology. Final report

    SciTech Connect

    1996-07-18

    The goal of this CRADA was the continued research and development by LLNL, and the commercialization by EOSystems, Inc., of the waste treatment technology known as Mediated Electrochemical Oxidation. MEO is a non-thermal electrochemical technology developed in part at LLNL for the destruction of organic waste streams; this technology has wide applications in the government, manufacturing, biomedical and industrial sectors. The system uses an electrochemical cell to generate highly oxidizing {open_quote}mediators{close_quote} in an acidic aqueous solution, which subsequently react with organic waste and convert it to carbon dioxide and water. The broad research responsibilities of LLNL in this CRADA were the investigation of numerous cell electrode materials and materials of construction, the evaluation of the process chemistry, and the testing of a flow visualization cell and a functional prototype. Major deliverables included: a determination of suitable electrode materials, an investigation of the destruction efficiency for numerous organic substrates, the construction and testing of a flow visualization cell, and the testing of a functional prototype commercial cell. The responsibilities of EOSystems included the definition of the market and potential customers, the design and engineering of the flow visualization and prototype cells, and the commercialization of the MEO units. Deliverables included the selection of the process and ancillary systems, the design of a flow visualization cell, and the design and construction of a prototype cell. In general, most of the deliverables were met by both partners, although unexpected technical difficulties delayed some of the delivery dates and forced the adoption of a modified statement of work. However, the primary, original project goals were completed on-time and on-budget.

  11. Feasibility of an Orthogonal Redundant Sensor incorporating Optical plus Redundant Electrochemical Glucose Sensing

    PubMed Central

    McAuley, Sybil A.; Dang, Tri T.; Horsburgh, Jodie C.; Bansal, Anubhuti; Ward, Glenn M.; Aroyan, Sarkis; Jenkins, Alicia J.; MacIsaac, Richard J.; Shah, Rajiv V.; O’Neal, David N.

    2016-01-01

    Background: Orthogonal redundancy for glucose sensing (multiple sensing elements utilizing distinct methodologies) may enhance performance compared to nonredundant sensors, and to sensors with multiple elements utilizing the same technology (simple redundancy). We compared the performance of a prototype orthogonal redundant sensor (ORS) combining optical fluorescence and redundant electrochemical sensing via a single insertion platform to an electrochemical simple redundant sensor (SRS). Methods: Twenty-one adults with type 1 diabetes wore an ORS and an SRS concurrently for 7 days. Following sensor insertion, and on Day 4 with a standardized meal, frequent venous samples were collected for reference glucose measurement (laboratory [YSI] and meter) over 3 and 4 hours, respectively. Between study visits reference capillary blood glucose testing was undertaken. Sensor data were processed prospectively. Results: ORS mean absolute relative difference (MARD) was (mean ± SD) 10.5 ± 13.2% versus SRS 11.0 ± 10.4% (P = .34). ORS values in Clarke error grid zones A and A+B were 88.1% and 97.6%, respectively, versus SRS 86.4% and 97.8%, respectively (P = .23 and P = .84). ORS Day 1 MARD (10.7 ± 10.7%) was superior to SRS (16.5 ± 13.4%; P < .0001), and comparable to ORS MARD for the week. ORS sensor survival (time-averaged mean) was 92.1% versus SRS 74.4% (P = .10). ORS display time (96.0 ± 5.8%) was equivalent to SRS (95.6 ± 8.9%; P = .87). Conclusions: Combining simple and orthogonal sensor redundancy via a single insertion is feasible, with accuracy comparing favorably to current generation nonredundant sensors. Addition of an optical component potentially improves sensor reliability compared to electrochemical sensing alone. Further improvement in optical sensing performance is required prior to clinical application. PMID:26846821

  12. Feasibility of an Orthogonal Redundant Sensor incorporating Optical plus Redundant Electrochemical Glucose Sensing.

    PubMed

    McAuley, Sybil A; Dang, Tri T; Horsburgh, Jodie C; Bansal, Anubhuti; Ward, Glenn M; Aroyan, Sarkis; Jenkins, Alicia J; MacIsaac, Richard J; Shah, Rajiv V; O'Neal, David N

    2016-05-01

    Orthogonal redundancy for glucose sensing (multiple sensing elements utilizing distinct methodologies) may enhance performance compared to nonredundant sensors, and to sensors with multiple elements utilizing the same technology (simple redundancy). We compared the performance of a prototype orthogonal redundant sensor (ORS) combining optical fluorescence and redundant electrochemical sensing via a single insertion platform to an electrochemical simple redundant sensor (SRS). Twenty-one adults with type 1 diabetes wore an ORS and an SRS concurrently for 7 days. Following sensor insertion, and on Day 4 with a standardized meal, frequent venous samples were collected for reference glucose measurement (laboratory [YSI] and meter) over 3 and 4 hours, respectively. Between study visits reference capillary blood glucose testing was undertaken. Sensor data were processed prospectively. ORS mean absolute relative difference (MARD) was (mean ± SD) 10.5 ± 13.2% versus SRS 11.0 ± 10.4% (P = .34). ORS values in Clarke error grid zones A and A+B were 88.1% and 97.6%, respectively, versus SRS 86.4% and 97.8%, respectively (P = .23 and P = .84). ORS Day 1 MARD (10.7 ± 10.7%) was superior to SRS (16.5 ± 13.4%; P < .0001), and comparable to ORS MARD for the week. ORS sensor survival (time-averaged mean) was 92.1% versus SRS 74.4% (P = .10). ORS display time (96.0 ± 5.8%) was equivalent to SRS (95.6 ± 8.9%; P = .87). Combining simple and orthogonal sensor redundancy via a single insertion is feasible, with accuracy comparing favorably to current generation nonredundant sensors. Addition of an optical component potentially improves sensor reliability compared to electrochemical sensing alone. Further improvement in optical sensing performance is required prior to clinical application. © 2016 Diabetes Technology Society.

  13. Synthesis of Pb nanowires-Au nanoparticles nanostructure decorated with reduced graphene oxide for electrochemical sensing.

    PubMed

    Dong, Wenhao; Ren, Yipeng; Zhang, Yanyan; Chen, Yuan; Zhang, Cong; Bai, Zhixue; Ma, Rui; Chen, Qiang

    2017-04-01

    Graphene sheets are a sp(2)-hybridized carbon material that offer extraordinary electrical conductivity and excellent thermal and mechanical properties. They are expected to find use in a wide variety of applications. In this study, a new novel electrocatalyst, a Pb nanowires-Au nanoparticles nanocomposite decorated with reduced graphene oxide (rGO-Pb NWs-Au NPs), was successfully synthesized by an effective and simple approach. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy were employed to observe the as-prepared nanomaterial. In addition, the electrochemical behaviors of a rGO-Pb NWs-Au NPs-modified glassy carbon (GC) electrode were evaluated by cyclic voltammetry and chronoamperometry. The final prepared sensor exhibited favorable electroreduction activity towards H2O2 with a remarkable sensitivity of 552.43µAmM(-1)cm(-2), a wide linear range of 0.005-1.25mM, a detection limit of 0.6µM and a rapid response time (within 5s). Moreover, the sensor also exhibited good reproducibility, selectivity and stability. Therefore, the present work also provides a potential practicable approach to fabricate various of non-enzymatic amperometric sensors, such as sensors for the detection of glucose, urea, ascorbic acid and dopamine.

  14. Simultaneous determination of hydroxylamine and phenol using a nanostructure-based electrochemical sensor.

    PubMed

    Moghaddam, Hadi Mahmoudi; Beitollahi, Hadi; Tajik, Somayeh; Malakootian, Mohammad; Maleh, Hassan Karimi

    2014-11-01

    The electrochemical oxidation of hydroxylamine on the surface of a carbon paste electrode modified with carbon nanotubes and 2,7-bis(ferrocenyl ethyl)fluoren-9-one is studied. The electrochemical response characteristics of the modified electrode toward hydroxylamine and phenol were investigated. The results showed an efficient catalytic activity of the electrode for the electro-oxidation of hydroxylamine, which leads to lowering its overpotential. The modified electrode exhibits an efficient electron-mediating behavior together with well-separated oxidation peaks for hydroxylamine and phenol. Also, the modified electrode was used for determination of hydroxylamine and phenol in some real samples.

  15. Degradation of conazole fungicides in water by electrochemical oxidation.

    PubMed

    Urzúa, J; González-Vargas, C; Sepúlveda, F; Ureta-Zañartu, M S; Salazar, R

    2013-11-01

    The electrochemical oxidation (EO) treatment in water of three conazole fungicides, myclobutanil, triadimefon and propiconazole, has been carried out at constant current using a BDD/SS system. First, solutions of each fungicide were electrolyzed to assess the effect of the experimental parameters such as current, pH and fungicide concentration on the decay of each compound and total organic carbon abatement. Then a careful analysis of the degradation by-products was made by high performance liquid chromatography, ion chromatography and gas chromatography coupled with mass spectrometry in order to provide a detailed discussion on the original reaction pathways. Thus, during the degradation of conazole fungicides by the electrochemical oxidation process, aromatic intermediates, aliphatic carboxylic acids and Cl(-) were detected prior to their complete mineralization to CO2 while NO3(-) anions remained in the treated solution. This is an essential preliminary step towards the applicability of the EO processes for the treatment of wastewater containing conazole fungicides. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Selective electrochemical generation of hydrogen peroxide from water oxidation

    DOE PAGES

    Viswanathan, Venkatasubramanian; Hansen, Heine A.; Norskov, Jens K.

    2015-10-08

    Water is a life-giving source, fundamental to human existence, yet over a billion people lack access to clean drinking water. The present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, wemore » show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e– water oxidation to H2O2 and the 4e– oxidation to O2. We show that materials which bind oxygen intermediates sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. Furthermore, we present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively.« less

  17. Selective electrochemical generation of hydrogen peroxide from water oxidation

    SciTech Connect

    Viswanathan, Venkatasubramanian; Hansen, Heine A.; Norskov, Jens K.

    2015-10-08

    Water is a life-giving source, fundamental to human existence, yet over a billion people lack access to clean drinking water. The present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e– water oxidation to H2O2 and the 4e– oxidation to O2. We show that materials which bind oxygen intermediates sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. Furthermore, we present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively.

  18. Degradation of caffeine by conductive diamond electrochemical oxidation.

    PubMed

    Indermuhle, Chloe; Martín de Vidales, Maria J; Sáez, Cristina; Robles, José; Cañizares, Pablo; García-Reyes, Juan F; Molina-Díaz, Antonio; Comninellis, Christos; Rodrigo, Manuel A

    2013-11-01

    The use of Conductive-Diamond Electrochemical Oxidation (CDEO) and Sonoelectrochemical Oxidation (CDSEO) has been evaluated for the removal of caffeine of wastewater. Effects of initial concentration, current density and supporting electrolyte on the process efficiency are assessed. Results show that caffeine is very efficiently removed with CDEO and that depletion of caffeine has two stages depending on its concentration. At low concentrations, opposite to what it is expected in a mass-transfer controlled process, the efficiency increases with current density very significantly, suggesting a very important role of mediated oxidation processes on the removal of caffeine. In addition, the removal of caffeine is faster than TOC, indicating the formation of reaction intermediates. The number and relative abundance of them depend on the operating conditions and supporting electrolyte used. In chloride media, removal of caffeine is faster and more efficiently, although the occurrence of more intermediates takes place. CDSEO does not increase the efficiency of caffeine removal, but it affects to the formation of intermediates. A detailed characterization of intermediates by liquid chromatography time-of-flight mass spectrometry seems to indicate that the degradation of caffeine by CDEO follows an oxidation pathway similar to mechanism proposed by other advanced oxidation processes.

  19. An electrochemical sensor for determining elemental iodine in gas media

    SciTech Connect

    Goffman, V.G.; Shaimerdinov, B.U.; Kotelkin, I.M.

    1993-12-01

    The possibility of using solid-electrolyte Ag, AgI/AgI/Au cells as sensors for determining the concentration of elemental iodine in gas media is investigated. It is established that the sensor parameters are independent of oxygen content and radiation dose at different relative humidities.

  20. Development of Advanced Electrochemical Sensors for DNA Detection at the Point of Care

    NASA Astrophysics Data System (ADS)

    Hsieh, Kuangwen

    In the post-genomic era, ever-advancing capabilities in DNA detection and analysis have become vital to the detection of infectious diseases and the diagnosis of genetic abnormalities and inheritable diseases. The benefit of such capabilities, however, has yet to reach patients outside of centralized facilities. There thus exists an increasing need to decentralize DNA detection methods and to administer such diagnostics at the "point of care." Electrochemical-based DNA sensors present a compelling approach, but have yet to deliver satisfactory sensitivity, specificity, miniaturization, and real-time monitoring capability to meet the demand of point-of-care diagnostics. Motivated by their potential and their current limitations, in this dissertation, we present a series of strategies that we have undertaken in order to address the key shortcomings of electrochemical DNA sensors and advance them toward point-of-care applications. First, we report a single-step, single reagent, label-free, isothermal electrochemical DNA sensor based on the phenomenon of enzyme catalyzed target recycling amplification. Using this technique, we achieve improved detection limit in comparison to hybridization-based sensors without amplification. We also demonstrate greater than 16-fold amplification of signal at low target concentrations. Next, we present a novel electrochemical DNA sensor that detects single-nucleotide mismatched targets with unprecedented "polarity-switching" responses. This "bipolar" sensor employs a surface-bound and redox-modified (methylene blue) DNA probe architecture, and outputs a decreased Faradaic current when hybridized to a perfectly matched (PM) target, but conversely reports an increased Faradaic current when hybridized to a single-base mismatched (SM) target. Third, we describe the microfluidic electrochemical dynamic allele specific hybridization (microE-DASH) platform for versatile and rapid detection of single-nucleotide polymorphisms. Implementing

  1. Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review.

    PubMed

    Barsan, Madalina M; Ghica, M Emilia; Brett, Christopher M A

    2015-06-30

    The aim of this review is to present the contributions to the development of electrochemical sensors and biosensors based on polyphenazine or polytriphenylmethane redox polymers together with carbon nanotubes (CNT) during recent years. Phenazine polymers have been widely used in analytical applications due to their inherent charge transport properties and electrocatalytic effects. At the same time, since the first report on a CNT-based sensor, their application in the electroanalytical chemistry field has demonstrated that the unique structure and properties of CNT are ideal for the design of electrochemical (bio)sensors. We describe here that the specific combination of phenazine/triphenylmethane polymers with CNT leads to an improved performance of the resulting sensing devices, because of their complementary electrical, electrochemical and mechanical properties, and also due to synergistic effects. The preparation of polymer/CNT modified electrodes will be presented together with their electrochemical and surface characterization, with emphasis on the contribution of each component on the overall properties of the modified electrodes. Their importance in analytical chemistry is demonstrated by the numerous applications based on polymer/CNT-driven electrocatalytic effects, and their analytical performance as (bio) sensors is discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Electrochemical sensor for dopamine based on a novel graphene-molecular imprinted polymers composite recognition element.

    PubMed

    Mao, Yan; Bao, Yu; Gan, Shiyu; Li, Fenghua; Niu, Li

    2011-10-15

    A novel composite of graphene sheets/Congo red-molecular imprinted polymers (GSCR-MIPs) was synthesized through free radical polymerization (FRP) and applied as a molecular recognition element to construct dopamine (DA) electrochemical sensor. The template molecules (DA) were firstly absorbed at the GSCR surface due to their excellent affinity, and subsequently, selective copolymerization of methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) was further achieved at the GSCR surface. Potential scanning was presented to extract DA molecules from the imprinted polymers film, and as a result, DA could be rapidly and completely removed by this way. With regard to the traditional MIPs, the GSCR-MIPs not only possessed a faster desorption and adsorption dynamics, but also exhibited a higher selectivity and binding capacity toward DA molecule. As a consequence, an electrochemical sensor for highly sensitive and selective detection of DA was successfully constructed as demonstration based on the synthesized GSCR-MIPs nanocomposites. Under experimental conditions, selective detection of DA in a linear concentration range of 1.0 × 10(-7)-8.3 × 10(-4)M was obtained, which revealed a lower limit of detection and wider linear response compared to some previously reported DA electrochemical MIPs sensors. The new DA electrochemical sensor based on GSCR-MIPs composites also exhibited excellent repeatability, which expressed as relative standard deviation (RSD) was about 2.50% for 30 repeated analyses of 20 μM DA.

  3. Development of an electrochemical cholesterol sensor system for food analysis.

    PubMed

    Nagaoka, Tsutomu; Tokonami, Shiho; Shiigi, Hiroshi; Matsumoto, Hiroaki; Takagi, Yasuhiro; Takahashi, Yasunori

    2012-01-01

    In this article, we report on a food-cholesterol monitoring sensor based on a non-enzymatic approach. Amorphous and single-crystal gold electrodes were modified with an alkanethiol self-assembled monolayer to quantify it by voltammetry. We first discuss the basic characteristics of these sensors and provide more information about the instrument developed by JSK Co. This instrument is a battery-operated handheld voltammetric analyzer, which mounts a sensor chip to monitor cholesterol contents in food samples. The sensor showed excellent linearity with the cholesterol concentration; egg-yolk samples were analyzed to give an excellent agreement between the values obtained by the sensor (1.4 mM) and chromatography (1.1 mM).

  4. Mocvd of Tin Oxide for Gas Sensors.

    NASA Astrophysics Data System (ADS)

    Weglicki, Peter Stanislaw

    1990-01-01

    Available from UMI in association with The British Library. Requires signed TDF. Thin films of a wide variety of materials can be produced using an assortment of physical and chemical techniques. Such techniques are reviewed and compared, with particular reference to the deposition of tin oxide films. In the present study, MOCVD (Metal organic chemical vapour deposition) was used to grow thin films of tin oxide from dibutyltin diacetate precursor on a variety of substrates. A series of reactor prototypes were developed in accordance with specific requirements of reproducibility and process control. The evolution of the designs leading to the final working system is detailed. The theory of MOCVD is given with particular reference to the reactor used in this project. The effects of various deposition parameters on tin oxide film growth rates were investigated, and the results are discussed with reference to the deposition kinetics in the system. Films were characterised by optical interferometry, optical and electron microscopy, X-ray diffraction, Rutherford backscattering and electrical measurements. The films were generally uniform, conducting and polycrystalline, and were comprised of very small grains, resulting in a high density. A specific application of metal oxide materials is in solid state gas sensors, which are available in various forms and operate according to different mechanisms. These are compared and a detailed account is given on the theory of operation of surface conductivity modulated devices. The application of such devices based on tin oxide in thin film form was investigated in the present work. The prepared sensor samples were comprised of very small grains, resulting in a high density. The observation that preferred (310) orientation occured in thicker films, can be attributed to dendritic growth. The sensors generally showed response to numerous reducing gas ambients, although there was evidence of a degree of selectivity against methane

  5. Development of electrochemical sensors for trace detection of explosives and for the detection of chemical warfare agents

    NASA Astrophysics Data System (ADS)

    Berger, T.; Ziegler, H.; Krausa, Michael

    2000-08-01

    A huge number of chemical sensors are based on electrochemical measurement methods. Particularly amperometric sensorsystems are employed for the fast detection of pollutants in industry and environment as well as for analytic systems in the medical diagnosis. The large number of different applications of electrochemical sensors is based on the high sensitivity of electrochemical methods and on the wide of possibilities to enhance the selectivity by variation of electrochemical and chemical parameters. Besides this, electrochemical sensorsystems are frequently simple to operate, transportable and cheap. Up to now the electrochemical method of cyclic voltammetry is used only seldom for sensors. Clearly the efficiency of cyclic voltammetry can be seen at the sensorsystem for the detection of nitro- and aminotoluenes in solids and waters as presented here. The potentiodynamic sensors system can be employed for the fast and easy risk estimation of contaminated areas. Because of the high sensitivity of electrochemical methods the detection of chemical substances with a low vapor pressure is possible also. The vapor pressure of TNT at room temperature is 7 ppb for instances. With a special electrochemical set-up we were able to measure TNT approximately 10 cm above a TNT-sample. In addition we were able to estimate TNT in the gaseous phase approximately 10 cm above a real plastic mine. Therefore it seems to be possible to develop an electrochemical mien detection. Moreover, we present that the electrochemical detection of RDX, HMX and chemical warfare agents is also possible.

  6. Mineralization of the biocide chloroxylenol by electrochemical advanced oxidation processes.

    PubMed

    Skoumal, Marcel; Arias, Conchita; Cabot, Pere Lluís; Centellas, Francesc; Garrido, José Antonio; Rodríguez, Rosa María; Brillas, Enric

    2008-04-01

    Electrochemical advanced oxidation processes (EAOPs) are environmentally friendly methods based on the destruction of organic pollutants in wastewaters with in situ electrogenerated hydroxyl radical. This species is formed in anodic oxidation (AO) from water oxidation at the anode and in indirect electro-oxidation methods like electro-Fenton (EF) and photoelectro-Fenton (PEF) also from reaction between catalytic Fe2+ and H2O2 continuously produced at the O2-diffusion cathode. The PEF method involves the irradiation of the treated solution with UVA light to enhance the photolysis of organics including Fe(III) complexes. In this work, the oxidation power of such EAOPs to decontaminate synthetic wastewaters of the biocide chloroxylenol (4-chloro-3,5-dimethylphenol) at pH 3.0 is comparatively examined with an undivided electrolytic cell containing a Pt or boron-doped diamond (BDD) anode and a stainless steel or O2-diffusion cathode. The initial chlorine is released as Cl(-) ion, which remains stable in the medium using Pt or is oxidized to Cl2 on BDD. The biocide solutions can be completely decontaminated using AO with a BDD anode, as well as PEF with a Pt or BDD anode. The PEF procedure with a BDD anode is the most powerful method leading to total mineralization in about 300 min, practically independent of current density. When current density rises, the degradation rate of processes increases, but they become less efficient due to the larger enhancement of waste reactions of oxidants. Chloroxylenol is much more rapidly removed in EF and PEF than in AO. 2,6-dimethylhydroquinone, 2,6-dimethyl-p-benzoquinone and 3,5-dimethyl-2-hydroxy-p-benzoquinone are identified as aromatic by-products, and maleic, malonic, pyruvic, acetic and oxalic acids are found as generated carboxylic acids. A general pathway for chloroxylenol mineralization by all EAOPs including the above by-products is proposed.

  7. Highly hydrogenated graphene through microwave exfoliation of graphite oxide in hydrogen plasma: towards electrochemical applications.

    PubMed

    Eng, Alex Yong Sheng; Sofer, Zdenek; Šimek, Petr; Kosina, Jiri; Pumera, Martin

    2013-11-11

    Hydrogenated graphenes exhibit a variety of properties with potential applications in devices, ranging from a tunable band gap to fluorescence, ferromagnetism, and the storage of hydrogen. We utilize a one-step microwave-irradiation process in hydrogen plasma to create highly hydrogenated graphene from graphite oxides. The procedure serves the dual purposes of deoxygenation and concurrent hydrogenation of the carbon backbone. The effectiveness of the hydrogenation process is investigated on three different graphite oxides (GOs), which are synthesized by using the Staudenmaier, Hofmann, and Hummers methods. A systematic characterization of our hydrogenated graphenes is performed using UV/Vis spectroscopy, SEM, AFM, Raman spectroscopy, FTIR spectroscopy, X-ray photoelectron spectroscopy (XPS), combustible elemental analysis, and electrical conductivity measurements. The highest hydrogenation extent is observed in hydrogenated graphene produced from the Hummers-method GO, with a hydrogen content of 19 atomic % in the final product. In terms of the removal of oxygen groups, microwave exfoliation yields graphenes with very similar oxygen contents despite differences in their parent GOs. In addition, we examine the prospective application of hydrogenated graphenes as electrochemical transducers through a cyclic voltammetry (CV) study. The highly hydrogenated graphenes exhibit fast heterogeneous electron-transfer rates, suggestive of their suitability for electrochemical applications in electrodes, supercapacitors, batteries, and sensors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Nanotechnology-Based Electrochemical Sensors for Biomonitoring Chemical Exposures

    SciTech Connect

    Barry, Richard C.; Lin, Yuehe; Wang, Jun; Liu, Guodong; Timchalk, Charles

    2009-01-01

    This manuscript highlights research focused on the development of field-deployable analytical instruments based on EC detection. Background information and a general overview of EC detection methods and integrated use of nanomaterials in the development of these sensors are provided. New developments in EC sensors using various types of screen-printed electrodes, integrated nanomaterials, and immunoassays are discussed. Recent applications of EC sensors for assessing exposure to pesticides or detecting biomarkers of disease are highlighted to demonstrate the ability to monitor chemical metabolites, enzyme activity, or protein biomarkers of disease. In addition, future considerations and opportunities for advancing the use of EC platforms for dosimetric studies are covered.

  9. Light-Regulated Electrochemical Sensor Array for Efficiently Discriminating Hazardous Gases.

    PubMed

    Liang, Hongqiu; Zhang, Xin; Sun, Huihui; Jin, Han; Zhang, Xiaowei; Jin, Qinghui; Zou, Jie; Haick, Hossam; Jian, Jiawen

    2017-09-20

    Inadequate detection limit and unsatisfactory discrimination features remain the challenging issues for the widely applied electrochemical gas sensors. Quite recently, we confirmed that light-regulated electrochemical reaction significantly enhanced the electrocatalytic activity, and thereby can potentially extend the detection limit to the parts per billion (ppb) level. Nevertheless, impact of the light-regulated electrochemical reaction on response selectivity has been discussed less. Herein, we systematically report on the effect of illumination on discrimination features via design and fabrication of a light-regulated electrochemical sensor array. Upon illumination (light on), response signal to the examined gases (C3H6, NO, and CO) is selectively enhanced, resulting in the sensor array demonstrating disparate response patterns when compared with that of the sensor array operated at light off. Through processing all the response patterns derived from both light on and light off with a pattern recognition algorithm, a satisfactory discrimination feature is observed. In contrast, apparent mutual interference between NO and CO is found when the sensor array is solely operated without illumination. The impact mechanism of the illumination is studied and it is deduced that the effect of the illumination on the discriminating features can be mainly attributed to the competition of electrocatalytic activity and gas-phase reactivity. If the enhanced electrocatalytic activity (to specific gas) dominates the whole sensing progress, enhancements in the corresponding response signal would be observed upon illumination. Otherwise, illumination gives a negligible impact. Hence, the response signal to part of the examined gases is selectively enhanced by illumination. Conclusively, light-regulated electrochemical reaction would provide an efficient approach to designing future smart sensing devices.

  10. Fully printed metabolite sensor using organic electrochemical transistor

    NASA Astrophysics Data System (ADS)

    Scheiblin, Gaëtan; Aliane, Abdelkader; Coppard, Romain; Owens, Róisín. M.; Mailley, Pascal; Malliaras, George G.

    2015-08-01

    As conducting polymer based devices, organic electrochemical transistors (OECTs) are suited for printing process. The convenience of the screen-printing techniques allowed us to design and fabricate OECTs with a selected design and using different gate material. Depending on the material used, we were able to tune the transistor for different biological application. Ag/AgCl gate provided transistor with good transconductance, and electrochemical sensitivity to pH was provided by polyaniline ink. Finally, we validate the enzymatic sensing of glucose and lactate with a Poly(3,4-ethylene dioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS) gate often used due to its biocompatible properties. The screen-printing process allowed us to fabricate a large amount of devices in a short period of time, using only commercially available grades of ink, showing by this way the possible transfer to industrial purpose.

  11. Ultrasensitive nanostructure sensor arrays on flexible substrates for multiplexed and simultaneous electrochemical detection of a panel of cardiac biomarkers.

    PubMed

    Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Chaudhry, Shajee; Anguiano, Jonathan; Prasad, Shalini

    2017-03-15

    Multiplexed detection of protein biomarkers offers new opportunities for early diagnosis and efficient treatment of complex diseases. Cardiovascular diseases (CVDs) has the highest mortality risk in USA and Europe with 15-20 million cases being reported annually. Cardiac Troponins (T and I) are well established protein biomarkers associated with heart muscle damage and point-of-care monitoring of both these two biomarkers has significant benefits on patient care. A flexible disposable electrochemical biosensor device comprising of vertically oriented zinc oxide (ZnO) nanostructures was developed for rapid and simultaneous screening of cardiac Troponin-I (cTnI) and cardiac-Troponin-T (cTnT) in a point-of-care sensor format. The biosensors were designed by selective hydrothermal growth of ZnO nanostructures onto the working electrodes of polyimide printed circuit board platforms, resulting in the generation of high density nanostructure ZnO arrays based electrodes. The size, density and surface terminations of the nanostructures were leveraged towards achieving surface confinement of the target cTnT and cTnI molecules on to the electrode surface. Multiplexing and simultaneous detection was achieved through sensor platform design comprising of arrays of Troponin functionalized ZnO nanostructure electrodes. The sensitivity and specificity of the biosensor was characterized using two types of electrochemical techniques; electrochemical impedance spectroscopy (EIS) and Mott-Schottky analysis on the same sensor platform to demonstrate multi-configurable modes. Limit of detection of 1pg/mL in human serum was achieved for both cTnI and cTnT. Cross reactivity analysis showed the selectivity of detecting cTnT and cTnI in human serum with wide dynamic range. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Nickel nanoparticles with hcp structure: Preparation, deposition as thin films and application as electrochemical sensor.

    PubMed

    Neiva, Eduardo G C; Oliveira, Marcela M; Marcolino, Luiz H; Zarbin, Aldo J G

    2016-04-15

    Hexagonal close packed (hcp) nickel nanoparticles stabilized by polyvinylpyrrolidone (PVP) were synthesized through the thermal treatment of face centered cubic (fcc) nickel nanoparticles. Controlling both the temperature of the heat treatment and the amount of PVP was possible the control of the hcp/fcc rate in the samples, where the higher Ni/PVP ratio produces only the hcp-nickel phase (average size of 8.9 nm) highly stable in air. The crystalline structure, the presence of PVP, the size of the nanoparticles and the stability of the hcp-nickel were confirmed using X-ray diffractometry, Fourier transform infrared spectroscopy, transmission electron microscopy, Raman spectroscopy, scanning electron microscopy and thermogravimetric analysis. Thin films of hcp and fcc nickel nanoparticles were prepared through a biphasic system and deposited over indium-doped tin oxide (ITO) substrates, which were electrochemically characterized and applied as glycerol amperometric sensors in NaOH medium. Parameters as the number of cycles applied and the scan rate were evaluated and indicate that hcp nickel nanoparticles are more reactive to form Ni(OH)2 and lead to more electroactive Ni(OH)2 structure. The hcp nickel nanoparticles-modified electrode showed the best sensitivity (0.258 μA L μmol(-1)) and detection limit (2.4 μmol L(-1)) toward glycerol.

  13. Novel Signal-Amplified Fenitrothion Electrochemical Assay, Based on Glassy Carbon Electrode Modified with Dispersed Graphene Oxide

    PubMed Central

    Wang, Limin; Dong, Jinbo; Wang, Yulong; Cheng, Qi; Yang, Mingming; Cai, Jia; Liu, Fengquan

    2016-01-01

    A novel signal-amplified electrochemical assay for the determination of fenitrothion was developed, based on the redox behaviour of organophosphorus pesticides on a glassy carbon working electrode. The electrode was modified using graphene oxide dispersion. The electrochemical response of fenitrothion at the modified electrode was investigated using cyclic voltammetry, current-time curves, and square-wave voltammetry. Experimental parameters, namely the accumulation conditions, pH value, and volume of dispersed material, were optimised. Under the optimum conditions, a good linear relationship was obtained between the oxidation peak current and the fenitrothion concentration. The linear range was 1–400 ng·mL−1, with a detection limit of 0.1 ng·mL−1 (signal-to-nose ratio = 3). The high sensitivity of the sensor was demonstrated by determining fenitrothion in pakchoi samples. PMID:27003798

  14. Electrochemical sensor for mercury(II) based on conformational switch mediated by interstrand cooperative coordination.

    PubMed

    Liu, Si-Jia; Nie, Hua-Gui; Jiang, Jian-Hui; Shen, Guo-Li; Yu, Ru-Qin

    2009-07-15

    A novel electrochemical sensor was developed for sensitive and selective detection of mercury(II), based on thymine-Hg2+-thymine (T-Hg2+-T) coordination chemistry. This strategy exploited the cooperativity of proximate poly-T oligonucleotides in coordination with Hg2+. Ferrocene (Fc)-tagged poly-T oligonucleotides were immobilized on the electrode surface via self-assembly of the terminal thiol moiety. In the presence of Hg2+, a pair of poly-T oligonucleotides could cooperatively coordinate with Hg2+, which triggered a conformational reorganization of the poly-T oligonucleotides from flexible single strands to relatively rigid duplexlike complexes, thus drawing the Fc tags away from the electrode with a substantially decreased redox current. The response characteristics of the sensor were thoroughly investigated using capillary electrophoresis and electrochemical measurements. The results revealed that the sensor showed a sensitive response to Hg2+ in a concentration range from 1.0 nM to 2.0 microM, with a detection limit of 0.5 nM. Also, this strategy afforded exquisite selectivity for Hg2+ against a reservoir of other environmentally related metal ions, compared to existing anodic stripping voltammetry (ASV) techniques. In addition, this sensor could be implemented using minimal reagents and working steps with excellent reusability through mild regeneration procedure. It was expected that this cost-effective electrochemical sensor might hold considerable potential in on-site applications of Hg2+ detection.

  15. Electrochemical production of hydrogen coupled with the oxidation of arsenite.

    PubMed

    Kim, Jungwon; Kwon, Daejung; Kim, Kitae; Hoffmann, Michael R

    2014-01-01

    The production of hydrogen accompanied by the simultaneous oxidation of arsenite (As(III)) was achieved using an electrochemical system that employed a BiOx-TiO2 semiconductor anode and a stainless steel (SS) cathode in the presence of sodium chloride (NaCl) electrolyte. The production of H2 was enhanced by the addition of As(III) during the course of water electrolysis. The synergistic effect of As(III) on H2 production can be explained in terms of (1) the scavenging of reactive chlorine species (RCS), which inhibit the production of H2 by competing with water molecules (or protons) for the electrons on the cathode, by As(III) and (2) the generation of protons, which are more favorably reduced on the cathode than water molecules, through the oxidation of As(III). The addition of 1.0 mM As(III) to the electrolyte at a constant cell voltage (E cell) of 3.0 V enhanced the production of H2 by 12% even though the cell current (I cell) was reduced by 5%. The net effect results in an increase in the energy efficiency (EE) for H2 production (ΔEE) by 17.5%. Furthermore, the value ΔEE, which depended on As(III) concentration, also depended on the applied E cell. For example, the ΔEE increased with increasing As(III) concentration in the micromolar range but decreased as a function of E cell. This is attributed to the fact that the reactions between RCS and As(III) are influenced by both RCS concentration depending on E cell and As(III) concentration in the solution. On the other hand, the ΔEE decreased with increasing As(III) concentration in the millimolar range due to the adsorption of As(V) generated from the oxidation of As(III) on the semiconductor anode. In comparison to the electrochemical oxidation of certain organic compounds (e.g., phenol, 4-chlorophenol, 2-chlorophenol, salicylic acid, catechol, maleic acid, oxalate, and urea), the ΔEE obtained during As(III) oxidation (17.5%) was higher than that observed during the oxidation of the above organic compounds

  16. Electrochemical and morphological studies of ionic polymer metal composites as stress sensors

    DOE PAGES

    Hong, Wangyujue; Almomani, Abdallah; Montazami, Reza

    2016-10-04

    Ionic polymer metal composites (IPMCs) are the backbone of a wide range of ionic devices. IPMC mechanoelectric sensors are advanced nanostructured transducers capable of converting mechanical strain into easily detectable electric signal. Such attribute is realized by ion mobilization in and through IPMC nanostructure. In this study we have investigated electrochemical and morphological characteristics of IPMCs by varying the morphology of their metal composite component (conductive network composite (CNC)). We have demonstrated the dependence of electrochemical properties on CNC nanostructure as well as mechanoelectrical performance of IPMC sensors as a function of CNC morphology. Lastly, it is shown that themore » morphology of CNC can be used as a means to improve sensitivity of IPMC sensors by 3–4 folds.« less

  17. Electrochemical and morphological studies of ionic polymer metal composites as stress sensors

    SciTech Connect

    Hong, Wangyujue; Almomani, Abdallah; Montazami, Reza

    2016-10-04

    Ionic polymer metal composites (IPMCs) are the backbone of a wide range of ionic devices. IPMC mechanoelectric sensors are advanced nanostructured transducers capable of converting mechanical strain into easily detectable electric signal. Such attribute is realized by ion mobilization in and through IPMC nanostructure. In this study we have investigated electrochemical and morphological characteristics of IPMCs by varying the morphology of their metal composite component (conductive network composite (CNC)). We have demonstrated the dependence of electrochemical properties on CNC nanostructure as well as mechanoelectrical performance of IPMC sensors as a function of CNC morphology. Lastly, it is shown that the morphology of CNC can be used as a means to improve sensitivity of IPMC sensors by 3–4 folds.

  18. Electrochemical and morphological studies of ionic polymer metal composites as stress sensors

    SciTech Connect

    Hong, Wangyujue; Almomani, Abdallah; Montazami, Reza

    2016-10-04

    Ionic polymer metal composites (IPMCs) are the backbone of a wide range of ionic devices. IPMC mechanoelectric sensors are advanced nanostructured transducers capable of converting mechanical strain into easily detectable electric signal. Such attribute is realized by ion mobilization in and through IPMC nanostructure. In this study we have investigated electrochemical and morphological characteristics of IPMCs by varying the morphology of their metal composite component (conductive network composite (CNC)). We have demonstrated the dependence of electrochemical properties on CNC nanostructure as well as mechanoelectrical performance of IPMC sensors as a function of CNC morphology. Lastly, it is shown that the morphology of CNC can be used as a means to improve sensitivity of IPMC sensors by 3–4 folds.

  19. A novel electrochemical sensor based on zirconia/ordered macroporous polyaniline for ultrasensitive detection of pesticides.

    PubMed

    Wang, Yonglan; Jin, Jun; Yuan, Caixia; Zhang, Fan; Ma, Linlin; Qin, Dongdong; Shan, Duoliang; Lu, Xiaoquan

    2015-01-21

    A simple and mild strategy was proposed to develop a novel electrochemical sensor based on zirconia/ordered macroporous polyaniline (ZrO2/OMP) and further used for the detection of methyl parathion (MP), one of the organophosphate pesticides (OPPs). Due to the strong affinity of phosphate groups with ZrO2 and the advantages of OMP such as high catalytic activity and good conductivity, the developed sensor showed a limit of detection as low as 2.28 × 10(-10) mol L(-1) (S/N = 3) by square-wave voltammograms, and good selectivity, acceptable reproducibility and stability. Most importantly, this novel sensor was successfully applied to detect MP in real samples of apple and cabbage. It is expected that this method has potential applications in electrochemical sensing platforms with simple, sensitive, selective and fast analysis.

  20. Structural and electrochemical properties of lutetium bis-octachloro-phthalocyaninate nanostructured films. Application as voltammetric sensors.

    PubMed

    Alessio, P; Apetrei, C; Rubira, R J G; Constantino, C J L; Medina-Plazal, C; De Saja, J A; Rodríguez-Méndez, M L

    2014-09-01

    Thin films of the bis[2,3,9,10,16,17,23,24-octachlorophthalocyaninate] lutetium(III) complex (LuPc2Cl32) have been prepared by the Langmuir-Blodgett and the Langmuir-Schaefer (LS) techniques. The influence of the chlorine substituents in the structure of the films and in their spectroscopic, electrochemical and sensing properties has been evaluated. The π-A isotherms exhibit a monolayer stability greater than the observed in the unsubstituted analogue (LuPc2), being easily transferred to solid substrates, also in contrast to LuPc2. The LB and LS films present a linear growth forming stratified layers, monitored by UV-VIS absorption spectroscopy. The latter also revealed the presence of LuPc2Cl32 in the form of monomers and aggregates in both films. The FTIR data showed that the LuPc2Cl32 molecules present a non-preferential arrangement in both films. Monolayers of LB and LS were deposited onto 6 nm Ag island films to record surface-enhanced resonance Raman scattering (SERRS), leading to enhancement factors close to 2 x 10(3). Finally, LB and LS films deposited onto ITO glass have been successfully used as voltammetric sensors for the detection of catechol. The improved electroactivity of the LB and LS films has been confirmed by the reduction of the overpotential of the oxidation of catechol. The enhancement of the electrocatalytic effect observed in LB and LS films is the result of the nanostructured arrangement of the surface which increases the number of active sites. The sensors show a limit of detection in the range of 10(-5) mol/L.

  1. Free-standing and flexible graphene papers as disposable non-enzymatic electrochemical sensors.

    PubMed

    Zhang, Minwei; Halder, Arnab; Hou, Chengyi; Ulstrup, Jens; Chi, Qijin

    2016-06-01

    We have explored AuNPs (13 nm) both as a catalyst and as a core for synthesizing water-dispersible and highly stable core-shell structural gold@Prussian blue (Au@PB) nanoparticles (NPs). Systematic characterization by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) disclosed AuNPs coated uniformly by a 5 nm thick PB layer. Au@PB NPs were attached to single-layer graphene oxide (GO) to form Au@PB decorated GO sheets. The resulting hybrid material was filtered layer-by-layer into flexible and free-standing GO paper, which was further converted into conductive reduced GO (RGO)/Au@PB paper via hydrazine vapour reduction. High-resolution TEM images suggested that RGO papers are multiply sandwich-like structures functionalized with core-shell NPs. Resulting sandwich functionalized graphene papers have high conductivity, sufficient flexibility, and robust mechanical strength, which can be cut into free-standing electrodes. Such electrodes, used as non-enzymatic electrochemical sensors, were tested systematically for electrocatalytic sensing of hydrogen peroxide. The high performance was indicated by some of the key parameters, for example the linear H2O2 concentration response range (1-30 μM), the detection limit (100 nM), and the high amperometric sensitivity (5 A cm(-2) M(-1)). With the advantages of low cost and scalable production capacity, such graphene supported functional papers are of particular interest in the use as flexible disposable sensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Nanomaterial-based Electrochemical Sensors for the Detection of Glucose and Cholesterol

    NASA Astrophysics Data System (ADS)

    Ahmadalinezhad, Asieh

    designed glucose biosensor exhibits a wide linear range, up to 18 mM glucose, as well as high sensitivity and selectivity. Glucose measurements of human serum using the developed biosensor showed excellent agreement with the data recorded by a commercial blood glucose monitoring assay. Finally, we fabricated an enzyme-free glucose sensor based on nanoporous palladium-cadmium (PdCd) networks. A hydrothermal method was applied in the synthesis of PdCd nanomaterials. The effect of the composition of the PdCd nanomaterials on the performance of the electrode was investigated by cyclic voltammetry (CV). Amperometric studies showed that the nanoporous PdCd electrode was responsive to the direct oxidation of glucose with high electrocatalytic activity. The sensitivity of the sensor for continuous glucose monitoring was 146.21 microAmM--1cm--2, with linearity up to 10 mM and a detection limit of 0.05 mM. In summary, the electrochemical biosensors proposed in my PhD study exhibited high sensitivity and selectivity for the continuous monitoring of analytes in the presence of common interference species. Our results have shown that the performance of the biosensors is significantly dependent on the dimensions and morphologies of nanostructured materials. The unique nanomaterials-based platforms proposed in this dissertation open the door to the design and fabrication of high-performance electrochemical biosensors for medical diagnostics.

  3. Physical and electrochemical study of cobalt oxide nano- and microparticles

    SciTech Connect

    Alburquenque, D.; Vargas, E.; Denardin, J.C.; Escrig, J.; Marco, J.F.; Gautier, J.L.

    2014-07-01

    Cobalt oxide nanocrystals of size 17–21 nm were synthesized by a simple reaction between cobalt acetate (II) and dodecylamine. On the other hand, micrometric Co{sub 3}O{sub 4} was prepared using the ceramic method. The structural examination of these materials was performed using powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM and HRTEM). XRD studies showed that the oxides were pure, well-crystallized, spinel cubic phases with a-cell parameter of 0.8049 nm and 0.8069 nm for the nano and micro-oxide, respectively. The average particle size was 19 nm (nano-oxide) and 1250 μm (micro-oxide). Morphological studies carried out by SEM and TEM analyses have shown the presence of octahedral particles in both cases. Bulk and surface properties investigated by X-ray photoelectron spectroscopy (XPS), point zero charge (pzc), FTIR and cyclic voltammetry indicated that there were no significant differences in the composition on both materials. The magnetic behavior of the samples was determined using a vibrating sample magnetometer. The compounds showed paramagnetic character and no coercivity and remanence in all cases. Galvanostatic measurements of electrodes formed with nanocrystals showed better performance than those built with micrometric particles. - Highlights: • Spinel Co{sub 3}O{sub 4} nanoparticles and microparticles with same structure but with different cell parameters, particle size and surface area were synthesized. • Oxide nanoparticles showed better electrochemical behavior than micrometric ones due to area effect.

  4. Integration of optical and electrochemical sensors on a microfluidic platform using organic optoelectronic components and silver nanowires.

    PubMed

    Poorahong, Sujittra; Lefevre, Florent; Perron, Marie-Claude; Juneau, Philippe; Izquierdo, Ricardo

    2016-08-01

    Since the emergence of microfluidic platforms sensors integration has been a major challenge. With the advances in miniaturization of these platforms, there is a need for solutions to integrate various optical components in order to build sensors, which will offer different detection characteristics such as several emission and sensing wavelengths. Moreover, the integration of an electrochemical sensor including a transparent electrode that will be compatible with the optical sensor represents an additional challenge. In this perspective, organic optoelectronic devices combined with silver nanowire electrodes could be a solution. The integration of a fluorescent sensor and an electrochemical oxygen sensor into a microfluidic platform and the different characteristics, advantages and disadvantages that offer organic light-emitting diodes (OLED), organic photodetectors (OPD) and silver nanowire electrodes are discussed. Finally, an example of the integration of an optical and an electrochemical sensor into a microfluidic chip for water pollution detection will be described.

  5. Pencil graphite electrodes for improved electrochemical detection of oleuropein by the combination of Natural Deep Eutectic Solvents and graphene oxide.

    PubMed

    Gomez, Federico J V; Spisso, Adrian; Silva, María Fernanda

    2017-09-07

    A novel methodology is presented for the enhanced electrochemical detection of oleuropein in complex plant matrices by Graphene Oxide Pencil Grahite Electrode (GOPGE) in combination with a buffer modified with a Natural Deep Eutectic Solvent, containing 10% (v/v) of Lactic acid, Glucose and H2 O (LGH). The electrochemical behavior of oleuropein in the modified-working buffer was examined using differential pulse voltammetry. The combination of both modifications, NADES modified buffer and nanomaterial modified electrode, LGH-GOPGE, resulted on a signal enhancement of 5.3 times higher than the bare electrode with unmodified buffer. A calibration curve of oleuropein was performed between 0.10 to 37 μM and a good linearity was obtained with a correlation coefficient of 0.989. Detection and quantification limits of the method were obtained as 30 and 102 nM, respectively. In addition, precision studies indicated that the voltammetric method was sufficiently repeatable, %RSD 0.01 and 3.16 (n = 5) for potential and intensity, respectively. Finally, the proposed electrochemical sensor was successfully applied to the determination of oleuropein in an olive leaf extract prepared by ultrasound-assisted extraction. The results obtained with the proposed electrochemical sensor were compared with Capillary Zone Electrophoresis analysis with satisfactory results. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Electrochemical oxidation for the treatment of textile industry wastewater.

    PubMed

    Radha, K V; Sridevi, V; Kalaivani, K

    2009-01-01

    This study elucidates the reduction of organics from textile effluents through electrochemical oxidation technique. Effect of pH and current intensity were investigated in this system. It was found that degradation was maximum at the current intensity of 0.6 A and at a pH of 1.3. Under the same experimental conditions the removal of chemical oxygen demand (COD), total solids, total dissolved solids and total organic carbon were found to be approximately 68%, 49.2%, 50.7% and 96.8%, respectively. Effect of current intensity on color removal was also investigated as a function of electrolysis time (30-210 minutes) and it showed that maximum removal efficiency (96%) was reached within 60 minutes at 0.6 A. While studying the effect of pH on COD removal, it was observed that a decrease in pH to an optimum of 1.3 showed maximum COD reduction of 68%. These results suggest an important role of these parameters in electrochemical process for removing organic pollutants.

  7. Electrochemical oxidation and reuse of tannery saline wastewater.

    PubMed

    Sundarapandiyan, S; Chandrasekar, R; Ramanaiah, B; Krishnan, S; Saravanan, P

    2010-08-15

    In this present work, electrochemical treatment of saline wastewater with organic (protein) load was studied. The influence of the critical parameters of electro-oxidation such as pH, period, salt concentration and current density on the reduction of organic load was studied using graphite electrodes. It was found that current density of 0.024 A/cm(2) for a period of 2 h at pH 9.0 rendered best results in terms of reduction in COD and TKN. The energy requirement for the reduction of 1 kg of TKN and 1 kg of COD are 22.45 kWh and 0.80 kWh respectively at pH 9 and 0.024 A/cm(2). Reuse experiments were conducted at commercial scale. One of the saline waste streams in leather manufacturing process, pickling was treated and reused continuously thrice. The characteristics of the waste stream and the quality of the leathers indicate that the reuse of saline streams with intermittent electrochemical treatment is feasible.

  8. Cobalt Oxide Nanoflowers for Electrochemical Determination of Glucose

    NASA Astrophysics Data System (ADS)

    Balouch, Quratulain; Ibupoto, Zafar Hussain; Khaskheli, Ghulam Qadir; Soomro, Razium Ali; Sirajuddin; Samoon, Muhammad Kashif; Deewani, Vinod Kumar

    2015-10-01

    This study reports a simple, economic, and efficient approach for synthesis of cobalt oxide (Co3O4) nanostructures by a low-temperature aqueous chemical growth method. The synthesized Co3O4 nanostructures were characterized by various techniques such as x-ray diffraction, x-ray photoelectron spectroscopy, and scanning electron microscopy. The synthesized nanostructures exhibited flower-shaped morphology with thickness of each pellet in the range of 200 to 300 nm. The synthesized Co3O4 nanostructures with excellent structural features exhibited high electrocatalytic activity towards the oxidation of glucose in alkaline solution. This enabled development of a highly sensitive (1618.71 µA mM-1 cm-2), stable and reproducible non-enzymatic glucose sensor. The developed sensor demonstrated high anti-interference capability against common interferents such as dopamine, ascorbic acid and uric acid. Furthermore, the applicability of the developed sensor for the determination of glucose from human blood serum provides an alternative approach for the routine glucose analysis.

  9. Superwetting and aptamer functionalized shrink-induced high surface area electrochemical sensors.

    PubMed

    Hauke, A; Kumar, L S Selva; Kim, M Y; Pegan, J; Khine, M; Li, H; Plaxco, K W; Heikenfeld, J

    2017-08-15

    Electrochemical sensing is moving to the forefront of point-of-care and wearable molecular sensing technologies due to the ability to miniaturize the required equipment, a critical advantage over optical methods in this field. Electrochemical sensors that employ roughness to increase their microscopic surface area offer a strategy to combatting the loss in signal associated with the loss of macroscopic surface area upon miniaturization. A simple, low-cost method of creating such roughness has emerged with the development of shrink-induced high surface area electrodes. Building on this approach, we demonstrate here a greater than 12-fold enhancement in electrochemically active surface area over conventional electrodes of equivalent on-chip footprint areas. This two-fold improvement on previous performance is obtained via the creation of a superwetting surface condition facilitated by a dissolvable polymer coating. As a test bed to illustrate the utility of this approach, we further show that electrochemical aptamer-based sensors exhibit exceptional signal strength (signal-to-noise) and excellent signal gain (relative change in signal upon target binding) when deployed on these shrink electrodes. Indeed, the observed 330% gain we observe for a kanamycin sensor is 2-fold greater than that seen on planar gold electrodes. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Ag/N-doped reduced graphene oxide incorporated with molecularly imprinted polymer: An advanced electrochemical sensing platform for salbutamol determination.

    PubMed

    Li, Junhua; Xu, Zhifeng; Liu, Mengqin; Deng, Peihong; Tang, Siping; Jiang, Jianbo; Feng, Haibo; Qian, Dong; He, Lingzhi

    2017-04-15

    In this work, the metallic silver and non-metallic nitrogen co-doped reduced graphene oxide (Ag-N-RGO) was first synthesized by a simple and cost-effective strategy, and then a molecularly imprinted polymer (MIP) was formed in situ at the surface of the prepared composite via electropolymerization of o-phenylenediamine in the presence of salbutamol as the template molecule. The electrochemical characterizations demonstrate that the bifunctional graphene-based composite shows improved catalytic performance than that of pristine graphene doped with one-component or none. The MIP sensor based on Ag-N-RGO owns high porous surface structure, resulting in the increased current response and enhanced recognition capacity than that of non-imprinted sensor. The outstanding performance of the developed sensor derives from the combined advantages of Ag-N-RGO with effective catalytic property and MIP with excellent selectivity. Under the optimal conditions, the electrochemical response of the developed sensor is linearly proportional to the concentration of salbutamol in the range of 0.03-20.00µmolL(-1) with a low detection limit of 7 nmol L(-1). The designed sensor has exhibited the multiple advantages such as low cost, simple manufacture, convenient use, excellent selectivity and good reproducibility. Finally, the proposed method has been extended for the determinations of salbutamol in human urine and pork samples, and the satisfactory recoveries between 98.9-105.3% are achieved. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. SnO2 nanoparticle-coated ZnO nanotube arrays for high-performance electrochemical sensors.

    PubMed

    She, Guangwei; Huang, Xing; Jin, Liangliang; Qi, Xiaopeng; Mu, Lixuan; Shi, Wensheng

    2014-11-01

    Novel 1D nanostructures offer new opportunities for improving the performance of electrochemical sensors. In this study, highly ordered 1D nanostructure array electrodes composed of SnO2 nanoparticle-coated ZnO (SnO2 @ZnO) nanotubes are designed and fabricated. The composite nanotube array architecture not only endows the electrochemical electrodes with large surface areas, but also allows electrons to be quickly transferred along the nanotubes. Modifying the SnO2 @ZnO nanotube arrays with negatively charged polymer film and employing them as a working electrode, sensitive and selective electrochemical detection of an important neurotransmitter, i.e., dopamine, is realized via the cycle voltammetry (CV) and differential pulse voltammetry (DPV) techniques. Interference from ascorbic acid can be successfully eliminated. The oxidative peak currents recorded from CV linearly depend on the dopamine concentrations from 0.1 to 100 μM with a sensitivity of 2.16 × 10(-7) A μM(-1) cm(-2) and detection limit of 45.2 nM. Using the DPV technique, an improved sensitivity and detection limit of 1.94 × 10(-6) A μM(-1) cm(-2) and 17.7 nM are respectively achieved. Moreover, the SnO2 @ZnO nanotube array electrodes can be reused through simple ultrasonical cleaning and no obvious deterioration is observed in the performance.

  12. Electrochemical dopamine sensor based on P-doped graphene: Highly active metal-free catalyst and metal catalyst support.

    PubMed

    Chu, Ke; Wang, Fan; Zhao, Xiao-Lin; Wang, Xin-Wei; Tian, Ye

    2017-12-01

    Heteroatom doping is an effective strategy to enhance the catalytic activity of graphene and its hybrid materials. Despite a growing interest of P-doped graphene (P-G) in energy storage/generation applications, P-G has rarely been investigated for electrochemical sensing. Herein, we reported the employment of P-G as both metal-free catalyst and metal catalyst support for electrochemical detection of dopamine (DA). As a metal-free catalyst, P-G exhibited prominent DA sensing performances due to the important role of P doping in improving the electrocatalytic activity of graphene toward DA oxidation. Furthermore, P-G could be an efficient supporting material for loading Au nanoparticles, and resulting Au/P-G hybrid showed a dramatically enhanced electrocatalytic activity and extraordinary sensing performances with a wide linear range of 0.1-180μM and a low detection limit of 0.002μM. All these results demonstrated that P-G might be a very promising electrode material for electrochemical sensor applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Flexible Thick-Film Electrochemical Sensors: Impact of Mechanical Bending and Stress on the Electrochemical Behavior

    PubMed Central

    Cai, Jiaying; Cizek, Karel; Long, Brenton; McAferty, Kenyon; Campbell, Casey G.; Allee, David R.; Vogt, Bryan D.; La Belle, Jeff; Wang, Joseph

    2009-01-01

    The influence of the mechanical bending, rolling and crimping of flexible screen-printed electrodes upon their electrical properties and electrochemical behavior has been elucidated. Three different flexible plastic substrates, Mylar, polyethylene naphthalate (PEN), and Kapton, have been tested in connection to the printing of graphite ink working electrodes. Our data indicate that flexible printed electrodes can be bent to extremely small radii of curvature and still function well, despite a marginal increase the electrical resistance. Below critical radii of curvature of ~8 mm, full recovery of the electrical resistance occurs upon strain release. The electrochemical response is maintained for sub-mm bending radii and a 180° pinch of the electrode does not lead to device failure. The electrodes appear to be resistant to repeated bending. Such capabilities are demonstrated using model compounds, including ferrocyanide, trinitrotoluene (TNT) and nitronaphthalene (NN). These printed electrodes hold great promise for widespread applications requiring flexible, yet robust non-planar sensing devices. PMID:20160861

  14. Enhanced photocatalytic activity of electrochemically synthesized aluminum oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Pathania, Deepak; Katwal, Rishu; Kaur, Harpreet

    2016-03-01

    In this study, aluminum oxide (Al2O3) nanoparticles (NPs) were synthesized via an electrochemical method. The effects of reaction parameters such as supporting electrolytes, solvent, current and electrolysis time on the shape and size of the resulting NPs were investigated. The Al2O3 NPs were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, thermogravimetric analysis/differential thermal analysis, energy-dispersive X-ray analysis, and ultraviolet-visible spectroscopy. Moreover, the Al2O3 NPs were explored for photocatalytic degradation of malachite green (MG) dye under sunlight irradiation via two processes: adsorption followed by photocatalysis; coupled adsorption and photocatalysis. The coupled process exhibited a higher photodegradation efficiency (45%) compared to adsorption followed by photocatalysis (32%). The obtained kinetic data was well fitted using a pseudo-first-order model for MG degradation.

  15. Research Update: Nanoscale electrochemical transistors in correlated oxides

    NASA Astrophysics Data System (ADS)

    Kanki, Teruo; Tanaka, Hidekazu

    2017-04-01

    Large reversible changes of the electronic transport properties of solid-state oxide materials induced by electrochemical fields have received much attention as a new research avenue in iontronics. In this research update, dramatic transport changes in vanadium dioxide (VO2) nanowires were demonstrated by electric field-induced hydrogenation at room temperature through the nanogaps separated by humid air in a field-effect transistor structure with planar-type gates. This unique structure allowed us to investigate hydrogen intercalation and diffusion behavior in VO2 channels with respect to both time and space. Our results will contribute to further strategic researches to examine fundamental chemical and physical properties of devices and develop iontronic applications, as well as offering new directions to explore emerging functions for sensing, energy, and neuromorphologic devices combining ionic and electronic behaviors in solid-state materials.

  16. Electrochemical sensors and biosensors for determination of catecholamine neurotransmitters: A review.

    PubMed

    Ribeiro, José A; Fernandes, Paula M V; Pereira, Carlos M; Silva, F

    2016-11-01

    This work describes the state of the art of electrochemical devices for the detection of an important class of neurotransmitters: the catecholamines. This class of biogenic amines includes dopamine, noradrenaline (also called norepinephrine) and adrenaline (also called epinephrine). Researchers have focused on the role of catecholamine molecules within the human body because they are involved in many important biological functions and are commonly associated with several diseases, such as Alzheimer's and Parkinson. Furthermore, the release of catecholamines as a consequence of induced stimulus is an important indicator of reward-related behaviors, such as food, drink, sex and drug addiction. Thus, the development of simple, fast and sensitive electroanalytical methodologies for the determination of catecholamines is currently needed in clinical and biomedical fields, as they have the potential to serve as clinically relevant biomarkers for specific disease states or to monitor treatment efficacy. Currently, three main strategies have used by researchers to detect catecholamine molecules, namely: the use electrochemical materials in combination with, for example, HPLC or FIA, the incorporation of new materials/layers on the sensor surfaces (Tables 1-7) and in vivo detection, manly by using FSCV at CFMEs (Section 10). The developed methodologies were able not only to accurately detect catecholamines at relevant concentration levels, but to do so in the presence of co-existing interferences in samples detected (ascorbate, for example). This review examines the progress made in electrochemical sensors for the selective detection of catecholamines in the last 15 years, with special focus on highly innovative features introduced by nanotechnology. As the literature in rather extensive, we try to simplify this work by summarizing and grouping electrochemical sensors according to the manner their substrates were chemically modified. We also discuss the current and future

  17. Direct electrochemical reduction of graphene oxide on ionic liquid doped screen-printed electrode and its electrochemical biosensing application.

    PubMed

    Ping, Jianfeng; Wang, Yixian; Fan, Kai; Wu, Jian; Ying, Yibin

    2011-10-15

    A novel electrochemical biosensing platform using electrochemically reduced graphene oxide (ER-GNO) modified electrode was proposed. This modified electrode was prepared by one-step electrodeposition of the exfoliated GNO sheets onto the ionic liquid doped screen-printed electrode (IL-SPE). The resulting ER-GNO/IL-SPE brought new capabilities for electrochemical devices by combining the advantages of ER-GNO and disposable electrode. Two important biomolecules, nicotinamide adenine dinucleotide (NADH) and hydrogen peroxide (H(2)O(2)), were employed to study the electrochemical performance of the ER-GNO/IL-SPE, which exhibited more favorable electron transfer kinetics than the bare IL-SPE. On the basis of the greatly enhanced electrochemical reactivity of H(2)O(2) at the developed electrode, ER-GNO and glucose oxidase constructed disposable biosensor showed better analytical performance for the glucose detection compared with the IL-SPE based biosensor. The linear range for the detection of glucose was from 5.0 μM to 12.0 mM with a detection limit of 1.0 μM. This work provides a useful avenue for implementing ER-GNO as a new generation of electrochemical transducer in disposable electrode, which could expand the scope of graphene constructed electrochemical biosensing devices and hold great promise for routine sensing applications.

  18. Commercialization Issues For Catheter-Based Electrochemical Sensors

    NASA Astrophysics Data System (ADS)

    Nikolchev, Julian; Gaisford, Scott

    1989-08-01

    The need for continuous monitoring of key clinical parameters in hospitals is well recognized. Figure 1 shows typical time constants for blood gases, ions and enzymes in response to acute ventilatory changes and interventions. Although it can be seen that relatively low rates of data collection are necessary for many medical measurements, it is also clear that intermittent measurement of P02, PCO2 and pH are not sufficient to provide safe and effective management of the patient. Very frequent or continuous monitoring is often essential. This figure also shows why the emphasis of a large number of research efforts in this country and in Europe and Japan have as their goal the development of continuous blood gas sensors, i.e., sensors that continuously monitor blood pH, partial pressure of oxygen and partial pressure of carbon dioxide. These are three (3) of the most frequent parameters measured in hospitals and the ones having the shortest time constant. Considering that in the United States alone close to 25 million blood gas samples per year are taken from patients, the potential market for continuous monitoring sensors is enormous. The emergence of microelectronics and microfabrication technologies over the past 30 years are now pointing to a possible resolution of the well recognized need for real time monitoring of critically ill patients through catheter-based sensors. Although physicians will always prefer non-invasive monitoring techniques, there are a number of parameters that presently can only be monitored by invasive method. The emerging ability to miniaturize chemical sensors using silicon microfabrication or fiber-optic techniques offer an excellent opportunity to solve this need. In fact, the development of in vivo biomedical sensors with satisfactory performance characteristics has long been considered the ultimate application of these emerging technologies.

  19. Preliminary studies using hybrid mediated electrochemical oxidation (HMEO) for the removal of persistent organic pollutants (POPs).

    PubMed

    Chung, S J; Balaji, S; Matheswaran, M; Ramesh, T; Moon, I S

    2007-01-01

    This study investigates the hybrid mediated electrochemical oxidation (HMEO) technology, which is a newly developed non thermal electrochemical oxidation process for organic destruction. A combination of ozone and ultrasonication processes to the mediated electrochemical oxidation (MEO) process is termed as hybrid mediated electrochemical oxidation. The electrochemical cell was developed in this laboratory. In the present study, several organic compounds, such as phenol, benzoquinone and ethylenediaminetetraacetic acid (EDTA), were chosen as the model organic pollutants to be destructed by the hybrid process. The organic destruction was monitored based on the CO2 generation and total organic carbon (TOC) reduction. The HMEO process was found to be extremely effective in the destruction of all the target organics chosen in this study. The information obtained from this study will provide an insight in adopting this technique for dealing with more recalcitrant organics (POPs).

  20. Vanadium oxides nanostructures: Hydrothermal synthesis and electrochemical properties

    SciTech Connect

    Mjejri, I.; Etteyeb, N.; Sediri, F.

    2014-12-15

    Highlights: • Vanadium oxides nanostructures were synthesized hydrothermally. • Reversible redox behavior with doping/dedoping process. • Doping/dedoping is easier for Li{sup +} to Na{sup +}. • Energy-related applications such as cathodes in lithium batteries. - Abstract: A facile and template-free one-pot strategy is applied to synthesize nanostructured vanadium oxide particles via a hydrothermal methodology. X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transforms infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) have been used to characterize the structure and morphology of the samples. The products are gradually changed from sheet-shaped VO{sub 2}(B) to rod-like V{sub 3}O{sub 7}·H{sub 2}O with decreasing cyclohexanediol as both protective and reducing agent. The specific surface area of the VO{sub 2}(B) nanosheets and V{sub 3}O{sub 7}·H{sub 2}O nanorods was found to be 22 and 16 m{sup 2} g{sup −1}, respectively. Thin films of VO{sub 2}(B) and V{sub 3}O{sub 7}·H{sub 2}O deposited on ITO substrates were electrochemically characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The voltammograms show reversible redox behavior with doping/dedoping process corresponding to reversible cation intercalation/de-intercalation into the crystal lattice of the nanorods/nanosheets. This process is easier for the small Li{sup +} cation than larger ones Na{sup +}.

  1. Biocompatible hydrogel membranes for the protection of RNA aptamer-based electrochemical sensors

    NASA Astrophysics Data System (ADS)

    Schoukroun-Barnes, Lauren R.; Wagan, Samiullah; Liu, Juan; Leach, Jennie B.; White, Ryan J.

    2013-05-01

    Electrochemical-aptamer based (E-AB) sensors represent a universal specific, selective, and sensitive sensing platform for the detection of small molecule targets. Their specific detection abilities are afforded by oligonucleotide (RNA or DNA) aptamers employed as electrode-bound biorecognition elements. Sensor signaling is predicated on bindinginduced changes in conformation and/or flexibility of the aptamer that is readily measurable electrochemically. While sensors fabricated using DNA aptamers can achieve specific and selective detection even in unadulterated sample matrices, such as blood serum, RNA-based sensors fail when challenged in the same sample matrix without significant sample pretreatment. This failure is at least partially a result of enzymatic degradation of the RNA sensing element. This degradation destroys the sensing aptamer inhibiting the quantitative measurement of the target analyte and thus limits the application of E-AB sensors constructed with RNA aptamer. To circumvent this, we demonstrate that a biocompatible hydrogel membrane protects the RNA aptamer sensor surface from enzymatic degradation for at least 3 hours - a remarkable improvement over the rapid (~minutes) degradation of unprotected sensors. To demonstrate this, we characterize the response of sensors fabricated with representative DNA and RNA aptamers directed against the aminoglycoside antibiotic, tobramycin in blood serum both protected and unprotected by a polyacrylamide membrane. Furthermore, we find encapsulation of the sensor surface with the hydrogel does not significantly impede the detection ability of aptamer-based sensors. This hydrogel-aptamer interface will thus likely prove useful for the long-term monitoring of therapeutics in complex biological media.

  2. An electrochemical DNA sensor without electrode pre-modification.

    PubMed

    Hong, Nian; Cheng, Lin; Wei, BingGuo; Chen, ChaDan; He, Ling Ling; Kong, DeRong; Ceng, JinXiang; Cui, Han-Feng; Fan, Hao

    2017-05-15

    We present a non-modification electrochemical DNA sensing strategy, which used Potential-Assisted Au-S Deposition and a clamp-like DNA probe. The dual-hairpin probe DNA was tagged with a methylene blue (MB) at the 3' terminal and a thiol at the 5' terminal., Without being hybridized with target DNA, the loop of probe prevented the thiol from reaching the bare gold electrode surface with an applied potential., After hybridization with the target DNA, the probe' s loop-stem structure opened through two distinct and sequential events, which led to the formation of a triplex DNA structure. Then the thiol easily contacted with electrode and resulted in potential-assisted Au-S self-assembly. Electrochemical signals of MB were measured by differential pulse voltammetry (DPV) and used for target quantitative detection. This strategy offered a detection limit down to 2.3pM. and an inherently high specificity for detecting even single mismatch. Copyright © 2016. Published by Elsevier B.V.

  3. Development of Self-Powered Wireless-Ready High Temperature Electrochemical Sensors for In-Situ Corrosion Monitoring for Boiler Tubes in Next Generation Coal-based Power Systems

    SciTech Connect

    Liu, Xingbo

    2015-06-30

    The key innovation of this project is the synergy of the high temperature sensor technology based on the science of electrochemical measurement and state-of-the-art wireless communication technology. A novel self-powered wireless high temperature electrochemical sensor system has been developed for coal-fired boilers used for power generation. An initial prototype of the in-situ sensor demonstrated the capability of the wireless communication system in the laboratory and in a pilot plant (Industrial USC Boiler Setting) environment to acquire electrochemical potential and current signals during the corrosion process. Uniform and localized under-coal ash deposit corrosion behavior of Inconel 740 superalloy has been studied at different simulated coal ash hot corrosion environments using the developed sensor. Two typical potential noise patterns were found to correlate with the oxidation and sulfidation stages in the hot coal ash corrosion process. Two characteristic current noise patterns indicate the extent of the corrosion. There was a good correlation between the responses of electrochemical test data and the results from corroded surface analysis. Wireless electrochemical potential and current noise signals from a simulated coal ash hot corrosion process were concurrently transmitted and recorded. The results from the performance evaluation of the sensor confirm a high accuracy in the thermodynamic and kinetic response represented by the electrochemical noise and impedance test data.

  4. Stretchable Electrochemical Impedance Sensors for Intravascular Detection of Lipid-Rich Lesions in New Zealand White Rabbits

    PubMed Central

    Cao, Hung; Yu, Fei; Zhao, Yu; Scianmarello, Nick; Lee, Juhyun; Dai, Wangde; Jen, Nelson; Beebe, Tyler; Li, Rongsong; Ebrahimi, Ramin; Chang, Donald S.; Mody, Freny V.; Pacella, John; Tai, Yu-Chong; Hsiai, Tzung

    2014-01-01

    Flexible electronics have enabled catheter-based intravascular sensing. However, real-time interrogation of unstable plaque remains an unmet clinical challenge. Here, we demonstrate the feasibility of stretchable electrochemical impedance spectroscopy (EIS) sensors for endoluminal investigations in New Zealand White (NZW) rabbits on diet-induced hyperlipidemia. A parylene C (PAC)-based EIS sensor mounted on the surface of an inflatable silicone balloon affixed to the tip of an interrogating catheter was deployed 1) on the explants of NZW rabbit aorta for detection of lipid-rich atherosclerotic lesions, and 2) on live animals for demonstration of balloon inflation and EIS measurements. An input peak-to-peak AC voltage of 10 mV and sweeping-frequency from 300 kHz to 100 Hz were delivered to the endoluminal sites. Balloon inflation allowed EIS sensors to be in contact with endoluminal surface. In the oxidized low-density-lipoprotein (oxLDL)-rich lesions from explants of fat-fed rabbits, impedance magnitude increased significantly by 1.5-fold across the entire frequency band, and phase shifted ~5 degrees at frequencies below 10 kHz. In the lesion-free sites of the normal diet-fed rabbits, impedance magnitude increased by 1.2-fold and phase shifted ~5 degrees at frequencies above 30 kHz. Thus, we demonstrate the feasibility of stretchable intravascular EIS sensors for identification of lipid rich lesions, with a translational implication for detecting unstable lesions. PMID:24333932

  5. Biomarker sensing using nanostructured metal oxide sensors

    NASA Astrophysics Data System (ADS)

    Kalyanasundaram, Krithika

    Resistive Chemical sensors are those gas sensitive materials, typically semiconducting metal oxides, that change their electrical properties in response to a change in the ambient. The key features of a chemosensor are sensitivity, selectivity, response time and sensor stability. The hypothesis of this work is that, since metal oxides are polymorphic compounds, the crystal structure of the specific polymorph determines the relative gas selectivity of the material; also that the morphology of the sensing element determines the gas sensitivity limit. This work focuses on the synthesis of nanostructured metal oxides for chemosensors used in selective 'biomarker' detection. Biomarkers are chemical compounds, products of human metabolism which act as specific disease markers. The biomarkers studied in this work include NO, isoprene, NH3, ethanol and acetone which can all be found in exhaled human breath and which allow the non-invasive detection of a range of diseases. Sensors based on three different metal oxides-MoO3, WO 3, and TiO2 were fabricated using sol-gel, electrospinning and spray pyrolysis techniques and tested both as single elements and in an array configuration (electronic nose). The effects of the processing method used, grain size and shape and crystal phase of the material produced, and temperature effects of postsynthesis processing and sensing have been evaluated. Structural characterization has been carried out using X-Ray Diffraction, Scanning and High Resolution Transmission Electron Microscopy, while spectroscopic measurements using XPS, Raman and In-situ FTIR provide valuable information about the surface-analyte interactions. This work has shown that the use of monoclinic polymorph of WO3 yields a selective response to NO, while the other phase of the same oxide give a non-selective chemical response. The orthorhombic phase of MoO 3 exhibits specificity to NH3. An explanation for the variable sensing properties is given based on the gas

  6. Novel Membrane-Based Electrochemical Sensor for Real-Time Bio-Applications

    PubMed Central

    Alatraktchi, Fatima AlZahra'a; Bakmand, Tanya; Dimaki, Maria; Svendsen, Winnie E.

    2014-01-01

    This article presents a novel membrane-based sensor for real-time electrochemical investigations of cellular- or tissue cultures. The membrane sensor enables recording of electrical signals from a cell culture without any signal dilution, thus avoiding loss of sensitivity. Moreover, the porosity of the membrane provides optimal culturing conditions similar to existing culturing techniques allowing more efficient nutrient uptake and molecule release. The patterned sensor electrodes were fabricated on a porous membrane by electron-beam evaporation. The electrochemical performance of the membrane electrodes was characterized by cyclic voltammetry and chronoamperometry, and the detection of synthetic dopamine was demonstrated down to a concentration of 3.1 pM. Furthermore, to present the membrane-sensor functionality the dopamine release from cultured PC12 cells was successfully measured. The PC12 cells culturing experiments showed that the membrane-sensor was suitable as a cell culturing substrate for bio-applications. Real-time measurements of dopamine exocytosis in cell cultures were performed, where the transmitter release was recorded at the point of release. The developed membrane-sensor provides a new functionality to the standard culturing methods, enabling sensitive continuous in vitro monitoring and closely mimicking the in vivo conditions. PMID:25421738

  7. Ruthenium Oxide-Based Microelectrochemical Devices: Electrochemical Behavior of the Oxide Formed by Reduction of RuO4(2-)

    DTIC Science & Technology

    1988-08-15

    579 I i1. TITLE (include Security Classification) Ruthemium Oxide-Based Microelectrochemical Devices : Electrochem. _Behavior of the Oxide Formed by...Ruthenium Oxide-Based Microelectrochemical Devices : Electrochemical Behavior of the Oxide Formed by Reduction of RuO4 2- by Djonald F. Lyons, Martin 0...RUTHENIUM OXIDE-BASED MICROELECTROCHEMICAL DEVICES : ELECTROCHEMICAL BEHAVIOR OF THE OXIDE FORMED BY REDUCTION OF Ruo4 2- Donald F. Lyons, Martin 0

  8. Characterization of MgFe2O4 nanoparticles as a novel electrochemical sensor: application for the voltammetric determination of ciprofloxacin.

    PubMed

    Ensafi, Ali A; Allafchian, Ali R; Mohammadzadeh, R

    2012-01-01

    A new sensor containing MgFe2O4 nanoparticles in modified multiwall carbon nanotubes (MgFe2O4-MWCNTs) was prepared, and its electrochemical behavior was investigated. MgFe2O4-MWCNTs were used as a voltammetric sensor for the electrocatalytic determination of ciprofloxacin. The synthesized materials were characterized by different methods such as transmission electron microscopy (TEM), X-ray diffraction (XRD), cyclic voltammetry, and electrochemical impedance spectroscopy. The MgFe2O4-MWCNTs electrode showed an oxidation peak potential at around 250 mV. The immobilized composite films facilitate interfacial electron transfer and electrocatalytic activity on the oxidation of ciprofloxacin. The oxidation peak current was dependent on the ciprofloxacin concentration, which was linear over the range of 0.10 - 1000 µmol L(-1) with a detection limit and quantification limit of 0.01 and 0.08 µmol L(-1), respectively. The relative standard deviation for the determination of 1.0 µmol L(-1) ciprofloxacin was 1.1%. The repeatability of the sensor was investigated by preparing nine similar electrodes. The proposed sensor is a selective and fast tool for the determination of ciprofloxacin in tablet, plasma, and urine samples.

  9. Development of sensors for nitric oxide

    SciTech Connect

    Glazier, S.A.

    1994-12-31

    The importance of nitric oxide (NO) in mammalian systems has recently been recognized. Interest in NO stems from the discovery of its role in several processes. Firstly, NO is found to be an endothelium-derived relaxing factor. Release of NO by endothelial cells lining blood vessels causes the surrounding smooth muscle of the vessel walls to relax. Secondly, it is known to inhibit the aggregation and adhesion of platelets in blood vessels. Thirdly, NO is believed to be formed by activated macrophage cells to assist in killing foreign cells. Lastly, NO acts in the brain both as a feedback messenger from post- to presynaptic nerve cells and as a conventional neurotransmitter affecting cells other than presynaptic nerve cells. In addition to these roles, it is likely that NO is involved in other processes given its reactivity and potential presence in all mammalian cells. Measurement of NO flux within biological systems is a challenging problem as NO is generated in the nanomolar to micromolar range and is subject to rapid oxidation. The three most common assay techniques for NO in biological systems include: (a) electron paramagnetic resonance detection, (b) hemoglobin oxidation, and (c) chemiluminescence detection with ozone. The authors have initiated research on the construction of a hemoglobin-based, fiber-optic sensor for the detection of nitric oxide in biological systems and progress toward this goal will be presented.

  10. Mesoporous NiCo2O4-decorated reduced graphene oxide as a novel platform for electrochemical determination of rutin.

    PubMed

    Cui, Shiqiang; Li, Li; Ding, Yaping; Zhang, Jiangjiang; Yang, Hua; Wang, Yingzi

    2017-03-01

    The glassy carbon electrode (GCE) modified with mesoporous NiCo2O4-decorated reduced graphene oxide (NiCo2O4/rGO) was first applied for the electrochemical determination of rutin. The synthesized NiCo2O4 and NiCo2O4/rGO were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) method. The sensor not only showed a satisfactory linear range (0.1-150μM) and detection limit (0.01μM) but also exhibited the good anti-interference abilities, low price, high stability, as well as favorable precision and accuracy. The present work is meaningful to expand functionalized graphene composites to sensor fields and promote the development of rutin sensors.

  11. Electrochemical sensor based on Arthrobacter globiformis for cholinesterase activity determination.

    PubMed

    Stoytcheva, Margarita; Zlatev, Roumen; Valdez, Benjamin; Magnin, Jean-Pierre; Velkova, Zdravka

    2006-07-15

    The sensors applied recently for determination of cholinesterase activity are mostly enzymatic amperometric sensors, in spite of their disadvantages: short life-time at ambient temperature, instability of the response, interferences, as well as passivation of the electrode surface. In the present paper a new approach for determination of cholinesterase activity was proposed, overcoming the main drawbacks of the analysis performed with amperometric enzymatic sensors. Instead of the immobilization of enzymes on a conducting electrode surface, whole cells of Arthrobacter globiformis, containing choline oxidase were fixed on a Clark type oxygen probe. Current proportional to bacteria respiration is registered as a sensor response. The application of whole cells of bacteria as a sensing element permits to achieve high stability of the response and long life-time of the sensor at ambient temperature, due to the conservation of the enzyme in its natural micro-environment inside the immobilized cells. The proposed sensor keeps its functionality more than 7 weeks stored in deionized water at ambient temperature. For the first 2 weeks the amplitude of the response decreases with only 10% and at the end of the studied 7 weeks period the response was 50% of the initial. The other advantages of the proposed sensor are: the dissolved oxygen is used as a mediator which concentration can be reliably and interferences free measured by the aim of a Clark type oxygen probe applied as a transducer; reproducible bacterial membranes can be elaborated by filtration of resuspended bacterial culture after preliminary determination of its activity; application of membranes containing lyophilized bacteria capable to be conserved infinitely long time and activated just before their application; negligible cost compared with the sensors based on immobilized enzymes. The steady-state response of the proposed bacterial sensor to choline obtained in 200 s is linear in the investigated

  12. A reduced graphene oxide based electrochemical biosensor for tyrosine detection

    NASA Astrophysics Data System (ADS)

    Wei, Junhua; Qiu, Jingjing; Li, Li; Ren, Liqiang; Zhang, Xianwen; Chaudhuri, Jharna; Wang, Shiren

    2012-08-01

    In this paper, a ‘green’ and safe hydrothermal method has been used to reduce graphene oxide and produce hemin modified graphene nanosheet (HGN) based electrochemical biosensors for the determination of l-tyrosine levels. The as-fabricated HGN biosensors were characterized by UV-visible absorption spectra, fluorescence spectra, Fourier transform infrared spectroscopy (FTIR) spectra and thermogravimetric analysis (TGA). The experimental results indicated that hemin was successfully immobilized on the reduced graphene oxide nanosheet (rGO) through π-π interaction. TEM images and EDX results further confirmed the attachment of hemin on the rGO nanosheet. Cyclic voltammetry tests were carried out for the bare glass carbon electrode (GCE), the rGO electrode (rGO/GCE), and the hemin-rGO electrode (HGN/GCE). The HGN/GCE based biosensor exhibits a tyrosine detection linear range from 5 × 10-7 M to 2 × 10-5 M with a detection limitation of 7.5 × 10-8 M at a signal-to-noise ratio of 3. The sensitivity of this biosensor is 133 times higher than that of the bare GCE. In comparison with other works, electroactive biosensors are easily fabricated, easily controlled and cost-effective. Moreover, the hemin-rGO based biosensors demonstrate higher stability, a broader detection linear range and better detection sensitivity. Study of the oxidation scheme reveals that the rGO enhances the electron transfer between the electrode and the hemin, and the existence of hemin groups effectively electrocatalyzes the oxidation of tyrosine. This study contributes to a widespread clinical application of nanomaterial based biosensor devices with a broader detection linear range, improved stability, enhanced sensitivity and reduced costs.

  13. A reduced graphene oxide based electrochemical biosensor for tyrosine detection.

    PubMed

    Wei, Junhua; Qiu, Jingjing; Li, Li; Ren, Liqiang; Zhang, Xianwen; Chaudhuri, Jharna; Wang, Shiren

    2012-08-24

    In this paper, a 'green' and safe hydrothermal method has been used to reduce graphene oxide and produce hemin modified graphene nanosheet (HGN) based electrochemical biosensors for the determination of l-tyrosine levels. The as-fabricated HGN biosensors were characterized by UV-visible absorption spectra, fluorescence spectra, Fourier transform infrared spectroscopy (FTIR) spectra and thermogravimetric analysis (TGA). The experimental results indicated that hemin was successfully immobilized on the reduced graphene oxide nanosheet (rGO) through π-π interaction. TEM images and EDX results further confirmed the attachment of hemin on the rGO nanosheet. Cyclic voltammetry tests were carried out for the bare glass carbon electrode (GCE), the rGO electrode (rGO/GCE), and the hemin-rGO electrode (HGN/GCE). The HGN/GCE based biosensor exhibits a tyrosine detection linear range from 5 × 10(-7) M to 2 × 10(-5) M with a detection limitation of 7.5 × 10(-8) M at a signal-to-noise ratio of 3. The sensitivity of this biosensor is 133 times higher than that of the bare GCE. In comparison with other works, electroactive biosensors are easily fabricated, easily controlled and cost-effective. Moreover, the hemin-rGO based biosensors demonstrate higher stability, a broader detection linear range and better detection sensitivity. Study of the oxidation scheme reveals that the rGO enhances the electron transfer between the electrode and the hemin, and the existence of hemin groups effectively electrocatalyzes the oxidation of tyrosine. This study contributes to a widespread clinical application of nanomaterial based biosensor devices with a broader detection linear range, improved stability, enhanced sensitivity and reduced costs.

  14. Patterned electrode-based amperometric gas sensor for direct nitric oxide detection within microfluidic devices.

    PubMed

    Cha, Wansik; Tung, Yi-Chung; Meyerhoff, Mark E; Takayama, Shuichi

    2010-04-15

    This article describes a thin amperometric nitric oxide (NO) sensor that can be microchannel embedded to enable direct real-time detection of NO produced by cells cultured within the microdevice. A key for achieving the thin ( approximately 1 mm) planar sensor configuration required for sensor-channel integration is the use of gold/indium-tin oxide patterned electrode directly on a porous polymer membrane (pAu/ITO) as the base working electrode. The electrochemically deposited Au-hexacyanoferrate layer on pAu/ITO is used to catalyze NO oxidation to nitrite at lower applied potentials (0.65-0.75 V vs Ag/AgCl) and stabilize current output. Furthermore, use of a gas-permeable membrane to separate internal sensor compartments from the sample phase imparts excellent NO selectivity over common interfering agents (e.g., nitrite, ascorbate, ammonia, etc.) present in culture media and biological fluids. The optimized sensor design reversibly detects NO down to the approximately 1 nM level in stirred buffer and <10 nM in flowing buffer when integrated within a polymeric microfluidic device. We demonstrate utility of the channel-embedded sensor by monitoring NO generation from macrophages cultured within non-gas-permeable microchannels, as they are stimulated with endotoxin.

  15. Nanoscale Electrochemical Sensor Arrays: Redox Cycling Amplification in Dual-Electrode Systems.

    PubMed

    Wolfrum, Bernhard; Kätelhön, Enno; Yakushenko, Alexey; Krause, Kay J; Adly, Nouran; Hüske, Martin; Rinklin, Philipp

    2016-09-20

    Micro- and nanofabriation technologies have a tremendous potential for the development of powerful sensor array platforms for electrochemical detection. The ability to integrate electrochemical sensor arrays with microfluidic devices nowadays provides possibilities for advanced lab-on-a-chip technology for the detection or quantification of multiple targets in a high-throughput approach. In particular, this is interesting for applications outside of analytical laboratories, such as point-of-care (POC) or on-site water screening where cost, measurement time, and the size of individual sensor devices are important factors to be considered. In addition, electrochemical sensor arrays can monitor biological processes in emerging cell-analysis platforms. Here, recent progress in the design of disease model systems and organ-on-a-chip technologies still needs to be matched by appropriate functionalities for application of external stimuli and read-out of cellular activity in long-term experiments. Preferably, data can be gathered not only at a singular location but at different spatial scales across a whole cell network, calling for new sensor array technologies. In this Account, we describe the evolution of chip-based nanoscale electrochemical sensor arrays, which have been developed and investigated in our group. Focusing on design and fabrication strategies that facilitate applications for the investigation of cellular networks, we emphasize the sensing of redox-active neurotransmitters on a chip. To this end, we address the impact of the device architecture on sensitivity, selectivity as well as on spatial and temporal resolution. Specifically, we highlight recent work on redox-cycling concepts using nanocavity sensor arrays, which provide an efficient amplification strategy for spatiotemporal detection of redox-active molecules. As redox-cycling electrochemistry critically depends on the ability to miniaturize and integrate closely spaced electrode systems, the

  16. A novel poly(cyanocobalamin) modified glassy carbon electrode as electrochemical sensor for voltammetric determination of peroxynitrite.

    PubMed

    Wang, Yan; Chen, Zhen-zhen

    2010-07-15

    This report described the direct voltammetric detection of peroxynitrite (ONOO(-)) at a novel cyanocobalamin modified glassy carbon electrode prepared by electropolymeriation method. The electrochemical behaviors of peroxynitrite at the modified electrode were studied by cyclic voltammetry. The results showed that this new electrochemical sensor exhibited an excellent electrocatalytic activity to oxidation of peroxynitrite. The mechanism of catalysis was discussed. Based on electrocatalytic oxidation of peroxynitrite at the poly(cyanocobalamin) modified electrode, peroxynitrite was sensitively detected by differential pulse voltammetry. Under optimum conditions, the anodic peak current was linear to concentration of peroxynitrite in the range of 2.0x10(-6) to 3.0x10(-4) mol L(-1) with a detection limit of 1.0x10(-7) mol L(-1) (S/N of 3). The proposed method has been applied to determination of peroxynitrite in human serum with satisfactory results. This poly(cyanocobalamin) modified electrode showed high selectivity and sensitivity to peroxynitrite determination, which could be used in quantitative detection of peroxynitrite in vivo and in vitro. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Recent developments in nanostructure based electrochemical glucose sensors.

    PubMed

    Zaidi, Shabi Abbas; Shin, Jae Ho

    2016-01-01

    Diabetes is a major health problem causing 4 million deaths each year and 171 million people suffering worldwide. Although there is no cure for diabetes, nevertheless, the blood glucose level of diabetic patients should be monitored tightly to avoid further complications. Thus, monitoring of glucose in blood has become an inevitable need leading to fabrication of accurate and sensitive advanced blood sugar detection devices for clinical diagnosis and personal care. It led to the development of enzymatic glucose sensing approach. Later on, various types of nanostructures have been utilized owing to their high surface area, great stability, and cost effectiveness for the fabrication of enzymatic as well as for nonenzymatic glucose sensing approach. This work reviews on both categories, however it is not intended to discuss all the research reports published regarding nanostructure based enzymatic and nonenzymatic approaches between mid-2010 and mid-2015. We, do, however, focused to describe the details of many substantial articles explaining the design of sensors, and utilities of the prepared sensors, so that readers might get the principles behind such devices and relevant detection strategies. This work also focuses on biocompatibility and toxicity of nanomaterials as well as provides a critical opinion and discussions about misconceptions in glucose sensors.

  18. Multi-resistive Reduced Graphene Oxide Diode with Reversible Surface Electrochemical Reaction induced Carrier Control

    PubMed Central

    Seo, Hyungtak; Ahn, Seungbae; Kim, Jinseo; Lee, Young-Ahn; Chung, Koo-Hyun; Jeon, Ki-Joon

    2014-01-01

    The extended application of graphene-based electronic devices requires a bandgap opening in order to realize the targeted device functionality. Since the bandgap tuning of pristine graphene is limited to 360 meV, the chemical modification of graphene is considered essential to achieve a large bandgap opening at the expense of electrical properties degradation. Reduced graphene oxide (RGO) has attracted significant interest for fabricating graphene-based semiconductors since it has several advantages over other forms of chemically modified graphene; such as tunable bandgap opening, decent electrical properties, and easy synthesis. Because of the reduced bonding nature of RGO, the role of metastable oxygen in the RGO matrix is recently highlighted and it may offer emerging ionic devices. In this study, we show that multi-resistivity RGO/n-Si diodes can be obtained by controlling the RGO thickness at a nanometer scale. This is made possible by (1) a metastable lattice-oxygen drift within bulk RGO and (2) electrochemical ambient hydroxyl (OH) formation at the RGO surface. The effect demonstrated in a p-RGO/n-Si heterojunction diode is equivalent to electrochemically driven reversible electronic manipulation and therefore provides an important basis for the application of O bistability in RGO for chemical sensors and electrocatalysis. PMID:25007942

  19. Multi-resistive reduced graphene oxide diode with reversible surface electrochemical reaction induced carrier control.

    PubMed

    Seo, Hyungtak; Ahn, Seungbae; Kim, Jinseo; Lee, Young-Ahn; Chung, Koo-Hyun; Jeon, Ki-Joon

    2014-07-10

    The extended application of graphene-based electronic devices requires a bandgap opening in order to realize the targeted device functionality. Since the bandgap tuning of pristine graphene is limited to 360 meV, the chemical modification of graphene is considered essential to achieve a large bandgap opening at the expense of electrical properties degradation. Reduced graphene oxide (RGO) has attracted significant interest for fabricating graphene-based semiconductors since it has several advantages over other forms of chemically modified graphene; such as tunable bandgap opening, decent electrical properties, and easy synthesis. Because of the reduced bonding nature of RGO, the role of metastable oxygen in the RGO matrix is recently highlighted and it may offer emerging ionic devices. In this study, we show that multi-resistivity RGO/n-Si diodes can be obtained by controlling the RGO thickness at a nanometer scale. This is made possible by (1) a metastable lattice-oxygen drift within bulk RGO and (2) electrochemical ambient hydroxyl (OH) formation at the RGO surface. The effect demonstrated in a p-RGO/n-Si heterojunction diode is equivalent to electrochemically driven reversible electronic manipulation and therefore provides an important basis for the application of O bistability in RGO for chemical sensors and electrocatalysis.

  20. Use of high-temperature gas-tight electrochemical cells to measure electronic transport and thermodynamics in metal oxides

    SciTech Connect

    Park, J.H.; Ma, B.; Park, E.T.

    1997-10-01

    By using a gas-tight electrochemical cell, the authors can perform high-temperature coulometric titration and measure electronic transport properties to determine the electronic defect structure of metal oxides. This technique reduces the time and expense required for conventional thermogravimetric measurements. The components of the gas-tight coulometric titration cell are an oxygen sensor, Pt/yttria stabilized zirconia (YSZ)/Pt, and an encapsulated metal oxide sample. Based on cell design, both transport and thermodynamic measurements can be performed over a wide range of oxygen partial pressures (pO{sub 2} = 10{sup {minus}35} to 1 atm). This paper describes the high-temperature gas-tight electrochemical cells used to determine electronic defect structures and transport properties for pure and doped-oxide systems, such as YSZ, doped and pure ceria (Ca-CeO{sub 2} and CeO{sub 2}), copper oxides, and copper-oxide-based ceramic superconductors, transition metal oxides, SrFeCo{sub 0.5}O{sub x}, and BaTiO{sub 3}.

  1. Electrochemical, H2O2-Boosted Catalytic Oxidation System

    NASA Technical Reports Server (NTRS)

    Akse, James R.; Thompson, John O.; Schussel, Leonard J.

    2004-01-01

    An improved water-sterilizing aqueous-phase catalytic oxidation system (APCOS) is based partly on the electrochemical generation of hydrogen peroxide (H2O2). This H2O2-boosted system offers significant improvements over prior dissolved-oxygen water-sterilizing systems in the way in which it increases oxidation capabilities, supplies H2O2 when needed, reduces the total organic carbon (TOC) content of treated water to a low level, consumes less energy than prior systems do, reduces the risk of contamination, and costs less to operate. This system was developed as a variant of part of an improved waste-management subsystem of the life-support system of a spacecraft. Going beyond its original intended purpose, it offers the advantage of being able to produce H2O2 on demand for surface sterilization and/or decontamination: this is a major advantage inasmuch as the benign byproducts of this H2O2 system, unlike those of systems that utilize other chemical sterilants, place no additional burden of containment control on other spacecraft air- or water-reclamation systems.

  2. Development of spiropyran-based electrochemical sensor via simultaneous photochemical and target-activatable electron transfer.

    PubMed

    Tao, Jia; Li, Yinhui; Zhao, Peng; Li, Jishan; Duan, Yu; Zhao, Wenjie; Yang, Ronghua

    2014-12-15

    In traditional electrochemical sensors, the electrochemical signal transduction of the redox-active material is usually controlled by the analytical target. Due to non-specific interaction between the redox mediator and the target, false signal by single stimulus may not be avoided. To address this issue, we have developed a new electrochemical sensor that uses a functional spiropyran, an important class of photo and thermochromic compounds, as both recognition receptor and latent redox mediator, to realize simultaneous photochemical and target-modulated electron transfer. As a proof of principle, β-galactosidase was chosen as a model target. The new synthesized spiropyran probe, SP-β-gal, undergoes reversibly structural isomerization to form merocyanine under UV light irradiation. After the glycosidic bond being cleaved by β-galactosidase, the opened merocyanine of SP-β-gal forms redox-active 2-(2.5-dihydroxystyryl)-1.3.3-trimethyl-3H-indolium, and thus produces a pair of reversible redox current peaks under the electrochemical scanning. To amplify the detection signal, SP-β-gal was self-assembled with single-walled carbon nanotubes (SWCNTs) on the surface of glass carbon electrode. Kinetics experiments confirm that the probe is an ideal candidate for the determination of different concentrations of β-galactosidase digestion kinetics. Further, the SP-β-gal/SWCNTs-modified electrode is chemically stable in complex biological fluids. It was successfully applied to monitor β-galactosidase activity in the 10% calf thymus. This work represents not only a significant step forward in the further development of low-dimensional carbon nanomaterials/small organic molecular probes-based electrochemical biosensors, but also a new platform which may be extended to the assay of other enzyme such as β-D-glycosidase and so on by translating the biorecognition into electrochemical signal responses.

  3. Treatment and toxicity evaluation of methylene blue using electrochemical oxidation, fly ash adsorption and combined electrochemical oxidation-fly ash adsorption.

    PubMed

    Wang, Kai-sung; Wei, Ming-Chi; Peng, Tzu-Huan; Li, Heng-Ching; Chao, Shu-Ju; Hsu, Tzu-Fang; Lee, Hong-Shen; Chang, Shih-Hsien

    2010-08-01

    Treatment of a basic dye, methylene blue, by electrochemical oxidation, fly ash adsorption, and combined electrochemical oxidation-fly ash adsorption was compared. Methylene blue at 100 mgL(-1) was used in this study. The toxicity was also monitored by the Vibrio fischeri light inhibition test. When electrochemical oxidation was used, 99% color and 84% COD were removed from the methylene blue solution in 20 min at a current density of 428 Am(-2), NaCl of 1000 mgL(-1), and pH(0) of 7. However, the decolorized solution showed high toxicity (100% light inhibition). For fly ash adsorption, a high dose of fly ash (>20,000 mgL(-1)) was needed to remove methylene blue, and the Freundlich isotherm described the adsorption behavior well. In the combined electrochemical oxidation-fly ash adsorption treatment, the addition of 4000 mgL(-1) fly ash effectively reduced intermediate toxicity and decreased the COD of the electrochemical oxidation-treated methylene blue solution. The results indicated that the combined process effectively removed color, COD, and intermediate toxicity of the methylene blue solution.

  4. Developing high-sensitivity ethanol liquid sensors based on ZnO/porous Si nanostructure surfaces using an electrochemical impedance technique

    NASA Astrophysics Data System (ADS)

    Husairi, Mohd; Rouhi, Jalal; Alvin, Kevin; Atikah, Zainurul; Rusop, Muhammad; Abdullah, Saifollah

    2014-07-01

    ZnO nanostructures were synthesized on porous Si (PSi) substrates using the thermal catalytic-free immersion method. Crack-like ZnO nanostructures were formed on the bare, sponge-like PSi structures. An approach to fabricate chemical sensors based on the ZnO/PSi nanostructure arrays that uses an electrochemical impedance technique is reported. Sensor performance was evaluated for ethanol solutions by the morphology and defect structures of the ZnO nanostructure layer. Results indicate that the ZnO/PSi nanostructure chemical sensor exhibits rapid and high response to ethanol compared with a PSi nanostructure sensor because of its small particle size and an oxide layer acting as a capacitive layer on the PSi nanostructure surface.

  5. An electrochemical-sensor system for real-time flow measurements in porous materials.

    PubMed

    Bathany, Cédric; Han, Ja-Ryoung; Abi-Samra, Kameel; Takayama, Shuichi; Cho, Yoon-Kyoung

    2015-08-15

    Flow monitoring in porous materials is critical for the engineering of paper-based microfluidic bioassays. Here, we present an electrochemical-sensor system that monitors the liquid flow in porous materials without affecting the real flow in paper-strip samples. The developed microfluidic sensor records an amperometric signal created by the solution movement mediated by paper wicking. This approach allows the in situ monitoring of the different hydrodynamic conditions of a specific paper geometry or composition. In addition, the method proposed in this work was employed to characterise the fluid flow of different nitrocellulose paper strips after oxygen-plasma treatment or dextran coating. The dextran fluid-flow modifiers were further used on the paper strip-based assays as means of signal enhancement. The proposed electrochemical-sensing method offers a valuable alternative to existing optical-based monitoring techniques for flow measurement in paper-based microfluidic systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Electrochemical sensors and devices for heavy metals assay in water: the French groups' contribution

    PubMed Central

    Pujol, Luca; Evrard, David; Groenen-Serrano, Karine; Freyssinier, Mathilde; Ruffien-Cizsak, Audrey; Gros, Pierre

    2014-01-01

    A great challenge in the area of heavy metal trace detection is the development of electrochemical techniques and devices which are user-friendly, robust, selective, with low detection limits and allowing fast analyses. This review presents the major contribution of the French scientific academic community in the field of electrochemical sensors and electroanalytical methods within the last 20 years. From the well-known polarography to the up-to-date generation of functionalized interfaces, the different strategies dedicated to analytical performances improvement are exposed: stripping voltammetry, solid mercury-free electrode, ion selective sensor, carbon based materials, chemically modified electrodes, nano-structured surfaces. The paper particularly emphasizes their advantages and limits face to the last Water Frame Directive devoted to the Environmental Quality Standards for heavy metals. Recent trends on trace metal speciation as well as on automatic “on line” monitoring devices are also evoked. PMID:24818124

  7. Portable Analyzer Based on Microfluidics/Nanoengineered Electrochemical Sensors for in Situ Characterization of Mixed Wastes

    SciTech Connect

    Wang, Joseph

    2006-06-01

    This research effort aims at developing a portable analytical system for fast, sensitive, and inexpensive, on-site monitoring of toxic transition metals and radionuclides in contaminated DOE Sites. The portable devices will be based on Microscale Total Analytical systems ( -TAS) or ''Lab-on-a-chip'' in combination with electrochemical (stripping-voltammetric) sensors. The resulting microfluidics/electrochemical sensor system would allow testing for toxic metals to be performed more rapidly, inexpensively, and reliably in a field setting. Progress Summary/Accomplishments: This report summarizes the ASU activity over the second year of the project. In accordance to our original objectives our studies have focused on various fundamental and practical aspects of sensing and microchip devices for monitoring metal contaminants. As described in this section, we have made a substantial progress, and introduced effective routes for improving the on-site detection of toxic metals and for interfacing microchips with the real world.

  8. A graphene-based electrochemical sensor for sensitive detection of paracetamol

    SciTech Connect

    Kang, Xinhuang; Wang, Jun; Wu, Hong; Liu, Jun; Aksay, Ilhan A.; Lin, Yuehe

    2010-05-15

    An electrochemical sensor based on the electrocatalytic activity of functionalized graphene for sensitive detection of paracetamol is presented. The electrochemical behaviors of paracetamol on graphene-modified glassy carbon electrodes (GCEs) were investigated by cyclic voltammetry and square-wave voltammetry. The results showed that the graphene-modified electrode exhibited excellent electrocatalytic activity to paracetamol. A quasi-reversible redox process of paracetamol at the modified electrode was obtained, and the over-potential of paracetamol decreased significantly compared with that at the bare GCE. Such electrocatalytic behavior of graphene is attributed to its unique physical and chemical properties, e.g., subtle electronic characteristics, attractive π–π interaction, and strong adsorptive capability. The sensor shows great promise for simple, sensitive, and quantitative detection of paracetamol.

  9. Electrochemical sensors and devices for heavy metals assay in water: the French groups' contribution

    NASA Astrophysics Data System (ADS)

    Pujol, Luca; Evrard, David; Groenen-Serrano, Karine; Freyssinier, Mathilde; Ruffien-Ciszak, Audrey; Gros, Pierre

    2014-04-01

    A great challenge in the area of heavy metal trace detection is the development of electrochemical techniques and devices which are user-friendly, robust, selective, with low detection limits and allowing fast analyses. This review presents the major contribution of the French scientific academic community in the field of electrochemical sensors and electroanalytical methods within the last 20 years. From the well-known polarography to the up-to-date generation of functionalized interfaces, the different strategies dedicated to analytical performances improvement are exposed: stripping voltammetry, solid mercury-free electrode, ion selective sensor, carbon based materials, chemically modified electrodes, nano-structured surfaces. The paper particularly emphasizes their advantages and limits face to the last Water Frame Directive devoted to the Environmental Quality Standards for heavy metals. Recent trends on trace metal speciation as well as on automatic “on line” monitoring devices are also evoked.

  10. Electrochemical sensors and devices for heavy metals assay in water: the French groups' contribution.

    PubMed

    Pujol, Luca; Evrard, David; Groenen-Serrano, Karine; Freyssinier, Mathilde; Ruffien-Cizsak, Audrey; Gros, Pierre

    2014-01-01

    A great challenge in the area of heavy metal trace detection is the development of electrochemical techniques and devices which are user-friendly, robust, selective, with low detection limits and allowing fast analyses. This review presents the major contribution of the French scientific academic community in the field of electrochemical sensors and electroanalytical methods within the last 20 years. From the well-known polarography to the up-to-date generation of functionalized interfaces, the different strategies dedicated to analytical performances improvement are exposed: stripping voltammetry, solid mercury-free electrode, ion selective sensor, carbon based materials, chemically modified electrodes, nano-structured surfaces. The paper particularly emphasizes their advantages and limits face to the last Water Frame Directive devoted to the Environmental Quality Standards for heavy metals. Recent trends on trace metal speciation as well as on automatic "on line" monitoring devices are also evoked.

  11. Combining Electrochemical Sensors with Miniaturized Sample Preparation for Rapid Detection in Clinical Samples

    PubMed Central

    Bunyakul, Natinan; Baeumner, Antje J.

    2015-01-01

    Clinical analyses benefit world-wide from rapid and reliable diagnostics tests. New tests are sought with greatest demand not only for new analytes, but also to reduce costs, complexity and lengthy analysis times of current techniques. Among the myriad of possibilities available today to develop new test systems, amperometric biosensors are prominent players—best represented by the ubiquitous amperometric-based glucose sensors. Electrochemical approaches in general require little and often enough only simple hardware components, are rugged and yet provide low limits of detection. They thus offer many of the desirable attributes for point-of-care/point-of-need tests. This review focuses on investigating the important integration of sample preparation with (primarily electrochemical) biosensors. Sample clean up requirements, miniaturized sample preparation strategies, and their potential integration with sensors will be discussed, focusing on clinical sample analyses. PMID:25558994

  12. Method of detecting defects in ion exchange membranes of electrochemical cells by chemochromic sensors

    SciTech Connect

    Brooker, Robert Paul; Mohajeri, Nahid

    2016-01-05

    A method of detecting defects in membranes such as ion exchange membranes of electrochemical cells. The electrochemical cell includes an assembly having an anode side and a cathode side with the ion exchange membrane in between. In a configuration step a chemochromic sensor is placed above the cathode and flow isolation hardware lateral to the ion exchange membrane which prevents a flow of hydrogen (H.sub.2) between the cathode and anode side. The anode side is exposed to a first reactant fluid including hydrogen. The chemochromic sensor is examined after the exposing for a color change. A color change evidences the ion exchange membrane has at least one defect that permits H.sub.2 transmission therethrough.

  13. Biomedical Detection via Macro- and Nano-Sensors Fabricated with Metallic and Semiconducting Oxides

    PubMed Central

    Hahm, Jong-In

    2013-01-01

    Originally developed as gas sensors, the benefits of metallic and semiconducting oxide materials are now being realized in other areas of sensing, such as chemical, environmental, and biomedical monitoring and detection. Metallic and semiconducting oxides have continuously expanded their roles to date, and have also established their significance in biosensing by utilizing a variety of modes for signal generation and detection mechanism. These sensors are typically based either on their optical, electrochemical, electrical, gravimetric, acoustic, and magnetic properties for signal transduction. This article reviews such biosensors that employ metallic and semiconducting oxides as active sensing elements to detect nucleic acids, proteins, cells, and a variety of important biomarkers, both in thin film and one-dimensional forms. Specific oxide materials (Mx Oy ) examined comprehensively in this article include M = Fe, Cu, Si, Zn, Sn, In. The derivatives of these oxide materials resulting from incorporation of dopants are examined as well. The crystalline structures and unique properties that may be exploited for various biosensing applications are discussed, and recent efforts investigating the feasibility of using these oxide materials in biosensor technology are described. Key biosensor characteristics resulting from reduced dimensionality are overviewed under the motif of planar and one-dimensional sensors. This article also provides insight into current challenges facing biosensor applications for metallic and semiconducting oxides. In addition, future outlook in this particular field as well as different impacts on biology and medicine are addressed. PMID:23627064

  14. An Electrochemical NO₂ Sensor Based on Ionic Liquid: Influence of the Morphology of the Polymer Electrolyte on Sensor Sensitivity.

    PubMed

    Kuberský, Petr; Altšmíd, Jakub; Hamáček, Aleš; Nešpůrek, Stanislav; Zmeškal, Oldřich

    2015-11-11

    A systematic study was carried out to investigate the effect of ionic liquid in solid polymer electrolyte (SPE) and its layer morphology on the characteristics of an electrochemical amperometric nitrogen dioxide sensor. Five different ionic liquids were immobilized into a solid polymer electrolyte and key sensor parameters (sensitivity, response/recovery times, hysteresis and limit of detection) were characterized. The study revealed that the sensor based on 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][N(Tf)2]) showed the best sensitivity, fast response/recovery times, and low sensor response hysteresis. The working electrode, deposited from water-based carbon nanotube ink, was prepared by aerosol-jet printing technology. It was observed that the thermal treatment and crystallinity of poly(vinylidene fluoride) (PVDF) in the solid polymer electrolyte influenced the sensitivity. Picture analysis of the morphology of the SPE layer based on [EMIM][N(Tf)2] ionic liquid treated under different conditions suggests that the sensor sensitivity strongly depends on the fractal dimension of PVDF spherical objects in SPE. Their deformation, e.g., due to crowding, leads to a decrease in sensor sensitivity.

  15. Fabrication of an electrochemical sensor based on spiropyran for sensitive and selective detection of fluoride ion.

    PubMed

    Tao, Jia; Zhao, Peng; Li, Yinhui; Zhao, Wenjie; Xiao, Yue; Yang, Ronghua

    2016-04-28

    In the past decades, numerous electrochemical sensors based on exogenous electroactive substance have been reported. Due to non-specific interaction between the redox mediator and the target, the instability caused by false signal may not be avoided. To address this issue, in this paper, a new electrochemical sensor based on spiropyran skeleton, namely SPOSi, was designed for specific electrochemical response to fluoride ions (F(-)). The breakage of Si-O induced by F(-) based on the specific nucleophilic substitution reaction between F(-) and silica would directly produce a hydroquinone structure for electrochemical signal generation. To improve the sensitivity, SPOSi probe was assembled on the single-walled carbon nanotubes (SWCNTs) modified glassy carbon electrode (GCE) through the π-π conjugating interaction. This electrode was successfully applied to monitor F(-) with a detection limit of 8.3 × 10(-8) M. Compared with the conventional F(-) ion selected electrode (ISE) which utilized noncovalent interaction, this method displays higher stability and a comparable sensitivity in the urine samples.

  16. Electrochemical Impedance Sensors for Monitoring Trace Amounts of NO3 in Selected Growing Media

    PubMed Central

    Ghaffari, Seyed Alireza; Caron, William-O.; Loubier, Mathilde; Normandeau, Charles-O.; Viens, Jeff; Lamhamedi, Mohammed S.; Gosselin, Benoit; Messaddeq, Younes

    2015-01-01

    With the advent of smart cities and big data, precision agriculture allows the feeding of sensor data into online databases for continuous crop monitoring, production optimization, and data storage. This paper describes a low-cost, compact, and scalable nitrate sensor based on electrochemical impedance spectroscopy for monitoring trace amounts of NO3− in selected growing media. The nitrate sensor can be integrated to conventional microelectronics to perform online nitrate sensing continuously over a wide concentration range from 0.1 ppm to 100 ppm, with a response time of about 1 min, and feed data into a database for storage and analysis. The paper describes the structural design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the field testing of the nitrate sensor performed within tree nursery settings under ISO/IEC 17025 certifications. PMID:26197322

  17. Electrochemical Gold(III) Sensor with High Sensitivity and Tunable Dynamic Range.

    PubMed

    Wu, Yao; Lai, Rebecca Y

    2016-02-16

    We report the design and fabrication of a sensitive, specific, and selective electrochemical ion (E-ION) sensor for detection of Au(III). The signaling mechanism is based on the interactions between Au(III) and adenine; formation of these complexes rigidifies the methylene blue (MB)-modified oligoadenine probes, resulting in a concentration-dependent reduction in the MB signal. The dynamic range of the sensor can be tuned by simply changing the length of the DNA probe (six (A6) or 12 (A12) adenines). Independent of the probe length, both sensors have demonstrated to be sensitive, with a limits of detection of 50 and 20 nM for the A6 and A12 sensors, respectively. With further optimization, this sensing strategy may offer a promising approach for analyzing Au(III).

  18. Exploiting a new electrochemical sensor for biofilm monitoring and water treatment optimization.

    PubMed

    Pavanello, Giovanni; Faimali, Marco; Pittore, Massimiliano; Mollica, Angelo; Mollica, Alessandro; Mollica, Alfonso

    2011-02-01

    Bacterial biofilm development is a serious problem in many fields, and the existing biofilm monitoring sensors often turn out to be inadequate. In this perspective, a new sensor (ALVIM) has been developed, exploiting the natural marine and freshwater biofilms electrochemical activity, proportional to surface covering. The results presented in this work, obtained testing the ALVIM system both in laboratory and in an industrial environment, show that the sensor gives a fast and accurate response to biofilm growth, and that this response can be used to optimize cleaning treatments inside pipelines. Compared to the existing biofilm sensors, the proposed system show significant technological innovations, higher sensitivity and precision. © 2010 Elsevier Ltd. All rights reserved.

  19. Electrochemical Impedance Sensors for Monitoring Trace Amounts of NO3 in Selected Growing Media.

    PubMed

    Ghaffari, Seyed Alireza; Caron, William-O; Loubier, Mathilde; Normandeau, Charles-O; Viens, Jeff; Lamhamedi, Mohammed S; Gosselin, Benoit; Messaddeq, Younes

    2015-07-21

    With the advent of smart cities and big data, precision agriculture allows the feeding of sensor data into online databases for continuous crop monitoring, production optimization, and data storage. This paper describes a low-cost, compact, and scalable nitrate sensor based on electrochemical impedance spectroscopy for monitoring trace amounts of NO3- in selected growing media. The nitrate sensor can be integrated to conventional microelectronics to perform online nitrate sensing continuously over a wide concentration range from 0.1 ppm to 100 ppm, with a response time of about 1 min, and feed data into a database for storage and analysis. The paper describes the structural design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the field testing of the nitrate sensor performed within tree nursery settings under ISO/IEC 17025 certifications.

  20. Nanomaterial based electrochemical sensors for in vitro detection of small molecule metabolites.

    PubMed

    Xiao, Fei; Wang, Lu; Duan, Hongwei

    2016-01-01

    Small molecule metabolites secreted by pathological processes can act as molecular biomarkers for clinical diagnosis. In vitro detection of the metabolites such as glucose and reactive oxygen species is of great significance for precise screening, monitoring and prognosis of metabolic disorders and relevant diseases such as cancer, and has been under intense research and development in clinical chemistry and molecular diagnostics. In this review, we summarize recent developments in nanomaterial based electrochemical (bio)sensors for in vitro detection of glucose and reactive oxygen species and the progress in utilizing lightweight and flexible electrodes and micro/nanoscale electrodes for flexible and miniaturized sensors. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Electrochemical sensors based on carbon nanomaterials for acetaminophen detection: A review.

    PubMed

    Cernat, Andreea; Tertiş, Mihaela; Săndulescu, Robert; Bedioui, Fethi; Cristea, Alexandru; Cristea, Cecilia

    2015-07-30

    This study describes the advancements made over the last five years in the development of electrochemical sensors and biosensors for acetaminophen detection. This study reviews the different configurations based on unmodified and chemically modified carbon nanotubes and graphene. The influence of various modifiers on the two types of materials is presented along with their role on the enhancement of the selectivity and sensitivity of (bio)sensors. The review is focused on a comparative description of the applications of carbon-based nanomaterials towards acetaminophen detection and presents the results in a critical manner.

  2. A Nonoxidative Electrochemical Sensor Based on a Self-Doped Polyaniline/Carbon Nanotube Composite for Sensitive and Selective Detection of the Neurotransmitter Dopamine: A Review

    PubMed Central

    Ali, Shah R.; Parajuli, Rishi R.; Balogun, Yetunde; Ma, Yufeng; He, Huixin

    2008-01-01

    Most of the current techniques for in vivo detection of dopamine exploit the ease of oxidation of this compound. The major problem during the detection is the presence of a high concentration of ascorbic acid that is oxidized at nearly the same potential as dopamine on bare electrodes. Furthermore, the oxidation product of dopamine reacts with ascorbic acid present in samples and regenerates dopamine again, which severely limits the accuracy of the detection. Meanwhile, the product could also form a melanin-like insulating film on the electrode surface, which decreases the sensitivity of the electrode. Various surface modifications on the electrode, new materials for making the electrodes, and new electrochemical techniques have been exploited to solve these problems. Recently we developed a new electrochemical detection method that did not rely on direct oxidation of dopamine on electrodes, which may naturally solve these problems. This approach takes advantage of the high performance of our newly developed poly(anilineboronic acid)/carbon nanotube composite and the excellent permselectivity of the ion-exchange polymer Nafion. The high affinity binding of dopamine to the boronic acid groups of the polymer affects the electrochemical properties of the polyaniline backbone, which act as the basis for the transduction mechanism of this non-oxidative dopamine sensor. The unique reduction capability and high conductivity of single-stranded DNA functionalized single-walled carbon nanotubes greatly improved the electrochemical activity of the polymer in a physiologically-relevant buffer, and the large surface area of the carbon nanotubes increased the density of the boronic acid receptors. The high sensitivity and selectivity of the sensor show excellent promise toward molecular diagnosis of Parkinson's disease. In this review, we will focus on the discussion of this novel detection approach, the new interferences in this detection approach, and how to eliminate these

  3. Carbon nanotube/polymer composite electrodes for flexible, attachable electrochemical DNA sensors.

    PubMed

    Li, Jianfeng; Lee, Eun-Cheol

    2015-09-15

    All-solution-processed, easily-made, flexible multi-walled carbon nanotube (MWCNT)/polydimethylsiloxane (PDMS)-based electrodes were fabricated and used for electrochemical DNA sensors. These electrodes could serve as a recognition layer for DNA, without any surface modification, through π-π interactions between the MWCNTs and DNA, greatly simplifying the fabrication process for DNA sensors. The electrodes were directly connected to an electrochemical analyzer in the differential pulse voltammetry (DPV) and cyclic voltammetry (CV) measurements, where methylene blue was used as a redox indicator. Since neither functional groups nor probe DNA were immobilized on the surfaces of the electrodes, the sensor can be easily regenerated by washing these electrodes with water. The limit of detection was found to be 1.3 × 10(2)pM (S/N=3), with good DNA sequence differentiation ability. Fast fabrication of a DNA sensor was also achieved by cutting and attaching the MWCNT-PDMS composite electrodes at an analyte solution-containable region. Our results pave the way for developing user-fabricated easily attached DNA sensors at low costs.

  4. Copper-Based Electrochemical Sensor with Palladium Electrode for Cathodic Stripping Voltammetry of Manganese

    PubMed Central

    2015-01-01

    In this work, we report on the development of a palladium-based, microfabricated point-of-care electrochemical sensor for the determination of manganese using square wave cathodic stripping voltammetry. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Voltammetry offers an attractive approach to metal detection on the microscale, but traditional carbon, gold, or platinum electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor uses palladium working and auxiliary electrodes and integrates them with a copper-based reference electrode for simple fabrication and compatibility with microfabrication and printed circuit board processing, while maintaining competitive performance in electrochemical detection. Copper electrodes were prepared on glass substrate using a combination of microfabrication procedures followed by electrodeposition of palladium. The disposable sensor system was formed by bonding a poly(dimethylsiloxane) (PDMS) well to the glass substrate. Cathodic stripping voltammetry of manganese using our new disposable palladium-based sensors exhibited 334 nM (18.3 ppb) limit of detection in borate buffer. The sensor was used to demonstrate manganese determination in natural water samples from a pond in Burnet Woods, located in Cincinnati, OH, and the Ohio River. PMID:25476591

  5. Effect of Molecular Crowding on the Response of an Electrochemical DNA Sensor

    PubMed Central

    Ricci, Francesco; Lai, Rebecca Y.; Heeger, Alan J.; Plaxco, Kevin W.; Sumner, James J.

    2009-01-01

    E-DNA sensors, the electrochemical equivalent of molecular beacons, appear to be a promising means of detecting oligonucleotides. E-DNA sensors are comprised of a redox-modified (here, methylene blue or ferrocene) DNA stem-loop covalently attached to an interrogating electrode. Because E-DNA signaling arises due to binding-induced changes in the conformation of the stem-loop probe, it is likely sensitive to the nature of the molecular packing on the electrode surface. Here we detail the effects of probe density, target length, and other aspects of molecular crowding on the signaling properties, specificity, and response time of a model E-DNA sensor. We find that the highest signal suppression is obtained at the highest probe densities investigated, and that greater suppression is observed with longer and bulkier targets. In contrast, sensor equilibration time slows monotonically with increasing probe density, and the specificity of hybridization is not significantly affected. In addition to providing insight into the optimization of electrochemical DNA sensors, these results suggest that E-DNA signaling arises due to hybridization-linked changes in the rate, and thus efficiency, with which the redox moiety collides with the electrode and transfers electrons. PMID:17488132

  6. Copper-based electrochemical sensor with palladium electrode for cathodic stripping voltammetry of manganese.

    PubMed

    Kang, Wenjing; Pei, Xing; Bange, Adam; Haynes, Erin N; Heineman, William R; Papautsky, Ian

    2014-12-16

    In this work, we report on the development of a palladium-based, microfabricated point-of-care electrochemical sensor for the determination of manganese using square wave cathodic stripping voltammetry. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Voltammetry offers an attractive approach to metal detection on the microscale, but traditional carbon, gold, or platinum electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor uses palladium working and auxiliary electrodes and integrates them with a copper-based reference electrode for simple fabrication and compatibility with microfabrication and printed circuit board processing, while maintaining competitive performance in electrochemical detection. Copper electrodes were prepared on glass substrate using a combination of microfabrication procedures followed by electrodeposition of palladium. The disposable sensor system was formed by bonding a poly(dimethylsiloxane) (PDMS) well to the glass substrate. Cathodic stripping voltammetry of manganese using our new disposable palladium-based sensors exhibited 334 nM (18.3 ppb) limit of detection in borate buffer. The sensor was used to demonstrate manganese determination in natural water samples from a pond in Burnet Woods, located in Cincinnati, OH, and the Ohio River.

  7. Ultrasensitive electrochemical sensor for mercury (II) based on target-induced structure-switching DNA.

    PubMed

    Wu, Danhong; Zhang, Qing; Chu, Xia; Wang, Haibo; Shen, Guoli; Yu, Ruqin

    2010-01-15

    A novel electrochemical sensor has been developed for sensitive and selective detection of mercury (II) based on target-induced structure-switching DNA. A 33-mer oligonucleotide 1 with five self-complementary base pairs separated by seven thymine-thymine mismatches was first immobilized on the electrode via self-assembly of the terminal thiol moiety and then hybridized with a ferrocene-tagged oligonucleotide 2, leading to a high redox current. In the presence of Hg(2+), mercury-mediated base pairs (T-Hg(2+)-T) induced the folding of the oligonucleotide 1 into a hairpin structure, resulting in the release of the ferrocene-tagged oligonucleotide 2 from the electrode surface with a substantially decreased redox current. The response characteristics of the sensor were thoroughly investigated using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The effect of the reaction temperature on the response of the sensor was also studied in detail. The results revealed that the sensor showed sensitive response to Hg(2+) in a concentration range from 0.1 nM to 5 microM with a detection limit of 0.06 nM. In addition, this strategy afforded exquisite selectivity for Hg(2+) against other environmentally related metal ions, which was superior to that of previous anodic stripping voltammetry (ASV)-based techniques. The excellent sensitivity and selectivity signified the potential of the sensor for Hg(2+) detection in real environmental samples.

  8. Validation study of nasal nitric oxide measurements using a hand-held electrochemical analyser.

    PubMed

    Maniscalco, M; de Laurentiis, G; Weitzberg, E; Lundberg, J O; Sofia, M

    2008-03-01

    Exhaled nitric oxide (NO) measurement is a simple and non-invasive method for monitoring airway inflammation. Similarly, nasal NO has been proposed as a surrogate marker in inflammatory diseases of the upper airways, e.g. allergic rhinitis. A new portable analyser using an electrochemical sensor has been developed for measurements of exhaled NO, and its reproducibility and comparison with other analysers has been tested recently in healthy subjects and in patients with lower airways disease. The application of this hand-held analyser in nasal NO analysis was tested and compared to the gold standard represented by a chemiluminescence analyser. Thirty subjects including 15 patients with allergic rhinitis (AR) and 15 healthy subjects (HS) were studied. The intraindividual variability, calculated as the difference in nasal NO levels between two measurements from a single nasally exhaled breath manoeuvre, and the comparison between the electrochemical analyser (NIOX MINO, Aerocrine) and a chemiluminescence analyser (NOA, Sievers) were performed. In AR patients mean nasal NO was 59.0 +/- 16.3 p.p.b. with the MINO and 58.3 +/- 15.6 p.p.b. with the NOA. In HS nasal NO was 49.1 +/- 10.8 p.p.b. with the MINO and 49.8 +/- 8.2 p.p.b. with the NOA. The Bland-Altman analysis showed bias values of 0.005 +/- 3.6 with the 95% limits of agreement from -6.97 to 6.98 p.p.b. Measurements of nasal NO levels with a hand-held electrochemical analyser are reproducible and the results are comparable to a stationary chemiluminescence analyser.

  9. Demonstration of Electrochemical Cell Properties by a Simple, Colorful Oxidation-reduction Experiment.

    ERIC Educational Resources Information Center

    Hendricks, Lloyd J.; And Others

    1982-01-01

    Describes apparatus/methodology and provides background information for an experiment demonstrating electrochemical concepts and properties of electrochemical cells. The color of a solution close to an electrode is changed from that of the bulk solution to either of two contrasting colors depending on whether the reaction is oxidation or…

  10. Electrochemical Sensor for Organophosphate Pesticides and Nerve Agents Using Zirconia Nanoparticles as Selective Sorbents

    SciTech Connect

    Liu, Guodong; Lin, Yuehe

    2005-09-15

    Electrochemical sensor for detection of organophosphate (OP) pesticides and nerve agents using zirconia (ZrO₂) nanoparticles as selective sorbents is presented. Zirconia nanoparticles were electrodynamically deposited onto the polycrystalline gold electrode by cyclic voltammetry. Because of a strong affinity of zirconia to the phosphoric group, nitroaromatic OPs strongly bind to the ZrO₂ nanoparticle surface. The electrochemical characterization and anodic stripping voltammetric performance of bound OPs were evaluated using cyclic voltammetric and square-wave voltammetric (SWV) analysis. SWV was used to monitor the amount of bound OPs and provide simple, fast, and facile quantitative methods for nitroaromatic OP compounds. The sensor surface can be regenerated by successively running SWV scanning. Operational parameters, including the amount of nanoparticles, adsorption time, and the pH of the reaction medium have been optimized. The stripping voltammetric response is highly linear over the 5–200 ng/mL (ppb) methyl parathion range examined (2-min adsorption), with a detection limit of 1 ng/mL (10 min accumulation), and good precision (RSD=5.3 %, n = 10). The promising stripping voltammetric performances open new opportunities for fast, simple, and sensitive analyzing of OPs in environmental and biological samples. These findings can lead to a widespread use of electrochemical sensors to detect OP contaminates.

  11. Immunoassay for folic acid detection in vitamin-fortified milk based on electrochemical magneto sensors.

    PubMed

    Lermo, A; Fabiano, S; Hernández, S; Galve, R; Marco, M-P; Alegret, S; Pividori, M I

    2009-03-15

    An immunoassay-based strategy for folic acid in vitamin-fortified milk with electrochemical detection using magneto sensors is described for the first time. Among direct and indirect competitive formats, best performance was achieved with an indirect competitive immunoassay. The immunological reaction for folic acid (FA) detection was performed, for the first time on the magnetic bead as solid support by the covalent immobilization of a protein conjugate BSA-FA on tosyl-activated magnetic bead. Further competition for the specific antibody between FA in the food sample and FA immobilized on the magnetic bead was achieved, followed by the reaction with a secondary antibody conjugated with HRP (AntiIgG-HRP). Then, the modified magnetic beads were easily captured by a magneto sensor made of graphite-epoxy composite (m-GEC) which was also used as the transducer for the electrochemical detection. The performance of the immunoassay-based strategy with electrochemical detection using magneto sensors was successfully evaluated using spiked-milk samples and compared with a novel magneto-ELISA based on optical detection. The detection limit was found to be of the order of microgl(-1) (13.1 nmoll(-1), 5.8 microgl(-1)) for skimmed milk. Commercial vitamin-fortified milk samples were also evaluated obtaining good accuracy in the results. This novel strategy offers great promise for rapid, simple, cost-effective and on-site analysis of biological and food samples.

  12. Electrochemical Surface Plasmon Resonance Fiber-Optic Sensor: In Situ Detection of Electroactive Biofilms.

    PubMed

    Yuan, Yong; Guo, Tuan; Qiu, Xuhui; Tang, Jiahuan; Huang, Yunyun; Zhuang, Li; Zhou, Shungui; Li, Zhaohui; Guan, Bai-Ou; Zhang, Xuming; Albert, Jacques

    2016-08-02

    Spectroelectrochemistry has been found to be an efficient technique for revealing extracellular electron transfer (EET) mechanism of electroactive biofilms (EABs). Herein, we propose a novel electrochemical surface plasmon resonance (EC-SPR) optical fiber sensor for monitoring EABs in situ. The sensor uses a tilted fiber Bragg grating (TFBG) imprinted in a commercial single-mode fiber and coated with nanoscale gold film for high-efficiency SPR excitation. The wavelength shift of the surface plasmon resonance (SPR) over the fiber surface clearly identifies the electrochemical activity of the surface localized (adjacent to the electrode interface) bacterial cells in EABs, which differs from the "bulk" detections of the conventional electrochemical measurements. A close relationship between the variations of redox state of the EABs and the changes of the SPR under potentiostatic conditions has been achieved, pointing to a new way to study the EET mechanism of the EABs. Benefiting from its compact size, high sensitivity, and ease of use, together with remote operation ability, the proposed sensor opens up a multitude of opportunities for monitoring EABs in various hard-to-reach environments.

  13. Electrochemical determination of cefotaxime based on a three-dimensional molecularly imprinted film sensor.

    PubMed

    Yang, Guangming; Zhao, Faqiong; Zeng, Baizhao

    2014-03-15

    A novel electrochemical sensor is presented for the determination of cefotaxime (CEF), which is constructed by molecularly imprinted polymer (MIP), gold networks@IL (IL, 1-butyl-3-methylimidazolium tetrafluoroborate, [BMIM][BF4]) (GNWs@IL), porous platinum nanoparticles (PPNPs) and carboxyl graphene (COOH-r-GO). The GNWs@IL is prepared by directly reducing HAuCl4 with sodium citrate in [BMIM][BF4] aqueous solution. The PPNPs are well embedded in GNWs@IL due to the adhesion of IL to form GNWs@IL-PPNPs suspension, which is coated on a COOH-r-GO modified glassy carbon electrode to construct a porous three-dimensional networks modified electrode. Then, MIP is prepared by cyclic voltammetry at the modified electrode, using CEF as template and o-phenylenediamine as monomer. The factors concerning this assay strategy are carefully investigated. Under the optimal conditions, the electrochemical sensor offers an excellent response for CEF, the linear response range is 3.9 × 10(-9) ~ 8.9 × 10(-6) mol L(-1) and the detection limit is 1.0 × 10(-10) mol L(-1). The electrochemical sensor has been applied to the determination of CEF in real samples with satisfactory results. © 2013 Elsevier B.V. All rights reserved.

  14. An electrochemical DNA sensor based on a layers-film construction modified electrode.

    PubMed

    Zhang, Yi; Zeng, Guang-Ming; Tang, Lin; Li, Yuan-Ping; Chen, Li-Juan; Pang, Ya; Li, Zhen; Feng, Chong-Ling; Huang, Guo-He

    2011-10-21

    This work developed a relatively inexpensive and layers-film construction electrochemical sensor for DNA recognition and its performance was investigated. The Fe(3)O(4) magnetic nanoparticles-cysteine were immobilized on the carbon paste electrode (CPE) surface using magnetic force. Multiwalled carbon nanotubes (MWCNTs), gold nanoparticles (GNPs), and chitosan (Chi) were used successively to coat on the electrode surface. The thiolated capture probe was assembled and competitively hybridized with the target nucleic acid and biotinylated response probe. The electrochemical behavior was analyzed by cyclic voltammetry and electrochemical impedance spectroscopy. In addition, the sensor performance was also analyzed by introducing the notion of detection efficiency. The experimental results showed that although the electron transfer capability of the CPE is less strong than that of a metal electrode used in the DNA sensor, the materials modified on the CPE could significantly improve the performance. A detection limit of 1 nM of target DNA and a sensitivity of 2.707 × 10(3) mA M(-1) cm(-2) were obtained. Although the resulting detection limit was not remarkable, further experiments could improve it.

  15. Bismuth nanoparticles integration into heavy metal electrochemical stripping sensor.

    PubMed

    Cadevall, Miquel; Ros, Josep; Merkoçi, Arben

    2015-08-01

    Between their many applications bismuth nanoparticles (BiNPs) are showing interest as pre-concentrators in heavy metals detection while being applied as working electrode modifiers used in electrochemical stripping analysis. From the different reported methods to synthesize BiNPs we are focused on the typical polyol method, largely used in these types of metallic and semi-metallic nanoparticles. This study presents the strategy for an easy control of the shape and size of BiNPs including nanocubes, nanosferes and triangular nanostructures. To improve the BiNP size and shape, different reducing agents (ethylene glycol or sodium hypophosphite) and stabilizers (polyvinyl pyrrolidone, PVP, in different amounts) have been studied. The efficiency of BiNPs for heavy metals analysis in terms of detection sensitivity while being used as modifiers of screen-printed carbon electrodes including the applicability of the developed device in real sea water samples is shown. A parallel study between the obtained nanoparticles and their performance in heavy metal sensing has been described in this communication.

  16. Development of electrochemical folic acid sensor based on hydroxyapatite nanoparticles

    NASA Astrophysics Data System (ADS)

    Kanchana, P.; Sekar, C.

    2015-02-01

    We report the synthesis of hydroxyapatite (HA) nanoparticles (NPs) by a simple microwave irradiation method and its application as sensing element for the precise determination of folic acid (FA) by electrochemical method. The structure and composition of the HA NPs characterized using XRD, FTIR, Raman and XPS. SEM and EDX studies confirmed the formation of elongated spherical shaped HA NPs with an average particle size of about 34 nm. The HA NPs thin film on glassy carbon electrode (GCE) were deposited by drop casting method. Electrocatalytic behavior of FA in the physiological pH 7.0 was investigated by cyclic voltammetry (CV), linear sweep voltammetry (LSV) and chronoamperometry. The fabricated HA/GCE exhibited a linear calibration plot over a wide FA concentration ranging from 1.0 × 10-7 to 3.5 × 10-4 M with the detection limit of 75 nM. In addition, the HA NPs modified GCE showed good selectivity toward the determination of FA even in the presence of a 100-fold excess of ascorbic acid (AA) and 1000-fold excess of other common interferents. The fabricated biosensor exhibits good sensitivity and stability, and was successfully applied for the determination of FA in pharmaceutical samples.

  17. A Facile Electrochemical Preparation of Reduced Graphene Oxide@Polydopamine Composite: A Novel Electrochemical Sensing Platform for Amperometric Detection of Chlorpromazine

    NASA Astrophysics Data System (ADS)

    Palanisamy, Selvakumar; Thirumalraj, Balamurugan; Chen, Shen-Ming; Wang, Yi-Ting; Velusamy, Vijayalakshmi; Ramaraj, Sayee Kannan

    2016-09-01

    We report a novel and sensitive amperometric sensor for chlorpromazine (CPZ) based on reduced graphene oxide (RGO) and polydopamine (PDA) composite modified glassy carbon electrode. The RGO@PDA composite was prepared by electrochemical reduction of graphene oxide (GO) with PDA. The RGO@PDA composite modified electrode shows an excellent electro-oxidation behavior to CPZ when compared with other modified electrodes such as GO, RGO and GO@PDA. Amperometric i-t method was used for the determination of CPZ. Amperometry result shows that the RGO@PDA composite detects CPZ in a linear range from 0.03 to 967.6 μM. The sensor exhibits a low detection limit of 0.0018 μM with the analytical sensitivity of 3.63 ± 0.3 μAμM-1 cm-2. The RGO@PDA composite shows its high selectivity towards CPZ in the presence of potentially interfering drugs such as metronidazole, phenobarbital, chlorpheniramine maleate, pyridoxine and riboflavin. In addition, the fabricated RGO@PDA modified electrode showed an appropriate recovery towards CPZ in the pharmaceutical tablets.

  18. A Facile Electrochemical Preparation of Reduced Graphene Oxide@Polydopamine Composite: A Novel Electrochemical Sensing Platform for Amperometric Detection of Chlorpromazine.

    PubMed

    Palanisamy, Selvakumar; Thirumalraj, Balamurugan; Chen, Shen-Ming; Wang, Yi-Ting; Velusamy, Vijayalakshmi; Ramaraj, Sayee Kannan

    2016-09-21

    We report a novel and sensitive amperometric sensor for chlorpromazine (CPZ) based on reduced graphene oxide (RGO) and polydopamine (PDA) composite modified glassy carbon electrode. The RGO@PDA composite was prepared by electrochemical reduction of graphene oxide (GO) with PDA. The RGO@PDA composite modified electrode shows an excellent electro-oxidation behavior to CPZ when compared with other modified electrodes such as GO, RGO and GO@PDA. Amperometric i-t method was used for the determination of CPZ. Amperometry result shows that the RGO@PDA composite detects CPZ in a linear range from 0.03 to 967.6 μM. The sensor exhibits a low detection limit of 0.0018 μM with the analytical sensitivity of 3.63 ± 0.3 μAμM(-1 )cm(-2). The RGO@PDA composite shows its high selectivity towards CPZ in the presence of potentially interfering drugs such as metronidazole, phenobarbital, chlorpheniramine maleate, pyridoxine and riboflavin. In addition, the fabricated RGO@PDA modified electrode showed an appropriate recovery towards CPZ in the pharmaceutical tablets.

  19. A Facile Electrochemical Preparation of Reduced Graphene Oxide@Polydopamine Composite: A Novel Electrochemical Sensing Platform for Amperometric Detection of Chlorpromazine

    PubMed Central

    Palanisamy, Selvakumar; Thirumalraj, Balamurugan; Chen, Shen-Ming; Wang, Yi-Ting; Velusamy, Vijayalakshmi; Ramaraj, Sayee Kannan

    2016-01-01

    We report a novel and sensitive amperometric sensor for chlorpromazine (CPZ) based on reduced graphene oxide (RGO) and polydopamine (PDA) composite modified glassy carbon electrode. The RGO@PDA composite was prepared by electrochemical reduction of graphene oxide (GO) with PDA. The RGO@PDA composite modified electrode shows an excellent electro-oxidation behavior to CPZ when compared with other modified electrodes such as GO, RGO and GO@PDA. Amperometric i-t method was used for the determination of CPZ. Amperometry result shows that the RGO@PDA composite detects CPZ in a linear range from 0.03 to 967.6 μM. The sensor exhibits a low detection limit of 0.0018 μM with the analytical sensitivity of 3.63 ± 0.3 μAμM–1 cm–2. The RGO@PDA composite shows its high selectivity towards CPZ in the presence of potentially interfering drugs such as metronidazole, phenobarbital, chlorpheniramine maleate, pyridoxine and riboflavin. In addition, the fabricated RGO@PDA modified electrode showed an appropriate recovery towards CPZ in the pharmaceutical tablets. PMID:27650697

  20. Electroless deposition of Au nanoparticles on reduced graphene oxide/polyimide film for electrochemical detection of hydroquinone and catechol

    NASA Astrophysics Data System (ADS)

    Shen, Xuan; Xia, Xiaohong; Du, Yongling; Wang, Chunming

    2017-09-01

    An electrochemical sensor for determination of hydroquinone (HQ) and catechol (CC) was developed using Au nanoparticles (AuNPs) fabricated on reduced graphene oxide/polyimide (PI/RGO) film by electroless deposition. The electrochemical behaviors of HQ and CC at PI/RGO-AuNPs electrode were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under the optimized condition, the current responses at PI/RGO-AuNPs electrode were linear over ranges from 1 to 654 mol/L for HQ and from 2 to 1289 mol/L for CC, with the detection limits of 0.09 and 0.2 mol/L, respectively. The proposed electrode exhibited good reproducibility, stability and selectivity. In addition, the proposed electrode was successfully applied in the determination of HQ and CC in tap water and the Yellow River samples.

  1. Highly sensitive Fe₃O₄ nanobeads/graphene-based molecularly imprinted electrochemical sensor for 17β-estradiol in water.

    PubMed

    Li, Ying; Zhao, Xueru; Li, Ping; Huang, Yanfeng; Wang, Ji; Zhang, Jimei

    2015-07-16

    A novel molecularly imprinted electrochemical sensor based on Fe3O4 nanobeads immobilized on graphene (Fe3O4-MIP@RGO) has been developed for detecting 17β-estradiol (17β-E2) in water using reversible addition fragmentation chain transfer (RAFT) polymerization technique. 17β-E2 can be detected by this electrochemical sensor through the response current change before and after binding 17β-E2. The Fe3O4-MIP@RGO-based sensor amplifies the response current in differential pulse voltammetry measurement, allowing the detection limit reaching 0.819 nM in a wide linear range from 0.05 to 10 μM. Moreover, Fe3O4-MIP@RGO-based sensor exhibits high selectivity and sensitivity towards 17β-E2. This MIP electrochemical sensor has a promising potential in the detection of 17β-E2 in water.

  2. Optimization of electrochemical aptamer-based sensors via optimization of probe packing density and surface chemistry.

    PubMed

    White, Ryan J; Phares, Noelle; Lubin, Arica A; Xiao, Yi; Plaxco, Kevin W

    2008-09-16

    Electrochemical, aptamer-based (E-AB) sensors, which are comprised of an electrode modified with surface immobilized, redox-tagged DNA aptamers, have emerged as a promising new biosensor platform. In order to further improve this technology we have systematically studied the effects of probe (aptamer) packing density, the AC frequency used to interrogate the sensor, and the nature of the self-assembled monolayer (SAM) used to passivate the electrode on the performance of representative E-AB sensors directed against the small molecule cocaine and the protein thrombin. We find that, by controlling the concentration of aptamer employed during sensor fabrication, we can control the density of probe DNA molecules on the electrode surface over an order of magnitude range. Over this range, the gain of the cocaine sensor varies from 60% to 200%, with maximum gain observed near the lowest probe densities. In contrast, over a similar range, the signal change of the thrombin sensor varies from 16% to 42% and optimal signaling is observed at intermediate densities. Above cut-offs at low hertz frequencies, neither sensor displays any significant dependence on the frequency of the alternating potential employed in their interrogation. Finally, we find that E-AB signal gain is sensitive to the nature of the alkanethiol SAM employed to passivate the interrogating electrode; while thinner SAMs lead to higher absolute sensor currents, reducing the length of the SAM from 6-carbons to 2-carbons reduces the observed signal gain of our cocaine sensor 10-fold. We demonstrate that fabrication and operational parameters can be varied to achieve optimal sensor performance and that these can serve as a basic outline for future sensor fabrication.

  3. Optimization of Electrochemical Aptamer-Based Sensors via Optimization of Probe Packing Density and Surface Chemistry

    PubMed Central

    White, Ryan J.; Phares, Noelle; Lubin, Arica A.; Xiao, Yi; Plaxco, Kevin W.

    2009-01-01

    Electrochemical, aptamer-based (E-AB) sensors, which are comprised of an electrode modified with surface immobilized, redox-tagged DNA aptamers, have emerged as a promising new biosensor platform. In order to further improve this technology we have systematically studied the effects of probe (aptamer) packing density, the AC frequency used to interrogate the sensor, and the nature of the self-assembled monolayer (SAM) used to passivate the electrode on the performance of representative E-AB sensors directed against the small molecule cocaine and the protein thrombin. We find that, by controlling the concentration of aptamer employed during sensor fabrication, we can control the density of probe DNA molecules on the electrode surface over an order of magnitude range. Over this range, the gain of the cocaine sensor varies from 60% to 200%, with maximum gain observed near the lowest probe densities. In contrast, over a similar range, the signal change of the thrombin sensor varies from 16% to 42% and optimal signaling is observed at intermediate densities. Above cut-offs at low hertz frequencies, neither sensor displays any significant dependence on the frequency of the alternating potential employed in their interrogation. Finally, we find that E-AB signal gain is sensitive to the nature of the alkanethiol SAM employed to passivate the interrogating electrode; while thinner SAMs lead to higher absolute sensor currents, reducing the length of the SAM from 6-carbons to 2-carbons reduces the observed signal gain of our cocaine sensor 10-fold. We demonstrate that fabrication and operational parameters can be varied to achieve optimal sensor performance and that these can serve as a basic outline for future sensor fabrication. PMID:18690727

  4. Green synthesis of silver nanoparticles-graphene oxide nanocomposite and its application in electrochemical sensing of tryptophan.

    PubMed

    Li, Junhua; Kuang, Daizhi; Feng, Yonglan; Zhang, Fuxing; Xu, Zhifeng; Liu, Mengqin; Wang, Deping

    2013-04-15

    A new kind of nanocomposite based on silver nanoparticles (AgNPs)/graphene oxide (GO) was conveniently achieved through a green and low-cost synthesis approach using glucose as a reducing and stabilizing agent, and the synthetic procedure can be easily used for the construction of a disposable electrochemical sensor on glassy carbon electrode (GCE). The nanocomposite was detailedly characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR) and electrochemical impedance spectroscopy (EIS). The experimental results demonstrated that the nanocomposite possessed the specific features of both silver nanoparticles and graphene, and the intrinsic high specific area and the fast electron transfer rate ascribed to the nanohybrid structure could improve its electrocatalytic performance greatly. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were employed to evaluate the electrochemical properties of AgNPs/GO/GCE towards tryptophan, and the AgNPs/GO film exhibited a distinctly higher activity for the electro-oxidation of tryptophan than GO film with tenfold enhancement of peak current. The oxidation mechanism and the kinetic parameters were investigated, and analysis operation conditions were optimized. Under the selected experimental conditions, the oxidation peak currents were proportional to tryptophan concentrations over the range of 0.01 μM to 50.0 μM and 50.0 μM to 800.0 μM, respectively. The detection limit was 2.0 nM (S/N=3). Moreover, the proposed method is free of interference from tyrosine and other coexisting species. The resulting sensor displays excellent repeatability and long-term stability; finally it was successfully applied to detect tryptophan in real samples with good recoveries, ranging from 99.0% to 103.0%.

  5. Porous Nickel Oxide Film Sensor for Formaldehyde

    NASA Astrophysics Data System (ADS)

    Cindemir, U.; Topalian, Z.; Österlund, L.; Granqvist, C. G.; Niklasson, G. A.

    2014-11-01

    Formaldehyde is a volatile organic compound and a harmful indoor pollutant contributing to the "sick building syndrome". We used advanced gas deposition to fabricate highly porous nickel oxide (NiO) thin films for formaldehyde sensing. The films were deposited on Al2O3 substrates with prefabricated comb-structured electrodes and a resistive heater at the opposite face. The morphology and structure of the films were investigated with scanning electron microscopy and X-ray diffraction. Porosity was determined by nitrogen adsorption isotherms with the Brunauer-Emmett-Teller method. Gas sensing measurements were performed to demonstrate the resistive response of the sensors with respect to different concentrations of formaldehyde at 150 °C.

  6. Construction of a zinc porphyrin-fullerene-derivative based nonenzymatic electrochemical sensor for sensitive sensing of hydrogen peroxide and nitrite.

    PubMed

    Wu, Hai; Fan, Suhua; Jin, Xiaoyan; Zhang, Hong; Chen, Hong; Dai, Zong; Zou, Xiaoyong

    2014-07-01

    Enzymatic sensors possess high selectivity but suffer from some limitations such as instability, complicated modified procedure, and critical environmental factors, which stimulate the development of more sensitive and stable nonenzymatic electrochemical sensors. Herein, a novel nonenzymatic electrochemical sensor is proposed based on a new zinc porphyrin-fullerene (C60) derivative (ZnP-C60), which was designed and synthesized according to the conformational calculations and the electronic structures of two typical ZnP-C60 derivatives of para-ZnP-C60 (ZnP(p)-C60) and ortho-ZnP-C60 (ZnP(o)-C60). The two derivatives were first investigated by density functional theory (DFT) and ZnP(p)-C60 with a bent conformation was verified to possess a smaller energy gap and better electron-transport ability. Then ZnP(p)-C60 was entrapped in tetraoctylammonium bromide (TOAB) film and modified on glassy carbon electrode (TOAB/ZnP(p)-C60/GCE). The TOAB/ZnP(p)-C60/GCE showed four well-defined quasi-reversible redox couples with extremely fast direct electron transfer and excellent nonenzymatic sensing ability. The electrocatalytic reduction of H2O2 showed a wide linear range from 0.035 to 3.40 mM, with a high sensitivity of 215.6 μA mM(-1) and a limit of detection (LOD) as low as 0.81 μM. The electrocatalytic oxidation of nitrite showed a linear range from 2.0 μM to 0.164 mM, with a sensitivity of 249.9 μA mM(-1) and a LOD down to 1.44 μM. Moreover, the TOAB/ZnP(p)-C60/GCE showed excellent stability and reproducibility, and good testing recoveries for analysis of the nitrite levels of river water and rainwater. The ZnP(p)-C60 can be used as a novel material for the fabrication of nonenzymatic electrochemical sensors.

  7. Costs of the electrochemical oxidation of wastewaters: a comparison with ozonation and Fenton oxidation processes.

    PubMed

    Cañizares, Pablo; Paz, Rubén; Sáez, Cristina; Rodrigo, Manuel A

    2009-01-01

    In the work described here the technical and economic feasibilities of three Advanced Oxidation Processes (AOPs) have been studied: Conductive-Diamond Electrochemical Oxidation (CDEO), Ozonation and Fenton oxidation. The comparison was made by assessing the three technologies with synthetic wastewaters polluted with different types of organic compounds and also with actual wastes (from olive oil mills and from a fine-chemical manufacturing plant). All three technologies were able to treat the wastes, but very different results were obtained in terms of efficiency and mineralization. Only CDEO could achieve complete mineralization of the pollutants for all the wastes. However, the efficiencies were found to depend on the concentration of pollutant (mass transfer control of the oxidation rate). Results obtained in the oxidation with ozone (at pH 12) or by Fenton's reagent were found to depend on the nature of the pollutants, and significant concentrations of oxidation-refractory compounds were usually accumulated during the treatment. Within the discharge limits that all of the technologies can reach, the economic analysis shows that the operating cost of Fenton oxidation is lower than either CDEO or ozonation, although CD\\EO can compete satisfactorily with the Fenton process in the treatment of several kinds of wastes. Likewise, the investment cost for the ozonation process seems to be higher than either CDEO or Fenton oxidation, regardless of the pollutant treated.

  8. Developing an electrochemical sensor based on a carbon paste electrode modified with nano-composite of reduced graphene oxide and CuFe2O4 nanoparticles for determination of hydrogen peroxide.

    PubMed

    Benvidi, Ali; Nafar, Mohammad Taghi; Jahanbani, Shahriar; Tezerjani, Marzieh Dehghan; Rezaeinasab, Masoud; Dalirnasab, Sudabeh

    2017-06-01

    In this paper, a highly sensitive voltammetric sensor based on a carbon paste electrode with CuFe2O4 nanoparticle (RGO/CuFe2O4/CPE) was designed for determination of hydrogen peroxide (H2O2). The electrocatalytic reduction of H2O2 was examined using various techniques such as cyclic voltammetry (CV), chronoamperometry, amperometry and differential pulse voltammetry (DPV). CuFe2O4 nanoparticles were synthesized by co-precipitation method and characterized with scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) techniques. Then, a high conductive platform based on a carbon paste electrode modified with RGO and CuFe2O4 nanoparticles was prepared as a suitable platform for determination of hydrogen peroxide. Under the optimum conditions (pH5), the modified electrode indicated a fast amperometric response of <2s, good linear range of 2 to 200μM, low detection limit of 0.52μM for determination of hydrogen peroxide. Also, the peak current of differential pulse voltammetry (DPV) of hydrogen peroxide is increased linearly with its concentration in the ranges of 2 to 10μM and 10 to 1000μM. The obtained detection limit for hydrogen peroxide was evaluated to be 0.064μM by DPV. The designed sensor was successfully applied for the assay of hydrogen peroxide in biological and pharmaceutical samples such as milk, green tea, and hair dye cream and mouthwash solution. Copyright © 2017. Published by Elsevier B.V.

  9. Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybrid recognition element.

    PubMed

    Lakshmi, Dhana; Bossi, Alessandra; Whitcombe, Michael J; Chianella, Iva; Fowler, Steven A; Subrahmanyam, Sreenath; Piletska, Elena V; Piletsky, Sergey A

    2009-05-01

    One of the difficulties with using molecularly imprinted polymers (MIPs) and other electrically insulating materials as the recognition element in electrochemical sensors is the lack of a direct path for the conduction of electrons from the active sites to the electrode. We have sought to address this problem through the preparation and characterization of novel hybrid materials combining a catalytic MIP, capable of oxidizing the template, catechol, with an electrically conducting polymer. In this way a network of "molecular wires" assists in the conduction of electrons from the active sites within the MIP to the electrode surface. This was made possible by the design of a new monomer that combines orthogonal polymerizable functionality; comprising an aniline group and a methacrylamide. Conducting films were prepared on the surface of electrodes (Au on glass) by electropolymerization of the aniline moiety. A layer of MIP was photochemically grafted over the polyaniline, via N,N'-diethyldithiocarbamic acid benzyl ester (iniferter) activation of the methacrylamide groups. Detection of catechol by the hybrid-MIP sensor was found to be specific, and catechol oxidation was detected by cyclic voltammetry at the optimized operating conditions: potential range -0.6 V to +0.8 V (vs Ag/AgCl), scan rate 50 mV/s, PBS pH 7.4. The calibration curve for catechol was found to be linear to 144 microM, with a limit of detection of 228 nM. Catechol and dopamine were detected by the sensor, whereas analogues and potentially interfering compounds, including phenol, resorcinol, hydroquinone, serotonin, and ascorbic acid, had minimal effect (< or = 3%) on the detection of either analyte. Non-imprinted hybrid electrodes and bare gold electrodes failed to give any response to catechol at concentrations below 0.5 mM. Finally, the catalytic properties of the sensor were characterized by chronoamperometry and were found to be consistent with Michaelis-Menten kinetics.

  10. A continuous glucose monitoring device by graphene modified electrochemical sensor in microfluidic system

    PubMed Central

    Pu, Zhihua; Yu, Haixia; Xu, Kexin; Li, Dachao

    2016-01-01

    This paper presents a continuous glucose monitoring microsystem consisting of a three-electrode electrochemical sensor integrated into a microfluidic chip. The microfluidic chip, which was used to transdermally extract and collect subcutaneous interstitial fluid, was fabricated from five polydimethylsiloxane layers using micromolding techniques. The electrochemical sensor was integrated into the chip for continuous detection of glucose. Specifically, a single-layer graphene and gold nanoparticles (AuNPs) were decorated onto the working electrode (WE) of the sensor to construct a composite nanostructured surface and improve the resolution of the glucose measurements. Graphene was transferred onto the WE surface to improve the electroactive nature of the electrode to enable measurements of low levels of glucose. The AuNPs were directly electrodeposited onto the graphene layer to improve the electron transfer rate from the activity center of the enzyme to the electrode to enhance the sensitivity of the sensor. Glucose oxidase (GOx) was immobilized onto the composite nanostructured surface to specifically detect glucose. The factors required for AuNPs deposition and GOx immobilization were also investigated, and the optimized parameters were obtained. The experimental results displayed that the proposed sensor could precisely measure glucose in the linear range from 0 to 162 mg/dl with a detection limit of 1.44 mg/dl (S/N = 3). The proposed sensor exhibited the potential to detect hypoglycemia which is still a major challenge for continuous glucose monitoring in clinics. Unlike implantable glucose sensors, the wearable device enabled external continuous monitoring of glucose without interference from foreign body reaction and bioelectricity. PMID:26958097

  11. Electrochemical oxidation of reverse osmosis concentrate on mixed metal oxide (MMO) titanium coated electrodes.

    PubMed

    Bagastyo, Arseto Y; Radjenovic, Jelena; Mu, Yang; Rozendal, René A; Batstone, Damien J; Rabaey, Korneel

    2011-10-15

    Reverse osmosis (RO) membranes have been successfully applied around the world for wastewater reuse applications. However, RO is a physical separation process, and besides the clean water stream (permeate) a reverse osmosis concentrate (ROC) is produced, usually representing 15-25% of the feed water flow and containing the organic and inorganic contaminants at higher concentrations. In this study, electrochemical oxidation was investigated for the treatment of ROC generated during the reclamation of municipal wastewater effluent. Using laboratory-scale two-compartment electrochemical systems, five electrode materials (i.e. titanium coated with IrO2-Ta2O5, RuO2-IrO2, Pt-IrO2, PbO2, and SnO2-Sb) were tested as anodes in batch mode experiments, using ROC from an advanced water treatment plant. The best oxidation performance was observed for Ti/Pt-IrO2 anodes, followed by the Ti/SnO2-Sb and Ti/PbO2 anodes. The effectiveness of the treatment appears to correlate with the formation of oxidants such as active chlorine (i.e. Cl2/HClO/ClO-). As a result, electro-generated chlorine led to the abundant formation of harmful by-products such as trihalomethanes (THMs) and haloacetic acids (HAAs), particularly at Ti/SnO2-Sb and Ti/Pt-IrO2 anodes. The highest concentration of total HAAs (i.e. 2.7 mg L(-1)) was measured for the Ti/SnO2-Sb electrode, after 0.55 Ah L(-1) of supplied specific electrical charge. Irrespective of the used material, electrochemical oxidation of ROC needs to be complemented by a polishing treatment to alleviate the release of halogenated by-products. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Polyaniline-graphene oxide nanocomposite sensor for quantification of calcium channel blocker levamlodipine.

    PubMed

    Jain, Rajeev; Sinha, Ankita; Khan, Ab Lateef

    2016-08-01

    A novel polyaniline-graphene oxide nanocomposite (PANI/GO/GCE) sensor has been fabricated for quantification of a calcium channel blocker drug levamlodipine (LAMP). Fabricated sensor has been characterized by electrochemical impedance spectroscopy, square wave and cyclic voltammetry, Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The developed PANI/GO/GCE sensor has excellent analytical performance towards electrocatalytic oxidation as compared to PANI/GCE, GO/GCE and bare GCE. Under optimized experimental conditions, the fabricated sensor exhibits a linear response for LAMP for its oxidation over a concentration range from 1.25μgmL(-1) to 13.25μgmL(-1) with correlation coefficient of 0.9950 (r(2)), detection limit of 1.07ngmL(-1) and quantification limit of 3.57ngmL(-1). The sensor shows an excellent performance for detecting LAMP with reproducibility of 2.78% relative standard deviation (RSD). The proposed method has been successfully applied for LAMP determination in pharmaceutical formulation with a recovery from 99.88% to 101.75%. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Response of electrochemical oxygen sensors to inert gas-air and carbon dioxide-air mixtures: measurements and mathematical modelling.

    PubMed

    Walsh, P T; Gant, S E; Dowker, K P; Batt, R

    2011-02-15

    Electrochemical oxygen gas sensors are widely used for monitoring the state of inertisation of flammable atmospheres and to warn of asphyxiation risks. It is well established but not widely known by users of such oxygen sensors that the response of the sensor is affected by the nature of the diluent gas responsible for the decrease in ambient oxygen concentration. The present work investigates the response of electrochemical sensors, with either acid or alkaline electrolytes, to gas mixtures comprising air with enhanced levels of nitrogen, carbon dioxide, argon or helium. The measurements indicate that both types of sensors over-read the oxygen concentrations when atmospheres contain high levels of helium. Sensors with alkaline electrolytes are also shown to underestimate the severity of the hazard in atmospheres containing high levels of carbon dioxide. This deviation is greater for alkaline electrolyte sensors compared to acid electrolyte sensors. A Computational Fluid Dynamics (CFD) model is developed to predict the response of an alkaline electrolyte, electrochemical gas sensor. Differences between predicted and measured sensor responses are less than 10% in relative terms for nearly all of the gas mixtures tested, and in many cases less than 5%. Extending the model to simulate responses of sensors with acid electrolytes would be straightforward.

  14. Multiparametric optimization of a new high-sensitive and disposable mercury (II) electrochemical sensor.

    PubMed

    Armas, M A; María-Hormigos, R; Cantalapiedra, A; Gismera, M J; Sevilla, M T; Procopio, J R

    2016-01-21

    An electrochemical sensor for mercury (II) determination was developed by modifying the surface of a commercial screen-printed carbon electrode (SPCE) with a polystyrene sulfonate-NiO-carbon nanopowder composite material. Mercury measurements were performed by differential pulse anodic stripping voltammetry (DPASV). Sensor composition and measurement conditions were optimized using a multivariate experiment design. A screening experiment by using a Plackett-Burman design was first performed in order to determine the main contributing factors to the electrochemical response. The most important factors were employed to establish the interactions between different experimental variables and get the best conditions for mercury determination. For this purpose, a five level central composite design and a response surface methodology were used. The optimized method using the developed NiO-PSS-SPCE sensor presents a very low limit of detection of 0.021 μg L(-1) and a linear response over two concentration ranges with two different slopes, from 0.05 to 2.0 μg L(-1) and between 2.0 and 75 μg L(-1). The sensor was successfully applied to mercury determination in water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Practical Application of Electrochemical Nitrate Sensor under Laboratory and Forest Nursery Conditions

    PubMed Central

    Caron, William-Olivier; Lamhamedi, Mohammed S.; Viens, Jeff; Messaddeq, Younès

    2016-01-01

    The reduction of nitrate leaching to ensure greater protection of groundwater quality has become a global issue. The development of new technologies for more accurate dosing of nitrates helps optimize fertilization programs. This paper presents the practical application of a newly developed electrochemical sensor designed for in situ quantification of nitrate. To our knowledge, this paper is the first to report the use of electrochemical impedance to determine nitrate concentrations in growing media under forest nursery conditions. Using impedance measurements, the sensor has been tested in laboratory and compared to colorimetric measurements of the nitrate. The developed sensor has been used in water-saturated growing medium and showed good correlation to certified methods, even in samples obtained over a multi-ion fertilisation season. A linear and significant relationship was observed between the resistance and the concentration of nitrates (R2 = 0.972), for a range of concentrations of nitrates. We also observed stability of the sensor after exposure of one month to the real environmental conditions of the forest nursery. PMID:27483266

  16. Surface chemistry effects on the performance of an electrochemical DNA sensor.

    PubMed

    Ricci, Francesco; Zari, Nadia; Caprio, Felice; Recine, Simona; Amine, Aziz; Moscone, Danila; Palleschi, Giuseppe; Plaxco, Kevin W

    2009-09-01

    E-DNA sensors are a reagentless, electrochemical oligonucleotide sensing platform based on a redox-tag modified, electrode-bound probe DNA. Because E-DNA signaling is linked to hybridization-linked changes in the dynamics of this probe, sensor performance is likely dependent on the nature of the self-assembled monolayer coating the electrode. We have investigated this question by characterizing the gain, specificity, response time and shelf-life of E-DNA sensors fabricated using a range of co-adsorbates, including both charged and neutral alkane thiols. We find that, among the thiols tested, the positively charged cysteamine gives rise to the largest and most rapid response to target and leads to significantly improved storage stability. The best mismatch specificity, however, is achieved with mercaptoethanesulfonic and mercaptoundecanol, presumably due to the destabilizing effects of, respectively, the negative charge and steric bulk of these co-adsorbates. These results demonstrate that a careful choice of co-adsorbate chemistry can lead to significant improvements in the performance of this broad class of electrochemical DNA sensors.

  17. Eliminating degradation in solid oxide electrochemical cells by reversible operation.

    PubMed

    Graves, Christopher; Ebbesen, Sune Dalgaard; Jensen, Søren Højgaard; Simonsen, Søren Bredmose; Mogensen, Mogens Bjerg

    2015-02-01

    One promising energy storage technology is the solid oxide electrochemical cell (SOC), which can both store electricity as chemical fuels (electrolysis mode) and convert fuels to electricity (fuel-cell mode). The widespread use of SOCs has been hindered by insufficient long-term stability, in particular at high current densities. Here we demonstrate that severe electrolysis-induced degradation, which was previously believed to be irreversible, can be completely eliminated by reversibly cycling between electrolysis and fuel-cell modes, similar to a rechargeable battery. Performing steam electrolysis continuously at high current density (1 A cm(-2)), initially at 1.33 V (97% energy efficiency), led to severe microstructure deterioration near the oxygen-electrode/electrolyte interface and a corresponding large increase in ohmic resistance. After 4,000 h of reversible cycling, however, no microstructural damage was observed and the ohmic resistance even slightly improved. The results demonstrate the viability of applying SOCs for renewable electricity storage at previously unattainable reaction rates, and have implications for our fundamental understanding of degradation mechanisms that are usually assumed to be irreversible.

  18. Electrochemical oxidation of textile industry wastewater by graphite electrodes.

    PubMed

    Bhatnagar, Rajendra; Joshi, Himanshu; Mall, Indra D; Srivastava, Vimal C

    2014-01-01

    In the present article, studies have been performed on the electrochemical (EC) oxidation of actual textile industry wastewater by graphite electrodes. Multi-response optimization of four independent parameters namely initial pH (pHo): 4-10, current density (j): 27.78-138.89 A/m(2), NaCl concentration (w): 0-2 g/L and electrolysis time (t): 10-130 min have been performed using Box-Behnken (BB) experimental design. It was aimed to simultaneously maximize the chemical oxygen demand (COD) and color removal efficiencies and minimize specific energy consumption using desirability function approach. Pareto analysis of variance (ANOVA) showed a high coefficient of determination value for COD (R(2) = 0.8418), color (R(2) = 0.7010) and specific energy (R(2) = 0.9125) between the experimental values and the predicted values by a second-order regression model. Maximum COD and color removal and minimum specific energy consumed was 90.78%, 96.27% and 23.58 kWh/kg COD removed, respectively, were observed at optimum conditions. The wastewater, sludge and scum obtained after treatment at optimum condition have been characterized by various techniques. UV-visible study showed that all azo bonds of the dyes present in the wastewater were totally broken and most of the aromatic rings were mineralized during EC oxidation with graphite electrode. Carbon balance showed that out of the total carbon eroded from the graphite electrodes, 27-29.2% goes to the scum, 71.1-73.3% goes into the sludge and rest goes to the treated wastewater. Thermogravimetric analysis showed that the generated sludge and scum can be dried and used as a fuel in the boilers/incinerators.

  19. Electrochemical sensors based on gold nanoparticles modified with rhodamine B hydrazide to sensitively detect Cu(II)

    NASA Astrophysics Data System (ADS)

    Peng, Donglai; Hu, Bin; Kang, Mengmeng; Wang, Minghua; He, Linghao; Zhang, Zhihong; Fang, Shaoming

    2016-12-01

    An electrochemical sensor based on gold nanoparticles (Au NPs) modified with rhodamine B hydrazide (RBH) (AuNPs-RBH) was developed and applied in the highly sensitive and selective detection of Cu2+ in water. RBH molecules were bounded onto the surface of AuNPs via the strong interaction between the amino groups and Au NPs. The chemical structure variations were characterized by X-ray photoelectron spectroscopy and fluoresence spectroscopy. Additionally, electrochemical impedance spectroscopy was used to determine Cu2+ ions in an aqueous solution with the developed AuNPs-RBH-based electrochemical sensor. Results show that the fabricated sensor exhibits good electrochemical performance because of the presence of Au NPs and high affinity with the Cu2+ resulting from the strong coordination chemistry between Cu2+ and RBH. The as-developed sensor towards detecting Cu2+ has a detection limitation of 12.5 fM within the concentration range of 0.1 pM-1 nM by using the electrochemical impedance technique. It also displays excellent selectivity, regeneration, stability, and practicability for Cu2+ detection. Therefore, the new strategy of the RBH-based electrochemical sensor exhibits great potential application in environment treatment and protection.

  20. Facile and controllable electrochemical reduction of graphene oxide and its applications

    SciTech Connect

    Shao, Yuyan; Wang, Jun; Engelhard, Mark H.; Wang, Chong M.; Lin, Yuehe

    2010-01-01

    Graphene oxide is electrochemically reduced which is called electrochemically reduced graphene oxide (ER-G). ER-G is characterized with scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The oxygen content is significantly decreased and the sp 2 carbon is restored after electrochemical reduction. ER-G exhibits much higher electrochemical capacitance and cycling durability than carbon nanotubes (CNTs) and chemically reduced graphene; the specific capacitance measured with cyclic voltammetry (20 mV/s) is ~165 F/g, ~86 F/g, and ~100 F/g for ER-G, CNTs, and chemically reduced graphene,1 respectively. The electrochemical reduction of oxygen and hydrogen peroxide was greatly enhanced on ER-G electrodes as compared with CNTs. ER-G has shown a good potential for applications in energy storage, biosensors, and electrocatalysis.

  1. Wireless programmable electrochemical drug delivery micropump with fully integrated electrochemical dosing sensors.

    PubMed

    Sheybani, Roya; Cobo, Angelica; Meng, Ellis

    2015-08-01

    We present a fully integrated implantable electrolysis-based micropump with incorporated EI dosing sensors. Wireless powering and data telemetry (through amplitude and frequency modulation) were utilized to achieve variable flow control and a bi-directional data link with the sensors. Wireless infusion rate control (0.14-1.04 μL/min) and dose sensing (bolus resolution of 0.55-2 μL) were each calibrated separately with the final circuit architecture and then simultaneous wireless flow control and dose sensing were demonstrated. Recombination detection using the dosing system, as well as, effects of coil separation distance and misalignment in wireless power and data transfer were studied. A custom-made normally closed spring-loaded ball check valve was designed and incorporated at the reservoir outlet to prevent backflow of fluids as a result of the reverse pressure gradient caused by recombination of electrolysis gases. Successful delivery, infusion rate control, and dose sensing were achieved in simulated brain tissue.

  2. Solid-phase electrochemical reduction of graphene oxide films in alkaline solution.

    PubMed

    Basirun, Wan J; Sookhakian, Mehran; Baradaran, Saeid; Mahmoudian, Mohammad R; Ebadi, Mehdi

    2013-09-24

    Graphene oxide (GO) film was evaporated onto graphite and used as an electrode to produce electrochemically reduced graphene oxide (ERGO) films by electrochemical reduction in 6 M KOH solution through voltammetric cycling. Fourier transformed infrared and Raman spectroscopy confirmed the presence of ERGO. Electrochemical impedance spectroscopy characterization of ERGO and GO films in ferrocyanide/ferricyanide redox couple with 0.1 M KCl supporting electrolyte gave results that are in accordance with previous reports. Based on the EIS results, ERGO shows higher capacitance and lower charge transfer resistance compared to GO.

  3. Solid-phase electrochemical reduction of graphene oxide films in alkaline solution

    PubMed Central

    2013-01-01

    Graphene oxide (GO) film was evaporated onto graphite and used as an electrode to produce electrochemically reduced graphene oxide (ERGO) films by electrochemical reduction in 6 M KOH solution through voltammetric cycling. Fourier transformed infrared and Raman spectroscopy confirmed the presence of ERGO. Electrochemical impedance spectroscopy characterization of ERGO and GO films in ferrocyanide/ferricyanide redox couple with 0.1 M KCl supporting electrolyte gave results that are in accordance with previous reports. Based on the EIS results, ERGO shows higher capacitance and lower charge transfer resistance compared to GO. PMID:24059434

  4. Solid-phase electrochemical reduction of graphene oxide films in alkaline solution

    NASA Astrophysics Data System (ADS)

    Basirun, Wan J.; Sookhakian, Mehran; Baradaran, Saeid; Mahmoudian, Mohammad R.; Ebadi, Mehdi

    2013-09-01

    Graphene oxide (GO) film was evaporated onto graphite and used as an electrode to produce electrochemically reduced graphene oxide (ERGO) films by electrochemical reduction in 6 M KOH solution through voltammetric cycling. Fourier transformed infrared and Raman spectroscopy confirmed the presence of ERGO. Electrochemical impedance spectroscopy characterization of ERGO and GO films in ferrocyanide/ferricyanide redox couple with 0.1 M KCl supporting electrolyte gave results that are in accordance with previous reports. Based on the EIS results, ERGO shows higher capacitance and lower charge transfer resistance compared to GO.

  5. Electrochemical corrosion of a noble metal-bearing alloy-oxide composite

    DOE PAGES

    Chen, X; Ebert, W. L.; Indacochea, Ernesto

    2017-08-01

    The effects of added Ru and Pd on the microstructure and electrochemical behaviour of a composite material made by melting those metals with AISI 410 stainless steel, Zr, Mo, and lanthanide oxides were assessed using electrochemical and microscopic methods The lanthanide oxides reacted with Zr to form durable lanthanide zirconates and Mo alloyed with steel to form FeMoCr intermetallics. The noble metals alloyed with the steel to provide solid solution strengthening and inhibit carbide/nitride formation. A passive film formed during electrochemical tests in acidic NaCl solution, but became less effective as corrosion progressed and regions over the intermetallics eventually failed.

  6. Electrochemical sensor for predicting transformer overload by phenol measurement.

    PubMed

    Bosworth, Timothy; Setford, Steven; Heywood, Richard; Saini, Selwayan

    2003-03-10

    Transformer overload is a significant problem to the power transmission industry, with severe safety and cost implications. Overload may be predicted by measuring phenol levels in the transformer-insulating oil, arising from the thermolytic degradation of phenol-formaldehyde resins. The development of two polyphenol oxidase (PPO) sensors, based on monitoring the enzymatic consumption of oxygen using an oxygen electrode, or reduction of enzymatically generated o-quinone at a screen-printed electrode (SPE), for the measurement of phenol in transformer oil is reported. Ex-service oils were prepared either by extraction into aqueous electrolyte-buffer, or by direct dilution in propan-2-ol, the latter method being more amenable to simple at-line operation. The oxygen electrode, with a sensitivity of 2.87 nA microg(-1) ml(-1), RSD of 7.0-19.9% and accuracy of +/-8.3% versus the industry standard International Electrotechnical Commission (IEC) method, proved superior to the SPE (sensitivity: 3.02 nA microg(-1) ml(-1); RSD: 8.9-18.3%; accuracy: +/-7.9%) and was considerably more accurate at low phenol concentrations. However, the SPE approach is more amenable to field-based usage for reasons of device simplicity. The method has potential as a rapid and simple screening tool for the at-site monitoring of phenol in transformer oils, thereby reducing incidences of transformer failure.

  7. Aptamer-based electrochemical sensors with aptamer-complementary DNA oligonucleotides as probe.

    PubMed

    Lu, Ying; Li, Xianchan; Zhang, Limin; Yu, Ping; Su, Lei; Mao, Lanqun

    2008-03-15

    This study describes a facile and general strategy for the development of aptamer-based electrochemical sensors with a high specificity toward the targets and a ready regeneration feature. Very different from the existing strategies for the development of electrochemical aptasensors with the aptamers as the probes, the strategy proposed here is essentially based on the utilization of the aptamer-complementary DNA (cDNA) oligonucleotides as the probes for electrochemical sensing. In this context, the sequences at both ends of the cDNA are tailor-made to be complementary and both the redox moiety (i.e., ferrocene in this study) and thiol group are labeled onto the cDNA. The labeled cDNA are hybridized with their respective aptamers (i.e., ATP- and thrombin-binding aptamers in this study) to form double-stranded DNA (ds-DNA) and the electrochemical aptasensors are prepared by self-assembling the labeled ds-DNA onto Au electrodes. Upon target binding, the aptamers confined onto electrode surface dissociate from their respective cDNA oligonucleotides into the solution and the single-stranded cDNA could thus tend to form a hairpin structure through the hybridization of the complementary sequences at both its ends. Such a conformational change of the cDNA resulting from the target binding-induced dissociation of the aptamers essentially leads to the change in the voltammetric signal of the redox moiety labeled onto the cDNA and thus constitutes the mechanism for the