Mao, Ling-Feng; Ning, Huansheng; Li, Xijun
2015-12-01
We report theoretical study of the effects of energy relaxation on the tunneling current through the oxide layer of a two-dimensional graphene field-effect transistor. In the channel, when three-dimensional electron thermal motion is considered in the Schrödinger equation, the gate leakage current at a given oxide field largely increases with the channel electric field, electron mobility, and energy relaxation time of electrons. Such an increase can be especially significant when the channel electric field is larger than 1 kV/cm. Numerical calculations show that the relative increment of the tunneling current through the gate oxide will decrease with increasing the thickness of oxide layer when the oxide is a few nanometers thick. This highlights that energy relaxation effect needs to be considered in modeling graphene transistors.
Single Event Effects (SEE) for Power Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs)
NASA Technical Reports Server (NTRS)
Lauenstein, Jean-Marie
2011-01-01
Single-event gate rupture (SEGR) continues to be a key failure mode in power MOSFETs. (1) SEGR is complex, making rate prediction difficult SEGR mechanism has two main components: (1) Oxide damage-- Reduces field required for rupture (2) Epilayer response -- Creates transient high field across the oxide.
Sirmatel, O; Sert, C; Sirmatel, F; Selek, S; Yokus, B
2007-06-01
The aim of this study was to investigate the effects of a high-strength magnetic field produced by a magnetic resonance imaging (MRI) apparatus on oxidative stress. The effects of a 1.5 T static magnetic field on the total antioxidant capacity (TAC), total oxidant status (TOS) and oxidative stress index (OSI) in male subjects were investigated. In this study, 33 male volunteers were exposed to a 1.5 T static magnetic field for a short time and the TAC, TOS and OSI of each subject were determined. Magnetic field exposure was provided using a magnetic resonance apparatus; radiofrequency was not applied. Blood samples were taken from subjects and TAC, TOS and OSI values were measured using the methods of Erel. TAC showed a significant increase in post-exposures compared to pre-exposures to the magnetic field (p < 0.05). OSI and TOS showed a significant decrease in post-exposures compared to pre-exposures to a 1.5 T magnetic field (for each of two, p < 0.01). The 1.5 T static magnetic field used in the MRI apparatus did not yield a negative effect; on the contrary, it produced the positive effect of decreasing oxidative stress in men following short-term exposure.
Magnetic effect on oxide-scale growth of Fe-5Cr alloy
NASA Astrophysics Data System (ADS)
Zhou, C. H.; Li, X. W.; Wang, S. H.; Ma, H. T.
2018-01-01
The oxidation behaviour of Fe-5Cr alloy was investigated at 650°C in the presence of magnetic field. Results indicated that the oxide scales were both consisted of an outer Fe-oxide scale and an inner mixed-oxide scale in the presence or absence of magnetic field. The oxide-scale growth of Fe-5Cr alloy, gained by measuring the oxide-scale thickness, was verified to follow parabolic lawyer. And the oxidation kinetics showed that the applied magnetic field retarded the oxide-scale growth of Fe-5Cr alloy.
Ichimura, Takashi; Fujiwara, Kohei; Tanaka, Hidekazu
2014-07-24
Controlling the electronic properties of functional oxide materials via external electric fields has attracted increasing attention as a key technology for next-generation electronics. For transition-metal oxides with metallic carrier densities, the electric-field effect with ionic liquid electrolytes has been widely used because of the enormous carrier doping capabilities. The gate-induced redox reactions revealed by recent investigations have, however, highlighted the complex nature of the electric-field effect. Here, we use the gate-induced conductance modulation of spinel ZnxFe₃₋xO₄ to demonstrate the dual contributions of volatile and non-volatile field effects arising from electronic carrier doping and redox reactions. These two contributions are found to change in opposite senses depending on the Zn content x; virtual electronic and chemical field effects are observed at appropriate Zn compositions. The tuning of field-effect characteristics via composition engineering should be extremely useful for fabricating high-performance oxide field-effect devices.
Thin-film transistors with a graphene oxide nanocomposite channel.
Jilani, S Mahaboob; Gamot, Tanesh D; Banerji, P
2012-12-04
Graphene oxide (GO) and graphene oxide-zinc oxide nanocomposites (GO-ZnO) were used as channel materials on SiO(2)/Si to fabricate thin-film transistors (TFT) with an aluminum source and drain. Pure GO-based TFT showed poor field-effect characteristics. However, GO-ZnO-nanocomposite-based TFT showed better field-effect performance because of the anchoring of ZnO nanostructures in the GO matrix, which causes a partial reduction in GO as is found from X-ray photoelectron spectroscopic data. The field-effect mobility of charge carriers at a drain voltage of 1 V was found to be 1.94 cm(2)/(V s). The transport of charge carriers in GO-ZnO was explained by a fluctuation-induced tunneling mechanism.
Graphene-graphite oxide field-effect transistors.
Standley, Brian; Mendez, Anthony; Schmidgall, Emma; Bockrath, Marc
2012-03-14
Graphene's high mobility and two-dimensional nature make it an attractive material for field-effect transistors. Previous efforts in this area have used bulk gate dielectric materials such as SiO(2) or HfO(2). In contrast, we have studied the use of an ultrathin layered material, graphene's insulating analogue, graphite oxide. We have fabricated transistors comprising single or bilayer graphene channels, graphite oxide gate insulators, and metal top-gates. The graphite oxide layers show relatively minimal leakage at room temperature. The breakdown electric field of graphite oxide was found to be comparable to SiO(2), typically ~1-3 × 10(8) V/m, while its dielectric constant is slightly higher, κ ≈ 4.3. © 2012 American Chemical Society
Induction of Oxidation in Living Cells by Time-Varying Electromagnetic Fields
NASA Technical Reports Server (NTRS)
Stolc, Viktor
2015-01-01
We are studying how biological systems can harness quantum effects of time varying electromagnetic (EM) waves as the time-setting basis for universal biochemical organization via the redox cycle. The effects of extremely weak EM field on the biochemical redox cycle can be monitored through real-time detection of oxidation-induced light emissions of reporter molecules in living cells. It has been shown that EM fields can also induce changes in fluid transport rates through capillaries (approximately 300 microns inner diameter) by generating annular proton gradients. This effect may be relevant to understanding cardiovascular dis-function in spaceflight, beyond the ionosphere. Importantly, we show that these EM effects can be attenuated using an active EM field cancellation device. Central for NASA's Human Research Program is the fact that the absence of ambient EM field in spaceflight can also have a detrimental influence, namely via increased oxidative damage, on DNA replication, which controls heredity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rashid, A. Diyana; Ruslinda, A. Rahim, E-mail: ruslinda@unimap.edu.my; Fatin, M. F.
2016-07-06
The fabrication and characterization on reduced graphene oxide field effect transistor (RGO-FET) were demonstrated using a spray deposition method for biological sensing device purpose. A spray method is a fast, low-cost and simple technique to deposit graphene and the most promising technology due to ideal coating on variety of substrates and high production speed. The fabrication method was demonstrated for developing a label free aptamer reduced graphene oxide field effect transistor biosensor. Reduced graphene oxide (RGO) was obtained by heating on hot plate fixed at various temperatures of 100, 200 and 300°C, respectively. The surface morphology of RGO were examinedmore » via atomic force microscopy to observed the temperature effect of produced RGO. The electrical measurement verify the performance of electrical conducting RGO-FET at temperature 300°C is better as compared to other temperature due to the removal of oxygen groups in GO. Thus, reduced graphene oxide was a promising material for biosensor application.« less
NASA Astrophysics Data System (ADS)
Hattori, Junichi; Fukuda, Koichi; Ikegami, Tsutomu; Ota, Hiroyuki; Migita, Shinji; Asai, Hidehiro; Toriumi, Akira
2018-04-01
We study the effects of fringing electric fields on the behavior of negative-capacitance (NC) field-effect transistors (FETs) with a silicon-on-insulator body and a gate stack consisting of an oxide film, an internal metal film, a ferroelectric film, and a gate electrode using our own device simulator that can properly handle the complicated relationship between the polarization and the electric field in ferroelectric materials. The behaviors of such NC FETs and the corresponding metal-oxide-semiconductor (MOS) FETs are simulated and compared with each other to evaluate the effects of the NC of the ferroelectric film. Then, the fringing field effects are evaluated by comparing the NC effects in NC FETs with and without gate spacers. The fringing field between the gate stack, especially the internal metal film, and the source/drain region induces more charges at the interface of the film with the ferroelectric film. Accordingly, the function of the NC to modulate the gate voltage and the resulting function to improve the subthreshold swing are enhanced. We also investigate the relationships of these fringing field effects to the drain voltage and four design parameters of NC FETs, i.e., gate length, gate spacer permittivity, internal metal film thickness, and oxide film thickness.
NASA Astrophysics Data System (ADS)
Kim, Kyoung H.; Gordon, Roy G.; Ritenour, Andrew; Antoniadis, Dimitri A.
2007-05-01
Atomic layer deposition (ALD) was used to deposit passivating interfacial nitride layers between Ge and high-κ oxides. High-κ oxides on Ge surfaces passivated by ultrathin (1-2nm) ALD Hf3N4 or AlN layers exhibited well-behaved C-V characteristics with an equivalent oxide thickness as low as 0.8nm, no significant flatband voltage shifts, and midgap density of interface states values of 2×1012cm-1eV-1. Functional n-channel and p-channel Ge field effect transistors with nitride interlayer/high-κ oxide/metal gate stacks are demonstrated.
Jeon, Byoungseon; Van Overmeere, Quentin; van Duin, Adri C T; Ramanathan, Shriram
2013-02-14
Oxidation of iron surfaces and oxide growth mechanisms have been studied using reactive molecular dynamics. Oxide growth kinetics on Fe(100), (110), and (111) surface orientations has been investigated at various temperatures and/or an external electric field. The oxide growth kinetics decreases in the order of (110), (111), and (100) surfaces at 300 K over 1 ns timescale while higher temperature increases the oxidation rate. The oxidation rate shows a transition after an initial high rate, implying that the oxide formation mechanism evolves, with iron cation re-ordering. In early stages of surface oxide growth, oxygen transport through iron interstitial sites is dominant, yielding non-stoichiometric wüstite characteristics. The dominant oxygen inward transport decreases as the oxide thickens, evolving into more stoichiometric oxide phases such as wüstite or hematite. This also suggests that cation outward transport increases correspondingly. In addition to oxidation kinetics simulations, formed oxide layers have been relaxed in the range of 600-1500 K to investigate diffusion characteristics, fitting these results into an Arrhenius relation. The activation energy of oxygen diffusion in oxide layers formed on Fe(100), (110), and (111) surfaces was estimated to be 0.32, 0.26, and 0.28 eV, respectively. Comparison between our modeling results and literature data is then discussed. An external electric field (10 MV cm(-1)) facilitates initial oxidation kinetics by promoting oxygen transport through iron lattice interstitial sites, but reaches self-limiting thickness, showing that similar oxide formation stages are maintained when cation transport increases. The effect of the external electric field on iron oxide structure, composition, and oxide activation energy is found to be minimal, whereas cation outward migration is slightly promoted.
Effect of nano oxide layer on exchange bias and GMR in Mn-Ir-Pt based spin valve
NASA Astrophysics Data System (ADS)
Jeon, D. M.; Lee, J. P.; Lee, D. H.; Yoon, S. Y.; Kim, Y. S.; Suh, S. J.
2004-05-01
We have investigated the effect of nano oxide layers (NOLs), which were fabricated by a plasma oxidation of CoFe layer on the magnetic properties and magneto-resistance (MR) in a Mn-Ir-Pt based spin valve. The adjusted NOL could result in the high MR and the strong exchange coupling field ( Hex). From a high resolution electron microscopy analysis the oxide was about 1 nm. The strong reflectivity at the interface of a free and oxide capping layer should lead to the decrease of an interlayer coupling field, which could possibly improve the Hex.
NASA Astrophysics Data System (ADS)
Liu, Guannan; Liu, Dong
2018-06-01
An improved inverse reconstruction model with consideration of self-absorption effect for the temperature distribution and concentration fields of soot and metal-oxide nanoparticles in nanofluid fuel flames was proposed based on the flame emission spectrometry. The effects of self-absorption on the temperature profile and concentration fields were investigated for various measurement errors, flame optical thicknesses and detecting lines numbers. The model neglecting the self-absorption caused serious reconstruction errors especially in the nanofluid fuel flames with large optical thicknesses, while the improved model was used to successfully recover the temperature distribution and concentration fields of soot and metal-oxide nanoparticles for the flames regardless of the optical thickness. Through increasing detecting lines number, the reconstruction accuracy can be greatly improved due to more flame emission information received by the spectrometer. With the adequate detecting lines number, the estimations for the temperature distribution and concentration fields of soot and metal-oxide nanoparticles in flames with large optical thicknesses were still satisfying even from the noisy radiation intensities with signal to noise ratio (SNR) as low as 46 dB. The results showed that the improved reconstruction model was effective and robust to concurrently retrieve the temperature distribution and volume fraction fields of soot and metal-oxide nanoparticles for the exact and noisy data in nanofluid fuel sooting flames with different optical thicknesses.
Antioxidant effects of nerolidol in mice hippocampus after open field test.
Nogueira Neto, José Damasceno; de Almeida, Antonia Amanda Cardoso; da Silva Oliveira, Johanssy; Dos Santos, Pauline Sousa; de Sousa, Damião Pergentino; de Freitas, Rivelilson Mendes
2013-09-01
The aim of this study was to evaluate the neuroprotective effects of nerolidol in mice hippocampus against oxidative stress in neuronal cells compared to ascorbic acid (positive control) as well as evaluated the nerolidol sedative effects by open field test compared to diazepam (positive control). Thirty minutes prior to behavioral observation on open field test, mice were intraperitoneally treated with vehicle, nerolidol (25, 50 and 75 mg/kg), diazepam (1 mg/kg) or ascorbic acid (250 mg/kg). To clarify the action mechanism of of nerolidol on oxidative stress in animals subjected to the open field test, Western blot analysis of Mn-superoxide dismutase and catalase in mice hippocampus were performed. In nerolidol group, there was a significant decrease in lipid peroxidation and nitrite levels when compared to negative control (vehicle). However, a significant increase was observed in superoxide dismutase and catalase activities in this group when compared to the other groups. Vehicle, diazepam, ascorbic acid and nerolidol groups did not affected Mn-superoxide dismutase, catalase mRNA or protein levels. Our findings strongly support the hypothesis that oxidative stress occurs in hippocampus. Nerolidol showed sedative effects in animals subjected to the open field test. Oxidative process plays a crucial role on neuronal pathological consequence, and implies that antioxidant effects could be achieved using this sesquiterpene.
Ma, R M; Peng, R M; Wen, X N; Dai, L; Liu, C; Sun, T; Xu, W J; Qin, G G
2010-10-01
We show that the threshold voltages of both n- and p-channel metal-oxide-semiconductor field-effect-transistors (MOSFETs) can be lowered to close to zero by adding extra Schottky contacts on top of nanowires (NWs). Novel complementary metal-oxide-semiconductor (CMOS) inverters are constructed on these Schottky barrier modified n- and p-channel NW MOSFETs. Based on the high performances of the modified n- and p-channel MOSFETs, especially the low threshold voltages, the as-fabricated CMOS inverters have low operating voltage, high voltage gain, and ultra-low static power dissipation.
NASA Technical Reports Server (NTRS)
Benumof, Reuben; Zoutendyk, John; Coss, James
1988-01-01
Second-order effects in metal-oxide-semiconductor field-effect transistors (MOSFETs) are important for devices with dimensions of 2 microns or less. The short and narrow channel effects and drain-induced barrier lowering primarily affect threshold voltage, but formulas for drain current must also take these effects into account. In addition, the drain current is sensitive to channel length modulation due to pinch-off or velocity saturation and is diminished by electron mobility degradation due to normal and lateral electric fields in the channel. A model of a MOSFET including these considerations and emphasizing charge conservation is discussed.
Magnetoviscoelastic characteristics of superparamagnetic oxides (Fe, Ni) based ferrofluids
NASA Astrophysics Data System (ADS)
Katiyar, Ajay; Dhar, Purbarun; Nandi, Tandra; Das, Sarit K.
2017-08-01
Ferrofluids have been popular among the academic and scientific communities owing to their intelligent physical characteristics under external stimuli and are in fact among the first nanotechnology products to be employed in real world applications. However, studies on the magnetoviscoelastic behavior of concentrated ferrofluids, especially of superparamagnetic oxides of iron and nickel are rare. The present article comprises the formulation of magneto-colloids utilizing the three various metal oxides nanoparticles viz. Iron (II, III) oxide (Fe3O4), Iron (III) oxide (Fe2O3) and Nickel oxide (NiO) in oil. Iron (II, III) oxide based colloids demonstrate high magnetoviscous characteristics over the other oxides based colloids under external magnetic fields. The maximum magnitude of yield stress and viscosity is found to be 3.0 kPa and 2.9 kPa.s, respectively for iron (II, III) oxide based colloids at 2.6 vol% particle concentration and 1.2 T magnetic field. Experimental investigations reveal that the formulated magneto-nanocolloids are stable, even in high magnetic fields and almost reversible when exposed to rising and drop of magnetic fields of the same magnitude. Observations also reveal that the elastic behavior dominates over the viscous behavior with enhanced relaxation and creep characteristics under the magnetic field. The effect of temperature on viscosity and yield stress of magneto-nanocolloids under magnetic fields has also been discussed. Thus, the present findings have potential applications in various fields such as electromagnetic clutch and brakes of automotive, damping, sealing, optics, nanofinishing etc.
Modeling Thin Film Oxide Growth
NASA Astrophysics Data System (ADS)
Sherman, Quentin
Thin film oxidation is investigated using two modeling techniques in the interest of better understanding the roles of space charge and non-equilibrium effects. An electrochemical phase-field model of an oxide-metal interface is formulated in one dimension and studied at equilibrium and during growth. An analogous sharp interface model is developed to validate the phase-field model in the thick film limit. Electrochemical profiles across the oxide are shown to deviate from the sharp interface prediction when the oxide film is thin compared to the Debye length, however no effect on the oxidation kinetics is found. This is attributed to the simple thermodynamic and kinetic models used therein. The phase-field model provides a framework onto to which additional physics can be added to better model thin film oxidation. A model for solute trapping during the oxidation of binary alloys is developed to study non-equilibrium effects during the early stages of oxide growth. The model is applied to NiCr alloys, and steady-state interfacial composition maps are presented for the growth of an oxide with the rock salt structure. No detailed experimental data is available to verify the predictions of the solute trapping model, however it is shown to be consistent with the trends observed during the early stages of NiCr oxidation. Lastly, experimental studies of the wet infiltration technique for decorating solid oxide fuel cell anodes with nickel nanoparticles are presented. The effect of nickel nitrate calcination parameters on the resulting nickel oxide microstructures are studied on both porous and planar substrates. Decreasing the calcination temperature and dwell time, as well as a dehydration step after nickel nitrate infiltration, are all shown to decrease the initial nickel oxide particle size, but other factors such as geometry and nickel loading per unit area also affected the final nickel particle size and morphology upon reduction.
P-type field effect transistor based on Na-doped BaSnO3
NASA Astrophysics Data System (ADS)
Jang, Yeaju; Hong, Sungyun; Park, Jisung; Char, Kookrin
We fabricated field effect transistors (FET) based on the p-type Na-doped BaSnO3 (BNSO) channel layer. The properties of epitaxial BNSO channel layer were controlled by the doping rate. In order to modulate the p-type FET, we used amorphous HfOx and epitaxial BaHfO3 (BHO) gate oxides, both of which have high dielectric constants. HfOx was deposited by atomic-layer-deposition and BHO was epitaxially grown by pulsed laser deposition. The pulsed laser deposited SrRuO3 (SRO) was used as the source and the drain contacts. Indium-tin oxide and La-doped BaSnO3 were used as the gate electrodes on top of the HfOx and the BHO gate oxides, respectively. We will analyze and present the performances of the BNSO field effect transistor such as the IDS-VDS, the IDS-VGS, the Ion/Ioff ratio, and the field effect mobility. Samsung Science and Technology Foundation.
Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor.
Nomura, Kenji; Ohta, Hiromichi; Ueda, Kazushige; Kamiya, Toshio; Hirano, Masahiro; Hosono, Hideo
2003-05-23
We report the fabrication of transparent field-effect transistors using a single-crystalline thin-film transparent oxide semiconductor, InGaO3(ZnO)5, as an electron channel and amorphous hafnium oxide as a gate insulator. The device exhibits an on-to-off current ratio of approximately 106 and a field-effect mobility of approximately 80 square centimeters per volt per second at room temperature, with operation insensitive to visible light irradiation. The result provides a step toward the realization of transparent electronics for next-generation optoelectronics.
NASA Technical Reports Server (NTRS)
Mickelsen, William R
1957-01-01
Vapor fuel-oxidant mixing is analyzed for standing transverse acoustic fields simulating those existing in screeching or screaming combustors. The additional mixing due to the acoustic field is shown to be a function of sound pressure and frequency, stream velocity, and turbulence. The effects of these parameters are shown graphically for a realistic range of combustor conditions. The fuel-oxidant ratio at various combustor stations is shown to have a cyclic fluctuation which is in phase with the pressure fluctuations. Possible mechanisms contributing to screech and scream are discussed.
NASA Astrophysics Data System (ADS)
Yang, Fan; Fang, Dai-Ning; Liu, Bin
2012-01-01
An oxidation kinetics model is developed to account for the effects of the oxidation interface curvature and the oxidation-induced volume change or Pilling-Bedworth ratio. For the oxidation of Fe-Cr-Al-Y alloy fiber, the predictions agree well with experimental results. By considering the influence of the oxidation interface curvature on oxidation rates, the evolution of fluctuant oxidation interface is predicted. We also developed the phase field method (PFM) to simulate the evolution of the interface roughness. Both the theoretical model and the PFM results show that the interface will become smooth during high temperature oxidation. Stress distribution and evolution are calculated by PFM, which indicates that the stress level decreases as the interface morphology evolves.
NASA Astrophysics Data System (ADS)
Kong, Jae-Sung; Hyun, Hyo-Young; Seo, Sang-Ho; Shin, Jang-Kyoo
2008-11-01
Complementary metal-oxide-semiconductor (CMOS) vision chips for edge detection based on a resistive circuit have recently been developed. These chips help in the creation of neuromorphic systems of a compact size, high speed of operation, and low power dissipation. The output of the vision chip depends predominantly upon the electrical characteristics of the resistive network which consists of a resistive circuit. In this paper, the body effect of the metal-oxide-semiconductor field-effect transistor for current distribution in a resistive circuit is discussed with a simple model. In order to evaluate the model, two 160 × 120 CMOS vision chips have been fabricated using a standard CMOS technology. The experimental results nicely match our prediction.
Study of ultrasonic cavitation during extraction of the peanut oil at varying frequencies.
Zhang, Lei; Zhou, Cunshan; Wang, Bei; Yagoub, Abu El-Gasim A; Ma, Haile; Zhang, Xiao; Wu, Mian
2017-07-01
The ultrasonic extraction of oils is a typical physical processing technology. The extraction process was monitored from the standpoint of the oil quality and efficiency of oil extraction. In this study, the ultrasonic cavitation fields were measured by polyvinylidene fluoride (PVDF) sensor. Waveform of ultrasonic cavitation fields was gained and analyzed. The extraction yield and oxidation properties were compared. The relationship between the fields and cavitation oxidation was established. Numerical calculation of oscillation cycle was done for the cavitation bubbles. Results showed that the resonance frequency, f r , of the oil extraction was 40kHz. At f r , the voltage amplitude was the highest; the time was the shortest as reaching the amplitude of the waveform. Accordingly, the cavitation effect worked most rapidly, resulting in the strongest cavitation intensity. The extraction yield and oxidation properties were closely related to the cavitation effect. It controlled the cavitation oxidation effectively from the viewpoint of chemical and physical aspects. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Beer, Chris; Whall, Terry; Parker, Evan; Leadley, David; De Jaeger, Brice; Nicholas, Gareth; Zimmerman, Paul; Meuris, Marc; Szostak, Slawomir; Gluszko, Grzegorz; Lukasiak, Lidia
2007-12-01
Effective mobility measurements have been made at 4.2K on high performance high-k gated germanium p-type metal-oxide-semiconductor field effect transistors with a range of Ge/gate dielectric interface state densities. The mobility is successfully modelled by assuming surface roughness and interface charge scattering at the SiO2 interlayer/Ge interface. The deduced interface charge density is approximately equal to the values obtained from the threshold voltage and subthreshold slope measurements on each device. A hydrogen anneal reduces both the interface state density and the surface root mean square roughness by 20%.
Probing charge transfer during metal-insulator transitions in graphene-LaAlO3/SrTiO3 systems
NASA Astrophysics Data System (ADS)
Aliaj, I.; Sambri, A.; Miseikis, V.; Stornaiuolo, D.; di Gennaro, E.; Coletti, C.; Pellegrini, V.; Miletto Granozio, F.; Roddaro, S.
2018-06-01
Two-dimensional electron systems (2DESs) at the interface between LaAlO3 (LAO) and SrTiO3 (STO) perovskite oxides display a wide class of tunable phenomena ranging from superconductivity to metal-insulator transitions. Most of these effects are strongly sensitive to surface physics and often involve charge transfer mechanisms, which are, however, hard to detect. In this work, we realize hybrid field-effect devices where graphene is used to modulate the transport properties of the LAO/STO 2DES. Different from a conventional gate, graphene is semimetallic and allows us to probe charge transfer with the oxide structure underneath the field-effect electrode. In LAO/STO samples with a low initial carrier density, graphene-covered regions turn insulating when the temperature is lowered to 3 K, but conduction can be restored in the oxide structure by increasing the temperature or by field effect. The evolution of graphene's electron density is found to be inconsistent with a depletion of LAO/STO, but it rather points to a localization of interfacial carriers in the oxide structure.
NASA Astrophysics Data System (ADS)
Hama-Aziz, Zanist; Hiscock, Kevin; Adams, Christopher; Reid, Brian
2016-04-01
Atmospheric nitrous oxide concentrations are increasing by 0.3% annually and a major source of this greenhouse gas is agriculture. Indirect emissions of nitrous oxide (e.g. from groundwater and surface water) account for about quarter of total nitrous oxide emissions. However, these indirect emissions are subject to uncertainty, mainly due to the range in reported emission factors. It's hypothesised in this study that cover cropping and implementing reduced (direct drill) cultivation in intensive arable systems will reduce dissolved nitrate concentration and subsequently indirect nitrous oxide emissions. To test the hypothesis, seven fields with a total area of 102 ha in the Wensum catchment in eastern England have been chosen for experimentation together with two fields (41 ha) under conventional cultivation (deep inversion ploughing) for comparison. Water samples from field under-drainage have been collected for nitrate and nitrous oxide measurement on a weekly basis from April 2013 for two years from both cultivation areas. A purge and trap preparation line connected to a Shimadzu GC-8A gas chromatograph fitted with an electron capture detector was used for dissolved nitrous oxide analysis. Results revealed that with an oilseed radish cover crop present, the mean concentration of nitrate, which is the predominant form of N, was significantly depleted from 13.9 mg N L-1 to 2.5 mg N L-1. However, slightly higher mean nitrous oxide concentrations under the cover crop of 2.61 μg N L-1 compared to bare fields of 2.23 μg N L-1 were observed. Different inversion intensity of soil tended to have no effect on nitrous oxide and nitrate concentrations. The predominant production mechanism for nitrous oxide was nitrification process and the significant reduction of nitrate was due to plant uptake rather than denitrification. It is concluded that although cover cropping might cause a slight increase of indirect nitrous oxide emission, it can be a highly effective mitigation measure in an agricultural area where high nitrate losses from fields into groundwater or surface water is excessively occurring.
FIELD STUDY: IN SITU OXIDATION OF 1,4-DIOXANE WITH OZONE AND HYDROGEN PEROXIDE
A pilot-scale field evaluation is underway to assess the effectiveness of in situ oxidation (using ozone with and without hydrogen peroxide) for remediation of 1,4-dioxane and chlorinated volatile organic compounds in groundwater at the Cooper Drum Company Superfund Site located ...
NASA Astrophysics Data System (ADS)
Shishkin, A. V.; Sokol, M. Ya.; Shatrova, A. V.; Fedyaeva, O. N.; Vostrikov, A. A.
2014-12-01
The work has detected an influence of a constant electric field (up to E = 300 kV/m) on the structure of a nanocrystalline layer of zinc oxide, formed on the surface of a planar zinc anode in water under supercritical (673 K and 23 MPa) and near-critical (673 K and 17. 5 MPa) conditions. The effect of an increase of zinc oxidation rate with an increase in E is observed under supercritical conditions and is absent at near-critical ones. Increase in the field strength leads to the formation of a looser structure in the inner part of the zinc oxide layer.
Verplanck, P.L.; Nordstrom, D. Kirk; Taylor, Howard E.; Kimball, B.A.
2004-01-01
Ferrous iron rapidly oxidizes to Fe (III) and precipitates as hydrous Fe (III) oxides in acid mine waters. This study examines the effect of Fe precipitation on the rare earth element (REE) geochemistry of acid mine waters to determine the pH range over which REEs behave conservatively and the range over which attenuation and fractionation occur. Two field studies were designed to investigate REE attenuation during Fe oxidation in acidic, alpine surface waters. To complement these field studies, a suite of six acid mine waters with a pH range from 1.6 to 6.1 were collected and allowed to oxidize in the laboratory at ambient conditions to determine the partitioning of REEs during Fe oxidation and precipitation. Results from field experiments document that even with substantial Fe oxidation, the REEs remain dissolved in acid, sulfate waters with pH below 5.1. Between pH 5.1 and 6.6 the REEs partitioned to the solid phases in the water column, and heavy REEs were preferentially removed compared to light REEs. Laboratory experiments corroborated field data with the most solid-phase partitioning occurring in the waters with the highest pH. ?? 2004 Elsevier Ltd. All rights reserved.
Effects of tillage on the Fe oxides activation in soil
NASA Astrophysics Data System (ADS)
Chi, Guangyu; Chen, Xin; Shi, Yi; Wang, Jun; Zheng, Taihui
2009-07-01
Since mid-1950s, the wetland ecosystems in Sanjiang Plain of Northeast China have been experiencing greater changes in land use, which had negative effects on the soil environments. This study assessed the effects of soil tillage on the activation of soil Fe in the region. The test ecosystems included natural wetland, paddy field and upland field converted from wetland. Soil samples at the depths of 0-10 cm, 10-20 cm, 20-30 cm, 30-40 cm, 40-60 cm, 60-90 cm and 90-120 cm were collected from each of the ecosystems for the analysis of vertical distribution of soil pH, organic carbon, chelate Fe oxides and Fe(II). The results showed that the conversion of wetland into paddy field and upland field induced a decrease of organic carbon content in 0-10 cm soil layer by 61.8% (P <0.05) and 70.0% (P < 0.05), respectively. The correlations among iron forms and soil organic carbon showed that chelate Fe oxides and Fe(II) was correlated positively with soil organic carbon and chelate ratio had a more positive relationship with organic carbon than chelate Fe oxides and Fe(II). The results of chelate Fe oxides, Fe(II) and chelate ratio of Fe suggested that reclamation could prevent the Fe activation and organic matter is credited for having an important influence on the process of Fe activation.
NASA Astrophysics Data System (ADS)
Ta, Hang T.; Li, Zhen; Wu, Yuao; Cowin, Gary; Zhang, Shaohua; Yago, Anya; Whittaker, Andrew K.; Xu, Zhi Ping
2017-11-01
This study aims to compare the relaxivities of ultra-small dual positive and negative contrast iron oxide nanoparticles (DCION) at different magnetic field strengths ranging from 4.7 to 16.4 T at physiological temperatures; and to investigate the effect of particle aggregation on relaxivities. Relaxivities of DCIONs were determined by magnetic resonance imaging scanners at 4.7, 7, 9.4, and 16.4 T. Both longitudinal (T 1) and transverse relaxation times (T 2) were measured by appropriate spin-echo sequences. It has been found that both longitudinal and transverse relaxivities are significantly dependent on the magnetic field strength. Particle aggregation also strongly affects the relaxivities. Awareness of the field strength and particle colloid stability is crucial for the comparison and evaluation of relaxivity values of these ultra-small iron oxide nanoparticles, and also for their medical applications as contrast agents.
NASA Astrophysics Data System (ADS)
Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Bhansali, Unnat. S.; Alshareef, H. N.
2012-06-01
High performance homo-junction field-effect transistor memory devices were prepared using solution processed transparent lithium-doped zinc oxide thin films for both the ferroelectric and semiconducting active layers. A highest field-effect mobility of 8.7 cm2/Vs was obtained along with an Ion/Ioff ratio of 106. The ferroelectric thin film transistors showed a low sub-threshold swing value of 0.19 V/dec and a significantly reduced device operating voltage (±4 V) compared to the reported hetero-junction ferroelectric transistors, which is very promising for low-power non-volatile memory applications.
Yang, Ji; Chen, Yufeng; Cao, Limei; Guo, Yuling; Jia, Jinping
2012-01-03
The combined concentrator/oxidizer system has been proposed as an effective physical-chemical option and proven to be a viable solution that enables Volatile Organic Carbons (VOCs) emitters to comply with the regulations. In this work, a field scale honeycomb zeolite rotor concentrator combined with a recuperative oxidizer was developed and applied for the treatment of the VOC waste gas. The research shows the following: (1) for the adsorption rotor, zeolite is a more appropriate material than Granular Activated Carbon (GAC). The designing and operation parameters of the concentrator were discussed in detail including the size and the optimal rotation speed of rotor. Also the developed rotor performance's was evaluated in the field; (2) Direct Fired Thermal Oxidizer (DFTO), Recuperative Oxidizer (RO), Regenerative Thermal Oxidizer (RTO) and Regenerative Catalytic oxidizer (RCO) are the available incinerators and the RO was selected as the oxidizer in this work; (3) The overall performance of the developed rotor/oxidizer was explored in a field scale under varying conditions; (4) The energy saving strategy was fulfilled by reducing heat loss from the oxidizer and recovering heat from the exhaust gas. Data shows that the developed rotor/oxidizer could remove over 95% VOCs with reasonable cost and this could be helpful for similar plants when considering VOC abatement.
NASA Astrophysics Data System (ADS)
Wang, Ming-Tsong; Hsu, De-Cheng; Juan, Pi-Chun; Wang, Y. L.; Lee, Joseph Ya-min
2010-09-01
Metal-oxide-semiconductor capacitors and n-channel metal-oxide-semiconductor field-effect transistors with La2O3 gate dielectric were fabricated. The positive bias temperature instability was studied. The degradation of threshold voltage (ΔVT) showed an exponential dependence on the stress time in the temperature range from 25 to 75 °C. The degradation of subthreshold slope (ΔS) and gate leakage (IG) with stress voltage was also measured. The degradation of VT is attributed to the oxide trap charges Qot. The extracted activation energy of 0.2 eV is related to a degradation dominated by the release of atomic hydrogen in La2O3 thin films.
NASA Astrophysics Data System (ADS)
Du, Jiangfeng; Liu, Dong; Liu, Yong; Bai, Zhiyuan; Jiang, Zhiguang; Liu, Yang; Yu, Qi
2017-11-01
A high voltage GaN-based vertical field effect transistor with interfacial charge engineering (GaN ICE-VFET) is proposed and its breakdown mechanism is presented. This vertical FET features oxide trenches which show a fixed negative charge at the oxide/GaN interface. In the off-state, firstly, the trench oxide layer acts as a field plate; secondly, the n-GaN buffer layer is inverted along the oxide/GaN interface and thus a vertical hole layer is formed, which acts as a virtual p-pillar and laterally depletes the n-buffer pillar. Both of them modulate electric field distribution in the device and significantly increase the breakdown voltage (BV). Compared with a conventional GaN vertical FET, the BV of GaN ICE-VFET is increased from 1148 V to 4153 V with the same buffer thickness of 20 μm. Furthermore, the proposed device achieves a great improvement in the tradeoff between BV and on-resistance; and its figure of merit even exceeds the GaN one-dimensional limit.
NASA Astrophysics Data System (ADS)
Lin, Jyh‑Ling; Lin, Ming‑Jang; Lin, Li‑Jheng
2006-04-01
The superjunction lateral double diffusion metal oxide semiconductor field effect has recently received considerable attention. Introducing heavily doped p-type strips to the n-type drift region increases the horizontal depletion capability. Consequently, the doping concentration of the drift region is higher and the conduction resistance is lower than those of conventional lateral-double-diffusion metal oxide semiconductor field effect transistors (LDMOSFETs). These characteristics may increase breakdown voltage (\\mathit{BV}) and reduce specific on-resistance (Ron,sp). In this study, we focus on the electrical characteristics of conventional LDMOSFETs on silicon bulk, silicon-on-insulator (SOI) LDMOSFETs and superjunction LDMOSFETs after bias stress. Additionally, the \\mathit{BV} and Ron,sp of superjunction LDMOSFETs with different N/P drift region widths and different dosages are discussed. Simulation tools, including two-dimensional (2-D) TSPREM-4/MEDICI and three-dimensional (3-D) DAVINCI, were employed to determine the device characteristics.
Effects of extremely low frequency magnetic field on oxidative balance in brain of rats.
Ciejka, Elzbieta; Kleniewska, P; Skibska, B; Goraca, A
2011-12-01
Extremely low frequency magnetic field (ELF-MF) may result in oxidative DNA damage and lipid peroxidation with an ultimate effect on a number of systemic disturbances and cell death. The aim of the study is to assess the effect of ELF-MF parameters most frequently used in magnetotherapy on reactive oxygen species generation (ROS) in brain tissue of experimental animals depending on the time of exposure to this field. The research material included adult male Sprague-Dawley rats, aged 3-4 months. The animals were divided into 3 groups: I - control (shame) group; II - exposed to the following parameters of the magnetic field: 7 mT, 40 Hz, 30 min/day, 10 days; III - exposed to the ELF-MF parameters of 7 mT, 40 Hz, 60 min/day, 10 days. The selected parameters of oxidative stress: thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H(2)O(2)), total free sulphydryl groups (-SH groups) and protein in brain homogenates were measured after the exposure of rats to the magnetic field. ELF-MF parameters of 7 mT, 40 Hz, 30 min/day for 10 days caused a significant increase in lipid peroxidation and insignificant increase in H(2)O(2) and free -SH groups. The same ELF-MF parameters but applied for 60 min/day caused a significant increase in free -SH groups and protein concentration in the brain homogenates indicating the adaptive mechanism. The study has shown that ELF-MF applied for 30 min/day for 10 days can affect free radical generation in the brain. Prolongation of the exposure to ELF-MF (60/min/day) caused adaptation to this field. The effect of ELF-MF irradiation on oxidative stress parameters depends on the time of animal exposure to magnetic field.
Influence of magnetic field on enzymatic ONOO- production
NASA Astrophysics Data System (ADS)
Dranova, T.; Petrovskii, D.; Ershov, N.; Slepneva, I.; Stass, D.
2017-08-01
Enzymatic oxidation of L-arginine catalyzed by inducible nitric oxide synthase gives nitric oxide as the main product and superoxide anion as a side reaction product. Recombination of these radicals gives a very reactive species - peroxynitrite, which is involved in many biochemical processes. In the current work it was shown that such a system can be a usable model system for investigating the influence of magnetic field on enzymatic peroxynitrite formation. Using a selective fluorescent probe for peroxynitrite - coumarin boronic acid and an adopted for the experimental purpose incubation mixture, magnetic field experiments have been done at 11.7T. The averaged magnetic field effect is equal to 2.8±0.9%.
Archer, C. Ruth; Hempenstall, Sarah; Royle, Nick J.; Selman, Colin; Willis, Sheridan; Rapkin, James; Blount, Jon D.; Hunt, John
2015-01-01
The oxidative stress theory predicts that the accumulation of oxidative damage causes aging. More generally, oxidative damage could be a cost of reproduction that reduces survival. Both of these hypotheses have mixed empirical support. To better understand the life-history consequences of oxidative damage, we fed male and female Australian field crickets (Teleogryllus commodus) four diets differing in their protein and carbohydrate content, which have sex-specific effects on reproductive effort and lifespan. We supplemented half of these crickets with the vitamin E isoform dl-alpha-tocopherol and measured the effects of nutrient intake on lifespan, reproduction, oxidative damage and antioxidant protection. We found a clear trade-off between reproductive effort and lifespan in females but not in males. In direct contrast to the oxidative stress theory, crickets fed diets that improved their lifespan had high levels of oxidative damage to proteins. Supplementation with dl-alpha-tocopherol did not significantly improve lifespan or reproductive effort. However, males fed diets that increased their reproductive investment experienced high oxidative damage to proteins. While this suggests that male reproductive effort could elevate oxidative damage, this was not associated with reduced male survival. Overall, these results provide little evidence that oxidative damage plays a central role in mediating life-history trade-offs in T. commodus. PMID:26783958
NASA Astrophysics Data System (ADS)
Qing-Wen, Song; Xiao-Yan, Tang; Yan-Jing, He; Guan-Nan, Tang; Yue-Hu, Wang; Yi-Meng, Zhang; Hui, Guo; Ren-Xu, Jia; Hong-Liang, Lv; Yi-Men, Zhang; Yu-Ming, Zhang
2016-03-01
In this paper, the normally-off N-channel lateral 4H-SiC metal-oxide-semiconductor field-effect transistors (MOSFFETs) have been fabricated and characterized. A sandwich- (nitridation-oxidation-nitridation) type process was used to grow the gate dielectric film to obtain high channel mobility. The interface properties of 4H-SiC/SiO2 were examined by the measurement of HF I-V, G-V, and C-V over a range of frequencies. The ideal C-V curve with little hysteresis and the frequency dispersion were observed. As a result, the interface state density near the conduction band edge of 4H-SiC was reduced to 2 × 1011 eV-1·cm-2, the breakdown field of the grown oxides was about 9.8 MV/cm, the median peak field-effect mobility is about 32.5 cm2·V-1·s-1, and the maximum peak field-effect mobility of 38 cm2·V-1·s-1 was achieved in fabricated lateral 4H-SiC MOSFFETs. Projcet supported by the National Natural Science Foundation of China (Grant Nos. 61404098, 61176070, and 61274079), the Doctoral Fund of Ministry of Education of China (Grant Nos. 20110203110010 and 20130203120017), the National Key Basic Research Program of China (Grant No. 2015CB759600), and the Key Specific Projects of Ministry of Education of China (Grant No. 625010101).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shalimova, M. B., E-mail: shamb@samsu.ru; Sachuk, N. V.
2015-08-15
The degradation of the characteristics of silicon metal-oxide-semiconductor (MOS) structures with oxides of rare-earth elements under the effect of electric fields with intensities of 0.1–4 MV/cm during the course of electroforming is studied. A specific feature of electroforming consists in the possibility of multiple switching of the structures from the insulating state to the low-resistivity one and back. The temporal characteristics of the degradation of MOS structures during the course of electroforming are exponential. The current-voltage characteristics follow the power law in the range of 0.2–3 V; the effect of an electric field brings about a variation in the distributionmore » of the energy density of traps responsible for currents limited by space charge. It is established that multiple cycles of electroforming lead to an increase in the density of surface states at the Si-oxide interface and to a variation in the energy position of the trap levels, which affects the charge state of the traps.« less
NASA Astrophysics Data System (ADS)
Kobayashi, Shigeki; Saitoh, Masumi; Nakabayashi, Yukio; Uchida, Ken
2007-11-01
Uniaxial stress effects on Coulomb-limited mobility (μCoulomb) in Si metal-oxide-semiconductor field-effect transistors (MOSFETs) are investigated experimentally. By using the four-point bending method, uniaxial stress corresponding to 0.1% strain is applied to MOSFETs along the channel direction. It is found that μCoulomb in p-type MOSFETs is enhanced greatly by uniaxial stress; μCoulomb is as sensitive as phonon-limited mobility. The high sensitivity of μCoulomb in p-type MOSFETs to stress arises from the stress-induced change of hole effective mass.
Dobson, Jon; Bowtell, Richard; Garcia-Prieto, Ana; Pankhurst, Quentin
2009-01-01
Background Magnetic Resonance Imaging scanners have become ubiquitous in hospitals and high-field systems (greater than 3 Tesla) are becoming increasingly common. In light of recent European Union moves to limit high-field exposure for those working with MRI scanners, we have evaluated the potential for detrimental cellular effects via nanomagnetic actuation of endogenous iron oxides in the body. Methodology Theoretical models and experimental data on the composition and magnetic properties of endogenous iron oxides in human tissue were used to analyze the forces on iron oxide particles. Principal Finding and Conclusions Results show that, even at 9.4 Tesla, forces on these particles are unlikely to disrupt normal cellular function via nanomagnetic actuation. PMID:19412550
Thermal-mechanical coupling effect on initial stage oxidation of Si(100) surface
NASA Astrophysics Data System (ADS)
Sun, Yu; Liu, Yilun; Chen, Xuefeng; Zhai, Zhi; Izumi, Satoshi
2018-04-01
The initial stage oxidation of biaxially strained Si(100) at temperatures ranging from 300 K to 1200 K has been investigated by Reactive Force Field Molecular Dynamics simulations. We reported that the oxidation process involving the reaction rate and the amount of absorbed O atoms could be enhanced by the coupling effect of higher temperatures and larger external tension. By fitting the simulation results, the relationship between absorbed oxygen and the coupling of temperature and strain was obtained. In probing the mechanism, we observed that there was a ballistic transport of O atoms, displaying an enhancement of inward penetration by external tension. Since such an inward transport was favored by thermal actuation, more O atoms penetrated into deeper layers when the 9% strained Si oxidized at 1200 K. Moreover, the evolution of stress in the surface region during the oxidation process was discussed, as well as the related oxide structure and the film quality. These present results may provide a way to understand the thermally-mechanically coupled chemical reactions and propose an effective approach to optimize microscale component processing in the electronic field.
Shah, Rhythm R.; Davis, Todd P.; Glover, Amanda L.; Nikles, David E.; Brazel, Christopher S.
2015-01-01
Heating of nanoparticles (NPs) using an AC magnetic field depends on several factors, and optimization of these parameters can improve the efficiency of heat generation for effective cancer therapy while administering a low NP treatment dose. This study investigated magnetic field strength and frequency, NP size, NP concentration, and solution viscosity as important parameters that impact the heating efficiency of iron oxide NPs with magnetite (Fe3O4) and maghemite (γ-Fe2O3) crystal structures. Heating efficiencies were determined for each experimental setting, with specific absorption rates (SARs) ranging from 3.7 to 325.9 W/g Fe. Magnetic heating was conducted on iron oxide NPs synthesized in our laboratories (with average core sizes of 8, 11, 13, and 18 nm), as well as commercially-available iron oxides (with average core sizes of 8, 9, and 16 nm). The experimental magnetic coil system made it possible to isolate the effect of magnetic field parameters and independently study the effect on heat generation. The highest SAR values were found for the 18 nm synthesized particles and the maghemite nanopowder. Magnetic field strengths were applied in the range of 15.1 to 47.7 kA/m, with field frequencies ranging from 123 to 430 kHz. The best heating was observed for the highest field strengths and frequencies tested, with results following trends predicted by the Rosensweig equation. An increase in solution viscosity led to lower heating rates in nanoparticle solutions, which can have significant implications for the application of magnetic fluid hyperthermia in vivo. PMID:25960599
NASA Astrophysics Data System (ADS)
Shah, Rhythm R.; Davis, Todd P.; Glover, Amanda L.; Nikles, David E.; Brazel, Christopher S.
2015-08-01
Heating of nanoparticles (NPs) using an AC magnetic field depends on several factors, and optimization of these parameters can improve the efficiency of heat generation for effective cancer therapy while administering a low NP treatment dose. This study investigated magnetic field strength and frequency, NP size, NP concentration, and solution viscosity as important parameters that impact the heating efficiency of iron oxide NPs with magnetite (Fe3O4) and maghemite (γ-Fe2O3) crystal structures. Heating efficiencies were determined for each experimental setting, with specific absorption rates (SARs) ranging from 3.7 to 325.9 W/g Fe. Magnetic heating was conducted on iron oxide NPs synthesized in our laboratories (with average core sizes of 8, 11, 13, and 18 nm), as well as commercially-available iron oxides (with average core sizes of 8, 9, and 16 nm). The experimental magnetic coil system made it possible to isolate the effect of magnetic field parameters and independently study the effect on heat generation. The highest SAR values were found for the 18 nm synthesized particles and the maghemite nanopowder. Magnetic field strengths were applied in the range of 15.1-47.7 kA/m, with field frequencies ranging from 123 to 430 kHz. The best heating was observed for the highest field strengths and frequencies tested, with results following trends predicted by the Rosensweig equation. An increase in solution viscosity led to lower heating rates in nanoparticle solutions, which can have significant implications for the application of magnetic fluid hyperthermia in vivo.
Rauš Balind, Snežana; Selaković, Vesna; Radenović, Lidija; Prolić, Zlatko; Janać, Branka
2014-01-01
Magnetic field as ecological factor has influence on all living beings. The aim of this study was to determine if extremely low frequency magnetic field (ELF-MF, 50 Hz, 0.5 mT) affects oxidative stress in the brain of gerbils submitted to 10-min global cerebral ischemia. After occlusion of both carotid arteries, 3-month-old gerbils were continuously exposed to ELF-MF for 7 days. Nitric oxide and superoxide anion production, superoxide dismutase activity and index of lipid peroxidation were examined in the forebrain cortex, striatum and hippocampus on the 7th (immediate effect of ELF-MF) and 14th day after reperfusion (delayed effect of ELF-MF). Ischemia per se increased oxidative stress in the brain on the 7th and 14th day after reperfusion. ELF-MF also increased oxidative stress, but to a greater extent than ischemia, only immediately after cessation of exposure. Ischemic gerbils exposed to ELF-MF had increased oxidative stress parameters on the 7th day after reperfusion, but to a lesser extent than ischemic or ELF-MF-exposed animals. On the 14th day after reperfusion, oxidative stress parameters in the brain of these gerbils were mostly at the control levels. Applied ELF-MF decreases oxidative stress induced by global cerebral ischemia and thereby reduces possible negative consequences which free radical species could have in the brain. The results presented here indicate a beneficial effect of ELF-MF (50 Hz, 0.5 mT) in the model of global cerebral ischemia. PMID:24586442
NASA Astrophysics Data System (ADS)
Xu, Cheng; Liu, Bo; Chen, Yi-Feng; Liang, Shuang; Song, Zhi-Tang; Feng, Song-Lin; Wan, Xu-Dong; Yang, Zuo-Ya; Xie, Joseph; Chen, Bomy
2008-05-01
A Ge2Sb2Te5 based phase change memory device cell integrated with metal-oxide semiconductor field effect transistor (MOSFET) is fabricated using standard 0. 18 μm complementary metal-oxide semiconductor process technology. It shows steady switching characteristics in the dc current-voltage measurement. The phase changing phenomenon from crystalline state to amorphous state with a voltage pulse altitude of 2.0 V and pulse width of 50 ns is also obtained. These results show the feasibility of integrating phase change memory cell with MOSFET.
Conduction at a ferroelectric interface
Marshall, Matthew S. J.; Malashevich, Andrei; Disa, Ankit S.; ...
2014-11-05
Typical logic elements utilizing the field effect rely on the change in carrier concentration due to the field in the channel region of the device. Ferroelectric-field-effect devices provide a nonvolatile version of this effect due to the stable polarization order parameter in the ferroelectric. In this study, we describe an oxide/oxide ferroelectric heterostructure device based on (001)-oriented PbZr₀̣.₂Ti₀.₈O₃-LaNiO₃ where the dominant change in conductivity is a result of a significant mobility change in the interfacial channel region. The effect is confined to a few atomic layers at the interface and is reversible by switching the ferroelectric polarization. More interestingly, inmore » one polarization state, the field effect induces a 1.7 eV shift of the interfacial bands to create a new conducting channel in the interfacial PbO layer of the ferroelectric.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiorenza, Patrick; La Magna, Antonino; Vivona, Marilena
This letter reports on the impact of gate oxide trapping states on the conduction mechanisms in SiO{sub 2}/4H-SiC metal-oxide-semiconductor field effect transistors (MOSFETs). The phenomena were studied by gate current transient measurements, performed on n-channel MOSFETs operated in “gate-controlled-diode” configuration. The measurements revealed an anomalous non-steady conduction under negative bias (V{sub G} > |20 V|) through the SiO{sub 2}/4H-SiC interface. The phenomenon was explained by the coexistence of a electron variable range hopping and a hole Fowler-Nordheim (FN) tunnelling. A semi-empirical modified FN model with a time-depended electric field is used to estimate the near interface traps in the gate oxide (N{sub trap} ∼ 2 × 10{supmore » 11} cm{sup −2}).« less
Fernández-García, María Paz; Gorria, Pedro; Sevilla, Marta; Fuertes, Antonio B; Boada, Roberto; Chaboy, Jesús; Aquilanti, Giuliana; Blanco, Jesús A
2011-01-21
We report unusual cooling field dependence of the exchange bias in oxide-coated cobalt nanoparticles embedded within the nanopores of a carbon matrix. The size-distribution of the nanoparticles and the exchange bias coupling observed up to about 200 K between the Co-oxide shell (∼3-4 nm) and the ferromagnetic Co-cores (∼4-6 nm) are the key to understand the magnetic properties of this system. The estimated values of the effective anisotropy constant and saturation magnetization obtained from the fit of the zero-field cooling and field cooling magnetization vs. temperature curves agree quite well with those of the bulk fcc-Co.
Training effect in specular spin valves
NASA Astrophysics Data System (ADS)
Ventura, J.; Araujo, J. P.; Sousa, J. B.; Veloso, A.; Freitas, P. P.
2008-05-01
Specular spin valves show an enhanced giant magnetoresistive (GMR) ratio due to specular reflection in nano-oxide layers (NOLs) formed by the partial oxidation of CoFe pinned and free layers. The oxides that form the (pinned layer) NOL were recently shown to antiferromagnetically order at Ttilde 175K . Here, we study the training effect (TE) in MnIr/CoFe/NOL/CoFe/Cu/CoFe/NOL/Ta specular spin valves in the 300-15 K temperature range. The exchange bias direction between the MnIr and CoFe layers impressed during annealing is taken as the positive direction. The training effect is observed in antiferromagnetic (AFM)/ferromagnetic (FM) exchange systems and related to the rearrangement of interfacial AFM spin structure with the number of hysteretic cycles performed (n) , resulting in the decrease of the exchange field (Hexch) . Here, in the studied specular spin valve, TE was only observed for T<175K and is thus related to the pinned layer NOL-AFM ordering and to the evolution of the corresponding spin structure with n . We show that FM spins that are strongly coupled to AFM domains do not align with the applied positive magnetic field (H) , giving rise to a residual MR at H≫0 . Such nonsaturating MR will be related with a spin-glass-like behavior of the interfacial magnetism induced by the nano-oxide layer. The observed dependence of the training effect on the field cooling procedure is also likely associated with the existence of different spin configurations available in the magnetically disordered oxide. Furthermore, anomalous magnetoresistance cycles measured after cooling runs under -500Oe are here related to induced NOL exchange bias/applied magnetic field misalignment. The temperature dependence of the training effect was obtained and fitted by using a recent theoretical model.
Bioeffects of Static Magnetic Fields: Oxidative Stress, Genotoxic Effects, and Cancer Studies
Ghodbane, Soumaya; Lahbib, Aida; Sakly, Mohsen; Abdelmelek, Hafedh
2013-01-01
The interaction of static magnetic fields (SMFs) with living organisms is a rapidly growing field of investigation. The magnetic fields (MFs) effect observed with radical pair recombination is one of the well-known mechanisms by which MFs interact with biological systems. Exposure to SMF can increase the activity, concentration, and life time of paramagnetic free radicals, which might cause oxidative stress, genetic mutation, and/or apoptosis. Current evidence suggests that cell proliferation can be influenced by a treatment with both SMFs and anticancer drugs. It has been recently found that SMFs can enhance the anticancer effect of chemotherapeutic drugs; this may provide a new strategy for cancer therapy. This review focuses on our own data and other data from the literature of SMFs bioeffects. Three main areas of investigation have been covered: free radical generation and oxidative stress, apoptosis and genotoxicity, and cancer. After an introduction on SMF classification and medical applications, the basic phenomena to understand the bioeffects are described. The scientific literature is summarized, integrated, and critically analyzed with the help of authoritative reviews by recognized experts; international safety guidelines are also cited. PMID:24027759
Oxidation and crystal field effects in uranium
NASA Astrophysics Data System (ADS)
Tobin, J. G.; Yu, S.-W.; Booth, C. H.; Tyliszczak, T.; Shuh, D. K.; van der Laan, G.; Sokaras, D.; Nordlund, D.; Weng, T.-C.; Bagus, P. S.
2015-07-01
An extensive investigation of oxidation in uranium has been pursued. This includes the utilization of soft x-ray absorption spectroscopy, hard x-ray absorption near-edge structure, resonant (hard) x-ray emission spectroscopy, cluster calculations, and a branching ratio analysis founded on atomic theory. The samples utilized were uranium dioxide (U O2) , uranium trioxide (U O3) , and uranium tetrafluoride (U F4) . A discussion of the role of nonspherical perturbations, i.e., crystal or ligand field effects, will be presented.
Role of Oxygen in Ionic Liquid Gating on Two-Dimensional Cr2Ge2Te6: A Non-oxide Material.
Chen, Yangyang; Xing, Wenyu; Wang, Xirui; Shen, Bowen; Yuan, Wei; Su, Tang; Ma, Yang; Yao, Yunyan; Zhong, Jiangnan; Yun, Yu; Xie, X C; Jia, Shuang; Han, Wei
2018-01-10
Ionic liquid gating can markedly modulate a material's carrier density so as to induce metallization, superconductivity, and quantum phase transitions. One of the main issues is whether the mechanism of ionic liquid gating is an electrostatic field effect or an electrochemical effect, especially for oxide materials. Recent observation of the suppression of the ionic liquid gate-induced metallization in the presence of oxygen for oxide materials suggests the electrochemical effect. However, in more general scenarios, the role of oxygen in the ionic liquid gating effect is still unclear. Here, we perform ionic liquid gating experiments on a non-oxide material: two-dimensional ferromagnetic Cr 2 Ge 2 Te 6 . Our results demonstrate that despite the large increase of the gate leakage current in the presence of oxygen, the oxygen does not affect the ionic liquid gating effect on the channel resistance of Cr 2 Ge 2 Te 6 devices (<5% difference), which suggests the electrostatic field effect as the mechanism on non-oxide materials. Moreover, our results show that ionic liquid gating is more effective on the modulation of the channel resistances compared to the back gating across the 300 nm thick SiO 2 .
Effect of CO on the field emission properties of tetrapod zinc oxide cathode.
Wang, Jinchan; Zhang, Xiaobing; Lei, Wei; Mao, Fuming; Cui, Yunkang; Xiao, Mei
2012-08-01
Tetrapod zinc oxide (T-ZnO), being a kind of nano-material, has large specific surface area and surface binding energy, which will make it sensitive to the ambient gas condition. So the field emission properties will be influenced by the gas adsorption when being applied as the cathode materials of field emission devices. Carbon monoxide is the main residual gas in T-ZnO field emission devices. In this paper, carbon monoxide was introduced into a field emission device with T-ZnO emitters. The field emission currents of tetrapod ZnO were compared before and after exposure to CO.
Jilani, S Mahaboob; Banerji, Pallab
2014-10-08
The effects of ZnO on graphene oxide (GO)-ZnO nanocomposites are investigated to tune the conductivity in GO under field effect regime. Zinc oxides with different concentrations from 5 wt % to 25 wt % are used in a GO matrix to increase the conductivity in the composite. Six sets of field effect transistors with pristine GO and GO-ZnO as the channel layer at varying ZnO concentrations were fabricated. From the transfer characteristics, it is observed that GO exhibited an insulating behavior and the transistors with low ZnO (5 wt %) concentration initially showed p-type conductivity that changes to n-type with increases in ZnO loading. This n-type dominance in conductivity is a consequence of the transfer of electrons from ZnO to the GO matrix. From X-ray photoelectron spectroscopic measurements, it is observed that the progressive reduction in the C-OH oxygen group took place with increases in ZnO loading. Thus, from insulating GO to p- and then n-type, conductivity in GO could be achieved with reduction in the C-OH oxygen group by photocatalytic reduction of GO with varying degrees of ZnO. The restoration of sp(2) electron network in the GO matrix with the anchoring of ZnO nanostructures was observed from Raman spectra. From UV-visible spectra, the band gap in pristine GO was found to be 3.98 eV and reduced to 2.8 eV with increase in ZnO attachment.
NASA Astrophysics Data System (ADS)
Hu, Guang-Xi; Wang, Ling-Li; Liu, Ran; Tang, Ting-Ao; Qiu, Zhi-Jun
2010-10-01
As the channel length of metal-oxide-semiconductor field-effect transistors (MOSFETs) scales into the nanometer regime, quantum mechanical effects are becoming more and more significant. In this work, a model for the surrounding-gate (SG) nMOSFET is developed. The Schrödinger equation is solved analytically. Some of the solutions are verified via results obtained from simulations. It is found that the percentage of the electrons with lighter conductivity mass increases as the silicon body radius decreases, or as the gate voltage reduces, or as the temperature decreases. The centroid of inversion-layer is driven away from the silicon-oxide interface towards the silicon body, therefore the carriers will suffer less scattering from the interface and the electrons effective mobility of the SG nMOSFETs will be enhanced.
NASA Technical Reports Server (NTRS)
Danchenko, V. (Inventor)
1974-01-01
A technique is described for radiation hardening of MOS devices and specifically for stabilizing the gate threshold potential at room temperature of a radiation subjected MOS field-effect device with a semiconductor substrate, an insulating layer of oxide on the substrate, and a gate electrode disposed on the insulating layer. The boron is introduced within a layer of the oxide of about 100 A-300 A thickness immediately adjacent the semiconductor-insulator interface. The concentration of boron in the oxide layer is preferably maintained on the order of 10 to the 18th power atoms/cu cm. The technique serves to reduce and substantially annihilate radiation induced positive gate charge accumulations.
Phosphorus oxide gate dielectric for black phosphorus field effect transistors
NASA Astrophysics Data System (ADS)
Dickerson, W.; Tayari, V.; Fakih, I.; Korinek, A.; Caporali, M.; Serrano-Ruiz, M.; Peruzzini, M.; Heun, S.; Botton, G. A.; Szkopek, T.
2018-04-01
The environmental stability of the layered semiconductor black phosphorus (bP) remains a challenge. Passivation of the bP surface with phosphorus oxide, POx, grown by a reactive ion etch with oxygen plasma is known to improve photoluminescence efficiency of exfoliated bP flakes. We apply phosphorus oxide passivation in the fabrication of bP field effect transistors using a gate stack consisting of a POx layer grown by reactive ion etching followed by atomic layer deposition of Al2O3. We observe room temperature top-gate mobilities of 115 cm2 V-1 s-1 in ambient conditions, which we attribute to the low defect density of the bP/POx interface.
Electromagnetic Fields, Oxidative Stress, and Neurodegeneration
Consales, Claudia; Merla, Caterina; Marino, Carmela; Benassi, Barbara
2012-01-01
Electromagnetic fields (EMFs) originating both from both natural and manmade sources permeate our environment. As people are continuously exposed to EMFs in everyday life, it is a matter of great debate whether they can be harmful to human health. On the basis of two decades of epidemiological studies, an increased risk for childhood leukemia associated with Extremely Low Frequency fields has been consistently assessed, inducing the International Agency for Research on Cancer to insert them in the 2B section of carcinogens in 2001. EMFs interaction with biological systems may cause oxidative stress under certain circumstances. Since free radicals are essential for brain physiological processes and pathological degeneration, research focusing on the possible influence of the EMFs-driven oxidative stress is still in progress, especially in the light of recent studies suggesting that EMFs may contribute to the etiology of neurodegenerative disorders. This review synthesizes the emerging evidences about this topic, highlighting the wide data uncertainty that still characterizes the EMFs effect on oxidative stress modulation, as both pro-oxidant and neuroprotective effects have been documented. Care should be taken to avoid methodological limitations and to determine the patho-physiological relevance of any alteration found in EMFs-exposed biological system. PMID:22991514
NASA Astrophysics Data System (ADS)
Nam, Chunghee; Cho, Beong-Ki
2011-11-01
The effect of the local Oersted field on a pinned domain wall (DW) was investigated in a magnetic spin-valve nanowire. The Oersted field is produced by a low current, which is confined under a nano-oxide layer (NOL) inserted into the NiFe layer in sub/NiFe/Cu/NiFe/NOL/NiFe. It was found that the depinning field of the pinned DW decreases linearly as the magnitude of current (or equivalently Oersted field) increases. The Oersted field was believed to change the internal magnetic structure of DW, such that the DW pinning energy was lowered, resulting in the reduction of the depinning field.
[Effect of extremely low frequency magnetic field on glutathione in rat muscles].
Ciejka, Elzbieta; Jakubowska, Ewa; Zelechowska, Paulina; Huk-Kolega, Halina; Kowalczyk, Agata; Goraca, Anna
2014-01-01
Free radicals (FR) are atoms, molecules or their fragments. Their excess leads to the development of oxidizing stress, the cause of many neoplastic, neurodegenerative and inflammatory diseases, and aging of the organism. Industrial pollution, tobacco smoke, ionizing radiation, ultrasound and magnetic field are the major FR exogenous sources. The low frequency magnetic field is still more commonly applied in the physical therapy. The aim of the presented study was to evaluate the effect of extremely low frequency magnetic field used in the magnetotherapy on the level of total glutathione, oxidized and reduced, and the redox state of the skeletal muscle cells, depending on the duration of exposure to magnetic field. The male rats, weight of 280-300 g, were randomly devided into 3 experimental groups: controls (group I) and treatment groups exposed to extremely low frequency magnetic field (ELF-MF) (group II exposed to 40 Hz, 7 mT for 0.5 h/day for 14 days and group III exposed to 40 Hz, 7 mT for 1 h/day for 14 days). Control rats were kept in a separate room not exposed to extremely low frequency magnetic field. Immediately after the last exposure, part of muscles was taken under pentobarbital anesthesia. Total glutathione, oxidized and reduced, and the redox state in the muscle tissue of animals were determined after exposure to magnetic fields. Exposure to low magnetic field: 40 Hz, 7 mT for 30 min/day and 60 min/day for 2 weeks significantly increased the total glutathione levels in the skeletal muscle compared to the control group (p < 0.001). Exposure to magnetic fields used in the magnetic therapy plays an important role in the development of adaptive mechanisms responsible for maintaining the oxidation-reduction balance in the body and depends on exposure duration.
Effect of thin oxide layers incorporated in spin valve structures
NASA Astrophysics Data System (ADS)
Gillies, M. F.; Kuiper, A. E. T.; Leibbrandt, G. W. R.
2001-06-01
The enhancement of the magnetoresistance effect, induced by incorporating nano-oxide layers (NOLs) in a bottom-type spin valve, was studied for various preparation conditions. The effect of a NOL in the Co90Fe10 pinned layer was found to depend critically on the oxygen pressure applied to form the thin oxide film. Pressures over 10-3 Torr O2 yield oxides thicker than about 0.7 nm, which apparently deteriorate the biasing field which exists over the oxide. The magnetoresistance values can further be raised by forming a specular reflecting oxide on top of the sense layer. Promising results were obtained with an Al2O3 capping layer formed in a solid-state oxidation reaction that occurs spontaneously when a thin Al layer is deposited on the oxidized surface of the Co90Fe10 sense layer.
The effect of hyperdynamic fields on the oxidative metabolism of the paraventricular nucleus
NASA Technical Reports Server (NTRS)
Murakami, Dean M.; Fuller, Charles A.
1990-01-01
An important issue in space biology and medicine is understanding the effect of gravitational changes on the mechanisms that regulate fluid homeostasis. The results of this study show that, following 7-d exposure to a 2 G or 3 G hyperdynamic field, rats exhibited a linear increase in the cytochrome oxidase staining of neurons in the paraventricular nucleus (PVN). The elevated oxidative metabolism in the PVN suggests that there was an increase in the manufacturing and release of vasopressin into the plasma in response to a perceived hypovolemic condition caused by increased hydrostatic pressure and redistribution of fluid to the periphery. Since vasopressin also has widespread cardiovascular effects, it will be important to understand the relationship between vasopressin and altered gravitational fields.
NASA Astrophysics Data System (ADS)
Wang, Qingpeng; Ao, Jin-Ping; Wang, Pangpang; Jiang, Ying; Li, Liuan; Kawaharada, Kazuya; Liu, Yang
2015-04-01
GaN metal-oxide-semiconductor field-effect transistors (MOSFETs) on AlGaN/GaN heterostructure with a recess gate were fabricated and characterized. The device showed good pinch-off characteristics and a maximum field-effect mobility of 145.2 cm2·V-1·s-1. The effects of etching gas of Cl2 and SiCl4 were investigated in the gate recess process. SiCl4-etched devices showed higher channel mobility and lower threshold voltage. Atomic force microscope measurement was done to investigate the etching profile with different etching protection mask. Compared with photoresist, SiO2-masked sample showed lower surface roughness and better profile with stepper sidewall and weaker trenching effect resulting in higher channel mobility in the MOSFET.
NASA Astrophysics Data System (ADS)
Jia, Chuanyi; Zhong, Wenhui; Deng, Mingsen; Jiang, Jun
2018-03-01
Pt-based catalyst is widely used in CO oxidation, while its catalytic activity is often undermined because of the CO poisoning effect. Here, using density functional theory, we propose the use of a Ru-Pt bimetallic cluster supported on TiO2 for CO oxidation, to achieve both high activity and low CO poisoning effect. Excellent catalytic activity is obtained in a Ru1Pt7/TiO2(101) system, which is ascribed to strong electric fields induced by charge polarization between one Ru atom and its neighboring Pt atoms. Because of its lower electronegativity, the Ru atom donates electrons to neighboring Pt. This induces strong electric fields around the top-layered Ru, substantially promoting the adsorption of O2/CO + O2 and eliminating the CO poisoning effect. In addition, the charge polarization also drives the d-band center of the Ru1Pt7 cluster to up-shift to the Fermi level. For surface O2 activation/CO oxidation, the strong electric field and d-band center close to the Fermi level can promote the adsorption of O2 and CO as well as reduce the reaction barrier of the rate-determining step. Meanwhile, since O2 easily dissociates on Ru1Pt7/TiO2(101) resulting in unwanted oxidation of Ru and Pt, a CO-rich condition is necessary to protect the catalyst at high temperature.
Mesoporous Transition Metal Oxides for Supercapacitors.
Wang, Yan; Guo, Jin; Wang, Tingfeng; Shao, Junfeng; Wang, Dong; Yang, Ying-Wei
2015-10-14
Recently, transition metal oxides, such as ruthenium oxide (RuO₂), manganese dioxide (MnO₂), nickel oxides (NiO) and cobalt oxide (Co₃O₄), have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO₂, MnO₂, NiO, Co₃O₄ and nickel cobaltite (NiCo₂O₄), and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors.
Mesoporous Transition Metal Oxides for Supercapacitors
Wang, Yan; Guo, Jin; Wang, Tingfeng; Shao, Junfeng; Wang, Dong; Yang, Ying-Wei
2015-01-01
Recently, transition metal oxides, such as ruthenium oxide (RuO2), manganese dioxide (MnO2), nickel oxides (NiO) and cobalt oxide (Co3O4), have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO2, MnO2, NiO, Co3O4 and nickel cobaltite (NiCo2O4), and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors. PMID:28347088
On the Role of the Electrical Field in Spark Plasma Sintering of UO2+x
Tyrpekl, Vaclav; Naji, Mohamed; Holzhäuser, Michael; Freis, Daniel; Prieur, Damien; Martin, Philippe; Cremer, Bert; Murray-Farthing, Mairead; Cologna, Marco
2017-01-01
The electric field has a large effect on the stoichiometry and grain growth of UO2+x during Spark Plasma Sintering. UO2+x is gradually reduced to UO2.00 as a function of sintering temperature and time. A gradient in the oxidation state within the pellets is observed in intermediate conditions. The shape of the gradient depends unequivocally on the direction of the electrical field. The positive surface of the pellet shows a higher oxidation state compared to the negative one. An area with larger grain size is found close to the positive electrode, but not in contact with it. We interpret these findings with the redistribution of defects under an electric field, which affect the stoichiometry of UO2+x and thus the cation diffusivity. The results bear implications for understanding the electric field assisted sintering of UO2 and non-stoichiometric oxides in general. PMID:28422164
On the Role of the Electrical Field in Spark Plasma Sintering of UO2+x
NASA Astrophysics Data System (ADS)
Tyrpekl, Vaclav; Naji, Mohamed; Holzhäuser, Michael; Freis, Daniel; Prieur, Damien; Martin, Philippe; Cremer, Bert; Murray-Farthing, Mairead; Cologna, Marco
2017-04-01
The electric field has a large effect on the stoichiometry and grain growth of UO2+x during Spark Plasma Sintering. UO2+x is gradually reduced to UO2.00 as a function of sintering temperature and time. A gradient in the oxidation state within the pellets is observed in intermediate conditions. The shape of the gradient depends unequivocally on the direction of the electrical field. The positive surface of the pellet shows a higher oxidation state compared to the negative one. An area with larger grain size is found close to the positive electrode, but not in contact with it. We interpret these findings with the redistribution of defects under an electric field, which affect the stoichiometry of UO2+x and thus the cation diffusivity. The results bear implications for understanding the electric field assisted sintering of UO2 and non-stoichiometric oxides in general.
Solek, Przemyslaw; Majchrowicz, Lena; Bloniarz, Dominika; Krotoszynska, Ewelina; Koziorowski, Marek
2017-05-01
The impact of electromagnetic field (EMF) on the human health and surrounding environment is a common topic investigated over the years. A significant increase in the electromagnetic field concentration arouses public concern about the long-term effects of EMF on living organisms associated with many aspects. In the present study, we investigated the effects of pulsed and continuous electromagnetic field (PEMF/CEMF) on mouse spermatogenic cell lines (GC-1 spg and GC-2 spd) in terms of cellular and biochemical features in vitro. We evaluated the effect of EMF on mitochondrial metabolism, morphology, proliferation rate, viability, cell cycle progression, oxidative stress balance and regulatory proteins. Our results strongly suggest that EMF induces oxidative and nitrosative stress-mediated DNA damage, resulting in p53/p21-dependent cell cycle arrest and apoptosis. Therefore, spermatogenic cells due to the lack of antioxidant enzymes undergo oxidative and nitrosative stress-mediated cytotoxic and genotoxic events, which contribute to infertility by reduction in healthy sperm cells pool. In conclusion, electromagnetic field present in surrounding environment impairs male fertility by inducing p53/p21-mediated cell cycle arrest and apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Multifunctional superparamagnetic nanocrystals for imaging and targeted drug delivery to the lung
NASA Astrophysics Data System (ADS)
Armijo, Leisha M.; Brandt, Yekaterina I.; Withers, Nathan J.; Plumley, John B.; Cook, Nathaniel C.; Rivera, Antonio C.; Yadav, Surabhi; Smolyakov, Gennady A.; Monson, Todd; Huber, Dale L.; Smyth, Hugh D. C.; Osiński, Marek
2012-03-01
Iron oxide colloidal nanocrystals (ferrofluids) are investigated for application in the treatment of cystic fibrosis lung infections, the leading cause of mortality in cystic fibrosis patients. We investigate the use of iron oxide nanocrystals to increase the effectiveness of inhalation aerosol antibiotics therapy through two mechanisms: directed particle movement in the presence of a static external magnetic field and magnetic hyperthermia. Magnetic hyperthermia is an effective method for decreasing the viscosity of the mucus and biofilm thereby increasing drug, immune cell, and antibody penetration to the affected area. Iron oxide nanocrystals of various sizes and morphologies were synthesized and tested for specific losses (heating power) using frequencies of 111.1 kHz and 629.2 kHz, and corresponding magnetic field strengths of 9 and 25 mT. Nanocrystals in the superparamagnetic to ferromagnetic size range exhibited excellent heating power. Additionally, iron oxide-zinc selenide core-shell nanoparticles were prepared in parallel in order to allow imaging of the iron oxide nanoparticles.
Scaling Effect on Unipolar and Bipolar Resistive Switching of Metal Oxides
Yanagida, Takeshi; Nagashima, Kazuki; Oka, Keisuke; Kanai, Masaki; Klamchuen, Annop; Park, Bae Ho; Kawai, Tomoji
2013-01-01
Electrically driven resistance change in metal oxides opens up an interdisciplinary research field for next-generation non-volatile memory. Resistive switching exhibits an electrical polarity dependent “bipolar-switching” and a polarity independent “unipolar-switching”, however tailoring the electrical polarity has been a challenging issue. Here we demonstrate a scaling effect on the emergence of the electrical polarity by examining the resistive switching behaviors of Pt/oxide/Pt junctions over 8 orders of magnitudes in the areas. We show that the emergence of two electrical polarities can be categorised as a diagram of an electric field and a cell area. This trend is qualitatively common for various oxides including NiOx, CoOx, and TiO2-x. We reveal the intrinsic difference between unipolar switching and bipolar switching on the area dependence, which causes a diversity of an electrical polarity for various resistive switching devices with different geometries. This will provide a foundation for tailoring resistive switching behaviors of metal oxides. PMID:23584551
Local switching of two-dimensional superconductivity using the ferroelectric field effect
NASA Astrophysics Data System (ADS)
Takahashi, K. S.; Gabay, M.; Jaccard, D.; Shibuya, K.; Ohnishi, T.; Lippmaa, M.; Triscone, J.-M.
2006-05-01
Correlated oxides display a variety of extraordinary physical properties including high-temperature superconductivity and colossal magnetoresistance. In these materials, strong electronic correlations often lead to competing ground states that are sensitive to many parameters-in particular the doping level-so that complex phase diagrams are observed. A flexible way to explore the role of doping is to tune the electron or hole concentration with electric fields, as is done in standard semiconductor field effect transistors. Here we demonstrate a model oxide system based on high-quality heterostructures in which the ferroelectric field effect approach can be studied. We use a single-crystal film of the perovskite superconductor Nb-doped SrTiO3 as the superconducting channel and ferroelectric Pb(Zr,Ti)O3 as the gate oxide. Atomic force microscopy is used to locally reverse the ferroelectric polarization, thus inducing large resistivity and carrier modulations, resulting in a clear shift in the superconducting critical temperature. Field-induced switching from the normal state to the (zero resistance) superconducting state was achieved at a well-defined temperature. This unique system could lead to a field of research in which devices are realized by locally defining in the same material superconducting and normal regions with `perfect' interfaces, the interface being purely electronic. Using this approach, one could potentially design one-dimensional superconducting wires, superconducting rings and junctions, superconducting quantum interference devices (SQUIDs) or arrays of pinning centres.
Low-power bacteriorhodopsin-silicon n-channel metal-oxide field-effect transistor photoreceiver.
Shin, Jonghyun; Bhattacharya, Pallab; Yuan, Hao-Chih; Ma, Zhenqiang; Váró, György
2007-03-01
A bacteriorhodopsin (bR)-silicon n-channel metal-oxide field-effect transistor (NMOSFET) monolithically integrated photoreceiver is demonstrated. The bR film is selectively formed on an external gate electrode of the transistor by electrophoretic deposition. A modified biasing circuit is incorporated, which helps to match the resistance of the bR film to the input impedance of the NMOSFET and to shift the operating point of the transistor to coincide with the maximum gain. The photoreceiver exhibits a responsivity of 4.7 mA/W.
2015-11-19
Shriram Ramanathan HARVARD COLLEGE PRESIDENT & FELLOWS OF Final Report 11/19/2015 DISTRIBUTION A: Distribution approved for public release. AF Office... Harvard University 29 Oxford St, Pierce Hall, Cambridge, MA 02138 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S...characterization of correlated oxide field effect switching devices for high speed electronics PI: Shriram Ramanathan, Harvard University AFOSR Grant FA9550‐12‐1
NASA Astrophysics Data System (ADS)
Lee, Sunwoo; Yoon, Seungki; Park, In-Sung; Ahn, Jinho
2009-04-01
We studied the electrical characteristics of an organic field effect transistor (OFET) formed by the hydrogen (H2) and nitrogen (N2) mixed gas treatment of a gate dielectric layer. We also investigated how device mobility is related to the length and width variations of the channel. Aluminum oxide (Al2O3) was used as the gate dielectric layer. After the treatment, the mobility and subthreshold swing were observed to be significantly improved by the decreased hole carrier localization at the interfacial layer between the gate oxide and pentacene channel layers. H2 gas plays an important role in removing the defects of the gate oxide layer at temperatures below 100 °C.
NASA Astrophysics Data System (ADS)
Longbiao, Li
2017-06-01
In this paper, the synergistic effects of temperatrue and oxidation on matrix cracking in fiber-reinforced ceramic-matrix composites (CMCs) has been investigated using energy balance approach. The shear-lag model cooperated with damage models, i.e., the interface oxidation model, interface debonding model, fiber strength degradation model and fiber failure model, has been adopted to analyze microstress field in the composite. The relationships between matrix cracking stress, interface debonding and slipping, fiber fracture, oxidation temperatures and time have been established. The effects of fiber volume fraction, interface properties, fiber strength and oxidation temperatures on the evolution of matrix cracking stress versus oxidation time have been analyzed. The matrix cracking stresses of C/SiC composite with strong and weak interface bonding after unstressed oxidation at an elevated temperature of 700 °C in air condition have been predicted for different oxidation time.
Lee, Sunwoo; Chung, Keum Jee; Park, In-Sung; Ahn, Jinho
2009-12-01
We report the characteristics of the organic field effect transistor (OFET) after electrical and time stress. Aluminum oxide (Al2O3) was used as a gate dielectric layer. The surface of the gate oxide layer was treated with hydrogen (H2) and nitrogen (N2) mixed gas to minimize the dangling bond at the interface layer of gate oxide. According to the two stress parameters of electrical and time stress, threshold voltage shift was observed. In particular, the mobility and subthreshold swing of OFET were significantly decreased due to hole carrier localization and degradation of the channel layer between gate oxide and pentacene by electrical stress. Electrical stress is a more critical factor in the degradation of mobility than time stress caused by H2O and O2 in the air.
Ultrafast optical modification of exchange interactions in iron oxides
NASA Astrophysics Data System (ADS)
Mikhaylovskiy, R. V.; Hendry, E.; Secchi, A.; Mentink, J. H.; Eckstein, M.; Wu, A.; Pisarev, R. V.; Kruglyak, V. V.; Katsnelson, M. I.; Rasing, Th.; Kimel, A. V.
2015-09-01
Ultrafast non-thermal manipulation of magnetization by light relies on either indirect coupling of the electric field component of the light with spins via spin-orbit interaction or direct coupling between the magnetic field component and spins. Here we propose a scenario for coupling between the electric field of light and spins via optical modification of the exchange interaction, one of the strongest quantum effects with strength of 103 Tesla. We demonstrate that this isotropic opto-magnetic effect, which can be called inverse magneto-refraction, is allowed in a material of any symmetry. Its existence is corroborated by the experimental observation of terahertz emission by spin resonances optically excited in a broad class of iron oxides with a canted spin configuration. From its strength we estimate that a sub-picosecond modification of the exchange interaction by laser pulses with fluence of about 1 mJ cm-2 acts as a pulsed effective magnetic field of 0.01 Tesla.
Pillewan, Pradnya; Mukherjee, Shrabanti; Bansiwal, Amit; Rayalu, Sadhana
2014-07-01
Adsorption of arsenic on bimetallic Mn and Fe mixed oxide was carried out using both field as well as simulated water. The material was synthesized using hydrothermal method and characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Langmuir and Freundlich adsorption isotherms were computed using batch adsorption studies to determine the adsorption capacity of Mn-Fe binary mixed oxide for arsenic. Adsorption capacity for MFBMO obtained from Freundlich model was found to be 2.048 mg/g for simulated water and 1.084 mg/g for field water. Mn-Fe binary mixed oxide was found to be effective adsorbent for removal of arsenic from water.
Effect of several environmental parameters on carbon metabolism in histosols.
Tate, R L
1980-12-01
High specific activity(14)C-labeled glucose, succinate, acetate, salicylate, and amino acids were used to examine carbon metabolism by the microbial community of Pahokee muck (aLithic medisaprist), a drained, cultivated soil of the Florida Everglades. Variations in carbon oxidation were observed from the end of the wet season through the dry season in a fallow (bare) field. Evolution of(14)CO2 varied with the substrate added and time. Calculation of(14)CO2 evolution for each substrate as a proportion of total respiration of the microbial community which was measured by succinate oxidation (relative oxidation) allowed for determination of the proportion of metabolic activity contributed by the oxidation of each carbon source. Except for the May sample when an approximate 30% decline in relative salicylate oxidation activity was observed, the proportion of total catabolic activity contributed by salicylate oxidation and acetate degradation was constant with time. Relative oxidation of glucose and amino acids ranged from 0.12 to 0.52 and 0.10 to 0.23, respectively. At two times during the dry season, the effect of depth of soil and crop on the carbon oxidation was examined. Relative acetate and amino acid oxidation were constant with depth whereas statistically significant variation was observed in glucose and salicylate oxidation. Generally, with the latter substrates, the activity declined with increased soil depth. Greatest effect of crop on these metabolic activities was noted with oxidation of salicylate in soils from a St. Augustinegrass [Stenatophrum secundatum (Walt.) Kuntz] pasture. In these soils, oxidation of salicylate was nearly double that of the fallow field or of soil planted with sugarcane (Saccharum sp.).
Electrokinetic delivery of persulfate to remediate PCBs polluted soils: effect of injection spot.
Fan, Guangping; Cang, Long; Fang, Guodong; Qin, Wenxiu; Ge, Liqiang; Zhou, Dongmei
2014-12-01
Persulfate-based in situ chemical oxidation (ISCO) is a promising technique for the remediation of organic compounds contaminated soils. Electrokinetics (EK) provides an alternative method to deliver oxidants into the target zones especially in low permeable-soil. In this study, the flexibility of delivering persulfate by EK to remediate polychlorinated biphenyls (PCBs) polluted soil was investigated. 20% (w/w) of persulfate was injected at the anode, cathode and both electrodes to examine its transport behaviors under electrical field, and the effect of field inversion process was also evaluated. The results showed that high dosage of persulfate could be delivered into S4 section (near cathode) by electroosmosis when persulfate was injected from anode, 30.8% of PCBs was removed from the soil, and the formed hydroxyl precipitation near the cathode during EK process impeded the transportation of persulfate. In contrast, only 18.9% of PCBs was removed with the injection of persulfate from cathode, although the breakthrough of persulfate into the anode reservoir was observed. These results indicated that the electroosmotic flow is more effective for the transportation of persulfate into soil. The addition of persulfate from both electrodes did not significantly facilitate the PCBs oxidation as well as the treatment of electrical field reversion, the reinforced negative depolarization function occurring in the cathode at high current consumed most of the oxidant. Furthermore, it was found that strong acid condition near the anode favored the oxidation of PCBs by persulfate and the degradation of PCBs was in consistent with the oxidation of Soil TOC in EK/persulfate system. Copyright © 2014 Elsevier Ltd. All rights reserved.
Distribution of blocking temperatures in nano-oxide layers of specular spin valves
NASA Astrophysics Data System (ADS)
Ventura, J.; Araujo, J. P.; Sousa, J. B.; Veloso, A.; Freitas, P. P.
2007-06-01
Specular spin valves show enhanced giant magnetoresistive (GMR) ratio when compared to other, simpler, spin valve structures. The enhancement of GMR results from specular reflection in nano-oxide layers (NOLs) formed by the partial oxidation of the pinned and free layer. These oxides forming the NOL order antiferromagnetically (AFM) below a temperature T ˜175 K. Here, we study the effects of the pinned layer magnetization and its domain structure on the AFM ordering of the NOL by performing field cooling measurements with different cooling fields (H0). We observe enhanced (reduced) exchange field and magnetoresistive ratio for H0>0(<0), i.e., parallel (antiparallel) to the pinned magnetization. These measurements allowed us to confirm the existence of a wide distribution of blocking temperatures (TB) in the NOL of specular spin valves, having a maximum at T ≈175 K, and extending to NOL regions with TB as low as 15 K.
CMOS-based carbon nanotube pass-transistor logic integrated circuits
Ding, Li; Zhang, Zhiyong; Liang, Shibo; Pei, Tian; Wang, Sheng; Li, Yan; Zhou, Weiwei; Liu, Jie; Peng, Lian-Mao
2012-01-01
Field-effect transistors based on carbon nanotubes have been shown to be faster and less energy consuming than their silicon counterparts. However, ensuring these advantages are maintained for integrated circuits is a challenge. Here we demonstrate that a significant reduction in the use of field-effect transistors can be achieved by constructing carbon nanotube-based integrated circuits based on a pass-transistor logic configuration, rather than a complementary metal-oxide semiconductor configuration. Logic gates are constructed on individual carbon nanotubes via a doping-free approach and with a single power supply at voltages as low as 0.4 V. The pass-transistor logic configurarion provides a significant simplification of the carbon nanotube-based circuit design, a higher potential circuit speed and a significant reduction in power consumption. In particular, a full adder, which requires a total of 28 field-effect transistors to construct in the usual complementary metal-oxide semiconductor circuit, uses only three pairs of n- and p-field-effect transistors in the pass-transistor logic configuration. PMID:22334080
Intrinsic properties of cupric oxide nanoparticles enable effective filtration of arsenic from water
McDonald, Kyle J.; Reynolds, Brandon; Reddy, K. J.
2015-01-01
The contamination of arsenic in human drinking water supplies is a serious global health concern. Despite multiple years of research, sustainable arsenic treatment technologies have yet to be developed. This study demonstrates the intrinsic abilities of cupric oxide nanoparticles (CuO-NP) towards arsenic adsorption and the development of a point-of-use filter for field application. X-ray diffraction and X-ray photoelectron spectroscopy experiments were used to examine adsorption, desorption, and readsorption of aqueous arsenite and arsenate by CuO-NP. Field experiments were conducted with a point-of-use filter, coupled with real-time arsenic monitoring, to remove arsenic from domestic groundwater samples. The CuO-NP were regenerated by desorbing arsenate via increasing pH above the zero point of charge. Results suggest an effective oxidation of arsenite to arsenate on the surface of CuO-NP. Naturally occurring arsenic was effectively removed by both as-prepared and regenerated CuO-NP in a field demonstration of the point-of-use filter. A sustainable arsenic mitigation model for contaminated water is proposed. PMID:26047164
Effects of channel thickness on oxide thin film transistor with double-stacked channel layer
NASA Astrophysics Data System (ADS)
Lee, Kimoon; Kim, Yong-Hoon; Yoon, Sung-Min; Kim, Jiwan; Oh, Min Suk
2017-11-01
To improve the field effect mobility and control the threshold voltage ( V th ) of oxide thin film transistors (TFTs), we fabricated the oxide TFTs with double-stacked channel layers which consist of thick Zn-Sn-O (ZTO) and very thin In-Zn-O (IZO) layers. We investigated the effects of the thickness of thin conductive layer and the conductivity of thick layer on oxide TFTs with doublestacked channel layer. When we changed the thickness of thin conductive IZO channel layer, the resistivity values were changed. This resistivity of thin channel layer affected on the saturation field effect mobility and the off current of TFTs. In case of the thick ZTO channel layer which was deposited by sputtering in Ar: O2 = 10: 1, the device showed better performances than that which was deposited in Ar: O2 = 1: 1. Our TFTs showed high mobility ( μ FE ) of 40.7 cm2/Vs and V th of 4.3 V. We assumed that high mobility and the controlled V th were caused by thin conductive IZO layer and thick stable ZTO layer. Therefore, this double-stacked channel structure can be very promising way to improve the electrical characteristics of various oxide thin film transistors.
NASA Astrophysics Data System (ADS)
Hu, Ai-Bin; Xu, Qiu-Xia
2010-05-01
Ge and Si p-channel metal-oxide-semiconductor field-effect-transistors (p-MOSFETs) with hafnium silicon oxynitride (HfSiON) gate dielectric and tantalum nitride (TaN) metal gate are fabricated. Self-isolated ring-type transistor structures with two masks are employed. W/TaN metal stacks are used as gate electrode and shadow masks of source/drain implantation separately. Capacitance-voltage curve hysteresis of Ge metal-oxide-semiconductor (MOS) capacitors may be caused by charge trapping centres in GeO2 (1 < x < 2). Effective hole mobilities of Ge and Si transistors are extracted by using a channel conductance method. The peak hole mobilities of Si and Ge transistors are 33.4 cm2/(V · s) and 81.0 cm2/(V · s), respectively. Ge transistor has a hole mobility 2.4 times higher than that of Si control sample.
NASA Astrophysics Data System (ADS)
Mao, Ling-Feng; Ning, Huansheng; Huo, Zong-Liang; Wang, Jin-Yan
2015-12-01
A new physical model of the gate controlled Schottky barrier height (SBH) lowering in top-gated graphene field-effect transistors (GFETs) under saturation bias condition is proposed based on the energy conservation equation with the balance assumption. The theoretical prediction of the SBH lowering agrees well with the experimental data reported in literatures. The reduction of the SBH increases with the increasing of gate voltage and relative dielectric constant of the gate oxide, while it decreases with the increasing of oxide thickness, channel length and acceptor density. The magnitude of the reduction is slightly enhanced under high drain voltage. Moreover, it is found that the gate oxide materials with large relative dielectric constant (>20) have a significant effect on the gate controlled SBH lowering, implying that the energy relaxation of channel electrons should be taken into account for modeling SBH in GFETs.
Mao, Ling-Feng; Ning, Huansheng; Huo, Zong-Liang; Wang, Jin-Yan
2015-12-17
A new physical model of the gate controlled Schottky barrier height (SBH) lowering in top-gated graphene field-effect transistors (GFETs) under saturation bias condition is proposed based on the energy conservation equation with the balance assumption. The theoretical prediction of the SBH lowering agrees well with the experimental data reported in literatures. The reduction of the SBH increases with the increasing of gate voltage and relative dielectric constant of the gate oxide, while it decreases with the increasing of oxide thickness, channel length and acceptor density. The magnitude of the reduction is slightly enhanced under high drain voltage. Moreover, it is found that the gate oxide materials with large relative dielectric constant (>20) have a significant effect on the gate controlled SBH lowering, implying that the energy relaxation of channel electrons should be taken into account for modeling SBH in GFETs.
NASA Astrophysics Data System (ADS)
Minagawa, Masahiro; Kim, Yeongin; Claus, Martin; Bao, Zhenan
2017-09-01
Bottom-contact organic field-effect transistors (OFETs) are prepared by inserting an AgO x layer between a pentacene layer and the source-drain electrodes. The contact resistance in the device is ˜8.1 kΩ·cm with an AgO x layer oxidized for 60 s but reaches 116.9 kΩ·cm with a non-oxidized Ag electrode. The drain current and mobility in the OFETs with the AgO x layer increase with the oxidization time and then gradually plateau, and this trend strongly depends on the work function of the Ag surface. Further, the hole injection is enhanced by the presence of Ag2O but inhibited by the presence of AgO.
Martinez-Outschoorn, Ubaldo E; Balliet, Renee M; Rivadeneira, Dayana B; Chiavarina, Barbara; Pavlides, Stephanos; Wang, Chenguang; Whitaker-Menezes, Diana; Daumer, Kristin M; Lin, Zhao; Witkiewicz, Agnieszka K; Flomenberg, Neal; Howell, Anthony; Pestell, Richard G; Knudsen, Erik S; Sotgia, Federica; Lisanti, Michael P
2010-08-15
Loss of stromal fibroblast caveolin-1 (Cav-1) is a powerful single independent predictor of poor prognosis in human breast cancer patients, and is associated with early tumor recurrence, lymph node metastasis and tamoxifen-resistance. We developed a novel co-culture system to understand the mechanism(s) by which a loss of stromal fibroblast Cav-1 induces a "lethal tumor micro-environment." Here, we propose a new paradigm to explain the powerful prognostic value of stromal Cav-1. In this model, cancer cells induce oxidative stress in cancer-associated fibroblasts, which then acts as a "metabolic" and "mutagenic" motor to drive tumor-stroma co-evolution, DNA damage and aneuploidy in cancer cells. More specifically, we show that an acute loss of Cav-1 expression leads to mitochondrial dysfunction, oxidative stress and aerobic glycolysis in cancer associated fibroblasts. Also, we propose that defective mitochondria are removed from cancer-associated fibroblasts by autophagy/mitophagy that is induced by oxidative stress. As a consequence, cancer associated fibroblasts provide nutrients (such as lactate) to stimulate mitochondrial biogenesis and oxidative metabolism in adjacent cancer cells (the "Reverse Warburg Effect"). We provide evidence that oxidative stress in cancer-associated fibroblasts is sufficient to induce genomic instability in adjacent cancer cells, via a bystander effect, potentially increasing their aggressive behavior. Finally, we directly demonstrate that nitric oxide (NO) over-production, secondary to Cav-1 loss, is the root cause for mitochondrial dysfunction in cancer associated fibroblasts. In support of this notion, treatment with anti-oxidants (such as N-acetyl-cysteine, metformin and quercetin) or NO inhibitors (L-NAME) was sufficient to reverse many of the cancer-associated fibroblast phenotypes that we describe. Thus, cancer cells use "oxidative stress" in adjacent fibroblasts (i) as an "engine" to fuel their own survival via the stromal production of nutrients and (ii) to drive their own mutagenic evolution towards a more aggressive phenotype, by promoting genomic instability. We also present evidence that the "field effect" in cancer biology could also be related to the stromal production of ROS and NO species. eNOS-expressing fibroblasts have the ability to downregulate Cav-1 and induce mitochondrial dysfunction in adjacent fibroblasts that do not express eNOS. As such, the effects of stromal oxidative stress can be laterally propagated, amplified and are effectively "contagious"--spread from cell-to-cell like a virus--creating an "oncogenic/mutagenic" field promoting widespread DNA damage.
NASA Astrophysics Data System (ADS)
Samanta, Piyas
2017-09-01
We present a detailed investigation on temperature-dependent current conduction through thin tunnel oxides grown on degenerately doped n-type silicon (n+-Si) under positive bias ( VG ) on heavily doped n-type polycrystalline silicon (n+-polySi) gate in metal-oxide-semiconductor devices. The leakage current measured between 298 and 573 K and at oxide fields ranging from 6 to 10 MV/cm is primarily attributed to Poole-Frenkel (PF) emission of trapped electrons from the neutral electron traps located in the silicon dioxide (SiO2) band gap in addition to Fowler-Nordheim (FN) tunneling of electrons from n+-Si acting as the drain node in FLOating gate Tunnel OXide Electrically Erasable Programmable Read-Only Memory devices. Process-induced neutral electron traps are located at 0.18 eV and 0.9 eV below the SiO2 conduction band. Throughout the temperature range studied here, PF emission current IPF dominates FN electron tunneling current IFN at oxide electric fields Eox between 6 and 10 MV/cm. A physics based new analytical formula has been developed for FN tunneling of electrons from the accumulation layer of degenerate semiconductors at a wide range of temperatures incorporating the image force barrier rounding effect. FN tunneling has been formulated in the framework of Wentzel-Kramers-Brilloiun taking into account the correction factor due to abrupt variation of the energy barrier at the cathode/oxide interface. The effect of interfacial and near-interfacial trapped-oxide charges on FN tunneling has also been investigated in detail at positive VG . The mechanism of leakage current conduction through SiO2 films plays a crucial role in simulation of time-dependent dielectric breakdown of the memory devices and to precisely predict the normal operating field or applied floating gate (FG) voltage for lifetime projection of the devices. In addition, we present theoretical results showing the effect of drain doping concentration on the FG leakage current.
Mizukawa, Yuri; Iwasaka, Masakazu
2013-01-01
In the present study, a cellular level response of Cyto-aa3 oxidation was investigated in real time under both time-varying and strong static magnetic fields of 5 T. Two kinds of cells, a slime mold, Physarum polycephalum, and bone forming cells, MC-3T3-E1, were used for the experiments. The oxidation level of the Cyto-aa3 was calculated by optical absorptions at 690 nm, 780 nm and 830 nm. The sample, fiber-optics and an additional optical fiber for light stimulation were set in a solenoidal coil or the bore of a 5-T superconducting magnet. The solenoidal coil for time-varying magnetic fields produced sinusoidal magnetic fields of 6 mT. The slime mold showed a periodic change in Cyto-aa3 oxidation, and the oxidation-reduction cycle of Cyto-aa3 was apparently changed when visible-light irradiated the slime mold. Similarly to the case with light, time-varying magnetic stimulations changed the oxidation-reduction cycle during and after the stimulation for 10 minutes. The same phenomena were observed in the MC-3T3-E1 cell assembly, although their cycle rhythm was comparatively random. Finally, magnetic field exposure of up to 5 T exhibited a distinct suppression of Cyto-aa3 oscillation in the bone forming cells. Exposure up to 5 T was repeated five times, and the change in Cyto-aa3 oxidation reproducibly occurred.
Effect of the local electric field on the formation of an ordered structure in porous anodic alumina
NASA Astrophysics Data System (ADS)
Lazarouk, S. K.; Katsuba, P. S.; Leshok, A. A.; Vysotskii, V. B.
2015-09-01
Experimental data and a model are presented, and the electric field that appears in porous alumina during electrochemical anodic oxidation of aluminum in electrolytes based on an aqueous solution of oxalic acid at a voltage of 90-250 V is calculated. It is found that the electric field in the layers with a porosity of 1-10% in growing alumina reaches 109-1010 V/m, which exceeds the electric strength of the material and causes microplasma patterns emitting visible light at the pore bottom, the self-organization of the structure of porous alumina, and the anisotropy of local porous anodizing. Moreover, other new effects are to be expected during aluminum anodizing under the conditions that ensure a high electric field inside the barrier layer of porous oxide.
NASA Astrophysics Data System (ADS)
Kino, Hisashi; Fukushima, Takafumi; Tanaka, Tetsu
2018-04-01
Charge-trapping memory requires the increase of bit density per cell and a larger memory window for lower-power operation. A tunnel field-effect transistor (TFET) can achieve to increase the bit density per cell owing to its steep subthreshold slope. In addition, a TFET structure has an asymmetric structure, which is promising for achieving a larger memory window. A TFET with the N-type gate shows a higher electric field between the P-type source and the N-type gate edge than the conventional FET structure. This high electric field enables large amounts of charges to be injected into the charge storage layer. In this study, we fabricated silicon-oxide-nitride-oxide-semiconductor (SONOS) memory devices with the TFET structure and observed a steep subthreshold slope and a larger memory window.
NASA Astrophysics Data System (ADS)
Kanaki, Toshiki; Koyama, Tomohiro; Chiba, Daichi; Ohya, Shinobu; Tanaka, Masaaki
2016-10-01
We propose a current-in-plane spin-valve field-effect transistor (CIP-SV-FET), which is composed of a ferromagnet/nonferromagnet/ferromagnet trilayer structure and a gate electrode. This is a promising device alternative to spin metal-oxide-semiconductor field-effect transistors. Here, we fabricate a ferromagnetic-semiconductor GaMnAs-based CIP-SV-FET and demonstrate its basic operation of the resistance modulation both by the magnetization configuration and by the gate electric field. Furthermore, we present the electric-field-assisted magnetization reversal in this device.
Effects of iron-oxide nanoparticles and magnetic fields on oral biofilms
NASA Astrophysics Data System (ADS)
Alas, Gema; Pagano, Ronald E.; Nguyen, Jane Q.; Bandara, H. M. H. Nihal; Ivanov, Sergei A.; Smolyakov, Gennady A.; Huber, Dale L.; Smyth, Hugh D. C.; Osiński, Marek
2017-02-01
Human mouth is a host of a large gamut of bacteria species, with over 700 of different bacteria strains identified. Most of these bacterial species are harmless, some are beneficial (such as probiotics assisting in food digestion), but some are responsible for various diseases, primarily tooth decay and gum diseases such as gingivitis and periodontitis. For example, Streptococus mutans produces enamel-eroding acids, while Porphyromonas gingivalis is strongly linked to periodontitis. In this paper, we report on the effects of exposure of oral biofilms to iron oxide nanoparticles and static magnetic fields as possible bactericidal agent.
High-performance iron oxide nanoparticles for magnetic particle imaging - guided hyperthermia (hMPI)
NASA Astrophysics Data System (ADS)
Bauer, Lisa M.; Situ, Shu F.; Griswold, Mark A.; Samia, Anna Cristina S.
2016-06-01
Magnetic particle imaging (MPI) is an emerging imaging modality that allows the direct and quantitative mapping of iron oxide nanoparticles. In MPI, the development of tailored iron oxide nanoparticle tracers is paramount to achieving high sensitivity and good spatial resolution. To date, most MPI tracers being developed for potential clinical applications are based on spherical undoped magnetite nanoparticles. For the first time, we report on the systematic investigation of the effects of changes in chemical composition and shape anisotropy on the MPI performance of iron oxide nanoparticle tracers. We observed a 2-fold enhancement in MPI signal through selective doping of magnetite nanoparticles with zinc. Moreover, we demonstrated focused magnetic hyperthermia heating by adapting the field gradient used in MPI. By saturating the iron oxide nanoparticles outside of a field free region (FFR) with an external static field, we can selectively heat a target region in our test sample. By comparing zinc-doped magnetite cubic nanoparticles with undoped spherical nanoparticles, we could show a 5-fold improvement in the specific absorption rate (SAR) in magnetic hyperthermia while providing good MPI signal, thereby demonstrating the potential for high-performance focused hyperthermia therapy through an MPI-guided approach (hMPI).Magnetic particle imaging (MPI) is an emerging imaging modality that allows the direct and quantitative mapping of iron oxide nanoparticles. In MPI, the development of tailored iron oxide nanoparticle tracers is paramount to achieving high sensitivity and good spatial resolution. To date, most MPI tracers being developed for potential clinical applications are based on spherical undoped magnetite nanoparticles. For the first time, we report on the systematic investigation of the effects of changes in chemical composition and shape anisotropy on the MPI performance of iron oxide nanoparticle tracers. We observed a 2-fold enhancement in MPI signal through selective doping of magnetite nanoparticles with zinc. Moreover, we demonstrated focused magnetic hyperthermia heating by adapting the field gradient used in MPI. By saturating the iron oxide nanoparticles outside of a field free region (FFR) with an external static field, we can selectively heat a target region in our test sample. By comparing zinc-doped magnetite cubic nanoparticles with undoped spherical nanoparticles, we could show a 5-fold improvement in the specific absorption rate (SAR) in magnetic hyperthermia while providing good MPI signal, thereby demonstrating the potential for high-performance focused hyperthermia therapy through an MPI-guided approach (hMPI). Electronic supplementary information (ESI) available: Detailed IONP synthetic methods, description of magnetic particle relaxometer set-up, TEM of reference IONP (Senior Scientific PrecisionMRX™ 25 nm oleic acid-coated nanoparticles), concentration dependent PSF of all IONP samples, PSF and SAR of Zn-Sph and Zn-Cube mixture sample, upper right quadrant of field-dependent hysteresis curve labelled with static field strengths, and the magnetic hyperthermia temperature profiles with and without the presence of external magnetic fields. See DOI: 10.1039/c6nr01877g
Feygenson, Mikhail; Formo, Eric V.; Freeman, Katherine; ...
2015-11-02
In this study, we describe how the exchange bias effect in Co/CoO nanoparticles depends on the size focusing and temperature treatment of precursor Co nanoparticles before oxidation at ambient conditions. By appealing to magnetization, microscopy, neutron and synchrotron x-ray measurements we found that as-synthesized Co nanoparticles readily oxidize in air only after 20 days. The highest exchange bias field of 814 Oe is observed at T = 2K. When the same nanoparticles are centrifuged and annealed at 70 °C in vacuum prior to oxidation, the exchange bias field is increased to 2570 Oe. Annealing of Co nanoparticles in vacuum improvesmore » their crystallinity and prevents complete oxidation, so that Co-core/CoO-shell structure is preserved even after 120 days. The crystal structure of CoO shell in both samples is different from its bulk counterpart. Implications of such distorted CoO shells on exchange bias are discussed. Coating of Co nanoparticles with amorphous silica shell makes them resistant to oxidation, but ultimately modifies the crystal structure of both Co core and SiO 2 shell.« less
Use of cermet thin film resistors with nitride passivated metal insulator field effect transistor
NASA Technical Reports Server (NTRS)
Brown, G. A.; Harrap, V.
1971-01-01
Film deposition of cermet resistors on same chip with metal nitride oxide silicon field effect transistors permits protection of contamination sensitive active devices from contaminants produced in cermet deposition and definition processes. Additional advantages include lower cost, greater reliability, and space savings.
NASA Astrophysics Data System (ADS)
Nayek, C.; Manna, K.; Imam, A. A.; Alqasrawi, A. Y.; Obaidat, I. M.
2018-02-01
Understanding the size dependent magnetic anisotropy of iron oxide nanoparticles is essential for the successful application of these nanoparticles in several technological and medical fields. PEG-coated iron oxide (Fe3O4) nanoparticles with core diameters of 12 nm, 15 nm, and 16 nm were synthesized by the usual co-precipitation method. The morphology and structure of the nanoparticles were investigated using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD). Magnetic measurements were conducted using a SQUID. The effective magnetic anisotropy was calculated using two methods from the magnetization measurements. In the first method the zero-field-cooled magnetization versus temperature measurements were used at several applied magnetic fields. In the second method we used the temperature-dependent coercivity curves obtained from the zero-field-cooled magnetization versus magnetic field hysteresis loops. The role of the applied magnetic field on the effective magnetic anisotropy, calculated form the zero-field-cooled magnetization versus temperature measurements, was revealed. The size dependence of the effective magnetic anisotropy constant Keff obtained by the two methods are compared and discussed.
NASA Astrophysics Data System (ADS)
Sadeghi, Seyed M.; Wing, Waylin J.; Gutha, Rithvik R.; Sharp, Christina
2018-01-01
We demonstrate that a metal-oxide plasmonic metafilm consisting of a Si/Al oxide junction in the vicinity of a thin gold layer can quarantine excitons in colloidal semiconductor quantum dots against their defect environments. This process happens while the plasmon fields of the gold layer enhance spontaneous emission decay rates of the quantum dots. We study the emission dynamics of such quantum dots when the distance between the Si/Al oxide junction and the gold thin layer is varied. The results show that for distances less than a critical value the lifetime of the quantum dots can be elongated while they experience intense plasmon fields. This suggests that the metal-oxide metafilm can keep photo-excited electrons in the cores of the quantum dots, suppressing their migration to the surface defect sites. This leads to suppression of Auger recombination, offering quantum dot super-emitters with emission that is enhanced not only by the plasmon fields (Purcell effect), but also by strong suppression of the non-radiative decay caused by the defect sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Jun Tae; Kim, Dong Myong; Choi, Sung-Jin
The effect of direct current sputtering power of indium-gallium-zinc-oxide (IGZO) on the performance and stability of the corresponding thin-film transistor devices was studied. The field effect mobility increases as the IGZO sputter power increases, at the expense of device reliability under negative bias illumination stress (NBIS). Device simulation based on the extracted sub-gap density of states indicates that the field effect mobility is improved as a result of the number of acceptor-like states decreasing. The degradation by NBIS is suggested to be induced by the formation of peroxides in IGZO rather than charge trapping.
NASA Astrophysics Data System (ADS)
Wong, Man Hoi; Takeyama, Akinori; Makino, Takahiro; Ohshima, Takeshi; Sasaki, Kohei; Kuramata, Akito; Yamakoshi, Shigenobu; Higashiwaki, Masataka
2018-01-01
The effects of ionizing radiation on β-Ga2O3 metal-oxide-semiconductor field-effect transistors (MOSFETs) were investigated. A gamma-ray tolerance as high as 1.6 MGy(SiO2) was demonstrated for the bulk Ga2O3 channel by virtue of weak radiation effects on the MOSFETs' output current and threshold voltage. The MOSFETs remained functional with insignificant hysteresis in their transfer characteristics after exposure to the maximum cumulative dose. Despite the intrinsic radiation hardness of Ga2O3, radiation-induced gate leakage and drain current dispersion ascribed respectively to dielectric damage and interface charge trapping were found to limit the overall radiation hardness of these devices.
Vacuum ultraviolet radiation effects on two-dimensional MoS2 field-effect transistors
NASA Astrophysics Data System (ADS)
McMorrow, Julian J.; Cress, Cory D.; Arnold, Heather N.; Sangwan, Vinod K.; Jariwala, Deep; Schmucker, Scott W.; Marks, Tobin J.; Hersam, Mark C.
2017-02-01
Atomically thin MoS2 has generated intense interest for emerging electronics applications. Its two-dimensional nature and potential for low-power electronics are particularly appealing for space-bound electronics, motivating the need for a fundamental understanding of MoS2 electronic device response to the space radiation environment. In this letter, we quantify the response of MoS2 field-effect transistors (FETs) to vacuum ultraviolet (VUV) total ionizing dose radiation. Single-layer (SL) and multilayer (ML) MoS2 FETs are compared to identify differences that arise from thickness and band structure variations. The measured evolution of the FET transport properties is leveraged to identify the nature of VUV-induced trapped charge, isolating the effects of the interface and bulk oxide dielectric. In both the SL and ML cases, oxide trapped holes compete with interface trapped electrons, exhibiting an overall shift toward negative gate bias. Raman spectroscopy shows no variation in the MoS2 signatures as a result of VUV exposure, eliminating significant crystalline damage or oxidation as possible radiation degradation mechanisms. Overall, this work presents avenues for achieving radiation-hard MoS2 devices through dielectric engineering that reduces oxide and interface trapped charge.
INTEGRATION OF PHOTOCATALYTIC OXIDATION WITH AIR STRIPPING OF CONTAMINATED AQUIFERS
Bench scale laboratory studies and pilot scale studies in a simulated field-test situation were performed to evaluate the integration of gas-solid ultaviolet (UV) photocatalytic oxidation (PCO) downstream if an air stripper unit as a technology for cost-effectively treating water...
Pall, Martin L
2013-01-01
The direct targets of extremely low and microwave frequency range electromagnetic fields (EMFs) in producing non-thermal effects have not been clearly established. However, studies in the literature, reviewed here, provide substantial support for such direct targets. Twenty-three studies have shown that voltage-gated calcium channels (VGCCs) produce these and other EMF effects, such that the L-type or other VGCC blockers block or greatly lower diverse EMF effects. Furthermore, the voltage-gated properties of these channels may provide biophysically plausible mechanisms for EMF biological effects. Downstream responses of such EMF exposures may be mediated through Ca2+/calmodulin stimulation of nitric oxide synthesis. Potentially, physiological/therapeutic responses may be largely as a result of nitric oxide-cGMP-protein kinase G pathway stimulation. A well-studied example of such an apparent therapeutic response, EMF stimulation of bone growth, appears to work along this pathway. However, pathophysiological responses to EMFs may be as a result of nitric oxide-peroxynitrite-oxidative stress pathway of action. A single such well-documented example, EMF induction of DNA single-strand breaks in cells, as measured by alkaline comet assays, is reviewed here. Such single-strand breaks are known to be produced through the action of this pathway. Data on the mechanism of EMF induction of such breaks are limited; what data are available support this proposed mechanism. Other Ca2+-mediated regulatory changes, independent of nitric oxide, may also have roles. This article reviews, then, a substantially supported set of targets, VGCCs, whose stimulation produces non-thermal EMF responses by humans/higher animals with downstream effects involving Ca2+/calmodulin-dependent nitric oxide increases, which may explain therapeutic and pathophysiological effects. PMID:23802593
Ultrafast optical modification of exchange interactions in iron oxides
Mikhaylovskiy, R.V.; Hendry, E.; Secchi, A.; Mentink, J.H.; Eckstein, M.; Wu, A.; Pisarev, R.V.; Kruglyak, V.V.; Katsnelson, M.I.; Rasing, Th.; Kimel, A.V.
2015-01-01
Ultrafast non-thermal manipulation of magnetization by light relies on either indirect coupling of the electric field component of the light with spins via spin-orbit interaction or direct coupling between the magnetic field component and spins. Here we propose a scenario for coupling between the electric field of light and spins via optical modification of the exchange interaction, one of the strongest quantum effects with strength of 103 Tesla. We demonstrate that this isotropic opto-magnetic effect, which can be called inverse magneto-refraction, is allowed in a material of any symmetry. Its existence is corroborated by the experimental observation of terahertz emission by spin resonances optically excited in a broad class of iron oxides with a canted spin configuration. From its strength we estimate that a sub-picosecond modification of the exchange interaction by laser pulses with fluence of about 1 mJ cm−2 acts as a pulsed effective magnetic field of 0.01 Tesla. PMID:26373688
Ultrafast optical modification of exchange interactions in iron oxides.
Mikhaylovskiy, R V; Hendry, E; Secchi, A; Mentink, J H; Eckstein, M; Wu, A; Pisarev, R V; Kruglyak, V V; Katsnelson, M I; Rasing, Th; Kimel, A V
2015-09-16
Ultrafast non-thermal manipulation of magnetization by light relies on either indirect coupling of the electric field component of the light with spins via spin-orbit interaction or direct coupling between the magnetic field component and spins. Here we propose a scenario for coupling between the electric field of light and spins via optical modification of the exchange interaction, one of the strongest quantum effects with strength of 10(3) Tesla. We demonstrate that this isotropic opto-magnetic effect, which can be called inverse magneto-refraction, is allowed in a material of any symmetry. Its existence is corroborated by the experimental observation of terahertz emission by spin resonances optically excited in a broad class of iron oxides with a canted spin configuration. From its strength we estimate that a sub-picosecond modification of the exchange interaction by laser pulses with fluence of about 1 mJ cm(-2) acts as a pulsed effective magnetic field of 0.01 Tesla.
Interface effects on calculated defect levels for oxide defects
NASA Astrophysics Data System (ADS)
Edwards, Arthur; Barnaby, Hugh; Schultz, Peter; Pineda, Andrew
2014-03-01
Density functional theory (DFT) has had impressive recent success predicting defect levels in insulators and semiconductors [Schultz and von Lillienfeld, 2009]. Such success requires care in accounting for long-range electrostatic effects. Recently, Komsa and Pasquarello have started to address this problem in systems with interfaces. We report a multiscale technique for calculating electrostatic energies for charged defects in oxide of the metal-oxide-silicon (MOS) system, but where account is taken of substrate doping density, oxide thickness, and gate bias. We use device modeling to calculate electric fields for a point charge a fixed distance from the interface, and used the field to numerically calculate the long-range electrostatic interactions. We find, for example, that defect levels in the oxide do depend on both the magnitude and the polarity the substrate doping density. Furthermore, below 20 Å, oxide thickness also has significant effects. So, transferring results directly from bulk calculations leads to inaccuracies up to 0.5 eV- half of the silicon band gap. We will present trends in defect levels as a function of device parameters. We show that these results explain previous experimental results, and we comment on their potential impact on models for NBTI. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under co.
Nayak, D R; Babu, Y Jagadeesh; Datta, A; Adhya, T K
2007-01-01
Methane (CH4) oxidation is the only known biological sink process for mitigating atmospheric and terrestrial emissions of CH4, a major greenhouse gas. Methane oxidation in an alluvial soil planted to rice (Oryza sativa L.) under long-term application of organic (compost with a C/N ratio of 21.71), and mineral fertilizers was measured in a field-cum-laboratory incubation study. Oxidation rates were quantified in terms of decrease in the concentration of CH4 in the headspace of incubation vessels and expressed as half-life (t(1)2) values. Methane oxidation rates significantly differed among the treatments and growth stages of the rice crop. Methane oxidation rates were high at the maximum tillering and maturity stages, whereas they were low at grain-filling stage. Methane oxidation was low (t(1)2) = 15.76 d) when provided with low concentration of CH4. On the contrary, high concentration of CH4 resulted in faster oxidation (t(1)2) = 6.67 d), suggesting the predominance of "low affinity oxidation" in rice fields. Methane oxidation was stimulated following the application of mineral fertilizers or compost implicating nutrient limitation as one of the factors affecting the process. Combined application of compost and mineral fertilizer, however, inhibited CH4 oxidation probably due to N immobilization by the added compost. The positive effect of mineral fertilizer on CH4 oxidation rate was evident only at high CH4 concentration (t(1)2 = 4.80 d), while at low CH4 concentration their was considerable suppression (t(1) = 17.60 d). Further research may reveal that long-term application of fertilizers, organic or inorganic, may not inhibit CH4 oxidation.
Fu, Guanglei; Sanjay, Sharma T; Zhou, Wan; Brekken, Rolf A; Kirken, Robert A; Li, XiuJun
2018-05-01
The exploration of new physical and chemical properties of materials and their innovative application in different fields are of great importance to advance analytical chemistry, material science, and other important fields. Herein, we, for the first time, discovered the photothermal effect of an iron oxide nanoparticles (NPs)-mediated TMB (3,3',5,5'-tetramethylbenzidine)-H 2 O 2 colorimetric system, and applied it toward the development of a new NP-mediated photothermal immunoassay platform for visual quantitative biomolecule detection using a thermometer as the signal reader. Using a sandwich-type proof-of-concept immunoassay, we found that the charge transfer complex of the iron oxide NPs-mediated one-electron oxidation product of TMB (oxidized TMB) exhibited not only color changes, but also a strong near-infrared (NIR) laser-driven photothermal effect. Hence, oxidized TMB was explored as a new sensitive photothermal probe to convert the immunoassay signal into heat through the near-infrared laser-driven photothermal effect, enabling simple photothermal immunoassay using a thermometer. Based on the new iron oxide NPs-mediated TMB-H 2 O 2 photothermal immunoassay platform, prostate-specific antigen (PSA) as a model biomarker can be detected at a concentration as low as 1.0 ng·mL -1 in normal human serum. The discovered photothermal effect of the colorimetric system and the developed new photothermal immunoassay platform open up a new horizon for affordable detection of disease biomarkers and have great potential for other important material and biomedical applications of interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inaba, Masafumi, E-mail: inaba-ma@ruri.waseda.jp; Muta, Tsubasa; Kobayashi, Mikinori
2016-07-18
The hydrogen-terminated diamond surface (C-H diamond) has a two-dimensional hole gas (2DHG) layer independent of the crystal orientation. A 2DHG layer is ubiquitously formed on the C-H diamond surface covered by atomic-layer-deposited-Al{sub 2}O{sub 3}. Using Al{sub 2}O{sub 3} as a gate oxide, C-H diamond metal oxide semiconductor field-effect transistors (MOSFETs) operate in a trench gate structure where the diamond side-wall acts as a channel. MOSFETs with a side-wall channel exhibit equivalent performance to the lateral C-H diamond MOSFET without a side-wall channel. Here, a vertical-type MOSFET with a drain on the bottom is demonstrated in diamond with channel current modulationmore » by the gate and pinch off.« less
Single photon sources in 4H-SiC metal-oxide-semiconductor field-effect transistors
NASA Astrophysics Data System (ADS)
Abe, Y.; Umeda, T.; Okamoto, M.; Kosugi, R.; Harada, S.; Haruyama, M.; Kada, W.; Hanaizumi, O.; Onoda, S.; Ohshima, T.
2018-01-01
We present single photon sources (SPSs) embedded in 4H-SiC metal-oxide-semiconductor field-effect transistors (MOSFETs). They are formed in the SiC/SiO2 interface regions of wet-oxidation C-face 4H-SiC MOSFETs and were not found in other C-face and Si-face MOSFETs. Their bright room-temperature photoluminescence (PL) was observed in the range from 550 to 750 nm and revealed variable multi-peak structures as well as variable peak shifts. We characterized a wide variety of their PL spectra as the inevitable variation of local atomic structures at the interface. Their polarization dependence indicates that they are formed at the SiC side of the interface. We also demonstrate that it is possible to switch on/off the SPSs by a bias voltage of the MOSFET.
NASA Astrophysics Data System (ADS)
Jia, Yanmin; Tian, Xiangling; Si, Jianxiao; Huang, Shihua; Wu, Zheng; Zhu, Chenchen
2011-07-01
We deposited tantalum oxide film on a laminate structure composed of a Si substrate and a piezoelectric 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 single crystal and achieved in situ modulation of the resistance and capacitance of the Ta2O5 film. The modulation arises from the induced lattice strain in the Ta2O5 film, which is induced by the electric-field-induced strain in the piezoelectric crystal. Under an external electric field of ˜2 kV/cm, the longitudinal gauge factor of the Ta2O5 film is ˜3300. The control of the strain using the converse piezoelectric effect may be further extended to tune the intrinsic strain of other oxide thin films.
Madjid Ansari, Alireza; Farzampour, Shahrokh; Sadr, Ali; Shekarchi, Babak; Majidzadeh-A, Keivan
2016-02-01
Previous reports on the possible effects of Extremely Low Frequency Magnetic Fields (ELF MF) on mood have been paradoxical in different settings while no study has yet been conducted on animal behavior. In addition, it was shown that ELF MF exposure makes an increase in brain nitric oxide level. Therefore, in the current study, we aimed to assess the possible effect(s) of ELF MF exposure on mice Forced Swimming Test (FST) and evaluate the probable role of the increased level of nitric oxide in the observed behavior. Male adult mice NMRI were recruited to investigate the short term and long term ELF MF exposure (0.5 mT and 50 Hz, single 2h and 2 weeks 2h a day). Locomotor behavior was assessed by using open-field test (OFT) followed by FST to evaluate the immobility time. Accordingly, NΩ-nitro-l-arginine methyl ester 30 mg/kg was used to exert anti-depressant like effect. According to the results, short term exposure did not alter the immobility time, whereas long term exposure significantly reduces immobility time (p<0.01). However, it was revealed that the locomotion did not differ among all experimental groups. Short term exposure reversed the anti-depressant like effect resulting from 30 mg/kg of NΩ-nitro-l-arginine methyl ester (p<0.01). It has been concluded that long term exposure could alter the depressive disorder in mice, whereas short term exposure has no significant effect. Also, reversing the anti-depressant activity of L-NAME indicates a probable increase in the brain nitric oxide. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Weaver, M.; Benner, S.; Fendorf, S.; Sampson, M.; Leng, M.
2007-12-01
Atmospheric concentrations of methane have been steadily increasing over the last 100 years, which has given rise to research of wetland rice fields, recently identified as a major anthropomorphic source of methane. Establishment of experimental soil pots, cultivating an aromatic early variety rice strain in the Kean Svay District of Cambodia, have recently been carried out to evaluate methods to minimize methane release by promoting redox buffering by iron oxides. In the first series of experiments, iron oxides were added to the soils and the rate of change in reducing conditions and methanogenesis onset was monitored. In the second series of experiments, plots are subject to periodic drying cycles to promote rejuvenation of buffering iron oxides. Initial results indicate a delay in the onset of methanogenesis, and overall methane generation, in plots where initial iron oxides concentrations are elevated.
GSM base station electromagnetic radiation and oxidative stress in rats.
Yurekli, Ali Ihsan; Ozkan, Mehmed; Kalkan, Tunaya; Saybasili, Hale; Tuncel, Handan; Atukeren, Pinar; Gumustas, Koray; Seker, Selim
2006-01-01
The ever increasing use of cellular phones and the increasing number of associated base stations are becoming a widespread source of nonionizing electromagnetic radiation. Some biological effects are likely to occur even at low-level EM fields. In this study, a gigahertz transverse electromagnetic (GTEM) cell was used as an exposure environment for plane wave conditions of far-field free space EM field propagation at the GSM base transceiver station (BTS) frequency of 945 MHz, and effects on oxidative stress in rats were investigated. When EM fields at a power density of 3.67 W/m2 (specific absorption rate = 11.3 mW/kg), which is well below current exposure limits, were applied, MDA (malondialdehyde) level was found to increase and GSH (reduced glutathione) concentration was found to decrease significantly (p < 0.0001). Additionally, there was a less significant (p = 0.0190) increase in SOD (superoxide dismutase) activity under EM exposure.
Electron microscopic, rock magnetic and paleomagnetic studies of mid-ocean ridge basalts
NASA Astrophysics Data System (ADS)
Wang, Daming
Mid-ocean ridge basalt (MORB) is the major source of marine magnetic anomalies which are the result of the earth's magnetic reversals recorded sequentially in progressively older oceanic crust, as embodied in the theory of sea-floor spreading. Titanomagnetite, the primary magnetic minerals in MORB, undergoes gradual low-temperature alteration to titanomaghemite after initial formation, presenting the paradoxical situation that apparently the original magnetic record stays well-preserved while carriers of this record undergo fundamental mineralogical transformations. An integrated electron microscopic, rock magnetic and paleomagnetic study of MORB has been carried out with the aim to understand the effects of low-temperaure alteration on magnetic properties of MORB. A component of this study documents the oxidation state of titanomagnetite in variably altered young (< 1 Ma) basalt. Titanomaghemites in discolored rims are, in a general sense, oxidized to a higher degree than those in the relatively unaltered gray interior. The titanomaghemite within the discolored rims appears to have oxidized relatively quickly. However, the alteration front of the discolored rims does not generally coincide with a pronounced jump in oxidation state, suggesting oxidation state of the Fe-Ti oxides and visible alteration in the discolored rims are not directly correlated. The natural remanent magnetization (NRM) of MORB shows comparatively higher intensity in early Tertiary and Cretaceous samples than in 10--30 Ma old samples. No compositional, petrological, rock-magnetic or paleomagnetic patterns are observed to account for the NRM variation trend. Geomagnetic field intensity is the only effect which can not be directly tested on the same samples, but shows a similar pattern as the measured NRM intensities. It is therefore concluded that the geomagnetic field strength was, on-average, significantly greater during the Cretaceous than during the Oligocene and Miocene. I proposed that the variability of oxidation state within a grain changes as a function of age: rapid oxidation giving rise to pronounced non-uniform oxidation within a grain during the first 10 to 20 m.y., whereupon oxidation of titanomagnetite gradually slows down due to equilibration with surrounding fluids. Meanwhile, oxidation gradients decrease gradually within a grain via diffusion. The change of oxidation state within a grain can greatly affect its internal stress, which in turn influences the magnetic stability. This stability, observed as coercivity or mean-destructive fields during alternating-field demagnetization, shows otherwise unexplained variations. These variations can only be explained by variability of oxidation degree within a given grain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravotti, F.; Glaser, M.; Saigne, F.
Radiation-sensing metal-oxide-semiconductor field-effect transistors produced by the laboratory LAAS-CNRS were exposed to a harsh hadron field that represents the real radiation environment expected at the CERN Large Hadron Collider experiments. The long-term stability of the transistor's I{sub ds}-V{sub gs} characteristic was investigated using the isochronal annealing technique. In this work, devices exposed to high intensity hadron levels ({phi}{>=}10{sup 12} neutrons/cm{sup 2}) show evidences of displacement damages in the I{sub ds}-V{sub gs} annealing behavior. By comparing experimental and simulated results over 14 months, the isochronal annealing method, originally devoted to oxide trapped charge, is shown to enable prediction of the recoverymore » of silicon bulk defects.« less
NASA Astrophysics Data System (ADS)
Jain, Pushkar; Juneja, Jasbir S.; Bhagwat, Vinay; Rymaszewski, Eugene J.; Lu, Toh-Ming; Cale, Timothy S.
2005-05-01
The effects of substrate heating on the stoichiometry and the electrical properties of pulsed dc reactively sputtered tantalum oxide films over a range of film thickness (0.14 to 5.4 μm) are discussed. The film stoichiometry, and hence the electrical properties, of tantalum oxide films; e.g., breakdown field, leakage current density, dielectric constant, and dielectric loss are compared for two different cases: (a) when no intentional substrate/film cooling is provided, and (b) when the substrate is water cooled during deposition. All other operating conditions are the same, and the film thickness is directly related to deposition time. The tantalum oxide films deposited on the water-cooled substrates are stoichiometric, and exhibit excellent electrical properties over the entire range of film thickness. ``Noncooled'' tantalum oxide films are stoichiometric up to ~1 μm film thickness, beyond that the deposited oxide is increasingly nonstoichiometric. The presence of partially oxidized Ta in thicker (>~1 μm) noncooled tantalum oxide films causes a lower breakdown field, higher leakage current density, higher apparent dielectric constant, and dielectric loss. The growth of nonstoichiometric tantalum oxide in thicker noncooled films is attributed to decreased surface oxygen concentration due to oxygen recombination and desorption at higher film temperatures (>~100 °C). The quantitative results presented reflect experience with a specific piece of equipment; however, the procedures presented can be used to characterize deposition processes in which film stoichiometry can change.
Liu, Xudong; Zhang, Yuchao; Li, Jinquan; Wang, Dong; Wu, Yang; Li, Yan; Lu, Zhisong; Yu, Samuel CT; Li, Rui; Yang, Xu
2014-01-01
Single-walled carbon nanotubes (SWCNTs) have shown increasing promise in the field of biomedicine, especially in applications related to the nervous system. However, there are limited studies available on the neurotoxicity of SWCNTs used in vivo. In this study, neurobehavioral changes caused by SWCNTs in mice and oxidative stress were investigated. The results of ethological analysis (Morris water maze and open-field test), brain histopathological examination, and assessments of oxidative stress (reactive oxygen species [ROS], malondialdehyde [MDA], and glutathione [GSH]), inflammation (nuclear factor κB, tumor necrosis factor α, interleukin-1β), and apoptosis (cysteine-aspartic acid protease 3) in brains showed that 6.25 and 12.50 mg/kg/day SWCNTs in mice could induce cognitive deficits and decreased locomotor activity, brain histopathological alterations, and increased levels of oxidative stress, inflammation, and apoptosis in mouse brains; however, 3.125 mg/kg/day SWCNTs had zero or minor adverse effects in mice, and these effects were blocked by concurrent administration of ascorbic acid. Down-regulation of oxidative stress, inflammation, and apoptosis were proposed to explain the neuroprotective effects of ascorbic acid. This work suggests SWCNTs could induce cognitive deficits and decreased locomotor activity, and provides a strategy to avoid the adverse effects. PMID:24596461
Chen, Junyu; Zhang, Xin; Cai, He; Chen, Zhiqiang; Wang, Tong; Jia, Lingling; Wang, Jian; Wan, Qianbing; Pei, Xibo
2016-11-01
The aim of this study was to prepare nanocomposites of carboxylated graphene oxide (GO-COOH) sheets decorated with zinc oxide (ZnO) nanoparticles (NPs) and investigate their advantages in the field of bone tissue engineering. First, ZnO/GO-COOH nanocomposites were synthesized by facile reactions, including the carboxylation of graphene oxide (GO) and the nucleation of ZnO on GO-COOH sheets. The synthesized ZnO/GO-COOH nanocomposites were then characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectra, and transmission electron microscopy (TEM). The biocompatibility, osteogenic activity and antibacterial effect of ZnO/GO-COOH nanocomposites were further investigated. In the nanocomposites, ZnO nanoparticles with a size of approximately 12nm were uniformly decorated on GO-COOH sheets. Compared with GO-COOH and the control group, ZnO/GO-COOH nanocomposites significantly enhanced ALP activity, osteocalcin production and extracellular matrix mineralization as well as up-regulated osteogenic-related genes (ALP, OCN, and Runx2) in MG63 osteoblast-like cells. Moreover, ZnO/GO-COOH nanocomposites had an antibacterial effect against Streptococcus mutans. These results indicated that ZnO/GO-COOH nanocomposites exhibited both osteogenic activity and antibacterial effect and had great potential for designing new biomaterials in the field of bone tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Giocondi, Jennifer Lynn
Experiments have been conducted to determine the effects of dipolar fields, surface termination, and surface orientation on the photochemical reactivity of several transition metal oxides. These compounds include BaTiO3, SrTiO3, BaTi4O9, Sr2Nb2O 7, and Sr2Ta2O7 which were studied as polycrystalline ceramics, single crystals, micron-sized faceted particles, or some combination of these forms. The reduction of Ag+ from an aqueous AgNO3 solution (Ag0 product) and the oxidation of Pb2+ from an aqueous lead acetate solution (PbO 2 product) were selected as probe reactions because they leave insoluble products on the oxide surfaces. The reactivity of ferroelectric BaTiO3 was dominated by the effect of dipolar fields on the transport of photogenerated charge carriers. Silver was reduced on domains with a positive surface charge while lead was oxidized on domains with a negative surface charge. This reactivity implies that the dipolar field in individual domains drives photogenerated charge carriers to oppositely charged surfaces. This reaction mechanism results in a physical separation of the photogenerated charge carriers and the locations of the oxidation and reduction half reactions on the catalyst surface. Experiments performed on polycrystalline ceramics, single crystals, and micron-sized particles all showed this domain specific reactivity. SrTiO3 has the ideal cubic perovskite structure from which the tetragonally distorted ferroelectric BaTiO3 phase is derived. Polished and annealed surfaces of randomly oriented grain surfaces were bound by some combination of the following three planes: {110}, {111}, and a complex facet inclined approximately 24° from {100}. Surfaces with the complex {100} facet were found to be the most active for Ag reduction. Single crystal studies also showed that the nonpolar (100) surface is the most reactive and that the composition of the termination layer does not influence this reaction. However, the polar (111) and (110) surfaces had a non-uniform distribution of reaction products. For these orientations, the location of the reduction and oxidation reactions is determined by the chemical and charge terminations of the different terraces or facets. The reactivity for silver reduction on the faceted particles is ranked as (100) > (111) > (110) while the (100) surface was least reactive for lead oxidation. Overall, these results show that the photochemical reactivity of SrTiO3 is anisotropic and that on polar surfaces, dipolar fields arising from charged surface domains influence the transport of photogenerated charge carriers and promote spatially selective oxidation and reduction reactions. (Abstract shortened by UMI.)
Numerical simulation of offset-drain amorphous oxide-based thin-film transistors
NASA Astrophysics Data System (ADS)
Jeong, Jaewook
2016-11-01
In this study, we analyzed the electrical characteristics of amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) with an offset-drain structure by technology computer aided design (TCAD) simulation. When operating in a linear region, an enhancement-type TFT shows poor field-effect mobility because most conduction electrons are trapped in acceptor-like defects in an offset region when the offset length (L off) exceeds 0.5 µm, whereas a depletion-type TFT shows superior field-effect mobility owing to the high free electron density in the offset region compared with the trapped electron density. When operating in the saturation region, both types of TFTs show good field-effect mobility comparable to that of a reference TFT with a large gate overlap. The underlying physics of the depletion and enhancement types of offset-drain TFTs are systematically analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakaike, Kohei; Akazawa, Muneki; Nakamura, Shogo
2013-12-02
A low-temperature local-layer technique for transferring a single-crystalline silicon (c-Si) film by using a meniscus force was proposed, and an n-channel metal-oxide-semiconductor field-effect transistor (MOSFET) was fabricated on polyethylene terephthalate (PET) substrate. It was demonstrated that it is possible to transfer and form c-Si films in the required shape at the required position on PET substrates at extremely low temperatures by utilizing a meniscus force. The proposed technique for layer transfer was applied for fabricating high-performance c-Si MOSFETs on a PET substrate. The fabricated MOSFET showed a high on/off ratio of more than 10{sup 8} and a high field-effect mobilitymore » of 609 cm{sup 2} V{sup −1} s{sup −1}.« less
Ghanbari, Ahmad Ali; Shabani, Kobra; Mohammad Nejad, Daryoush
2016-10-01
Electromagnetic fields (EMFs) can influence the biological system by the formation of free radicals in cells. The EMFs are able to deteriorate defense system against free radicals that leads to oxidative stress (OS). Lipid peroxidation process (LPO) is an index of oxidative stress, and the Malandialdehyde (MDA) is the final product of LPO. Vitamin E is the most important antioxidant which inhibits the LPO process. The aim of this study was to evaluate the effects of 3MT EMF exposure on oxidative stress parameters in substantia nigra and the role of vitamin E in reducing oxidative stress and preventing of LPO process. 40 male Wistar rats were randomly divided into 4 groups: 1) Control group: received standard food without exposure to EMF and without consumption of vitamin E, 2) Experimental group 1: was exposed to EMF (3MT) 4 h/day for 50 days, 3) The experimental group 2: received 200 mg/kg vitamin E with gavage every day and also was exposed to EMF (3MT) 4 h/day for 50 days, 4) Sham group: received water with gavage for 50 days. A significant increase in MDA levels and Glutation peroxidase (GSH-Px) activity of the substantia nigra following 50 days exposure to EMF was detected, but the superoxide dismutase (SOD) activity was decreased. Exposure did not change total antioxidant capacity (TAC) levels in plasma. Vitamin E treatment significantly prevented the increase of the MDA levels and GSHPx activity and also prevented the decrease of SOD activity in tissue but did not alter TAC levels. The GSH-Px activity increased because the duration and intensity of exposure were not enough to decrease it. We demonstrated two important findings; that 50 days exposure to 3 MT electromagnetic field caused oxidative stress by increasing the levels of MDA, and decreasing SOD activity in the substantia nigra; and that treatment with the vitamin E significantly prevented the oxidative stress and lipid peroxidation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berkovits, V. L.; Kosobukin, V. A.; Gordeeva, A. B.
2015-12-28
Reflectance anisotropy (RA) spectra of naturally oxidized (001) surfaces of GaAs and InAs crystals are measured for photon energies from 1.5 up to 5.5 eV. The differential high-accuracy RA spectra reveal features substantially different from those caused by either a reconstruction of clean surface or a built-in near-surface electric field. Models of atomic structure with anisotropic transition layers of excess arsenic atoms specific for GaAs(001)/oxide and InAs(001)/oxide interfaces are proposed. In conformity with these models, a general theory of reflectance anisotropy is developed for semiconductor/oxide interfaces within the Green's function technique. The theory takes into account the combined effect of localmore » field due to interface dipoles and of intrinsic near-surface strain of the crystal. Measured RA spectra are analyzed in the model of valence-bond dipoles occupying a rectangular lattice in a multilayer medium. Comparing the measured and calculated spectra, we conclude that RA spectra of oxidized GaAs(001) and InAs(001) surfaces are simultaneously influenced by interface and near-surface anisotropies. The former is responsible for the broad-band spectral features which are associated with polarizability of the valence bonds attached to As atoms at the crystal/oxide interface. The near-surface anisotropy is due to inherent uniaxial straining the near-surface region of crystal. The effect of strain on RA spectra is experimentally and theoretically substantiated for GaAs crystal wafers undergone a uniaxial applied stress. Basically, this work results in the following. It establishes the physical nature of different levels of RA spectra observed in a majority of papers, but never analyzed. It demonstrates how the studied features of RA spectra could be applied for optical characterization of strained interfaces and atomic layers.« less
NASA Astrophysics Data System (ADS)
Berkovits, V. L.; Kosobukin, V. A.; Gordeeva, A. B.
2015-12-01
Reflectance anisotropy (RA) spectra of naturally oxidized (001) surfaces of GaAs and InAs crystals are measured for photon energies from 1.5 up to 5.5 eV. The differential high-accuracy RA spectra reveal features substantially different from those caused by either a reconstruction of clean surface or a built-in near-surface electric field. Models of atomic structure with anisotropic transition layers of excess arsenic atoms specific for GaAs(001)/oxide and InAs(001)/oxide interfaces are proposed. In conformity with these models, a general theory of reflectance anisotropy is developed for semiconductor/oxide interfaces within the Green's function technique. The theory takes into account the combined effect of local field due to interface dipoles and of intrinsic near-surface strain of the crystal. Measured RA spectra are analyzed in the model of valence-bond dipoles occupying a rectangular lattice in a multilayer medium. Comparing the measured and calculated spectra, we conclude that RA spectra of oxidized GaAs(001) and InAs(001) surfaces are simultaneously influenced by interface and near-surface anisotropies. The former is responsible for the broad-band spectral features which are associated with polarizability of the valence bonds attached to As atoms at the crystal/oxide interface. The near-surface anisotropy is due to inherent uniaxial straining the near-surface region of crystal. The effect of strain on RA spectra is experimentally and theoretically substantiated for GaAs crystal wafers undergone a uniaxial applied stress. Basically, this work results in the following. It establishes the physical nature of different levels of RA spectra observed in a majority of papers, but never analyzed. It demonstrates how the studied features of RA spectra could be applied for optical characterization of strained interfaces and atomic layers.
Oxidation of interconnect alloys in an electric field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holcomb, G.R.; Alman, D.E.; Adler, T.A.
The effect of an electric field on the oxidation of interconnect alloys was examined with a representative array of materials: an iron-base ferritic chromia former (E-brite), an iron-base ferritic chromia former with Mn and La (Crofer 22APU), a nickel-base chromia former (IN-718), and a nickelbase chromia former with Mn and La (Haynes 230). Environmental variables include temperature and oxygen partial pressure. The resulting scales were examined to determine if applied electrical current induces changes in mechanism or scale growth kinetics.
Effect of field deposition and pore size on Co/Cu barcode nanowires by electrodeposition
NASA Astrophysics Data System (ADS)
Cho, Ji Ung; Wu, Jun-Hua; Min, Ji Hyun; Lee, Ju Hun; Liu, Hong-Ling; Kim, Young Keun
2007-03-01
We have studied the effect of an external magnetic field applied during electrodeposition of Co/Cu barcode nanowires in anodic aluminum oxide nanotemplates. The magnetic properties of the barcode nanowires were greatly enhanced for 50 nm pore diameter regardless of segment aspect ratio, but field deposition has little effect on the 200 nm nanowires. The magnetic improvement is correlated with a structural change, attributed to field modification of the growth habit of the barcode nanowires. A mechanism of growth subject to geometric confinement is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dib, E., E-mail: elias.dib@for.unipi.it; Carrillo-Nuñez, H.; Cavassilas, N.
Junctionless transistors are being considered as one of the alternatives to conventional metal-oxide field-effect transistors. In this work, it is then presented a simulation study of silicon double-gated p-type junctionless transistors compared with its inversion-mode counterpart. The quantum transport problem is solved within the non-equilibrium Green's function formalism, whereas hole-phonon interactions are tackled by means of the self-consistent Born approximation. Our findings show that junctionless transistors should perform as good as a conventional transistor only for ultra-thin channels, with the disadvantage of requiring higher supply voltages in thicker channel configurations.
Yoshikawa, Masanobu; Kosaka, Kenichi; Seki, Hirohumi; Kimoto, Tsunenobu
2016-07-01
We measured the depolarized and polarized Raman spectra of a 4H-SiC metal-oxide-semiconductor field-effect transistor (MOSFET) and found that compressive stress of approximately 20 MPa occurs under the source and gate electrodes and tensile stress of approximately 10 MPa occurs between the source and gate electrodes. The experimental result was in close agreement with the result obtained by calculation using the finite element method (FEM). A combination of Raman spectroscopy and FEM provides much data on the stresses in 4H-SiC MOSFET. © The Author(s) 2016.
Kanaki, Toshiki; Yamasaki, Hiroki; Koyama, Tomohiro; Chiba, Daichi; Ohya, Shinobu; Tanaka, Masaaki
2018-05-08
A vertical spin metal-oxide-semiconductor field-effect transistor (spin MOSFET) is a promising low-power device for the post scaling era. Here, using a ferromagnetic-semiconductor GaMnAs-based vertical spin MOSFET with a GaAs channel layer, we demonstrate a large drain-source current I DS modulation by a gate-source voltage V GS with a modulation ratio up to 130%, which is the largest value that has ever been reported for vertical spin field-effect transistors thus far. We find that the electric field effect on indirect tunneling via defect states in the GaAs channel layer is responsible for the large I DS modulation. This device shows a tunneling magnetoresistance (TMR) ratio up to ~7%, which is larger than that of the planar-type spin MOSFETs, indicating that I DS can be controlled by the magnetization configuration. Furthermore, we find that the TMR ratio can be modulated by V GS . This result mainly originates from the electric field modulation of the magnetic anisotropy of the GaMnAs ferromagnetic electrodes as well as the potential modulation of the nonmagnetic semiconductor GaAs channel layer. Our findings provide important progress towards high-performance vertical spin MOSFETs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, R. L.; Chiang, T. H.; Hsueh, W. J.
2014-11-03
Molecular beam epitaxy deposited rare-earth oxide of Y{sub 2}O{sub 3} has effectively passivated GaSb, leading to low interfacial trap densities of (1–4) × 10{sup 12 }cm{sup −2} eV{sup −1} across the energy bandgap of GaSb. A high saturation drain current density of 130 μA/μm, a peak transconductance of 90 μS/μm, a low subthreshold slope of 147 mV/decade, and a peak field-effect hole mobility of 200 cm{sup 2}/V-s were obtained in 1 μm-gate-length self-aligned inversion-channel GaSb p-Metal-Oxide-Semiconductor Field-Effect-Transistors (MOSFETs). In this work, high-κ/GaSb interfacial properties were better in samples with a high substrate temperature of 200 °C than in those with high κ's deposited at room temperature, in terms of themore » interfacial electrical properties, particularly, the reduction of interfacial trap densities near the conduction band and the MOSFET device performance.« less
PHOTOCHEMICAL OXIDENTS IN YONKERS, NEW YORK: EFFECTS ON YIELD OF BEAN AND TOMATO
Field plots of bean (Phaseolus vulgaris cv. Tendergreen) and tomato (Lycopersicon esculentum cv. Fireball 861 VR) were enclosed in chambers and exposed for 43 or 99 days, respectively, to ambient air or to air from which 60 to 70% of the ambient photochemical oxidants were exclud...
The Toxic Effects and Mechanisms of CuO and ZnO Nanoparticles
Chang, Ya-Nan; Zhang, Mingyi; Xia, Lin; Zhang, Jun; Xing, Gengmei
2012-01-01
Recent nanotechnological advances suggest that metal oxide nanoparticles (NPs) have been expected to be used in various fields, ranging from catalysis and opto-electronic materials to sensors, environmental remediation, and biomedicine. However, the growing use of NPs has led to their release into environment and the toxicity of metal oxide NPs on organisms has become a concern to both the public and scientists. Unfortunately, there are still widespread controversies and ambiguities with respect to the toxic effects and mechanisms of metal oxide NPs. Comprehensive understanding of their toxic effect is necessary to safely expand their use. In this review, we use CuO and ZnO NPs as examples to discuss how key factors such as size, surface characteristics, dissolution, and exposure routes mediate toxic effects, and we describe corresponding mechanisms, including oxidative stress, coordination effects and non-homeostasis effects.
Sanctis, Shawn; Hoffmann, Rudolf C; Eiben, Sabine; Schneider, Jörg J
2015-01-01
Tobacco mosaic virus (TMV) has been employed as a robust functional template for the fabrication of a TMV/zinc oxide field effect transistor (FET). A microwave based approach, under mild conditions was employed to synthesize stable zinc oxide (ZnO) nanoparticles, employing a molecular precursor. Insightful studies of the decomposition of the precursor were done using NMR spectroscopy and material characterization of the hybrid material derived from the decomposition was achieved using dynamic light scattering (DLS), transmission electron microscopy (TEM), grazing incidence X-ray diffractometry (GI-XRD) and atomic force microscopy (AFM). TEM and DLS data confirm the formation of crystalline ZnO nanoparticles tethered on top of the virus template. GI-XRD investigations exhibit an orientated nature of the deposited ZnO film along the c-axis. FET devices fabricated using the zinc oxide mineralized virus template material demonstrates an operational transistor performance which was achieved without any high-temperature post-processing steps. Moreover, a further improvement in FET performance was observed by adjusting an optimal layer thickness of the deposited ZnO on top of the TMV. Such a bio-inorganic nanocomposite semiconductor material accessible using a mild and straightforward microwave processing technique could open up new future avenues within the field of bio-electronics.
NASA Astrophysics Data System (ADS)
Harutyunyan, Hayk A.; Sahakyan, Gohar V.
2016-01-01
The aim of this study was to determine activities of pro-/antioxidant enzymes, reactive oxygen species (ROS) content, and oxidative modification of proteins and lipids in red blood cells (RBCs) and blood plasma of rats exposed to electrostatic field (200 kV/m) during the short (1 h) and the long periods (6 day, 6 h daily). Short-term exposure was characterized by the increase of oxidatively damaged proteins in blood of rats. This was strongly expressed in RBC membranes. After long-term action, RBC content in peripheral blood was higher than in control ( P < 0.01) and the attenuation of prooxidant processes was shown.
NASA Astrophysics Data System (ADS)
Chang, Ingram Yin-ku; Chen, Chun-Heng; Chiu, Fu-Chien; Lee, Joseph Ya-min
2007-11-01
Metal-oxide-semiconductor field-effect transistors with CeO2/HfO2 laminated gate dielectrics were fabricated. The transistors have a subthreshold slope of 74.9mV/decade. The interfacial properties were measured using gated diodes. The surface state density Dit was 9.78×1011cm-2eV-1. The surface-recombination velocity (s0) and the minority carrier lifetime in the field-induced depletion region (τ0,FIJ) measured from the gated diode were about 6.11×103cm /s and 1.8×10-8s, respectively. The effective capture cross section of surface state (σs) extracted using the subthreshold-swing measurement and the gated diode was about 7.69×10-15cm2. The effective electron mobility of CeO2/HfO2 laminated gated transistors was determined to be 212cm2/Vs.
NASA Astrophysics Data System (ADS)
Echtermeyer, T. J.; Lemme, M. C.; Bolten, J.; Baus, M.; Ramsteiner, M.; Kurz, H.
2007-09-01
In this article, graphene is investigated with respect to its electronic properties when introduced into field effect devices (FED). With the exception of manual graphene deposition, conventional top-down CMOS-compatible processes are applied. Few and monolayer graphene sheets are characterized by scanning electron microscopy, atomic force microscopy and Raman spectroscopy. The electrical properties of monolayer graphene sandwiched between two silicon dioxide films are studied. Carrier mobilities in graphene pseudo-MOS structures are compared to those obtained from double-gated Graphene-FEDs and silicon metal-oxide-semiconductor field-effect-transistors (MOSFETs).
Technologies for suppressing charge-traps in novel p-channel Field-MOSFET with thick gate oxide
NASA Astrophysics Data System (ADS)
Miyoshi, Tomoyuki; Oshima, Takayuki; Noguchi, Junji
2015-05-01
High voltage laterally diffused MOS (LDMOS) FETs are widely used in analog applications. A Field-MOSFET with a thick gate oxide is one of the best ways of achieving a simpler design and smaller circuit footprint for high-voltage analog circuits. This paper focuses on an approach to improving the reliability of p-channel Field-MOSFETs. By introducing a fluorine implantation process and terminating fluorine at the LOCOS bird’s beak, the gate oxide breakdown voltage could be raised to 350 V at a high-slew rate and the negative bias temperature instability (NBTI) shift could be kept to within 15% over a product’s lifetime. By controlling the amount of charge in the insulating layer through improving the interlayer dielectric (ILD) deposition processes, a higher BVDSS of 370 V and 10-year tolerability of 300 V were obtained with an assisted reduced surface electric field (RESURF) effect. These techniques can supply an efficient solution for ensuring reliable high-performance applications.
Electro- and Magneto-Modulated Ion Transport through Graphene Oxide Membranes
Sun, Pengzhan; Zheng, Feng; Wang, Kunlin; Zhong, Minlin; Wu, Dehai; Zhu, Hongwei
2014-01-01
The control of ion trans-membrane transport through graphene oxide (GO) membranes is achieved by electric and magnetic fields. Electric field can either increase or decrease the ion transport through GO membranes depending on its direction, and magnetic field can enhance the ion penetration monotonically. When electric field is applied across GO membrane, excellent control of ion fluidic flows can be done. With the magnetic field, the effective anchoring of ions is demonstrated but the modulation of the ion flowing directions does not occur. The mechanism of the electro- and magneto-modulated ion trans-membrane transport is investigated, indicating that the electric fields dominate the ion migration process while the magnetic fields tune the structure of nanocapillaries within GO membranes. Results also show that the ion selectivity of GO membranes can be tuned with the electric fields while the transport of ions can be enhanced synchronously with the magnetic fields. These excellent properties make GO membranes promising in areas such as field-induced mass transport control and membrane separation. PMID:25347969
NASA Astrophysics Data System (ADS)
Tiwari, Durgesh Laxman; Sivasankaran, K.
This paper presents improved performance of Double Gate Graphene Nanomesh Field Effect Transistor (DG-GNMFET) with h-BN as substrate and gate oxide material. The DC characteristics of 0.95μm and 5nm channel length devices are studied for SiO2 and h-BN substrate and oxide material. For analyzing the ballistic behavior of electron for 5nm channel length, von Neumann boundary condition is considered near source and drain contact region. The simulated results show improved saturation current for h-BN encapsulated structure with two times higher on current value (0.375 for SiO2 and 0.621 for h-BN) as compared to SiO2 encapsulated structure. The obtained result shows h-BN to be a better substrate and oxide material for graphene electronics with improved device characteristics.
Selman, Colin; McLaren, Jane S; Collins, Andrew R; Duthie, Garry G; Speakman, John R
2008-01-01
Life-history theory assumes that animal life histories are a consequence of trade-offs between current activities and future reproductive performance or survival, because resource supply is limited. Empirical evidence for such trade-offs in the wild are common, yet investigations of the underlying mechanisms are rare. Life-history trade-offs may have both physiological and ecological mediated costs. One hypothesized physiological mechanism is that elevated energy metabolism may increase reactive oxygen species production, leading to somatic damage and thus compromising future survival. We investigated the impact of experimentally elevated energy expenditure on oxidative damage, protection and lifespan in short-tailed field voles (Microtus agrestis) maintained in captivity to remove any confounding ecological factor effects. Energy expenditure was elevated via lifelong cold exposure (7±2°C), relative to siblings in the warm (22±2°C). No treatment effect on cumulative mortality risk was observed, with negligible effects on oxidative stress and antioxidant protection. These data suggest that in captive animals physiologically mediated costs on life history do not result from increased energy expenditure and consequent elevations in oxidative stress and reduced survival. PMID:18467297
Metal-oxide-semiconductor devices using Ga2O3 dielectrics on n-type GaN
NASA Astrophysics Data System (ADS)
Lee, Ching-Ting; Chen, Hong-Wei; Lee, Hsin-Ying
2003-06-01
Using a photoelectrochemical method involving a He-Cd laser, Ga2O3 oxide layers were directly grown on n-type GaN. We demonstrated the performance of the resultant metal-oxide-semiconductor devices based on the grown Ga2O3 layer. An extremely low reverse leakage current of 200 pA was achieved when devices operated at -20 V. Furthermore, high forward and reverse breakdown electric fields of 2.80 MV/cm and 5.70 MV/cm, respectively, were obtained. Using a photoassisted current-voltage method, a low interface state density of 2.53×1011 cm-2 eV-1 was estimated. The varactor devices permit formation of inversion layers, so that they may be applied for the fabrication of metal-oxide-semiconductor field-effect transistors.
Assowe, O; Politano, O; Vignal, V; Arnoux, P; Diawara, B; Verners, O; van Duin, A C T
2012-12-06
Corrosion processes occurring in aqueous solutions are critically dependent upon the interaction between the metal electrode and the solvent. In this work, the interaction of a nickel substrate with water molecules has been investigated using reactive force field (ReaxFF) molecular dynamics simulations. This approach was originally developed by van Duin and co-workers to study hydrocarbon chemistry and the catalytic properties of organic compounds. To our knowledge, this method has not previously been used to study the corrosion of nickel. In this work, we studied the interaction of 480 molecules of water (ρ = 0.99 g·cm(-3)) with Ni(111) surfaces at 300 K. The results showed that a water "bilayer" was adsorbed on the nickel surface. In the absence of an applied electric field, no dissociation of water was observed. However, the nickel atoms at the surface were charged positively, whereas the first water layer was charged negatively, indicating the formation of an electric double layer. To study the corrosion of nickel in pure water, we introduced an external electric field between the metal and the solution. The electric field intensity varied between 10 and 20 MeV/cm. The presence of this electric field led to oxidation of the metal surface. The structural and morphological differences associated with the growth of this oxide film in the presence of the electric field were evaluated. The simulated atomic trajectories were used to analyze the atomic displacement during the reactive process. The growth of the oxide scale on the nickel surface was primarily due to the movement of anions toward the interior of the metal substrate and the migration of nickel toward the free surface. We found that increasing the electric field intensity sped up the corrosion of nickel. The results also showed that the oxide film thickness increased linearly with increasing electric field intensity.
Electrofluidic gating of a chemically reactive surface.
Jiang, Zhijun; Stein, Derek
2010-06-01
We consider the influence of an electric field applied normal to the electric double layer at a chemically reactive surface. Our goal is to elucidate how surface chemistry affects the potential for field-effect control over micro- and nanofluidic systems, which we call electrofluidic gating. The charging of a metal-oxide-electrolyte (MOE) capacitor is first modeled analytically. We apply the Poisson-Boltzmann description of the double layer and impose chemical equilibrium between the ionizable surface groups and the solution at the solid-liquid interface. The chemically reactive surface is predicted to behave as a buffer, regulating the charge in the double layer by either protonating or deprotonating in response to the applied field. We present the dependence of the charge density and the electrochemical potential of the double layer on the applied field, the density, and the dissociation constants of ionizable surface groups and the ionic strength and the pH of the electrolyte. We simulate the responses of SiO(2) and Al(2)O(3), two widely used oxide insulators with different surface chemistries. We also consider the limits to electrofluidic gating imposed by the nonlinear behavior of the double layer and the dielectric strength of oxide materials, which were measured for SiO(2) and Al(2)O(3) films in MOE configurations. Our results clarify the response of chemically reactive surfaces to applied fields, which is crucial to understanding electrofluidic effects in real devices.
Giant magnetoresistance in ion beam deposited spin-valve films with specular enhancement
NASA Astrophysics Data System (ADS)
Sant, S.; Mao, M.; Kools, J.; Koi, K.; Iwasaki, H.; Sahashi, M.
2001-06-01
Three different techniques, natural oxidation, remote plasma oxidation and low energy ion beam oxidation, have been proved to be equally effective in forming nano-oxide layers (NOLs) in spin-valve films for specular enhancement of giant magnetoresistance (GMR) effect. GMR values over 12% have been routinely obtained in spin-valve films with NOL, corresponding to a 30% specular enhancement over those without NOL. The consistency and robustness of the oxidation processes has been demonstrated by a very large GMR value ˜19% in a dual spin-valve film with the NOLs formed in both pinned layers, the oscillatory dependence of the interlayer coupling field on Cu layer thickness in specular enhanced spin-valve films and the uniform and repeatable film performance over 5 in. substrates.
Transparent Oxide TFTs Fabricated by Atomic Layer Deposition
2014-04-17
Transparent Oxide TFTs Fabricated by Atomic Layer Deposition(FA2386-11-1-114052) Yukiharu Uraoka, Nara Institute of Science and Technology Term...2011.5.1-2012.4.30 Purpose and Background: In recent years, the application of zinc oxide (ZnO) thin films as an active channel layer in TFTs has...or other flexible substrates. Higher field-effect mobility of ZnO TFTs than a-Si:H TFTs has been recently demonstrated. However, reliability for
Latest progress in gallium-oxide electronic devices
NASA Astrophysics Data System (ADS)
Higashiwaki, Masataka; Wong, Man Hoi; Konishi, Keita; Nakata, Yoshiaki; Lin, Chia-Hung; Kamimura, Takafumi; Ravikiran, Lingaparthi; Sasaki, Kohei; Goto, Ken; Takeyama, Akinori; Makino, Takahiro; Ohshima, Takeshi; Kuramata, Akito; Yamakoshi, Shigenobu; Murakami, Hisashi; Kumagai, Yoshinao
2018-02-01
Gallium oxide (Ga2O3) has emerged as a new competitor to SiC and GaN in the race toward next-generation power switching and harsh environment electronics by virtue of the excellent material properties and the relative ease of mass wafer production. In this proceedings paper, an overview of our recent development progress of Ga2O3 metal-oxide-semiconductor field-effect transistors and Schottky barrier diodes will be reported.
Nonvolatile memory with graphene oxide as a charge storage node in nanowire field-effect transistors
NASA Astrophysics Data System (ADS)
Baek, David J.; Seol, Myeong-Lok; Choi, Sung-Jin; Moon, Dong-Il; Choi, Yang-Kyu
2012-02-01
Through the structural modification of a three-dimensional silicon nanowire field-effect transistor, i.e., a double-gate FinFET, a structural platform was developed which allowed for us to utilize graphene oxide (GO) as a charge trapping layer in a nonvolatile memory device. By creating a nanogap between the gate and the channel, GO was embedded after the complete device fabrication. By applying a proper gate voltage, charge trapping, and de-trapping within the GO was enabled and resulted in large threshold voltage shifts. The employment of GO with FinFET in our work suggests that graphitic materials can potentially play a significant role for future nanoelectronic applications.
NASA Astrophysics Data System (ADS)
Hwang, Ah Young; Kim, Sang Tae; Ji, Hyuk; Shin, Yeonwoo; Jeong, Jae Kyeong
2016-04-01
Transition tantalum induced crystallization of amorphous zinc tin oxide (a-ZTO) was observed at low temperature annealing of 300 °C. Thin-film transistors (TFTs) with an a-ZTO channel layer exhibited a reasonable field-effect mobility of 12.4 cm2/V s, subthreshold swing (SS) of 0.39 V/decade, threshold voltage (VTH) of 1.5 V, and ION/OFF ratio of ˜107. A significant improvement in the field-effect mobility (up to ˜33.5 cm2/V s) was achieved for crystallized ZTO TFTs: this improvement was accomplished without compromising the SS, VTH, or ION/OFF ratio due to the presence of a highly ordered microstructure.
Electrospun Polyaniline/Polyethylene Oxide Nanofiber Field Effect Transistor
NASA Technical Reports Server (NTRS)
Pinto, N. J.; Johnson, A. T.; MacDiarmid, A. G.; Mueller, C. H.; Theofylaktos, N.; Robinson, D. C.; Miranda, F. A.
2003-01-01
We report on the observation of field effect transistor (FET) behavior in electrospun camphorsulfonic acid doped polyaniline(PANi)/polyethylene oxide(PE0) nanofibers. Saturation channel currents are observed at surprisingly low source/drain voltages. The hole mobility in the depletion regime is 1.4 x 10(exp -4) sq cm/V s while the 1-D charge density (at zero gate bias) is calculated to be approximately 1 hole per 50 two-ring repeat units of polyaniline, consistent with the rather high channel conductivity (approx. 10(exp -3) S/cm). Reducing or eliminating the PEO content in the fiber is expected to enhance device parameters. Electrospinning is thus proposed as a simple method of fabricating 1-D polymer FET's.
NASA Astrophysics Data System (ADS)
Hori, Masahiro; Tsuchiya, Toshiaki; Ono, Yukinori
2017-01-01
Charge-pumping electrically detected magnetic resonance (CP EDMR), or EDMR in the CP mode, is improved and applied to a silicon metal-oxide-semiconductor field-effect transistor (MOSFET). Real-time monitoring of the CP process reveals that high-frequency transient currents are an obstacle to signal amplification for EDMR. Therefore, we introduce cutoff circuitry, leading to a detection limit for the number of spins as low as 103 for Si MOS interface defects. With this improved method, we demonstrate that CP EDMR inherits one of the most important features of the CP method: the gate control of the energy window of the detectable interface defects for spectroscopy.
Internal zone growth method for producing metal oxide metal eutectic composites
Clark, Grady W.; Holder, John D.; Pasto, Arvid E.
1980-01-01
An improved method for preparing a cermet comprises preparing a compact having about 85 to 95 percent theoretical density from a mixture of metal and metal oxide powders from a system containing a eutectic composition, and inductively heating the compact in a radiofrequency field to cause the formation of an internal molten zone. The metal oxide particles in the powder mixture are effectively sized relative to the metal particles to permit direct inductive heating of the compact by radiofrequency from room temperature. Surface melting is prevented by external cooling or by effectively sizing the particles in the powder mixture.
Tunable electrical conductivity of individual graphene oxide sheets reduced at "low" temperatures.
Jung, Inhwa; Dikin, Dmitriy A; Piner, Richard D; Ruoff, Rodney S
2008-12-01
Step-by-step controllable thermal reduction of individual graphene oxide sheets, incorporated into multiterminal field effect devices, was carried out at low temperatures (125-240 degrees C) with simultaneous electrical measurements. Symmetric hysteresis-free ambipolar (electron- and hole-type) gate dependences were observed as soon as the first measurable resistance was reached. The conductivity of each of the fabricated devices depended on the level of reduction (was increased more than 10(6) times as reduction progressed), strength of the external electrical field, density of the transport current, and temperature.
Observations on the methane oxidation capacity of landfill soils.
Chanton, Jeffrey; Abichou, Tarek; Langford, Claire; Spokas, Kurt; Hater, Gary; Green, Roger; Goldsmith, Doug; Barlaz, Morton A
2011-05-01
The objective of this study was to determine the role of CH(4) loading to a landfill cover in the control of CH(4) oxidation rate (gCH(4)m(-2)d(-1)) and CH(4) oxidation efficiency (% CH(4) oxidation) in a field setting. Specifically, we wanted to assess how much CH(4) a cover soil could handle. To achieve this objective we conducted synoptic measurements of landfill CH(4) emission and CH(4) oxidation in a single season at two Southeastern USA landfills. We hypothesized that percent oxidation would be greatest at sites of low CH(4) emission and would decrease as CH(4) emission rates increased. The trends in the experimental results were then compared to the predictions of two differing numerical models designed to simulate gas transport in landfill covers, one by modeling transport by diffusion only and the second allowing both advection and diffusion. In both field measurements and in modeling, we found that percent oxidation is a decreasing exponential function of the total CH(4) flux rate (CH(4) loading) into the cover. When CH(4) is supplied, a cover's rate of CH(4) uptake (gCH(4)m(-2)d(-2)) is linear to a point, after which the system becomes saturated. Both field data and modeling results indicate that percent oxidation should not be considered as a constant value. Percent oxidation is a changing quantity and is a function of cover type, climatic conditions and CH(4) loading to the bottom of the cover. The data indicate that an effective way to increase the % oxidation of a landfill cover is to limit the amount of CH(4) delivered to it. Copyright © 2010 Elsevier Ltd. All rights reserved.
2007-01-01
used. Other materials used in this study include: microscope slide glass for transistor substrates (Gold Seal), silicon nitride, Si3N4, sputtering...with the top in place. At LBNL the glass tubes were placed in a nitrogen filled glove bag attached to the XAS sample chamber where they were...valences such as vanadium(II) oxide (VO), vanadium(III) oxide (V2O3), vanadium(IV) oxide (VO2), and vanadium(IV) oxide ( V2O5 ). V2O3 in particular is an
NASA Astrophysics Data System (ADS)
Zinchenko, V. F.; Lavrent'ev, K. V.; Emel'yanov, V. V.; Vatuev, A. S.
2016-02-01
Regularities in the breakdown of thin SiO2 oxide films in metal-oxide-semiconductors structures of power field-effect transistors under the action of single heavy charged particles and a pulsed voltage are studied experimentally. Using a phenomenological approach, we carry out comparative analysis of physical mechanisms and energy criteria of the SiO2 breakdown in extreme conditions of excitation of the electron subsystem in the subpicosecond time range.
NASA Astrophysics Data System (ADS)
Park, Hokyung; Choi, Rino; Lee, Byoung Hun; Hwang, Hyunsang
2007-09-01
High pressure deuterium annealing on the hot carrier reliability characteristics of HfSiO metal oxide semiconductor field effect transistor (MOSFET) was investigated. Comparing with the conventional forming gas (H2/Ar=10%/96%, 480 °C, 30 min) annealed sample, MOSFET annealed in 5 atm pure deuterium ambient at 400 °C showed the improvement of linear drain current, reduction of interface trap density, and improvement of the hot carrier reliability characteristics. These improvements can be attributed to the effective passivation of the interface trap site after high pressure annealing and heavy mass effect of deuterium. These results indicate that high pressure pure deuterium annealing can be a promising process for improving device performance as well as hot carrier reliability, together.
Induced effects of advanced oxidation processes
Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang
2014-01-01
Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields. PMID:24503715
Induced effects of advanced oxidation processes.
Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang
2014-02-07
Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields.
Enhanced In Situ Chemical Oxidation Using Surfactants and Shear Thinning Fluids
NASA Astrophysics Data System (ADS)
Hauswirth, S.; Sadeghi, S.; Cerda, C. C.; Espinoza, I.; Schultz, P. B.; Miller, C. T.
2017-12-01
In situ chemical oxidation (ISCO) is an attractive approach for the remediation of recalcitrant contaminants, due to the fact that target compounds are degraded in place, precluding the need for ex situ treatment or disposal. However, field applications of ISCO approaches have been plagued by "rebound" of contaminant concentrations in groundwater weeks to months after treatment. The cause of rebound at a given site may vary, but is typically associated with back-diffusion from finer grained, low permeability units or the presence of non-aqueous phase liquids (NAPLs) that are incompletely degraded during treatment. Modifications to traditional ISCO methods have been proposed to overcome these challenges, including the use of shear-thinning polymers to improve delivery of oxidants to low permeability units and the addition of surfactants to improve dissolution of contaminants from NAPLs. In this work, we investigate the application of these approaches to the oxidation of manufactured gas plant (MGP) tars—NAPLs composed primarily of polycyclic aromatic hydrocarbons (PAHs). We conducted experiments to determine the mutual impact of each chemical component on the physical and chemical properties of the overall system. Specifically, experiments were designed to: determine the kinetics and overall effectiveness of contaminant-oxidant reactions for multiple oxidant-activator combinations; screen several common surfactants in terms of their ability to increase MGP tar solubility and their compatibility with oxidant systems; measure the impact of oxidants and surfactants on the rheology of several common polymer additives; and assess the effect of surfactants and polymers on the consumption of oxidants/activators and on the kinetics of contaminant-oxidant reactions. The results of this work provide insight into the chemical and physical mechanisms associated with enhanced ISCO approaches and an improved basis with which to model and design ISCO applications at both the lab and field scales.
NASA Astrophysics Data System (ADS)
Liu, Huicong; Zhu, Liqun; Li, Weiping
Due to the widely use in automobile and construction field, AZ91D magnesium alloy need to be protected more effectively for its high chemical activity. In this paper, three kinds of films were formed on magnesium alloy. The first kind of film, named as anodic oxidation film, was prepared by anodic oxidation in the alkaline solution. The processes for preparing the second kind of film, named as multiple film, involved coating sol-gel on the samples and heat-treating before anodic oxidation. The third kind of film was prepared by anodic oxidation in the alkaline oxidation solution containning 5% (vol) SiO2-Al2O3 sol, named as modified oxidation film. The corrosion resistance of the three different films was investigated. The results showed that the modified oxidation film had the highest corrosion resistance due to the largest thickness and most dense surface morphology. Sol was discussed to react during the film forming process, which leaded to the difference between modified oxidation film and anodic oxidation film.
Qi, Xiujuan; Wang, Ting; Long, Yujiao; Ni, Jinren
2015-01-01
A 100% increment of antibacterial ability has been achieved due to significant synergic effects of boron-doped diamond (BDD) anode and reduced graphene oxide (rGO) coupled in a three dimensional electrochemical oxidation system. The rGO, greatly enhanced by BDD driven electric field, demonstrated strong antibacterial ability and even sustained its excellent performance during a reasonable period after complete power cut in the BDD-rGO system. Cell damage experiments and TEM observation confirmed much stronger membrane stress in the BDD-rGO system, due to the faster bacterial migration and charge transfer by the expanded electro field and current-carrying efficiency by quantum tunnel. Reciprocally the hydroxyl-radical production was eminently promoted with expanded area of electrodes and delayed recombination of the electron–hole pairs in presence of the rGO in the system. This implied a huge potential for practical disinfection with integration of the promising rGO and the advanced electrochemical oxidation systems. PMID:25994309
Kim, Jeong; Kim, Sun Il; Cho, Seong-Ho; Hwang, Sungwoo; Lee, Young Hee; Hur, Jaehyun
2015-11-01
We report on new fabrication methods for a transparent, hierarchical, and patterned electrode comprised of either carbon nanotubes or zinc oxide nanorods. Vertically aligned carbon nanotubes or zinc oxide nanorod arrays were fabricated by either chemical vapor deposition or hydrothermal growth, in combination with photolithography. A transparent conductive graphene layer or zinc oxide seed layer was employed as the transparent electrode. On the patterned surface defined using photoresist, the vertically grown carbon nanotubes or zinc oxides could produce a concentrated electric field under applied DC voltage. This periodic electric field was used to align liquid crystal molecules in localized areas within the optical cell, effectively modulating the refractive index. Depending on the material and morphology of these patterned electrodes, the diffraction efficiency presented different behavior. From this study, we established the relationship between the hierarchical structure of the different electrodes and their efficiency for modulating the refractive index. We believe that this study will pave a new path for future optoelectronic applications.
Tuning the metal-insulator crossover and magnetism in SrRuO 3 by ionic gating
Yi, Hee Taek; Gao, Bin; Xie, Wei; ...
2014-10-13
Reversible control of charge transport and magnetic properties without degradation is a key for device applications of transition metal oxides. Chemical doping during the growth of transition metal oxides can result in large changes in physical properties, but in most of the cases irreversibility is an inevitable constraint. We report a reversible control of charge transport, metal-insulator crossover and magnetism in field-effect devices based on ionically gated archetypal oxide system - SrRuO 3. In these thin-film devices, the metal-insulator crossover temperature and the onset of magnetoresistance can be continuously and reversibly tuned in the range 90–250 K and 70–100 K,more » respectively, by application of a small gate voltage. We infer that a reversible diffusion of oxygen ions in the oxide lattice dominates the response of these materials to the gate electric field. These findings provide critical insights into both the understanding of ionically gated oxides and the development of novel applications.« less
Tuning the metal-insulator crossover and magnetism in SrRuO₃ by ionic gating.
Yi, Hee Taek; Gao, Bin; Xie, Wei; Cheong, Sang-Wook; Podzorov, Vitaly
2014-10-13
Reversible control of charge transport and magnetic properties without degradation is a key for device applications of transition metal oxides. Chemical doping during the growth of transition metal oxides can result in large changes in physical properties, but in most of the cases irreversibility is an inevitable constraint. Here we report a reversible control of charge transport, metal-insulator crossover and magnetism in field-effect devices based on ionically gated archetypal oxide system - SrRuO₃. In these thin-film devices, the metal-insulator crossover temperature and the onset of magnetoresistance can be continuously and reversibly tuned in the range 90-250 K and 70-100 K, respectively, by application of a small gate voltage. We infer that a reversible diffusion of oxygen ions in the oxide lattice dominates the response of these materials to the gate electric field. These findings provide critical insights into both the understanding of ionically gated oxides and the development of novel applications.
Cadmus, Pete; Clements, William H; Williamson, Jacob L; Ranville, James F; Meyer, Joseph S; Gutiérrez Ginés, María Jesús
2016-07-19
Identifying causal relationships between acid mine drainage (AMD) and ecological responses in the field is challenging. In addition to the direct toxicological effects of elevated metals and reduced pH, mining activities influence aquatic organisms indirectly through physical alterations of habitat. The primary goal of this research was to quantify the relative importance of physical (metal-oxide deposition) and chemical (elevated metal concentrations) stressors on benthic macroinvertebrate communities. Mesocosm experiments conducted with natural assemblages of benthic macroinvertebrates established concentration-response relationships between metals and community structure. Field experiments quantified effects of metal-oxide contaminated substrate and showed significant differences in sensitivity among taxa. To predict the recovery of dominant taxa in the field, we integrated our measures of metal tolerance and substrate tolerance with estimates of drift propensity obtained from the literature. Our estimates of recovery were consistent with patterns observed at downstream recovery sites in the NFCC, which were dominated by caddisflies and baetid mayflies. We conclude that mesocosm and small-scale field experiments, particularly those conducted with natural communities, provide an ecologically realistic complement to laboratory toxicity tests. These experiments also control for the confounding variables associated with field-based approaches, thereby supporting causal relationships between AMD stressors and responses.
Matsumoto, Tsubasa; Kato, Hiromitsu; Oyama, Kazuhiro; Makino, Toshiharu; Ogura, Masahiko; Takeuchi, Daisuke; Inokuma, Takao; Tokuda, Norio; Yamasaki, Satoshi
2016-08-22
We fabricated inversion channel diamond metal-oxide-semiconductor field-effect transistors (MOSFETs) with normally off characteristics. At present, Si MOSFETs and insulated gate bipolar transistors (IGBTs) with inversion channels are widely used because of their high controllability of electric power and high tolerance. Although a diamond semiconductor is considered to be a material with a strong potential for application in next-generation power devices, diamond MOSFETs with an inversion channel have not yet been reported. We precisely controlled the MOS interface for diamond by wet annealing and fabricated p-channel and planar-type MOSFETs with phosphorus-doped n-type body on diamond (111) substrate. The gate oxide of Al2O3 was deposited onto the n-type diamond body by atomic layer deposition at 300 °C. The drain current was controlled by the negative gate voltage, indicating that an inversion channel with a p-type character was formed at a high-quality n-type diamond body/Al2O3 interface. The maximum drain current density and the field-effect mobility of a diamond MOSFET with a gate electrode length of 5 μm were 1.6 mA/mm and 8.0 cm(2)/Vs, respectively, at room temperature.
Bilham, Kirstin; Newman, Chris; Buesching, Christina D; Noonan, Michael J; Boyd, Amy; Smith, Adrian L; Macdonald, David W
Wild-living animals are subject to weather variability that may cause the generation of reactive oxygen species, resulting in oxidative stress and tissue damage, potentially driving demographic responses. Our 3-yr field study investigated the effects of seasonal weather conditions on biomarkers for oxidative stress, oxidative damage, and antioxidant defense in the European badger (Meles meles). We found age class effects: cubs were more susceptible to oxidative stress and oxidative damage than adults, especially very young cubs in the spring, when they also exhibited lower antioxidant biomarkers than adults. Although previous studies have found that intermediate spring and summer rainfall and warmer temperatures favor cub survival, counterintuitively these conditions were associated with more severe oxidative damage. Oxidative damage was high in cubs even when antioxidant biomarkers were high. In contrast, adult responses accorded with previous survival analyses. Wetter spring and summer conditions were associated with higher oxidative damage, but they were also associated with higher antioxidant biomarkers. Autumnal weather did not vary substantially from normative values, and thus effects were muted. Winter carryover effects were partially evident, with drier and milder conditions associated with greater oxidative damage in the following spring but also with higher antioxidant capacity. Plausibly, warmer conditions promoted more badger activity, with associated metabolic costs at a time of year when food supply is limited. Modeling biomarkers against projected climate change scenarios predicted greater future risks of oxidative damage, although not necessarily exceeding antioxidant capacity. This interdisciplinary approach demonstrates that individual adaptive physiological responses are associated with variation in natural environmental conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moghadam, Reza M.; Xiao, Zhiyong; Ahmadi-Majlan, Kamyar
The epitaxial growth of multifunctional oxides on semiconductors has opened a pathway to introduce new functionalities to semiconductor device technologies. In particular, ferroelectric materials integrated on semiconductors could lead to low-power field-effect devices that can be used for logic or memory. Essential to realizing such field-effect devices is the development of ferroelectric metal-oxide-semiconductor (MOS) capacitors, in which the polarization of a ferroelectric gate is coupled to the surface potential of a semiconducting channel. Here we demonstrate that ferroelectric MOS capacitors can be realized using single crystalline SrZrxTi1-xO3 (x= 0.7) that has been epitaxially grown on Ge. We find that themore » ferroelectric properties of SrZrxTi1-xO3 are exceptionally robust, as gate layers as thin as 5 nm give rise to hysteretic capacitance-voltage characteristics that are 2 V in width. The development of ferroelectric MOS capacitors with gate thicknesses that are technologically relevant opens a pathway to realize scalable ferroelectric field-effect devices.« less
Ambipolar transport of silver nanoparticles decorated graphene oxide field effect transistors
NASA Astrophysics Data System (ADS)
Sarkar, Kalyan Jyoti; Sarkar, K.; Pal, B.; Kumar, Aparabal; Das, Anish; Banerji, P.
2018-05-01
In this article, we report ambipolar field effect transistor (FET) by using graphene oxide (GO) as a gate dielectric material for silver nanoparticles (AgNPs) decorated GO channel layer. GO was synthesized by Hummers' method. The AgNPs were prepared via photochemical reduction of silver nitrate solution by using monoethanolamine as a reducing agent. Morphological properties of channel layer were characterized by Field Effect Scanning Electron Microscopy (FESEM). Fourier Transform Infrared Spectroscopy (FTIR) was carried out to characterize GO thin film. For device fabrication gold (Au) was deposited as source-drain contact and aluminum (Al) was taken as bottom contact. Electrical measurements were performed by back gate configuration. Ambipolar transport behavior was explained from transfer characteristics. A maximum electron mobiliy of 6.65 cm2/Vs and a hole mobility of 2.46 cm2/Vs were extracted from the transfer characteristics. These results suggest that GO is a potential candidate as a gate dielectric material for thin film transistor applications and also provides new insights in GO based research.
High-performance III-V MOSFET with nano-stacked high-k gate dielectric and 3D fin-shaped structure.
Chen, Szu-Hung; Liao, Wen-Shiang; Yang, Hsin-Chia; Wang, Shea-Jue; Liaw, Yue-Gie; Wang, Hao; Gu, Haoshuang; Wang, Mu-Chun
2012-08-01
A three-dimensional (3D) fin-shaped field-effect transistor structure based on III-V metal-oxide-semiconductor field-effect transistor (MOSFET) fabrication has been demonstrated using a submicron GaAs fin as the high-mobility channel. The fin-shaped channel has a thickness-to-width ratio (TFin/WFin) equal to 1. The nano-stacked high-k Al2O3 dielectric was adopted as a gate insulator in forming a metal-oxide-semiconductor structure to suppress gate leakage. The 3D III-V MOSFET exhibits outstanding gate controllability and shows a high Ion/Ioff ratio > 105 and a low subthreshold swing of 80 mV/decade. Compared to a conventional Schottky gate metal-semiconductor field-effect transistor or planar III-V MOSFETs, the III-V MOSFET in this work exhibits a significant performance improvement and is promising for future development of high-performance n-channel devices based on III-V materials.
High-performance III-V MOSFET with nano-stacked high-k gate dielectric and 3D fin-shaped structure
2012-01-01
A three-dimensional (3D) fin-shaped field-effect transistor structure based on III-V metal-oxide-semiconductor field-effect transistor (MOSFET) fabrication has been demonstrated using a submicron GaAs fin as the high-mobility channel. The fin-shaped channel has a thickness-to-width ratio (TFin/WFin) equal to 1. The nano-stacked high-k Al2O3 dielectric was adopted as a gate insulator in forming a metal-oxide-semiconductor structure to suppress gate leakage. The 3D III-V MOSFET exhibits outstanding gate controllability and shows a high Ion/Ioff ratio > 105 and a low subthreshold swing of 80 mV/decade. Compared to a conventional Schottky gate metal–semiconductor field-effect transistor or planar III-V MOSFETs, the III-V MOSFET in this work exhibits a significant performance improvement and is promising for future development of high-performance n-channel devices based on III-V materials. PMID:22853458
1977-12-01
Internal Zone Melting, Oxide-Metal Eutectic Structures ABSTRACT (Continue X reverae elde II neceaetrry end Identity by block nwbor* -^>This report...To- Uranium (0/U) Ratio B. Storage of "As-Received" Powders C. Moisture Content D. Oxidation Properties E. Sintering Properties F. Particle Size... Nickel - Vanadium 3.3 Nickel -Al203 3.4 Nickel -Tungsten 3.5 Copper-410 Stainless Steel C. Etching 1. Chemical Etching 2. Thermal Annealing 3. Ion
Recent Radiation Test Results for Power MOSFETs
NASA Technical Reports Server (NTRS)
Lauenstein, Jean-Marie; Topper, Alyson D.; Casey, Megan C.; Wilcox, Edward P.; Phan, Anthony M.; Kim, Hak S.; LaBel, Kenneth A.
2013-01-01
Single-event effect (SEE) and total ionizing dose (TID) test results are presented for various hardened and commercial power metal-oxide-semiconductor field effect transistors (MOSFETs), including vertical planar, trench, superjunction, and lateral process designs.
Ge, Chen; Jin, Kui-Juan; Zhang, Qing-Hua; Du, Jian-Yu; Gu, Lin; Guo, Hai-Zhong; Yang, Jing-Ting; Gu, Jun-Xing; He, Meng; Xing, Jie; Wang, Can; Lu, Hui-Bin; Yang, Guo-Zhen
2016-12-21
The defect chemistry of perovskite oxides involves the cause to most of their abundant functional properties, including interface magnetism, charge transport, ionic exchange, and catalytic activity. The possibility to achieve dynamic control over oxygen anion vacancies offers a unique opportunity for the development of appealing switchable devices, which at present are commonly based on ferroelectric materials. Herein, we report the discovery of a switchable photovoltaic effect, that the sign of the open voltage and the short circuit current can be reversed by inverting the polarity of the applied field, upon electrically tailoring the distribution of oxygen vacancies in perovskite oxide films. This phenomenon is demonstrated in lateral photovoltaic devices based on both ferroelectric BiFeO 3 and paraelectric SrTiO 3 films, under a reversed applied field whose magnitude is much smaller than the coercivity value of BiFeO 3 . The migration of oxygen vacancies was directly observed by employing an advanced annular bright-field scanning transmission electron microscopy technique with in situ biasing equipment. We conclude that the band bending induced by the motion of oxygen vacancies is the driving force for the reversible switching between two photovoltaic states. The present work can provide an active path for the design of novel switchable photovoltaic devices with a wide range of transition metal oxides in terms of the ionic degrees of freedom.
Lister, Kathryn Naomi; Lamare, Miles D; Burritt, David J
2010-01-01
To assess the effects of UV radiation (280-400nm) on development, oxidative damage and antioxidant defence in larvae of the tropical sea urchin Tripneustes gratilla, a field experiment was conducted at two depths in Aitutaki, Cook Islands (18.85°S, 159.75°E) in May 2008. Compared with field controls (larvae shielded from UV-R but exposed to VIS-radiation), UV-B exposure resulted in developmental abnormality and increases in oxidative damage to proteins (but not lipids) in embryos of T. gratilla held at 1m depth. Results also indicated that larvae had the capacity to increase the activities of protective antioxidant enzymes when exposed to UV-B. The same trends in oxidative damage and antioxidant defence were observed for embryos held at 4m, although the differences were smaller and more variable. In contrast to UV-B exposure, larvae exposed to UV-A only showed no significant increases in abnormality or oxidative damage to lipids and proteins compared with field controls. This was true at both experimental depths. Furthermore, exposure to UV-A did not cause a significant increase in the activities of antioxidants. This study indicates that oxidative stress is an important response of tropical sea urchin larvae to exposure to UV radiation. © 2010 The Authors. Journal Compilation. The American Society of Photobiology.
Kent, Tyler; Chagarov, Evgeniy; Edmonds, Mary; Droopad, Ravi; Kummel, Andrew C
2015-05-26
Studies have shown that metal oxide semiconductor field-effect transistors fabricated utilizing compound semiconductors as the channel are limited in their electrical performance. This is attributed to imperfections at the semiconductor/oxide interface which cause electronic trap states, resulting in inefficient modulation of the Fermi level. The physical origin of these states is still debated mainly because of the difficulty in assigning a particular electronic state to a specific physical defect. To gain insight into the exact source of the electronic trap states, density functional theory was employed to model the intrinsic physical defects on the InGaAs (2 × 4) surface and to model the effective passivation of these defects by utilizing both an oxidant and a reductant to eliminate metallic bonds and dangling-bond-induced strain at the interface. Scanning tunneling microscopy and spectroscopy were employed to experimentally determine the physical and electronic defects and to verify the effectiveness of dual passivation with an oxidant and a reductant. While subsurface chemisorption of oxidants on compound semiconductor substrates can be detrimental, it has been shown theoretically and experimentally that oxidants are critical to removing metallic defects at oxide/compound semiconductor interfaces present in nanoscale channels, oxides, and other nanostructures.
CMOS Active-Pixel Image Sensor With Simple Floating Gates
NASA Technical Reports Server (NTRS)
Fossum, Eric R.; Nakamura, Junichi; Kemeny, Sabrina E.
1996-01-01
Experimental complementary metal-oxide/semiconductor (CMOS) active-pixel image sensor integrated circuit features simple floating-gate structure, with metal-oxide/semiconductor field-effect transistor (MOSFET) as active circuit element in each pixel. Provides flexibility of readout modes, no kTC noise, and relatively simple structure suitable for high-density arrays. Features desirable for "smart sensor" applications.
Response Of A MOSFET To A Cosmic Ray
NASA Technical Reports Server (NTRS)
Benumof, Reuben; Zoutendyk, John A.
1988-01-01
Theoretical paper discusses response of enhancement-mode metal oxide/semiconductor field-effect transistor to cosmic-ray ion that passes perpendicularly through gate-oxide layers. Even if ion causes no permanent damage, temporary increase of electrical conductivity along track of ion large enough and long enough to cause change in logic state in logic circuit containing MOSFET.
NASA Technical Reports Server (NTRS)
Rippel, Wally E.
1990-01-01
Metal-oxide/semiconductor-controlled thyristor (MCT) and metal-oxide/semiconductor field-effect transistor (MOSFET) connected in switching circuit to obtain better performance. Offers high utilization of silicon, low forward voltage drop during "on" period of operating cycle, fast turnon and turnoff, and large turnoff safe operating area. Includes ability to operate at high temperatures, high static blocking voltage, and ease of drive.
NASA Astrophysics Data System (ADS)
Han, Dong-Suk; Moon, Yeon-Keon; Lee, Sih; Kim, Kyung-Taek; Moon, Dae-Yong; Lee, Sang-Ho; Kim, Woong-Sun; Park, Jong-Wan
2012-09-01
In this study, we fabricated phosphorus-doped zinc oxide-based thin-film transistors (TFTs) using direct current (DC) magnetron sputtering at a relatively low temperature of 100°C. To improve the TFT device performance, including field-effect mobility and bias stress stability, phosphorus dopants were employed to suppress the generation of intrinsic defects in the ZnO-based semiconductor. The positive and negative bias stress stabilities were dramatically improved by introducing the phosphorus dopants, which could prevent turn-on voltage ( V ON) shift in the TFTs caused by charge trapping within the active channel layer. The study showed that phosphorus doping in ZnO was an effective method to control the electrical properties of the active channel layers and improve the bias stress stability of oxide-based TFTs.
Ghanbari, Ahmad Ali; Shabani, Kobra; Mohammad Nejad, Daryoush
2016-01-01
Introduction: Electromagnetic fields (EMFs) can influence the biological system by the formation of free radicals in cells. The EMFs are able to deteriorate defense system against free radicals that leads to oxidative stress (OS). Lipid peroxidation process (LPO) is an index of oxidative stress, and the Malandialdehyde (MDA) is the final product of LPO. Vitamin E is the most important antioxidant which inhibits the LPO process. The aim of this study was to evaluate the effects of 3MT EMF exposure on oxidative stress parameters in substantia nigra and the role of vitamin E in reducing oxidative stress and preventing of LPO process. Methods: 40 male Wistar rats were randomly divided into 4 groups: 1) Control group: received standard food without exposure to EMF and without consumption of vitamin E, 2) Experimental group 1: was exposed to EMF (3MT) 4 h/day for 50 days, 3) The experimental group 2: received 200 mg/kg vitamin E with gavage every day and also was exposed to EMF (3MT) 4 h/day for 50 days, 4) Sham group: received water with gavage for 50 days. Results: A significant increase in MDA levels and Glutation peroxidase (GSH-Px) activity of the substantia nigra following 50 days exposure to EMF was detected, but the superoxide dismutase (SOD) activity was decreased. Exposure did not change total antioxidant capacity (TAC) levels in plasma. Vitamin E treatment significantly prevented the increase of the MDA levels and GSHPx activity and also prevented the decrease of SOD activity in tissue but did not alter TAC levels. The GSH-Px activity increased because the duration and intensity of exposure were not enough to decrease it. Conclusion: We demonstrated two important findings; that 50 days exposure to 3 MT electromagnetic field caused oxidative stress by increasing the levels of MDA, and decreasing SOD activity in the substantia nigra; and that treatment with the vitamin E significantly prevented the oxidative stress and lipid peroxidation. PMID:27872692
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devaraj, Arun; Colby, Robert J.; Vurpillot, F.
2014-03-26
Metal-dielectric composite materials, specifically metal nanoparticles supported on or embedded in metal oxides, are widely used in catalysis. The accurate optimization of such nanostructures warrants the need for detailed three-dimensional characterization. Atom probe tomography is uniquely capable of generating sub-nanometer structural and compositional data with part-per-million mass sensitivity, but there are reconstruction artifacts for composites containing materials with strongly differing fields of evaporation, as for oxide-supported metal nanoparticles. By correlating atom probe tomography with scanning transmission electron microscopy for Au nanoparticles embedded in an MgO support, deviations from an ideal topography during evaporation are demonstrated directly, and correlated with compositionalmore » errors in the reconstructed data. Finite element simulations of the field evaporation process confirm that protruding Au nanoparticles will evolve on the tip surface, and that evaporation field variations lead to an inaccurate assessment of the local composition, effectively lowering the spatial resolution of the final reconstructed dataset. Cross-correlating the experimental data with simulations results in a more detailed understanding of local evaporation aberrations during APT analysis of metal-oxide composites, paving the way towards a more accurate three-dimensional characterization of this technologically important class of materials.« less
Scaling methane oxidation: From laboratory incubation experiments to landfill cover field conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abichou, Tarek, E-mail: abichou@eng.fsu.edu; Mahieu, Koenraad; Chanton, Jeff
2011-05-15
Evaluating field-scale methane oxidation in landfill cover soils using numerical models is gaining interest in the solid waste industry as research has made it clear that methane oxidation in the field is a complex function of climatic conditions, soil type, cover design, and incoming flux of landfill gas from the waste mass. Numerical models can account for these parameters as they change with time and space under field conditions. In this study, we developed temperature, and water content correction factors for methane oxidation parameters. We also introduced a possible correction to account for the different soil structure under field conditions.more » These parameters were defined in laboratory incubation experiments performed on homogenized soil specimens and were used to predict the actual methane oxidation rates to be expected under field conditions. Water content and temperature corrections factors were obtained for the methane oxidation rate parameter to be used when modeling methane oxidation in the field. To predict in situ measured rates of methane with the model it was necessary to set the half saturation constant of methane and oxygen, K{sub m}, to 5%, approximately five times larger than laboratory measured values. We hypothesize that this discrepancy reflects differences in soil structure between homogenized soil conditions in the lab and actual aggregated soil structure in the field. When all of these correction factors were re-introduced into the oxidation module of our model, it was able to reproduce surface emissions (as measured by static flux chambers) and percent oxidation (as measured by stable isotope techniques) within the range measured in the field.« less
Spectral characteristics of the iron oxides with application to the Martian bright region mineralogy
NASA Technical Reports Server (NTRS)
Sherman, D. M.; Burns, R. G.; Mee Burns, V.
1982-01-01
Reflectance spectra of eight polymorphs of FeOOH and Fe2O3 are determined in order to clarify the nature and significance of the iron oxide mineralogy on Mars. The effect of other components that might interfere with iron oxide absorption features is qualitatively constrained through the use of the Kebulka-Munk theory. It is found that the effect of temperature complicates the identification of a given Fe(3+) phase based on the position of the 6A1-4T1 absorption feature. While the Fe(3+) crystal field transitions are spin forbidden, most of the iron oxide polymorphs exhibit anomalously intense crystal field absorption features due to magnetic coupling between adjacent FeO6 octahedra. It is suggested that the resulting deviations from observed remotely sensed reflectance spectra of Mars may provide a basis for the exclusion of many iron oxide phases as significant components of the Martian Fe(3+) mineralogy. A comparison of these results with the visible region spectra of Martian bright regions indicates that the predominant Fe(3+)-bearing phase may be a magnetically disordered material, such as amorphous gels, some ferric sulphates, and other minerals in which Fe(3+) ions in the crystal structure are not magnetically coupled.
Liu, Jiangwei; Koide, Yasuo
2018-06-04
Thanks to its excellent intrinsic properties, diamond is promising for applications of high-power electronic devices, ultraviolet detectors, biosensors, high-temperature tolerant gas sensors, etc. Here, an overview of high- k oxides on hydrogenated-diamond (H-diamond) for metal-oxide-semiconductor (MOS) capacitors and MOS field-effect transistors (MOSFETs) is demonstrated. Fabrication routines for the H-diamond MOS capacitors and MOSFETs, band configurations of oxide/H-diamond heterointerfaces, and electrical properties of the MOS and MOSFETs are summarized and discussed. High- k oxide insulators are deposited using atomic layer deposition (ALD) and sputtering deposition (SD) techniques. Electrical properties of the H-diamond MOS capacitors with high- k oxides of ALD-Al₂O₃, ALD-HfO₂, ALD-HfO₂/ALD-Al₂O₃ multilayer, SD-HfO₂/ALD-HfO₂ bilayer, SD-TiO₂/ALD-Al₂O₃ bilayer, and ALD-TiO₂/ALD-Al₂O₃ bilayer are discussed. Analyses for capacitance-voltage characteristics of them show that there are low fixed and trapped charge densities for the ALD-Al₂O₃/H-diamond and SD-HfO₂/ALD-HfO₂/H-diamond MOS capacitors. The k value of 27.2 for the ALD-TiO₂/ALD-Al₂O₃ bilayer is larger than those of the other oxide insulators. Drain-source current versus voltage curves show distinct pitch-off and p -type channel characteristics for the ALD-Al₂O₃/H-diamond, SD-HfO₂/ALD-HfO₂/H-diamond, and ALD-TiO₂/ALD-Al₂O₃/H-diamond MOSFETs. Understanding of fabrication routines and electrical properties for the high- k oxide/H-diamond MOS electronic devices is meaningful for the fabrication of high-performance H-diamond MOS capacitor and MOSFET gas sensors.
NASA Astrophysics Data System (ADS)
Yu, Zhou
Silicon oxides thermally grown on Si surface are the core gate materials of metal-oxide-semiconductor field effect transistor (MOSFET). This thin oxide layer insulates the gate terminals and the transistors substrate which make MOSFET has certain advantages over those conventional junctions, such as field-effect transistor (FET) and junction field effect transistor (JFET). With an oxide insulating layer, MOSFET is able to sustain higher input impedance and the corresponding gate leakage current can be minimized. Today, though the oxidation process on Si substrate is popular in industry, there are still some uncertainties about its oxidation kinetics. On a path to clarify and modeling the oxidation kinetics, a study of initial oxidation kinetics on Si (001) surface has attracted attentions due to having a relatively low surface electron density and few adsorption channels compared with other Si surface direction. Based on previous studies, there are two oxidation models of Si (001) that extensively accepted, which are dual oxide species mode and autocatalytic reaction model. These models suggest the oxidation kinetics on Si (001) mainly relies on the metastable oxygen atom on the surface and the kinetic is temperature dependent. Professor Yuji Takakuwa's group, Surface Physics laboratory, Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, observed surface strain existed during the oxidation kinetics on Si (001) and this is the first time that strain was discovered during Si oxidation. Therefore, it is necessary to explain where the strain comes from since none of previous model research included the surface strain (defects generation) into considerations. Moreover, recent developing of complementary metal-oxide-semiconductor (CMOS) requires a simultaneous oxidation process on p- and n-type Si substrate. However, none of those previous models included the dopant factor into the oxidation kinetic modeling. All of these points that further work is necessary to update and modify the traditional Si (001) oxidation models that had been accepted for several decades. To update and complement the Si (001) oxidation kinetics, an understanding of the temperature and dopant factor during initial oxidation kinetics on Si (001) is our first step. In this study, real-time photoelectron spectroscopy is applied to characterize the oxidized (001) surface and surface information was collected by ultraviolet photoelectron spectroscopy technique. By analyzing parameters such as O 2p spectra uptake, change of work function and the surface state in respect of p- and n- type Si (001) substrate under different temperature, the oxygen adsorption structure and the dopant factor can be determined. In this study, experiments with temperature gradients on p-type Si (001) were conducted and this aims to clarify the temperature dependent characteristic of Si (001) surface oxidation. A comparison of the O 2p uptake, change of work function and surface state between p-and n-type Si (001) is made under a normal temperature and these provides with the data to explain how the dopant factor impacts the oxygen adsorption structure on the surface. In the future, the study of the oxygen adsorption structure will lead to an explanation of the surface strain that discovered; therefore, fundamental of the initial oxidation on Si (001) would be updated and complemented, which would contribute to the future gate technology in MOSFET and CMOS.
Daniels, Bryan A; Baldridge, William H
2011-03-01
Horizontal cells of the vertebrate retina have large receptive fields as a result of extensive gap junction coupling. Increased ambient illumination reduces horizontal cell receptive field size. Using the isolated goldfish retina, we have assessed the contribution of nitric oxide to the light-dependent reduction of horizontal cell receptive field size. Horizontal cell receptive field size was assessed by comparing the responses to centered spot and annulus stimuli and from the responses to translated slit stimuli. A period of steady illumination decreased the receptive field size of horizontal cells, as did treatment with the nitric oxide donor (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (100 μM). Blocking the endogenous production of nitric oxide with the nitric oxide synthase inhibitor, N(G)-nitro-L-arginine methyl ester (1 mM), decreased the light-induced reduction of horizontal cell receptive field size. These findings suggest that nitric oxide is involved in light-induced reduction of horizontal cell receptive field size. Copyright © Cambridge University Press, 2011
In situ study of electric field controlled ion transport in the Fe/BaTiO3 interface
NASA Astrophysics Data System (ADS)
Merkel, D. G.; Bessas, D.; Bazsó, G.; Jafari, A.; Rüffer, R.; Chumakov, A. I.; Khanh, N. Q.; Sajti, Sz; Celse, J.-P.; Nagy, D. L.
2018-01-01
Electric field controlled ion transport and interface formation of iron thin films on a BaTiO3 substrate have been investigated by in situ nuclear resonance scattering and x-ray reflectometry techniques. At early stage of deposition, an iron-II oxide interface layer was observed. The hyperfine parameters of the interface layer were found insensitive to the evaporated layer thickness. When an electric field was applied during growth, a 10 Å increase of the nonmagnetic/magnetic thickness threshold and an extended magnetic transition region was measured compared to the case where no field was applied. The interface layer was found stable under this threshold when further evaporation occurred, contrary to the magnetic layer where the magnitude and orientation of the hyperfine magnetic field vary continuously. The obtained results of the growth mechanism and of the electric field effect of the Fe/BTO system will allow the design of novel applications by creating custom oxide/metallic nanopatterns using laterally inhomogeneous electric fields during sample preparation.
Magnetophoresis of iron oxide nanoparticles at low field gradient: the role of shape anisotropy.
Lim, Jitkang; Yeap, Swee Pin; Leow, Chee Hoe; Toh, Pey Yi; Low, Siew Chun
2014-05-01
Magnetophoresis of iron oxide magnetic nanoparticle (IOMNP) under low magnetic field gradient (<100 T/m) is significantly enhanced by particle shape anisotropy. This unique feature of magnetophoresis is influenced by the particle concentration and applied magnetic field gradient. By comparing the nanosphere and nanorod magnetophoresis at different concentration, we revealed the ability for these two species of particles to achieve the same separation rate by adjusting the field gradient. Under cooperative magnetophoresis, the nanorods would first go through self- and magnetic field induced aggregation followed by the alignment of the particle clusters formed with magnetic field. Time scale associated to these two processes is investigated to understand the kinetic behavior of nanorod separation under low field gradient. Surface functionalization of nanoparticles can be employed as an effective strategy to vary the temporal evolution of these two aggregation processes which subsequently influence the magnetophoretic separation time and rate. Copyright © 2014 Elsevier Inc. All rights reserved.
Intrinsic Electron Mobility Exceeding 10³ cm²/(V s) in Multilayer InSe FETs.
Sucharitakul, Sukrit; Goble, Nicholas J; Kumar, U Rajesh; Sankar, Raman; Bogorad, Zachary A; Chou, Fang-Cheng; Chen, Yit-Tsong; Gao, Xuan P A
2015-06-10
Graphene-like two-dimensional (2D) materials not only are interesting for their exotic electronic structure and fundamental electronic transport or optical properties but also hold promises for device miniaturization down to atomic thickness. As one material belonging to this category, InSe, a III-VI semiconductor, not only is a promising candidate for optoelectronic devices but also has potential for ultrathin field effect transistor (FET) with high mobility transport. In this work, various substrates such as PMMA, bare silicon oxide, passivated silicon oxide, and silicon nitride were used to fabricate multilayer InSe FET devices. Through back gating and Hall measurement in four-probe configuration, the device's field effect mobility and intrinsic Hall mobility were extracted at various temperatures to study the material's intrinsic transport behavior and the effect of dielectric substrate. The sample's field effect and Hall mobilities over the range of 20-300 K fall in the range of 0.1-2.0 × 10(3) cm(2)/(V s), which are comparable or better than the state of the art FETs made of widely studied 2D transition metal dichalcogenides.
NASA Astrophysics Data System (ADS)
Mahale, Rajashree Y.; Dharmapurikar, Satej S.; Chini, Mrinmoy Kumar
2018-03-01
Solution processability of the precursor molecules is a major issue owing to their limited solubility for the synthesis of conjugated polymers. Therefore, we favour the solvent free solid state chemical oxidative polymerization route for the synthesis of diketopyrrolopyrrole (DPP) based donor-acceptor (D-A) type conjugated polymers. D-A type polymer Poly(S-OD-EDOT) which contains DPP coupled with EDOT donor units is synthesized via solid state polymerization method. The polymer is employed as an active layer for organic field-effect transistors to measure charge transport properties. The Polymer shows good hole mobility 3.1 × 10-2 cm2 V-1 s-1, with a on/off ratio of 1.1 × 103.
Koswatta, Siyuranga O; Lundstrom, Mark S; Nikonov, Dmitri E
2007-05-01
Band-to-band tunneling (BTBT) devices have recently gained a lot of interest due to their potential for reducing power dissipation in integrated circuits. We have performed extensive simulations for the BTBT operation of carbon nanotube metal-oxide-semiconductor field-effect transistors (CNT-MOSFETs) using the nonequilibrium Green's function formalism for both ballistic and dissipative quantum transport. In comparison with recently reported experimental data (J. Am. Chem. Soc. 2006, 128, 3518-3519), we have obtained strong evidence that BTBT in CNT-MOSFETs is dominated by optical phonon assisted inelastic transport, which can have important implications on the transistor characteristics. It is shown that, under large biasing conditions, two-phonon scattering may also become important.
SOI metal-oxide-semiconductor field-effect transistor photon detector based on single-hole counting.
Du, Wei; Inokawa, Hiroshi; Satoh, Hiroaki; Ono, Atsushi
2011-08-01
In this Letter, a scaled-down silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect transistor (MOSFET) is characterized as a photon detector, where photogenerated individual holes are trapped below the negatively biased gate and modulate stepwise the electron current flowing in the bottom channel induced by the positive substrate bias. The output waveforms exhibit clear separation of current levels corresponding to different numbers of trapped holes. Considering this capability of single-hole counting, a small dark count of less than 0.02 s(-1) at room temperature, and low operation voltage of 1 V, SOI MOSFET could be a unique photon-number-resolving detector if the small quantum efficiency were improved. © 2011 Optical Society of America
An L-shaped low on-resistance current path SOI LDMOS with dielectric field enhancement
NASA Astrophysics Data System (ADS)
Ye, Fan; Xiaorong, Luo; Kun, Zhou; Yuanhang, Fan; Yongheng, Jiang; Qi, Wang; Pei, Wang; Yinchun, Luo; Bo, Zhang
2014-03-01
A low specific on-resistance (Ron,sp) SOI NBL TLDMOS (silicon-on-insulator trench LDMOS with an N buried layer) is proposed. It has three features: a thin N buried layer (NBL) on the interface of the SOI layer/buried oxide (BOX) layer, an oxide trench in the drift region, and a trench gate extended to the BOX layer. First, on the on-state, the electron accumulation layer forms beside the extended trench gate; the accumulation layer and the highly doping NBL constitute an L-shaped low-resistance conduction path, which sharply decreases the Ron,sp. Second, in the y-direction, the BOX's electric field (E-field) strength is increased to 154 V/μm from 48 V/μm of the SOI Trench Gate LDMOS (SOI TG LDMOS) owing to the high doping NBL. Third, the oxide trench increases the lateral E-field strength due to the lower permittivity of oxide than that of Si and strengthens the multiple-directional depletion effect. Fourth, the oxide trench folds the drift region along the y-direction and thus reduces the cell pitch. Therefore, the SOI NBL TLDMOS structure not only increases the breakdown voltage (BV), but also reduces the cell pitch and Ron,sp. Compared with the TG LDMOS, the NBL TLDMOS improves the BV by 105% at the same cell pitch of 6 μm, and decreases the Ron,sp by 80% at the same BV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Edward Namkyu; Shin, Yong Hyeon; Yun, Ilgu, E-mail: iyun@yonsei.ac.kr
2014-11-07
A compact quantum correction model for a symmetric double gate (DG) metal-oxide-semiconductor field-effect transistor (MOSFET) is investigated. The compact quantum correction model is proposed from the concepts of the threshold voltage shift (ΔV{sub TH}{sup QM}) and the gate capacitance (C{sub g}) degradation. First of all, ΔV{sub TH}{sup QM} induced by quantum mechanical (QM) effects is modeled. The C{sub g} degradation is then modeled by introducing the inversion layer centroid. With ΔV{sub TH}{sup QM} and the C{sub g} degradation, the QM effects are implemented in previously reported classical model and a comparison between the proposed quantum correction model and numerical simulationmore » results is presented. Based on the results, the proposed quantum correction model can be applicable to the compact model of DG MOSFET.« less
Banerjee, Arghya; Chattopadhyay, Kalyan K
2008-01-01
Transparent conducting oxides (TCO) with p-type semiconductivity have recently gained renewed interest for the fabrication of all-oxide transparent junctions, having potential applications in the emerging field of 'Transparent' or 'Invisible Electronics'. This kind of transparent junctions can be used as a "functional" window, which will transmit visible portion of solar radiation, but generates electricity by the absorption of the UV part. Therefore, these devices can be used as UV shield as well as UV cells. In this report, a brief review on the research activities on various p-TCO materials is furnished along-with the fabrication of different transparent p-n homojunction, heterojunction and field-effect transistors. Also the reason behind the difficulties in obtaining p-TCO materials and possible solutions are discussed in details. Considerable attention is given in describing the various patent generations on the field of p-TCO materials as well as transparent p-n junction diodes and light emitting devices. Also, most importantly, a detailed review and patenting activities on the nanocrystalline p-TCO materials and transparent nano-active device fabrication are furnished with considerable attention. And finally, a systematic description on the fabrication and characterization of nanocrystalline, p-type transparent conducting CuAlO(2) thin film, deposited by cost-effective low-temperature DC sputtering technique, by our group, is furnished in details. These p-TCO micro/nano-materials have wide range of applications in the field of optoelectronics, nanoelectronics, space sciences, field-emission displays, thermoelectric converters and sensing devices.
Wang, Zhenwei; Al-Jawhari, Hala A; Nayak, Pradipta K; Caraveo-Frescas, J A; Wei, Nini; Hedhili, M N; Alshareef, H N
2015-04-20
In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190 °C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field.
Wang, Zhenwei; Al-Jawhari, Hala A.; Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Wei, Nini; Hedhili, M. N.; Alshareef, H. N.
2015-01-01
In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190°C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field. PMID:25892711
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Anh Khoa Augustin; IMEC, 75 Kapeldreef, B-3001 Leuven; Pourtois, Geoffrey
2016-01-25
The impact of the scaling of the channel length on the performances of metal-oxide-semiconductor field effect transistors, based on two-dimensional (2D) channel materials, is theoretically investigated, using density functional theory combined with the non-equilibrium Green's function method. It is found that the scaling of the channel length below 10 nm leads to strong device performance degradations. Our simulations reveal that this degradation is essentially due to the tunneling current flowing between the source and the drain in these aggressively scaled devices. It is shown that this electron tunneling process is modulated by the effective mass of the 2D channel material, andmore » sets the limit of the scaling in future transistor designs.« less
Ferrari, Carlos K B; França, Eduardo L; Monteiro, Luciane A; Santos, Bruno L; Pereira-Junior, Alfredo; Honorio-França, Adenilda C
2017-01-01
To investigate the chronopharmacological effects of growth hormone on executive function and the oxidative stress response in rats. Fifty male Wistar rats (36-40 weeks old) had ad libitum access to water and food and were separated into four groups: diurnal control, nocturnal control, diurnal GH-treated, and nocturnal GH-treated animals. Levels of Cu, Zn superoxide dismutase (Cu, Zn-SOD), and superoxide release by spleen macrophages were evaluated. For memory testing, adaptation and walking in an open field platform was used. GH-treated animals demonstrated better performance in exploratory and spatial open-field tests. The latency time in both GH-treated groups was significantly lower compared with the latency time of the control groups. The diurnal GH treatment did not stimulate superoxide release but increased the CuZn-SOD enzyme levels. The nocturnal GH treatment did not influence the superoxide release and CuZn-SOD concentration. GH treatment also resulted in heart atrophy and lung hypertrophy. Growth hormone treatment improved the performance of executive functions at the cost of oxidative stress triggering, and this effect was dependent on the circadian period of hormone administration. However, GH treatment caused damaging effects such as lung hypertrophy and heart atrophy.
Validation and Application of the ReaxFF Reactive Force Field to Hydrocarbon Oxidation Kinetics
2016-06-23
AFRL-AFOSR-VA-TR-2016-0278 Validation and application of the ReaxFF reactive force field to hydrocarbon oxidation kinetics Adrianus Van Duin...application of the ReaxFF reactive force field to hydrocarbon oxidation kinetics 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-14-1-0355 5c. PROGRAM...Chenoweth Dec14 Validation and application of the ReaxFF reactive force field to hydrocarbon oxidation kinetics DISTRIBUTION A: Distribution approved for
Cerium oxide nanoparticles protect endothelial cells from apoptosis induced by oxidative stress.
Chen, Shizhu; Hou, Yingjian; Cheng, Gong; Zhang, Cuimiao; Wang, Shuxiang; Zhang, Jinchao
2013-07-01
Oxidative stress is well documented to cause injury to endothelial cells (ECs), which in turn trigger cardiovascular diseases. Previous studies revealed that cerium oxide nanoparticles (nanoceria) had antioxidant property, but the protective effect of nanoceria on ROS injury to ECs and cardiovascular diseases has not been reported. In the current study, we investigated the protective effect and underlying mechanisms of nanoceria on oxidative injury to ECs. The cell viability, lactate dehydrogenase release, cellular uptake, intracellular localization and reactive oxygen species (ROS) levels, endocytosis mechanism, cell apoptosis, and mitochondrial membrane potential were performed. The results indicated that nanoceria had no cytotoxicity on ECs but had the ability to prevent injury by H2O2. Nanoceria could be uptaken into ECs through caveolae- and clathrin-mediated endocytosis and distributed throughout the cytoplasma. The internalized nanoceria effectively attenuated ROS overproduction induced by H2O2. Apoptosis was also alleviated greatly by nanoceria pretreatment. These results may be helpful for more rational application of nanoceria in biomedical fields in the future.
Hysteresis in Lanthanide Aluminum Oxides Observed by Fast Pulse CV Measurement
Zhao, Chun; Zhao, Ce Zhou; Lu, Qifeng; Yan, Xiaoyi; Taylor, Stephen; Chalker, Paul R.
2014-01-01
Oxide materials with large dielectric constants (so-called high-k dielectrics) have attracted much attention due to their potential use as gate dielectrics in Metal Oxide Semiconductor Field Effect Transistors (MOSFETs). A novel characterization (pulse capacitance-voltage) method was proposed in detail. The pulse capacitance-voltage technique was employed to characterize oxide traps of high-k dielectrics based on the Metal Oxide Semiconductor (MOS) capacitor structure. The variation of flat-band voltages of the MOS structure was observed and discussed accordingly. Some interesting trapping/detrapping results related to the lanthanide aluminum oxide traps were identified for possible application in Flash memory technology. After understanding the trapping/detrapping mechanism of the high-k oxides, a solid foundation was prepared for further exploration into charge-trapping non-volatile memory in the future. PMID:28788225
Alaf, M; Gultekin, D; Akbulut, H
2012-12-01
In this study, tin/tinoxide/multi oxide/multi walled carbon nano tube (Sn/SnO2/MWCNT) composites were produced by thermal evaporation and then subsequent plasma oxidation. Buckypapers having controlled porosity were prepared by vacuum filtration from functionalized MWCNTs. Pure metallic tin was thermally evaporated on the buckypapers in argon atmosphere with different thicknesses. It was determined that the evaporated pure tin nano crystals were mechanically penetrated into pores of buckypaper to form a nanocomposite. The tin/MWCNT composites were subjected to plasma oxidation process at oxygen/argon gas mixture. Three different plasma oxidation times (30, 45 and 60 minutes) were used to investigate oxidation and physical and microstructural properties. The effect of coating thickness and oxidation time was investigated to understand the effect of process parameters on the Sn and SnO2 phases after plasma oxidation. Quantitative phase analysis was performed in order to determine the relative phase amounts. The structural properties were studied by field-emission gun scanning electron microscopy (FEG-SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD).
High performance printed oxide field-effect transistors processed using photonic curing.
Garlapati, Suresh Kumar; Marques, Gabriel Cadilha; Gebauer, Julia Susanne; Dehm, Simone; Bruns, Michael; Winterer, Markus; Tahoori, Mehdi Baradaran; Aghassi-Hagmann, Jasmin; Hahn, Horst; Dasgupta, Subho
2018-06-08
Oxide semiconductors are highly promising candidates for the most awaited, next-generation electronics, namely, printed electronics. As a fabrication route for the solution-processed/printed oxide semiconductors, photonic curing is becoming increasingly popular, as compared to the conventional thermal curing method; the former offers numerous advantages over the latter, such as low process temperatures and short exposure time and thereby, high throughput compatibility. Here, using dissimilar photonic curing concepts (UV-visible light and UV-laser), we demonstrate facile fabrication of high performance In 2 O 3 field-effect transistors (FETs). Beside the processing related issues (temperature, time etc.), the other known limitation of oxide electronics is the lack of high performance p-type semiconductors, which can be bypassed using unipolar logics from high mobility n-type semiconductors alone. Interestingly, here we have found that our chosen distinct photonic curing methods can offer a large variation in threshold voltage, when they are fabricated from the same precursor ink. Consequently, both depletion and enhancement-mode devices have been achieved which can be used as the pull-up and pull-down transistors in unipolar inverters. The present device fabrication recipe demonstrates fast processing of low operation voltage, high performance FETs with large threshold voltage tunability.
NASA Astrophysics Data System (ADS)
Gupta, Jagriti; Prakash, Anand; Jaiswal, Manish K.; Agarrwal, Atanuu; Bahadur, D.
2018-02-01
In this work, an efficient superparamagnetic iron oxide-reduced graphene oxide (Fe3O4-RGO) nanohybrid has been synthesized following one-step co-precipitation method. The phase identification, microstructure and magnetic behavior of nanohybrid were characterized by X-ray diffraction, transmission electron microscopy (TEM), raman spectroscopy and vibrating sample magnetometer (VSM), respectively. TEM micrograph confirms the presence of well-segregated Fe3O4 nanoparticles in RGO layers. The layered RGO minimizes the agglomeration in Fe3O4 nanoparticles with slight reduction in magnetic behavior. Doxorubicin (DOX) has been used as a model drug to investigate the loading efficiency of nanohybrid and chemo-thermo therapeutic effect on human cervical cancer (HeLa cells). The DOX loaded nanohybrid (DOX-Fe3O4-RGO) shows maximum inhibition of human cervical cancer cell lines during magnetic field assisted hyperthermia treatment. The synergistic effect of nanohybrid demonstrated the potential for cancer cell proliferation prevention up to 90% when treated at the concentration of 2 mg mL-1 for one million cells and exposed to AC field of 335 Oe at a fixed frequency of 265 kHz for 35 min.
High performance printed oxide field-effect transistors processed using photonic curing
NASA Astrophysics Data System (ADS)
Garlapati, Suresh Kumar; Cadilha Marques, Gabriel; Gebauer, Julia Susanne; Dehm, Simone; Bruns, Michael; Winterer, Markus; Baradaran Tahoori, Mehdi; Aghassi-Hagmann, Jasmin; Hahn, Horst; Dasgupta, Subho
2018-06-01
Oxide semiconductors are highly promising candidates for the most awaited, next-generation electronics, namely, printed electronics. As a fabrication route for the solution-processed/printed oxide semiconductors, photonic curing is becoming increasingly popular, as compared to the conventional thermal curing method; the former offers numerous advantages over the latter, such as low process temperatures and short exposure time and thereby, high throughput compatibility. Here, using dissimilar photonic curing concepts (UV–visible light and UV-laser), we demonstrate facile fabrication of high performance In2O3 field-effect transistors (FETs). Beside the processing related issues (temperature, time etc.), the other known limitation of oxide electronics is the lack of high performance p-type semiconductors, which can be bypassed using unipolar logics from high mobility n-type semiconductors alone. Interestingly, here we have found that our chosen distinct photonic curing methods can offer a large variation in threshold voltage, when they are fabricated from the same precursor ink. Consequently, both depletion and enhancement-mode devices have been achieved which can be used as the pull-up and pull-down transistors in unipolar inverters. The present device fabrication recipe demonstrates fast processing of low operation voltage, high performance FETs with large threshold voltage tunability.
Remote hydrogen sensing techniques
NASA Technical Reports Server (NTRS)
Perry, Cortes L.
1992-01-01
The objective of this project is to evaluate remote hydrogen sensing methodologies utilizing metal oxide semi-conductor field effect transistors (MOS-FET) and mass spectrometric (MS) technologies and combinations thereof.
Wu, Chaoxing; Kim, Tae Whan; Guo, Tailiang; Li, Fushan
2016-01-01
The electronic and the optoelectronic properties of graphene-based nanocomposites are controllable, making them promising for applications in diverse electronic devices. In this work, tetrapod-shaped zinc oxide (T-ZnO)/reduced graphene oxide (rGO) core/coating nanocomposites were synthesized by using a hydrothermal-assisted self-assemble method, and their optical, photoelectric, and field-emission properties were investigated. The ZnO, an ideal ultraviolet-light-sensitive semiconductor, was observed to have high sensitivity to visible light due to the rGO coating, and the mechanism of that sensitivity was investigated. We demonstrated for the first time that the field-emission properties of the T-ZnO/rGO core/coating nanocomposites could be dramatically enhanced under visible light by decreasing the turn-on field from 1.54 to 1.41 V/μm and by increasing the current density from 5 to 12 mA/cm2 at an electric field of 3.5 V/μm. The visible-light excitation induces an electron jump from oxygen vacancies on the surface of ZnO to the rGO layer, resulting in a decrease in the work function of the rGO and an increase in the emission current. Furthermore, a field-emission light-emitting diode with a self-enhanced effect was fabricated making full use of the photo-assisted field-emission process. PMID:27941822
NASA Astrophysics Data System (ADS)
Kovchavtsev, A. P.; Aksenov, M. S.; Tsarenko, A. V.; Nastovjak, A. E.; Pogosov, A. G.; Pokhabov, D. A.; Tereshchenko, O. E.; Valisheva, N. A.
2018-05-01
The accumulation capacitance oscillations behavior in the n-InAs metal-oxide-semiconductor structures with different densities of the built-in charge (Dbc) and the interface traps (Dit) at temperature 4.2 K in the magnetic field (B) 2-10 T, directed perpendicular to the semiconductor-dielectric interface, is studied. A decrease in the oscillation frequency and an increase in the capacitance oscillation amplitude are observed with the increase in B. At the same time, for a certain surface accumulation band bending, the influence of the Rashba effect, which is expressed in the oscillations decay and breakdown, is traced. The experimental capacitance-voltage curves are in a good agreement with the numeric simulation results of the self-consistent solution of Schrödinger and Poisson equations in the magnetic field, taking into account the quantization, nonparabolicity of dispersion law, and Fermi-Dirac electron statistics, with the allowance for the Rashba effect. The Landau quantum level broadening in a two-dimensional electron gas (Lorentzian-shaped density of states), due to the electron scattering mechanism, linearly depends on the magnetic field. The correlation between the interface electronic properties and the characteristic scattering times was established.
Toumazou, Christofer; Thay, Tan Sri Lim Kok; Georgiou, Pantelis
2014-03-28
Semiconductor genetics is now disrupting the field of healthcare owing to the rapid parallelization and scaling of DNA sensing using ion-sensitive field-effect transistors (ISFETs) fabricated using commercial complementary metal -oxide semiconductor technology. The enabling concept of DNA reaction monitoring introduced by Toumazou has made this a reality and we are now seeing relentless scaling with Moore's law ultimately achieving the $100 genome. In this paper, we present the next evolution of this technology through the creation of the gene-sensitive integrated cell (GSIC) for label-free real-time analysis based on ISFETs. This device is derived from the traditional metal-oxide semiconductor field-effect transistor (MOSFET) and has electrical performance identical to that of a MOSFET in a standard semiconductor process, yet is capable of incorporating DNA reaction chemistries for applications in single nucleotide polymorphism microarrays and DNA sequencing. Just as application-specific integrated circuits, which are developed in much the same way, have shaped our consumer electronics industry and modern communications and memory technology, so, too, do GSICs based on a single underlying technology principle have the capacity to transform the life science and healthcare industries.
Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect
NASA Astrophysics Data System (ADS)
Mondal, Anindita; Basu, Ruma; Das, Sukhen; Nandy, Papiya
2011-10-01
Nowadays an increasing application of nanotechnology in different fields has arisen an extensive debate about the effect of the engineered nanoparticles on environment . Phytotoxicity of nanoparticles has come into limelight in the last few years. However, very few studies have been done so far on the beneficial aspects of nanoparticles on plants. In this article, we report the beneficial effect of multi-walled carbon nanotubes (MWCNTs) having diameter of 30 nm on Brassica juncea (mustard) seeds. Measurements of germination rate, T 50 (time taken for 50% germination), shoot and root growth have shown encouraging results using low concentration of oxidized MWCNT (OMWCNT) treated seeds as compared to non-oxidized as well as high concentration OMWCNT treated seeds. For toxicity study we measured the germination index and relative root elongation, while conductivity test and infra-red spectra were also performed to study the overall effect of oxidized and non-oxidized nanotubes on mustard seeds and seedlings.
NASA Astrophysics Data System (ADS)
Li, Yi-Shao; Wu, Chun-Yi; Chou, Chia-Hsin; Liao, Chan-Yu; Chuang, Kai-Chi; Luo, Jun-Dao; Li, Wei-Shuo; Cheng, Huang-Chung
2018-06-01
A tetraethyl-orthosilicate (TEOS) capping oxide was deposited by low-pressure chemical vapor deposition (LPCVD) on a 200-nm-thick amorphous Si (a-Si) film as a heat reservoir to improve the crystallinity and surface roughness of polycrystalline silicon (poly-Si) formed by continuous-wave laser crystallization (CLC). The effects of four thicknesses of the capping oxide layer to satisfy an antireflection condition, namely, 90, 270, 450, and 630 nm, were investigated. The largest poly-Si grain size of 2.5 × 20 µm2 could be achieved using a capping oxide layer with an optimal thickness of 450 nm. Moreover, poly-Si nanorod (NR) thin-film transistors (TFTs) fabricated using the aforementioned technique exhibited a superior electron field-effect mobility of 1093.3 cm2 V‑1 s‑1 and an on/off current ratio of 2.53 × 109.
NASA Astrophysics Data System (ADS)
Petrova, E. V.; Dresvyannikov, A. F.; Ahmadi Daryakenari, M.; Khairullina, A. I.
2016-05-01
Scanning electron microscopy, X-ray, and thermal analysis are used to examine the structure and properties of dispersive systems based on aluminum and zirconium oxides prepared electrochemically. The effect the conditions of synthesis have on the structure and morphology of Al2O3-ZrO2 particles is studied. It is shown that the effect of an electric field on the reaction medium allows us to adjust the physicochemical properties and morphology.
Numerical Simulations of Vortex Shedding in Hydraulic Turbines
NASA Technical Reports Server (NTRS)
Dorney, Daniel; Marcu, Bogdan
2004-01-01
Turbomachines for rocket propulsion applications operate with many different working fluids and flow conditions. Oxidizer boost turbines often operate in liquid oxygen, resulting in an incompressible flow field. Vortex shedding from airfoils in this flow environment can have adverse effects on both turbine performance and durability. In this study the effects of vortex shedding in a low-pressure oxidizer turbine are investigated. Benchmark results are also presented for vortex shedding behind a circular cylinder. The predicted results are compared with available experimental data.
Multifunctional superparamagnetic nanoparticles for enhanced drug transport in cystic fibrosis
NASA Astrophysics Data System (ADS)
Armijo, Leisha M.; Brandt, Yekaterina I.; Rivera, Antonio C.; Cook, Nathaniel C.; Plumley, John B.; Withers, Nathan J.; Kopciuch, Michael; Smolyakov, Gennady A.; Huber, Dale L.; Smyth, Hugh D.; Osinski, Marek
2012-10-01
Iron oxide colloidal nanoparticles (ferrofluids) are investigated for application in the treatment of cystic fibrosis lung infections, the leading cause of mortality in cystic fibrosis patients. We investigate the use of iron oxide nanoparticles to increase the effectiveness of administering antibiotics through aerosol inhalation using two mechanisms: directed particle movement in the presence of an inhomogeneous static external magnetic field and magnetic hyperthermia. Magnetic hyperthermia is an effective method for decreasing the viscosity of the mucus and biofilm, thereby enhancing drug, immune cell, and antibody penetration to the affected area. Iron oxide nanoparticles of various sizes and morphologies were synthesized and tested for specific losses (heating power). Nanoparticles in the superparamagnetic to ferromagnetic size range exhibited excellent heating power. Additionally, iron oxide / zinc selenide core/shell nanoparticles were prepared, in order to enable imaging of the iron oxide nanoparticles. We also report on synthesis and characterization of MnSe/ZnSeS alloyed quantum dots.
Surface oxidation: an effective way to induce piezoelectricity in 2D black phosphorus
NASA Astrophysics Data System (ADS)
Li, Jiabin; Zhao, Ting; He, Chaoyu; Zhang, Kaiwang
2018-03-01
In this letter, first-principles methods are employed to investigate the elastic stiffness and piezoelectric tensors of surface-oxidized black phosphorene. Our results show that the piezoelectric coefficients d 11 and d 12 for surface-oxidized black phosphorene are 88.54 pm V-1 and -1.94 pm V-1, respectively, which are comparable to those of group-IV monochalcogenides and more remarkable than those of the experimentally viable h-BN and MoS2. These results indicate that surface-oxidization is an effective way to make black phosphorene into an excellent piezoelectric material for potential applications in sensors, actuators, electric field generators and any other applications requiring electrical and mechanical energy conversion. We expect further experimental exploration on this interesting result to confirm our predictions.
NASA Astrophysics Data System (ADS)
Li, Chi-Shing; Su, Shui-Hsiang; Chi, Hsiang-Yu; Yokoyama, Meiso
2009-01-01
An anodic aluminum oxide (AAO) template was formed by a two-step anodization process. Carbon nanotubes (CNTs) were successfully synthesized along with AAO pores and the diameters of CNTs equaled those of AAO pores. The lengths of CNTs during a chemical vapor deposition synthesized process on the AAO template were effectively controlled. These AAO-CNTs exhibit excellent field emission with a low turn-on field (0.7 V/μm) and a low threshold field (1.4 V/μm). The field enhancement factor, calculated from the non-saturated region of the Fowler-Nordheim (F-N) plot, is about 8237. A novel field-emission organic light-emitting diode (FEOLED) combining AAO-CNTs cathodes as electron source with organic electroluminescent (EL) light-emitting layers coated on indium-tin-oxide (ITO) is produced. The uniform and dense luminescence image is obtained in the FEOLEDs. Organic EL light-emitting materials have lower working voltage than inorganic phosphor-coated fluorescent screens.
Okada, Jun; Nagase, Takashi; Kobayashi, Takashi; Naito, Hiroyoshi
2016-04-01
Carrier transport in solution-processed organic thin-film transistors (OTFTs) based on dioctylbenzothienobenzothiophene (C8-BTBT) has been investigated in a wide temperature range from 296 to 10 K. The field-effect mobility shows thermally activated behavior whose activation energy becomes smaller with decreasing temperature. The temperature dependence of field-effect mobility found in C8-BTBT is similar to that of others materials: organic semiconducting polymers, amorphous oxide semiconductors and hydrogenated amorphous silicon. These results indicate that hopping transport between isoenergetic localized states becomes dominated in a low temperature regime in these materials.
Lin, Hung-Cheng; Stehlin, Fabrice; Soppera, Olivier; Zan, Hsiao-Wen; Li, Chang-Hung; Wieder, Fernand; Ponche, Arnaud; Berling, Dominique; Yeh, Bo-Hung; Wang, Kuan-Hsun
2015-01-01
Deep-UV (DUV) laser was used to directly write indium-gallium-zinc-oxide (IGZO) precursor solution and form micro and nanoscale patterns. The directional DUV laser beam avoids the substrate heating and suppresses the diffraction effect. A IGZO precursor solution was also developed to fulfill the requirements for direct photopatterning and for achieving semi-conducting properties with thermal annealing at moderate temperature. The DUV-induced crosslinking of the starting material allows direct write of semi-conducting channels in thin-film transistors but also it improves the field-effect mobility and surface roughness. Material analysis has been carried out by XPS, FTIR, spectroscopic ellipsometry and AFM and the effect of DUV on the final material structure is discussed. The DUV irradiation step results in photolysis and a partial condensation of the inorganic network that freezes the sol-gel layer in a homogeneous distribution, lowering possibilities of thermally induced reorganization at the atomic scale. Laser irradiation allows high-resolution photopatterning and high-enough field-effect mobility, which enables the easy fabrication of oxide nanowires for applications in solar cell, display, flexible electronics, and biomedical sensors. PMID:26014902
New Material Transistor with Record-High Field-Effect Mobility among Wide-Band-Gap Semiconductors.
Shih, Cheng Wei; Chin, Albert
2016-08-03
At an ultrathin 5 nm, we report a new high-mobility tin oxide (SnO2) metal-oxide-semiconductor field-effect transistor (MOSFET) exhibiting extremely high field-effect mobility values of 279 and 255 cm(2)/V-s at 145 and 205 °C, respectively. These values are the highest reported mobility values among all wide-band-gap semiconductors of GaN, SiC, and metal-oxide MOSFETs, and they also exceed those of silicon devices at the aforementioned elevated temperatures. For the first time among existing semiconductor transistors, a new device physical phenomenon of a higher mobility value was measured at 45-205 °C than at 25 °C, which is due to the lower optical phonon scattering by the large SnO2 phonon energy. Moreover, the high on-current/off-current of 4 × 10(6) and the positive threshold voltage of 0.14 V at 25 °C are significantly better than those of a graphene transistor. This wide-band-gap SnO2 MOSFET exhibits high mobility in a 25-205 °C temperature range, a wide operating voltage of 1.5-20 V, and the ability to form on an amorphous substrate, rendering it an ideal candidate for multifunctional low-power integrated circuit (IC), display, and brain-mimicking three-dimensional IC applications.
Improvement and Analysis of the Radiation Response of RADFET Dosimeters
1992-06-15
TLD ), silicon p-i-n diode responses and silicon calorimetry (AWE Dosimetry Service). Intensive preparations were made by REM and the experiments were...SUB-GROUP dose: RADFET : tactical dosimetry silicon : metal-oxide- 0705 emiconductor (MOS) field effect transistor (FET) : silicon Idioxide space...1.1 Principle of a dosimetry system, based on the RADFET (radiation-sensitive field-effect transistor) (a) microscopic cross-section of chip (b) chip
Screening-Engineered Field-Effect Solar Cells
2012-01-01
virtually any semiconductor, including the promising but hard-to- dope metal oxides, sulfides, and phosphides.3 Prototype SFPV devices have been...MIS interface. Unfortu- nately, MIS cells, though sporting impressive efficiencies,4−6 typically have short operating lifetimes due to surface state...instability at the MIS interface.7 Methods aimed at direct field- effect “ doping ” of semiconductors, in which the voltage is externally applied to a gate
Gas-assisted electron-beam-induced nanopatterning of high-quality titanium oxide.
Riazanova, A V; Costanzi, B N; Aristov, A I; Rikers, Y G M; Mulders, J J L; Kabashin, A V; Dahlberg, E Dan; Belova, L M
2016-03-18
Electron-beam-induced deposition of titanium oxide nanopatterns is described. The precursor is titanium tetra-isopropoxide, delivered to the deposition point through a needle and mixed with oxygen at the same point via a flow through a separate needle. The depositions are free of residual carbon and have an EDX determined stoichiometry of TiO2.2. High resolution transmission electron microscopy and Raman spectroscopy studies reveal an amorphous structure of the fabricated titanium oxide. Ellipsometric characterization of the deposited material reveals a refractive index of 2.2-2.4 RIU in the spectral range of 500-1700 nm and a very low extinction coefficient (lower than 10(-6) in the range of 400-1700 nm), which is consistent with high quality titanium oxide. The electrical resistivity of the titanium oxide patterned with this new process is in the range of 10-40 GΩ cm and the measured breakdown field is in the range of 10-70 V μm(-1). The fabricated nanopatterns are important for a variety of applications, including field-effect transistors, memory devices, MEMS, waveguide structures, bio- and chemical sensors.
Gas-assisted electron-beam-induced nanopatterning of high-quality titanium oxide
NASA Astrophysics Data System (ADS)
Riazanova, A. V.; Costanzi, B. N.; Aristov, A. I.; Rikers, Y. G. M.; Mulders, J. J. L.; Kabashin, A. V.; Dahlberg, E. Dan; Belova, L. M.
2016-03-01
Electron-beam-induced deposition of titanium oxide nanopatterns is described. The precursor is titanium tetra-isopropoxide, delivered to the deposition point through a needle and mixed with oxygen at the same point via a flow through a separate needle. The depositions are free of residual carbon and have an EDX determined stoichiometry of TiO2.2. High resolution transmission electron microscopy and Raman spectroscopy studies reveal an amorphous structure of the fabricated titanium oxide. Ellipsometric characterization of the deposited material reveals a refractive index of 2.2-2.4 RIU in the spectral range of 500-1700 nm and a very low extinction coefficient (lower than 10-6 in the range of 400-1700 nm), which is consistent with high quality titanium oxide. The electrical resistivity of the titanium oxide patterned with this new process is in the range of 10-40 GΩ cm and the measured breakdown field is in the range of 10-70 V μm-1. The fabricated nanopatterns are important for a variety of applications, including field-effect transistors, memory devices, MEMS, waveguide structures, bio- and chemical sensors.
Onaolapo, Olakunle James; Ademakinwa, Olayemi Quyyom; Olalekan, Temitayo Opeyemi; Onaolapo, Adejoke Yetunde
2017-09-01
We studied the influence of zinc, haloperidol or olanzapine on neurobehaviour (open-field, radial arm maze and elevated plus maze) and brain antioxidant status in vehicle- or ketamine-treated mice, with the aim of ascertaining the potentials of zinc in counteracting ketamine's effects. Experiment 1 assessed the effects of zinc in healthy animals and the relative degrees of modulation of ketamine's effects by zinc, haloperidol or olanzapine, respectively. Experiment 2 assessed the modulation of ketamine's effects following co-administration of zinc with haloperidol or olanzapine. Male mice weighing 18-20 g each were used. Animals were pretreated with ketamine (except vehicle, zinc, haloperidol and olanzapine controls) for 10 days before commencement of 14-day treatment (day 11-24) with vehicle, zinc, haloperidol or olanzapine (alone or in combination). Ketamine injection also continued alongside zinc and/or standard drugs in the ketamine-treated groups. Zinc, haloperidol and olanzapine were administered by gavage. Treatments were given daily and behaviours assessed on days 11 and 24. On day 24, animals were sacrificed and whole brain homogenates used for estimation of glutathione, nitric oxide and malondialdehyde (MDA) levels. Ketamine increased open-field behaviours, nitric oxide and MDA levels, while it decreased working memory, social interaction and glutathione. Administration of zinc alone or in combination with haloperidol or olanzapine was associated with variable degrees of reversal of these effects. Zinc may have the potential of a possible therapeutic agent and/or adjunct in the reversal of schizophrenia-like changes in behaviour and brain oxidative status.
Liu, Dongyan; Tago, Kanako; Hayatsu, Masahito; Tokida, Takeshi; Sakai, Hidemitsu; Nakamura, Hirofumi; Usui, Yasuhiro; Hasegawa, Toshihiro; Asakawa, Susumu
2016-01-01
Elevated concentrations of atmospheric CO2 ([CO2]) enhance the production and emission of methane in paddy fields. In the present study, the effects of elevated [CO2], elevated temperature (ET), and no nitrogen fertilization (LN) on methanogenic archaeal and methane-oxidizing bacterial community structures in a free-air CO2 enrichment (FACE) experimental paddy field were investigated by PCR-DGGE and real-time quantitative PCR. Soil samples were collected from the upper and lower soil layers at the rice panicle initiation (PI) and mid-ripening (MR) stages. The composition of the methanogenic archaeal community in the upper and lower soil layers was not markedly affected by the elevated [CO2], ET, or LN condition. The abundance of the methanogenic archaeal community in the upper and lower soil layers was also not affected by elevated [CO2] or ET, but was significantly increased at the rice PI stage and significantly decreased by LN in the lower soil layer. In contrast, the composition of the methane-oxidizing bacterial community was affected by rice-growing stages in the upper soil layer. The abundance of methane-oxidizing bacteria was significantly decreased by elevated [CO2] and LN in both soil layers at the rice MR stage and by ET in the upper soil layer. The ratio of mcrA/pmoA genes correlated with methane emission from ambient and FACE paddy plots at the PI stage. These results indicate that the decrease observed in the abundance of methane-oxidizing bacteria was related to increased methane emission from the paddy field under the elevated [CO2], ET, and LN conditions. PMID:27600710
Liu, Dongyan; Tago, Kanako; Hayatsu, Masahito; Tokida, Takeshi; Sakai, Hidemitsu; Nakamura, Hirofumi; Usui, Yasuhiro; Hasegawa, Toshihiro; Asakawa, Susumu
2016-09-29
Elevated concentrations of atmospheric CO2 ([CO2]) enhance the production and emission of methane in paddy fields. In the present study, the effects of elevated [CO2], elevated temperature (ET), and no nitrogen fertilization (LN) on methanogenic archaeal and methane-oxidizing bacterial community structures in a free-air CO2 enrichment (FACE) experimental paddy field were investigated by PCR-DGGE and real-time quantitative PCR. Soil samples were collected from the upper and lower soil layers at the rice panicle initiation (PI) and mid-ripening (MR) stages. The composition of the methanogenic archaeal community in the upper and lower soil layers was not markedly affected by the elevated [CO2], ET, or LN condition. The abundance of the methanogenic archaeal community in the upper and lower soil layers was also not affected by elevated [CO2] or ET, but was significantly increased at the rice PI stage and significantly decreased by LN in the lower soil layer. In contrast, the composition of the methane-oxidizing bacterial community was affected by rice-growing stages in the upper soil layer. The abundance of methane-oxidizing bacteria was significantly decreased by elevated [CO2] and LN in both soil layers at the rice MR stage and by ET in the upper soil layer. The ratio of mcrA/pmoA genes correlated with methane emission from ambient and FACE paddy plots at the PI stage. These results indicate that the decrease observed in the abundance of methane-oxidizing bacteria was related to increased methane emission from the paddy field under the elevated [CO2], ET, and LN conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Ah Young; Ji, Hyuk; Kim, Sang Tae
2016-04-11
Transition tantalum induced crystallization of amorphous zinc tin oxide (a-ZTO) was observed at low temperature annealing of 300 °C. Thin-film transistors (TFTs) with an a-ZTO channel layer exhibited a reasonable field-effect mobility of 12.4 cm{sup 2}/V s, subthreshold swing (SS) of 0.39 V/decade, threshold voltage (V{sub TH}) of 1.5 V, and I{sub ON/OFF} ratio of ∼10{sup 7}. A significant improvement in the field-effect mobility (up to ∼33.5 cm{sup 2}/V s) was achieved for crystallized ZTO TFTs: this improvement was accomplished without compromising the SS, V{sub TH}, or I{sub ON/OFF} ratio due to the presence of a highly ordered microstructure.
Hagen, Joshua A.; Kim, Sang N.; Bayraktaroglu, Burhan; Leedy, Kevin; Chávez, Jorge L.; Kelley-Loughnane, Nancy; Naik, Rajesh R.; Stone, Morley O.
2011-01-01
Zinc oxide field effect transistors (ZnO-FET), covalently functionalized with single stranded DNA aptamers, provide a highly selective platform for label-free small molecule sensing. The nanostructured surface morphology of ZnO provides high sensitivity and room temperature deposition allows for a wide array of substrate types. Herein we demonstrate the selective detection of riboflavin down to the pM level in aqueous solution using the negative electrical current response of the ZnO-FET by covalently attaching a riboflavin binding aptamer to the surface. The response of the biofunctionalized ZnO-FET was tuned by attaching a redox tag (ferrocene) to the 3′ terminus of the aptamer, resulting in positive current modulation upon exposure to riboflavin down to pM levels. PMID:22163977
Optical investigation of effective permeability of dilute magnetic dielectrics with magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Ananya, E-mail: banerjee.ananya2008@gmail.com; Sarkar, A.
The prime objective of this paper is to investigate the magnetic nature of dilute magnetic dielectrics (DMD) under variation of external magnetic field. The said variation is studied over developed nano-sized Gadolinium Oxide as a DMD system. The observed experimental field variation of the effective magnetic permeability is analyzed results of optical experiment. The experiment records the variation of Brewster angle of incident polarized LASER beam from the surface of developed DMD specimen with applied out of plane external magnetic field. The effective refractive index and hence relative magnetic permeability were estimated following electro-magnetic theory. The overall results obtained andmore » agreement between theory and experiment are good.« less
Zeng, Ying; Shen, Yunyun; Hong, Ling; Chen, Yanfeng; Shi, Xiaofang; Zeng, Qunli; Yu, Peilin
2017-06-01
The prevalence of domestic and industrial electrical appliances has raised concerns about the health risk of extremely low-frequency magnetic fields (ELF-MFs). At present, the effects of ELF-MFs on the central nervous system are still highly controversial, and few studies have investigated its effects on cultured neurons. Here, we evaluated the biological effects of different patterns of ELF-MF exposure on primary cultured hippocampal neurons in terms of viability, apoptosis, genomic instability, and oxidative stress. The results showed that repeated exposure to 50-Hz 2-mT ELF-MF for 8 h per day after different times in culture decreased the viability and increased the production of intracellular reactive oxidative species in hippocampal neurons. The mechanism was potentially related to the up-regulation of Nox2 expression. Moreover, none of the repeated exposure patterns had significant effects on DNA damage, apoptosis, or autophagy, which suggested that ELF-MF exposure has no severe biological consequences in cultured hippocampal neurons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokoyama, Masafumi, E-mail: yokoyama@mosfet.t.u-tokyo.ac.jp; Takenaka, Mitsuru; Takagi, Shinichi
2015-02-16
We have realized ultrathin body GaSb-on-insulator (GaSb-OI) on Si wafers by direct wafer bonding technology using atomic-layer deposition (ALD) Al{sub 2}O{sub 3} and have demonstrated GaSb-OI p-channel metal-oxide-semiconductor field-effect transistors (p-MOSFETs) on Si. A 23-nm-thick GaSb-OI p-MOSFET exhibits the peak effective mobility of ∼76 cm{sup 2}/V s. We have found that the effective hole mobility of the thin-body GaSb-OI p-MOSFETs decreases with a decrease in the GaSb-OI thickness or with an increase in Al{sub 2}O{sub 3} ALD temperature. The InAs passivation of GaSb-OI MOS interfaces can enhance the peak effective mobility up to 159 cm{sup 2}/V s for GaSb-OI p-MOSFETs with themore » 20-nm-thick GaSb layer.« less
Broshears, R.E.; Runkel, R.L.; Kimball, B.A.; McKnight, Diane M.; Bencala, K.E.
1996-01-01
Solute transport simulations quantitatively constrained hydrologic and geochemical hypotheses about field observations of a pH modification in an acid mine drainage stream. Carbonate chemistry, the formation of solid phases, and buffering interactions with the stream bed were important factors in explaining the behavior of pH, aluminum, and iron. The precipitation of microcrystalline gibbsite accounted for the behavior of aluminum; precipitation of Fe(OH)3 explained the general pattern of iron solubility. The dynamic experiment revealed limitations on assumptions that reactions were controlled only by equilibrium chemistry. Temporal variation in relative rates of photoreduction and oxidation influenced iron behavior. Kinetic limitations on ferrous iron oxidation and hydrous oxide precipitation and the effects of these limitations on field filtration were evident. Kinetic restraints also characterized interaction between the water column and the stream bed, including sorption and desorption of protons from iron oxides at the sediment-water interface and post-injection dissolution of the precipitated aluminum solid phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu Shiyang; Nakajima, Anri; Ohashi, Takuo
2005-12-01
The interface trap generation ({delta}N{sub it}) and fixed oxide charge buildup ({delta}N{sub ot}) under negative bias temperature instability (NBTI) of p-channel metal-oxide-semiconductor field-effect transistors (pMOSFETs) with ultrathin (2 nm) plasma-nitrided SiON gate dielectrics were studied using a modified direct-current-current-voltage method and a conventional subthreshold characteristic measurement. Different stress time dependences were shown for {delta}N{sub it} and {delta}N{sub ot}. At the earlier stress times, {delta}N{sub it} dominates the threshold voltage shift ({delta}V{sub th}) and {delta}N{sub ot} is negligible. With increasing stress time, the rate of increase of {delta}N{sub it} decreases continuously, showing a saturating trend for longer stress times, while {delta}N{submore » ot} still has a power-law dependence on stress time so that the relative contribution of {delta}N{sub ot} increases. The thermal activation energy of {delta}N{sub it} and the NBTI lifetime of pMOSFETs, compared at a given stress voltage, are independent of the peak nitrogen concentration of the SiON film. This indicates that plasma nitridation is a more reliable method for incorporating nitrogen in the gate oxide.« less
NASA Astrophysics Data System (ADS)
Zhu, Jie-Jie; Ma, Xiao-Hua; Hou, Bin; Chen, Li-Xiang; Zhu, Qing; Hao, Yue
2017-02-01
This paper demonstrated the comparative study on interface engineering of AlN/AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MIS-HEMTs) by using plasma interface pre-treatment in various ambient gases. The 15 nm AlN gate dielectric grown by plasma-enhanced atomic layer deposition significantly suppressed the gate leakage current by about two orders of magnitude and increased the peak field-effect mobility by more than 50%. NH3/N2 nitridation plasma treatment (NPT) was used to remove the 3 nm poor-quality interfacial oxide layer and N2O/N2 oxidation plasma treatment (OPT) to improve the quality of interfacial layer, both resulting in improved dielectric/barrier interface quality, positive threshold voltage (V th) shift larger than 0.9 V, and negligible dispersion. In comparison, however, NPT led to further decrease in interface charges by 3.38 × 1012 cm-2 and an extra positive V th shift of 1.3 V. Analysis with fat field-effect transistors showed that NPT resulted in better sub-threshold characteristics and transconductance linearity for MIS-HEMTs compared with OPT. The comparative study suggested that direct removing the poor interfacial oxide layer by nitridation plasma was superior to improving the quality of interfacial layer by oxidation plasma for the interface engineering of GaN-based MIS-HEMTs.
NASA Astrophysics Data System (ADS)
Lin, Jianqiang; Kim, Tae-Woo; Antoniadis, Dimitri A.; del Alamo, Jesús A.
2012-06-01
We present a novel n-type InGaAs quantum-well metal-oxide-semiconductor field-effect transistor (QW-MOSFET) fabricated by a self-aligned gate-last process and investigate relevant Si-like manufacturing issues in future III-V MOSFETs. The device structure features a composite InP/Al2O3 gate barrier with a capacitance equivalent thickness (CET) of 3 nm and non alloyed Mo ohmic contacts. We have found that RIE introduces significant damage to the intrinsic device resulting in poor current drive and subthreshold swing. The effect is largely removed through a thermal annealing step. Thermally annealed QW-MOSFETs exhibit a subthreshold swing of 95 mV/dec, indicative of excellent interfacial characteristics. The peak mobility of the MOSFET is 2780 cm2 V-1 s-1.
NASA Astrophysics Data System (ADS)
Tanoi, Satoru; Endoh, Tetsuo
2012-04-01
A wide-range tunable level-keeper using vertical metal-oxide-semiconductor field-effect transistors (MOSFETs) is proposed for current-reuse analog systems. The design keys for widening tunable range of the operation are a two-path feed-back and a vertical MOSFET with back-bias-effect free. The proposed circuit with the vertical MOSFETs shows the 1.23-V tunable-range of the input level with the 2.4-V internal-supply voltage (VDD) in the simulation. This tunable-range of the proposed circuit is 4.7 times wider than that of the conventional. The achieved current efficiency of the proposed level-keeper is 66% at the 1.2-V output with the 2.4-V VDD. This efficiency of the proposed circuit is twice higher than that of the traditional voltage down converter.
Van, Ngoc Huynh; Lee, Jae-Hyun; Sohn, Jung Inn; Cha, Seung Nam; Whang, Dongmok; Kim, Jong Min; Kang, Dae Joon
2014-05-21
We successfully fabricated nanowire-based complementary metal-oxide semiconductor (NWCMOS) inverter devices by utilizing n- and p-type Si nanowire field-effect-transistors (NWFETs) via a low-temperature fabrication processing technique. We demonstrate that NWCMOS inverter devices can be operated at less than 1 V, a significantly lower voltage than that of typical thin-film based complementary metal-oxide semiconductor (CMOS) inverter devices. This low-voltage operation was accomplished by controlling the threshold voltage of the n-type Si NWFETs through effective management of the nanowire (NW) doping concentration, while realizing high voltage gain (>10) and ultra-low static power dissipation (≤3 pW) for high-performance digital inverter devices. This result offers a viable means of fabricating high-performance, low-operation voltage, and high-density digital logic circuits using a low-temperature fabrication processing technique suitable for next-generation flexible electronics.
Ranc, Bérénice; Faure, Pierre; Croze, Véronique; Lorgeoux, Catherine; Simonnot, Marie-Odile
2017-04-01
Thermal treatments prior or during chemical oxidation of aged polycyclic aromatic hydrocarbon (PAH)-contaminated soils have already shown their ability to increase oxidation effectiveness. However, they were never compared on the same soil. Furthermore, oxygenated polycyclic aromatic hydrocarbons (O-PACs), by-products of PAH oxidation which may be more toxic and mobile than the parent PAHs, were very little monitored. In this study, two aged PAH-contaminated soils were heated prior (60 or 90 °C under Ar for 1 week) or during oxidation (60 °C for 1 week) with permanganate and persulfate, and 11 O-PACs were monitored in addition to the 16 US Environmental Protection Agency (US EPA) PAHs. Oxidant doses were based on the stoichiometric oxidant demand of the extractable organic fraction of soils by using organic solvents, which is more representative of the actual contamination than only the 16 US EPA PAHs. Higher temperatures actually resulted in more pollutant degradation. Two treatments were about three times more effective than the others: soil heating to 60 °C during persulfate oxidation and soil preheating to 90 °C followed by permanganate oxidation. The results of this study showed that persulfate effectiveness was largely due to its thermal activation, whereas permanganate was more sensitive to PAH availability than persulfate. The technical feasibility of these two treatments will soon be field-tested in the unsaturated zone of one of the studied aged PAH-contaminated soils.
Putranto, Dedy Septono Catur; Priambodo, Purnomo Sidi; Hartanto, Djoko; Du, Wei; Satoh, Hiroaki; Ono, Atsushi; Inokawa, Hiroshi
2014-09-08
Low-frequency noise and hole lifetime in silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect transistors (MOSFETs) are analyzed, considering their use in photon detection based on single-hole counting. The noise becomes minimum at around the transition point between front- and back-channel operations when the substrate voltage is varied, and increases largely on both negative and positive sides of the substrate voltage showing peculiar Lorentzian (generation-recombination) noise spectra. Hole lifetime is evaluated by the analysis of drain current histogram at different substrate voltages. It is found that the peaks in the histogram corresponding to the larger number of stored holes become higher as the substrate bias becomes larger. This can be attributed to the prolonged lifetime caused by the higher electric field inside the body of SOI MOSFET. It can be concluded that, once the inversion channel is induced for detection of the photo-generated holes, the small absolute substrate bias is favorable for short lifetime and low noise, leading to high-speed operation.
Jerome D. Fast; Rahul A. Zaveri; Xindi Bian; Elaine G. Chapman; Richard C. Easter
2002-01-01
A new meteorological-chemical model is used to determine the relative contribution of regional-scale transport and local photochemical production on air quality over Philadelphia. The model performance is evaluated using surface and airborne meteorological and chemical measurements made during a 30-day period in July and August of 1999 as part of the Northeast Oxidant...
Review on analog/radio frequency performance of advanced silicon MOSFETs
NASA Astrophysics Data System (ADS)
Passi, Vikram; Raskin, Jean-Pierre
2017-12-01
Aggressive gate-length downscaling of the metal-oxide-semiconductor field-effect transistor (MOSFET) has been the main stimulus for the growth of the integrated circuit industry. This downscaling, which has proved beneficial to digital circuits, is primarily the result of the need for improved circuit performance and cost reduction and has resulted in tremendous reduction of the carrier transit time across the channel, thereby resulting in very high cut-off frequencies. It is only in recent decades that complementary metal-oxide-semiconductor (CMOS) field-effect transistor (FET) has been considered as the radio frequency (RF) technology of choice. In this review, the status of the digital, analog and RF figures of merit (FoM) of silicon-based FETs is presented. State-of-the-art devices with very good performance showing low values of drain-induced barrier lowering, sub-threshold swing, high values of gate transconductance, Early voltage, cut-off frequencies, and low minimum noise figure, and good low-frequency noise characteristic values are reported. The dependence of these FoM on the device gate length is also shown, helping the readers to understand the trends and challenges faced by shorter CMOS nodes. Device performance boosters including silicon-on-insulator substrates, multiple-gate architectures, strain engineering, ultra-thin body and buried-oxide and also III-V and 2D materials are discussed, highlighting the transistor characteristics that are influenced by these boosters. A brief comparison of the two main contenders in continuing Moore’s law, ultra-thin body buried-oxide and fin field-effect transistors are also presented. The authors would like to mention that despite extensive research carried out in the semiconductor industry, silicon-based MOSFET will continue to be the driving force in the foreseeable future.
Field effect transistor with HfO2/Parylene-C bilayer hybrid gate insulator
NASA Astrophysics Data System (ADS)
Kumar, Neeraj; Kito, Ai; Inoue, Isao
2015-03-01
We have investigated the electric field control of the carrier density and the mobility at the surface of SrTiO3, a well known transition-metal oxide, in a field effect transistor (FET) geometry. We have used a Parylene-C (8 nm)/HfO2 (20 nm) double-layer gate insulator (GI), which can be a potential candidate for a solid state GI for the future Mott FETs. So far, only examples of the Mott FET used liquid electrolyte or ferroelectric oxides for the GI. However, possible electrochemical reaction at the interface causes damage to the surface of the Mott insulator. Thus, an alternative GI has been highly desired. We observed that even an ultra thin Parylene-C layer is effective for keeping the channel surface clean and free from oxygen vacancies. The 8 nm Parylene-C film has a relatively low resistance and consequentially its capacitance does not dominate the total capacitance of the Parylene-C/HfO2 GI. The breakdown gate voltage at 300 K is usually more than 10 V (~ 3.4 MV/cm). At gate voltage of 3 V the carrier density measured by the Hall effect is about 3 ×1013 cm-2, competent to cause the Mott transition. Moreover, the field effect mobility reaches in the range of 10 cm2/Vs indicating the Parylene-C passivated surface is actually very clean.
Li, Qian; Wu, Fengjuan; Wen, Min; Yanagita, Teruyoshi; Xue, Changhu; Zhang, Tiantian; Wang, Yuming
2018-02-01
Alzheimer's disease (AD) is a common neurodegenerative disorder, and oxidative stress plays a vital role in its progression. Antarctic krill oil (AKO) is rich in polyunsaturated fatty acids, which has various biological activities, such as improving insulin sensitivity, alleviating inflammation and ameliorating oxidative stress. In this study, the protective effect of AKO against AD were investigated in senescence-accelerated prone mouse strain 8 (SAMP8) mice. Results showed that treatment with AKO could effectively ameliorate learning and memory deficits and ease the anxiety in SAMP8 mice by Morris water maze, Barnes maze test and open-field test. Further analysis indicated that AKO might reduce β-amyloid (Aβ) accumulation in hippocampus through decreasing the contents of malondialdehyde (MDA) and 7,8-dihydro-8-oxoguanine (8-oxo-G), increasing the superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in the brain of SAMP8 mice. The results of Morris water maze, Barnes maze test and open-field test indicated that Antarctic krill oil (AKO) improved the cognitive function and anxiety of SAMP8 mice. AKO reduced the Aβ 42 level in hippocampus of SAMP8 mice. AKO ameliorated oxidative stress in brain rather than in serum and liver of SAMP8 mice. © 2018 Institute of Food Technologists®.
Usselman, Robert J.; Hill, Iain; Singel, David J.; Martino, Carlos F.
2014-01-01
The effects of weak magnetic fields on the biological production of reactive oxygen species (ROS) from intracellular superoxide (O2 •−) and extracellular hydrogen peroxide (H2O2) were investigated in vitro with rat pulmonary arterial smooth muscle cells (rPASMC). A decrease in O2 •− and an increase in H2O2 concentrations were observed in the presence of a 7 MHz radio frequency (RF) at 10 μTRMS and static 45 μT magnetic fields. We propose that O2 •− and H2O2 production in some metabolic processes occur through singlet-triplet modulation of semiquinone flavin (FADH•) enzymes and O2 •− spin-correlated radical pairs. Spin-radical pair products are modulated by the 7 MHz RF magnetic fields that presumably decouple flavin hyperfine interactions during spin coherence. RF flavin hyperfine decoupling results in an increase of H2O2 singlet state products, which creates cellular oxidative stress and acts as a secondary messenger that affects cellular proliferation. This study demonstrates the interplay between O2 •− and H2O2 production when influenced by RF magnetic fields and underscores the subtle effects of low-frequency magnetic fields on oxidative metabolism, ROS signaling, and cellular growth. PMID:24681944
Artificial local magnetic field inhomogeneity enhances T2 relaxivity
Zhou, Zijian; Tian, Rui; Wang, Zhenyu; Yang, Zhen; Liu, Yijing; Liu, Gang; Wang, Ruifang; Song, Jibin; Nie, Liming; Chen, Xiaoyuan
2017-01-01
Clustering of magnetic nanoparticles (MNPs) is perhaps the most effective, yet intriguing strategy to enhance T2 relaxivity in magnetic resonance imaging (MRI). However, the underlying mechanism is still not fully understood and the attempts to generalize the classic outersphere theory from single particles to clusters have been found to be inadequate. Here we show that clustering of MNPs enhances local field inhomogeneity due to reduced field symmetry, which can be further elevated by artificially involving iron oxide NPs with heterogeneous geometries in terms of size and shape. The r2 values of iron oxide clusters and Landau–Lifshitz–Gilbert simulations confirmed our hypothesis, indicating that solving magnetic field inhomogeneity may become a powerful way to build correlation between magnetization and T2 relaxivity of MNPs, especially magnetic clusters. This study provides a simple yet distinct mechanism to interpret T2 relaxivity of MNPs, which is crucial to the design of high-performance MRI contrast agents. PMID:28516947
Effects of water chemistry on arsenic removal from drinking water by electrocoagulation.
Wan, Wei; Pepping, Troy J; Banerji, Tuhin; Chaudhari, Sanjeev; Giammar, Daniel E
2011-01-01
Exposure to arsenic through drinking water poses a threat to human health. Electrocoagulation is a water treatment technology that involves electrolytic oxidation of anode materials and in-situ generation of coagulant. The electrochemical generation of coagulant is an alternative to using chemical coagulants, and the process can also oxidize As(III) to As(V). Batch electrocoagulation experiments were performed in the laboratory using iron electrodes. The experiments quantified the effects of pH, initial arsenic concentration and oxidation state, and concentrations of dissolved phosphate, silica and sulfate on the rate and extent of arsenic removal. The iron generated during electrocoagulation precipitated as lepidocrocite (γ-FeOOH), except when dissolved silica was present, and arsenic was removed by adsorption to the lepidocrocite. Arsenic removal was slower at higher pH. When solutions initially contained As(III), a portion of the As(III) was oxidized to As(V) during electrocoagulation. As(V) removal was faster than As(III) removal. The presence of 1 and 4 mg/L phosphate inhibited arsenic removal, while the presence of 5 and 20 mg/L silica or 10 and 50 mg/L sulfate had no significant effect on arsenic removal. For most conditions examined in this study, over 99.9% arsenic removal efficiency was achieved. Electrocoagulation was also highly effective at removing arsenic from drinking water in field trials conducted in a village in Eastern India. By using operation times long enough to produce sufficient iron oxide for removal of both phosphate and arsenate, the performance of the systems in field trials was not inhibited by high phosphate concentrations. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
2012-04-01
This study involved the identification and evaluation of laboratory conditioning methods and testing protocols considering heat oxidation, moisture, and load that more effectively simulate asphalt mixture aging in the field, and thereby help to prope...
Vector rectangular-shape laser based on reduced graphene oxide interacting with a long fiber taper.
Gao, Lei; Zhu, Tao; Huang, Wei; Zeng, Jing
2014-10-01
A vector dual-wavelength rectangular-shape laser (RSL) based on a long fiber taper deposited with reduced graphene oxide is proposed, where nonlinearity is enhanced due to a large evanescent-field-interacting length and strong field confinement of an 8 mm fiber taper with a waist diameter of 4 μm. Graphene flakes are deposited uniformly on the taper waist with light pressure effect, so this structure guarantees both excellent saturable absorption and high nonlinearity. The RSL with a repetition rate of 7.9 MHz shows fast polarization switching in two orthogonal polarization directions, and temporal and spectral characteristics are investigated.
Influence of nitrogen on magnetic properties of indium oxide
NASA Astrophysics Data System (ADS)
Ashok, Vishal Dev; De, S. K.
2013-07-01
Magnetic properties of indium oxide (In2O3) prepared by the decomposition of indium nitrate/indium hydroxide in the presence of ammonium chloride (NH4Cl) has been investigated. Structural and optical characterizations confirm that nitrogen is incorporated into In2O3. Magnetization has been convoluted to individual diamagnetic paramagnetic and ferromagnetic contributions with varying concentration of NH4Cl. Spin wave with diverging thermal exponent dominates in both field cool and zero field cool magnetizations. Uniaxial anisotropy plays an important role in magnetization as a function of magnetic field at higher concentration of NH4Cl. Avrami analysis indicates the absence of pinning effect in the magnetization process. Ferromagnetism has been interpreted in terms of local moments induced by anion dopant and strong hybridization with host cation.
Influence of gate recess on the electronic characteristics of β-Ga2O3 MOSFETs
NASA Astrophysics Data System (ADS)
Lv, Yuanjie; Mo, Jianghui; Song, Xubo; He, Zezhao; Wang, Yuangang; Tan, Xin; Zhou, Xingye; Gu, Guodong; Guo, Hongyu; Feng, Zhihong
2018-05-01
Gallium oxide (Ga2O3) metal-oxide-semiconductor field-effect transistors (MOSFETs) were fabricated with gate recess depths of 110 nm and 220 nm, respectively. The gate recess was formed by dry plasma etching with Cr metal as the mask. The fabricated devices with a 25-nm HfO2 gate dielectric both showed a low off-state drain current of about 1.8 × 10-10 A/mm. The effects of recess depth on the electronic characteristics of Ga2O3 MOSFETs were investigated. Upon increasing the recess depth from 110 nm to 220 nm, the saturated drain current decreased from 20.7 mA/mm to 2.6 mA/mm, while the threshold voltage moved increased to +3 V. Moreover, the breakdown voltage increased from 122 V to 190 V. This is mainly because the inverted-trapezoidal gate played the role of a gate-field plate, which suppressed the peak electric field close to the gate.
Enhanced and continuous electrostatic carrier doping on the SrTiO3 surface
Eyvazov, A. B.; Inoue, I. H.; Stoliar, P.; Rozenberg, M. J.; Panagopoulos, C.
2013-01-01
Paraelectrical tuning of a charge carrier density as high as 1013 cm−2 in the presence of a high electronic carrier mobility on the delicate surfaces of correlated oxides, is a key to the technological breakthrough of a field effect transistor (FET) utilising the metal-nonmetal transition. Here we introduce the Parylene-C/Ta2O5 hybrid gate insulator and fabricate FET devices on single-crystalline SrTiO3, which has been regarded as a bedrock material for oxide electronics. The gate insulator accumulates up to ~1013cm−2 carriers, while the field-effect mobility is kept at 10 cm2/Vs even at room temperature. Further to the exceptional performance of our devices, the enhanced compatibility of high carrier density and high mobility revealed the mechanism for the long standing puzzle of the distribution of electrostatically doped carriers on the surface of SrTiO3. Namely, the formation and continuous evolution of field domains and current filaments.
Vertical Isolation for Photodiodes in CMOS Imagers
NASA Technical Reports Server (NTRS)
Pain, Bedabrata
2008-01-01
In a proposed improvement in complementary metal oxide/semi conduct - or (CMOS) image detectors, two additional implants in each pixel would effect vertical isolation between the metal oxide/semiconductor field-effect transistors (MOSFETs) and the photodiode of the pixel. This improvement is expected to enable separate optimization of the designs of the photodiode and the MOSFETs so as to optimize their performances independently of each other. The purpose to be served by enabling this separate optimization is to eliminate or vastly reduce diffusion cross-talk, thereby increasing sensitivity, effective spatial resolution, and color fidelity while reducing noise.
Kinetics and pathogenesis of intracellular magnetic nanoparticle cytotoxicity
NASA Astrophysics Data System (ADS)
Giustini, Andrew J.; Gottesman, Rachel E.; Petryk, A. A.; Rauwerdink, A. M.; Hoopes, P. Jack
2011-03-01
Magnetic nanoparticles excited by alternating magnetic fields (AMF) have demonstrated effective tumor-specific hyperthermia. This treatment is effective as a monotherapy as well as a therapeutic adjuvant to chemotherapy and radiation. Iron oxide nanoparticles have been shown, so far, to be non-toxic, as are the exciting AMF fields when used at moderate levels. Although higher levels of AMF can be more effective, depending on the type of iron oxide nanoparticles use, these higher field strengths and/or frequencies can induce normal tissue heating and toxicity. Thus, the use of nanoparticles exhibiting significant heating at low AMF strengths and frequencies is desirable. Our preliminary experiments have shown that the aggregation of magnetic nanoparticles within tumor cells improves their heating effect and cytotoxicity per nanoparticle. We have used transmission electron microscopy to track the endocytosis of nanoparticles into tumor cells (both breast adenocarcinoma (MTG-B) and acute monocytic leukemia (THP-1) cells). Our preliminary results suggest that nanoparticles internalized into tumor cells demonstrate greater cytotoxicity when excited with AMF than an equivalent heat dose from excited external nanoparticles or cells exposed to a hot water bath. We have also demonstrated that this increase in SAR caused by aggregation improves the cytotoxicity of nanoparticle hyperthermia therapy in vitro.
NASA Astrophysics Data System (ADS)
Anvarifard, Mohammad K.; Orouji, Ali A.
2017-11-01
This article has related a particular knowledge in order to reduce short channel effects (SCEs) in nano-devices based on silicon-on-insulator (SOI) MOSFETs. The device under study has been designed in 22 nm node technology with embedding Si3N4 extra oxide as a stopping layer of electric field and a useful heatsink for transferring generated heat. Two important subjects (DC characteristics and RF characteristics) have been investigated, simultaneously. Stopping electric field extension and enhancement of channel thermal conduction are introduced as an entrance gateway for this work so that improve the electrical characteristics, eventually. The inserted extra oxide made by the Si3N4 material has a vital impact on the modification of the electrical and thermal features in the proposed device. An immense comparison between the proposed SOI and conventional SOI showed that the proposed structure has higher electrical and thermal proficiency than the conventional structure in terms of main parameters such as short channel effects (SCEs), leakage current, floating body effect (FBE), self-heating effect (SHE), voltage gain, ratio of On-current to Off- current, transconductance, output conductance, minimum noise figure and power gain.
NASA Astrophysics Data System (ADS)
Longbiao, Li
2018-02-01
In this paper, the strength degradation of non-oxide and oxide/oxide fiber-reinforced ceramic-matrix composites (CMCs) subjected to cyclic loading at elevated temperatures in oxidative environments has been investigated. Considering damage mechanisms of matrix cracking, interface debonding, interface wear, interface oxidation and fibers fracture, the composite residual strength model has been established by combining the micro stress field of the damaged composites, the damage models, and the fracture criterion. The relationships between the composite residual strength, fatigue peak stress, interface debonding, fibers failure and cycle number have been established. The effects of peak stress level, initial and steady-state interface shear stress, fiber Weibull modulus and fiber strength, and testing temperature on the degradation of composite strength and fibers failure have been investigated. The evolution of residual strength versus cycle number curves of non-oxide and oxide/oxide CMCs under cyclic loading at elevated temperatures in oxidative environments have been predicted.
Zan, Hsiao-Wen; Yeh, Chun-Cheng; Meng, Hsin-Fei; Tsai, Chuang-Chuang; Chen, Liang-Hao
2012-07-10
An effective approach to reduce defects and increase electron mobility in a-IGZO thin-film transistors (a-IGZO TFTs) is introduced. A strong reduction layer, calcium, is capped onto the back interface of a-IGZO TFT. After calcium capping, the effective electron mobility of a-IGZO TFT increases from 12 cm(2) V(-1) s(-1) to 160 cm(2) V(-1) s(-1). This high mobility is a new record, which implies that the proposed defect reduction effect is key to improve electron transport in oxide semiconductor materials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electric field cycling behavior of ferroelectric hafnium oxide.
Schenk, Tony; Schroeder, Uwe; Pešić, Milan; Popovici, Mihaela; Pershin, Yuriy V; Mikolajick, Thomas
2014-11-26
HfO2 based ferroelectrics are lead-free, simple binary oxides with nonperovskite structure and low permittivity. They just recently started attracting attention of theoretical groups in the fields of ferroelectric memories and electrostatic supercapacitors. A modified approach of harmonic analysis is introduced for temperature-dependent studies of the field cycling behavior and the underlying defect mechanisms. Activation energies for wake-up and fatigue are extracted. Notably, all values are about 100 meV, which is 1 order of magnitude lower than for conventional ferroelectrics like lead zirconate titanate (PZT). This difference is mainly atttributed to the one to two orders of magnitude higher electric fields used for cycling and to the different surface to volume ratios between the 10 nm thin films in this study and the bulk samples of former measurements or simulations. Moreover, a new, analog-like split-up effect of switching peaks by field cycling is discovered and is explained by a network model based on memcapacitive behavior as a result of defect redistribution.
Spontaneous polarization induced electric field in zinc oxide nanowires and nanostars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farid, S., E-mail: sfarid3@uic.edu; Choi, M.; Datta, D.
We report on the detection mechanism of spontaneous polarization using electrostatic force microscopy in zinc oxide nanowires and nanostars grown by vapor-liquid-solid technique. Optical and structural properties are investigated in detail to understand the complex ZnO nanostructures comprehensively. Calculations are carried out to estimate the electric field from the change in interleave amplitude induced by the electrostatic force due to the spontaneous polarization effects. Attraction of the probe between the tip and the sample varies for different structures with a stronger attraction for nanostars as compared to nanowires. Strength of electric field is dependent on the orientation of nanowires andmore » nanostars c-axis with measured magnitude of electric field to be ∼10{sup 7 }V/m and 10{sup 8 }V/m respectively. This technique presents a unique detection mechanism of built-in spontaneous polarization and electric field from polar ZnO nanowires with applications in voltage gated ion channels, nano-bio interfaces, optoelectronic and photonic devices.« less
2007-11-29
films, (3) low field effective linewidth in polycrystalline ferrites, (4) Fermi-Pasta-Ulam recurrence for spin wave solitons in yttrium iron garnet...Fermi- Pasta-Ulam recurrence for spin wave solitons in yttrium iron garnet (YIG) film strips in a feedback ring system, (5) the Hamiltonian...XRD data. point in field was so small that field modulation and lock -in The FMR field is taken at the peak loss point in the (b) detection methods
Tharmalingam, Sujeenthar; Sreetharan, Shayenthiran; Kulesza, Adomas V; Boreham, Douglas R; Tai, T C
2017-10-01
Ionizing radiation exposure from medical diagnostic imaging has greatly increased over the last few decades. Approximately 80% of patients who undergo medical imaging are exposed to low-dose ionizing radiation (LDIR). Although there is widespread consensus regarding the harmful effects of high doses of radiation, the biological effects of low-linear energy transfer (LET) LDIR is not well understood. LDIR is known to promote oxidative stress, however, these levels may not be large enough to result in genomic mutations. There is emerging evidence that oxidative stress causes heritable modifications via epigenetic mechanisms (DNA methylation, histone modification, noncoding RNA regulation). These epigenetic modifications result in permanent cellular transformations without altering the underlying DNA nucleotide sequence. This review summarizes the major concepts in the field of epigenetics with a focus on the effects of low-LET LDIR (<100 mGy) and oxidative stress on epigenetic gene modification. In this review, we show evidence that suggests that LDIR-induced oxidative stress provides a mechanistic link between LDIR and epigenetic gene regulation. We also discuss the potential implication of LDIR exposure during pregnancy where intrauterine fetal development is highly susceptible to oxidative stress-induced epigenetic programing.
Scalable ferroelectric MOS capacitors comprised of single crystalline SrZrxTi1-xO3 on Ge.
NASA Astrophysics Data System (ADS)
Moghadam, Reza; Xiao, Z.-Y.; Ahmadi-Majlan, K.; Grimley, E.; Ong, P. V.; Lebeau, J. M.; Chambers, S. A.; Hong, X.; Sushko, P.; Ngai, J. H.
The epitaxial growth of multifunctional oxides on semiconductors has opened a pathway to introduce new functionalities to semiconductor device technologies. In particular, ferroelectric materials integrated on semiconductors could lead to field-effect devices that require very little power to operate, or that possess both logic and memory functionalities. The development of metal-oxide-semiconductor (MOS) capacitors in which the polarization of a ferroelectric gate is coupled to the surface potential of a semiconducting channel is essential in order to realize such field-effect devices. Here we demonstrate that scalable, ferroelectric MOS capacitors can be realized using single crystalline SrZrxTi1-xO3 (x = 0.7) that has been epitaxially grown on Ge. Single crystalline SrZrxTi1-xO3 exhibits characteristics that are ideal for a ferroelectric gate material, namely, a type-I band offset with respect to Ge, large coercive fields and polarization that can be enhanced with electric field. The latter characteristic stems from the relaxor nature of SrZrxTi1-xO3. These properties enable MOS capacitors with 5 nm thick SrZrxTi1-xO3 layers to exhibit a nearly 2 V wide hysteretic window in the capacitance-voltage characteristics. The realization of ferroelectric MOS capacitors with technologically relevant gate thicknesses opens the pathway to practical field effect devices. NSF DMR 1508530.
Mehta, Vineet; Parashar, Arun; Udayabanu, Malairaman
2017-03-15
It is now evident that chronic stress is associated with anxiety, depression and cognitive dysfunction and very few studies have focused on identifying possible methods to prevent these stress-induced disorders. Previously, we identified abundance of quercetin in Urtica dioica extract, which efficiently attenuated stress related complications. Therefore, current study was designed to investigate the effect of quercetin on chronic unpredicted stress (CUS) induced behavioral dysfunction, oxidative stress and neuroinflammation in the mouse hippocampus. Animals were subjected to unpredicted stress for 21days, during which 30mg/kg quercetin was orally administered to them. Effect of CUS and quercetin treatment on animal behavior was assessed between day 22-26. Afterward, the hippocampus was processed to evaluate neuronal damage, oxidative and inflammatory stress. Results revealed that stressed animals were highly anxious (Elevated Plus Maze and Open Field), showed depressive-like behavior (sucrose preference task), performed poorly in short-term and long-term associative memory task (passive avoidance step-through task) and displayed reduced locomotion (open field). Quercetin alleviated behavioral dysfunction in chronically stressed animals. Compared to CUS, quercetin treatment significantly reduced anxiety, attenuated depression, improved cognitive dysfunction and normalized locomotor activity. Further, CUS elevated the levels of oxidative stress markers (TBARS, nitric oxide), lowered antioxidants (total thiol, catalase), enhanced expression of pro-inflammatory cytokines (IL-6, TNF-α, IL-1β and COX-2) in the hippocampus and damaged hippocampal neurons. Quercetin treatment significantly lowered oxidative and inflammatory stress and prevented neural damage. In conclusion, quercetin can efficiently prevent stress induced neurological complications by rescuing brain from oxidative and inflammatory stress. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sawada, Kazuya; Shimomura, Naoki; Doi, Masaaki; Sahashi, Masashi
2010-05-01
Exchange bias from antiferromagnetic (AFM) oxides with a magnetoelectric (ME) effect has been studied for controlling ferromagnetic (FM) magnetizations by an applying electric field. However, thick ME oxides are needed for realizing the electrically controlled exchange biasing. Therefore, in this study the temperature dependencies of the training effect for the Cr2O3-nano-oxide-layer (NOL) are investigated for confirming the ME effect of the Cr2O3-NOL. The anomalous temperature tendencies of system dependent constant for exchange bias and magnetoresistance (MR), κHex and κMR, were observed, which are probably originated from the ME effect of the Cr2O3-NOL because (1) these anomalous temperature tendencies could not be obtained in the CoO-NOL spin valve and (2) the κHex and κMR are defined as the strength of the coupling between FM and AFM spins. It is remarkable result for us to confirm the possibility of the ME effect from the ultrathin Cr2O3 layer (less than 1 nm) because the ME effect was observed in only thick ME materials.
NASA Astrophysics Data System (ADS)
Syafiq Zainol Abidin, Azrul; Rahim, Ruslinda Abdul; Huan, Chow Yong; Maidin, Nur Nasyifa Mohd; Atiqah Ahmad, Nurul; Hashwan, Saeed S. Ba; Faudzi, Fatin Nabilah Mohd; Hong, Voon Chun
2018-03-01
Aptamer are artificially produce bioreceptor that has been developed to bind with various target biomolecules such as ion, cells, protein and small molecules. In this research, an aptamer concentration of 0.5 nM, 1 nM, 5 nM, 10 nM, and 50 nM were immobilized on reduced graphene oxide (rGO) integrated with field effect transistor (FET) respectively to study the effect of aptamer concentration toward rGO surface for stable biosensing platform. The 0.5 nM concentration of aptamer shows the highest current result of 84.3 µA at 1 V applied through the source and drain. After immobilized with aminated aptamer, the conductivity shows significant reduction due to the formation of amide bond on rGO surface between aminated aptamer and carboxyl group on rGO. The electrical performance of FET integrated with rGO shows stable electrical performance suitable to be used in the biosensing application.
Zhang, Kexiong; Sumiya, Masatomo; Liao, Meiyong; Koide, Yasuo; Sang, Liwen
2016-01-01
The concept of p-channel InGaN/GaN heterostructure field effect transistor (FET) using a two-dimensional hole gas (2DHG) induced by polarization effect is demonstrated. The existence of 2DHG near the lower interface of InGaN/GaN heterostructure is verified by theoretical simulation and capacitance-voltage profiling. The metal-oxide-semiconductor FET (MOSFET) with Al2O3 gate dielectric shows a drain-source current density of 0.51 mA/mm at the gate voltage of −2 V and drain bias of −15 V, an ON/OFF ratio of two orders of magnitude and effective hole mobility of 10 cm2/Vs at room temperature. The normal operation of MOSFET without freeze-out at 8 K further proves that the p-channel behavior is originated from the polarization-induced 2DHG. PMID:27021054
Moon, In Kyu; Ki, Bugeun; Yoon, Seonno; Oh, Jungwoo
2016-01-01
Lightweight, simple and flexible self-powered photodetectors are urgently required for the development and application of advanced optical systems for the future of wearable electronic technology. Here, using a low-temperature reduction process, we report a chemical approach for producing freestanding monolithic reduced graphene oxide papers with different gradients of the carbon/oxygen concentration ratio. We also demonstrate a novel type of freestanding monolithic reduced graphene oxide self-powered photodetector based on a symmetrical metal–semiconductor–metal structure. Upon illumination by a 633-nm continuous wave laser, the lateral photovoltage is observed to vary linfearly with the laser position between two electrodes on the reduced graphene oxide surface. This result may suggest that the lateral photovoltaic effect in the reduced graphene oxide film originates from the built-in electric field by the combination of both the photothermal electric effect and the gradient of the oxygen-to-carbon composition. These results represent substantial progress toward novel, chemically synthesized graphene-based photosensors and suggest one-step integration of graphene-based optoelectronics in the future. PMID:27634110
Hafnium transistor design for neural interfacing.
Parent, David W; Basham, Eric J
2008-01-01
A design methodology is presented that uses the EKV model and the g(m)/I(D) biasing technique to design hafnium oxide field effect transistors that are suitable for neural recording circuitry. The DC gain of a common source amplifier is correlated to the structural properties of a Field Effect Transistor (FET) and a Metal Insulator Semiconductor (MIS) capacitor. This approach allows a transistor designer to use a design flow that starts with simple and intuitive 1-D equations for gain that can be verified in 1-D MIS capacitor TCAD simulations, before final TCAD process verification of transistor properties. The DC gain of a common source amplifier is optimized by using fast 1-D simulations and using slower, complex 2-D simulations only for verification. The 1-D equations are used to show that the increased dielectric constant of hafnium oxide allows a higher DC gain for a given oxide thickness. An additional benefit is that the MIS capacitor can be employed to test additional performance parameters important to an open gate transistor such as dielectric stability and ionic penetration.
NASA Astrophysics Data System (ADS)
Maitra, Kingsuk; Frank, Martin M.; Narayanan, Vijay; Misra, Veena; Cartier, Eduard A.
2007-12-01
We report low temperature (40-300 K) electron mobility measurements on aggressively scaled [equivalent oxide thickness (EOT)=1 nm] n-channel metal-oxide-semiconductor field effect transistors (nMOSFETs) with HfO2 gate dielectrics and metal gate electrodes (TiN). A comparison is made with conventional nMOSFETs containing HfO2 with polycrystalline Si (poly-Si) gate electrodes. No substantial change in the temperature acceleration factor is observed when poly-Si is replaced with a metal gate, showing that soft optical phonons are not significantly screened by metal gates. A qualitative argument based on an analogy between remote phonon scattering and high-resolution electron energy-loss spectroscopy (HREELS) is provided to explain the underlying physics of the observed phenomenon. It is also shown that soft optical phonon scattering is strongly damped by thin SiO2 interface layers, such that room temperature electron mobility values at EOT=1 nm become competitive with values measured in nMOSFETs with SiON gate dielectrics used in current high performance processors.
NASA Astrophysics Data System (ADS)
Held, Martin; Schießl, Stefan P.; Miehler, Dominik; Gannott, Florentina; Zaumseil, Jana
2015-08-01
Transistors for future flexible organic light-emitting diode (OLED) display backplanes should operate at low voltages and be able to sustain high currents over long times without degradation. Hence, high capacitance dielectrics with low surface trap densities are required that are compatible with solution-processable high-mobility semiconductors. Here, we combine poly(methyl methacrylate) (PMMA) and atomic layer deposition hafnium oxide (HfOx) into a bilayer hybrid dielectric for field-effect transistors with a donor-acceptor polymer (DPPT-TT) or single-walled carbon nanotubes (SWNTs) as the semiconductor and demonstrate substantially improved device performances for both. The ultra-thin PMMA layer ensures a low density of trap states at the semiconductor-dielectric interface while the metal oxide layer provides high capacitance, low gate leakage and superior barrier properties. Transistors with these thin (≤70 nm), high capacitance (100-300 nF/cm2) hybrid dielectrics enable low operating voltages (<5 V), balanced charge carrier mobilities and low threshold voltages. Moreover, the hybrid layers substantially improve the bias stress stability of the transistors compared to those with pure PMMA and HfOx dielectrics.
Memristive device based on a depletion-type SONOS field effect transistor
NASA Astrophysics Data System (ADS)
Himmel, N.; Ziegler, M.; Mähne, H.; Thiem, S.; Winterfeld, H.; Kohlstedt, H.
2017-06-01
State-of-the-art SONOS (silicon-oxide-nitride-oxide-polysilicon) field effect transistors were operated in a memristive switching mode. The circuit design is a variation of the MemFlash concept and the particular properties of depletion type SONOS-transistors were taken into account. The transistor was externally wired with a resistively shunted pn-diode. Experimental current-voltage curves show analog bipolar switching characteristics within a bias voltage range of ±10 V, exhibiting a pronounced asymmetric hysteresis loop. The experimental data are confirmed by SPICE simulations. The underlying memristive mechanism is purely electronic, which eliminates an initial forming step of the as-fabricated cells. This fact, together with reasonable design flexibility, in particular to adjust the maximum R ON/R OFF ratio, makes these cells attractive for neuromorphic applications. The relative large set and reset voltage around ±10 V might be decreased by using thinner gate-oxides. The all-electric operation principle, in combination with an established silicon manufacturing process of SONOS devices at the Semiconductor Foundry X-FAB, promise reliable operation, low parameter spread and high integration density.
Wan, Qi; Yao, Qiang; Duan, Lei; Li, Xinghua; Zhang, Lei; Hao, Jiming
2018-03-06
This paper discussed the field test results of mercury oxidation activities over vanadium and cerium based catalysts in both coal-fired circulating fluidized bed boiler (CFBB) and chain grate boiler (CGB) flue gases. The characterizations of the catalysts and effects of flue gas components, specifically the particulate matter (PM) species, were also discussed. The catalytic performance results indicated that both catalysts exhibited mercury oxidation preference in CGB flue gas rather than in CFBB flue gas. Flue gas component studies before and after dust removal equipment implied that the mercury oxidation was well related to PM, together with gaseous components such as NO, SO 2 , and NH 3 . Further investigations demonstrated a negative PM concentration-induced effect on the mercury oxidation activity in the flue gases before the dust removal, which was attributed to the surface coverage by the large amount of PM. In addition, the PM concentrations in the flue gases after the dust removal failed in determining the mercury oxidation efficiency, wherein the presence of different chemical species in PM, such as elemental carbon (EC), organic carbon (OC) and alkali (earth) metals (Na, Mg, K, and Ca) in the flue gases dominated the catalytic oxidation of mercury.
Theory and Device Modeling for Nano-Structured Transistor Channels
2011-06-01
zinc oxide ( ZnO ) thin film transistors ( TFTs ) that contain nanocrystalline grains on the order of ~20nm. The authors of ref. 1 present results...problem in order to determine the threshold voltage. 15. SUBJECT TERMS nano-structured transistor , mesoscopic, zinc oxide , ZnO , field-effect...and R. Neidhard, “Microwave ZnO Thin - Film Transistors ”, IEEE Electron Dev. Lett. 29, 1024 (2008); doi: 10.1109/LED.2008.2001635.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasparov, V. A., E-mail: vgasparo@issp.ac.r
Experimental data are presented on the superconducting and electronic properties of iron-based high-temperature superconductors in the normal and superconducting states. The following topics are discussed: lattice structure; structure of magnetic vortices; magnetic penetration depth; Fermi surface; isotope effect; and critical magnetic fields both in oxide compounds of 1111 type and oxide-free compounds of 122, 111, and 011 types as a function of the doping level, temperature, and external pressure.
Effect of Pulsed Electric Field on Membrane Lipids and Oxidative Injury of Salmonella typhimurium
Yun, Ou; Zeng, Xin-An; Brennan, Charles S.; Han, Zhong
2016-01-01
Salmonella typhimurium cells were subjected to pulsed electric field (PEF) treatment at 25 kV/cm for 0–4 ms to investigate the effect of PEF on the cytoplasmic membrane lipids and oxidative injury of cells. Results indicated that PEF treatment induced a decrease of membrane fluidity of Salmonella typhimurium (S. typhimuriumi), possibly due to the alterations of fatty acid biosynthesis-associated gene expressions (down-regulation of cfa and fabA gene expressions and the up-regulation of fabD gene expression), which, in turn, modified the composition of membrane lipid (decrease in the content ratio of unsaturated fatty acids to saturated fatty acids). In addition, oxidative injury induced by PEF treatment was associated with an increase in the content of malondialdehyde. The up-regulation of cytochrome bo oxidase gene expressions (cyoA, cyoB, and cyoC) indicated that membrane damage was induced by PEF treatment, which was related to the repairing mechanism of alleviating the oxidative injury caused by PEF treatment. Based on these results, we achieved better understanding of microbial injury induced by PEF, suggesting that micro-organisms tend to decrease membrane fluidity in response to PEF treatment and, thus, a greater membrane fluidity might improve the efficiency of PEF treatment to inactivate micro-organisms. PMID:27556460
NASA Astrophysics Data System (ADS)
Chuan, Lee Te; Rathi, Muhammad Fareez Mohamad; Abidin, Muhamad Yusuf Zainal; Abdullah, Hasan Zuhudi; Idris, Maizlinda Izwana
2015-07-01
Anodic oxidation is a surface modification method which combines electric field driven metal and oxygen ion diffusion for formation of oxide layer on the anode surface. This method has been widely used to modify the surface morphology of biomaterial especially titanium. This study aimed to investigate the effect of applied voltage on titanium. Specifically, the titanium foil was anodised in mixture of β-glycerophosphate disodium salt pentahydrate (β-GP) and calcium acetate monohydrate (CA) with different applied voltage (50-350 V), electrolyte concentration (0.04 M β-GP + 0.4 M CA), anodising time (10minutes) and current density (50 and 70 mA.cm-2) at room temperature. Surface oxide properties of anodised titanium were characterised by digital single-lens reflex camera (DSLR camera), field emission scanning electron microscope (FESEM) and atomic force microscopy (AFM). At lower applied voltage (≤150 V), surface of titanium foils were relatively smooth. With increasing applied voltage (≥250 V), the oxide layer became more porous and donut-shaped pores were formed on the surface of titanium foils. The AFM results indicated that the surface roughness of anodised titanium increases with increasing of applied voltage. The porous and rough surface is able to promote the osseointegration and reduce the suffering time of patient.
NASA Astrophysics Data System (ADS)
Baldassarre, Francesca; Cacciola, Matteo; Ciccarella, Giuseppe
2015-09-01
Iron oxide nanoparticles are the most used magnetic nanoparticles in biomedical and biotechnological field because of their nontoxicity respect to the other metals. The investigation of iron oxide nanoparticles behaviour in aqueous environment is important for the biological applications in terms of polydispersity, mobility, cellular uptake and response to the external magnetic field. Iron oxide nanoparticles tend to agglomerate in aqueous solutions; thus, the stabilisation and aggregation could be modified tuning the colloids physical proprieties. Surfactants or polymers are often used to avoid agglomeration and increase nanoparticles stability. We have modelled and synthesised iron oxide nanoparticles through a co-precipitation method, in order to study the influence of surfactants and coatings on the aggregation state. Thus, we compared experimental results to simulation model data. The change of Z-potential and the clusters size were determined by Dynamic Light Scattering. We developed a suitable numerical model to predict the flocculation. The effects of Volume Mean Diameter and fractal dimension were explored in the model. We obtained the trend of these parameters tuning the Z-potential. These curves matched with the experimental results and confirmed the goodness of the model. Subsequently, we exploited the model to study the influence of nanoparticles aggregation and stability by Z-potential and external magnetic field. The highest Z-potential is reached up with a small external magnetic influence, a small aggregation and then a high suspension stability. Thus, we obtained a predictive model of Iron oxide nanoparticles flocculation that will be exploited for the nanoparticles engineering and experimental setup of bioassays.
Polarographic carbon dioxide transducer amplifier
NASA Technical Reports Server (NTRS)
Stillman, G.
1971-01-01
Electronic amplifier contains matched pair of metal oxide semiconductor field effect transistor devices which have high input impedance and long-term stability. Thermistor in feedback loop provides temperature compensation for large drifts in the sensor.
NASA Astrophysics Data System (ADS)
Hayama, K.; Ohyama, H.; Simoen, E.; Rafí, J. M.; Mercha, A.; Claeys, C.
2004-04-01
The degradation of the electrical properties of deep submicron metal-oxide-semiconductor field-effect transistors (MOSFETs) by 2 MeV electron irradiation at high temperatures was studied. The irradiation temperatures were 30, 100, 150 and 200 °C, and the fluence was fixed at 1015e/cm2. For most experimental conditions, the threshold voltage (VT) is observed to reduce in absolute value both for n- and p-MOSFETs. This reduction is most pronounced at 100 °C, as at this irradiation temperature, the radiation-induced density of interface traps is highest. It is proposed that hydrogen neutralization of the dopants in the substrate plays a key role, whereby the hydrogen is released from the gate by the 2 MeV electrons.
Wydra, Robert J.; Rychahou, Piotr G.; Evers, B. Mark; Anderson, Kimberly W.; Dziubla, Thomas D.; Hilt, J. Zach
2015-01-01
Monosaccharide coated iron oxide nanoparticles were developed to selectively target colon cancer cell lines for magnetically mediated energy delivery therapy. The nanoparticles were prepared using a coupling reaction to attach the glucose functional group to the iron oxide core, and functionality was confirmed with physicochemical characterization techniques. The targeted nanoparticles were internalized into CT26 cells at a greater extent than non-targeted nanoparticles, and the nanoparticles were shown to be localized within lysosomes. Cells with internalized nanoparticles were exposed to an AMF to determine the potential to delivery therapy. Cellular ROS generation and apoptotic cell death was enhanced with field exposure. The nanoparticle coatings inhibit the Fenton-like surface generation of ROS suggesting a thermal or mechanical effect is more likely the source of the intracellular effect. PMID:26143604
Zhang, Yuquan; Zheng, Yuan; Fernandez-Rodriguez, E; Yang, Chunxia; Zhu, Yantao; Liu, Huiwen; Jiang, Hao
The operating condition of a submerged propeller has a significant impact on flow field and energy consumption of the oxidation ditch. An experimentally validated numerical model, based on the computational fluid dynamics (CFD) tool, is presented to optimize the operating condition by considering two important factors: flow field and energy consumption. Performance demonstration and comparison of different operating conditions were carried out in a Carrousel oxidation ditch at the Yingtang wastewater treatment plants in Anhui Province, China. By adjusting the position and rotating speed together with the number of submerged propellers, problems of sludge deposit and the low velocity in the bend could be solved in a most cost-effective way. The simulated results were acceptable compared with the experimental data and the following results were obtained. The CFD model characterized flow pattern and energy consumption in the full-scale oxidation ditch. The predicted flow field values were within -1.28 ± 7.14% difference from the measured values. By determining three sets of propellers under the rotating speed of 6.50 rad/s with one located 5 m from the first curved wall, after numerical simulation and actual measurement, not only the least power density but also the requirement of the flow pattern could be realized.
In situ synthesis and catalytic application of reduced graphene oxide supported cobalt nanowires
NASA Astrophysics Data System (ADS)
Xu, Zhiqiang; Long, Qin; Deng, Yi; Liao, Li
2018-05-01
Controlled synthesis of magnetic nanocomposite with outstanding catalytic performances is a promising strategy in catalyst industry. We proposed a novel concept for fabrication of reduced graphene oxide-supported cobalt nanowires (RGO/Co-NWs) nanocomposite as high-efficient magnetic catalyst. Unlike the majority of experiments necessitating harsh synthesis conditions such as high-pressure, high-temperature and expensive template, here the RGO/Co-NWs were successfully prepared in aqueous solution under mild conditions with the assistance of external magnetic field. The synthetic process was facile and external magnetic force was adopted to induce the unidirectional self-assembly of cobalt crystals on graphene oxide to form RGO/Co-NWs. The possible formation mechanism laid on the fact that the dipole magnetic moments of the nanoparticles were aligned along the magnetic induction lines with the external magnetic field direction resulting in the formation of nanowires elongating in the direction of the magnetization axis. Simultaneously, a series of controlled reactions were conducted to illuminate the effect of graphene oxide, external magnetic field and PVP on the morphology and size of RGO/Co-NWs in the present approach. More importantly, the nanocomposite exhibited a high catalytic performance towards ammonia borane. Hence the novel nanocomposite holds a great potential for technological applications such as catalyst industry.
Lee, Hyeonju; Zhang, Xue; Hwang, Jaeeun; Park, Jaehoon
2016-10-19
We report on the morphological influence of solution-processed zinc oxide (ZnO) semiconductor films on the electrical characteristics of ZnO thin-film transistors (TFTs). Different film morphologies were produced by controlling the spin-coating condition of a precursor solution, and the ZnO films were analyzed using atomic force microscopy, X-ray diffraction, X-ray photoemission spectroscopy, and Hall measurement. It is shown that ZnO TFTs have a superior performance in terms of the threshold voltage and field-effect mobility, when ZnO crystallites are more densely packed in the film. This is attributed to lower electrical resistivity and higher Hall mobility in a densely packed ZnO film. In the results of consecutive TFT operations, a positive shift in the threshold voltage occurred irrespective of the film morphology, but the morphological influence on the variation in the field-effect mobility was evident. The field-effect mobility in TFTs having a densely packed ZnO film increased continuously during consecutive TFT operations, which is in contrast to the mobility decrease observed in the less packed case. An analysis of the field-effect conductivities ascribes these results to the difference in energetic traps, which originate from structural defects in the ZnO films. Consequently, the morphological influence of solution-processed ZnO films on the TFT performance can be understood through the packing property of ZnO crystallites.
Lee, Hyeonju; Zhang, Xue; Hwang, Jaeeun; Park, Jaehoon
2016-01-01
We report on the morphological influence of solution-processed zinc oxide (ZnO) semiconductor films on the electrical characteristics of ZnO thin-film transistors (TFTs). Different film morphologies were produced by controlling the spin-coating condition of a precursor solution, and the ZnO films were analyzed using atomic force microscopy, X-ray diffraction, X-ray photoemission spectroscopy, and Hall measurement. It is shown that ZnO TFTs have a superior performance in terms of the threshold voltage and field-effect mobility, when ZnO crystallites are more densely packed in the film. This is attributed to lower electrical resistivity and higher Hall mobility in a densely packed ZnO film. In the results of consecutive TFT operations, a positive shift in the threshold voltage occurred irrespective of the film morphology, but the morphological influence on the variation in the field-effect mobility was evident. The field-effect mobility in TFTs having a densely packed ZnO film increased continuously during consecutive TFT operations, which is in contrast to the mobility decrease observed in the less packed case. An analysis of the field-effect conductivities ascribes these results to the difference in energetic traps, which originate from structural defects in the ZnO films. Consequently, the morphological influence of solution-processed ZnO films on the TFT performance can be understood through the packing property of ZnO crystallites. PMID:28773973
Xuan, Jian-yong; Luo, Zhong-yang; Zhao, Lei; Jiang, Jian-ping; Gao, Xiang
2012-05-01
The spectrum of excited N2 molecules and ions was measured by optical emission spectroscopy in pulsed corona discharge with a wire-to-plate reactor. The ratio of emission intensities emitted by the excited molecules and ions of N2 was compared with numerical simulation to determine average electron energies and electric field distributions. Within 2 cm distance from wire electrode in horizontal and vertical directions, electric field and average electron energies appear to be in the ranges of 11.05 19.6 MV x m(-1) and 10.10-13.92 eV respectively; as the distance increases, average electron energies and electric field show a similar trend: first decrease and then increase. Chemically active species, such as OH, O and O3, can be generated through the energetic electron collisions with H2O and O2 directly or indirectly. For the NO oxidation, there is no coexistence of NO and O3, whereas there is a coexistence of NO and OH. NO is oxidized by O3 or O more efficiently than by OH radical.
Nitric Oxide Homeostasis in Neurodegenerative Diseases.
Hannibal, Luciana
2016-01-01
The role of nitric oxide in the pathogenesis and progression of neurodegenerative illnesses such as Parkinson's and Alzheimer's diseases has become prominent over the years. Increased activity of the enzymes that produce reactive oxygen species, decreased activity of antioxidant enzymes and imbalances in glutathione pools mediate and mark the neurodegenerative process. Much of the oxidative damage of proteins is brought about by the overproduction of nitric oxide by nitric oxide synthases (NOS) and its subsequent reactivity with reactive oxygen species. Proteomic methods have advanced the field tremendously, by facilitating the quantitative assessment of differential expression patterns and oxidative modifications of proteins and alongside, mapping their non-canonical functions. As a signaling molecule involved in multiple biochemical pathways, the level of nitric oxide is subject to tight regulation. All three NOS isoforms display aberrant patterns of expression in Alzheimer's disease, altering intracellular signaling and routing oxidative stress in directions that are uncompounded. This review discusses the prime factors that control nitric oxide biosynthesis, reactivity footprints and ensuing effects in the development of neurodegenerative diseases.
Chen, Chih-Jung; Chiang, Ray-Kuang; Kamali, Saeed; Wang, Sue-Lein
2015-09-14
Cobalt-doped wüstite (CWT), Co0.33Fe0.67O, nanoparticles were prepared via the thermal decomposition of CoFe2-oleate complexes in organic solvents. A controllable oxidation process was then performed to obtain Co0.33Fe0.67O/CoFe2O4 core-shell structures with different core-to-shell volume ratios and exchange bias properties. The oxidized core-shell samples with a ∼4 nm CoFe2O4 shell showed good resistance to oxygen transmission. Thus, it is inferred that the cobalt ferrite shell provides a better oxidation barrier performance than magnetite in the un-doped case. The hysteresis loops of the oxidized 19 nm samples exhibited a high exchange bias field (H(E)), an enhanced coercivity field (H(C)), and a pronounced vertical shift, thus indicating the presence of a strong exchange bias coupling effect. More importantly, the onset temperature of H(E) was found to be higher than 200 K, which suggests that cobalt doping increases the Néel temperature (T(N)) of the CWT core. In general, the results show that the homogeneous dispersion of Co in iron precursors improves the stability of the final CWT nanoparticles. Moreover, the CoFe2O4 shells formed following oxidation increase the oxidation resistance of the CWT cores and enhance their anisotropy energy.
Willander, Magnus; Khun, Kimleang; Ibupoto, Zafar Hussain
2014-05-16
The concept of recognition and biofunctionality has attracted increasing interest in the fields of chemistry and material sciences. Advances in the field of nanotechnology for the synthesis of desired metal oxide nanostructures have provided a solid platform for the integration of nanoelectronic devices. These nanoelectronics-based devices have the ability to recognize molecular species of living organisms, and they have created the possibility for advanced chemical sensing functionalities with low limits of detection in the nanomolar range. In this review, various metal oxides, such as ZnO-, CuO-, and NiO-based nanosensors, are described using different methods (receptors) of functionalization for molecular and ion recognition. These functionalized metal oxide surfaces with a specific receptor involve either a complex formation between the receptor and the analyte or an electrostatic interaction during the chemical sensing of analytes. Metal oxide nanostructures are considered revolutionary nanomaterials that have a specific surface for the immobilization of biomolecules with much needed orientation, good conformation and enhanced biological activity which further improve the sensing properties of nanosensors. Metal oxide nanostructures are associated with certain unique optical, electrical and molecular characteristics in addition to unique functionalities and surface charge features which shows attractive platforms for interfacing biorecognition elements with effective transducing properties for signal amplification. There is a great opportunity in the near future for metal oxide nanostructure-based miniaturization and the development of engineering sensor devices.
Solution-Processed Gallium–Tin-Based Oxide Semiconductors for Thin-Film Transistors
Zhang, Xue; Lee, Hyeonju; Kim, Jungwon; Kim, Eui-Jik; Park, Jaehoon
2017-01-01
We investigated the effects of gallium (Ga) and tin (Sn) compositions on the structural and chemical properties of Ga–Sn-mixed (Ga:Sn) oxide films and the electrical properties of Ga:Sn oxide thin-film transistors (TFTs). The thermogravimetric analysis results indicate that solution-processed oxide films can be produced via thermal annealing at 500 °C. The oxygen deficiency ratio in the Ga:Sn oxide film increased from 0.18 (Ga oxide) and 0.30 (Sn oxide) to 0.36, while the X-ray diffraction peaks corresponding to Sn oxide significantly reduced. The Ga:Sn oxide film exhibited smaller grains compared to the nanocrystalline Sn oxide film, while the Ga oxide film exhibited an amorphous morphology. We found that the electrical properties of TFTs significantly improve by mixing Ga and Sn. Here, the optimum weight ratio of the constituents in the mixture of Ga and Sn precursor sols was determined to be 1.0:0.9 (Ga precursor sol:Sn precursor sol) for application in the solution-processed Ga:Sn oxide TFTs. In addition, when the Ga(1.0):Sn(0.9) oxide film was thermally annealed at 900 °C, the field-effect mobility of the TFT was notably enhanced from 0.02 to 1.03 cm2/Vs. Therefore, the mixing concentration ratio and annealing temperature are crucial for the chemical and morphological properties of solution-processed Ga:Sn oxide films and for the TFT performance. PMID:29283408
NASA Astrophysics Data System (ADS)
Seo, Sang-Ho; Seo, Min-Woong; Kong, Jae-Sung; Shin, Jang-Kyoo; Choi, Pyung
2008-11-01
In this paper, a pseudo 2-transistor active pixel sensor (APS) has been designed and fabricated by using an n-well/gate-tied p-channel metal oxide semiconductor field effect transistor (PMOSFET)-type photodetector with built-in transfer gate. The proposed sensor has been fabricated using a 0.35 μm 2-poly 4-metal standard complementary metal oxide semiconductor (CMOS) logic process. The pseudo 2-transistor APS consists of two NMOSFETs and one photodetector which can amplify the generated photocurrent. The area of the pseudo 2-transistor APS is 7.1 × 6.2 μm2. The sensitivity of the proposed pixel is 49 lux/(V·s). By using this pixel, a smaller pixel area and a higher level of sensitivity can be realized when compared with a conventional 3-transistor APS which uses a pn junction photodiode.
Shrivastava, Rupal; Raza, Saimah; Yadav, Abhishek; Kushwaha, Pramod; Flora, Swaran J S
2014-07-01
Nanomaterials are at the leading edge of the rapidly developing field of nanotechnology. However the information regarding toxicity of these nanoparticles on humans and environment is still deficient. The present study investigated the toxic effects of three metal oxide nanoparticles, TiO2, ZnO and Al2O3 on mouse erythrocytes, brain and liver. Male mice were administered a single oral dose of 500 mg/kg of each nanoparticles for 21 consecutive days. The results suggest that exposure to these nano metallic particles produced a significant oxidative stress in erythrocyte, liver and brain as evident from enhanced levels of Reactive Oxygen Species (ROS) and altered antioxidant enzymes activities. A significant increase in dopamine and norepinephrine levels in brain cerebral cortex and increased brain oxidative stress suggest neurotoxic potential of these nanoparticles. Transmission electron microscopic (TEM) analysis indicated the presence of these nanoparticles inside the cytoplasm and nucleus. These changes were also supported by the inhibition of CuZnSOD and MnSOD, considered as important biomarkers of oxidative stress. The toxic effects produced by these nanoparticles were more pronounced in the case of zinc oxide, followed by aluminum oxide and titanium dioxide, respectively. The present results further suggest the involvement of oxidative stress as one of the main mechanisms involved in nanoparticles induced toxic manifestations.
Field demonstration of polymer-amended in situ chemical oxidation (PA-ISCO)
NASA Astrophysics Data System (ADS)
Silva, Jeff A. K.; Crimi, Michelle; Palaia, Thomas; Ko, Saebom; Davenport, Sean
2017-04-01
The methods and results of the first field-scale demonstration of polymer-amended in situ chemical oxidation (PA-ISCO) are presented. The demonstration took place at MCB CAMLEJ (Marine Corps Base, Camp Lejeune) Operable Unit (OU) 15, Site 88, in Camp Lejeune, North Carolina between October and December 2010. PA-ISCO was developed as an alternative treatment approach that utilizes viscosity-modified fluids to improve the in situ delivery and distribution (i.e. sweep-efficiency) of chemical oxidants within texturally heterogeneous contaminated aquifers. The enhanced viscosity of the fluid mitigates the effects of preferential flows, improving sweep-efficiency and enhancing the subsurface contact between the injected oxidant and the target contamination within the treatment zone. The PA-ISCO fluid formulation used in this demonstration included sodium permanganate as oxidant, xanthan gum biopolymer as a shear-thinning viscosifier, and sodium hexametaphosphate (SHMP) as an anti-coagulant. It was the goal of this demonstration to validate the utility of PA-ISCO within a heterogeneous aquifer. An approximate 100% improvement in sweep-efficiency was achieved for the PA-ISCO fluid, as compared to a permanganate-only injection within an adjacent control plot.
Anisotropy and shape of hysteresis loop of frozen suspensions of iron oxide nanoparticles in water
NASA Astrophysics Data System (ADS)
Boekelheide, Zoe; Gruettner, Cordula; Dennis, Cindi
2014-03-01
Colloidal suspensions of nanoparticles in liquids have many uses in biomedical applications. We studied approximately 50 nm diameter iron oxide particles dispersed in H2O for magnetic nanoparticle hyperthermia cancer treatment. Interactions between nanoparticles have been indicated for increasing the heat output under application of an alternating magnetic field, as in hyperthermia. Interactions vary dynamically with an applied field as the nanoparticles reorient and rearrange within the liquid. Therefore, we studied the samples below the liquid freezing point in a range of magnetic field strengths to literally freeze in the effects of interactions. We found that the shape of the magnetic hysteresis loop is squarer (higher anisotropy) when the sample was cooled in a high field, and less square (lower anisotropy) when the sample was cooled in a low or zero field. The cause is most likely the formation of long chains of nanoparticles up to 500 μm, which we observe optically. This increase in anisotropy may indicate improved heating ability for these nanoparticles under an alternating magnetic field.
NASA Astrophysics Data System (ADS)
Park, Yong Min; Kim, Byeong Hee; Seo, Young Ho
2016-06-01
This paper presents a selective aluminum anodization technique for the fabrication of microstructures covered by nanoscale dome structures. It is possible to fabricate bulging microstructures, utilizing the different growth rates of anodic aluminum oxide in non-uniform electric fields, because the growth rate of anodic aluminum oxide depends on the intensity of electric field, or current density. After anodizing under a non-uniform electric field, bulging microstructures covered by nanostructures were fabricated by removing the residual aluminum layer. The non-uniform electric field induced by insulative micropatterns was estimated by computational simulations and verified experimentally. Utilizing computational simulations, the intensity profile of the electric field was calculated according to the ratio of height and width of the insulative micropatterns. To compare computational simulation results and experimental results, insulative micropatterns were fabricated using SU-8 photoresist. The results verified that the shape of the bottom topology of anodic alumina was strongly dependent on the intensity profile of the applied electric field, or current density. The one-step fabrication of nanostructure-covered microstructures can be applied to various fields, such as nano-biochip and nano-optics, owing to its simplicity and cost effectiveness.
NASA Astrophysics Data System (ADS)
Dintcheva, Nadka Tzankova; Arrigo, Rossella; Gambarotti, Cristian; Guenzi, Monica; Carroccio, Sabrina; Cicogna, Francesca; Filippone, Giovanni
2014-05-01
The use of natural antioxidants is an attractive way to formulate nanocomposites with extended durability and with potential applications in bio-medical field. In this work, Vitamin E (VE) in the form of α-tocopherol and Quercetin (Q) are physically immobilized on the outer surface of multi-walled carbon nanotubes (CNTs). Afterward, the CNTs-VE and CNTs-Q are used to formulate thermally stable ultra high molecular weight polyethylene based nanocomposites. The obtained results in the study of the thermo-oxidation behavior suggest a beneficial effect of the natural anti-oxidant carbon nanotubes systems. The unexpected excellent thermo-resistance of the nanocomposites seems to be due to a synergistic effect of the natural anti-oxidant and carbon nanotubes, i.e. strong interaction between CNT surface and anti-oxidant molecules. Particularly, these interactions cause the formation of structural defects onto outer CNT surfaces, which, in turn, increase the CNT radical scavenging activity.
Almeida, Trevor P.; Kasama, Takeshi; Muxworthy, Adrian R.; Williams, Wyn; Nagy, Lesleis; Hansen, Thomas W.; Brown, Paul D.; Dunin-Borkowski, Rafal E.
2014-01-01
Magnetite (Fe3O4) is an important magnetic mineral to Earth scientists, as it carries the dominant magnetic signature in rocks, and the understanding of its magnetic recording fidelity provides a critical tool in the field of palaeomagnetism. However, reliable interpretation of the recording fidelity of Fe3O4 particles is greatly diminished over time by progressive oxidation to less magnetic iron oxides, such as maghemite (γ-Fe2O3), with consequent alteration of remanent magnetization potentially having important geological significance. Here we use the complementary techniques of environmental transmission electron microscopy and off-axis electron holography to induce and visualize the effects of oxidation on the magnetization of individual nanoscale Fe3O4 particles as they transform towards γ-Fe2O3. Magnetic induction maps demonstrate a change in both strength and direction of remanent magnetization within Fe3O4 particles in the size range dominant in rocks, confirming that oxidation can modify the original stored magnetic information. PMID:25300366
Almeida, Trevor P; Kasama, Takeshi; Muxworthy, Adrian R; Williams, Wyn; Nagy, Lesleis; Hansen, Thomas W; Brown, Paul D; Dunin-Borkowski, Rafal E
2014-10-10
Magnetite (Fe3O4) is an important magnetic mineral to Earth scientists, as it carries the dominant magnetic signature in rocks, and the understanding of its magnetic recording fidelity provides a critical tool in the field of palaeomagnetism. However, reliable interpretation of the recording fidelity of Fe3O4 particles is greatly diminished over time by progressive oxidation to less magnetic iron oxides, such as maghemite (γ-Fe2O3), with consequent alteration of remanent magnetization potentially having important geological significance. Here we use the complementary techniques of environmental transmission electron microscopy and off-axis electron holography to induce and visualize the effects of oxidation on the magnetization of individual nanoscale Fe3O4 particles as they transform towards γ-Fe2O3. Magnetic induction maps demonstrate a change in both strength and direction of remanent magnetization within Fe3O4 particles in the size range dominant in rocks, confirming that oxidation can modify the original stored magnetic information.
NASA Astrophysics Data System (ADS)
Luo, Jun-Wei; Li, Shu-Shen; Zunger, Alex
2017-09-01
The electric field manipulation of the Rashba spin-orbit coupling effects provides a route to electrically control spins, constituting the foundation of the field of semiconductor spintronics. In general, the strength of the Rashba effects depends linearly on the applied electric field and is significant only for heavy-atom materials with large intrinsic spin-orbit interaction under high electric fields. Here, we illustrate in 1D semiconductor nanowires an anomalous field dependence of the hole (but not electron) Rashba effect (HRE). (i) At low fields, the strength of the HRE exhibits a steep increase with the field so that even low fields can be used for device switching. (ii) At higher fields, the HRE undergoes a rapid transition to saturation with a giant strength even for light-atom materials such as Si (exceeding 100 meV Å). (iii) The nanowire-size dependence of the saturation HRE is rather weak for light-atom Si, so size fluctuations would have a limited effect; this is a key requirement for scalability of Rashba-field-based spintronic devices. These three features offer Si nanowires as a promising platform for the realization of scalable complementary metal-oxide-semiconductor compatible spintronic devices.
Lee, Chun W; Srivastava, Ravi K; Ghorishi, S Behrooz; Hastings, Thomas W; Stevens, Frank M
2004-12-01
Selective catalytic reduction (SCR) technology increasingly is being applied for controlling emissions of nitrogen oxides (NOx) from coal-fired boilers. Some recent field and pilot studies suggest that the operation of SCR could affect the chemical form of mercury (Hg) in coal combustion flue gases. The speciation of Hg is an important factor influencing the control and environmental fate of Hg emissions from coal combustion. The vanadium and titanium oxides, used commonly in the vanadia-titania SCR catalyst for catalytic NOx reduction, promote the formation of oxidized mercury (Hg2+). The work reported in this paper focuses on the impact of SCR on elemental mercury (Hg0) oxidation. Bench-scale experiments were conducted to investigate Hg0 oxidation in the presence of simulated coal combustion flue gases and under SCR reaction conditions. Flue gas mixtures with different concentrations of hydrogen chloride (HCl) and sulfur dioxide (SO2) for simulating the combustion of bituminous coals and subbituminous coals were tested in these experiments. The effects of HCl and SO2 in the flue gases on Hg0 oxidation under SCR reaction conditions were studied. It was observed that HCl is the most critical flue gas component that causes conversion of Hg0 to Hg2+ under SCR reaction conditions. The importance of HCl for Hg0 oxidation found in the present study provides the scientific basis for the apparent coal-type dependence observed for Hg0 oxidation occurring across the SCR reactors in the field.
NASA Astrophysics Data System (ADS)
Appel, Markus; Frick, Bernhard; Elbert, Johannes; Gallei, Markus; Stühn, Bernd
2015-01-01
The quantum mechanical splitting of states by interaction of a magnetic moment with an external magnetic field is well known, e.g., as Zeeman effect in optical transitions, and is also often seen in magnetic neutron scattering. We report excitations observed in inelastic neutron spectroscopy on the redox-responsive polymer poly(vinylferrocene). They are interpreted as splitting of the electronic ground state in the organometallic ferrocene units attached to the polymer chain where a magnetic moment is created by oxidation. In a second experiment using high resolution neutron backscattering spectroscopy we observe the hyperfine splitting, i.e., interaction of nuclear magnetic moments with external magnetic fields leading to sub-μeV excitations observable in incoherent neutron spin-flip scattering on hydrogen and vanadium nuclei.
2013-01-01
SiOxNy films with a low nitrogen concentration (< 4%) have been prepared on Si substrates at 400°C by atmospheric-pressure plasma oxidation-nitridation process using O2 and N2 as gaseous precursors diluted in He. Interface properties of SiOxNy films have been investigated by analyzing high-frequency and quasistatic capacitance-voltage characteristics of metal-oxide-semiconductor capacitors. It is found that addition of N into the oxide increases both interface state density (Dit) and positive fixed charge density (Qf). After forming gas anneal, Dit decreases largely with decreasing N2/O2 flow ratio from 1 to 0.01 while the change of Qf is insignificant. These results suggest that low N2/O2 flow ratio is a key parameter to achieve a low Dit and relatively high Qf, which is effective for field effect passivation of n-type Si surfaces. PMID:23634872
Mingori, Moara Rodrigues; Heimfarth, Luana; Ferreira, Charles Francisco; Gomes, Henrique Mautone; Moresco, Karla Suzana; Delgado, Jeferson; Roncato, Sabrina; Zeidán-Chuliá, Fares; Gelain, Daniel Pens; Moreira, José Cláudio Fonseca
2017-08-01
During aging, there is a marked decline in the antioxidant capacity of brain tissue, leading to a gradual loss of the antioxidant/oxidant balance, which causes oxidative damage. The effects of Paullinia cupana Mart. extract, which is described as being rich in caffeine and many polyphenol compounds, on the central nervous system have not been extensively investigated. The aim of this study was to therefore investigate the effect of a commercial guarana extract (CGE) on cognitive function, oxidative stress, and brain homeostasis proteins related to cognitive injury and senescence in middle age, male Wistar rats. Animals were randomly assigned to a group according to their treatment (saline, CGE, or caffeine). Solutions were administered daily by oral gavage for 6 months. Open field and novel object recognition tasks were performed before and after treatment. Biochemical analyses were carried out on the hippocampus and striatum. Our open field data showed an increase in exploratory activity and a decrease in anxiety-like behavior with caffeine but not with the CGE treatment. In the CGE-treated group, catalase activity decreased in the hippocampus and increased in the striatum. Analyses of the hippocampus and striatum indicate that CGE and/or caffeine altered some of the analyzed parameters in a tissue-specific manner. Our data suggest that CGE intake does not improve cognitive development, but modifies the oxidative stress machinery and neurodegenerative-signaling pathway, inhibiting pro-survival pathway molecules in the hippocampus and striatum. This may contribute to the development of unfavorable microenvironments in the brain and neurodegenerative disorders.
First-principles studies of magnetic complex oxide heterointerfaces
NASA Astrophysics Data System (ADS)
Rondinelli, James M.
Despite the technological advancements driven by conventional semiconductors, continued improvements in nanoelectronics will require new materials with greater functionality. Perovskite-structured transition metal oxides with ABO3 stoichiometry are leading candidates that display amyriad of useful phenomena: ferroelectricity, magnetism, and superconductivity. Since these properties arise from correlated electronic interactions, field-tuning techniques make possible ultra-fast phase transitions between dramatically different states. Unfortunately, the integration of these materials into microelectronics has not yet occurred because of a fundamental lack in understanding how to predict and control these phase transitions at oxide--oxide heterointerfaces. The exceedingly difficult challenge of identifying the microscopic origins of interface electronic behavior is crucial to the functional design and discovery of next generation electronic materials. This dissertation focuses on developing that understanding at magnetic perovskite oxide heterointerfaces using first-principles (parameter free) density functional calculations. New ideas for oxide-oxide superlattice design emerge by considering the interfaces as entirely new complex materials: the interfacial electronic and magnetic structure in artificial geometries is genuinely different from those of the parent bulk materials due to changes in symmetry- and size-dependent properties. By isolating the role of the interacting electron-, orbital-, and spin-lattice degrees of freedom at the interfaces, I identify that the primary interaction governing the ground state derives from latent instabilities present in the bulk phases. The heteroepitaxial structural constraints enhance these modes to re-normalize the low energy electronic structure. To develop insight into the role of thin film thickness and strain effects, I explore how the electronic and magnetic structures of single component films respond to the elastic constraints, in particular, whether ultra-thin layers of SrRuO3 are susceptible to a metal-insulator transition and if strained LaCoO3 films support reversible magnetic spin state transitions. I then examine how the interface between two dissimilar materials---a polarizable dielectric SrTiO3 and a ferromagneticmetal SrRuO 3---responds to an external electric field; I find a spin-dependent screening effect at the heterointerface that manifests as an interfacial magnetoelectric effect and makes possible electric-field control of magnetization. I then explore how the orbital degree of freedom in the electronically degenerate and magnetic SrFeO3 is modified by geometric confinement and changes in chemical bonding at a heterointerface with SrTiO3. I find lattice instabilities are enhanced in the superlattice, and their condensation leads to an electronic phase transition. By isolating the chemical effects at the heterointerface, I identify an additional route to control octahedral rotation patterns pervasive in perovskite oxides films through structural coherency. This study suggests a complementary strain-free avenue for functional thin film design. The materials understanding obtained from these first-principles calculations, when leveraged with new synthesis techniques, offers to have substantial impact on the search and control of new functionalities in oxide heterostructures.
EFFECTS OF ELECTROOSMOSIS ON SOIL TEMPERATURE AND HYDRAULIC HEAD: I. FIELD OBSERVATION
A field test to quantify the changes of soil temperature and hydraulic head during electroosmosis has been conducted. The anode (3.1 m x 3.4m) was created by laying pieces of titanium mesh coated with mixed metal oxides on tope of a 3 cm thick sand layer at a depth of 0.4 m. The ...
EFFECTS OF ELECTROOSMOSIS ON SOIL TEMPERATURE AND HYDRAULIC HEAD: I. FIELD OBSERVATIONS
A field test to quantify the changes of soil temperature and hydraulic head during electroosmosis was conducted. The anode (3.1 m x 3.4 m) was created by laying pieces of titanium mesh coated with mixed metal oxides on top of a 3 cm thick sand layer at a depth of 0.4 m. The catho...
Single crystal functional oxides on silicon
Bakaul, Saidur Rahman; Serrao, Claudy Rayan; Lee, Michelle; Yeung, Chun Wing; Sarker, Asis; Hsu, Shang-Lin; Yadav, Ajay Kumar; Dedon, Liv; You, Long; Khan, Asif Islam; Clarkson, James David; Hu, Chenming; Ramesh, Ramamoorthy; Salahuddin, Sayeef
2016-01-01
Single-crystalline thin films of complex oxides show a rich variety of functional properties such as ferroelectricity, piezoelectricity, ferro and antiferromagnetism and so on that have the potential for completely new electronic applications. Direct synthesis of such oxides on silicon remains challenging because of the fundamental crystal chemistry and mechanical incompatibility of dissimilar interfaces. Here we report integration of thin (down to one unit cell) single crystalline, complex oxide films onto silicon substrates, by epitaxial transfer at room temperature. In a field-effect transistor using a transferred lead zirconate titanate layer as the gate insulator, we demonstrate direct reversible control of the semiconductor channel charge with polarization state. These results represent the realization of long pursued but yet to be demonstrated single-crystal functional oxides on-demand on silicon. PMID:26853112
Mixed protonic and electronic conductors hybrid oxide synaptic transistors
NASA Astrophysics Data System (ADS)
Fu, Yang Ming; Zhu, Li Qiang; Wen, Juan; Xiao, Hui; Liu, Rui
2017-05-01
Mixed ionic and electronic conductor hybrid devices have attracted widespread attention in the field of brain-inspired neuromorphic systems. Here, mixed protonic and electronic conductor (MPEC) hybrid indium-tungsten-oxide (IWO) synaptic transistors gated by nanogranular phosphorosilicate glass (PSG) based electrolytes were obtained. Unique field-configurable proton self-modulation behaviors were observed on the MPEC hybrid transistor with extremely strong interfacial electric-double-layer effects. Temporally coupled synaptic plasticities were demonstrated on the MPEC hybrid IWO synaptic transistor, including depolarization/hyperpolarization, synaptic facilitation and depression, facilitation-stead/depression-stead behaviors, spiking rate dependent plasticity, and high-pass/low-pass synaptic filtering behaviors. MPEC hybrid synaptic transistors may find potential applications in neuron-inspired platforms.
NASA Astrophysics Data System (ADS)
Pawlik, Anna; Hnida, Katarzyna; Socha, Robert P.; Wiercigroch, Ewelina; Małek, Kamilla; Sulka, Grzegorz D.
2017-12-01
Anodic iron oxide layers were formed by anodization of the iron foil in an ethylene glycol-based electrolyte containing 0.2 M NH4F and 0.5 M H2O at 40 V for 1 h. The anodizing conditions such as electrolyte composition and applied potential were optimized. In order to examine the influence of electrolyte stirring and applied magnetic field, the anodic samples were prepared under the dynamic and static conditions in the presence or absence of magnetic field. It was shown that ordered iron oxide nanopore arrays could be obtained at lower anodizing temperatures (10 and 20 °C) at the static conditions without the magnetic field or at the dynamic conditions with the applied magnetic field. Since the as-prepared anodic layers are amorphous in nature, the samples were annealed in air at different temperatures (200-500 °C) for a fixed duration of time (1 h). The morphology and crystal phases developed after anodization and subsequent annealing were characterized using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The results proved that the annealing process transforms the amorphous layer into magnetite and hematite phases. In addition, the heat treatment results in a substantial decrease in the fluorine content and increase in the oxygen content.
Investigation of the Biological Effects of Pulsed Electrical Fields.
1977-01-30
oxidized cholesterol. .iprid b;l:ayor menbranes . In these ne.’branes step changes In current while the membrane was held at a constant voltage...oxidized cholesterol menbranes , then one would cxpect a qalitatively similar, though not necessarily quanti- tatively identical, dependence of...ml of blcc). The blood was inmediately centrifuged for 10 minutes At 1,500 g and the plasma , buffy coat, aiLd top layer of cells were removed. The
Zhang, Guangbin; Liu, Gang; Zhang, Yi; Ma, Jing; Xu, Hua; Yagi, Kazuyuki
2013-01-01
A 2-year field and incubation experiment was conducted to investigate δ13C during the processes of CH4 emission from the fields subjected to two water managements (flooding and drainage) in the winter fallow season, and further to estimate relative contribution of acetate to total methanogenesis (Fac) and fraction of CH4 oxidized (Fox) based on the isotopic data. Compared with flooding, drainage generally caused CH4, either anaerobically or aerobically produced, depleted in 13C. There was no obvious difference between the two in transport fractionation factor (εtransport) and δ13C-value of emitted CH4. CH4 emission was negatively related to its δ13C-value in seasonal variation (P<0.01). Acetate-dependent methanogenesis in soil was dominant (60–70%) in the late season, while drainage decreased Fac-value by 5–10%. On roots however, CH4 was mostly produced through H2/CO2 reduction (60–100%) over the season. CH4 oxidation mainly occurred in the first half of the season and roughly 10–90% of the CH4 was oxidized in the rhizosphere. Drainage increased Fox-value by 5–15%, which is possibly attributed to a significant decrease in production while no simultaneous decrease in oxidation. Around 30–70% of the CH4 was oxidized at the soil-water interface when CH4 in pore water was released into floodwater, although the amount of CH4 oxidized therein might be negligible relative to that in the rhizosphere. CH4 oxidation was also more important in the first half of the season in lab conditions and about 5–50% of the CH4 was oxidized in soil while almost 100% on roots. Drainage decreased Fox-value on roots by 15% as their CH4 oxidation potential was highly reduced. The findings suggest that water management in the winter fallow season substantially affects Fac in the soil and Fox in the rhizosphere and roots rather than Fac on roots and Fox at the soil-water interface. PMID:24069259
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Dian; Wang, Wei; Gong, Xiao, E-mail: elegong@nus.edu.sg, E-mail: yeo@ieee.org
2016-01-14
The effect of room temperature sulfur passivation of the surface of Ge{sub 0.83}Sn{sub 0.17} prior to high-k dielectric (HfO{sub 2}) deposition is investigated. X-ray photoelectron spectroscopy (XPS) was used to examine the chemical bonding at the interface of HfO{sub 2} and Ge{sub 0.83}Sn{sub 0.17}. Sulfur passivation is found to be effective in suppressing the formation of both Ge oxides and Sn oxides. A comparison of XPS results for sulfur-passivated and non-passivated Ge{sub 0.83}Sn{sub 0.17} samples shows that sulfur passivation of the GeSn surface could also suppress the surface segregation of Sn atoms. In addition, sulfur passivation reduces the interface trapmore » density D{sub it} at the high-k dielectric/Ge{sub 0.83}Sn{sub 0.17} interface from the valence band edge to the midgap of Ge{sub 0.83}Sn{sub 0.17}, as compared with a non-passivated control. The impact of the improved D{sub it} is demonstrated in Ge{sub 0.83}Sn{sub 0.17} p-channel metal-oxide-semiconductor field-effect transistors (p-MOSFETs). Ge{sub 0.83}Sn{sub 0.17} p-MOSFETs with sulfur passivation show improved subthreshold swing S, intrinsic transconductance G{sub m,int}, and effective hole mobility μ{sub eff} as compared with the non-passivated control. At a high inversion carrier density N{sub inv} of 1 × 10{sup 13 }cm{sup −2}, sulfur passivation increases μ{sub eff} by 25% in Ge{sub 0.83}Sn{sub 0.17} p-MOSFETs.« less
de Weert, J P A; Keijzer, T J S; van Gaans, P F M
2014-12-01
In situ chemical oxidation (ISCO) is a soil remediation technique to remove organic pollutants from soil and groundwater with oxidants, like KMnO4. However, also natural organic compounds in soils are being oxidized, which makes the technique less efficient. Laboratory experiments were performed to investigate the influence of temperature on this efficiency, through its effect on the relative oxidation rates - by permanganate - of natural organic compounds and organic pollutants at 16 and 15°C. Specific types of organic matter used were cellulose, oak wood, anthracite, reed - and forest peat, in addition to two natural soils. Dense Non-Aqueous Phase Liquid-tetrachloroethene (DNAPL-PCE), DNAPL trichloroethene (DNAPL-TCE) and a mixture of DNAPL-PCE, -TCE and -hexachlorobutadiene were tested as pollutants. Compared to 16°C, oxidation was slower at 5°C for the specific types of organic matter and the natural soils, with exception of anthracite, which was unreactive. The oxidation rate of DNAPL TCE was lower at 5°C too. However, at this temperature oxidation was fast, implying that no competitive loss to natural organic compounds will be expected in field applications by lowering temperature. Oxidation of DNAPL-PCE and PCE in the mixture proceeded at equal rates at both temperatures, due to the dissolution rate as limiting factor. These results show that applying permanganate ISCO to DNAPL contamination at lower temperatures will limit the oxidation of natural organic matter, without substantially affecting the oxidation rate of the contaminant. This will make such remediation more effective and sustainable in view of protecting natural soil quality. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effects of radio frequency magnetic fields on iron release from cage proteins.
Céspedes, Oscar; Ueno, Shoogo
2009-07-01
Ferritin, the iron cage protein, contains a superparamagnetic ferrihydrite nanoparticle formed from the oxidation and absorption of Fe(2+) ions. This nanoparticle increases its internal energy when exposed to alternating magnetic fields due to magnetization lag. The energy is then dissipated to the surrounding proteic cage, affecting its functioning. In this article we show that the rates of iron chelation with ferrozine, an optical marker, are reduced by up to a factor of 3 in proteins previously exposed to radio frequency magnetic fields of 1 MHz and 30 microT for several hours. The effect is non-thermal and depends on the frequency-amplitude product of the magnetic field. (c) 2009 Wiley-Liss, Inc.
X-ray analyses of thermally grown and reactively sputtered tantalum oxide films on NiTi alloy
NASA Astrophysics Data System (ADS)
McNamara, Karrina; Tofail, Syed A. M.; Conroy, Derek; Butler, James; Gandhi, Abbasi A.; Redington, Wynette
2012-08-01
Sputter deposition of tantalum (Ta) on the surface of NiTi alloy is expected to improve the alloy's corrosion resistance and biocompatibility. Tantalum is a well-known biomaterial which is not affected by body fluids and is not irritating to human tissue. Here we compare the oxidation chemistry crystal structure evolution of tantalum oxide films grown on NiTi by reactive O2 sputtering and by thermal oxidation of sputter deposited Ta films. The effect of sputtering parameters and post-sputtering treatments on the morphology, oxidation state and crystal structure of the tantalum oxide layer have been investigated by field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The study has found that it may be better to avoid oxidation at and above 600 °C. The study establishes that reactive sputtering in presence of low oxygen mixture yields thicker film with better control of the film quality except that the surface oxidation state of Ta is slightly lower.
Oxidation and formation of deposit precursors in hydrocarbon fuels
NASA Technical Reports Server (NTRS)
Mayo, F. R.; Lan, B.; Cotts, D. B.; Buttrill, S. E., Jr.; St.john, G. A.
1983-01-01
The oxidation of two jet turbine fuels and some pure hydrocarbons was studied at 130 C with and without the presence of small amounts of N-methyl pyrrole (NMP) or indene. Tendency to form solid-deposit precursors was studied by measuring soluble gum formation as well as dimer and trimer formation using field ionization mass spectrometry. Pure n-dodecane oxidized fastest and gave the smallest amount of procursors. An unstable fuel oil oxidized much slower but formed large amounts of precursors. Stable Jet A fuel oxidized slowest and gave little precursors. Indene either retarded or accelerated the oxidation of n-dodecane, depending on its concentration, but always caused more gum formation. The NMP greatly retarded n-dodecane oxidation but accelerated Jet A oxidation and greatly increased the latter's gum formation. In general, the additive reacted faster and formed most of the gum. Results are interpreted in terms of classical cooxidation theory. The effect of oxygen pressure on gum formation is also reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawarada, H., E-mail: kawarada@waseda.jp; Institute of Nano-Science and Nano-Engineering, Waseda University, Shinjuku, Tokyo 169-8555; Kagami Memorial Laboratory for Material Science and Technology, Waseda University, Shinjuku, Tokyo 169-0051
2014-07-07
By forming a highly stable Al{sub 2}O{sub 3} gate oxide on a C-H bonded channel of diamond, high-temperature, and high-voltage metal-oxide-semiconductor field-effect transistor (MOSFET) has been realized. From room temperature to 400 °C (673 K), the variation of maximum drain-current is within 30% at a given gate bias. The maximum breakdown voltage (V{sub B}) of the MOSFET without a field plate is 600 V at a gate-drain distance (L{sub GD}) of 7 μm. We fabricated some MOSFETs for which V{sub B}/L{sub GD} > 100 V/μm. These values are comparable to those of lateral SiC or GaN FETs. The Al{sub 2}O{sub 3} was deposited on the C-Hmore » surface by atomic layer deposition (ALD) at 450 °C using H{sub 2}O as an oxidant. The ALD at relatively high temperature results in stable p-type conduction and FET operation at 400 °C in vacuum. The drain current density and transconductance normalized by the gate width are almost constant from room temperature to 400 °C in vacuum and are about 10 times higher than those of boron-doped diamond FETs.« less
Surface- and tip-enhanced Raman spectroscopy reveals spin-waves in iron oxide nanoparticles
NASA Astrophysics Data System (ADS)
Rodriguez, Raul D.; Sheremet, Evgeniya; Deckert-Gaudig, Tanja; Chaneac, Corinne; Hietschold, Michael; Deckert, Volker; Zahn, Dietrich R. T.
2015-05-01
Nanomaterials have the remarkable characteristic of displaying physical properties different from their bulk counterparts. An additional degree of complexity and functionality arises when oxide nanoparticles interact with metallic nanostructures. In this context the Raman spectra due to plasmonic enhancement of iron oxide nanocrystals are here reported showing the activation of spin-waves. Iron oxide nanoparticles on gold and silver tips are found to display a band around 1584 cm-1 attributed to a spin-wave magnon mode. This magnon mode is not observed for nanoparticles deposited on silicon (111) or on glass substrates. Metal-nanoparticle interaction and the strongly localized electromagnetic field contribute to the appearance of this mode. The localized excitation that generates this mode is confirmed by tip-enhanced Raman spectroscopy (TERS). The appearance of the spin-waves only when the TERS tip is in close proximity to a nanocrystal edge suggests that the coupling of a localized plasmon with spin-waves arises due to broken symmetry at the nanoparticle border and the additional electric field confinement. Beyond phonon confinement effects previously reported in similar systems, this work offers significant insights on the plasmon-assisted generation and detection of spin-waves optically induced.Nanomaterials have the remarkable characteristic of displaying physical properties different from their bulk counterparts. An additional degree of complexity and functionality arises when oxide nanoparticles interact with metallic nanostructures. In this context the Raman spectra due to plasmonic enhancement of iron oxide nanocrystals are here reported showing the activation of spin-waves. Iron oxide nanoparticles on gold and silver tips are found to display a band around 1584 cm-1 attributed to a spin-wave magnon mode. This magnon mode is not observed for nanoparticles deposited on silicon (111) or on glass substrates. Metal-nanoparticle interaction and the strongly localized electromagnetic field contribute to the appearance of this mode. The localized excitation that generates this mode is confirmed by tip-enhanced Raman spectroscopy (TERS). The appearance of the spin-waves only when the TERS tip is in close proximity to a nanocrystal edge suggests that the coupling of a localized plasmon with spin-waves arises due to broken symmetry at the nanoparticle border and the additional electric field confinement. Beyond phonon confinement effects previously reported in similar systems, this work offers significant insights on the plasmon-assisted generation and detection of spin-waves optically induced. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01277e
Random electric field instabilities of relaxor ferroelectrics
NASA Astrophysics Data System (ADS)
Arce-Gamboa, José R.; Guzmán-Verri, Gian G.
2017-06-01
Relaxor ferroelectrics are complex oxide materials which are rather unique to study the effects of compositional disorder on phase transitions. Here, we study the effects of quenched cubic random electric fields on the lattice instabilities that lead to a ferroelectric transition and show that, within a microscopic model and a statistical mechanical solution, even weak compositional disorder can prohibit the development of long-range order and that a random field state with anisotropic and power-law correlations of polarization emerges from the combined effect of their characteristic dipole forces and their inherent charge disorder. We compare and reproduce several key experimental observations in the well-studied relaxor PbMg1/3Nb2/3O3-PbTiO3.
NASA Astrophysics Data System (ADS)
Pan, Chih-Hung; Chang, Ting-Chang; Tsai, Tsung-Ming; Chang, Kuan-Chang; Chu, Tian-Jian; Lin, Wen-Yan; Chen, Min-Chen; Sze, Simon M.
2016-09-01
In this letter, we demonstrate completely different characteristics with different operating modes and analyze the electrical field effect to confirm the filament dissolution behavior. The device exhibited a larger memory window when using a single voltage sweep method during reset process rather than the traditional double sweep method. The phenomenon was verified by using fast I-V measurement to simulate the two operating methods. A better high resistance state (HRS) will be obtained with a very short rising time pulse, but quite notably, lower power consumption was needed. We proposed the electrical field effect to explain the phenomenon and demonstrate distribution by COMSOL simulation.
PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors
NASA Astrophysics Data System (ADS)
Talapin, Dmitri V.; Murray, Christopher B.
2005-10-01
Initially poorly conducting PbSe nanocrystal solids (quantum dot arrays or superlattices) can be chemically ``activated'' to fabricate n- and p-channel field effect transistors with electron and hole mobilities of 0.9 and 0.2 square centimeters per volt-second, respectively; with current modulations of about 103 to 104; and with current density approaching 3 × 104 amperes per square centimeter. Chemical treatments engineer the interparticle spacing, electronic coupling, and doping while passivating electronic traps. These nanocrystal field-effect transistors allow reversible switching between n- and p-transport, providing options for complementary metal oxide semiconductor circuits and enabling a range of low-cost, large-area electronic, optoelectronic, thermoelectric, and sensing applications.
Effect of Electric Field in the Stabilized Premixed Flame on Combustion Process Emissions
NASA Astrophysics Data System (ADS)
Otto, Krickis
2017-10-01
The effect of the AC and DC electrical field on combustion processes has been investigated by various researchers. The results of these experiments do not always correlate, due to different experiment conditions and experiment equipment variations. The observed effects of the electrical field impact on the combustion process depends on the applied voltage polarity, flame speed and combustion physics. During the experiment was defined that starting from 1000 V the ionic wind takes the effect on emissions in flue gases, flame shape and combustion instabilities. Simulation combustion process in hermetically sealed chamber with excess oxygen amount 3 % in flue gases showed that the positive effect of electrical field on emissions lies in region from 30 to 400 V. In aforementioned voltage range carbon monoxide emissions were reduced by 6 % and at the same time the nitrogen oxide emissions were increased by 3.5 %.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Djara, V.; Cherkaoui, K.; Negara, M. A.
2015-11-28
An alternative multi-frequency inversion-charge pumping (MFICP) technique was developed to directly separate the inversion charge density (N{sub inv}) from the trapped charge density in high-k/InGaAs metal-oxide-semiconductor field-effect transistors (MOSFETs). This approach relies on the fitting of the frequency response of border traps, obtained from inversion-charge pumping measurements performed over a wide range of frequencies at room temperature on a single MOSFET, using a modified charge trapping model. The obtained model yielded the capture time constant and density of border traps located at energy levels aligned with the InGaAs conduction band. Moreover, the combination of MFICP and pulsed I{sub d}-V{sub g}more » measurements enabled an accurate effective mobility vs N{sub inv} extraction and analysis. The data obtained using the MFICP approach are consistent with the most recent reports on high-k/InGaAs.« less
Channel scaling and field-effect mobility extraction in amorphous InZnO thin film transistors
NASA Astrophysics Data System (ADS)
Lee, Sunghwan; Song, Yang; Park, Hongsik; Zaslavsky, A.; Paine, D. C.
2017-09-01
Amorphous oxide semiconductors (AOSs) based on indium oxides are of great interest for next generation ultra-high definition displays that require much smaller pixel driving elements. We describe the scaling behavior in amorphous InZnO thin film transistors (TFTs) with a significant decrease in the extracted field-effect mobility μFE with channel length L (from 39.3 to 9.9 cm2/V·s as L is reduced from 50 to 5 μm). Transmission line model measurements reveal that channel scaling leads to a significant μFE underestimation due to contact resistance (RC) at the metallization/channel interface. Therefore, we suggest a method of extracting correct μFE when the TFT performance is significantly affected by RC. The corrected μFE values are higher (45.4 cm2/V·s) and nearly independent of L. The results show the critical effect of contact resistance on μFE measurements and suggest strategies to determine accurate μFE when a TFT channel is scaled.
Sub-micrometer epsilon-near-zero electroabsorption modulators enabled by high-mobility cadmium oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campione, Salvatore; Wood, Michael; Serkland, Darwin K.
Here, epsilon-near-zero materials provide a new path for tailoring light-matter interactions at the nanoscale. In this paper, we analyze a compact electroabsorption modulator based on epsilon-near-zero confinement in transparent conducting oxide films. The non-resonant modulator operates through field-effect carrier density tuning. We compare the performance of modulators composed of two different conducting oxides, namely indium oxide (In2O3) and cadmium oxide (CdO), and show that better modulation performance is achieved when using high-mobility (i.e. low-loss) epsilon-near-zero materials such as CdO. In particular, we show that non-resonant electroabsorption modulators with sub-micron lengths and greater than 5 dB extinction ratios may be achievedmore » through the proper selection of high-mobility transparent conducting oxides, opening a path for device miniaturization and increased modulation depth.« less
Sub-micrometer epsilon-near-zero electroabsorption modulators enabled by high-mobility cadmium oxide
Campione, Salvatore; Wood, Michael; Serkland, Darwin K.; ...
2017-07-06
Here, epsilon-near-zero materials provide a new path for tailoring light-matter interactions at the nanoscale. In this paper, we analyze a compact electroabsorption modulator based on epsilon-near-zero confinement in transparent conducting oxide films. The non-resonant modulator operates through field-effect carrier density tuning. We compare the performance of modulators composed of two different conducting oxides, namely indium oxide (In2O3) and cadmium oxide (CdO), and show that better modulation performance is achieved when using high-mobility (i.e. low-loss) epsilon-near-zero materials such as CdO. In particular, we show that non-resonant electroabsorption modulators with sub-micron lengths and greater than 5 dB extinction ratios may be achievedmore » through the proper selection of high-mobility transparent conducting oxides, opening a path for device miniaturization and increased modulation depth.« less
Ghodbane, Soumaya; Lahbib, Aida; Ammari, Mohamed; Sakly, Mohsen; Abdelmelek, Hafedh
2015-01-01
Static magnetic fields (SMFs) effect observed with radical pair recombination is one of the well-known mechanisms by which SMFs interact with biological systems. Our aim was to study whether SMF induces oxidative stress and apoptosis in rat tissues and to evaluate the possible protector effect of selenium (Se) and vitamin E (vit E) supplementations. Rats were randomly divided into control, SMF-exposed, Se-treated, vit E-treated, SMF exposed rats and co-treated with Se, and SMF exposed rats and co-treated with vit E. After animal sacrifice, catalase (CAT) activity and malondialdehyde (MDA) concentration were measured and apoptosis inducing factor (AIF) immunohistochemical labeling was performed in kidney and muscle. Exposure of rats to SMF (128 mT, 1 h/day for 5 days) increased the MDA concentrations (+25%) and CAT activities (+34%) in kidney but not in muscle. By contrast, the same treatment failed to induce a caspase-independent pathway apoptosis in both tissues. Interestingly, Se pre-treatment inhibited the increase of MDA concentrations and CAT activities in kidney in SMF-exposed rats. However, vit E administration corrected only MDA levels in rat kidney. In conclusion, exposure to SMF induced oxidative stress in kidney that can be prevented by treatment with Se or vit E.
NASA Astrophysics Data System (ADS)
Arai, Yukiko; Aoki, Hitoshi; Abe, Fumitaka; Todoroki, Shunichiro; Khatami, Ramin; Kazumi, Masaki; Totsuka, Takuya; Wang, Taifeng; Kobayashi, Haruo
2015-04-01
1/f noise is one of the most important characteristics for designing analog/RF circuits including operational amplifiers and oscillators. We have analyzed and developed a novel 1/f noise model in the strong inversion, saturation, and sub-threshold regions based on SPICE2 type model used in any public metal-oxide-semiconductor field-effect transistor (MOSFET) models developed by the University of California, Berkeley. Our model contains two noise generation mechanisms that are mobility and interface trap number fluctuations. Noise variability dependent on gate voltage is also newly implemented in our model. The proposed model has been implemented in BSIM4 model of a SPICE3 compatible circuit simulator. Parameters of the proposed model are extracted with 1/f noise measurements for simulation verifications. The simulation results show excellent agreements between measurement and simulations.
Giant switchable Rashba effect in oxide heterostructures
Zhong, Zhicheng; Si, Liang; Zhang, Qinfang; ...
2015-03-01
One of the most fundamental phenomena and a reminder of the electron’s relativistic nature is the Rashba spin splitting for broken inversion symmetry. Usually this splitting is a tiny relativistic correction. Interfacing ferroelectric BaTiO₃ and a 5d (or 4d) transition metal oxide with a large spin-orbit coupling, Ba(Os,Ir,Ru)O₃, we show that giant Rashba spin splittings are indeed possible and even controllable by an external electric field. Based on density functional theory and a microscopic tight binding understanding, we conclude that the electric field is amplified and stored as a ferroelectric Ti-O distortion which, through the network of oxygen octahedra, inducesmore » a large (Os,Ir,Ru)-O distortion. The BaTiO₃/Ba(Os,Ru,Ir)O₃ heterostructure is hence the ideal test station for switching and studying the Rashba effect and allows applications at room temperature.« less
Lee, Ya-Ju; Yang, Zu-Po; Chen, Pin-Guang; Hsieh, Yung-An; Yao, Yung-Chi; Liao, Ming-Han; Lee, Min-Hung; Wang, Mei-Tan; Hwang, Jung-Min
2014-10-20
In this study, we report a novel monolithically integrated GaN-based light-emitting diode (LED) with metal-oxide-semiconductor field-effect transistor (MOSFET). Without additionally introducing complicated epitaxial structures for transistors, the MOSFET is directly fabricated on the exposed n-type GaN layer of the LED after dry etching, and serially connected to the LED through standard semiconductor-manufacturing technologies. Such monolithically integrated LED/MOSFET device is able to circumvent undesirable issues that might be faced by other kinds of integration schemes by growing a transistor on an LED or vice versa. For the performances of resulting device, our monolithically integrated LED/MOSFET device exhibits good characteristics in the modulation of gate voltage and good capability of driving injected current, which are essential for the important applications such as smart lighting, interconnection, and optical communication.
Turk, Mohammad F; Baron, Alain; Vorobiev, Eugene
2010-09-08
This study explored the effect of pulsed electric field (PEF) treatment (E=450 V/cm; tt=10 ms; E<3 kJ/kg) and apple mash size on juice yield, polyphenolic compounds, sugars, and malic acid. Juice yield increased significantly after PEF treatment of large mash (Y=71.4%) and remained higher than the juice yield obtained for a control small mash (45.6%). The acid sweet balance was not altered by PEF. A correlation was established between the decrease of light absorbance (control: 1.43; treated: 1.10) and the decline of native polyphenols yield due to PEF treatment (control: 9.6%; treated: 5.9% for small mash). An enhanced oxidation of phenolic compounds in cells due to electroporation of the inner cell membrane and the adsorption of the oxidized products on the mash may explain both the lower light absorbance and the lower native polyphenol concentration.
Room-temperature ferroelectricity of SrTiO{sub 3} films modulated by cation concentration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Fang; Zhang, Qinghua; Yang, Zhenzhong
2015-08-24
The room-temperature ferroelectricity of SrTiO{sub 3} is promising for oxide electronic devices controlled by multiple fields. An effective way to control the ferroelectricity is highly demanded. Here, we show that the off-centered antisite-like defects in SrTiO{sub 3} films epitaxially grown on Si (001) play the determinative role in the emergence of room-temperature ferroelectricity. The density of these defects changes with the film cation concentration sensitively, resulting in a varied coercive field of the ferroelectric behavior. Consequently, the room-temperature ferroelectricity of SrTiO{sub 3} films can be effectively modulated by tuning the temperature of metal sources during the molecular beam epitaxy growth.more » Such an easy and reliable modulation of the ferroelectricity enables the flexible engineering of multifunctional oxide electronic devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishi, K., E-mail: nishi@mosfet.t.u-tokyo.ac.jp; Takenaka, M.; Takagi, S.
2014-12-08
We demonstrate the operation of GaSb p-channel metal-oxide-semiconductor field-effect transistors (p-MOSFETs) on (111)A surfaces with Al{sub 2}O{sub 3} gate dielectrics formed by atomic-layer deposition at 150 °C. The p-MOSFETs on (111)A surfaces exhibit higher drain current and lower subthreshold swing than those on (100) surfaces. We find that the interface-state density (D{sub it}) values at the Al{sub 2}O{sub 3}/GaSb MOS interfaces on the (111)A surfaces are lower than those on the (100) surfaces, which can lead to performance enhancement of the GaSb p-MOSFETs on (111)A surfaces. The mobility of the GaSb p-MOSFETs on (111)A surfaces is 80% higher than that onmore » (100) surfaces.« less
Resistive and Capacitive Memory Effects in Oxide Insulator/ Oxide Conductor Hetero-Structures
NASA Astrophysics Data System (ADS)
Meyer, Rene; Miao, Maosheng; Wu, Jian; Chevallier, Christophe
2013-03-01
We report resistive and capacitive memory effects observed in oxide insulator/ oxide conductor hetero-structures. Electronic transport properties of Pt/ZrO2/PCMO/Pt structures with ZrO2 thicknesses ranging from 20A to 40A are studied before and after applying short voltage pulses of positive and negative polarity for set and reset operation. As processed devices display a non-linear IV characteristic which we attribute to trap assisted tunneling through the ZrO2 tunnel oxide. Current scaling with electrode area and tunnel oxide thickness confirms uniform conduction. The set/reset operation cause an up/down shift of the IV characteristic indicating that the conduction mechanism of both states is still dominated by tunneling. A change in the resistance is associated with a capacitance change of the device. An exponential relation between program voltages and set times is found. A model based on electric field mediated non-linear transport of oxygen ions across the ZrO2/PCMO interface is proposed. The change in the tunnel current is explained by ionic charge transfer between tunnel oxide and conductive metal oxide changing both tunnel barrier height and PCMO conductivity. DFT techniques are employed to explain the conductivity change in the PCMO interfacial layer observed through capacitance measurements.
Brown, J.G.; Glynn, P.D.
2003-01-01
The kinetics of carbonate and Mn oxide dissolution under acidic conditions were examined through the in situ exposure of pure phase samples to acidic ground water in Pinal Creek Basin, Arizona. The average long-term calculated in situ dissolution rates for calcite and dolomite were 1.65??10-7 and 3.64??10-10 mmol/(cm2 s), respectively, which were about 3 orders of magnitude slower than rates derived in laboratory experiments by other investigators. Application of both in situ and lab-derived calcite and dolomite dissolution rates to equilibrium reactive transport simulations of a column experiment did not improve the fit to measured outflow chemistry: at the spatial and temporal scales of the column experiment, the use of an equilibrium model adequately simulated carbonate dissolution in the column. Pyrolusite (MnO2) exposed to acidic ground water for 595 days increased slightly in weight despite thermodynamic conditions that favored dissolution. This result might be related to a recent finding by another investigator that the reductive dissolution of pyrolusite is accompanied by the precipitation of a mixed Mn-Fe oxide species. In PHREEQC reactive transport simulations, the incorporation of Mn kinetics improved the fit between observed and simulated behavior at the column and field scales, although the column-fitted rate for Mn-oxide dissolution was about 4 orders of magnitude greater than the field-fitted rate. Remaining differences between observed and simulated contaminant transport trends at the Pinal Creek site were likely related to factors other than the Mn oxide dissolution rate, such as the concentration of Fe oxide surface sites available for adsorption, the effects of competition among dissolved species for available surface sites, or reactions not included in the model.
Wang, Jiale; Alves, Tiago V; Trindade, Fabiane J; de Aquino, Caroline B; Pieretti, Joana C; Domingues, Sergio H; Ando, Romulo A; Ornellas, Fernando R; Camargo, Pedro H C
2015-11-23
By a combination of theoretical and experimental design, we probed the effect of a quasi-single electron on the surface plasmon resonance (SPR)-mediated catalytic activities of Ag nanoparticles. Specifically, we started by theoretically investigating how the E-field distribution around the surface of a Ag nanosphere was influenced by static electric field induced by one, two, or three extra fixed electrons embedded in graphene oxide (GO) next to the Ag nanosphere. We found that the presence of the extra electron(s) changed the E-field distributions and led to higher electric field intensities. Then, we experimentally observed that a quasi-single electron trapped at the interface between GO and Ag NPs in Ag NPs supported on graphene oxide (GO-Ag NPs) led to higher catalytic activities as compared to Ag and GO-Ag NPs without electrons trapped at the interface, representing the first observation of catalytic enhancement promoted by a quasi-single electron. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Smirnov, V. A.; Mokrushin, A. D.; Denisov, N. N.; Dobrovolsky, Yu. A.
2018-07-01
The proton conductivity of graphene oxide (GO) and Nafion films was studied depending on the humidity and voltage on electrodes. The electric properties of the films were similar, but the mobility of positive charges in Nafion was approximately two orders of magnitude higher than in GO. In GO films, the negative ion current with a positive voltage bias was up to 10% of the proton current, while in Nafion films it was almost absent (<1%). The sensors based on GO and Nafion films were most effective at humidity (RH) in the range 20-80%.
Sanapala, Krishna K; Hewaparakrama, Kapila; Kang, Kyung A
2011-01-01
Magnetic nanoparticle mediated low heat hyperthermia (42~45( o )C) via alternating electromagnetic (AEM) energy is a promising, cancer specific and minimally-invasive cancer therapy. Iron oxide particles frequently used for this therapy are non-toxic and already used as a contrast agent for magnetic resonance imaging. One important issue in the hyperthermia is applying an appropriate amount of energy to the tumor at various sizes and depths, with a minimal damage to normal tissue. For the therapy to be desirable, the AEM energy applicator needs to be non-invasive and user-friendly. To better understand the effect of the probe on the magnetic field distribution, computer simulation was performed for the field distribution by probes with various configurations. In a solenoid-type probe, the field is mainly inside the probe and, therefore, is difficult to use on body. A pancake-shaped probe is easy to use but the field penetration is shallow and, thus, may better serve surface tumor treatment. A sandwich probe, composed of two pancake probes, has a penetration depth deeper than a pancake probe. The results also showed that the spacing between two adjacent coils and the number of coil turns are very important for controlling the field penetration depth and strength. Experiments were also performed to study the effects of the size and concentration of iron oxide nanoparticles on heating. Among the tested particle sizes of 10~50 nm, 30 nm particles showed the best heating for the same mass.
Fabrication of Highly Ordered Anodic Aluminium Oxide Templates on Silicon Substrates
2007-01-01
highly ordered anodic aluminium oxide ( AAO ) templates of unprecedented pore uniformity directly on Si, enabled by new advances on two fronts – direct...field emitter, sensors, oscillators and photodetectors. 15. SUBJECT TERMS Anodic aluminum oxide , template-assisted nanofabrication, carbon nanotube...Fabrication of the aligned and patterned carbon nanotube field emitters using the anodic aluminum oxide nano-template on a Si wafer’, Synth. Met
Oxide-mediated recovery of field-effect mobility in plasma-treated MoS2
Jadwiszczak, Jakub; O’Callaghan, Colin; Zhou, Yangbo; Fox, Daniel S.; Weitz, Eamonn; Keane, Darragh; Cullen, Conor P.; O’Reilly, Ian; Downing, Clive; Shmeliov, Aleksey; Maguire, Pierce; Gough, John J.; McGuinness, Cormac; Ferreira, Mauro S.; Bradley, A. Louise; Boland, John J.; Duesberg, Georg S.; Nicolosi, Valeria; Zhang, Hongzhou
2018-01-01
Precise tunability of electronic properties of two-dimensional (2D) nanomaterials is a key goal of current research in this field of materials science. Chemical modification of layered transition metal dichalcogenides leads to the creation of heterostructures of low-dimensional variants of these materials. In particular, the effect of oxygen-containing plasma treatment on molybdenum disulfide (MoS2) has long been thought to be detrimental to the electrical performance of the material. We show that the mobility and conductivity of MoS2 can be precisely controlled and improved by systematic exposure to oxygen/argon plasma and characterize the material using advanced spectroscopy and microscopy. Through complementary theoretical modeling, which confirms conductivity enhancement, we infer the role of a transient 2D substoichiometric phase of molybdenum trioxide (2D-MoOx) in modulating the electronic behavior of the material. Deduction of the beneficial role of MoOx will serve to open the field to new approaches with regard to the tunability of 2D semiconductors by their low-dimensional oxides in nano-modified heterostructures. PMID:29511736
Ambipolar pentacene field-effect transistor with double-layer organic insulator
NASA Astrophysics Data System (ADS)
Kwak, Jeong-Hun; Baek, Heume-Il; Lee, Changhee
2006-08-01
Ambipolar conduction in organic field-effect transistor is very important feature to achieve organic CMOS circuitry. We fabricated an ambipolar pentacene field-effect transistors consisted of gold source-drain electrodes and double-layered PMMA (Polymethylmethacrylate) / PVA (Polyvinyl Alcohol) organic insulator on the ITO(Indium-tin-oxide)-patterned glass substrate. These top-contact geometry field-effect transistors were fabricated in the vacuum of 10 -6 Torr and minimally exposed to atmosphere before its measurement and characterized in the vacuum condition. Our device showed reasonable p-type characteristics of field-effect hole mobility of 0.2-0.9 cm2/Vs and the current ON/OFF ratio of about 10 6 compared to prior reports with similar configurations. For the n-type characteristics, field-effect electron mobility of 0.004-0.008 cm2/Vs and the current ON/OFF ratio of about 10 3 were measured, which is relatively high performance for the n-type conduction of pentacene field-effect transistors. We attributed these ambipolar properties mainly to the hydroxyl-free PMMA insulator interface with the pentacene active layer. In addition, an increased insulator capacitance due to double-layer insulator structure with high-k PVA layer also helped us to observe relatively good n-type characteristics.
Evidence for oxygen vacancies movement during wake-up in ferroelectric hafnium oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starschich, S.; Böttger, U.; Menzel, S.
The wake-up effect which is observed in ferroelectric hafnium oxide is investigated in yttrium doped hafnium oxide prepared by chemical solution deposition. It can be shown that not the amount of cycles but the duration of the applied electrical field is essential for the wake-up. Temperature dependent wake-up cycling in a range of −160 °C to 100 °C reveals a strong temperature activation of the wake-up, which can be attributed to ion rearrangement during cycling. By using asymmetrical electrodes, resistive valence change mechanism switching can be observed coincident with ferroelectric switching. From the given results, it can be concluded that redistribution ofmore » oxygen vacancies is the origin of the wake-up effect.« less
NASA Technical Reports Server (NTRS)
Rafferty, Connor S.; Biegel, Bryan A.; Yu, Zhi-Ping; Ancona, Mario G.; Bude, J.; Dutton, Robert W.; Saini, Subhash (Technical Monitor)
1998-01-01
A density-gradient (DG) model is used to calculate quantum-mechanical corrections to classical carrier transport in MOS (Metal Oxide Semiconductor) inversion/accumulation layers. The model is compared to measured data and to a fully self-consistent coupled Schrodinger and Poisson equation (SCSP) solver. Good agreement is demonstrated for MOS capacitors with gate oxide as thin as 21 A. It is then applied to study carrier distribution in ultra short MOSFETs (Metal Oxide Semiconductor Field Effect Transistor) with surface roughness. This work represents the first implementation of the DG formulation on multidimensional unstructured meshes. It was enabled by a powerful scripting approach which provides an easy-to-use and flexible framework for solving the fourth-order PDEs (Partial Differential Equation) of the DG model.
NASA Astrophysics Data System (ADS)
Chen, Zuhui; Jie, Bin B.; Sah, Chih-Tang
2008-11-01
Steady-state Shockley-Read-Hall kinetics is employed to explore the high concentration effect of neutral-potential-well interface traps on the electron-hole recombination direct-current current-voltage (R-DCIV) properties in metal-oxide-silicon field-effect transistors. Extensive calculations include device parameter variations in neutral-trapping-potential-well electron interface-trap density NET (charge states 0 and -1), dopant impurity concentration PIM, oxide thickness Xox, forward source/drain junction bias VPN, and transistor temperature T. It shows significant distortion of the R-DCIV lineshape by the high concentrations of the interface traps. The result suggests that the lineshape distortion observed in past experiments, previously attributed to spatial variation in surface impurity concentration and energy distribution of interface traps in the silicon energy gap, can also arise from interface-trap concentration along surface channel region.
Willander, Magnus; Khun, Kimleang; Ibupoto, Zafar Hussain
2014-01-01
The concept of recognition and biofunctionality has attracted increasing interest in the fields of chemistry and material sciences. Advances in the field of nanotechnology for the synthesis of desired metal oxide nanostructures have provided a solid platform for the integration of nanoelectronic devices. These nanoelectronics-based devices have the ability to recognize molecular species of living organisms, and they have created the possibility for advanced chemical sensing functionalities with low limits of detection in the nanomolar range. In this review, various metal oxides, such as ZnO-, CuO-, and NiO-based nanosensors, are described using different methods (receptors) of functionalization for molecular and ion recognition. These functionalized metal oxide surfaces with a specific receptor involve either a complex formation between the receptor and the analyte or an electrostatic interaction during the chemical sensing of analytes. Metal oxide nanostructures are considered revolutionary nanomaterials that have a specific surface for the immobilization of biomolecules with much needed orientation, good conformation and enhanced biological activity which further improve the sensing properties of nanosensors. Metal oxide nanostructures are associated with certain unique optical, electrical and molecular characteristics in addition to unique functionalities and surface charge features which shows attractive platforms for interfacing biorecognition elements with effective transducing properties for signal amplification. There is a great opportunity in the near future for metal oxide nanostructure-based miniaturization and the development of engineering sensor devices. PMID:24841244
NASA Astrophysics Data System (ADS)
Kim, Seonyeong; Shin, Somyeong; Kim, Taekwang; Du, Hyewon; Song, Minho; Kim, Ki Soo; Cho, Seungmin; Lee, Sang Wook; Seo, Sunae
2017-04-01
The modulation of charge carrier concentration allows us to tune the Fermi level (E F) of graphene thanks to the low electronic density of states near the E F. The introduced metal oxide thin films as well as the modified transfer process can elaborately maneuver the amounts of charge carrier concentration in graphene. The self-encapsulation provides a solution to overcome the stability issues of metal oxide hole dopants. We have manipulated systematic graphene p-n junction structures for electronic or photonic application-compatible doping methods with current semiconducting process technology. We have demonstrated the anticipated transport properties on the designed heterojunction devices with non-destructive doping methods. This mitigates the device architecture limitation imposed in previously known doping methods. Furthermore, we employed E F-modulated graphene source/drain (S/D) electrodes in a low dimensional transition metal dichalcogenide field effect transistor (TMDFET). We have succeeded in fulfilling n-type, ambipolar, or p-type field effect transistors (FETs) by moving around only the graphene work function. Besides, the graphene/transition metal dichalcogenide (TMD) junction in either both p- and n-type transistor reveals linear voltage dependence with the enhanced contact resistance. We accomplished the complete conversion of p-/n-channel transistors with S/D tunable electrodes. The E F modulation using metal oxide facilitates graphene to access state-of-the-art complimentary-metal-oxide-semiconductor (CMOS) technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuan, Lee Te, E-mail: gd130079@siswa.uthm.edu.my; Rathi, Muhammad Fareez Mohamad, E-mail: cd110238@siswa.uthm.edu.my; Abidin, Muhamad Yusuf Zainal, E-mail: cd110221@siswa.uthm.edu.my
Anodic oxidation is a surface modification method which combines electric field driven metal and oxygen ion diffusion for formation of oxide layer on the anode surface. This method has been widely used to modify the surface morphology of biomaterial especially titanium. This study aimed to investigate the effect of applied voltage on titanium. Specifically, the titanium foil was anodised in mixture of β-glycerophosphate disodium salt pentahydrate (β-GP) and calcium acetate monohydrate (CA) with different applied voltage (50-350 V), electrolyte concentration (0.04 M β-GP + 0.4 M CA), anodising time (10minutes) and current density (50 and 70 mA.cm{sup −2}) at room temperature. Surfacemore » oxide properties of anodised titanium were characterised by digital single-lens reflex camera (DSLR camera), field emission scanning electron microscope (FESEM) and atomic force microscopy (AFM). At lower applied voltage (≤150 V), surface of titanium foils were relatively smooth. With increasing applied voltage (≥250 V), the oxide layer became more porous and donut-shaped pores were formed on the surface of titanium foils. The AFM results indicated that the surface roughness of anodised titanium increases with increasing of applied voltage. The porous and rough surface is able to promote the osseointegration and reduce the suffering time of patient.« less
Jacob, Juliah W; Tchouassi, David P; Lagat, Zipporah O; Mathenge, Evan M; Mweresa, Collins K; Torto, Baldwyn
2018-04-27
Several studies have shown that odors of plant and animal origin can be developed into lures for use in surveillance of mosquito vectors of infectious diseases. However, the effect of combining plant- and mammalian-derived odors into an improved lure for monitoring both nectar- and blood-seeking mosquito populations in traps is yet to be explored. Here we used both laboratory dual choice olfactometer and field assays to investigate responses of the malaria vector, Anopheles gambiae, to plant- and mammalian-derived compounds and a combined blend derived from these two odor sources. Using subtractive bioassays in dual choice olfactometer we show that a 3-component terpenoid plant-derived blend comprising (E)-linalool oxide, β-pinene, β-ocimene was more attractive to females of An. gambiae than (E)-linalool oxide only (previously found attractive in field trials) and addition of limonene to this blend antagonized its attractiveness. Likewise, a mammalian-derived lure comprising the aldehydes heptanal, octanal, nonanal and decanal, was more preferred than (E)-linalool oxide. Surprisingly, combining the plant-derived 3-component blend with the mammalian derived 4-component blend attracted fewer females of An. gambiae than the individual blends in laboratory assays. However, this pattern was not replicated in field trials, where we observed a dose-dependent effect on trap catches while combining both blends with significantly improved trap catches at higher doses. The observed dose-dependent attractiveness for An. gambiae has practical implication in the design of vector control strategies involving kairomones from plant- and mammalian-based sources. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
JE Szecsody; JS Fruchter; DS Sklarew
2000-03-21
Pacific Northwest National Laboratory (PNNL) conducted a bench-scale study to determine how effective chemically treated Ft. Lewis sediments can degrade trichloroethylene (TCE). The objectives of this experimental study were to quantify: (1) sediment reduction and oxidation reactions, (2) TCE degradation reactions, and (3) other significant geochemical changes that occurred. Sediment reduction and oxidation were investigated to determine the mass of reducible iron in the Ft. Lewis sediments and the rate of this reduction and subsequent oxidation at different temperatures. The temperature dependence was needed to be able to predict field-scale reduction in the relatively cold ({approximately}11 C) Ft. Lewis aquifer.more » Results of these experiments were used in conjunction with other geochemical and hydraulic characterization to design the field-scale injection experiment and predict barrier longevity. For example, the sediment reduction rate controls the amount of time required for the dithionite solution to fully react with sediments. Sediment oxidation experiments were additionally conducted to determine the oxidation rate and provide a separate measure of the mass of reduced iron. Laboratory experiments that were used to meet these objectives included: (1) sediment reduction in batch (static) systems, (2) sediment reduction in 1-D columns, and (3) sediment oxidation in 1-D columns. Multiple reaction modeling was conducted to quantify the reactant masses and reaction rates.« less
A Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors
Zhai, Tianyou; Fang, Xiaosheng; Liao, Meiyong; Xu, Xijin; Zeng, Haibo; Yoshio, Bando; Golberg, Dmitri
2009-01-01
One-dimensional (1D) metal-oxide nanostructures are ideal systems for exploring a large number of novel phenomena at the nanoscale and investigating size and dimensionality dependence of nanostructure properties for potential applications. The construction and integration of photodetectors or optical switches based on such nanostructures with tailored geometries have rapidly advanced in recent years. Active 1D nanostructure photodetector elements can be configured either as resistors whose conductions are altered by a charge-transfer process or as field-effect transistors (FET) whose properties can be controlled by applying appropriate potentials onto the gates. Functionalizing the structure surfaces offers another avenue for expanding the sensor capabilities. This article provides a comprehensive review on the state-of-the-art research activities in the photodetector field. It mainly focuses on the metal oxide 1D nanostructures such as ZnO, SnO2, Cu2O, Ga2O3, Fe2O3, In2O3, CdO, CeO2, and their photoresponses. The review begins with a survey of quasi 1D metal-oxide semiconductor nanostructures and the photodetector principle, then shows the recent progresses on several kinds of important metal-oxide nanostructures and their photoresponses and briefly presents some additional prospective metal-oxide 1D nanomaterials. Finally, the review is concluded with some perspectives and outlook on the future developments in this area. PMID:22454597
Guided self-assembly of nanostructured titanium oxide
NASA Astrophysics Data System (ADS)
Wang, Baoxiang; Rozynek, Zbigniew; Fossum, Jon Otto; Knudsen, Kenneth D.; Yu, Yingda
2012-02-01
A series of nanostructured titanium oxide particles were synthesized by a simple wet chemical method and characterized by means of small-angle x-ray scattering (SAXS)/wide-angle x-ray scattering (WAXS), atomic force microscope (AFM), scanning electron microscope (SEM), transmission electron microscope (TEM), thermal analysis, and rheometry. Tetrabutyl titanate (TBT) and ethylene glycol (EG) can be combined to form either TiOx nanowires or smooth nanorods, and the molar ratio of TBT:EG determines which of these is obtained. Therefore, TiOx nanorods with a highly rough surface can be obtained by hydrolysis of TBT with the addition of cetyl-trimethyl-ammonium bromide (CTAB) as surfactant in an EG solution. Furthermore, TiOx nanorods with two sharp ends can be obtained by hydrolysis of TBT with the addition of salt (LiCl) in an EG solution. The AFM results show that the TiOx nanorods with rough surfaces are formed by the self-assembly of TiOx nanospheres. The electrorheological (ER) effect was investigated using a suspension of titanium oxide nanowires or nanorods dispersed in silicone oil. Oil suspensions of titanium oxide nanowires or nanorods exhibit a dramatic reorganization when submitted to a strong DC electric field and the particles aggregate to form chain-like structures along the direction of applied electric field. Two-dimensional SAXS images from chains of anisotropically shaped particles exhibit a marked asymmetry in the SAXS patterns, reflecting the preferential self-assembly of the particles in the field. The suspension of rough TiOx nanorods shows stronger ER properties than that of the other nanostructured TiOx particles. We find that the particle surface roughness plays an important role in modification of the dielectric properties and in the enhancement of the ER effect.
Guided self-assembly of nanostructured titanium oxide.
Wang, Baoxiang; Rozynek, Zbigniew; Fossum, Jon Otto; Knudsen, Kenneth D; Yu, Yingda
2012-02-24
A series of nanostructured titanium oxide particles were synthesized by a simple wet chemical method and characterized by means of small-angle x-ray scattering (SAXS)/wide-angle x-ray scattering (WAXS), atomic force microscope (AFM), scanning electron microscope (SEM), transmission electron microscope (TEM), thermal analysis, and rheometry. Tetrabutyl titanate (TBT) and ethylene glycol (EG) can be combined to form either TiO(x) nanowires or smooth nanorods, and the molar ratio of TBT:EG determines which of these is obtained. Therefore, TiO(x) nanorods with a highly rough surface can be obtained by hydrolysis of TBT with the addition of cetyl-trimethyl-ammonium bromide (CTAB) as surfactant in an EG solution. Furthermore, TiO(x) nanorods with two sharp ends can be obtained by hydrolysis of TBT with the addition of salt (LiCl) in an EG solution. The AFM results show that the TiO(x) nanorods with rough surfaces are formed by the self-assembly of TiO(x) nanospheres. The electrorheological (ER) effect was investigated using a suspension of titanium oxide nanowires or nanorods dispersed in silicone oil. Oil suspensions of titanium oxide nanowires or nanorods exhibit a dramatic reorganization when submitted to a strong DC electric field and the particles aggregate to form chain-like structures along the direction of applied electric field. Two-dimensional SAXS images from chains of anisotropically shaped particles exhibit a marked asymmetry in the SAXS patterns, reflecting the preferential self-assembly of the particles in the field. The suspension of rough TiO(x) nanorods shows stronger ER properties than that of the other nanostructured TiO(x) particles. We find that the particle surface roughness plays an important role in modification of the dielectric properties and in the enhancement of the ER effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kollu, Pratap, E-mail: pk419@cam.ac.uk, E-mail: anirmalagrace@vit.ac.in, E-mail: dhirenb@iitb.ac.in; Prathapani, Sateesh; Varaprasadarao, Eswara K.
2014-08-04
Magnetic Reduced Graphene Oxide-Nickel/NiFe{sub 2}O{sub 4} (RGO-Ni/NF) nanocomposite has been synthesized by one pot solvothermal method. Respective phase formations and their purities in the composite are confirmed by High Resolution Transmission Electron Microscope and X Ray Diffraction, respectively. For the RGO-Ni/NF composite material finite-size effects lead to the anomalous magnetic behavior, which is corroborated in temperature and field dependent magnetization curves. Here, we are reporting the behavior of higher magnetization values for Zero Field Cooled condition to that of Field Cooled for the RGO-Ni/NF nanocomposite. Also, the observed negative and positive moments in Hysteresis loops at relatively smaller applied fieldsmore » (100 Oe and 200 Oe) are explained on the basis of surface spin disorder.« less
Potential behavioral and pro-oxidant effects of Petiveria alliacea L. extract in adult rats.
de Andrade, Thaís Montenegro; de Melo, Ademar Soares; Dias, Rui Guilherme Cardoso; Varela, Everton Luís Pompeu; de Oliveira, Fábio Rodrigues; Vieira, José Luís Fernandes; de Andrade, Marcieni Ataíde; Baetas, Ana Cristina; Monteiro, Marta Chagas; Maia, Cristiane do Socorro Ferraz
2012-09-28
Petiveria alliacea (Phytolaccaceae) is a perennial shrub indigenous to the Amazon Rainforest and tropical areas of Central and South America, the Caribbean, and sub-Saharan Africa. In folk medicine, Petiveria alliacea has a broad range of therapeutic properties; however, it is also associated with toxic effects. The present study evaluated the putative effects of Petiveria alliacea on the central nervous system, including locomotor activity, anxiety, depression-like behavior, and memory, and oxidative stress. Two-month-old male and female Wistar rats (n=7-10 rats/group) were administered with 900 mg/kg of hydroalcoholic extracts of Petiveria alliacea L. The behavioral assays included open-field, forced swimming, and elevated T-maze tests. The oxidative stress levels were measured in rat blood samples after behavioral assays and methemoglobin levels were measured in vitro. Consistent with previous reports, Petiveria alliacea increased locomotor activity. It also exerted previously unreported anxiolytic and antidepressant effects in behavioral tests. In the oxidative stress assays, the Petiveria alliacea extract decreased Trolox equivalent antioxidant capacity levels and increased methemoglobin levels, which was related to the toxic effects. The Petiveria alliacea extract exerted motor stimulatory and anxiolytic effects in the OF test, antidepressant effects in the FS test, and elicited memory improvement in ETM. Furthermore, the Petiveria alliacea extract also exerted pro-oxidant effects in vitro and in vivo, inhibiting the antioxidant status and increasing MetHb levels in human plasma, respectively. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
The oxidation of Ni-rich Ni-Al intermetallics
NASA Technical Reports Server (NTRS)
Doychak, Joseph; Smialek, James L.; Barrett, Charles A.
1988-01-01
The oxidation of Ni-Al intermetallic alloys in the beta-NiAl phase field and in the two phase beta-NiAl/gamma'-Ni3Al phase field has been studied between 1000 and 1400 C. The stoichiometric beta-NiAl alloy doped with Zr was superior to other alloy compositions under cyclic and isothermal oxidation. The isothermal growth rates did not increase monotonically as the alloy Al content was decreased. The characteristically ridged alpha-Al2O3 scale morphology, consisting of cells of thin, textured oxide with thick growth ridges at cell boundaries, forms on oxidized beta-NiAl alloys. The correlation of scale features with isothermal growth rates indicates a predominant grain boundary diffusion growth mechanism. The 1200 C cyclic oxidation resistance decreases near the lower end of the beta-NiAl phase field.
Yi, Qiong; Tang, Shuanghu; Fan, Xiaolin; Zhang, Mu; Pang, Yuwan; Huang, Xu; Huang, Qiaoyi
2017-01-01
Globally, vegetable fields are the primary source of greenhouse gas emissions. A closed-chamber method together with gas chromatography was used to measure the fluxes of nitrous oxide (N2O) emissions in typical vegetable fields planted with four vegetables sequentially over time in the same field: endive, lettuce, cabbage and sweet corn. Results showed that N2O fluxes occurred in pulses with the N2O emission peak varying greatly among the crops. In addition, N2O emissions were linearly associated with the nitrogen (N) application rate (r = 0.8878, n = 16). Excessive fertilizer N application resulted in N loss through nitrous oxide gas emitted from the vegetable fields. Compared with a conventional fertilization (N2) treatment, the cumulative N2O emissions decreased significantly in the growing seasons of four plant species from an nitrogen synergist (a nitrification inhibitor, dicyandiamide and biochar treatments by 34.6% and 40.8%, respectively. However, the effects of biochar on reducing N2O emissions became more obvious than that of dicyandiamide over time. The yield-scaled N2O emissions in consecutive growing seasons for four species increased with an increase in the N fertilizer application rate, and with continuous application of N fertilizer. This was especially true for the high N fertilizer treatment that resulted in a risk of yield-scaled N2O emissions. Generally, the additions of dicyandiamide and biochar significantly decreased yield-scaled N2O-N emissions by an average of 45.9% and 45.7%, respectively, compared with N2 treatment from the consecutive four vegetable seasons. The results demonstrated that the addition of dicyandiamide or biochar in combination with application of a rational amount of N could provide the best strategy for the reduction of greenhouse gas emissions in vegetable field in south China.
Zhang, Mu; Pang, Yuwan; Huang, Xu; Huang, Qiaoyi
2017-01-01
Globally, vegetable fields are the primary source of greenhouse gas emissions. A closed-chamber method together with gas chromatography was used to measure the fluxes of nitrous oxide (N2O) emissions in typical vegetable fields planted with four vegetables sequentially over time in the same field: endive, lettuce, cabbage and sweet corn. Results showed that N2O fluxes occurred in pulses with the N2O emission peak varying greatly among the crops. In addition, N2O emissions were linearly associated with the nitrogen (N) application rate (r = 0.8878, n = 16). Excessive fertilizer N application resulted in N loss through nitrous oxide gas emitted from the vegetable fields. Compared with a conventional fertilization (N2) treatment, the cumulative N2O emissions decreased significantly in the growing seasons of four plant species from an nitrogen synergist (a nitrification inhibitor, dicyandiamide and biochar treatments by 34.6% and 40.8%, respectively. However, the effects of biochar on reducing N2O emissions became more obvious than that of dicyandiamide over time. The yield-scaled N2O emissions in consecutive growing seasons for four species increased with an increase in the N fertilizer application rate, and with continuous application of N fertilizer. This was especially true for the high N fertilizer treatment that resulted in a risk of yield-scaled N2O emissions. Generally, the additions of dicyandiamide and biochar significantly decreased yield-scaled N2O-N emissions by an average of 45.9% and 45.7%, respectively, compared with N2 treatment from the consecutive four vegetable seasons. The results demonstrated that the addition of dicyandiamide or biochar in combination with application of a rational amount of N could provide the best strategy for the reduction of greenhouse gas emissions in vegetable field in south China. PMID:28419127
Effect of polar surfaces on organic molecular crystals
NASA Astrophysics Data System (ADS)
Sharia, Onise; Tsyshevskiy, Roman; Kuklja, Maija; University of Maryland College Park Team
Polar oxide materials reveal intriguing opportunities in the field of electronics, superconductivity and nanotechnology. While behavior of polar surfaces has been widely studied on oxide materials and oxide-oxide interfaces, manifestations and properties of polar surfaces in molecular crystals are still poorly understood. Here we discover that the polar catastrophe phenomenon, known on oxides, also takes place in molecular materials as illustrated with an example of cyclotetramethylene tetranitramine (HMX) crystals. We show that the surface charge separation is a feasible compensation mechanism to counterbalance the macroscopic dipole moment and remove the electrostatic instability. We discuss the role of surface charge on degradation of polar surfaces, electrical conductivity, optical band-gap closure and surface metallization. Research is supported by the US ONR (Grants N00014-16-1-2069 and N00014-16-1-2346) and NSF. We used NERSC, XSEDE and MARCC computational resources.
Yao, Manwen; Chen, Jianwen; Su, Zhen; Peng, Yong; Zou, Pei; Yao, Xi
2016-05-04
Dense and nonporous amorphous aluminum oxide (AmAO) film was deposited onto platinized silicon substrate by sol-gel and spin coating technology. The evaporated aluminum film was deposited onto the AmAO film as top electrode. The hydrated AmAO film was utilized as a solid electrolyte for anodic oxidation of the aluminum electrode (Al) film under high electric field. The hydrated AmAO film was a high efficiency electrolyte, where a 45 nm thick Al film was anodized completely on a 210 nm thick hydrated AmAO film. The current-voltage (I-V) characteristics and breakdown phenomena of a dry and hydrated 210 nm thick AmAO film with a 150 nm thick Al electrode pad were studied in this work. Breakdown voltage of the dry and hydrated 210 nm thick AmAO film were 85 ± 3 V (405 ± 14 MV m(-1)) and 160 ± 5 V (762 ± 24 MV m(-1)), respectively. The breakdown voltage of the hydrated AmAO film increased about twice, owing to the self-healing behavior (anodic oxidation reaction). As an intuitive phenomenon of the self-healing behavior, priority anodic oxidation phenomena was observed in a 210 nm thick hydrated AmAO film with a 65 nm thick Al electrode pad. The results suggested that self-healing behavior (anodic oxidation reaction) was occurring nearby the defect regions of the films during I-V test. It was an effective electrical self-healing method, which would be able to extend to many other simple and complex oxide dielectrics and various composite structures.
Magnetic and structural properties of yellow europium oxide compound and Eu(OH){sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Dongwook, E-mail: dongwookleedl324@gmail.com; Seo, Jiwon, E-mail: jiwonseo@yonsei.ac.kr; Valladares, Luis de los Santos
A new material based on a yellow europium oxide compound was prepared from europium oxide in a high vacuum environment. The structural and magnetic properties of the material were investigated. Owing to the absence of a crystal structure, the material exhibited a disordered magnetic behavior. In a reaction with deionized (DI) water without applied heat, the compound assumed a white color as soon as the DI water reached the powder, and the structure became polycrystalline Eu(OH){sub 3}. The magnetic properties, such as the thermal hysteresis, disappeared after the reaction with DI water, and the magnetic susceptibility of the yellow oxidemore » compound weakened. The magnetic properties of Eu(OH){sub 3} were also examined. Although Eu{sup 3+} is present in Eu(OH){sub 3}, a high magnetic moment due to the crystal field effect was observed. - Graphical abstract: (top left) Optical image of the yellow europium oxide compound. (top right) Optical image of the product of DI water and yellow europium oxide. (bottom) Magnetization curves as a function of temperature measured in various magnetic field. - Highlights: • We prepared a new material based on a yellow europium oxide compound from europium oxide. • We characterized the magnetic properties of the material which exhibits a disordered magnetic behavior such as thermal hysteresis. • The compound turned white (Eu(OH){sub 3}) as soon as the DI water reached the powder. • The thermal hysteresis disappeared after the reaction with DI water and the magnetic susceptibility of the yellow oxide compound weakened.« less
Advanced p-MOSFET Ionizing-Radiation Dosimeter
NASA Technical Reports Server (NTRS)
Buehler, Martin G.; Blaes, Brent R.
1994-01-01
Circuit measures total dose of ionizing radiation in terms of shift in threshold gate voltage of doped-channel metal oxide/semiconductor field-effect transistor (p-MOSFET). Drain current set at temperature-independent point to increase accuracy in determination of radiation dose.
NASA Astrophysics Data System (ADS)
Shijeesh, M. R.; Jayaraj, M. K.
2018-04-01
Cuprous (Cu2O) and cupric (CuO) oxide thin films have been deposited by radio frequency magnetron sputtering with two different oxygen partial pressures. The as-deposited copper oxide films were subjected to post-annealing at 300 °C for 30 min to improve the microstructural, morphological, and optical properties of thin films. Optical absorption studies revealed the existence of a large number of subgap states inside CuO films than Cu2O films. Cu2O and CuO thin film transistors (TFTs) were fabricated in an inverted staggered structure by using a post-annealed channel layer. The field effect mobility values of Cu2O and CuO TFTs were 5.20 × 10-4 cm2 V-1 s-1 and 2.33 × 10-4 cm2 V-1 s-1, respectively. The poor values of subthreshold swing, threshold voltage, and field effect mobility of the TFTs were due to the charge trap density at the copper oxide/dielectric interface as well as defect induced trap states originated from the oxygen vacancies inside the bulk copper oxide. In order to study the distribution of the trap states in the Cu2O and CuO active layer, the temperature dependent transfer characteristics of transistors in the temperature range between 310 K and 340 K were studied. The observed subgap states were found to be decreasing exponentially inside the bandgap, with CuO TFT showing higher subgap states than Cu2O TFT. The high-density hole trap states in the CuO channel are one of the plausible reasons for the lower mobility in CuO TFT than in Cu2O TFT. The origin of these subgap states was attributed to the impurities or oxygen vacancies present in the CuO channel layer.
NASA Astrophysics Data System (ADS)
Choi, Jinhyeon; Lee, Hee Ho; Ahn, Jungil; Seo, Sang-Ho; Shin, Jang-Kyoo
2012-06-01
In this paper, we present a differential-mode biosensor using dual extended-gate metal-oxide-semiconductor field-effect transistors (MOSFETs), which possesses the advantages of both the extended-gate structure and the differential-mode operation. The extended-gate MOSFET was fabricated using a 0.6 µm standard complementary metal oxide semiconductor (CMOS) process. The Au extended gate is the sensing gate on which biomolecules are immobilized, while the Pt extended gate is the dummy gate for use in the differential-mode detection circuit. The differential-mode operation offers many advantages such as insensitivity to the variation of temperature and light, as well as low noise. The outputs were measured using a semiconductor parameter analyzer in a phosphate buffered saline (PBS; pH 7.4) solution. A standard Ag/AgCl reference electrode was used to apply the gate bias. We measured the variation of output voltage with time, temperature, and light intensity. The bindings of self-assembled monolayer (SAM), streptavidin, and biotin caused a variation in the output voltage of the differential-mode detection circuit and this was confirmed by surface plasmon resonance (SPR) experiment. Biotin molecules could be detected up to a concentration of as low as 0.001 µg/ml.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Held, Martin; Schießl, Stefan P.; Gannott, Florentina
Transistors for future flexible organic light-emitting diode (OLED) display backplanes should operate at low voltages and be able to sustain high currents over long times without degradation. Hence, high capacitance dielectrics with low surface trap densities are required that are compatible with solution-processable high-mobility semiconductors. Here, we combine poly(methyl methacrylate) (PMMA) and atomic layer deposition hafnium oxide (HfO{sub x}) into a bilayer hybrid dielectric for field-effect transistors with a donor-acceptor polymer (DPPT-TT) or single-walled carbon nanotubes (SWNTs) as the semiconductor and demonstrate substantially improved device performances for both. The ultra-thin PMMA layer ensures a low density of trap states atmore » the semiconductor-dielectric interface while the metal oxide layer provides high capacitance, low gate leakage and superior barrier properties. Transistors with these thin (≤70 nm), high capacitance (100–300 nF/cm{sup 2}) hybrid dielectrics enable low operating voltages (<5 V), balanced charge carrier mobilities and low threshold voltages. Moreover, the hybrid layers substantially improve the bias stress stability of the transistors compared to those with pure PMMA and HfO{sub x} dielectrics.« less
NASA Astrophysics Data System (ADS)
Swiecicki, I.; Ulysse, C.; Wolf, T.; Bernard, R.; Bergeal, N.; Briatico, J.; Faini, G.; Lesueur, J.; Villegas, Javier E.
2012-06-01
We have developed a masked ion irradiation technique to engineer the energy landscape for vortices in oxide superconductors. This approach associates the possibility to design the landscape geometry at the nanoscale with the unique capability to adjust the depth of the energy wells for vortices. This enabled us to unveil the key role of vortex channeling in modulating the amplitude of the field matching effects with the artificial energy landscape, and to make the latter govern flux dynamics over an unusually wide range of temperatures and applied fields for high-temperature superconducting films.
Excitonic giant-dipole potentials in cuprous oxide
NASA Astrophysics Data System (ADS)
Kurz, Markus; Grünwald, Peter; Scheel, Stefan
2017-06-01
In this paper we predict the existence of a novel species of Wannier excitons when exposed to crossed electric and magnetic fields. In particular, we present a theory of giant-dipole excitons in Cu2O in crossed fields. Within our theoretical approach we perform a pseudoseparation of the center-of-mass motion for the field-dressed excitonic species, thereby obtaining an effective single-particle Hamiltonian for the relative motion. For arbitrary gauge fields we exactly separate the gauge-dependent kinetic-energy terms from the effective single-particle interaction potential. Depending on the applied field strengths and the specific field orientation, the potential for the relative motion of electron and hole exhibits an outer well at spatial separations up to several micrometers and depths up to 380 μ eV , leading to possible permanent excitonic electric dipole moments of around 3 ×106 D.
Romanenko, A.; Schuster, D. I.
2017-12-28
In niobium superconducting radio frequency (SRF) cavities for particle acceleration, a decrease of the quality factor at lower fields—a so-called low field Q slope or LFQS—has been a long-standing unexplained effect. By extending the high Q measurement techniques to ultralow fields, we discover two previously unknown features of the effect: (i) saturation at rf fields lower than E acc~0.1 MV/m; (ii) strong degradation enhancement by growing thicker niobium pentoxide. Our findings suggest that the LFQS may be caused by the two level systems in the natural niobium oxide on the inner cavity surface, thereby identifying a new source of residual resistance andmore » providing guidance for potential nonaccelerator low-field applications of SRF cavities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romanenko, A.; Schuster, D. I.
In niobium superconducting radio frequency (SRF) cavities for particle acceleration, a decrease of the quality factor at lower fields—a so-called low field Q slope or LFQS—has been a long-standing unexplained effect. By extending the high Q measurement techniques to ultralow fields, we discover two previously unknown features of the effect: (i) saturation at rf fields lower than E acc~0.1 MV/m; (ii) strong degradation enhancement by growing thicker niobium pentoxide. Our findings suggest that the LFQS may be caused by the two level systems in the natural niobium oxide on the inner cavity surface, thereby identifying a new source of residual resistance andmore » providing guidance for potential nonaccelerator low-field applications of SRF cavities.« less
NASA Technical Reports Server (NTRS)
Daud, T.
1986-01-01
Process for making metal-oxide/semiconductor field-effect transistors (MOSFET's) results in gate-channel lengths of only few hundred angstroms about 100 times as small as state-of-the-art devices. Gates must be shortened to develop faster MOSFET's; proposed fabrication process used to study effects of size reduction in MOS devices and eventually to build practical threedimensional structures.
Luo, Jun-Wei; Li, Shu-Shen; Zunger, Alex
2017-09-22
The electric field manipulation of the Rashba spin-orbit coupling effects provides a route to electrically control spins, constituting the foundation of the field of semiconductor spintronics. In general, the strength of the Rashba effects depends linearly on the applied electric field and is significant only for heavy-atom materials with large intrinsic spin-orbit interaction under high electric fields. Here, we illustrate in 1D semiconductor nanowires an anomalous field dependence of the hole (but not electron) Rashba effect (HRE). (i) At low fields, the strength of the HRE exhibits a steep increase with the field so that even low fields can be used for device switching. (ii) At higher fields, the HRE undergoes a rapid transition to saturation with a giant strength even for light-atom materials such as Si (exceeding 100 meV Å). (iii) The nanowire-size dependence of the saturation HRE is rather weak for light-atom Si, so size fluctuations would have a limited effect; this is a key requirement for scalability of Rashba-field-based spintronic devices. These three features offer Si nanowires as a promising platform for the realization of scalable complementary metal-oxide-semiconductor compatible spintronic devices.
Analysis of Cysteine Redox Post-Translational Modifications in Cell Biology and Drug Pharmacology.
Wani, Revati; Murray, Brion W
2017-01-01
Reversible cysteine oxidation is an emerging class of protein post-translational modification (PTM) that regulates catalytic activity, modulates conformation, impacts protein-protein interactions, and affects subcellular trafficking of numerous proteins. Redox PTMs encompass a broad array of cysteine oxidation reactions with different half-lives, topographies, and reactivities such as S-glutathionylation and sulfoxidation. Recent studies from our group underscore the lesser known effect of redox protein modifications on drug binding. To date, biological studies to understand mechanistic and functional aspects of redox regulation are technically challenging. A prominent issue is the lack of tools for labeling proteins oxidized to select chemotype/oxidant species in cells. Predictive computational tools and curated databases of oxidized proteins are facilitating structural and functional insights into regulation of the network of oxidized proteins or redox proteome. In this chapter, we discuss analytical platforms for studying protein oxidation, suggest computational tools currently available in the field to determine redox sensitive proteins, and begin to illuminate roles of cysteine redox PTMs in drug pharmacology.
Real-time electrical detection of nitric oxide in biological systems with sub-nanomolar sensitivity
NASA Astrophysics Data System (ADS)
Jiang, Shan; Cheng, Rui; Wang, Xiang; Xue, Teng; Liu, Yuan; Nel, Andre; Huang, Yu; Duan, Xiangfeng
2013-07-01
Real-time monitoring of nitric oxide concentrations is of central importance for probing the diverse roles of nitric oxide in neurotransmission, cardiovascular systems and immune responses. Here we report a new design of nitric oxide sensors based on hemin-functionalized graphene field-effect transistors. With its single atom thickness and the highest carrier mobility among all materials, graphene holds the promise for unprecedented sensitivity for molecular sensing. The non-covalent functionalization through π-π stacking interaction allows reliable immobilization of hemin molecules on graphene without damaging the graphene lattice to ensure the highly sensitive and specific detection of nitric oxide. Our studies demonstrate that the graphene-hemin sensors can respond rapidly to nitric oxide in physiological environments with a sub-nanomolar sensitivity. Furthermore, in vitro studies show that the graphene-hemin sensors can be used for the detection of nitric oxide released from macrophage cells and endothelial cells, demonstrating their practical functionality in complex biological systems.
Poole-Frenkel-effect as dominating current mechanism in thin oxide films—An illusion?!
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroeder, Herbert
2015-06-07
In many of the publications, over 50 per year for the last five years, the Poole-Frenkel-effect (PFE) is identified or suggested as dominating current mechanism to explain measured current–electric field dependencies in metal-insulator-metal (MIM) thin film stacks. Very often, the insulating thin film is a metal oxide as this class of materials has many important applications, especially in information technology. In the overwhelming majority of the papers, the identification of the PFE as dominating current mechanism is made by the slope of the current–electric field curve in the so-called Poole-Frenkel plot, i.e., logarithm of current density, j, divided by themore » applied electric field, F, versus the square root of that field. This plot is suggested by the simplest current equation for the PFE, which comprises this proportionality (ln(j/F) vs. F{sup 1/2}) leading to a straight line in this plot. Only one other parameter (except natural constants) may influence this slope: the optical dielectric constant of the insulating film. In order to identify the importance of the PFE simulation studies of the current through MIM stacks with thin insulating films were performed and the current–electric field curves without and with implementation of the PFE were compared. For the simulation, an advanced current model has been used combining electronic carrier injection/ejection currents at the interfaces, described by thermionic emission, with the carrier transport in the dielectric, described by drift and diffusion of electrons and holes in a wide band gap semiconductor. Besides the applied electric field (or voltage), many other important parameters have been varied: the density of the traps (with donor- and acceptor-like behavior); the zero-field energy level of the traps within the energy gap, this energy level is changed by the PFE (also called internal Schottky effect); the thickness of the dielectric film; the permittivity of the dielectric film simulating different oxide materials; the barriers for electrons and holes at the interfaces simulating different electrode materials; the temperature. The main results and conclusions are: (1) For a single type of trap present only (donor-like or acceptor-like), none of the simulated current density curves shows the expected behavior of the PFE and in most cases within the tested parameter field the effect of PFE is negligibly small. (2) For both types of traps present (compensation) only in the case of exact compensation, the expected slope in the PF-plot was nearly found for a wider range of the applied electric field, but for a very small range of the tested parameter field because of the very restricting additional conditions: first, the quasi-fermi level of the current controlling particle (electrons or holes) has to be 0.1 to 0.5 eV closer to the respective band limit than the zero-field energy level of the respective traps and, second, the compensating trap energy level has to be shallow. The conclusion from all these results is: the observation of the PFE as dominating current mechanism in MIM stacks with thin dielectric (oxide) films (typically 30 nm) is rather improbable!.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luňáček, J., E-mail: jiri.lunacek@vsb.cz
The present paper is devoted to detailed study of the magnetically separable sorbents based on a cerium dioxide/iron oxide composite annealed at temperatures T{sub a} = 773 K, 873 K, and 973 K. The X-ray diffraction and high resolution transmission electron microscopy are used to determine the phase composition and microstructure morphology. Mössbauer spectroscopy at room (300 K) and low (5 K) temperatures has contributed to more exact identification of iron oxides and their transformations Fe{sub 3}O{sub 4} → γ-Fe{sub 2}O{sub 3} (ε-Fe{sub 2}O{sub 3}) → α-Fe{sub 2}O{sub 3} in dependence on calcination temperature. Different iron oxide phase compositions andmore » grain size distributions influence the magnetic characteristics determined from the room- and low-temperature hysteresis loop measurements. The results are supported by zero-field-cooled and field-cooled magnetization measurements allowing a quantitative estimation of the grain size distribution and its effect on the iron oxide transformations. - Highlights: •Magnetically separable sorbents based on a CeO{sub 2}/Fe{sub 2}O{sub 3} composite were investigated. •Microstructure of sorbents was determined by XRD, TEM and Mössbauer spectroscopy. •Magnetic properties were studied by hysteresis loops at room- and low-temperatures. •Phase transitions of iron oxides with increasing annealing temperature are observed.« less
NASA Astrophysics Data System (ADS)
Hasegawa, N.; Koike, F.; Ikarashi, K.; Ishizone, M.; Kawamura, M.; Nakazawa, Y.; Takahashi, A.; Tomita, H.; Iwasaki, H.; Sahashi, M.
2002-05-01
To implement the specular nano-oxide-layer (NOL) spin valve (SV) heads for use in practical applications, it is key to simultaneously achieve a good specular effect of the NOL inserted in the synthetic ferrimagnet pinned layer (i.e., high magnetoresistance MR performance) and a strong pinning field through the NOL. By using CoFe+X as a substance to be subjected to oxidation, we obtained the NOL specular SV films simultaneously achieving a high MR ratio of 17%-18% and a high pinning field of 1100-1500 Oe. Narrow track (0.12 μm) heads were fabricated and they showed a high sensitivity of 10 mV/μm. Several reliability tests were done both at the sheet film level and the actual head level. The oxygen inside NOL was found to be stable up to 350 °C, and pinned layer magnetization canting after orthogonal field annealing was found to be almost the same as today's non-NOL SV films. An electrostatic discharge test and accelerated lifetime test were also performed and NOL specular heads were demonstrated to have almost the same robustness as today's non-NOL heads.
Dopant distributions in n-MOSFET structure observed by atom probe tomography.
Inoue, K; Yano, F; Nishida, A; Takamizawa, H; Tsunomura, T; Nagai, Y; Hasegawa, M
2009-11-01
The dopant distributions in an n-type metal-oxide-semiconductor field effect transistor (MOSFET) structure were analyzed by atom probe tomography. The dopant distributions of As, P, and B atoms in a MOSFET structure (gate, gate oxide, channel, source/drain extension, and halo) were obtained. P atoms were segregated at the interface between the poly-Si gate and the gate oxide, and on the grain boundaries of the poly-Si gate, which had an elongated grain structure along the gate height direction. The concentration of B atoms was enriched near the edge of the source/drain extension where the As atoms were implanted.
NASA Technical Reports Server (NTRS)
Mueller, Carl H.; Theofylaktos, Noulie; Pinto, Nicholas J.; Robinson, Daryl C.; Miranda, Felix A.
2002-01-01
Nanofibers comprised of polyaniline/polyethylene oxide (PANI/PEO) are being developed for novel logic devices. We report the electrical conductivity of PANI/PEO nanofibers with diameters in the 100 to 200 nm range. We measured conductivity values of approx. 0.3 to 1.0 S/cm, which is higher than the values reported for thicker nanofibers, but less than the bulk value of PANI. The electrical measurements were performed by depositing the fibers on pre-electroded, oxidized silicon (Si) substrates. The excellent adherence of the nanofibers to the SiO2 as well as the gold (Au) electrodes may be useful in the design of future devices.
Effects of negative gate-bias stress on the performance of solution-processed zinc-oxide transistors
NASA Astrophysics Data System (ADS)
Kim, Dongwook; Lee, Woo-Sub; Shin, Hyunji; Choi, Jong Sun; Zhang, Xue; Park, Jaehoon; Hwang, Jaeeun; Kim, Hongdoo; Bae, Jin-Hyuk
2014-08-01
We studied the effects of negative gate-bias stress on the electrical characteristics of top-contact zinc-oxide (ZnO) thin-film transistors (TFTs), which were fabricated by spin coating a ZnO solution onto a silicon-nitride gate dielectric layer. The negative gate-bias stress caused characteristic degradations in the on-state currents and the field-effect mobility of the fabricated ZnO TFTs. Additionally, a decrease in the off-state currents and a positive shift in the threshold voltage occurred with increasing stress time. These results indicate that the negative gate-bias stress caused an injection of electrons into the gate dielectric, thereby deteriorating the TFT's performance.
Cryogenic measurements of aerojet GaAs n-JFETs
NASA Technical Reports Server (NTRS)
Goebel, John H.; Weber, Theodore T.
1993-01-01
The spectral noise characteristics of Aerojet gallium arsenide (GaAs) junction field effect transistors (JFET's) have been investigated down to liquid-helium temperatures. Noise characterization was performed with the field effect transistor (FET) in the floating-gate mode, in the grounded-gate mode to determine the lowest noise readings possible, and with an extrinsic silicon photodetector at various detector bias voltages to determine optimum operating conditions. The measurements indicate that the Aerojet GaAs JFET is a quiet and stable device at liquid helium temperatures. Hence, it can be considered a readout line driver or infrared detector preamplifier as well as a host of other cryogenic applications. Its noise performance is superior to silicon (Si) metal oxide semiconductor field effect transistor (MOSFET's) operating at liquid helium temperatures, and is equal to the best Si n channel junction field effect transistor (n-JFET's) operating at 300 K.
NASA Astrophysics Data System (ADS)
Wright, Jason T.; Carbaugh, Daniel J.; Haggerty, Morgan E.; Richard, Andrea L.; Ingram, David C.; Kaya, Savas; Jadwisienczak, Wojciech M.; Rahman, Faiz
2016-10-01
We describe in detail the growth procedures and properties of thermal silicon dioxide grown in a limited and dilute oxygen atmosphere. Thin thermal oxide films have become increasingly important in recent years due to the continuing down-scaling of ultra large scale integration metal oxide silicon field effect transistors. Such films are also of importance for organic transistors where back-gating is needed. The technique described here is novel and allows self-limited formation of high quality thin oxide films on silicon surfaces. This technique is easy to implement in both research laboratory and industrial settings. Growth conditions and their effects on film growth have been described. Properties of the resulting oxide films, relevant for microelectronic device applications, have also been investigated and reported here. Overall, our findings are that thin, high quality, dense silicon dioxide films of thicknesses up to 100 nm can be easily grown in a depleted oxygen environment at temperatures similar to that used for usual silicon dioxide thermal growth in flowing dry oxygen.
Superconducting composite with multilayer patterns and multiple buffer layers
Wu, Xin D.; Muenchausen, Ross E.
1993-01-01
An article of manufacture including a substrate, a patterned interlayer of a material selected from the group consisting of magnesium oxide, barium-titanium oxide or barium-zirconium oxide, the patterned interlayer material overcoated with a secondary interlayer material of yttria-stabilized zirconia or magnesium-aluminum oxide, upon the surface of the substrate whereby an intermediate article with an exposed surface of both the overcoated patterned interlayer and the substrate is formed, a coating of a buffer layer selected from the group consisting of cerium oxide, yttrium oxide, curium oxide, dysprosium oxide, erbium oxide, europium oxide, iron oxide, gadolinium oxide, holmium oxide, indium oxide, lanthanum oxide, manganese oxide, lutetium oxide, neodymium oxide, praseodymium oxide, plutonium oxide, samarium oxide, terbium oxide, thallium oxide, thulium oxide, yttrium oxide and ytterbium oxide over the entire exposed surface of the intermediate article, and, a ceramic superco n FIELD OF THE INVENTION The present invention relates to the field of superconducting articles having two distinct regions of superconductive material with differing in-plane orientations whereby the conductivity across the boundary between the two regions can be tailored. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).
Effect Of Oxidation On Chromium Leaching And Redox Capacity Of Slag-Containing Waste Forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almond, P. M.; Stefanko, D. B.; Langton, C. A.
2013-03-01
The rate of oxidation is important to the long-term performance of reducing salt waste forms because the solubility of some contaminants, e.g., technetium, is a function of oxidation state. TcO 4 - in the salt solution is reduced to Tc(IV) and has been shown to react with ingredients in the waste form to precipitate low solubility sulfide and/or oxide phases [Shuh, et al., 1994, Shuh, et al., 2000, Shuh, et al., 2003]. Upon exposure to oxygen, the compounds containing Tc(IV) oxidize to the pertechnetate ion, Tc(VII)O 4 -, which is very soluble. Consequently the rate of technetium oxidation front advancementmore » into a monolith and the technetium leaching profile as a function of depth from an exposed surface are important to waste form performance and ground water concentration predictions. An approach for measuring contaminant oxidation rate (effective contaminant specific oxidation rate) based on leaching of select contaminants of concern is described in this report. In addition, the relationship between reduction capacity and contaminant oxidation is addressed. Chromate was used as a non-radioactive surrogate for pertechnetate in simulated waste form samples. Depth discrete subsamples were cut from material exposed to Savannah River Site (SRS) field cured conditions. The subsamples were prepared and analyzed for both reduction capacity and chromium leachability. Results from field-cured samples indicate that the depth at which leachable chromium was detected advanced further into the sample exposed for 302 days compared to the sample exposed to air for 118 days (at least 50 mm compared to at least 20 mm). Data for only two exposure time intervals is currently available. Data for additional exposure times are required to develop an equation for the oxidation front progression. Reduction capacity measurements (per the Angus-Glasser method, which is a measurement of the ability of a material to chemically reduce Ce(IV) to Ce(III) in solution) performed on depth discrete samples could not be correlated with the amount of chromium leached from the depth discrete subsamples or with the oxidation front inferred from soluble chromium (i.e., effective Cr oxidation front). Exposure to oxygen (air or oxygen dissolved in water) results in the release of chromium through oxidation of Cr(III) to highly soluble chromate, Cr(VI). Residual reduction capacity in the oxidized region of the test samples indicates that the remaining reduction capacity is not effective in re-reducing Cr(VI) in the presence of oxygen. Consequently, this method for determining reduction capacity may not be a good indicator of the effective contaminant oxidation rate in a relatively porous solid (40 to 60 volume percent porosity). The chromium extracted in depth discrete samples ranged from a maximum of about 5.8 % at about 5 mm (118 day exposure) to about 4 % at about 10 mm (302 day exposure). The use of reduction capacity as an indicator of long-term performance requires further investigation. The carbonation front was also estimated to have advanced to at least 28 mm in 302 days based on visual observation of gas evolution during acid addition during the reduction capacity measurements. Depth discrete sampling of materials exposed to realistic conditions in combination with short term leaching of crushed samples has potential for advancing the understanding of factors influencing performance and will support conceptual model development.« less
Abalos, Diego; Sanz-Cobena, Alberto; Misselbrook, Thomas; Vallejo, Antonio
2012-09-01
Urea is considered the cheapest and most commonly used form of inorganic N fertilizer worldwide. However, its use is associated with emissions of ammonia (NH(3)), nitrous oxide (N(2)O) and nitric oxide (NO), which have both economic and environmental impact. Urease activity inhibitors have been proposed as a means to reduce NH(3) emissions, although limited information exists about their effect on N(2)O and NO emissions. In this context, a field experiment was carried out with a barley crop (Hordeum vulgare L.) under Mediterranean conditions to test the effectiveness of the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) on reducing these gaseous N losses from surface applied urea. Crop yield, soil mineral N concentrations, dissolved organic carbon (DOC), denitrification potential, NH(3), N(2)O and NO fluxes were measured during the growing season. The inclusion of the inhibitor reduced NH(3) emissions in the 30 d following urea application by 58% and net N(2)O and NO emissions in the 95 d following urea application by 86% and 88%, respectively. NBPT addition also increased grain yield by 5% and N uptake by 6%, although neither increase was statistically significant. Under the experimental conditions presented here, these results demonstrate the potential of the urease inhibitor NBPT in abating NH(3), N(2)O and NO emissions from arable soils fertilized with urea, slowing urea hydrolysis and releasing lower concentrations of NH(4)(+) to the upper soil layer. Copyright © 2012 Elsevier Ltd. All rights reserved.
Fu, Zhendong; Xiao, Yinguo; Feoktystov, Artem; Pipich, Vitaliy; Appavou, Marie-Sousai; Su, Yixi; Feng, Erxi; Jin, Wentao; Brückel, Thomas
2016-11-03
The magnetic-field-induced assembly of magnetic nanoparticles (NPs) provides a unique and flexible strategy in the design and fabrication of functional nanostructures and devices. We have investigated the field-induced self-assembly of core-shell iron oxide NPs dispersed in toluene by means of small-angle neutron scattering (SANS). The form factor of the core-shell NPs was characterized and analyzed using SANS with polarized neutrons. Large-scale aggregates of iron oxide NPs formed above 0.02 T as indicated by very-small-angle neutron scattering measurements. A three-dimensional long-range ordered superlattice of iron oxide NPs was revealed under the application of a moderate magnetic field. The crystal structure of the superlattice has been identified to be face-centred cubic.
Tran, Duy Phu; Pham, Thuy Thi Thanh; Wolfrum, Bernhard; Offenhäusser, Andreas; Thierry, Benjamin
2018-05-11
Owing to their two-dimensional confinements, silicon nanowires display remarkable optical, magnetic, and electronic properties. Of special interest has been the development of advanced biosensing approaches based on the field effect associated with silicon nanowires (SiNWs). Recent advancements in top-down fabrication technologies have paved the way to large scale production of high density and quality arrays of SiNW field effect transistor (FETs), a critical step towards their integration in real-life biosensing applications. A key requirement toward the fulfilment of SiNW FETs' promises in the bioanalytical field is their efficient integration within functional devices. Aiming to provide a comprehensive roadmap for the development of SiNW FET based sensing platforms, we critically review and discuss the key design and fabrication aspects relevant to their development and integration within complementary metal-oxide-semiconductor (CMOS) technology.
Oxidation of ZrB2-and HfB2-Based Ultra-High Temperature Ceramics: Effects of Ta Additions
NASA Technical Reports Server (NTRS)
Opila, Elizabeth; Levine, Stanley; Lorinez, Jonathan
2003-01-01
Several compositions of ZrB2- and HfB2-based Ultra-High Temperature Ceramics (UHTC) were oxidized in stagnant air at 1627 C in ten minute cycles for times up to 100 minutes. These compositions include: ZrB2 - 20v% SiC, HfB2 - 20v% SiC, ZrB2 - 20v% SiC - 20v% TaSi2, ZrB2 - 33v% SiC, HfB2 - 20v% SiC - 20v% TaSi2, and ZrB2 - 20v% SiC - 20v% TaC. The weight change due to oxidation was recorded. The ZrB2 - 20v% SiC - 20v% TaSi2 composition was also oxidized in stagnant air at 1927 C and in an arc jet atmosphere. Samples were analyzed after oxidation by x-ray diffraction, field emission scanning electron microscopy, and energy dispersive spectroscopy to determine the reaction products and to observe the microstructure. The ZrB2 - 20v% SiC - 20v% TaSi2 showed the lowest oxidation rate at 1627 C, but performed poorly under the more extreme tests due to liquid phase formation. Effects of Ta-additions on the oxidation of the diboride-based UHTC are discussed.
NASA Astrophysics Data System (ADS)
Abbasi, Mahboube; Amiri, Razieh; Bordbar, Abdol-Kalegh; Ranjbakhsh, Elnaz; Khosropour, Ahmad-Reza
2016-02-01
Immobilized proteins and enzymes are widely investigated in the medical field as well as the food and environmental fields. In this study, glucose oxidase (GOX) was covalently immobilized on the surface of modified iron oxide magnetic nanoparticles (MIMNs) to produce a bioconjugate complex. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to the size, shape and structure characterization of the MIMNs. Binding of GOX to these MIMNs was confirmed by using FT-IR spectroscopy. The stability of the immobilized and free enzyme at different temperature and pH values was investigated by measuring the enzymatic activity. These studies reveal that the enzyme's stability is enhanced by immobilization. Further experiments showed that the storage stability of the enzyme is improved upon binding to the MIMNs. The results of kinetic measurements suggest that the effect of the immobilization process on substrate and product diffusion is small. Such bioconjugates can be considered as a catalytic nanodevice for accelerating the glucose oxidation reaction for biotechnological purposes.
NASA Astrophysics Data System (ADS)
Xu, J. P.; Zhang, X. F.; Li, C. X.; Chan, C. L.; Lai, P. T.
2010-04-01
The electrical properties and high-field reliability of HfTa-based gate-dielectric metal-oxide-semiconductor (MOS) devices with and without AlON interlayer on Ge substrate are investigated. Experimental results show that the MOS capacitor with HfTaON/AlON stack gate dielectric exhibits low interface-state/oxide-charge densities, low gate leakage, small capacitance equivalent thickness (˜1.1 nm), and high dielectric constant (˜20). All of these should be attributed to the blocking role of the ultrathin AlON interlayer against interdiffusions of Ge, Hf, and Ta and penetration of O into the Ge substrate, with the latter effectively suppressing the unintentional formation of unstable poor-quality low- k GeO x and giving a superior AlON/Ge interface. Moreover, incorporation of N into both the interlayer and high- k dielectric further improves the device reliability under high-field stress through the formation of strong N-related bonds.
Apparatus for sensing patterns of electrical field variations across a surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, William L.; Devine, Roderick A. B.
An array of nonvolatile field effect transistors used to sense electric potential variations. The transistors owe their nonvolatility to the movement of protons within the oxide layer that occurs only in response to an externally applied electric potential between the gate on one side of the oxide and the source/drain on the other side. The position of the protons within the oxide layer either creates or destroys a conducting channel in the adjacent source/channel/drain layer below it, the current in the channel being measured as the state of the nonvolatile memory. The protons can also be moved by potentials createdmore » by other instrumentalities, such as charges on fingerprints or styluses above the gates, pressure on a piezoelectric layer above the gates, light shining upon a photoconductive layer above the gates. The invention allows sensing of fingerprints, handwriting, and optical images, which are converted into digitized images thereof in a nonvolatile format.« less
Ma, Shuang-Chen; Gao, Li; Ma, Jing-Xiang; Jin, Xin; Yao, Juan-Juan; Zhao, Yi
2012-06-01
This paper describes the research background and chemistry of desulfurization and denitrification technology using microwave irradiation. Microwave-induced catalysis combined with activated carbon adsorption and reduction can reduce nitric oxide to nitrogen and sulfur dioxide to sulfur from flue gas effectively. This paper also highlights the main drawbacks of this technology and discusses future development trends. It is reported that the removal of sulfur dioxide and nitric oxide using microwave irradiation has broad prospects for development in the field of air pollution control.
2015-09-23
with a metal oxide ( TiO2 ). Our novel direct synthesis of graphene/ TiO2 heterostructure is achieved by C60 deposition on transition Ti metal surface...of TiO2 and C 2p orbitals in the conduction band of graphene enabled by Coulomb interactions at the interface. In addition, this heterostructure...provides a platform for realization of bottom gated graphene field effect devices with graphene and TiO2 playing the roles of channel and gate dielectric
Exploration of oxide-based diluted magnetic semiconductors toward transparent spintronics
NASA Astrophysics Data System (ADS)
Fukumura, T.; Yamada, Y.; Toyosaki, H.; Hasegawa, T.; Koinuma, H.; Kawasaki, M.
2004-02-01
A review is given for the recent progress of research in the field of oxide-based diluted magnetic semiconductor (DMS), which was triggered by combinatorial discovery of transparent ferromagnet. The possible advantages of oxide semiconductor as a host of DMS are described in comparison with conventional compound semiconductors. Limits and problems for identifying novel ferromagnetic DMS are described in view of recent reports in this field. Several characterization techniques are proposed in order to eliminate unidentified ferromagnetism of oxide-based DMS unidentified ferromagnetic oxide (UFO). Perspectives and possible devices are also given.
Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications
NASA Astrophysics Data System (ADS)
Dieny, B.; Chshiev, M.
2017-04-01
Spin electronics is a rapidly expanding field stimulated by a strong synergy between breakthrough basic research discoveries and industrial applications in the fields of magnetic recording, magnetic field sensors, nonvolatile memories [magnetic random access memories (MRAM) and especially spin-transfer-torque MRAM (STT-MRAM)]. In addition to the discovery of several physical phenomena (giant magnetoresistance, tunnel magnetoresistance, spin-transfer torque, spin-orbit torque, spin Hall effect, spin Seebeck effect, etc.), outstanding progress has been made on the growth and nanopatterning of magnetic multilayered films and nanostructures in which these phenomena are observed. Magnetic anisotropy is usually observed in materials that have large spin-orbit interactions. However, in 2002 perpendicular magnetic anisotropy (PMA) was discovered to exist at magnetic metal/oxide interfaces [for instance Co (Fe )/alumina ]. Surprisingly, this PMA is observed in systems where spin-orbit interactions are quite weak, but its amplitude is remarkably large—comparable to that measured at Co /Pt interfaces, a reference for large interfacial anisotropy (anisotropy˜1.4 erg /cm2=1.4 mJ /m2 ). Actually, this PMA was found to be very common at magnetic metal/oxide interfaces since it has been observed with a large variety of amorphous or crystalline oxides, including AlOx, MgO, TaOx, HfOx, etc. This PMA is thought to be the result of electronic hybridization between the oxygen and the magnetic transition metal orbit across the interface, a hypothesis supported by ab initio calculations. Interest in this phenomenon was sparked in 2010 when it was demonstrated that the PMA at magnetic transition metal/oxide interfaces could be used to build out-of-plane magnetized magnetic tunnel junctions for STT-MRAM cells. In these systems, the PMA at the CoFeB /MgO interface can be used to simultaneously obtain good memory retention, thanks to the large PMA amplitude, and a low write current, thanks to a relatively weak Gilbert damping. These two requirements for memories tend to be difficult to reconcile since they rely on the same spin-orbit coupling. PMA-based approaches have now become ubiquitous in the designs for perpendicular STT-MRAM, and major microelectronics companies are actively working on their development with the first goal of addressing embedded FLASH and static random access memory-type of applications. Scalability of STT-MRAM devices based on this interfacial PMA is expected to soon exceed the 20-nm nodes. Several very active new fields of research also rely on interfacial PMA at magnetic metal/oxide interfaces, including spin-orbit torques associated with Rashba or spin Hall effects, record high speed domain wall propagation in buffer/magnetic metal/oxide-based magnetic wires, and voltage-based control of anisotropy. This review deals with PMA at magnetic metal/oxide interfaces from its discovery, by examining the diversity of systems in which it has been observed and the physicochemical methods through which the key roles played by the electronic hybridization at the metal/oxide interface were elucidated. The physical origins of the phenomenon are also covered and how these are supported by ab initio calculations is dealt with. Finally, some examples of applications of this interfacial PMA in STT-MRAM are listed along with the various emerging research topics taking advantage of this PMA.
Using bromine gas to enhance mercury removal from flue gas of coal-fired power plants.
Liu, Shou-Heng; Yan, Nai-Qiang; Liu, Zhao-Rong; Qu, Zan; Wang, H Paul; Chang, Shih-Ger; Miller, Charles
2007-02-15
Bromine gas was evaluated for converting elemental mercury (Hg0) to oxidized mercury, a form that can readily be captured by the existing air pollution control device. The gas-phase oxidation rates of Hg0 by Br2 decreased with increasing temperatures. SO2, CO, HCl, and H2O had insignificant effect, while NO exhibited a reverse course of effect on the Hg0 oxidation: promotion at low NO concentrations and inhibition at high NO concentrations. A reaction mechanism involving the formation of van der Waals clusters is proposed to accountfor NO's reverse effect. The apparent gas-phase oxidation rate constant, obtained under conditions simulating a flue gas without flyash, was 3.61 x 10(-17) cm3 x molecule(-1) x s(-1) at 410 K corresponding to a 50% Hg0 oxidation using 52 ppm Br2 in a reaction time of 15 s. Flyash in flue gas significantly promoted the oxidation of Hg0 by Br2, and the unburned carbon component played a major role in the promotion primarily through the rapid adsorption of Br2 which effectively removed Hg0 from the gas phase. At a typical flue gas temperature, SO2 slightly inhibited the flyash-induced Hg0 removal. Conversely, NO slightly promoted the flyash induced Hg0 removal by Br2. Norit Darco-Hg-LH and Darco-Hg powder activated carbons, which have been demonstrated in field tests, were inferred for estimating the flyash induced Hg0 oxidation by Br2. Approximately 60% of Hg0 is estimated to be oxidized with the addition of 0.4 ppm of gaseous Br2 into full scale power plant flue gas.
Ryzhavsky, B Ya; Lebedko, O A; Belolubskaya, D S
2008-08-01
The effects of histochrome on the severity of delayed effects of prenatal exposure to lead nitrate were studied in the rat brain. Exposure of pregnant rats to lead nitrate during activation of free radical oxidation reduced activity of NADH- and NADPH-dehydrogenases in cortical neurons of their 40-day-old progeny, reduced the number of neurons in a visual field, increased the number of pathologically modified neurons, and stimulated rat motor activity in an elevated plus-maze. Two intraperitoneal injections of histochrome in a dose of 0.1 mg/kg before and after lead citrate challenge attenuated the manifestations of oxidative stress and prevented the changes in some morphological and histochemical parameters of the brain, developing under the effect of lead exposure.
NASA Astrophysics Data System (ADS)
Shiomi, Hiromu; Kitai, Hidenori; Tsujimura, Masatoshi; Kiuchi, Yuji; Nakata, Daisuke; Ono, Shuichi; Kojima, Kazutoshi; Fukuda, Kenji; Sakamoto, Kunihiro; Yamasaki, Kimiyohi; Okumura, Hajime
2016-04-01
The effects of oxynitridation and wet oxidation at the interface of SiO2/4H-SiC(0001) and (000\\bar{1}) were investigated using both electrical and physical characterization methods. Hall measurements and split capacitance-voltage (C-V) measurements revealed that the difference in field-effect mobility between wet oxide and dry oxynitride interfaces was mainly attributed to the ratio of the mobile electron density to the total induced electron density. The surface states close to the conduction band edge causing a significant trapping of inversion carriers were also evaluated. High-resolution Rutherford backscattering spectroscopy (HR-RBS) analysis and high-resolution elastic recoil detection analysis (HR-ERDA) were employed to show the nanometer-scale compositional profile of the SiC-MOS interfaces for the first time. These analyses, together with cathode luminescence (CL) spectroscopy and transmission electron microscopy (TEM), suggested that the deviations of stoichiometry and roughness at the interface defined the effects of oxynitridation and wet oxidation at the interface of SiO2/4H-SiC(0001) and (000\\bar{1}).
Multi-Dimensional Quantum Tunneling and Transport Using the Density-Gradient Model
NASA Technical Reports Server (NTRS)
Biegel, Bryan A.; Yu, Zhi-Ping; Ancona, Mario; Rafferty, Conor; Saini, Subhash (Technical Monitor)
1999-01-01
We show that quantum effects are likely to significantly degrade the performance of MOSFETs (metal oxide semiconductor field effect transistor) as these devices are scaled below 100 nm channel length and 2 nm oxide thickness over the next decade. A general and computationally efficient electronic device model including quantum effects would allow us to monitor and mitigate these effects. Full quantum models are too expensive in multi-dimensions. Using a general but efficient PDE solver called PROPHET, we implemented the density-gradient (DG) quantum correction to the industry-dominant classical drift-diffusion (DD) model. The DG model efficiently includes quantum carrier profile smoothing and tunneling in multi-dimensions and for any electronic device structure. We show that the DG model reduces DD model error from as much as 50% down to a few percent in comparison to thin oxide MOS capacitance measurements. We also show the first DG simulations of gate oxide tunneling and transverse current flow in ultra-scaled MOSFETs. The advantages of rapid model implementation using the PDE solver approach will be demonstrated, as well as the applicability of the DG model to any electronic device structure.
Analytic model for low-frequency noise in nanorod devices.
Lee, Jungil; Yu, Byung Yong; Han, Ilki; Choi, Kyoung Jin; Ghibaudo, Gerard
2008-10-01
In this work analytic model for generation of excess low-frequency noise in nanorod devices such as field-effect transistors are developed. In back-gate field-effect transistors where most of the surface area of the nanorod is exposed to the ambient, the surface states could be the major noise source via random walk of electrons for the low-frequency or 1/f noise. In dual gate transistors, the interface states and oxide traps can compete with each other as the main noise source via random walk and tunneling, respectively.
NASA Technical Reports Server (NTRS)
Hein, R. A.; Hojaji, H.; Barkatt, A.; Shafii, H.; Michael, K. A.; Thorpe, A. N.; Ware, M. F.; Alterescu, S.
1989-01-01
A comparison of the low magnetic field properties of sintered (990 C) and partially melted samples (1050 C) has been performed. Changes in the microstructure produced by recrystallization from the melt result in a significant increase in flux pinning at 77 K. Low-frequency (10-100 Hz), low-ac magnetic-field (0.01-9.0 Oe) ac susceptibility data show that gross changes in the loss component accompany the observed changes in microstructure. The effects of applied dc magnetic fields (10-220 Oe) on the ac responses of these microstructures have also been probed.
Positive magnetoresistance in Fe3Se4 nanowires
NASA Astrophysics Data System (ADS)
Li, D.; Jiang, J. J.; Liu, W.; Zhang, Z. D.
2011-04-01
We report the magnetotransport properties of Fe3Se4 nanowire arrays in anodic aluminum oxide (AAO) porous membrane. The temperature dependence of resistance of Fe3Se4 nanowires at a zero field shows thermal activated behavior below 295 K. The exponential relationship in resistance is consistent with the model of strong localization with variable-range hopping (VRH) for a finite one-dimensional wire. Resistance versus magnetic field curves below 100 K show small positive magnetoresistance (MR). The field dependencies of log[R(H)/R(0)] explain the positive MR as the effect of magnetic field on the VRH conduction.
Phenomenological Modeling and Laboratory Simulation of Long-Term Aging of Asphalt Mixtures
NASA Astrophysics Data System (ADS)
Elwardany, Michael Dawoud
The accurate characterization of asphalt mixture properties as a function of pavement service life is becoming more important as more powerful pavement design and performance prediction methods are implemented. Oxidative aging is a major distress mechanism of asphalt pavements. Aging increases the stiffness and brittleness of the material, which leads to a high cracking potential. Thus, an improved understanding of the aging phenomenon and its effect on asphalt binder chemical and rheological properties will allow for the prediction of mixture properties as a function of pavement service life. Many researchers have conducted laboratory binder thin-film aging studies; however, this approach does not allow for studying the physicochemical effects of mineral fillers on age hardening rates in asphalt mixtures. Moreover, aging phenomenon in the field is governed by kinetics of binder oxidation, oxygen diffusion through mastic phase, and oxygen percolation throughout the air voids structure. In this study, laboratory aging trials were conducted on mixtures prepared using component materials of several field projects throughout the USA and Canada. Laboratory aged materials were compared against field cores sampled at different ages. Results suggested that oven aging of loose mixture at 95°C is the most promising laboratory long-term aging method. Additionally, an empirical model was developed in order to account for the effect of mineral fillers on age hardening rates in asphalt mixtures. Kinetics modeling was used to predict field aging levels throughout pavement thickness and to determine the required laboratory aging duration to match field aging. Kinetics model outputs are calibrated using measured data from the field to account for the effects of oxygen diffusion and percolation. Finally, the calibrated model was validated using independent set of field sections. This work is expected to provide basis for improved asphalt mixture and pavement design procedures in order to save taxpayers' money.
Porter, Joseph J; Mehl, Ryan A
2018-01-01
Posttranslational modifications resulting from oxidation of proteins (Ox-PTMs) are present intracellularly under conditions of oxidative stress as well as basal conditions. In the past, these modifications were thought to be generic protein damage, but it has become increasingly clear that Ox-PTMs can have specific physiological effects. It is an arduous task to distinguish between the two cases, as multiple Ox-PTMs occur simultaneously on the same protein, convoluting analysis. Genetic code expansion (GCE) has emerged as a powerful tool to overcome this challenge as it allows for the site-specific incorporation of an Ox-PTM into translated protein. The resulting homogeneously modified protein products can then be rigorously characterized for the effects of individual Ox-PTMs. We outline the strengths and weaknesses of GCE as they relate to the field of oxidative stress and Ox-PTMs. An overview of the Ox-PTMs that have been genetically encoded and applications of GCE to the study of Ox-PTMs, including antibody validation and therapeutic development, is described.
High Mobility Thin Film Transistors Based on Amorphous Indium Zinc Tin Oxide
Noviyana, Imas; Lestari, Annisa Dwi; Putri, Maryane; Won, Mi-Sook; Bae, Jong-Seong; Heo, Young-Woo; Lee, Hee Young
2017-01-01
Top-contact bottom-gate thin film transistors (TFTs) with zinc-rich indium zinc tin oxide (IZTO) active layer were prepared at room temperature by radio frequency magnetron sputtering. Sintered ceramic target was prepared and used for deposition from oxide powder mixture having the molar ratio of In2O3:ZnO:SnO2 = 2:5:1. Annealing treatment was carried out for as-deposited films at various temperatures to investigate its effect on TFT performances. It was found that annealing treatment at 350 °C for 30 min in air atmosphere yielded the best result, with the high field effect mobility value of 34 cm2/Vs and the minimum subthreshold swing value of 0.12 V/dec. All IZTO thin films were amorphous, even after annealing treatment of up to 350 °C. PMID:28773058
A FIELD DEMONSTRATION OF THE UV/OXIDATION TECHNOLOGY TO TREAT GROUND WATER WITH VOCS
This paper presents the field evaluation results of the ultraviolet radiation (UV)/oxidation technology developed by Ultrox International, Santa Ana, California. The field evaluation was performed at the Loretta Barrel and Drum (LB&D) site in San Jose, California, under the Super...
Kim, Yoon Jin; Ha, Son-Tung; Lee, Gun Joo; Nam, Jin Ho; Ryu, Ik Hyun; Nam, Su Hyun; Park, Cheol Min; In, Insik; Kim, Jiwan; Han, Chul Jong
2013-05-01
This paper reported a research on space charge distribution in low-density polyethylene (LDPE) nanocomposites with different types of graphene and graphene oxide (GO) at low filler content (0.05 wt%) under high DC electric field. Effect of addition of graphene oxide or graphene, its dispersion in LDPE polymer matrix on the ability to suppress space charge generation will be investigated and compared with MgO/LDPE nanocomposite at the same filler concentration. At an applied electric field of 80 kV/mm, a positive packet-like charge was observed in both neat LDPE, MgO/LDPE, and graphene/LDPE nanocomposites, whereas only little homogenous space charge was observed in GO/LDPE nanocomposites, especially with GO synthesized from graphite nano fiber (GNF) which is only -100 nm in diameter. Our research also suggests that dispersion of graphene oxide particles on the polymer matrix plays a significant role to the performance of nanocomposites on suppressing packet-like space charge. From these results, it is expected that nano-sized GO synthesized from GNF can be a promising filler material to LDPE composite for HVDC applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanheusden, K.; Warren, W.L.; Devine, R.A.B.
It is shown how mobile H{sup +} ions can be generated thermally inside the oxide layer of Si/SiO{sub 2}/Si structures. The technique involves only standard silicon processing steps: the nonvolatile field effect transistor (NVFET) is based on a standard MOSFET with thermally grown SiO{sub 2} capped with a poly-silicon layer. The capped thermal oxide receives an anneal at {approximately}1100 C that enables the incorporation of the mobile protons into the gate oxide. The introduction of the protons is achieved by a subsequent 500-800 C anneal in a hydrogen-containing ambient, such as forming gas (N{sub 2}:H{sub 2} 95:5). The mobile protonsmore » are stable and entrapped inside the oxide layer, and unlike alkali ions, their space-charge distribution can be controlled and rapidly rearranged at room temperature by an applied electric field. Using this principle, a standard MOS transistor can be converted into a nonvolatile memory transistor that can be switched between normally on and normally off. Switching speed, retention, endurance, and radiation tolerance data are presented showing that this non-volatile memory technology can be competitive with existing Si-based non-volatile memory technologies such as the floating gate technologies (e.g. Flash memory).« less
Na, Jae Won; Rim, You Seung; Kim, Hee Jun; Lee, Jin Hyeok; Hong, Seonghwan; Kim, Hyun Jae
2017-09-06
Solution-processed amorphous metal-oxide thin-film transistors (TFTs) utilizing an intermixed interface between a metal-oxide semiconductor and a dielectric layer are proposed. In-depth physical characterizations are carried out to verify the existence of the intermixed interface that is inevitably formed by interdiffusion of cations originated from a thermal process. In particular, when indium zinc oxide (IZO) semiconductor and silicon dioxide (SiO 2 ) dielectric layer are in contact and thermally processed, a Si 4+ intermixed IZO (Si/IZO) interface is created. On the basis of this concept, a high-performance Si/IZO TFT having both a field-effect mobility exceeding 10 cm 2 V -1 s -1 and a on/off current ratio over 10 7 is successfully demonstrated.
Agnihotri, Sameer; Zadeh, Gelareh
2016-01-01
A defining hallmark of glioblastoma is altered tumor metabolism. The metabolic shift towards aerobic glycolysis with reprogramming of mitochondrial oxidative phosphorylation, regardless of oxygen availability, is a phenomenon known as the Warburg effect. In addition to the Warburg effect, glioblastoma tumor cells also utilize the tricarboxylic acid cycle/oxidative phosphorylation in a different capacity than normal tissue. Altered metabolic enzymes and their metabolites are oncogenic and not simply a product of tumor proliferation. Here we highlight the advantages of why tumor cells, including glioblastoma cells, require metabolic reprogramming and how tumor metabolism can converge on tumor epigenetics and unanswered questions in the field. PMID:26180081
Yoon, Seokhyun; Kim, Si Joon; Tak, Young Jun; Kim, Hyun Jae
2017-01-01
We report a method for fabricating solution-processed quaternary In-Ga-Zn-O (IGZO) thin-film transistors (TFTs) at low annealing temperatures using a vertical diffusion technique (VDT). The VDT is a deposition process for spin-coating binary and ternary oxide layers consecutively and annealing at once. With the VDT, uniform and dense quaternary oxide layers were fabricated at lower temperatures (280 °C). Compared to conventional IGZO and ternary In-Zn-O (IZO) thin films, VDT IGZO thin film had higher density of the metal-oxide bonds and lower density of the oxygen vacancies. The field-effect mobility of VDT IGZO TFT increased three times with an improved stability under positive bias stress than IZO TFT due to the reduction in oxygen vacancies. Therefore, the VDT process is a simple method that reduces the processing temperature without any additional treatment for quaternary oxide semiconductors with uniform layers. PMID:28230088
NASA Astrophysics Data System (ADS)
Yoon, Seokhyun; Kim, Si Joon; Tak, Young Jun; Kim, Hyun Jae
2017-02-01
We report a method for fabricating solution-processed quaternary In-Ga-Zn-O (IGZO) thin-film transistors (TFTs) at low annealing temperatures using a vertical diffusion technique (VDT). The VDT is a deposition process for spin-coating binary and ternary oxide layers consecutively and annealing at once. With the VDT, uniform and dense quaternary oxide layers were fabricated at lower temperatures (280 °C). Compared to conventional IGZO and ternary In-Zn-O (IZO) thin films, VDT IGZO thin film had higher density of the metal-oxide bonds and lower density of the oxygen vacancies. The field-effect mobility of VDT IGZO TFT increased three times with an improved stability under positive bias stress than IZO TFT due to the reduction in oxygen vacancies. Therefore, the VDT process is a simple method that reduces the processing temperature without any additional treatment for quaternary oxide semiconductors with uniform layers.
Synthesis and properties of graphene oxide/graphene nanostructures
NASA Astrophysics Data System (ADS)
Kapitanova, O. O.; Panin, G. N.; Baranov, A. N.; Kang, T. W.
2012-05-01
We report preparation of graphene oxide (GO)/graphene (G) nanostructures and their structural, optical and electrical properties. GO was synthesized through oxidation of graphite by using the modified Hummer's method, in which a long oxidation time was combined with a highly effective method for purifying the reaction products. The obtained GO was partially reduced (r-GO) by adding ascorbic acid and thermal annealing. An electrical reduction/oxidation process in r-GO under an electric field was used to form and control the GO/G nanostructures and the potential barrier at the interface. After the treatment, the ratio of the intensity of peak G (1578 cm-1) to that of peak D (1357 cm-1) in Raman spectra of the samples is increased, which is attributed to an increase in the ratio between the sp2 and sp3 regions. The electrical and the luminescence characteristics of the GO/G nanostructures were investigated.
Yoon, Seokhyun; Kim, Si Joon; Tak, Young Jun; Kim, Hyun Jae
2017-02-23
We report a method for fabricating solution-processed quaternary In-Ga-Zn-O (IGZO) thin-film transistors (TFTs) at low annealing temperatures using a vertical diffusion technique (VDT). The VDT is a deposition process for spin-coating binary and ternary oxide layers consecutively and annealing at once. With the VDT, uniform and dense quaternary oxide layers were fabricated at lower temperatures (280 °C). Compared to conventional IGZO and ternary In-Zn-O (IZO) thin films, VDT IGZO thin film had higher density of the metal-oxide bonds and lower density of the oxygen vacancies. The field-effect mobility of VDT IGZO TFT increased three times with an improved stability under positive bias stress than IZO TFT due to the reduction in oxygen vacancies. Therefore, the VDT process is a simple method that reduces the processing temperature without any additional treatment for quaternary oxide semiconductors with uniform layers.
NASA Astrophysics Data System (ADS)
Almuslem, A. S.; Hanna, A. N.; Yapici, T.; Wehbe, N.; Diallo, E. M.; Kutbee, A. T.; Bahabry, R. R.; Hussain, M. M.
2017-02-01
In the recent past, with the advent of transient electronics for mostly implantable and secured electronic applications, the whole field effect transistor structure has been dissolved in a variety of chemicals. Here, we show simple water soluble nano-scale (sub-10 nm) germanium oxide (GeO2) as the dissolvable component to remove the functional structures of metal oxide semiconductor devices and then reuse the expensive germanium substrate again for functional device fabrication. This way, in addition to transiency, we also show an environmentally friendly manufacturing process for a complementary metal oxide semiconductor (CMOS) technology. Every year, trillions of complementary metal oxide semiconductor (CMOS) electronics are manufactured and billions are disposed, which extend the harmful impact to our environment. Therefore, this is a key study to show a pragmatic approach for water soluble high performance electronics for environmentally friendly manufacturing and bioresorbable electronic applications.
Behavior of the Si/SiO2 interface observed by Fowler-Nordheim tunneling
NASA Technical Reports Server (NTRS)
Maserjian, J.; Zamani, N.
1982-01-01
Thin-oxide (40-50 A) metal oxide semiconductor (MOS) structures are shown to exhibit, before large levels of electron tunnel injection, the near-ideal behavior predicted for a uniform trapezoidal barrier with thick-oxide properties. The oscillatory field dependence caused by electron-wave interference at the Si/SiO2 interface suggests an abrupt, one-monolayer barrier transition (approximately 2.5 A) consistent with earlier work. After tunnel injection of 10 to the 17th - 5 x 10 to the 18th electrons/sq cm, the barrier undergoes appreciable degradation, leading to enhanced tunneling conductance. Reproducible behavior is observed among different samples. This effect is found to be consistent with the generation of positive states in the region of the oxide near the Si/SiO2 interface (less than 20 A), where the tunneling electrons emerge into the oxide conduction band.
NASA Astrophysics Data System (ADS)
Tsai, Jyun-Yu; Chang, Ting-Chang; Lo, Wen-Hung; Ho, Szu-Han; Chen, Ching-En; Chen, Hua-Mao; Tseng, Tseung-Yuen; Tai, Ya-Hsiang; Cheng, Osbert; Huang, Cheng-Tung
2013-09-01
This work investigates the channel hot carrier (CHC) effect in HfO2/Ti1-xNx p-channel metal oxide semiconductor field effect transistors (p-MOSFETs). Generally, the subthreshold swing (S.S.) should increase during CHC stress (CHCS), since interface states will be generated near the drain side under high electric field due to drain voltage (Vd). However, our experimental data indicate that S.S. has no evident change under CHCS, but threshold voltage (Vth) shifts positively. This result can be attributed to hot carrier injected into high-k dielectric near the drain side. Meanwhile, it is surprising that such Vth degradation is not observed in the saturation region during stress. Therefore, drain-induced-barrier-lowering (DIBL) as a result of CHC-induced electron trapping is proposed to explain the different Vth behaviors in the linear and saturation regions. Additionally, the influence of different nitrogen concentrations in HfO2/Ti1-xNx p-MOSFETs on CHCS is also investigated in this work. Since nitrogen diffuses to SiO2/Si interface induced pre-Nit occurring to degrades channel mobility during the annealing process, a device with more nitrogen shows slightly less impact ionization, leading to insignificant charge trapping-induced DIBL behavior.
Chang, Jingbo; Zhou, Guihua; Gao, Xianfeng; ...
2015-08-01
Field-effect transistor (FET) sensors based on reduced graphene oxide (rGO) for detecting chemical species provide a number of distinct advantages, such as ultrasensitivity, label-free, and real-time response. However, without a passivation layer, channel materials directly exposed to an ionic solution could generate multiple signals from ionic conduction through the solution droplet, doping effect, and gating effect. Therefore, a method that provides a passivation layer on the surface of rGO without degrading device performance will significantly improve device sensitivity, in which the conductivity changes solely with the gating effect. In this work, we report rGO FET sensor devices with Hg 2+-dependentmore » DNA as a probe and the use of an Al 2O 3 layer to separate analytes from conducting channel materials. The device shows good electronic stability, excellent lower detection limit (1 nM), and high sensitivity for real-time detection of Hg 2+ in an underwater environment. Our work shows that optimization of an rGO FET structure can provide significant performance enhancement and profound fundamental understanding for the sensor mechanism.« less
NASA Astrophysics Data System (ADS)
Raship, N. A.; Sahdan, M. Z.; Adriyanto, F.; Nurfazliana, M. F.; Bakri, A. S.
2017-01-01
Copper oxide films were grown on silicon substrates by sol-gel dip coating method. In order to study the effects of annealing temperature on the properties of copper oxide films, the temperature was varied from 200 °C to 450 °C. In the process of dip coating, the substrate is withdrawn from the precursor solution with uniform velocity to obtain a uniform coating before undergoing an annealing process to make the copper oxide film polycrystalline. The physical properties of the copper oxide films were measured by an X-ray diffraction (XRD), a field emission scanning electron microscope (FESEM), an atomic force microscopy (AFM) and a four point probe instrument. From the XRD results, we found that pure cuprite (Cu2O) phase can be obtained by annealing the films annealed at 200 °C. Films annealed at 300 °C had a combination phase which consists of tenorite (CuO) and cuprite (Cu2O) phase while pure tenorite (CuO) phase can be obtained at 450 °C annealing temperature. The surface microstructure showed that the grains size is increased whereas the surface roughness is increased and then decreases by increasing in annealing temperature. The films showed that the resistivity decreased with increasing annealing temperature. Consequently, it was observed that annealing temperature has strong effects on the structural, morphological and electrical properties of copper oxide films.
Living Organisms Coupling to Electromagnetic Radiation Below Thermal Noise
NASA Astrophysics Data System (ADS)
Stolc, Viktor; Freund, Friedemann
2013-04-01
Ultralow frequency (ULF) and extremely low frequency (ELF) electromagnetic (EM) radiation is part of the natural environment. Prior to major earthquakes the local ULF and global ELF radiation field is often markedly perturbed. This has detrimental effects on living organisms. We are studying the mechanism of these effects on the biochemical, cellular and organismal levels. The transfer of electrons along the Electron Transfer Chain (ETC) controls the universal reduction-oxidation reactions that are essential for fundamental biochemical processes in living cells. In order for these processes to work properly, the ETC has to maintain some form of synchronization, or coherence with all biochemical reactions in the living cells, including energy production, RNA transcription, and DNA replication. As a consequence of this synchronization, harmful chemical conflict between the reductive and the oxidative partial reactions can be minimized or avoided. At the same time we note that the synchronization allows for a transfer of energy, coherent or interfering, via coupling to the natural ambient EM field. Extremely weak high frequency EM fields, well below the thermal noise level, tuned in frequency to the electron spins of certain steps in the ETC, have already been shown to cause aberrant cell growth and disorientation among plants and animals with respect to the magnetic and gravity vectors. We investigate EM fields over a much wider frequency range, including ULF known to be generated deep in the Earth prior to major earthquakes locally, and ELF known to be fed by lightning discharges, traveling around the globe in the cavity formed between the Earth's surface and the ionosphere. This ULF/ELF radiation can control the timing of the biochemical redox cycle and thereby have a universal effect on physiology of organisms. The timing can even have a detrimental influence, via increased oxidative damage, on the DNA replication, which controls heredity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, Md Delwar Hossain; Um, Jae Gwang; Jang, Jin, E-mail: jjang@khu.ac.kr
We have studied the effect of long time post-fabrication annealing on negative bias illumination stress (NBIS) of amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film-transistors. Annealing for 100 h at 250 °C increased the field effect mobility from 14.7 cm{sup 2}/V s to 17.9 cm{sup 2}/V s and reduced the NBIS instability remarkably. Using X-ray photoelectron spectroscopy, the oxygen vacancy and OH were found to exist at the interfaces of a-IGZO with top and bottom SiO{sub 2}. Long time annealing helps to decrease the vacancy concentration and increase the metal-oxygen bonds at the interfaces; this leads to increase in the free carrier concentrations in a-IGZO and field-effect mobility.more » X-ray reflectivity measurement indicated the increment of a-IGZO film density of 5.63 g cm{sup −3} to 5.83 g cm{sup −3} (3.4% increase) by 100 h annealing at 250 °C. The increase in film density reveals the decrease of O vacancy concentration and reduction of weak metal-oxygen bonds in a-IGZO, which substantially helps to improve the NBIS stability.« less
Heo, Jae Sang; Choi, Seungbeom; Jo, Jeong-Wan; Kang, Jingu; Park, Ho-Hyun; Kim, Yong-Hoon; Park, Sung Kyu
2017-01-01
In this paper, we demonstrate high mobility solution-processed metal-oxide thin-film transistors (TFTs) by using a high-frequency-stable ionic-type hybrid gate dielectric (HGD). The HGD gate dielectric, a blend of sol-gel aluminum oxide (AlOx) and poly(4-vinylphenol) (PVP), exhibited high dielectric constant (ε~8.15) and high-frequency-stable characteristics (1 MHz). Using the ionic-type HGD as a gate dielectric layer, an minimal electron-double-layer (EDL) can be formed at the gate dielectric/InOx interface, enhancing the field-effect mobility of the TFTs. Particularly, using the ionic-type HGD gate dielectrics annealed at 350 °C, InOx TFTs having an average field-effect mobility of 16.1 cm2/Vs were achieved (maximum mobility of 24 cm2/Vs). Furthermore, the ionic-type HGD gate dielectrics can be processed at a low temperature of 150 °C, which may enable their applications in low-thermal-budget plastic and elastomeric substrates. In addition, we systematically studied the operational stability of the InOx TFTs using the HGD gate dielectric, and it was observed that the HGD gate dielectric effectively suppressed the negative threshold voltage shift during the negative-illumination-bias stress possibly owing to the recombination of hole carriers injected in the gate dielectric with the negatively charged ionic species in the HGD gate dielectric. PMID:28772972
Towards electrical spin injection into LaAlO3-SrTiO3.
Bibes, M; Reyren, N; Lesne, E; George, J-M; Deranlot, C; Collin, S; Barthélémy, A; Jaffrès, H
2012-10-28
Future spintronics devices will be built from elemental blocks allowing the electrical injection, propagation, manipulation and detection of spin-based information. Owing to their remarkable multi-functional and strongly correlated character, oxide materials already provide such building blocks for charge-based devices such as ferroelectric field-effect transistors (FETs), as well as for spin-based two-terminal devices such as magnetic tunnel junctions, with giant responses in both cases. Until now, the lack of suitable channel materials and the uncertainty of spin-injection conditions in these compounds had however prevented the exploration of similar giant responses in oxide-based lateral spin transport structures. In this paper, we discuss the potential of oxide-based spin FETs and report magnetotransport data that suggest electrical spin injection into the LaAlO(3)-SrTiO(3) interface system. In a local, three-terminal measurement scheme, we analyse the voltage variation associated with the precession of the injected spin accumulation driven by perpendicular or longitudinal magnetic fields (Hanle and 'inverted' Hanle effects). The spin accumulation signal appears to be much larger than expected, probably owing to amplification effects by resonant tunnelling through localized states in the LaAlO(3). We give perspectives on how to achieve direct spin injection with increased detection efficiency, as well on the implementation of efficient top gating schemes for spin manipulation.
Al-Damegh, Mona Abdullah
2012-01-01
OBJECTIVE: The aim of this study was to investigate the possible effects of electromagnetic radiation from conventional cellular phone use on the oxidant and antioxidant status in rat blood and testicular tissue and determine the possible protective role of vitamins C and E in preventing the detrimental effects of electromagnetic radiation on the testes. MATERIALS AND METHODS: The treatment groups were exposed to an electromagnetic field, electromagnetic field plus vitamin C (40 mg/kg/day) or electromagnetic field plus vitamin E (2.7 mg/kg/day). All groups were exposed to the same electromagnetic frequency for 15, 30, and 60 min daily for two weeks. RESULTS: There was a significant increase in the diameter of the seminiferous tubules with a disorganized seminiferous tubule sperm cycle interruption in the electromagnetism-exposed group. The serum and testicular tissue conjugated diene, lipid hydroperoxide, and catalase activities increased 3-fold, whereas the total serum and testicular tissue glutathione and glutathione peroxidase levels decreased 3-5 fold in the electromagnetism-exposed animals. CONCLUSION: Our results indicate that the adverse effect of the generated electromagnetic frequency had a negative impact on testicular architecture and enzymatic activity. This finding also indicated the possible role of vitamins C and E in mitigating the oxidative stress imposed on the testes and restoring normality to the testes. PMID:22892924
Al-Damegh, Mona Abdullah
2012-07-01
The aim of this study was to investigate the possible effects of electromagnetic radiation from conventional cellular phone use on the oxidant and antioxidant status in rat blood and testicular tissue and determine the possible protective role of vitamins C and E in preventing the detrimental effects of electromagnetic radiation on the testes. The treatment groups were exposed to an electromagnetic field, electromagnetic field plus vitamin C (40 mg/kg/day) or electromagnetic field plus vitamin E (2.7 mg/kg/day). All groups were exposed to the same electromagnetic frequency for 15, 30, and 60 min daily for two weeks. There was a significant increase in the diameter of the seminiferous tubules with a disorganized seminiferous tubule sperm cycle interruption in the electromagnetism-exposed group. The serum and testicular tissue conjugated diene, lipid hydroperoxide, and catalase activities increased 3-fold, whereas the total serum and testicular tissue glutathione and glutathione peroxidase levels decreased 3-5 fold in the electromagnetism-exposed animals. Our results indicate that the adverse effect of the generated electromagnetic frequency had a negative impact on testicular architecture and enzymatic activity. This finding also indicated the possible role of vitamins C and E in mitigating the oxidative stress imposed on the testes and restoring normality to the testes.
NASA Astrophysics Data System (ADS)
Wang, Wenwu; Akiyama, Koji; Mizubayashi, Wataru; Nabatame, Toshihide; Ota, Hiroyuki; Toriumi, Akira
2009-03-01
We systematically studied what effect Al diffusion from high-k dielectrics had on the flatband voltage (Vfb) of Al-incorporated high-k gate stacks. An anomalous positive shift fin Vfb with the decreasing equivalent oxide thickness (EOT) of high-k gate stacks is reported. As the SiO2 interfacial layer is aggressively thinned in Al-incorporated HfxAl1-xOy gate stacks with a metal-gate electrode, the Vfb first lies on the well known linear Vfb-EOT plot and deviates toward the positive-voltage direction (Vfb roll-up), followed by shifting toward negative voltage (Vfb roll-off). We demonstrated that the Vfb roll-up behavior remarkably decreases the threshold voltage (Vth) of p-type metal-oxide-semiconductor field-effect transistors (p-MOSFETs), and does not cause severe degradation in the characteristics of hole mobility. The Vfb roll-up behavior, which is independent of gate materials but strongly dependent on high-k dielectrics, was ascribed to variations in fixed charges near the SiO2/Si interface, which are caused by Al diffusion from HfxAl1-xOy through SiO2 to the SiO2/Si interface. These results indicate that anomalous positive shift in Vfb, i.e., Vfb roll-up, should be taken into consideration in quantitatively adjusting Vfb in thin EOT regions and that it could be used to further tune Vth in p-MOSFETs.
Simulation study of short-channel effects of tunnel field-effect transistors
NASA Astrophysics Data System (ADS)
Fukuda, Koichi; Asai, Hidehiro; Hattori, Junichi; Mori, Takahiro; Morita, Yukinori; Mizubayashi, Wataru; Masahara, Meishoku; Migita, Shinji; Ota, Hiroyuki; Endo, Kazuhiro; Matsukawa, Takashi
2018-04-01
Short-channel effects of tunnel field-effect transistors (FETs) are investigated in detail using simulations of a nonlocal band-to-band tunneling model. Discussion is limited to silicon. Several simulation scenarios were considered to address different effects, such as source overlap and drain offset effects. Adopting the drain offset to suppress the drain leakage current suppressed the short channel effects. The physical mechanism underlying the short-channel behavior of the tunnel FETs (TFETs) was very different from that of metal-oxide-semiconductor FETs (MOSFETs). The minimal gate lengths that do not lose on-state current by one order are shown to be 3 nm for single-gate structures and 2 nm for double gate structures, as determined from the drain offset structure.
Iron oxide and gold nanoparticles in cancer therapy
NASA Astrophysics Data System (ADS)
Gotman, Irena; Psakhie, Sergey G.; Lozhkomoev, Aleksandr S.; Gutmanas, Elazar Y.
2016-08-01
Continuous research activities in the field of nanomedicine in the past decade have, to a great extent, been focused on nanoparticle technologies for cancer therapy. Gold and iron oxide nanoparticles (NP) are two of the most studied inorganic nanomaterials due to their unique optical and magnetic properties. Both types of NPs are emerging as promising systems for anti-tumor drug delivery and for nanoparticle-mediated thermal therapy of cancer. In thermal therapy, localized heating inside tumors or in proximity of tumor cells can be induced, for example, with Au NPs by radiofrequency ablation heating or conversion of photon energy (photothermal therapy) and in iron oxide magnetic NPs by heat generation through relaxation in an alternating magnetic field (magnetic hyperthermia). Furthermore, the superparamagnetic properties of iron oxide nanoparticles have led to their use as potent MRI (magnetic resonance imaging) contrast agents. Surface modification/coating can produce NPs with tailored and desired properties, such as enhanced blood circulation time, stability, biocompatibility and water solubility. To target nanoparticles to specific tumor cells, NPs should be conjugated with targeting moieties on the surface which bind to receptors or other molecular structures on the cell surface. The article presents several approaches to enhancing the specificity of Au and iron oxide nanoparticles for tumor tissue by appropriate surface modification/functionalization, as well as the effect of these treatments on the saturation magnetization value of iron oxide NPs. The use of other nanoparticles and nanostructures in cancer treatment is also briefly reviewed.
NASA Astrophysics Data System (ADS)
Wang, Chao; Meng, You; Guo, Zidong; Shin, Byoungchul; Liu, Guoxia; Shan, Fukai
2018-05-01
One-dimensional metal oxide nanofibers have been regarded as promising building blocks for large area low cost electronic devices. As one of the representative metal oxide semiconducting materials, In2O3 based materials have attracted much interest due to their excellent electrical and optical properties. However, most of the field-effect transistors (FETs) based on In2O3 nanofibers usually operate in a depletion mode, which lead to large power consumption and a complicated integrated circuit design. In this report, gadolinium (Gd) doped In2O3 (InGdO) nanofibers were fabricated by electrospinning and applied as channels in the FETs. By optimizing the doping concentration and the nanofiber density, the device performance could be precisely manipulated. It was found that the FETs based on InGdO nanofibers, with a Gd doping concentration of 3% and a nanofiber density of 2.9 μm-1, exhibited the best device performance, including a field-effect mobility (μFE) of 2.83 cm2/V s, an on/off current ratio of ˜4 × 108, a threshold voltage (VTH) of 5.8 V, and a subthreshold swing (SS) of 2.4 V/decade. By employing the high-k ZrOx thin films as the gate dielectrics in the FETs, the μFE, VTH and SS can be further improved to be 17.4 cm2/V s, 0.7 V and 160 mV/decade, respectively. Finally, an inverter based on the InGdO nanofibers/ZrOx FETs was constructed and a gain of ˜11 was achieved.
Ambrosi, Adriano; Chua, Chun Kiang; Khezri, Bahareh; Sofer, Zdeněk; Webster, Richard D; Pumera, Martin
2012-08-07
Graphene-related materials are in the forefront of nanomaterial research. One of the most common ways to prepare graphenes is to oxidize graphite (natural or synthetic) to graphite oxide and exfoliate it to graphene oxide with consequent chemical reduction to chemically reduced graphene. Here, we show that both natural and synthetic graphite contain a large amount of metallic impurities that persist in the samples of graphite oxide after the oxidative treatment, and chemically reduced graphene after the chemical reduction. We demonstrate that, despite a substantial elimination during the oxidative treatment of graphite samples, a significant amount of impurities associated to the chemically reduced graphene materials still remain and alter their electrochemical properties dramatically. We propose a method for the purification of graphenes based on thermal treatment at 1,000 °C in chlorine atmosphere to reduce the effect of such impurities on the electrochemical properties. Our findings have important implications on the whole field of graphene research.
Ambrosi, Adriano; Chua, Chun Kiang; Khezri, Bahareh; Sofer, Zdeněk; Webster, Richard D.; Pumera, Martin
2012-01-01
Graphene-related materials are in the forefront of nanomaterial research. One of the most common ways to prepare graphenes is to oxidize graphite (natural or synthetic) to graphite oxide and exfoliate it to graphene oxide with consequent chemical reduction to chemically reduced graphene. Here, we show that both natural and synthetic graphite contain a large amount of metallic impurities that persist in the samples of graphite oxide after the oxidative treatment, and chemically reduced graphene after the chemical reduction. We demonstrate that, despite a substantial elimination during the oxidative treatment of graphite samples, a significant amount of impurities associated to the chemically reduced graphene materials still remain and alter their electrochemical properties dramatically. We propose a method for the purification of graphenes based on thermal treatment at 1,000 °C in chlorine atmosphere to reduce the effect of such impurities on the electrochemical properties. Our findings have important implications on the whole field of graphene research. PMID:22826262
NASA Astrophysics Data System (ADS)
Li, Xiaoyu; Peng, Kang; Dou, Yewei; Chen, Jiasheng; Zhang, Yue; An, Gai
2018-01-01
Wormhole-like mesoporous tin oxide was synthesized via a facile evaporation-induced self-assembly (EISA) method, and the gas-sensing properties were evaluated for different target gases. The effect of calcination temperature on gas-sensing properties of mesoporous tin oxide was investigated. The results demonstrate that the mesoporous tin oxide sensor calcined at 400 °C exhibits remarkable selectivity to ethanol vapors comparison with other target gases and has a good performance in the operating temperature and response/recovery time. This might be attributed to their high specific surface area and porous structure, which can provide more active sites and generate more chemisorbed oxygen spices to promote the diffusion and adsorption of gas molecules on the surface of the gas-sensing material. A possible formation mechanism of the mesoporous tin oxide and the enhanced gas-sensing mechanism are proposed. The mesoporous tin oxide shows prospective detecting application in the gas sensor fields.
Kettawan, Aikkarach; Takahashi, Takayuki; Kongkachuichai, Ratchanee; Charoenkiatkul, Somsri; Kishi, Takeo; Okamoto, Tadashi
2007-05-01
The effects of simvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl CoA reductase (HMG-CoA reductase), on oxidative stress resistance and the protective effects of coenzyme Q (CoQ) were investigated. When simvastatin was administered orally to mice, the levels of oxidized and reduced CoQ(9) and CoQ(10) in serum, liver, and heart, decreased significantly when compared to those of control. The levels of thiobarbituric acid reactive substances induced by Fe(2+)-ascorbate in liver and heart mitochondria also increased significantly with simvastatin. Furthermore, cultured cardiac myocytes treated with simvastatin exhibited less resistance to oxidative stress, decreased time to the cessation of spontaneous beating in response to H(2)O(2) addition, and decreased responsiveness to electrical field stimulation. These results suggested that oral administration of simvastatin suppresses the biosynthesis of CoQ, which shares the same biosynthesis pathway as cholesterol up to farnesyl pyrophosphate, thus compromising the physiological function of reduced CoQ, which possesses antioxidant activity. However, these undesirable effects induced by simvastatin were alleviated by coadministering CoQ(10) with simvastatin to mice. Simvastatin also reduced the activity of NADPH-CoQ reductase, a biological enzyme that converts oxidized CoQ to the corresponding reduced CoQ, while CoQ(10) administration improved it. These findings may also support the efficacy of coadministering CoQ(10) with statins.
Di Loreto, Silvia; Falone, Stefano; Caracciolo, Valentina; Sebastiani, Pierluigi; D'Alessandro, Antonella; Mirabilio, Alessandro; Zimmitti, Vincenzo; Amicarelli, Fernanda
2009-05-01
Large research activity has raised around the mechanisms of interaction between extremely low-frequency magnetic fields (ELF-MFs) and biological systems. ELF-MFs may interfere with chemical reactions involving reactive oxygen species (ROS), thus facilitating oxidative damages in living cells. Cortical neurons are particularly susceptible to oxidative stressors and are also highly dependent on the specific factors and proteins governing neuronal development, activity and survival. The aim of the present work was to investigate the effects of exposures to two different 50 Hz sinusoidal ELF-MFs intensities (0.1 and 1 mT) in maturing rat cortical neurons' major anti-oxidative enzymatic and non-enzymatic cellular protection systems, membrane peroxidative damage, as well as growth factor, and cytokine expression pattern. Briefly, our results showed that ELF-MFs affected positively the cell viability and concomitantly reduced the levels of apoptotic death in rat neuronal primary cultures, with no significant effects on the main anti-oxidative defences. Interestingly, linear regression analysis suggested a positive correlation between reduced glutathione (GSH) and ROS levels in 1 mT MF-exposed cells. On this basis, our hypothesis is that GSH could play an important role in the antioxidant defence towards the ELF-MF-induced redox challenge. Moreover, the GSH-based cellular response was achieved together with a brain-derived neurotrophic factor over-expression as well as with the interleukin 1beta-dependent regulation of pro-survival signaling pathways after ELF-MF exposure.
Sintering, properties and fabrication of Si3N4 + Y2O3 based ceramics
NASA Technical Reports Server (NTRS)
Quackenbush, C. L.; Smith, J. T.; Neil, J. T.; French, K. W.
1983-01-01
Pure silicon nitride shows a remarkable resistance to sintering without the use of densification additives. The present investigation is concerned with results which show the effect of chemical content on sinterability, taking into account the composition, raw material impurities, and processing contaminants. Aspects of sintering are discussed along with strength characteristics, and oxidation relations. Attention is given to phase field I and II materials, phase field III and IV materials, tungsten carbide and oxidation at 600 C, and studies involving shape fabrication by injection molding. It was found that in sintering Si3N4 + Y2O3 an increase in the amount of Y2O3 and, in particular, the addition of Al2O3 enhances the fluidity of the liquid phase.
Controlled manipulation of oxygen vacancies using nanoscale flexoelectricity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Saikat; Wang, Bo; Cao, Ye
Oxygen vacancies, especially their distribution, are directly coupled to the electromagnetic properties of oxides and related emergent functionalities that have implications for device applications. Here using a homoepitaxial strontium titanate thin film, we demonstrate a controlled manipulation of the oxygen vacancy distribution using the mechanical force from a scanning probe microscope tip. By combining Kelvin probe force microscopy imaging and phase-field simulations, we show that oxygen vacancies can move under a stress-gradient-induced depolarisation field. When tailored, this nanoscale flexoelectric effect enables a controlled spatial modulation. In motion, the scanning probe tip thereby deterministically reconfigures the spatial distribution of vacancies. Finally,more » the ability to locally manipulate oxygen vacancies on-demand provides a tool for the exploration of mesoscale quantum phenomena and engineering multifunctional oxide devices.« less
NASA Astrophysics Data System (ADS)
Tian, Ye; Yang, Zhuo; Xu, Zhiyuan; Liu, Siyang; Sun, Weifeng; Shi, Longxing; Zhu, Yuanzheng; Ye, Peng; Zhou, Jincheng
2018-04-01
In this paper, a novel failure mechanism under unclamped inductive switch (UIS) for Split-Gate Trench Metal Oxide Semiconductor Field Effect Transistor (MOSFET) with large current is investigated. The device sample is tested and analyzed in detail. The simulation results demonstrate that the nonuniform potential distribution of the source poly should be responsible for the failure. Three structures are proposed and verified available to improve the device UIS ruggedness by TCAD simulation. The best one of the structures the device with source metal inserting into source poly through contacts in the field oxide is carried out and measured. The results demonstrate that the optimized structure can balance the trade-off between the UIS ruggedness and the static characteristics.
Stressing biological samples with pulsed magnetic fields: physical aspects and experimental results
NASA Astrophysics Data System (ADS)
Delle Side, D.; Specchia, V.; D'Attis, S.; Giuffreda, E.; Quarta, G.; Calcagnile, L.; Bozzetti, M. P.; Nassisi, V.
2016-05-01
Magnetic field effects are diffused among living organisms. They are mainly studied with static or extremely low frequency fields, while scarce information is available for pulsed fields. This work is devoted to the study of the interaction between Drosophila melanogaster, both adults and larvae, and pulsed magnetic fields. We exposed the organisms to a peak field of 0.4 T, lasting for about 2 μ s, within an ad hoc designed copper coil. Adult individuals didn't present any deregulation of repetitive sequences in the germ line of Drosophila. Instead, we noticed a marked magnetic field effect in larvae. Polytene chromosomes coming from treated individuals showed the presence of heat shock puffs; the same organisms revealed also an upregulation of the genes encoding for the Hsp70 protein. These observations suggest that the larvae underwent an oxidative stress caused by the modulation of free radicals' yield induced by the magnetic field through a radical pair mechanism.
NASA Astrophysics Data System (ADS)
Liu, Xiangyu; Hu, Huiyong; Wang, Bin; Wang, Meng; Han, Genquan; Cui, Shimin; Zhang, Heming
2017-02-01
In this paper, a novel junctionless Ge n-Tunneling Field-Effect Transistors (TFET) structure is proposed. The simulation results show that Ion = 5.5 × 10-5A/μm is achieved. The junctionless device structure enhances Ion effectively and increases the region where significant BTBT occurs, comparing with the normal Ge-nTEFT. The impact of the lightly doped drain (LDD) region is investigated. A comparison of Ion and Ioff of the junctionless Ge n-TFET with different channel doping concentration ND and LDD doping concentration NLDD is studied. Ioff is reduced 1 order of magnitude with the optimized ND and NLDD are 1 × 1018cm-3 and 1 × 1017 cm-3, respectively. To reduce the gate induced drain leakage (GIDL) current, the impact of the sloped gate oxide structure is also studied. By employing the sloped gate oxide structure, the below 60 mV/decade subthreshold swing S = 46.2 mV/decade is achieved at Ion = 4.05 × 10-5A/μm and Ion/Ioff = 5.7 × 106.
NASA Astrophysics Data System (ADS)
Aziz, A.; Kassmi, K.; Maimouni, R.; Olivié, F.; Sarrabayrouse, G.; Martinez, A.
2005-09-01
In this paper, we present the theoretical and experimental results of the influence of a charge trapped in ultra-thin oxide of metal/ultra-thin oxide/semiconductor structures (MOS) on the I(Vg) current-voltage characteristics when the conduction is of the Fowler-Nordheim (FN) tunneling type. The charge, which is negative, is trapped near the cathode (metal/oxide interface) after constant current injection by the metal (Vg<0). Of particular interest is the influence on the Δ Vg(Vg) shift over the whole I(Vg) characteristic at high field (greater than the injection field (>12.5 MV/cm)). It is shown that the charge centroid varies linearly with respect to the voltage Vg. The behavior at low field (<12.5 MV/cm) is analyzed in référence A. Aziz, K. Kassmi, Ka. Kassmi, F. Olivié, Semicond. Sci. Technol. 19, 877 (2004) and considers that the trapped charge centroid is fixed. The results obtained make it possible to analyze the influence of the injected charge and the applied field on the centroid position of the trapped charge, and to highlight the charge instability in the ultra-thin oxide of MOS structures.
Iron oxide nanoparticles in NaA zeolite cages
NASA Astrophysics Data System (ADS)
Kulshreshtha, S. K.; Vijayalakshmi, R.; Sudarsan, V.; Salunke, H. G.; Bhargava, S. C.
2013-07-01
Zeolite NaA samples with varying concentration of Fe3+ ions have been prepared by wet chemical method. Based on powder X-ray diffraction, 29Si and 27Al MAS NMR and Fe3+ EPR investigations, the formation of nano-sized ferric oxide particles inside the larger α-cages of zeolite NaA has been established. Both Mössbauer effect and magnetization measurements carried out down to 4.5 K established the superparamagnetic behaviour of these Fe2O3 particles with a blocking temperature of ≈20 K, where the magnetization values showed deviation for the zero field cooled and field cooled samples and the appearance of a very narrow magnetic hysteresis loop below this temperature. For all Fe3+ containing samples the room temperature Mössbauer spectrum is a broad quadrupole doublet with chemical shift, δ ≈ 0.33 mm/s and quadrupole splitting, ΔEq ≈ 0.68 mm/s. Variable temperature 57Fe Mössbauer effect measurements exhibited magnetic features below the blocking temperature and at 4.5 K, the observed spectrum is a broad magnetic sextet characterized by an internal hyperfine field value of ≈504 kOe along with a very weak central superparamagnetic quadrupole doublet.
NASA Astrophysics Data System (ADS)
Phong, P. T.; Oanh, V. T. K.; Lam, T. D.; Phuc, N. X.; Tung, L. D.; Thanh, Nguyen T. K.; Manh, D. H.
2017-04-01
Iron oxide nanoparticles (NPs) are currently a very active research field. To date, a comprehensive study of iron oxide NPs is still lacking not only on the size dependence of structural phases but also in the use of an appropriate model. Herein, we report on a systematic study of the structural and magnetic properties of iron oxide NPs prepared by a co-precipitation method followed by hydrothermal treatment. X-ray diffraction and transmission electron microscopy reveal that the NPs have an inverse spinel structure of iron oxide phase (Fe3O4) with average crystallite sizes ( D XRD) of 6-19 nm, while grain sizes ( D TEM) are of 7-23 nm. In addition, the larger the particle size, the closer the experimental lattice constant value is to that of the magnetite structure. Magnetic field-dependent magnetization data and analysis show that the effective anisotropy constants of the Fe3O4 NPs are about five times larger than that of their bulk counterpart. Particle size ( D) dependence of the magnetization and the non-saturating behavior observed in applied fields up to 50 kOe are discussed using the core-shell structure model. We find that with decreasing D, while the calculated thickness of the shell of disordered spins ( t ˜ 0.3 nm) remains almost unchanged, the specific surface areas S a increases significantly, thus reducing the magnetization of the NPs. We also probe the coercivity of the NPs by using the mixed coercive Kneller and Luborsky model. The calculated results indicate that the coercivity rises monotonously with the particle size, and are well matched with the experimental ones.
2012-01-01
In the present work, the characterization of cobalt-porous silicon (Co-PSi) hybrid systems is performed by a combination of magnetic, spectroscopic, and structural techniques. The Co-PSi structures are composed by a columnar matrix of PSi with Co nanoparticles embedded inside, as determined by Transmission Electron Microscopy (TEM). The oxidation state, crystalline structure, and magnetic behavior are determined by X-Ray Absorption Spectroscopy (XAS) and Alternating Gradient Field Magnetometry (AGFM). Additionally, the Co concentration profile inside the matrix has been studied by Rutherford Backscattering Spectroscopy (RBS). It is concluded that the PSi matrix can be tailored to provide the Co nanoparticles with extra protection against oxidation. PMID:22938050
Stable indium oxide thin-film transistors with fast threshold voltage recovery
NASA Astrophysics Data System (ADS)
Vygranenko, Yuriy; Wang, Kai; Nathan, Arokia
2007-12-01
Stable thin-film transistors (TFTs) with semiconducting indium oxide channel and silicon dioxide gate dielectric were fabricated by reactive ion beam assisted evaporation and plasma-enhanced chemical vapor deposition. The field-effect mobility is 3.3cm2/Vs, along with an on/off current ratio of 106, and subthreshold slope of 0.5V/decade. When subject to long-term gate bias stress, the TFTs show fast recovery of the threshold voltage (VT) when relaxed without annealing, suggesting that charge trapping at the interface and/or in the bulk gate dielectric to be the dominant mechanism underlying VT instability. Device performance and stability make indium oxide TFTs promising for display applications.
Jang, Kwang-Suk; Wee, Duyoung; Kim, Yun Ho; Kim, Jinsoo; Ahn, Taek; Ka, Jae-Won; Yi, Mi Hye
2013-06-11
We report a simple approach to modify the surface of a polyimide gate insulator with an yttrium oxide interlayer for aqueous-solution-processed ZnO thin-film transistors. It is expected that the yttrium oxide interlayer will provide a surface that is more chemically compatible with the ZnO semiconductor than is bare polyimde. The field-effect mobility and the on/off current ratio of the ZnO TFT with the YOx/polyimide gate insulator were 0.456 cm(2)/V·s and 2.12 × 10(6), respectively, whereas the ZnO TFT with the polyimide gate insulator was inactive.
Dispersible shortened boron nitride nanotubes with improved molecule-loading capacity.
Zhi, Chunyi; Hanagata, Nobutaka; Bando, Yoshio; Golberg, Dmitri
2011-09-05
The oxidation process of boron nitride nanotubes was thoroughly investigated, and a slow oxidation characteristic was clearly revealed. Subsequently, the controllable oxidation process was utilized to break the sturdy structure of the boron nitride nanotubes to fabricate shortened nanotubes. The shortened boron nitride nanotubes were found to possess good solubility in water and many organic solvents. Further experiments demonstrated remarkably improved molecule-loading capacity of the shortened boron nitride nanotubes. These dispersible shortened boron nitride nanotubes might have the potential to be developed as effective delivery systems for various molecules, which may find applications in bio-related fields. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gonçalves, Idalina; Botelho, Cláudia M; Teixeira, Ana; Abreu, Ana S; Hilliou, Loïc; Silva, Carla; Cavaco-Paulo, Artur
2015-05-01
Poly(hydroxybenzene)-trimethoprim conjugates were prepared using methylparaben as substrate of the oxidative enzyme tyrosinase. MALDI-TOF MS analysis showed that the enzymatic oxidation of methylparaben alone leads to the poly(hydroxybenzene) formation. In the presence of trimethoprim, the methylparaben tyrosinase oxidation leads poly(hydroxybenzene)-trimethoprim conjugates. All of these compounds were incorporated into lubricant hydroxyethyl cellulose/glycerol mixtures. Poly(hydroxybenzene)-trimethoprim conjugates were the most effective phenolic structures against the bacterial growth reducing by 96 and 97% of Escherichia coli and Staphylococcus epidermidis suspensions, respectively (after 24 h). A novel enzymatic strategy to produce antimicrobial poly(hydroxybenzene)-antibiotic conjugates is proposed here for a wide range of applications on the biomedical field.
[Application of variable magnetic fields in medicine--15 years experience].
Sieroń, Aleksander; Cieślar, Grzegorz
2003-01-01
The results of 15-year own experimental and clinical research on application of variable magnetic fields in medicine were presented. In experimental studies analgesic effect (related to endogenous opioid system and nitrogen oxide activity) and regenerative effect of variable magnetic fields with therapeutical parameters was observed. The influence of this fields on enzymatic and hormonal activity, free oxygen radicals, carbohydrates, protein and lipid metabolism, dielectric and rheological properties of blood as well as behavioural reactions and activity of central dopamine receptor in experimental animals was proved. In clinical studies high therapeutic efficacy of magnetotherapy and magnetostimulation in the treatment of osteoarthrosis, abnormal ossification, osteoporosis, nasosinusitis, multiple sclerosis, Parkinson's disease, spastic paresis, diabetic polyneuropathy and retinopathy, vegetative neurosis, peptic ulcers, colon irritable and trophic ulcers was confirmed.
Hamidi, Roya; Kahforoushan, Davood; Fatehifar, Esmaeil
2013-01-01
In this article, a method for simultaneous removal of calcium, magnesium and chloride by using Mg0.80Al0.20O1.10 as a Magnesium-Aluminum oxide (Mg‒Al oxide) was investigated. Mg‒Al oxide obtained by thermal decomposition of the Mg-Al layered double hydroxide (Mg-Al LDH). The synthesized Mg‒Al oxide were characterized with respect to nitrogen physicosorption, X-ray diffraction (XRD) and field emission scan electron microscopy (FESEM) morphology. Due to high anion-exchange capacity of Mg‒Al oxide, it was employed in simultaneously removal of Cl(-), Mg(+2) and Ca(+2) from distiller waste of a sodium carbonate production factory. For this purpose, experiments were designed to evaluate the effects of quantity of Mg‒Al oxide, temperature and time on the removal process. The removal of Cl(-), Mg(+2) and Ca(+2) from wastewater was found 93.9%, 93.74% and 93.25% at 60°C after 0.5 h, respectively. Results showed that the removal of Cl(-), Mg(+2) and Ca(+2) by Mg‒Al oxide increased with increasing temperature, time and Mg‒Al oxide quantity.
Wolfrum, Bernhard; Thierry, Benjamin
2018-01-01
Owing to their two-dimensional confinements, silicon nanowires display remarkable optical, magnetic, and electronic properties. Of special interest has been the development of advanced biosensing approaches based on the field effect associated with silicon nanowires (SiNWs). Recent advancements in top-down fabrication technologies have paved the way to large scale production of high density and quality arrays of SiNW field effect transistor (FETs), a critical step towards their integration in real-life biosensing applications. A key requirement toward the fulfilment of SiNW FETs’ promises in the bioanalytical field is their efficient integration within functional devices. Aiming to provide a comprehensive roadmap for the development of SiNW FET based sensing platforms, we critically review and discuss the key design and fabrication aspects relevant to their development and integration within complementary metal-oxide-semiconductor (CMOS) technology. PMID:29751688
An underlap field-effect transistor for electrical detection of influenza
NASA Astrophysics Data System (ADS)
Lee, Kwang-Won; Choi, Sung-Jin; Ahn, Jae-Hyuk; Moon, Dong-Il; Park, Tae Jung; Lee, Sang Yup; Choi, Yang-Kyu
2010-01-01
An underlap channel-embedded field-effect transistor (FET) is proposed for label-free biomolecule detection. Specifically, silica binding protein fused with avian influenza (AI) surface antigen and avian influenza antibody (anti-AI) were designed as a receptor molecule and a target material, respectively. The drain current was significantly decreased after the binding of negatively charged anti-AI on the underlap channel. A set of control experiments supports that only the biomolecules on the underlap channel effectively modulate the drain current. With the merits of a simple fabrication process, complementary metal-oxide-semiconductor compatibility, and enhanced sensitivity, the underlap FET could be a promising candidate for a chip-based biosensor.
Doğan-Subaşı, Eylem; Elsner, Martin; Qiu, Shiran; Cretnik, Stefan; Atashgahi, Siavash; Shouakar-Stash, Orfan; Boon, Nico; Dejonghe, Winnie; Bastiaens, Leen
2017-10-15
cis-1,2-Dichloroethene (cis-DCE) and trichloroethene (TCE) are persistent, toxic and mobile pollutants in groundwater systems. They are both conducive to reductive dehalogenation and to oxidation by permanganate. In this study, the potential of dual element (C, Cl) compound specific isotope analyses (CSIA) for distinguishing between chemical oxidation and anaerobic reductive dechlorination of cis-DCE and TCE was investigated. Well-controlled cis-DCE degradation batch tests gave similar carbon isotope enrichment factors ε C (‰), but starkly contrasting dual element isotope slopes Δδ 13 C/Δδ 37 Cl for permanganate oxidation (ε C =-26‰±6‰, Δδ 13 C/Δδ 37 Cl≈-125±47) compared to reductive dechlorination (ε C =-18‰±4‰, Δδ 13 C/Δδ 37 Cl≈4.5±3.4). The difference can be tracked down to distinctly different chlorine isotope fractionation: an inverse isotope effect during chemical oxidation (ε Cl =+0.2‰±0.1‰) compared to a large normal isotope effect in reductive dechlorination (ε Cl =-3.3‰±0.9‰) (p≪0.05). A similar trend was observed for TCE. The dual isotope approach was evaluated in the field before and up to 443days after a pilot scale permanganate injection in the subsurface. Our study indicates, for the first time, the potential of the dual element isotope approach for distinguishing cis-DCE (and TCE) concentration drops caused by dilution, oxidation by permanganate and reductive dechlorination both at laboratory and field scale. Copyright © 2017. Published by Elsevier B.V.
Driver Circuit For High-Power MOSFET's
NASA Technical Reports Server (NTRS)
Letzer, Kevin A.
1991-01-01
Driver circuit generates rapid-voltage-transition pulses needed to switch high-power metal oxide/semiconductor field-effect transistor (MOSFET) modules rapidly between full "on" and full "off". Rapid switching reduces time of overlap between appreciable current through and appreciable voltage across such modules, thereby increasing power efficiency.
MOSFET analog memory circuit achieves long duration signal storage
NASA Technical Reports Server (NTRS)
1966-01-01
Memory circuit maintains the signal voltage at the output of an analog signal amplifier when the input signal is interrupted or removed. The circuit uses MOSFET /Metal Oxide Semiconductor Field Effect Transistor/ devices as voltage-controlled switches, triggered by an external voltage-sensing device.
Livi, Paolo; Kwiat, Moria; Shadmani, Amir; Pevzner, Alexander; Navarra, Giulio; Rothe, Jörg; Stettler, Alexander; Chen, Yihui; Patolsky, Fernando; Hierlemann, Andreas
2017-01-01
We present a monolithic complementary metal-oxide semiconductor (CMOS)-based sensor system comprising an array of silicon nanowire field-effect transistors (FETs) and the signal-conditioning circuitry on the same chip. The silicon nanowires were fabricated by chemical vapor deposition methods and then transferred to the CMOS chip, where Ti/Pd/Ti contacts had been patterned via e-beam lithography. The on-chip circuitry measures the current flowing through each nanowire FET upon applying a constant source-drain voltage. The analog signal is digitized on chip and then transmitted to a receiving unit. The system has been successfully fabricated and tested by acquiring I−V curves of the bare nanowire-based FETs. Furthermore, the sensing capabilities of the complete system have been demonstrated by recording current changes upon nanowire exposure to solutions of different pHs, as well as by detecting different concentrations of Troponin T biomarkers (cTnT) through antibody-functionalized nanowire FETs. PMID:26348408
Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods.
Sun, Baoquan; Sirringhaus, Henning
2005-12-01
Colloidal zinc oxide (ZnO) nanocrystals are attractive candidates for a low-temperature and solution-processible semiconductor for high-performance thin-film field-effect transistors (TFTs). Here we show that by controlling the shape of the nanocrystals from spheres to rods the semiconducting properties of spin-coated ZnO films can be much improved as a result of increasing particle size and self-alignment of the nanorods along the substrate. Postdeposition hydrothermal growth in an aqueous zinc ion solution has been found to further enhance grain size and connectivity and improve device performance. TFT devices made from 65-nm-long and 10-nm-wide nanorods deposited by spin coating have been fabricated at moderate temperatures of 230 degrees C with mobilities of 0.61 cm(2)V(-1)s(-1) and on/off ratios of 3 x 10(5) after postdeposition growth, which is comparable to the characteristics of TFTs fabricated by traditional sputtering methods.
NASA Astrophysics Data System (ADS)
Tega, Naoki; Miki, Hiroshi; Mine, Toshiyuki; Ohmori, Kenji; Yamada, Keisaku
2014-03-01
It is demonstrated from a statistical perspective that the generation of random telegraph noise (RTN) changes before and after the application of negative-bias temperature instability (NBTI) stress. The NBTI stress generates a large number of permanent interface traps and, at the same time, a large number of RTN traps causing temporary RTN and one-time RTN. The interface trap and the RTN trap show different features in the recovery process. That is, a re-passivation of interface states is the minor cause of the recovery after the NBTI stress, and in contrast, rapid disappearance of the temporary RTN and the one-time RTN is the main cause of the recovery. The RTN traps are less likely to become permanent. This two-type trap, namely, the interface trap and RTN trap, model simply explains NBTI degradation and recovery in scaled p-channel metal-oxide-semiconductor field-effect transistors.
Passivation and Depassivation of Defects in Graphene-based field-effect transistors
NASA Astrophysics Data System (ADS)
O'Hara, Andrew; Wang, Pan; Perini, Chris J.; Fleetwood, Daniel M.; Vogel, Eric M.; Pantelides, Sokrates T.
Field effect transistors based on graphene on amorphous SiO2 substrates were fabricated, both with and without a top oxide passivation layer of Al2O3. Initial I-V characteristics of these devices show that the Fermi energy occurs below the Dirac point in graphene (i.e. p-type behavior). Introduction of environmental stresses, e.g. baking the devices, causes a shift in the Fermi energy relative to the Dirac point. 1/f noise measurements indicate the presence of charge trapping defects. In order to find the origins of this behavior, we construct atomistic models of the substrate/graphene interface and the graphene/oxide passivation layer interface. Using density functional theory, we investigate the role that the introduction and removal of hydrogen and hydroxide passivants has on the electronic structure of the graphene layer as well as the relative energetics for these processes to occur in order to gain insights into the experimental results. Supported by DTRA: 1-16-0032 and NSF: ECCS-1508898.
Livi, Paolo; Kwiat, Moria; Shadmani, Amir; Pevzner, Alexander; Navarra, Giulio; Rothe, Jörg; Stettler, Alexander; Chen, Yihui; Patolsky, Fernando; Hierlemann, Andreas
2015-10-06
We present a monolithic complementary metal-oxide semiconductor (CMOS)-based sensor system comprising an array of silicon nanowire field-effect transistors (FETs) and the signal-conditioning circuitry on the same chip. The silicon nanowires were fabricated by chemical vapor deposition methods and then transferred to the CMOS chip, where Ti/Pd/Ti contacts had been patterned via e-beam lithography. The on-chip circuitry measures the current flowing through each nanowire FET upon applying a constant source-drain voltage. The analog signal is digitized on chip and then transmitted to a receiving unit. The system has been successfully fabricated and tested by acquiring I-V curves of the bare nanowire-based FETs. Furthermore, the sensing capabilities of the complete system have been demonstrated by recording current changes upon nanowire exposure to solutions of different pHs, as well as by detecting different concentrations of Troponin T biomarkers (cTnT) through antibody-functionalized nanowire FETs.
Effect of hydrogen intercalation on the critical parameters of YBa2Cu3O y
NASA Astrophysics Data System (ADS)
Bobylev, I. B.; Gerasimov, E. G.; Zyuzeva, N. A.; Terent'ev, P. B.
2017-10-01
The effect of hydrogenation at T = 150 and 200°C on the electrophysical properties of highly textured YBa2Cu3O y ceramics with different oxygen content has been investigated. Like hydration, hydrogenation results in the deterioration of these properties. However, in samples with high oxygen contents ( y = 6.96) hydrogenated at T = 150°C after oxidation (400°C) or recovery annealing with subsequent oxidation, the critical current density and first critical field increase compared to the initial state. The improvement of the properties occurs mainly in a magnetic field applied perpendicularly to the c axis. As after hydration, this is connected with the formation of planar defects in the course of low-temperature annealing. In addition, in the process of the hydrogenation, the partial reduction of copper occurs with the formation of microinclusions of Cu2O and other products of chemical decomposition, which are extra pinning centers of magnetic vortices.
NASA Astrophysics Data System (ADS)
Thapa, Ram; French, Steven; Delgado, Adrian; Ramos, Carlos; Gutierrez, Jose; Chipara, Mircea; Lozano, Karen
2010-03-01
Electrorheological (ER) fluids consisting of γ-aluminum oxide nanotubes and γ-aluminum oxide nanoparticles dispersed within silicone oil were prepared. The relationship between shear stress and shear rate was measured and theoretically simulated by using an extended Bingham model for both the rheological and electrorheological features of these systems. Shear stress and viscosity showed a sharp increase for the aluminum oxide nanotubes suspensions subjected to applied electric fields whereas aluminum oxide nanoparticles suspensions showed a moderate change. It was found that the transition from liquid to solid state (mediated by the applied electric field) can be described by a power law and that for low applied voltages the relationship is almost linear.
Single-Event Gate Rupture in Power MOSFETs: A New Radiation Hardness Assurance Approach
NASA Technical Reports Server (NTRS)
Lauenstein, Jean-Marie
2011-01-01
Almost every space mission uses vertical power metal-semiconductor-oxide field-effect transistors (MOSFETs) in its power-supply circuitry. These devices can fail catastrophically due to single-event gate rupture (SEGR) when exposed to energetic heavy ions. To reduce SEGR failure risk, the off-state operating voltages of the devices are derated based upon radiation tests at heavy-ion accelerator facilities. Testing is very expensive. Even so, data from these tests provide only a limited guide to on-orbit performance. In this work, a device simulation-based method is developed to measure the response to strikes from heavy ions unavailable at accelerator facilities but posing potential risk on orbit. This work is the first to show that the present derating factor, which was established from non-radiation reliability concerns, is appropriate to reduce on-orbit SEGR failure risk when applied to data acquired from ions with appropriate penetration range. A second important outcome of this study is the demonstration of the capability and usefulness of this simulation technique for augmenting SEGR data from accelerator beam facilities. The mechanisms of SEGR are two-fold: the gate oxide is weakened by the passage of the ion through it, and the charge ionized along the ion track in the silicon transiently increases the oxide electric field. Most hardness assurance methodologies consider the latter mechanism only. This work demonstrates through experiment and simulation that the gate oxide response should not be neglected. In addition, the premise that the temporary weakening of the oxide due to the ion interaction with it, as opposed to due to the transient oxide field generated from within the silicon, is validated. Based upon these findings, a new approach to radiation hardness assurance for SEGR in power MOSFETs is defined to reduce SEGR risk in space flight projects. Finally, the potential impact of accumulated dose over the course of a space mission on SEGR susceptibility is explored. SEGR evaluation of gamma-irradiated power MOSFETs suggests a non-significant SEGR susceptibility enhancement due to accumulated dose from gamma rays. During SEGR testing, an unexpected enhanced dose effect from heavy-ion irradiation was detected. We demonstrate that this effect could be due to direct ionization by two or more ions at the same channel location. The probability on-orbit for such an occurrence is near-zero given the low heavy-ion fluence over a typical mission lifetime, and did not affect SEGR susceptibility. The results of this work can be used to bound the risk of SEGR in power MOSFETs considered for insertion into spacecraft and instruments.
Undoped polythiophene field-effect transistors with mobility of 1 cm2 V-1 s-1
NASA Astrophysics Data System (ADS)
Hamadani, B. H.; Gundlach, D. J.; McCulloch, I.; Heeney, M.
2007-12-01
We report on charge transport in organic field-effect transistors based on poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) as the active polymer layer with saturation field-effect mobilities as large as 1cm2V-1s-1. This is achieved by employing Pt instead of the commonly used Au as the contacting electrode and allows for a significant reduction in the metal/polymer contact resistance. The mobility increases as a function of decreasing channel length, consistent with a Poole-Frenkel model of charge transport, and reaches record mobilities of 1cm2V-1s-1 or more at channel lengths on the order of few microns in an undoped solution-processed polymer cast on an oxide gate dielectric.
Random electric field instabilities of relaxor ferroelectrics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arce-Gamboa, Jose R.; Guzman-Verri, Gian G.
Relaxor ferroelectrics are complex oxide materials which are rather unique to study the effects of compositional disorder on phase transitions. Here, we study the effects of quenched cubic random electric fields on the lattice instabilities that lead to a ferroelectric transition and show that, within a microscopic model and a statistical mechanical solution, even weak compositional disorder can prohibit the development of long-range order and that a random field state with anisotropic and power-law correlations of polarization emerges from the combined effect of their characteristic dipole forces and their inherent charge disorder. As a result, we compare and reproduce severalmore » key experimental observations in the well-studied relaxor PbMg 1/3Nb 2/3O 3–PbTiO 3.« less
Random electric field instabilities of relaxor ferroelectrics
Arce-Gamboa, Jose R.; Guzman-Verri, Gian G.
2017-06-13
Relaxor ferroelectrics are complex oxide materials which are rather unique to study the effects of compositional disorder on phase transitions. Here, we study the effects of quenched cubic random electric fields on the lattice instabilities that lead to a ferroelectric transition and show that, within a microscopic model and a statistical mechanical solution, even weak compositional disorder can prohibit the development of long-range order and that a random field state with anisotropic and power-law correlations of polarization emerges from the combined effect of their characteristic dipole forces and their inherent charge disorder. As a result, we compare and reproduce severalmore » key experimental observations in the well-studied relaxor PbMg 1/3Nb 2/3O 3–PbTiO 3.« less
Nason, Peter; Johnson, Raymond H; Neuschütz, Clara; Alakangas, Lena; Öhlander, Björn
2014-02-28
Novel solutions for sulfide-mine tailings remediation were evaluated in field-scale experiments on a former tailings repository in northern Sweden. Uncovered sulfide-tailings were compared to sewage-sludge biosolid amended tailings over 2 years. An application of a 0.2m single-layer sewage-sludge amendment was unsuccessful at preventing oxygen ingress to underlying tailings. It merely slowed the sulfide-oxidation rate by 20%. In addition, sludge-derived metals (Cu, Ni, Fe, and Zn) migrated and precipitated at the tailings-to-sludge interface. By using an additional 0.6m thick fly-ash sealing layer underlying the sewage sludge layer, a solution to mitigate oxygen transport to the underlying tailings and minimize sulfide-oxidation was found. The fly-ash acted as a hardened physical barrier that prevented oxygen diffusion and provided a trap for sludge-borne metals. Nevertheless, the biosolid application hampered the application, despite the advances in the effectiveness of the fly-ash layer, as sludge-borne nitrate leached through the cover system into the underlying tailings, oxidizing pyrite. This created a 0.3m deep oxidized zone in 6-years. This study highlights that using sewage sludge in unconventional cover systems is not always a practical solution for the remediation of sulfide-bearing mine tailings to mitigate against sulfide weathering and acid rock drainage formation. Copyright © 2014 Elsevier B.V. All rights reserved.
Nason, Peter; Johnson, Raymond H.; Neuschutz, Clara; Alakangas, Lena; Ohlander, Bjorn
2014-01-01
Novel solutions for sulfide-mine tailings remediation were evaluated in field-scale experiments on a former tailings repository in northern Sweden. Uncovered sulfide-tailings were compared to sewage-sludge biosolid amended tailings over 2 years. An application of a 0.2 m single-layer sewage-sludge amendment was unsuccessful at preventing oxygen ingress to underlying tailings. It merely slowed the sulfide-oxidation rate by 20%. In addition, sludge-derived metals (Cu, Ni, Fe, and Zn) migrated and precipitated at the tailings-to-sludge interface. By using an additional 0.6 m thick fly-ash sealing layer underlying the sewage sludge layer, a solution to mitigate oxygen transport to the underlying tailings and minimize sulfide-oxidation was found. The fly-ash acted as a hardened physical barrier that prevented oxygen diffusion and provided a trap for sludge-borne metals. Nevertheless, the biosolid application hampered the application, despite the advances in the effectiveness of the fly-ash layer, as sludge-borne nitrate leached through the cover system into the underlying tailings, oxidizing pyrite. This created a 0.3 m deep oxidized zone in 6-years. This study highlights that using sewage sludge in unconventional cover systems is not always a practical solution for the remediation of sulfide-bearing mine tailings to mitigate against sulfide weathering and acid rock drainage formation.
Expression of Superparamagnetic Particles on FORC Diagrams
NASA Astrophysics Data System (ADS)
Hirt, A. M.; Kumari, M.; Crippa, F.; Petri-Fink, A.
2015-12-01
Identification of superparamagnetic (SP) particles in natural materials provides information on processes that lead to the new formation or dissolution of iron oxides. SP particles express themselves on first-order reversal curve (FORC) diagrams as a distribution centered near the origin of the diagram. Pike et al. (2001, GJI, 145, 721) demonstrated that thermal relaxation produces an upward shift in the FORC distribution, and attributed this to a pause encountered at each reversal field. In this study we examine the relationship between this upward shift and particles size on two sets of synthetic iron oxide nanoparticles. One set of coated magnetite particles have well-constrained particles size with 9, 16 and 20 nm as their diameter. A second set from the FeraSpin™ Series, consisting of FeraSpinXS, M and XL, were evaluated. Rock magnetic experiments indicate that the first set of samples is exclusively magnetite, whereas the FeraSpin samples contain predominantly magnetite with some degree of oxidation. Samples from both sets show that the upward shift of the FORC distribution at the origin increases with decreasing particle size. The amount of shift in the FeraSpin series is less when compared to the samples from the first set. This is attributed to the effect of interaction that counteracts the effect of thermal relaxation behavior of the SP particles. The FeraSpin series also shows a broader FORC distribution on the vertical axis that appears to be related to non-saturation of the hysteresis curve at maximum applied field. This non-saturation behavior can be due to spins of very fine particles or oxidation to hematite. AC susceptibility at low temperature indicates that particle interaction may affect the effective magnetic particle size. Our results suggest that the FORC distribution in pure SP particle systems provides information on the particle size distribution or oxidation, which can be further evaluated with low temperature techniques.
Brožíčková, C; Mikulecká, A; Otáhal, J
2014-01-01
The role of brain derived nitric oxide in the physiology and behavior remains disputable. One of the reasons of the controversies might be systemic side effects of nitric oxide synthase inhibitors. Therefore, under nNOS inhibition by 7-nitroindazole (7-NI) we carried out recordings of blood gasses, blood pressure and spontaneous EEG in conscious adult rats. Locomotion and spontaneous behavior were assessed in an open field. In addition skilled walking and limb coordination were evaluated using a ladder rung walking test. The blood gas analysis revealed a significant increase in pCO(2) 180 min and 240 min after the application of 7-NI. The power and entropy decreased simultaneously with a shift of the mean frequency of the spontaneous EEG toward slow oscillations after 7-NI treatment. The thresholds of evoked potentials underwent a significant drop and a trend towards a slight increase in the I-O curve slope was observed. 7-NI significantly suppressed open field behavior expressed as distance moved, exploratory rearing and grooming. As for the ladder rung walking test the 7-NI treated animals had more errors in foot placement indicating impairment in limb coordination. Therefore our findings suggest that 7-NI increased cortical excitability and altered some physiological and behavioral parameters.
Neurobehavioral and Antioxidant Effects of Ethanolic Extract of Yellow Propolis
da Silveira, Cinthia Cristina Sousa de Menezes; Fernandes, Luanna Melo Pereira; Silva, Mallone Lopes; Luz, Diandra Araújo; Gomes, Antônio Rafael Quadros; Machado, Christiane Schineider; de Lira, Tatiana Onofre; Ferreira, Antonio Gilberto
2016-01-01
Propolis is a resin produced by bees from raw material collected from plants, salivary secretions, and beeswax. New therapeutic properties for the Central Nervous System have emerged. We explored the neurobehavioral and antioxidant effects of an ethanolic extract of yellow propolis (EEYP) rich in triterpenoids, primarily lupeol and β-amyrin. Male Wistar rats, 3 months old, were intraperitoneally treated with Tween 5% (control), EEYP (1, 3, 10, and 30 mg/kg), or diazepam, fluoxetine, and caffeine (positive controls) 30 min before the assays. Animals were submitted to open field, elevated plus maze, forced swimming, and inhibitory avoidance tests. After behavioral tasks, blood samples were collected through intracardiac pathway, to evaluate the oxidative balance. The results obtained in the open field and in the elevated plus maze assay showed spontaneous locomotion preserved and anxiolytic-like activity. In the forced swimming test, EEYP demonstrated antidepressant-like activity. In the inhibitory avoidance test, EEYP showed mnemonic activity at 30 mg/kg. In the evaluation of oxidative biochemistry, the extract reduced the production of nitric oxide and malondialdehyde without changing level of total antioxidant, catalase, and superoxide dismutase, induced by behavioral stress. Our results highlight that EEYP emerges as a promising anxiolytic, antidepressant, mnemonic, and antioxidant natural product. PMID:27822336
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ettisserry, D. P., E-mail: deva@umd.edu, E-mail: neil@umd.edu; Goldsman, N., E-mail: deva@umd.edu, E-mail: neil@umd.edu; Akturk, A.
We use hybrid-functional density functional theory-based Charge Transition Levels (CTLs) to study the electrical activity of near-interfacial oxygen vacancies located in the oxide side of 4H-Silicon Carbide (4H-SiC) power Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs). Based on the “amorphousness” of their local atomic environment, oxygen vacancies are shown to introduce their CTLs either within (permanently electrically active) or outside of (electrically inactive) the 4H-SiC bandgap. The “permanently electrically active” centers are likely to cause threshold voltage (V{sub th}) instability at room temperature. On the other hand, we show that the “electrically inactive” defects could be transformed into various “electrically active” configurations undermore » simultaneous application of negative bias and high temperature stresses. Based on this observation, we present a model for plausible oxygen vacancy defects that could be responsible for the recently observed excessive worsening of V{sub th} instability in 4H-SiC power MOSFETs under high temperature-and-gate bias stress. This model could also explain the recent electrically detected magnetic resonance observations in 4H-SiC MOSFETs.« less
Pulsed Laser Synthesized Magnetic Cobalt Oxide Nanoparticles for Biomedical Applications
NASA Astrophysics Data System (ADS)
Bhatta, Hari; Gupta, Ram; Ghosh, Kartik; Kahol, Pawan; Delong, Robert; Wanekawa, Adam
2011-03-01
Nanomaterials research has become a major attraction in the field of advanced materials research in the area of Physics, Chemistry, and Materials Science. Biocompatible and chemically stable magnetic metal oxide nanoparticles have biomedical applications that includes drug delivery, cell and DNA separation, gene cloning, magnetic resonance imaging (MRI). This research is aimed at the fabrication of magnetic cobalt oxide nanoparticles using a safe, cost effective, and easy to handle technique that is capable of producing nanoparticles free of any contamination. Cobalt oxide nanoparticles have been synthesized at room temperature using cobalt foil by pulsed laser ablation technique. These cobalt oxide nanoparticles were characterized using UV-Visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), and dynamic laser light scattering (DLLS). The magnetic cobalt oxides nanoparticles were stabilized in glucose solutions of various concentrations in deionized water. The presence of UV-Vis absorption peak at 270 nm validates the nature of cobalt oxide nanoparticles. The DLLS size distributions of nanoparticles are in the range of 110 to 300 nm, which further confirms the presence nanoparticles. This work is partially supported by National Science Foundation (DMR- 0907037).
NASA Astrophysics Data System (ADS)
Hiemstra, Tjisse; Antelo, Juan; Rahnemaie, Rasoul; van Riemsdijk, Willem H.
2010-01-01
Information on the particle size and reactive surface area of natural samples is essential for the application of surface complexation models (SCM) to predict bioavailability, toxicity, and transport of elements in the natural environment. In addition, this information will be of great help to enlighten views on the formation, stability, and structure of nanoparticle associations of natural organic matter (NOM) and natural oxide particles. Phosphate is proposed as a natively present probe ion to derive the effective reactive surface area of natural samples. In the suggested method, natural samples are equilibrated (⩾10 days) with 0.5 M NaHCO 3 (pH = 8.5) at various solid-solution ratios. This matrix fixes the pH and ionic strength, suppresses the influence of Ca 2+ and Mg 2+ ions by precipitation these in solid carbonates, and removes NOM due to the addition of activated carbon in excess, collectively leading to the dominance of the PO 4-CO 3 interaction in the system. The data have been interpreted with the charge distribution (CD) model, calibrated for goethite, and the analysis results in an effective reactive surface area (SA) and a reversibly bound phosphate loading Γ for a series of top soils. The oxidic SA varies between about 3-30 m 2/g sample for a large series of representative agricultural top soils. Scaling of our data to the total iron and aluminum oxide content (dithionite-citrate-bicarbonate extractable), results in the specific surface area between about 200-1200 m 2/g oxide for most soils, i.e. the oxide particles are nano-sized with an equivalent diameter in the order of ˜1-10 nm if considered as non-porous spheres. For the top soils, the effective surface area and the soil organic carbon fraction are strongly correlated. The oxide particles are embedded in a matrix of organic carbon (OC), equivalent to ˜1.4 ± 0.2 mg OC/m 2 oxide for many soils of the collection, forming a NOM-mineral nanoparticle association with an average NOM volume fraction of ˜80%. The average mass density of such a NOM-mineral association is ˜1700 ± 100 kg/m 3 (i.e. high-density NOM). The amount of reversibly bound phosphate is rather close to the amount of phosphate that is extractable with oxalate. The phosphate loading varies remarkably ( Γ ≈ 1-3 μmol/m 2 oxide) in the samples. As discussed in part II of this paper series ( Hiemstra et al., 2010), the phosphate loading ( Γ) of field samples is suppressed by surface complexation of NOM, where hydrophilic, fulvic, and humic acids act as a competitor for (an)ions via site competition and electrostatic interaction.
Tago, Kanako; Okubo, Takashi; Shimomura, Yumi; Kikuchi, Yoshitomo; Hori, Tomoyuki; Nagayama, Atsushi; Hayatsu, Masahito
2015-01-01
The effects of environmental factors such as pH and nutrient content on the ecology of ammonia-oxidizing bacteria (AOB) and archaea (AOA) in soil has been extensively studied using experimental fields. However, how these environmental factors intricately influence the community structure of AOB and AOA in soil from farmers' fields is unclear. In the present study, the abundance and diversity of AOB and AOA in soils collected from farmers' sugarcane fields were investigated using quantitative PCR and barcoded pyrosequencing targeting the ammonia monooxygenase alpha subunit (amoA) gene. The abundances of AOB and AOA amoA genes were estimated to be in the range of 1.8 × 10(5)-9.2 × 10(6) and 1.7 × 10(6)-5.3 × 10(7) gene copies g dry soil(-1), respectively. The abundance of both AOB and AOA positively correlated with the potential nitrification rate. The dominant sequence reads of AOB and AOA were placed in Nitrosospira-related and Nitrososphaera-related clusters in all soils, respectively, which varied at the level of their sub-clusters in each soil. The relationship between these ammonia-oxidizing community structures and soil pH was shown to be significant by the Mantel test. The relative abundances of the OTU1 of Nitrosospira cluster 3 and Nitrososphaera subcluster 7.1 negatively correlated with soil pH. These results indicated that soil pH was the most important factor shaping the AOB and AOA community structures, and that certain subclusters of AOB and AOA adapted to and dominated the acidic soil of agricultural sugarcane fields.
Tago, Kanako; Okubo, Takashi; Shimomura, Yumi; Kikuchi, Yoshitomo; Hori, Tomoyuki; Nagayama, Atsushi; Hayatsu, Masahito
2015-01-01
The effects of environmental factors such as pH and nutrient content on the ecology of ammonia-oxidizing bacteria (AOB) and archaea (AOA) in soil has been extensively studied using experimental fields. However, how these environmental factors intricately influence the community structure of AOB and AOA in soil from farmers’ fields is unclear. In the present study, the abundance and diversity of AOB and AOA in soils collected from farmers’ sugarcane fields were investigated using quantitative PCR and barcoded pyrosequencing targeting the ammonia monooxygenase alpha subunit (amoA) gene. The abundances of AOB and AOA amoA genes were estimated to be in the range of 1.8 × 105–9.2 × 106 and 1.7 × 106–5.3 × 107 gene copies g dry soil−1, respectively. The abundance of both AOB and AOA positively correlated with the potential nitrification rate. The dominant sequence reads of AOB and AOA were placed in Nitrosospira-related and Nitrososphaera-related clusters in all soils, respectively, which varied at the level of their sub-clusters in each soil. The relationship between these ammonia-oxidizing community structures and soil pH was shown to be significant by the Mantel test. The relative abundances of the OTU1 of Nitrosospira cluster 3 and Nitrososphaera subcluster 7.1 negatively correlated with soil pH. These results indicated that soil pH was the most important factor shaping the AOB and AOA community structures, and that certain subclusters of AOB and AOA adapted to and dominated the acidic soil of agricultural sugarcane fields. PMID:25736866
Okano, Yutaka; Hristova, Krassimira R; Leutenegger, Christian M; Jackson, Louise E; Denison, R Ford; Gebreyesus, Binyam; Lebauer, David; Scow, Kate M
2004-02-01
Ammonium oxidation by autotrophic ammonia-oxidizing bacteria (AOB) is a key process in agricultural and natural ecosystems and has a large global impact. In the past, the ecology and physiology of AOB were not well understood because these organisms are notoriously difficult to culture. Recent applications of molecular techniques have advanced our knowledge of AOB, but the necessity of using PCR-based techniques has made quantitative measurements difficult. A quantitative real-time PCR assay targeting part of the ammonia-monooxygenase gene (amoA) was developed to estimate AOB population size in soil. This assay has a detection limit of 1.3 x 10(5) cells/g of dry soil. The effect of the ammonium concentration on AOB population density was measured in soil microcosms by applying 0, 1.5, or 7.5 mM ammonium sulfate. AOB population size and ammonium and nitrate concentrations were monitored for 28 days after (NH4)2SO4 application. AOB populations in amended treatments increased from an initial density of approximately 4 x 10(6) cells/g of dry soil to peak values (day 7) of 35 x 10(6) and 66 x 10(6) cells/g of dry soil in the 1.5 and 7.5 mM treatments, respectively. The population size of total bacteria (quantified by real-time PCR with a universal bacterial probe) remained between 0.7 x 10(9) and 2.2 x 10(9) cells/g of soil, regardless of the ammonia concentration. A fertilization experiment was conducted in a tomato field plot to test whether the changes in AOB density observed in microcosms could also be detected in the field. AOB population size increased from 8.9 x 10(6) to 38.0 x 10(6) cells/g of soil by day 39. Generation times were 28 and 52 h in the 1.5 and 7.5 mM treatments, respectively, in the microcosm experiment and 373 h in the ammonium treatment in the field study. Estimated oxidation rates per cell ranged initially from 0.5 to 25.0 fmol of NH4+ h(-1) cell(-1) and decreased with time in both microcosms and the field. Growth yields were 5.6 x 10(6), 17.5 x 10(6), and 1.7 x 10(6) cells/mol of NH4+ in the 1.5 and 7.5 mM microcosm treatments and the field study, respectively. In a second field experiment, AOB population size was significantly greater in annually fertilized versus unfertilized soil, even though the last ammonium application occurred 8 months prior to measurement, suggesting a long-term effect of ammonium fertilization on AOB population size.
Blue light irradiation-induced oxidative stress in vivo via ROS generation in rat gingival tissue.
Yoshida, Ayaka; Shiotsu-Ogura, Yukako; Wada-Takahashi, Satoko; Takahashi, Shun-suke; Toyama, Toshizo; Yoshino, Fumihiko
2015-10-01
It has been reported that oxidative stress with reactive oxygen species (ROS) generation is induced by blue light irradiation to a living body. Only limited research has been reported in dental field on the dangers of blue light, mostly focusing on cytotoxicity associated with heat injury of dental pulp. We thus performed an in vivo study on oral tissue exposed to blue light. ROS generated upon blue light irradiation of flavin adenine dinucleotide were measured by electron spin resonance spectroscopy. After blue light irradiation, the palatal gingiva of Wistar rats were isolated. Collected samples were subjected to biochemical analysis of lipid peroxidation and glutathione. Singlet oxygen was generated by blue light irradiation, but was significantly quenched in an N-acetyl-L-cysteine (NAC) concentration-dependent manner. Blue light significantly accelerated oxidative stress and increased the oxidized glutathione levels in gingival tissue. These effects were also inhibited by NAC pre-administration. The results suggest that blue light irradiation at clinical levels of tooth bleaching treatment may enhance lipid peroxidation by the induction of oxidative stress and the consumption of a significant amount of intracellular glutathione. In addition, NAC might be an effective supplement for the protection of oral tissues against blue light irradiation-induced oxidative damage. Copyright © 2015 Elsevier B.V. All rights reserved.
Habibi, Mohammad Hossein; Mardani, Maryam
2015-02-25
Binary zinc tin oxide nano-composite was synthesized by a facile sol-gel method using simple precursors from the solutions consisting of zinc acetate, tin(IV) chloride and ethanol. Effect of annealing temperature on optical and structural properties was investigated using X-ray diffraction (XRD), diffuse reflectance spectra (DRS), field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). XRD results revealed the existence of the ZnO and SnO2 phases. FESEM results showed that binary zinc tin oxide nano-composites ranges from 56 to 60 nm in diameter at 400°C and 500°C annealing temperatures respectively. The optical band gap was increased from 2.72 eV to 3.11 eV with the increasing of the annealing temperature. FTIR results confirmed the presence of zinc oxide and tin oxide and the broad absorption peaks at 3426 and 1602 cm(-1) can be ascribed to the vibration of absorptive water, and the absorption peaks at 546, 1038 and 1410 cm(-1) are due to the vibration of Zn-O or Sn-O groups in binary zinc tin oxide. Copyright © 2014 Elsevier B.V. All rights reserved.
Chanton, Jeffrey P; Powelson, David K; Abichou, Tarek; Fields, Dana; Green, Roger
2008-11-01
The quantification of methane oxidation is one of the major uncertainties in estimating CH4 emissions from landfills. Stable isotope methods provide a useful field approach for the quantification of methane oxidation in landfill cover soils. The approach relies upon the difference between the isotopic composition of oxidized gas at the location of interest and anaerobic zone CH4 and knowledge of alpha(ox), a term that describes the isotopic fractionation of the methanotrophic bacteria in their discrimination against (13)CH4. Natural variability in alpha(0x) in different landfill soils and the effect of temperature and other environmental factors on this parameter are not well defined. Therefore, standard determinations of alpha(ox), batch incubations of landfill cover soils with CH4, were conducted to determine alpha(ox) under a variety of conditions. When these results were combined with those of previous landfill incubation studies, the average alpha(ox) at 25 degrees C was 1.022 +/- 0.0015. alpha(ox) decreased with increasing temperature (-0.00039 alpha(ox) degrees C(-1)) overthe temperature range of 3-35 degrees C. alpha(ox) was found to be higher when determined after CH4-free storage and declined following CH4 pretreatment. alpha(ox) declined nonlinearly with increasing methane oxidation rate, Vmax.
Xu, Shengjun; Fu, Xiaoqing; Ma, Shuanglong; Bai, Zhihui; Xiao, Runlin; Li, Yong; Zhuang, Guoqiang
2014-01-01
Land-use conversion from woodlands to tea fields in subtropical areas of central China leads to increased nitrous oxide (N2O) emissions, partly due to increased nitrogen fertilizer use. A field investigation of N2O using a static closed chamber-gas chromatography revealed that the average N2O fluxes in tea fields with 225 kg N ha(-1) yr(-1) fertilizer application were 9.4 ± 6.2 times higher than those of woodlands. Accordingly, it is urgent to develop practices for mitigating N2O emissions from tea fields. By liquid-state fermentation of sweet potato starch wastewater and solid-state fermentation of paddy straw with application of Trichoderma viride, we provided the tea plantation with biofertilizer containing 2.4 t C ha(-1) and 58.7 kg N ha(-1). Compared to use of synthetic N fertilizer, use of biofertilizer at 225 kg N ha(-1) yr(-1) significantly reduced N2O emissions by 33.3%-71.8% and increased the tea yield by 16.2%-62.2%. Therefore, the process of bioconversion/bioaugmentation tested in this study was found to be a cost-effective and feasible approach to reducing N2O emissions and can be considered the best management practice for tea fields.
NASA Astrophysics Data System (ADS)
Chang, Cheng-Yi; Pan, Fu-Ming; Lin, Jian-Siang; Yu, Tung-Yuan; Li, Yi-Ming; Chen, Chieh-Yang
2016-12-01
We fabricated amorphous selenium (a-Se) photodetectors with a lateral metal-insulator-semiconductor-insulator-metal (MISIM) device structure. Thermal aluminum oxide, plasma-enhanced chemical vapor deposited silicon nitride, and thermal atomic layer deposited (ALD) aluminum oxide and hafnium oxide (ALD-HfO2) were used as the electron and hole blocking layers of the MISIM photodetectors for dark current suppression. A reduction in the dark current by three orders of magnitude can be achieved at electric fields between 10 and 30 V/μm. The effective dark current suppression is primarily ascribed to electric field lowering in the dielectric layers as a result of charge trapping in deep levels. Photogenerated carriers in the a-Se layer can be transported across the blocking layers to the Al electrodes via Fowler-Nordheim tunneling because a high electric field develops in the ultrathin dielectric layers under illumination. Since the a-Se MISIM photodetectors have a very low dark current without significant degradation in the photoresponse, the signal contrast is greatly improved. The MISIM photodetector with the ALD-HfO2 blocking layer has an optimal signal contrast more than 500 times the contrast of the photodetector without a blocking layer at 15 V/μm.
Arroyo, Cristina; Eslami, Sara; Brunton, Nigel P; Arimi, Joshua M; Noci, Francesco; Lyng, James G
2015-05-01
Pulsed electric fields (PEF) is a novel nonthermal technology that has the potential to cause physical disruption to muscle tissue which in turn could alter the sensorial aspects of meat in both a positive (e.g., enhanced tenderization) and a negative way (e.g., off-flavor development). If there is a risk of off-flavor development it should be identified prior to embarking on an extensive investigation on PEF in meat tenderization and turkey meat was chosen for this purpose as it is particularly prone to oxidation. The objective of this study was to investigate the effect of various PEF treatments on the quality attributes of turkey breast meat. Turkey breast meat obtained 1 d postslaughter was treated in a batch PEF chamber with increasing electric field strength up to 3 kV/cm and analyzed for lipid oxidation by thiobarbituric acid reactive substances assay (TBARS) with up to 5 d storage at 4°C in aerobic conditions. In a separate experiment, turkey breast meat samples were exposed to PEF under various combinations of pulse number, frequency, and voltage. Following PEF treatments weight loss, cook loss, lipid oxidation, texture, and color were assessed by instrumental methods. A sensory analysis was also performed to determine consumer acceptability for color, texture, and odor of the samples. Lipid oxidation in all PEF-treated samples progressed at the same rate with storage as the untreated samples and was not found to be significantly different to the control. Under the conditions examined PEF treatments did not induce differences in instrumentally measured weight loss, cook loss, lipid oxidation, texture, and color (raw and cooked) either on fresh or frozen samples. However, the sensory evaluation suggested that panelists could detect slight differences between the PEF-treated samples and the controls in terms of texture and odor. © 2015 Poultry Science Association Inc.
Vashishta, Priya; Kalia, Rajiv K; Nakano, Aiichiro
2006-03-02
We have developed a first-principles-based hierarchical simulation framework, which seamlessly integrates (1) a quantum mechanical description based on the density functional theory (DFT), (2) multilevel molecular dynamics (MD) simulations based on a reactive force field (ReaxFF) that describes chemical reactions and polarization, a nonreactive force field that employs dynamic atomic charges, and an effective force field (EFF), and (3) an atomistically informed continuum model to reach macroscopic length scales. For scalable hierarchical simulations, we have developed parallel linear-scaling algorithms for (1) DFT calculation based on a divide-and-conquer algorithm on adaptive multigrids, (2) chemically reactive MD based on a fast ReaxFF (F-ReaxFF) algorithm, and (3) EFF-MD based on a space-time multiresolution MD (MRMD) algorithm. On 1920 Intel Itanium2 processors, we have demonstrated 1.4 million atom (0.12 trillion grid points) DFT, 0.56 billion atom F-ReaxFF, and 18.9 billion atom MRMD calculations, with parallel efficiency as high as 0.953. Through the use of these algorithms, multimillion atom MD simulations have been performed to study the oxidation of an aluminum nanoparticle. Structural and dynamic correlations in the oxide region are calculated as well as the evolution of charges, surface oxide thickness, diffusivities of atoms, and local stresses. In the microcanonical ensemble, the oxidizing reaction becomes explosive in both molecular and atomic oxygen environments, due to the enormous energy release associated with Al-O bonding. In the canonical ensemble, an amorphous oxide layer of a thickness of approximately 40 angstroms is formed after 466 ps, in good agreement with experiments. Simulations have been performed to study nanoindentation on crystalline, amorphous, and nanocrystalline silicon nitride and silicon carbide. Simulation on nanocrystalline silicon carbide reveals unusual deformation mechanisms in brittle nanophase materials, due to coexistence of brittle grains and soft amorphous-like grain boundary phases. Simulations predict a crossover from intergranular continuous deformation to intragrain discrete deformation at a critical indentation depth.
Hauser, Anastasia K; Anderson, Kimberly W; Hilt, J Zach
2016-07-01
In the present study, we examine the effects of internalized peptide-conjugated iron oxide nanoparticles and their ability to locally convert alternating magnetic field (AMF) energy into other forms of energy (e.g., heat and rotational work). Dextran-coated iron oxide nanoparticles were functionalized with a cell penetrating peptide and after internalization by A549 and H358 cells were activated by an AMF. TAT-functionalized nanoparticles and AMF exposure increased reactive oxygen species generation compared with the nanoparticle system alone. The TAT-functionalized nanoparticles induced lysosomal membrane permeability and mitochondrial membrane depolarization, but these effects were not further enhanced by AMF treatment. Although not statistically significant, there are trends suggesting an increase in apoptosis via the Caspase 3/7 pathways when cells are exposed to TAT-functionalized nanoparticles combined with AMF. Our results indicate that internalized TAT-functionalized iron oxide nanoparticles activated by an AMF elicit cellular responses without a measurable temperature rise.
Inkjet-Printed In-Ga-Zn Oxide Thin-Film Transistors with Laser Spike Annealing
NASA Astrophysics Data System (ADS)
Huang, Hang; Hu, Hailong; Zhu, Jingguang; Guo, Tailiang
2017-07-01
Inkjet-printed In-Ga-Zn oxide (IGZO) thin-film transistors (TFTs) have been fabricated at low temperature using laser spike annealing (LSA) treatment. Coffee-ring effects during the printing process were eliminated to form uniform IGZO films by simply increasing the concentration of solute in the ink. The impact of LSA on the TFT performance was studied. The field-effect mobility, threshold voltage, and on/off current ratio were greatly influenced by the LSA treatment. With laser scanning at 1 mm/s for 40 times, the 30-nm-thick IGZO TFT baked at 200°C showed mobility of 1.5 cm2/V s, threshold voltage of -8.5 V, and on/off current ratio >106. Our findings demonstrate the feasibility of rapid LSA treatment of low-temperature inkjet-printed oxide semiconductor transistors, being comparable to those obtained by conventional high-temperature annealing.
High-performance a-IGZO thin-film transistor with conductive indium-tin-oxide buried layer
NASA Astrophysics Data System (ADS)
Ahn, Min-Ju; Cho, Won-Ju
2017-10-01
In this study, we fabricated top-contact top-gate (TCTG) structure of amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) with a thin buried conductive indium-tin oxide (ITO) layer. The electrical performance of a-IGZO TFTs was improved by inserting an ITO buried layer under the IGZO channel. Also, the effect of the buried layer's length on the electrical characteristics of a-IGZO TFTs was investigated. The electrical performance of the transistors improved with increasing the buried layer's length: a large on/off current ratio of 1.1×107, a high field-effect mobility of 35.6 cm2/Vs, a small subthreshold slope of 116.1 mV/dec, and a low interface trap density of 4.2×1011 cm-2eV-1 were obtained. The buried layer a-IGZO TFTs exhibited enhanced transistor performance and excellent stability against the gate bias stress.
NASA Astrophysics Data System (ADS)
Zhai, Chunyang; Hu, Jiayue; Sun, Mingjuan; Zhu, Mingshan
2018-02-01
Two dimensional (2D) BiOI nanoplates were synthesized and used as support for the deposition of Pt nanoparticles. Owing to broad visible light absorption (up to 660 nm), the as-obtained Pt-BiOI electrode was used as effective photoelectrocatalyst in the application of catalytic ethanol oxidation in alkaline media under visible light irradiation. Compared to dark condition, the Pt-BiOI modified electrode displayed 3 times improved catalytic activity towards ethanol oxidation under visible light irradiation. The synergistic effect of electrocatalytic and photocatalytic, and the unique of 2D structures contribute to the improvement of catalytic activity. The mechanism of enhanced photoelectrocatalytic process is proposed. The present results suggest that 2D visible-light-activated BiOI can be served as promising support for the decoration of Pt and applied in the fields of photoelectrochemical and photo-assisted fuel cell applications
Optically Tunable Resistive-Switching Memory in Multiferroic Heterostructures
NASA Astrophysics Data System (ADS)
Zheng, Ming; Ni, Hao; Xu, Xiaoke; Qi, Yaping; Li, Xiaomin; Gao, Ju
2018-04-01
Electronic phase separation has been used to realize exotic functionalities in complex oxides with external stimuli, such as magnetic field, electric field, current, light, strain, etc. Using the Nd0.7Sr0.3MnO3/0.7 Pb (Mg1 /3Nb2 /3)O3-0 .3 PbTiO3 multiferroic heterostructure as a model system, we investigate the electric field and light cocontrol of phase separation in resistive switching. The electric-field-induced nonvolatile electroresistance response is achieved at room temperature using reversible ferroelastic domain switching, which can be robustly modified on illumination of light. Moreover, the electrically controlled ferroelastic strain can effectively enhance the visible-light-induced photoresistance effect. These findings demonstrate that the electric-field- and light-induced effects strongly correlate with each other and are essentially driven by electronic phase separation. Our work opens a gate to design electrically tunable multifunctional storage devices based on multiferroic heterostructures by adding light as an extra control parameter.
NASA Astrophysics Data System (ADS)
Lau, L. N.; Ibrahim, N. B.; Baqiah, H.
2015-08-01
This research was carried out to study the effect of different precursor concentrations on the physical properties of indium oxide (In2O3) thin film. In2O3 is a promising n-type semiconductor material that has been used in optoelectronic applications because of its highly transparent properties. It is a transparent conducting oxide with a wide band gap (∼3.7 eV). The experiment was started by preparing different precursor concentrations of indium nitrate hydrate (In (NO3)·H2O) solution and followed by the spin coating technique prior to an annealing process at 500 °C. Indium oxide thin films were characterized using an X-ray diffractometer, an ultraviolet-visible spectroscopy, a field emission scanning electron microscope and a Hall Effect Measurement System in order to determine the influence caused by the different molarities of indium oxide. The result showed that the film thickness increased with the indium oxide molarity. Film thicknesses were in the range of 0.3-135.1 nm and optical transparency of films was over 94%. Lowest resistivity of 2.52 Ω cm with a mobility of 26.60 cm2 V-1 S-1 and carrier concentration of 4.27 × 1017 cm-3 was observed for the indium oxide thin film prepared at 0.30 M.
NASA Astrophysics Data System (ADS)
Jiao, C.; Ahyi, A. C.; Dhar, S.; Morisette, D.; Myers-Ward, R.
2017-04-01
We report results on the interface trap density ( D it) of 4H- and 6H-SiC metal-oxide-semiconductor (MOS) capacitors with different interface chemistries. In addition to pure dry oxidation, we studied interfaces formed by annealing thermal oxides in NO or POCl3. The D it profiles, determined by the C- ψ s method, show that, although the as-oxidized 4H-SiC/SiO2 interface has a much higher D it profile than 6H-SiC/SiO2, after postoxidation annealing (POA), both polytypes maintain comparable D it near the conduction band edge for the gate oxides incorporated with nitrogen or phosphorus. Unlike most conventional C- V- or G- ω-based methods, the C- ψ s method is not limited by the maximum probe frequency, therefore taking into account the "fast traps" detected in previous work on 4H-SiC. The results indicate that such fast traps exist near the band edge of 6H-SiC also. For both polytypes, we show that the total interface trap density ( N it) integrated from the C- ψ s method is several times that obtained from the high-low method. The results suggest that the detected fast traps have a detrimental effect on electron transport in metal-oxide-semiconductor field-effect transistor (MOSFET) channels.
Marine Biotechnology. Basic Research Relevant to Biomaterials and Biosensors
1985-01-01
forces (the syringe effect ). Their electronic states and luminescence are other properties with potential for practical application (Callis, 1983). The...based on agglutination (Weir and Herbert, 1973), on fluorescence (Weir et al., 1973), or on other optical effects (Giaever et al., 1984). Several...time (Lowe, 1984). For example, it is possible to couple the reacting moleculea directly to the gate of aj metal oxide semiconducting field- effect
MnO2-Graphene Oxide-PEDOT:PSS Nanocomposite for an Electrochemical Supercapacitor
NASA Astrophysics Data System (ADS)
Patil, Dipali S.; Pawar, Sachin A.; Shin, Jae Cheol; Kim, Hyo Jin
2018-04-01
A ternary nanocomposite with poly (3,4 ethylene dioxythiophene:poly(styrene sulfonate) (PEDOT:PSS)-MnO2 nanowires-graphene oxide (PMn-GO) was synthesized by using simple chemical route. The formation of the nanocomposite was analyzed by using X-ray diffraction and X-ray photoelectron spectroscopy. Field-emission scanning microscopy (FESEM) revealed the formation of MnO2 nanowires and graphene oxide nanosheets. The highest specific capacitance (areal capacitance) of 841 Fg -1 (177 mFcm -2) at 10 mVs -1 and energy density of 0.593 kWhkg -1 at 0.5 mA were observed for PMn-GO, indicating a constructive synergistic effect of PEDOT:PSS, MnO2 nanowires and graphene oxide. The achieved promising electrochemical characteristics showed that this ternary nanocomposite is a good alternative as an electrode material for supercapacitor.
NASA Astrophysics Data System (ADS)
Kim, Heesang; Oh, Byoungchan; Kim, Kyungdo; Cha, Seon-Yong; Jeong, Jae-Goan; Hong, Sung-Joo; Lee, Jong-Ho; Park, Byung-Gook; Shin, Hyungcheol
2010-09-01
We generated traps inside gate oxide in gate-drain overlap region of recess channel type dynamic random access memory (DRAM) cell transistor through Fowler-Nordheim (FN) stress, and observed gate induced drain leakage (GIDL) current both in time domain and in frequency domain. It was found that the trap inside gate oxide could generate random telegraph signal (RTS)-like fluctuation in GIDL current. The characteristics of that fluctuation were similar to those of RTS-like fluctuation in GIDL current observed in the non-stressed device. This result shows the possibility that the trap causing variable retention time (VRT) in DRAM data retention time can be located inside gate oxide like channel RTS of metal-oxide-semiconductor field-effect transistors (MOSFETs).