Science.gov

Sample records for oxide induces bradyzoite

  1. Infection with Toxoplasma gondii Bradyzoites Has a Diminished Impact on Host Transcript Levels Relative to Tachyzoite Infection▿†

    PubMed Central

    Fouts, A. E.; Boothroyd, J. C.

    2007-01-01

    Toxoplasma gondii, an intracellular pathogen, has the potential to infect nearly every warm-blooded animal but rarely causes morbidity. The ability for the parasite to convert to the bradyzoite stage and live inside slow-growing cysts that can go unnoticed by the host immune system allows for parasite persistence for the life of the infected host. This intracellular survival likely necessitates host cell modulation, and tachyzoites are known to modify a number of signaling cascades within the host to promote parasite survival. Little is known, however, about how bradyzoites manipulate their host cell. Microarrays were used to profile the host transcriptional changes caused by bradyzoite infection and compared to those of tachyzoite-infected and uninfected hosts cells 2 days postinfection in vitro. Infection resulted in chemokine, cytokine, extracellular matrix, and growth factor transcript level changes. A small group of genes were specifically induced by tachyzoite infection, including granulocyte-macrophage colony-stimulating factor, BCL2-related protein A1, and interleukin-24. Bradyzoite infection yielded only about half the changes seen with tachyzoite infection, and those changes that did occur were almost all of lower magnitude than those induced by tachyzoites. These results suggest that bradyzoites lead a more stealthy existence within the infected host cell. PMID:17088349

  2. Lactate dehydrogenase in Toxoplasma gondii controls virulence, bradyzoite differentiation, and chronic infection.

    PubMed

    Abdelbaset, Abdelbaset E; Fox, Barbara A; Karram, Mohamed H; Abd Ellah, Mahmoud R; Bzik, David J; Igarashi, Makoto

    2017-01-01

    In the asexual stages, Toxoplasma gondii stage converts between acute phase rapidly replicating tachyzoites and chronic phase slowly dividing bradyzoites. Correspondingly, T. gondii differentially expresses two distinct genes and isoforms of the lactate dehydrogenase enzyme, expressing LDH1 exclusively in the tachyzoite stage and LDH2 preferentially in the bradyzoite stage. LDH catalyzes the interconversion of pyruvate and lactate in anaerobic growth conditions and is utilized for energy supply, however, the precise role of LDH1 and LDH2 in parasite biology in the asexual stages is still unclear. Here, we investigated the biological role of LDH1 and LDH2 in the asexual stages, and the vaccine strain potential of deletion mutants lacking LDH1, LDH2, or both genes (Δldh1, Δldh2 and Δldh1/2). Deletion of LDH1 reduced acute parasite virulence, impaired bradyzoite differentiation in vitro, and markedly reduced chronic stage cyst burdens in vivo. In contrast, deletion of LDH2 impaired chronic stage cyst burdens without affecting virulence or bradyzoite differentiation. Deletion of both LDH1 and LDH2 induced a more severe defect in chronic stage cyst burdens. These LDH mutant phenotypes were not associated with any growth defect. Vaccination of mice with a low dose of mutants deleted for LDH elicited effective protective immunity to lethal challenge infection, demonstrating the vaccine potential of LDH deletion mutants. These results suggest that lactate dehydrogenase in T. gondii controls virulence, bradyzoite differentiation, and chronic infection and reveals the potential of LDH mutants as vaccine strains.

  3. Lactate dehydrogenase in Toxoplasma gondii controls virulence, bradyzoite differentiation, and chronic infection

    PubMed Central

    Abdelbaset, Abdelbaset E.; Fox, Barbara A.; Karram, Mohamed H.; Abd Ellah, Mahmoud R.; Bzik, David J.; Igarashi, Makoto

    2017-01-01

    In the asexual stages, Toxoplasma gondii stage converts between acute phase rapidly replicating tachyzoites and chronic phase slowly dividing bradyzoites. Correspondingly, T. gondii differentially expresses two distinct genes and isoforms of the lactate dehydrogenase enzyme, expressing LDH1 exclusively in the tachyzoite stage and LDH2 preferentially in the bradyzoite stage. LDH catalyzes the interconversion of pyruvate and lactate in anaerobic growth conditions and is utilized for energy supply, however, the precise role of LDH1 and LDH2 in parasite biology in the asexual stages is still unclear. Here, we investigated the biological role of LDH1 and LDH2 in the asexual stages, and the vaccine strain potential of deletion mutants lacking LDH1, LDH2, or both genes (Δldh1, Δldh2 and Δldh1/2). Deletion of LDH1 reduced acute parasite virulence, impaired bradyzoite differentiation in vitro, and markedly reduced chronic stage cyst burdens in vivo. In contrast, deletion of LDH2 impaired chronic stage cyst burdens without affecting virulence or bradyzoite differentiation. Deletion of both LDH1 and LDH2 induced a more severe defect in chronic stage cyst burdens. These LDH mutant phenotypes were not associated with any growth defect. Vaccination of mice with a low dose of mutants deleted for LDH elicited effective protective immunity to lethal challenge infection, demonstrating the vaccine potential of LDH deletion mutants. These results suggest that lactate dehydrogenase in T. gondii controls virulence, bradyzoite differentiation, and chronic infection and reveals the potential of LDH mutants as vaccine strains. PMID:28323833

  4. Structures of Toxoplasma gondii Tachyzoites, Bradyzoites, and Sporozoites and Biology and Development of Tissue Cysts†

    PubMed Central

    Dubey, J. P.; Lindsay, D. S.; Speer, C. A.

    1998-01-01

    Infections by the protozoan parasite Toxoplasma gondii are widely prevalent worldwide in animals and humans. This paper reviews the life cycle; the structure of tachyzoites, bradyzoites, oocysts, sporocysts, sporozoites and enteroepithelial stages of T. gondii; and the mode of penetration of T. gondii. The review provides a detailed account of the biology of tissue cysts and bradyzoites including in vivo and in vitro development, methods of separation from host tissue, tissue cyst rupture, and relapse. The mechanism of in vivo and in vitro stage conversion from sporozoites to tachyzoites to bradyzoites and from bradyzoites to tachyzoites to bradyzoites is also discussed. PMID:9564564

  5. Induction of Autophagy interferes the tachyzoite to bradyzoite transformation of Toxoplasma gondii.

    PubMed

    Li, Xiangzhi; Chen, Di; Hua, Qianqian; Wan, Yujing; Zheng, Lina; Liu, Yangyang; Lin, Jiaxin; Pan, Changwang; Hu, Xin; Tan, Feng

    2016-04-01

    Autophagy process in Toxoplasma gondii plays a vital role in regulating parasite survival or death. Thus, once having an understanding of certain effects of autophagy on the transformation of tachyzoite to bradyzoite this will allow us to elucidate the function of autophagy during parasite development. Herein, we used three TgAtg proteins involved in Atg8 conjugation system, TgAtg3, TgAtg7 and TgAtg8 to evaluate the autophagy level in tachyzoite and bradyzoite of Toxoplasma in vitro based on Pru TgAtg7-HA transgenic strains. We showed that both TgAtg3 and TgAtg8 were expressed at a significantly lower level in bradyzoites than in tachyzoites. Importantly, the number of parasites containing fluorescence-labelled TgAtg8 puncta was significantly reduced in bradyzoites than in tachyzoites, suggesting that autophagy is downregulated in Toxoplasma bradyzoite in vitro. Moreover, after treatment with drugs, bradyzoite-specific gene BAG1 levels decreased significantly in rapamycin-treated bradyzoites and increased significantly in 3-MA-treated bradyzoites in comparison with control bradyzoites, indicating that Toxoplasma autophagy is involved in the transformation of tachyzoite to bradyzoite in vitro. Together, it is suggested that autophagy may serve as a potential strategy to regulate the transformation.

  6. Novel Approaches Reveal that Toxoplasma gondii Bradyzoites within Tissue Cysts Are Dynamic and Replicating Entities In Vivo

    PubMed Central

    Watts, Elizabeth; Zhao, Yihua; Dhara, Animesh; Eller, Becca; Patwardhan, Abhijit

    2015-01-01

    ABSTRACT Despite their critical role in chronic toxoplasmosis, the biology of Toxoplasma gondii bradyzoites is poorly understood. In an attempt to address this gap, we optimized approaches to purify tissue cysts and analyzed the replicative potential of bradyzoites within these cysts. In order to quantify individual bradyzoites within tissue cysts, we have developed imaging software, BradyCount 1.0, that allows the rapid establishment of bradyzoite burdens within imaged optical sections of purified tissue cysts. While in general larger tissue cysts contain more bradyzoites, their relative “occupancy” was typically lower than that of smaller cysts, resulting in a lower packing density. The packing density permits a direct measure of how bradyzoites develop within cysts, allowing for comparisons across progression of the chronic phase. In order to capture bradyzoite endodyogeny, we exploited the differential intensity of TgIMC3, an inner membrane complex protein that intensely labels newly formed/forming daughters within bradyzoites and decays over time in the absence of further division. To our surprise, we were able to capture not only sporadic and asynchronous division but also synchronous replication of all bradyzoites within mature tissue cysts. Furthermore, the time-dependent decay of TgIMC3 intensity was exploited to gain insights into the temporal patterns of bradyzoite replication in vivo. Despite the fact that bradyzoites are considered replicatively dormant, we find evidence for cyclical, episodic bradyzoite growth within tissue cysts in vivo. These findings directly challenge the prevailing notion of bradyzoites as dormant nonreplicative entities in chronic toxoplasmosis and have implications on our understanding of this enigmatic and clinically important life cycle stage. PMID:26350965

  7. Toxoplasma gondii AP2IX-4 Regulates Gene Expression during Bradyzoite Development.

    PubMed

    Huang, Sherri; Holmes, Michael J; Radke, Joshua B; Hong, Dong-Pyo; Liu, Ting-Kai; White, Michael W; Sullivan, William J

    2017-01-01

    Toxoplasma gondii is a protozoan parasite of great importance to human and animal health. In the host, this obligate intracellular parasite persists as a tissue cyst that is imperceptible to the immune response and unaffected by current therapies. The tissue cysts facilitate transmission through predation and give rise to chronic cycles of toxoplasmosis in immunocompromised patients. Transcriptional changes accompany conversion of the rapidly replicating tachyzoites into the encysted bradyzoites, and yet the mechanisms underlying these alterations in gene expression are not well defined. Here we show that AP2IX-4 is a nuclear protein exclusively expressed in tachyzoites and bradyzoites undergoing division. Knockout of AP2IX-4 had no discernible effect on tachyzoite replication but resulted in a reduced frequency of tissue cyst formation following alkaline stress induction-a defect that is reversible by complementation. AP2IX-4 has a complex role in regulating bradyzoite gene expression, as the levels of many bradyzoite mRNAs dramatically increased beyond those seen under conditions of normal stress induction in AP2IX-4 knockout parasites exposed to alkaline media. The loss of AP2IX-4 also resulted in a modest virulence defect and reduced cyst burden in chronically infected mice, which was reversed by complementation. These findings illustrate that the transcriptional mechanisms responsible for tissue cyst development operate across the intermediate life cycle from the dividing tachyzoite to the dormant bradyzoite. IMPORTANCEToxoplasma gondii is a single-celled parasite that persists in its host as a transmissible tissue cyst. How the parasite converts from its replicative form to the bradyzoites housed in tissue cysts is not well understood, but the process clearly involves changes in gene expression. Here we report that parasites lacking a cell cycle-regulated transcription factor called AP2IX-4 display reduced frequencies of tissue cyst formation in culture and

  8. Toxoplasma gondii AP2IX-4 Regulates Gene Expression during Bradyzoite Development

    PubMed Central

    Huang, Sherri; Holmes, Michael J.; Radke, Joshua B.; Hong, Dong-Pyo; Liu, Ting-Kai; White, Michael W.

    2017-01-01

    ABSTRACT Toxoplasma gondii is a protozoan parasite of great importance to human and animal health. In the host, this obligate intracellular parasite persists as a tissue cyst that is imperceptible to the immune response and unaffected by current therapies. The tissue cysts facilitate transmission through predation and give rise to chronic cycles of toxoplasmosis in immunocompromised patients. Transcriptional changes accompany conversion of the rapidly replicating tachyzoites into the encysted bradyzoites, and yet the mechanisms underlying these alterations in gene expression are not well defined. Here we show that AP2IX-4 is a nuclear protein exclusively expressed in tachyzoites and bradyzoites undergoing division. Knockout of AP2IX-4 had no discernible effect on tachyzoite replication but resulted in a reduced frequency of tissue cyst formation following alkaline stress induction—a defect that is reversible by complementation. AP2IX-4 has a complex role in regulating bradyzoite gene expression, as the levels of many bradyzoite mRNAs dramatically increased beyond those seen under conditions of normal stress induction in AP2IX-4 knockout parasites exposed to alkaline media. The loss of AP2IX-4 also resulted in a modest virulence defect and reduced cyst burden in chronically infected mice, which was reversed by complementation. These findings illustrate that the transcriptional mechanisms responsible for tissue cyst development operate across the intermediate life cycle from the dividing tachyzoite to the dormant bradyzoite. IMPORTANCE Toxoplasma gondii is a single-celled parasite that persists in its host as a transmissible tissue cyst. How the parasite converts from its replicative form to the bradyzoites housed in tissue cysts is not well understood, but the process clearly involves changes in gene expression. Here we report that parasites lacking a cell cycle-regulated transcription factor called AP2IX-4 display reduced frequencies of tissue cyst formation in

  9. Sustained translational repression of lactate dehydrogenase 1 in Toxoplasma gondii bradyzoites is conferred by a small regulatory RNA hairpin.

    PubMed

    Holmes, Michael; Itaas, Vaunell; Ananvoranich, Sirinart

    2014-11-01

    In response to environmental stresses, Toxoplasma gondii induces a global translational repression which allows for the remodeling of its transcriptome. While some transcripts are preferentially translated, another subset is translationally repressed and maintained in bradyzoites. Although little is known of how transcripts are targeted for sustained translational repression, the targeting probably operates through an RNA-centric mechanism relying on the recognition of cis-acting elements. In this study, we sought to determine if the targeting of transcripts through recognizable cis-acting elements could be responsible for the transcript-specific sustained translational repression displayed by Toxoplasma bradyzoites. We examined the UTRs of a translationally repressed gene, lactate dehydrogenase 1, and found a 40 nucleotide regulatory element in its 5'UTR. This element specifically induces translational repression in otherwise constitutively expressed transcripts. Mutational studies revealed that the formation of a small 16 nucleotide regulatory RNA hairpin is essential for this activity. We suggest that this hairpin may act as the nucleation site for the binding of an as yet to be identified trans-acting factor that allows for the transcript to be targeted for translational repression removal from the active translational pool. To our knowledge, this is the first report characterizing a specific cis-acting element contributing to post-transcriptional gene regulation in Toxoplasma and suggests the presence of a pathway by which the parasites can recognize, identify and specifically target transcripts for sustained translational repression under stressful conditions.

  10. Methods to produce and safely work with large numbers of Toxoplasma gondii oocysts and bradyzoite cysts

    PubMed Central

    Fritz, H.; Barr, B.; Packham, A.; Melli, A.; Conrad, P.A.

    2012-01-01

    Two major obstacles to conducting studies with Toxoplasma gondii oocysts are the difficulty in reliably producing large numbers of this life stage and safety concerns because the oocyst is the most environmentally resistant stage of this zoonotic organism. Oocyst production requires oral infection of the definitive feline host with adequate numbers of T. gondii organisms to obtain unsporulated oocysts that are shed in the feces for 3-10 days after infection. Since the most successful and common mode of experimental infection of kittens with T. gondii is by ingestion of bradyzoite tissue cysts, the first step in successful oocyst production is to ensure a high bradyzoite tissue cyst burden in the brains of mice that can be used for the oral inoculum. We compared two methods for producing bradyzoite brain cysts in mice, by infecting them either orally or subcutaneously with oocysts. In both cases, oocysts derived from a low passage T. gondii Type II strain (M4) were used to infect eight-ten week-old Swiss Webster mice. First the number of bradyzoite cysts that were purified from infected mouse brains was compared. Then to evaluate the effect of the route of oocyst inoculation on tissue cyst distribution in mice, a second group of mice was infected with oocysts by one of each route and tissues were examined by histology. In separate experiments, brains from infected mice were used to infect kittens for oocyst production. Greater than 1.3 billion oocysts were isolated from the feces of two infected kittens in the first production and greater than 1.8 billion oocysts from three kittens in the second production. Our results demonstrate that oral delivery of oocysts to mice results in both higher cyst loads in the brain and greater cyst burdens in other tissues examined as compared to those of mice that received the same number of oocysts subcutaneously. The ultimate goal in producing large numbers of oocysts in kittens is to generate adequate amounts of starting material

  11. Methods to produce and safely work with large numbers of Toxoplasma gondii oocysts and bradyzoite cysts.

    PubMed

    Fritz, H; Barr, B; Packham, A; Melli, A; Conrad, P A

    2012-01-01

    Two major obstacles to conducting studies with Toxoplasma gondii oocysts are the difficulty in reliably producing large numbers of this life stage and safety concerns because the oocyst is the most environmentally resistant stage of this zoonotic organism. Oocyst production requires oral infection of the definitive feline host with adequate numbers of T. gondii organisms to obtain unsporulated oocysts that are shed in the feces for 3-10 days after infection. Since the most successful and common mode of experimental infection of kittens with T. gondii is by ingestion of bradyzoite tissue cysts, the first step in successful oocyst production is to ensure a high bradyzoite tissue cyst burden in the brains of mice that can be used for the oral inoculum. We compared two methods for producing bradyzoite brain cysts in mice, by infecting them either orally or subcutaneously with oocysts. In both cases, oocysts derived from a low passage T. gondii Type II strain (M4) were used to infect eight-ten week-old Swiss Webster mice. First the number of bradyzoite cysts that were purified from infected mouse brains was compared. Then to evaluate the effect of the route of oocyst inoculation on tissue cyst distribution in mice, a second group of mice was infected with oocysts by one of each route and tissues were examined by histology. In separate experiments, brains from infected mice were used to infect kittens for oocyst production. Greater than 1.3 billion oocysts were isolated from the feces of two infected kittens in the first production and greater than 1.8 billion oocysts from three kittens in the second production. Our results demonstrate that oral delivery of oocysts to mice results in both higher cyst loads in the brain and greater cyst burdens in other tissues examined as compared to those of mice that received the same number of oocysts subcutaneously. The ultimate goal in producing large numbers of oocysts in kittens is to generate adequate amounts of starting material

  12. The structure of bradyzoite-specific enolase from Toxoplasma gondii reveals insights into its dual cytoplasmic and nuclear functions

    SciTech Connect

    Ruan, Jiapeng; Mouveaux, Thomas; Light, Samuel H.; Minasov, George; Anderson, Wayne F.; Tomavo, Stanislas; Ngô, Huân M.

    2015-03-01

    The second crystal structure of a parasite protein preferentially enriched in the brain cyst of T. gondii has been solved at 2.75 Å resolution. Bradyzoite enolase 1 is reported to have differential functions as a glycolytic enzyme and a transcriptional regulator in bradyzoites. In addition to catalyzing a central step in glycolysis, enolase assumes a remarkably diverse set of secondary functions in different organisms, including transcription regulation as documented for the oncogene c-Myc promoter-binding protein 1. The apicomplexan parasite Toxoplasma gondii differentially expresses two nuclear-localized, plant-like enolases: enolase 1 (TgENO1) in the latent bradyzoite cyst stage and enolase 2 (TgENO2) in the rapidly replicative tachyzoite stage. A 2.75 Å resolution crystal structure of bradyzoite enolase 1, the second structure to be reported of a bradyzoite-specific protein in Toxoplasma, captures an open conformational state and reveals that distinctive plant-like insertions are located on surface loops. The enolase 1 structure reveals that a unique residue, Glu164, in catalytic loop 2 may account for the lower activity of this cyst-stage isozyme. Recombinant TgENO1 specifically binds to a TTTTCT DNA motif present in the cyst matrix antigen 1 (TgMAG1) gene promoter as demonstrated by gel retardation. Furthermore, direct physical interactions of both nuclear TgENO1 and TgENO2 with the TgMAG1 gene promoter are demonstrated in vivo using chromatin immunoprecipitation (ChIP) assays. Structural and biochemical studies reveal that T. gondii enolase functions are multifaceted, including the coordination of gene regulation in parasitic stage development. Enolase 1 provides a potential lead in the design of drugs against Toxoplasma brain cysts.

  13. UV Induced Oxidation of Nitric Oxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde, F. (Inventor); Luecke, Dale E. (Inventor)

    2007-01-01

    Nitric oxide in a gaseous stream is converted to nitrogen dioxide using oxidizing species generated at least in part using in situ UV radiation sources. The sources of the oxidizing species include oxygen and/or hydrogen peroxide. The oxygen may be a component of the gaseous stream or added to the gaseous stream, preferably near a UV radiation source, and is converted to ozone by the UV irradiation. The hydrogen peroxide is decomposed through a combination of vaporization and UV irradiation. The hydrogen peroxide is preferably stored at stable concentration levels, i.e., approximately 50% by volume and increased in concentration in a continuous process preceding vaporization within the flow channel of the gaseous stream and in the presence of the UV radiation sources.

  14. Lipid oxidation induced oxidative degradation of cereal beta-glucan.

    PubMed

    Wang, Yu-Jie; Mäkelä, Noora; Maina, Ndegwa Henry; Lampi, Anna-Maija; Sontag-Strohm, Tuula

    2016-04-15

    In food systems, lipid oxidation can cause oxidation of other molecules. This research for the first time investigated oxidative degradation of β-glucan induced by lipid oxidation using an oil-in-water emulsion system which simulated a multi-phased aqueous food system containing oil and β-glucan. Lipid oxidation was monitored using peroxide value and hexanal production while β-glucan degradation was evaluated by viscosity and molecular weight measurements. The study showed that while lipid oxidation proceeded, β-glucan degradation occurred. Emulsions containing β-glucan, oil and ferrous ion showed significant viscosity and molecular weight decrease after 1 week of oxidation at room temperature. Elevated temperature (40°C) enhanced the oxidation reactions causing higher viscosity drop. In addition, the presence of β-glucan appeared to retard the hexanal production in lipid oxidation. The study revealed that lipid oxidation may induce the degradation of β-glucan in aqueous food systems where β-glucan and lipids co-exist.

  15. Sarcocystis neurona infection in gamma interferon gene knockout (KO) mice: comparative infectivity of sporocysts in two strains of KO mice, effect of trypsin digestion on merozoite viability, and infectivity of bradyzoites to KO mice and cell culture.

    PubMed

    Dubey, J P; Sundar, N; Kwok, O C H; Saville, W J A

    2013-09-01

    The protozoan Sarcocystis neurona is the primary cause of Equine Protozoal Myeloencephalitis (EPM). EPM or EPM-like illness has been reported in horses, sea otters, and several other mammals. The gamma interferon gene knockout (KO) mouse is often used as a model to study biology and discovery of new therapies against S. neurona because it is difficult to induce clinical EPM in other hosts, including horses. In the present study, infectivity of three life cycle stages (merozoites, bradyzoites, sporozoites) to KO mice and cell culture was studied. Two strains of KO mice (C57-black, and BALB/c-derived, referred here as black or white) were inoculated orally graded doses of S. neurona sporocysts; 12 sporocysts were infective to both strains of mice and all infected mice died or became ill within 70 days post-inoculation. Although there was no difference in infectivity of sporocysts to the two strains of KO mice, the disease was more severe in black mice. S. neurona bradyzoites were not infectious to KO mice and cell culture. S. neurona merozoites survived 120 min incubation in 0.25% trypsin, indicating that trypsin digestion can be used to recover S. neurona from tissues of acutely infected animals.

  16. The structure of bradyzoite-specific enolase from Toxoplasma gondii reveals insights into its dual cytoplasmic and nuclear functions.

    PubMed

    Ruan, Jiapeng; Mouveaux, Thomas; Light, Samuel H; Minasov, George; Anderson, Wayne F; Tomavo, Stanislas; Ngô, Huân M

    2015-03-01

    In addition to catalyzing a central step in glycolysis, enolase assumes a remarkably diverse set of secondary functions in different organisms, including transcription regulation as documented for the oncogene c-Myc promoter-binding protein 1. The apicomplexan parasite Toxoplasma gondii differentially expresses two nuclear-localized, plant-like enolases: enolase 1 (TgENO1) in the latent bradyzoite cyst stage and enolase 2 (TgENO2) in the rapidly replicative tachyzoite stage. A 2.75 Å resolution crystal structure of bradyzoite enolase 1, the second structure to be reported of a bradyzoite-specific protein in Toxoplasma, captures an open conformational state and reveals that distinctive plant-like insertions are located on surface loops. The enolase 1 structure reveals that a unique residue, Glu164, in catalytic loop 2 may account for the lower activity of this cyst-stage isozyme. Recombinant TgENO1 specifically binds to a TTTTCT DNA motif present in the cyst matrix antigen 1 (TgMAG1) gene promoter as demonstrated by gel retardation. Furthermore, direct physical interactions of both nuclear TgENO1 and TgENO2 with the TgMAG1 gene promoter are demonstrated in vivo using chromatin immunoprecipitation (ChIP) assays. Structural and biochemical studies reveal that T. gondii enolase functions are multifaceted, including the coordination of gene regulation in parasitic stage development. Enolase 1 provides a potential lead in the design of drugs against Toxoplasma brain cysts.

  17. The structure of bradyzoite-specific enolase from Toxoplasma gondii reveals insights into its dual cytoplasmic and nuclear functions

    PubMed Central

    Ruan, Jiapeng; Mouveaux, Thomas; Light, Samuel H.; Minasov, George; Anderson, Wayne F.; Tomavo, Stanislas; Ngô, Huân M.

    2015-01-01

    In addition to catalyzing a central step in glycolysis, enolase assumes a remarkably diverse set of secondary functions in different organisms, including transcription regulation as documented for the oncogene c-Myc promoter-binding protein 1. The apicomplexan parasite Toxoplasma gondii differentially expresses two nuclear-localized, plant-like enolases: enolase 1 (TgENO1) in the latent bradyzoite cyst stage and enolase 2 (TgENO2) in the rapidly replicative tachyzoite stage. A 2.75 Å resolution crystal structure of bradyzoite enolase 1, the second structure to be reported of a bradyzoite-specific protein in Toxoplasma, captures an open conformational state and reveals that distinctive plant-like insertions are located on surface loops. The enolase 1 structure reveals that a unique residue, Glu164, in catalytic loop 2 may account for the lower activity of this cyst-stage isozyme. Recombinant TgENO1 specifically binds to a TTTTCT DNA motif present in the cyst matrix antigen 1 (TgMAG1) gene promoter as demonstrated by gel retardation. Furthermore, direct physical interactions of both nuclear TgENO1 and TgENO2 with the TgMAG1 gene promoter are demonstrated in vivo using chromatin immunoprecipitation (ChIP) assays. Structural and biochemical studies reveal that T. gondii enolase functions are multifaceted, including the coordination of gene regulation in parasitic stage development. Enolase 1 provides a potential lead in the design of drugs against Toxoplasma brain cysts. PMID:25760592

  18. Drug-Induced Oxidative Stress and Toxicity

    PubMed Central

    Deavall, Damian G.; Martin, Elizabeth A.; Horner, Judith M.; Roberts, Ruth

    2012-01-01

    Reactive oxygen species (ROS) are a byproduct of normal metabolism and have roles in cell signaling and homeostasis. Species include oxygen radicals and reactive nonradicals. Mechanisms exist that regulate cellular levels of ROS, as their reactive nature may otherwise cause damage to key cellular components including DNA, protein, and lipid. When the cellular antioxidant capacity is exceeded, oxidative stress can result. Pleiotropic deleterious effects of oxidative stress are observed in numerous disease states and are also implicated in a variety of drug-induced toxicities. In this paper, we examine the nature of ROS-induced damage on key cellular targets of oxidative stress. We also review evidence implicating ROS in clinically relevant, drug-related side effects including doxorubicin-induced cardiac damage, azidothymidine-induced myopathy, and cisplatin-induced ototoxicity. PMID:22919381

  19. Oxidative Stress Marker and Pregnancy Induced Hypertension

    PubMed Central

    Draganovic, Dragica; Lucic, Nenad; Jojic, Dragica

    2016-01-01

    Background: Pregnancy induced hypertension (PIH) is a state of extremely increased oxidative stress. Hence, research and test of role and significance of oxidative stress in hypertensive disturbance in pregnancy is very important. Aim: Aims of this research were to determine a level of thiobarbituric acid reactive substance (TBARS) as oxidative stress marker in blood of pregnant woman with pregnancy induced hypertension and to analyze correlation of TBARS values with blood pressure values in pregnancy induced hypertensive pregnant women. Patients and methods: Research has been performed at the Clinic of Gynecology and Obstetrics, University Clinical Centre in the Republic of Srpska. It covered 100 pregnant women with hypertension and 100 healthy pregnant women of gestation period from 28 to 40 weeks. Level of TBARS is determined as an equivalent of malondialdehyde standard, in accordance with recommendations by producer (Oxi Select TBARS Analisa Kit). Results: Pregnancy induced hypertension is a state of extremely increased oxidative stress. All pregnant women experiencing hypertension had increased TBARS values in medium value interval over 20 µmol, 66%, whereas in group of healthy pregnant women, only 1% experienced increased TBARS value. Pregnant women with difficult preeclampsia (32%) had high TBARS values, over 40 µmol, and with mild PIH, only 4.9% pregnant women. Conclusion: Pregnant women with pregnancy induced hypertension have extremely increased degree of oxidative stress and lipid peroxidation. TBARS values are in positive correlation with blood pressure values, respectively the highest TBARS value were present in pregnant women with the highest blood pressure values. PMID:28210016

  20. Toxoplasma gondii Cyclic AMP-Dependent Protein Kinase Subunit 3 Is Involved in the Switch from Tachyzoite to Bradyzoite Development

    PubMed Central

    Sugi, Tatsuki; Ma, Yan Fen; Tomita, Tadakimi; Murakoshi, Fumi; Eaton, Michael S.; Yakubu, Rama; Han, Bing; Tu, Vincent; Kato, Kentaro; Kawazu, Shin-Ichiro; Gupta, Nishith; Suvorova, Elena S.; White, Michael W.; Kim, Kami

    2016-01-01

    ABSTRACT Toxoplasma gondii is an obligate intracellular apicomplexan parasite that infects warm-blooded vertebrates, including humans. Asexual reproduction in T. gondii allows it to switch between the rapidly replicating tachyzoite and quiescent bradyzoite life cycle stages. A transient cyclic AMP (cAMP) pulse promotes bradyzoite differentiation, whereas a prolonged elevation of cAMP inhibits this process. We investigated the mechanism(s) by which differential modulation of cAMP exerts a bidirectional effect on parasite differentiation. There are three protein kinase A (PKA) catalytic subunits (TgPKAc1 to -3) expressed in T. gondii. Unlike TgPKAc1 and TgPKAc2, which are conserved in the phylum Apicomplexa, TgPKAc3 appears evolutionarily divergent and specific to coccidian parasites. TgPKAc1 and TgPKAc2 are distributed in the cytomembranes, whereas TgPKAc3 resides in the cytosol. TgPKAc3 was genetically ablated in a type II cyst-forming strain of T. gondii (PruΔku80Δhxgprt) and in a type I strain (RHΔku80Δhxgprt), which typically does not form cysts. The Δpkac3 mutant exhibited slower growth than the parental and complemented strains, which correlated with a higher basal rate of tachyzoite-to-bradyzoite differentiation. 3-Isobutyl-1-methylxanthine (IBMX) treatment, which elevates cAMP levels, maintained wild-type parasites as tachyzoites under bradyzoite induction culture conditions (pH 8.2/low CO2), whereas the Δpkac3 mutant failed to respond to the treatment. This suggests that TgPKAc3 is the factor responsible for the cAMP-dependent tachyzoite maintenance. In addition, the Δpkac3 mutant had a defect in the production of brain cysts in vivo, suggesting that a substrate of TgPKAc3 is probably involved in the persistence of this parasite in the intermediate host animals. PMID:27247232

  1. Diabetic Cardiovascular Disease Induced by Oxidative Stress

    PubMed Central

    Kayama, Yosuke; Raaz, Uwe; Jagger, Ann; Adam, Matti; Schellinger, Isabel N.; Sakamoto, Masaya; Suzuki, Hirofumi; Toyama, Kensuke; Spin, Joshua M.; Tsao, Philip S.

    2015-01-01

    Cardiovascular disease (CVD) is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM). DM can lead to multiple cardiovascular complications, including coronary artery disease (CAD), cardiac hypertrophy, and heart failure (HF). HF represents one of the most common causes of death in patients with DM and results from DM-induced CAD and diabetic cardiomyopathy. Oxidative stress is closely associated with the pathogenesis of DM and results from overproduction of reactive oxygen species (ROS). ROS overproduction is associated with hyperglycemia and metabolic disorders, such as impaired antioxidant function in conjunction with impaired antioxidant activity. Long-term exposure to oxidative stress in DM induces chronic inflammation and fibrosis in a range of tissues, leading to formation and progression of disease states in these tissues. Indeed, markers for oxidative stress are overexpressed in patients with DM, suggesting that increased ROS may be primarily responsible for the development of diabetic complications. Therefore, an understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of diabetes-induced CVD. The current review focuses on the relationship between diabetes-induced CVD and oxidative stress, while highlighting the latest insights into this relationship from findings on diabetic heart and vascular disease. PMID:26512646

  2. The Toxoplasma gondii cyst wall protein CST1 is critical for cyst wall integrity and promotes bradyzoite persistence

    SciTech Connect

    Tomita, Tadakimi; Bzik, David J.; Ma, Yan Fen; Fox, Barbara A.; Markillie, Lye Meng; Taylor, Ronald C.; Kim, Kami; Weiss, Louis M.

    2013-12-26

    Toxoplasma gondii infects up to one third of the world’s population. A key to the success of T.gondii is its ability to persist for the life of its host as bradyzoites within tissue cysts. The glycosylated cyst wall is the key structural feature that facilitates persistence and oral transmission of this parasite. We have identified CST1 (TGME49_064660) as a 250 kDa SRS (SAG1 related sequence) domain protein with a large mucin-like domain. CST1 is responsible for the Dolichos biflorus Agglutinin (DBA) lectin binding characteristic of T. gondii cysts. Deletion of CST1 results in a fragile brain cyst phenotype revealed by a thinning and disruption of the underlying region of the cyst wall. These defects are reversed by complementation of CST1. Additional complementation experiments demonstrate that the CST1-mucin domain is necessary for the formation of a normal cyst wall structure, the ability of the cyst to resist mechanical stress and binding of DBA to the cyst wall. RNA-seq transcriptome analysis demonstrated dysregulation of bradyzoite genes within the various cst1 mutants. These results indicate that CST1 functions as a key structural component that reinforces the cyst wall structure and confers essential sturdiness to the T. gondii tissue cyst.

  3. Induced effects of advanced oxidation processes.

    PubMed

    Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang

    2014-02-07

    Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields.

  4. Induced effects of advanced oxidation processes

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang

    2014-02-01

    Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields.

  5. Laser induced single spot oxidation of titanium

    NASA Astrophysics Data System (ADS)

    Jwad, Tahseen; Deng, Sunan; Butt, Haider; Dimov, S.

    2016-11-01

    Titanium oxides have a wide range of applications in industry, and they can be formed on pure titanium using different methods. Laser-induced oxidation is one of the most reliable methods due to its controllability and selectivity. Colour marking is one of the main applications of the oxidation process. However, the colourizing process based on laser scanning strategies is limited by the relative large processing area in comparison to the beam size. Single spot oxidation of titanium substrates is proposed in this research in order to increase the resolution of the processed area and also to address the requirements of potential new applications. The method is applied to produce oxide films with different thicknesses and hence colours on titanium substrates. High resolution colour image is imprinted on a sheet of pure titanium by converting its pixels' colours into laser parameter settings. Optical and morphological periodic surface structures are also produced by an array of oxide spots and then analysed. Two colours have been coded into one field and the dependencies of the reflected colours on incident and azimuthal angles of the light are discussed. The findings are of interest to a range of application areas, as they can be used to imprint optical devices such as diffusers and Fresnel lenses on metallic surfaces as well as for colour marking.

  6. Facile Access to Graphene Oxide from Ferro-Induced Oxidation

    NASA Astrophysics Data System (ADS)

    Yu, Chao; Wang, Cai-Feng; Chen, Su

    2016-01-01

    Methods allowing the oxidation of graphite to graphene oxide (GO) are vital important for the production of graphene from GO. This oxidation reaction has mainly relied on strong acid strategy for 174 years, which circumvents issues associated with toxicity of reagent and product, complex post-treatment, high cost and waste generation. Here, we report a green route for performing this oxidization reaction via a ferro-induced strategy, with use of water, potassium ferrate (Fe(VI)) and hydrogen peroxide (H2O2) as reagents, to produce about 65% yield of GO (vs. 40% for Hummers’ method, the most commonly used concentrated acid strategy) and non-toxic by-products. Moreover, GO produced from this new method shows equivalent performance to those reported previously. This H2SO4-free strategy makes it possible to process graphite into GO in a safe, low-cost, time-saving, energy-efficient and eco-friendly pathway, opening a promising avenue for the large-scale production of GO and GO-based materials.

  7. Facile Access to Graphene Oxide from Ferro-Induced Oxidation.

    PubMed

    Yu, Chao; Wang, Cai-Feng; Chen, Su

    2016-01-28

    Methods allowing the oxidation of graphite to graphene oxide (GO) are vital important for the production of graphene from GO. This oxidation reaction has mainly relied on strong acid strategy for 174 years, which circumvents issues associated with toxicity of reagent and product, complex post-treatment, high cost and waste generation. Here, we report a green route for performing this oxidization reaction via a ferro-induced strategy, with use of water, potassium ferrate (Fe(VI)) and hydrogen peroxide (H2O2) as reagents, to produce about 65% yield of GO (vs. 40% for Hummers' method, the most commonly used concentrated acid strategy) and non-toxic by-products. Moreover, GO produced from this new method shows equivalent performance to those reported previously. This H2SO4-free strategy makes it possible to process graphite into GO in a safe, low-cost, time-saving, energy-efficient and eco-friendly pathway, opening a promising avenue for the large-scale production of GO and GO-based materials.

  8. Facile Access to Graphene Oxide from Ferro-Induced Oxidation

    PubMed Central

    Yu, Chao; Wang, Cai-Feng; Chen, Su

    2016-01-01

    Methods allowing the oxidation of graphite to graphene oxide (GO) are vital important for the production of graphene from GO. This oxidation reaction has mainly relied on strong acid strategy for 174 years, which circumvents issues associated with toxicity of reagent and product, complex post-treatment, high cost and waste generation. Here, we report a green route for performing this oxidization reaction via a ferro-induced strategy, with use of water, potassium ferrate (Fe(VI)) and hydrogen peroxide (H2O2) as reagents, to produce about 65% yield of GO (vs. 40% for Hummers’ method, the most commonly used concentrated acid strategy) and non-toxic by-products. Moreover, GO produced from this new method shows equivalent performance to those reported previously. This H2SO4-free strategy makes it possible to process graphite into GO in a safe, low-cost, time-saving, energy-efficient and eco-friendly pathway, opening a promising avenue for the large-scale production of GO and GO-based materials. PMID:26818784

  9. Solid deposit-induced high temperature oxidation

    NASA Astrophysics Data System (ADS)

    Jung, Keeyoung

    The present study is aimed at investigating the high temperature oxidation induced by ash deposition from use of alternative fuels. The alloys and coatings being studied are typical of those used in current power generating gas turbines, as well as those that may be used in advanced systems. To achieve this objective, the alloys Rene' N5, GTD 111, and IN 738 as well as these alloys coated with platinum aluminide and CoNiCrAlY were exposed to conditions relevant to corrosion induced by using alternative fuels. The test conditions representative of deposits from use of alternative fuels were selected based upon initial experiments that involved testing the alloy Rene' N5 with a platinum aluminide coating at 750°C, 950°C, and 1150°C in a variety of environments with deposits of CaO, CaSO4, and Na 2SO4. Based upon the results from such tests, a temperature (950°C) and a deposit (CaO) were selected for the further experiments to compare the corrosion characteristics of all of the alloys and coatings. At 950°C with deposits of CaO, which are the selected experimental conditions obtained from the preliminary tests, accelerated cyclic oxidation experiments were performed with all uncoated and coated superalloys in extra dry air and wet ( pH2O = 0.1 atm) air to compare corrosion characteristics of each with one another. Experimental details will be described followed by the presentation of experimental results and discussion. Additionally, uncoated GTD 111 specimens were exposed to different contaminants and moisture level environments to study the effect of contaminant level and water vapor pressure on CaO-induced degradation. Then, CaO deposits were coated on thermal barrier coatings (TBCs) and specimens with TBCs were exposed to the cyclic oxidation environments. The effects of deposits other than CaO, such as Fe2O3 and SiO2, on the oxidation characteristics of the specimens were also investigated. Finally, a mechanism for high temperature oxidation induced by Ca

  10. Development of dual fluorescent stage specific reporter strain of Toxoplasma gondii to follow tachyzoite and bradyzoite development in vitro and in vivo

    PubMed Central

    Paredes-Santos, T.C.; Tomita, T.; Fen, M. Yan; de Souza, W.; Attias, M.; Vommaro, R.C.; Weiss, L.M.

    2015-01-01

    Toxoplasma gondii is a protozoan that infects 30% of humans as intermediate hosts. T Sexual reproduction can occur only within the intestinal tract of felines, however, infection in other mammals and birds is associated with asexual replication and interconversion between the tachyzoite and bradyzoite stages. Bradyzoites are slow growing forms found in tissue cysts in latent infection. Recently, our group described the biological behavior of the EGS strain that forms thick walled cysts spontaneously in tissue culture, constituting a useful tool for examining the developmental biology of T. gondii. To further improve the usefulness of this model, we constructed genetically modified EGS parasites that express fluorescent tags under the control of stage specific promoters. The promoter regions for SAG-1 (tachyzoite specific), BAG-1 and LDH-2 (bradyzoite specific) were amplified by PCR and plasmids were constructed with mCherry (redT) and sfGFP (greenB) sequences, respectively. Strains of parasites were selected using FACS to arrive at single fluorescent and dual fluorescent strains of EGS expressing tags in a stage specific manner. In cell cultures, vacuoles labeled by immunofluorescence assay using anti-CST-1 a marker for T. gondii cyst wall contained parasites that were positive for BAG1-GFP and negative for SAG1-mCherry. Tachyzoites and bradyzoites harvested from the mice expressed stage specific mCherry and GFP proteins, respectively. These new dual fluorescent transgenic EGS strains are a promising tool to elucidate the mechanisms of Toxoplasma gondii differentiation both in vitro and in vivo. PMID:26432517

  11. In vitro cultivation of Hammondia heydorni: Generation of tachyzoites, stage conversion into bradyzoites, and evaluation of serologic cross-reaction with Neospora caninum.

    PubMed

    Gondim, L F P; Meyer, J; Peters, M; Rezende-Gondim, M M; Vrhovec, M G; Pantchev, N; Bauer, C; Conraths, F J; Schares, G

    2015-06-15

    Hammondia heydorni was in vitro isolated from oocysts shed by three dogs using a finite cell line from embryonal bovine heart (KH-R). The oocysts were purified and suspended in 2% potassium dichromate or 2% sulphuric acid for sporulation for 2-5 days at room temperature. The parasites were confirmed as H. heydorni by PCR using specific primers (JS4/JS5) and by negative reaction for Neospora caninum employing the primers Np6+/Np21+. H. heydorni sporulated oocysts (1 × 10(6)) from each dog were initially treated with sodium hypochlorite. For excystation of sporozoites, oocysts from one dog were lysed by ultrasound followed by incubation with 0.75% taurocholate. Excystation of sporozoites from the other two dogs was achieved by oocyst fragmentation with glass beads with no further chemical treatment. Tachyzoites were clearly seen in the cultures at three days post inoculation (dpi). Bradyzoite conversion and cyst formation were evaluated at different time points by using a polyclonal rabbit serum against a bradyzoite-specific antigen (anti-BAG1), and a rat monoclonal antibody (mAbCC2) against a cyst wall protein. Bradyzoites were firstly detected at 7 dpi. Between 18 and 21 dpi most of cultured parasites consisted of encysted bradyzoites. The H. heydorni cysts increased in size during cultivation and reached a length of up to 135 μm. The parasite was maintained in the bovine heart cells up to 4.5months. Sera from mice and sheep experimentally infected with H. heydorni oocysts reacted with H. heydorni by IFAT, but did not cross-react with N. caninum antigens using IFAT or immunoblot. These findings suggest that serological cross-reactivity between H. heydorni and N. caninum seems to be of minor importance.

  12. Insect-cell expression, crystallization and X-ray data collection of the bradyzoite-specific antigen BSR4 from Toxoplasma gondii

    SciTech Connect

    Grujic, Ognjen; Grigg, Michael E.; Boulanger, Martin J.

    2008-05-01

    Preliminary X-ray diffraction studies of the bradyzoite-specific surface antigen BSR4 from T. gondii are described. Toxoplasma gondii is an important global pathogen that infects nearly one third of the world’s adult population. A family of developmentally expressed structurally related surface-glycoprotein adhesins (SRSs) mediate attachment to and are utilized for entry into host cells. The latent bradyzoite form of T. gondii persists for the life of the host and expresses a distinct family of SRS proteins, of which the bradyzoite-specific antigen BSR4 is a prototypical member. Structural studies of BSR4 were initiated by first recombinantly expressing BSR4 in insect cells, which was followed by crystallization and preliminary X-ray data collection to 1.95 Å resolution. Data processing showed that BSR4 crystallized with one molecule in the asymmetric unit of the P4{sub 1}2{sub 1}2 or P4{sub 3}2{sub 1}2 space group, with a solvent content of 60% and a corresponding Matthews coefficient of 2.98 Å{sup 3} Da{sup −1}.

  13. Radiation-induced cationic polymerization of limonene oxide,. cap alpha. -pinene oxide, and. beta. -pinene oxide

    SciTech Connect

    Aikins, J.A.; Williams, F.

    1984-01-01

    After suitable drying, the subject monomers in the form of neat liquids undergo radiation-induced polymerization with no apparent side reactions and high conversions to precipitatable polymers of low molecular weight. A cationic mechanism is evidenced by the strongly retarding effect of tri-n-propylamine on the polymerization rate. At 25/sup 0/C, limonene oxide gives the highest polymerization rates, an average conversion of 36% per Mrad being obtained in comparison with values of 5.7 and 7.3% per Mrad for the ..cap alpha..-pinene and ..beta..-pinene oxides, respectively. Similarly, the average anti DP/sub n/ decreases from 11.8 for the limonene oxide polymer to 5.6 and 4.0 for the ..cap alpha..-pinene oxide and ..beta..-pinene oxide polymers, respectively. A high frequency of chain transfer to monomer is indicated in each case by the fact that the kinetic chain lengths are estimated to be on the order of a hundred times larger than the anti DP/sub n/ values. Structural characterization of the limonene oxide polymer by /sup 1/H and /sup 13/C NMR spectroscopy provides conclusive evidence that the polymerization proceeds by the opening of the epoxide ring to yield a 1,2-trans polyether. Similar NMR studies on the polymers formed from the ..cap alpha..-pinene and ..beta..-pinene oxides show that in the polymerization of these monomers, the opening of the epoxide ring is generally accompanied by the concomitant ring opening of the cyclobutane ring structure to yield a gem-dimethyl group in the main chain. The detection of isopropenyl end groups in the pinene oxide polymers is also consistent with this mode of propagation being followed by chain (proton) transfer to monomer.

  14. Hypochlorous and peracetic acid induced oxidation of dairy proteins.

    PubMed

    Kerkaert, Barbara; Mestdagh, Frédéric; Cucu, Tatiana; Aedo, Philip Roger; Ling, Shen Yan; De Meulenaer, Bruno

    2011-02-09

    Hypochlorous and peracetic acids, both known disinfectants in the food industry, were compared for their oxidative capacity toward dairy proteins. Whey proteins and caseins were oxidized under well controlled conditions at pH 8 as a function of the sanitizing concentration. Different markers for protein oxidation were monitored. The results established that the protein carbonyl content was a rather unspecific marker for protein oxidation, which did not allow one to differentiate the oxidant used especially at the lower concentrations. Cysteine, tryptophan, and methionine were proven to be the most vulnerable amino acids for degradation upon hypochlorous and peracetic acid treatment, while tyrosine was only prone to degradation in the presence of hypochlorous acid. Hypochlorous acid induced oxidation gave rise to protein aggregation, while during peracetic acid induced oxidation, no high molecular weight aggregates were observed. Protein aggregation upon hypochlorous acid oxidation could primarily be linked to tryptophan and tyrosine degradation.

  15. Effect of paraquat-induced oxidative stress

    PubMed Central

    Wiemer, Matthias; Osiewacz, Heinz D.

    2014-01-01

    Aging of biological systems is influenced by various factors, conditions and processes. Among others, processes allowing organisms to deal with various types of stress are of key importance. In particular, oxidative stress as the result of the generation of reactive oxygen species (ROS) at the mitochondrial respiratory chain and the accumulation of ROS-induced molecular damage has been strongly linked to aging. Here we view the impact of ROS from a different angle: their role in the control of gene expression. We report a genome-wide transcriptome analysis of the fungal aging model Podospora anserina grown on medium containing paraquat (PQ). This treatment leads to an increased cellular generation and release of H2O2, a reduced growth rate, and a decrease in lifespan. The combined challenge by PQ and copper has a synergistic negative effect on growth and lifespan. The data from the transcriptome analysis of the wild type cultivated under PQ-stress and their comparison to those of a longitudinal aging study as well as of a copper-uptake longevity mutant of P. anserina revealed that PQ-stress leads to the up-regulation of transcripts coding for components involved in mitochondrial remodeling. PQ also affects the expression of copper-regulated genes suggesting an increase of cytoplasmic copper levels as it has been demonstrated earlier to occur during aging of P. anserina and during senescence of human fibroblasts. This effect may result from the induction of the mitochondrial permeability transition pore via PQ-induced ROS, leading to programmed cell death as part of an evolutionary conserved mechanism involved in biological aging and lifespan control. PMID:28357247

  16. Inducible nitric oxide synthase in the myocard.

    PubMed

    Buchwalow, I B; Schulze, W; Karczewski, P; Kostic, M M; Wallukat, G; Morwinski, R; Krause, E G; Müller, J; Paul, M; Slezak, J; Luft, F C; Haller, H

    2001-01-01

    Recognition of significance of nitric oxide synthases (NOS) in cardiovascular regulations has led to intensive research and development of therapies focused on NOS as potential therapeutic targets. However, the NOS isoform profile of cardiac tissue and subcellular localization of NOS isoforms remain a matter of debate. The aim of this study was to investigate the localization of an inducible NOS isoform (NOS2) in cardiomyocytes. Employing a novel immunocytochemical technique of a catalyzed reporter deposition system with tyramide and electron microscopical immunocytochemistry complemented with Western blotting and RT-PCR, we detected NOS2 both in rat neonatal and adult cultured cardiomyocytes and in the normal myocard of adult rats as well as in the human myocard of patients with dilative cardiomyopathy. NOS2 was targeted predominantly to a particulate component of the cardiomyocyte--along contractile fibers, in the plasma membrane including T-tubules, as well as in the nuclear envelope, mitochondria and Golgi complex. Our results point to an involvement of NOS2 in maintaining cardiac homeostasis and contradict to the notion that NOS2 is expressed in cardiac tissue only in response to various physiological and pathogenic factors. NOS2 targeting to mitochondria and contractile fibers suggests a relationship of NO with contractile function and energy production in the cardiac muscle.

  17. Oxidation inhibits iron-induced blood coagulation.

    PubMed

    Pretorius, Etheresia; Bester, Janette; Vermeulen, Natasha; Lipinski, Boguslaw

    2013-01-01

    Blood coagulation under physiological conditions is activated by thrombin, which converts soluble plasma fibrinogen (FBG) into an insoluble clot. The structure of the enzymatically-generated clot is very characteristic being composed of thick fibrin fibers susceptible to the fibrinolytic degradation. However, in chronic degenerative diseases, such as atherosclerosis, diabetes mellitus, cancer, and neurological disorders, fibrin clots are very different forming dense matted deposits (DMD) that are not effectively removed and thus create a condition known as thrombosis. We have recently shown that trivalent iron (ferric ions) generates hydroxyl radicals, which subsequently convert FBG into abnormal fibrin clots in the form of DMDs. A characteristic feature of DMDs is their remarkable and permanent resistance to the enzymatic degradation. Therefore, in order to prevent thrombotic incidences in the degenerative diseases it is essential to inhibit the iron-induced generation of hydroxyl radicals. This can be achieved by the pretreatment with a direct free radical scavenger (e.g. salicylate), and as shown in this paper by the treatment with oxidizing agents such as hydrogen peroxide, methylene blue, and sodium selenite. Although the actual mechanism of this phenomenon is not yet known, it is possible that hydroxyl radicals are neutralized by their conversion to the molecular oxygen and water, thus inhibiting the formation of dense matted fibrin deposits in human blood.

  18. Potential role of punicalagin against oxidative stress induced testicular damage

    PubMed Central

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg−1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility. PMID:26763544

  19. Potential role of punicalagin against oxidative stress induced testicular damage.

    PubMed

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg-1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility.

  20. High Pressure Oxidizer Turbopump (HPOTP) inducer dynamic design environment

    NASA Technical Reports Server (NTRS)

    Herda, D. A.; Gross, R. S.

    1995-01-01

    The dynamic environment must be known to evaluate high pressure oxidizer turbopump inducer fatigue life. This report sets the dynamic design loads for the alternate turbopump inducer as determined by water-flow rig testing. Also, guidelines are given for estimating the dynamic environment for other inducer and impeller applications.

  1. The SnSAG merozoite surface antigens of Sarcocystis neurona are expressed differentially during the bradyzoite and sporozoite life cycle stages.

    PubMed

    Gautam, A; Dubey, J P; Saville, W J; Howe, D K

    2011-12-29

    Sarcocystis neurona is a two-host coccidian parasite whose complex life cycle progresses through multiple developmental stages differing at morphological and molecular levels. The S. neurona merozoite surface is covered by multiple, related glycosylphosphatidylinositol-linked proteins, which are orthologous to the surface antigen (SAG)/SAG1-related sequence (SRS) gene family of Toxoplasma gondii. Expression of the SAG/SRS proteins in T. gondii and another related parasite Neospora caninum is life-cycle stage specific and seems necessary for parasite transmission and persistence of infection. In the present study, the expression of S. neurona merozoite surface antigens (SnSAGs) was evaluated in the sporozoite and bradyzoite stages. Western blot analysis was used to compare SnSAG expression in merozoites versus sporozoites, while immunocytochemistry was performed to examine expression of the SnSAGs in merozoites versus bradyzoites. These analyses revealed that SnSAG2, SnSAG3 and SnSAG4 are expressed in sporozoites, while SnSAG5 was appeared to be downregulated in this life cycle stage. In S. neurona bradyzoites, it was found that SnSAG2, SnSAG3, SnSAG4 and SnSAG5 were either absent or expression was greatly reduced. As shown for T. gondii, stage-specific expression of the SnSAGs may be important for the parasite to progress through its developmental stages and complete its life cycle successfully. Thus, it is possible that the SAG switching mechanism by these parasites could be exploited as a point of intervention. As well, the alterations in surface antigen expression during different life cycle stages may need to be considered when designing prospective approaches for protective vaccination.

  2. Anti- and pro-oxidant effects of (+)-catechin on hemoglobin-induced protein oxidative damage.

    PubMed

    Lu, Naihao; Chen, Puqing; Yang, Qin; Peng, Yi-Yuan

    2011-06-01

    Evidence to support the role of heme proteins as major inducers of oxidative damage is increasingly present. Flavonoids have been widely used to ameliorate oxidative damage in vivo and in vitro, where the mechanism of this therapeutic action was usually dependent on their anti-oxidant effects. In this study, we investigated the influence of (+)-catechin, a polyphenol identified in tea, cocoa, and red wine, on hemoglobin-induced protein oxidative damage. It was found that (+)-catechin had the capacities to act as a free radical scavenger and reducing agent to remove cytotoxic ferryl hemoglobin, demonstrating apparent anti-oxidant activities. However, the presence of (+)-catechin surprisingly promoted hemoglobin-induced protein oxidation, which was probably due to the ability of this anti-oxidant to rapidly trigger the oxidative degradation of normal hemoglobin. In addition, hemoglobin-H2O2-induced protein carbonyl formation was significantly enhanced by (+)-catechin at lower concentrations, while it was efficiently inhibited when higher concentrations were used. These novel results showed that the dietary intake and therapeutic use of catechins might possess pro-oxidant activity through aggravating hemoglobin-related oxidative damage. The dual effects on hemoglobin redox reactions may provide new insights into the physiological implications of tea extract and wine (catechins) with cellular heme proteins.

  3. Acrylonitrile-Induced Oxidative Stress and Oxidative DNA Damage in Male Sprague-Dawley Rats

    PubMed Central

    Kamendulis, Lisa M.; Klaunig, James E.

    2009-01-01

    Studies have demonstrated that the induction of oxidative stress may be involved in brain tumor induction in rats by acrylonitrile. The present study examined whether acrylonitrile induces oxidative stress and DNA damage in rats and whether blood can serve as a valid surrogate for the biomonitoring of oxidative stress induced by acrylonitrile in the exposed population. Male Sprague-Dawley rats were treated with 0, 3, 30, 100, and 200 ppm acrylonitrile in drinking water for 28 days. One group of rats were also coadministered N-acetyl cysteine (NAC) (0.3% in diet) with acrylonitrile (200 ppm in drinking water) to examine whether antioxidant supplementation was protective against acrylonitrile-induced oxidative stress. Direct DNA strand breakage in white blood cells (WBC) and brain was measured using the alkaline comet assay. Oxidative DNA damage in WBC and brain was evaluated using formamidopyrimidine DNA glycosylase (fpg)-modified comet assay and with high-performance liquid chromatography-electrochemical detection. No significant increase in direct DNA strand breaks was observed in brain and WBC from acrylonitrile-treated rats. However, oxidative DNA damage (fpg comet and 8′hydroxyl-2-deoxyguanosine) in brain and WBC was increased in a dose-dependent manner. In addition, plasma levels of reactive oxygen species (ROS) increased in rats administered acrylonitrile. Dietary supplementation with NAC prevented acrylonitrile-induced oxidative DNA damage in brain and WBC. A slight, but significant, decrease in the GSH:GSSG ratio was seen in brain at acrylonitrile doses > 30 ppm. These results provide additional support that the mode of action for acrylonitrile-induced astrocytomas involves the induction of oxidative stress and damage. Significant associations were seen between oxidative DNA damage in WBC and brain, ROS formation in plasma, and the reported tumor incidences. Since oxidative DNA damage in brain correlated with oxidative damage in WBC, these results suggest

  4. Acrylonitrile-induced oxidative DNA damage in rat astrocytes.

    PubMed

    Pu, Xinzhu; Kamendulis, Lisa M; Klaunig, James E

    2006-10-01

    Chronic administration of acrylonitrile results in a dose-related increase in astrocytomas in rat brain, but the mechanism of acrylonitrile carcinogenicity is not fully understood. The potential of acrylonitrile or its metabolites to induce direct DNA damage as a mechanism for acrylonitrile carcinogenicity has been questioned, and recent studies indicate that the mechanism involves the induction of oxidative stress in rat brain. The present study examined the ability of acrylonitrile to induce DNA damage in the DI TNC1 rat astrocyte cell line using the alkaline Comet assay. Oxidized DNA damage also was evaluated using formamidopyrimidine DNA glycosylase treatment in the modified Comet assay. No increase in direct DNA damage was seen in astrocytes exposed to sublethal concentrations of acrylonitrile (0-1.0 mM) for 24 hr. However, acrylonitrile treatment resulted in a concentration-related increase in oxidative DNA damage after 24 hr. Antioxidant supplementation in the culture media (alpha-tocopherol, (-)-epigallocathechin-3 gallate, or trolox) reduced acrylonitrile-induced oxidative DNA damage. Depletion of glutathione using 0.1 mM DL-buthionine-[S,R]-sulfoximine increased acrylonitrile-induced oxidative DNA damage (22-46%), while cotreatment of acrylonitrile with 2.5 mM L-2-oxothiazolidine-4-carboxylic acid, a precursor for glutathione biosynthesis, significantly reduced acrylonitrile-induced oxidative DNA damage (7-47%). Cotreatment of acrylonitrile with 0.5 mM 1-aminobenzotriazole, a suicidal inhibitor of cytochrome P450, prevented the oxidative DNA damage produced by acrylonitrile. Cyanide (0.1-0.5 mM) increased oxidative DNA damage (44-160%) in astrocytes. These studies demonstrate that while acrylonitrile does not directly damage astrocyte DNA, it does increase oxidative DNA damage. The oxidative DNA damage following acrylonitrile exposure appears to arise mainly through the P450 metabolic pathway; moreover, glutathione depletion may contribute to the

  5. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  6. Quercitrin protects skin from UVB-induced oxidative damage

    SciTech Connect

    Yin, Yuanqin; Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin; Yao, Hua; Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J.; Luo, Jia; Gao, Ning; Shi, Xianglin; Zhang, Zhuo

    2013-06-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. - Highlights: • Oxidative stress plays a key role in UV-induced cell and tissue injuries. • Quercitrin decreases ROS generation and restores antioxidants irradiated by UVB. • Quercitrin reduces UVB-irradiated oxidative DNA damage, apoptosis, and inflammation. • Quercitrin functions as an antioxidant against UVB-induced skin injuries.

  7. Quantum confinement-induced tunable exciton states in graphene oxide

    PubMed Central

    Lee, Dongwook; Seo, Jiwon; Zhu, Xi; Lee, Jiyoul; Shin, Hyeon-Jin; Cole, Jacqueline M.; Shin, Taeho; Lee, Jaichan; Lee, Hangil; Su, Haibin

    2013-01-01

    Graphene oxide has recently been considered to be a potential replacement for cadmium-based quantum dots due to its expected high fluorescence. Although previously reported, the origin of the luminescence in graphene oxide is still controversial. Here, we report the presence of core/valence excitons in graphene-based materials, a basic ingredient for optical devices, induced by quantum confinement. Electron confinement in the unreacted graphitic regions of graphene oxide was probed by high resolution X-ray absorption near edge structure spectroscopy and first-principles calculations. Using experiments and simulations, we were able to tune the core/valence exciton energy by manipulating the size of graphitic regions through the degree of oxidation. The binding energy of an exciton in highly oxidized graphene oxide is similar to that in organic electroluminescent materials. These results open the possibility of graphene oxide-based optoelectronic device technology. PMID:23872608

  8. Nitroxides protect against peroxynitrite-induced nitration and oxidation.

    PubMed

    Sadowska-Bartosz, Izabela; Gajewska, Agnieszka; Skolimowski, Janusz; Szewczyk, Rafał; Bartosz, Grzegorz

    2015-12-01

    Nitroxides are promising compounds for prevention of undesired protein modifications. The aim of this study was to compare the efficiency of 11 nitroxides, derivatives of 2,2,6,6-tetramethylpiperidine-1-oxide (TEMPO) and 2,2,5,5-tetramethylpirrolidine-1-oxyl (PROXYL) in prevention of nitration and oxidation of model compounds and human serum albumin (HSA). Most nitroxides were very efficient in preventing loss of fluorescein fluorescence induced by peroxynitrite (PN) (IC50 in the nanomolar range) and preventing HSA nitration. The loss of fluorescein fluorescence was demonstrated to be due to nitration. Nitroxides were more effective in prevention nitration than oxidation reactions. They showed a concentration window for preventing dihydrorhodamine (DHR) 123 oxidation but exerted a prooxidant effect at both high and low concentrations. No prooxidant effect of nitroxides was seen in prevention of DHR123 oxidation induced by SIN-1. In all essays hydrophobic nitroxides (especially 4-nonylamido-TEMPO and 3-carbamolyl-dehydroPROXYL) showed the lowest efficiency. An exception was the prevention of thiol group oxidation by PN and SIN-1 where hydrophobic nitroxides were the most effective, apparently due to binding to the protein. Nitroxides showed low toxicity to MCF-7 cells. Most nitroxides, except for the most hydrophobic ones, protected cells from the cytotoxic action of SIN-1 and SIN-1-induced protein nitration. These results point to potential usefulness of nitroxides for prevention of PN-induced oxidation and, especially, nitration.

  9. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    SciTech Connect

    Malaviya, Rama; Laskin, Jeffrey D.; Laskin, Debra L.

    2014-03-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic.

  10. Aluminum Induces Oxidative Stress Genes in Arabidopsis thaliana1

    PubMed Central

    Richards, Keith D.; Schott, Eric J.; Sharma, Yogesh K.; Davis, Keith R.; Gardner, Richard C.

    1998-01-01

    Changes in gene expression induced by toxic levels of Al were characterized to investigate the nature of Al stress. A cDNA library was constructed from Arabidopsis thaliana seedlings treated with Al for 2 h. We identified five cDNA clones that showed a transient induction of their mRNA levels, four cDNA clones that showed a longer induction period, and two down-regulated genes. Expression of the four long-term-induced genes remained at elevated levels for at least 48 h. The genes encoded peroxidase, glutathione-S-transferase, blue copper-binding protein, and a protein homologous to the reticuline:oxygen oxidoreductase enzyme. Three of these genes are known to be induced by oxidative stresses and the fourth is induced by pathogen treatment. Another oxidative stress gene, superoxide dismutase, and a gene for Bowman-Birk protease inhibitor were also induced by Al in A. thaliana. These results suggested that Al treatment of Arabidopsis induces oxidative stress. In confirmation of this hypothesis, three of four genes induced by Al stress in A. thaliana were also shown to be induced by ozone. Our results demonstrate that oxidative stress is an important component of the plant's reaction to toxic levels of Al. PMID:9449849

  11. Phloroglucinol Attenuates Free Radical-induced Oxidative Stress

    PubMed Central

    So, Mi Jung; Cho, Eun Ju

    2014-01-01

    The protective role of phloroglucinol against oxidative stress and stress-induced premature senescence (SIPS) was investigated in vitro and in cell culture. Phloroglucinol had strong and concentration-dependent radical scavenging effects against nitric oxide (NO), superoxide anions (O2−), and hydroxyl radicals. In this study, free radical generators were used to induce oxidative stress in LLC-PK1 renal epithelial cells. Treatment with phloroglucinol attenuated the oxidative stress induced by peroxyl radicals, NO, O2−, and peroxynitrite. Phloroglucinol also increased cell viability and decreased lipid peroxidation in a concentration-dependent manner. WI-38 human diploid fibroblast cells were used to investigate the protective effect of phloroglucinol against hydrogen peroxide (H2O2)-induced SIPS. Phloroglucinol treatment attenuated H2O2-induced SIPS by increasing cell viability and inhibited lipid peroxidation, suggesting that treatment with phloroglucinol should delay the aging process. The present study supports the promising role of phloroglucinol as an antioxidative agent against free radical-induced oxidative stress and SIPS. PMID:25320709

  12. Oxidized low-density lipoprotein induces hematopoietic stem cell senescence.

    PubMed

    Zhang, Xian-Ping; Zhang, Gui-Hai; Wang, Yu-Ying; Liu, Jun; Wei, Qiang; Xu, Chun-Yan; Wang, Jian-Wei; Wang, Ya-Ping

    2013-09-01

    We have investigated oxidized low-density lipoprotein (ox-LDL) induced senescence in hematopoietic stem cells (HCs). Mouse Sca-1+ HCs were separated and purified using the magnetic activated cell sorting technique. Ox-LDL induced significant senescence in HCs measured by SA-β-Gal staining, and reduced CFU-Mix colony-forming capacity, arresting cells at G0/G1 phase. In agreement with the cell cycle arrest, ox-LDL markedly reduced the expression of CDK4, cyclin D, and cyclin E. As possible contributing factors for cell senescence, ox-LDL also induced cellular oxidative stress and reduced telomerase activity.

  13. Radiation-induced cationic polymerization of limonene oxide,. cap alpha. -pinene oxide, and. beta. -pinene oxide

    SciTech Connect

    Aikins, J.A.; Williams, F.

    1985-01-01

    After suitable drying, the subject monomers in the form of neat liquids undergo radiation-induced polymerization with no apparent side reactions and high conversions to precipitatable polymers of low molecular weights. A high frequency of chain (proton) transfer to monomer is indicated by the fact that the kinetic chain lengths are estimated to be several hundred times larger than the range of DP/sub n/ values (12-4). Structural characterization of the limonene oxide polymer by /sup 1/H and /sup 13/C NMR spectroscopy provides conclusive evidence that the polymerization proceeds by the opening of the epoxide ring to yield a 1,2-trans polyether. Similar NMR studies on the polymers formed from the ..cap alpha..-pinene and ..beta..-pinene oxides show that the opening of the epoxide ring for these monomers is generally accompanied by the concomitant ring opening of the cyclobutane ring structure to yield a gem-di-methyl group in the main chain.

  14. Oxidative stress in alcohol-induced rat parotid sialadenosis.

    PubMed

    Campos, Sara Cristina Gonçalves; Moreira, Denise Aparecida Corrêa; Nunes, Terezinha D'Avila e Silva; Colepicolo, Pio; Brigagão, Maísa Ribeiro Pereira Lima

    2005-07-01

    This study evaluated the effect of chronic ethanol consumption on the oxidative status of rat parotid and submandibular glands. To identify the endogenous response to ethanol ingestion, the activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were determined. In addition, the antioxidant alpha-tocopherol was supplied to the animals in order to estimate its action in ethanol-associated glandular damage. The thiobarbituric acid reactive substances (TBARS), and the protein carbonyl (PC) content, both markers of cellular oxidative stress on lipid and protein structures, respectively, were recorded. Animals subjected to alcohol ingestion showed a low body growth rate with concomitant enlargement of absolute and relative parotid wet weight, compared with pair-fed calorie-controlled rats. Parotid glands of ethanol-treated animals showed increased SOD and GPx activity, and alpha-tocopherol was able to reduce their activities to the control levels. TBARS and PC were enhanced after chronic ethanol treatment in rat parotids. Supplemental alpha-tocopherol suppressed the oxidative ethanol-induced damage in lipid without affecting induced protein oxidation. Submandibular glands revealed no alterations in the weight, enzymatic and oxidative parameters tested due to ethanol and/or alpha-tocopherol ingestion. These findings indicate the involvement of oxidative stress in parotid gland sialadenosis due to ethanol consumption and the capability of alpha-tocopherol to halt lipid damage, although this low-molecular antioxidant compound leads to neither increased glandular weight nor protein oxidation in ethanol-induced parotid alterations.

  15. Oxidative stress in MeHg-induced neurotoxicity

    SciTech Connect

    Farina, Marcelo; Aschner, Michael; Rocha, Joao B.T.

    2011-11-15

    Methylmercury (MeHg) is an environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. Although the molecular mechanisms mediating MeHg-induced neurotoxicity are not completely understood, several lines of evidence indicate that oxidative stress represents a critical event related to the neurotoxic effects elicited by this toxicant. The objective of this review is to summarize and discuss data from experimental and epidemiological studies that have been important in clarifying the molecular events which mediate MeHg-induced oxidative damage and, consequently, toxicity. Although unanswered questions remain, the electrophilic properties of MeHg and its ability to oxidize thiols have been reported to play decisive roles to the oxidative consequences observed after MeHg exposure. However, a close examination of the relationship between low levels of MeHg necessary to induce oxidative stress and the high amounts of sulfhydryl-containing antioxidants in mammalian cells (e.g., glutathione) have led to the hypothesis that nucleophilic groups with extremely high affinities for MeHg (e.g., selenols) might represent primary targets in MeHg-induced oxidative stress. Indeed, the inhibition of antioxidant selenoproteins during MeHg poisoning in experimental animals has corroborated this hypothesis. The levels of different reactive species (superoxide anion, hydrogen peroxide and nitric oxide) have been reported to be increased in MeHg-exposed systems, and the mechanisms concerning these increments seem to involve a complex sequence of cascading molecular events, such as mitochondrial dysfunction, excitotoxicity, intracellular calcium dyshomeostasis and decreased antioxidant capacity. This review also discusses potential therapeutic strategies to counteract MeHg-induced toxicity and oxidative stress, emphasizing the use of organic selenocompounds, which generally present higher affinity for MeHg when compared to the classically

  16. Hypoxia-Induced Oxidative Stress Modulation with Physical Activity

    PubMed Central

    Debevec, Tadej; Millet, Grégoire P.; Pialoux, Vincent

    2017-01-01

    Increased oxidative stress, defined as an imbalance between prooxidants and antioxidants, resulting in molecular damage and disruption of redox signaling, is associated with numerous pathophysiological processes and known to exacerbate chronic diseases. Prolonged systemic hypoxia, induced either by exposure to terrestrial altitude or a reduction in ambient O2 availability is known to elicit oxidative stress and thereby alter redox balance in healthy humans. The redox balance modulation is also highly dependent on the level of physical activity. For example, both high-intensity exercise and inactivity, representing the two ends of the physical activity spectrum, are known to promote oxidative stress. Numerous to-date studies indicate that hypoxia and exercise can exert additive influence upon redox balance alterations. However, recent evidence suggests that moderate physical activity can attenuate altitude/hypoxia-induced oxidative stress during long-term hypoxic exposure. The purpose of this review is to summarize recent findings on hypoxia-related oxidative stress modulation by different activity levels during prolonged hypoxic exposures and examine the potential mechanisms underlying the observed redox balance changes. The paper also explores the applicability of moderate activity as a strategy for attenuating hypoxia-related oxidative stress. Moreover, the potential of such moderate intensity activities used to counteract inactivity-related oxidative stress, often encountered in pathological, elderly and obese populations is also discussed. Finally, future research directions for investigating interactive effects of altitude/hypoxia and exercise on oxidative stress are proposed. PMID:28243207

  17. Characterization of an inducible oxidative stress system in Bacillus subtilis.

    PubMed

    Bol, D K; Yasbin, R E

    1990-06-01

    Exponentially growing cells of Bacillus subtilis demonstrated inducible protection against killing by hydrogen peroxide when prechallenged with a nonlethal dose of this oxidative agent. Cells deficient in a functional recE+ gene product were as much as 100 times more sensitive to the H2O2 but still exhibited an inducible protective response. Exposure to hydrogen peroxide also induced the recE(+)-dependent DNA damage-inducible (din) genes, the resident prophage, and the product of the recE+ gene itself. Thus hydrogen peroxide is capable of inducing the SOS-like or SOB system of B. subtilis. However, the induction of this DNA repair system by other DNA-damaging agents is not sufficient to activate the protective response to hydrogen peroxide. Therefore, at least one more regulatory network (besides the SOB system) that responds to oxidative stress must exist. Furthermore, the data presented indicate that a functional catalase gene is necessary for this protective response.

  18. Role of oxidative stress in transformation induced by metal mixture.

    PubMed

    Martín, Silva-Aguilar; Emilio, Rojas; Mahara, Valverde

    2011-01-01

    Metals are ubiquitous pollutants present as mixtures. In particular, mixture of arsenic-cadmium-lead is among the leading toxic agents detected in the environment. These metals have carcinogenic and cell-transforming potential. In this study, we used a two step cell transformation model, to determine the role of oxidative stress in transformation induced by a mixture of arsenic-cadmium-lead. Oxidative damage and antioxidant response were determined. Metal mixture treatment induces the increase of damage markers and the antioxidant response. Loss of cell viability and increased transforming potential were observed during the promotion phase. This finding correlated significantly with generation of reactive oxygen species. Cotreatment with N-acetyl-cysteine induces effect on the transforming capacity; while a diminution was found in initiation, in promotion phase a total block of the transforming capacity was observed. Our results suggest that oxidative stress generated by metal mixture plays an important role only in promotion phase promoting transforming capacity.

  19. Sensory experience induced by nitrous oxide analgesia.

    PubMed Central

    Kaufman, E.; Galili, D.; Furer, R.; Steiner, J.

    1990-01-01

    Preliminary findings on a group of 15 dental patients, treated with nitrous oxide indicated frequent occurrence of several, well-defined sensory experiences related to various modalities. A subsequent controlled experiment carried out on 44 volunteers, inhaling a 35% N2O + 65% O2 sedative gas-mixture as well as O2 alone in two different sessions confirmed a large variety of sensations not related to external stimuli. Taste and/or odor and thermal sensations were often reported as well as changes in auditory or visual perception of the environment in addition to reports of general heaviness, relaxation or tingling. PMID:2097907

  20. New Approach to Chemically Induced Silicon Oxidation

    DTIC Science & Technology

    1991-10-01

    Kim, C.H. Wolowodiuk, R.J. Jaccodine, F.A. Stevie , and P.M. Kohora, to be published in J. Electrochem. Society. 4. "Effect of NF3 Addition on Point...Defect Generation at the Oxidizing Interface", U.S. Kim, R.J. Jaccodine, F.A. Stevie , and T. Kook, to be published in J. Electrochem. Society. 5...Macfarlane, R.J. Jaccodine and F.A. Stevie , presented at the 180th Meeting of the Electro- chemical Society, Phoenix, AZ, October 13-18, 1991. 15

  1. Mechanisms of Nanoparticle-Induced Oxidative Stress and Toxicity

    PubMed Central

    Wang, Liying

    2013-01-01

    The rapidly emerging field of nanotechnology has offered innovative discoveries in the medical, industrial, and consumer sectors. The unique physicochemical and electrical properties of engineered nanoparticles (NP) make them highly desirable in a variety of applications. However, these novel properties of NP are fraught with concerns for environmental and occupational exposure. Changes in structural and physicochemical properties of NP can lead to changes in biological activities including ROS generation, one of the most frequently reported NP-associated toxicities. Oxidative stress induced by engineered NP is due to acellular factors such as particle surface, size, composition, and presence of metals, while cellular responses such as mitochondrial respiration, NP-cell interaction, and immune cell activation are responsible for ROS-mediated damage. NP-induced oxidative stress responses are torch bearers for further pathophysiological effects including genotoxicity, inflammation, and fibrosis as demonstrated by activation of associated cell signaling pathways. Since oxidative stress is a key determinant of NP-induced injury, it is necessary to characterize the ROS response resulting from NP. Through physicochemical characterization and understanding of the multiple signaling cascades activated by NP-induced ROS, a systemic toxicity screen with oxidative stress as a predictive model for NP-induced injury can be developed. PMID:24027766

  2. Exercise-Induced Oxidative Stress Responses in the Pediatric Population

    PubMed Central

    Avloniti, Alexandra; Chatzinikolaou, Athanasios; Deli, Chariklia K.; Vlachopoulos, Dimitris; Gracia-Marco, Luis; Leontsini, Diamanda; Draganidis, Dimitrios; Jamurtas, Athanasios Z.; Mastorakos, George; Fatouros, Ioannis G.

    2017-01-01

    Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty. PMID:28106721

  3. Exercise-Induced Oxidative Stress Responses in the Pediatric Population.

    PubMed

    Avloniti, Alexandra; Chatzinikolaou, Athanasios; Deli, Chariklia K; Vlachopoulos, Dimitris; Gracia-Marco, Luis; Leontsini, Diamanda; Draganidis, Dimitrios; Jamurtas, Athanasios Z; Mastorakos, George; Fatouros, Ioannis G

    2017-01-17

    Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty.

  4. Oxidant-induced intramolecular triazole formation.

    PubMed

    Abraham, Maria L; Schulze, A Carina; Korthaus, Alexander; Oppel, Iris M

    2013-12-07

    C3-symmetric ligands carrying a rigid triaminoguanidinium backbone are important building blocks for the preparation of supramolecular coordination cages as tetrahedra or trigonal bipyramides. Coordination of Eu(III)- or Gd(III)-ions leads to 1,2,4-triazole formation, which has been reported only rarely. Using Pd(II)-complexes as a model system, this triazole formation could be analyzed in more detail. The preparation of Pd(II)-coordination compounds can be easily done under stoichiometric control. These complexes could be transformed into 1,2,4-triazoles using O2 or H2O2 as an oxidation reagent. The steric demand of the PR3-coligand seems to play a key role in the cyclisation reaction.

  5. Oxidative UO2 dissolution induced by soluble Mn(III).

    PubMed

    Wang, Zimeng; Xiong, Wei; Tebo, Bradley M; Giammar, Daniel E

    2014-01-01

    The stability of UO2 is critical to the success of reductive bioremediation of uranium. When reducing conditions are no longer maintained, Mn redox cycling may catalytically mediate the oxidation of UO2 and remobilization of uranium. Ligand-stabilized soluble Mn(III) was recently recognized as an important redox-active intermediate in Mn biogeochemical cycling. This study evaluated the kinetics of oxidative UO2 dissolution by soluble Mn(III) stabilized by pyrophosphate (PP) and desferrioxamine B (DFOB). The Mn(III)-PP complex was a potent oxidant that induced rapid UO2 dissolution at a rate higher than that by a comparable concentration of dissolved O2. However, the Mn(III)-DFOB complex was not able to induce oxidative dissolution of UO2. The ability of Mn(III) complexes to oxidize UO2 was probably determined by whether the coordination of Mn(III) with ligands allowed the attachment of the complexes to the UO2 surface to facilitate electron transfer. Systematic investigation into the kinetics of UO2 oxidative dissolution by the Mn(III)-PP complex suggested that Mn(III) could directly oxidize UO2 without involving particulate Mn species (e.g., MnO2). The expected 2:1 reaction stoichiometry between Mn(III) and UO2 was observed. The reactivity of soluble Mn(III) in oxidizing UO2 was higher at lower ratios of pyrophosphate to Mn(III) and lower pH, which is probably related to differences in the ligand-to-metal ratio and/or protonation states of the Mn(III)-pyrophosphate complexes. Disproportionation of Mn(III)-PP occurred at pH 9.0, and the oxidation of UO2 was then driven by both MnO2 and soluble Mn(III). Kinetic models were derived that provided excellent fits of the experimental results.

  6. Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells

    SciTech Connect

    Lefevre, Sophie; Sliwa, Dominika; Rustin, Pierre; Camadro, Jean-Michel; Santos, Renata

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Yeast frataxin-deficiency leads to increased proportion of fragmented mitochondria. Black-Right-Pointing-Pointer Oxidative stress induces complete mitochondrial fragmentation in {Delta}yfh1 cells. Black-Right-Pointing-Pointer Oxidative stress increases mitochondrial fragmentation in patient fibroblasts. Black-Right-Pointing-Pointer Inhibition of mitochondrial fission in {Delta}yfh1 induces oxidative stress resistance. -- Abstract: Friedreich ataxia (FA) is the most common recessive neurodegenerative disease. It is caused by deficiency in mitochondrial frataxin, which participates in iron-sulfur cluster assembly. Yeast cells lacking frataxin ({Delta}yfh1 mutant) showed an increased proportion of fragmented mitochondria compared to wild-type. In addition, oxidative stress induced complete fragmentation of mitochondria in {Delta}yfh1 cells. Genetically controlled inhibition of mitochondrial fission in these cells led to increased resistance to oxidative stress. Here we present evidence that in yeast frataxin-deficiency interferes with mitochondrial dynamics, which might therefore be relevant for the pathophysiology of FA.

  7. Soy protein reduces paraquat-induced oxidative stress in rats.

    PubMed

    Aoki, Hisa; Otaka, Yukiko; Igarashi, Kiharu; Takenaka, Asako

    2002-08-01

    The effect of soy protein, soy isoflavones and saponins on paraquat (PQ)-induced oxidative stress was investigated in rats. Rats were fed experimental diets containing casein (CAS), soy protein (SPI), and casein with soy isoflavones and saponins (CAS + IS). The diets were supplemented or not with 0.025% paraquat (CAS + PQ, SPI + PQ, and CAS + IS + PQ). The protective effects of soy protein, soy isoflavones, and saponins on paraquat-induced oxidative stress were examined. Ingestion of soy protein generally mitigated the lung enlargement (P = 0.076), loss of body weight (P = 0.051) and oxidation of liver lipid (P = 0.043) and glutathione (P = 0.035) induced by paraquat, although soy isoflavones and saponins did not. To determine whether soy protein exerted its antioxidative effects by preventing paraquat absorption from digestive organs, rats were fed CAS or SPI diets and orally administered a 12.5 g/L paraquat solution. Plasma, urine, and fecal paraquat concentrations did not differ between the two groups, indicating that soy protein did not prevent paraquat absorption. The present study suggests that intake of soy protein itself, but not soy isoflavones and saponins, reduces paraquat-induced oxidative stress in rats, although this effect was not due to reduced absorption of paraquat from digestive organs.

  8. OXIDATIVE STRESS PARTICIPATES IN PARTICULATE MATTER (PM) INDUCED LUNG INJURY

    EPA Science Inventory

    Oxidative stress participates in particulate matter (PM) induced acute lung injury.
    Elizabeth S. Roberts1, Judy L. Richards2, Kevin L. Dreher2. 1College of Veterinary Medicine, NC State University, Raleigh, NC, 2US Environmental Protection Agency, NHEERL, RTP, NC.
    Epidemiol...

  9. Quercitrin protects skin from UVB-induced oxidative damage.

    PubMed

    Yin, Yuanqin; Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin; Yao, Hua; Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J; Luo, Jia; Gao, Ning; Shi, Xianglin; Zhang, Zhuo

    2013-06-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin.

  10. Does aspirin-induced oxidative stress cause asthma exacerbation?

    PubMed Central

    Kacprzak, Dorota

    2015-01-01

    Aspirin-induced asthma (AIA) is a distinct clinical syndrome characterized by severe asthma exacerbations after ingestion of aspirin or other non-steroidal anti-inflammatory drugs. The exact pathomechanism of AIA remains unknown, though ongoing research has shed some light. Recently, more and more attention has been focused on the role of aspirin in the induction of oxidative stress, especially in cancer cell systems. However, it has not excluded the similar action of aspirin in other inflammatory disorders such as asthma. Moreover, increased levels of 8-isoprostanes, reliable biomarkers of oxidative stress in expired breath condensate in steroid-naïve patients with AIA compared to AIA patients treated with steroids and healthy volunteers, has been observed. This review is an attempt to cover aspirin-induced oxidative stress action in AIA and to suggest a possible related pathomechanism. PMID:26170841

  11. Microbially Induced Iron Oxidation: What, Where, How

    SciTech Connect

    SCHIERMEYER,ELISA M.; PROVENCIO,PAULA P.; NORTHUP,DIANA E.

    2000-08-15

    From the results of the different bacterial cells seen, it is fairly certain that Gallionella is present because of the bean-shaped cells and twisted stalks found with the TEM. The authors cannot confirm, though, what other iron-oxidizing genera exist in the tubes, since the media was only preferential and not one that isolated a specific genus of bacteria. Based on the environment in which they live and the source of the water, they believe their cultures contain Gallionella, Leptothrix, and possibly Crenothrix and Sphaerotilus. They believe the genus Leptothrix rather than Sphaerotilus exist in the tubes because the water source was fresh, unlike the polluted water in which Sphaerotilus are usually found. The TEM preparations worked well. The cryogenic method rapidly froze the cells in place and allowed them to view their morphology. The FAA method, as stated previously, was the best of the three methods because it gave the best contrast. The gluteraldehyde samples did not come out as well. It is possible that the gluteraldehyde the authors prepared was still too concentrated and did not mix well. Although these bacteria were collected from springs and then cultured in an environment containing a presumably pure iron-bearing metal, it seems the tube already containing Manganese Gradient Medium could be used with a piece of metal containing these bacteria. A small piece of corroding metal could then be inserted into the test tube and cultured to study the bacteria.

  12. Statins lower calcium-induced oxidative stress in isolated mitochondria.

    PubMed

    Parihar, A; Parihar, M S; Zenebe, W J; Ghafourifar, P

    2012-04-01

    Statins are widely used cholesterol-lowering agents that exert cholesterol-independent effects including antioxidative. The present study delineates the effects of statins, atorvastatin, and simvastatin on oxidative stress and functions of mitochondria that are the primary cellular sources of oxidative stress. In isolated rat liver mitochondria, both the statins prevented calcium-induced cytochrome c release, lipid peroxidation, and opening of the mitochondrial membrane permeability transition (MPT). Both the statins decreased the activity of mitochondrial nitric oxide synthase (mtNOS), lowered the intramitochondrial ionized calcium, and increased the mitochondrial transmembrane potential. Our findings suggest that statins lower intramitochondrial ionized calcium that decreases mtNOS activity, lowers oxidative stress, prevents MPT opening, and prevents the release of cytochrome c from the mitochondria. These results provide a novel framework for understanding the antioxidative properties of statins and their effects on mitochondrial functions.

  13. N-acetylcysteine attenuates dimethylnitrosamine induced oxidative stress in rats.

    PubMed

    Sathish, Priya; Paramasivan, Vijayalakshmi; Palani, Vivekanandan; Sivanesan, Karthikeyan

    2011-03-05

    Oxidative stress has been implicated in the pathogenesis and progression of various hepatic disorders and hence screening for a good hepatoprotective and antioxidant agent is the need of the hour. The present study was aimed to investigate the hepatoprotective and antioxidant property of N-acetylcysteine (NAC) against dimethylnitrosamine (DMN) induced oxidative stress and hepatocellular damage in male Wistar albino rats. Administration of single dose of DMN (5mg/kg b.w.; i.p.) resulted in significant elevation in the levels of serum aspartate transaminase and alanine transaminase, indicating hepatocellular damage. Oxidative stress induced by DMN treatment was confirmed by an elevation in the status of lipid peroxidation (LPO) and reduction in the activities of enzymic antioxidants such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione-S-transferase and in the levels of non-enzymic antioxidants, reduced glutathione, vitamin-C and vitamin-E in the liver tissue. DMN induced oxidative stress and hepatocellular membrane instability was further substantiated by a decline in the status of the membrane bound ATPases in the liver tissue. Post-treatment with NAC (50mg/kg b.w.; p.o.) for 7days effectively protected against the DMN induced insult to liver by preventing the elevation in the status of the serum marker enzymes and LPO, and restoring the activities of both the enzymic and non-enzymic antioxidants and membrane bound ATPases towards normalcy. These results demonstrate that NAC acts as a good hepatoprotective and antioxidant agent in attenuating DMN induced oxidative stress and hepatocellular damage.

  14. Oxidative stress induces senescence in human mesenchymal stem cells

    SciTech Connect

    Brandl, Anita; Meyer, Matthias; Bechmann, Volker; Nerlich, Michael; Angele, Peter

    2011-07-01

    Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated {beta}-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.

  15. Overloaded training increases exercise-induced oxidative stress and damage.

    PubMed

    Palazzetti, Stephane; Richard, Marie-Jeanne; Favier, Alain; Margaritis, Irene

    2003-08-01

    We hypothesized that overloaded training (OT) in triathlon would induce oxidative stress and damage on muscle and DNA. Nine male triathletes and 6 male sedentary subjects participated in this study. Before and after a 4-week OT, triathletes exercised for a duathlon. Blood ratio of reduced vs. oxidized glutathione (GSH/GSSG), plasma thiobarbituric acid reactive substances (TBARS), leukocyte DNA damage, creatine kinase (CK), and CK-MB mass in plasma, erythrocyte superoxide dismutase (SOD) activity, erythrocyte and plasma glutathione peroxidase (GSH-Px) activities, and plasma total antioxidant status (TAS) were measured before and after OT in pre- and postexercise situations. Triathletes were overloaded in response to OT. In rest conditions, OT induced plasma GSH-Px activity increase and plasma TAS decrease (both p < 0.05). In exercise conditions, OT resulted in higher exercise-induced variations of blood GSH/GSSG ratio, TBARS level (both p < 0.05), and CK-MB mass (p < 0.01) in plasma; and decreased TAS response (p < 0.05). OT could compromise the antioxidant defense mechanism with respect to exercise-induced response. The resulting increased exercise-induced oxidative stress and further cellular susceptibility to damage needs more study.

  16. H₂O Dissociation-Induced Aluminum Oxide Growth on Oxidized Al(111) Surfaces.

    PubMed

    Liu, Qianqian; Tong, Xiao; Zhou, Guangwen

    2015-12-08

    The interaction of water vapor with amorphous aluminum oxide films on Al(111) is studied using X-ray photoelectron spectroscopy to elucidate the passivation mechanism of the oxidized Al(111) surfaces. Exposure of the aluminum oxide film to water vapor results in self-limiting Al2O3/Al(OH)3 bilayer film growth via counter-diffusion of both ions, Al outward and OH inward, where a thinner starting aluminum oxide film is more reactive toward H2O dissociation-induced oxide growth because of the thickness-dependent ionic transport in the aluminum oxide film. The aluminum oxide film exhibits reactivity toward H2O dissociation in both low-vapor pressure [p(H2O) = 1 × 10(-6) Torr] and intermediate-vapor pressure [p(H2O) = 5 Torr] regimes. Compared to the oxide film growth by exposure to a p(H2O) of 1 × 10(-6) Torr, the exposure to a p(H2O) of 5 Torr results in the formation of a more open structure of the inner Al(OH)3 layer and a more compact outer Al2O3 layer, demonstrating the vapor-pressure-dependent atomic structure in the passivating layer.

  17. Transient light-induced intracellular oxidation revealed by redox biosensor

    SciTech Connect

    Kolossov, Vladimir L.; Beaudoin, Jessica N.; Hanafin, William P.; DiLiberto, Stephen J.; Kenis, Paul J.A.; Rex Gaskins, H.

    2013-10-04

    Highlights: •Time-resolved live cell imaging revealed light-induced oxidation. •Only the roGFP probe fused with glutaredoxin reveals photooxidation. •The transient oxidation is rapidly reduced by the cytosolic antioxidant system. •Intracellular photooxidation is media-dependent. •Oxidation is triggered exclusively by exposure to short wavelength excitation. -- Abstract: We have implemented a ratiometric, genetically encoded redox-sensitive green fluorescent protein fused to human glutaredoxin (Grx1-roGFP2) to monitor real time intracellular glutathione redox potentials of mammalian cells. This probe enabled detection of media-dependent oxidation of the cytosol triggered by short wavelength excitation. The transient nature of light-induced oxidation was revealed by time-lapse live cell imaging when time intervals of less than 30 s were implemented. In contrast, transient ROS generation was not observed with the parental roGFP2 probe without Grx1, which exhibits slower thiol-disulfide exchange. These data demonstrate that the enhanced sensitivity of the Grx1-roGFP2 fusion protein enables the detection of short-lived ROS in living cells. The superior sensitivity of Grx1-roGFP2, however, also enhances responsiveness to environmental cues introducing a greater likelihood of false positive results during image acquisition.

  18. Nitric oxide inhibition sustains vasopressin-induced vasoconstriction.

    PubMed Central

    Dworkin, M. J.; Carnochan, P.; Allen-Mersh, T. G.

    1995-01-01

    Hepatic parenchymal vasoconstriction increases cytotoxic drug uptake into hepatic metastases by increasing the tumour to liver blood flow ratio. Prolonged infusion of the vasoconstrictor vasopressin does not result in sustained vasoconstriction, and this may limit the benefit of vasopressin in infusional chemotherapy. We have assessed whether loss of vasopressin-induced vasoconstriction is mediated by nitric oxide. Hepatic and tumour blood flow were continuously monitored, in an animal hepatic tumour model, by laser Doppler flowmetry. The response to regionally infused vasopressin and the nitric oxide inhibitor N-nitro-L-arginine methyl ester (L-NAME) were assessed over a 30 min infusion period. The vasopressin-induced vasoconstrictor effect diminished after 15 min despite continued infusion. Vasoconstriction was significantly prolonged when L-NAME was infused in addition to vasopressin. The increase in tumour to normal blood flow ratio was greater over the infusion period when L-NAME was co-administered with vasopressin. Our results suggest that the loss of vasopressin-induced vasoconstriction seen in liver parenchyma after regional infusion is prevented by the nitric oxide synthase inhibitor L-name and may be mediated by nitric oxide. PMID:7734317

  19. Ultraviolet-induced erasable photochromism in bilayer metal oxide films

    NASA Astrophysics Data System (ADS)

    Terakado, Nobuaki; Tanaka, Keiji; Nakazawa, Akira

    2011-09-01

    We demonstrate that the optical transmittance of bilayer samples consisting of pyrolytically coated amorphous Mg-Sn-O and metal oxide films such as In 2O 3 and SnO 2 decreases upon ultraviolet illumination, but can be recovered by annealing in air at ˜300 ∘C. Spectral, structural, and compositional studies suggest that this photochromic phenomenon is induced by photoelectronic excitation in the Mg-Sn-O film, electron injection into the metal oxide, which becomes negatively charged, and subsequent formation of metallic particles, which absorb and/or scatter visible light.

  20. The NADPH oxidase inhibitor apocynin (acetovanillone) induces oxidative stress

    SciTech Connect

    Riganti, Chiara . E-mail: dario.ghigo@unito.it

    2006-05-01

    Apocynin (acetovanillone) is often used as a specific inhibitor of NADPH oxidase. In N11 glial cells, apocynin induced, in a dose-dependent way, a significant increase of both malonyldialdehyde level (index of lipid peroxidation) and lactate dehydrogenase release (index of a cytotoxic effect). Apocynin evoked also, in a significant way, an increase of H{sub 2}O{sub 2} concentration and a decrease of the intracellular glutathione/glutathione disulfide ratio, accompanied by augmented efflux of glutathione and glutathione disulfide. Apocynin induced the activation of both pentose phosphate pathway and tricarboxylic acid cycle, which was blocked when the cells were incubated with glutathione together with apocynin. The cell incubation with glutathione prevented also the apocynin-induced increase of malonyldialdehyde generation and lactate dehydrogenase leakage. Apocynin exerted an oxidant effect also in a cell-free system: indeed, in aqueous solution, it evoked a faster oxidation of the thiols glutathione and dithiothreitol, and elicited the generation of reactive oxygen species, mainly superoxide anions. Our results suggest that apocynin per se can induce an oxidative stress and exert a cytotoxic effect in N11 cells and other cell types, and that some effects of apocynin in in vitro and in vivo experimental models should be interpreted with caution.

  1. Oxidant-induced DNA damage of target cells.

    PubMed Central

    Schraufstätter, I; Hyslop, P A; Jackson, J H; Cochrane, C G

    1988-01-01

    In this study we examined the leukocytic oxidant species that induce oxidant damage of DNA in whole cells. H2O2 added extracellularly in micromolar concentrations (10-100 microM) induced DNA strand breaks in various target cells. The sensitivity of a specific target cell was inversely correlated to its catalase content and the rate of removal of H2O2 by the target cell. Oxidant species produced by xanthine oxidase/purine or phorbol myristate acetate-stimulated monocytes induced DNA breakage of target cells in proportion to the amount of H2O2 generated. These DNA strand breaks were prevented by extracellular catalase, but not by superoxide dismutase. Cytotoxic doses of HOCl, added to target cells, did not induce DNA strand breakage, and myeloperoxidase added extracellularly in the presence of an H2O2-generating system, prevented the formation of DNA strand breaks in proportion to its H2O2 degrading capacity. The studies also indicated that H2O2 formed hydroxyl radical (.OH) intracellularly, which appeared to be the most likely free radical responsible for DNA damage: .OH was detected in cells exposed to H2O2; the DNA base, deoxyguanosine, was hydroxylated in cells exposed to H2O2; and intracellular iron was essential for induction of DNA strand breaks. PMID:2843565

  2. Role of Oxidative Stress in Drug-Induced Kidney Injury

    PubMed Central

    Hosohata, Keiko

    2016-01-01

    The kidney plays a primary role in maintaining homeostasis and detoxification of numerous hydrophilic xenobiotics as well as endogenous compounds. Because the kidney is exposed to a larger proportion and higher concentration of drugs and toxins than other organs through the secretion of ionic drugs by tubular organic ion transporters across the luminal membranes of renal tubular epithelial cells, and through the reabsorption of filtered toxins into the lumen of the tubule, these cells are at greater risk for injury. In fact, drug-induced kidney injury is a serious problem in clinical practice and accounts for roughly 20% of cases of acute kidney injury (AKI) among hospitalized patients. Therefore, its early detection is becoming more important. Usually, drug-induced AKI consists of two patterns of renal injury: acute tubular necrosis (ATN) and acute interstitial nephritis (AIN). Whereas AIN develops from medications that incite an allergic reaction, ATN develops from direct toxicity on tubular epithelial cells. Among several cellular mechanisms underlying ATN, oxidative stress plays an important role in progression to ATN by activation of inflammatory response via proinflammatory cytokine release and inflammatory cell accumulation in tissues. This review provides an overview of drugs associated with AKI, the role of oxidative stress in drug-induced AKI, and a biomarker for drug-induced AKI focusing on oxidative stress. PMID:27809280

  3. Nitric oxide ameliorates the damaging effects of oxidative stress induced by iron deficiency in cyanobacterium Anabaena 7120.

    PubMed

    Kaushik, Manish Singh; Srivastava, Meenakshi; Srivastava, Alka; Singh, Anumeha; Mishra, Arun Kumar

    2016-11-01

    In cyanobacterium Anabaena 7120, iron deficiency leads to oxidative stress with unavoidable consequences. Nitric oxide reduces pigment damage and supported the growth of Anabaena 7120 in iron-deficient conditions. Elevation in nitric oxide accumulation and reduced superoxide radical production justified the role of nitric oxide in alleviating oxidative stress in iron deficiency. Increased activities of antioxidative enzymes and higher levels of ROS scavengers (ascorbate, glutathione and thiol) in iron deficiency were also observed in the presence of nitric oxide. Nitric oxide also supported the membrane integrity of Anabaena cells and reduces protein and DNA damage caused by oxidative stress induced by iron deficiency. Results suggested that nitric oxide alleviates the damaging effects of oxidative stress induced by iron deficiency in cyanobacterium Anabaena 7120.

  4. Nivalenol induces oxidative stress and increases deoxynivalenol pro-oxidant effect in intestinal epithelial cells

    SciTech Connect

    Del Regno, Marisanta; Adesso, Simona; Popolo, Ada; Quaroni, Andrea; Autore, Giuseppina; Severino, Lorella; Marzocco, Stefania

    2015-06-01

    Mycotoxins are secondary fungal metabolites often found as contaminants in almost all agricultural commodities worldwide, and the consumption of food or feed contaminated by mycotoxins represents a major risk for human and animal health. Reactive oxygen species are normal products of cellular metabolism. However, disproportionate generation of reactive oxygen species poses a serious problem to bodily homeostasis and causes oxidative tissue damage. In this study we analyzed the effect of two trichothecenes mycotoxins: nivalenol and deoxynivalenol, alone and in combination, on oxidative stress in the non-tumorigenic intestinal epithelial cell line IEC-6. Our results indicate the pro-oxidant nivalenol effect in IEC-6, the stronger pro-oxidant effect of nivalenol when compared to deoxynivalenol and, interestingly, that nivalenol increases deoxynivalenol pro-oxidative effects. Mechanistic studies indicate that the observed effects were mediated by NADPH oxidase, calcium homeostasis alteration, NF-kB and Nrf2 pathways activation and by iNOS and nitrotyrosine formation. The toxicological interaction by nivalenol and deoxynivalenol reported in this study in IEC-6, points out the importance of the toxic effect of these mycotoxins, mostly in combination, further highlighting the risk assessment process of these toxins that are of growing concern. - Highlights: • Nivalenol induces oxidative stress in intestinal epithelial cells (IECs). • Nivalenol increases deoxynivalenol pro-oxidant effects in IECs. • Nivalenol and deoxynivalenol trigger antioxidant response IECs. • These results indicate the importance of mycotoxins co-contamination.

  5. Tamoxifen inhibits mitochondrial oxidative stress damage induced by copper orthophenanthroline.

    PubMed

    Buelna-Chontal, Mabel; Hernández-Esquivel, Luz; Correa, Francisco; Díaz-Ruiz, Jorge Luis; Chávez, Edmundo

    2016-12-01

    In this work, we studied the effect of tamoxifen and cyclosporin A on mitochondrial permeability transition caused by addition of the thiol-oxidizing pair Cu(2+) -orthophenanthroline. The findings indicate that tamoxifen and cyclosporin A circumvent the oxidative membrane damage manifested by matrix Ca(2+) release, mitochondrial swelling, and transmembrane electrical gradient collapse. Furthermore, it was found that tamoxifen and cyclosporin A prevent the generation of TBARs promoted by Cu(2+) -orthophenanthroline, as well as the inactivation of the mitochondrial enzyme aconitase and disruption of mDNA. Electrophoretic analysis was unable to demonstrate a cross-linking reaction between membrane proteins. Yet, it was found that Cu(2+) -orthophenanthroline induced the generation of reactive oxygen species. It is thus plausible that membrane leakiness is due to an oxidative stress injury.

  6. Magnetism in graphene oxide induced by epoxy groups

    SciTech Connect

    Lee, Dongwook; Seo, Jiwon; Zhu, Xi; Su, Haibin; Cole, Jacqueline M.

    2015-04-27

    We have engineered magnetism in graphene oxide. Our approach transforms graphene into a magnetic insulator while maintaining graphene's structure. Fourier transform infrared spectroscopy spectra reveal that graphene oxide has various chemical groups (including epoxy, ketone, hydroxyl, and C-O groups) on its surface. Destroying the epoxy group with heat treatment or chemical treatment diminishes magnetism in the material. Local density approximation calculation results well reproduce the magnetic moments obtained from experiments, and these results indicate that the unpaired spin induced by the presence of epoxy groups is the origin of the magnetism. The calculation results also explain the magnetic properties, which are generated by the interaction between separated magnetic regions and domains. Our results demonstrate tunable magnetism in graphene oxide based on controlling the epoxy group with heat or chemical treatment.

  7. [Research of antioxidant defence system under alimentary induced oxidative stress].

    PubMed

    Kravchenko, Iu V; Mal'tsev, G Iu; Vasil'ev, A V

    2004-01-01

    Alimentary induced oxidative stress and its corrections in children and adults with homocysteine metabolism disorder are urgent problems for arteriosclerosis and cardiovascular disease prophylactics. For determination antioxidant status GSH-Px, SOD, GSH-reductase, catalase activities were detected. Effectiveness of Se-contained antioxidant complex "Selenec" was determined in experimental model with pubertal male Wistar rats. Including high value of methionine to semipurified diet with pyridoxine and folate deficiency induced oxidative stress. Lipid peroxidation substances were increased in blood, liver, intestine mucous tunic, aortal endothelium and myocardium. GSH-Px, SOD, GSH-reductase, catalase activities decreased significant compared to control. "Selenec" supplementation caused a decrease of thiobarbituric-reactive substances level, increasing SOD and catalase activity and decreasing GSH-Px and GSH-reductase activity in blood, liver, intestine mucous tunic, aorta and myocardium.

  8. Nitric oxide-donor SNAP induces Xenopus eggs activation.

    PubMed

    Jeseta, Michal; Marin, Matthieu; Tichovska, Hana; Melicharova, Petra; Cailliau-Maggio, Katia; Martoriati, Alain; Lescuyer-Rousseau, Arlette; Beaujois, Rémy; Petr, Jaroslav; Sedmikova, Marketa; Bodart, Jean-François

    2012-01-01

    Nitric oxide (NO) is identified as a signaling molecule involved in many cellular or physiological functions including meiotic maturation and parthenogenetic activation of mammalian oocytes. We observed that nitric oxide donor SNAP was potent to induce parthenogenetic activation in Xenopus eggs. NO-scavenger CPTIO impaired the effects of SNAP, providing evidence for the effects of the latter to be specific upon NO release. In Xenopus eggs, SNAP treatment induced pigment rearrangement, pronucleus formation and exocytosis of cortical granules. At a biochemical level, SNAP exposure lead to MAPK and Rsk inactivation within 30 minutes whereas MPF remained active, in contrast to calcium ionophore control where MPF activity dropped rapidly. MAPK inactivation could be correlated to pronuclear envelope reformation observed. In SNAP-treated eggs, a strong increase in intracellular calcium level was observed. NO effects were impaired in calcium-free or calcium limited medium, suggesting that that parthenogenetic activation of Xenopus oocytes with a NO donor was mainly calcium-dependent.

  9. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells

    PubMed Central

    Wang, Ye; Zi, Xiao-Yuan; Su, Juan; Zhang, Hong-Xia; Zhang, Xin-Rong; Zhu, Hai-Ying; Li, Jian-Xiu; Yin, Meng; Yang, Feng; Hu, Yi-Ping

    2012-01-01

    In the rapid development of nanoscience and nanotechnology, many researchers have discovered that metal oxide nanoparticles have very useful pharmacological effects. Cuprous oxide nanoparticles (CONPs) can selectively induce apoptosis and suppress the proliferation of tumor cells, showing great potential as a clinical cancer therapy. Treatment with CONPs caused a G1/G0 cell cycle arrest in tumor cells. Furthermore, CONPs enclosed in vesicles entered, or were taken up by mitochondria, which damaged their membranes, thereby inducing apoptosis. CONPs can also produce reactive oxygen species (ROS) and initiate lipid peroxidation of the liposomal membrane, thereby regulating many signaling pathways and influencing the vital movements of cells. Our results demonstrate that CONPs have selective cytotoxicity towards tumor cells, and indicate that CONPs might be a potential nanomedicine for cancer therapy. PMID:22679374

  10. THz-Pulse-Induced Selective Catalytic CO Oxidation on Ru.

    PubMed

    LaRue, Jerry L; Katayama, Tetsuo; Lindenberg, Aaron; Fisher, Alan S; Öström, Henrik; Nilsson, Anders; Ogasawara, Hirohito

    2015-07-17

    We demonstrate the use of intense, quasi-half-cycle THz pulses, with an associated electric field component comparable to intramolecular electric fields, to direct the reaction coordinate of a chemical reaction by stimulating the nuclear motions of the reactants. Using a strong electric field from a THz pulse generated via coherent transition radiation from an ultrashort electron bunch, we present evidence that CO oxidation on Ru(0001) is selectively induced, while not promoting the thermally induced CO desorption process. The reaction is initiated by the motion of the O atoms on the surface driven by the electric field component of the THz pulse, rather than thermal heating of the surface.

  11. Rutin inhibits amylin-induced neurocytotoxicity and oxidative stress.

    PubMed

    Yu, Xiao-Lin; Li, Ya-Nan; Zhang, He; Su, Ya-Jing; Zhou, Wei-Wei; Zhang, Zi-Ping; Wang, Shao-Wei; Xu, Peng-Xin; Wang, Yu-Jiong; Liu, Rui-Tian

    2015-10-01

    Recent evidence showed that amylin deposition is not only found in the pancreas in type 2 diabetes mellitus (T2DM) patients, but also in other peripheral organs, such as kidneys, heart and brain. Circulating amylin oligomers that cross the blood-brain barrier and accumulate in the brain may be an important contributor to diabetic cerebral injury and neurodegeneration. Moreover, increasing epidemiological studies indicate that there is a significant association between T2DM and Alzheimer's disease (AD). Amylin and β-amyloid (Aβ) may share common pathophysiology and show strikingly similar neurotoxicity profiles in the brain. To explore the potential effects of rutin on AD, we here investigated the effect of rutin on amylin aggregation by thioflavin T dyeing, evaluated the effect of rutin on amylin-induced neurocytotoxicity by the MTT assay, and assessed oxidative stress, as well as the generation of nitric oxide (NO) and pro-inflammatory cytokines in neuronal cells. Our results showed that the flavonoid antioxidant rutin inhibited amylin-induced neurocytotoxicity, decreased the production of reactive oxygen species (ROS), NO, glutathione disulfide (GSSG), malondialdehyde (MDA) and pro-inflammatory cytokines TNF-α and IL-1β, attenuated mitochondrial damage and increased the GSH/GSSG ratio. These protective effects of rutin may have resulted from its ability to inhibit amylin aggregation, enhance the antioxidant enzyme activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) and reduce inducible nitric oxide synthase (iNOS) activity. These in vitro results indicate that rutin is a promising natural product for protecting neuronal cells from amylin-induced neurotoxicity and oxidative stress, and rutin administration could be a feasible therapeutic strategy for preventing AD development and protecting the aging brain or slowing neurodegenerative processes.

  12. Increasing mitochondrial muscle fatty acid oxidation induces skeletal muscle remodeling toward an oxidative phenotype.

    PubMed

    Hénique, Carole; Mansouri, Abdelhak; Vavrova, Eliska; Lenoir, Véronique; Ferry, Arnaud; Esnous, Catherine; Ramond, Elodie; Girard, Jean; Bouillaud, Frédéric; Prip-Buus, Carina; Cohen, Isabelle

    2015-06-01

    Adult skeletal muscle is a dynamic, remarkably plastic tissue, which allows myofibers to switch from fast/glycolytic to slow/oxidative types and to increase mitochondrial fatty acid oxidation (mFAO) capacity and vascularization in response to exercise training. mFAO is the main muscle energy source during endurance exercise, with carnitine palmitoyltransferase 1 (CPT1) being the key regulatory enzyme. Whether increasing muscle mFAO affects skeletal muscle physiology in adulthood actually remains unknown. To investigate this, we used in vivo electrotransfer technology to express in mouse tibialis anterior (TA), a fast/glycolytic muscle, a mutated CPT1 form (CPT1mt) that is active but insensitive to malonyl-CoA, its physiologic inhibitor. In young (2-mo-old) adult mice, muscle CPT1mt expression enhanced mFAO (+40%), but also increased the percentage of oxidative fibers (+28%), glycogen content, and capillary-to-fiber density (+45%). This CPT1mt-induced muscle remodeling, which mimicked exercise-induced oxidative phenotype, led to a greater resistance to muscle fatigue. In the context of aging, characterized by sarcopenia and reduced oxidative capacity, CPT1mt expression in TAs from aged (20-mo-old) mice partially reversed aging-associated sarcopenia and fiber-type transition, and increased muscle capillarity. These findings provide evidence that mFAO regulates muscle phenotype and may be a potential target to combat age-related decline in muscle function.

  13. Blue light-induced oxidative stress in live skin.

    PubMed

    Nakashima, Yuya; Ohta, Shigeo; Wolf, Alexander M

    2017-03-15

    Skin damage from exposure to sunlight induces aging-like changes in appearance and is attributed to the ultraviolet (UV) component of light. Photosensitized production of reactive oxygen species (ROS) by UVA light is widely accepted to contribute to skin damage and carcinogenesis, but visible light is thought not to do so. Using mice expressing redox-sensitive GFP to detect ROS, blue light could produce oxidative stress in live skin. Blue light induced oxidative stress preferentially in mitochondria, but green, red, far red or infrared light did not. Blue light-induced oxidative stress was also detected in cultured human keratinocytes, but the per photon efficacy was only 25% of UVA in human keratinocyte mitochondria, compared to 68% of UVA in mouse skin. Skin autofluorescence was reduced by blue light, suggesting flavins are the photosensitizer. Exposing human skin to the blue light contained in sunlight depressed flavin autofluorescence, demonstrating that the visible component of sunlight has a physiologically significant effect on human skin. The ROS produced by blue light is probably superoxide, but not singlet oxygen. These results suggest that blue light contributes to skin aging similar to UVA.

  14. Dimethyl sulfoxide induces oxidative stress in the yeast Saccharomyces cerevisiae.

    PubMed

    Sadowska-Bartosz, Izabela; Pączka, Aleksandra; Mołoń, Mateusz; Bartosz, Grzegorz

    2013-12-01

    Dimethyl sulfoxide (DMSO) is used as a cryoprotectant for the preservation of cells, including yeast, and as a solvent for chemical compounds. We report that DMSO induces oxidative stress in the yeast. Saccharomyces cerevisiae wt strain EG-103 and its mutants Δsod1, Δsod2, and Δsod1 Δsod2 were used. Yeast were subjected to the action of 1-14% DMSO for 1 h at 28 °C. DMSO induced a concentration-dependent inhibition of yeast growth, the effect being more pronounced for mutants devoid of SOD (especially Δsod1 Δsod2). Cell viability was compromised. DMSO-concentration-dependent activity loss of succinate dehydrogenase, a FeS enzyme sensitive to oxidative stress, was observed. DMSO enhanced formation of reactive oxygen species, estimated with dihydroethidine in a concentration-dependent manner, the effect being again more pronounced in mutants devoid of superoxide dismutases. The content of cellular glutathione was increased with increasing DMSO concentrations, which may represent a compensatory response. Membrane fluidity, estimated by fluorescence polarization of DPH, was decreased by DMSO. These results demonstrate that DMSO, although generally considered to be antioxidant, induces oxidative stress in yeast cells.

  15. Azadirachta indica Attenuates Cisplatin-Induced Nephrotoxicity and Oxidative Stress

    PubMed Central

    Abdel Moneim, Ahmed E.; Othman, Mohamed S.; Aref, Ahmed M.

    2014-01-01

    We investigated the effects of methanolic leaves extract of Azadirachta indica (MLEN, 500 mg/kg bwt) on cisplatin- (CP-) induced nephrotoxicity and oxidative stress in rats. CP (5 mg/kg bwt) was injected intraperitoneally and MLEN was given by gastric gavage for 5 days before or after CP injection. After 5 days of CP injection, CP-induced injury of the renal tissue was evidenced (i) as histopathological damage of the renal tissue, (ii) as increases in serum uric acid, urea, and creatinine, (iii) as increases in malondialdehyde (MDA) and nitric oxide (NO), (iv) as decreases in the level of glutathione and activities of superoxide dismutase, catalase, glutathione reductase, glutathione-S-transferase, and glutathione peroxidase, and (v) as increase in the expression of nuclear factor kappa B and apoptosis in kidney tissues. However, the oral administration of MLEN to CP-intoxicated rats for 5 days brought back MDA, NO production, and enzymatic and nonenzymatic antioxidants to near normalcy. Moreover, the histological observations evidenced that neem extract effectively rescues the kidney from CP-mediated oxidative damage. Furthermore, PCR results for caspase-3 and caspase-9 and Bax genes showed downregulation in MLEN treated groups. Therefore, Azadirachta indica can be considered a potential candidate for protection of nephrotoxicity induced by cisplatin. PMID:25162019

  16. Oxidative-stress-induced epigenetic changes in chronic diabetic complications.

    PubMed

    Feng, Biao; Ruiz, Michael Anthony; Chakrabarti, Subrata

    2013-03-01

    Oxidative stress plays an important role in the development and progression of chronic diabetic complications. Diabetes causes mitochondrial superoxide overproduction in the endothelial cells of both large and small vessels. This increased superoxide production causes the activation of several signal pathways involved in the pathogenesis of chronic complications. In particular, endothelial cells are major targets of glucose-induced oxidative damage in the target organs. Oxidative stress activates cellular signaling pathways and transcription factors in endothelial cells including protein kinase C (PKC), c-Jun-N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), forkhead box O (FOXO), and nuclear factor kappa-B (NF-κB). Oxidative stress also causes DNA damage and activates DNA nucleotide excision repair enzymes including the excision repair cross complimenting 1(ERCC1), ERCC4, and poly(ADP-ribose) polymerase (PARP). Augmented production of histone acetyltransferase p300, and alterations of histone deacetylases, including class III deacetylases sirtuins, are also involved in this process. Recent research has found that small noncoding RNAs, like microRNA, are a new kind of regulator associated with chronic diabetic complications. There are extensive and complicated interactions and among these molecules. The purpose of this review is to demonstrate the role of oxidative stress in the development of diabetic complications in relation to epigenetic changes such as acetylation and microRNA alterations.

  17. Oxidation-Induced Degradable Nanogels for Iron Chelation

    NASA Astrophysics Data System (ADS)

    Liu, Zhi; Wang, Yan; Purro, Max; Xiong, May P.

    2016-02-01

    Iron overload can increase cellular oxidative stress levels due to formation of reactive oxygen species (ROS); untreated, it can be extremely destructive to organs and fatal to patients. Since elevated oxidative stress levels are inherent to the condition in such patients, oxidation-induced degradable nanogels for iron chelation were rationally designed by simultaneously polymerizing oxidation-sensitive host-guest crosslinkers between β-cyclodextrin (β-CD) and ferrocene (Fc) and iron chelating moieties composed of deferoxamine (DFO) into the final gel scaffold in reverse emulsion reaction chambers. UV-Vis absorption and atomic absorption spectroscopy (AAS) was used to verify iron chelating capability of nanogels. These materials can degrade into smaller chelating fragments at rates proportional to the level of oxidative stress present. Conjugating DFO reduces the cytotoxicity of the chelator in the macrophage cells. Importantly, the nanogel can effectively reduce cellular ferritin expression in iron overloaded cells and regulate intracellular iron levels at the same time, which is important for maintaining a homeostatic level of this critical metal in cells.

  18. Oxidation-Induced Degradable Nanogels for Iron Chelation

    PubMed Central

    Liu, Zhi; Wang, Yan; Purro, Max; Xiong, May P.

    2016-01-01

    Iron overload can increase cellular oxidative stress levels due to formation of reactive oxygen species (ROS); untreated, it can be extremely destructive to organs and fatal to patients. Since elevated oxidative stress levels are inherent to the condition in such patients, oxidation-induced degradable nanogels for iron chelation were rationally designed by simultaneously polymerizing oxidation-sensitive host-guest crosslinkers between β-cyclodextrin (β-CD) and ferrocene (Fc) and iron chelating moieties composed of deferoxamine (DFO) into the final gel scaffold in reverse emulsion reaction chambers. UV-Vis absorption and atomic absorption spectroscopy (AAS) was used to verify iron chelating capability of nanogels. These materials can degrade into smaller chelating fragments at rates proportional to the level of oxidative stress present. Conjugating DFO reduces the cytotoxicity of the chelator in the macrophage cells. Importantly, the nanogel can effectively reduce cellular ferritin expression in iron overloaded cells and regulate intracellular iron levels at the same time, which is important for maintaining a homeostatic level of this critical metal in cells. PMID:26868174

  19. Soyasaponin Bb Protects Rat Hepatocytes from Alcohol-Induced Oxidative Stress by Inducing Heme Oxygenase-1

    PubMed Central

    Lijie, Zhu; Ranran, Fu; Xiuying, Liu; Yutang, He; Bo, Wang; Tao, Ma

    2016-01-01

    Background: It has been known that oxidative stress induced by alcohol played a crucial role in the formation of alcoholic liver disease. Although the formation mechanisms underlying liver injury induced by alcohol still remained largely unknown, it has been considered that oxidative stress played a core role in the pathogenesis of hepatocyte damage. Objective: The aim of this study was to investigate the effects of soyasaponin Bb (Ss-Bb) on oxidative stress in alcohol-induced rat hepatocyte injury. Results: It has been shown that the administration of Ss-Bb could significantly restore antioxidant activity in BRL 3A cells. Moreover, the impaired liver function and morphology changes resulting from ethanol exposure were improved by Ss-Bb treatment. Treatment with a pharmacological inhibitor of haem oxygenase-1 (HO-1) indicated a critical role of HO-1 in mediating the protective role. Finally, we found that pretreatment with Ss-Bb to ethanol exposure cells increased the expression level of HO-1. Conclusion: It was suggested that Ss-Bb may protect against alcohol-induced hepatocyte injury through ameliorating oxidative stress, and the induction of HO-1 was an important protective mechanism. SUMMARY Effects of soyasaponin Bb was investigated on oxidative stress in rat hepatocytesCell viability and antioxidant capacities were evaluated to determine the effectsThe expression level of HO-1 was measured to reveal the proptective mechanisms PMID:27867273

  20. Contaminant-induced oxidative stress in fish: a mechanistic approach.

    PubMed

    Lushchak, Volodymyr I

    2016-04-01

    The presence of reactive oxygen species (ROS) in living organisms was described more than 60 years ago and virtually immediately it was suggested that ROS were involved in various pathological processes and aging. The state when ROS generation exceeds elimination leading to an increased steady-state ROS level has been called "oxidative stress." Although ROS association with many pathological states in animals is well established, the question of ROS responsibility for the development of these states is still open. Fish represent the largest group of vertebrates and they inhabit a broad range of ecosystems where they are subjected to many different aquatic contaminants. In many cases, the deleterious effects of contaminants have been connected to induction of oxidative stress. Therefore, deciphering of molecular mechanisms leading to such contaminant effects and organisms' response may let prevent or minimize deleterious impacts of oxidative stress. This review describes general aspects of ROS homeostasis, in particular highlighting its basic aspects, modification of cellular constituents, operation of defense systems and ROS-based signaling with an emphasis on fish systems. A brief introduction to oxidative stress theory is accompanied by the description of a recently developed classification system for oxidative stress based on its intensity and time course. Specific information on contaminant-induced oxidative stress in fish is covered in sections devoted to such pollutants as metal ions (particularly iron, copper, chromium, mercury, arsenic, nickel, etc.), pesticides (insecticides, herbicides, and fungicides) and oil with accompanying pollutants. In the last section, certain problems and perspectives in studies of oxidative stress in fish are described.

  1. Nitric oxide-induced calcium release: activation of type 1 ryanodine receptor by endogenous nitric oxide.

    PubMed

    Kakizawa, Sho; Yamazawa, Toshiko; Iino, Masamitsu

    2013-01-01

    Ryanodine receptors (RyRs), located in the sarcoplasmic/endoplasmic reticulum (SR/ER) membrane, are required for intracellular Ca2+ release that is involved in a wide range of cellular functions. In addition to Ca2+-induced Ca2+ release in cardiac cells and voltage-induced Ca2+ release in skeletal muscle cells, we recently identified another mode of intracellular Ca2+ mobilization mediated by RyR, i.e., nitric oxide-induced Ca2+ release (NICR), in cerebellar Purkinje cells. NICR is evoked by neuronal activity, is dependent on S-nitrosylation of type 1 RyR (RyR1) and is involved in the induction of long-term potentiation (LTP) of cerebellar synapses. In this addendum, we examined whether peroxynitrite, which is produced by the reaction of nitric oxide with superoxide, may also have an effect on the Ca2+ release via RyR1 and the cerebellar LTP. We found that scavengers of peroxynitrite have no significant effect either on the Ca2+ release via RyR1 or on the cerebellar LTP. We also found that an application of a high concentration of peroxynitrite does not reproduce neuronal activity-dependent Ca2+ release in Purkinje cells. These results support that NICR is induced by endogenous nitric oxide produced by neuronal activity through S-nitrosylation of RyR1.

  2. Nitric oxide synthases and cyclophosphamide-induced cystitis in rats.

    PubMed

    Alfieri, A B; Malave, A; Cubeddu, L X

    2001-03-01

    The role of inducible (iNOS) and neuronal nitric oxide (nNOS) synthases and of tachykinin NK1 receptors on the pathogenesis of cyclophosphamide (CYP)-induced cystitis was investigated, in rats. CYP-induced cystitis was characterized by large increases in bladder-protein plasma extravasation (PPE), increases in the urinary excretion of nitric oxide (NO) metabolites and histological evidences of urothelial damage, edema, extensive white blood cell infiltrates and vascular congestion of the bladder. The specific iNOS inhibitor, S-methylthiourea (MITU), produced marked inhibition (>90%) of CYP-induced increases in PPE associated with amelioration of tissue inflammatory changes. Treatment with 7-nitroindazole (7-NI; 20, 40 and 80 mg/kg), a selective nNOS inhibitor, did not significantly reduce CYP-induced increases in PPE and failed to produce histological improvement. In addition, treatment with MITU, but not with 7-NI, inhibited the increases in the urinary excretion of NO metabolites induced by CYP treatment. WIN 51,708 (17-beta-hydroxy-17-alpha-ethynyl-androstano[3,2-b]pyrimido[1,2-a]benzimidazole; WIN), a selective NK1-receptor antagonist, reduced the increases in EPP and ameliorated the inflammatory changes in the bladder induced by CYP. However, the maximal degree of protection achieved with WIN was significantly less than that produced by MITU. Combined treatment with the iNOS inhibitor and the NK1 antagonist produced no greater effect than that produced by the iNOS inhibitor alone. Our results suggest that NO plays a fundamental role in the production of the cystitis associated with CYP treatment. The iNOS, and not nNOS, seems responsible for the inflammatory changes. Part of the increases in NO may due to activation of NK1 receptors by neuropeptides such as substance P possibly released from primary afferent fibers.

  3. Expression of inducible nitric oxide in human lung epithelial cells.

    PubMed

    Robbins, R A; Barnes, P J; Springall, D R; Warren, J B; Kwon, O J; Buttery, L D; Wilson, A J; Geller, D A; Polak, J M

    1994-08-30

    Nitric oxide (NO) is increased in the exhaled air of subjects with several airway disorders. To determine if cytokines could stimulate epithelial cells accounting for the increased NO, the capacity of the proinflammatory cytokines (cytomix: tumor necrosis factor-alpha, interleukin-1 beta, and interferon-gamma) to increase inducible nitric oxide synthase (iNOS) was investigated in A549 and primary cultures of human bronchial epithelial cells. Cytomix induced a time-dependent increase in nitrite levels in culture supernatant fluids (p < 0.05). Increased numbers of cells stained for iNOS and increased iNOS mRNA was detected in the cytokine-stimulated cells compared to control (p < 0.05). Dexamethasone diminished the cytokine-induced increase in nitrite, iNOS by immunocytochemistry, and iNOS mRNA. These data demonstrate that cytokines, such as those released by mononuclear cells, can induce lung epithelial iNOS expression and NO release, and that this is attenuated by dexamethasone.

  4. Impaired Mitochondrial Fat Oxidation Induces FGF21 in Muscle.

    PubMed

    Vandanmagsar, Bolormaa; Warfel, Jaycob D; Wicks, Shawna E; Ghosh, Sujoy; Salbaum, J Michael; Burk, David; Dubuisson, Olga S; Mendoza, Tamra M; Zhang, Jingying; Noland, Robert C; Mynatt, Randall L

    2016-05-24

    Fatty acids are the primary fuel source for skeletal muscle during most of our daily activities, and impaired fatty acid oxidation (FAO) is associated with insulin resistance. We have developed a mouse model of impaired FAO by deleting carnitine palmitoyltransferase-1b specifically in skeletal muscle (Cpt1b(m-/-)). Cpt1b(m-/-) mice have increased glucose utilization and are resistant to diet-induced obesity. Here, we show that inhibition of mitochondrial FAO induces FGF21 expression specifically in skeletal muscle. The induction of FGF21 in Cpt1b-deficient muscle is dependent on AMPK and Akt1 signaling but independent of the stress signaling pathways. FGF21 appears to act in a paracrine manner to increase glucose uptake under low insulin conditions, but it does not contribute to the resistance to diet-induced obesity.

  5. Impaired mitochondrial fat oxidation induces FGF21 in muscle

    PubMed Central

    Vandanmagsar, Bolormaa; Warfel, Jaycob D.; Wicks, Shawna E.; Ghosh, Sujoy; Salbaum, J. Michael; Burk, David; Dubuisson, Olga S.; Mendoza, Tamra M.; Zhang, Jingying; Noland, Robert C.; Mynatt, Randall L.

    2016-01-01

    SUMMARY Fatty acids are the primary fuel source for skeletal muscle during most of our daily activities and impaired fatty acid oxidation (FAO) is associated with insulin resistance. We have developed a mouse model of impaired FAO by deleting carnitine palmitoyltransferase-1b specifically in skeletal muscle (Cpt1bm−/−). Cpt1bm−/− mice have increased glucose utilization and are resistant to diet induced obesity. Here we show that inhibition of mitochondrial FAO induces FGF21 expression specifically in skeletal muscle. The induction of FGF21 in Cpt1b-deficient muscle is dependent on AMPK and Akt1 signaling but independent on the stress signaling pathways. FGF21 appears to act in a paracrine manner to increase glucose uptake under low insulin conditions, but does not contribute to the resistance to diet induced obesity. PMID:27184848

  6. Visible light induced oxidation of water by rare earth manganites, cobaltites and related oxides

    NASA Astrophysics Data System (ADS)

    Naidu, B. S.; Gupta, Uttam; Maitra, Urmimala; Rao, C. N. R.

    2014-01-01

    A study of the visible light induced oxidation of water by perovskite oxides of the formula LaMO3 (M = transition metal) has revealed the best activity with LaCoO3 which contains Co3+ in the intermediate-spin (IS) with one eg electron. Among the rare earth manganites, only orthorhombic manganites with octahedral Mn3+ ions exhibit good catalytic activity, but hexagonal manganites are poor catalysts. Interestingly, not only the perovskite rare earth cobaltites but also solid solutions of Co3+ in cubic rare earth sesquioxides exhibit catalytic activity comparable to LaCoO3, the Co3+ ion in all these oxides also being in the IS t2g5 e g 1 state.

  7. Cerium and yttrium oxide nanoparticles against lead-induced oxidative stress and apoptosis in rat hippocampus.

    PubMed

    Hosseini, Asieh; Sharifi, Ali Mohammad; Abdollahi, Mohammad; Najafi, Rezvan; Baeeri, Maryam; Rayegan, Samira; Cheshmehnour, Jamshid; Hassani, Shokoufeh; Bayrami, Zahra; Safa, Majid

    2015-03-01

    Due to numerous industrial applications, lead has caused widespread pollution in the environment; it seems that the central nervous system (CNS) is the main target for lead in the human body. Oxidative stress and programmed cell death in the CNS have been assumed as two mechanisms related to neurotoxicity of lead. Cerium oxide (CeO2) and yttrium oxide (Y2O3) nanoparticles have recently shown antioxidant effects, particularly when used together, through scavenging the amount of reactive oxygen species (ROS) required for cell apoptosis. We looked into the neuroprotective effects of the combinations of these nanoparticles against acute lead-induced neurotoxicity in rat hippocampus. We used five groups in this study: control, lead, CeO2 nanoparticles + lead, Y2O3 nanoparticles + lead, and CeO2 and Y2O3 nanoparticles + lead. Nanoparticles of CeO2 (1000 mg/kg) and Y2O3 (230 mg/kg) were administered intraperitoneally during 2 days prior to intraperitoneal injection of the lead (25 mg/kg for 3 days). At the end of the treatments, oxidative stress markers, antioxidant enzymes activity, and apoptosis indexes were investigated. The results demonstrated that pretreatments with CeO2 and/or Y2O3 nanoparticles recovered lead-caused oxidative stress markers (ROS, lipid peroxidation, and total thiol molecules) and apoptosis indexes (Bax/Bcl-2 and caspase-3 protein expression). Besides, these nanoparticles reduced the activities of lead-induced superoxide dismutase and catalase as well as the ADP/ATP ratio. Interestingly, the best recovery resulted from the compound of these nanoparticles. Based on these outcomes, it appears that this combination may potentially be beneficial for protection against lead-caused acute toxicity in the brain through improving the oxidative stress-mediated programmed cell death pathway.

  8. Nitric oxide mitigates arsenic-induced oxidative stress and genotoxicity in Vicia faba L.

    PubMed

    Shukla, Pratiksha; Singh, A K

    2015-09-01

    The protective effects of nitric oxide (NO) against arsenic (As)-induced structural disturbances in Vicia faba have been investigated. As treatment (0.25, 0.50, and 1 mM) resulted in a declined growth of V. faba seedlings. Arsenic treatment stimulates the activity of SOD and CAT while the activities of APX and GST content were decreased. The oxidative stress markers such as superoxide radical, hydrogen peroxide and malondialdehyde (lipid peroxidation) contents were enhanced by As. Overall results revealed that significant accumulation of As suppressed growth, photosynthesis, antioxidant enzymes (SOD, CAT, APX, and GST activity), mitotic index, and induction of different chromosomal abnormalities, hence led to oxidative stress. The concentration of SNP (0.02 mM) was very effective in counteracting the adverse effect of As toxicity. These abnormalities use partially or fully reversed by a simultaneous application of As and NO donor and sodium nitroprusside and has an ameliorating effect against As-induced oxidative stress and genotoxicity in V. faba roots.

  9. Advances in metal-induced oxidative stress and human disease.

    PubMed

    Jomova, Klaudia; Valko, Marian

    2011-05-10

    Detailed studies in the past two decades have shown that redox active metals like iron (Fe), copper (Cu), chromium (Cr), cobalt (Co) and other metals undergo redox cycling reactions and possess the ability to produce reactive radicals such as superoxide anion radical and nitric oxide in biological systems. Disruption of metal ion homeostasis may lead to oxidative stress, a state where increased formation of reactive oxygen species (ROS) overwhelms body antioxidant protection and subsequently induces DNA damage, lipid peroxidation, protein modification and other effects, all symptomatic for numerous diseases, involving cancer, cardiovascular disease, diabetes, atherosclerosis, neurological disorders (Alzheimer's disease, Parkinson's disease), chronic inflammation and others. The underlying mechanism of action for all these metals involves formation of the superoxide radical, hydroxyl radical (mainly via Fenton reaction) and other ROS, finally producing mutagenic and carcinogenic malondialdehyde (MDA), 4-hydroxynonenal (HNE) and other exocyclic DNA adducts. On the other hand, the redox inactive metals, such as cadmium (Cd), arsenic (As) and lead (Pb) show their toxic effects via bonding to sulphydryl groups of proteins and depletion of glutathione. Interestingly, for arsenic an alternative mechanism of action based on the formation of hydrogen peroxide under physiological conditions has been proposed. A special position among metals is occupied by the redox inert metal zinc (Zn). Zn is an essential component of numerous proteins involved in the defense against oxidative stress. It has been shown, that depletion of Zn may enhance DNA damage via impairments of DNA repair mechanisms. In addition, Zn has an impact on the immune system and possesses neuroprotective properties. The mechanism of metal-induced formation of free radicals is tightly influenced by the action of cellular antioxidants. Many low-molecular weight antioxidants (ascorbic acid (vitamin C), alpha

  10. Electrotransport-induced unmixing and decomposition of ternary oxides

    SciTech Connect

    Chun, Jakyu; Yoo, Han-Ill; Martin, Manfred

    2015-03-28

    A general expectation is that in a uniform oxygen activity atmosphere, cation electrotransport induces a ternary or higher oxide, e.g., AB{sub 1+ξ}O{sub 3+δ}, to kinetically unmix unless the electrochemical mobilities of, say, A{sup 2+}and B{sup 4+} cations are identically equal, and eventually to decompose into the component oxides AO and BO{sub 2} once the extent of unmixing exceeds the stability range of its nonmolecularity ξ. It has, however, earlier been reported [Yoo et al., Appl. Phys. Lett. 92, 252103 (2008)] that even a massive cation electrotransport induces BaTiO{sub 3} to neither unmix nor decompose even at a voltage far exceeding the so-called decomposition voltage U{sub d}, a measure of the standard formation free energy of the oxide (|ΔG{sub f}{sup o}| = nFU{sub d}). Here, we report that as expected, NiTiO{sub 3} unmixes at any voltage and even decomposes if the voltage applied exceeds seemingly a threshold value larger than U{sub d}. We demonstrate experimentally that the electrochemical mobilities of Ni{sup 2+} and Ti{sup 4+} should be necessarily unequal for unmixing. Also, we show theoretically that equal cation mobilities appear to be a sufficiency for BaTiO{sub 3} only for a thermodynamic reason.

  11. Effects of Kombucha on oxidative stress induced nephrotoxicity in rats

    PubMed Central

    2009-01-01

    Background Trichloroethylene (TCE) may induce oxidative stress which generates free radicals and alters antioxidants or oxygen-free radical scavenging enzymes. Methods Twenty male albino rats were divided into four groups: (1) the control group treated with vehicle, (2) Kombucha (KT)-treated group, (3) TCE-treated group and (4) KT/TCE-treated group. Kidney lipid peroxidation, glutathione content, nitric oxide (NO) and total blood free radical concentrations were evaluated. Serum urea, creatinine level, gamma-glutamyl transferase (GGT) and lactate dehydrogenase (LDH) activities were also measured. Results TCE administration increased the malondiahyde (MDA) and NO contents in kidney, urea and creatinine concentrations in serum, total free radical level in blood and GGT and LDH activities in serum, whereas it decreased the glutathione (GSH) level in kidney homogenate. KT administration significantly improved lipid peroxidation and oxidative stress induced by TCE. Conclusion The present study indicates that Kombucha may repair damage caused by environmental pollutants such as TCE and may be beneficial to patient suffering from renal impairment. PMID:19943946

  12. Oxidative DNA damage induced by activation of polychlorinated biphenyls (PCBs): implications for PCB-induced oxidative stress in breast cancer.

    PubMed

    Oakley, G G; Devanaboyina, U; Robertson, L W; Gupta, R C

    1996-12-01

    We have previously reported that mono- and dichlorinated biphenyls (PCBs) can be metabolized to dihydroxy compounds and further oxidized to reactive metabolites which form adducts with nitrogen and sulfur nucleophiles including DNA [Amaro et al. (1966) Chem. Res. Toxicol. 9, 623-629; Oakley et al. (1996) Carcinogenesis 17, 109-114]. The former studies also demonstrated that during the metabolism of PCBs superoxide may be produced. We have therefore examined the abilities of PCB metabolites to induce free radical-mediated oxidative DNA damage using a newly developed, highly sensitive, 32P-postlabeling assay for 8-oxode-oxyguanosine (8-oxodG) [Devanaboyina, U., and Gupta, R. (1996) Carcinogenesis 17, 917-924]. The incubation of 3,4-dichloro-2'5'-dihydroxybiphenyl (100 microM) with calf thymus DNA (300 micrograms/microL) in the presence of the breast tissue and milk-associated enzyme, lactoperoxidase (10 mU/mL), and H2O2 (0.5 mM) resulted in a significant increase in free radical-induced DNA damage (253 8-oxodG/10(6) nucleotides) as compared to vehicle-treated DNA (118 8-oxodG/10(6) nucleotides). Substituting CuCl(2) (100 microM) for lactoperoxidase/H2O2, however, resulted in a substantial increase in 8-oxodG content (2669 8-oxodG/10(6) nucleotides). FeCl(3) was ineffective, suggesting that CuCl(2) but not FeCl(3) mediates oxidation of PCB dihydroxy metabolites, resulting in oxidative DNA damage. The addition of catalase (100 U/mL) and sodium azide (0.1 M) reduced the effect of CuCl(2) (849 and 896 8-oxodG/10(6) nucleotides, respectively), while superoxide dismutase (600 U/mL) moderately stimulated and glutathione (100 microM) substantially stimulated 8-oxodG formation (3014 and 4415 8-oxodG/10(6) nucleotides, respectively). The effect of various buffers as well as the effects of PCB structure on Cu(II)-mediated oxidative DNA damage were examined. These results demonstrate that free radicals and oxidative DNA damage are produced during oxidation of lower chlorinated

  13. Pro-oxidant and antioxidant potential of catecholestrogens against ferrylmyoglobin-induced oxidative stress.

    PubMed

    Martínez, Rosa; Quintana, Kristina; Navarro, Rosaura; Martín, César; Hernández, M Luisa; Aurrekoetxea, Igor; Ruiz-Sanz, José Ignacio; Lacort, Mercedes; Ruiz-Larrea, M Begoña

    2002-07-11

    Ferryl heme proteins may play a major role in vivo under certain pathological conditions. Catecholestrogens, the estradiol-derived metabolites, can act either as antioxidants or pro-oxidants in iron-dependent systems. The aim of the present work was (1) to determine the effects of ferrylmyoglobin on hepatocyte cytotoxicity, and (2) to assess the pro/antioxidant potential of a series of estrogens (phenolic, catecholic and stilbene-derived) against ferrylmyoglobin induced lipid peroxidation in rat hepatocytes. Cells were exposed to metmyoglobin plus hydrogen peroxide to form ferrylmyoglobin in the presence of the transition metal chelator diethylentriaminepentaacetic acid. Results showed that ferrylmyoglobin induced an initial oxidative stress, mainly reflected in an early lipid peroxidation and further decrease in GSH and ATP. However, cells gradually adapted to this situation, by recovering the endogenous ATP and GSH levels at longer incubation times. Phenolic and stilbene-derived estrogens inhibited ferrylmyoglobin-induced lipid peroxidation to different degrees: diethylstilbestrol>estradiol>resveratrol. Catecholestrogens at concentrations higher than 1 microM also inhibited lipid peroxidation with similar efficacy. The ability of estrogens to reduce ferrylmyoglobin to metmyoglobin may account for their antioxidant activity. In contrast, physiological concentrations (100 pM-100 nM) of the catecholestrogens exerted pro-oxidant activities, 4-hydroxyestradiol being more potent than 2-hydroxyestradiol. The implications of these interactions should be considered in situations where local myoglobin or hemoglobin microbleeding takes place.

  14. Controllably Inducing and Modeling Optical Response from Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Lombardo, Nicholas; Naumov, Anton

    Graphene, a novel 2-dimensional sp2-hybridized allotrope of Carbon, has unique electrical and mechanical properties. While it is naturally a highly conductive zero band gap semiconductor, graphene does not exhibit optical emission. It has been shown that functionalization with oxygen-containing groups elicits an opening of band gap in graphene. In this work, we aim to induce an optical response in graphene via controlled oxidation, and then explore potential origins of its photoluminescence through mathematical modeling. We employ timed ozone treatment of initially non-fluorescent reduced graphene oxide (RGO) to produce graphene oxide (GO) with specific optical properties. Oxidized material exhibits substantial changes in the absorption spectra and a broad photoluminescence feature, centered at 532 nm, which suggests the appearance of a band gap. We then explore a number of possible mechanisms for the origin of GO photoluminescence via PM3 and ab initio calculations on a functionalized single sheet of graphene. By adjusting modeling parameters to fit experimentally obtained optical transition energies we estimate the size of the sp2 graphitic regions in GO and the arrangement of functional groups that could be responsible for the observed emission.

  15. Bee products prevent agrichemical-induced oxidative damage in fish.

    PubMed

    Ferreira, Daiane; Rocha, Helio Carlos; Kreutz, Luiz Carlos; Loro, Vania Lucia; Marqueze, Alessandra; Koakoski, Gessi; da Rosa, João Gabriel Santos; Gusso, Darlan; Oliveira, Thiago Acosta; de Abreu, Murilo Sander; Barcellos, Leonardo José Gil

    2013-01-01

    In southern South America and other parts of the world, aquaculture is an activity that complements agriculture. Small amounts of agrichemicals can reach aquaculture ponds, which results in numerous problems caused by oxidative stress in non-target organisms. Substances that can prevent or reverse agrichemical-induced oxidative damage may be used to combat these effects. This study includes four experiments. In each experiment, 96 mixed-sex, 6-month-old Rhamdia quelen (118±15 g) were distributed into eight experimental groups: a control group that was not exposed to contaminated water, three groups that were exposed to various concentrations of bee products, three groups that were exposed to various concentrations of bee products plus tebuconazole (TEB; Folicur 200 CE™) and a group that was exposed to 0.88 mg L(-1) of TEB alone (corresponding to 16.6% of the 96-h LC50). We show that waterborne bee products, including royal jelly (RJ), honey (H), bee pollen (BP) and propolis (P), reversed the oxidative damage caused by exposure to TEB. These effects were likely caused by the high polyphenol contents of these bee-derived compounds. The most likely mechanism of action for the protective effects of bee products against tissue oxidation and the resultant damage is that the enzymatic activities of superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) are increased.

  16. Bee Products Prevent Agrichemical-Induced Oxidative Damage in Fish

    PubMed Central

    Ferreira, Daiane; Rocha, Helio Carlos; Kreutz, Luiz Carlos; Loro, Vania Lucia; Marqueze, Alessandra; Koakoski, Gessi; Santos da Rosa, João Gabriel; Gusso, Darlan; Oliveira, Thiago Acosta; de Abreu, Murilo Sander; Barcellos, Leonardo José Gil

    2013-01-01

    In southern South America and other parts of the world, aquaculture is an activity that complements agriculture. Small amounts of agrichemicals can reach aquaculture ponds, which results in numerous problems caused by oxidative stress in non-target organisms. Substances that can prevent or reverse agrichemical-induced oxidative damage may be used to combat these effects. This study includes four experiments. In each experiment, 96 mixed-sex, 6-month-old Rhamdia quelen (118±15 g) were distributed into eight experimental groups: a control group that was not exposed to contaminated water, three groups that were exposed to various concentrations of bee products, three groups that were exposed to various concentrations of bee products plus tebuconazole (TEB; Folicur 200 CE™) and a group that was exposed to 0.88 mg L−1 of TEB alone (corresponding to 16.6% of the 96-h LC50). We show that waterborne bee products, including royal jelly (RJ), honey (H), bee pollen (BP) and propolis (P), reversed the oxidative damage caused by exposure to TEB. These effects were likely caused by the high polyphenol contents of these bee-derived compounds. The most likely mechanism of action for the protective effects of bee products against tissue oxidation and the resultant damage is that the enzymatic activities of superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) are increased. PMID:24098336

  17. Tyrosol attenuates ischemia-reperfusion-induced kidney injury via inhibition of inducible nitric oxide synthase.

    PubMed

    Wang, Pengqi; Zhu, Qingjun; Wu, Nan; Siow, Yaw L; Aukema, Harold; O, Karmin

    2013-04-17

    Tyrosol is a natural phenolic antioxidant compound. Oxidative stress represents one of the important mechanisms underlying ischemia-reperfusion-induced kidney injury. The aim of this study was to investigate the effect of tyrosol against ischemia-reperfusion-induced acute kidney injury. The left kidney of Sprague-Dawley rats was subjected to 45 min of ischemia followed by reperfusion for 6 h. Ischemia-reperfusion caused an increase in peroxynitrite formation and lipid peroxidation. The level of nitric oxide (NO) metabolites and the mRNA of inducible nitric oxide synthase (iNOS) were elevated in ischemia-reperfused kidneys. Administration of tyrosol (100 mg/kg body weight) to rats prior to the induction of ischemia significantly reduced peroxynitrite formation, lipid peroxidation, and the level of NO metabolites. Tyrosol administration also attenuated ischemia-reperfusion-induced NF-κB activation and iNOS expression. Such a treatment improved kidney function. Results suggest that tyrosol may have a protective effect against acute kidney injury through inhibition of iNOS-mediated oxidative stress.

  18. Assessment of eccentric exercise-induced oxidative stress using oxidation-reduction potential markers.

    PubMed

    Stagos, Dimitrios; Goutzourelas, Nikolaos; Ntontou, Amalia-Maria; Kafantaris, Ioannis; Deli, Chariklia K; Poulios, Athanasios; Jamurtas, Athanasios Z; Bar-Or, David; Kouretas, Dimitrios

    2015-01-01

    The aim of the present study was to investigate the use of static (sORP) and capacity ORP (cORP) oxidation-reduction potential markers as measured by the RedoxSYS Diagnostic System in plasma, for assessing eccentric exercise-induced oxidative stress. Nineteen volunteers performed eccentric exercise with the knee extensors. Blood was collected before, immediately after exercise, and 24, 48, and 72 h after exercise. Moreover, common redox biomarkers were measured, which were protein carbonyls, thiobarbituric acid-reactive substances, total antioxidant capacity in plasma, and catalase activity and glutathione levels in erythrocytes. When the participants were examined as one group, there were not significant differences in any marker after exercise. However, in 11 participants there was a high increase in cORP after exercise, while in 8 participants there was a high decrease. Thus, the participants were divided in low cORP group exhibiting significant decrease in cORP after exercise and in high cORP group exhibiting significant increase. Moreover, only in the low cORP group there was a significant increase in lipid peroxidation after exercise suggesting induction of oxidative stress. The results suggested that high decreases in cORP values after exercise may indicate induction of oxidative stress by eccentric exercise, while high increases in cORP values after exercise may indicate no existence of oxidative stress.

  19. Acute hypertension induces oxidative stress in brain tissues.

    PubMed

    Poulet, Roberta; Gentile, Maria T; Vecchione, Carmine; Distaso, Maria; Aretini, Alessandra; Fratta, Luigi; Russo, Giovanni; Echart, Cinara; Maffei, Angelo; De Simoni, Maria G; Lembo, Giuseppe

    2006-02-01

    Arterial hypertension is not only a major risk factor for cerebrovascular accidents, such as stroke and cerebral hemorrhage, but is also associated to milder forms of brain injury. One of the main causes of neurodegeneration is the increase in reactive oxygen species (ROS) that is also a common trait of hypertensive conditions, thus suggesting that such a mechanism could play a role even in the onset of hypertension-evoked brain injury. To investigate this issue, we have explored the effect of acute-induced hypertensive conditions on cerebral oxidative stress. To this aim, we have developed a mouse model of transverse aortic coarctation (TAC) between the two carotid arteries, which imposes acutely on the right brain hemisphere a dramatic increase in blood pressure. Our results show that hypertension acutely induced by aortic coarctation induces a breaking of the blood-brain barrier (BBB) and reactive astrocytosis through hyperperfusion, and evokes trigger factors of neurodegeneration such as oxidative stress and inflammation, similar to that observed in cerebral hypoperfusion. Moreover, the derived brain injury is mainly localized in selected brain areas controlling cognitive functions, such as the cortex and hippocampus, and could be a consequence of a defect in the BBB permeability. It is noteworthy to emphasize that, even if these latter events are not enough to produce ischemic/hemorrhagic injury, they are able to alter mechanisms fundamental for maintaining normal brain function, such as protein synthesis, which has a prominent role for memory formation and cortical plasticity.

  20. Endothelial dysfunction is induced by proinflammatory oxidant hypochlorous acid.

    PubMed

    Zhang, C; Patel, R; Eiserich, J P; Zhou, F; Kelpke, S; Ma, W; Parks, D A; Darley-Usmar, V; White, C R

    2001-10-01

    The myeloperoxidase (MPO)-derived oxidant hypochlorous acid (HOCl) plays a role in tissue injury under inflammatory conditions. The present study tests the hypothesis that HOCl decreases nitric oxide (NO) bioavailability in the vasculature of Sprague-Dawley rats. Aortic ring segments were pretreated with HOCl (1-50 microM) followed by extensive washing. Endothelium-dependent relaxation was then assessed by cumulative addition of acetylcholine (ACh) or the calcium ionophore A23187. HOCl treatment significantly impaired both ACh- and A23187-mediated relaxation. In contrast, endothelium-independent relaxation induced by sodium nitroprusside was unaffected. The inhibitory effect of HOCl on ACh-induced relaxation was reversed by exposure of ring segments to L-arginine but not D-arginine. In cellular studies, HOCl did not alter endothelial NO synthase (NOS III) protein or activity, but inhibited formation of the NO metabolites nitrate (NO3(-) and nitrite (NO2(-). The reduction in total NO metabolite production in bovine aortic endothelial cells was also reversed by addition of L-arginine. These data suggest that HOCl induces endothelial dysfunction via modification of L-arginine.

  1. Oxidation-induced contraction and strengthening of boron fibers

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.; Wagner, T. C.

    1981-01-01

    An investigation was conducted to measure and understand the physical and mechanical effects that occur in boron fibers during and after thermal treatment in a controlled oxygen argon gaseous mixture. Of principal concern was the optimization of this treatment as a secondary processing method for significantly improving fiber tensile strength. Strengthening was accomplished by an oxidation induced axial contraction of the fiber and a resulting axial compression of strength limiting flaws within the fiber's tungsten boride core. Various physical observations were used to develop mechanistic models for oxidation, contraction, and flow formation. Processing guidelines are discussed for possibly exceeding the 5.5 GN/sq m strength limit and also for achieving fiber strengthening during application of boron containing diffusion barrier coatings.

  2. Impaired mitochondrial fat oxidation induces adaptive remodeling of muscle metabolism

    PubMed Central

    Wicks, Shawna E.; Vandanmagsar, Bolormaa; Haynie, Kimberly R.; Fuller, Scott E.; Warfel, Jaycob D.; Stephens, Jacqueline M.; Wang, Miao; Han, Xianlin; Zhang, Jingying; Noland, Robert C.; Mynatt, Randall L.

    2015-01-01

    The correlations between intramyocellular lipid (IMCL), decreased fatty acid oxidation (FAO), and insulin resistance have led to the hypothesis that impaired FAO causes accumulation of lipotoxic intermediates that inhibit muscle insulin signaling. Using a skeletal muscle-specific carnitine palmitoyltransferase-1 KO model, we show that prolonged and severe mitochondrial FAO inhibition results in increased carbohydrate utilization, along with reduced physical activity; increased circulating nonesterified fatty acids; and increased IMCLs, diacylglycerols, and ceramides. Perhaps more importantly, inhibition of mitochondrial FAO also initiates a local, adaptive response in muscle that invokes mitochondrial biogenesis, compensatory peroxisomal fat oxidation, and amino acid catabolism. Loss of its major fuel source (lipid) induces an energy deprivation response in muscle coordinated by signaling through AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) to maintain energy supply for locomotion and survival. At the whole-body level, these adaptations result in resistance to obesity. PMID:26056297

  3. Impaired mitochondrial fat oxidation induces adaptive remodeling of muscle metabolism.

    PubMed

    Wicks, Shawna E; Vandanmagsar, Bolormaa; Haynie, Kimberly R; Fuller, Scott E; Warfel, Jaycob D; Stephens, Jacqueline M; Wang, Miao; Han, Xianlin; Zhang, Jingying; Noland, Robert C; Mynatt, Randall L

    2015-06-23

    The correlations between intramyocellular lipid (IMCL), decreased fatty acid oxidation (FAO), and insulin resistance have led to the hypothesis that impaired FAO causes accumulation of lipotoxic intermediates that inhibit muscle insulin signaling. Using a skeletal muscle-specific carnitine palmitoyltransferase-1 KO model, we show that prolonged and severe mitochondrial FAO inhibition results in increased carbohydrate utilization, along with reduced physical activity; increased circulating nonesterified fatty acids; and increased IMCLs, diacylglycerols, and ceramides. Perhaps more importantly, inhibition of mitochondrial FAO also initiates a local, adaptive response in muscle that invokes mitochondrial biogenesis, compensatory peroxisomal fat oxidation, and amino acid catabolism. Loss of its major fuel source (lipid) induces an energy deprivation response in muscle coordinated by signaling through AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) to maintain energy supply for locomotion and survival. At the whole-body level, these adaptations result in resistance to obesity.

  4. Role of Oxidative Damage in Radiation-Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Schreurs, Ann-Sofie; Alwood, Joshua S.; Limoli, Charles L.; Globus, Ruth K.

    2014-01-01

    During prolonged spaceflight, astronauts are exposed to both microgravity and space radiation, and are at risk for increased skeletal fragility due to bone loss. Evidence from rodent experiments demonstrates that both microgravity and ionizing radiation can cause bone loss due to increased bone-resorbing osteoclasts and decreased bone-forming osteoblasts, although the underlying molecular mechanisms for these changes are not fully understood. We hypothesized that excess reactive oxidative species (ROS), produced by conditions that simulate spaceflight, alter the tight balance between osteoclast and osteoblast activities, leading to accelerated skeletal remodeling and culminating in bone loss. To test this, we used the MCAT mouse model; these transgenic mice over-express the human catalase gene targeted to mitochondria, the major organelle contributing free radicals. Catalase is an anti-oxidant that converts reactive species, hydrogen peroxide into water and oxygen. This animal model was selected as it displays extended lifespan, reduced cardiovascular disease and reduced central nervous system radio-sensitivity, consistent with elevated anti-oxidant activity conferred by the transgene. We reasoned that mice overexpressing catalase in mitochondria of osteoblast and osteoclast lineage cells would be protected from the bone loss caused by simulated spaceflight. Over-expression of human catalase localized to mitochondria caused various skeletal phenotypic changes compared to WT mice; this includes greater bone length, decreased cortical bone area and moment of inertia, and indications of altered microarchitecture. These findings indicate mitochondrial ROS are important for normal bone-remodeling and skeletal integrity. Catalase over-expression did not fully protect skeletal tissue from structural decrements caused by simulated spaceflight; however there was significant protection in terms of cellular oxidative damage (MDA levels) to the skeletal tissue. Furthermore, we

  5. Oxidative damage and neurodegeneration in manganese-induced neurotoxicity

    SciTech Connect

    Milatovic, Dejan; Yu, Yingchun

    2009-10-15

    Exposure to excessive manganese (Mn) levels results in neurotoxicity to the extrapyramidal system and the development of Parkinson's disease (PD)-like movement disorder, referred to as manganism. Although the mechanisms by which Mn induces neuronal damage are not well defined, its neurotoxicity appears to be regulated by a number of factors, including oxidative injury, mitochondrial dysfunction and neuroinflammation. To investigate the mechanisms underlying Mn neurotoxicity, we studied the effects of Mn on reactive oxygen species (ROS) formation, changes in high-energy phosphates (HEP), neuroinflammation mediators and associated neuronal dysfunctions both in vitro and in vivo. Primary cortical neuronal cultures showed concentration-dependent alterations in biomarkers of oxidative damage, F{sub 2}-isoprostanes (F{sub 2}-IsoPs) and mitochondrial dysfunction (ATP), as early as 2 h following Mn exposure. Treatment of neurons with 500 {mu}M Mn also resulted in time-dependent increases in the levels of the inflammatory biomarker, prostaglandin E{sub 2} (PGE{sub 2}). In vivo analyses corroborated these findings, establishing that either a single or three (100 mg/kg, s.c.) Mn injections (days 1, 4 and 7) induced significant increases in F{sub 2}-IsoPs and PGE{sub 2} in adult mouse brain 24 h following the last injection. Quantitative morphometric analyses of Golgi-impregnated striatal sections from mice exposed to single or three Mn injections revealed progressive spine degeneration and dendritic damage of medium spiny neurons (MSNs). These findings suggest that oxidative stress, mitochondrial dysfunction and neuroinflammation are underlying mechanisms in Mn-induced neurodegeneration.

  6. Photoexcited riboflavin induces oxidative damage to human serum albumin

    NASA Astrophysics Data System (ADS)

    Hirakawa, Kazutaka; Yoshioka, Takuto

    2015-08-01

    Photoexcited riboflavin induced damage of human serum albumin (HSA), a water soluble protein, resulting in the diminishment of fluorescence from the tryptophan residue. Because riboflavin hardly photosensitized singlet oxygen generation and sodium azide, a singlet oxygen quencher, did not inhibit protein damage, electron transfer-mediated oxidation of HSA was speculated. Fluorescence lifetime of riboflavin was not affected by HSA, suggesting that the excited triplet state of riboflavin is responsible for protein damage through electron transfer. In addition, the preventive effect of xanthone derivatives, triplet quenchers, on photosensitized protein damage could be evaluated using this photosensitized reaction system of riboflavin and HSA.

  7. Inducible repair of oxidative DNA damage in Escherichia coli.

    PubMed

    Demple, B; Halbrook, J

    Hydrogen peroxide is lethal to many cell types, including the bacterium Escherichia coli. Peroxides yield transient radical species that can damage DNA and cause mutations. Such partially reduced oxygen species are occasionally released during cellular respiration and are generated by lethal and mutagenic ionizing radiation. Because cells live in an environment where the threat of oxidative DNA damage is continual, cellular mechanisms may have evolved to avoid and repair this damage. Enzymes are known which evidently perform these functions. We report here that resistance to hydrogen peroxide toxicity can be induced in E. coli, that this novel induction is specific and occurs, in part, at the level of DNA repair.

  8. Exercise-induced oxidative stress and hypoxic exercise recovery.

    PubMed

    Ballmann, Christopher; McGinnis, Graham; Peters, Bridget; Slivka, Dustin; Cuddy, John; Hailes, Walter; Dumke, Charles; Ruby, Brent; Quindry, John

    2014-04-01

    Hypoxia due to altitude diminishes performance and alters exercise oxidative stress responses. While oxidative stress and exercise are well studied, the independent impact of hypoxia on exercise recovery remains unknown. Accordingly, we investigated hypoxic recovery effects on post-exercise oxidative stress. Physically active males (n = 12) performed normoxic cycle ergometer exercise consisting of ten high:low intensity intervals, 20 min at moderate intensity, and 6 h recovery at 975 m (normoxic) or simulated 5,000 m (hypoxic chamber) in a randomized counter-balanced cross-over design. Oxygen saturation was monitored via finger pulse oximetry. Blood plasma obtained pre- (Pre), post- (Post), 2 h post- (2Hr), 4 h post- (4Hr), and 6 h (6Hr) post-exercise was assayed for Ferric Reducing Ability of Plasma (FRAP), Trolox Equivalent Antioxidant Capacity (TEAC), Lipid Hydroperoxides (LOOH), and Protein Carbonyls (PC). Biopsies from the vastus lateralis obtained Pre and 6Hr were analyzed by real-time PCR quantify expression of Heme oxygenase 1 (HMOX1), Superoxide Dismutase 2 (SOD2), and Nuclear factor (euthyroid-derived2)-like factor (NFE2L2). PCs were not altered between trials, but a time effect (13 % Post-2Hr increase, p = 0.044) indicated exercise-induced blood oxidative stress. Plasma LOOH revealed only a time effect (p = 0.041), including a 120 % Post-4Hr increase. TEAC values were elevated in normoxic recovery versus hypoxic recovery. FRAP values were higher 6Hr (p = 0.045) in normoxic versus hypoxic recovery. Exercise elevated gene expression of NFE2L2 (20 % increase, p = 0.001) and SOD2 (42 % increase, p = 0.003), but hypoxic recovery abolished this response. Data indicate that recovery in a hypoxic environment, independent of exercise, may alter exercise adaptations to oxidative stress and metabolism.

  9. Role of inducible nitrogen oxide synthase in benzene-induced oxidative DNA damage in the bone marrow of mice.

    PubMed

    Vestergaard, Sys; Loft, Steffen; Møller, Peter

    2002-03-01

    We investigated the interaction of BZ and lipolysaccharide (LPS), a well-known inflammation-promoting agent, in wild-type and inducible nitrogen oxide synthase (iNOS) knockout mice. BZ generated DNA strand breaks (SB) in the liver of both wild-type and iNOS-deficient mice. In the bone marrow (BM) BZ and LPS generated SB only in wild-type mice. The effects were additive, suggesting that both a redox cycling and an iNOS-dependent pathway may be involved. Formamidopyrimidine DNA glycosylase sensitive sites were elevated by BZ in the BM in both types of mice, whereas endonuclease III sensitive sites were not affected by any treatment. Since BZ is associated with leukemia in humans, it suggests that oxidative DNA base damage rather than SB may be important in the development of leukemia.

  10. Proliferation of macrophages due to the inhibition of inducible nitric oxide synthesis by oxidized low-density lipoproteins

    PubMed Central

    Brunner, Monika; Gruber, Miriam; Schmid, Diethart; Baran, Halina; Moeslinger, Thomas

    2015-01-01

    Oxidized low-density lipoprotein (ox-LDL) is assumed to be a major causal agent in hypercholesteraemia-induced atherosclerosis. Because the proliferation of lipid-loaden macrophages within atherosclerotic lesions has been described, we investigated the dependence of macrophage proliferation on the inhibition of inducible nitric oxide synthase (iNOS) by hypochlorite oxidized LDL. Ox-LDL induces a dose dependent inhibition of inducible nitric oxide synthesis in lipopolysaccharide-interferon stimulated mouse macrophages (J774.A1) with concomitant macrophage proliferation as assayed by cell counting, tritiated-thymidine incorporation and measurement of cell protein. Native LDL did not influence macrophage proliferation and inducible nitric oxide synthesis. iNOS protein and mRNA was reduced by HOCl-oxidized LDL (0-40 µg/ml) as revealed by immunoblotting and competitive semiquantitative PCR. Macrophage proliferation was increased by the addition of the iNOS inhibitor L-NAME. The addition of ox-LDL to L-NAME containing incubations induced no further statistically significant increase in cell number. Nitric oxide donors decreased ox-LDL induced macrophage proliferation and nitric oxide scavengers restored macrophage proliferation to the initial values achieved by ox-LDL. The decrease of cytosolic DNA fragments in stimulated macrophages incubated with ox-LDL demonstrates that the proliferative actions of ox-LDL are associated with a decrease of NO-induced apoptosis. Our data show that inhibition of iNOS dependent nitric oxide production caused by hypochlorite oxidized LDL enhances macrophage proliferation. This might be a key event in the pathogenesis of atherosclerotic lesions. PMID:26600745

  11. SCO2 Mediates Oxidative Stress-Induced Glycolysis to Oxidative Phosphorylation Switch in Hematopoietic Stem Cells.

    PubMed

    Du, Wei; Amarachintha, Surya; Wilson, Andrew F; Pang, Qishen

    2016-04-01

    Fanconi anemia (FA) is an inherited bone marrow (BM) failure syndrome, presumably resulting from defects in hematopoietic stem cells (HSCs). Normal HSCs depend more on glycolysis than on oxidative phosphorylation (OXPHOS) for energy production. Here, we show that FA HSCs are more sensitive to the respiration inhibitor NaN3 treatment than to glycolytic inhibitor 2-deoxy-d-glucose (2-DG), indicating more dependence on OXPHOS. FA HSCs undergo glycolysis-to-OXPHOS switch in response to oxidative stress through a p53-dependent mechanism. Metabolic stresses induce upregulation of p53 metabolic targets in FA HSCs. Inactivation of p53 in FA HSCs prevents glycolysis-to-OXPHOS switch. Furthermore, p53-deficient FA HSCs are more sensitive to 2-DG-mediated metabolic stress. Finally, oxidative stress-induced glycolysis-to-OXPHOS switch is mediated by synthesis of cytochrome c oxidase 2 (SCO2). These findings demonstrate p53-mediated OXPHOS function as a compensatory alteration in FA HSCs to ensure a functional but mildly impaired energy metabolism and suggest a cautious approach to manipulating p53 signaling in FA.

  12. Oxidation-induced loss of the ability of HDL to counteract the inhibitory effect of oxidized LDL on vasorelaxation.

    PubMed

    Perségol, Laurence; Brindisi, Marie-Claude; Rageot, David; Pais de Barros, Jean-Paul; Monier, Serge; Vergès, Bruno; Duvillard, Laurence

    2015-11-01

    Several current diseases are associated with an increase in the oxidation of HDL, which is likely to impair their functionality. Our aim was to identify whether oxidation could change the protective effect of HDL against the deleterious effect on vasoreactivity induced by oxidative stress. HDL from healthy subjects were oxidized in vitro by Cu(2+), and the ability of oxidized HDL to counteract the inhibitory effect of oxidized LDL on acetylcholine-induced vasodilation was tested on isolated rabbit aorta rings. Oxidation of HDL was evidenced by the increase in the 7-oxysterols/cholesterol ratio (3.20 ± 1.12 vs 0.02 ± 0.01 % in native HDL, p < 0.05). Oxidized LDL inhibited endothelium-dependent vasodilation (E max = 50.2 ± 5.0 vs 92.5 ± 1.7 % for incubation in Kreb's buffer, p < 0.05) and native HDL counteracted this inhibition (E max = 72.4 ± 4.8 vs 50.2 ± 5.0 % p < 0.05). At the opposite, oxidized HDL had no effect on oxidized LDL-induced inhibition on endothelium-dependent vasorelaxation (E max = 53.7 ± 4.8 vs 50.2 ± 5.0 %, NS). HDL oxidation is associated with a decreased ability of HDL to remove 7-oxysterols from oxidized LDL. In conclusion, these results show that oxidation of HDL induces the loss of their protective effect against endothelial dysfunction, which could promote atherosclerosis in diseases associated with increased oxidative stress.

  13. Manganese-induced oxidative stress in two ontogenetic stages of chamomile and amelioration by nitric oxide.

    PubMed

    Kováčik, Jozef; Babula, Petr; Hedbavny, Josef; Švec, Pavel

    2014-02-01

    Impact of manganese (Mn(2+)) excess (100, 500 and 1000 μM over 7 days) on two ontogenetic stages (7-week-old plants and 7-day-old seedlings) of Matricaria chamomilla was compared. Mn excess depressed growth of seedlings (but not germination) and stimulated oxidative stress (ROS and lipid peroxidation) in both plants and seedlings. Growth inhibition could be evoked by higher Mn uptake and higher translocation factor in seedlings than in plants. Total thiols staining revealed elevation in almost all treatments. In 7-week-old plants, activity of peroxidases increased slightly and rather decreased under high Mn doses. Superoxide rather than hydrogen peroxide contributed to visualized ROS presence. Fluorescence of nitric oxide (NO) showed stimulation in plants but decrease in seedlings. Impact of exogenous nitric oxide donor (sodium nitroprusside/SNP) was therefore tested and results showed amelioration of 1000 μM Mn-induced oxidative stress in seedlings (decrease in H2O2 and increase in NO content while antioxidative enzyme activities were variably affected) concomitantly with depleted Mn accumulation. It is concluded that NO participates in tolerance to Mn excess but negative effects of the highest SNP dose were also observed. Extensive fluorescence microscopy is also explanatively discussed.

  14. Aniline Induces Oxidative Stress and Apoptosis of Primary Cultured Hepatocytes.

    PubMed

    Wang, Yue; Gao, Hong; Na, Xiao-Lin; Dong, Shu-Ying; Dong, Hong-Wei; Yu, Jia; Jia, Li; Wu, Yong-Hui

    2016-11-30

    The toxicity and carcinogenicity of aniline in humans and animals have been well documented. However, the molecular mechanism involved in aniline-induced liver toxicity and carcinogenesis remains unclear. In our research, primary cultured hepatocytes were exposed to aniline (0, 1.25, 2.50, 5.0 and 10.0 μg/mL) for 24 h in the presence or absence of N-acetyl-l-cysteine (NAC). Levels of reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH), activities of superoxide dismutase (SOD) and catalase (CAT), mitochondrial membrane potential, DNA damage, cell viability, and apoptosis were detected. Levels of ROS and MDA were significantly increased and levels of GSH and CAT, activity of SOD, and mitochondrial membrane potential in hepatocytes were significantly decreased by aniline compared with the negative control group. The tail moment and DNA content of the tail in exposed groups were significantly higher than those in the negative control group. Cell viability was reduced and apoptotic death was induced by aniline in a concentration-dependent manner. The phenomena of ROS generation, oxidative damage, loss of mitochondrial membrane potential, DNA damage and apoptosis could be prevented if ROS inhibitor NAC was added. ROS generation is involved in the loss of mitochondrial membrane potential and DNA injury, which may play a role in aniline-induced apoptosis in hepatocytes. Our study provides insight into the mechanism of aniline-induced toxicity and apoptosis of hepatocytes.

  15. Aniline Induces Oxidative Stress and Apoptosis of Primary Cultured Hepatocytes

    PubMed Central

    Wang, Yue; Gao, Hong; Na, Xiao-Lin; Dong, Shu-Ying; Dong, Hong-Wei; Yu, Jia; Jia, Li; Wu, Yong-Hui

    2016-01-01

    The toxicity and carcinogenicity of aniline in humans and animals have been well documented. However, the molecular mechanism involved in aniline-induced liver toxicity and carcinogenesis remains unclear. In our research, primary cultured hepatocytes were exposed to aniline (0, 1.25, 2.50, 5.0 and 10.0 μg/mL) for 24 h in the presence or absence of N-acetyl-l-cysteine (NAC). Levels of reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH), activities of superoxide dismutase (SOD) and catalase (CAT), mitochondrial membrane potential, DNA damage, cell viability, and apoptosis were detected. Levels of ROS and MDA were significantly increased and levels of GSH and CAT, activity of SOD, and mitochondrial membrane potential in hepatocytes were significantly decreased by aniline compared with the negative control group. The tail moment and DNA content of the tail in exposed groups were significantly higher than those in the negative control group. Cell viability was reduced and apoptotic death was induced by aniline in a concentration-dependent manner. The phenomena of ROS generation, oxidative damage, loss of mitochondrial membrane potential, DNA damage and apoptosis could be prevented if ROS inhibitor NAC was added. ROS generation is involved in the loss of mitochondrial membrane potential and DNA injury, which may play a role in aniline-induced apoptosis in hepatocytes. Our study provides insight into the mechanism of aniline-induced toxicity and apoptosis of hepatocytes. PMID:27916916

  16. Lycium barbarum Polysaccharides Reduce Exercise-Induced Oxidative Stress

    PubMed Central

    Shan, Xiaozhong; Zhou, Junlai; Ma, Tao; Chai, Qiongxia

    2011-01-01

    The purpose of the present study was to investigate the effects of Lycium barbarum polysaccharides (LBP) on exercise-induced oxidative stress in rats. Rats were divided into four groups, i.e., one control group and three LBP treated groups. The animals received an oral administration of physiological saline or LBP (100, 200 and 400 mg/kg body weight) for 28 days. On the day of the exercise test, rats were required to run to exhaustion on the treadmill. Body weight, endurance time, malondialdehyde (MDA), super oxide dismutase (SOD) and glutathione peroxidase (GPX) level of rats were measured. The results showed that the body weight of rats in LBP treated groups were not significantly different from that in the normal control group before and after the experiment (P > 0.05). After exhaustive exercise, the mean endurance time of treadmill running to exhaustion of rats in LBP treated groups were significantly prolonged compared with that in the normal control group. MDA levels of rats in LBP treated groups were significantly decreased compared with that in the normal control group (P < 0.05). SOD and GPX levels of rats in LBP treated groups were significantly increased compared with that in the normal control group (P < 0.05). Together, these results indicate that LBP was effective in preventing oxidative stress after exhaustive exercise. PMID:21541044

  17. Ascorbate-induced oxidative inactivation of Zn2+-glycerophosphocholine cholinephosphodiesterase.

    PubMed

    Sok, D E

    1998-03-01

    Zn2+-glycerophosphocholine cholinephosphodiesterase, responsible for the conversion of glycerophosphocholine into glycerol and phosphocholine, was inactivated during incubation with ascorbic acid at 38 degrees C. The inclusion of copper ions or Fe2+ accelerated the ascorbate-induced inactivation, with Cu2+ or Cu+ being much more effective than Fe2+, suggestive of ascorbate-mediated oxidation. Dehydroascorbic acid had no effect on the phosphodiesterase, but H2O2 inactivated the enzyme in a concentration-dependent manner. Also, the enzyme was inactivated partially by a superoxide anion-generating system but not an HOCl generator. In support of involvement of H2O2 in the ascorbate action, catalase and superoxide dismutase expressed a complete and a partial protection, respectively. However, hydroxy radical scavengers such as mannitol, benzoate, or dimethyl sulfoxide were incapable of preventing the ascorbate action, excluding the participation of extraneous .OH. Although p-nitrophenylphosphocholine exhibited a modest protection against the ascorbate action, a remarkable protection was expressed by amino acids, especially by histidine. In addition, imidazole, an electron donor, showed a partial protection. Separately, when Cu2+-induced inactivation of the phosphodiesterase was compared with the ascorbate-mediated one, the protection and pH studies indicate that the mechanism for the ascorbate action is different from that for the Cu2+ action. Here, it is proposed that Zn2+-glycerophosphocholine cholinephosphodiesterase is one of brain membrane proteins susceptible to oxidative inactivation.

  18. The role of nitric oxide in experimental cerulein induced pancreatitis.

    PubMed

    Um, Soon Ho; Kwon, Yong Dae; Kim, Chang Duck; Lee, Hong Sik; Jeen, Yoon Tae; Chun, Hoon Jai; Lee, Sang Woo; Choi, Jae Hyun; Ryu, Ho Sang; Hyun, Jin Hai

    2003-08-01

    An enhanced formation of nitric oxide (NO), due to the induction of inducible nitric oxide synthase (iNOS), has been implicated in the pathogenesis of shock and inflammation, but its role in acute pancreatitis still remains controversial. To clarify the role of NO in acute pancreatitis, the present experiment investigated the expression of iNOS and the effect of NOS inhibition on cerulein-induced pancreatitis in rats. Group I received intraperitoneal (ip) injection of normal saline. Group II received two ip injections of cerulein (20 microgram/kg). Group III received injections of N(G)-nitro-L-arginine methyl ester (L-NAME) (30 mg/kg) with cerulein. Group IV received L-arginine (250 mg/kg) with cerulein and L-NAME. The expression of iNOS in the pancreas was examined by western blot analysis. The plasma concentration of NO metabolites was measured. The severity of pancreatitis was assessed by measuring serum amylase, pancreas water content and histopathological examination. Compared with controls, the cerulein group displayed significantly increased expression of iNOS and raised plasma NO metabolites. Treatment with L-NAME significantly decreased hyperamylasemia, plasma NO level, and the extent of pancreatic injury. Treatment with L-arginine reversed the effects of L-NAME. These findings suggest that an enhanced formation of NO by iNOS plays an important role in the development of acute pancreatitis, and inhibition of NO production has the beneficial effects in reducing pancreas injury.

  19. Live-cell Imaging Approaches for the Investigation of Xenobiotic-Induced Oxidant Stress

    EPA Science Inventory

    BACKGROUND: Oxidant stress is arguably a universal feature in toxicology. Research studies on the role of oxidant stress induced by xenobiotic exposures have typically relied on the identification of damaged biomolecules using a variety of conventional biochemical and molecular t...

  20. The basic chemistry of exercise-induced DNA oxidation: oxidative damage, redox signaling, and their interplay.

    PubMed

    Cobley, James N; Margaritelis, Nikos V; Morton, James P; Close, Graeme L; Nikolaidis, Michalis G; Malone, John K

    2015-01-01

    Acute exercise increases reactive oxygen and nitrogen species generation. This phenomenon is associated with two major outcomes: (1) redox signaling and (2) macromolecule damage. Mechanistic knowledge of how exercise-induced redox signaling and macromolecule damage are interlinked is limited. This review focuses on the interplay between exercise-induced redox signaling and DNA damage, using hydroxyl radical ((·)OH) and hydrogen peroxide (H2O2) as exemplars. It is postulated that the biological fate of H2O2 links the two processes and thus represents a bifurcation point between redox signaling and damage. Indeed, H2O2 can participate in two electron signaling reactions but its diffusion and chemical properties permit DNA oxidation following reaction with transition metals and (·)OH generation. It is also considered that the sensing of DNA oxidation by repair proteins constitutes a non-canonical redox signaling mechanism. Further layers of interaction are provided by the redox regulation of DNA repair proteins and their capacity to modulate intracellular H2O2 levels. Overall, exercise-induced redox signaling and DNA damage may be interlinked to a greater extent than was previously thought but this requires further investigation.

  1. Nitric oxide protects carbon assimilation process of watermelon from boron-induced oxidative injury.

    PubMed

    Farag, Mohamed; Najeeb, Ullah; Yang, Jinghua; Hu, Zhongyuan; Fang, Zhang Ming

    2017-02-01

    Nitric oxide (NO) mediates plant response to a variety of abiotic stresses; however, limited information is available on its effect on boron (B)-stressed watermelon plants. The present study investigates the mechanism through which NO protects watermelon seedlings from B deficiency and toxicity stresses. Five days old watermelon seedlings were exposed to B (0, 0.5 and 10 mg L(-1)) alone or with 75 μmole of NO donor sodium nitroprusside (SNP) for 30 days. Both low and high B concentrations in the media altered nutrient accumulation and impaired various physiological processes of watermelon seedlings, leading to a significant reduction in biomass production. The plants exposed to B deficient or toxic concentrations had 66 and 69% lower shoot dry weight, respectively compared with optimum B levels. B toxicity-induced growth inhibition of watermelon seedlings was associated with high B translocation to shoot tissues, which caused lipid membrane peroxidation (12% increase) and chlorophyll destruction (25% reduction). In contrast, B deficiency accelerated generation of reactive oxygen species (ROS), specifically OH(-1) and induced cellular oxidative injury. Exogenously applied SNP promoted leaf chlorophyll, photosynthesis and consequently biomass production in B-stressed watermelon seedlings by reducing B accumulation, lipid membrane peroxidation and ROS generation. It also activated antioxidant enzymes such as SOD, POD and APX, and protected the seedlings from ROS-induced cellular burst.

  2. Uraninite oxidation and dissolution induced by manganese oxide: A redox reaction between two insoluble minerals

    NASA Astrophysics Data System (ADS)

    Wang, Zimeng; Lee, Sung-Woo; Kapoor, Pratyul; Tebo, Bradley M.; Giammar, Daniel E.

    2013-01-01

    The longevity of subsurface U(IV) produced by reduction of U(VI) during in situ bioremediation can be limited by reoxidation to more mobile U(VI) species. Coupling of the biogeochemical cycles of U and Mn may affect the fate and transport of uranium. Manganese oxides can act as a powerful oxidant that accelerates the oxidative dissolution of UO2. This study investigated the physical and chemical factors controlling the interaction between UO2 and MnO2, which are both poorly soluble minerals. A multi-chamber reactor with a permeable membrane was used to eliminate direct contact of the two minerals while still allowing transport of aqueous species. The oxidation of UO2 was not significantly enhanced by MnO2 if the two solids were physically separated. Complete mixing of MnO2 with UO2 led to a much greater extent and rate of U oxidation. When direct contact is not possible, the reaction slowly progresses through release of soluble U(IV) with its adsorption and oxidation on MnO2. Continuously-stirred tank reactors (CSTRs) were used to quantify the steady-state rates of UO2 dissolution induced by MnO2. MnO2 dramatically promoted UO2 dissolution, but the degree of promotion leveled off once the MnO2:UO2 ratio exceeded a critical value. Substantial amounts of U(VI) and Mn(II) were retained on MnO2 surfaces. The total production of Mn(II) was less than that of U(VI), indicating that the fate of Mn products and their impact on UO2-MnO2 reaction kinetics were complicated and may involve formation of Mn(III) phases. At higher dissolved inorganic carbon concentrations, UO2 oxidation by MnO2 was faster and less U(VI) was adsorbed to MnO2. Such an inverse relationship suggested that U(VI) may passivate MnO2 surfaces. A conceptual model was developed to describe the oxidation rate of UO2 by MnO2. This model is potentially applicable to a broad range of water chemistry conditions and is relevant to other environmental redox processes involving two poorly soluble minerals.

  3. In vivo Expression of Inducible Nitric Oxide Synthase in Experimentally Induced Neurologic Diseases

    NASA Astrophysics Data System (ADS)

    Koprowski, Hilary; Zheng, Yong Mu; Heber-Katz, Ellen; Fraser, Nigel; Rorke, Lucy; Fu, Zhen Fang; Hanlon, Cathleen; Dietzschold, Bernhard

    1993-04-01

    The purpose of this study was to investigate the induction of inducible nitric oxide synthase (iNOS) mRNA in the brain tissue of rats and mice under the following experimental conditions: in rats infected with borna disease virus and rabies virus, in mice infected with herpes simplex virus, and in rats after the induction of experimental allergic encephalitis. The results showed that iNOS mRNA, normally nondetectable in the brain, was present in animals after viral infection or after induction of experimental allergic encephalitis. The induction of iNOS mRNA coincided with the severity of clinical signs and in some cases with the presence of inflammatory cells in the brain. The results indicate that nitric oxide produced by cells induced by iNOS may be the toxic factor accounting for cell damage and this may open the door to approaches to the study of the pathogenesis of neurological diseases.

  4. Nitric Oxide-Induced Conformational Changes in Soluble Guanylate Cyclase

    PubMed Central

    Underbakke, Eric S.; Iavarone, Anthony T.; Chalmers, Michael J.; Pascal, Bruce D.; Novick, Scott; Griffin, Patrick R.; Marletta, Michael A.

    2014-01-01

    SUMMARY Soluble guanylate cyclase (sGC) is the primary mediator of nitric oxide (NO) signaling. NO binds the sGC heme cofactor stimulating synthesis of the second messenger cyclic-GMP (cGMP). As the central hub of NO/cGMP signaling pathways, sGC is important in diverse physiological processes such as vasodilation and neurotransmission. Nevertheless, the mechanisms underlying NO-induced cyclase activation in sGC remain unclear. Here, hydrogen/deuterium exchange mass spectrometry (HDX-MS) was employed to probe the NO-induced conformational changes of sGC. HDX-MS revealed NO-induced effects in several discrete regions. NO binding to the heme-NO/O2-binding (H-NOX) domain perturbs a signaling surface implicated in Per/Arnt/Sim (PAS) domain interactions. Furthermore, NO elicits striking conformational changes in the junction between the PAS and helical domains that propagate as perturbations throughout the adjoining helices. Ultimately, NO-binding stimulates the catalytic domain by contracting the active site pocket. Together, these conformational changes delineate an allosteric pathway linking NO-binding to activation of the catalytic domain. PMID:24560804

  5. Nitric oxide synthase is induced in sporulation of Physarum polycephalum

    PubMed Central

    Golderer, Georg; Werner, Ernst R.; Leitner, Stefan; Gröbner, Peter; Werner-Felmayer, Gabriele

    2001-01-01

    The myxomycete Physarum polycephalum expresses a calcium-independent nitric oxide (NO) synthase (NOS) resembling the inducible NOS isoenzyme in mammals. We have now cloned and sequenced this, the first nonanimal NOS to be identified, showing that it shares < 39% amino acid identity with known NOSs but contains conserved binding motifs for all NOS cofactors. It lacks the sequence insert responsible for calcium dependence in the calcium-dependent NOS isoenzymes. NOS expression was strongly up-regulated in Physarum macroplasmodia during the 5-day starvation period needed to induce sporulation competence. Induction of both NOS and sporulation competence were inhibited by glucose, a growth signal and known repressor of sporulation, and by l-N6–(1-iminoethyl)-lysine (NIL), an inhibitor of inducible NOS. Sporulation, which is triggered after the starvation period by light exposure, was also prevented by 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of NO-sensitive guanylate cyclase. In addition, also expression of lig1, a sporulation-specific gene, was strongly attenuated by NIL or ODQ. 8-Bromo-cGMP, added 2 h before the light exposure, restored the capacity of NIL-treated macroplasmodia to express lig1 and to sporulate. This indicates that the second messenger used for NO signaling in sporulation of Physarum is cGMP and links this signaling pathway to expression of lig1. PMID:11358872

  6. Expression and activity of inducible nitric oxide synthase and endothelial nitric oxide synthase correlate with ethanol-induced liver injury

    PubMed Central

    Yuan, Guang-Jin; Zhou, Xiao-Rong; Gong, Zuo-Jiong; Zhang, Pin; Sun, Xiao-Mei; Zheng, Shi-Hua

    2006-01-01

    AIM: To study the expression and activity of inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) in rats with ethanol-induced liver injury and their relation with liver damage, activation of nuclear factor-κB (NF-κB) and tumor necrosis factor-α (TNF-α) expression in the liver. METHODS: Female Sprague-Dawley rats were given fish oil (0.5 mL) along with ethanol or isocaloric dextrose daily via gastrogavage for 4 or 6 wk. Liver injury was assessed using serum alanine aminotransferase (ALT) activity and pathological analysis. Liver malondialdehyde (MDA), nitric oxide contents, iNOS and eNOS activity were determined. NF-κB p65,iNOS, eNOS and TNF-α protein or mRNA expression in the liver were detected by immunohistochemistry or reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS: Chronic ethanol gavage for 4 wk caused steatosis, inflammation and necrosis in the liver, and elevated serum ALT activity. Prolonged ethanol administration (6 wk) enhanced the liver damage. These responses were accompanied with increased lipid peroxidation, NO contents, iNOS activity and reduced eNOS activity. NF-κB p65, iNOS and TNF-α protein or mRNA expression were markedly induced after chronic ethanol gavage, whereas eNOS mRNA expression remained unchanged. The enhanced iNOS activity and expression were positively correlated with the liver damage, especially the necro-inflammation, activation of NF-κB, and TNF-α mRNA expression. CONCLUSION: iNOS expression and activity are induced in the liver after chronic ethanol exposure in rats, which are correlated with the liver damage, especially the necro-inflammation, activation of NF-κB and TNF-α expression. eNOS activity is reduced, but its mRNA expression is not affected. PMID:16688828

  7. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage.

    PubMed

    Gokay, Nevzat Selim; Yilmaz, Ibrahim; Komur, Baran; Demiroz, Ahu Senem; Gokce, Alper; Dervisoglu, Sergülen; Gokay, Banu Vural

    2016-01-01

    The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg), inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg), or nitric oxide precursor L-arginine (200 mg/kg). After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P = 0.044) positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders.

  8. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage

    PubMed Central

    Gokay, Nevzat Selim; Yilmaz, Ibrahim; Demiroz, Ahu Senem; Gokce, Alper; Dervisoglu, Sergülen; Gokay, Banu Vural

    2016-01-01

    The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg), inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg), or nitric oxide precursor L-arginine (200 mg/kg). After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P = 0.044) positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders. PMID:27382570

  9. Cerium Oxide Nanoparticles Induce Oxidative Stress and Genotoxicity in Human Skin Melanoma Cells.

    PubMed

    Ali, Daoud; Alarifi, Saud; Alkahtani, Saad; AlKahtane, Abdullah A; Almalik, Abdulaziz

    2015-04-01

    Extensive applications of cerium oxide (CeO2) nanoparticles require a better understanding of their possible effects on human health. However, data demonstrating the effect of CeO2 nanoparticles on the human skin melanoma cell remain scanty. In the current study, we determined the mechanism through which CeO2 nanoparticles (APS <25 nm) induce toxicity in human skin melanoma cells (A375). The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and neutral red uptake assays showed concentration and time-dependent cytotoxicity of CeO2 nanoparticles in A375 cells. CeO2 nanoparticles significantly induced the generation reactive oxygen species (ROS) and malondialdehyde, superoxide dismutase, and decreased glutathione levels in A375 cells. It was also observed that the CeO2 nanoparticles induced chromosomal condensation and caspase-3 activity. CeO2 nanoparticles exposed cells revealed the formation of DNA double-strand breakage as measured by percent tail DNA and olive tail moment through comet assay. The decline of cell viability, production of ROS, and DNA damage in A375 cells specifies that CeO2 nanoparticles have less capable to induce cyto and genotoxicity.

  10. Nitric oxide alleviates oxidative damage induced by high temperature stress in wheat.

    PubMed

    Bavita, A; Shashi, B; Navtej, S B

    2012-05-01

    Effect of sodium nitroprusside (SNP), a donor of nitric oxide (NO) was examined in two wheat (Triticum aestivum L.) cultivars, C 306 (heat tolerant) and PBW 550 (comparatively heat susceptible) to study the extent of oxidative injury and activities of antioxidant enzyme in relation to high temperature (HT) stress. HT stress resulted in a marked decrease in membrane thermostability (MTS) and 2, 3, 5-triphenyl tetrazolium chloride (TTC) cell viability whereas content of lipid peroxide increased in both the cultivars. The tolerant cultivar C 306 registered less damage to cellular membranes compared to PBW 550 under HT stress. Activities of antioxidant enzymes viz, superoxide dismutase, catalase, ascorbate peroxidase, guaicol peroxidase and glutathione reductase increased with HT in both the cultivars. Following treatment with SNP, activities of all antioxidant enzymes further increased in correspondence with an increase in MTS and TTC. Apparently, lipid peroxide content was reduced by SNP more in shoots of heat tolerant cultivar C 306 indicating better protection over roots under HT stress. The up-regulation of the antioxidant system by NO possibly contributed to better tolerance against HT induced oxidative damage in wheat.

  11. Carotid body chemosensory excitation induced by nitric oxide: involvement of oxidative metabolism.

    PubMed

    Mosqueira, Matias; Iturriaga, Rodrigo

    2002-08-01

    Nitric oxide (NO) produces a dual effect on carotid body (CB) oxygen chemoreception. At low concentration, NO inhibits chemosensory response to hypoxia, while in normoxia, medium and high [NO] increases the frequency of carotid chemosensory discharges (f(x)). Since NO and peroxynitrite inhibit mitochondrial respiration, it is plausible that the NO-induced excitation may depend on the mitochondrial oxidative metabolism. To test this hypothesis, we studied the effects of oligomycin, FCCP and antimycin A that produce selective blockade of hypoxic and NaCN-induced chemosensory responses, leaving nicotinic response less affected. CBs excised from pentobarbitone-anaesthetised cats were perfused in vitro with Tyrode (P(O(2)) approximately 125 Torr, pH 7.40 at 38 degrees C). Hypoxia (P(O(2)) approximately equal 30 Torr), NaCN and nicotine (1-100 microg) and S-nitroso-N-acetylpenicillamide (SNAP, 300-600 microg) increased f(x). Oligomycin (12.5-25 microg), antimycin A (10 microg) and FCCP (5 microM) transiently increased f(x). Subsequently, chemosensory responses to hypoxia, NaCN and SNAP were reduced or abolished, while the response to nicotine was less affected. The electron donor system tetramethyl-p-phenylene diamide and ascorbate that bypasses the electron chain blockade produced by antimycin A, restores the excitatory responses to NaCN and SNAP. Present results suggest that the chemoexcitatory effect of NO depends on the integrity of mitochondrial metabolism.

  12. The NADPH oxidase inhibitor apocynin induces nitric oxide synthesis via oxidative stress

    SciTech Connect

    Riganti, Chiara

    2008-05-01

    We have recently shown that apocynin elicits an oxidative stress in N11 mouse glial cells and other cell types. Here we report that apocynin increased the accumulation of nitrite, the stable derivative of nitric oxide (NO), in the extracellular medium of N11 cell cultures, and the NO synthase (NOS) activity in cell lysates. The increased synthesis of NO was associated with increased expression of inducible NOS (iNOS) mRNA, increased nuclear translocation of the redox-sensitive transcription factor NF-{kappa}B and decreased intracellular level of its inhibitor IkB{alpha}. These effects, accompanied by increased production of H{sub 2}O{sub 2}, were very similar to those observed after incubation with bacterial lipopolysaccharide (LPS) and were inhibited by catalase. These results suggest that apocynin, similarly to LPS, induces increased NO synthesis by eliciting a generation of reactive oxygen species (ROS), which in turn causes NF-{kappa}B activation and increased expression of iNOS. Therefore, the increased bioavailability of NO reported in the literature after in vivo or in vitro treatments with apocynin might depend, at least partly, on the drug-elicited induction of iNOS, and not only on the inhibition of NADPH oxidase and the subsequent decreased scavenging of NO by oxidase-derived ROS, as it is often supposed.

  13. Nitrous oxide-induced hypothermia in the rat

    SciTech Connect

    Quock, R.M.; Panek, R.W.; Kouchich, F.J.; Rosenthal, M.A.

    1987-08-10

    Exposure of rats to high levels of nitrous oxide (N2O) in oxygen reduced body temperature in a concentration-related manner. The hypothermia was partly reversed by pretreatment with naloxone but not naltrexone. But in rats rendered tolerant to morphine by pellet implantation, exposure to 75% N2O/25% O2 evoked a marked hypothermia similar to that observed in morphine-naive animals. In another experiment, the hypothermic effect of chloral hydrate was also sensitive to antagonism by pretreatment with naloxone but not naltrexone. These observations lead the authors to suspect that N2O-induced hypothermia in rats is possibly not mediated by opiate receptors. The thermotropic activity of N2O may result from some non-opioid action of N2O. Its selective antagonism by naloxone (but not naltrexone) may be due to a unique non-opioid analeptic action of naloxone. 32 references, 4 figures.

  14. Ascorbate in aqueous humor protects against myeloperoxidase-induced oxidation.

    PubMed Central

    Rosenbaum, J. T.; Howes, E. L.; English, D.

    1985-01-01

    Chemotactic factors can cause polymorphonuclear leukocytes to release the contents of azurophilic granules, including the enzymes beta-glucuronidase and myeloperoxidase. In the presence of aqueous humor from the anterior chamber of the rabbit eye, the supernatant from stimulated leukocytes contains beta-glucuronidase, but myeloperoxidase is not detectable. Studies with aqueous humor and partially purified human myeloperoxidase suggest that this phenomenon is not due to a failure of enzyme release. The factor responsible for the inability to detect MPO in the assay system is heat-labile, dialyzable, and reversed by ascorbate oxidase. Comparable assay inhibition is produced by ascorbic acid at a concentration present in either human or rabbit aqueous humor. The ability of aqueous humor to protect against myeloperoxidase-induced oxidation may contribute to several diverse phenomena, including the susceptibility of the eye to Candida infection and a prolonged half-life for several inflammatory mediators in the anterior chamber. PMID:2992283

  15. Curcumin Attenuates Hepatotoxicity Induced by Zinc Oxide Nanoparticles in Rats

    PubMed Central

    Khorsandi, Layasadat; Mansouri, Esrafil; Orazizadeh, Mahmoud; Jozi, Zahra

    2016-01-01

    Background: Zinc oxide nanoparticles (NZnO) are increasingly used in modern life. Most metal nanoparticles have adverse effects on the liver. Aims: To explore the protective action of curcumin (Cur) against hepatotoxicity induced by NZnO in rats. Study Design: Animal experimentation. Methods: Control group animals received normal saline, while the Cur group animals were treated with 200 mg/kg of Cur orally for 21 days. NZnO-intoxicated rats received 50 mg/kg of NZnO for 14 days by gavage method. In the NZnO+Cur group, rats were pretreated with Cur for 7 days before NZnO administration. Plasma activities of Alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) were measured as biomarkers of hepatotoxicity. Hepatic levels of malondialdehyde (MDA) and superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were measured for detection of oxidative stress in liver tissue. Histological changes and apoptosis in liver tissue were studied by using Hematoxylin-eosin staining and the transferase dUTP nick end labeling (TUNEL) method. Results: NZnO induced a significant increase in plasma AST (2.8-fold), ALT (2.7-fold) and ALP (1.97-fold) activity in comparison to the control group (p<0.01). NZnO increased MDA content and reduced SOD and GPx activities. NZnO caused liver damage including centrilobular necrosis and microvesicular steatosis. The percentage of apoptosis in hepatocytes was increased in NZnO-treated rats (p<0.01). Pre-treatment of Cur significantly reduced lipid peroxidation (39%), increased SOD (156%) and GPx (26%) activities, and attenuated ALT (47%), AST (41%) and ALP (30%) activities. Pre-treatment with Cur also decreased the histology changes and apoptotic index of hepatocytes (p<0.05). Conclusion: These findings indicate that Cur effectively protects against NZnO-induced hepatotoxicity in rats. However, future studies are required to propose Cur as a potential protective agent against hepatotoxicity

  16. Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines

    PubMed Central

    Mari, Emanuela; Mardente, Stefania; Morgante, Emanuela; Tafani, Marco; Lococo, Emanuela; Fico, Flavia; Valentini, Federica; Zicari, Alessandra

    2016-01-01

    Since graphene nanoparticles are attracting increasing interest in relation to medical applications, it is important to understand their potential effects on humans. In the present study, we prepared graphene oxide (GO) nanoribbons by oxidative unzipping of single-wall carbon nanotubes (SWCNTs) and analyzed their toxicity in two human neuroblastoma cell lines. Neuroblastoma is the most common solid neoplasia in children. The hallmark of these tumors is the high number of different clinical variables, ranging from highly metastatic, rapid progression and resistance to therapy to spontaneous regression or change into benign ganglioneuromas. Patients with neuroblastoma are grouped into different risk groups that are characterized by different prognosis and different clinical behavior. Relapse and mortality in high risk patients is very high in spite of new advances in chemotherapy. Cell lines, obtained from neuroblastomas have different genotypic and phenotypic features. The cell lines SK-N-BE(2) and SH-SY5Y have different genetic mutations and tumorigenicity. Cells were exposed to low doses of GO for different times in order to investigate whether GO was a good vehicle for biological molecules delivering individualized therapy. Cytotoxicity in both cell lines was studied by measuring cellular oxidative stress (ROS), mitochondria membrane potential, expression of lysosomial proteins and cell growth. GO uptake and cytoplasmic distribution of particles were studied by Transmission Electron Microscopy (TEM) for up to 72 h. The results show that GO at low concentrations increased ROS production and induced autophagy in both neuroblastoma cell lines within a few hours of exposure, events that, however, are not followed by growth arrest or death. For this reason, we suggest that the GO nanoparticle can be used for therapeutic delivery to the brain tissue with minimal effects on healthy cells. PMID:27916824

  17. Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines.

    PubMed

    Mari, Emanuela; Mardente, Stefania; Morgante, Emanuela; Tafani, Marco; Lococo, Emanuela; Fico, Flavia; Valentini, Federica; Zicari, Alessandra

    2016-11-29

    Since graphene nanoparticles are attracting increasing interest in relation to medical applications, it is important to understand their potential effects on humans. In the present study, we prepared graphene oxide (GO) nanoribbons by oxidative unzipping of single-wall carbon nanotubes (SWCNTs) and analyzed their toxicity in two human neuroblastoma cell lines. Neuroblastoma is the most common solid neoplasia in children. The hallmark of these tumors is the high number of different clinical variables, ranging from highly metastatic, rapid progression and resistance to therapy to spontaneous regression or change into benign ganglioneuromas. Patients with neuroblastoma are grouped into different risk groups that are characterized by different prognosis and different clinical behavior. Relapse and mortality in high risk patients is very high in spite of new advances in chemotherapy. Cell lines, obtained from neuroblastomas have different genotypic and phenotypic features. The cell lines SK-N-BE(2) and SH-SY5Y have different genetic mutations and tumorigenicity. Cells were exposed to low doses of GO for different times in order to investigate whether GO was a good vehicle for biological molecules delivering individualized therapy. Cytotoxicity in both cell lines was studied by measuring cellular oxidative stress (ROS), mitochondria membrane potential, expression of lysosomial proteins and cell growth. GO uptake and cytoplasmic distribution of particles were studied by Transmission Electron Microscopy (TEM) for up to 72 h. The results show that GO at low concentrations increased ROS production and induced autophagy in both neuroblastoma cell lines within a few hours of exposure, events that, however, are not followed by growth arrest or death. For this reason, we suggest that the GO nanoparticle can be used for therapeutic delivery to the brain tissue with minimal effects on healthy cells.

  18. DNA vaccine encoding the Toxoplasma gondii bradyzoite-specific surface antigens SAG2CDX protect BALB/c mice against type II parasite infection.

    PubMed

    Zhang, Min; Zhao, Lingxiao; Song, Jing; Li, Ying; Zhao, Qunli; He, Shenyi; Cong, Hua

    2013-09-23

    The surface antigens SAG2C, SAG2D, and SAG2X, which expressed specifically on bradyzoite stage of Toxoplasma gondii, have been demonstrated to be important for persistence of cyst in the brain. In this study, DNA vaccines expressing SAG2C, SAG2D, and SAG2X of T. gondii were constructed and their protective efficacy were evaluated in BALB/c mice. Mice vaccinated with pVAX1-SAG2C (pSAG2C), pVAX1-2D (pSAG2D) or pVAX1-2X (pSAG2C) showed higher levels of serum IgG antibodies and lymphocyte proliferation response compared to PBS and pVAX1 treated mice (p<0.05). The immune response was characterized by a strong Th1 response and increased cytokine production of IL-2 and IFN-γ. Vaccinated mice displayed significant protection against the challenge with the cyst of T. gondii genotype II strain of PRU (cyst-forming in mouse). A significant reduction in the brain cyst burden was detected in the mice immunized with pSAG2C (72%), pSAG2D (23%), pSAG2X (69%) alone and even more reduction rate, 77%, was achieved in the combination group compared to PBS treated mice. The results implied that immunization with DNA vaccines expressing SAG2C, SAG2D, and SAG2X, and, in particular, a combination of all three DNA plasmids, could effectively protect the mice against T. gondii chronic infection.

  19. Liposomal Antioxidants for Protection against Oxidant-Induced Damage

    PubMed Central

    Suntres, Zacharias E.

    2011-01-01

    Reactive oxygen species (ROS), including superoxide anion, hydrogen peroxide, and hydroxyl radical, can be formed as normal products of aerobic metabolism and can be produced at elevated rates under pathophysiological conditions. Overproduction and/or insufficient removal of ROS result in significant damage to cell structure and functions. In vitro studies showed that antioxidants, when applied directly and at relatively high concentrations to cellular systems, are effective in conferring protection against the damaging actions of ROS, but results from animal and human studies showed that several antioxidants provide only modest benefit and even possible harm. Antioxidants have yet to be rendered into reliable and safe therapies because of their poor solubility, inability to cross membrane barriers, extensive first-pass metabolism, and rapid clearance from cells. There is considerable interest towards the development of drug-delivery systems that would result in the selective delivery of antioxidants to tissues in sufficient concentrations to ameliorate oxidant-induced tissue injuries. Liposomes are biocompatible, biodegradable, and nontoxic artificial phospholipid vesicles that offer the possibility of carrying hydrophilic, hydrophobic, and amphiphilic molecules. This paper focus on the use of liposomes for the delivery of antioxidants in the prevention or treatment of pathological conditions related to oxidative stress. PMID:21876690

  20. Transparent conducting oxide induced by liquid electrolyte gating

    PubMed Central

    ViolBarbosa, Carlos; Karel, Julie; Kiss, Janos; Gordan, Ovidiu-dorin; Altendorf, Simone G.; Utsumi, Yuki; Samant, Mahesh G.; Wu, Yu-Han; Tsuei, Ku-Ding; Felser, Claudia; Parkin, Stuart S. P.

    2016-01-01

    Optically transparent conducting materials are essential in modern technology. These materials are used as electrodes in displays, photovoltaic cells, and touchscreens; they are also used in energy-conserving windows to reflect the infrared spectrum. The most ubiquitous transparent conducting material is tin-doped indium oxide (ITO), a wide-gap oxide whose conductivity is ascribed to n-type chemical doping. Recently, it has been shown that ionic liquid gating can induce a reversible, nonvolatile metallic phase in initially insulating films of WO3. Here, we use hard X-ray photoelectron spectroscopy and spectroscopic ellipsometry to show that the metallic phase produced by the electrolyte gating does not result from a significant change in the bandgap but rather originates from new in-gap states. These states produce strong absorption below ∼1 eV, outside the visible spectrum, consistent with the formation of a narrow electronic conduction band. Thus WO3 is metallic but remains colorless, unlike other methods to realize tunable electrical conductivity in this material. Core-level photoemission spectra show that the gating reversibly modifies the atomic coordination of W and O atoms without a substantial change of the stoichiometry; we propose a simple model relating these structural changes to the modifications in the electronic structure. Thus we show that ionic liquid gating can tune the conductivity over orders of magnitude while maintaining transparency in the visible range, suggesting the use of ionic liquid gating for many applications. PMID:27647884

  1. Urea-induced oxidative damage in Elodea densa leaves.

    PubMed

    Maleva, Maria; Borisova, Galina; Chukina, Nadezda; Prasad, M N V

    2015-09-01

    Urea being a fertilizer is expected to be less toxic to plants. However, it was found that urea at 100 mg L(-1) caused the oxidative stress in Elodea leaves due to the formation of reactive oxygen species (ROS) and lipid peroxidation that are known to stimulate antioxidant pathway. Urea at a concentration of 500 and 1000 mg L(-1) decreased low-molecular-weight antioxidants. In this case, the antioxidant status of plants was supported by the activity of antioxidant enzymes such as superoxide dismutase and guaiacol peroxidase. A significant increase in the soluble proteins and -SH groups was observed with high concentrations of urea (30-60 % of control). Thus, the increased activity of antioxidant enzymes, low-molecular-weight antioxidants, and induced soluble protein thiols are implicated in plant resistance to oxidative stress imposed by urea. We found that guaiacol peroxidase plays an important role in the removal of the peroxide in Elodea leaves exposed to 1000 mg L(-1)of urea.

  2. Oxidative Stress Mediates Radiation Lung Injury by Inducing Apoptosis

    SciTech Connect

    Zhang Yu; Zhang Xiuwu; Rabbani, Zahid N.; Jackson, Isabel L.; Vujaskovic, Zeljko

    2012-06-01

    Purpose: Apoptosis in irradiated normal lung tissue has been observed several weeks after radiation. However, the signaling pathway propagating cell death after radiation remains unknown. Methods and Materials: C57BL/6J mice were irradiated with 15 Gy to the whole thorax. Pro-apoptotic signaling was evaluated 6 weeks after radiation with or without administration of AEOL10150, a potent catalytic scavenger of reactive oxygen and nitrogen species. Results: Apoptosis was observed primarily in type I and type II pneumocytes and endothelium. Apoptosis correlated with increased PTEN expression, inhibition of downstream PI3K/AKT signaling, and increased p53 and Bax protein levels. Transforming growth factor-{beta}1, Nox4, and oxidative stress were also increased 6 weeks after radiation. Therapeutic administration of AEOL10150 suppressed pro-apoptotic signaling and dramatically reduced the number of apoptotic cells. Conclusion: Increased PTEN signaling after radiation results in apoptosis of lung parenchymal cells. We hypothesize that upregulation of PTEN is influenced by Nox4-derived oxidative stress. To our knowledge, this is the first study to highlight the role of PTEN in radiation-induced pulmonary toxicity.

  3. Nitric Oxide Signaling in Hypergravity-Induced Neuronal Plasticity

    NASA Technical Reports Server (NTRS)

    Holstein, Gay R.

    2003-01-01

    The goal of this research project was to identify the neurons and circuits in the vestibular nuclei and nucleus prepositus hypoglossi that utilize nitric oxide (NO) for intercellular signaling during gravity-induced plasticity. This objective was pursued using histochemical and immunocytochemical approaches to localize NO-producing neurons and characterize the fine morphology of the cells in ground-based studies of normal rats, rats adapted to hypergravity, and rats adapted to hypergravity and then re-adapted to the 1G environment. NO-producing neurons were identified and studied using four methodologies: i) immunocytochemistry employing polyclonal antibodies directed against neuronal nitric oxide synthase (nNOS), to provide an indication of the capacity of a cell for NO production; ii) immunocytochemistry employing a monoclonal antibody directed against L-citrulline, to provide an indirect index of the enzyme's activity; iii) histochemistry based on the NADPH-diaphorase reaction, for fuI1 cytological visualization of neurons; and iv) double immunofluorescence to co-localize nNOS and L-citrulline in individual vestibular nuclei (VN) and neurons.

  4. Strain-induced topological quantum phase transition in phosphorene oxide

    NASA Astrophysics Data System (ADS)

    Kang, Seoung-Hun; Park, Jejune; Woo, Sungjong; Kwon, Young-Kyun

    Using ab initio density functional theory, we investigate the structural stability and electronic properties of phosphorene oxides (POx) with different oxygen compositions x. A variety of configurations are modeled and optimized geometrically to search for the equilibrium structure for each x value. Our electronic structure calculations on the equilibrium configuration obtained for each x reveal that the band gap tends to increase with the oxygen composition of x < 0.5, and then to decrease with x > 0.5. We further explore the strain effect on the electronic structure of the fully oxidized phosphorene, PO, with x = 1. At a particular strain without spin-orbit coupling (SOC) is observed a band gap closure near the Γ point in the k space. We further find the strain in tandem with SOC induces an interesting band inversion with a reopened very small band gap (5 meV), and thus gives rise to a topological quantum phase transition from a normal insulator to a topological insulator. Such a topological phase transition is confirmed by the wave function analysis and the band topology identified by the Z2 invariant calculation.

  5. Inducible nitric oxide synthase as a possible target in hypertension.

    PubMed

    Oliveira-Paula, Gustavo H; Lacchini, Riccardo; Tanus-Santos, Jose E

    2014-02-01

    Nitric oxide (NO) is an important vasodilator produced by vascular endothelium. Its enzymatic formation is derived from three different synthases: neuronal (nNOS), endothelial (eNOS) and inducible (iNOS) synthases. While relatively small amounts of NO produced by eNOS are important to cardiovascular homeostasis, high NO levels produced associated with iNOS activity may have detrimental consequences to the cardiovascular system and contribute to hypertension. In this article, we reviewed current literature and found mounting evidence indicating that increased iNOS expression and activity contribute to the pathogenesis of hypertension and its complications. Excessive amounts of NO produced by iNOS up-regulation can react with superoxide anions forming peroxynitrite, thereby promoting nitrosative stress and endothelial dysfunction. In addition, abnormal iNOS activity can up-regulate arginase activity, allowing it to compete with eNOS for L-arginine, thereby resulting in reduced NO bioavailability. This may also lead to eNOS uncoupling with enhanced production of superoxide anions instead of NO. All these alterations mediated by iNOS apparently contribute to hypertension and its complications. We also reviewed current evidence showing the effects of iNOS inhibitors on different animal models of hypertension. iNOS inhibition apparently exerts antihypertensive effects, decreases oxidative and nitrosative stress, and improves vascular function. Together, these studies highlight the possibility that iNOS is a potential pharmacological target in hypertension.

  6. Transparent conducting oxide induced by liquid electrolyte gating.

    PubMed

    ViolBarbosa, Carlos; Karel, Julie; Kiss, Janos; Gordan, Ovidiu-Dorin; Altendorf, Simone G; Utsumi, Yuki; Samant, Mahesh G; Wu, Yu-Han; Tsuei, Ku-Ding; Felser, Claudia; Parkin, Stuart S P

    2016-10-04

    Optically transparent conducting materials are essential in modern technology. These materials are used as electrodes in displays, photovoltaic cells, and touchscreens; they are also used in energy-conserving windows to reflect the infrared spectrum. The most ubiquitous transparent conducting material is tin-doped indium oxide (ITO), a wide-gap oxide whose conductivity is ascribed to n-type chemical doping. Recently, it has been shown that ionic liquid gating can induce a reversible, nonvolatile metallic phase in initially insulating films of WO3 Here, we use hard X-ray photoelectron spectroscopy and spectroscopic ellipsometry to show that the metallic phase produced by the electrolyte gating does not result from a significant change in the bandgap but rather originates from new in-gap states. These states produce strong absorption below ∼1 eV, outside the visible spectrum, consistent with the formation of a narrow electronic conduction band. Thus WO3 is metallic but remains colorless, unlike other methods to realize tunable electrical conductivity in this material. Core-level photoemission spectra show that the gating reversibly modifies the atomic coordination of W and O atoms without a substantial change of the stoichiometry; we propose a simple model relating these structural changes to the modifications in the electronic structure. Thus we show that ionic liquid gating can tune the conductivity over orders of magnitude while maintaining transparency in the visible range, suggesting the use of ionic liquid gating for many applications.

  7. Transparent conducting oxide induced by liquid electrolyte gating

    NASA Astrophysics Data System (ADS)

    ViolBarbosa, Carlos; Karel, Julie; Kiss, Janos; Gordan, Ovidiu-dorin; Altendorf, Simone G.; Utsumi, Yuki; Samant, Mahesh G.; Wu, Yu-Han; Tsuei, Ku-Ding; Felser, Claudia; Parkin, Stuart S. P.

    2016-10-01

    Optically transparent conducting materials are essential in modern technology. These materials are used as electrodes in displays, photovoltaic cells, and touchscreens; they are also used in energy-conserving windows to reflect the infrared spectrum. The most ubiquitous transparent conducting material is tin-doped indium oxide (ITO), a wide-gap oxide whose conductivity is ascribed to n-type chemical doping. Recently, it has been shown that ionic liquid gating can induce a reversible, nonvolatile metallic phase in initially insulating films of WO3. Here, we use hard X-ray photoelectron spectroscopy and spectroscopic ellipsometry to show that the metallic phase produced by the electrolyte gating does not result from a significant change in the bandgap but rather originates from new in-gap states. These states produce strong absorption below ˜1 eV, outside the visible spectrum, consistent with the formation of a narrow electronic conduction band. Thus WO3 is metallic but remains colorless, unlike other methods to realize tunable electrical conductivity in this material. Core-level photoemission spectra show that the gating reversibly modifies the atomic coordination of W and O atoms without a substantial change of the stoichiometry; we propose a simple model relating these structural changes to the modifications in the electronic structure. Thus we show that ionic liquid gating can tune the conductivity over orders of magnitude while maintaining transparency in the visible range, suggesting the use of ionic liquid gating for many applications.

  8. Oxalomalate affects the inducible nitric oxide synthase expression and activity.

    PubMed

    Irace, Carlo; Esposito, Giuseppe; Maffettone, Carmen; Rossi, Antonietta; Festa, Michela; Iuvone, Teresa; Santamaria, Rita; Sautebin, Lidia; Carnuccio, Rosa; Colonna, Alfredo

    2007-03-13

    Inducible nitric oxide synthase (iNOS) is an homodimeric enzyme which produces large amounts of nitric oxide (NO) in response to inflammatory stimuli. Several factors affect the synthesis and catalytic activity of iNOS. Particularly, dimerization of NOS monomers is promoted by heme, whereas an intracellular depletion of heme and/or L-arginine considerably decreases NOS resistance to proteolysis. In this study, we found that oxalomalate (OMA, oxalomalic acid, alpha-hydroxy-beta-oxalosuccinic acid), an inhibitor of both aconitase and NADP-dependent isocitrate dehydrogenase, inhibited nitrite production and iNOS protein expression in lipopolysaccharide (LPS)-activated J774 macrophages, without affecting iNOS mRNA content. Furthermore, injection of OMA precursors to LPS-stimulated rats also decreased nitrite production and iNOS expression in isolated peritoneal macrophages. Interestingly, alpha-ketoglutarate or succinyl-CoA administration reversed OMA effect on NO production, thus correlating NO biosynthesis with the anabolic capacity of Krebs cycle. When protein synthesis was blocked by cycloheximide in LPS-activated J774 cells treated with OMA, iNOS protein levels, evaluated by Western blot analysis and (35)S-metabolic labelling, were decreased, suggesting that OMA reduces iNOS biosynthesis and induces an increase in the degradation rate of iNOS protein. Moreover, we showed that OMA inhibits the activity of the iNOS from lung of LPS-treated rats by enzymatic assay. Our results, demonstrating that OMA acts regulating synthesis, catalytic activity and degradation of iNOS, suggest that this compound might have a potential role in reducing the NO overproduction occurring in some pathological conditions.

  9. Methylmalonate-induced seizures are attenuated in inducible nitric oxide synthase knockout mice.

    PubMed

    Ribeiro, Leandro Rodrigo; Fighera, Michele Rechia; Oliveira, Mauro Schneider; Furian, Ana Flávia; Rambo, Leonardo Magno; Ferreira, Ana Paula de Oliveira; Saraiva, André Luiz Lopes; Souza, Mauren Assis; Lima, Frederico Diniz; Magni, Danieli Valnes; Dezengrini, Renata; Flores, Eduardo Furtado; Butterfield, D Allan; Ferreira, Juliano; dos Santos, Adair Roberto Soares; Mello, Carlos Fernando; Royes, Luiz Fernando Freire

    2009-04-01

    Methylmalonic acidemias consist of a group of inherited neurometabolic disorders caused by deficiency of methylmalonyl-CoA mutase activity clinically and biochemically characterized by neurological dysfunction, methylmalonic acid (MMA) accumulation, mitochondrial failure and increased reactive species production. Although previous studies have suggested that nitric oxide (NO) plays a role in the neurotoxicity of MMA, the involvement of NO-induced nitrosative damage from inducible nitric oxide synthase (iNOS) in MMA-induced seizures are poorly understood. In the present study, we showed a decrease of time spent convulsing induced by intracerebroventricular administration of MMA (2 micromol/2 microL; i.c.v.) in iNOS knockout (iNOS(-/-)) mice when compared with wild-type (iNOS(+/+)) littermates. Visual analysis of electroencephalographic recordings (EEG) showed that MMA injection induced the appearance of high-voltage synchronic spike activity in the ipsilateral cortex which spreads to the contralateral cortex while quantitative electroencephalographic analysis showed larger wave amplitude during MMA-induced seizures in wild-type mice when compared with iNOS knockout mice. We also report that administration of MMA increases NOx (NO(2) plus NO(3) content) and 3-nitrotyrosine (3-NT) levels in a greater extend in iNOS(+/+) mice than in iNOS(-/-) mice, indicating that NO overproduction and NO-mediated damage to proteins are attenuated in iNOS knockout mice. In addition, the MMA-induced decrease in Na(+), K(+)-ATPase activity, but not in succinate dehydrogenase (SDH) activity, was less pronounced in iNOS(-/-) when compared with iNOS(+/+) mice. These results reinforce the assumption that metabolic collapse contributes for the secondary toxicity elicited by MMA and suggest that oxidative attack by NO derived from iNOS on selected target such as Na(+), K(+)-ATPase enzyme might represent an important role in this excitotoxicity induced by MMA. Therefore, these results may be

  10. Oats supplementation prevents alcohol-induced gut leakiness in rats by preventing alcohol-induced oxidative tissue damage.

    PubMed

    Tang, Yueming; Forsyth, Christopher B; Banan, Ali; Fields, Jeremy Z; Keshavarzian, Ali

    2009-06-01

    We reported previously that oats supplementation prevents gut leakiness and alcoholic steatohepatitis (ASH) in our rat model of alcoholic liver disease. Because oxidative stress is implicated in the pathogenesis of both alcohol-induced gut leakiness and ASH, and because oats have antioxidant properties, we tested the hypothesis that oats protect by preventing alcohol-induced oxidative damage to the intestine. Male Sprague-Dawley rats were gavaged for 12 weeks with alcohol (starting dose of 1 g/kg increasing to 6 g/kg/day over the first 2 weeks) or dextrose, with or without oats supplementation (10 g/kg/day). Oxidative stress and injury were assessed by measuring colonic mucosal inducible nitric-oxide synthase (iNOS) (by immunohistochemistry), nitric oxide (colorimetric assay), and protein carbonylation and nitrotyrosination (immunoblotting). Colonic barrier integrity was determined by assessing the integrity of the actin cytoskeleton (immunohistochemistry) and the integrity of tight junctions (electron microscopy). Oats supplementation prevented alcohol-induced up-regulation of iNOS, nitric oxide overproduction in the colonic mucosa, and increases in protein carbonyl and nitrotyrosine levels. This protection was associated with prevention of ethanol (EtOH)-induced disorganization of the actin cytoskeleton and disruption of tight junctions. We conclude that oats supplementation attenuates EtOH-induced disruption of intestinal barrier integrity, at least in part, by inhibiting EtOH-induced increases in oxidative stress and oxidative tissue damage. This inhibition prevents alcohol-induced disruption of the cytoskeleton and tight junctions. This study suggests that oats may be a useful therapeutic agent--a nutraceutical--for the prevention of alcohol-induced oxidative stress and organ dysfunction.

  11. Modulation of lipopolysaccharide-induced oxidative stress by capsaicin.

    PubMed

    Abdel-Salam, Omar M E; Abdel-Rahman, Rehab Fawzy; Sleem, Amany A; Farrag, Abdel Razik

    2012-08-01

    This study investigated the effect of capsaicin (the active principle of hot red pepper and a sensory excitotoxin) on oxidative stress after systemic administration of the endotoxin lipopolysaccharide (100 μg/kg, i.p.) in rats. Capsaicin (15, 150 or 1,500 μg/kg; 10, 100 or 400 μg/mL) was given via intragastric (i.g.) or intraperitoneal (i.p.) routes at time of endotoxin administration. Rats were killed 4 h later. Malondialdehyde (MDA) and reduced glutathione (GSH) were measured in brain, liver, and lungs. Alanine aminotransferase (ALT), aspartate aminotransferase, alkaline phosphatase (ALP), nitric oxide, and glucose were measured in serum. In addition, histopathological examination of liver tissue was performed. In LPS-treated rats, hepatic GSH increased significantly by 40.8% after i.p. capsaicin at 1,500 μg/kg. Liver MDA increased significantly by 32.9% after the administration of i.g. capsaicin at 1,500 μg/kg and by 27.8 and 37.6% after the administration of i.p. capsaicin at 150 and 1,500 μg/kg, respectively. In lung tissue, both MDA and GSH were decreased by capsaicin administration. MDA decreased by 19-20.8% after i.g. capsaicin and by 17.5-23.2% after i.p. capsaicin (150-1,500 μg/kg), respectively. GSH decreased by 39.3-64.3% and by 35.7-41.1% after i.g. or i.p. capsaicin (150-1,500 μg/kg), respectively. Brain GSH increased significantly after the highest dose of i.g. or i.p. capsaicin (by 20.6 and 15.9%, respectively). The increase in serum ALT and ALP after endotoxin administration was decreased by oral or i.p. capsaicin. Serum nitric oxide showed marked increase after LPS injection, but was markedly decreased after capsaicin (1,500 μg/kg, i.p.). Serum glucose increased markedly after the administration of LPS, and was normalized by capsaicin treatment. It is suggested that in the presence of mild systemic inflammation, acute capsaicin administration might alter oxidative status in some tissues and exert an anti-inflammatory effect

  12. Vitiligo: How do oxidative stress-induced autoantigens trigger autoimmunity?

    PubMed

    Xie, Heng; Zhou, Fubo; Liu, Ling; Zhu, Guannan; Li, Qiang; Li, Chunying; Gao, Tianwen

    2016-01-01

    Vitiligo is a common depigmentation disorder characterized by a loss of functional melanocytes and melanin from epidermis, in which the autoantigens and subsequent autoimmunity caused by oxidative stress play significant roles according to hypotheses. Various factors lead to reactive oxygen species (ROS) overproduction in the melanocytes of vitiligo: the exogenous and endogenous stimuli that cause ROS production, low levels of enzymatic and non-enzymatic antioxidants, disturbed antioxidant pathways and polymorphisms of ROS-associated genes. These factors synergistically contribute to the accumulation of ROS in melanocytes, finally leading to melanocyte damage and the production of autoantigens through the following ways: apoptosis, accumulation of misfolded peptides and cytokines induced by endoplasmic reticulum stress as well as the sustained unfolded protein response, and an 'eat me' signal for phagocytic cells triggered by calreticulin. Subsequently, autoantigens presentation and dendritic cells maturation occurred mediated by the release of antigen-containing exosomes, adenosine triphosphate and melanosomal autophagy. With the involvement of inducible heat shock protein 70, cellular immunity targeting autoantigens takes the essential place in the destruction of melanocytes, which eventually results in vitiligo. Several treatments, such as narrow band ultraviolet, quercetin and α-melanophore-stimulating hormone, are reported to be able to lower ROS thereby achieving repigmentation in vitiligo. In therapies targeting autoimmunity, restore of regulatory T cells is absorbing attention, in which narrow band ultraviolet also plays a role.

  13. Oxidized low density lipoprotein suppresses lipopolysaccharide-induced inflammatory responses in microglia: Oxidative stress acts through control of inflammation

    SciTech Connect

    Kim, Ohn Soon; Lee, Chang Seok; Joe, Eun-hye; Jou, Ilo . E-mail: jouilo@ajou.ac.kr

    2006-03-31

    Low density lipoprotein (LDL) is readily oxidized under certain conditions, resulting in the formation of oxidized LDL (oxLDL). Despite numerous in vitro reports that reveal the pathogenic role of oxidative stress, anti-oxidative strategies have underperformed in the clinic. In this study, we examine the role of oxLDL in brain inflammatory responses using cultured rat brain microglia. We demonstrate that oxLDL inhibits lipopolysaccharide (LPS)-induced inflammatory responses in these cells. It also decreases LPS-induced expression of inducible nitric oxide synthase and production of nitric oxide, and reduces LPS-induced secretion of tumor necrosis factor-{alpha} and monocyte chemoattractant protein-1. Oxysterols, known components of oxLDL and endogenous agonists of liver X receptor, can simulate the inhibitory effects of oxLDL in LPS-activated microglia. In addition, their inhibitory effects were mimicked by liver X receptor (LXR) agonists and potentiated by a retinoid X receptor agonist, suggesting these molecules heterodimerize to function as oxysterol receptors. Taken together, our results demonstrate that oxLDL inhibits LPS-induced inflammatory responses in brain microglia and that these inhibitory effects are mediated by oxysterols and, at least in part, by the nuclear receptor LXR. Our results suggest an additional mechanism of action for oxidative stress that acts indirectly via modulation of inflammatory responses. Although further studies are needed, these results answer in part the question of why anti-oxidative strategies have not been successful in clinical situations. Moreover, as brain inflammation participates in the initiation and progression of several neurodegenerative disorders, the present data provide information that should prove a useful guide for designing therapeutic strategies to combat oxidative brain diseases.

  14. Growth of silicon bump induced by swift heavy ion at the silicon oxide-silicon interface

    SciTech Connect

    Carlotti, J.-F.; Touboul, A.D.; Ramonda, M.; Caussanel, M.; Guasch, C.; Bonnet, J.; Gasiot, J.

    2006-01-23

    Thin silicon oxide layers on silicon substrates are investigated by scanning probe microscopy before and after irradiation with 210 MeV Au+ ions. After irradiation and complete chemical etching of the silicon oxide layer, silicon bumps grown on the silicon surface are observed. It is shown that each impinging ion induces one silicon bump at the interface. This observation is consistent with the thermal spike theory. Ion energy loss is transferred to the oxide and induces local melting. Silicon-bump formation is favored when the oxide and oxide-silicon interface are silicon rich.

  15. Determinants of exercise-induced fat oxidation in obese women and men.

    PubMed

    Haufe, S; Engeli, S; Budziarek, P; Utz, W; Schulz-Menger, J; Hermsdorf, M; Wiesner, S; Otto, C; Fuhrmann, J C; Luft, F C; Boschmann, M; Jordan, J

    2010-03-01

    Endurance training at an intensity eliciting maximal fat oxidation may have a beneficial effect on body weight and glucose metabolism in obese patients. However, the exercise intensity at which maximal fat oxidation occurs and the factors limiting fat oxidation are not well studied in this population. Obese, otherwise healthy men (n=38) and women (n=91) performed an incremental exercise test up to exhaustion on a cycle ergometer. Substrate oxidation was estimated using indirect calorimetry. Magnetic resonance tomography and spectroscopy were conducted to assess body fat distribution and intramyocellular fat content. We determined the exercise intensity at which maximal body fat oxidation occurs and assessed whether body composition, body fat distribution, intramyocellular fat content, or oxidative capacity predict exercise-induced fat oxidation. Maximal exercise-induced fat oxidation was 0.30+/-0.02 g/min in men and 0.23+/-0.01 g/min in women (p<0.05). Exercise intensity at the maximum fat oxidation was 42+/-2.2% VO (2 max) in men and 43+/-1.7% VO (2 max) in women. With multivariate analysis, exercise-induced fat oxidation was related to fat-free mass, percent fat mass, and oxidative capacity, but not to absolute fat mass, visceral fat, or intramyocellular fat content. We conclude that in obese subjects the capacity to oxidize fat during exercise appears to be limited by skeletal muscle mass and oxidative capacity rather than the availability of visceral or intramyocellular fat.

  16. Susceptibility to cerulein-induced pancreatitis in inducible nitric oxide synthase-deficient mice.

    PubMed

    Qui, B; Mei, Q B; Ma, J J; Korsten, M A

    2001-07-01

    Production of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) has been proposed as a pathogenic factor in acute pancreatitis, but its role has still not been fully examined. The present study explored the role of iNOS in cerulein-induced acute pancreatitis using iNOS-deficient mice. Twelve- to 14-week-old male mice (C57B1/6 and iNOS-deficient) were administered cerulein by intraperitoneal (i.p.) injection at hourly intervals for 7 hours and killed 24 hours later after the first dose. Pancreatic wet weight, pancreatic myeloperoxidase (MPO) activity, and levels of plasma nitrite and serum amylase were measured. In another experiment isosorbide dinitrate (an NO donor) was given by oral gavage every 6 hours for 24 hours beginning simultaneously with cerulein injections in iNOS-deficient mice. Cerulein administration dose-dependently increased pancreatic wet weight, myeloperoxidase activity, and levels of nitrite and amylase in C57B1/6 mice. These parameters (except nitrite levels) were significantly intensified in iNOS-deficient mice. At the dose employed, cerulein failed to increase nitrite levels in iNOS-deficient mice. The susceptibility to cerulein toxicity in iNOS-deficient mice was abolished by NO donor treatment. NO release from an iNOS source appears to play a protective role in cerulein-induced pancreatitis. At least in part, NO may prevent neutrophil accumulation after cerulein administration.

  17. Hypergravity upregulates renal inducible nitric oxide synthase expression and nitric oxide production

    PubMed Central

    Yoon, Gun; Oh, Choong Sik; Kim, Hyun-Soo

    2016-01-01

    Exposure to hypergravity severely decreases renal blood flow, potentially causing renal dysfunction. Nitric oxide (NO), which is endogenously synthesized by inducible NO synthase (iNOS), plays an important role in the regulation of renal function. The purpose of this study was to examine the effect of hypergravity exposure on the production of NO in kidneys. To determine whether hypergravity induces renal hypoxia and alters renal iNOS expression and NO production, mice were exposed to short-term hypergravity at +3Gz for 1 h. The time course of iNOS mRNA expression, hypoxia-inducible factor (HIF)-1α expression, and NO production was examined. Renal HIF-1α levels were significantly elevated immediately after centrifugation, and this increase was sustained for 3 h post-exposure. iNOS mRNA levels were also significantly increased immediately after exposure and were maintained during the reoxygenation period. Immunohistochemical staining for iNOS revealed that the cortical tubular epithelium exhibited moderate to strong cytoplasmic iNOS immunoreactivity immediately after hypergravity exposure and during the reoxygenation period. The time course of NO production was similar to that of iNOS expression. Our results suggest that both hypoxia and reoxygenation might be involved in the upregulation of HIF-1α in the kidneys of mice exposed to hypergravity. Significant increases in renocortical iNOS expression immediately after centrifugation and during the reoxygenation period suggest that iNOS expression induced by hypergravity exposure might play a protective role against hypoxia/reoxygenation injury in the renal cortex. Further investigations are necessary to clarify the role of iNOS and NO in kidneys exposed to hypergravity. PMID:27174912

  18. Indium and indium tin oxide induce endoplasmic reticulum stress and oxidative stress in zebrafish (Danio rerio).

    PubMed

    Brun, Nadja Rebecca; Christen, Verena; Furrer, Gerhard; Fent, Karl

    2014-10-07

    Indium and indium tin oxide (ITO) are extensively used in electronic technologies. They may be introduced into the environment during production, use, and leaching from electronic devices at the end of their life. At present, surprisingly little is known about potential ecotoxicological implications of indium contamination. Here, molecular effects of indium nitrate (In(NO3)3) and ITO nanoparticles were investigated in vitro in zebrafish liver cells (ZFL) cells and in zebrafish embryos and novel insights into their molecular effects are provided. In(NO3)3 led to induction of endoplasmic reticulum (ER) stress response, induction of reactive oxygen species (ROS) and induction of transcripts of pro-apoptotic genes and TNF-α in vitro at a concentration of 247 μg/L. In(NO3)3 induced the ER stress key gene BiP at mRNA and protein level, as well as atf6, which ultimately led to induction of the important pro-apoptotic marker gene chop. The activity of In(NO3)3 on ER stress induction was much stronger than that of ITO, which is explained by differences in soluble free indium ion concentrations. The effect was also stronger in ZFL cells than in zebrafish embryos. Our study provides first evidence of ER stress and oxidative stress induction by In(NO3)3 and ITO indicating a critical toxicological profile that needs further investigation.

  19. Water-induced thermogenesis and fat oxidation: a reassessment

    PubMed Central

    Charrière, N; Miles-Chan, J L; Montani, J-P; Dulloo, A G

    2015-01-01

    Background/Objectives: Drinking large amounts of water is often recommended for weight control. Whether water intake stimulates energy and fat metabolism is, however, controversial with some studies reporting that drinking half a litre or more of water increases resting energy expenditure (REE) by 10–30% and decreases respiratory quotient (RQ), whereas others report no significant changes in REE or RQ. The aim here was to reassess the concept of water-induced thermogenesis and fat oxidation in humans, with particular focus on interindividual variability in REE and RQ responses, comparison with a time-control Sham drink, and on the potential impact of gender, body composition and abdominal adiposity. Subjects/Methods: REE and RQ were measured in healthy young adults (n=27; body mass index range: 18.5–33.9 kg m−2), by ventilated hood indirect calorimetry for at least 30 min before and 130 min after ingesting 500 ml of purified (distilled) water at 21–22 °C or after Sham drinking, in a randomized cross-over design. Body composition and abdominal fat were assessed by bioimpedance techniques. Results: Drinking 500 ml of distilled water led to marginal increases in REE (<3% above baseline), independently of gender, but which were not significantly different from Sham drinking. RQ was found to fall after the water drink, independently of gender, but it also diminished to a similar extent in response to sham drinking. Interindividual variability in REE and RQ responses was not associated with body fatness, central adiposity or fat-free mass. Conclusions: This study conducted in young men and women varying widely in adiposity, comparing the ingestion of distilled water to Sham drinking, suggests that ingestion of purified water per se does not result in the stimulation of thermogenesis or fat oxidation. PMID:26690288

  20. Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney.

    PubMed

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Farkhondeh, Tahereh; Samini, Fariborz

    2017-03-01

    Restraint stress has been indicated to induce oxidative damage in tissues. Several investigations have reported that curcumin (CUR) may have a protective effect against oxidative stress. The present study was designed to investigate the protective effects of CUR on restraint stress induced oxidative stress damage in the brain, liver and kidneys. For chronic restraint stress, rats were kept in the restrainers for 1h every day, for 21 consecutive days. The animals received systemic administrations of CUR daily for 21days. In order to evaluate the changes of the oxidative stress parameters following restraint stress, the levels of malondialdehyde (MDA), reduced glutathione (GSH), as well as antioxidant enzyme activities superoxide dismutase (SOD) glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) were measured in the brain, liver and kidney of rats after the end of restraint stress. The restraint stress significantly increased MDA level, but decreased the level of GSH and activists of SOD, GPx, GR, and CAT the brain, liver and kidney of rats in comparison to the normal rats (P<0.001). Intraperitoneal administration of CUR significantly attenuated oxidative stress and lipid peroxidation, prevented apoptosis, and increased antioxidant defense mechanism activity in the tissues versus the control group (P<0.05). This study shows that CUR can prevent restraint stress-induced oxidative damage in the brain, liver and kidney of rats and propose that CUR may be useful agents against oxidative stress in the tissues.

  1. Acidosis induces reprogramming of cellular metabolism to mitigate oxidative stress

    PubMed Central

    2013-01-01

    Background A variety of oncogenic and environmental factors alter tumor metabolism to serve the distinct cellular biosynthetic and bioenergetic needs present during oncogenesis. Extracellular acidosis is a common microenvironmental stress in solid tumors, but little is known about its metabolic influence, particularly when present in the absence of hypoxia. In order to characterize the extent of tumor cell metabolic adaptations to acidosis, we employed stable isotope tracers to examine how acidosis impacts glucose, glutamine, and palmitate metabolism in breast cancer cells exposed to extracellular acidosis. Results Acidosis increased both glutaminolysis and fatty acid β-oxidation, which contribute metabolic intermediates to drive the tricarboxylic acid cycle (TCA cycle) and ATP generation. Acidosis also led to a decoupling of glutaminolysis and novel glutathione (GSH) synthesis by repressing GCLC/GCLM expression. We further found that acidosis redirects glucose away from lactate production and towards the oxidative branch of the pentose phosphate pathway (PPP). These changes all serve to increase nicotinamide adenine dinucleotide phosphate (NADPH) production and counter the increase in reactive oxygen species (ROS) present under acidosis. The reduced novel GSH synthesis under acidosis may explain the increased demand for NADPH to recycle existing pools of GSH. Interestingly, acidosis also disconnected novel ribose synthesis from the oxidative PPP, seemingly to reroute PPP metabolites to the TCA cycle. Finally, we found that acidosis activates p53, which contributes to both the enhanced PPP and increased glutaminolysis, at least in part, through the induction of G6PD and GLS2 genes. Conclusions Acidosis alters the cellular metabolism of several major metabolites, which induces a significant degree of metabolic inflexibility. Cells exposed to acidosis largely rely upon mitochondrial metabolism for energy generation to the extent that metabolic intermediates are

  2. Inducible nitric oxide synthase suppresses the development of allograft arteriosclerosis.

    PubMed Central

    Shears, L L; Kawaharada, N; Tzeng, E; Billiar, T R; Watkins, S C; Kovesdi, I; Lizonova, A; Pham, S M

    1997-01-01

    In cardiac transplantation, chronic rejection takes the form of an occlusive vasculopathy. The mechanism underlying this disorder remains unclear. The purpose of this study was to investigate the role nitric oxide (NO) may play in the development of allograft arteriosclerosis. Rat aortic allografts from ACI donors to Wistar Furth recipients with a strong genetic disparity in both major and minor histocompatibility antigens were used for transplantation. Allografts collected at 28 d were found to have significant increases in both inducible NO synthase (iNOS) mRNA and protein as well as in intimal thickness when compared with isografts. Inhibiting NO production with an iNOS inhibitor increased the intimal thickening by 57.2%, indicating that NO suppresses the development of allograft arteriosclerosis. Next, we evaluated the effect of cyclosporine (CsA) on iNOS expression and allograft arteriosclerosis. CsA (10 mg/kg/d) suppressed the expression of iNOS in response to balloon-induced aortic injury. Similarly, CsA inhibited iNOS expression in the aortic allografts, associated with a 65% increase in intimal thickening. Finally, we investigated the effect of adenoviral-mediated iNOS gene transfer on allograft arteriosclerosis. Transduction with iNOS using an adenoviral vector suppressed completely the development of allograft arteriosclerosis in both untreated recipients and recipients treated with CsA. These results suggest that the early immune-mediated upregulation in iNOS expression partially protects aortic allografts from the development of allograft arteriosclerosis, and that iNOS gene transfer strategies may prove useful in preventing the development of this otherwise untreatable disease process. PMID:9329968

  3. Cerium oxide nanoparticles protect primary mouse bone marrow stromal cells from apoptosis induced by oxidative stress

    NASA Astrophysics Data System (ADS)

    Zhang, Qun; Ge, Kun; Duan, Jianlei; Chen, Shizhu; Zhang, Ran; Zhang, Cuimiao; Wang, Shuxiang; Zhang, Jinchao

    2014-11-01

    Cerium oxide nanoparticles (nanoceria) have been widely used in industries and biomedical fields due to its unique properties. Previous biodistribution studies of nanoceria in vivo have shown that they are accumulated in the bone of mice after intravenous administration, about 20 % of the total intake, however, the potential effect and the mechanism of nanoceria on bone metabolism are not well-understood. Our results showed that both 25 and 50 nm nanceria decreased the damage of cell viability induced by H2O2 in a dose-dependent manner. The apoptosis ratio of pre-incubated group with nanoceria was lower than the H2O2 group. The cellular uptake studies indicated that there was a dose-dependent accumulation of both two size nanoparticles in bone marrow stromal cells. Nanoceria could be uptaken by cells due to the synergistic effect of multiple endocytosis mechanisms, and then evenly distributed in the cytoplasm without entering the nucleus. Our results suggest that nanoceria could reduce intracellular ROS level induced by H2O2 in a dose-dependent manner, moreover, maintain the normal function of mitochondria, suggesting nanoceria may have potent applications for preventing or treating osteoporosis.

  4. Resveratrol protects mouse oocytes from methylglyoxal-induced oxidative damage.

    PubMed

    Liu, Yu; He, Xiao-Qin; Huang, Xin; Ding, Lu; Xu, Lin; Shen, Yu-Ting; Zhang, Fei; Zhu, Mao-Bi; Xu, Bai-Hui; Qi, Zhong-Quan; Wang, Hai-Long

    2013-01-01

    Methylglyoxal, a reactive dicarbonyl compound, is mainly formed from glycolysis. Methylglyoxal can lead to the dysfunction of mitochondria, the depletion of cellular anti-oxidation enzymes and the formation of advanced glycation ends. Previous studies showed that the accumulation of methylglyoxal and advanced glycation ends can impair the oocyte maturation and reduce the oocyte quality in aged and diabetic females. In this study, we showed that resveratrol, a kind of phytoalexin found in the skin of grapes, red wine and other botanical extracts, can alleviate the adverse effects caused by methylglyoxal, such as inhibition of oocyte maturation and disruption of spindle assembly. Besides, methylglyoxal-treated oocytes displayed more DNA double strands breaks and this can also be decreased by treatment of resveratrol. Further investigation of these processes revealed that methylglyoxal may affect the oocyte quality by resulting in excessive reactive oxygen species production, aberrant mitochondrial distribution and high level lipid peroxidation, and resveratrol can block these cytotoxic changes. Collectively, our results showed that resveratrol can protect the oocytes from methylglyoxal-induced cytotoxicity and this was mainly through the correction of the abnormity of cellular reactive oxygen species metabolism.

  5. Protective effect of thymoquinone against testicular torsion induced oxidative injury.

    PubMed

    Ayan, M; Tas, U; Sogut, E; Caylı, S; Kaya, H; Esen, M; Erdemir, F; Uysal, M

    2016-03-01

    We aimed to determine the protective effects of thymoquinone (TQ), against ischaemia-reperfusion (I/R) injury in the testis tissue of rats. Twenty-seven male Wistar albino rats were randomly divided into three equal groups as follows: Group I, sham group; Group II, torsion group; and Group III, torsion + thymoquinone group. The ischaemia period was 2 h, and orchiectomy was performed after 30 min of detorsion. Testis tissue sections were analysed with the terminal transferase mediated dUTP-nick end labelling (TUNEL) assay to determine in situ apoptotic DNA fragmentation. Additionally, Caspase 3 and Bax proteins were analysed immunohistochemically. The superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) activity levels in the testis tissue were also measured. The superoxide dismutase activity and malondialdehyde levels in the torsion group were significantly higher than those of the sham group (P < 0.05). Thymoquinone administration significantly reduced these levels. Torsion significantly increased active-Caspase 3 and Bax expression, which was decreased by thymoquinone. The apoptotic index of the torsion group was significantly higher than that of the control group. However, thymoquinone significantly reduced the apoptotic index (P < 0.05). Our results indicate that thymoquinone plays a protective role in oxidative stress induced ischaemia-reperfusion in the testis tissue of rats.

  6. Role of oxidative stress in thuringiensin-induced pulmonary toxicity

    SciTech Connect

    Tsai, S.-F. . E-mail: sftsai@tactri.gov.tw; Yang Chi; Liu, B.-L.; Hwang, J.-S.; Ho, S.-P. . E-mail: spho@dragon.nchu.edu.tw

    2006-10-15

    To understand the effect of thuringiensin on the lungs tissues, male Sprague-Dawley rats were administrated with thuringiensin by intratracheal instillation at doses 0.8, 1.6 and 3.2 mg/kg of body weight, respectively. The rats were sacrificed 4 h after treatment, and lungs were isolated and examined. Subsequently, an effective dose of 1.6 mg/kg was selected for the time course study (4, 8, 12, and 24 h). Intratracheal instillation of thuringiensin resulted in lung damage, as evidenced by increase in lung weight and decrease in alkaline phosphatase (10-54%), an enzyme localized primarily in pulmonary alveolar type II epithelial cells. Furthermore, the administration of thuringiensin caused increases in lipid peroxidation (21-105%), the indices of lung injury. In addition, the superoxide dismutase (SOD) and glutathione (GSH) activities of lung tissue extracts were measured to evaluate the effect of thuringiensin on antioxidant defense system. The SOD activity and GSH content in lung showed significant decreases in a dose-related manner with 11-21% and 15-37%, respectively. Those were further supported by the release of proinflammatory cytokines, as indicated by increases in IL-1{beta} (229-1017%) and TNF-{alpha} (234%) levels. Therefore, the results demonstrated that changes in the pulmonary oxidative-antioxidative status might play an important role in the thuringiensin-induced lung injury.

  7. Platinum-induced structural collapse in layered oxide polycrystalline films

    SciTech Connect

    Wang, Jianlin; Liu, Changhui; Huang, Haoliang; Fu, Zhengping; Peng, Ranran E-mail: yllu@ustc.edu.cn; Zhai, Xiaofang; Lu, Yalin E-mail: yllu@ustc.edu.cn

    2015-03-30

    Effect of a platinum bottom electrode on the SrBi{sub 5}Fe{sub 1−x}Co{sub x}Ti{sub 4}O{sub 18} layered oxide polycrystalline films was systematically studied. The doped cobalt ions react with the platinum to form a secondary phase of PtCoO{sub 2}, which has a typical Delafossite structure with a weak antiferromagnetism and an exceptionally high in-plane electrical conductivity. Formation of PtCoO{sub 2} at the interface partially consumes the cobalt dopant and leads to the structural collapsing from 5 to 4 layers, which was confirmed by X-ray diffraction and high resolution transmission electron microscopy measurements. Considering the weak magnetic contribution from PtCoO{sub 2}, the observed ferromagnetism should be intrinsic of the Aurivillius compounds. Ferroelectric properties were also indicated by the piezoresponse force microscopy. In this work, the platinum induced secondary phase at the interface was observed, which has a strong impact on Aurivillius structural configuration and thus the ferromagnetic and ferroelectric properties.

  8. Inducible nitric oxide synthase is expressed in synovial fluid granulocytes.

    PubMed

    Cedergren, J; Forslund, T; Sundqvist, T; Skogh, T

    2002-10-01

    The objective of the study was to evaluate the NO-producing potential of synovial fluid (SF) cells. SF from 15 patients with arthritis was compared with blood from the same individuals and with blood from 10 healthy controls. Cellular expression of inducible nitric oxide synthase (iNOS) was analysed by flow cytometry. High-performance liquid chromatography was used to measure l-arginine and l-citrulline. Nitrite and nitrate were measured colourimetrically utilizing the Griess' reaction. Compared to whole blood granulocytes in patients with chronic arthritis, a prominent iNOS expression was observed in SF granulocytes (P < 0.001). A slight, but statistically significant, increase in iNOS expression was also recorded in lymphocytes and monocytes from SF. l-arginine was elevated in SF compared to serum (257 +/- 78 versus 176 +/- 65 micro mol/l, P = 0.008), whereas a slight increase in l-citrulline (33 +/- 11 versus 26 +/- 9 micro mol/l), did not reach statistical significance. Great variations but no significant differences were observed comparing serum and SF levels of nitrite and nitrate, respectively, although the sum of nitrite and nitrate tended to be elevated in SF (19.2 +/- 20.7 versus 8.6 +/- 6.5 micro mol/l, P = 0.054). Synovial fluid leucocytes, in particular granulocytes, express iNOS and may thus contribute to intra-articular NO production in arthritis.

  9. Oxidatively induced DNA damage and its repair in cancer.

    PubMed

    Dizdaroglu, Miral

    2015-01-01

    Oxidatively induced DNA damage is caused in living organisms by endogenous and exogenous reactive species. DNA lesions resulting from this type of damage are mutagenic and cytotoxic and, if not repaired, can cause genetic instability that may lead to disease processes including carcinogenesis. Living organisms possess DNA repair mechanisms that include a variety of pathways to repair multiple DNA lesions. Mutations and polymorphisms also occur in DNA repair genes adversely affecting DNA repair systems. Cancer tissues overexpress DNA repair proteins and thus develop greater DNA repair capacity than normal tissues. Increased DNA repair in tumors that removes DNA lesions before they become toxic is a major mechanism for development of resistance to therapy, affecting patient survival. Accumulated evidence suggests that DNA repair capacity may be a predictive biomarker for patient response to therapy. Thus, knowledge of DNA protein expressions in normal and cancerous tissues may help predict and guide development of treatments and yield the best therapeutic response. DNA repair proteins constitute targets for inhibitors to overcome the resistance of tumors to therapy. Inhibitors of DNA repair for combination therapy or as single agents for monotherapy may help selectively kill tumors, potentially leading to personalized therapy. Numerous inhibitors have been developed and are being tested in clinical trials. The efficacy of some inhibitors in therapy has been demonstrated in patients. Further development of inhibitors of DNA repair proteins is globally underway to help eradicate cancer.

  10. Cytokines induce nitric oxide production in mouse osteoblasts.

    PubMed

    Damoulis, P D; Hauschka, P V

    1994-06-15

    MC3T3-E1 mouse clonal osteogenic cells were incubated with interferon-gamma, interleukin-1 beta, tumor necrosis factor-alpha, and E. coli lipopolysaccharide. TNF alpha, IL-1 beta, and LPS caused a dose- and time-dependent increase of nitrite (NO2-), the stable metabolite of nitric oxide (NO), in conditioned media over 48 hours, while IFN gamma had a minimal effect. Different combinations of the same factors caused a synergistic enhancement of NO2- accumulation, except for IL-1 beta with LPS. The earliest detectable NO2- production was at 6-9 hours, with continued accumulation over 48 hours. NO2- production was inhibited dose-dependently by three arginine analogs known to be specific inhibitors of NO synthase, as well as by actinomycin D, cycloheximide, and dexamethasone; EGTA or indomethacin had a small inhibitory effect. It is concluded that osteoblast-like cells can be induced by proinflammatory cytokines and bacterial endotoxin to produce NO, which can play an important role in bone pathophysiology.

  11. Mice lacking inducible nitric oxide synthase are not resistant to lipopolysaccharide-induced death.

    PubMed Central

    Laubach, V E; Shesely, E G; Smithies, O; Sherman, P A

    1995-01-01

    Nitric oxide produced by cytokine-inducible nitric oxide synthase (iNOS) is thought to be important in the pathogenesis of septic shock. To further our understanding of the role of iNOS in normal biology and in a variety of inflammatory disorders, including septic shock, we have used gene targeting to generate a mouse strain that lacks iNOS. Mice lacking iNOS were indistinguishable from wild-type mice in appearance and histology. Upon treatment with lipopolysaccharide and interferon gamma, peritoneal macrophages from the mutant mice did not produce nitric oxide measured as nitrite in the culture medium. In addition, lysates of these cells did not contain iNOS protein by immunoblot analysis or iNOS enzyme activity. In a Northern analysis of total RNA, no iNOS transcript of the correct size was detected. No increases in serum nitrite plus nitrate levels were observed in homozygous mutant mice treated with a lethal dose of lipopolysaccharide, but the mutant mice exhibited no significant survival advantage over wild-type mice. These results show that lack of iNOS activity does not prevent mortality in this murine model for septic shock. Images Fig. 2 Fig. 3 PMID:7479866

  12. Lycopene inhibits LPS-induced proinflammatory mediator inducible nitric oxide synthase in mouse macrophage cells.

    PubMed

    Rafi, Mohamed M; Yadav, Prem Narayan; Reyes, Marynell

    2007-01-01

    Lycopene is a fat-soluble red-orange carotenoid found primarily in tomatoes and tomato-derived products, including tomato sauce, tomato paste, and ketchup, and other dietary sources, including dried apricots, guava, watermelon, papaya, and pink grapefruit. In this study, we have demonstrated the molecular mechanism underlying the anti-inflammatory properties of lycopene using a mouse macrophage cell line (RAW 264.7). Treatment with lycopene (10 microM) inhibited lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production (40% compared with the control). Western blotting and reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that lycopene treatment decreased LPS-induced inducible nitric oxide synthase (iNOS) protein and mRNA expression in RAW 264.7 cells, respectively. These results suggest that lycopene has anti-inflammatory activity by inhibiting iNOS proteins and mRNA expressions in mouse macrophage cell lines. Furthermore, cyclooxygenase-2 (COX-2) protein and mRNA expression were not affected by treatment with lycopene.

  13. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway.

    PubMed

    Zhu, Yao; Zhang, Ya-Jie; Liu, Wei-Wei; Shi, Ai-Wu; Gu, Ning

    2016-08-09

    Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL), one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2)-regulated genes such as heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase (quinone1) (NQO1). However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS) and malondialdehyde (MDA), and improved the activities of superoxide dismutase (SOD) and catalase (CAT), resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway.

  14. Galangin (3,5,7-trihydroxyflavone) shields human keratinocytes from ultraviolet B-induced oxidative stress.

    PubMed

    Madduma Hewage, Susara Ruwan Kumara; Piao, Mei Jing; Kim, Ki Cheon; Cha, Ji Won; Han, Xia; Choi, Yung Hyun; Chae, Sungwook; Hyun, Jin Won

    2015-03-01

    Most skin damage caused by ultraviolet B (UVB) radiation is owing to the generation of reactive oxygen species. Phytochemicals can act as antioxidants against UVB-induced oxidative stress. This study investigated the protective effects of the flavone galangin against UVB-induced oxidative damage in human keratinocytes. Galangin efficiently scavenged free radicals and reduced UVB-induced damage to cellular macromolecules, such as DNA, lipids, and proteins. Furthermore, galangin rescued cells undergoing apoptosis induced by UVB radiation via recovering mitochondrial polarization and down-regulating apoptotic proteins. These results showed that galangin protects human keratinocytes against UVB radiation-induced cellular damage and apoptosis via its antioxidant effects.

  15. Oxidative DNA damage is a preliminary step during rat tongue carcinogenesis induced by 4-nitroquinoline 1-oxide.

    PubMed

    Miranda, Sandra Regina; Noguti, Juliana; Carvalho, Juliana Gonçalves; Oshima, Celina Tijuko Fujiyama; Ribeiro, Daniel Araki

    2011-04-01

    The aim of this study was to investigate oxidative DNA damage during 4-nitroquinoline 1-oxide (4NQO)-induced rat tongue carcinogenesis. For this purpose, male Wistar rats were distributed into three groups of 10 animals each and treated with 50 ppm 4NQO solution through their drinking water for 4, 12, and 20 weeks. Ten animals were used as negative control. The alkaline Comet assay modified with lesion-specific enzymes was used to detect single and double strand breaks, labile sites (SBs), and oxidised purines and pyrimidines. Although no histopathological abnormalities were induced in the epithelium after 4 weeks of carcinogen exposure, oxidative DNA damage was detected in the 'normal' oral epithelium. In pre-neoplastic lesions and squamous cell carcinomas induced after 12 and 20 weeks following carcinogen exposure, respectively, oxidative DNA damage was also increased (P < 0.05) when compared to negative control. In conclusion, our results suggest that oxidative DNA damage is an early event during multistep carcinogenesis assay induced by 4NQO. This kind of approach should be considered to persons with high risk of oral cancer, such as in smokers or alcohol consumers.

  16. Castration induces Parkinson disease pathologies in young male mice via inducible nitric-oxide synthase.

    PubMed

    Khasnavis, Saurabh; Ghosh, Anamitra; Roy, Avik; Pahan, Kalipada

    2013-07-19

    Although Parkinson disease (PD) is a progressive neurodegenerative disorder, available animal models do not exhibit irreversible neurodegeneration, and this is a major obstacle in finding out an effective drug against this disease. Here we delineate a new irreversible model to study PD pathogenesis. The model is based on simple castration of young male mice. Levels of inducible nitric-oxide synthase (iNOS), glial markers (glial fibrillary acidic protein and CD11b), and α-synuclein were higher in nigra of castrated male mice than normal male mice. On the other hand, after castration, the level of glial-derived neurotrophic factor (GDNF) markedly decreased in the nigra of male mice. Accordingly, castration also induced the loss of tyrosine hydroxylase-positive neurons in the nigra and decrease in tyrosine hydroxylase-positive fibers and neurotransmitters in the striatum. Reversal of nigrostriatal pathologies in castrated male mice by subcutaneous implantation of 5α-dihydrotestosterone pellets validates an important role of male sex hormone in castration-induced nigrostriatal pathology. Interestingly, castration was unable to cause glial activation, decrease nigral GDNF, augment the death of nigral dopaminergic neurons, induce the loss of striatal fibers, and impair neurotransmitters in iNOS(-/-) male mice. Furthermore, we demonstrate that iNOS-derived NO is responsible for decreased expression of GDNF in activated astrocytes. Together, our results suggest that castration induces nigrostriatal pathologies via iNOS-mediated decrease in GDNF. These results are important because castrated young male mice may be used as a simple, toxin-free, and nontransgenic animal model to study PD-related nigrostriatal pathologies, paving the way for easy drug screening against PD.

  17. Melatonin inhibits snake venom and antivenom induced oxidative stress and augments treatment efficacy.

    PubMed

    Sharma, Rachana D; Katkar, Gajanan D; Sundaram, Mahalingam S; Swethakumar, Basavarajaiah; Girish, Kesturu S; Kemparaju, Kempaiah

    2017-05-01

    Snakebite is a neglected health hazard. Its patho-physiology has largely been focused on systemic and local toxicities; whereas, venom and antivenom induced oxidative stress has long been ignored. Antivenom therapy although neutralizes venom lethality and saves many lives, remains ineffective against oxidative stress. This prompted us to complement antivenom with an antioxidant molecule melatonin that would protect against oxidative stress and increase the efficacy of the existing snakebite therapy. Here we show that D. russelli and E. carinatus venoms induce strong oxidative stress that persists even after antivenom administration in mice model. Additionally, antivenoms also induce oxidative stress. Polyvalent antivenom induce more oxidative stress than monovalent antivenom. Strikingly, antivenom and melatonin together not only inhibit venom and antivenom induced oxidative stress but also significantly reduce the neutralizing antivenom dose. This study provides a therapeutic potential for enhancing the existing snakebite therapy. The combined treatment of antivenom+melatonin would prevent the upsurge of oxidative stress as well as minimize the antivenom load. Thus the investigation offers immense scope for physicians and toxinologists to reinvestigate, design new strategies and think beyond the conventional mode of antivenom therapy.

  18. Correlation between oxidative stress and alteration of intracellular calcium handling in isoproterenol-induced myocardial infarction.

    PubMed

    Díaz-Muñoz, Mauricio; Alvarez-Pérez, Marco Antonio; Yáñez, Lucía; Vidrio, Susana; Martínez, Lidia; Rosas, Gisele; Yáñez, Mario; Ramírez, Sotero; de Sánchez, Victoria Chagoya

    2006-09-01

    Myocardial Ca(2+) overload and oxidative stress are well documented effects associated to isoproterenol (ISO)-induced myocardial necrosis, but information correlating these two issues is scarce. Using an ISO-induced myocardial infarction model, 3 stages of myocardial damage were defined: pre-infarction (0-12 h), infarction (12-24 h) and post-infarction (24-96 h). Alterations in Ca(2+) homeostasis and oxidative stress were studied in mitochondria, sarcoplasmic reticulum and plasmalemma by measuring the Ca(2+) content, the activity of Ca(2+) handling proteins, and by quantifying TBARs, nitric oxide (NO) and oxidative protein damage (changes in carbonyl and thiol groups). Free radicals generated system, antioxidant enzymes and oxidative stress (GSH/GSSG ratio) were also monitored at different times of ISO-induced cardiotoxicity. The Ca(2+) overload induced by ISO was counterbalanced by a diminution in the ryanodine receptor activity and the Na(+)-Ca(+2) exchanger as well as by the increase in both calcium ATPases activities (vanadate- and thapsigargine-sensitive) and mitochondrial Ca(2+) uptake during pre-infarction and infarction stages. Pro-oxidative reactions and antioxidant defences during the 3 stages of cardiotoxicity were observed, with maximal oxidative stress during the infarction. Significant correlations were found among pro-oxidative reactions with plasmalemma and sarcoplasmic reticulum Ca(2+) ATPases, and ryanodine receptor activities at the onset and development of ISO-induced infarction. These findings could be helpful in the design of antioxidant therapies in this pathology.

  19. Tolerance of pentose utilising yeast to hydrogen peroxide-induced oxidative stress

    PubMed Central

    2014-01-01

    Background Bioethanol fermentations follow traditional beverage fermentations where the yeast is exposed to adverse conditions such as oxidative stress. Lignocellulosic bioethanol fermentations involve the conversion of pentose and hexose sugars into ethanol. Environmental stress conditions such as osmotic stress and ethanol stress may affect the fermentation performance; however, oxidative stress as a consequence of metabolic output can also occur. However, the effect of oxidative stress on yeast with pentose utilising capabilities has yet to be investigated. Results Assaying for the effect of hydrogen peroxide-induced oxidative stress on Candida, Pichia and Scheffersomyces spp. has demonstrated that these yeast tolerate hydrogen peroxide-induced oxidative stress in a manner consistent with that demonstrated by Saccharomyces cerevisiae. Pichia guillermondii appears to be more tolerant to hydrogen peroxide-induced oxidative stress when compared to Candida shehatae, Candida succiphila or Scheffersomyces stipitis. Conclusions Sensitivity to hydrogen peroxide-induced oxidative stress increased in the presence of minimal media; however, addition of amino acids and nucleobases was observed to increase tolerance. In particular adenine increased tolerance and methionine reduced tolerance to hydrogen peroxide-induced oxidative stress. PMID:24636079

  20. Inducible nitric oxide synthase in Theiler's murine encephalomyelitis virus infection.

    PubMed Central

    Oleszak, E L; Katsetos, C D; Kuzmak, J; Varadhachary, A

    1997-01-01

    We investigated the role of inducible nitric oxide synthase (iNOS) in Theiler's murine encephalomyelitis virus (TMEV) infection of susceptible (SJL) and resistant (C57BL/6 [B6]) strains of mice. TMEV is an excellent model of virus-induced demyelinating disease, such as multiple sclerosis (MS). Previous studies of others have suggested that NO may play a role in the pathogenesis of demyelinating disease. The presence and level of iNOS were determined in the brains and spinal cords of SJL and B6 TMEV-infected mice by the following methods: (i) PCR amplification of iNOS transcripts, followed by Southern blotting with an iNOS-specific probe, and (ii) immunohistochemical staining with an anti-iNOS-specific affinity-purified rabbit antibody. iNOS-specific transcripts were determined in the brains and spinal cord of both SJL and B6 TMEV-infected mice on days 0 (control), days 3, 6, and 10 (encephalitic stage of disease), and days 39 to 42, 66, and 180 (demyelinating phase) postinfection (p.i.). iNOS-specific transcripts were found in the brains and spinal cords of both SJL and B6 TMEV-infected mice at 6, 10, and 39 (SJL) days p.i., but they were absent in mock-infected mice and in TMEV-infected SJL and B6 mice at 0, 3, 66, and 180 days p.i. Immunohistochemical staining confirmed the presence of iNOS protein in both TMEV-infected SJL and B6 mice at days 6 and 10 p.i., but not at days 0, 3, 66, and 180 days p.i. Weak iNOS staining was also observed in TMEV-infected SJL mice at 42 days p.i. iNOS-positive staining was found in reactive astrocytes surrounding areas of necrotizing inflammation, particularly in the midbrain. Weak iNOS staining was also observed in cells of the monocyte/macrophage lineage in areas of parenchymal inflammation and necrosis (mesencephalon) and in leptomeningeal and white matter perivascular infiltrates of the spinal cord. Rod-shaped microglia-like cells and foamy macrophages (myelin-laden) were iNOS negative. These results suggest that NO does not

  1. PKCη promotes senescence induced by oxidative stress and chemotherapy

    PubMed Central

    Zurgil, U; Ben-Ari, A; Atias, K; Isakov, N; Apte, R; Livneh, E

    2014-01-01

    Senescence is characterized by permanent cell-cycle arrest despite continued viability and metabolic activity, in conjunction with the secretion of a complex mixture of extracellular proteins and soluble factors known as the senescence-associated secretory phenotype (SASP). Cellular senescence has been shown to prevent the proliferation of potentially tumorigenic cells, and is thus generally considered a tumor suppressive process. However, some SASP components may act as pro-tumorigenic mediators on premalignant cells in the microenvironment. A limited number of studies indicated that protein kinase C (PKC) has a role in senescence, with different isoforms having opposing effects. It is therefore important to elucidate the functional role of specific PKCs in senescence. Here we show that PKCη, an epithelial specific and anti-apoptotic kinase, promotes senescence induced by oxidative stress and DNA damage. We further demonstrate that PKCη promotes senescence through its ability to upregulate the expression of the cell cycle inhibitors p21Cip1 and p27Kip1 and enhance transcription and secretion of interleukin-6 (IL-6). Moreover, we demonstrate that PKCη creates a positive loop for reinforcing senescence by increasing the transcription of both IL-6 and IL-6 receptor, whereas the expression of IL-8 is specifically suppressed by PKCη. Thus, the presence/absence of PKCη modulates major components of SASP. Furthermore, we show that the human polymorphic variant of PKCη, 374I, that exhibits higher kinase activity in comparison to WT-374V, is also more effective in IL-6 secretion, p21Cip1 expression and the promotion of senescence, further supporting a role for PKCη in senescence. As there is now considerable interest in senescence activation/elimination to control tumor progression, it is first crucial to reveal the molecular regulators of senescence. This will improve our ability to develop new strategies to harness senescence as a potential cancer therapy in the

  2. Cerium oxide nanoparticle treatment ameliorates peritonitis-induced diaphragm dysfunction.

    PubMed

    Asano, Shinichi; Arvapalli, Ravikumar; Manne, Nandini D P K; Maheshwari, Mani; Ma, Bing; Rice, Kevin M; Selvaraj, Vellaisamy; Blough, Eric R

    2015-01-01

    The severe inflammation observed during sepsis is thought to cause diaphragm dysfunction, which is associated with poor patient prognosis. Cerium oxide (CeO2) nanoparticles have been posited to exhibit anti-inflammatory and antioxidative activities suggesting that these particles may be of potential use for the treatment of inflammatory disorders. To investigate this possibility, Sprague Dawley rats were randomly assigned to the following groups: sham control, CeO2 nanoparticle treatment only (0.5 mg/kg iv), sepsis, and sepsis+CeO2 nanoparticles. Sepsis was induced by the introduction of cecal material (600 mg/kg) directly into the peritoneal cavity. Nanoparticle treatment decreased sepsis-associated impairments in diaphragmatic contractile (P(o)) function (sham: 25.6±1.6 N/cm(2) vs CeO2: 23.4±0.8 N/cm(2) vs Sep: 15.9±1.0 N/cm(2) vs Sep+CeO2: 20.0±1.0 N/cm(2), P<0.05). These improvements in diaphragm contractile function were accompanied by a normalization of protein translation signaling (Akt, FOXO-1, and 4EBP1), diminished proteolysis (caspase 8 and ubiquitin levels), and decreased inflammatory signaling (Stat3 and iNOS). Histological analysis suggested that nanoparticle treatment was associated with diminished sarcolemma damage and diminished inflammatory cell infiltration. These data indicate CeO2 nanoparticles may improve diaphragmatic function in the septic laboratory rat.

  3. Inducible nitric oxide synthase haplotype associated with migraine and aura.

    PubMed

    de O S Mansur, Thiago; Gonçalves, Flavia M; Martins-Oliveira, Alisson; Speciali, Jose G; Dach, Fabiola; Lacchini, Riccardo; Tanus-Santos, Jose E

    2012-05-01

    Migraine is a complex neurological disorder with a clear neurogenic inflammatory component apparently including enhanced nitric oxide (NO) formation. Excessive NO amounts possibly contributing to migraine are derived from increased expression and activity of inducible NO synthase (iNOS). We tested the hypothesis that two functional, clinically relevant iNOS genetic polymorphisms (C(-1026)A-rs2779249 and G2087A-rs2297518) are associated with migraine with or without aura. We studied 142 healthy women without migraine (control group) and 200 women with migraine divided into two groups: 148 with migraine without aura (MWA) and 52 with aura (MA). Genotypes were determined by real-time polymerase chain reaction using the Taqman(®) allele discrimination assays. The PHASE 2.1 software was used to estimate the haplotypes. The A allele for the G2087A polymorphism was more commonly found in the MA group than in the MWA group (28 vs. 18%; P < 0.05). No other significant differences in the alleles or genotypes distributions were found (P > 0.05). The haplotype combining both A alleles for the two polymorphisms was more commonly found in the MA group than in the control group or in the MWA group (19 vs. 10 or 8%; P = 0.0245 or 0.0027, respectively). Our findings indicate that the G2087A and the C(-1026)A polymorphism in the iNOS gene affect the susceptibility to migraine with aura when their effects are combined within haplotypes, whereas the G2087A affects the susceptibility to aura in migraine patients. These finding may have therapeutic implications when examining the effects of selective iNOS inhibitors.

  4. Resveratrol-loaded Nanoparticles Induce Antioxidant Activity against Oxidative Stress

    PubMed Central

    Kim, Jae-Hwan; Park, Eun-Young; Ha, Ho-Kyung; Jo, Chan-Mi; Lee, Won-Jae; Lee, Sung Sill; Kim, Jin Wook

    2016-01-01

    Resveratrol acts as a free radical scavenger and a potent antioxidant in the inhibition of numerous reactive oxygen species (ROS). The function of resveratrol and resveratrol-loaded nanoparticles in protecting human lung cancer cells (A549) against hydrogen peroxide was investigated in this study. The 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assay was performed to evaluate the antioxidant properties. Resveratrol had substantially high antioxidant capacity (trolox equivalent antioxidant capacity value) compared to trolox and vitamin E since the concentration of resveratrol was more than 50 μM. Nanoparticles prepared from β-lactoglobulin (β-lg) were successfully developed. The β-lg nanoparticle showed 60 to 146 nm diameter in size with negatively charged surface. Non-cytotoxicity was observed in Caco-2 cells treated with β-lg nanoparticles. Fluorescein isothiocynate-conjugated β-lg nanoparticles were identified into the cell membrane of Caco-2 cells, indicating that nanoparticles can be used as a delivery system. Hydrogen peroxide caused accumulation of ROS in a dose- and time-dependent manner. Resveratrol-loaded nanoparticles restored H2O2-induced ROS levels by induction of cellular uptake of resveratrol in A549 cells. Furthermore, resveratrol activated nuclear factor erythroid 2-related factor 2-Kelch ECH associating protein 1 (Nrf2-Keap1) signaling in A549 cells, thereby accumulation of Nrf2 abundance, as demonstrated by western blotting approach. Overall, these results may have implications for improvement of oxidative stress in treatment with nanoparticles as a biodegradable and non-toxic delivery carrier of bioactive compounds. PMID:26732454

  5. H2S protects against methionine-induced oxidative stress in brain endothelial cells.

    PubMed

    Tyagi, Neetu; Moshal, Karni S; Sen, Utpal; Vacek, Thomas P; Kumar, Munish; Hughes, William M; Kundu, Soumi; Tyagi, Suresh C

    2009-01-01

    Homocysteine (Hcy) causes cerebrovascular dysfunction by inducing oxidative stress. However, to date, there are no strategies to prevent Hcy-induced oxidative damage. Hcy is an H2S precursor formed from methionine (Met) metabolism. We aimed to investigate whether H2S ameliorated Met-induced oxidative stress in mouse brain endothelial cells (bEnd3). The bEnd3 cells were exposed to Met treatment in the presence or absence of NaHS (donor of H2S). Met-induced cell toxicity increased the levels of free radicals in a concentration-dependent manner. Met increased NADPH-oxidase-4 (NOX-4) expression and mitigated thioredxion-1(Trx-1) expression. Pretreatment of bEnd3 with NaHS (0.05 mM) attenuated the production of free radicals in the presence of Met and protected the cells from oxidative damage. Furthermore, NaHS enhanced inhibitory effects of apocynin, N-acetyl-l-cysteine (NAC), reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), Nomega-nitro-l-arginine methyl ester (L-NAME) on ROS production and redox enzymes levels induced by Met. In conclusion, the administration of H2S protected the cells from oxidative stress induced by hyperhomocysteinemia (HHcy), which suggested that NaHS/H2S may have therapeutic potential against Met-induced oxidative stress.

  6. Protective effects of berberine against low-density lipoprotein (LDL) oxidation and oxidized LDL-induced cytotoxicity on endothelial cells.

    PubMed

    Hsieh, Yih-Shou; Kuo, Wu-Hsien; Lin, Ta-Wei; Chang, Horng-Rong; Lin, Teseng-His; Chen, Pei-Ni; Chu, Shu-Chen

    2007-12-12

    The oxidative modification of low-density lipoprotein (LDL) is thought to have a central role in the pathogenesis of atherogenesis. Berberine, a natural constituent of plants of the genera Coptis and Berberis, has several anti-inflammation and anticancer biological effects. However, its protective effects on LDL oxidation and endothelial injury induced by oxLDL remain unclear. In this study, we evaluated the antioxidative activity of berberine and how berberine rescues human umbilical vein endothelial cells (HUVECs) from oxidized LDL (oxLDL)-mediated dysfunction. The antioxidative activity of berberine was defined by the relative electrophoretic mobility of oxLDL, fragmentation of ApoB, and malondialdehyde production via the Cu(2+)-mediated oxidation of LDL. Berberine also inhibited the generation of ROS and the subsequent mitochondrial membrane potential collapse, chromosome condensation, cytochrome C release, and caspase-3 activation induced by oxLDL in HUVECs. Our results suggest that berberine may protect LDL oxidation and prevent oxLDL-induced cellular dysfunction.

  7. Inhaled Diesel Emissions Generated with Cerium Oxide Nanoparticle Fuel Additive Induce Adverse Pulmonary and Systemic Effects

    EPA Science Inventory

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Cerium oxide nanoparticles added to diesel fuel (DECe) increases fuel burning efficiency but leads to altered emission characteristics and potentially altered health effects. Here, we evaluated whether DECe res...

  8. Ubiquinone-1 Induces External Deamino-NADH Oxidation in Potato Tuber Mitochondria.

    PubMed Central

    Moller, I. M.; Roberts, T. H.; Rasmusson, A. G.

    1996-01-01

    The addition of ubiquinone-1 (UQ-1) induced Ca2+-independent oxidation of deamino-NADH and NADH by intact potato (Solanum tuberosum L. cv Bintje) tuber mitochondria. The induced oxidation was coupled to the generation of a membrane potential. Measurements of NAD+-malate dehydrogenase activity indicated that the permeability of the inner mitochondrial membrane to NADH and deamino-NADH was not altered by the addition of UQ-1. We conclude that UQ-1-induced external deamino-NADH oxidation is due to a change in specificity of the external rotenone-insensitive NADH dehydrogenase. The addition of UQ-1 also induced rotenone-insensitive oxidation of deamino-NADH by inside-out submitochondrial particles, but whether this was due to a change in the specificity of the internal rotenone-insensitive NAD(P)H dehydrogenase or to a bypass in complex I could not be determined. PMID:12226375

  9. NRF2 Oxidative Stress Induced by Heavy Metals is Cell Type Dependent

    EPA Science Inventory

    Exposure to metallic environmental toxicants has been demonstrated to induce a variety of oxidative stress responses in mammalian cells. The transcription factor Nrf2 is activated in response to oxidative stress and coordinates the expression of antioxidant gene products. In this...

  10. Effect of methanolic extract of Asparagus racemosus Willd. on lipopolysaccharide induced-oxidative stress in rats.

    PubMed

    Ahmad, Mohammad Parwez; Hussain, Arshad; Siddiqui, Hefazat Hussain; Wahab, Shadma; Adak, Manoranjan

    2015-03-01

    Lipopolysaccharide (LPS) induced oxidative stress and impairment of normal physiological function generally categorized by increased anxiety and reduced mobility. Therefore, the present study was to find out the effect Methanolic extract of Asparagus racemosus (MEAR ) in lipopolysaccharide (LPS)-induced oxidative stress in rats . LPS-induced oxidative stress in rats was measured by locomotor activity by photoactometer test, anxiety with elevated plus maze test and also studied the oxidative stress markers, nitric oxide and cytokines. The obtained data shows that LPS markedly exhausted (p<0.001) brain- reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) significantly increased (p<0.001) the level of malondialdehyde (MDA), nitric oxide and the activity of cytokines in the brain. MEAR supplementation resulted in normalization of brain GSH and CAT and SOD and decreases in the levels of MDA with reduction of nitric oxide and cytokines in the brain. The action of the extract at dose of 200 mg/kg was almost similar to the standard drug, quercetin (100mg/kg, p.o.). These present study conclude that MEAR administration significantly (P<0.05) reduced LPS- induced oxidative-stress and intensely suggest that Asparagus racemosus Willd. is a functionally newer type of cerebroprotective agent.

  11. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    SciTech Connect

    Shin, Jung Ar; Chung, Jin Sil; Cho, Sang-Ho; Kim, Hyung Jung; Yoo, Young Do

    2013-09-20

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H{sub 2}O{sub 2}) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H{sub 2}O{sub 2} treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells.

  12. Dysregulated autophagy increased melanocyte sensitivity to H2O2-induced oxidative stress in vitiligo

    PubMed Central

    He, Yuanmin; Li, Shuli; Zhang, Weigang; Dai, Wei; Cui, Tingting; Wang, Gang; Gao, Tianwen; Li, Chunying

    2017-01-01

    In vitiligo, melanocytes are particularly vulnerable to oxidative stress owing to the pro-oxidant state generated during melanin synthesis and to the genetic antioxidant defects. Autophagy is a controlled self-digestion process which can protect cells against oxidative damage. However, the exact role of autophagy in vitiligo melanocytes in response to oxidative stress and the mechanism involved are still not clear. To determine the implications of autophagy for melanocyte survival in response to oxidative stress, we first detected the autophagic flux in normal melanocytes exposure to H2O2, and found that autophagy was significantly enhanced in normal melanocytes, for protecting cells against H2O2-induced oxidative damage. Nevertheless, vitiligo melanocytes exhibited dysregulated autophagy and hypersensitivity to H2O2-induced oxidative injury. In addition, we confirmed that the impairment of Nrf2-p62 pathway is responsible for the defects of autophagy in vitiligo melanocytes. Noteworthily, upregulation of the Nrf2-p62 pathway or p62 reduced H2O2-induced oxidative damage of vitiligo melanocytes. Therefore, our data demonstrated that dysregulated autophagy owing to the impairment of Nrf2-p62 pathway increase the sensitivity of vitiligo melanocytes to oxidative stress, thus promote the development of vitiligo. Upregulation of p62-dependent autophagy may be applied to vitiligo treatment in the future. PMID:28186139

  13. Grape seed and skin extract protects kidney from doxorubicin-induced oxidative injury.

    PubMed

    Mokni, Meherzia; Hamlaoui, Sonia; Kadri, Safwen; Limam, Ferid; Amri, Mohamed; Marzouki, Lamjed; Aouani, Ezzedine

    2016-05-01

    The study investigated the protective effect of grape seed and skin extract (GSSE) against doxorubicin-induced renal toxicity in healthy rats. Animals were treated with GSSE or not (control), for 8 days, administered with doxorubicin (20mg/kg) in the 4th day, and renal function as well as oxidative stress parameters were evaluated. Data showed that doxorubicin induced renal toxicity by affecting renal architecture and plasma creatinine. Doxorubicin also induced an oxidative stress characterized by an increase in malondialdehyde (MDA), calcium and H(2)O(2) and a decrease in catalase (CAT) and superoxide dismutase (SOD). Unexpectedly doxorubicin increased peroxidase (POD) and decreased carbonyl protein and plasma urea. Treatment with GSSE counteracted almost all adverse effects induced by doxorubicin. Data suggest that doxorubicin induced an oxidative stress into rat kidney and GSSE exerted antioxidant properties, which seem to be mediated by the modulation of intracellular calcium.

  14. Moderate treadmill exercise prevents oxidative stress-induced anxiety-like behavior in rats.

    PubMed

    Salim, Samina; Sarraj, Nada; Taneja, Manish; Saha, Kaustuv; Tejada-Simon, Maria Victoria; Chugh, Gaurav

    2010-04-02

    Recent work has suggested correlation of oxidative stress with anxiety-like behavior. There also is evidence for anxiolytic effects of physical exercise. However, a direct role of oxidative stress in anxiety is not clear and a protective role of physical exercise in oxidative stress-mediated anxiety has never been addressed. In this study, we have utilized rats to test direct involvement of oxidative stress with anxiety-like behavior and have identified oxidative stress mechanisms likely involved in anxiolytic effects of physical exercise. Intraperitoneal injections at non-toxic dose of l-buthionine-(S,R)-sulfoximine (BSO), an agent that increases oxidative stress markers, increased anxiety-like behavior of rats compared to vehicle-treated control rats. Prior 2 weeks treatment with the antioxidant, tempol attenuated BSO-induced anxiety-like behavior of rats suggesting a role of oxidative stress in this phenomenon. Moreover, moderate treadmill exercise prevented BSO-induced anxiety-like behavior of rats and also prevented BSO-mediated increase in oxidative stress markers in serum, urine and brain tissue homogenates from hippocampus, amygdala and locus coeruleus. Thus increasing oxidative stress increases anxiety-like behavior of rats. Moreover, antioxidant or treadmill exercise training both reduce oxidative stress in the rat brain regions implicated in anxiety response and prevent anxiety-like behavior of rats.

  15. Vitamin D3 pretreatment alleviates renal oxidative stress in lipopolysaccharide-induced acute kidney injury.

    PubMed

    Xu, Shen; Chen, Yuan-Hua; Tan, Zhu-Xia; Xie, Dong-Dong; Zhang, Cheng; Xia, Mi-Zhen; Wang, Hua; Zhao, Hui; Xu, De-Xiang; Yu, De-Xin

    2015-08-01

    Increasing evidence demonstrates that reactive oxygen species plays important roles in sepsis-induced acute kidney injury. This study investigated the effects of VitD3 pretreatment on renal oxidative stress in sepsis-induced acute kidney injury. Mice were intraperitoneally injected with lipopolysaccharide (LPS, 2.0mg/kg) to establish an animal model of sepsis-induced acute kidney injury. In VitD3+LPS group, mice were orally pretreated with three doses of VitD3 (25 μg/kg) at 1, 24 and 48 h before LPS injection. As expected, oral pretreatment with three daily recommended doses of VitD3 markedly elevated serum 25(OH)D concentration and efficiently activated renal VDR signaling. Interestingly, LPS-induced renal GSH depletion and lipid peroxidation were markedly alleviated in VitD3-pretreated mice. LPS-induced serum and renal nitric oxide (NO) production was obviously suppressed by VitD3 pretreatment. In addition, LPS-induced renal protein nitration, as determined by 3-nitrotyrosine residue, was obviously attenuated by VitD3 pretreatment. Further analysis showed that LPS-induced up-regulation of renal inducible nitric oxide synthase (inos) was repressed in VitD3-pretreated mice. LPS-induced up-regulation of renal p47phox and gp91phox, two NADPH oxidase subunits, were normalized by VitD3 pretreatment. In addition, LPS-induced down-regulation of renal superoxide dismutase (sod) 1 and sod2, two antioxidant enzyme genes, was reversed in VitD3-pretreated mice. Finally, LPS-induced tubular epithelial cell apoptosis, as determined by TUNEL, was alleviated by VitD3 pretreatment. Taken together, these results suggest that VitD3 pretreatment alleviates LPS-induced renal oxidative stress through regulating oxidant and antioxidant enzyme genes.

  16. Protective effect of wheat peptides against indomethacin-induced oxidative stress in IEC-6 cells.

    PubMed

    Yin, Hong; Pan, Xingchang; Song, Zhixiu; Wang, Shaokang; Yang, Ligang; Sun, Guiju

    2014-01-29

    Recent studies have demonstrated that wheat peptides protected rats against non-steroidal anti-inflammatory drugs-induced small intestinal epithelial cells damage, but the mechanism of action is unclear. In the present study, an indomethacin-induced oxidative stress model was used to investigate the effect of wheat peptides on the nuclear factor-κB(NF-κB)-inducible nitric oxide synthase-nitric oxide signal pathway in intestinal epithelial cells-6 cells. IEC-6 cells were treated with wheat peptides (0, 125, 500 and 2000 mg/L) for 24 h, followed by 90 mg/L indomethacin for 12 h. Wheat peptides significantly attenuated the indomethacin-induced decrease in superoxide dismutase and glutathione peroxidase activity. Wheat peptides at 2000 mg/L markedly decreased the expression of the NF-κB in response to indomethacin-induced oxidative stress. This study demonstrated that the addition of wheat peptides to a culture medium significantly inhibited the indomethacin-induced release of malondialdehyde and nitrogen monoxide, and increased antioxidant enzyme activity in IEC-6 cells, thereby providing a possible explanation for the protective effect proposed for wheat peptides in the prevention of indomethacin-induced oxidative stress in small intestinal epithelial cells.

  17. Cordyceps militaris Extract Protects Human Dermal Fibroblasts against Oxidative Stress-Induced Apoptosis and Premature Senescence

    PubMed Central

    Park, Jun Myoung; Lee, Jong Seok; Lee, Ki Rim; Ha, Suk-Jin; Hong, Eock Kee

    2014-01-01

    Oxidative stress induced by reactive oxygen species (ROS) is the major cause of degenerative disorders including aging and disease. In this study, we investigated whether Cordyceps militaris extract (CME) has in vitro protective effects on hydrogen peroxide-induced oxidative stress in human dermal fibroblasts (HDFs). Our results showed that the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of CME was increased in a dose-dependent manner. We found that hydrogen peroxide treatment in HDFs increased ROS generation and cell death as compared with the control. However, CME improved the survival of HDFs against hydrogen peroxide-induced oxidative stress via inhibition of intracellular ROS production. CME treatment inhibited hydrogen peroxide-induced apoptotic cell death and apoptotic nuclear condensation in HDFs. In addition, CME prevented hydrogen peroxide-induced SA-β-gal-positive cells suggesting CME could inhibit oxidative stress-induced premature senescence. Therefore, these results suggest that CME might have protective effects against oxidative stress-induced premature senescence via scavenging ROS. PMID:25230212

  18. Visualization of Oxidative Stress Induced by Experimental Periodontitis in Keap1-Dependent Oxidative Stress Detector-Luciferase Mice

    PubMed Central

    Kataoka, Kota; Ekuni, Daisuke; Tomofuji, Takaaki; Irie, Koichiro; Kunitomo, Muneyoshi; Uchida, Yoko; Fukuhara, Daiki; Morita, Manabu

    2016-01-01

    The aim of this study was to investigate whether a Keap1-dependent oxidative stress detector-luciferase (OKD-LUC) mouse model would be useful for the visualization of oxidative stress induced by experimental periodontitis. A ligature was placed around the mandibular first molars for seven days to induce periodontitis. Luciferase activity was measured with an intraperitoneal injection of d-luciferin on days 0, 1, and 7. The luciferase activity in the periodontitis group was significantly greater than that in the control group at seven days. The expressions of heme oxygenase-1 (HO-1) and malondialdehyde in periodontal tissue were significantly higher in the periodontitis group than in the control group. Immunofluorescent analysis confirmed that the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) occurred more frequently in the periodontitis group than in the control group. This study found that under oxidative stress induced by experimental periodontitis, the Nrf2/antioxidant defense pathway was activated and could be visualized from the luciferase activity in the OKD-LUC model. Thus, the OKD-LUC mouse model may be useful for exploring the mechanism underlying the relationship between the Nrf2/antioxidant defense pathway and periodontitis by enabling the visualization of oxidative stress over time. PMID:27854327

  19. Aminoguanidine inhibits reactive oxygen species formation, lipid peroxidation, and oxidant-induced apoptosis.

    PubMed

    Giardino, I; Fard, A K; Hatchell, D L; Brownlee, M

    1998-07-01

    Aminoguanidine (AG) treatment, like nerve growth factor (NGF) treatment, prevents diabetes-induced apoptosis of retinal Müller cells in the rat eye, but the mechanism involved is unknown. In this study, the effects of preincubation with AG on oxidant-induced apoptosis, oxidant-induced intracellular reactive oxygen species (ROS) production, and lipid peroxidation were determined in rat retinal Müller cells and compared with the effects of NGF, a protein that protects neuronal cells from oxidative stress. The effect of AG on rabbit vitreous lipid peroxide levels was also determined. After exposure to increasing concentrations of H2O2, there was a corresponding increase in the percentage of apoptotic Müller cells. Preincubation with AG for 48 h completely inhibited oxidant-induced apoptosis in response to 10 micromol/l H2O2 (+AG 0 vs. 10 micromol/l, NS), and reduced the percentage of apoptotic cells in response to 50 micromol/l H2O2 by 50% (+AG vs. -AG, P < 0.01). Longer preincubation did not increase the antiapoptotic effect of AG. The effect of AG was dose-dependent. Similar results were obtained after preincubation with NGF. Both AG and NGF preincubation prevented the twofold increase in oxidant-induced lipid peroxides. The fivefold increase in oxidant-induced ROS production was decreased 100% by NGF, but only 61% by AG preincubation. The twofold increase in vitreous lipid peroxide level in diabetic rabbits was completely prevented by AG treatment. AG reduced H2O2-induced benzoate hydroxylation in a dose-dependent manner. Intracellular glutathione content was unchanged. These data demonstrate that AG can act as an antioxidant in vivo, quenching hydroxyl radicals and lipid peroxidation in cells and tissues and preventing oxidant-induced apoptosis.

  20. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    SciTech Connect

    Sharma, Bhupesh Sharma, P.M.

    2013-11-15

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential in

  1. Mechanism for the Protective Effect of Resveratrol against Oxidative Stress-Induced Neuronal Death

    PubMed Central

    Fukui, Masayuki; Choi, Hye Joung; Zhu, Bao Ting

    2010-01-01

    Oxidative stress can induce cytotoxicity in neurons, which plays an important role in the etiology of neuronal damage and degeneration. The present study seeks to determine the cellular and biochemical mechanisms underlying resveratrol’s protective effect against oxidative neuronal death. The cultured HT22 cells, an immortalized mouse hippocampal neuronal cell line, were used as an in vitro model, and the oxidative stress and neurotoxicity in these neuronal cells were induced by exposure to high concentrations of glutamate. Resveratrol strongly protected HT22 cells from glutamate-induced oxidative cell death. Resveratrol’s neuroprotective effect was independent of its direct radical-scavenging property, but instead was dependent on its ability to selectively induce the expression of mitochondrial superoxide dismutase (SOD2), and subsequently, reduce mitochondrial oxidative stress and damage. The induction of the mitochondrial SOD2 by resveratrol was mediated through the activation of the PI3K/Akt and GSK-3β/β-catenin signaling pathways. Taken together, the results of this study show that up-regulation of the mitochondrial SOD2 by resveratrol represents an important mechanism for its protection of neuronal cells against oxidative cytotoxicity resulting form mitochondrial oxidative stress. PMID:20542495

  2. Induction of heme oxygenase-1 inhibits the monocyte transmigration induced by mildly oxidized LDL.

    PubMed

    Ishikawa, K; Navab, M; Leitinger, N; Fogelman, A M; Lusis, A J

    1997-09-01

    Heme catabolic processes produce the antioxidants biliverdin and bilirubin, as well as the potent prooxidant free iron. Since these products have opposing effects on oxidative stress, it is not clear whether heme catabolism promotes or inhibits inflammatory processes, including atherosclerotic lesion formation. Heme oxygenase (HO) catalyzes the rate-limiting step of heme catabolism. We used cocultures of human aortic endothelial cells and smooth muscle cells to examine the possible role of HO in early atherosclerosis. Heme oxygenase-1 (HO-1), the inducible isoform of HO, was highly induced by mildly oxidized LDL, and augmented induction was observed with hemin pretreatment. This augmented HO-1 induction resulted in the reduction of monocyte chemotaxis in response to LDL oxidation. Conversely, inhibition of HO by a specific inhibitor, Sn-protoporphyrin IX, enhanced chemotaxis. Furthermore, pretreatment with biliverdin or bilirubin, the products of HO, reduced chemotaxis. Oxidized phospholipids in the mildly oxidized LDL appear to be responsible for HO-1 induction, since oxidized but not native arachidonic acid-containing phospholipids also induced HO-1. These results suggest that HO-1 induced by mildly oxidized LDL may protect against the induction of inflammatory responses in artery wall cells through the production of the antioxidants biliverdin and bilirubin.

  3. Anomalous effect of trench-oxide depth on alpha-particle-induced charge collection

    SciTech Connect

    Shin, H.; Kim, N.M.

    1999-06-01

    The effect of trench-oxide depth on the alpha-particle-induced charge collection is analyzed for the first time. From the simulation results, it was found that the depth of trench oxide has a considerable influence on the amount of collected charge. The confining of generated charge by the trench oxide was identified as a cause of this anomalous effect. Therefore, the tradeoff between soft error rate and cell to cell isolation characteristics should be considered in optimizing the depth of trench oxide.

  4. Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) Aggregation Causes Mitochondrial Dysfunction during Oxidative Stress-induced Cell Death*

    PubMed Central

    Itakura, Masanori; Kubo, Takeya; Kaneshige, Akihiro; Harada, Naoki; Izawa, Takeshi; Azuma, Yasu-Taka; Kuwamura, Mitsuru; Yamaji, Ryouichi; Takeuchi, Tadayoshi

    2017-01-01

    Glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional protein that also mediates cell death under oxidative stress. We reported previously that the active-site cysteine (Cys-152) of GAPDH plays an essential role in oxidative stress-induced aggregation of GAPDH associated with cell death, and a C152A-GAPDH mutant rescues nitric oxide (NO)-induced cell death by interfering with the aggregation of wild type (WT)-GAPDH. However, the detailed mechanism underlying GAPDH aggregate-induced cell death remains elusive. Here we report that NO-induced GAPDH aggregation specifically causes mitochondrial dysfunction. First, we observed a correlation between NO-induced GAPDH aggregation and mitochondrial dysfunction, when GAPDH aggregation occurred at mitochondria in SH-SY5Y cells. In isolated mitochondria, aggregates of WT-GAPDH directly induced mitochondrial swelling and depolarization, whereas mixtures containing aggregates of C152A-GAPDH reduced mitochondrial dysfunction. Additionally, treatment with cyclosporin A improved WT-GAPDH aggregate-induced swelling and depolarization. In doxycycline-inducible SH-SY5Y cells, overexpression of WT-GAPDH augmented NO-induced mitochondrial dysfunction and increased mitochondrial GAPDH aggregation, whereas induced overexpression of C152A-GAPDH significantly suppressed mitochondrial impairment. Further, NO-induced cytochrome c release into the cytosol and nuclear translocation of apoptosis-inducing factor from mitochondria were both augmented in cells overexpressing WT-GAPDH but ameliorated in C152A-GAPDH-overexpressing cells. Interestingly, GAPDH aggregates induced necrotic cell death via a permeability transition pore (PTP) opening. The expression of either WT- or C152A-GAPDH did not affect other cell death pathways associated with protein aggregation, such as proteasome inhibition, gene expression induced by endoplasmic reticulum stress, or autophagy. Collectively, these results suggest that NO-induced GAPDH

  5. Hexyl glucoside and hexyl maltoside inhibit light-induced oxidation of tryptophan.

    PubMed

    Adem, Yilma T; Molina, Patricia; Liu, Hongbin; Patapoff, Thomas W; Sreedhara, Alavattam; Esue, Osigwe

    2014-02-01

    We investigated the photo-protective effect of sugar-based surfactants--hexyl glucoside and hexyl maltoside--against light-induced oxidation of a monoclonal antibody. Reactive oxygen species are generated in solutions in the presence of light; these reactive species readily oxidize amino acids such as tryptophan. Hexyl glucosides and hexyl maltosides scavenge these reactive species and protect tryptophan residues from light-induced oxidation in a concentration-dependent manner. As a result of the scavenging process, hydrogen peroxide is formed, especially at high (millimolar) concentrations of the alkyl glycoside surfactants. These results suggest that hexyl glucoside and hexyl maltoside have the potential to protect tryptophan residues against light-induced oxidation.

  6. Visible light-induced photocatalytic reduction of graphene oxide by tungsten oxide thin films

    NASA Astrophysics Data System (ADS)

    Choobtashani, M.; Akhavan, O.

    2013-07-01

    Tungsten oxide thin films (deposited by thermal evaporation or sol gel method) were used for photocatalytic reduction of graphene oxide (GO) platelets (synthesized through a chemical exfoliation method) on surface of the films under UV or visible light of the environment, in the absence of any aqueous ambient at room temperature. Atomic force microscopy (AFM) technique was employed to characterize surface morphology of the GO sheets and the tungsten oxide films. Moreover, using X-ray photoelectron spectroscopy (XPS), chemical state of the tungsten oxide films and the photocatalytic reduction of the GO platelets were quantitatively investigated. The better performance of the sol-gel tungsten oxide films in photocatalytic reduction of GO platelets as compared to the evaporated tungsten oxide films was assigned to lower W5+/W6+ ratio (i.e., a better stoichiometry) and higher surface water content of the sol-gel film. The GO reduction level achieved after 24 h UV-assisted photocatalytic reduction on surface of the sol-gel tungsten oxide film was comparable with the reduction level usually obtainable by hydrazine. The sol-gel tungsten oxide film even showed an efficient photocatalytic reduction of the GO platelets after exposure to the visible light of the environment for 2 days.

  7. Oxidative stress contributes to cobalt oxide nanoparticles-induced cytotoxicity and DNA damage in human hepatocarcinoma cells

    PubMed Central

    Alarifi, Saud; Ali, Daoud; Y, Al Omar Suliman; Ahamed, Maqusood; Siddiqui, Maqsood A; Al-Khedhairy, Abdulaziz A

    2013-01-01

    Background Cobalt oxide nanoparticles (Co3O4NPs) are increasingly recognized for their utility in biological applications, magnetic resonance imaging, and drug delivery. However, little is known about the toxicity of Co3O4NPs in human cells. Methods We investigated the possible mechanisms of genotoxicity induced by Co3O4NPs in human hepatocarcinoma (HepG2) cells. Cell viability, reactive oxygen species (ROS), glutathione, thiobarbituric acid reactive substance, apoptosis, and DNA damage were assessed in HepG2 cells after Co3O4NPs and Co2+ exposure. Results Co3O4NPs elicited a significant (P < 0.01) reduction in glutathione with a concomitant increase in lipid hydroperoxide, ROS generation, superoxide dismutase, and catalase activity after 24- and 48-hour exposure. Co3O4NPs had a mild cytotoxic effect in HepG2 cells; however, it induced ROS and oxidative stress, leading to DNA damage, a probable mechanism of genotoxicity. The comet assay showed a statistically significant (P < 0.01) dose- and time-related increase in DNA damage for Co3O4NPs, whereas Co2+ induced less change than Co3O4NPs but significantly more than control. Conclusion Our results demonstrated that Co3O4NPs induced cytotoxicity and genotoxicity in HepG2 cells through ROS and oxidative stress. PMID:23326189

  8. Cr(OH)₃(s) Oxidation Induced by Surface Catalyzed Mn(II) Oxidation

    SciTech Connect

    Namgung, Seonyi; Kwon, M.; Qafoku, Nikolla; Lee, Gie Hyeon

    2014-09-16

    This study examined the feasibility of Cr(OH)₃(s) oxidation mediated by surface catalyzed Mn(II) oxidation under common groundwater pH conditions as a potential pathway of natural Cr(VI) contaminations. Dissolved Mn(II) (50 μM) was reacted with or without synthesized Cr(OH)₃(s) (1.0 g/L) at pH 7 – 9 under oxic or anoxic conditions. In the absence of Cr(OH)₃(s), homogeneous Mn(II) oxidation by dissolved O₂ was not observed at pH ≤ 8.0 for 50 d. At pH 9.0, by contrast, dissolved Mn(II) was completely removed within 8 d and precipitated as hausmannite. When Cr(OH)₃(s) was present, this solid was oxidized and released substantial amounts of Cr(VI) as dissolved Mn(II) was added into the suspension at pH ≥ 8.0 under oxic conditions. Our results suggest that Cr(OH)₃(s) was readily oxidized by a newly formed Mn oxide as a result of Mn(II) oxidation catalyzed on Cr(OH)₃(s) surface. XANES analysis of the residual solids after the reaction between 1.0 g/L Cr(OH)₃(s) and 204 μM Mn(II) at pH 9.0 for 22 d revealed that the product of surface catalyzed Mn(II) oxidation resembled birnessite. The rate and extent of Cr(OH)₃(s) oxidation was likely controlled by those of surface catalyzed Mn(II) oxidation as the production of Cr(VI) increased with increasing pH and initial Mn(II) concentrations. This study evokes the potential environmental hazard of sparingly soluble Cr(OH)₃(s) that can be a source of Cr(VI) in the presence of dissolved Mn(II).

  9. Changes in magmatic oxidation state induced by degassing

    NASA Astrophysics Data System (ADS)

    Brounce, M. N.; Stolper, E. M.; Eiler, J. M.

    2015-12-01

    Temporal variations in the oxygen fugacity (fO2) of the mantle may have been transmitted to Earth's atmosphere and oceans by volcanic degassing. However, it is unclear how redox states of volatiles relate to their source magmas because degassing and assimilation can impact fO2 before or during eruption. To explore this, we present µ-XANES measurements of the oxidation states of Fe and S and laser fluorination measurements of 18O/16O ratios in submarine glasses from two settings where degassing is recorded: 1) submarine glasses from the Reykjanes Ridge as it shoals to Iceland, including subglacial glasses from the Reykjanes Peninsula; and 2) submarine glasses from Mauna Kea recovered by the Hawaii Shield Drilling Program (HSDP). Glasses from both settings are basalts with 5.5-9.9 wt% MgO and 350-1790 ppm S. Submarine Reykjanes glasses are sulfide saturated. Subglacial Reykjanes and HSDP glasses are not sulfide saturated, and S and H2O contents are consistent with S+H2O degassing. Submarine Reykjanes glasses have 18O/16O indistinguishable from MORB and become progressively 18O-depleted as MgO decreases. Subglacial glasses have lower 18O/16O than submarine glasses at a given MgO, but both sample types project to a common 18O/16O near 10 wt% MgO, suggesting that 18O-depletion in these lavas is generated by fractional crystallization and assimilation of an 18O-depleted crustal component. The oxidation state of Fe increases only slightly as 18O/16O decrease, suggesting that the assimilant is not oxidized enough to change magmatic fO2. Fe and S do not oxidize or reduce with decreasing S or H2O, suggesting that relatively reduced magmas at depth degassed S+H2O without changing magmatic fO2, and that the fO2 of these lavas reflect the fO2of their mantle source. The oxidation states of Fe and S in HSDP glasses are broadly correlated and samples with the highest S concentrations are the most oxidized. Both Fe and S reduce with decreasing S and H2O contents. This suggests

  10. Nitrous oxide plus isoflurane induces apoptosis and increases β-amyloid protein levels

    PubMed Central

    Zhen, Yu; Dong, Yuanlin; Wu, Xu; Xu, Zhipeng; Lu, Yan; Zhang, Yiying; Norton, David; Tian, Ming; Li, Shuren; Xie, Zhongcong

    2009-01-01

    Background Some anesthetics have been suggested to induce neurotoxicity including promotion of Alzheimer’s disease neuropathogenesis. Nitrous oxide and isoflurane are common anesthetics. Here, we set out to assess effects of nitrous oxide and/or isoflurane on apoptosis and β-amyloid (Aβ) levels in H4 human neuroglioma cells and primary neurons from naïve mice. Methods The cells or neurons were exposed to 70% nitrous oxide and/or 1% isoflurane for six hours. The cells or neurons and conditioned media were harvested at the end of the treatment. Caspase-3 activation, apoptosis, processing of amyloid precursor protein, and Aβ levels were determined. Results Treatment with a combination of 70% nitrous oxide and 1% isoflurane for six hours induced caspase-3 activation and apoptosis in H4 naïve cells and primary neurons from naïve mice. The 70% nitrous oxide plus 1% isoflurane, but neither alone, for six hours induced caspase-3 activation and apoptosis, and increased levels of β-site amyloid precursor protein-cleaving enzyme and Aβ in H4-amyloid precursor protein cells. In addition, the nitrous oxide plus isoflurane-induced Aβ generation was reduced by a broad caspase inhibitor Z-VAD. Finally, the nitrous oxide plus isoflurane-induced caspase-3 activation was attenuated by γ-secretase inhibitor L-685,458, but potentiated by exogenously added Aβ. Conclusion These results suggest that common anesthetics nitrous oxide plus isoflurane may promote neurotoxicity by inducing apoptosis and increasing Aβ levels. The generated Aβ may further potentiate apoptosis to form another round of apoptosis and Aβ generation. More studies, especially the in vivo confirmation of these in vitro findings, are needed. PMID:19741497

  11. Brain oxidative stress induced by obstructive jaundice in rats.

    PubMed

    Chroni, Elisabeth; Patsoukis, Nikolaos; Karageorgos, Nikolaos; Konstantinou, Dimitris; Georgiou, Christos

    2006-02-01

    The effect of experimental obstructive jaundice on the oxidative status of brain tissues in rats was examined. Twenty-four male Wistar rats were divided into 4 groups: Group I was the control, group II was the sham operated, and groups III and IV were bile duct ligated and killed on the 5th and the 10th day, respectively. Oxidative stress was assessed by measuring the thiol redox state (protein and nonprotein components) and lipid peroxidation level variations in samples from the cerebral cortex, midbrain, and cerebellar tissue in all animals. Results indicated the presence of oxidative stress in the jaundiced animals that was more pronounced on the 10th day as indicated by a decrease in reduced glutathione and protein thiol and an increase in protein disulphide and lipid peroxidation. A dramatic elevation of the level of total nonprotein mixed disulphide level was found specifically in the midbrain in the 10th day group. This suggests an accumulation of nonprotein disulfides other than oxidized glutathione, which remained unchanged, in this particular brain area. This study showed a correlation between experimental obstructive jaundice and the oxidative stress in the rats' brain, implying that a similar pathogenetic mechanism may play a key role in cholestatic liver disease, resulting in hepatic encephalopathy in humans.

  12. Effects of capsaicin, dihydrocapsaicin, and curcumin on copper-induced oxidation of human serum lipids.

    PubMed

    Ahuja, Kiran D K; Kunde, Dale A; Ball, Madeleine J; Geraghty, Dominic P

    2006-08-23

    The oxidation of low-density lipoprotein (LDL) is believed to be the initiating factor for the development and progression of atherosclerosis. The active ingredients of spices such as chili and turmeric (capsaicin and curcumin, respectively) have been shown to reduce the susceptibility of LDL to oxidation. One of the techniques used to study the oxidation of LDL is to isolate LDL and subject it to metal-induced (copper or iron) oxidation. However, whole serum may represent a closer situation to in vivo conditions than using isolated LDL. We investigated the effects of different concentrations (0.1-3 microM) of capsaicin, dihydrocapsaicin, and curcumin on copper-induced oxidation of serum lipoproteins. The lag time (before initiation of oxidation) and rate of oxidation (slope of propagation phase) were calculated. The lag time increased, and the rate of oxidation decreased with increasing concentrations of the tested antioxidants (p < 0.05). A 50% increase in lag time (from control) was observed at concentrations between 0.5 and 0.7 microM for capsaicin, dihydrocapsaicin, and curcumin. This study shows that oxidation of serum lipids is reduced by capsaicinoids and curcumin in a concentration-dependent manner.

  13. Protective effects of Korean mistletoe lectin on radical-induced oxidative stress.

    PubMed

    Kim, Boh Kyung; Choi, Mi Jin; Park, Kun Young; Cho, Eun Ju

    2010-01-01

    The radical scavenging effects and protective activities against oxidative stress of Korean mistletoe (Viscum album coloratum) lectin were investigated in vitro and with a cellular system using LLC-PK(1) renal epithelial cells. The Korean mistletoe lectin (KML) showed 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity with an IC(50) value of 42.6 microg/ml. It also exerted nitric oxide (NO), superoxide anion (O(2)(-)), and hydroxyl radical scavenging activities in concentration-dependent manners. These results suggest that KML is a promising antioxidant by scavenging free radicals. Furthermore, under the LLC-PK(1) cellular model, the cells showed declines in viability and increases in lipid peroxidation through oxidative stress induced by sodium nitroprusside (SNP) and pyrogallol, generators of NO and O(2)(-), respectively. However, KML significantly and dose-dependently inhibited cell cytotoxicity and lipid peroxidation. In addition, 3-morpholinosydnonimnie (SIN-1), a generator of peroxynitrite (ONOO(-)) formed by simultaneously releases of NO and O(2)(-), caused cytotoxicity, lipid peroxidation, and NO overproduction in the LLC-PK(1) cells while KML ameliorated ONOO(-)-induced oxidative damage. Furthermore, overexpressions of cyclooxygenase-2 and inducible NO synthase induced by SIN-1 were observed, but KML down-regulated the expression levels of both genes. KML also reduced SIN-1-induced nuclear factor kappa B expression and the phosphorylation of inhibitor kappa B alpha in LLC-PK(1) cells. These results indicate that KML has protective activities against oxidative damage induced by free radicals.

  14. Protective effects of curcumin on amyloid-β-induced neuronal oxidative damage.

    PubMed

    Huang, Han-Chang; Chang, Ping; Dai, Xue-Ling; Jiang, Zhao-Feng

    2012-07-01

    To investigate the protective effects of curcumin against amyloid-β (Aβ)-induced neuronal damage. Primary rat cortical neurons were cultured with different treatments of Aβ and curcumin. Neuronal morphologies, viability and damage were assessed. Neuronal oxidative stress was assessed, including extracellular hydrogen peroxide and intracellular reactive oxygen species. The abilities of curcumin to scavenge free radicals and to inhibit Aβ aggregation and β-sheeted formation are further assessed and discussed. Curcumin preserves cell viability, which is decreased by Aβ. The results of changed morphology, released Lactate dehydrogenases and cell viability assays indicate that curcumin protects Aβ-induced neuronal damage. Curcumin depresses Aβ-induced up-regulation of neuronal oxidative stress. The treatment sequence impacts the protective effect of curcumin on Aβ-induced neuronal damage. Curcumin shows a more protective effect on neuronal oxidative damage when curcumin was added into cultured neurons not later than Aβ, especially prior to Aβ. The abilities of curcumin to scavenge free radicals and to inhibit the formation of β-sheeted aggregation are both beneficial to depress Aβ-induced oxidative damage. Curcumin prevents neurons from Aβ-induced oxidative damage, implying the therapeutic usage for the treatment of Alzheimer's disease patients.

  15. Hydroxyl radical-induced formation of highly oxidized organic compounds

    NASA Astrophysics Data System (ADS)

    Berndt, Torsten; Richters, Stefanie; Jokinen, Tuija; Hyttinen, Noora; Kurtén, Theo; Otkjær, Rasmus V.; Kjaergaard, Henrik G.; Stratmann, Frank; Herrmann, Hartmut; Sipilä, Mikko; Kulmala, Markku; Ehn, Mikael

    2016-12-01

    Explaining the formation of secondary organic aerosol is an intriguing question in atmospheric sciences because of its importance for Earth's radiation budget and the associated effects on health and ecosystems. A breakthrough was recently achieved in the understanding of secondary organic aerosol formation from ozone reactions of biogenic emissions by the rapid formation of highly oxidized multifunctional organic compounds via autoxidation. However, the important daytime hydroxyl radical reactions have been considered to be less important in this process. Here we report measurements on the reaction of hydroxyl radicals with α- and β-pinene applying improved mass spectrometric methods. Our laboratory results prove that the formation of highly oxidized products from hydroxyl radical reactions proceeds with considerably higher yields than previously reported. Field measurements support these findings. Our results allow for a better description of the diurnal behaviour of the highly oxidized product formation and subsequent secondary organic aerosol formation in the atmosphere.

  16. Modeling Oxidation Induced Stresses in Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Ferguson, B. L.; Freborg, A. M.; Petrus, G. J.; Brindley, William J.

    1998-01-01

    The use of thermal barrier coatings (TBC's) in gas turbines has increased dramatically in recent years, due mainly to the need for component protection from ever increasing service temperatures. Oxidation of the bond coat has been identified as an important contributing factor to spallation of the ceramic top coat during service. Additional variables found to influence TBC thermal cycle life include bond coat coefficient of thermal expansion, creep behavior of both the ceramic and bond coat layers, and modulus of elasticity. The purpose of this work was to characterize the effects of oxidation on the stress states within the TBC system, as well as to examine the interaction of oxidation with other factors affecting TBC life.

  17. Hydroxyl radical-induced formation of highly oxidized organic compounds

    PubMed Central

    Berndt, Torsten; Richters, Stefanie; Jokinen, Tuija; Hyttinen, Noora; Kurtén, Theo; Otkjær, Rasmus V.; Kjaergaard, Henrik G.; Stratmann, Frank; Herrmann, Hartmut; Sipilä, Mikko; Kulmala, Markku; Ehn, Mikael

    2016-01-01

    Explaining the formation of secondary organic aerosol is an intriguing question in atmospheric sciences because of its importance for Earth's radiation budget and the associated effects on health and ecosystems. A breakthrough was recently achieved in the understanding of secondary organic aerosol formation from ozone reactions of biogenic emissions by the rapid formation of highly oxidized multifunctional organic compounds via autoxidation. However, the important daytime hydroxyl radical reactions have been considered to be less important in this process. Here we report measurements on the reaction of hydroxyl radicals with α- and β-pinene applying improved mass spectrometric methods. Our laboratory results prove that the formation of highly oxidized products from hydroxyl radical reactions proceeds with considerably higher yields than previously reported. Field measurements support these findings. Our results allow for a better description of the diurnal behaviour of the highly oxidized product formation and subsequent secondary organic aerosol formation in the atmosphere. PMID:27910849

  18. Effect of dietary phenolic compounds on apoptosis of human cultured endothelial cells induced by oxidized LDL

    PubMed Central

    Vieira, Otilia; Escargueil-Blanc, Isabelle; Meilhac, Olivier; Basile, Jean-Pierre; Laranjinha, Joao; Almeida, Leonor; Salvayre, Robert; Nègre-Salvayre, Anne

    1998-01-01

    Oxidized low density lipoproteins (LDL) are toxic to cultured endothelial cells. Mildly oxidized LDL, characterized by relatively low levels of TBARS and only minor modifications of apoB, were obtained by using 2 experimental model systems of oxidation, namely oxidation by u.v. radiation or ferrylmyoglobin (a two electron oxidation product from the reaction of metmyoglobin with H2O2). Toxic concentrations of mildly oxidized LDL induce apoptosis (programmed cell death) of cultured endothelial cells, as shown by typical morphological features, by the in situ TUNEL procedure and by DNA fragmentation revealed on gel electrophoresis. This apoptosis is calcium-dependent and subsequent to the intense and sustained cytosolic [Ca2+]i peak elicited by oxidized LDL. Five naturally occurring phenolic compounds present in food and beverages were able to prevent, in a concentration-dependent manner, the apoptosis of endothelial cells induced by oxidized LDL. Among the compounds tested, caffeic acid was the most effective. Under the conditions used, the protective effect of caffeic acid (IC50 8.3±2.1 μmol  l−1) in the prevention of apoptosis induced by oxidized LDL was significantly higher than that of the other compounds tested (IC50s were 12.4±3.2, 14.1±4.1, 20.4±4.4 and 72.6±9.2 μmol  l−1 for ferulic, protocatechuic, ellagic and p-coumaric acids, respectively). The anti-apoptotic effect of caffeic acid results from the addition of two effects, (i) the antioxidant effect which prevents LDL oxidation and subsequent toxicity (‘indirect' protective effect); (ii) a ‘direct' cytoprotective effect, acting at the cellular level. Effective concentrations of caffeic acid acted at the cellular level by blocking the intense and sustained cytosolic [Ca2+]i rise elicited by oxidized LDL. In conclusion, phenolic acids (caffeic and ferulic acids being the most potent of the compounds tested under the conditions used) exhibit a potent cytoprotective effect of

  19. Progesterone modulates the LPS-induced nitric oxide production by a progesterone-receptor independent mechanism.

    PubMed

    Wolfson, Manuel Luis; Schander, Julieta Aylen; Bariani, María Victoria; Correa, Fernando; Franchi, Ana María

    2015-12-15

    Genital tract infections caused by Gram-negative bacteria induce miscarriage and are one of the most common complications of human pregnancy. LPS administration to 7-day pregnant mice induces embryo resorption after 24h, with nitric oxide playing a fundamental role in this process. We have previously shown that progesterone exerts protective effects on the embryo by modulating the inflammatory reaction triggered by LPS. Here we sought to investigate whether the in vivo administration of progesterone modulated the LPS-induced nitric oxide production from peripheral blood mononuclear cells from pregnant and non-pregnant mice. We found that progesterone downregulated LPS-induced nitric oxide production by a progesterone receptor-independent mechanism. Moreover, our results suggest a possible participation of glucocorticoid receptors in at least some of the anti-inflammatory effects of progesterone.

  20. Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide

    NASA Astrophysics Data System (ADS)

    Freudenthal, Bret D.; Beard, William A.; Perera, Lalith; Shock, David D.; Kim, Taejin; Schlick, Tamar; Wilson, Samuel H.

    2015-01-01

    Oxidative stress promotes genomic instability and human diseases. A common oxidized nucleoside is 8-oxo-7,8-dihydro-2'-deoxyguanosine, which is found both in DNA (8-oxo-G) and as a free nucleotide (8-oxo-dGTP). Nucleotide pools are especially vulnerable to oxidative damage. Therefore cells encode an enzyme (MutT/MTH1) that removes free oxidized nucleotides. This cleansing function is required for cancer cell survival and to modulate Escherichia coli antibiotic sensitivity in a DNA polymerase (pol)-dependent manner. How polymerases discriminate between damaged and non-damaged nucleotides is not well understood. This analysis is essential given the role of oxidized nucleotides in mutagenesis, cancer therapeutics, and bacterial antibiotics. Even with cellular sanitizing activities, nucleotide pools contain enough 8-oxo-dGTP to promote mutagenesis. This arises from the dual coding potential where 8-oxo-dGTP(anti) base pairs with cytosine and 8-oxo-dGTP(syn) uses its Hoogsteen edge to base pair with adenine. Here we use time-lapse crystallography to follow 8-oxo-dGTP insertion opposite adenine or cytosine with human pol β, to reveal that insertion is accommodated in either the syn- or anti-conformation, respectively. For 8-oxo-dGTP(anti) insertion, a novel divalent metal relieves repulsive interactions between the adducted guanine base and the triphosphate of the oxidized nucleotide. With either templating base, hydrogen-bonding interactions between the bases are lost as the enzyme reopens after catalysis, leading to a cytotoxic nicked DNA repair intermediate. Combining structural snapshots with kinetic and computational analysis reveals how 8-oxo-dGTP uses charge modulation during insertion that can lead to a blocked DNA repair intermediate.

  1. Periodontal Disease-Induced Atherosclerosis and Oxidative Stress

    PubMed Central

    Kurita-Ochiai, Tomoko; Jia, Ru; Cai, Yu; Yamaguchi, Yohei; Yamamoto, Masafumi

    2015-01-01

    Periodontal disease is a highly prevalent disorder affecting up to 80% of the global population. Recent epidemiological studies have shown an association between periodontal disease and cardiovascular disease, as oxidative stress plays an important role in chronic inflammatory diseases such as periodontal disease and cardiovascular disease. In this review, we focus on the mechanisms by which periodontopathic bacteria cause chronic inflammation through the enhancement of oxidative stress and accelerate cardiovascular disease. Furthermore, we comment on the antioxidative activity of catechin in atherosclerosis accelerated by periodontitis. PMID:26783845

  2. [Studies on the oxidation of tyrosine induced by hydroxyl radical with fluorescence spectroscopic method].

    PubMed

    Sun, Yan-hui; Wang, Wei-long; Wu, Lin-sheng; Jia, Xiao-li

    2011-07-01

    Dityrosine is a marker of tyrosine oxidation. To study effecting factors of hydroxyl radical on tyrosine oxidation, synchronous fluorescence spectra with two dimensional correlation was used. The results showed that the peak position and intensity of dityrosine changed while pH value varied. In the system of tyrosine oxidation, with the increment of tyrosine concentration, the concentration of dityrosine decreased. With the increment of hydrogen peroxide concentration, the concentration of dityrosine increased. The oxidation reaction was prone to taking place in acid conditions while difficult to develop in basic conditions. With the development of oxidation reaction, the fluorescence intensity of dityrosine increased and then decreased. Two dimentional correlation synchronous fluorescence spectra showed that the variation in the intensity at 292 nm preceded that of 281, 300 and 374 nm. Thus, fluorescence spectroscopy was simple and easy for studying tyrosine oxidation induced by hydroxyl radical.

  3. C-phycocyanin ameliorates doxorubicin-induced oxidative stress and apoptosis in adult rat cardiomyocytes.

    PubMed

    Khan, Mahmood; Varadharaj, Saradhadevi; Shobha, Jagdish C; Naidu, Madireddi U; Parinandi, Narasimham L; Kutala, Vijay Kumar; Kuppusamy, Periannan

    2006-01-01

    Doxorubicin (DOX), a potent antineoplastic agent, poses limitations for its therapeutic use due to the associated risk of developing cardiomyopathy and congestive heart failure. The cardiotoxicity of doxorubicin is associated with oxidative stress and apoptosis. We have recently shown that Spirulina, a blue-green alga with potent antioxidant properties, offered significant protection against doxorubicin-induced cardiotoxicity in mice. The aim of the present study was to establish the possible protective role of C-phycocyanin, one of the active ingredients of Spirulina, against doxorubicin-induced oxidative stress and apoptosis. The study was carried out using cardiomyocytes isolated from adult rat hearts. Doxorubicin significantly enhanced the formation of reactive oxygen species (ROS) in cells as measured by the 2',7'-dichlorodihydrofluorescein diacetate and dihydroethidium fluorescence. The doxorubicin-induced reactive oxygen species formation was significantly attenuated in cells pretreated with C-phycocyanin. It was further observed that the doxorubicin-induced DNA fragmentation and apoptosis, as assayed by TUNEL assay and flow cytometry coupled with BrdU-FITC/propidium iodide staining, were markedly attenuated by C-phycocyanin. C-phycocyanin also significantly attenuated the doxorubicin-induced increase in the expression of Bax protein, release of cytochrome c, and increase in the activity of caspase-3 in cells. In summary, C-phycocyanin ameliorated doxorubicin-induced oxidative stress and apoptosis in cardiomyocytes. This study further supports the crucial role of the antioxidant nature of C-phycocyanin in its cardioprotection against doxorubicin-induced oxidative stress and apoptosis.

  4. Eosinophils generate brominating oxidants in allergen-induced asthma

    PubMed Central

    Wu, Weijia; Samoszuk, Michael K.; Comhair, Suzy A.A.; Thomassen, Mary Jane; Farver, Carol F.; Dweik, Raed A.; Kavuru, Mani S.; Erzurum, Serpil C.; Hazen, Stanley L.

    2000-01-01

    Eosinophils promote tissue injury and contribute to the pathogenesis of allergen-triggered diseases like asthma, but the chemical basis of damage to eosinophil targets is unknown. We now demonstrate that eosinophil activation in vivo results in oxidative damage of proteins through bromination of tyrosine residues, a heretofore unrecognized pathway for covalent modification of biologic targets in human tissues. Mass spectrometric studies demonstrated that 3-bromotyrosine serves as a specific “molecular fingerprint” for proteins modified through the eosinophil peroxidase-H2O2 system in the presence of plasma levels of halides. We applied a localized allergen challenge to model the effects of eosinophils and brominating oxidants in human lung injury. Endobronchial biopsy specimens from allergen-challenged lung segments of asthmatic, but not healthy control, subjects demonstrated significant enrichments in eosinophils and eosinophil peroxidase. Baseline levels of 3-bromotyrosine in bronchoalveolar lavage (BAL) proteins from mildly allergic asthmatic individuals were modestly but not statistically significantly elevated over those in control subjects. After exposure to segmental allergen challenge, lung segments of asthmatics, but not healthy control subjects, exhibited a >10-fold increase in BAL 3-bromotyrosine content, but only two- to threefold increases in 3-chlorotyrosine, a specific oxidation product formed by neutrophil- and monocyte-derived myeloperoxidase. These results identify reactive brominating species produced by eosinophils as a distinct class of oxidants formed in vivo. They also reveal eosinophil peroxidase as a potential therapeutic target for allergen-triggered inflammatory tissue injury in humans. PMID:10811853

  5. RELATIONSHIP BETWEEN INDUCED OXIDENT GENERATION AND ASTHMA SEVERITY

    EPA Science Inventory

    The role of oxygen radicals is implicated in many disease processes, including asthma. There is evidence that elevated oxidant status is associated with airway hyper responsiveness, however it is less clear whether increased levels of circulating reactive oxygen species are assoc...

  6. Special Issue: Environmental Chemicals and Neurotoxicity Oxidative stress in MeHg-induced neurotoxicity

    PubMed Central

    Farina, Marcelo; Aschner, Michael; Rocha, João B. T.

    2011-01-01

    Methylmercury (MeHg) is an environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. Although the molecular mechanisms mediating MeHg-induced neurotoxicity are not completely understood, several lines of evidence indicate that oxidative stress represents a critical event related to the neurotoxic effects elicited by this toxicant. The objective of this review is to summarize and discuss data from experimental and epidemiological studies that have been important in clarifying the molecular events which mediate MeHg-induced oxidative damage and, consequently, toxicity. Although unanswered questions remain, the electrophilic properties of MeHg and its ability to oxidize thiols have been reported to play decisive roles to the oxidative consequences observed after MeHg exposure. However, a close examination of the relationship between low levels of MeHg necessary to induce oxidative stress and the high amounts of sulfhydryl-containing antioxidants in mammalian cells (e.g., glutathione) have led to the hypothesis that nucleophilic groups with extremely high affinities for MeHg (e.g., selenols) might represent primary targets in MeHg-induced oxidative stress. Indeed, the inhibition of antioxidant selenoproteins during MeHg poisoning in experimental animals has corroborated this hypothesis. The levels of different reactive species (superoxide anion, hydrogen peroxide and nitric oxide) have been reported to be increased in MeHg-exposed systems, and the mechanisms concerning these increments seem to involve a complex sequence of cascading molecular events, such as mitochondrial dysfunction, excitotoxicity, intracellular calcium dyshomeostasis and decreased antioxidant capacity. This review also discusses potential therapeutic strategies to counteract MeHg-induced toxicity and oxidative stress, emphasizing the use of organic selenocompounds, which generally present higher affinity for MeHg when compared to the classically

  7. Oxidative stress-induced epigenetic changes associated with malignant transformation of human kidney epithelial cells.

    PubMed

    Mahalingaiah, Prathap Kumar S; Ponnusamy, Logeswari; Singh, Kamaleshwar P

    2016-09-17

    Renal Cell Carcinoma (RCC) in humans is positively influenced by oxidative stress status in kidneys. We recently reported that adaptive response to low level of chronic oxidative stress induces malignant transformation of immortalized human renal tubular epithelial cells. Epigenetic alterations in human RCC are well documented, but its role in oxidative stress-induced malignant transformation of kidney cells is not known. Therefore, the objective of this study was to evaluate the potential role of epigenetic changes in chronic oxidative stress-induced malignant transformation of HK-2, human renal tubular epithelial cells. The results revealed aberrant expression of epigenetic regulatory genes involved in DNA methylation (DNMT1, DNMT3a and MBD4) and histone modifications (HDAC1, HMT1 and HAT1) in HK-2 cells malignantly transformed by chronic oxidative stress. Additionally, both in vitro soft agar assay and in vivo nude mice study showing decreased tumorigenic potential of malignantly transformed HK-2 cells following treatment with DNA de-methylating agent 5-aza 2' dC further confirmed the crucial role of DNA hypermethyaltion in oxidative stress-induced malignant transformation. Changes observed in global histone H3 acetylation (H3K9, H3K18, H3K27 and H3K14) and decrease in phospho-H2AX (Ser139) also suggest potential role of histone modifications in increased survival and malignant transformation of HK-2 cells by oxidative stress. In summary, the results of this study suggest that epigenetic reprogramming induced by low levels of oxidative stress act as driver for malignant transformation of kidney epithelial cells. Findings of this study are highly relevant in potential clinical application of epigenetic-based therapeutics for treatments of kidney cancers.

  8. Permethrin-induced oxidative stress and toxicity and metabolism. A review.

    PubMed

    Wang, Xu; Martínez, María-Aránzazu; Dai, Menghong; Chen, Dongmei; Ares, Irma; Romero, Alejandro; Castellano, Victor; Martínez, Marta; Rodríguez, José Luis; Martínez-Larrañaga, María-Rosa; Anadón, Arturo; Yuan, Zonghui

    2016-08-01

    Permethrin (PER), the most frequently used synthetic Type I pyrethroid insecticide, is widely used in the world because of its high activity as an insecticide and its low mammalian toxicity. It was originally believed that PER exhibited low toxicity on untargeted animals. However, as its use became more extensive worldwide, increasing evidence suggested that PER might have a variety of toxic effects on animals and humans alike, such as neurotoxicity, immunotoxicity, cardiotoxicity, hepatotoxicity, reproductive, genotoxic, and haematotoxic effects, digestive system toxicity, and cytotoxicity. A growing number of studies indicate that oxidative stress played critical roles in the various toxicities associated with PER. To date, almost no review has addressed the toxicity of PER correlated with oxidative stress. The focus of this article is primarily to summarise advances in the research associated with oxidative stress as a potential mechanism for PER-induced toxicity as well as its metabolism. This review summarises the research conducted over the past decade into the reactive oxygen species (ROS) generation and oxidative stress as a consequence of PER treatments, and ultimately their correlation with the toxicity and the metabolism of PER. The metabolism of PER involves various CYP450 enzymes, alcohol or aldehyde dehydrogenases for oxidation and the carboxylesterases for hydrolysis, through which oxidative stress might occur, and such metabolic factors are also reviewed. The protection of a variety of antioxidants against PER-induced toxicity is also discussed, in order to further understand the role of oxidative stress in PER-induced toxicity. This review will throw new light on the critical roles of oxidative stress in PER-induced toxicity, as well as on the blind spots that still exist in the understanding of PER metabolism, the cellular effects in terms of apoptosis and cell signaling pathways, and finally strategies to help to protect against its oxidative

  9. Differences in antibiotic-induced oxidative stress responses between laboratory and clinical isolates of Streptococcus pneumoniae.

    PubMed

    Dridi, Bédis; Lupien, Andréanne; Bergeron, Michel G; Leprohon, Philippe; Ouellette, Marc

    2015-09-01

    Oxidants were shown to contribute to the lethality of bactericidal antibiotics in different bacterial species, including the laboratory strain Streptococcus pneumoniae R6. Resistance to penicillin among S. pneumoniae R6 mutants was further shown to protect against the induction of oxidants upon exposure to unrelated bactericidal compounds. In the work described here, we expanded on these results by studying the accumulation of reactive oxygen species in the context of antibiotic sensitivity and resistance by including S. pneumoniae clinical isolates. In S. pneumoniae R6, penicillin, ciprofloxacin, and kanamycin but not the bacteriostatic linezolid, erythromycin, or tetracycline induced the accumulation of reactive oxygen species. For the three bactericidal compounds, resistance to a single molecule prevented the accumulation of oxidants upon exposure to unrelated bactericidal antibiotics, and this was accompanied by a reduced lethality. This phenomenon does not involve target site mutations but most likely implicates additional mutations occurring early during the selection of resistance to increase survival while more efficient resistance mechanisms are being selected or acquired. Bactericidal antibiotics also induced oxidants in sensitive S. pneumoniae clinical isolates. The importance of oxidants in the lethality of bactericidal antibiotics was less clear than for S. pneumoniae R6, however, since ciprofloxacin induced oxidants even in ciprofloxacin-resistant S. pneumoniae clinical isolates. Our results provide a clear example of the complex nature of the mode of action of antibiotics. The adaptive approach to oxidative stress of S. pneumoniae is peculiar, and a better understanding of the mechanism implicated in response to oxidative injury should also help clarify the role of oxidants induced by antibiotics.

  10. Oxidation induced decomposition of ethylene carbonate from DFT calculations--importance of explicitly treating surrounding solvent.

    PubMed

    Xing, Lidan; Borodin, Oleg

    2012-10-05

    The oxidation induced reactions of the common lithium battery electrolyte solvent ethylene carbonate (EC) have been investigated for EC(2) using density functional theory and for selected reaction paths using Møller-Plesset perturbation theory (MP4). The importance of explicitly treating at least one solvent molecule interacting with EC during oxidation (removal of an electron) on the EC oxidation potential and decomposition reactions was shown by comparing oxidation of EC and EC(2). Accuracy of DFT results was evaluated by comparing with MP4 and G4 values for oxidation of EC. The polarized continuum model (PCM) was used to implicitly include the rest of the surrounding solvent. The oxidation potentials of EC(2) and EC(4) were found to be significantly lower than the intrinsic oxidation potential of an isolated EC and also lower than the oxidation potential of EC-BF(4)(-). The exothermic proton abstraction from the ethylene group of EC by the carbonyl group of another EC was responsible for the decreased oxidative stability of EC(2) and EC(4) compared to EC. The most exothermic path with the smallest barrier for EC(2) oxidation yielded CO(2) and an ethanol radical cation. The reaction paths with the higher barrier yielded oligo(ethylene carbonate) suggesting a pathway for the experimentally observed poly(ethylene carbonate) formation of EC-based electrolytes at cathode surfaces.

  11. Blockade of cyclophilin D rescues dexamethasone-induced oxidative stress in gingival tissue

    PubMed Central

    Zhu, Zhuoli; Xiao, Anqi; Yu, Haiyang; Gan, Xueqi

    2017-01-01

    Glucocorticoids (GCs) are frequently used for the suppression of inflammation in chronic inflammatory diseases. Excessive GCs usage is greatly associated with several side effects, including gingival ulceration, the downward migration of the epithelium, attachment loss and disruption of transeptal fibers. The mechanisms underlying GCs-induced impairments in gingival tissue remains poorly understood. Mitochondrial dysfunction is associated with various oral diseases, such as chronic periodontitis, age-related alveolar bone loss and hydrogen peroxide-induced cell injury in gingival. Here, we reported an unexplored role of cyclophilin D (CypD), the major component of mitochondrial permeability transition pore (mPTP), in dexamethasone (Dex)-induced oxidative stress accumulation and cell dysfunctions in gingival tissue. We demonstrated that the expression level of CypD significantly increased under Dex treatment. Blockade of CypD by pharmaceutical inhibitor cyclosporine A (CsA) significantly protected against Dex-induced oxidative stress accumulation in gingival tissue. And the protective effects of blocking CypD in Dex-induced gingival fibroblasts dysfunction were evidenced by rescued mitochondrial function and suppressed production of reactive oxygen species (ROS). In addition, blockade of CypD by pharmaceutical inhibitor CsA or gene knockdown also restored Dex-induced cell toxicity in HGF-1 cells, as shown by suppressed mitochondrial ROS production, increased CcO activity and decreased apoptosis. We also suggested a role of oxidative stress-mediated p38 signal transduction in this event, and antioxidant N-acety-l-cysteine (NAC) could obviously blunted Dex-induced oxidative stress. These findings provide new insights into the role of CypD-dependent mitochondrial pathway in the Dex-induced gingival injury, indicating that CypD may be potential therapeutic strategy for preventing Dex-induced oxidative stress and cell injury in gingival tissue. PMID:28273124

  12. Nano rare-earth oxides induced size-dependent vacuolization: an independent pathway from autophagy

    PubMed Central

    Zhang, Ying; Yu, Chenguang; Huang, Guanyi; Wang, Changli; Wen, Longping

    2010-01-01

    Four rare earth oxides have been shown to induce autophagy. Interestingly, we often noticed plentiful vacuolization, which was not always involved in this autophagic process. In this study, we investigated three other rare-earth elements, including Yttrium (Y), Ytterbium (Yb), and Lanthanum (La). Autophagic effect could be induced by all of them but only Y2O3 and Yb2O3 could cause massive vacuolization. Y2O3 and Yb2O3 treated by sonication or centrifugation to reduce particle size were used to test vacuolization level in HeLa cell lines. The results showed that rare earth oxides-induced vacuolization is size-dependent and differs from autophagic pathway. To further clarify the characteristics of this autophagic process, we used MEF Atg-5 (autophagy associated gene 5) knockout cell line, and the result showed that the autophagic process induced by rare earth oxides is Atg-5-dependent and the observed vacuolization was independent from autophagy. Similar results could also be observed in our tests on 3-methyladenine(3-MA), a well-known autophagy inhibitor. In conclusion, for the first time, we clarified the relationship between massive vacuolization and autophagic process induced by rare earth oxides and pointed out the size effect of rare earth oxides on the formation of vacuoles, which give clues to further investigation on the mechanisms underlying their biological effects. PMID:20856835

  13. Nano rare-earth oxides induced size-dependent vacuolization: an independent pathway from autophagy.

    PubMed

    Zhang, Ying; Yu, Chenguang; Huang, Guanyi; Wang, Changli; Wen, Longping

    2010-09-07

    Four rare earth oxides have been shown to induce autophagy. Interestingly, we often noticed plentiful vacuolization, which was not always involved in this autophagic process. In this study, we investigated three other rare-earth elements, including Yttrium (Y), Ytterbium (Yb), and Lanthanum (La). Autophagic effect could be induced by all of them but only Y(2)O(3) and Yb(2)O(3) could cause massive vacuolization. Y(2)O(3) and Yb(2)O(3) treated by sonication or centrifugation to reduce particle size were used to test vacuolization level in HeLa cell lines. The results showed that rare earth oxides-induced vacuolization is size-dependent and differs from autophagic pathway. To further clarify the characteristics of this autophagic process, we used MEF Atg-5 (autophagy associated gene 5) knockout cell line, and the result showed that the autophagic process induced by rare earth oxides is Atg-5-dependent and the observed vacuolization was independent from autophagy. Similar results could also be observed in our tests on 3-methyladenine(3-MA), a well-known autophagy inhibitor. In conclusion, for the first time, we clarified the relationship between massive vacuolization and autophagic process induced by rare earth oxides and pointed out the size effect of rare earth oxides on the formation of vacuoles, which give clues to further investigation on the mechanisms underlying their biological effects.

  14. In vitro investigation of ultrasound-induced oxidative stress on human lens epithelial cells.

    PubMed

    Rwei, Patrick; Alex Gong, Cihun-Siyong; Luo, Li-Jyuan; Lin, Meng-Bo; Lai, Jui-Yang; Liu, Hao-Li

    2017-01-22

    The effect of ultrasound exposure on human lens epithelial cells (HLE-B3) was investigated in vitro, specifically on the generation of oxidative stress upon ultrasound application using various clinically-relevant settings. In addition to ultrasound-induced heat effects, oxidative stress has been recently proposed as one of the main mechanisms for ultrasound-induced effects on human cells. In this work, the levels of biocompatibility and generation of oxidative stress by exposure of ultrasound to HLE-B3 were evaluated quantitatively and qualitatively by the MTT assay, Live/Dead assay, reactive oxygen species (ROS) and intracellular calcium level. Oxidative stress induction is traditionally achieved through administrations of H2O2 and thus the administration of H2O2 was used as the positive control group for comparison herein. Concerning the administrations of H2O2 are considered invasive and may potentially have side effects, ultrasound as physical stimulation could be a safer and non-invasive method to induce similar oxidative stress environments. The effect of ultrasound on cell viability and induction of oxidative stress increases with ultrasound intensity. The result reveals that the continuous ultrasound has a positive impact on the oxidative stress levels but does negatively on the cell viability, as compared to the pulsed ultrasound. Furthermore, our work demonstrates that the exposure of 58 kPa continuous ultrasound without microbubbles can maintain acceptable cell viability and produce oxidative stress effects similar to the traditional administrations of H2O2. In summary, exposure of ultrasound can generate oxidative stress comparable to traditional administrations of H2O2. The effect of generating oxidative stress is adjustable through ultrasound parameters, including the pulsed or continuous wave, the intensity of ultrasound and addition of microbubbles.

  15. The effect of HDL-bound and free PON1 on copper-induced LDL oxidation.

    PubMed

    Bayrak, Ahmet; Bayrak, Tülin; Bodur, Ebru; Kılınç, Kamer; Demirpençe, Ediz

    2016-09-25

    Oxidative modification of LDL plays an important role in the development of atherosclerosis. High-density lipoprotein (HDL) confers protection against atherosclerosis and the antioxidative properties of paraoxonase 1 (PON1) has been suggested to contribute to this effect of HDL. The PON1 exist in two major polymorphic forms (Q and R), which regulate the concentration and activity of the enzyme and alter its ability to prevent lipid oxidation. However, the association of Q192R polymorphism with PON1's capacity to protect against LDL lipoperoxidation is controversial. The aim of this study was to evaluate the effects of the purified PON1 Q192R and the partially purified HDL-bound PON1 Q192R isoenzymes (HDL-PON1 Q192R) on LDL oxidation, with respect to their arylesterase/homocysteine thiolactonase (HTLase) activities. Cupric ion-induced LDL oxidation was reduced up to 48% by purified PON1 Q192, but only 33% by an equivalent activity of PON1 R192. HDL-PON1 Q192 isoenzyme caused a 65% reduction, whereas HDL-PON1 R192 isoenzyme caused only 46% reduction in copper ion-induced LDL oxidation. These findings reflect the fact that PON1 Q and PON1 R allozymes may have different protective characteristics against LDL oxidation. The protection against LDL oxidation provided by HDL-PON1 Q192R isoenzymes is more prominent than the purified soluble enzymes. Inhibition of the Ca(+2)-dependent PON1 Q192R arylesterase/HTLase by the metal chelator EDTA, did not alter PON1's ability to inhibit LDL oxidation. These studies indicate that the active site involvement of the purified enzyme is not similar to the HDL-bound one, in terms of both PON1 arylesterase/HTLase activity and the protection of LDL from copper ion-induced oxidation. Moreover, PON1's ability to protect LDL from oxidation does not seem to require calcium.

  16. Cerium oxide nanoparticles alleviate oxidative stress and decreases Nrf-2/HO-1 in D-GALN/LPS induced hepatotoxicity.

    PubMed

    Hashem, Reem M; Rashd, Laila A; Hashem, Khalid S; Soliman, Hatem M

    2015-07-01

    Translocation of the master regulator of antioxidant-response element-driven antioxidant gene, nuclear factor erythroid 2 (Nrf-2) from the cytoplasm into the nucleus and triggering the transcription of hemoxygenase-1 (HO-1) to counteract the oxidative stress is a key feature in D-galactoseamine and lipopolysaccharide (D-GALN/LPS) induced hepatotoxicity. We mainly aimed to study the effect of cerium oxide (CeO2) nanoparticles on Nrf-2/HO-1 pathway whereas; it has previously shown to have an antioxidant effect in liver models. Administration of CeO2 nanoparticles significantly decreased the translocation of the cytoplasmic Nrf-2 with a concomitant decrement in the gene expression of HO-1 as it reveals a powerful antioxidative effect as indicated by the significant increase in the levels of glutathione (GSH), glutathione peroxidase (GPX1), glutathione reductase (GR), superoxide dismutase (SOD) and catalase. In synchronization, a substantial decrement in the levels of inducible nitric oxide synthase (iNOS), TBARS and percentage of DNA fragmentation was established. These results were confirmed by histopathology examination which showed a severe degeneration, haemorrhages, widened sinusoids and focal leukocyte infiltration in D-GALN/LPS treatment and these features were alleviated with CeO2 administration. In conclusion, CeO2 is a potential antioxidant that can effectively decrease the translocation of the cytoplasmic Nrf-2 into the nucleus and decrease HO-1 in D-GALN/LPS induced hepatotoxicity.

  17. Evaluation of UVA-induced oxidative stress using a highly sensitive chemiluminescence method

    NASA Astrophysics Data System (ADS)

    Gao, Bo; Xing, Da; Zhu, Debin

    2005-02-01

    Oxidative stress is mainly mediated by reactive oxygen species (ROS). Evaluation of oxidative stress is helpful for choosing an appropriate method to protect the organism from the oxidative damage. In this study, a highly sensitive and simple chemiluminescence method is presented for the evaluation of radiation-induced oxidative stress in human peripheral lymphocytes. The lymphocytes were irradiated by ultraviolet radiation (320-400nm, UVA) with different doses. The ROS generated by the lymphocytes was detected by chemiluminescence method, using a highly sensitive chemiluminescence probe 2-methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo[1,2-α] pyrazin-3-one (MCLA). The cell viability was detected with Cell Counting Kit-8 (CCK-8). The malondialdehyde (MDA), a marker of lipid peroxidation and oxidative stress, and the total antioxidant capacity (TAC), a parameter that is taken as evidence of oxidative stress, were measured too. The results show that both chemiluminescence intensity, cell mortality and MDA concentration of lymphocytes grow with the increase of UVA dose range from 0.5 to 8 J/cm2, while the TAC decreases. There exists a positive relationship between cell oxidative damage degree and the chemiluminescence intensity of lymphocytes. This highly sensitive chemiluminescence method would potentially provide an easy way to evaluate the level of UVA-induced oxidative stress readily, sensitively and rapidly

  18. Effects of olive leaves extract on LDL oxidation induced-CuSO(4) in vitro.

    PubMed

    Ahmadvand, Hassan; Bagheri, Shahrokh; Khosrobeigi, Ali; Boshtam, Maryam; Abdolahpour, Foad

    2012-07-01

    Oxidation of low-density lipoprotein (LDL) has been strongly implicated in the pathogenesis of atherosclerosis. The use of some natural antioxidant and herbal medicine may lead to the inhibition of production of oxidized LDL and may decrease both the development and the progression of atherosclerosis. The aim of this study was to investigate the effects of Olive leaves ethanol extract (OLE) on LDL oxidation induced-CuSO(4) quantitatively in vitro. Low-density lipoprotein was incubated with CuSO(4) and the formation of conjugated dienes and thiobarbituric acid reactive substances (TBARS). Inhibition of this Cu-induced oxidation was studied in the presence of vitamin E and various concentration of OLE. It was demonstrated that OLE reduced the formation of conjugated dienes and TBARS of LDL against oxidation in vitro (p<0.05). The inhibitory effects of the OLE on LDL oxidation were dose-dependent at concentrations ranging from (2μg/ml) to (200μg/ml). Moreover, we compared effects of OLE on LDL oxidation with vitamin E as positive control. This study showed that OLE is a source of potent antioxidants and prevented the oxidation of LDL in vitro and it may be suitable for use in food and pharmaceutical applications.

  19. Persistent ion beam induced conductivity in zinc oxide nanowires

    SciTech Connect

    Johannes, Andreas; Niepelt, Raphael; Gnauck, Martin; Ronning, Carsten

    2011-12-19

    We report persistently increased conduction in ZnO nanowires irradiated by ion beam with various ion energies and species. This effect is shown to be related to the already known persistent photo conduction in ZnO and dubbed persistent ion beam induced conduction. Both effects show similar excitation efficiency, decay rates, and chemical sensitivity. Persistent ion beam induced conduction will potentially allow countable (i.e., single dopant) implantation in ZnO nanostructures and other materials showing persistent photo conduction.

  20. Persistent ion beam induced conductivity in zinc oxide nanowires

    NASA Astrophysics Data System (ADS)

    Johannes, Andreas; Niepelt, Raphael; Gnauck, Martin; Ronning, Carsten

    2011-12-01

    We report persistently increased conduction in ZnO nanowires irradiated by ion beam with various ion energies and species. This effect is shown to be related to the already known persistent photo conduction in ZnO and dubbed persistent ion beam induced conduction. Both effects show similar excitation efficiency, decay rates, and chemical sensitivity. Persistent ion beam induced conduction will potentially allow countable (i.e., single dopant) implantation in ZnO nanostructures and other materials showing persistent photo conduction.

  1. Oxidative Lung Injury in Virus-Induced Wheezing

    DTIC Science & Technology

    2014-05-01

    activating Nrf2. Among them, hepatitis B and C viruses, human cytomegalovirus and the Kaposi’s sarcoma-associated herpes virus, which can all induce ROS...1055-1060, 1996. 48. Schaedler S, Krause J, Himmelsbach K, Carvajal-Yepes M, Lieder F, Klingel K et al. Hepatitis B virus induces expression of...designed to simultaneously probe for 12 viral targets in a single patient specimen (RSV/A, RSV/ B , Influenza A, Influenza A subtype H1, Influenza A subtype

  2. Lewis acid catalysis and Green oxidations: sequential tandem oxidation processes induced by Mn-hyperaccumulating plants.

    PubMed

    Escande, Vincent; Renard, Brice-Loïc; Grison, Claude

    2015-04-01

    Among the phytotechnologies used for the reclamation of degraded mining sites, phytoextraction aims to diminish the concentration of polluting elements in contaminated soils. However, the biomass resulting from the phytoextraction processes (highly enriched in polluting elements) is too often considered as a problematic waste. The manganese-enriched biomass derived from native Mn-hyperaccumulating plants of New Caledonia was presented here as a valuable source of metallic elements of high interest in chemical catalysis. The preparation of the catalyst Eco-Mn1 and reagent Eco-Mn2 derived from Grevillea exul exul and Grevillea exul rubiginosa was investigated. Their unusual polymetallic compositions allowed to explore new reactivity of low oxidative state of manganese-Mn(II) for Eco-Mn1 and Mn(IV) for Eco-Mn2. Eco-Mn1 was used as a Lewis acid to catalyze the acetalization/elimination of aldehydes into enol ethers with high yields; a new green and stereoselective synthesis of (-)-isopulegol via the carbonyl-ene cyclization of (+)-citronellal was also performed with Eco-Mn1. Eco-Mn2 was used as a mild oxidative reagent and controlled the oxidation of aliphatic alcohols into aldehydes with quantitative yields. Oxidative cleavage was interestingly noticed when Eco-Mn2 was used in the presence of a polyol. Eco-Mn2 allowed direct oxidative iodination of ketones without using iodine, which is strongly discouraged by new environmental legislations. Finally, the combination of the properties in the Eco-Mn catalysts and reagents gave them an unprecedented potential to perform sequential tandem oxidation processes through new green syntheses of p-cymene from (-)-isopulegol and (+)-citronellal; and a new green synthesis of functionalized pyridines by in situ oxidation of 1,4-dihydropyridines.

  3. Therapeutic role of Cuminum cyminum on ethanol and thermally oxidized sunflower oil induced toxicity.

    PubMed

    Aruna, K; Rukkumani, R; Varma, P Suresh; Menon, Venugopal P

    2005-05-01

    Ethanol is one of the most widely used and abused drugs, increasing lipid levels in humans and experimental animals. Heating of oil rich in polyunsaturated fatty acids (PUFA) produces various lipid peroxidative end products that can aggravate the pathological changes produced by ethanol. In the present communication, the effect of Cuminum cyminum was investigated on alcohol and thermally oxidized oil induced hyperlipidaemia. The results showed increased activity of aspartate transaminase (AST), alkaline phosphatase (ALP) and gamma glutamyl transferase (GGT) and increased levels of cholesterol, triglycerides and phospholipids in the plasma of rats given alcohol, thermally oxidized oil and alcohol+thermally oxidized oil when compared with the normal control group. The levels of tissue (liver and kidney) cholesterol and triglycerides were increased significantly in rats groups given alcohol, thermally oxidized oil and alcohol+thermally oxidized oil when compared with the normal control rats. The levels were decreased when cumin was given along with alcohol and thermally oxidized oil. The level of phospholipids decreased significantly in the liver and kidney of groups given alcohol, thermally oxidized oil and alcohol+thermally oridized oil when compared with the normal control rats. The level increased when cumin was administered along with alcohol and thermally oxidized oil. The activity of phospholipase A and C increased significantly in the liver of groups given alcohol, thermally oxidized oil and alcohol+thermally oxidized oil when compared with the normal control rats, whereas the activity was decreased with the cumin treatment. The results obtained indicate that cumin can decrease the lipid levels in alcohol and thermally oxidized oil induced hepatotoxicity.

  4. Oxidative stress–dependent phosphorylation activates ZNRF1 to induce neuronal/axonal degeneration

    PubMed Central

    Wakatsuki, Shuji; Furuno, Akiko; Ohshima, Makiko

    2015-01-01

    Oxidative stress is a well-known inducer of neuronal apoptosis and axonal degeneration. We previously showed that the E3 ubiquitin ligase ZNRF1 promotes Wallerian degeneration by degrading AKT to induce GSK3B activation. We now demonstrate that oxidative stress serves as an activator of the ubiquitin ligase activity of ZNRF1 by inducing epidermal growth factor receptor (EGFR)–mediated phosphorylation at the 103rd tyrosine residue and that the up-regulation of ZNRF1 activity by oxidative stress leads to neuronal apoptosis and Wallerian degeneration. We also show that nicotinamide adenine dinucleotide phosphate–reduced oxidase activity is required for the EGFR-dependent phosphorylation-induced activation of ZNRF1 and resultant AKT degradation via the ubiquitin proteasome system to induce Wallerian degeneration. These results indicate the pathophysiological significance of the EGFR–ZNRF1 pathway induced by oxidative stress in the regulation of neuronal apoptosis and Wallerian degeneration. A deeper understanding of the regulatory mechanism for ZNRF1 catalytic activity via phosphorylation will provide a potential therapeutic avenue for neurodegeneration. PMID:26572622

  5. Cranberries inhibit LDL oxidation and induce LDL receptor expression in hepatocytes.

    PubMed

    Chu, Yi-Fang; Liu, Rui Hai

    2005-08-26

    Cardiovascular disease (CVD) is the leading cause of death in most industrialized countries. Cranberries were evaluated for their potential roles in dietary prevention of CVD. Cranberry extracts were found to have potent antioxidant capacity preventing in vitro LDL oxidation with increasing delay and suppression of LDL oxidation in a dose-dependent manner. The antioxidant activity of 100 g cranberries against LDL oxidation was equivalent to 1000 mg vitamin C or 3700 mg vitamin E. Cranberry extracts also significantly induced expression of hepatic LDL receptors and increased intracellular uptake of cholesterol in HepG2 cells in vitro in a dose-dependent manner. This suggests that cranberries could enhance clearance of excessive plasma cholesterol in circulation. We propose that additive or synergistic effects of phytochemicals in cranberries are responsible for the inhibition of LDL oxidation, the induced expression of LDL receptors, and the increased uptake of cholesterol in hepatocytes.

  6. Lipids and Oxidative Stress Associated with Ethanol-Induced Neurological Damage.

    PubMed

    Hernández, José A; López-Sánchez, Rosa C; Rendón-Ramírez, Adela

    2016-01-01

    The excessive intake of alcohol is a serious public health problem, especially given the severe damage provoked by chronic or prenatal exposure to alcohol that affects many physiological processes, such as memory, motor function, and cognitive abilities. This damage is related to the ethanol oxidation in the brain. The metabolism of ethanol to acetaldehyde and then to acetate is associated with the production of reactive oxygen species that accentuate the oxidative state of cells. This metabolism of ethanol can induce the oxidation of the fatty acids in phospholipids, and the bioactive aldehydes produced are known to be associated with neurotoxicity and neurodegeneration. As such, here we will review the role of lipids in the neuronal damage induced by ethanol-related oxidative stress and the role that lipids play in the related compensatory or defense mechanisms.

  7. Lipids and Oxidative Stress Associated with Ethanol-Induced Neurological Damage

    PubMed Central

    2016-01-01

    The excessive intake of alcohol is a serious public health problem, especially given the severe damage provoked by chronic or prenatal exposure to alcohol that affects many physiological processes, such as memory, motor function, and cognitive abilities. This damage is related to the ethanol oxidation in the brain. The metabolism of ethanol to acetaldehyde and then to acetate is associated with the production of reactive oxygen species that accentuate the oxidative state of cells. This metabolism of ethanol can induce the oxidation of the fatty acids in phospholipids, and the bioactive aldehydes produced are known to be associated with neurotoxicity and neurodegeneration. As such, here we will review the role of lipids in the neuronal damage induced by ethanol-related oxidative stress and the role that lipids play in the related compensatory or defense mechanisms. PMID:26949445

  8. Mechanisms of Sb(III) oxidation by pyrite-induced hydroxyl radicals and hydrogen peroxide.

    PubMed

    Kong, Linghao; Hu, Xingyun; He, Mengchang

    2015-03-17

    Antimony (Sb) is an element of growing interest, and its toxicity and mobility are strongly influenced by redox processes. Sb(III) oxidation mechanisms in pyrite suspensions were comprehensively investigated by kinetic measurements in oxic and anoxic conditions and simulated sunlight. Sb(III) was oxidized to Sb(V) in both solution and on pyrite surfaces in oxic conditions; the oxidation efficiency of Sb(III) was gradually enhanced with the increase of pH. The pyrite-induced hydroxyl radical (·OH) and hydrogen peroxide (H2O2) are the oxidants for Sb(III) oxidation. ·OH is the oxidant for Sb(III) oxidation in acidic solutions, and H2O2 becomes the main oxidant in neutral and alkaline solutions. ·OH and H2O2 can be generated by the reaction of previously existing FeIII(pyrite) and H2O on pyrite in anoxic conditions. The oxygen molecule is the crucial factor in continuously producing ·OH and H2O2 for Sb(III) oxidation. The efficiency of Sb(III) oxidation was enhanced in surface-oxidized pyrite (SOP) suspension, more ·OH formed through Fenton reaction in acidic solutions, but Fe(IV) and H2O2 were formed in neutral and alkaline solutions. Under the illumination of simulated sunlight, more ·OH and H2O2 were produced in the pyrite suspension, and the oxidation efficiency of Sb(III) was remarkably enhanced. In conclusion, Sb(III) can be oxidized to Sb(V) in the presence of pyrite, which will greatly influence the fate of Sb(III) in the environment.

  9. Wet air oxidation induced enhanced biodegradability of distillery effluent.

    PubMed

    Malik, S N; Saratchandra, T; Tembhekar, P D; Padoley, K V; Mudliar, S L; Mudliar, S N

    2014-04-01

    The present study reports the feasibility of Wet Air Oxidation (WAO) as a pretreatment option for enhanced biodegradation of complex distillery effluent. Initially, the distillery effluent was pretreated by WAO at different process conditions (pressure, temperature and time) to facilitate enhancement in the biodegradability index (BI = BOD5: COD ratio). The biodegradability of WAO pretreated effluent was evaluated by subjecting it to aerobic biodegradation and anaerobic followed by aerobic biodegradation. Aerobic biodegradation of pretreated effluent with enhanced biodegradability index (BI = 0.4-0.8) showed enhanced COD reduction of up to 67.7%, whereas the untreated effluent (BI = 0.17) indicated poor COD reduction of only 22.5%. Anaerobic followed by aerobic biodegradation of pretreated effluent has shown up to 87.9% COD reduction, while the untreated effluent has shown only 43.1% COD reduction. Bio-kinetic parameters also confirmed the increased rate of bio-oxidation at enhanced BIs. The results indicate that the WAO pretreatment facilitates enhanced bio-oxidation/bio-degradation of complex effluents like the distillery spent wash.

  10. Nivalenol induces oxidative stress and increases deoxynivalenol pro-oxidant effect in intestinal epithelial cells.

    PubMed

    Del Regno, Marisanta; Adesso, Simona; Popolo, Ada; Quaroni, Andrea; Autore, Giuseppina; Severino, Lorella; Marzocco, Stefania

    2015-06-01

    Mycotoxins are secondary fungal metabolites often found as contaminants in almost all agricultural commodities worldwide, and the consumption of food or feed contaminated by mycotoxins represents a major risk for human and animal health. Reactive oxygen species are normal products of cellular metabolism. However, disproportionate generation of reactive oxygen species poses a serious problem to bodily homeostasis and causes oxidative tissue damage. In this study we analyzed the effect of two trichothecenes mycotoxins: nivalenol and deoxynivalenol, alone and in combination, on oxidative stress in the non-tumorigenic intestinal epithelial cell line IEC-6. Our results indicate the pro-oxidant nivalenol effect in IEC-6, the stronger pro-oxidant effect of nivalenol when compared to deoxynivalenol and, interestingly, that nivalenol increases deoxynivalenol pro-oxidative effects. Mechanistic studies indicate that the observed effects were mediated by NADPH oxidase, calcium homeostasis alteration, NF-kB and Nrf2 pathways activation and by iNOS and nitrotyrosine formation. The toxicological interaction by nivalenol and deoxynivalenol reported in this study in IEC-6, points out the importance of the toxic effect of these mycotoxins, mostly in combination, further highlighting the risk assessment process of these toxins that are of growing concern.

  11. Modulation of Hypercholesterolemia-Induced Oxidative/Nitrative Stress in the Heart

    PubMed Central

    Sárközy, Márta; Pipicz, Márton; Dux, László; Csont, Tamás

    2016-01-01

    Hypercholesterolemia is a frequent metabolic disorder associated with increased risk for cardiovascular morbidity and mortality. In addition to its well-known proatherogenic effect, hypercholesterolemia may exert direct effects on the myocardium resulting in contractile dysfunction, aggravated ischemia/reperfusion injury, and diminished stress adaptation. Both preclinical and clinical studies suggested that elevated oxidative and/or nitrative stress plays a key role in cardiac complications induced by hypercholesterolemia. Therefore, modulation of hypercholesterolemia-induced myocardial oxidative/nitrative stress is a feasible approach to prevent or treat deleterious cardiac consequences. In this review, we discuss the effects of various pharmaceuticals, nutraceuticals, some novel potential pharmacological approaches, and physical exercise on hypercholesterolemia-induced oxidative/nitrative stress and subsequent cardiac dysfunction as well as impaired ischemic stress adaptation of the heart in hypercholesterolemia. PMID:26788247

  12. Field-induced activation of metal oxide semiconductor for low temperature flexible transparent electronic device applications

    NASA Astrophysics Data System (ADS)

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony; Haglund, Amada; Ward, Thomas Zac; Mandrus, David; Rack, Philip

    Amorphous metal-oxide semiconductors have been extensively studied as an active channel material in thin film transistors due to their high carrier mobility, and excellent large-area uniformity. Here, we report the athermal activation of amorphous indium gallium zinc oxide semiconductor channels by an electric field-induced oxygen migration via gating through an ionic liquid. Using field-induced activation, a transparent flexible thin film transistor is demonstrated on a polyamide substrate with transistor characteristics having a current ON-OFF ratio exceeding 108, and saturation field effect mobility of 8.32 cm2/(V.s) without a post-deposition thermal treatment. This study demonstrates the potential of field-induced activation as an athermal alternative to traditional post-deposition thermal annealing for metal oxide electronic devices suitable for transparent and flexible polymer substrates. Materials Science and Technology Division, ORBL, Oak Ridge, TN 37831, USA.

  13. Anti-Oxidative Effects of Rooibos Tea (Aspalathus linearis) on Immobilization-Induced Oxidative Stress in Rat Brain

    PubMed Central

    Kim, Hyun-Pyo

    2014-01-01

    Exposure to chronic psychological stress may be related to increased reactive oxygen species (ROS) or free radicals, and thus, long-term exposure to high levels of oxidative stress may cause the accumulation of oxidative damage and eventually lead to many neurodegenerative diseases. Compared with other organs, the brain appears especially susceptible to excessive oxidative stress due to its high demand for oxygen. In the case of excessive ROS production, endogenous defense mechanisms against ROS may not be sufficient to suppress ROS-associated oxidative damage. Dietary antioxidants have been shown to protect neurons against a variety of experimental neurodegenerative conditions. In particular, Rooibos tea might be a good source of antioxidants due to its larger proportion of polyphenolic compounds. An optimal animal model for stress should show the features of a stress response and should be able to mimic natural stress progression. However, most animal models of stress, such as cold-restraint, electric foot shock, and burn shock, usually involve physical abuse in addition to the psychological aspects of stress. Animals subjected to chronic restraint or immobilization are widely believed to be a convenient and reliable model to mimic psychological stress. Therefore, in the present study, we propose that immobilization-induced oxidative stress was significantly attenuated by treatment with Rooibos tea. This conclusion is demonstrated by Rooibos tea’s ability to (i) reverse the increase in stress-related metabolites (5-HIAA and FFA), (ii) prevent lipid peroxidation (LPO), (iii) restore stress-induced protein degradation (PD), (iv) regulate glutathione metabolism (GSH and GSH/GSSG ratio), and (v) modulate changes in the activities of antioxidant enzymes (SOD and CAT). PMID:24466326

  14. Anti-oxidative effects of Rooibos tea (Aspalathus linearis) on immobilization-induced oxidative stress in rat brain.

    PubMed

    Hong, In-Sun; Lee, Hwa-Yong; Kim, Hyun-Pyo

    2014-01-01

    Exposure to chronic psychological stress may be related to increased reactive oxygen species (ROS) or free radicals, and thus, long-term exposure to high levels of oxidative stress may cause the accumulation of oxidative damage and eventually lead to many neurodegenerative diseases. Compared with other organs, the brain appears especially susceptible to excessive oxidative stress due to its high demand for oxygen. In the case of excessive ROS production, endogenous defense mechanisms against ROS may not be sufficient to suppress ROS-associated oxidative damage. Dietary antioxidants have been shown to protect neurons against a variety of experimental neurodegenerative conditions. In particular, Rooibos tea might be a good source of antioxidants due to its larger proportion of polyphenolic compounds. An optimal animal model for stress should show the features of a stress response and should be able to mimic natural stress progression. However, most animal models of stress, such as cold-restraint, electric foot shock, and burn shock, usually involve physical abuse in addition to the psychological aspects of stress. Animals subjected to chronic restraint or immobilization are widely believed to be a convenient and reliable model to mimic psychological stress. Therefore, in the present study, we propose that immobilization-induced oxidative stress was significantly attenuated by treatment with Rooibos tea. This conclusion is demonstrated by Rooibos tea's ability to (i) reverse the increase in stress-related metabolites (5-HIAA and FFA), (ii) prevent lipid peroxidation (LPO), (iii) restore stress-induced protein degradation (PD), (iv) regulate glutathione metabolism (GSH and GSH/GSSG ratio), and (v) modulate changes in the activities of antioxidant enzymes (SOD and CAT).

  15. Oxidative Stress Induces Mouse Follicular Granulosa Cells Apoptosis via JNK/FoxO1 Pathway

    PubMed Central

    Weng, Qiannan; Liu, Zequn; Li, Bojiang; Liu, Kaiqing; Wu, Wangjun; Liu, Honglin

    2016-01-01

    The c-Jun N-terminal protein kinase (JNK) plays an important role in the regulation of cell apoptosis. Forkhead box O (FoxO) transcription factors are involved in diverse biological processes, including cellular metabolism, cell apoptosis, and cell cycle. However, the JNK/FoxO1 pathway involved in the process of apoptosis induced by oxidative stress remains to be elucidated. Here, we demonstrated that the JNK activity significantly increased in response to oxidative stress in mouse follicular granulosa cells (MGCs). SP600125, a selective JNK inhibitor, attenuated the oxidative stress-induced MGCs apoptosis. Oxidative stress enhanced the FoxO1 nuclear translocation by activating the JNK activity. Moreover, JNK mediated the dissociation of FoxO1 from 14-3-3 proteins in MGCs after the treatment with H2O2. Finally, oxidative stress up-regulated the expression of FoxO1 via JNK mediation of FoxO1 self-regulation in MGCs. Taken together, our findings suggest that JNK/FoxO1 is involved in the regulation of oxidative stress-induced cell apoptosis in MGCs. PMID:27936150

  16. Curcumin-Protected PC12 Cells Against Glutamate-Induced Oxidative Toxicity

    PubMed Central

    Chang, Chi-Huang; Chen, Hua-Xin; Yü, George

    2014-01-01

    Summary Glutamate is a major excitatory neurotransmitter present in the central nervous system. The glutamate/cystine antiporter system xc– connects the antioxidant defense with neurotransmission and behaviour. Overactivation of ionotropic glutamate receptors induces neuronal death, a pathway called excitotoxicity. Glutamate-induced oxidative stress is a major contributor to neurodegenerative diseases including cerebral ischemia, Alzheimer’s and Huntington’s disease. Curcuma has a wide spectrum of biological activities regarding neuroprotection and neurocognition. By reducing the oxidative damage, curcumin attenuates a spinal cord ischemia-reperfusion injury, seizures and hippocampal neuronal loss. The rat pheochromocytoma (PC12) cell line exhibits many characteristics useful for the study of the neuroprotection and neurocognition. This investigation was carried out to determine whether the neuroprotective effects of curcumin can be observed via the glutamate-PC12 cell model. Results indicate that glutamate (20 mM) upregulated glutathione peroxidase 1, glutathione disulphide, Ca2+ influx, nitric oxide production, cytochrome c release, Bax/Bcl-2 ratio, caspase-3 activity, lactate dehydrogenase release, reactive oxygen species, H2O2, and malondialdehyde; and downregulated glutathione, glutathione reductase, superoxide dismutase and catalase, resulting in enhanced cell apoptosis. Curcumin alleviates all these adverse effects. Conclusively, curcumin can effectively protect PC12 cells against the glutamate-induced oxidative toxicity. Its mode of action involves two pathways: the glutathione-dependent nitric oxide-reactive oxygen species pathway and the mitochondria-dependent nitric oxide-reactive oxygen species pathway. PMID:27904320

  17. Effect of glucocorticoid-induced oxidative stress on the expression of Cbfa1.

    PubMed

    Feng, Yan-Ling; Tang, Xu-Lei

    2014-01-25

    Glucocorticoids therapy is strongly limited since extended glucocorticoids can cause serious side effects, including increased susceptibility to develop the bone disease osteoporosis. Despite its side effects recognized importance to clinicians, seldom is known about how glucocorticoids directly impact bone-forming osteoblasts. Previous studies showed that dexamethasone (DEX) induces excessive production of reactive oxygen species (ROS), and causes oxidative stress in rat hippocampal slice cultures. To assess the implications and investigate the mechanisms of glucocorticoid-elicited osteoporosis, we hypothesize that DEX exposure induces oxidative stress which leads to decreased Cbfa1 mRNA expression, and predict that the antioxidant N-acetylcysteine (NAC) mitigates the damaging effects of DEX. Oxidative stress is implicated in osteoporosis. Furthermore, the osteoblast transcriptional factor Cbfa1 is reported to play a protective role against osteoporosis in postmenopausal women. Cells treated with (0.1, 1, 10μM) DEX exhibited signs of oxidative damages including depletion in total antioxidant capacity (T-AOC), increased ROS formation, and enhanced lipid peroxidation. Cbfa1 mRNA expression, by RT-PCR, was significantly reduced after exposure to (0.1, 1, 10μM) DEX. Pretreatment with the antioxidant NAC (2mM) prevented DEX-induced decrease in Cbfa1 mRNA. This study provides insight into the underlying mechanisms of high dose DEX-induced osteotoxicity. DEX (0.1, 1, 10μM) decreases the expression of Cbfa1 mRNA and inhibits differentiation and function of osteoblasts by inducing oxidative stress. The antioxidant NAC can mitigate the oxidative stress damaging effects of DEX. In addition, this study distinguishes itself by identifying Cbfa1 as a target for high dose DEX-induced osteotoxicity.

  18. Periostin expression induced by oxidative stress contributes to myocardial fibrosis in a rat model of high salt-induced hypertension

    PubMed Central

    WU, HAN; CHEN, LIANG; XIE, JUN; LI, RAN; LI, GUAN-NAN; CHEN, QIN-HUA; ZHANG, XIN-LIN; KANG, LI-NA; XU, BIAO

    2016-01-01

    Periostin is an extracellular matrix protein involved in fibrosis. The present study investigated the importance of periostin in hypertension-induced myocardial fibrosis. Rats were randomly divided into either the normal group (0.4% NaCl diet; n=8) or hypertension group (8% NaCl diet; n=8). For 36 weeks, the blood pressure and heart rate of the rats were monitored. At week 36, the hearts were extracted for further analysis. Masson's staining and western blotting were performed to determine the levels of periostin protein expression, oxidative stress and fibrosis. In addition, fibroblasts were isolated from adult rats and cultured in vitro, and following treatment with angiotensin II (Ang II) and N-acetyl-L-cysteine (NAC), western blotting, immunofluorescence and 2′,7′ dichlorodihydrofluorescin staining were performed to examine reactive oxygen species production, and periostin and α-smooth muscle actin (α-SMA) expression levels. The results demonstrated that periostin expression and oxidative stress were increased in hypertensive hearts compared with normal hearts. The in vitro experiments demonstrated that Ang II upregulated the expression levels of periostin and α-SMA compared with the control, whereas, pretreatment with NAC inhibited oxidative stress, periostin and α-SMA expression in fibroblasts. In conclusion, the results of the current study suggested that oxidative stress-induced periostin is involved in myocardial fibrosis and hypertension. The present study demonstrated that periostin inhibition may be a promising approach for the inhibition of hypertension-induced cardiac remodeling. PMID:27220372

  19. UVR-induced G-C to C-G transversions from oxidative DNA damage.

    PubMed

    Kino, Katsuhito; Sugiyama, Hiroshi

    2005-04-01

    Many oxidizing agents induce G-C to T-A and G-C to C-G transversions, and the frequency largely depends on the oxidative conditions. Guanine is the most oxidizable base among natural bases. The typical oxidative lesion product 8-oxoguanine (8-oxoG) is responsible for G-C to T-A transversion but not for G-C to C-G transversion, and 8-oxoG is more readily oxidized than guanine because of its lowered ionization potential. Recently, imidazolone (Iz), guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp) have been demonstrated as oxidative lesion products of guanine and 8-oxoG, which could be responsible for G-C to C-G transversions by forming specific base pair formations.

  20. p38 MAP kinase mediates nitric oxide-induced apoptosis of neural progenitor cells.

    PubMed

    Cheng, A; Chan, S L; Milhavet, O; Wang, S; Mattson, M P

    2001-11-16

    Neural progenitor cells (NPC) can proliferate, differentiate into neurons or glial cells, or undergo a form of programmed cell death called apoptosis. Although death of NPC occurs during development of the nervous system and in the adult, the underlying mechanisms are unknown. Here we show that nitric oxide (NO) can induce death of C17.2 NPC by a mechanism requiring activation of p38 MAP kinase, poly(ADP-ribose) polymerase, and caspase-3. Nitric oxide causes release of cytochrome c from mitochondria, and Bcl-2 protects the neural progenitor cells against nitric oxide-induced death, consistent with a pivotal role for mitochondrial changes in controlling the cell death process. Inhibition of p38 MAP kinase by SB203580 abolished NO-induced cell death, cytochrome c release, and activation of caspase-3, indicating that p38 activation serves as an upstream mediator in the cell death process. The anti-apoptotic protein Bcl-2 protected NPC against nitric oxide-induced apoptosis and suppressed activation of p38 MAP kinase. The ability of nitric oxide to trigger death of NPC by a mechanism involving p38 MAP kinase suggests that this diffusible gas may regulate NPC fate in physiological and pathological settings in which NO is produced.

  1. C-phycocyanin prevents cisplatin-induced nephrotoxicity through inhibition of oxidative stress.

    PubMed

    Fernández-Rojas, Berenice; Medina-Campos, Omar Noel; Hernández-Pando, Rogelio; Negrette-Guzmán, Mario; Huerta-Yepez, Sara; Pedraza-Chaverri, José

    2014-03-01

    The aim of this study was to evaluate whether the antioxidant C-phycocyanin (C-PC, 5-30 mg kg(-1) i.p.) was able to prevent cisplatin (CP, 18 mg kg(-1) i.p.) induced nephrotoxicity by reducing oxidative stress in CD-1 mice. Nephrotoxicity was assessed by measuring blood urea nitrogen, plasma glutathione peroxidase, plasma creatinine, the renal activity of N-acetyl-β-d-glucosaminidase, apoptosis and histopathological changes. Oxidative stress was evaluated by measuring the content of glutathione, malondialdehyde, 4-hydroxynonenal and oxidized proteins in renal tissue. C-PC prevented CP-induced renal damage and oxidative stress in a dose-dependent manner. Moreover, C-PC prevented the decrease in the renal activity of the antioxidant enzymes glutathione peroxidase, glutathione reductase, glutathione-S-transferase and catalase induced by cisplatin. In vitro assays showed that C-PC was an effective scavenger of the following reactive species: hypochlorous acid, peroxynitrite anions, peroxyl radicals, diphenyl-1-picrylhydrazyl, hydroxyl radicals, superoxide anions, singlet oxygen and hydrogen peroxide. It is concluded that the protective effect of the nutraceutical C-PC against CP-induced nephrotoxicity was associated with the attenuation of oxidative stress and the preservation of the activity of antioxidant enzymes.

  2. Oxidative stress involvement in Physalis angulata-induced apoptosis in human oral cancer cells.

    PubMed

    Lee, H-Z; Liu, W-Z; Hsieh, W-T; Tang, F-Y; Chung, J-G; Leung, Henry W-C

    2009-03-01

    In this report, we investigated the role of oxidative stress in Physalis angulata-induced apoptosis of human oral cancer cells. P. angulata-induced apoptosis was characterized by nuclear morphological changes, membrane blebbing and activation of caspase-9. Exposure of HSC-3 cells to P. angulata caused production of reactive oxygen species and up-regulation of oxidative stress markers heme oxygenase-1 (HO-1), superoxide dismutase (SOD), heat shock protein 70 (HSP70) and caspase-4. Down-regulation of HO-1, SOD and HSP70 proteins expression by attenuation of oxidative stress, pretreatment with glutathione or N-acetylcysteine, significantly decreased P. angulata-triggered cell death. The present study also demonstrated that the mitochondria and the endoplasmic reticulum are the targets of P. angulata in HSC-3 cells. Our results revealed that: (1) reactive oxygen species may play a dominant role in this process, (2) P. angulata induces oxidative stress in HSC-3 cells, (3) P. angulata-initiated apoptosis is caused through oxidative stress-dependent induction of heme oxygenase-1, Cu/Zn SOD and HSP70 proteins expression and (4) antioxidants inhibited P. angulata-induced cell death through inhibition of the proteins expression of HO-1, Cu/Zn SOD and HSP70.

  3. Effects of curcumin on bleomycin‑induced oxidative stress in malignant testicular germ cell tumors.

    PubMed

    Cort, Aysegul; Ozdemir, Evrim; Timur, Mujgan; Ozben, Tomris

    2012-10-01

    Bleomycin is commonly used in the treatment of testicular cancer. Bleomycin generates oxygen radicals, induces the oxidative cleavage of DNA strands and induces cancer cell apoptosis. Curcumin (diferuloylmethane) is a potent antioxidant and chief component of the spice turmeric. No study investigating the effects of curcumin on intrinsic and bleomycin-induced oxidative stress in testicular germ cell tumors has been reported in the literature. For this reason, the present study aimed to examine the effects of curcumin on oxidative stress produced in wild-type NTera-2 and p53-mutant NCCIT testicular cancer cells incubated with bleomycin and the results were compared with cells treated with H2O2 which directly produces oxidative stress. The protein carbonyl content, thiobarbituric acid reactive substances (TBARS), glutathione (GSH), 8-isoprostane, lipid hydroperoxide (LPO) levels and total antioxidant capacity in the two testicular cancer cell lines were determined. Results showed that bleomycin and H2O2 significantly increased protein carbonyl, TBARS, 8-isoprostane and LPO levels in the NTera-2 and NCCIT cell lines. Bleomycin and H2O2 significantly decreased the antioxidant capacity and GSH levels in NTera-2 cells. Curcumin significantly decreased LPO, 8-isoprostane and protein carbonyl content, and TBARS levels increased in cells treated with bleomycin and H2O2. Curcumin enhanced GSH levels and the antioxidant capacity of NTera-2 cells. In conclusion, curcumin inhibits bleomycin and H2O2-induced oxidative stress in human testicular cancer cells.

  4. Melissa Officinalis L. Extracts Protect Human Retinal Pigment Epithelial Cells against Oxidative Stress-Induced Apoptosis

    PubMed Central

    Jeung, In Cheul; Jee, Donghyun; Rho, Chang-Rae; Kang, Seungbum

    2016-01-01

    Background: We evaluated the protective effect of ALS-L1023, an extract of Melissa officinalis L. (Labiatae; lemon balm) against oxidative stress-induced apoptosis in human retinal pigment epithelial cells (ARPE-19 cells). Methods: ARPE-19 cells were incubated with ALS-L1023 for 24 h and then treated with hydrogen peroxide (H2O2). Oxidative stress-induced apoptosis and intracellular generation of reactive oxygen species (ROS) were assessed by flow cytometry. Caspase-3/7 activation and cleaved poly ADP-ribose polymerase (PARP) were measured to investigate the protective role of ALS-L1023 against apoptosis. The protective effect of ALS-L1023 against oxidative stress through activation of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) was evaluated by Western blot analysis. Results: ALS-L1023 clearly reduced H2O2-induced cell apoptosis and intracellular production of ROS. H2O2-induced oxidative stress increased caspase-3/7 activity and apoptotic PARP cleavage, which were significantly inhibited by ALS-L1023. Activation of the PI3K/Akt pathway was associated with the protective effect of ALS-L1023 on ARPE-19 cells. Conclusions: ALS-L1023 protected human RPE cells against oxidative damage. This suggests that ALS-L1023 has therapeutic potential for the prevention of dry age-related macular degeneration. PMID:26941573

  5. A Topical Mitochondria-Targeted Redox-Cycling Nitroxide Mitigates Oxidative Stress-Induced Skin Damage.

    PubMed

    Brand, Rhonda M; Epperly, Michael W; Stottlemyer, J Mark; Skoda, Erin M; Gao, Xiang; Li, Song; Huq, Saiful; Wipf, Peter; Kagan, Valerian E; Greenberger, Joel S; Falo, Louis D

    2017-03-01

    Skin is the largest human organ, and it provides a first line of defense that includes physical, chemical, and immune mechanisms to combat environmental stress. Radiation is a prevalent environmental stressor. Radiation-induced skin damage ranges from photoaging and cutaneous carcinogenesis caused by UV exposure, to treatment-limiting radiation dermatitis associated with radiotherapy, to cutaneous radiation syndrome, a frequently fatal consequence of exposures from nuclear accidents. The major mechanism of skin injury common to these exposures is radiation-induced oxidative stress. Efforts to prevent or mitigate radiation damage have included development of antioxidants capable of reducing reactive oxygen species. Mitochondria are particularly susceptible to oxidative stress, and mitochondrial-dependent apoptosis plays a major role in radiation-induced tissue damage. We reasoned that targeting a redox cycling nitroxide to mitochondria could prevent reactive oxygen species accumulation, limiting downstream oxidative damage and preserving mitochondrial function. Here we show that in both mouse and human skin, topical application of a mitochondrially targeted antioxidant prevents and mitigates radiation-induced skin damage characterized by clinical dermatitis, loss of barrier function, inflammation, and fibrosis. Further, damage mitigation is associated with reduced apoptosis, preservation of the skin's antioxidant capacity, and reduction of irreversible DNA and protein oxidation associated with oxidative stress.

  6. URI prevents potassium dichromate-induced oxidative stress and cell death in gastric cancer cells

    PubMed Central

    Luo, Dongwei; Xu, Zhonghai; Hu, Xiaoxia; Zhang, Fei; Bian, Huiqin; Li, Na; Wang, Qian; Lu, Yaojuan; Zheng, Qiping; Gu, Junxia

    2016-01-01

    Chromium VI can provoke oxidative stress, DNA damage, cytotoxicity, mutagenesis and carcinogenesis. Aberrantly high level of reactive oxygen species (ROS) has been associated with oxidative stress and subsequent DNA damage. Notably, multiple previous studies have shown the increased level of ROS in chromium (VI) induced oxidative stress, but its effect on cell death and the underlying mechanism remain to be determined. In this study, we aimed to investigate the role of URI, an unconventional prefoldin RBP5 interactor, in potassium dichromate induced oxidative stress and cell death through in vitro loss-of-function studies. We have shown that knockdown of URI in human gastric cancer SGC-7901 cells by URI siRNA enhanced potassium dichromate-induced production of ROS. The level of rH2AX, a marker of DNA damage, was significantly increased, along with a reduced cell viability in URI siRNA treated cells that were also exposed to potassium dichromate. Comet assay showed that URI knockdown increased the tail moment in potassium dichromate-treated SGC-7901 cells. Accordingly, the cell rates of apoptosis and necrosis were also increased in URI knockdown cells treated with potassium dichromate at different concentrations. Together, these results suggest that URI is preventive for the oxidative stress and cell death induced by potassium dichromate, which potentially leads to cancer cell survival and therapeutic resistance. PMID:28078011

  7. Modification of radiation-induced oxidative damage in liposomal and microsomal membrane by eugenol

    NASA Astrophysics Data System (ADS)

    Pandey, B. N.; Lathika, K. M.; Mishra, K. P.

    2006-03-01

    Radiation-induced membrane oxidative damage, and their modification by eugenol, a natural antioxidant, was investigated in liposomes and microsomes. Liposomes prepared with DPH showed decrease in fluorescence after γ-irradiation, which was prevented significantly by eugenol and correlated with magnitude of oxidation of phospholipids. Presence of eugenol resulted in substantial inhibition in MDA formation in irradiated liposomes/microsomes, which was less effective when added after irradiation. Similarly, the increase in phospholipase C activity observed after irradiation in microsomes was inhibited in samples pre-treated with eugenol. Results suggest association of radio- oxidative membrane damage with alterations in signaling molecules, and eugenol significantly prevented these membrane damaging events.

  8. Effect of ursodeoxycholic acid on copper induced oxidation of low density lipoprotein.

    PubMed

    Geetha, A; Surendran, R

    2005-08-01

    The aim of this study was to investigate copper (Cu++) induced oxidation state of LDL isolated from obstructive jaundice (OBJ) patients with hyperlipidemia and the effect of UDCA on the same. LDL was isolated and oxidation was induced by 5 mM CuSO4 with/without UDCA at different concentrations. LDL oxidation was assessed at different time intervals in terms of conjugated dienes, hydroperoxides and 'thiobarbituric acid reacting substances' (TBARS). The change in the level of endogenous LDL alpha-tocopherol was also monitored simultaneously. The oxidisability of LDL isolated from OBJ patients was significantly higher and showed a steep increase in the level of conjugated diene formation without any lag phase. In normal samples the oxidation proceeded slowly with a lag phase. This was also evidenced by the level of formation of hydroperoxides and TBARS. The basal level of LDL alpha-tocopherol was significantly low in OBJ samples. UDCA was found to delay the oxidation of LDL in a dose dependent manner. The consumption of alpha-tocopherol was found to be minimum in the presence of UDCA. The results of this investigation show that there is a high susceptibility of LDL to oxidation in OBJ cases and this may be due to low endogenous LDL alpha-tocopherol content. UDCA minimizes LDL oxidation in dose dependent manner, which is an additional evidence for its antioxidant nature.

  9. SEMICONDUCTOR DEVICES Hot-carrier-induced on-resistance degradation of step gate oxide NLDMOS

    NASA Astrophysics Data System (ADS)

    Yan, Han; Bin, Zhang; Koubao, Ding; Shifeng, Zhang; Chenggong, Han; Jiaxian, Hu; Dazhong, Zhu

    2010-12-01

    The hot-carrier-induced on-resistance degradations of step gate oxide NLDMOS (SG-NLDMOS) transistors are investigated in detail by a DC voltage stress experiment, a TCAD simulation and a charge pumping test. For different stress conditions, degradation behaviors of SG-NLDMOS transistors are analyzed and degradation mechanisms are presented. Then the effect of various doses of n-type drain drift (NDD) region implant on Ron degradation is investigated. Experimental results show that a lower NDD dosage can reduce the hot-carrier induced Ron degradation effectively, which is different from uniform gate oxide NLDMOS (UG-NLDMOS) transistors.

  10. Schisandrin B protects against solar irradiation-induced oxidative stress in rat skin tissue.

    PubMed

    Lam, Philip Y; Yan, Chung Wai; Chiu, Po Yee; Leung, Hoi Yan; Ko, Kam Ming

    2011-04-01

    Schisandrin B (Sch B) and schisandrin C (Sch C), but not schisandrin A and dimethyl diphenyl bicarboxylate, protected rat skin tissue against solar irradiation-induced oxidative injury, as evidenced by a reversal of solar irradiation-induced changes in cellular reduced glutathione and α-tocopherol levels, as well as antioxidant enzyme activities and malondialdehyde production. The cytochrome P-450-mediated metabolism of Sch B or Sch C caused ROS production in rat skin microsomes. Taken together, Sch B or Sch C, by virtue of its pro-oxidant action and the subsequent eliciting of a glutathione antioxidant response, may prevent photo-aging of skin.

  11. Effect of Kombucha tea on chromate(VI)-induced oxidative stress in albino rats.

    PubMed

    Sai Ram, M; Anju, B; Pauline, T; Dipti, P; Kain, A K; Mongia, S S; Sharma, S K; Singh, B; Singh, R; Ilavazhagan, G; Kumar, D; Selvamurthy, W

    2000-07-01

    The effect of Kombucha tea (KT) on oxidative stress induced changes in rats subjected to chromate treatment are reported. KT feeding alone did not show any significant change in malondialdehyde (MDA) and reduced glutathione (GSH) levels, but did enhance humoral response and delayed type of hypersensitivity (DTH) response appreciably over control animals. Chromate treatment significantly enhanced plasma and tissue MDA levels, decreased DTH response considerably, enhanced glutathione peroxidase and catalase activities; however, no change in GSH, superoxide dismutase and antibody titres was noticed. KT feeding completely reversed the chromate-induced changes. These results show that Kombucha tea has potent anti-oxidant and immunopotentiating activities.

  12. Friction-induced surface activity of some hydrocarbons with clean and oxide-covered iron

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1973-01-01

    Sliding friction studies were conducted on a clean and oxide-covered iron surface with exposure of that surface to various hydrocarbons. The hydrocarbons included ethane, ethylene ethyl chloride, methyl chloride, and vinyl chloride. Auger cylindrical mirror analysis was used to follow interactions of the hydrocarbon with the iron surface. Results with vinyl chloride indicate friction induced surface reactivity, adsorption to surface oxides, friction sensitivity to concentration and polymerization. Variation in the loads employed influence adsorption and accordingly friction. In contrast with ethyl and vinyl chloride, friction induced surface reactivity was not observed with ethane and ethylene.

  13. Oxidative Lung Injury in Virus-Induced Wheezing

    DTIC Science & Technology

    2012-05-01

    acid , 0.5 µg/mL triiodothyronine, 50 mg/mL gentamicin and 50 mg/mL bovine serum albumin (BSA) for SAEC medium. When SAE were used for RSV...cytokines by human respiratory syncytial virus requires activation of NF-kB and is inhibited by sodium salicylate and aspirin. Virology 232: 369-378...8217, prepared from a small number of cells. Nucleic Acids Res 17: 6419, 1989. 32. Schwarz KB. Oxidative stress during viral infection: A review. Free Rad

  14. Oxidative stress is involved in Dasatinib-induced apoptosis in rat primary hepatocytes

    SciTech Connect

    Xue, Tao; Luo, Peihua; Zhu, Hong; Zhao, Yuqin; Wu, Honghai; Gai, Renhua; Wu, Youping; Yang, Bo; Yang, Xiaochun; He, Qiaojun

    2012-06-15

    Dasatinib, a multitargeted inhibitor of BCR–ABL and SRC kinases, exhibits antitumor activity and extends the survival of patients with chronic myeloid leukemia (CML) and Philadelphia chromosome-positive acute lymphoblastic leukemia (ALL). However, some patients suffer from hepatotoxicity, which occurs through an unknown mechanism. In the present study, we found that Dasatinib could induce hepatotoxicity both in vitro and in vivo. Dasatinib reduced the cell viability of rat primary hepatocytes, induced the release of alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) in vitro, and triggered the ballooning degeneration of hepatocytes in Sprague–Dawley rats in vivo. Apoptotic markers (chromatin condensation, cleaved caspase-3 and cleaved PARP) were detected to indicate that the injury induced by Dasatinib in hepatocytes in vitro was mediated by apoptosis. This result was further validated in vivo using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assays. Here we found that Dasatinib dramatically increased the level of reactive oxygen species (ROS) in hepatocytes, reduced the intracellular glutathione (GSH) content, attenuated the activity of superoxide dismutase (SOD), generated malondialdehyde (MDA), a product of lipid peroxidation, decreased the mitochondrial membrane potential, and activated nuclear factor erythroid 2-related factor 2 (Nrf2) and mitogen-activated protein kinases (MAPK) related to oxidative stress and survival. These results confirm that oxidative stress plays a pivotal role in Dasatinib-mediated hepatotoxicity. N-acetylcysteine (NAC), a typical antioxidant, can scavenge free radicals, attenuate oxidative stress, and protect hepatocytes against Dasatinib-induced injury. Thus, relieving oxidative stress is a viable strategy for reducing Dasatinib-induced hepatotoxicity. -- Highlights: ►Dasatinib shows potential hepatotoxicity both in vitro and in vivo. ►Apoptosis plays a vital role in Dasatinib-induced

  15. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    SciTech Connect

    Salama, Samir A.; Omar, Hany A.; Maghrabi, Ibrahim A.; AlSaeed, Mohammed S.; EL-Tarras, Adel E.

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  16. 4-Acetoxyphenol Prevents RPE Oxidative Stress–Induced Necrosis by Functioning as an NRF2 Stabilizer

    PubMed Central

    Hanus, Jakub; Kolkin, Alexander; Chimienti, Julia; Botsay, Sara; Wang, Shusheng

    2015-01-01

    Purpose Oxidative stress has been suggested to be a major risk factor for the pathogenesis of AMD. Retinal pigment epithelial (RPE) cells are essential for maintaining the homeostasis of the retina, and RPE cell death and the resultant photoreceptor apoptosis have been observed in dry AMD, especially in geographic atrophy. The purpose of this article was to identify and repurpose the Food and Drug Administration–approved natural compound 4-Acetoxyphenol (4-AC), and to evaluate its effect and mechanism in protecting against oxidative stress–induced RPE necrosis. Methods We exposed ARPE-19 cells to tert-Butyl hydroperoxide (tBHP) after pretreatment with 4-AC, and measured cell viability by MTT assay. Aggregation of RIPK3 and HMGB1 nuclear release were analyzed by transfected reporter genes. Reactive oxygen species (ROS) were measured using a commercially available ROS detection system. The importance of the NRF2/NQO1/HO-1 pathway in mediating 4-AC function was corroborated by siRNA studies, qRT-PCR, and immunostaining. Results We have identified a natural antioxidant, 4-AC, which demonstrates strong abilities to protect RPE cells from oxidative stress–induced necrosis. Mechanistically, 4-AC blocked the increase of cellular ROS induced by oxidative stress, and upregulated NQO1 and HO-1 genes by stabilizing and inducing the nuclear translocation of NRF2 transcription factor. The NQO1, HO-1, and NRF2 were further shown to be required for 4-AC protection of RPE cells from death induced by tBHP. The tBHQ, an NRF2 stabilizer, consistently mimicked the protective effect of 4-AC against tBHP-induced RPE death. Conclusions The compound 4-AC protects ARPE-19 cells from oxidative stress–induced necrosis through upregulation of NQO1 and HO-1 genes by stabilization of NRF2. PMID:26241392

  17. Influence of dietary carbohydrate on zinc-deficiency-induced changes in oxidative defense mechanisms and tissue oxidative damage in rats.

    PubMed

    Kim, S H; Keen, C L

    1999-10-01

    The aim of this study was to determine the effect of dietary carbohydrate type on the expression of zinc (Zn) deficiency in rats with respect to tissue oxidative damage and defense mechanisms. Rats were fed diets containing adequate (+Zn) or low concentrations (-Zn) of Zn. Both fructose- and glucose-based diets were tested. Pair-fed controls were also studied to evaluate changes in the oxidative defense system which are secondary to Zn-deficiency-induced anorexia. Plasma and liver Zn concentrations and CuZn superoxide dismutase activities were lower in the -Zn rats than in the +Zn rats. Liver glutathione (GSH) and disulfide glutathione concentrations were higher in the -Zn rats than in the +Zn rats; this difference was most pronounced in the fructose groups. Liver and heart selenium glutathione peroxidase (Se-GSH-Px) activities were lower in the -Zn-fructose group than in the +Zn-fructose group. Liver Se-GSH-Px activity was higher in the fructose groups than in the glucose groups. Liver GSH reductase (GSH-Red) activity was lower in the -Zn-fructose group than in its control group. Liver glutamine synthetase activity was lower in the -Zn-glucose group and in the fructose groups than in the glucose control group. Liver thiobarbituric acid reactive substance (TBARS) production was similar among the groups. Collectively, these results support the concept that Zn deficiency can result in an impaired oxidant defense system. Based on the observation that pair-fed control animals also showed evidence of oxidative damage, we suggest that one factor that contributes to the effect of Zn deficiency is the reduction in caloric intake that occurs in these animals. Fructose feeding resulted in increased activities of several of the oxidant defense enzymes. Protein oxidative damage assessed by glutamine synthetase activity was increased by both Zn deficiency and fructose feeding.

  18. Coenzyme Q10 prevents high glucose-induced oxidative stress in human umbilical vein endothelial cells.

    PubMed

    Tsuneki, Hiroshi; Sekizaki, Naoto; Suzuki, Takashi; Kobayashi, Shinjiro; Wada, Tsutomu; Okamoto, Tadashi; Kimura, Ikuko; Sasaoka, Toshiyasu

    2007-07-02

    Hyperglycemia-induced oxidative stress plays a crucial role in the pathogenesis of vascular complications in diabetes. Although some clinical evidences suggest the use of an antioxidant reagent coenzyme Q10 in diabetes with hypertension, the direct effect of coenzyme Q10 on the endothelial functions has not been examined. In the present study, we therefore investigated the protective effect of coenzyme Q10 against high glucose-induced oxidative stress in human umbilical vein endothelial cells (HUVEC). HUVEC exposed to high glucose (30 mM) exhibited abnormal properties, including the morphological and biochemical features of apoptosis, overproduction of reactive oxygen species, activation of protein kinase Cbeta2, and increase in endothelial nitric oxide synthase expression. Treatment with coenzyme Q10 strongly inhibited these changes in HUVEC under high glucose condition. In addition, coenzyme Q10 inhibited high glucose-induced cleavage of poly(ADP-ribose) polymerase, an endogenous caspase-3 substrate. These results suggest that coenzyme Q10 prevents reactive oxygen species-induced apoptosis through inhibition of the mitochondria-dependent caspase-3 pathway. Moreover, consistent with previous reports, high glucose caused upregulation of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in HUVEC, and promoted the adhesion of U937 monocytic cells. Coenzyme Q10 displayed potent inhibitory effects against these endothelial abnormalities. Thus, we provide the first evidence that coenzyme Q10 has a beneficial effect in protecting against the endothelial dysfunction by high glucose-induced oxidative stress in vitro.

  19. Zinc inhibits oxidative stress-induced iron signaling and apoptosis in Caco-2 cells.

    PubMed

    Kilari, Sreenivasulu; Pullakhandam, Raghu; Nair, K Madhavan

    2010-04-01

    Studies in humans and animals have suggested negative interactions of iron and zinc during their intestinal absorption. Further, zinc seems to prevent iron-induced oxidative damage in rats, which was hypothesized to be through the modulation of the intracellular iron signaling pathway. The aim of this study was, therefore, to understand the effects of zinc on oxidant-induced iron signaling and cell death in human enterocyte-like Caco-2 cells. We demonstrate that zinc decreases glucose/glucose oxidase (H(2)O(2)-generating system)-induced iron uptake and inhibits iron-regulatory protein 1 activation and divalent metal ion transporter 1 expression. There was also a concomitant decrease in oxidant-induced intracellular labile iron and restoration of ferritin and metallothionein expression. Further, zinc enhanced the Bcl-2/Bax ratio and reduced caspase-3 activity, leading to inhibition of apoptosis. Interestingly, bathophenanthroline disulfonic acid, an extracellular iron chelator, emulated the effects of zinc except for the reduced ferritin levels. These results suggest that zinc inhibits apoptosis by reducing oxidant-induced iron signaling in Caco-2 cells.

  20. Melatonin protects rat liver against irradiation-induced oxidative injury.

    PubMed

    Koc, Mehmet; Taysi, Seyithan; Buyukokuroglu, Mehmet Emin; Bakan, Nuri

    2003-09-01

    The aim of this study was to investigate the antioxidant roles of different doses of melatonin (5 and 10 mg x kg (-1) ) against gamma-irradiation-caused oxidative damage in liver tissue after total body irradiation (TBI) with a single dose of 6.0 Gy. Fifty adult rats were divided into 5 equal groups, 10 rats each. Groups I and II were injected with 5 and 10 mg x kg (-1) of melatonin, and group III was injected with an isotonic NaCl solution. Group IV was injected with only 5 mg x kg (-1) of melatonin. Group V was reserved as a sham control. Following a 30-min-period, 6.0 Gy TBI was given to groups 1, 2 and 3 in a single fraction. The liver malondialdehyde (MDA) levels, super oxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were measured in all groups. TBI resulted in a significant increase in the liver tissue MDA levels and a decrease of SOD and GSH-Px activities. The results demonstrated that the liver tissue MDA levels in irradiated rats that were pretreated with melatonin (5 or 10 mg x kg (-1) ) were significantly decreased, while the SOD and GSH-Px activities were significantly increased. Decreasing the MDA levels by melatonin was dose dependent, but the liver tissue SOD and GSH activities were not. The data obtained in this study suggest that melatonin administration prior to irradiation may prevent liver damage by irradiation.

  1. Nanoscale structural oscillations in perovskite oxides induced by oxygen evolution.

    PubMed

    Han, Binghong; Stoerzinger, Kelsey A; Tileli, Vasiliki; Gamalski, Andrew D; Stach, Eric A; Shao-Horn, Yang

    2017-01-01

    Understanding the interaction between water and oxides is critical for many technological applications, including energy storage, surface wetting/self-cleaning, photocatalysis and sensors. Here, we report observations of strong structural oscillations of Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) in the presence of both H2O vapour and electron irradiation using environmental transmission electron microscopy. These oscillations are related to the formation and collapse of gaseous bubbles. Electron energy-loss spectroscopy provides direct evidence of O2 formation in these bubbles due to the incorporation of H2O into BSCF. SrCoO3-δ was found to exhibit small oscillations, while none were observed for La0.5Sr0.5CoO3-δ and LaCoO3. The structural oscillations of BSCF can be attributed to the fact that its oxygen 2p-band centre is close to the Fermi level, which leads to a low energy penalty for oxygen vacancy formation, high ion mobility, and high water uptake. This work provides surprising insights into the interaction between water and oxides under electron-beam irradiation.

  2. Nanoscale structural oscillations in perovskite oxides induced by oxygen evolution

    DOE PAGES

    Han, Binghong; Stoerzinger, Kelsey A.; Tileli, Vasiliki; ...

    2016-10-03

    Understanding the interaction between water and oxides is critical for many technological applications, including energy storage, surface wetting/self-cleaning, photocatalysis and sensors. In this paper, we report observations of strong structural oscillations of Ba0.5Sr0.5Co0.8Fe0.2O3$-$δ (BSCF) in the presence of both H2O vapour and electron irradiation using environmental transmission electron microscopy. These oscillations are related to the formation and collapse of gaseous bubbles. Electron energy-loss spectroscopy provides direct evidence of O2 formation in these bubbles due to the incorporation of H2O into BSCF. SrCoO3$-$δ was found to exhibit small oscillations, while none were observed for La0.5Sr0.5CoO3$-$δ and LaCoO3. The structural oscillations ofmore » BSCF can be attributed to the fact that its oxygen 2p-band centre is close to the Fermi level, which leads to a low energy penalty for oxygen vacancy formation, high ion mobility, and high water uptake. This work provides surprising insights into the interaction between water and oxides under electron-beam irradiation.« less

  3. Nanoscale structural oscillations in perovskite oxides induced by oxygen evolution

    SciTech Connect

    Han, Binghong; Stoerzinger, Kelsey A.; Tileli, Vasiliki; Gamalski, Andrew  D.; Stach, Eric A.; Shao-Horn, Yang

    2016-10-03

    Understanding the interaction between water and oxides is critical for many technological applications, including energy storage, surface wetting/self-cleaning, photocatalysis and sensors. In this paper, we report observations of strong structural oscillations of Ba0.5Sr0.5Co0.8Fe0.2O3$-$δ (BSCF) in the presence of both H2O vapour and electron irradiation using environmental transmission electron microscopy. These oscillations are related to the formation and collapse of gaseous bubbles. Electron energy-loss spectroscopy provides direct evidence of O2 formation in these bubbles due to the incorporation of H2O into BSCF. SrCoO3$-$δ was found to exhibit small oscillations, while none were observed for La0.5Sr0.5CoO3$-$δ and LaCoO3. The structural oscillations of BSCF can be attributed to the fact that its oxygen 2p-band centre is close to the Fermi level, which leads to a low energy penalty for oxygen vacancy formation, high ion mobility, and high water uptake. This work provides surprising insights into the interaction between water and oxides under electron-beam irradiation.

  4. Bisphenol A Induces Hepatotoxicity through Oxidative Stress in Rat Model

    PubMed Central

    Hassan, Zeinab K.; Elobeid, Mai A.; Virk, Promy; Omer, Sawsan A.; ElAmin, Maha; Daghestani, Maha H.; AlOlayan, Ebtisam M.

    2012-01-01

    Reactive oxygen species (ROS) are cytotoxic agents that lead to significant oxidative damage. Bisphenol A (BPA) is a contaminant with increasing exposure to it and exerts both toxic and estrogenic effects on mammalian cells. Due to limited information concerning the effect of BPA on liver, this study investigates whether BPA causes hepatotoxicity by induction of oxidative stress in liver. Rats were divided into five groups: The first four groups, BPA (0.1, 1, 10, 50 mg/kg/day) were administrated orally to rats for four weeks. The fifth group was taken water with vehicle. The final body weights in the 0.1 mg group showed a significant decrease compared to control group. Significant decreased levels of reduced glutathione, superoxide dismutase, glutathione peroxidase, glutathione-S-transferase, glutathione reductase and catalase activity were found in the 50 mg BPA group compared to control groups. High dose of BPA (50 mg/kg) significantly increased the biochemical levels of ALT, ALP and total bilirubin. BPA effect on the activity of antioxidant genes was confirmed by real time PCR in which the expression levels of these genes in liver tissue were significantly decrease compared to control. Data from this study demonstrate that BPA generate ROS and reduce the antioxidant gene expression that causes hepatotoxicity. PMID:22888396

  5. Nanoscale structural oscillations in perovskite oxides induced by oxygen evolution

    NASA Astrophysics Data System (ADS)

    Han, Binghong; Stoerzinger, Kelsey A.; Tileli, Vasiliki; Gamalski, Andrew D.; Stach, Eric A.; Shao-Horn, Yang

    2017-01-01

    Understanding the interaction between water and oxides is critical for many technological applications, including energy storage, surface wetting/self-cleaning, photocatalysis and sensors. Here, we report observations of strong structural oscillations of Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) in the presence of both H2O vapour and electron irradiation using environmental transmission electron microscopy. These oscillations are related to the formation and collapse of gaseous bubbles. Electron energy-loss spectroscopy provides direct evidence of O2 formation in these bubbles due to the incorporation of H2O into BSCF. SrCoO3-δ was found to exhibit small oscillations, while none were observed for La0.5Sr0.5CoO3-δ and LaCoO3. The structural oscillations of BSCF can be attributed to the fact that its oxygen 2p-band centre is close to the Fermi level, which leads to a low energy penalty for oxygen vacancy formation, high ion mobility, and high water uptake. This work provides surprising insights into the interaction between water and oxides under electron-beam irradiation.

  6. Inonotus obliquus Protects against Oxidative Stress-Induced Apoptosis and Premature Senescence

    PubMed Central

    Yun, Jong Seok; Pahk, Jung Woon; Lee, Jong Seok; Shin, Won Cheol; Lee, Shin Young; Hong, Eock Kee

    2011-01-01

    In this study, we investigated the cytoprotective effects of Inonotus obliquus against oxidative stress-induced apoptosis and premature senescence. Pretreatment with I. obliquus scavenged intracellular ROS and prevented lipid peroxidation in hydrogen peroxide-treated human fibroblasts. As a result, I. obliquus exerted protective effects against hydrogen peroxide-induced apoptosis and premature senescence in human fibroblasts. In addition, I. obliquus suppressed UV-induced morphologic skin changes, such as skin thickening and wrinkle formation, in hairless mice in vivo and increased collagen synthesis through inhibition of MMP-1 and MMP-9 activities in hydrogen peroxide- treated human fibroblasts. Taken together, these results demonstrate that I. obliquus can prevent the aging process by attenuating oxidative stress in a model of stress-induced premature senescence. PMID:21359681

  7. Characterization and functional analysis of the human inducible nitric oxide synthase gene promoter.

    PubMed Central

    Spitsin, S. V.; Koprowski, H.; Michaels, F. H.

    1996-01-01

    BACKGROUND: Nitric oxide has a wide variety of homeostatic and pathological effects. Control of the production of nitric oxide by the inducible form of the enzyme resides in the 5' promoter region of the gene. Although control of the murine isoform has been investigated, little is known about the functional aspects of the human analog. MATERIALS AND METHODS: A 3.9-kb 5' nontranslated region of the human gene was cloned, sequenced, and several reporter constructs prepared. The promoter-reporter constructs were transfected into human or murine monocytoid cells and reporter expression quantified following cytokine activation of the cells. The production of nitric oxide was also monitored. RESULTS: Although a murine promoter-reporter functioned efficiently in both human and mouse cells, the human constructs functioned only in human cells. The activity of the mouse construct increased progressively with the addition of activating cytokines, but the human promoter-reporter did not. Although interleukin 1 beta drove expression of the human inducible nitric oxide synthase reporter, actual expression of nitric oxide required both interleukin 1 beta and interferon-gamma. CONCLUSIONS: The data indicate that despite the significant homology between the human and mouse inducible nitric oxide synthase promoter sequence, control of the two genes is quite different. In addition to being more efficient in promoter activity, the murine promoter responds increasingly to cytokines that are not effective for the human analog. It is also apparent that human inducible nitric oxide synthase is controlled at both the level of transcription and post-translationally. PMID:8726465

  8. Oxidative Stress Markers Induced by Hyperosmolarity in Primary Human Corneal Epithelial Cells

    PubMed Central

    Deng, Ruzhi; Hua, Xia; Li, Jin; Chi, Wei; Zhang, Zongduan; Lu, Fan; Zhang, Lili; Pflugfelder, Stephen C.; Li, De-Quan

    2015-01-01

    Oxidative stress has been known to be involved in pathogenesis of dry eye disease. However, few studies have comprehensively investigated the relationship between hyperosmolarity and oxidative damage in human ocular surface. This study was to explore whether and how hyperosmolarity induces oxidative stress markers in primary human corneal epithelial cells (HCECs). Primary HCECs were established from donor limbal explants. The hyperosmolarity model was made in HCECs cultured in isosmolar (312 mOsM) or hyperosmotic (350, 400, 450 mOsM) media. Production of reactive oxygen species (ROS), oxidative damage markers, oxygenases and anti-oxidative enzymes were analyzed by DCFDA kit, RT-qPCR, immunofluorescent and immunohistochemical staining and Western blotting. Compared to isosmolar medium, ROS production significantly increased at time- and osmolarity-dependent manner in HCECs exposed to media with increasing osmolarities (350–450 mOsM). Hyperosmolarity significantly induced oxidative damage markers in cell membrane with increased toxic products of lipid peroxidation, 4–hydroxynonenal (4-HNE) and malondialdehyde (MDA), and in nuclear and mitochondria DNA with increased aconitase-2 and 8-OHdG. Hyperosmotic stress also increased the mRNA expression and protein production of heme oxygenase-1 (HMOX1) and cyclooxygenase-2 (COX2), but reduced the levels of antioxidant enzymes, superoxide dismutase-1 (SOD1), and glutathione peroxidase-1 (GPX1). In conclusion, our comprehensive findings demonstrate that hyperosmolarity induces oxidative stress in HCECs by stimulating ROS production and disrupting the balance of oxygenases and antioxidant enzymes, which in turn cause cell damage with increased oxidative markers in membrane lipid peroxidation and mitochondrial DNA damage. PMID:26024535

  9. Vitamin A deficiency: An oxidative stress marker in sodium fluoride (NaF) induced oxidative damage in developing rat brain.

    PubMed

    Banala, Rajkiran Reddy; Karnati, Pratap Reddy

    2015-12-01

    Fluoride induced oxidative stress through depletion in levels of various anti-oxidants such as glutathione, superoxide dismutase (SOD), fat soluble vitamins (D and E) with increased levels of lipid peroxidation (LPO) and fluoride aggravate the damage in rodents as well as in humans. Vitamins A, a fat soluble vitamin possess antioxidant property which plays a significant role in scavenging the free radicals species similar to vitamin D and E. Vitamin A is involved in neural tissue development and plasticity. The growing evidence about vitamin A being antioxidant in different biological reactions formed the basis to determine the effect of fluoride on its levels. The present study was conducted in Wistar rat pups. The pregnant wistar rats were dosed with 20 ppm sodium fluoride (NaF) from day one of pregnancy till the pups were aged day 30. The serum was collected from developing rat pups on regular intervals (14th, 21st, 30th day) and vitamin A levels were analyzed by High performance liquid chromatography (HPLC). Body weights, Behavioural studies and spectrophotometric estimation of SOD, LPO in brain lysates were also performed. The results showed significant decrease (p<0.001) in vitamin A in fluoride induced samples in comparison to the control samples suggesting that decreased levels of vitamin A can be used as another marker in fluoride induced toxicity studies.

  10. Bilayer Deformation, Pores, and Micellation Induced by Oxidized Lipids.

    PubMed

    Boonnoy, Phansiri; Jarerattanachat, Viwan; Karttunen, Mikko; Wong-Ekkabut, Jirasak

    2015-12-17

    The influence of different oxidized lipids on lipid bilayers was investigated with 16 individual 1 μs atomistic molecular dynamics (MD) simulations. Binary mixtures of lipid bilayers of 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine (PLPC) and its peroxide and aldehyde products were performed at different concentrations. In addition, an asymmetrical short chain lipid, 1-palmitoyl-2-decanoyl-sn-glycero-3-phosphatidylcholine (PDPC), was used to compare the effects of polar/apolar groups in the lipid tail on lipid bilayer. Although water defects occurred with both aldehyde and peroxide lipids, full pore formation was observed only for aldehyde lipids. At medium concentrations the pores were stable. At higher concentrations, however, the pores became unstable and micellation occurred. Data analysis shows that aldehyde lipids' propensity for pore formation is due to their shorter and highly mobile tail. The highly polar peroxide lipids are stabilized by strong hydrogen bonds with interfacial water.

  11. Oxidative damage induced in Vicia faba by coke plant wastewater.

    PubMed

    Liu, Yuxiang; Lv, Yongkang

    2011-10-01

    The present study investigated toxic impacts of coke plant wastewater over a concentration gradient of COD( Cr) 40-640 mg/l on malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in roots and leaves of Vicia faba. MDA levels and SOD activities were significantly increased at all concentrations both in roots and leaves of Vicia faba; CAT and POD activities were significantly enhanced in roots at low concentrations and were significantly decreased at high concentrations (COD(Cr) 320 and 640 mg/l for CAT; COD( Cr) 640 mg/l for POD). In leaves, CAT and POD activities remained enhanced at all concentration and did not show significant difference at COD( Cr) 640 mg/l for CAT and COD(Cr) 40, 640 mg/l for POD. These results suggest that coke plant wastewater can cause oxidative damage in roots and leaves of Vicia faba and root enzymes seemed more sensitive to the wastewater.

  12. Ohr Protects Corynebacterium glutamicum against Organic Hydroperoxide Induced Oxidative Stress

    PubMed Central

    Xiao, Xiao; Guan, Jingyuan; Zhang, Yaoling; Ding, Wei; Chaudhry, Muhammad Tausif; Wang, Yao; Shen, Xihui

    2015-01-01

    Ohr, a bacterial protein encoded by the Organic Hydroperoxide Resistance (ohr) gene, plays a critical role in resistance to organic hydroperoxides. In the present study, we show that the Cys-based thiol-dependent Ohr of Corynebacterium glutamicum decomposes organic hydroperoxides more efficiently than hydrogen peroxide. Replacement of either of the two Cys residues of Ohr by a Ser residue resulted in drastic loss of activity. The electron donors supporting regeneration of the peroxidase activity of the oxidized Ohr of C. glutamicum were principally lipoylated proteins (LpdA and Lpd/SucB). A Δohr mutant exhibited significantly decreased resistance to organic hydroperoxides and marked accumulation of reactive oxygen species (ROS) in vivo; protein carbonylation was also enhanced notably. The resistance to hydrogen peroxide also decreased, but protein carbonylation did not rise to any great extent. Together, the results unequivocally show that Ohr is essential for mediation of organic hydroperoxide resistance by C. glutamicum. PMID:26121694

  13. Alcohol-Induced Oxidative Stress in the Liver

    PubMed Central

    Arteel, Gavin E.

    2008-01-01

    Summary Oxidative stress is increasingly suspected to contribute to the initiation and progression of many disease, including those caused by alcohol exposure. Two major products of reactive oxygen and nitrogen species formation are 4OH-nonenal and 3-nitrotyrosine protein adducts, both of which can be detected by immunohistochemistry. In the past, immunohistochemical techniques have served largely as qualitative measures of changes. However, coupled with digital capture and analysis of photomicrographs, one can now quantitate treatment-related changes with immunohistochemistry. This chapter summarizes techniques for immunohistochemical detection of these products of reactive oxygen and nitrogen species and subsequent image-analysis. Although the methods described herein are based on liver, these techniques have been employed successfully in most tissue types with minor modifications and are therefore broadly applicable. PMID:18369920

  14. Interface-induced magnetism and strong correlation in oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Stemmer, Susanne

    2015-03-01

    Two-dimensional electron gases (2DEGs) at interfaces between two insulating oxides have attracted significant attention because they can exhibit unique properties, such as strong electron correlations, superconductivity and magnetism. In this presentation, we will discuss the emergent properties of 2DEGs in SrTiO3 quantum wells that are interfaced with Mott insulating rare earth titanates (RTiO3) . We show that the magnetic properties of the 2DEG can be tuned to be either (incipient) ferromagnetic or (incipient) antiferromagnetic, depending on the specific RTiO3 that interfaces it. The thickness of the quantum well is a critical tuning parameter and determines the onset of magnetism, the proximity to a quantum critical point, and the onset of non-Fermi liquid behavior for those quantum wells that are in proximity to an antiferromagnetic transition. We will also discuss the role of symmetry-lowering structural transitions in the quantum well.

  15. Defect induced mobility enhancement: Gadolinium oxide (100) on Si(100)

    SciTech Connect

    Sitaputra, W.; Tsu, R.

    2012-11-26

    Growth of predominantly single crystal (100)-oriented gadolinium oxide (Gd{sub 2}O{sub 3}) on a p-type Si(100) and growth of a polycrystal with a predominant Gd{sub 2}O{sub 3}(100) crystallite on a n-type Si(100) was performed using molecular beam epitaxy. Despite a poorer crystal structure than Gd{sub 2}O{sub 3}(110), an enhancement in carrier mobility can be found only from the Gd{sub 2}O{sub 3}(100)/n-type Si(100) interface. The mobility of 1715-1780 cm{sup 2}/V {center_dot} s was observed at room temperature, for carrier concentration >10{sup 20} cm{sup -3}. This accumulation of the electrons and the mobility enhancement may arise from the two-dimensional confinement due to charge transfer across the interface similar to transfer doping.

  16. Regulation of Injury-Induced Neurogenesis by Nitric Oxide

    PubMed Central

    Carreira, Bruno P.; Carvalho, Caetana M.; Araújo, Inês M.

    2012-01-01

    The finding that neural stem cells (NSCs) are able to divide, migrate, and differentiate into several cellular types in the adult brain raised a new hope for restorative neurology. Nitric oxide (NO), a pleiotropic signaling molecule in the central nervous system (CNS), has been described to be able to modulate neurogenesis, acting as a pro- or antineurogenic agent. Some authors suggest that NO is a physiological inhibitor of neurogenesis, while others described NO to favor neurogenesis, particularly under inflammatory conditions. Thus, targeting the NO system may be a powerful strategy to control the formation of new neurons. However, the exact mechanisms by which NO regulates neural proliferation and differentiation are not yet completely clarified. In this paper we will discuss the potential interest of the modulation of the NO system for the treatment of neurodegenerative diseases or other pathological conditions that may affect the CNS. PMID:22997523

  17. Oxidative damage of the male reproductive system induced by paraquat.

    PubMed

    Chen, Qing; Zhang, Xin; Zhao, Jin-Yan; Lu, Xiao-Ning; Zheng, Peng-Sheng; Xue, Xiang

    2016-10-20

    The effects of paraquat (PQ) on the male reproductive system are unclear. In this study, male rats were divided into four groups (0, 0.5, 2, and 8 mg/kg) and treated with PQ by oral gavage for 8 weeks. At the end of the experiment, a significant decline in sperm count, motility, and viability and an increase in teratospermia were observed in the PQ-treated group (P < 0.05). Further investigation found that PQ resulted in enhanced lipid peroxidation and more apoptosis in the testis tissues, and apoptosis was likely to be associated with activation of the mitochondrial pathway. In summary, our study demonstrated oxidative damage due to PQ on the male reproductive system.

  18. Inhaled nitric oxide induces cerebrovascular effects in anesthetized pigs.

    PubMed

    Kuebler, W M; Kisch-Wedel, H; Kemming, G I; Meisner, F; Bruhn, S; Koehler, C; Flondor, M; Messmer, K; Zwissler, B

    2003-09-11

    Although inhaled nitric oxide (NO(i)) is considered to act selectively on pulmonary vessels, EEG abnormalities and even occasional neurotoxic effects of NO(i) have been proposed. Here, we investigated cerebrovascular effects of increasing concentrations of 5, 10 and 50 ppm NO(i) in seven anesthetized pigs. Cerebral hemodynamics were assessed non-invasively by use of near-infared spectroscopy and indicator dilution techniques. NO(i) increased cerebral blood volume significantly and reversibly. This effect was not attributable to changes of macrohemodynamic parameters or arterial blood gases. Simultaneously, cerebral transit time increased while cerebral blood flow remained unchanged. These data demonstrate a vasodilatory action of NO(i) in the cerebral vasculature, which may occur preferentially in the venous compartment.

  19. Cyclooxygenase-2 Inhibition Limits Angiotensin II-Induced DNA Oxidation and Protein Nitration in Humans

    PubMed Central

    Pialoux, Vincent; Poulin, Marc J.; Hemmelgarn, Brenda R.; Muruve, Daniel A.; Chirico, Erica N.; Faes, Camille; Sola, Darlene Y.; Ahmed, Sofia B.

    2017-01-01

    Compared to other cyclooxygenase-2 inhibitors, celecoxib is associated with a lower cardiovascular risk, though the mechanism remains unclear. Angiotensin II is an important mediator of oxidative stress in the pathophysiology of vascular disease. Cyclooxygenase-2 may modify the effects of angiotensin II though this has never been studied in humans. The purpose of the study was to test the effects of selective cyclooxygenase-2 inhibition on plasma measures of oxidative stress, the vasoconstrictor endothelin-1, and nitric oxide metabolites, both at baseline and in respose to Angiotensin II challenge in healthy humans. Measures of 8-hydroxydeoxyguanosine, advanced oxidation protein products, nitrotyrosine, endothelin-1, and nitric oxide metabolites were assessed from plasma samples drawn at baseline and in response to graded angiotensin II infusion (3 ng/kg/min × 30 min, 6 ng/kg/min × 30 min) before and after 14 days of cyclooxygenase-2 inhibition in 14 healthy subjects (eight male, six female) in high salt balance, a state of maximal renin angiotensin system suppression. Angiotensin II infusion significantly increased plasma oxidative stress compared to baseline (8-hydroxydeoxyguanosine; +17%; advanced oxidation protein products; +16%), nitrotyrosine (+76%). Furthermore, levels of endothelin-1 levels were significantly increased (+115%) and nitric oxide metabolites were significantly decreased (−20%). Cycloxygenase-2 inhibition significantly limited the increase in 8-hydroxydeoxyguanosine, nitrotyrosine and the decrease in nitric oxide metabolites induced by angiotensin II infusion, though no changes in advanced oxidation protein products and endothelin-1 concentrations were observed. Cyclooxygenase-2 inhibition with celecoxib partially limited the angiotensin II-mediated increases in markers of oxidative stress in humans, offering a potential physiological pathway for the improved cardiovascular risk profile of this drug. PMID:28344559

  20. Myosin IIA-related Actomyosin Contractility Mediates Oxidative Stress-induced Neuronal Apoptosis

    PubMed Central

    Wang, Yan; Xu, Yingqiong; Liu, Qian; Zhang, Yuanyuan; Gao, Zhen; Yin, Mingzhu; Jiang, Nan; Cao, Guosheng; Yu, Boyang; Cao, Zhengyu; Kou, Junping

    2017-01-01

    Oxidative stress-induced neuronal apoptosis plays an important role in the progression of central nervous system (CNS) diseases. In our study, when neuronal cells were exposed to hydrogen peroxide (H2O2), an exogenous oxidant, cell apoptosis was observed with typical morphological changes including membrane blebbing, neurite retraction and cell contraction. The actomyosin system is considered to be responsible for the morphological changes, but how exactly it regulates oxidative stress-induced neuronal apoptosis and the distinctive functions of different myosin II isoforms remain unclear. We demonstrate that myosin IIA was required for neuronal contraction, while myosin IIB was required for neuronal outgrowth in normal conditions. During H2O2-induced neuronal apoptosis, myosin IIA, rather than IIB, interacted with actin filaments to generate contractile forces that lead to morphological changes. Moreover, myosin IIA knockout using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease (CRISPR/Cas9) reduced H2O2-induced neuronal apoptosis and the associated morphological changes. We further demonstrate that caspase-3/Rho-associated kinase 1 (ROCK1) dependent phosphorylation of myosin light chain (MLC) was required for the formation of the myosin IIA-actin complex. Meanwhile, either inhibition of myosin II ATPase with blebbistatin or knockdown of myosin IIA with siRNA reversely attenuated caspase-3 activation, suggesting a positive feedback loop during oxidative stress-induced apoptosis. Based on our observation, myosin IIA-actin complex contributes to actomyosin contractility and is associated with the positive feedback loop of caspase-3/ROCK1/MLC pathway. This study unravels the biochemical and mechanistic mechanisms during oxidative stress-induced neuronal apoptosis and may be applicable for the development of therapies for CNS diseases. PMID:28352215

  1. Sodium tungstate attenuate oxidative stress in brain tissue of streptozotocin-induced diabetic rats.

    PubMed

    Nakhaee, Alireza; Bokaeian, Mohammad; Akbarzadeh, Azim; Hashemi, Mohammad

    2010-08-01

    High blood glucose concentration in diabetes induces free radical production and, thus, causes oxidative stress. Damage of cellular structures by free radicals play an important role in development of diabetic complications. In this study, we evaluated effects of sodium tungstate on enzymatic and nonenzymatic markers of oxidative stress in brain of streptozotocin (STZ)-induced diabetic rats. Rats were divided into four groups (ten rats in each group): untreated control, sodium tungstate-treated control, untreated diabetic, and sodium tungstate-treated diabetic. Diabetes was induced with an intraperitoneal STZ injection (65 mg/kg body weight), and sodium tungstate with concentration of 2 g/L was added to drinking water of treated animals for 4 weeks. Diabetes caused a significant increase in the brain thiobarbituric acid reactive substances (P < 0.01) and protein carbonyl levels (P < 0.01) and a decrease in ferric reducing antioxidant power (P < 0.01). Moreover, diabetic rats presented a reduction in brain glucose-6-phosphate dehydrogenase (21%), superoxide dismutase (41%), glutathione peroxidase (19%), and glutathione reductase (36%) activities. Sodium tungstate reduced the hyperglycemia and restored the diabetes-induced changes in all mentioned markers of oxidative stress. However, catalase activity was not significantly affected by diabetes (P = 0.4), while sodium tungstate caused a significant increase in enzyme activity of treated animals (P < 0.05). Data of present study indicated that sodium tungstate can ameliorate brain oxidative stress in STZ-induced diabetic rats, probably by reducing of the high glucose-induced oxidative stress and/or increasing of the antioxidant defense mechanisms.

  2. Carbon nanotube-induced preparation of vanadium oxide nanorods: Application as a catalyst for the partial oxidation of n-butane

    SciTech Connect

    Chen Xiaowei; Zhu Zhenping; Haevecker, Michael; Su Dangsheng . E-mail: dangsheng@fhi-berlin.mpg.de; Schloegl, Robert

    2007-02-15

    A vanadium oxide-carbon nanotube composite was prepared by solution-based hydrolysis of NH{sub 4}VO{sub 3} in the presence of carbon nanotubes. The carbon nanotubes induce the nucleation of the 1D vanadium oxide nanostructures, with the nuclei growing into long freestanding nanorods. The vanadium oxide nanorods with the lengths up to 20 {mu}m and the widths of 5-15 nm exhibit a well-ordered crystalline structure. Catalytic tests show that the composite with nanostructured vanadium oxide is active for the partial oxidation of n-butane to maleic anhydride at 300 deg. C.

  3. DNA damage and oxidative stress induced by acetylsalicylic acid in Daphnia magna.

    PubMed

    Gómez-Oliván, Leobardo Manuel; Galar-Martínez, Marcela; Islas-Flores, Hariz; García-Medina, Sandra; SanJuan-Reyes, Nely

    2014-08-01

    Acetylsalicylic acid is a nonsteroidal anti-inflammatory widely used due to its low cost and high effectiveness. This compound has been found in water bodies worldwide and is toxic to aquatic organisms; nevertheless its capacity to induce oxidative stress in bioindicators like Daphnia magna remains unknown. This study aimed to evaluate toxicity in D. magna induced by acetylsalicylic acid in water, using oxidative stress and DNA damage biomarkers. An acute toxicity test was conducted in order to determine the median lethal concentration (48-h LC50) and the concentrations to be used in the subsequent subacute toxicity test in which the following biomarkers were evaluated: lipid peroxidation, oxidized protein content, activity of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, and level of DNA damage. Lipid peroxidation level and oxidized protein content were significantly increased (p<0.05), and antioxidant enzymes significantly altered with respect to controls; while the DNA damage were significantly increased (p<0.05) too. In conclusion, acetylsalicylic acid induces oxidative stress and DNA damage in D. magna.

  4. Therapeutic insight into molsidomine, a nitric oxide donor in streptozotocin-induced diabetic nephropathy in rats

    PubMed Central

    Minaz, Nathani; Razdan, Rema

    2016-01-01

    Background: Diabetes-induced oxidative stress and hypertension play a major role in the development of nephropathy. Hence, the present study was undertaken to evaluate the protective effects of molsidomine, a nitric oxide donor in streptozotocin (STZ)-induced diabetic nephropathy (DN) in rats. Materials and Methods: Type 1 diabetes was induced through a single dose of STZ (52 mg/kg, i.p.) in male Wistar rats and then treated with molsidomine (5 and 10 mg/kg; p.o.) for 8 weeks. Physical parameters, vital and renal function test including blood glucose, albuminuria, blood urine nitrogen, serum creatinine, and kidney index were determined. Oxidative stress and lipid peroxidation were assessed in the kidney homogenate by means of antioxidant enzymes and malondialdehyde levels. Results: DN rats exhibited a significant renal dysfunction with a reduction in body weight, excessive oxidative stress, and pathological changes. Molsidomine treatment significantly improved vital sign, renal functions, and oxidative stress in DN rats in a dose-dependent manner. The protective effect of molsidomine was also substantiated by pathological changes in the architect of the kidney. Conclusion: Molsidomine shows a significant beneficial effect in Type 1 DN in rats. PMID:27721541

  5. Contribution of oxidative stress to TiO2 nanoparticle-induced toxicity.

    PubMed

    Song, Bin; Zhou, Ting; Yang, WenLong; Liu, Jia; Shao, LongQuan

    2016-12-01

    With the rapid development of nanotechnology, titanium dioxide nanoparticles (TNPs) are widely used in many fields. People in such workplaces or researchers in laboratories are at a higher risk of being exposed to TNPs, so are the consumers. Moreover, increasing evidence revealed that the concentrations of TNPs are elevated in animal organs after systematic exposure and such accumulated TNPs could induce organ dysfunction. Although cellular responses such as oxidative stress, inflammatory response, apoptosis, autophagy, signaling pathways, and genotoxic effects contribute to the toxicity of TNPs, the interrelationship among them remains obscure. Given the pivotal role of oxidative stress, we summarized relevant articles covering the involvement of oxidative stress in TNPs' toxicity and found that TNP-induced oxidative stress might play a central role in toxic mechanisms. However, available data are far from being conclusive and more investigations should be performed to further confirm whether the toxicity of TNPs might be attributed in part to the cascades of oxidative stress. Tackling this uncertain issue may help us to comprehensively understand the interrelationship among toxic cellular responses induced by TNPs and might shed some light on methods to alleviate toxicity of TNPs.

  6. Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress

    SciTech Connect

    Shvedova, Anna A.; Pietroiusti, Antonio; Fadeel, Bengt; Kagan, Valerian E.

    2012-06-01

    Nanotechnologies are emerging as highly promising technologies in many sectors in the society. However, the increasing use of engineered nanomaterials also raises concerns about inadvertent exposure to these materials and the potential for adverse effects on human health and the environment. Despite several years of intensive investigations, a common paradigm for the understanding of nanoparticle-induced toxicity remains to be firmly established. Here, the so-called oxidative stress paradigm is scrutinized. Does oxidative stress represent a secondary event resulting inevitably from disruption of biochemical processes and the demise of the cell, or a specific, non-random event that plays a role in the induction of cellular damage e.g. apoptosis? The answer to this question will have important ramifications for the development of strategies for mitigation of adverse effects of nanoparticles. Recent examples of global lipidomics studies of nanoparticle-induced tissue damage are discussed along with proteomics and transcriptomics approaches to achieve a comprehensive understanding of the complex and interrelated molecular changes in cells and tissues exposed to nanoparticles. We also discuss instances of non-oxidative stress-mediated cellular damage resulting from direct physical interference of nanomaterials with cellular structures. -- Highlights: ► CNT induced non-random oxidative stress associated with apoptosis. ► Non-oxidative mechanisms for cellular toxicity of carbon nanotubes. ► Biodegradation of CNT by cells of innate immune system. ► “Omics”-based biomarkers of CNT exposures.

  7. Oxidative stress-induced CREB upregulation promotes DNA damage repair prior to neuronal cell death protection.

    PubMed

    Pregi, Nicolás; Belluscio, Laura María; Berardino, Bruno Gabriel; Castillo, Daniela Susana; Cánepa, Eduardo Tomás

    2017-01-01

    cAMP response element-binding (CREB) protein is a cellular transcription factor that mediates responses to different physiological and pathological signals. Using a model of human neuronal cells we demonstrate herein, that CREB is phosphorylated after oxidative stress induced by hydrogen peroxide. This phosphorylation is largely independent of PKA and of the canonical phosphoacceptor site at ser-133, and is accompanied by an upregulation of CREB expression at both mRNA and protein levels. In accordance with previous data, we show that CREB upregulation promotes cell survival and that its silencing results in an increment of apoptosis after oxidative stress. Interestingly, we also found that CREB promotes DNA repair after treatment with hydrogen peroxide. Using a cDNA microarray we found that CREB is responsible for the regulation of many genes involved in DNA repair and cell survival after oxidative injury. In summary, the neuroprotective effect mediated by CREB appears to follow three essential steps following oxidative injury. First, the upregulation of CREB expression that allows sufficient level of activated and phosphorylated protein is the primordial event that promotes the induction of genes of the DNA Damage Response. Then and when the DNA repair is effective, CREB induces detoxification and survival genes. This kinetics seems to be important to completely resolve oxidative-induced neuronal damages.

  8. Naringenin Inhibits UVB Irradiation-Induced Inflammation and Oxidative Stress in the Skin of Hairless Mice.

    PubMed

    Martinez, Renata M; Pinho-Ribeiro, Felipe A; Steffen, Vinicius S; Caviglione, Carla V; Vignoli, Josiane A; Barbosa, Décio S; Baracat, Marcela M; Georgetti, Sandra R; Verri, Waldiceu A; Casagrande, Rubia

    2015-07-24

    Ultraviolet B (UVB) irradiation may cause inflammation- and oxidative-stress-dependent skin cancer and premature aging. Naringenin (1) has been reported to have anti-inflammatory and antioxidant properties, but its effects and mechanisms on UVB irradiation-induced inflammation and oxidative stress are still not known. Thus, the present study aimed to investigate the potential of naringenin to mitigate UVB irradiation-induced inflammation and oxidative damage in the skin of hairless mice. Skin edema, myeloperoxidase (neutrophil marker) and matrix metalloproteinase-9 (MMP-9) activity, and cytokine production were measured after UVB irradiation. Oxidative stress was evaluated by 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS) scavenging ability, ferric reducing antioxidant power (FRAP), reduced glutathione levels, catalase activity, lipid peroxidation products, superoxide anion production, and gp91phox (NADPH oxidase subunit) mRNA expression by quantitative PCR. The intraperitoneal treatment with naringenin reduced skin inflammation by inhibiting skin edema, neutrophil recruitment, MMP-9 activity, and pro-inflammatory (TNF-α, IFN-γ, IL-1β, IL-4, IL-5, IL-6, IL-12, IL-13, IL-17, IL-22, and IL-23) and anti-inflammatory (TGF-β and IL-10) cytokines. Naringenin also inhibited oxidative stress by reducing superoxide anion production and the mRNA expression of gp91phox. Therefore, naringenin inhibits UVB irradiation-induced skin damage and may be a promising therapeutic approach to control skin disease.

  9. Grapevine fruit extract protects against radiation-induced oxidative stress and apoptosis in human lymphocyte.

    PubMed

    Singha, Indrani; Das, Subir Kumar

    2015-11-01

    Ionizing radiation (IR) causes oxidative stress through overwhelming generation of reactive oxygen species (ROS) in the living cells leading the oxidative damage further to biomolecules. Grapevine (Vitis vinifera L.) posses several bioactive phytochemicals and is the richest source of antioxidants. In this study, we investigated V. vinifera for its phytochemical content, enzymes profile and, ROS- and oxidant-scavenging activities. We have also studied the fruit extract of four different grapevine viz., Thompson seedless, Flame seedless, Kishmish chorni and Red globe for their radioprotective actions in human lymphocytes. The activities of ascorbic acid oxidase and catalase significantly (P < 0.01) differed among extracts within the same cultivar, while that of peroxidase and polyphenol oxidase did not differ significantly. The superoxide radical-scavenging activity was higher in the seed as compared to the skin or pulp of the same cultivar. Pretreatment with grape extracts attenuated the oxidative stress induced by 4 Gy γ-radiation in human lymphocytes in vitro. Further, γ-radiation-induced increase in caspase 3/7 activity was significantly attenuated by grape extracts. These results suggest that grape extract serve as a potential source of natural antioxidants against the IR-induced oxidative stress and also inhibit apoptosis. Furthermore, the protective action of grape depends on the source of extract (seed, skin or pulp) and type of the cultivars.

  10. Use of Saliva Biomarkers to Monitor Efficacy of Vitamin C in Exercise-Induced Oxidative Stress

    PubMed Central

    Evans, Levi W.; Omaye, Stanley T.

    2017-01-01

    Saliva is easily obtainable for medical research and requires little effort or training for collection. Because saliva contains a variety of biological compounds, including vitamin C, malondialdehyde, amylase, and proteomes, it has been successfully used as a biospecimen for the reflection of health status. A popular topic of discussion in medical research is the potential association between oxidative stress and negative outcomes. Systemic biomarkers that represent oxidative stress can be found in saliva. It is unclear, however, if saliva is an accurate biospecimen as is blood and/or plasma. Exercise can induce oxidative stress, resulting in a trend of antioxidant supplementation to combat its assumed detriments. Vitamin C is a popular antioxidant supplement in the realm of sports and exercise. One potential avenue for evaluating exercise induced oxidative stress is through assessment of biomarkers like vitamin C and malondialdehyde in saliva. At present, limited research has been done in this area. The current state of research involving exercise-induced oxidative stress, salivary biomarkers, and vitamin C supplementation is reviewed in this article. PMID:28085082

  11. Curcumin attenuates quinocetone-induced oxidative stress and genotoxicity in human hepatocyte L02 cells.

    PubMed

    Dai, Chongshan; Tang, Shusheng; Li, Daowen; Zhao, Kena; Xiao, Xilong

    2015-01-01

    Quinocetone (QCT), a new quinoxaline 1,4-dioxides, has been used as antimicrobial feed additive in China. Potential genotoxicity of QCT was concerned as a public health problem. This study aimed to investigate the protective effect of curcumin on QCT-induced oxidative stress and genotoxicity in human hepatocyte L02 cells. Cell viability and intracellular reactive oxygen species (ROS), biomarkers of oxidative stress including superoxide dismutase (SOD) activity and glutathione (GSH) level were measured. Meanwhile, comet assay and micronucleus assay were carried out to evaluate genotoxicity. The results showed that, compared to the control group, QCT at the concentration ranges of 2-16 μg/mL significantly decreased L02 cell viability, which was significantly attenuated with curcumin pretreatment (2.5 and 5 μM). In addition, QCT significantly increased cell oxidative stress, characterized by increases of intracellular ROS level, while decreased endogenous antioxidant biomarkers GSH level and SOD activity (all p < 0.05 or 0.01). Curcumin pretreatment significantly attenuated ROS formation, inhibited the decreases of SOD activity and GSH level. Furthermore, curcumin significantly reduced QCT-induced DNA fragments and micronuclei formation. These data suggest that curcumin could attenuate QCT-induced cytotoxicity and genotoxicity in L02 cells, which may be attributed to ROS scavenging and anti-oxidative ability of curcumin. Importantly, consumption of curcumin may be a plausible way to prevent quinoxaline 1,4-dioxides-mediated oxidative stress and genotoxicity in human or animals.

  12. Effect of progesterone on phosphamidon-induced impairment of memory and oxidative stress in rats.

    PubMed

    Sharma, Amit K; Bhattacharya, Swapan K; Khanna, Naresh; Tripathi, Ashok K; Arora, Tarun; Mehta, Ashish K; Mehta, Kapil D; Joshi, Vikas

    2011-10-01

    Progesterone (a neurosteroid) is an important modulator of the nervous system functioning. Organophosphorus pesticides like phosphamidon have been shown to adversely affect memory and induce oxidative stress on both acute and chronic exposure. The present study was therefore designed to investigate the effects of progesterone (PROG) on phosphamidon-induced modulation of cognitive function and oxidative stress in rats. Cognitive function was assessed using step-down latency (SDL) on a passive avoidance apparatus and transfer latency (TL) on an elevated plus maze. Oxidative stress was assessed by examining the levels of thiobarbituric acid reactive species (TBARS) and non-protein thiols (NP-SH) in isolated homogenized whole brain samples. The results showed a significant reduction in SDL and prolongation of TL in the phosphamidon (1.74 mg/kg/d; p.o.) treated group at weeks 6 and 8 as compared to the control group. Two weeks treatment with PROG (15 mg/kg/d; i.p.) antagonized the effect of phosphamidon on SDL as well as TL. Phosphamidon alone produced a significant increase in the brain TBARS levels and decrease in the brain NP-SH levels. Treatment with PROG (15 mg/kg/d; i.p.) attenuated the effect of phosphamidon on oxidative stress. Together, the results showed that progesterone attenuated the cognitive dysfunction and increased oxidative stress induced by phosphamidon in the brain.

  13. Ethylene signalling is mediating the early cadmium-induced oxidative challenge in Arabidopsis thaliana.

    PubMed

    Schellingen, Kerim; Van Der Straeten, Dominique; Remans, Tony; Vangronsveld, Jaco; Keunen, Els; Cuypers, Ann

    2015-10-01

    Cadmium (Cd) induces the generation of reactive oxygen species (ROS) and stimulates ethylene biosynthesis. The phytohormone ethylene is a regulator of many developmental and physiological plant processes as well as stress responses. Previous research indicated various links between ethylene signalling and oxidative stress. Our results support a correlation between the Cd-induced oxidative challenge and ethylene signalling in Arabidopsis thaliana leaves. The effects of 24 or 72 h exposure to 5 μM Cd on plant growth and several oxidative stress-related parameters were compared between wild-type (WT) and ethylene insensitive mutants (etr1-1, ein2-1, ein3-1). Cadmium-induced responses observed in WT plants were mainly affected in etr1-1 and ein2-1 mutants, of which the growth was less inhibited by Cd exposure as compared to WT and ein3-1 mutants. Both etr1-1 and ein2-1 showed a delayed response in the glutathione (GSH) metabolism, including GSH levels and transcript levels of GSH synthesising and recycling enzymes. Furthermore, the expression of different oxidative stress marker genes was significantly lower in Cd-exposed ein2-1 mutants, evidencing that ethylene signalling is involved in early responses to Cd stress. A model for the cross-talk between ethylene signalling and oxidative stress is proposed.

  14. Impaired Mitochondrial Energy Production Causes Light-Induced Photoreceptor Degeneration Independent of Oxidative Stress.

    PubMed

    Jaiswal, Manish; Haelterman, Nele A; Sandoval, Hector; Xiong, Bo; Donti, Taraka; Kalsotra, Auinash; Yamamoto, Shinya; Cooper, Thomas A; Graham, Brett H; Bellen, Hugo J

    2015-07-01

    Two insults often underlie a variety of eye diseases including glaucoma, optic atrophy, and retinal degeneration--defects in mitochondrial function and aberrant Rhodopsin trafficking. Although mitochondrial defects are often associated with oxidative stress, they have not been linked to Rhodopsin trafficking. In an unbiased forward genetic screen designed to isolate mutations that cause photoreceptor degeneration, we identified mutations in a nuclear-encoded mitochondrial gene, ppr, a homolog of human LRPPRC. We found that ppr is required for protection against light-induced degeneration. Its function is essential to maintain membrane depolarization of the photoreceptors upon repetitive light exposure, and an impaired phototransduction cascade in ppr mutants results in excessive Rhodopsin1 endocytosis. Moreover, loss of ppr results in a reduction in mitochondrial RNAs, reduced electron transport chain activity, and reduced ATP levels. Oxidative stress, however, is not induced. We propose that the reduced ATP level in ppr mutants underlies the phototransduction defect, leading to increased Rhodopsin1 endocytosis during light exposure, causing photoreceptor degeneration independent of oxidative stress. This hypothesis is bolstered by characterization of two other genes isolated in the screen, pyruvate dehydrogenase and citrate synthase. Their loss also causes a light-induced degeneration, excessive Rhodopsin1 endocytosis and reduced ATP without concurrent oxidative stress, unlike many other mutations in mitochondrial genes that are associated with elevated oxidative stress and light-independent photoreceptor demise.

  15. Molecular Mechanism of Silver Nanoparticles-Induced Human Osteoblast Cell Death: Protective Effect of Inducible Nitric Oxide Synthase Inhibitor

    PubMed Central

    Zielinska, Ewelina; Tukaj, Cecylia; Radomski, Marek Witold; Inkielewicz-Stepniak, Iwona

    2016-01-01

    Background Silver nanoparticles (AgNPs) show strong antibacterial properties, making them excellent candidates to be used in orthopaedic repair and regeneration. However, there are concerns regarding the cytotoxicity of AgNPs and molecular mechanisms underlying AgNPs-induced bone cells toxicity have not been elucidated. Therefore, the aim of our study was to explore mechanisms of AgNPs-induced osteoblast cell death with particular emphasis on the role of nitric oxide (NO) generated by inducible nitric oxide synthase (iNOS). Methods and Result Silver nanoparticles used in this study were 18.3±2.6 nm in size, uncoated, spherical, regular shape and their zeta potential was -29.1±2.4 mV as measured by transmission electron microscopy (TEM) and zetasizer. The release of silver (Ag) from AgNPs was measured in cell culture medium by atomic absorption spectroscopy (AAS). The exposure of human osteoblast cells (hFOB 1.19) to AgNPs at concentration of 30 or 60 μg/mL for 24 or 48 hours, respectively resulted in cellular uptake of AgNPs and changes in cell ultrastructure. These changes were associated with apoptosis and necrosis as shown by flow cytometry and lactate dehydrogenase (LDH) assay as well as increased levels of pro-apoptotic Bax and decreased levels of anti-apoptotic Bcl-2 mRNA and protein. Importantly, we have found that AgNPs elevated the levels of nitric oxide (NO) with concomitant upregulation of inducible nitric oxide synthase (iNOS) mRNA and protein. A significant positive correlation was observed between the concentration of AgNPs and iNOS at protein and mRNA level (r = 0.837, r = 0.721, respectively; p<0.001). Finally, preincubation of osteoblast cells with N-iminoethyl-l-lysine (L-NIL), a selective iNOS inhibitor, as well as treating cells with iNOS small interfering RNAs (siRNA) significantly attenuated AgNPs-induced apoptosis and necrosis. Moreover, we have found that AgNPs-induced cells death is not related to Ag dissolution is cell culture medium

  16. Interferon-γ Restricts Toxoplasma gondii Development in Murine Skeletal Muscle Cells via Nitric Oxide Production and Immunity-Related GTPases

    PubMed Central

    Takács, Anna C.; Swierzy, Izabela J.; Lüder, Carsten G. K.

    2012-01-01

    The apicomplexan parasite Toxoplasma gondii is regularly transmitted to humans via the ingestion of contaminated meat products from chronically infected livestock. This route of transmission requires intracellular development and long-term survival of the parasite within muscle tissue. In this study, we determined the cell-autonomous immunity of mature primary embryonic or C2C12 skeletal muscle cells (SkMCs) to infection with T. gondii. Non-activated SkMCs and control fibroblasts sustained parasite replication; however, interferon (IFN)-γ significantly inhibited parasite growth in SkMCs but not in fibroblasts. Intracellular parasite replication was diminished by IFN-γ whereas host cell invasion was not affected. Tumor necrosis factor (TNF) did not further increase the IFN-γ-triggered host defense of SkMCs against Toxoplasma. Remarkably, IFN-γ alone or in combination with TNF decreased the high level of T. gondii bradyzoite formation being observed in non-activated SkMCs. Stimulation of SkMCs with IFN-γ strongly triggered expression of inducible nitric oxide synthase (iNOS) transcripts, and induced significantly higher levels of nitric oxide (NO) in SkMCs than in fibroblasts. Consequently, pharmacological inhibition of iNOS partially abrogated the IFN-γ-induced toxoplasmacidal activity of SkMCs. In addition, SkMCs strongly up-regulated immunity-regulated GTPases (IRGs) following stimulation with IFN-γ. IRGs accumulated on Toxoplasma-containing vacuoles in SkMCs in a parasite strain-dependent manner. Subsequent vacuole disruption and signs of degenerating parasites were regularly recognized in IFN-γ-treated SkMCs infected with type II parasites. Together, murine SkMCs exert potent toxoplasmacidal activity after stimulation with IFN-γ and have to be considered active participants in the local immune response against Toxoplasma in skeletal muscle. PMID:23024821

  17. Resveratrol may reduce oxidative stress induced by platinum compounds in human plasma, blood platelets and lymphocytes.

    PubMed

    Olas, Beata; Wachowicz, Barbara; Majsterek, Ireneusz; Blasiak, Janusz

    2005-07-01

    Resveratrol (trans-3,4',5-trihydroxystilbene), a polyphenolic compound found in grapes and wine, has been shown to have anti-inflammatory, anti-oxidant, anti-tumor and anti-platelet activities. Using different methods, we show that resveratrol reduces oxidative stress induced by cisplatin (cis-diamminedichloroplatinum II) and selenium-cisplatin conjugate ([NH(3)](2)Pt(SeO(3)), Se-Pt) in human blood platelets, lymphocytes and plasma. Resveratrol decreased the production of 8-epi-prostaglandin F(2) (a biomarker of lipid peroxidation) in control blood platelets and platelets treated with platinum compounds (10 microg/ml), and markedly reduced activities of different anti-oxidative enzymes (glutathione peroxidase, superoxide dismutase and catalase) in these cells. A combined action of resveratrol and Se-Pt evoked a significant decrease of DNA damage (measured by comet assay) in lymphocytes compared with cells treated with Se-Pt only. Resveratrol also caused a distinct reduction of total anti-oxidant level in plasma after incubation with platinum compounds. Therefore, anti-oxidative activity of resveratrol may diminish oxidative stress and damage to cellular biomolecules (lipids, proteins and DNA) induced by platinum compounds.

  18. Laser-Induced Oxidation of Cholesterol Observed During MALDI-TOF Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    McAvey, Kevin M.; Guan, Bing; Fortier, Chanel A.; Tarr, Matthew A.; Cole, Richard B.

    2011-04-01

    Conditions for the detection of three odd-electron cholesterol oxidation peaks were determined and these peaks were shown to be artifacts of the matrix-assisted laser desorption time of flight (MALDI-TOF) process. Matrix choice, solvent, laser intensity and cholesterol concentration were systematically varied to characterize the conditions leading to the highest signals of the radical cation peaks, and it was found that initial cholesterol solution concentration and resultant density of solid cholesterol on the MALDI target were important parameters in determining signal intensities. It is proposed that hydroxyl radicals, generated as a result of laser irradiation of the employed 2, 5-dihydroxybenzoic acid (DHB) matrix, initiate cholesterol oxidation on the MALDI target. An attempt to induce the odd-electron oxidation peaks by means of adding an oxidizing agent succeeded using an acetonitrile solution of DHB, cholesterol, and cumene hydroperoxide. Moreover, addition of free radical scavengers reduced the abundances of some oxidation products under certain conditions. These results are consistent with the mechanism of oxidation proposed herein involving laser-induced hydroxyl radical production followed by attack on neutral cholesterol. Hydroxyl radical production upon irradiation of dithranol matrix may also be responsible for generation of the same radical peaks observed from cholesterol in dithranol by an analogous mechanism.

  19. Oxidative Lung Injury in Virus-Induced Wheezing

    DTIC Science & Technology

    2011-05-01

    tract infections in children, for which no specific treat- ment or vaccine is currently available. We have previously shown that RSV induces reactive...benzamidine, 5 mg/ml leupeptin, 25% glycerol ), incubated on ice for 20 minutes, and centrifuged (6,000 3 g, 48C, 2 min). A lysis-lavage method...6 M urea, 2% SDS, 50 mM Tris-HCl [pH 8.8], 20% glycerol ) containing 10 ml of 0.5 M TCEP [Tris(2-carboxyethyl) phosphine] for 15 minutes at 228C with

  20. Brassinosteroid Ameliorates Zinc Oxide Nanoparticles-Induced Oxidative Stress by Improving Antioxidant Potential and Redox Homeostasis in Tomato Seedling

    PubMed Central

    Li, Mengqi; Ahammed, Golam J.; Li, Caixia; Bao, Xiao; Yu, Jingquan; Huang, Chunlei; Yin, Hanqin; Zhou, Jie

    2016-01-01

    In the last few decades use of metal-based nanoparticles (MNPs) has been increased significantly that eventually contaminating agricultural land and limiting crop production worldwide. Moreover, contamination of food chain with MNPs has appeared as a matter of public concern due to risk of potential health hazard. Brassinosteroid has been shown to play a critical role in alleviating heavy metal stress; however, its function in relieving zinc oxide nanoparticles (ZnO NPs)-induced phytotoxicity remains unknown. In this study, we investigated the potential role of 24-epibrassinolide (BR) in mitigating ZnO NPs-induced toxicity in tomato seedlings. Seedling growth, biomass production, and root activity gradually decreased, but Zn accumulation increased with increasing ZnO NPs concentration (10–100 mg/L) in growth media (½ MS). The augmentation of BR (5 nM) in media significantly ameliorated 50 mg/L ZnO NPs-induced growth inhibition. Visualization of hydrogen peroxide (H2O2), and quantification of H2O2 and malondialdehyde (MDA) in tomato roots confirmed that ZnO NPs induced an oxidative stress. However, combined treatment with BR and ZnO NPs remarkably reduced concentration of H2O2 and MDA as compared with ZnO NPs only treatment, indicating that BR supplementation substantially reduced oxidative stress. Furthermore, the activities of key antioxidant enzymes such as superoxide dismutase (SOD), catalase, ascorbate peroxidase and glutathione reductase were increased by combined treatment of BR and ZnO NPs compared with ZnO NPs only treatment. BR also increased reduced glutathione (GSH), but decreased oxidized glutathione (GSSG)] and thus improved cellular redox homeostasis by increasing GSH:GSSG ratio. The changes in relative transcript abundance of corresponding antioxidant genes such as Cu/Zn SOD, CAT1, GSH1, and GR1 were in accordance with the changes in those antioxidants under different treatments. More importantly, combined application of BR and ZnO NPs

  1. Endomembrane Ca2+ -ATPases play significant role in virus-induced adaptation to oxidative stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In our recently published paper (Plant Cell Environ 34: 406-417) we have reported a phenomenon of Potato Virus X (PVX) - induced cross tolerance to oxidative stress in Nicotiana benthamiana plants and showed a critical role of plasma membrane Ca2+/H+ exchangers in this process. The current study fol...

  2. Blockade of Drp1 rescues oxidative stress-induced osteoblast dysfunction

    PubMed Central

    Gan, Xueqi; Huang, Shengbin; Yu, Qing; Yu, Haiyang; Yan, Shirley ShiDu

    2016-01-01

    Osteoblast dysfunction, induced by oxidative stress, plays a critical role in the pathophysiology of osteoporosis. However, the underlying mechanisms remain unclarified. Imbalance of mitochondrial dynamics has been closely linked to oxidative stress. Here, we reveal an unexplored role of dynamic related protein 1(Drp1), the major regulator in mitochondrial fission, in the oxidative stress-induced osteoblast injury model. We demonstrate that levels of phosphorylation and expression of Drp1 significantly increased under oxidative stress. Blockade of Drp1, through pharmaceutical inhibitor or gene knockdown, significantly protected against H2O2-induced osteoblast dysfunction, as shown by increased cell viability, improved cellular alkaline phosphatase (ALP) activity and mineralization and restored mitochondrial function. The protective effects of blocking Drp1 in H2O2-induced osteoblast dysfunction were evidenced by increased mitochondrial function and suppressed production of reactive oxygen species (ROS). These findings provide new insights into the role of the Drp1-dependent mitochondrial pathway in the pathology of osteoporosis, indicating that the Drp1 pathway may be targetable for the development of new therapeutic approaches in the prevention and the treatment of osteoporosis. PMID:26577411

  3. OXIDATIVE STRESS INDUCES CELL DEATH IN CD-1 MOUSE CRANIAL NEURAL CREST CELLS IN VITRO

    EPA Science Inventory

    OXIDATIVE STRESS INDUCES CELL DEATH IN CD-1 MOUSE CRANIAL NEURAL CREST CELLS IN VITRO. J.B. Smith, K.K. Sulik, E.S. Hunter III. University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.
    The induction of craniofacial defects by ethanol exposure is mediated in part by...

  4. Alleviation of iron induced oxidative stress by the grape fruit flavanone naringin in vitro.

    PubMed

    Jagetia, Ganesh Chandra; Reddy, Tiyagura Koti

    2011-04-25

    Iron is an essential element that participates in several metabolic activities of cells; however, excess iron is a major cause of iron-induced oxidative stress and several human diseases. The protective effect of naringin, a grape fruit flavanone, was studied in iron overloaded isolated mouse liver mitochondria, where the isolated mitochondrial fraction was incubated with various concentrations of naringin before ferric ion loading. Iron overloading of mitochondrial fraction resulted in an increase in lipid peroxidation, protein oxidation, and DNA damage, whereas iron overload reduced the glutathione (GSH) concentration, glutathione-S-transferase (GST), glutathione peroxidase (GSHPx), catalase and superoxide dismutase (SOD) activities. Pretreatment of mitochondrial fraction with naringin inhibited iron-induced lipid peroxidation, protein oxidation, and DNA damage. Conversely, naringin supplementation arrested iron-induced depletion in the GSH contents, GSHPx, GST, SOD and catalase activities significantly. Ferric iron reduction assay revealed that naringin could not reduce ferric iron into ferrous iron indicating that it did not exhibit prooxidant activity. Iron free coordination site assay indicated that naringin was unable to occupy all the active sites of iron indicating that naringin did not completely chelate iron. Our study demonstrates that naringin was able to share the burden of endogenous oxidants by inhibiting the iron-induced depletion of all important antioxidant enzymes as well as GSH and may act as a good antioxidant.

  5. Quercetin protects hamster spermatogenic cells from oxidative damage induced by diethylstilboestrol.

    PubMed

    Li, G; Ma, Aituan; Shi, W; Zhong, Xiuhui

    2010-10-01

    Quercetin has been reported to be an efficient antioxidant which protects chicken spermatogonial cells from oxidative damage through increasing intracellular antioxidants and decreasing lipid peroxidation. Exposure to diethylstilboestrol (DES) could cause reproductive damage in males, which is associated with oxidative stress. This study was conducted to investigate the protective effects of quercetin on DES-induced oxidative damage in cultured hamster spermatogenic cells. The cells were treated with different concentrations of DES, and their growth status was observed under inverted microscope. The viability of spermatogenic cells was detected by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT). The contents of superoxide dismutase (SOD) in supernatants and glutathione peroxidase (GSH-Px) in cells were detected with spectrophotography. The results showed that quercetin significantly inhibited the DES-induced damage on spermatogenic cells, with the exception of the low-dose group in which no significant difference was observed. The cell survival rate increased significantly in the middle- and high-dose groups. The contents of SOD and GSH-Px were significantly elevated after medication with quercetin (P < 0.01). It can be concluded that quercetin protects spermatogenic cells against DES-induced oxidative damage through increasing intracellular antioxidants and decreasing lipid peroxidation. Quercetin plays a very important role in ameliorating reproductive toxicity induced by environmental oestrogens.

  6. AIR PARTICULATE POLLUTION EXPOSURE INDUCES SYSTEMIC OXIDATIVE STRESS IN HEALTHY MICE

    EPA Science Inventory

    Air particulate pollution exposure induces systemic oxidative stress in healthy mice

    Elizabeth S Roberts1 and Kevin L Dreher2. 1 College or Veterinary Medicine, NC State University, Raleigh, NC , 2US Environmental Protection Agency, NHEERL, RTP, NC

    Epidemiological s...

  7. Excess copper induced oxidative stress and response of antioxidants in rice.

    PubMed

    Thounaojam, Thorny Chanu; Panda, Piyalee; Panda, P; Mazumdar, Purabi; Mazumdar, P; Kumar, Devanand; Sharma, Gauri Dutta; Sharma, G D; Sahoo, Lingaraj; Sahoo, L; Panda, Sanjib Kumar; Panda, S K

    2012-04-01

    To investigate the effects of copper (Cu), rice plant (Oryza sativa. L. var. MSE-9) was treated with different Cu concentrations (0, 10, 50 and 100 μM) for 5 days in hydroponic condition. Gradual decrease in shoot and root growth was observed with the increase of Cu concentration and duration of treatment where maximum inhibition was recorded in root growth. Cu was readily absorbed by the plant though the maximum accumulation was found in root than shoot. Hydrogen peroxide (H(2)O(2)) production and lipid peroxidation were found increased with the elevated Cu concentration indicating excess Cu induced oxidative stress. Antioxidant enzymes superoxide dismutase (SOD), guaiacol peroxidase (GPX) and ascorbate peroxidase (APX) and glutathione reductase (GR) were effectively generated at the elevated concentrations of Cu though catalase (CAT) did not show significant variation with respect to control. Ascorbate (ASH), glutathione (GSH) and proline contents were also increased in all the Cu treated plants compared with the control. SOD isoenzyme was greatly affected by higher concentration of Cu and it was consistent with the changes of the activity assayed in solution. The present study confirmed that excess Cu inhibits growth, induced oxidative stress by inducing ROS formation while the stimulated antioxidative system appears adaptive response of rice plant against Cu induced oxidative stress. Moreover proline accumulation in Cu stress plant seems to provide additional defense against the oxidative stress.

  8. Maltol, a Food Flavoring Agent, Attenuates Acute Alcohol-Induced Oxidative Damage in Mice

    PubMed Central

    Han, Ye; Xu, Qi; Hu, Jiang-ning; Han, Xin-yue; Li, Wei; Zhao, Li-chun

    2015-01-01

    The purpose of this study was to evaluate the hepatoprotective effect of maltol, a food-flavoring agent, on alcohol-induced acute oxidative damage in mice. Maltol used in this study was isolated from red ginseng (Panax ginseng C.A Meyer) and analyzed by high performance liquid chromatography (HPLC) and mass spectrometry. For hepatoprotective activity in vivo, pretreatment with maltol (12.5, 25 and 50 mg/kg; 15 days) drastically prevented the elevated activities of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP) and triglyceride (TG) in serum and the levels of malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) in liver tissue (p < 0.05). Meanwhile, the levels of hepatic antioxidant, such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) were elevated by maltol pretreatment, compared to the alcohol group (p < 0.05). Histopathological examination revealed that maltol pretreatment significantly inhibited alcohol-induced hepatocyte apoptosis and fatty degeneration. Interestingly, pretreatment of maltol effectively relieved alcohol-induced oxidative damage in a dose-dependent manner. Maltol appeared to possess promising anti-oxidative and anti-inflammatory capacities. It was suggested that the hepatoprotective effect exhibited by maltol on alcohol-induced liver oxidative injury may be due to its potent antioxidant properties. PMID:25608939

  9. Inosine ameliorates the effects of hemin-induced oxidative stress in broilers.

    PubMed

    Seaman, Christen; Moritz, Joseph; Falkenstein, Elizabeth; Van Dyke, Knox; Casotti, Giovanni; Klandorf, Hillar

    2008-12-01

    The objective of these studies was to determine whether inosine, a precursor of the antioxidant uric acid, can ameliorate hemin-induced oxidative stress. Dietary inclusion of inosine was begun either before or after hemin-induced oxidative stress. Broilers (4 weeks) were divided into four treatment groups (Control, Hemin, Inosine, Hemin/Inosine). Throughout the study control birds (n=10) were injected daily with a buffer solution, while hemin birds (n=10) were injected daily (i.p.) with a 20 mg/kg body weight hemin buffer solution. Leukocyte oxidative activity (LOA) and concentrations of plasma uric acid (PUA) were measured. Results from the first study showed that hemin birds had increased levels of LOA (P=0.0333) and lower PUA (P=0.1174). On day 10, control and hemin birds were subdivided into inosine birds (n=5) and hemin/inosine birds (n=5). These birds were given 0.6 M/kg of feed/day of dry inosine. Plasma concentrations of uric acid and LOA were then measured on day 15. Results showed that inosine raised concentrations of PUA (P=0.0001) and lowered LOA (P=0.0044) as induced by hemin. In the second study pretreatment of broilers with hemin prevented the increase in LOA induced by hemin (P=0.0001). These results show that modulating the concentrations of uric acid can markedly affect oxidative stress.

  10. Phagocytosis of crocidolite asbestos induces oxidative stress, DNA damage, and apoptosis in mesothelial cells.

    PubMed

    Liu, W; Ernst, J D; Broaddus, V C

    2000-09-01

    Phagocytosis of asbestos fibers may be a necessary step for asbestos-induced injury to mesothelial cells, but this has not been established because quantification of fiber uptake is difficult and ways to increase fiber phagocytosis without also increasing total dose were not available. We quantified phagocytosis by counting intracellular fibers after removing adherent fibers with trypsin; we selectively increased fiber phagocytosis by coating crocidolite asbestos fibers with the adhesive serum protein vitronectin (VN), which we have shown increases fiber uptake via integrins. We measured various aspects of asbestos-induced cytotoxicity: intracellular oxidation by the shift of fluorescence of cells loaded with an oxidative probe, DNA strand breakage by the alkaline unwinding ethidium bromide fluorometric assay, apoptosis by annexin V binding and by nuclear morphology, and cell-cycle progression. We found that, compared with control fibers or particles, asbestos increased intracellular oxidation, DNA strand breakage, and apoptosis. Selective increases in fiber uptake by VN-coating of the fibers further increased the oxidation, DNA strand breakage, and apoptosis, and induced a cell-cycle arrest in G2/M. Selective decreases in fiber uptake by cytochalasin or by integrin blockade with RGD peptides inhibited several of these measures of injury. We conclude that phagocytosis is important and perhaps necessary for asbestos-induced injury to mesothelial cells.

  11. Squaraine PDT induces oxidative stress in skin tumor of swiss albino mice

    NASA Astrophysics Data System (ADS)

    Cibin, T. R.; Gayathri, Devi D.; Ramaiah, D.; Abraham, Annie

    2010-02-01

    Photodynamic Therapy (PDT) using a sensitizing drug is recognized as a promising medical technique for cancer treatment. It is a two step process that requires the administration of a photosensitizer followed by light exposure to treat a disease. Following light exposure the photosensitizer is excited to a higher energy state which generates free radicals and singlet oxygen. The present study was carried out to assess the oxidative damage induced by bis (3, 5-diiodo-2, 4, 6- trihydroxyphenyl) squaraine in skin tumor tissues of mice with/ without light treatment. Skin tumor was induced using 7, 12-Dimethyl Benz(a)anthracene and croton oil. The tumor bearing mice were given an intraperitoneal injection with the squaraine dye. After 24h, the tumor area of a few animals injected with the dye, were exposed to visible light from a 1000 W halogen lamp and others kept away from light. All the mice were sacrificed one week after the PDT treatment and the oxidative profile was analyzed (TBARS, SOD, catalase, GSH, GPx and GR) in tumor/ skin tissues. The dye induces oxidative stress in the tumor site only on illumination and the oxidative status of the tumor tissue was found to be unaltered in the absence of light. The results of the study clearly shows that the tumor destruction mediated by PDT using bis (3, 5-diiodo-2, 4, 6-trihydroxyphenyl) squaraine as a photosensitizer is due to the generation of reactive oxygen species, produced by the light induced changes in the dye.

  12. Supplementation with an antioxidant cocktail containing coenzyme Q prevents plasma oxidative damage induced by soccer.

    PubMed

    Tauler, Pedro; Ferrer, Miguel D; Sureda, Antoni; Pujol, Pere; Drobnic, Franchek; Tur, Josep A; Pons, Antoni

    2008-11-01

    The aim of the study was to determine the effects of an antioxidant supplementation, which includes coenzyme Q(10), on plasma and neutrophil oxidative stress and the antioxidant response after a soccer match. Nineteen voluntary male pre-professional footballers were randomly and double-blinded treated with either a multivitamin and mineral supplement (n = 8) or a placebo (n = 11). After the 3 months of supplementation, the sportsmen played a friendly soccer match of 60 min. The 3-month supplementation induced higher plasma ascorbate and coenzyme Q levels when compared to the placebo group. Antioxidant supplementation influenced plasma oxidative stress markers because they were lower in the supplemented group than in the placebo one after the match. The football match induced decreased neutrophil vitamin E levels and catalase and glutathione peroxidase activities but increased glutathione reductase activity. Antioxidant diet supplementation prevented plasma oxidative damage but did not influence the neutrophil response to a football match.

  13. Schisandrin B protects against solar irradiation-induced oxidative injury in BJ human fibroblasts.

    PubMed

    Chiu, Po Yee; Lam, Philip Y; Yan, Chung Wai; Ko, Kam Ming

    2011-06-01

    The effects of schisandrin B (Sch B) and its analogs on solar irradiation-induced oxidative injury were examined in BJ human fibroblasts. Sch B and schisandrin C (Sch C) increased cellular reduced glutathione (GSH) level and protected against solar irradiation-induced oxidative injury. The photoprotection was paralleled by decreases in the elastases-type protease activity and matrix-metalloproteinases-1 expression in solar-irradiated fibroblasts. The cytochrome P-450-mediated metabolism of Sch B or Sch C caused ROS production. The results suggest that by virtue of its pro-oxidant action and the subsequent glutathione antioxidant response, Sch B or Sch C may offer the prospect of preventing skin photo-aging.

  14. Assessment of benzene induced oxidative impairment in rat isolated pancreatic islets and effect on insulin secretion.

    PubMed

    Bahadar, Haji; Maqbool, Faheem; Mostafalou, Sara; Baeeri, Maryam; Rahimifard, Mahban; Navaei-Nigjeh, Mona; Abdollahi, Mohammad

    2015-05-01

    Benzene (C6H6) is an organic compound used in petrochemicals and numerous other industries. It is abundantly released to our environment as a chemical pollutant causing widespread human exposure. This study mainly focused on benzene induced toxicity on rat pancreatic islets with respect to oxidative damage, insulin secretion and glucokinase (GK) activity. Benzene was dissolved in corn oil and administered orally at doses 200, 400 and 800mg/kg/day, for 4 weeks. In rats, benzene significantly raised the concentration of plasma insulin. Also the effect of benzene on the release of glucose-induced insulin was pronounced in isolated islets. Benzene caused oxidative DNA damage and lipid peroxidation, and also reduced the cell viability and total thiols groups, in the islets of exposed rats. In conclusion, the current study revealed that pancreatic glucose metabolism is susceptible to benzene toxicity and the resultant oxidative stress could lead to functional abnormalities in the pancreas.

  15. Protective effects of resveratrol on calcium-induced oxidative stress in rat heart mitochondria.

    PubMed

    Gutiérrez-Pérez, Areli; Cortés-Rojo, Christian; Noriega-Cisneros, Ruth; Calderón-Cortés, Elizabeth; Manzo-Avalos, Salvador; Clemente-Guerrero, Mónica; Godínez-Hernández, Daniel; Boldogh, Istvan; Saavedra-Molina, Alfredo

    2011-04-01

    Trans-resveratrol is a nutraceutical with known antioxidant, anti-inflammatory, cardioprotective, and anti-apoptotic properties. The aim of this study was to evaluate the effects of resveratrol on heart mitochondria. Resveratrol significantly decreased Fe(2+) + ascorbate oxidant system-induced lipid peroxide levels, preserved physiological levels of glutathione, and increased nitric oxide (NO) levels in mitochondria. Under calcium-mediated stress, there was a 2.7-fold increase in the NO levels, and a mild decoupling in the mitochondrial respiratory chain. These results provide a mechanism for and support the beneficial effects of resveratrol under pathological conditions induced by oxidative stress and calcium overload. In addition, these findings underscore the usefulness of resveratrol in the prevention of cardiovascular diseases.

  16. Antioxidant activity of thiocholesterol on copper-induced oxidation of low-density lipoprotein.

    PubMed

    Tanaka, M; Nakagawa, M

    1995-04-01

    The effect of thiocholesterol (SH-Chol) on the copper-induced in vitro oxidation of low-density lipoprotein (LDL; 1.019 < d < 1.063) was investigated. Among the antioxidants tested, including cysteine, glutathione, 2-mercaptoethanol, dithiothreitol, probucol, thiopalmitic acid, and SH-Chol, SH-Chol was the most effective antioxidant in copper-induced LDL oxidation. Also, SH-Chol completely inhibited the formation of oxysterols, i.e., 7-hydroxycholesterol and 7-ketocholesterol, in LDL particles and reduced 1,1-diphenyl-2-picrylhydrazyl used as stable free-radical model. Moreover, SH-Chol suppressed the degradation of endogenous alpha-tocopherol in LDL particles. These findings indicate that SH-Chol acts as antioxidant in the oxidative damage of LDL in vitro and as a free-radical scavenger in lipid peroxidation.

  17. Growth-induced non-stoichiometry in complex oxide systems

    NASA Astrophysics Data System (ADS)

    Breckenfeld, Eric

    Complex perovskite oxides have been studied extensively over the past few decades due to their wide range of functional properties and relative ease of epitaxial synthesis. These two factors have allowed such oxide systems to see a multitude of applications including sensors, memory, thermal management, and energy harvesting. The ability to access so many different functionalities is owed largely to the chemical diversity available to the perovskite unit cell, opening the door for metal-insulator-transitions, ferroelectricity, and superconductivity, to name a few. However, the same chemical diversity that enables so many potential applications also opens the door for a myriad of chemistry-related defects. Separating out the relative contributions of such extrinsic (or defect-driven) effects from the intrinsic material properties is crucial to enabling the use of these materials in high-performance, next-generation devices. In this work, we examine several model systems in order to explore the relationship between the pulsed laser deposition growth process, the film chemistry, and the subsequent effects on the defect landscape and film properties. We show that small changes to the laser fluence can have a marked impact on the chemical composition of the film, leading to cation stoichiometry deviations as large as 10% in SrTiO3, LaAlO3, and NdNiO3 systems. We demonstrate that such chemical deviations can lead to significant changes in the bulk thermal and dielectric properties of SrTiO3 and LaAlO3 films. We have also investigated the interface between SrTiO3 and LaAlO3, which has been studied extensively over the past 8 years due to the supposed presence of a 2-dimensional electron gas (2DEG). Our results indicate that the presence of cation defects in the LaAlO3 has a profound impact on the electronic properties of the 2DEG interface. Finally, we have similarly shown that cation non-stoichiometry can cause the metal-insulator-transition material NdNiO3 to behave

  18. Daily sesame oil supplementation mitigates ketoconazole-induced oxidative stress-mediated apoptosis and hepatic injury.

    PubMed

    Periasamy, Srinivasan; Liu, Chuan-Teng; Chien, Se-Ping; Chen, Ying-Chien; Liu, Ming-Yie

    2016-11-01

    Ketoconazole (KCZ) is the most commonly used systemic antifungal drug. However, long-term treatment of KCZ induces hepatic injury. Oxidative stress is involved in KCZ-induced hepatic injury. Oxidative stress plays an important role in apoptosis-associated hepatic damage. Sesame oil is rich in potent antioxidants and antifungal constituents. It attenuates hepatic injury by inhibiting oxidative stress. Thus, sesame oil may protect against KCZ-induced oxidative stress, apoptosis and hepatic damage. The aim of the present study was to investigate the protective effect of sesame oil as a nutritional supplement on KCZ-induced hepatic injury in mice. KCZ (300 mg/kg/day) was administered by gastric intubation; 30 min later, sesame oil (0, 0.0625, 0.125, 0.25 or 0.5 ml/kg/day; p.o.) was administered to mice for 14 days. Blood and liver tissue were collected. Hepatic injury was evaluated by serum biochemistry and histology. Oxidative stress was evaluated by myeloperoxidase activity, p47-phox, reactive oxygen species generation, lipid peroxidation and glutathione level. Apoptosis was evaluated by p53, caspase-3, Bcl-2, Bax and Cyto-C expression. Osteopontin was measured to assess liver healing. Sesame oil attenuated hepatic injury; it also decreased oxidative stress and apoptosis in KCZ-treated mice. Sesame oil may be used as a nutritional supplement with existing antifungal therapies to neutralize the adverse hepatotoxic nature of antifungal drugs by attenuating hepatic apoptosis through redox system to protect and heal liver injury in KCZ-treated mice.

  19. Cerium oxide nanoparticles induce oxidative stress in the sediment-dwelling amphipod Corophium volutator.

    PubMed

    Dogra, Yuktee; Arkill, Kenton P; Elgy, Christine; Stolpe, Bjorn; Lead, Jamie; Valsami-Jones, Eugenia; Tyler, Charles R; Galloway, Tamara S

    2016-01-01

    Cerium oxide nanoparticles (CeO2 NPs) exhibit fast valence exchange between Ce(IV) and Ce(III) associated with oxygen storage and both pro and antioxidant activities have been reported in laboratory models. The reactivity of CeO2 NPs once they are released into the aquatic environment is virtually unknown, but this is important to determine for assessing their environmental risk. Here, we show that amphipods (Corophium volutator) grown in marine sediments containing CeO2 NPs showed a significant increase in oxidative damage compared to those grown in sediments without NPs and those containing large-sized (bulk) CeO2 particles. There was no exposure effect on survival, but significant increases in single-strand DNA breaks, lipid peroxidation and superoxide dismutase activity were observed after a 10-day exposure to 12.5 mg L(-1) CeO2. Characterisation of the CeO2 NPs dispersed in deionised or saline exposure waters revealed that more radicals were produced by CeO2 NPs compared with bulk CeO2. Electron energy loss spectroscopy (EELS) analysis revealed that both CeO2 NPs were predominantly Ce(III) in saline waters compared to deionised waters where they were predominantly Ce(IV). In both types of medium, the bulk CeO2 consisted mainly of Ce(IV). These results support a model whereby redox cycling of CeO2 NPs between Ce(III) and Ce(IV) is enhanced in saline waters, leading to sublethal oxidative damage to tissues in our test organism.

  20. Intramolecular, oxidatively induced substitution on a coordinated terpyridyl ligand

    SciTech Connect

    Huynh, M.H.V.; Lee, D.G.; White, P.S.; Meyer, T.J.

    1999-11-10

    In recent experiments, the authors demonstrated that in the Os-hydrazido complexes, trans-[Os{sup VI}(L{sub 3})(Cl){sub 2}(NN(CH{sub 2}){sub 4}O)]{sup 2+} (L{sub 3} = 2,2{prime}:6{prime},2{double{underscore}prime}-terpyridine or tris(1-pyrazolyl)-methane and N(CH{sub 2}){sub 4}O{sup {minus}} = morpholide), there are four interconvertible oxidation states with Os(VI), Os(V), Os(IV), and Os(III) accessible within the solvent limit in CH{sub 3}CN. Examples of Os(VI), Os(V), and Os(IV) have been characterized by X-ray crystallography. The authors report here a remarkable reaction between trans-[Os{sup VI}(tpy)(Cl){sub 2}(NN(CH{sub 2}){sub 4}O)]{sup 2+} (2), has been characterized crystallographically. An extraordinary electrophilic substituent effect of Os(VI) on the tpy ligand and the ability of Os(VI) to undergo reversible intramolecular Os(VI {yields} IV) electron transfer appear to play essential roles in these reactions.

  1. Heat-induced formation of nitrogen oxides in water.

    PubMed

    Chernikov, Anatoly V; Bruskov, Vadim I; Gudkov, Sergey V

    2013-09-01

    It was found by the fluorimetric method using 2,3-diaminonaphthalene that moderate heating of water (60-80°C, for up to 4 h) leads to the fixation of atmospheric nitrogen with the formation of nitrite. The kinetic parameters of this process were determined. The energy of activation of [Formula: see text]formation was estimated to be 139 kJ/mol. It was found that the amount of nitrite formed depends on the concentration of dissolved oxygen and nitrogen. It was shown by two independent methods (Griess reagent/VCl3 and 2,3-diaminonaphthalene/nitrate reductase) that heating of water (80°C, 1 h) results in the formation of nitrate; with the use of the fluorescent probe dihydrorhodamine 123, the generation of nitrogen dioxide (peroxynitrite) was revealed. Nitrite, nitrate, and nitrogen dioxide are formed in water upon heating in approximately equal amounts. A scheme of reactions proceeding with bidistilled water by the action of heat with the formation of nitrogen oxides is proposed.

  2. Natural Sesquiterpene Lactones Induce Oxidative Stress in Leishmania mexicana

    PubMed Central

    Barrera, Patricia; Sülsen, Valeria P.; Lozano, Esteban; Rivera, Mónica; Beer, María Florencia; Tonn, Carlos; Martino, Virginia S.; Sosa, Miguel A.

    2013-01-01

    Leishmaniasis is a worldwide parasitic disease, caused by monoflagellate parasites of the genus Leishmania. In the search for more effective agents against these parasites, the identification of molecular targets has been attempted to ensure the efficiency of drugs and to avoid collateral damages on the host's cells. In this work, we have investigated some of the mechanisms of action of a group of natural sesquiterpene lactones that are effective against Leishmania mexicana mexicana promastigotes. We first observed that the antiproliferative effect of mexicanin I (Mxc), dehydroleucodine (DhL), psilostachyin (Psi), and, at lesser extent, psilostachyin C (Psi C) is blocked by 1.5 mM reduced glutathione. The reducing agent was also able to reverse the early effect of the compounds, suggesting that lactones may react with intracellular sulfhydryl groups. Moreover, we have shown that all the sesquiterpene lactones, except Psi C, significantly decreased the endogenous concentration of glutathione within the parasite. Consistent with these findings, the active sesquiterpene lactones increased between 2.7 and 5.4 times the generation of ROS by parasites. These results indicate that the induction of oxidative stress is at least one of the mechanisms of action of DhL, Mxc, and Psi on parasites while Psi C would act by another mechanism. PMID:23861697

  3. Fluoride-Induced Oxidative and Inflammatory Stress in Osteosarcoma Cells: Does It Affect Bone Development Pathway?

    PubMed

    Gandhi, Deepa; Naoghare, Pravin K; Bafana, Amit; Kannan, Krishnamurthi; Sivanesan, Saravanadevi

    2017-01-01

    Oxidative stress is reported to negatively affect osteoblast cells. Present study reports oxidative and inflammatory signatures in fluoride-exposed human osteosarcoma (HOS) cells, and their possible association with the genes involved in osteoblastic differentiation and bone development pathways. HOS cells were challenged with sublethal concentration (8 mg/L) of sodium fluoride for 30 days and analyzed for transcriptomic expression. In total, 2632 transcripts associated with several biological processes were found to be differentially expressed. Specifically, genes involved in oxidative stress, inflammation, osteoblastic differentiation, and bone development pathways were found to be significantly altered. Variation in expression of key genes involved in the abovementioned pathways was validated through qPCR. Expression of serum amyloid A1 protein, a key regulator of stress and inflammatory pathways, was validated through western blot analysis. This study provides evidence that chronic oxidative and inflammatory stress may be associated with the fluoride-induced impediment in osteoblast differentiation and bone development.

  4. LPS-Induced Macrophage Activation and Plasma Membrane Fluidity Changes are Inhibited Under Oxidative Stress.

    PubMed

    de la Haba, Carlos; Morros, Antoni; Martínez, Paz; Palacio, José R

    2016-12-01

    Macrophage activation is essential for a correct and efficient response of innate immunity. During oxidative stress membrane receptors and/or membrane lipid dynamics can be altered, leading to dysfunctional cell responses. Our aim is to analyze membrane fluidity modifications and cell function under oxidative stress in LPS-activated macrophages. Membrane fluidity of individual living THP-1 macrophages was evaluated by the technique two-photon microscopy. LPS-activated macrophage function was determined by TNFα secretion. It was shown that LPS activation causes fluidification of macrophage plasma membrane and production of TNFα. However, oxidative stress induces rigidification of macrophage plasma membrane and inhibition of cell activation, which is evidenced by a decrease of TNFα secretion. Thus, under oxidative conditions macrophage proinflammatory response might develop in an inefficient manner.

  5. Oxidative stress and nerve damage: Role in chemotherapy induced peripheral neuropathy☆

    PubMed Central

    Areti, Aparna; Yerra, Veera Ganesh; Naidu, VGM; Kumar, Ashutosh

    2014-01-01

    Peripheral neuropathy is a severe dose limiting toxicity associated with cancer chemotherapy. Ever since it was identified, the clear pathological mechanisms underlying chemotherapy induced peripheral neuropathy (CIPN) remain sparse and considerable involvement of oxidative stress and neuroinflammation has been realized recently. Despite the empirical use of antioxidants in the therapy of CIPN, the oxidative stress mediated neuronal damage in peripheral neuropathy is still debatable. The current review focuses on nerve damage due to oxidative stress and mitochondrial dysfunction as key pathogenic mechanisms involved in CIPN. Oxidative stress as a central mediator of apoptosis, neuroinflammation, metabolic disturbances and bioenergetic failure in neurons has been highlighted in this review along with a summary of research on dietary antioxidants and other nutraceuticals which have undergone prospective controlled clinical trials in patients undergoing chemotherapy. PMID:24494204

  6. Diclofenac-enriched artificial sediment induces oxidative stress in Hyalella azteca.

    PubMed

    Oviedo-Gómez, Dennis Gloria Carolina; Galar-Martínez, Marcela; García-Medina, Sandra; Razo-Estrada, Celene; Gómez-Oliván, Leobardo Manuel

    2010-01-01

    Diclofenac is a nonsteroidal anti-inflammatory drug widely used in Mexico where it is sold over the counter. It enters water bodies through municipal and industrial discharges, posing a risk to water systems and aquatic organisms. Diclofenac-enriched artificial sediment was used to evaluate the toxicity of this pharmaceutical on the sentinel species Hyalella azteca, using oxidative stress biomarkers in order to determine if the set of tests used in this study is a suitable early damage biomarker. The median lethal concentration (72-h LC(50)) was determined and oxidative stress was evaluated using lipid peroxidation, protein carbonyl content to evaluate oxidized protein content, and the activity of superoxide dismutase, catalase, and glutathione peroxidase. All biomarkers were significantly altered. Diclofenac induces oxidative stress in H. azteca and the set of tests used (lipid peroxidation, protein carbonyl content, antioxidant enzyme activities) constitutes an adequate early damage biomarker for evaluating the toxicity of this pharmaceutical group in aquatic species.

  7. Mechanisms of Mycotoxin-induced Dermal Toxicity and Tumorigenesis Through Oxidative Stress-related Pathways

    PubMed Central

    Doi, Kunio; Uetsuka, Koji

    2014-01-01

    Among the many mycotoxins, T-2 toxin, citrinin (CTN), patulin (PAT), aflatoxin B1 (AFB1) and ochratoxin A (OTA) are known to have the potential to induce dermal toxicity and/or tumorigenesis in rodent models. T-2 toxin, CTN, PAT and OTA induce apoptosis in mouse or rat skin. PAT, AFB1 and OTA have tumor initiating properties, and OTA is also a tumor promoter in mouse skin. This paper reviews the molecular mechanisms of dermal toxicity and tumorigenesis induced in rodent models by these mycotoxins especially from the viewpoint of oxidative stress-mediated pathways. PMID:24791061

  8. Effects of panax quinquefolium on streptozotocin-induced diabetic rats: role of C-peptide, nitric oxide and oxidative stress

    PubMed Central

    Amin, Kamal Adel; Awad, Ezzat Mohamed; Nagy, Mohammed Ahmad

    2011-01-01

    Background: Insulin-dependent diabetes mellitus are at high risk for vascular disorders as hypertension and nephropathy. Ginseng is one of the most widely used herbal medicines and is reported to have a wide range of therapeutic and pharmacological applications for antioxidant and vasorelaxation although the mechanism is not clear. This study, aimed to evaluate hypoglycemic, antioxidant and vasodilator effects of Panax quinquefolium aqueous ginseng extract (AGE) against streptozotocin (STZ)-induced diabetes in male rats. Furthermore explore the role of AGE in C-peptide and nitric oxide (NO) and their relation in STZ induced diabetic rats. Methods: Thirty White male Sprague daw-ley rats weighing 150-200 gm, about 4 month old were equally divided into the following: a control group (normal, nondiabetic), a diabetic group induced by intraperitoneal (I/P) injection of STZ (non-AGE-treated) and an AGE-treated diabetic group (STZ+AGE) (for 8 days). Serum level of urea, creatinine, glucose, insulin, C-peptide and NO were analyzed. Activities of hepatic glucose-6-phosphatase (G6Pase), hepatic glycogen phosphorylase and the renal antioxidant enzyme, catalase were analyzed. Also renal oxidative stress marker malondialdehyde (MDA) was measured. Results: Data showed that STZ treated rats produced a significant increased level of serum urea, creatinine, glucose, NO and renal MDA. Also, induced significantly higher activities of hepatic G6Pase and glycogen phosphorylase compared with controls, while give significant lowered serum insulin, C-peptide level and renal catalase activity. Whereas treatment with AGE led to a significant amelioration in the hyperglycemia (lower the activity of G6Pase and glycogen phosphorylase), hyperinsulinemia and oxidative stress markers. Besides declining the higher level of renal function test and NO. Conclusions: STZ induced-diabetes (DM) associated with renal function disturbances, hypoinsulinemia, defective antioxidant stability and increased

  9. Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53.

    PubMed Central

    Forrester, K; Ambs, S; Lupold, S E; Kapust, R B; Spillare, E A; Weinberg, W C; Felley-Bosco, E; Wang, X W; Geller, D A; Tzeng, E; Billiar, T R; Harris, C C

    1996-01-01

    The tumor suppressor gene product p53 plays an important role in the cellular response to DNA damage from exogenous chemical and physical mutagens. Therefore, we hypothesized that p53 performs a similar role in response to putative endogenous mutagens, such as nitric oxide (NO). We report here that exposure of human cells to NO generated from an NO donor or from overexpression of inducible nitric oxide synthase (NOS2) results in p53 protein accumulation. In addition, expression of wild-type (WT) p53 in a variety of human tumor cell lines, as well as murine fibroblasts, results in down-regulation of NOS2 expression through inhibition of the NOS2 promoter. These data are consistent with the hypothesis of a negative feedback loop in which endogenous NO-induced DNA damage results in WT p53 accumulation and provides a novel mechanism by which p53 safeguards against DNA damage through p53-mediated transrepression of NOS2 gene expression, thus reducing the potential for NO-induced DNA damage. Images Fig. 1 Fig. 2 Fig. 3 PMID:8637893

  10. Effect of hyperbaric oxygen on cyclosporine-induced nephrotoxicity and oxidative stress in rats.

    PubMed

    Ay, Hakan; Uzun, Gunalp; Onem, Yalcin; Aydinoz, Secil; Yildiz, Senol; Bilgi, Oguz; Topal, Turgut; Atasoyu, Enes Murat

    2007-01-01

    Reactive oxygen species have been suggested to be involved in cyclosporine nephrotoxicity. Hyperbaric oxygen is known to induce the generation of reactive oxygen species in tissues. The aim of this study was to investigate whether the use of hyperbaric oxygen concurrently with cyclosporine potentiates cyclosporine nephrotoxicity by inducing oxidative stress in kidneys. The study consisted of four groups of rats: a control group, a cyclosporine group (15 mg/kg/day intraperitoneally for 14 days), a hyperbaric oxygen group (60 min. every day for five days at 2.5 atmosphere absolute), and a cyclosporine + hyperbaric oxygen group (cyclosporine 15 mg/kg/day intraperitoneally for 14 days + hyperbaric oxygen for 60 min at 2.5 atmosphere absolute every day for five days on the last five days of cyclosporine treatment). Oxidative stress was determined by measuring renal thiobarbituric acid-reactive substances content, renal superoxide dismutase, and glutathione peroxidase activities. Cyclosporine increased serum urea and creatinine levels, indicating the development of nephrotoxicity, and induced significant oxidative stress in rat kidneys. Hyperbaric oxygen alone did not alter any of the biochemical and oxidative stress parameters compared to the control group. When used concurrently with cyclosporine, hyperbaric oxygen significantly reduced cyclosporine-induced oxidative stress, but it neither attenuated nor aggravated cyclosporine-induced nephrotoxicity. These results suggest that reactive oxygen species are involved in cyclosporine nephrotoxicity, but are not the direct cause of the toxicity. Although concurrent use of cyclosporine and hyperbaric oxygen did not exacerbate cyclosporine nephrotoxicity in this model, we recommend that the renal functions of patients be monitored periodically when these treatments are used concurrently.

  11. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases.

    PubMed

    Fiorentino, Teresa Vanessa; Prioletta, Annamaria; Zuo, Pengou; Folli, Franco

    2013-01-01

    Diabetes mellitus is associated to an increased risk of cardiovascular diseases. Hyperglycemia is an important factor in cardiovascular damage, working through different mechanisms such as activation of protein kinase C, polyol and hexosamine pathways, advanced glycation end products production. All of these pathways, in association to hyperglycemia-induced mitochondrial dysfunction and endoplasmic reticulum stress, promote reactive oxygen species (ROS) accumulation that, in turn, promote cellular damage and contribute to the diabetic complications development and progression. ROS can directly damage lipids, proteins or DNA and modulate intracellular signaling pathways, such as mitogen activated protein kinases and redox sensitive transcription factors causing changes in protein expression and, therefore, irreversible oxidative modifications. Hyperglycemia-induced oxidative stress induces endothelial dysfunction that plays a central role in the pathogenesis of micro- and macro-vascular diseases. It may also increase pro-inflammatory and pro-coagulant factors expression, induce apoptosis and impair nitric oxide release. Oxidative stress induces several phenotypic alterations also in vascular smooth-muscle cell (VSMC). ROS is one of the factors that can promote both VSMC proliferation/migration in atherosclerotic lesions and VSMC apoptosis, which is potentially involved in atherosclerotic plaque instability and rupture. Currently, there are contrasting clinical evidences on the benefits of antioxidant therapies in the prevention/treatment of diabetic cardiovascular complications. Appropriate glycemic control, in which both hypoglycemic and hyperglycemic episodes are reduced, in association to the treatment of dyslipidemia, hypertension, kidney dysfunction and obesity, conditions which are also associated to ROS overproduction, can counteract oxidative stress and, therefore, both microvascular and macrovascular complications of diabetes mellitus.

  12. Strain-induced water dissociation on supported ultrathin oxide films

    PubMed Central

    Song, Zhenjun; Fan, Jing; Xu, Hu

    2016-01-01

    Controlling the dissociation of single water molecule on an insulating surface plays a crucial role in many catalytic reactions. In this work, we have identified the enhanced chemical reactivity of ultrathin MgO(100) films deposited on Mo(100) substrate that causes water dissociation. We reveal that the ability to split water on insulating surface closely depends on the lattice mismatch between ultrathin films and the underlying substrate, and substrate-induced in-plane tensile strain dramatically results in water dissociation on MgO(100). Three dissociative adsorption configurations of water with lower energy are predicted, and the structural transition going from molecular form to dissociative form is almost barrierless. Our results provide an effective avenue to achieve water dissociation at the single-molecule level and shed light on how to tune the chemical reactions of insulating surfaces by choosing the suitable substrates. PMID:26953105

  13. Nitric oxide mediates glial-induced neurodegeneration in Alexander disease.

    PubMed

    Wang, Liqun; Hagemann, Tracy L; Kalwa, Hermann; Michel, Thomas; Messing, Albee; Feany, Mel B

    2015-11-26

    Glia play critical roles in maintaining the structure and function of the nervous system; however, the specific contribution that astroglia make to neurodegeneration in human disease states remains largely undefined. Here we use Alexander disease, a serious degenerative neurological disorder caused by astrocyte dysfunction, to identify glial-derived NO as a signalling molecule triggering astrocyte-mediated neuronal degeneration. We further find that NO acts through cGMP signalling in neurons to promote cell death. Glial cells themselves also degenerate, via the DNA damage response and p53. Our findings thus define a specific mechanism for glial-induced non-cell autonomous neuronal cell death, and identify a potential therapeutic target for reducing cellular toxicity in Alexander disease, and possibly other neurodegenerative disorders with glial dysfunction.

  14. Inducible nitric oxide synthase (iNOS) and nitric oxide (NO) are important mediators of reflux-induced cell signalling in esophageal cells.

    PubMed

    McAdam, E; Haboubi, H N; Forrester, G; Eltahir, Z; Spencer-Harty, S; Davies, C; Griffiths, A P; Baxter, J N; Jenkins, G J S

    2012-11-01

    Nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) has been implicated in both DNA damage induction and aberrant cell signalling in various tissue and cell backgrounds. We investigated here the role of iNOS and NO in DNA damage induction and nuclear factor-kappa B (NF-κB) signalling in esophageal cells in vitro. As esophageal adenocarcinoma develops in a background of Barrett's esophagus secondary to reflux disease, it is possible that inflammatory mediators like NO may be important in esophageal cancer development. We show that reflux components like stomach acid and bile acids [deoxycholic acid (DCA)] can induce iNOS gene and protein expression and produce NO generation in esophageal cells, using real-time PCR, western blotting and NO sensitive fluorescent probes, respectively. This up-regulation of iNOS expression was not dependent on NF-κB activity. DCA-induced DNA damage was independent of NF-κB and only partially dependent on iNOS and NO, as measured by the micronucleus assay. These same reflux constituents also activated the oncogenic transcription factor NF-κB, as measured by transcription factor enzyme-linked immunosorbent assay and gene expression studies with NF-κB linked genes (e.g. interleukin-8). Importantly, we show here for the first time that basal levels of NF-κB activity (and possibly acid and DCA-induced NF-κB) are dependent on iNOS/NO and this may lead to a positive feedback loop whereby induced iNOS is upstream of NF-κB, hence prolonging and potentially amplifying this signalling, presumably through NO activation of NF-κB. Furthermore, we confirm increased protein levels of iNOS in esophageal adenocarcinoma and, therefore, in neoplastic development in the esophagus.

  15. Nicotine Induces Podocyte Apoptosis through Increasing Oxidative Stress

    PubMed Central

    Lan, Xiqian; Lederman, Rivka; Eng, Judith M.; Shoshtari, Seyedeh Shadafarin Marashi; Saleem, Moin A.; Malhotra, Ashwani; Singhal, Pravin C.

    2016-01-01

    Background Cigarette smoking plays an important role in the progression of chronic kidney disease (CKD). Nicotine, one of the major components of cigarette smoking, has been demonstrated to increase proliferation of renal mesangial cells. In this study, we examined the effect of nicotine on podocyte injury. Methods To determine the expression of nicotinic acetylcholine receptors (nAChR subunits) in podocytes, cDNAs and cell lysate of cultured human podocytes were used for the expression of nAChR mRNAs and proteins, respectively; and mouse renal cortical sections were subjected to immunofluorescant staining. We also studied the effect of nicotine on podocyte nephrin expression, reactive oxygen species (ROS) generation (via DCFDA loading followed by fluorometric analysis), proliferation, and apoptosis (morphologic assays). We evaluated the effect of nicotine on podocyte downstream signaling including phosphorylation of ERK1/2, JNK, and p38 and established causal relationships by using respective inhibitors. We used nAChR antagonists to confirm the role of nicotine on podocyte injury. Results Human podocytes displayed robust mRNA and protein expression of nAChR in vitro studies. In vivo studies, mice renal cortical sections revealed co-localization of nAChRs along with synaptopodin. In vitro studies, nephrin expression in podocyte was decreased by nicotine. Nicotine stimulated podocyte ROS generation; nonetheless, antioxidants such as N-acetyl cysteine (NAC) and TEMPOL (superoxide dismutase mimetic agent) inhibited this effect of nicotine. Nicotine did not modulate proliferation but promoted apoptosis in podocytes. Nicotine enhanced podocyte phosphorylation of ERK1/2, JNK, and p38, and their specific inhibitors attenuated nicotine-induced apoptosis. nAChR antagonists significantly suppressed the effects of nicotine on podocyte. Conclusions Nicotine induces podocyte apoptosis through ROS generation and associated downstream MAPKs signaling. The present study provides

  16. Mono-2-ethylhexyl phthalate induces oxidative stress responses in human placental cells in vitro

    SciTech Connect

    Tetz, Lauren M.; Cheng, Adrienne A.; Korte, Cassandra S.; Giese, Roger W.; Wang, Poguang; Harris, Craig; Meeker, John D.; Loch-Caruso, Rita

    2013-04-01

    Di-2-ethylhexyl phthalate (DEHP) is an environmental contaminant commonly used as a plasticizer in polyvinyl chloride products. Exposure to DEHP has been linked to adverse pregnancy outcomes in humans including preterm birth, low birth-weight, and pregnancy loss. Although oxidative stress is linked to the pathology of adverse pregnancy outcomes, effects of DEHP metabolites, including the active metabolite, mono-2-ethylhexyl phthalate (MEHP), on oxidative stress responses in placental cells have not been previously evaluated. The objective of the current study is to identify MEHP-stimulated oxidative stress responses in human placental cells. We treated a human placental cell line, HTR-8/SVneo, with MEHP and then measured reactive oxygen species (ROS) generation using the dichlorofluorescein assay, oxidized thymine with mass-spectrometry, redox-sensitive gene expression with qRT-PCR, and apoptosis using a luminescence assay for caspase 3/7 activity. Treatment of HTR-8 cells with 180 μM MEHP increased ROS generation, oxidative DNA damage, and caspase 3/7 activity, and resulted in differential expression of redox-sensitive genes. Notably, 90 and 180 μM MEHP significantly induced mRNA expression of prostaglandin-endoperoxide synthase 2 (PTGS2), an enzyme important for synthesis of prostaglandins implicated in initiation of labor. The results from the present study are the first to demonstrate that MEHP stimulates oxidative stress responses in placental cells. Furthermore, the MEHP concentrations used were within an order of magnitude of the highest concentrations measured previously in human umbilical cord or maternal serum. The findings from the current study warrant future mechanistic studies of oxidative stress, apoptosis, and prostaglandins as molecular mediators of DEHP/MEHP-associated adverse pregnancy outcomes. - Highlights: ► MEHP increased reactive oxygen species, oxidative DNA damage, and caspase activity. ► MEHP induced expression of PTGS2, a gene

  17. Fulminant hepatic failure in rats induces oxidative stress differentially in cerebral cortex, cerebellum and pons medulla.

    PubMed

    Sathyasaikumar, K V; Swapna, I; Reddy, P V B; Murthy, Ch R K; Dutta Gupta, A; Senthilkumaran, B; Reddanna, P

    2007-03-01

    Hepatic Encephalopathy (HE) is one of the most common complications of acute liver diseases and is known to have profound influence on the brain. Most of the studies, available from the literature are pertaining to whole brain homogenates or mitochondria. Since brain is highly heterogeneous with functions localized in specific areas, the present study was aimed to assess the oxidative stress in different regions of brain-cerebral cortex, cerebellum and pons medulla during acute HE. Acute liver failure was induced in 3-month old adult male Wistar rats by intraperitoneal injection of thioacetamide (300 mg/kg body weight for two days), a well known hepatotoxin. Oxidative stress conditions were assessed by free radical production, lipid peroxidation, nitric oxide levels, GSH/GSSG ratio and antioxidant enzyme machinery in three distinct structures of rat braincerebral cortex, cerebellum and pons medulla. Results of the present study indicate a significant increase in malondialdehyde (MDA) levels, reactive oxygen species (ROS), total nitric oxide levels [(NO) estimated by measuring (nitrites + nitrates)] and a decrease in GSH/GSSG ratio in all the regions of brain. There was also a marked decrease in the activity of the antioxidant enzymes-glutathione peroxidase, glutathione reductase and catalase while the super oxide dismutase activity (SOD) increased. However, the present study also revealed that pons medulla and cerebral cortex were more susceptible to oxidative stress than cerebellum. The increased vulnerability to oxidative stress in pons medulla could be due to the increased NO levels and increased activity of SOD and decreased glutathione peroxidase and glutathione reductase activities. In summary, the present study revealed that oxidative stress prevails in different cerebral regions analyzed during thioacetamide-induced acute liver failure with more pronounced effects on pons medulla and cerebral cortex.

  18. Oxidative Damage Induced by Arsenic in Mice or Rats: A Systematic Review and Meta-Analysis.

    PubMed

    Xu, Mengchuan; Rui, Dongsheng; Yan, Yizhong; Xu, Shangzhi; Niu, Qiang; Feng, Gangling; Wang, Yan; Li, Shugang; Jing, Mingxia

    2017-03-01

    In this meta-analysis, studies reporting arsenic-induced oxidative damage in mouse models were systematically evaluated to provide a scientific understanding of oxidative stress mechanisms associated with arsenic poisoning. Fifty-eight relevant peer-reviewed publications were identified through exhaustive database searching. Oxidative stress indexes assessed included superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), glutathione-s-transferase (GST), glutathione reductase (GR), oxidized glutathione (GSSG), malondialdehyde (MDA), and reactive oxygen species (ROS). Our meta-analysis showed that arsenic exposure generally suppressed measured levels of the antioxidants, SOD, CAT, GSH, GPx, GST, and GR, but increased levels of the oxidants, GSSG, MDA, and ROS. Arsenic valence was important and GR and MDA levels increased to a significantly (P < 0.05) greater extent upon exposure to As(3+) than to As(5+). Other factors that contributed to a greater overall oxidative effect from arsenic exposure included intervention time, intervention method, dosage, age of animals, and the sample source from which the indexes were estimated. Our meta-analysis effectively summarized a wide range of studies and detected a positive relationship between arsenic exposure and oxidative damage. These data provide a scientific basis for the prevention and treatment of arsenic poisoning.

  19. Kinetic aspects of the formation of aluminium oxide by use of a microwave-induced plasma.

    PubMed

    Quade, A; Steffen, H; Hippler, R; Wulff, H

    2002-10-01

    The oxidation of thin aluminium layers in a microwave plasma has been investigated to determine the kinetics of oxide growth. Thin Al-coatings were oxidized by means of a variety of gas mixtures, characterized by different partial pressures of oxygen, in microwave-induced plasmas of different power. To study the whole kinetic process the Al-metal and the oxide formed were investigated by means of a combination of grazing incidence X-ray reflectometry (GIXR) and grazing incidence X-ray diffractometry (GIXRD). XPS and FTIR spectroscopy confirmed the formation of stoichiometric Al(2)O(3). The alumina formed is X-ray amorphous. Quantitative description of oxide formation was achieved indirectly by determination of the decrease in the integrated intensity of the Al(111)-peak and the total thickness of the whole coating. These values enabled calculation of kinetic data. It was found that oxide growth was a combination of two simultaneous processes - diffusion and sputter processes. The diffusion coefficient D (cm(2) s(-1)) and the sputter rate S (nm s(-1)) were determined. The effect of the composition of the gas mixture, microwave power, and concentration of activated oxygen species on the oxidation process will be discussed. For calculation of the activation energy, E(A), of this plasma-enhanced diffusion process the temperature-dependence of D was investigated.

  20. Hydrogen sulfide induces oxidative damage to RNA and DNA in a sulfide-tolerant marine invertebrate.

    PubMed

    Joyner-Matos, Joanna; Predmore, Benjamin L; Stein, Jenny R; Leeuwenburgh, Christiaan; Julian, David

    2010-01-01

    Hydrogen sulfide acts as an environmental toxin across a range of concentrations and as a cellular signaling molecule at very low concentrations. Despite its toxicity, many animals, including the mudflat polychaete Glycera dibranchiata, are periodically or continuously exposed to sulfide in their environment. We tested the hypothesis that a broad range of ecologically relevant sulfide concentrations induces oxidative stress and oxidative damage to RNA and DNA in G. dibranchiata. Coelomocytes exposed in vitro to sulfide (0-3 mmol L(-1) for 1 h) showed dose-dependent increases in oxidative stress (as 2',7'-dichlorofluorescein fluorescence) and superoxide production (as dihydroethidine fluorescence). Coelomocytes exposed in vitro to sulfide (up to 0.73 mmol L(-1) for 2 h) also acquired increased oxidative damage to RNA (detected as 8-oxo-7,8-dihydroguanosine) and DNA (detected as 8-oxo-7,8-dihydro-2'-deoxyguanosine). Worms exposed in vivo to sulfide (0-10 mmol L(-1) for 24 h) acquired elevated oxidative damage to RNA and DNA in both coelomocytes and body wall tissue. While the consequences of RNA and DNA oxidative damage are poorly understood, oxidatively damaged deoxyguanosine bases preferentially bind thymine, causing G-T transversions and potentially causing heritable point mutations. This suggests that sulfide can be an environmental mutagen in sulfide-tolerant invertebrates.

  1. Geraniol attenuates 2-acetylaminofluorene induced oxidative stress, inflammation and apoptosis in the liver of wistar rats.

    PubMed

    Hasan, Syed Kazim; Sultana, Sarwat

    2015-01-01

    2-Acetylaminofluorene (2-AAF), is a well-known liver toxicant, generally used to induce tumors in laboratory animals. Geraniol (GE), a monoterpene found in essential oils of herbs and fruits, has been known to possess preventive efficacy against chemically induced toxicities. The present study was designed to analyze the protective effect of GE against 2-AAF induced oxidative stress, inflammation, hyperproliferation and apoptotic tissue damage in the liver of female Wistar rats. 2-AAF (0.02% w/w in diet) was administered and subjected to partial hepatectomy, as a mitogenic stimulus for the induction of hyperproliferation of liver tissue. GE was pre-treated orally at two different doses (100 and 200 mg/kg b.wt.) dissolved in corn oil. GE pre-treatment significantly ameliorated 2-AAF induced oxidative damage by diminishing tissue lipid peroxidation accompanied by the increase in enzymatic activities of catalase, glutathione peroxidase, glutathione reductase, superoxide dismutase and reduced glutathione content. The level of serum toxicity markers (AST, ALT, LDH) was found to be decreased. Pre-treatment with GE downregulated the expression of caspase-3,9, COX-2, NFkB, PCNA, iNOS, VEGF and significantly decreased disintegration of DNA. Histological findings further revealed that GE significantly restores the architecture of liver tissue. In the light of the above observations it may be concluded that GE may be used as preventive agent against 2-AAF induced oxidative stress, inflammation, hyperproliferation and apoptotic damage.

  2. Supplementary catechins attenuate cooking-oil-fumes-induced oxidative stress in rat lung.

    PubMed

    Yang, Chao-Huei; Lin, Chun-Yao; Yang, Joan-Hwa; Liou, Shaw-Yih; Li, Ping-Chia; Chien, Chiang-Ting

    2009-06-30

    Cooking-oil-fumes containing toxic components may induce reactive oxygen species (ROS) to oxidize macromolecules and lead to acute lung injury. Our previous study showed that a decaffineated green tea extract containing (+)-catechin, (-)-epicatechin, (+)-gallocatechin, (-)-epigallocatechin, (-)-epicatechin gallate, and (-)-epigallocatechin gallate can inhibit oxidation, inflammation, and apoptosis. We determined whether the catechins supplement may reduce cooking-oil-fumes-induced acute lung injury in rat. In the urethane-anesthetized Wistar rat subjected to 30-120 min of cooking-oil-fumes exposure, blood ROS significantly increased in the recovery stage. After 30-min cooking-oil-fumes exposure, the enhanced blood ROS level further increased in a time-dependent manner during the recovery stage (321 +/- 69 counts/10 s after 1 h, 540 +/- 89 counts/10 s after 2 h, and 873 +/- 112 counts/10 s after 4 h). Four hours after 30-min cooking-oil-fumes exposure, lung lavage neutrophils and ROS as well as lung tissue dityrosine and 4-hydroxy-2-nonenal increased significantly. Two weeks of catechins supplememnt significantly reduced the enhanced lavage ROS, lung dityrosine and 4-hydroxy-2-nonenal level. Cooking-oil-fumes-induced oxidative stress decreased lung Bcl-2/Bax ratio and HSP70 expression, but catechins treatment preserved the downregulation of Bcl-2/Bax ratio and HSP70 expression. We conclude that catechins supplement attenuates cooking-oil-fumes-induced acute lung injury via the preservation of oil-smoke induced downregulation of antioxidant, antiapoptosis, and chaperone protein expression.

  3. The role of photolabile dermal nitric oxide derivates in ultraviolet radiation (UVR)-induced cell death.

    PubMed

    Opländer, Christian; Suschek, Christoph V

    2012-12-21

    Human skin is exposed to solar ultraviolet radiation comprising UVB (280-315 nm) and UVA (315-400 nm) on a daily basis. Within the last two decades, the molecular and cellular response to UVA/UVB and the possible effects on human health have been investigated extensively. It is generally accepted that the mutagenic and carcinogenic properties of UVB is due to the direct interaction with DNA. On the other hand, by interaction with non-DNA chromophores as endogenous photosensitizers, UVA induces formation of reactive oxygen species (ROS), which play a pivotal role as mediators of UVA-induced injuries in human skin. This review gives a short overview about relevant findings concerning the molecular mechanisms underlying UVA/UVB-induced cell death. Furthermore, we will highlight the potential role of cutaneous antioxidants and photolabile nitric oxide derivates (NODs) in skin physiology. UVA-induced decomposition of the NODs, like nitrite, leads not only to non-enzymatic formation of nitric oxide (NO), but also to toxic reactive nitrogen species (RNS), like peroxynitrite. Whereas under antioxidative conditions the generation of protective amounts of NO is favored, under oxidative conditions, less injurious reactive nitrogen species are generated, which may enhance UVA-induced cell death.

  4. Ferricytochrome c protects mitochondrial cytochrome c oxidase against hydrogen peroxide-induced oxidative damage.

    PubMed

    Sedlák, Erik; Fabian, Marian; Robinson, Neal C; Musatov, Andrej

    2010-11-30

    An excess of ferricytochrome c protects purified mitochondrial cytochrome c oxidase and bound cardiolipin from hydrogen peroxide-induced oxidative modification. All of the peroxide-induced changes within cytochrome c oxidase, such as oxidation of Trp(19,IV) and Trp(48,VIIc), partial dissociation of subunits VIa and VIIa, and generation of cardiolipin hydroperoxide, no longer take place in the presence of ferricytochrome c. Furthermore, ferricytochrome c suppresses the yield of H(2)O(2)-induced free radical detectable by electron paramagnetic resonance spectroscopy within cytochrome c oxidase. These protective effects are based on two mechanisms. The first involves the peroxidase/catalase-like activity of ferricytochrome c, which results in the decomposition of H(2)O(2), with the apparent bimolecular rate constant of 5.1±1.0M(-1)s(-1). Although this value is lower than the rate constant of a specialized peroxidase, the activity is sufficient to eliminate H(2)O(2)-induced damage to cytochrome c oxidase in the presence of an excess of ferricytochrome c. The second mechanism involves ferricytochrome c-induced quenching of free radicals generated within cytochrome c oxidase. These results suggest that ferricytochrome c may have an important role in protection of cytochrome c oxidase and consequently the mitochondrion against oxidative damage.

  5. Quercetin protects human peripheral blood mononuclear cells from OTA-induced oxidative stress, genotoxicity, and inflammation.

    PubMed

    Periasamy, Ramyaa; Kalal, Iravathy Goud; Krishnaswamy, Rajashree; Viswanadha, VijayaPadma

    2016-07-01

    Ochratoxin A (OTA) is one of the most abundant food-contaminating mycotoxins world wide, and is detrimental to human and animal health. This study evaluated the protective effect of quercetin against OTA-induced cytotoxicity, genotoxicity, and inflammatory response in lymphocytes. Cytotoxicity determined by MTT assay revealed IC20 value of OTA to be 20 µM, which was restored to near control values by pretreatment with quercetin. Oxidative stress parameters such as antioxidant enzymes, LPO and PCC levels indicated that quercetin exerted a protective effect on OTA-induced oxidative stress. Quercetin exerted an antigenotoxic effect on OTA-induced genotoxicity, by significantly reducing the number of structural aberrations in chromosomes and comet parameters like, % olive tail moment from 2.76 ± 0.02 to 0.56 ± 0.02 and % tail DNA from 56.23 ± 2.56 to 12.36 ± 0.56 as determined by comet assay. OTA-induced NO, TNF-α, IL-6, and IL-8 were significantly reduced in the quercetin pretreated samples indicating its anti-inflammatory role. Our results demonstrate for the first time that quercetin exerts a cytoprotective effect against OTA-induced oxidative stress, genotoxicity, and inflammation in lymphocytes. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 855-865, 2016.

  6. Ozone-induced injury and oxidative stress in bronchiolar epithelium are associated with altered pulmonary mechanics.

    PubMed

    Sunil, Vasanthi R; Vayas, Kinal N; Massa, Christopher B; Gow, Andrew J; Laskin, Jeffrey D; Laskin, Debra L

    2013-06-01

    In these studies, we analyzed the effects of ozone on bronchiolar epithelium. Exposure of rats to ozone (2 ppm, 3 h) resulted in rapid (within 3 h) and persistent (up to 72 h) histological changes in the bronchiolar epithelium, including hypercellularity, loss of cilia, and necrotizing bronchiolitis. Perivascular edema and vascular congestion were also evident, along with a decrease in Clara cell secretory protein in bronchoalveolar lavage, which was maximal 24 h post-exposure. Ozone also induced the appearance of 8-hydroxy-2'-deoxyguanosine, Ym1, and heme oxygenase-1 in the bronchiolar epithelium. This was associated with increased expression of cleaved caspase-9 and beclin-1, indicating initiation of apoptosis and autophagy. A rapid and persistent increase in galectin-3, a regulator of epithelial cell apoptosis, was also observed. Following ozone exposure (3-24 h), increased expression of cyclooxygenase-2, inducible nitric oxide synthase, and arginase-1 was noted in bronchiolar epithelium. Ozone-induced injury and oxidative stress in bronchiolar epithelium were linked to methacholine-induced alterations in pulmonary mechanics. Thus, significant increases in lung resistance and elastance, along with decreases in lung compliance and end tidal volume, were observed at higher doses of methacholine. This indicates that ozone causes an increase in effective stiffness of the lung as a consequence of changes in the conducting airways. Collectively, these studies demonstrate that bronchiolar epithelium is highly susceptible to injury and oxidative stress induced by acute exposure to ozone; moreover, this is accompanied by altered lung functioning.

  7. Cannabidiol attenuates cisplatin-induced nephrotoxicity by decreasing oxidative/nitrosative stress, inflammation, and cell death.

    PubMed

    Pan, Hao; Mukhopadhyay, Partha; Rajesh, Mohanraj; Patel, Vivek; Mukhopadhyay, Bani; Gao, Bin; Haskó, György; Pacher, Pál

    2009-03-01

    The platinum compound cisplatin is one of the most potent chemotherapy agents available to treat various malignancies. Nephrotoxicity is a common complication of cisplatin chemotherapy, which involves increased oxidative and nitrosative stress, limiting its clinical use. In this study, we have investigated the effects of a nonpsychoactive cannabinoid cannabidiol, which was reported to exert antioxidant effects and has recently been approved for the treatment of inflammation, pain, and spasticity associated with multiple sclerosis in patients in a mouse model of cisplatin-induced nephropathy. Cisplatin induced increased expression of superoxide-generating enzymes RENOX (NOX4) and NOX1, enhanced reactive oxygen species generation, inducible nitric-oxide synthase expression, nitrotyrosine formation, apoptosis (caspase-3/7 activity, DNA fragmentation, and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining), poly(ADP-ribose) polymerase activity, and inflammation (tumor necrosis factor-alpha and interleukin-1beta) in the kidneys of mice, associated with marked histopathological damage and impaired renal function (elevated serum blood urea nitrogen and creatinine levels) 72 h after the administration of the drug. Treatment of mice with cannabidiol markedly attenuated the cisplatin-induced oxidative/nitrosative stress, inflammation, and cell death in the kidney, and it improved renal function. Thus, our results suggest that cannabidiol may represent a promising new protective strategy against cisplatin-induced nephrotoxicity.

  8. Quercetin inhibited cadmium-induced autophagy in the mouse kidney via inhibition of oxidative stress

    PubMed Central

    Yuan, Yuan; Ma, Shixun; Qi, Yongmei; Wei, Xue; Cai, Hui; Dong, Li; Lu, Yufeng; Zhang, Yupeng; Guo, Qingjin

    2016-01-01

    The objective of the current study was to explore the inhibitory effects of quercetin on cadmium-induced autophagy in mouse kidneys. Mice were intraperitoneally injected with cadmium and quercetin once daily for 3 days. The LC3-II/β-actin ratio was used as the autophagy marker, and autophagy was observed by transmission electron microscopy. Oxidative stress was investigated in terms of reactive oxygen species, total antioxidant capacity, and malondialdehyde. Cadmium significantly induced typical autophagosome formation, increased the LC3-II/β-actin ratio, reactive oxygen species level, and malondialdehyde content, and decreased total antioxidant capacity. Interestingly, quercetin markedly decreased the cadmium-induced LC3-II/β-actin ratio, reactive oxygen species levels, and malondialdehyde content, and simultaneously increased total antioxidant capacity. Cadmium can inhibit total antioxidant capacity, produce a large amount of reactive oxygen species, lead to oxidative stress, and promote lipid peroxidation, eventually inducing autophagy in mouse kidneys. Quercetin could inhibit cadmium-induced autophagy via inhibition of oxidative stress. This study may provide a theoretical basis for the treatment of cadmium injury. PMID:27821909

  9. Formic-acid-induced depolymerization of oxidized lignin to aromatics.

    PubMed

    Rahimi, Alireza; Ulbrich, Arne; Coon, Joshua J; Stahl, Shannon S

    2014-11-13

    Lignin is a heterogeneous aromatic biopolymer that accounts for nearly 30% of the organic carbon on Earth and is one of the few renewable sources of aromatic chemicals. As the most recalcitrant of the three components of lignocellulosic biomass (cellulose, hemicellulose and lignin), lignin has been treated as a waste product in the pulp and paper industry, where it is burned to supply energy and recover pulping chemicals in the operation of paper mills. Extraction of higher value from lignin is increasingly recognized as being crucial to the economic viability of integrated biorefineries. Depolymerization is an important starting point for many lignin valorization strategies, because it could generate valuable aromatic chemicals and/or provide a source of low-molecular-mass feedstocks suitable for downstream processing. Commercial precedents show that certain types of lignin (lignosulphonates) may be converted into vanillin and other marketable products, but new technologies are needed to enhance the lignin value chain. The complex, irregular structure of lignin complicates chemical conversion efforts, and known depolymerization methods typically afford ill-defined products in low yields (that is, less than 10-20wt%). Here we describe a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60wt% yield of low-molecular-mass aromatics. We present the discovery of this facile C-O cleavage method, its application to aspen lignin depolymerization, and mechanistic insights into the reaction. The broader implications of these results for lignin conversion and biomass refining are also considered.

  10. Formic-acid-induced depolymerization of oxidized lignin to aromatics

    NASA Astrophysics Data System (ADS)

    Rahimi, Alireza; Ulbrich, Arne; Coon, Joshua J.; Stahl, Shannon S.

    2014-11-01

    Lignin is a heterogeneous aromatic biopolymer that accounts for nearly 30% of the organic carbon on Earth and is one of the few renewable sources of aromatic chemicals. As the most recalcitrant of the three components of lignocellulosic biomass (cellulose, hemicellulose and lignin), lignin has been treated as a waste product in the pulp and paper industry, where it is burned to supply energy and recover pulping chemicals in the operation of paper mills. Extraction of higher value from lignin is increasingly recognized as being crucial to the economic viability of integrated biorefineries. Depolymerization is an important starting point for many lignin valorization strategies, because it could generate valuable aromatic chemicals and/or provide a source of low-molecular-mass feedstocks suitable for downstream processing. Commercial precedents show that certain types of lignin (lignosulphonates) may be converted into vanillin and other marketable products, but new technologies are needed to enhance the lignin value chain. The complex, irregular structure of lignin complicates chemical conversion efforts, and known depolymerization methods typically afford ill-defined products in low yields (that is, less than 10-20wt%). Here we describe a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60wt% yield of low-molecular-mass aromatics. We present the discovery of this facile C-O cleavage method, its application to aspen lignin depolymerization, and mechanistic insights into the reaction. The broader implications of these results for lignin conversion and biomass refining are also considered.

  11. Oxidized LDL induces in vitro lymphocyte activation in antiphospholipid syndrome.

    PubMed

    Laczik, Renata; Szodoray, Peter; Veres, Katalin; Lakos, Gabriella; Sipka, Sandor; Szegedi, Gyula; Soltész, Pal

    2010-06-01

    Oxidized low-density lipoprotein (oxLDL) is a key feature of the atheromatosus plaque and plays a critical role in foam cell formation and perpetuation of inflammatory processes. In antiphospholipid syndrome (APS), oxLDL molecules form complexes with beta2GPI and become target antigens for autoantibodies, which are detectable in the sera of these patients. oxLDL takes part in the pathogenesis of APS and in the concomitant accelerated atherosclerosis, yet the exact associated immune mechanisms are not clear in details. The aim of this study was to assess the activation and proliferation response of peripheral blood mononuclear cells (PBMCs) derived from patients with APS in the presence of oxLDL. Thirteen patients with APS and nine healthy individuals were enrolled in the study. Separated PBMCs of these patients were cultured in the presence of immunogenic epitope of oxLDL. Lymphocyte proliferation and cytokine secretion (TNF-alpha, IL-2, IFN-gamma, IL-4, and IL-10) were assessed by ELISA. We found significant PBMC proliferation in APS compared to healthy controls (PI/proliferation index/APS: 1.76 vs. PI control: 0.56; p = 0.032). A significant IL-2 and IFN-gamma secretion were detected upon oxLDL stimulus in patients with APS compared to controls (IL-2 cytokine secretion index (CSI) APS: 278.5, IL-2 CSI controls: 65.1; p = 0.025; IFN-gamma CSI APS: 163.2, IFN-gamma CSI controls: 77.4; p = 0.025). Based on our findings, we assume that oxLDL via Th1-type cytokine production and lymphocyte proliferation may contribute to the perpetuation of immune processes in APS.

  12. F2-Laser-Induced Modification of Aluminum Thin Films into Transparent Aluminum Oxide

    NASA Astrophysics Data System (ADS)

    Okoshi, Masayuki; Iwai, Kazufumi; Nojiri, Hidetoshi; Inoue, Narumi

    2012-12-01

    A vacuum-UV F2 laser of 157 nm wavelength induced strong oxidation of 10-nm-thick Al thin films, forming transparent Al2O3 on silica glass. The laser-induced modification occurred at the surface of Al thin films; consequently, the thickness of the formed Al2O3 thin films increased linearly with increasing number of F2 laser photons. The formation of equivalent-phase Al2O3 thin films was confirmed by X-ray photoelectron spectroscopy. The oxidation reaction in the laser-induced modification of 10-nm-thick Al thin films was slower than that for 20- and 60-nm-thick Al thin films. Morphological changes leading to the crystallization of the Al2O3 thin films were also observed when the thickness of Al thin films increased from 10 to 20 and 60 nm.

  13. Mechanisms of Action Involved in Ozone Therapy: Is healing induced via a mild oxidative stress?

    PubMed Central

    2011-01-01

    The potential mechanisms of action of ozone therapy are reviewed in this paper. The therapeutic efficacy of ozone therapy may be partly due the controlled and moderate oxidative stress produced by the reactions of ozone with several biological components. The line between effectiveness and toxicity of ozone may be dependent on the strength of the oxidative stress. As with exercise, it is well known that moderate exercise is good for health, whereas excessive exercise is not. Severe oxidative stress activates nuclear transcriptional factor kappa B (NFκB), resulting in an inflammatory response and tissue injury via the production of COX2, PGE2, and cytokines. However, moderate oxidative stress activates another nuclear transcriptional factor, nuclear factor-erythroid 2-related factor 2 (Nrf2). Nrf2 then induces the transcription of antioxidant response elements (ARE). Transcription of ARE results in the production of numerous antioxidant enzymes, such as SOD, GPx, glutathione-s-transferase(GSTr), catalase (CAT), heme-oxygenase-1 (HO-1), NADPH-quinone-oxidoreductase (NQO-1), phase II enzymes of drug metabolism and heat shock proteins (HSP). Both free antioxidants and anti-oxidative enzymes not only protect cells from oxidation and inflammation but they may be able to reverse the chronic oxidative stress. Based on these observations, ozone therapy may also activate Nrf2 via moderate oxidative stress, and suppress NFκB and inflammatory responses. Furthermore, activation of Nrf2 results in protection against neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Mild immune responses are induced via other nuclear transcriptional factors, such as nuclear factor of activated T-cells (NFAT) and activated protein-1 (AP-1). Additionally, the effectiveness of ozone therapy in vascular diseases may also be explained by the activation of another nuclear transcriptional factor, hypoxia inducible factor-1α (HIF-1a), which is also induced via moderate

  14. Mechanisms of Action Involved in Ozone Therapy: Is healing induced via a mild oxidative stress?

    PubMed

    Sagai, Masaru; Bocci, Velio

    2011-12-20

    The potential mechanisms of action of ozone therapy are reviewed in this paper. The therapeutic efficacy of ozone therapy may be partly due the controlled and moderate oxidative stress produced by the reactions of ozone with several biological components. The line between effectiveness and toxicity of ozone may be dependent on the strength of the oxidative stress. As with exercise, it is well known that moderate exercise is good for health, whereas excessive exercise is not.Severe oxidative stress activates nuclear transcriptional factor kappa B (NFκB), resulting in an inflammatory response and tissue injury via the production of COX2, PGE2, and cytokines. However, moderate oxidative stress activates another nuclear transcriptional factor, nuclear factor-erythroid 2-related factor 2 (Nrf2). Nrf2 then induces the transcription of antioxidant response elements (ARE). Transcription of ARE results in the production of numerous antioxidant enzymes, such as SOD, GPx, glutathione-s-transferase(GSTr), catalase (CAT), heme-oxygenase-1 (HO-1), NADPH-quinone-oxidoreductase (NQO-1), phase II enzymes of drug metabolism and heat shock proteins (HSP). Both free antioxidants and anti-oxidative enzymes not only protect cells from oxidation and inflammation but they may be able to reverse the chronic oxidative stress. Based on these observations, ozone therapy may also activate Nrf2 via moderate oxidative stress, and suppress NFκB and inflammatory responses. Furthermore, activation of Nrf2 results in protection against neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Mild immune responses are induced via other nuclear transcriptional factors, such as nuclear factor of activated T-cells (NFAT) and activated protein-1 (AP-1).Additionally, the effectiveness of ozone therapy in vascular diseases may also be explained by the activation of another nuclear transcriptional factor, hypoxia inducible factor-1α (HIF-1a), which is also induced via moderate oxidative

  15. Cerium Oxide Nanoparticles in Lung Acutely Induce Oxidative Stress, Inflammation, and DNA Damage in Various Organs of Mice

    PubMed Central

    Yuvaraju, Priya; Beegam, Sumaya; Fahim, Mohamed A.; Ali, Badreldin H.

    2017-01-01

    CeO2 nanoparticles (CeO2 NPs) which are used as a diesel fuel additive are emitted in the particulate phase in the exhaust, posing a health concern. However, limited information exists regarding the in vivo acute toxicity of CeO2 NPs on multiple organs. Presently, we investigated the acute (24 h) effects of intratracheally instilled CeO2 NPs in mice (0.5 mg/kg) on oxidative stress, inflammation, and DNA damage in major organs including lung, heart, liver, kidneys, spleen, and brain. Lipid peroxidation measured by malondialdehyde production was increased in the lungs only, and reactive oxygen species were increased in the lung, heart, kidney, and brain. Superoxide dismutase activity was decreased in the lung, liver, and kidney, whereas glutathione increased in lung but it decreased in the kidney. Total nitric oxide was increased in the lung and spleen but it decreased in the heart. Tumour necrosis factor-α increased in all organs studied. Interleukin- (IL-) 6 increased in the lung, heart, liver, kidney, and spleen. IL-1β augmented in the lung, heart, kidney, and spleen. Moreover, CeO2 NPs induced DNA damage, assessed by COMET assay, in all organs studied. Collectively, these findings indicate that pulmonary exposure to CeO2 NPs causes oxidative stress, inflammation, and DNA damage in multiple organs. PMID:28392888

  16. Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications.

    PubMed

    Zhao, Weiling; Robbins, Mike E C

    2009-01-01

    The threat of radiation-induced late normal tissue injury limits the dose of radiation that can be delivered safely to cancer patients presenting with solid tumors. Tissue dysfunction and failure, associated with atrophy, fibrosis and/or necrosis, as well as vascular injury, have been reported in late responding normal tissues, including the central nervous system, gut, kidney, liver, lung, and skin. The precise mechanisms involved in the pathogenesis of radiation-induced late normal tissue injury have not been fully elucidated. It has been proposed recently that the radiation-induced late effects are caused, in part, by chronic oxidative stress and inflammation. Increased production of reactive oxygen species, which leads to lipid peroxidation, oxidation of DNA and proteins, as well as activation of pro-inflammatory factors has been observed in vitro and in vivo. In this review, we will present direct and indirect evidence to support this hypothesis. To improve the long-term survival and quality of life for radiotherapy patients, new approaches have been examined in preclinical models for their efficacy in preventing or mitigating the radiation-induced chronic normal tissue injury. We and others have tested drugs that can either attenuate inflammation or reduce chronic oxidative stress in animal models of late radiation-induced normal tissue injury. The effectiveness of renin-angiotensin system blockers, peroxisome proliferator-activated receptor (PPAR) gamma agonists, and antioxidants/antioxidant enzymes in preventing or mitigating the severity of radiation-induced late effects indicates that radiation-induced chronic injury can be prevented and/or treated. This provides a rationale for the design and development of anti-inflammatory-based interventional approaches for the treatment of radiation-induced late normal tissue injury.

  17. Tocopherols inhibit oxidative and nitrosative stress in estrogen-induced early mammary hyperplasia in ACI rats.

    PubMed

    Das Gupta, Soumyasri; So, Jae Young; Wall, Brian; Wahler, Joseph; Smolarek, Amanda K; Sae-Tan, Sudathip; Soewono, Kelvin Y; Yu, Haixiang; Lee, Mao-Jung; Thomas, Paul E; Yang, Chung S; Suh, Nanjoo

    2015-09-01

    Oxidative stress is known to play a key role in estrogen-induced breast cancer. This study assessed the chemopreventive activity of the naturally occurring γ-tocopherol-rich mixture of tocopherols (γ-TmT) in early stages of estrogen-induced mammary hyperplasia in ACI rats. ACI rats provide an established model of rodent mammary carcinogenesis due to their high sensitivity to estrogen. Female rats were implanted with 9 mg of 17β-estradiol (E2) in silastic tubings and fed with control or 0.3% γ-TmT diet for 1, 3, 7, and 14 d. γ-TmT increased the levels of tocopherols and their metabolites in the serum and mammary glands of the rats. Histological analysis revealed mammary hyperplasia in the E2 treated rats fed with control or γ-TmT diet. γ-TmT decreased the levels of E2-induced nitrosative and oxidative stress markers, nitrotyrosine, and 8-oxo-dG, respectively, in the hyperplastic mammary tissues. 8-Isoprostane, a marker of oxidative stress in the serum, was also reduced by γ-TmT. Noticeably, γ-TmT stimulated Nrf2-dependent antioxidant response in the mammary glands of E2 treated rats, evident from the induced mRNA levels of Nrf2 and its downstream antioxidant enzymes, superoxide dismutase, catalase, and glutathione peroxidase. Therefore, inhibition of nitrosative/oxidative stress through induction of antioxidant response is the primary effect of γ-TmT in early stages of E2-induced mammary hyperplasia. Due to its cytoprotective activity, γ-TmT could be a potential natural agent for the chemoprevention of estrogen-induced breast cancer.

  18. Involvement of Ca2+-independent phospholipase A2 isoforms in oxidant-induced neural cell death.

    PubMed

    Peterson, Brianna; Knotts, Taylor; Cummings, Brian S

    2007-01-01

    This study determined the roles of Ca2+-independent PLA2 (iPLA2) in phospholipid chemistry and oxidant-induced cell death in human astrocytes. A172 cells expressed both cytosolic Group VIA (iPLA2beta) and microsomal Group VIB (iPLA2gamma) PLA2 as determined by activity assays and immunoblot analysis. Inhibition of total iPLA2 activity using racemic bromoenol lactone (BEL, 2.5 microM) decreased the expression of 14:0-16:0 phosphatidylcholine (PtdCho) 15% and increased 18:0-18:1-PtdCho expression 15%. Treatment of cells with the iPLA2gamma specific inhibitor R-BEL decreased 14:0-16:0-PtdCho 35%, 16:0-16:0-PtdCho 15% and induced a 35% increase in 18:0-18:1-PtdCho. In contrast, treatment of cells with the iPLA2beta inhibitor S-BEL did not alter any phospholipid studied. To determine the roles of iPLA2 in oxidant-induced cell death, A172 cells were exposed to hydrogen peroxide (H2O2) or tert-butylhydroperoxide (TBHP); both induced time- and concentration-dependent increases in cell death as assessed by annexin V and propidium iodide staining. Treatment of cells with racemic-BEL alone did not induce cell death. However, pretreatment with BEL prior to H2O2 (500 microM) or TBHP (200 microM) significantly increased necrosis as determined by increases in propidium iodide staining. Treatment with BEL prior to exposure to oxidants accelerated the loss of ATP levels, but not the formation of reactive oxygen species. These data support the hypothesis that iPLA2 mediates oxidant-induced neural cell death and demonstrates differential roles of iPLA2 isoforms in physiological and pathological events.

  19. Hesperidin alleviates acetaminophen induced toxicity in Wistar rats by abrogation of oxidative stress, apoptosis and inflammation.

    PubMed

    Ahmad, Shiekh Tanveer; Arjumand, Wani; Nafees, Sana; Seth, Amlesh; Ali, Nemat; Rashid, Summya; Sultana, Sarwat

    2012-01-25

    Acetaminophen (APAP) is a widely used analgesic and antipyretic drug, but at high dose it leads to undesirable side effects, such as hepatotoxicity and nephrotoxicity. The present study demonstrates the comparative hepatoprotective and nephroprotective activity of hesperidin (HD), a naturally occurring bioflavonoid against APAP induced toxicity. APAP induces hepatotoxicity and nephrotoxicity as was evident by abnormal deviation in the levels of antioxidant enzymes. Moreover, APAP induced renal damage by inducing apoptotic death and inflammation in renal tubular cells, manifested by an increase in the expression of caspase-3, caspase-9, NFkB, iNOS, Kim-1 and decrease in Bcl-2 expression. These results were further supported by the histopathological examination of kidney. All these features of APAP toxicity were reversed by the co-administration of HD. Therefore, our study favors the view that HD may be a useful modulator in alleviating APAP induced oxidative stress and toxicity.

  20. Cannabidiol protects liver from binge alcohol-induced steatosis by mechanisms including inhibition of oxidative stress and increase in autophagy.

    PubMed

    Yang, Lili; Rozenfeld, Raphael; Wu, Defeng; Devi, Lakshmi A; Zhang, Zhenfeng; Cederbaum, Arthur

    2014-03-01

    Acute alcohol drinking induces steatosis, and effective prevention of steatosis can protect liver from progressive damage caused by alcohol. Increased oxidative stress has been reported as one mechanism underlying alcohol-induced steatosis. We evaluated whether cannabidiol, which has been reported to function as an antioxidant, can protect the liver from alcohol-generated oxidative stress-induced steatosis. Cannabidiol can prevent acute alcohol-induced liver steatosis in mice, possibly by preventing the increase in oxidative stress and the activation of the JNK MAPK pathway. Cannabidiol per se can increase autophagy both in CYP2E1-expressing HepG2 cells and in mouse liver. Importantly, cannabidiol can prevent the decrease in autophagy induced by alcohol. In conclusion, these results show that cannabidiol protects mouse liver from acute alcohol-induced steatosis through multiple mechanisms including attenuation of alcohol-mediated oxidative stress, prevention of JNK MAPK activation, and increasing autophagy.

  1. Cigarette smoke-induced oxidative stress in skeletal muscles of mice.

    PubMed

    Barreiro, Esther; del Puerto-Nevado, Laura; Puig-Vilanova, Ester; Pérez-Rial, Sandra; Sánchez, Francisco; Martínez-Galán, Lourdes; Rivera, Stephanie; Gea, Joaquim; González-Mangado, Nicolás; Peces-Barba, Germán

    2012-06-15

    Cigarette smoke (CS)-induced oxidative stress may cause muscle alterations in chronic conditions such as chronic obstructive pulmonary disease (COPD). We sought to explore in AKR/J mice exposed to CS for 6 months and in control animals, levels of protein oxidation, oxidized proteins (immunoblotting, proteomics) and antioxidant mechanisms in both respiratory and limb muscles, body weight modifications, systemic inflammation, and lung structure. Compared to control mice, CS-exposed animals exhibited a reduction in body weight gain at 3 months and thereafter, showed lung emphysema, and exhibited increased oxidative stress levels in their diaphragms and gastrocnemius at 6 months. Proteins involved in glycolysis, ATP production and distribution, carbon dioxide hydration, and muscle contraction were carbonylated in respiratory and limb muscles. Blood tumor necrosis factor (TNF)-alpha levels were significantly greater in CS-exposed mice than in control animals. In AKR/J mice, chronic exposure to CS induces lung emphysema concomitantly with greater oxidative modifications on muscle proteins in both respiratory and limb muscles, and systemic inflammation.

  2. Blue light irradiation-induced oxidative stress in vivo via ROS generation in rat gingival tissue.

    PubMed

    Yoshida, Ayaka; Shiotsu-Ogura, Yukako; Wada-Takahashi, Satoko; Takahashi, Shun-suke; Toyama, Toshizo; Yoshino, Fumihiko

    2015-10-01

    It has been reported that oxidative stress with reactive oxygen species (ROS) generation is induced by blue light irradiation to a living body. Only limited research has been reported in dental field on the dangers of blue light, mostly focusing on cytotoxicity associated with heat injury of dental pulp. We thus performed an in vivo study on oral tissue exposed to blue light. ROS generated upon blue light irradiation of flavin adenine dinucleotide were measured by electron spin resonance spectroscopy. After blue light irradiation, the palatal gingiva of Wistar rats were isolated. Collected samples were subjected to biochemical analysis of lipid peroxidation and glutathione. Singlet oxygen was generated by blue light irradiation, but was significantly quenched in an N-acetyl-L-cysteine (NAC) concentration-dependent manner. Blue light significantly accelerated oxidative stress and increased the oxidized glutathione levels in gingival tissue. These effects were also inhibited by NAC pre-administration. The results suggest that blue light irradiation at clinical levels of tooth bleaching treatment may enhance lipid peroxidation by the induction of oxidative stress and the consumption of a significant amount of intracellular glutathione. In addition, NAC might be an effective supplement for the protection of oral tissues against blue light irradiation-induced oxidative damage.

  3. Chronic Arsenic Exposure-Induced Oxidative Stress is Mediated by Decreased Mitochondrial Biogenesis in Rat Liver.

    PubMed

    Prakash, Chandra; Kumar, Vijay

    2016-09-01

    The present study was executed to study the effect of chronic arsenic exposure on generation of mitochondrial oxidative stress and biogenesis in rat liver. Chronic sodium arsenite treatment (25 ppm for 12 weeks) decreased mitochondrial complexes activity in rat liver. There was a decrease in mitochondrial superoxide dismutase (MnSOD) activity in arsenic-treated rats that might be responsible for increased protein and lipid oxidation as observed in our study. The messenger RNA (mRNA) expression of mitochondrial and nuclear-encoded subunits of complexes I (ND1 and ND2) and IV (COX I and COX IV) was downregulated in arsenic-treated rats only. The protein and mRNA expression of MnSOD was reduced suggesting increased mitochondrial oxidative damage after arsenic treatment. There was activation of Bax and caspase-3 followed by release of cytochrome c from mitochondria suggesting induction of apoptotic pathway under oxidative stress. The entire phenomenon was associated with decrease in mitochondrial biogenesis as evident by decreased protein and mRNA expression of nuclear respiratory factor 1 (NRF-1), nuclear respiratory factor 2 (NRF-2), peroxisome proliferator activator receptor gamma-coactivator 1α (PGC-1α), and mitochondrial transcription factor A (Tfam) in arsenic-treated rat liver. The results of the present study indicate that arsenic-induced mitochondrial oxidative stress is associated with decreased mitochondrial biogenesis in rat liver that may present one of the mechanisms for arsenic-induced hepatotoxicity.

  4. Exercise-induced muscle damage impairs insulin signaling pathway associated with IRS-1 oxidative modification.

    PubMed

    Aoi, W; Naito, Y; Tokuda, H; Tanimura, Y; Oya-Ito, T; Yoshikawa, T

    2012-01-01

    Strenuous exercise induces delayed-onset muscle damage including oxidative damage of cellular components. Oxidative stress to muscle cells impairs glucose uptake via disturbance of insulin signaling pathway. We investigated glucose uptake and insulin signaling in relation to oxidative protein modification in muscle after acute strenuous exercise. ICR mice were divided into sedentary and exercise groups. Mice in the exercise group performed downhill running exercise at 30 m/min for 30 min. At 24 hr after exercise, metabolic performance and insulin-signaling proteins in muscle tissues were examined. In whole body indirect calorimetry, carbohydrate utilization was decreased in the exercised mice along with reduction of the respiratory exchange ratio compared to the rested control mice. Insulin-stimulated uptake of 2-deoxy-[(3)H]glucose in damaged muscle was decreased after acute exercise. Tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and phosphatidyl-3-kinase/Akt signaling were impaired by exercise, leading to inhibition of the membrane translocation of glucose transporter 4. We also found that acute exercise caused 4-hydroxy-nonenal modification of IRS-1 along with elevation of oxidative stress in muscle tissue. Impairment of insulin-induced glucose uptake into damaged muscle after strenuous exercise would be related to disturbance of insulin signal transduction by oxidative modification of IRS-1.

  5. Berberine ameliorate oxidative stress and astrogliosis in the hippocampus of STZ-induced diabetic rats.

    PubMed

    Moghaddam, Hamid Kalalian; Baluchnejadmojarad, Tourandokht; Roghani, Mehrdad; Khaksari, Mehdi; Norouzi, Pirasteh; Ahooie, Malihea; Mahboobi, Fatemeh

    2014-04-01

    Diabetes mellitus increases the risk of central nervous system (CNS) disorders such as stroke, seizures, dementia, and cognitive impairment. Berberine, a natural isoquinoline alkaloid, is reported to exhibit beneficial effect in various neurodegenerative and neuropsychiatric disorders. Moreover, astrocytes are proving critical for normal CNS function, and alterations in their activity and impaired oxidative stress could contribute to diabetes-related cognitive dysfunction. Metabolic and oxidative insults often cause rapid changes in glial cells. Key indicators of this response are increased synthesis of glial fibrillary acidic protein (GFAP) as an astrocytic marker. Therefore, we examined the effects of berberine on glial reactivity of hippocampus in streptozotocin (STZ)-induced diabetic rats, using GFAP immunohistochemistry. Lipid peroxidation, superoxide dismutase (SOD) activity, and nitrite levels were assessed as the parameters of oxidative stress. Eight weeks after diabetes induction, we observed increased numbers of GFAP(+) astrocytes immunostaining associated with increased lipid peroxidation, decreased superoxide dismutase activity, and elevated nitrite levels in the hippocampus of STZ-diabetic rats. In contrast, chronic treatment with berberine (50 and 100 mg/kg p.o. once daily) lowered hyperglycemia, reduced oxidative stress, and prevented the upregulation of GFAP in the brain of diabetic rats. In conclusion, the present study demonstrated that the treatment with berberine resulted in an obvious reduction of oxidative stress and GFAP-immunoreactive astrocytes in the hippocampus of STZ-induced diabetic rats.

  6. Oxidative stress in oocytes during midprophase induces premature loss of cohesion and chromosome segregation errors

    PubMed Central

    Perkins, Adrienne T.; Das, Thomas M.; Panzera, Lauren C.; Bickel, Sharon E.

    2016-01-01

    In humans, errors in meiotic chromosome segregation that produce aneuploid gametes increase dramatically as women age, a phenomenon termed the “maternal age effect.” During meiosis, cohesion between sister chromatids keeps recombinant homologs physically attached and premature loss of cohesion can lead to missegregation of homologs during meiosis I. A growing body of evidence suggests that meiotic cohesion deteriorates as oocytes age and contributes to the maternal age effect. One hallmark of aging cells is an increase in oxidative damage caused by reactive oxygen species (ROS). Therefore, increased oxidative damage in older oocytes may be one of the factors that leads to premature loss of cohesion and segregation errors. To test this hypothesis, we used an RNAi strategy to induce oxidative stress in Drosophila oocytes and measured the fidelity of chromosome segregation during meiosis. Knockdown of either the cytoplasmic or mitochondrial ROS scavenger superoxide dismutase (SOD) caused a significant increase in segregation errors, and heterozygosity for an smc1 deletion enhanced this phenotype. FISH analysis indicated that SOD knockdown moderately increased the percentage of oocytes with arm cohesion defects. Consistent with premature loss of arm cohesion and destabilization of chiasmata, the frequency at which recombinant homologs missegregate during meiosis I is significantly greater in SOD knockdown oocytes than in controls. Together these results provide an in vivo demonstration that oxidative stress during meiotic prophase induces chromosome segregation errors and support the model that accelerated loss of cohesion in aging human oocytes is caused, at least in part, by oxidative damage. PMID:27791141

  7. Oxidative damage induced by copper in mouse primary hepatocytes by single-cell analysis.

    PubMed

    Jing, Mingyang; Liu, Yang; Song, Wei; Yan, Yunxing; Yan, Wenbao; Liu, Rutao

    2016-01-01

    Copper can disturb the intracellular redox balance, induce oxidative stress, and subsequently cause irreversible damage, leading to a variety of diseases. In the present study, mouse primary hepatocytes were chosen to elucidate the in vitro oxidative damage of short-term copper exposure (10-200 μM) by single-cell analysis. We evaluated the toxicity of copper by reactive oxygen species (ROS), glutathione (GSH), and oxidative DNA damage at the single-cell level. Oxidative damage induced by copper was verified by the morphological changes, persistent elevations of excessive ROS and malondialdehyde (MDA), a decrease in GSH level, and the oxidative DNA damage. Furthermore, the average ROS generation, GSH consumption, and the indicators in DNA damage did not significantly change at relatively low concentrations (10 or 50 μM), but we can find the alterations of parameters in some single cells clearly. Emphasis on the analysis of single cells is conducive to gain a better understanding on the toxicity of copper. This study will also complement studies on the environmental risk assessment of copper pollution.

  8. Transient ALT activation protects human primary cells from chromosome instability induced by low chronic oxidative stress

    PubMed Central

    Coluzzi, Elisa; Buonsante, Rossella; Leone, Stefano; Asmar, Anthony J.; Miller, Kelley L.; Cimini, Daniela; Sgura, Antonella

    2017-01-01

    Cells are often subjected to the effect of reactive oxygen species (ROS) as a result of both intracellular metabolism and exposure to exogenous factors. ROS-dependent oxidative stress can induce 8-oxodG within the GGG triplet found in the G-rich human telomeric sequence (TTAGGG), making telomeres highly susceptible to ROS-induced oxidative damage. Telomeres are nucleoprotein complexes that protect the ends of linear chromosomes and their dysfunction is believed to affect a wide range of cellular and/or organismal processes. Acute oxidative stress was shown to affect telomere integrity, but how prolonged low level oxidative stress, which may be more physiologically relevant, affects telomeres is still poorly investigated. Here, we explored this issue by chronically exposing human primary fibroblasts to a low dose of hydrogen peroxide. We observed fluctuating changes in telomere length and fluctuations in the rates of chromosome instability phenotypes, such that when telomeres shortened, chromosome instability increased and when telomeres lengthened, chromosome instability decreased. We found that telomere length fluctuation is associated with transient activation of an alternative lengthening of telomere (ALT) pathway, but found no evidence of cell death, impaired proliferation, or cell cycle arrest, suggesting that ALT activation may prevent oxidative damage from reaching levels that threaten cell survival. PMID:28240303

  9. N-acetylcysteine attenuates copper overload-induced oxidative injury in brain of rat.

    PubMed

    Ozcelik, Dervis; Uzun, Hafize; Nazıroglu, Mustafa

    2012-06-01

    Copper is an integral part of many important enzymes involved in a number of vital biological processes. Even though it is essential to life, at elevated tissue concentrations, copper can become toxic to cells. Recent studies have reported oxidative damage due to copper in various tissues. Considering the vulnerability of the brain to oxidative stress, this study was undertaken to explore possible beneficial antioxidant effects of N-acetylcysteine on oxidative stress induced by copper overload in brain tissue of rats. Thirty-two Wistar rats were equally divided into four groups. The first group was used as control. The second, third, and fourth groups were given 1 g/L copper in their drinking water for 1 month. At the end of this period, the group 2 rats were sacrificed. During the next 2 weeks, the rats in group 3 were injected intraperitoneally with physiological saline and those in group 4 with 20 mg/kg intraperitoneal injections of N-acetylcysteine. In group 2 the lipid peroxidation and nitric oxide levels were increased in the brain cortex while the activities of superoxide dismutase and catalase and the concentration of glutathione were decreased. In rats treated with N-acetylcysteine, lipid peroxidation decreased and the activities of antioxidant enzyme improved in the brain cortex. In conclusion, treatment with N-acetylcysteine modulated the antioxidant redox system and reduced brain oxidative stress induced by copper.

  10. Neuroprotective effect of cobalt chloride on hypobaric hypoxia-induced oxidative stress.

    PubMed

    Shrivastava, Kalpana; Shukla, Dhananjay; Bansal, Anju; Sairam, Mustoori; Banerjee, P K; Ilavazhagan, Govindaswamy

    2008-02-01

    Hypobaric hypoxia, characteristic of high altitude is known to increase the formation of reactive oxygen and nitrogen species (RONS), and decrease effectiveness of antioxidant enzymes. RONS are involved and may even play a causative role in high altitude related ailments. Brain is highly susceptible to hypoxic stress and is involved in physiological responses that follow. Exposure of rats to hypobaric hypoxia (7619 m) resulted in increased oxidation of lipids and proteins due to increased RONS and decreased reduced to oxidized glutathione (GSH/GSSG) ratio. Further, there was a significant increase in superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione-S-transferase (GST) levels. Increase in heme oxygenase 1 (HO-1) and heat shock protein 70 (HSP70) was also noticed along with metallothionein (MT) II and III. Administration of cobalt appreciably attenuated the RONS generation, oxidation of lipids and proteins and maintained GSH/GSSH ratio similar to that of control cells via induction of HO-1 and MT offering efficient neuroprotection. It can be concluded that cobalt reduces hypoxia oxidative stress by maintaining higher cellular HO-1 and MT levels via hypoxia inducible factor 1alpha (HIF-1alpha) signaling mechanisms. These findings provide a basis for possible use of cobalt for prevention of hypoxia-induced oxidative stress.

  11. Oxidative stress in oocytes during midprophase induces premature loss of cohesion and chromosome segregation errors.

    PubMed

    Perkins, Adrienne T; Das, Thomas M; Panzera, Lauren C; Bickel, Sharon E

    2016-11-01

    In humans, errors in meiotic chromosome segregation that produce aneuploid gametes increase dramatically as women age, a phenomenon termed the "maternal age effect." During meiosis, cohesion between sister chromatids keeps recombinant homologs physically attached and premature loss of cohesion can lead to missegregation of homologs during meiosis I. A growing body of evidence suggests that meiotic cohesion deteriorates as oocytes age and contributes to the maternal age effect. One hallmark of aging cells is an increase in oxidative damage caused by reactive oxygen species (ROS). Therefore, increased oxidative damage in older oocytes may be one of the factors that leads to premature loss of cohesion and segregation errors. To test this hypothesis, we used an RNAi strategy to induce oxidative stress in Drosophila oocytes and measured the fidelity of chromosome segregation during meiosis. Knockdown of either the cytoplasmic or mitochondrial ROS scavenger superoxide dismutase (SOD) caused a significant increase in segregation errors, and heterozygosity for an smc1 deletion enhanced this phenotype. FISH analysis indicated that SOD knockdown moderately increased the percentage of oocytes with arm cohesion defects. Consistent with premature loss of arm cohesion and destabilization of chiasmata, the frequency at which recombinant homologs missegregate during meiosis I is significantly greater in SOD knockdown oocytes than in controls. Together these results provide an in vivo demonstration that oxidative stress during meiotic prophase induces chromosome segregation errors and support the model that accelerated loss of cohesion in aging human oocytes is caused, at least in part, by oxidative damage.

  12. Failure of Elevating Calcium Induces Oxidative Stress Tolerance and Imparts Cisplatin Resistance in Ovarian Cancer Cells

    PubMed Central

    Ma, Liwei; Wang, Hongjun; Wang, Chunyan; Su, Jing; Xie, Qi; Xu, Lu; Yu, Yang; Liu, Shibing; Li, Songyan; Xu, Ye; Li, Zhixin

    2016-01-01

    Cisplatin is a commonly used chemotherapeutic drug, used for the treatment of malignant ovarian cancer, but acquired resistance limits its application. There is therefore an overwhelming need to understand the mechanism of cisplatin resistance in ovarian cancer, that is, ovarian cancer cells are insensitive to cisplatin treatment. Here, we show that failure of elevating calcium and oxidative stress tolerance play key roles in cisplatin resistance in ovarian cancer cell lines. Cisplatin induces an increase in oxidative stress and alters intracellular Ca2+ concentration, including cytosolic and mitochondrial Ca2+ in cisplatin-sensitive SKOV3 cells, but not in cisplatin-resistant SKOV3/DDP cells. Cisplatin induces mitochondrial damage and triggers the mitochondrial apoptotic pathway in cisplatin-sensitive SKOV3 cells, but rarely in cisplatin-resistant SKOV3/DDP cells. Inhibition of calcium signaling attenuates cisplatin-induced oxidative stress and intracellular Ca2+ overload in cisplatin-sensitive SKOV3 cells. Moreover, in vivo xenograft models of nude mouse, cisplatin significantly reduced the growth rates of tumors originating from SKOV3 cells, but not that of SKOV3/DDP cells. Collectively, our data indicate that failure of calcium up-regulation mediates cisplatin resistance by alleviating oxidative stress in ovarian cancer cells. Our results highlight potential therapeutic strategies to improve cisplatin resistance. PMID:27330840

  13. The protective potential of Yucca schidigera (Sarsaponin 30) against nitrite-induced oxidative stress in rats.

    PubMed

    Cigerci, I Hakki; Fidan, A Fatih; Konuk, Muhsin; Yuksel, Hayati; Kucukkurt, Ismail; Eryavuz, Abdullah; Sozbilir, Nalan Baysu

    2009-07-01

    The present study was designed to determine the protective effects of Yucca schidigera (Ys) against oxidative damage induced by acute nitrite intoxication as well as the histopathological evaluation of Ys in rats. The rats were divided into three groups each containing 12 rats: control (C); nitrite intoxication (N); Ys + nitrite intoxication (NY). C and N groups were fed standard rat feed (SRF). The NY group was fed SRF + 100 ppm Ys powder for 4 weeks. Acute nitrite intoxication was induced by subcutaneous (s.c.) administration of sodium nitrite (60 mg/kg) 1 day after the feeding period. Fifty minutes after sodium nitrite administration, blood samples and tissues including lung, liver, and kidney were collected for clinical biochemistry and histopathological investigations. Ys treatment was found to decrease methemoglobin, blood and tissue malondialdehyde, and tissue nitric oxide concentrations, and to increase the glutathione in blood and various tissues. However, plasma nitric oxide, total antioxidant activity, beta-carotene, and vitamin A did not differ between N and NY groups. While the N group rats showed distinct pathology in various tissues (compared with controls), the NY group had similar lung and liver pathology to the control. Only moderate or mild hemorrhage and hyperemia were seen in kidneys of NY group rats. Consequently, the natural compounds found in Ys, such as polyphenols, steroidal saponins, and other phytonutrients, could be used to substantially protect the organism from nitrite-induced oxidative damage and its complications.

  14. Key roles of vitamins A, C, and E in aflatoxin B1-induced oxidative stress.

    PubMed

    Alpsoy, Lokman; Yalvac, Mehmet Emir

    2011-01-01

    Aflatoxins (Aspergillus flavus toxins) are one of the natural toxic molecules which are produced by a group of fungi called Aspergillus. Foods and drinks contaminated with aflatoxins cause global health and environmental problems. Today in many developing countries, these toxins are leading cause of some liver cancers and serious gastrointestinal problems. Aflatoxins, which are well known to be mutagenic, carcinogenic, hepatotoxic, and immunosuppressive, exert inhibitory effects on biological processes including DNA synthesis, DNA-dependent RNA synthesis, DNA repair, and protein synthesis. Aflatoxins B(1) (AFB(1)) is the most widespread oxidative agent of the aflatoxins. Numerous diverse compounds and extracts have been reported to reduce the aflatoxins induced oxidative stress in the body. Most of these inhibitors including phenylpropanoids, terpenoids, alkaloids, and vitamins are originally derived from plants. Among these, being essential biomolecules, vitamins are used as coenzymes in very significant biological reactions. They also function as nonenzymatic antioxidative agents protecting the cells from oxidative stress-induced toxicity and transformation. This chapter reviews the mechanism of AFB(1)-induced oxidative stress and focuses on the protective effects of vitamins A, C, and E on reducing this stress.

  15. Boron attenuates malathion-induced oxidative stress and acetylcholinesterase inhibition in rats.

    PubMed

    Coban, Funda Karabag; Ince, Sinan; Kucukkurt, Ismail; Demirel, Hasan Huseyin; Hazman, Omer

    2015-10-01

    Organophosphorus compounds cause oxidative stress and lead to alterations in antioxidant status in organisms. In this study, the effects of subchronic exposure to malathion and the protective effects of boron (B) were evaluated in 48 Wistar rats, which were divided equally into six groups. For 28 d, the control group received a normal diet and tap water, the corn oil group received a normal diet and 0.5 mL of corn oil by gastric gavage and the malathion group received a normal diet and malathion (100 mg/kg/d) by gastric gavage. During the same period, each of the three other groups received a different dosage of B (5, 10 and 20 mg/kg/d, respectively) and malathion (100 mg/kg/d) by gastric gavage. Malathion administration during the period increased malondialdehyde, nitric oxide and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels, as well as markers of liver function, yet decreased acetylcholinesterase, reduced glutathione, superoxide dismutase, and catalase activities in blood, liver, kidney and brain tissues. Administration of B in a dose-dependent manner also reversed malathion-induced oxidative stress, lipid peroxidation (LPO) and antioxidant enzyme activity. Moreover, B exhibited protective action against malathion-induced histopathological changes in liver, kidney and brain tissues. These results demonstrate that, if used in a dose-dependent manner, B decreases malathion-induced oxidative stress, enhances the antioxidant defense mechanism and regenerates tissues in rats.

  16. Neurotoxicity induced by arsenic in Gallus Gallus: Regulation of oxidative stress and heat shock protein response.

    PubMed

    Zhao, Panpan; Guo, Ying; Zhang, Wen; Chai, Hongliang; Xing, Houjuan; Xing, Mingwei

    2017-01-01

    Arsenic, a naturally occurring heavy metal pollutant, is one of the functioning risk factors for neurological toxicity in humans. However, little is known about the effects of arsenic on the nervous system of Gallus Gallus. To investigate whether arsenic induce neurotoxicity and influence the oxidative stress and heat shock proteins (Hsps) response in chickens, seventy-two 1-day-old male Hy-line chickens were treated with different doses of arsenic trioxide (As2O3). The histological changes, antioxidant enzyme activity, and the expressions of Hsps were detected. Results showed slightly histology changes were obvious in the brain tissues exposure to arsenic. The activities of Glutathione peroxidase (GSH-Px) and catalase (CAT) were decreased compared to the control, whereas the malondialdehyde (MDA) content was increased gradually along with increase in diet-arsenic. The mRNA levels of Hsps and protein expressions of Hsp60 and Hsp70 were up-regulated. These results suggested that sub-chronic exposure to arsenic induced neurotoxicity in chickens. Arsenic exposure disturbed the balance of oxidants and antioxidants. Increased heat shock response tried to protect chicken brain tissues from tissues damage caused by oxidative stress. The mechanisms of neurotoxicity induced by arsenic include oxidative stress and heat shock protein response in chicken brain tissues.

  17. Prometryne-induced oxidative stress and impact on antioxidant enzymes in wheat.

    PubMed

    Jiang, Lei; Yang, Hong

    2009-09-01

    Prometryne is one of the herbicides widely used for controlling weed/grass in agricultural practice. However, whether it has an adverse effect on crops is unknown. In this study, we investigated prometryne-induced oxidative stress in wheat (Triticum aestivum). Wheat plants were grown in soils with prometryne at 0-24 mgkg(-1) soil. The growth of wheat treated with prometryne was inhibited. Chlorophyll content significantly decreased even at the low level of prometryne (4 mgkg(-1) soil). Accumulation of thiobarbituric acid reactive substances (TBARS), an indicator of cellular peroxidation, increased, suggesting oxidative damage to the plants. The prometryne-induced oxidative stress triggered significant changes in activities of a variety of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX) and glutathione S-transferase (GST). Activities of the enzymes showed a general increase at low prometryne concentrations but a decrease at high levels. Analysis of non-denaturing polyacrylamide gel electrophoresis (PAGE) confirmed the results. To get an insight into the molecular response, a qRT-PCR-based assay was performed to analyze the transcript abundance of Cu/Zn-SOD and GST with prometryne exposure. Our analysis revealed that both genes displayed up-regulated expression patterns similar to the activities of the two enzymes. These data imply that prometryne-induced oxidative stress was responsible for the disturbance of the growth and antioxidant defensive systems in wheat plants.

  18. Beneficial effects of Chrysin against Methotrexate-induced hepatotoxicity via attenuation of oxidative stress and apoptosis.

    PubMed

    Ali, Nemat; Rashid, Summya; Nafees, Sana; Hasan, Syed Kazim; Sultana, Sarwat

    2014-01-01

    Methotrexate (MTX), a folic acid antagonist, an effective chemotherapeutic agent is used in the treatment of a wide range of tumors and autoimmune diseases. Moreover, hepatotoxicity limits its clinical use. Several studies have already confirmed that the oxidative stress plays a major role in the pathogenesis of MTX-induced damage in the various organs especially in liver. The aim of this study was to determine the protective effect of Chrysin against MTX-induced hepatic oxidative stress and apoptosis in rats. In the present study, efficacy of Chrysin was investigated against hepatotoxicity caused by MTX in terms of biochemical investigations of antioxidant enzymes, apoptosis, and histopathological alteration in rat liver. In the MTX-treated group there was a significant increase in alanine transaminase, aspartate aminotransferase, lactate dehydrogenase activity and malondialdehyde content as well as decreased glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase activities and reduced glutathione content were also observed compared to the control group as a marker of oxidative stress. Histopathological alterations and apoptosis through the immunopositive staining of p53, cleaved caspases-3 and Bcl-2-associated X protein in rat liver were observed. Pretreatment of Chrysin at both doses prevents the hepatotoxicity by ameliorating oxidative stress, histopathological alterations, and apoptosis and thus our results suggest that Chrysin has a protective effect against hepatotoxicity induced by MTX and it may, therefore, improve the therapeutic index of MTX if co-administration is done.

  19. Protective Effects of Houttuynia cordata Thunb. on Gentamicin-induced Oxidative Stress and Nephrotoxicity in Rats.

    PubMed

    Kang, Changgeun; Lee, Hyungkyoung; Hah, Do-Yun; Heo, Jung Ho; Kim, Chung Hui; Kim, Euikyung; Kim, Jong Shu

    2013-03-01

    Development of a therapy providing protection from, or reversing gentamicin-sulfate (GS)-induced oxidative stress and nephrotoxicity would be of great clinical significance. The present study was designed to investigate the protective effects of Houttuynia cordata Thunb. (HC) against gentamicin sulfate-induced renal damage in rats. Twenty-eight Sprague-Dawley rats were divided into 4 equal groups as follows: group 1, control; group 2, GS 100 mg/kg/d, intraperitoneal (i.p.) injection; group 3, GS 100 mg/kg/d, i.p. + HC 500 mg/kg/d, oral; and group 4, GS 100 mg/kg/d i.p. + HC 1000 mg/kg/d, oral administration). Treatments were administered once daily for 12 d. After 12 d, biochemical and histopathological analyses were conducted to evaluate oxidative stress and renal nephrotoxicity. Serum levels of creatinine, malondialdehyde (MDA), and blood urea nitrogen (BUN), together with renal levels of MDA, glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) were quantified to evaluate antioxidant activity. Animals treated with GS alone showed a significant increase in serum levels of creatinine, BUN, and MDA, with decreased renal levels of GSH, SOD, and CAT. Treatment of rats with HC showed significant improvement in renal function, presumably as a result of decreased biochemical indices and oxidative stress parameters associated with GS-induced nephrotoxicity. Histopathological examination of the rat kidneys confirmed these observations. Therefore, the novel natural antioxidant HC may protect against GSinduced nephrotoxicity and oxidative stress in rats.

  20. The contradictory effects of nitric oxide in caerulein-induced acute pancreatitis in rats.

    PubMed

    Ozturk, Feral; Gul, Mehmet; Esrefoglu, Mukaddes; Ates, Burhan

    2008-04-01

    This study was planned to observe the effects of nitric oxide synthesis on the antioxidative defense enzymes and pancreatic tissue histology in caerulein-induced acute pancreatitis. Acute pancreatitis was induced by intraperitoneal injections of 50 microg/kg caerulein, L-arginine used for NO induction and N(omega)-nitro-L-arginine methyl ester (L-NAME) used for NO inhibition. In the caerulein group acinar cell degeneration, interstitial inflammation, oedema and haemorrhage were detected. Pancreatic damage scores were decreased with both NO induction and inhibition (p<0.05). MDA, GSH-Px, CAT, GSH and SOD activities were significantly changed in the caerulein group and indicated increased oxidative stress. Both NO induction and inhibition decreased this oxidative stress. It is concluded that both nitric oxide induction and inhibition ameliorated caerulein-induced acute pancreatitis. The findings indicate that a certain amount of NO production has beneficial effects in experimental acute pancreatitis, but uncontrolled over-production of NO may be detrimental.

  1. Docosahexaenoic Acid Induces Oxidative DNA Damage and Apoptosis, and Enhances the Chemosensitivity of Cancer Cells

    PubMed Central

    Song, Eun Ah; Kim, Hyeyoung

    2016-01-01

    The human diet contains low amounts of ω-3 polyunsaturated fatty acids (PUFAs) and high amounts of ω-6 PUFAs, which has been reported to contribute to the incidence of cancer. Epidemiological studies have shown that a high consumption of fish oil or ω-3 PUFAs reduced the risk of colon, pancreatic, and endometrial cancers. The ω-3 PUFA, docosahexaenoic acid (DHA), shows anticancer activity by inducing apoptosis of some human cancer cells without toxicity against normal cells. DHA induces oxidative stress and oxidative DNA adduct formation by depleting intracellular glutathione (GSH) and decreasing the mitochondrial function of cancer cells. Oxidative DNA damage and DNA strand breaks activate DNA damage responses to repair the damaged DNA. However, excessive DNA damage beyond the capacity of the DNA repair processes may initiate apoptotic signaling pathways and cell cycle arrest in cancer cells. DHA shows a variable inhibitory effect on cancer cell growth depending on the cells’ molecular properties and degree of malignancy. It has been shown to affect DNA repair processes including DNA-dependent protein kinases and mismatch repair in cancer cells. Moreover, DHA enhanced the efficacy of anticancer drugs by increasing drug uptake and suppressing survival pathways in cancer cells. In this review, DHA-induced oxidative DNA damage, apoptotic signaling, and enhancement of chemosensitivity in cancer cells will be discussed based on recent studies. PMID:27527148

  2. Citrus peel extract attenuates acute cyanide poisoning-induced seizures and oxidative stress in rats.

    PubMed

    Abdel Moneim, Ahmed E

    2014-01-01

    The primary aimed of this study was to investigate the potential protective effects of methanolic extract of citrus peel (MECP) on acute cyanide (KCN) poisoning-induced seizures and oxidative stress in rats. The intraperitoneal LD50 value of KCN (6.3 mg/Kg bwt), based on 24 hrs mortality, was significantly increased by 9, 52 or 113% by oral administration of MECP (500 mg/Kg bwt) pre-administered for 1, 2 and 3 days, respectively, in rats in a time-dependent manner. Intraperitoneal injection of the sublethal dose of KCN (3 mg/Kg bwt) into rats increased, 24 hrs later, lipid peroxidation (LPO), nitric oxide (NO), glutamate levels and acetylcholinesterase (AChE) activity in hippocampus, striatum and cerebral cortex. KCN also decreased brain glutathione (GSH) level and superoxide dismutase (SOD) and catalase (CAT) activities in these animals. Pre-treatment of rats with MECP inhibited KCN-induced increases in LPO, NO, and glutamate levels and AChE activity as well as decreases in brain GSH level and SOD and CAT activities. In addition, KCN significantly decreased norepinephrine, dopamine and serotonin levels in different brain regions which were resolved by MECP. From the present results, it can be concluded that the neuroprotective effects of MECP against KCN-induced seizures and oxidative stress may be due to the inhibition of oxidative stress overproduction and maintenance of antioxidant defense mechanisms.

  3. Oxidation-induced calcium-dependent dehydration of normal human red blood cells.

    PubMed

    Shcherbachenko, Irina M; Lisovskaya, Irina L; Tikhonov, Vladimir P

    2007-05-01

    Phenazine-methosulphate (PMS) is a strong oxidant that induces reactive oxygen species (ROS) formation in cells. Though it has been shown that PMS increases the red blood cell (RBC) membrane permeability to K(+), the hypotheses on the mechanism of PMS-induced effects are contradictory and there are no data on volume changes induced by this oxidant. Therefore, the influence of the PMS + ascorbate oxidative system on the volume of normal human RBCs was studied. In a Ca(2 + )-containing medium, PMS + ascorbate caused dehydration (shrinking) of RBCs judged by: (1) changes in the density and osmotic resistance distributions of RBCs, and (2) a decrease in their low-angle scattering assessed by FACS analysis. The dehydration resulted from activation of the Gardos channels, was PMS and ascorbate concentration-dependent, was associated with broadening of the density and osmotic resistance distributions of the RBCs, and decreased in the presence of the taxifolin and rutin antioxidants. These findings contribute to a better understanding of the physiology and pathology of oxidatively-modified RBCs and may be of practical significance in estimating the antioxidant activity of various substances.

  4. Coumestan inhibits radical-induced oxidation of DNA: is hydroxyl a necessary functional group?

    PubMed

    Xi, Gao-Lei; Liu, Zai-Qun

    2014-06-18

    Coumestan is a natural tetracycle with a C═C bond shared by a coumarin moiety and a benzofuran moiety. In addition to the function of the hydroxyl group on the antioxidant activity of coumestan, it is worth exploring the influence of the oxygen-abundant scaffold on the antioxidant activity as well. In this work, seven coumestans containing electron-withdrawing and electron-donating groups were synthesized to evaluate the abilities to trap 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) cationic radical (ABTS(•+)), 2,2'-diphenyl-1-picrylhydrazyl radical (DPPH), and galvinoxyl radical, respectively, and to inhibit the oxidations of DNA mediated by (•)OH, Cu(2+)/glutathione (GSH), and 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH), respectively. It was found that all of the coumestans used herein can quench the aforementioned radicals and can inhibit (•)OH-, Cu(2+)/GSH-, and AAPH-induced oxidations of DNA. In particular, substituent-free coumestan exhibits higher ability to quench DPPH and to inhibit AAPH-induced oxidation of DNA than Trolox. In addition, nonsubstituted coumestan shows a similar ability to inhibit (•)OH- and Cu(2+)/GSH-induced oxidations of DNA relative to that of Trolox. The antioxidant effectiveness of the coumestan can be attributed to the lactone in the coumarin moiety and, therefore, a hydroxyl group may not be a necessary functional group for coumestan to be an antioxidant.

  5. Oxidative stress induces mitochondrial dysfunction and a protective unfolded protein response in RPE cells.

    PubMed

    Cano, Marisol; Wang, Lei; Wan, Jun; Barnett, Bradley P; Ebrahimi, Katayoon; Qian, Jiang; Handa, James T

    2014-04-01

    How cells degenerate from oxidative stress in aging-related disease is incompletely understood. This study's intent was to identify key cytoprotective pathways activated by oxidative stress and determine the extent of their protection. Using an unbiased strategy with microarray analysis, we found that retinal pigmented epithelial (RPE) cells treated with cigarette smoke extract (CSE) had overrepresented genes involved in the antioxidant and unfolded protein response (UPR). Differentially expressed antioxidant genes were predominantly located in the cytoplasm, with no induction of genes that neutralize superoxide and H2O2 in the mitochondria, resulting in accumulation of superoxide and decreased ATP production. Simultaneously, CSE induced the UPR sensors IRE1α, p-PERK, and ATP6, including CHOP, which was cytoprotective because CHOP knockdown decreased cell viability. In mice given intravitreal CSE, the RPE had increased IRE1α and decreased ATP and developed epithelial-mesenchymal transition, as suggested by decreased LRAT abundance, altered ZO-1 immunolabeling, and dysmorphic cell shape. Mildly degenerated RPE from early age-related macular degeneration (AMD) samples had prominent IRE1α, but minimal mitochondrial TOM20 immunolabeling. Although oxidative stress is thought to induce an antioxidant response with cooperation between the mitochondria and the ER, herein we show that mitochondria become impaired sufficiently to induce epithelial-mesenchymal transition despite a protective UPR. With similar responses in early AMD samples, these results suggest that mitochondria are vulnerable to oxidative stress despite a protective UPR during the early phases of aging-related disease.

  6. Microarray based analysis of temperature and oxidative stress induced messenger RNA in Schistosoma mansoni

    PubMed Central

    Aragon, Anthony D.; Imani, Reza A.; Blackburn, Vint R.; Cunningham, Charles

    2008-01-01

    The body’s defense against schistosome infection can take many forms. For example, upon developing acute schistosomiasis, patients often have fever coinciding with larval maturation, migration and early oviposition. As the infection becomes established, the parasite comes under oxidative stress generated by the host immune system. The most common treatment for schistosomiasis is the anti-helminthic drug praziquantel. Its effectiveness, however, is limited due to its inability to kill schistosomes 2 – 4 weeks post-infection. Clearly there is a need for new antischistosomal drugs. We hypothesize that gene products expressed as part of a protective response against heat and/or oxidative stress are potential therapeutic targets for future drug development. Using a 12,166 element oligonucleotide microarray to characterize Schistosoma mansoni genes induced by heat and oxidative stress we found that 1,878 S. mansoni elements were significantly induced by heat stress. These included previously reported heat-shock genes expressing homologs of HSP40, HSP70 and HSP86. One thousand and one elements were induced by oxidative stress including those expressing homologs of superoxide dismutase, glutathione peroxidase and aldehyde dehydrogenase. Seventy-two elements were common to both stressors and could potentially be exploited in the development of novel anti-schistosomal therapeutics. PMID:18775750

  7. Chronic mitochondrial uncoupling treatment prevents acute cold-induced oxidative stress in birds.

    PubMed

    Stier, Antoine; Massemin, Sylvie; Criscuolo, François

    2014-12-01

    Endotherms have evolved two major types of thermogenesis that allow them to actively produce heat in response to cold exposure, either through muscular activity (i.e. shivering thermogenesis) or through futile electro-chemical cycles (i.e. non-shivering thermogenesis). Amongst the latter, mitochondrial uncoupling is of key importance because it is suggested to drive heat production at a low cost in terms of oxidative stress. While this has been experimentally shown in mammals, the oxidative stress consequences of cold exposure and mitochondrial uncoupling are clearly less understood in the other class of endotherms, the birds. We compared metabolic and oxidative stress responses of zebra finches chronically treated with or without a chemical mitochondrial uncoupler (2,4-dinitrophenol: DNP), undergoing an acute (24 h) and a chronic (4 weeks) cold exposure (12 °C). We predicted that control birds should present at least a transient elevation of oxidative stress levels in response to cold exposure. This oxidative stress cost should be more pronounced in control birds than in DNP-treated birds, due to their lower basal uncoupling state. Despite similar increase in metabolism, control birds presented elevated levels of DNA oxidative damage in response to acute (but not chronic) cold exposure, while DNP-treated birds did not. Plasma antioxidant capacity decreased overall in response to chronic cold exposure. These results show that acute cold exposure increases oxidative stress in birds. However, uncoupling mitochondrial functioning appears as a putative compensatory mechanism preventing cold-induced oxidative stress. This result confirms previous observations in mice and underlines non-shivering thermogenesis as a putative key mechanism for endotherms in mounting a response to cold at a low oxidative cost.

  8. Role of oxidative stress, inflammation, nitric oxide and transforming growth factor-beta in the protective effect of diosgenin in monocrotaline-induced pulmonary hypertension in rats.

    PubMed

    Ahmed, Lamiaa A; Obaid, Al Arqam Z; Zaki, Hala F; Agha, Azza M

    2014-10-05

    Pulmonary hypertension is a progressive disease of various origins that is associated with right ventricular dysfunction. In the present study, the protective effect of diosgenin was investigated in monocrotaline-induced pulmonary hypertension in rats. Pulmonary hypertension was induced by a single subcutaneous injection of monocrotaline (60 mg/kg). Diosgenin (100 mg/kg) was given by oral administration once daily for 3 weeks. At the end of the experiment, mean arterial blood pressure, electrocardiography and echocardiography were recorded. Rats were then sacrificed and serum was separated for determination of total nitrate/nitrite level. Right ventricles and lungs were isolated for estimation of oxidative stress markers, tumor necrosis factor-alpha, total nitrate/nitrite and transforming growth factor-beta contents. Myeloperoxidase and caspase-3 activities in addition to endothelial and inducible nitric oxide synthase protein expression were also determined. Moreover, histological analysis of pulmonary arteries and cardiomyocyte cross-sectional area was performed. Diosgenin treatment provided a significant improvement toward preserving hemodynamic changes and alleviating oxidative stress, inflammatory and apoptotic markers induced by monocrotaline in rats. Furthermore, diosgenin therapy prevented monocrotaline-induced changes in nitric oxide production, endothelial and inducible nitric oxide synthase protein expression as well as histological analysis. These findings support the beneficial effect of diosgenin in pulmonary hypertension induced by monocrotaline in rats.

  9. Opposing roles for caspase and calpain death proteases in L-glutamate-induced oxidative neurotoxicity

    SciTech Connect

    Elphick, Lucy M.; Hawat, Mohammad; Toms, Nick J.; Meinander, Annika; Mikhailov, Andrey; Eriksson, John E.; Kass, George E.N.

    2008-10-15

    Oxidative glutamate toxicity in HT22 murine hippocampal cells is a model for neuronal death by oxidative stress. We have investigated the role of proteases in HT22 cell oxidative glutamate toxicity. L-glutamate-induced toxicity was characterized by cell and nuclear shrinkage and chromatin condensation, yet occurred in the absence of either DNA fragmentation or mitochondrial cytochrome c release. Pretreatment with the selective caspase inhibitors either benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (pan-caspase), N-acetyl-Leu-Glu-His-Asp-aldehyde (caspase 9) or N-acetyl-Ile-Glu-Thr-Asp-aldehyde (caspase 8), significantly increased L-glutamate-induced cell death with a corresponding increase in observed nuclear shrinkage and chromatin condensation. This enhancement of glutamate toxicity correlated with an increase in L-glutamate-dependent production of reactive oxygen species (ROS) as a result of caspase inhibition. Pretreating the cells with N-acetyl-L-cysteine prevented ROS production, cell shrinkage and cell death from L-glutamate as well as that associated with the presence of the pan-caspase inhibitor. In contrast, the caspase-3/-7 inhibitor N-acetyl-Asp-Glu-Val-Asp aldehyde was without significant effect. However, pretreating the cells with the calpain inhibitor N-acetyl-Leu-Leu-Nle-CHO, but not the cathepsin B inhibitor CA-074, prevented cell death. The cytotoxic role of calpains was confirmed further by: 1) cytotoxic dependency on intracellular Ca{sup 2+} increase, 2) increased cleavage of the calpain substrate Suc-Leu-Leu-Val-Tyr-AMC and 3) immunoblot detection of the calpain-selective 145 kDa {alpha}-fodrin cleavage fragment. We conclude that oxidative L-glutamate toxicity in HT22 cells is mediated via calpain activation, whereas inhibition of caspases-8 and -9 may exacerbate L-glutamate-induced oxidative neuronal damage through increased oxidative stress.

  10. Thalidomide: chemistry, therapeutic potential and oxidative stress induced teratogenicity.

    PubMed

    Kumar, Neeraj; Sharma, Upendra; Singh, Chitra; Singh, Bikram

    2012-01-01

    Thalidomide and its one analogue, lenalidomide (CC5103 or revlimid) are recently approved for the treatment of multiple myeloma. Multiple myeloma is characterized by an overproduction of malignant plasma cells in the bone marrow. The journey of thalidomide was started in 1956 when it was marketed as a non-barbiturate sedative agent. It was considered as a "wonder drug" that provided safe and sound sleep and hence, used to cure morning sickness in pregnant women. Later, in 1961, it was withdrawn from the world market due to its serious side effects, i.e., teratogenic activity. However, the recent decade has witnessed a true renaissance in interest in its broad biological activity. In particular, thalidomide was reevaluated and attracted significant attention due to its selective inhibitory activity of tumor necrosis factor-α (TNF-α), which is a clinically important activity against serious diseases such as rheumatoid arthritis, Crohn's disease, leprosy, AIDS, and various cancers. The comeback of thalidomide to the legitimate status of a marketed drug came in 1998 when it received FDA approval for the treatment of erythema nodosum leprosum (ENL). Recently, the drug has got FDA approval for the treatment of multiple myeloma. In the last few years, number of thalidomide analogues have been synthesized and are in clinical development as a class of immunomodulatory drugs. Among these, lenalidomide is more potent than thalidomide, and is also non-neurotoxic. It was shown in vitro studies to induce apoptosis or arrest growth even in resistant multiple myeloma cell lines, decrease binding of the cells to bone marrow stromal cells, and stimulate host natural killer cell immunity. It also inhibits tumour growth and decreases angiogenesis. Earlier reviews have described the pharmacological aspects of thalidomide and a review has focused only on synthetic aspect of thalidomide. However, review focusing on chemistry and metabolism and mechanism of biological activity is still

  11. Contribution of radiation-induced, nitric oxide-mediated bystander effect to radiation-induced adaptive response.

    NASA Astrophysics Data System (ADS)

    Matsumoto, H.; Ohnishi, T.

    There has been a recent upsurge of interest in radiation-induced adaptive response and bystander effect which are specific modes in stress response to low-dose low-dose rate radiation Recently we found that the accumulation of inducible nitric oxide NO synthase iNOS in wt p53 cells was induced by chronic irradiation with gamma rays followed by acute irradiation with X-rays but not by each one resulting in an increase in nitrite concentrations of medium It is suggested that the accumulation of iNOS may be due to the depression of acute irradiation-induced p53 functions by pre-chronic irradiation In addition we found that the radiosensitivity of wt p53 cells against acute irradiation with X-rays was reduced after chronic irradiation with gamma rays This reduction of radiosensitivity of wt p53 cells was nearly completely suppressed by the addition of NO scavenger carboxy-PTIO to the medium This reduction of radiosensitivity of wt p53 cells is just radiation-induced adaptive response suggesting that NO-mediated bystander effect may considerably contribute to adaptive response induced by radiation

  12. Involvement of inducible nitric oxide synthase in hydroxyl radical-mediated lipid peroxidation in streptozotocin-induced diabetes

    PubMed Central

    Stadler, Krisztian; Bonini, Marcelo G.; Dallas, Shannon; Jiang, JinJie; Radi, Rafael; Mason, Ronald P.; Kadiiska, Maria B.

    2008-01-01

    Free radical production is implicated in the pathogenesis of diabetes mellitus, where several pathways and different mechanisms were suggested in the pathophysiology of the complications. In this study, we used electron paramagnetic resonance (EPR) spectroscopy combined with in vivo spin-trapping techniques to investigate the sources and mechanisms of free radical formation in streptozotocin-induced diabetic rats. Free radical production was directly detected in the diabetic bile, which correlated with lipid peroxidation in the liver and kidney. EPR spectra showed the trapping of a lipid-derived radical. Such radicals were demonstrated to be induced by hydroxyl radical through isotope labeling experiments. Multiple enzymes and metabolic pathways were examined as the potential source of the hydroxyl radicals using specific inhibitors. Neither xanthine oxidase, cytochrome P450s, the Fenton reaction, nor macrophage activation were required for the production of radical adducts. Interestingly, inducible nitric oxide synthase (apparently uncoupled) was identified as the major source of radical generation. The specific iNOS inhibitor 1400W as well as l-arginine pretreatment reduced the EPR signals to baseline levels, implicating peroxynitrite as the source of hydroxyl radical production. Applying immunological techniques, we localized iNOS overexpression in the liver and kidney of diabetic animals, which was closely correlated with the lipid radical generation and 4-hydroxynonenal-adducted protein formation, indicating lipid peroxidation. In addition, protein oxidation to protein free radicals occurred in the diabetic target organs. Taken together, our studies support inducible nitric oxide synthase as a significant source of EPR-detectable reactive intermediates, which leads to lipid peroxidation and may contribute to disease progression as well. PMID:18620046

  13. Adiponectin increases glucose-induced insulin secretion through the activation of lipid oxidation.

    PubMed

    Patané, G; Caporarello, N; Marchetti, P; Parrino, C; Sudano, D; Marselli, L; Vigneri, R; Frittitta, L

    2013-12-01

    The expression of adiponectin receptors has been demonstrated in human and rat pancreatic beta cells, where globular (g) adiponectin rescues rat beta cells from cytokine and fatty acid-induced apoptosis. The aim of our study was to evaluate whether adiponectin has a direct effect on insulin secretion and the metabolic pathways involved. Purified human pancreatic islets and rat beta cells (INS-1E) were exposed (1 h) to g-adiponectin, and glucose-induced insulin secretion was measured. A significant increase in glucose-induced insulin secretion was observed in the presence of g-adiponectin (1 nmol/l) with respect to control cells in both human pancreatic islets (n = 5, p < 0.05) and INS-1E cells (n = 5, p < 0.001). The effect of globular adiponectin on insulin secretion was independent of AMP-dependent protein kinase (AMPK) activation or glucose oxidation. In contrast, g-adiponectin significantly increased oleate oxidation (n = 5, p < 0.05), and the effect of g-adiponectin (p < 0.001) on insulin secretion by INS-1E was significantly reduced in the presence of etomoxir (1 μmol/l), an inhibitor of fatty acid beta oxidation. g-Adiponectin potentiates glucose-induced insulin secretion in both human pancreatic islets and rat beta cells via an AMPK independent pathway. Increased fatty acid oxidation rather than augmented glucose oxidation is the mechanism responsible. Overall, our data indicate that, in addition to its anti-apoptotic action, g-adiponectin has another direct effect on beta cells by potentiating insulin secretion. Adiponectin, therefore, in addition to its well-known effect on insulin sensitivity, has important effects at the pancreatic level.

  14. Poly(ADP-ribose) polymerase-1 protects from oxidative stress induced endothelial dysfunction

    SciTech Connect

    Gebhard, Catherine; Staehli, Barbara E.; Shi, Yi; Camici, Giovanni G.; Akhmedov, Alexander; Hoegger, Lisa; Lohmann, Christine; Matter, Christian M.; Hassa, Paul O.; Hottiger, Michael O.; Malinski, Tadeusz; Luescher, Thomas F.; and others

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer The nuclear enzyme PARP-1 is a downstream effector of oxidative stress. Black-Right-Pointing-Pointer PARP-1 protects from oxidative stress induced endothelial dysfunction. Black-Right-Pointing-Pointer This effect is mediated through inhibition of vasoconstrictor prostanoid production. Black-Right-Pointing-Pointer Thus, PARP-1 may play a protective role as antioxidant defense mechanism. -- Abstract: Background: Generation of reactive oxygen species (ROS) is a key feature of vascular disease. Activation of the nuclear enzyme poly (adenosine diphosphate [ADP]-ribose) polymerase-1 (PARP-1) is a downstream effector of oxidative stress. Methods: PARP-1(-/-) and PARP-1(+/+) mice were injected with paraquat (PQ; 10 mg/kg i.p.) to induce intracellular oxidative stress. Aortic rings were suspended in organ chambers for isometric tension recording to analyze vascular function. Results: PQ treatment markedly impaired endothelium-dependent relaxations to acetylcholine in PARP-1(-/-), but not PARP-1(+/+) mice (p < 0.0001). Maximal relaxation was 45% in PQ treated PARP-1(-/-) mice compared to 79% in PARP-1(+/+) mice. In contrast, endothelium-independent relaxations to sodium nitroprusside (SNP) were not altered. After PQ treatment, L-NAME enhanced contractions to norepinephrine by 2.0-fold in PARP-1(-/-) mice, and those to acetylcholine by 3.3-fold, respectively, as compared to PARP-1(+/+) mice. PEG-superoxide dismutase (SOD) and PEG-catalase prevented the effect of PQ on endothelium-dependent relaxations to acetylcholine in PARP-1(-/-) mice (p < 0.001 vs. PQ treated PARP-1(+/+) mice. Indomethacin restored endothelium-dependent relaxations to acetylcholine in PQ treated PARP-1(-/-) mice (p < 0.05 vs. PQ treated PARP-1(+/+). Conclusion: PARP-1 protects from acute intracellular oxidative stress induced endothelial dysfunction by inhibiting ROS induced production of vasoconstrictor prostanoids.

  15. Prophylaxis with Bacopa monnieri attenuates acrylamide induced neurotoxicity and oxidative damage via elevated antioxidant function.

    PubMed

    Shinomol, George Kunnel; Raghunath, Narayanareddy; Bharath, Muchukunte Mukunda Srinivas; Muralidhara

    2013-03-01

    Acrylamide (ACR) is a water-soluble, vinyl monomer that has multiple chemical and industrial applications. Exposure to ACR causes neuropathy and associated neurological defects including gait abnormalities and skeletal muscle weakness, due to impaired neurotransmitter release and eventual neurodegeneration. Using in vivo and in vitro models, we examined whether oxidative events are involved in ACR-mediated neurotoxicity and whether these could be prevented by natural plant extracts. Administration (i.p.) of ACR in mice (40 mg/kg bw/ d for 5d) induced significant oxidative damage in the brain cortex and liver as evidenced by elevated lipid peroxidation, reactive oxygen species and protein carbonyls. This was associated with lowered antioxidant activities including antioxidant enzymes (catalase, glutathione-s-transferase) and reduced glutathione (GSH) compared to untreated controls. Similarly, exposure of N27 neuronal cells in culture to ACR (1-5 mM) caused dose-dependent neuronal death and lowered GSH. Interestingly, dietary supplementation with the leaf powder of Bacopa monnieri (BM) (which possesses neuroprotective properties and nootropic activity) in mice for 30 days offered significant protection against ACR toxicity and oxidative damage in vivo. Similarly, pretreatment with BM protected the N27 cells against ACR-induced cell death and associated oxidative damage. Co-treatment and pre-treatment of Drosophila melanogaster with BM extract protected against ACR-induced locomotor dysfunction and GSH depletion. We infer that BM displays prophylactic effects against ACR induced oxidative damage and neurotoxicity with potential therapeutic application in human pathology associated with neuropathy.

  16. Curcumin attenuates oxidative stress following downhill running-induced muscle damage.

    PubMed

    Kawanishi, Noriaki; Kato, Kouki; Takahashi, Masaki; Mizokami, Tsubasa; Otsuka, Yoshihiko; Imaizumi, Atsushi; Shiva, Daisuke; Yano, Hiromi; Suzuki, Katsuhiko

    2013-11-22

    Downhill running causes muscle damage, and induces oxidative stress and inflammatory reaction. Recently, it is shown that curcumin possesses anti-oxidant and anti-inflammatory potentials. Interestingly, curcumin reduces inflammatory cytokine concentrations in skeletal muscle after downhill running of mice. However, it is not known whether curcumin affects oxidative stress after downhill running-induced muscle damage. Therefore, the purpose of this study was to investigate the effects of curcumin on oxidative stress following downhill running induced-muscle damage. We also investigated whether curcumin affects macrophage infiltration via chemokines such as MCP-1 and CXCL14. Male C57BL/6 mice were divided into four groups; rest, rest plus curcumin, downhill running, or downhill running plus curcumin. Downhill running mice ran at 22 m/min, -15% grade on the treadmill for 150 min. Curcumin (3mg) was administered in oral administration immediately after downhill running. Hydrogen peroxide concentration and NADPH-oxidase mRNA expression in the downhill running mice were significantly higher than those in the rest mice, but these variables were significantly attenuated by curcumin administration in downhill running mice. In addition, mRNA expression levels of MCP-1, CXCL14 and F4/80 reflecting presence of macrophages in the downhill running mice were significantly higher than those in the rest mice. However, MCP-1 and F4/80 mRNA expression levels were significantly attenuated by curcumin administration in downhill running mice. Curcumin may attenuate oxidative stress following downhill running-induced muscle damage.

  17. Oxidative stress inhibits adhesion and transendothelial migration, and induces apoptosis and senescence of induced pluripotent stem cells.

    PubMed

    Wu, Yi; Zhang, Xueqing; Kang, Xueling; Li, Ning; Wang, Rong; Hu, Tiantian; Xiang, Meng; Wang, Xinhong; Yuan, Wenjun; Chen, Alex; Meng, Dan; Chen, Sifeng

    2013-09-01

    Oxidative stress caused by cellular accumulation of reactive oxygen species (ROS) is a major contributor to disease and cell death. However, how induced pluripotent stem cells (iPSC) respond to different levels of oxidative stress is largely unknown. Here, we investigated the effect of H2 O2 -induced oxidative stress on iPSC function in vitro. Mouse iPSC were treated with H2 O2 (25-100 μmol/L). IPSC adhesion, migration, viability, apoptosis and senescence were analysed. Expression of adhesion-related genes, stress defence genes, and osteoblast- and adipocyte-associated genes were determined by reverse transcription polymerase chain reaction. The present study found that H2 O2 (25-100 μmol/L) decreased iPSC adhesion to matrix proteins and endothelial cells, and downregulated gene expression levels of adhesion-related molecules, such as integrin alpha 7, cadherin 1 and 5, melanoma cell adhesion molecule, vascular cell adhesion molecule 1, and monocyte chemoattractant protein-1. H2 O2 (100 μmol/L) decreased iPSC viability and inhibited the capacity of iPSC migration and transendothelial migration. iPSC were sensitive to H2 O2 -induced G2/M arrest, senescence and apoptosis when exposed to H2 O2 at concentrations above 25 μmol/L. H2 O2 increased the expression of stress defence genes, including catalase, cytochrome B alpha, lactoperoxidase and thioredoxin domain containing 2. H2 O2 upregulated the expression of osteoblast- and adipocyte-associated genes in iPSC during their differentiation; however, short-term H2 O2 -induced oxidative stress did not affect the protein expression of the pluripotency markers, octamer-binding transcription factor 4 and sex-determining region Y-box 2. The present results suggest that iPSC are sensitive to H2 O2 toxicity, and inhibition of oxidative stress might be a strategy for improving their functions.

  18. Dietary moderately oxidized oil induces expression of fibroblast growth factor 21 in the liver of pigs

    PubMed Central

    2012-01-01

    Background Fibroblast growth factor 21 (FGF21), whose expression is induced by peroxisome proliferator-activated receptor α (PPARα), has been recently identified as a novel metabolic regulator which plays a crucial role in glucose homeostasis, lipid metabolism, insulin sensitivity and obesity. Previous studies have shown that administration of oxidized fats leads to an activation of PPARα in the liver. Therefore, the present study investigated the hypothesis that feeding of oxidized fats causes an induction of FGF21 in the liver. Methods Twenty four crossbred pigs were allocated to two groups of 12 pigs each and fed nutritionally adequate diets with either fresh rapeseed oil or oxidized rapeseed oil prepared by heating at a temperature of 175°C for 72 h. Results In pigs fed the oxidized fat mRNA abundance and protein concentrations of FGF21 in liver were significantly increased (P < 0.05), and the protein concentrations of FGF21 in plasma tended to be increased (P < 0.1) in comparison to control pigs. Moreover, pigs fed the oxidized fat had increased transcript levels of the PPARα target genes acyl-CoA oxidase, carnitine palmitoyltransferase-1 and novel organic cation transporter 2 in the liver (P < 0.05), indicative of PPARα activation. Conclusion The present study shows for the first time that administration of an oxidized fat induces the expression of FGF21 in the liver, probably mediated by activation of PPARα. Induction of FGF21 could be involved in several effects observed in animals administered an oxidized fat. PMID:22394566

  19. Periodontitis in Rats Induces Systemic Oxidative Stress That Is Controlled by Bone-Targeted Antiresorptives

    PubMed Central

    Oktay, Sehkar; Chukkapalli, Sasanka S.; Rivera-Kweh, Mercedes F.; Velsko, Irina M.; Holliday, L. Shannon; Kesavalu, Lakshmyya

    2015-01-01

    Background Periodontitis is a chronic, polymicrobial inflammatory disease that degrades connective tissue and alveolar bone and results in tooth loss. Oxidative stress has been linked to the onset of periodontal tissue breakdown and systemic inflammation, and the success of antiresorptive treatments will rely on how effectively they can ameliorate periodontal disease–induced oxidative stress during oral infection. Methods Rats were infected with polybacterial inoculum consisting of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia, as an oral lavage every other week for 12 weeks. Daily subcutaneous injections of enoxacin, bisenoxacin, alendronate, or doxycycline were administered for 6 weeks after 6 weeks of polybacterial infection in rats. The serum levels of oxidative stress parameters and antioxidant enzymes, including glutathione peroxidase, superoxide dismutase, and catalase, were evaluated in each of the infected, treated, and sham-infected rats. Results Rats infected with the periodontal pathogens displayed a five-fold increase in the oxidative stress index compared with controls as a result of increased levels of serum oxidants and decreases in total antioxidant activity. The overall decrease in antioxidant activity occurred despite increases in three important antioxidant enzymes, suggesting an imbalance between antioxidant macromolecules/small molecules production and antioxidant enzyme levels. Surprisingly, the bone-targeted antiresorptives bis-enoxacin and alendronate inhibited increases in oxidative stress caused by periodontitis. Bis-enoxacin, which has both antiresorptive and antibiotic activities, was more effective than alendronate, which acts only as an antiresorptive. Conclusion To the best of the authors’ knowledge, this is the first study to demonstrate that the increased oxidative stress induced by periodontal infection in rats can be ameliorated by bone-targeted antiresorptives. PMID:25101489