Sample records for oxide layer grown

  1. Oxide-based materials by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Godlewski, Marek; Pietruszka, Rafał; Kaszewski, Jarosław; Witkowski, Bartłomiej S.; Gierałtowska, Sylwia; Wachnicki, Łukasz; Godlewski, Michał M.; Slonska, Anna; Gajewski, Zdzisław

    2017-02-01

    Thin films of wide band-gap oxides grown by Atomic Layer Deposition (ALD) are suitable for a range of applications. Some of these applications will be presented. First of all, ALD-grown high-k HfO2 is used as a gate oxide in the electronic devices. Moreover, ALD-grown oxides can be used in memory devices, in transparent transistors, or as elements of solar cells. Regarding photovoltaics (PV), ALD-grown thin films of Al2O3 are already used as anti-reflection layers. In addition, thin films of ZnO are tested as replacement of ITO in PV devices. New applications in organic photovoltaics, electronics and optoelectronics are also demonstrated Considering new applications, the same layers, as used in electronics, can also find applications in biology, medicine and in a food industry. This is because layers of high-k oxides show antibacterial activity, as discussed in this work.

  2. Selective-area catalyst-free MBE growth of GaN nanowires using a patterned oxide layer.

    PubMed

    Schumann, T; Gotschke, T; Limbach, F; Stoica, T; Calarco, R

    2011-03-04

    GaN nanowires (NWs) were grown selectively in holes of a patterned silicon oxide mask, by rf-plasma-assisted molecular beam epitaxy (PAMBE), without any metal catalyst. The oxide was deposited on a thin AlN buffer layer previously grown on a Si(111) substrate. Regular arrays of holes in the oxide layer were obtained using standard e-beam lithography. The selectivity of growth has been studied varying the substrate temperature, gallium beam equivalent pressure and patterning layout. Adjusting the growth parameters, GaN NWs can be selectively grown in the holes of the patterned oxide with complete suppression of the parasitic growth in between the holes. The occupation probability of a hole with a single or multiple NWs depends strongly on its diameter. The selectively grown GaN NWs have one common crystallographic orientation with respect to the Si(111) substrate via the AlN buffer layer, as proven by x-ray diffraction (XRD) measurements. Based on the experimental data, we present a schematic model of the GaN NW formation in which a GaN pedestal is initially grown in the hole.

  3. Evaluation of Graphene/WO3 and Graphene/CeO x Structures as Electrodes for Supercapacitor Applications

    NASA Astrophysics Data System (ADS)

    Chaitoglou, Stefanos; Amade, Roger; Bertran, Enric

    2017-12-01

    The combination of graphene with transition metal oxides can result in very promising hybrid materials for use in energy storage applications thanks to its intriguing properties, i.e., highly tunable surface area, outstanding electrical conductivity, good chemical stability, and excellent mechanical behavior. In the present work, we evaluate the performance of graphene/metal oxide (WO3 and CeO x ) layered structures as potential electrodes in supercapacitor applications. Graphene layers were grown by chemical vapor deposition (CVD) on copper substrates. Single and layer-by-layer graphene stacks were fabricated combining graphene transfer techniques and metal oxides grown by magnetron sputtering. The electrochemical properties of the samples were analyzed and the results suggest an improvement in the performance of the device with the increase in the number of graphene layers. Furthermore, deposition of transition metal oxides within the stack of graphene layers further improves the areal capacitance of the device up to 4.55 mF/cm2, for the case of a three-layer stack. Such high values are interpreted as a result of the copper oxide grown between the copper substrate and the graphene layer. The electrodes present good stability for the first 850 cycles before degradation.

  4. Comparison of AlGaAs Oxidation in MBE and MOCVD Grown Samples

    DTIC Science & Technology

    2002-01-01

    vertical cavity surface emitting lasers ( VCSELs ) [1, 2, 3]. They are also being... molecular beam epitaxy ( MBE ) [5, 6] or metal organic chemical vapor deposition (MOCVD) [7, 8]. The MBE -grown A1GaAs layers are sometimes pseudo or digital...Simultaneous wet-thermal oxidation of MBE and MOCVD grown AlxGal_xAs layers (x = 0.1 to 1.0) showed that the epitaxial growth method does not

  5. Effect of an Electrochemically Oxidized ZnO Seed Layer on ZnO Nanorods Grown by using Electrodeposition

    NASA Astrophysics Data System (ADS)

    Jeon, Woosung; Leem, Jae-Young

    2018-05-01

    ZnO nanorods were prepared on a Si substrate with and without a ZnO seed layer formed by electro-oxidation to investigate the effect of the seed layer on their growth. The ZnO nanorods grown on the ZnO seed layer had top surfaces that were flat whereas those grown without it had rough top surfaces, as observed in field-emission scanning electron microscopy images. In the Xray diffraction analysis, all ZnO nanorods showed preferential orientation with the (002) plane. In the case of ZnO nanorods prepared with a ZnO seed layer, the residual stress decreased, and the full width at half maximum of the ZnO (002) plane peak decreased. The photoluminescence spectra show a strong and narrow near-band-edge emission peak and high near-band-edge emission to deep-level emission peak ratio for the ZnO nanorods prepared with the seed layer. With respect to the photoresponse properties, the ZnO nanorods grown with the ZnO seed layer showed higher responsivity and faster rise/decay curves than those grown without it. Thus, the ZnO seed layer formed by electro-oxidation improves the structural, optical, and photoresponse properties of the ZnO nanorods formed on it. This method could serve as a new route for improving the properties of optoelectronic devices.

  6. Design of a Three-Layer Antireflection Coating for High Efficiency Indium Phosphide Solar Cells Using a Chemical Oxide as First Layer

    NASA Technical Reports Server (NTRS)

    Moulot, Jacques; Faur, Mircea; Faur, Maria; Goradia, Chandra; Goradia, Manju; Bailey, Sheila

    1995-01-01

    It is well known that the behavior of III-V compound based solar cells is largely controlled by their surface, since the majority of light generated carriers (63% for GaAs and 79% for InP) are created within 0.2 microns of the illuminated surface of the cell. Consequently, the always observed high surface recombination velocity (SRV) on these cells is a serious limiting factor for their high efficiency performance, especially for those with the p-n junction made by either thermal diffusion or ion implantation. A good surface passivation layer, ideally, a grown oxide as opposed to a deposited one, will cause a significant reduction in the SRV without adding interface problems, thus improving the performance of III-V compound based solar cells. Another significant benefit to the overall performance of the solar cells can be achieved by a substantial reduction of their large surface optical reflection by the use of a well designed antireflection (AR) coating. In this paper, we demonstrate the effectiveness of using a chemically grown, thermally and chemically stable oxide, not only for surface passivation but also as an integral part of a 3- layer AR coating for thermally diffused p(+)n InP solar cells. A phosphorus-rich interfacial oxide, In(PO3)3, is grown at the surface of the p(+) emitter using an etchant based on HNO3, o-H3PO4 and H2O2. This oxide has the unique properties of passivating the surface as well as serving as a fairly efficient antireflective layer yielding a measured record high AM0, 25 C, open-circuit voltage of 890.3 mV on a thermally diffused InP(Cd,S) solar cell. Unlike conventional single layer AR coatings such as ZnS, Sb2O3, SiO or double layer AR coatings such as ZnS/MgF2 deposited by e-beam or resistive evaporation, this oxide preserves the stoichiometry of the InP surface. We show that it is possible to design a three-layer AR coating for a thermally diffused InP solar cell using the In(PO3)3 grown oxide as the first layer and Al2O3, MgF2 or ZnS, MgF2 as the second and third layers respectively, so as to yield an overall theoretical reflectance of less than 2%. Since chemical oxides are readily grown on III-V semiconductor materials, the technique of using the grown oxide layer to both passivate the surface as well as serve as the first of a multilayer AR coating, should work well for essentially all III-V compound-based solar cells.

  7. Design of a three-layer antireflection coating for high efficiency indium phosphide solar cells using a chemical oxide as first layer

    NASA Technical Reports Server (NTRS)

    Moulot, Jacques; Faur, M.; Faur, M.; Goradia, C.; Goradia, M.; Bailey, S.

    1995-01-01

    It is well known that the behavior of III-V compound based solar cells is largely controlled by their surface, since the majority of light generated carriers (63% for GaAs and 79% for InP) are created within 0.2 mu m of the surface of the illuminated cell. Consequently, the always observed high surface recombination velocity (SRV) on these cells is a serious limiting factor for their high efficiency performance, especially for those with p-n junction made by either thermal diffusion or ion implantation. A good surface passivation layer, ideally a grown oxide as opposed to a deposited one, will cause a significant reduction in the SRV without adding interface problems, thus improving the performance of III-V compound based solar cells. Another significant benefit to the overall performance of the solar cells can be achieved by a substantial reduction of their large surface optical reflection by the use of a well designed antireflection (AR) coating. In this paper, we demonstrate the effectiveness of using a chemically grown thermally and chemically stable oxide, not only for surface passivation but also as an integral part of a 3-layer AR coating for thermally diffused p+n InP solar cells. A phosphorus-rich interfacial oxide, In(PO3)3, is grown at the surface of the p+ emitter using an etchant based on HNO3, o-H3PO4 and H2O2. This oxide has the unique properties of passivating the surface as well as serving as an efficient antireflective layer yielding a measured record high AMO open-circuit voltage of 890.3 mV on a thermally diffused InP(Cd,S) solar cell. Unlike conventional single layer AR coatings such as ZnS, Sb2O3, SiO or double layer AR coatings such as ZnS/MgF2 deposited by e-beam or resistive evaporation, this oxide preserves the stoichiometry of the InP surface. We show that it is possible to design a three-layer AR coating for a thermally diffused InP solar cell using the In(PO3)3 grown oxide as the first layer and Al2O3 and MgF2 as the second and third layers respectively, so as to yield an overall theoretical reflectance of less than 2%. Since chemical oxides are readily grown on III-V semiconductors materials, the technique of using the grown oxide layer to both passivate the surface as well as serve as the first of a multilayer AR coating should work well for all III-V compound-based solar cells.

  8. On Controlling the Hydrophobicity of Nanostructured Zinc-Oxide Layers Grown by Pulsed Electrodeposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klochko, N. P., E-mail: klochko-np@mail.ru; Klepikova, K. S.; Kopach, V. R.

    The possibility of fabricating highly hydrophobic nanostructured zinc-oxide layers by the inexpensive method of pulsed electrodeposition from aqueous solutions without water-repellent coatings, adapted for large-scale production, is shown. The conditions of the deposition of highly hydrophobic nanostructured zinc-oxide layers exhibiting the “rose-petal” effect with specific morphology, optical properties, crystal structure and texture are determined. The grown ZnO nanostructures are promising for micro- and nanoelectronics as an adaptive material able to reversibly transform to the hydrophilic state upon exposure to ultraviolet radiation.

  9. Characterization of oxide scales grown on alloy 310S stainless steel after long term exposure to supercritical water at 500 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behnamian, Yashar, E-mail: behnamia@ualberta.ca

    The oxide scale grown of static capsules made of alloy 310S stainless steel was investigated by exposure to the supercritical water at 500 °C 25 MPa for various exposure times up to 20,000 h. Characterization techniques such as X-ray diffraction, scanning/transmission electron microscopy, energy dispersive spectroscopy, and fast Fourier transformation were employed on the oxide scales. The elemental and phase analyses indicated that long term exposure to the SCW resulted in the formation of scales identified as Fe{sub 3}O{sub 4} (outer layer), Fe-Cr spinel (inner layer), Cr{sub 2}O{sub 3} (transition layer) on the substrate, and Ni-enrichment (chrome depleted region) inmore » the alloy 310S. It was found that the layer thickness and weight gain vs. exposure time followed parabolic law. The oxidation mechanism and scales grown on the alloy 310S stainless steel exposed to SCW are discussed. - Highlights: •Oxidation of alloy 310S stainless steel exposed to SCW (500 °C/25 MPa) •The layer thickness and weight gain vs. exposure time followed parabolic law. •Oxide layers including Fe{sub 3}O{sub 4} (outer), Fe-Cr spinel (inner) and Cr{sub 2}O{sub 3} (transition) •Ni element is segregated by the selective oxidation of Cr.« less

  10. Formation of a Ge-rich Si1-x Ge x (x > 0.9) fin epitaxial layer condensed by dry oxidation

    NASA Astrophysics Data System (ADS)

    Jang, Hyunchul; Kim, Byongju; Koo, Sangmo; Ko, Dae-Hong

    2017-11-01

    We have selectively grown an epitaxial Si0.35Ge0.65 fin layer in a 65 nm oxide trench pattern array and formed a Ge-rich Si1-x Ge x (x > 0.9) fin layer with condensed Ge using dry oxidation. During oxidation of the SiGe fin structure, we found that the compressive strain of the condensed SiGe layer was increased by about 1.3% while Ge was efficiently condensed due to a two-dimensional oxidation reaction. In this paper, we discussed in detail the diffusion during the two-dimensional condensation reaction as well as the asymmetric biaxial strain of the SiGe fin before and after oxidation using a reciprocal space mapping measurement. The application of dry oxidation on selectively grown SiGe fin layer can be an effective method for increasing hole mobility of SiGe fin with increased Ge content and self-induced compressive strain.

  11. Wet oxidation of GeSi strained layers by rapid thermal processing

    NASA Astrophysics Data System (ADS)

    Nayak, D. K.; Kamjoo, K.; Park, J. S.; Woo, J. C. S.; Wang, K. L.

    1990-07-01

    A cold-wall rapid thermal processor is used for the wet oxidation of the commensurately grown GexSi1-x layers on Si substrates. The rate of oxidation of the GexSi1-x layer is found to be significantly higher than that of pure Si, and the oxidation rate increases with the increase in the Ge content in GexSi1-x layer. The oxidation rate of GexSi1-x appears to decrease with increasing oxidation time for the time-temperature cycles considered here. Employing high-frequency and quasi-static capacitance-voltage measurements, it is found that a fixed negative oxide charge density in the range of 1011- 1012/cm2 and the interface trap level density (in the mid-gap region) of about 1012/cm2 eV are present. Further, the density of this fixed interface charge at the SiO2/GeSi interface is found to increase with the Ge concentration in the commensurately grown GeSi layers.

  12. High density nonmagnetic cobalt in thin films

    NASA Astrophysics Data System (ADS)

    Banu, Nasrin; Singh, Surendra; Basu, Saibal; Roy, Anupam; Movva, Hema C. P.; Lauter, V.; Satpati, B.; Dev, B. N.

    2018-05-01

    Recently high density (HD) nonmagnetic cobalt has been discovered in a nanoscale cobalt thin film, grown on Si(111) single crystal. This form of cobalt is not only nonmagnetic but also superconducting. These promising results have encouraged further investigations of the growth of the nonmagnetic (NM) phase of cobalt. In the original investigation, the cobalt film had a natural cobalt oxide at the top. We have investigated whether the growth of HD NM cobalt layers in the thin film depends on (i) a capping layer on the cobalt film, (ii) the thickness of the cobalt film and (iii) the nature of the substrate on which the cobalt film is grown. The results of such investigations indicate that for cobalt films capped with a thin gold layer, and for various film thicknesses, HD NM cobalt layers are formed. However, instead of a Si substrate, when the cobalt films are grown on oxide substrates, such as silicon oxide or cobalt oxide, HD NM cobalt layers are not formed. The difference is attributed to the nature—crystalline or amorphous—of the substrate.

  13. Nucleant layer effect on nanocolumnar ZnO films grown by electrodeposition

    NASA Astrophysics Data System (ADS)

    Tolosa, Maria D. Reyes; Damonte, Laura C.; Brine, Hicham; Bolink, Henk J.; Hernández-Fenollosa, María A.

    2013-03-01

    Different ZnO nanostructured films were electrochemically grown, using an aqueous solution based on ZnCl2, on three types of transparent conductive oxides grow on commercial ITO (In2O3:Sn)-covered glass substrates: (1) ZnO prepared by spin coating, (2) ZnO prepared by direct current magnetron sputtering, and (3) commercial ITO-covered glass substrates. Although thin, these primary oxide layers play an important role on the properties of the nanostructured films grown on top of them. Additionally, these primary oxide layers prevent direct hole combination when used in optoelectronic devices. Structural and optical characterizations were carried out by scanning electron microscopy, atomic force microscopy, and optical transmission spectroscopy. We show that the properties of the ZnO nanostructured films depend strongly on the type of primary oxide-covered substrate used. Previous studies on different electrodeposition methods for nucleation and growth are considered in the final discussion.

  14. Nucleant layer effect on nanocolumnar ZnO films grown by electrodeposition.

    PubMed

    Tolosa, Maria D Reyes; Damonte, Laura C; Brine, Hicham; Bolink, Henk J; Hernández-Fenollosa, María A

    2013-03-23

    Different ZnO nanostructured films were electrochemically grown, using an aqueous solution based on ZnCl2, on three types of transparent conductive oxides grow on commercial ITO (In2O3:Sn)-covered glass substrates: (1) ZnO prepared by spin coating, (2) ZnO prepared by direct current magnetron sputtering, and (3) commercial ITO-covered glass substrates. Although thin, these primary oxide layers play an important role on the properties of the nanostructured films grown on top of them. Additionally, these primary oxide layers prevent direct hole combination when used in optoelectronic devices. Structural and optical characterizations were carried out by scanning electron microscopy, atomic force microscopy, and optical transmission spectroscopy. We show that the properties of the ZnO nanostructured films depend strongly on the type of primary oxide-covered substrate used. Previous studies on different electrodeposition methods for nucleation and growth are considered in the final discussion.

  15. Nucleant layer effect on nanocolumnar ZnO films grown by electrodeposition

    PubMed Central

    2013-01-01

    Different ZnO nanostructured films were electrochemically grown, using an aqueous solution based on ZnCl2, on three types of transparent conductive oxides grow on commercial ITO (In2O3:Sn)-covered glass substrates: (1) ZnO prepared by spin coating, (2) ZnO prepared by direct current magnetron sputtering, and (3) commercial ITO-covered glass substrates. Although thin, these primary oxide layers play an important role on the properties of the nanostructured films grown on top of them. Additionally, these primary oxide layers prevent direct hole combination when used in optoelectronic devices. Structural and optical characterizations were carried out by scanning electron microscopy, atomic force microscopy, and optical transmission spectroscopy. We show that the properties of the ZnO nanostructured films depend strongly on the type of primary oxide-covered substrate used. Previous studies on different electrodeposition methods for nucleation and growth are considered in the final discussion. PMID:23522332

  16. Controlling the defects and transition layer in SiO2 films grown on 4H-SiC via direct plasma-assisted oxidation

    PubMed Central

    Kim, Dae-Kyoung; Jeong, Kwang-Sik; Kang, Yu-Seon; Kang, Hang-Kyu; Cho, Sang W.; Kim, Sang-Ok; Suh, Dongchan; Kim, Sunjung; Cho, Mann-Ho

    2016-01-01

    The structural stability and electrical performance of SiO2 grown on SiC via direct plasma-assisted oxidation were investigated. To investigate the changes in the electronic structure and electrical characteristics caused by the interfacial reaction between the SiO2 film (thickness ~5 nm) and SiC, X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), density functional theory (DFT) calculations, and electrical measurements were performed. The SiO2 films grown via direct plasma-assisted oxidation at room temperature for 300s exhibited significantly decreased concentrations of silicon oxycarbides (SiOxCy) in the transition layer compared to that of conventionally grown (i.e., thermally grown) SiO2 films. Moreover, the plasma-assisted SiO2 films exhibited enhanced electrical characteristics, such as reduced frequency dispersion, hysteresis, and interface trap density (Dit ≈ 1011 cm−2 · eV−1). In particular, stress induced leakage current (SILC) characteristics showed that the generation of defect states can be dramatically suppressed in metal oxide semiconductor (MOS) structures with plasma-assisted oxide layer due to the formation of stable Si-O bonds and the reduced concentrations of SiOxCy species defect states in the transition layer. That is, energetically stable interfacial states of high quality SiO2 on SiC can be obtained by the controlling the formation of SiOxCy through the highly reactive direct plasma-assisted oxidation process. PMID:27721493

  17. Atomic Layer-Deposited TiO2 Coatings on NiTi Surface

    NASA Astrophysics Data System (ADS)

    Vokoun, D.; Racek, J.; Kadeřávek, L.; Kei, C. C.; Yu, Y. S.; Klimša, L.; Šittner, P.

    2018-02-01

    NiTi shape-memory alloys may release poisonous Ni ions at the alloys' surface. In an attempt to prepare a well-performing surface layer on an NiTi sample, the thermally grown TiO2 layer, which formed during the heat treatment of NiTi, was removed and replaced with a new TiO2 layer prepared using the atomic layer deposition (ALD) method. Using x-ray photoelectron spectroscopy, it was found that the ALD layer prepared at as low a temperature as 100 °C contained Ti in oxidation states + 4 and + 3. As for static corrosion properties of the ALD-coated NiTi samples, they further improved compared to those covered by thermally grown oxide. The corrosion rate of samples with thermally grown oxide was 1.05 × 10-5 mm/year, whereas the corrosion rate of the ALD-coated samples turned out to be about five times lower. However, cracking of the ALD coating occurred at about 1.5% strain during the superelastic mechanical loading in tension taking place via the propagation of a localized martensite band.

  18. Schottky barrier solar cell

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.; Yeh, Y. C. M. (Inventor)

    1981-01-01

    A method of fabricating a Schottky barrier solar cell is described. The cell consists of a thin substrate of low cost material with at least the top surface of the substrate being electrically conductive. A thin layer of heavily doped n-type polycrystalling germanium is deposited on the substrate after a passivation layer is deposited to prevent migration of impurities into the polycrystalline germanium. The polycrystalline germanium is recrystallized to increase the crystal sizes to serve as a base layer on which a thin layer of gallium arsenide is vapor-epitaxilly grown followed by a thermally-grown oxide layer. A metal layer is deposited on the oxide layer and a grid electrode is deposited to be in electrical contact with the top surface of the metal layer.

  19. New CVD-based method for the growth of high-quality crystalline zinc oxide layers

    NASA Astrophysics Data System (ADS)

    Huber, Florian; Madel, Manfred; Reiser, Anton; Bauer, Sebastian; Thonke, Klaus

    2016-07-01

    High-quality zinc oxide (ZnO) layers were grown using a new chemical vapour deposition (CVD)-based low-cost growth method. The process is characterized by total simplicity, high growth rates, and cheap, less hazardous precursors. To produce elementary zinc vapour, methane (CH4) is used to reduce a ZnO powder. By re-oxidizing the zinc with pure oxygen, highly crystalline ZnO layers were grown on gallium nitride (GaN) layers and on sapphire substrates with an aluminum nitride (AlN) nucleation layer. Using simple CH4 as precursor has the big advantage of good controllability and the avoidance of highly toxic gases like nitrogen oxides. In photoluminescence (PL) measurements the samples show a strong near-band-edge emission and a sharp line width at 5 K. The good crystal quality has been confirmed in high resolution X-ray diffraction (HRXRD) measurements. This new growth method has great potential for industrial large-scale production of high-quality single crystal ZnO layers.

  20. Tuning the surface morphology of aluminium doped zinc oxide thin films by arrayed nanorods through chemical growth process

    NASA Astrophysics Data System (ADS)

    Devasia, Sebin; Anila, E. I.

    2018-04-01

    Here we report the growth and characterization of chemically grown aluminium doped zinc oxide nanorods on seed layers. The seed layers were prepared by chemical spray pyrolysis which acted as the growth centers. The growth duration of nanorods were varied from 3h to 12h in steps of 3h. Further, investigations on their structural, morphological, electrical and optical properties. The SEM images confirmed the hexagonal shaped nanorod arrays grown on the seed layers. Later, the x-ray diffraction measurements revealed the pure zinc oxide phase of the samples. Photoluminescence and photoconductivity studies were carried out to analyze the potential of its optoelectronic properties.

  1. Phosphorus oxide gate dielectric for black phosphorus field effect transistors

    NASA Astrophysics Data System (ADS)

    Dickerson, W.; Tayari, V.; Fakih, I.; Korinek, A.; Caporali, M.; Serrano-Ruiz, M.; Peruzzini, M.; Heun, S.; Botton, G. A.; Szkopek, T.

    2018-04-01

    The environmental stability of the layered semiconductor black phosphorus (bP) remains a challenge. Passivation of the bP surface with phosphorus oxide, POx, grown by a reactive ion etch with oxygen plasma is known to improve photoluminescence efficiency of exfoliated bP flakes. We apply phosphorus oxide passivation in the fabrication of bP field effect transistors using a gate stack consisting of a POx layer grown by reactive ion etching followed by atomic layer deposition of Al2O3. We observe room temperature top-gate mobilities of 115 cm2 V-1 s-1 in ambient conditions, which we attribute to the low defect density of the bP/POx interface.

  2. Enhanced kinetics of Al{sub 0.97}Ga{sub 0.03}As wet oxidation through the use of hydrogenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Du, M.; Sagnes, I.; Beaudoin, G.

    2006-09-11

    This letter reports on a different kinetic behavior of the wet thermal oxidation process resulting in Al{sub x}O{sub y} material depending on the AlAs material growth method, molecular beam epitaxy (MBE) or metal organic vapor phase epitaxy (MOVPE). A higher oxidation rate for MOVPE-grown materia is systemically found. Considering the major role of hydrogen in the wet oxidation reaction, it is believed this observation could be linked with the higher hydrogen residual concentration in MOVPE layers. Using a hydrogen plasma, MBE-grown Al{sub 0.97}Ga{sub 0.03}As layers were hydrogened prior to oxidation. This hydrogenated sample showed a ten times enhanced oxidation ratemore » as compared to the nonhydrogenated Al{sub 0.97}Ga{sub 0.03}As sample. This behavior is mainly attributed to a hydrogen induced modification of the diffusion limited regime, enhancing the diffusion length of oxidizing species and reaction products in the oxidized layers.« less

  3. Metal-oxide-semiconductor devices using Ga2O3 dielectrics on n-type GaN

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Ting; Chen, Hong-Wei; Lee, Hsin-Ying

    2003-06-01

    Using a photoelectrochemical method involving a He-Cd laser, Ga2O3 oxide layers were directly grown on n-type GaN. We demonstrated the performance of the resultant metal-oxide-semiconductor devices based on the grown Ga2O3 layer. An extremely low reverse leakage current of 200 pA was achieved when devices operated at -20 V. Furthermore, high forward and reverse breakdown electric fields of 2.80 MV/cm and 5.70 MV/cm, respectively, were obtained. Using a photoassisted current-voltage method, a low interface state density of 2.53×1011 cm-2 eV-1 was estimated. The varactor devices permit formation of inversion layers, so that they may be applied for the fabrication of metal-oxide-semiconductor field-effect transistors.

  4. Fabrication of heterojunction solar cells by improved tin oxide deposition on insulating layer

    DOEpatents

    Feng, Tom; Ghosh, Amal K.

    1980-01-01

    Highly efficient tin oxide-silicon heterojunction solar cells are prepared by heating a silicon substrate, having an insulating layer thereon, to provide a substrate temperature in the range of about 300.degree. C. to about 400.degree. C. and thereafter spraying the so-heated substrate with a solution of tin tetrachloride in a organic ester boiling below about 250.degree. C. Preferably the insulating layer is naturally grown silicon oxide layer.

  5. Growth and optical property characterization of textured barium titanate thin films for photonic applications

    NASA Astrophysics Data System (ADS)

    Dicken, Matthew J.; Diest, Kenneth; Park, Young-Bae; Atwater, Harry A.

    2007-03-01

    We have investigated the growth of barium titanate thin films on bulk crystalline and amorphous substrates utilizing biaxially oriented template layers. Ion beam-assisted deposition was used to grow thin, biaxially textured, magnesium oxide template layers on amorphous and silicon substrates. Growth of highly oriented barium titanate films on these template layers was achieved by molecular beam epitaxy using a layer-by-layer growth process. Barium titanate thin films were grown in molecular oxygen and in the presence of oxygen radicals produced by a 300 W radio frequency plasma. We used X-ray and in situ reflection high-energy electron diffraction (RHEED) to analyze the structural properties and show the predominantly c-oriented grains in the films. Variable angle spectroscopic ellipsometry was used to analyze and compare the optical properties of the thin films grown with and without oxygen plasma. We have shown that optical quality barium titanate thin films, which show bulk crystal-like properties, can be grown on any substrate through the use of biaxially oriented magnesium oxide template layers.

  6. H2 gas sensing properties of a ZnO/CuO and ZnO/CuO/Cu2O Heterostructures

    NASA Astrophysics Data System (ADS)

    Ababii, N.; Postica, V.; Hoppe, M.; Adelung, R.; Lupan, O.; Railean, S.; Pauporté, T.; Viana, B.

    2017-03-01

    The most important parameters of gas sensors are sensitivity and especially high selectivity to specific chemical species. To improve these parameters we developed sensor structures based on layered semiconducting oxides, namely CuO/Cu2O, CuO:Zn/Cu2O:Zn, NiO/ZnO. In this work, the ZnO/CuxO (where x = 1, 2) bi-layer heterostructure were grown via a simple synthesis from chemical solution (SCS) at relatively low temperatures (< 95 °C), representing a combination of layered n-type and p-type semiconducting oxides which are widely used as sensing material for gas sensors. The main advantages of the developed device structures are given by simplicity of the synthesis and technological cost-efficiency. Structural investigations showed high crystallinity of synthesized layers confirming the presence of zinc oxide nanostructures on the surface of the copper oxide film deposited on glass substrate. Structural changes in morphology of grown nanostructures induced by post-grown thermal annealing were observed by scanning electron microscopy (SEM) investigations, and were studied in detail. The influence of thermal annealing type on the optical properties was also investigated. As an example of practical applications, the ZnO/CuxO bi-layer heterojunctions and ZnO/CuO/Cu2O three-layered structures were integrated into sensor structures and were tested to different types of reducing gases at different operating temperatures (OPT), showing promising results for fabrication of selective gas sensors.

  7. Epitaxial ferromagnetic oxide thin films on silicon with atomically sharp interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coux, P. de; CEMES-CNRS, 29 rue Jeanne Marvig, BP 94347, Toulouse Cedex 4; Bachelet, R.

    A bottleneck in the integration of functional oxides with silicon, either directly grown or using a buffer, is the usual formation of an amorphous interfacial layer. Here, we demonstrate that ferromagnetic CoFe{sub 2}O{sub 4} films can be grown epitaxially on Si(111) using a Y{sub 2}O{sub 3} buffer layer, and remarkably the Y{sub 2}O{sub 3}/Si(111) interface is stable and remains atomically sharp. CoFe{sub 2}O{sub 4} films present high crystal quality and high saturation magnetization.

  8. Method of Fabricating Schottky Barrier solar cell

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.; Yeh, Y. C. M. (Inventor)

    1982-01-01

    On a thin substrate of low cost material with at least the top surface of the substrate being electrically conductive is deposited a thin layer of heavily doped n-type polycrystalline germanium, with crystalline sizes in the submicron range. A passivation layer may be deposited on the substrate to prevent migration of impurities into the polycrystalline germanium. The polycrystalline germanium is recrystallized to increase the crystal sizes in the germanium layer to not less than 5 micros to serve as a base layer on which a thin layer of gallium arsenide is vapor epitaxially grown to a selected thickness. A thermally-grown oxide layer of a thickness of several tens of angstroms is formed on the gallium arsenide layer. A metal layer, of not more about 100 angstroms thick, is deposited on the oxide layer, and a grid electrode is deposited to be in electrical contact with the top surface of the metal layer. An antireflection coating may be deposited on the exposed top surface of the metal layer.

  9. Stability domain of alumina thermally grown on Fe-Cr-Al-based model alloys and modified surface layers exposed to oxygen-containing molten Pb

    NASA Astrophysics Data System (ADS)

    Jianu, A.; Fetzer, R.; Weisenburger, A.; Doyle, S.; Bruns, M.; Heinzel, A.; Hosemann, P.; Mueller, G.

    2016-03-01

    The paper gives experimental results concerning the morphology, composition, structure and thickness of the oxide scales grown on Fe-Cr-Al-based bulk alloys during exposure to oxygen-containing molten lead. The results are discussed and compared with former results obtained on Al-containing surface layers, modified by melting with intense pulsed electron beam and exposed to similar conditions. The present and previous results provide the alumina stability domain and also the criterion of the Al/Cr ratio for the formation of a highly protective alumina layer on the surface of Fe-Cr-Al-based alloys and on modified surface layers exposed to molten lead with 10-6 wt.% oxygen at 400-600 °C. The protective oxide scales, grown on alumina-forming Fe-Cr-Al alloys under the given experimental conditions, were transient aluminas, namely, kappa-Al2O3 and theta-Al2O3.

  10. Inorganic Substrates and Encapsulation Layers for Transient Electronics

    DTIC Science & Technology

    2014-07-01

    surface oxidation of the nitrides, the measurements were conducted shortly after oxide removal in buffered oxide etchant (BOE) 6:1 (Transene Company Inc...values for the time-dependent dissolution of thermally grown SiO2 (dry oxidation) in buffer solutions (black, pH 7.4; red, pH 8; blue, pH 10...22 5.1.3 Contractor will Identify and Measure Key Performance Characteristics of Candidate Metal Conductive Layers for

  11. Epitaxial heterojunctions of oxide semiconductors and metals on high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P. (Inventor); Hunt, Brian D. (Inventor); Foote, Marc C. (Inventor)

    1994-01-01

    Epitaxial heterojunctions formed between high temperature superconductors and metallic or semiconducting oxide barrier layers are provided. Metallic perovskites such as LaTiO3, CaVO3, and SrVO3 are grown on electron-type high temperature superconductors such as Nd(1.85)Ce(0.15)CuO(4-x). Alternatively, transition metal bronzes of the form A(x)MO(3) are epitaxially grown on electron-type high temperature superconductors. Also, semiconducting oxides of perovskite-related crystal structures such as WO3 are grown on either hole-type or electron-type high temperature superconductors.

  12. Process for growing a film epitaxially upon a MgO surface

    DOEpatents

    McKee, Rodney Allen; Walker, Frederick Joseph

    1997-01-01

    A process and structure wherein optical quality perovskites, such as BaTiO.sub.3 or SrTiO.sub.3, are grown upon a single crystal MgO substrate involves the epitaxial build up of alternating planes of TiO.sub.2 and metal oxide wherein the first plane grown upon the MgO substrate is a plane of TiO.sub.2. The layering sequence involved in the film build up reduces problems which would otherwise result from the interfacial electrostatics at the first atomic layers, and these oxides can be stabilized as commensurate thin films at a unit cell thickness or grown with high crystal quality to thicknesses of 0.5-0.7 .mu.m for optical device applications.

  13. Process for depositing an oxide epitaxially onto a silicon substrate and structures prepared with the process

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    1993-01-01

    A process and structure involving a silicon substrate utilizes an ultra high vacuum and molecular beam epitaxy (MBE) methods to grow an epitaxial oxide film upon a surface of the substrate. As the film is grown, the lattice of the compound formed at the silicon interface becomes stabilized, and a base layer comprised of an oxide having a sodium chloride-type lattice structure grows epitaxially upon the compound so as to cover the substrate surface. A perovskite may then be grown epitaxially upon the base layer to render a product which incorporates silicon, with its electronic capabilities, with a perovskite having technologically-significant properties of its own.

  14. Passivating Window/First Layer AR Coating for Space Solar Cells

    NASA Technical Reports Server (NTRS)

    Faur, Mircea; Faur, Maria; Bailey, S. G.; Flood, D. J.; Brinker, D. J.; Alterovitz, S. A.; Wheeler, D. R.; Matesscu, G.; Goradia, C.; Goradia, M.

    2004-01-01

    Chemically grown oxides, if well designed, offer excellent surface passivation of the emitter surface of space solar cells and can be used as effective passivating window/first layer AR coating. In this paper, we demonstrate the effectiveness of using a simple room temperature wet chemical technique to grow cost effective passivating layers on solar cell front surfaces after the front grid metallization step. These passivating layers can be grown both on planar and porous surfaces. Our results show that these oxide layers: (i) can effectively passivate the from the surface, (ii) can serve as an effective optical window/first layer AR coating, (iii) are chemically, thermally and UV stable, and (iv) have the potential of improving the BOL and especially the EOL efficiency of space solar cells. The potential of using this concept to simplify the III-V based space cell heterostructures while increasing their BOL and EOL efficiency is also discussed.

  15. n-VO2/p-GaN based nitride-oxide heterostructure with various thickness of VO2 layer grown by MBE

    NASA Astrophysics Data System (ADS)

    Wang, Minhuan; Bian, Jiming; Sun, Hongjun; Liu, Weifeng; Zhang, Yuzhi; Luo, Yingmin

    2016-12-01

    High quality VO2 films with precisely controlled thickness were grown on p-GaN/sapphire substrates by oxide molecular beam epitaxy (O-MBE). Results indicated that a distinct reversible semiconductor-to-metal (SMT) phase transition was observed for all the samples in the temperature dependent electrical resistance measurement, and the influence of VO2 layer thickness on the SMT properties of the as-grown n-VO2/p-GaN based nitride-oxide heterostructure was investigated. Meanwhile, the clear rectifying transport characteristics originated from the n-VO2/p-GaN interface were demonstrated before and after SMT of the VO2 over layer, which were attributed to the p-n junction behavior and Schottky contact character, respectively. Moreover, the X-ray photoelectron spectroscopy (XPS) analyses confirmed the valence state of vanadium (V) in VO2 films was principally composed of V4+ with trace amount of V5+. The design and modulation of the n-VO2/p-GaN based heterostructure devices will benefit significantly from these achievements.

  16. Positron annihilation on the surfaces of SiO 2 films thermally grown on single crystal of Cz-Si

    NASA Astrophysics Data System (ADS)

    Deng, Wen; Yue, Li; Zhang, Wei; Cheng, Xu-xin; Zhu, Yan-yan; Huang, Yu-yang

    2009-09-01

    Two-detector coincidence system and mono-energetic slow positron beam has been applied to measure the Doppler broadening spectra for single crystals of SiO2, SiO2 films with different thickness thermally grown on single crystal of Cz-Si, and single crystal of Si without oxide film. Oxygen is recognized as a peak at about 11.85 × 10-3m0c on the ratio curves. The S parameters decrease with the increase of positron implantation energy for the single crystal of SiO2 and Si without oxide film. However, for the thermally grown SiO2-Si sample, the S parameters in near surface of the sample increase with positron implantation energy. It is due to the formation of silicon oxide at the surface, which lead to lower S value. S and W parameters vary with positron implantation depth indicate that the SiO2-Si system consist of a surface layer, a SiO2 layer, a SiO2-Si interface layer and a semi-infinite Si substrate.

  17. Enhanced spin-valve giant magneto-resistance in non-exchange biased sandwich films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, M; Cerjan, C; Law, B

    2000-02-17

    A large giant magnetoresistance (GMR) value of 7.5% has been measured in simple NiFeCo(1)/Cu/NiFeCo(2) sandwich films grown on a 30 {angstrom} Cr seed layer. This spin-valve GMR effect is consistent with the differential switching of the two NiFeCo layers due to an enhanced coercivity of the NiFeCo(1) layer grown on the Cr seed layer. A change in growth texture of the NiFeCo(1) layer from fcc (111) to bcc (110) crystallographic orientation leads to an increase in magnetic anisotropy and an enhancement in coercivity. The GMR value increases to 8.7% when a thin CoFe interfacial enhancing layer is incorporated. Further enhancementmore » in GMR values up to 14% is seen in the sandwich films by nano-oxide layer formation. The specular reflection at oxide/magnetic layer interface further extends the mean free path of spin-polarized electrons.« less

  18. Process for depositing epitaxial alkaline earth oxide onto a substrate and structures prepared with the process

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    1996-01-01

    A process and structure involving a silicon substrate utilize molecular beam epitaxy (MBE) and/or electron beam evaporation methods and an ultra-high vacuum facility to grow a layup of epitaxial alkaline earth oxide films upon the substrate surface. By selecting metal constituents for the oxides and in the appropriate proportions so that the lattice parameter of each oxide grown closely approximates that of the substrate or base layer upon which oxide is grown, lattice strain at the film/film or film/substrate interface of adjacent films is appreciably reduced or relieved. Moreover, by selecting constituents for the oxides so that the lattice parameters of the materials of adjacent oxide films either increase or decrease in size from one parameter to another parameter, a graded layup of films can be grown (with reduced strain levels therebetween) so that the outer film has a lattice parameter which closely approximates that of, and thus accomodates the epitaxial growth of, a pervoskite chosen to be grown upon the outer film.

  19. Chemical gating of epitaxial graphene through ultrathin oxide layers.

    PubMed

    Larciprete, Rosanna; Lacovig, Paolo; Orlando, Fabrizio; Dalmiglio, Matteo; Omiciuolo, Luca; Baraldi, Alessandro; Lizzit, Silvano

    2015-08-07

    We achieved a controllable chemical gating of epitaxial graphene grown on metal substrates by exploiting the electrostatic polarization of ultrathin SiO2 layers synthesized below it. Intercalated oxygen diffusing through the SiO2 layer modifies the metal-oxide work function and hole dopes graphene. The graphene/oxide/metal heterostructure behaves as a gated plane capacitor with the in situ grown SiO2 layer acting as a homogeneous dielectric spacer, whose high capacity allows the Fermi level of graphene to be shifted by a few hundreds of meV when the oxygen coverage at the metal substrate is of the order of 0.5 monolayers. The hole doping can be finely tuned by controlling the amount of interfacial oxygen, as well as by adjusting the thickness of the oxide layer. After complete thermal desorption of oxygen the intrinsic doping of SiO2 supported graphene is evaluated in the absence of contaminants and adventitious adsorbates. The demonstration that the charge state of graphene can be changed by chemically modifying the buried oxide/metal interface hints at the possibility of tuning the level and sign of doping by the use of other intercalants capable of diffusing through the ultrathin porous dielectric and reach the interface with the metal.

  20. CHEMICAL SOLUTION DEPOSITION BASED OXIDE BUFFERS AND YBCO COATED CONDUCTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paranthaman, Mariappan Parans

    We have reviewed briefly the growth of buffer and high temperature superconducting oxide thin films using a chemical solution deposition (CSD) method. In the Rolling-Assisted Biaxially Textured Substrates (RABiTS) process, developed at Oak Ridge National Laboratory, utilizes the thermo mechanical processing to obtain the flexible, biaxially oriented copper, nickel or nickel-alloy substrates. Buffers and Rare Earth Barium Copper Oxide (REBCO) superconductors have been deposited epitaxially on the textured nickel alloy substrates. The starting substrate serves as a template for the REBCO layer, which has substantially fewer weak links. Buffer layers play a major role in fabricating the second generation REBCOmore » wire technology. The main purpose of the buffer layers is to provide a smooth, continuous and chemically inert surface for the growth of the REBCO film, while transferring the texture from the substrate to the superconductor layer. To achieve this, the buffer layers need to be epitaxial to the substrate, i.e. they have to nucleate and grow in the same bi-axial texture provided by the textured metal foil. The most commonly used RABiTS multi-layer architectures consist of a starting template of biaxially textured Ni-5 at.% W (Ni-W) substrate with a seed (first) layer of Yttrium Oxide (Y2O3), a barrier (second) layer of Yttria Stabilized Zirconia (YSZ), and a Cerium Oxide (CeO2) cap (third) layer. These three buffer layers are generally deposited using physical vapor deposition (PVD) techniques such as reactive sputtering. On top of the PVD template, REBCO film is then grown by a chemical solution deposition. This article reviews in detail about the list of oxide buffers and superconductor REBCO films grown epitaxially on single crystal and/or biaxially textured Ni-W substrates using a CSD method.« less

  1. Process for growing a film epitaxially upon a MGO surface and structures formed with the process

    DOEpatents

    McKee, Rodney Allen; Walker, Frederick Joseph

    1998-01-01

    A process and structure wherein optical quality perovskites, such as BaTiO.sub.3 or SrTiO.sub.3, are grown upon a single crystal MgO substrate involves the epitaxial build up of alternating planes of TiO.sub.2 and metal oxide wherein the first plane grown upon the MgO substrate is a plane of TiO.sub.2. The layering sequence involved in the film build up reduces problems which would otherwise result from the interfacial electrostatics at the first atomic layers, and these oxides can be stabilized as commensurate thin films at a unit cell thickness or grown with high crystal quality to thicknesses of 0.5-0.7 .mu.m for optical device applications.

  2. Growth and surface analysis of SiO2 on 4H-SiC for MOS devices

    NASA Astrophysics Data System (ADS)

    Kodigala, Subba Ramaiah; Chattopadhyay, Somnath; Overton, Charles; Ardoin, Ira; Gordon, B. J.; Johnstone, D.; Roy, D.; Barone, D.

    2015-03-01

    The SiO2 layers have been grown onto C-face and Si-face 4H-SiC substrates by two different techniques such as wet thermal oxidize process and sputtering. The deposition recipes of these techniques are carefully optimized by trails and error method. The growth effects of SiO2 on the C-face and Si-face 4H-SiC substrates are thoroughly investigated by AFM analysis. The growth mechanism of different species involved in the growth process of SiO2 by wet thermal oxide is now proposed by adopting two body classical projectile scattering. This mechanism drives to determine growth of secondary phases such as α-CH nano-islands in the grown SiO2 layer. The effect of HF etchings on the SiO2 layers grown by both techniques and on both the C-face and Si-face substrates are legitimately studied. The thicknesses of the layers determined by AFM and ellipsometry techniques are widely promulgated. The MOS capacitors are made on the Si-face 4H-SiC wafers by wet oxidation and sputtering processes, which are studied by capacitance versus voltage (CV) technique. From CV measurements, the density of trap states with variation of trap level for MOS devices is estimated.

  3. Heterojunction oxide thin-film transistors with unprecedented electron mobility grown from solution.

    PubMed

    Faber, Hendrik; Das, Satyajit; Lin, Yen-Hung; Pliatsikas, Nikos; Zhao, Kui; Kehagias, Thomas; Dimitrakopulos, George; Amassian, Aram; Patsalas, Panos A; Anthopoulos, Thomas D

    2017-03-01

    Thin-film transistors made of solution-processed metal oxide semiconductors hold great promise for application in the emerging sector of large-area electronics. However, further advancement of the technology is hindered by limitations associated with the extrinsic electron transport properties of the often defect-prone oxides. We overcome this limitation by replacing the single-layer semiconductor channel with a low-dimensional, solution-grown In 2 O 3 /ZnO heterojunction. We find that In 2 O 3 /ZnO transistors exhibit band-like electron transport, with mobility values significantly higher than single-layer In 2 O 3 and ZnO devices by a factor of 2 to 100. This marked improvement is shown to originate from the presence of free electrons confined on the plane of the atomically sharp heterointerface induced by the large conduction band offset between In 2 O 3 and ZnO. Our finding underscores engineering of solution-grown metal oxide heterointerfaces as an alternative strategy to thin-film transistor development and has the potential for widespread technological applications.

  4. Heterojunction oxide thin-film transistors with unprecedented electron mobility grown from solution

    PubMed Central

    Faber, Hendrik; Das, Satyajit; Lin, Yen-Hung; Pliatsikas, Nikos; Zhao, Kui; Kehagias, Thomas; Dimitrakopulos, George; Amassian, Aram; Patsalas, Panos A.; Anthopoulos, Thomas D.

    2017-01-01

    Thin-film transistors made of solution-processed metal oxide semiconductors hold great promise for application in the emerging sector of large-area electronics. However, further advancement of the technology is hindered by limitations associated with the extrinsic electron transport properties of the often defect-prone oxides. We overcome this limitation by replacing the single-layer semiconductor channel with a low-dimensional, solution-grown In2O3/ZnO heterojunction. We find that In2O3/ZnO transistors exhibit band-like electron transport, with mobility values significantly higher than single-layer In2O3 and ZnO devices by a factor of 2 to 100. This marked improvement is shown to originate from the presence of free electrons confined on the plane of the atomically sharp heterointerface induced by the large conduction band offset between In2O3 and ZnO. Our finding underscores engineering of solution-grown metal oxide heterointerfaces as an alternative strategy to thin-film transistor development and has the potential for widespread technological applications. PMID:28435867

  5. Magnetoresistance enhancement in specular, bottom-pinned, Mn83Ir17 spin valves with nano-oxide layers

    NASA Astrophysics Data System (ADS)

    Veloso, A.; Freitas, P. P.; Wei, P.; Barradas, N. P.; Soares, J. C.; Almeida, B.; Sousa, J. B.

    2000-08-01

    Bottom-pinned Mn83Ir17 spin valves with enhanced specular scattering were fabricated, showing magnetoresistance (MR) values up to 13.6%, lower sheet resistance R□ and higher ΔR□. Two nano-oxide layers (NOL) are grown on both sides of the CoFe/Cu/CoFe spin valve structure by natural oxidation or remote plasma oxidation of the starting CoFe layer. Maximum MR enhancement is obtained after just 1 min plasma oxidation. Rutherford backscattering analysis shows that a 15±2 Å oxide layer grows at the expense of the initial (prior to oxidation) CoFe layer, with ˜12% reduction of the initial 40 Å CoFe thickness. X-ray reflectometry indicates that Kiessig fringes become better defined after NOL growth, indicating smoother inner interfaces, in agreement with the observed decrease of the spin valve ferromagnetic Néel coupling.

  6. Design of a three-layer antireflection coating for high efficiency indium phosphide solar cells using a chemical oxide as first layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moulot, J.; Faur, M.; Faur, M.

    1995-10-01

    It is well known that the behavior of III-V compound based solar cells is largely controlled by their surface, since the majority of light generated carriers (63% for GaAs and 79% for InP) are created within 0.2 mu m of the surface of the illuminated cell. Consequently, the always observed high surface recombination velocity (SRV) on these cells is a serious limiting factor for their high efficiency performance, especially for those with p-n junction made by either thermal diffusion or ion implantation. A good surface passivation layer, ideally a grown oxide as opposed to a deposited one, will cause amore » significant reduction in the SRV without adding interface problems, thus improving the performance of III-V compound based solar cells. Another significant benefit to the overall performance of the solar cells can be achieved by a substantial reduction of their large surface optical reflection by the use of a well designed antireflection (AR) coating. In this paper, the authors demonstrate the effectiveness of using a chemically grown thermally and chemically stable oxide, not only for surface passivation but also as an integral part of a 3-layer AR coating for thermally diffused p+n InP solar cells. A phosphorus-rich interfacial oxide, In(PO3)3, is grown at the surface of the p+ emitter using an etchant based on HNO3, o-H3PO4 and H2O2. This oxide has the unique properties of passivating the surface as well as serving as an efficient antireflective layer yielding a measured record high AMO open-circuit voltage of 890.3 mV on a thermally diffused InP(Cd,S) solar cell. Unlike conventional single layer AR coatings such as ZnS, Sb2O3, SiO or double layer AR coatings such as ZnS/MgF2 deposited by e-beam or resistive evaporation, this oxide preserves the stoichiometry of the InP surface.« less

  7. Structural, optical, and electrical properties of unintentionally doped NiO layers grown on MgO by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Budde, Melanie; Tschammer, Carsten; Franz, Philipp; Feldl, Johannes; Ramsteiner, Manfred; Goldhahn, Rüdiger; Feneberg, Martin; Barsan, Nicolae; Oprea, Alexandru; Bierwagen, Oliver

    2018-05-01

    NiO layers were grown on MgO(100), MgO(110), and MgO(111) substrates by plasma-assisted molecular beam epitaxy under Ni-flux limited growth conditions. Single crystalline growth with a cube-on-cube epitaxial relationship was confirmed by X-ray diffraction measurements for all used growth conditions and substrates except MgO(111). A detailed growth series on MgO(100) was prepared using substrate temperatures ranging from 20 °C to 900 °C to investigate the influence on the layer characteristics. Energy-dispersive X-ray spectroscopy indicated close-to-stoichiometric layers with an oxygen content of ≈ 47 at. % and ≈ 50 at. % grown under low and high O-flux, respectively. All NiO layers had a root-mean-square surface roughness below 1 nm, measured by atomic force microscopy, except for rougher layers grown at 900 °C or using molecular oxygen. Growth at 900 °C led to a significant diffusion of Mg from the substrate into the film. The relative intensity of the quasi-forbidden one-phonon Raman peak is introduced as a gauge of the crystal quality, indicating the highest layer quality for growth at low oxygen flux and high growth temperature, likely due to the resulting high adatom diffusion length during growth. The optical and electrical properties were investigated by spectroscopic ellipsometry and resistance measurements, respectively. All NiO layers were transparent with an optical bandgap around 3.6 eV and semi-insulating at room temperature. However, changes upon exposure to reducing or oxidizing gases of the resistance of a representative layer at elevated temperature were able to confirm p-type conductivity, highlighting their suitability as a model system for research on oxide-based gas sensing.

  8. Oxidized film structure and method of making epitaxial metal oxide structure

    DOEpatents

    Gan, Shupan [Richland, WA; Liang, Yong [Richland, WA

    2003-02-25

    A stable oxidized structure and an improved method of making such a structure, including an improved method of making an interfacial template for growing a crystalline metal oxide structure, are disclosed. The improved method comprises the steps of providing a substrate with a clean surface and depositing a metal on the surface at a high temperature under a vacuum to form a metal-substrate compound layer on the surface with a thickness of less than one monolayer. The compound layer is then oxidized by exposing the compound layer to essentially oxygen at a low partial pressure and low temperature. The method may further comprise the step of annealing the surface while under a vacuum to further stabilize the oxidized film structure. A crystalline metal oxide structure may be subsequently epitaxially grown by using the oxidized film structure as an interfacial template and depositing on the interfacial template at least one layer of a crystalline metal oxide.

  9. The optical properties of transferred graphene and the dielectrics grown on it obtained by ellipsometry

    NASA Astrophysics Data System (ADS)

    Kasikov, Aarne; Kahro, Tauno; Matisen, Leonard; Kodu, Margus; Tarre, Aivar; Seemen, Helina; Alles, Harry

    2018-04-01

    Graphene layers grown by chemical vapour deposition (CVD) method and transferred from Cu-foils to the oxidized Si-substrates were investigated by spectroscopic ellipsometry (SE), Raman and X-Ray Photoelectron Spectroscopy (XPS) methods. The optical properties of transferred CVD graphene layers do not always correspond to the ones of the exfoliated graphene due to the contamination from the chemicals used in the transfer process. However, the real thickness and the mean properties of the transferred CVD graphene layers can be found using ellipsometry if a real thickness of the SiO2 layer is taken into account. The pulsed laser deposition (PLD) and atomic layer deposition (ALD) methods were used to grow dielectric layers on the transferred graphene and the obtained structures were characterized using optical methods. The approach demonstrated in this work could be useful for the characterization of various materials grown on graphene.

  10. Electrical characterization of thin nanoscale SiOx layers grown on plasma hydrogenated silicon

    NASA Astrophysics Data System (ADS)

    Halova, E.; Kojuharova, N.; Alexandrova, S.; Szekeres, A.

    2018-03-01

    We analyzed the electrical characteristics of MOS structures with a SiOx layer grown on Si treated in plasma without heating. The hysteresis effect observed indicates the presence of traps spatially distributed into the oxide near the interface. The shift and the shape of the curves reveal a small oxide charge and low leakage currents, i.e. a high-quality dielectric layer. The generalized C-V curve was generated by applying the two-frequency methods on the C-V and G-V characteristics at frequencies in the range from 1 kHz to 300 kHz and by accounting for the series resistance and the leakage through the oxide layer. The energy spectra of the interface traps were calculated by comparing the experimental and the ideal theoretical C-V curves. The spectra showed the presence of interface traps with localized energy levels in the Si bandgap. These conclusions correlate well with the results on this oxide’s mechanical stress level, composition and Si-O ring structure, as well as on the interfacial region composition, obtained by our previous detailed multi-angle spectral ellipsometric studies. The ellipsometric data and the capacitance in strong accumulation of the C-V curves were used to calculate the thickness and the dielectric constants of the oxide layers.

  11. Physical properties of spin-valve films grown on naturally oxidized metal nano-oxide surfaces

    NASA Astrophysics Data System (ADS)

    Mao, Ming; Cerjan, Charlie; Kools, Jacques

    2002-05-01

    The physical properties of spin-valve films NiFe 25 Å/CoFe 10 Å/Cu(tCu)/CoFe 30 Å/IrMn 70 Å/Ta 20 Å with graded Cu layer thickness (tCu=18-45 Å) grown on the surface of metal nano-oxide layers (NOLs) were studied. The NOLs were formed from ultrathin Al, Cr, Cu, Nb, Ta, CoFe, NiFe, and NiFeCr layers by natural oxidation. The growth of the spin-valve films on NOLs has led to an enhancement in giant magnetoresistance value by up to 48%. A corresponding reduction in minimum film resistance by over 10% confirms that this enhancement originates from an increase in the mean free path of spin-polarized electrons due to the resultant specular reflection at the nano-oxide surfaces. A wide spectrum of oscillatory interlayer exchange coupling dependence on tCu for these NOL-bearing films suggests that a specular nano-oxide surface does not necessarily result in a smoother multilayer structure. The observation of an enhanced exchange biasing among these spin-valve films appears in contradiction to the observed deterioration of their crystallographic quality. As an important application, TaOx, CrOx, and NbOx could be employed as an alternative to AlOx as the barrier layer for magnetic tunnel junctions.

  12. Effects of O2 plasma post-treatment on ZnO: Ga thin films grown by H2O-thermal ALD

    NASA Astrophysics Data System (ADS)

    Lee, Yueh-Lin; Chuang, Jia-Hao; Huang, Tzu-Hsuan; Ho, Chong-Long; Wu, Meng-Chyi

    2013-03-01

    Transparent conducting oxides have been widely employed in optoelectronic devices using the various deposition methods such as sputtering, thermal evaporator, and e-gun evaporator technologies.1-3 In this work, gallium doped zinc oxide (ZnO:Ga) thin films were grown on glass substrates via H2O-thermal atomic layer deposition (ALD) at different deposition temperatures. ALD-GZO thin films were constituted as a layer-by-layer structure by stacking zinc oxides and gallium oxides. Diethylzinc (DEZ), triethylgallium (TEG) and H2O were used as zinc, gallium precursors and oxygen source, respectively. Furthermore, we investigated the influences of O2 plasma post-treatment power on the surface morphology, electrical and optical property of ZnO:Ga films. As the result of O2 plasma post-treatment, the characteristics of ZnO:Ga films exhibit a smooth surface, low resistivity, high carrier concentration, and high optical transmittance in the visible spectrum. However, the transmittance decreases with O2 plasma power in the near- and mid-infrared regions.

  13. Gamma and proton irradiation effects and thermal stability of electrical characteristics of metal-oxide-silicon capacitors with atomic layer deposited Al 2O 3 dielectric

    DOE PAGES

    J. M. Rafi; Lynn, D.; Pellegrini, G.; ...

    2015-12-11

    The radiation hardness and thermal stability of the electrical characteristics of atomic layer deposited Al 2O 3 layers to be used as passivation films for silicon radiation detectors with slim edges are investigated. To directly measure the interface charge and to evaluate its change with the ionizing dose, metal-oxide-silicon (MOS) capacitors implementing differently processed Al 2O 3 layers were fabricated on p-type silicon substrates. Qualitatively similar results are obtained for degradation of capacitance–voltage and current–voltage characteristics under gamma and proton irradiations up to equivalent doses of 30 Mrad and 21.07 Mrad, respectively. While similar negative charge densities are initially extractedmore » for all non-irradiated capacitors, superior radiation hardness is obtained for MOS structures with alumina layers grown with H 2O instead of O 3 as oxidant precursor. Competing effects between radiation-induced positive charge trapping and hydrogen release from the H 2O-grown Al 2O 3 layers may explain their higher radiation resistance. Finally, irradiated and non-irradiated MOS capacitors with differently processed Al 2O 3 layers have been subjected to thermal treatments in air at temperatures ranging between 100 °C and 200 °C and the thermal stability of their electrical characteristics has been evaluated. Partial recovery of the gamma-induced degradation has been noticed for O 3-grown MOS structures. Lastly, this can be explained by a trapped holes emission process, for which an activation energy of 1.38 ± 0.15 eV has been extracted.« less

  14. Catalytically enhanced thermal decomposition of chemically grown silicon oxide layers on Si(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leroy, F., E-mail: leroy@cinam.univ-mrs.fr; Passanante, T.; Cheynis, F.

    2016-03-14

    The thermal decomposition of Si dioxide layers formed by wet chemical treatment on Si(001) has been studied by low-energy electron microscopy. Independent nucleations of voids occur into the Si oxide layers that open by reaction at the void periphery. Depending on the voids, the reaction rates exhibit large differences via the occurrence of a nonlinear growth of the void radius. This non-steady state regime is attributed to the accumulation of defects and silicon hydroxyl species at the SiO{sub 2}/Si interface that enhances the silicon oxide decomposition at the void periphery.

  15. Study of annealing effect on the growth of ZnO nanorods on ZnO seed layers

    NASA Astrophysics Data System (ADS)

    Sannakashappanavar, Basavaraj S.; Pattanashetti, Nandini A.; Byrareddy, C. R.; Yadav, Aniruddh Bahadur

    2018-04-01

    A zinc oxide (ZnO) seed layer was deposited on the SiO2/Si substrate by RF sputtering. To study the effect of annealing, the seed layers were classified into annealed and unannealed thin films. Annealing of the seed layers was carried at 450°C. Surface morphology of the seed layers were studied by Atomic force microscopy. ZnO nanorods were then grown on both the types of seed layer by hydrothermal method. The morphology and the structural properties of the nanorods were characterized by X-ray diffraction and Scanning electron microscopy. The effect of seed layer annealing on the growth and orientation of the ZnO nanorods were clearly examined on comparing with the nanorods grown on unannealed seed layer. The nanorods grown on annealed seed layers were found to be well aligned and oriented. Further, the I-V characteristic study was carried out on these aligned nanorods. The results supports positively for the future work to further enhance the properties of developed nanorods for their wide applications in electronic and optoelectronic devices.

  16. Structural and elastoplastic properties of β -Ga2O3 films grown on hybrid SiC/Si substrates

    NASA Astrophysics Data System (ADS)

    Osipov, A. V.; Grashchenko, A. S.; Kukushkin, S. A.; Nikolaev, V. I.; Osipova, E. V.; Pechnikov, A. I.; Soshnikov, I. P.

    2018-04-01

    Structural and mechanical properties of gallium oxide films grown on (001), (011) and (111) silicon substrates with a buffer layer of silicon carbide are studied. The buffer layer was fabricated by the atom substitution method, i.e., one silicon atom per unit cell in the substrate was substituted by a carbon atom by chemical reaction with carbon monoxide. The surface and bulk structure properties of gallium oxide films have been studied by atomic-force microscopy and scanning electron microscopy. The nanoindentation method was used to investigate the elastoplastic characteristics of gallium oxide, and also to determine the elastic recovery parameter of the films under study. The ultimate tensile strength, hardness, elastic stiffness constants, elastic compliance constants, Young's modulus, linear compressibility, shear modulus, Poisson's ratio and other characteristics of gallium oxide have been calculated by quantum chemistry methods based on the PBESOL functional. It is shown that all these properties of gallium oxide are essentially anisotropic. The calculated values are compared with experimental data. We conclude that a change in the silicon orientation leads to a significant reorientation of gallium oxide.

  17. Multilayer thermal barrier coating systems

    DOEpatents

    Vance, Steven J.; Goedjen, John G.; Sabol, Stephen M.; Sloan, Kelly M.

    2000-01-01

    The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

  18. Structure and nano-mechanical characteristics of surface oxide layers on a metallic glass.

    PubMed

    Caron, A; Qin, C L; Gu, L; González, S; Shluger, A; Fecht, H-J; Louzguine-Luzgin, D V; Inoue, A

    2011-03-04

    Owing to their low elastic moduli, high specific strength and excellent processing characteristics in the undercooled liquid state, metallic glasses are promising materials for applications in micromechanical systems. With miniaturization of metallic mechanical components down to the micrometer scale, the importance of a native oxide layer on a glass surface is increasing. In this work we use TEM and XPS to characterize the structure and properties of the native oxide layer grown on Ni(62)Nb(38) metallic glass and their evolution after annealing in air. The thickness of the oxide layer almost doubled after annealing. In both cases the oxide layer is amorphous and consists predominantly of Nb oxide. We investigate the friction behavior at low loads and in ambient conditions (i.e. at T = 295 K and 60% air humidity) of both as-cast and annealed samples by friction force microscopy. After annealing the friction coefficient is found to have significantly increased. We attribute this effect to the increase of the mechanical stability of the oxide layer upon annealing.

  19. Single and multi-layered core-shell structures based on ZnO nanorods obtained by aerosol assisted chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sáenz-Trevizo, A.; Amézaga-Madrid, P.; Pizá-Ruiz, P.

    2015-07-15

    Core–shell nanorod structures were prepared by a sequential synthesis using an aerosol assisted chemical vapor deposition technique. Several samples consisting of ZnO nanorods were initially grown over TiO{sub 2} film-coated borosilicate glass substrates, following the synthesis conditions reported elsewhere. Later on, a uniform layer consisting of individual Al, Ni, Ti or Fe oxides was grown onto ZnO nanorod samples forming the so-called single MO{sub x}/ZnO nanorod core–shell structures, where MO{sub x} was the metal oxide shell. Additionally, a three-layer core–shell sample was developed by growing Fe, Ti and Fe oxides alternately, onto the ZnO nanorods. The microstructure of the core–shellmore » materials was characterized by grazing incidence X-ray diffraction, scanning and transmission electron microscopy. Energy dispersive X-ray spectroscopy was employed to corroborate the formation of different metal oxides. X-ray diffraction outcomes for single core–shell structures showed solely the presence of ZnO as wurtzite and TiO{sub 2} as anatase. For the multi-layered shell sample, the existence of Fe{sub 2}O{sub 3} as hematite was also detected. Morphological observations suggested the existence of an outer material grown onto the nanorods and further microstructural analysis by HR-STEM confirmed the development of core–shell structures in all cases. These studies also showed that the individual Al, Fe, Ni and Ti oxide layers are amorphous; an observation that matched with X-ray diffraction analysis where no apparent extra oxides were detected. For the multi-layered sample, the development of a shell consisting of three different oxide layers onto the nanorods was found. Overall results showed that no alteration in the primary ZnO core was produced during the growth of the shells, indicating that the deposition technique used herein was and it is suitable for the synthesis of homogeneous and complex nanomaterials high in quality and purity. In addition, materials absorptance determined from the total transmittance and reflectance spectra revealed a broader absorption interval including visible light, indicating potential uses of these nanostructures on solar energy appliances. - Graphical abstract: Display Omitted - Highlights: • Uniform ZnO nanorods (core)–metal oxide (shell) were obtained sequentially by AACVD. • Shells were structured of homogeneous single or multi-layered non-mixed metal oxides. • ZnO nanorod core was preserved during the shell synthesis. • Optical absorptance revealed visible interval absorption for FeO{sub x} shell samples. • Materials can be suitable for photocatalytic or photovoltaic applications.« less

  20. Formation of anodic layers on InAs (111)III. Study of the chemical composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valisheva, N. A., E-mail: valisheva@thermo.isp.nsc.ru; Tereshchenko, O. E.; Prosvirin, I. P.

    2012-04-15

    The chemical composition of {approx}20-nm-thick anodic layers grown on InAs (111)III in alkaline and acid electrolytes containing or not containing NH{sub 4}F is studied by X-ray photoelectron spectroscopy. It is shown that the composition of fluorinated layers is controlled by the relation between the concentrations of fluorine and hydroxide ions in the electrolyte and by diffusion processes in the growing layer. Fluorine accumulates at the (anodic layer)/InAs interface. Oxidation of InAs in an acid electrolyte with a low oxygen content and a high NH{sub 4}F content brings about the formation of anodic layers with a high content of fluorine andmore » elemental arsenic and the formation of an oxygen-free InF{sub x}/InAs interface. Fluorinated layers grown in an alkaline electrolyte with a high content of O{sup 2-} and/or OH{sup -} groups contain approximately three times less fluorine and consist of indium and arsenic oxyfluorides. No distinction between the compositions of the layers grown in both types of fluorine-free electrolytes is established.« less

  1. Stencil lithography of superconducting contacts on MBE-grown topological insulator thin films

    NASA Astrophysics Data System (ADS)

    Schüffelgen, Peter; Rosenbach, Daniel; Neumann, Elmar; Stehno, Martin P.; Lanius, Martin; Zhao, Jialin; Wang, Meng; Sheehan, Brendan; Schmidt, Michael; Gao, Bo; Brinkman, Alexander; Mussler, Gregor; Schäpers, Thomas; Grützmacher, Detlev

    2017-11-01

    Topological insulator (Bi0.06Sb0.94)2Te3 thin films grown by molecular beam epitaxy have been capped in-situ with a 2 nm Al film to conserve the pristine topological surface states. Subsequently, a shadow mask - structured by means of focus ion beam - was in-situ placed underneath the sample to deposit a thick layer of Al on well-defined microscopically small areas. The 2 nm thin Al layer fully oxidizes after exposure to air and in this way protects the TI surface from degradation. The thick Al layer remains metallic underneath a 3-4 nm thick native oxide layer and therefore serves as (super-) conducting contacts. Superconductor-Topological Insulator-Superconductor junctions with lateral dimensions in the nm range have then been fabricated via an alternative stencil lithography technique. Despite the in-situ deposition, transport measurements and transmission electron microscope analysis indicate a low transparency, due to an intermixed region at the interface between topological insulator thin film and metallic Al.

  2. Flexible and High-Performance Amorphous Indium Zinc Oxide Thin-Film Transistor Using Low-Temperature Atomic Layer Deposition.

    PubMed

    Sheng, Jiazhen; Lee, Hwan-Jae; Oh, Saeroonter; Park, Jin-Seong

    2016-12-14

    Amorphous indium zinc oxide (IZO) thin films were deposited at different temperatures, by atomic layer deposition (ALD) using [1,1,1-trimethyl-N-(trimethylsilyl)silanaminato]indium (INCA-1) as the indium precursor, diethlzinc (DEZ) as the zinc precursor, and hydrogen peroxide (H 2 O 2 ) as the reactant. The ALD process of IZO deposition was carried by repeated supercycles, including one cycle of indium oxide (In 2 O 3 ) and one cycle of zinc oxide (ZnO). The IZO growth rate deviates from the sum of the respective In 2 O 3 and ZnO growth rates at ALD growth temperatures of 150, 175, and 200 °C. We propose growth temperature-dependent surface reactions during the In 2 O 3 cycle that correspond with the growth-rate results. Thin-film transistors (TFTs) were fabricated with the ALD-grown IZO thin films as the active layer. The amorphous IZO TFTs exhibited high mobility of 42.1 cm 2 V -1 s -1 and good positive bias temperature stress stability. Finally, flexible IZO TFT was successfully fabricated on a polyimide substrate without performance degradation, showing the great potential of ALD-grown TFTs for flexible display applications.

  3. Electrical and morphological characterization of transfer-printed Au/Ti/TiO{sub x}/p{sup +}-Si nano- and microstructures with plasma-grown titanium oxide layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiler, Benedikt, E-mail: benedikt.weiler@nano.ei.tum.de; Nagel, Robin; Albes, Tim

    2016-04-14

    Highly-ordered, sub-70 nm-MOS-junctions of Au/Ti/TiO{sub x}/p{sup +}-Si were efficiently and reliably fabricated by nanotransfer-printing (nTP) over large areas and their functionality was investigated with respect to their application as MOS-devices. First, we used a temperature-enhanced nTP process and integrated the plasma-oxidation of a nm-thin titanium film being e-beam evaporated directly on the stamp before the printing step without affecting the p{sup +}-Si substrate. Second, morphological investigations (scanning electron microscopy) of the nanostructures confirm the reliable transfer of Au/Ti/TiO{sub x}-pillars of 50 nm, 75 nm, and 100 nm size of superior quality on p{sup +}-Si by our transfer protocol. Third, the fabricated nanodevices are alsomore » characterized electrically by conductive AFM. Fourth, the results are compared to probe station measurements on identically processed, i.e., transfer-printed μm-MOS-structures including a systematic investigation of the oxide formation. The jV-characteristics of these MOS-junctions demonstrate the electrical functionality as plasma-grown tunneling oxides and the effectivity of the transfer-printing process for their large-scale fabrication. Next, our findings are supported by fits to the jV-curves of the plasma-grown titanium oxide by kinetic-Monte-Carlo simulations. These fits allowed us to determine the dominant conduction mechanisms, the material parameters of the oxides and, in particular, a calibration of the thickness depending on applied plasma time and power. Finally, also a relative dielectric permittivity of 12 was found for such plasma-grown TiO{sub x}-layers.« less

  4. Fundamental Studies and Device Development in Beta Silicon Carbide

    DTIC Science & Technology

    1990-02-28

    8217 and (d) 14.5- off (000 1) tovwird 111201 axis, respectively. 25p atoms are considered to exist in monoatomic form. The overall reaction fort the...IOOOA thick oxide layer was thermally grown in a dry oxygen ambient at 1200°C. The oxide layer was etched and a layer of gold , 񓟰A in thickness, was...and gold etching in a KI:12:H20 solution, 4:1:40 by weight. The diodes were separated from the field region by a 100 pm wide annular ring. The

  5. Molecular beam epitaxy growth of SrO buffer layers on graphite and graphene for the integration of complex oxides

    DOE PAGES

    Ahmed, Adam S.; Wen, Hua; Ohta, Taisuke; ...

    2016-04-27

    Here, we report the successful growth of high-quality SrO films on highly-ordered pyrolytic graphite (HOPG) and single-layer graphene by molecular beam epitaxy. The SrO layers have (001) orientation as confirmed by X-ray diffraction (XRD) while atomic force microscopy measurements show continuous pinhole-free films having rms surface roughness of <1.5 Å. Moreover, transport measurements of exfoliated graphene, after SrO deposition, show a strong dependence between the Dirac point and Sr oxidation. As a result, the SrO is leveraged as a buffer layer for more complex oxide integration via the demonstration of (001) oriented SrTiO3 grown atop a SrO/HOPG stack.

  6. Molecular beam epitaxy growth of SrO buffer layers on graphite and graphene for the integration of complex oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Adam S.; Wen, Hua; Ohta, Taisuke

    Here, we report the successful growth of high-quality SrO films on highly-ordered pyrolytic graphite (HOPG) and single-layer graphene by molecular beam epitaxy. The SrO layers have (001) orientation as confirmed by X-ray diffraction (XRD) while atomic force microscopy measurements show continuous pinhole-free films having rms surface roughness of <1.5 Å. Moreover, transport measurements of exfoliated graphene, after SrO deposition, show a strong dependence between the Dirac point and Sr oxidation. As a result, the SrO is leveraged as a buffer layer for more complex oxide integration via the demonstration of (001) oriented SrTiO3 grown atop a SrO/HOPG stack.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. M. Rafi; Lynn, D.; Pellegrini, G.

    The radiation hardness and thermal stability of the electrical characteristics of atomic layer deposited Al 2O 3 layers to be used as passivation films for silicon radiation detectors with slim edges are investigated. To directly measure the interface charge and to evaluate its change with the ionizing dose, metal-oxide-silicon (MOS) capacitors implementing differently processed Al 2O 3 layers were fabricated on p-type silicon substrates. Qualitatively similar results are obtained for degradation of capacitance–voltage and current–voltage characteristics under gamma and proton irradiations up to equivalent doses of 30 Mrad and 21.07 Mrad, respectively. While similar negative charge densities are initially extractedmore » for all non-irradiated capacitors, superior radiation hardness is obtained for MOS structures with alumina layers grown with H 2O instead of O 3 as oxidant precursor. Competing effects between radiation-induced positive charge trapping and hydrogen release from the H 2O-grown Al 2O 3 layers may explain their higher radiation resistance. Finally, irradiated and non-irradiated MOS capacitors with differently processed Al 2O 3 layers have been subjected to thermal treatments in air at temperatures ranging between 100 °C and 200 °C and the thermal stability of their electrical characteristics has been evaluated. Partial recovery of the gamma-induced degradation has been noticed for O 3-grown MOS structures. Lastly, this can be explained by a trapped holes emission process, for which an activation energy of 1.38 ± 0.15 eV has been extracted.« less

  8. Formation of nitrile species on Ag nanostructures supported on a-Al2O3: a new corrosion route for silver exposed to the atmosphere.

    PubMed

    Peláez, R J; Espinós, J P; Afonso, C N

    2017-04-28

    The aging of supported Ag nanostructures upon storage in ambient conditions (air and room temperature) for 20 months has been studied. The samples are produced on glass substrates by pulsed laser deposition (PLD); first a 15 nm thick buffer layer of amorphous aluminum oxide (a-Al 2 O 3 ) is deposited, followed by PLD of Ag. The amount of deposited Ag ranges from that leading to a discontinuous layer up to an almost-percolated layer with a thickness of <6 nm. Some regions of the as-grown silver layers are converted, by laser induced dewetting, into round isolated nanoparticles (NPs) with diameters of up to ∼25 nm. The plasmonic, structural and chemical properties of both as-grown and laser exposed regions upon aging have been followed using extinction spectroscopy, scanning electron microscopy and x-ray photoelectron spectroscopy, respectively. The results show that the discontinuous as-grown regions are optically and chemically unstable and that the metal becomes oxidized faster, the smaller the amount of Ag. The corrosion leads to the formation of nitrile species due to the reaction between NO x species from the atmosphere adsorbed at the surface of Ag, and hydrocarbons adsorbed in defects at the surface of the a-Al 2 O 3 layer during the deposition of the Ag nanostructures by PLD that migrate to the surface of the metal with time. The nitrile formation thus results in the main oxidation mechanism and inhibits almost completely the formation of sulphate/sulphide. Finally, the optical changes upon aging offer an easy-to-use tool for following the aging process. They are dominated by an enhanced absorption in the UV side of the spectrum and a blue-shift of the surface plasmon resonance that are, respectively, related to the formation of a dielectric overlayer on the Ag nanostructure and changes in the dimensions/features of the nanostructures, both due to the oxidation process.

  9. Reliability Characterization of Digital Microcircuits - Investigation of an In-Process Oxide Reliability Screening Method

    DTIC Science & Technology

    1993-04-01

    CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURIlY CLASSIFICATION 20. UMITATION OF ABSTRACT OF REPORT OF THIS PAGE OF ABSTRACT UNCLASSIFIED UNCLASSIFIED...with the silicon underneath, growing a thin nitride layer. This layer of Si 3 N 4 , if not completely removed, will retard oxidation in the area...C. Shatas, K. C. Saraswat and J. D. Meindl, "Interfacial and Breakdown Characteristics of MOS Devices with Rapidly Grown Ultrathin SiO Gate

  10. High-efficiency solar cells fabricated from direct-current magnetron sputtered n-indium tin oxide onto p-InP grown by atmospheric pressure metalorganic vapor phase epitaxy

    NASA Technical Reports Server (NTRS)

    Li, X.; Wanlass, M. W.; Gessert, T. A.; Emery, K. A.; Coutts, T. J.

    1989-01-01

    An attempt is made to improve device efficiencies by depositing indium tin oxide onto epitaxially grown p-InP on p(+)-InP substrates. This leads to a reduction in the device series resistance, high-quality reproducible surfaces, and an improvement in the transport properties of the base layer. Moreover, many of the facets associated with badly characterized bulk liquid encapsulated Czochralski substrates used in previous investigations are removed in this way.

  11. Effect of N2 annealing on AlZrO oxide

    NASA Astrophysics Data System (ADS)

    Pétry, J.; Richard, O.; Vandervorst, W.; Conard, T.; Chen, J.; Cosnier, V.

    2003-07-01

    In the path to the introduction of high-k dielectric into integrated circuit components, a large number of challenges has to be solved. Subsequent to the film deposition, the high-k film is exposed to additional high-temperature anneals for polycrystalline Si activation but also to improve its own electrical properties. Hence, concerns can be raised regarding the thermal stability of these stacks upon annealing. In this study, we investigated the effect of N2 annealing (700 to 900 °C) of atomic layer chemical vapor deposition AlZrO layers using x-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (TOFSIMS), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The effect of the Si surface preparation [H-Si, 0.5 nm rapid thermal oxide (RTO), Al2O3] on the modification of the high-k oxide and the interfacial layer upon annealing was also analyzed. Compositional changes can be observed for all temperature and surface preparations. In particular, we observe a segregation of Al(oxide) toward the surface of the mixed oxide. In addition, an increase of the Si concentration in the high-k film itself can be seen with a diffusion profile extending toward the surface of the film. On the other hand, the modification of the interfacial layer is strongly dependent on the system considered. In the case of mixed oxide grown on 0.5 nm RTO, no differences are observed between the as-deposited layer and the layer annealed at 700 °C. At 800 °C, a radical change occurs: The initial RTO layer seems to be converted into a mixed layer composed of the initial SiO2 and Al2O3 coming from the mixed oxide, however without forming an Al-silicate layer. A similar situation is found for anneals at 900 °C, as well. When grown on 1.5 nm Al2O3 on 0.5 nm RTO, the only difference with the previous system is the observation of an Al-silicate fraction in the interfacial layer for the as-deposited and 700 °C annealed samples, which disappears at higher temperatures. Finally, considering layers deposited on a H-Si surface, we observe a slight increase of the interfacial thickness after annealing at 700 °C and no further changes for a higher annealing temperature.

  12. Process for growing a film epitaxially upon an oxide surface and structures formed with the process

    DOEpatents

    McKee, Rodney Allen; Walker, Frederick Joseph

    1998-01-01

    A process and structure wherein a film comprised of a perovskite or a spinel is built epitaxially upon a surface, such as an alkaline earth oxide surface, involves the epitaxial build up of alternating constituent metal oxide planes of the perovskite or spinel. The first layer of metal oxide built upon the surface includes a metal element which provides a small cation in the crystalline structure of the perovskite or spinel, and the second layer of metal oxide built upon the surface includes a metal element which provides a large cation in the crystalline structure of the perovskite or spinel. The layering sequence involved in the film build up reduces problems which would otherwise result from the interfacial electrostatics at the first atomic layers, and these oxides can be stabilized as commensurate thin films at a unit cell thickness or grown with high crystal quality to thicknesses of 0.5-0.7 .mu.m for optical device applications.

  13. Process for growing a film epitaxially upon an oxide surface and structures formed with the process

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    1995-01-01

    A process and structure wherein a film comprised of a perovskite or a spinel is built epitaxially upon a surface, such as an alkaline earth oxide surface, involves the epitaxial build up of alternating constituent metal oxide planes of the perovskite or spinel. The first layer of metal oxide built upon the surface includes a metal element which provides a small cation in the crystalline structure of the perovskite or spinel, and the second layer of metal oxide built upon the surface includes a metal element which provides a large cation in the crystalline structure of the perovskite or spinel. The layering sequence involved in the film build up reduces problems which would otherwise result from the interfacial electrostatics at the first atomic layers, and these oxides can be stabilized as commensurate thin films at a unit cell thickness or grown with high crystal quality to thicknesses of 0.5-0.7 .mu.m for optical device applications.

  14. Space-charge behavior of 'Thin-MOS' diodes with MBE-grown silicon films

    NASA Technical Reports Server (NTRS)

    Lieneweg, U.; Bean, J. C.

    1984-01-01

    Basic theoretical and experimental characteristics of a novel 'Thin-MOS' technology, which has promising aspects for integrated high-frequency devices up to several hundred gigahertz are presented. The operation of such devices depends on charge injection into undoped silicon layers of about 1000-A thickness, grown by molecular beam epitaxy on heavily doped substrates, and isolation by thermally grown oxides of about 100-A thickness. Capacitance-voltage characteristics measured at high and low frequencies agree well with theoretical ones derived from uni and ambipolar space-charge models. It is concluded that after oxidation the residual doping in the epilayer is less than approximately 10 to the 16th/cu cm and rises by 3 orders of magnitude at the substrate interface within less than 100 A and that interface states at the oxide interface can be kept low.

  15. Strain relaxation in single crystal SrTiO3 grown on Si (001) by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Choi, Miri; Posadas, Agham; Dargis, Rytis; Shih, Chih-Kang; Demkov, Alexander A.; Triyoso, Dina H.; David Theodore, N.; Dubourdieu, Catherine; Bruley, John; Jordan-Sweet, Jean

    2012-03-01

    An epitaxial layer of SrTiO3 grown directly on Si may be used as a pseudo-substrate for the integration of perovskite oxides onto silicon. When SrTiO3 is initially grown on Si (001), it is nominally compressively strained. However, by subsequent annealing in oxygen at elevated temperature, an SiOx interlayer can be formed which alters the strain state of SrTiO3. We report a study of strain relaxation in SrTiO3 films grown on Si by molecular beam epitaxy as a function of annealing time and oxygen partial pressure. Using a combination of x-ray diffraction, reflection high energy electron diffraction, and transmission electron microscopy, we describe the process of interfacial oxidation and strain relaxation of SrTiO3 on Si (001). Understanding the process of strain relaxation of SrTiO3 on silicon will be useful for controlling the SrTiO3 lattice constant for lattice matching with functional oxide overlayers.

  16. Effect of oxygen plasma on nanomechanical silicon nitride resonators

    NASA Astrophysics Data System (ADS)

    Luhmann, Niklas; Jachimowicz, Artur; Schalko, Johannes; Sadeghi, Pedram; Sauer, Markus; Foelske-Schmitz, Annette; Schmid, Silvan

    2017-08-01

    Precise control of tensile stress and intrinsic damping is crucial for the optimal design of nanomechanical systems for sensor applications and quantum optomechanics in particular. In this letter, we study the influence of oxygen plasma on the tensile stress and intrinsic damping of nanomechanical silicon nitride resonators. Oxygen plasma treatments are common steps in micro and nanofabrication. We show that oxygen plasma for only a few minutes oxidizes the silicon nitride surface, creating several nanometer thick silicon dioxide layers with a compressive stress of 1.30(16) GPa. Such oxide layers can cause a reduction in the effective tensile stress of a 50 nm thick stoichiometric silicon nitride membrane by almost 50%. Additionally, intrinsic damping linearly increases with the silicon dioxide film thickness. An oxide layer of 1.5 nm grown in just 10 s in a 50 W oxygen plasma almost doubled the intrinsic damping. The oxide surface layer can be efficiently removed in buffered hydrofluoric acid.

  17. Tuning the Two-Dimensional Electron Liquid at Oxide Interfaces by Buffer-Layer-Engineered Redox Reactions.

    PubMed

    Chen, Yunzhong; Green, Robert J; Sutarto, Ronny; He, Feizhou; Linderoth, Søren; Sawatzky, George A; Pryds, Nini

    2017-11-08

    Polar discontinuities and redox reactions provide alternative paths to create two-dimensional electron liquids (2DELs) at oxide interfaces. Herein, we report high mobility 2DELs at interfaces involving SrTiO 3 (STO) achieved using polar La 7/8 Sr 1/8 MnO 3 (LSMO) buffer layers to manipulate both polarities and redox reactions from disordered overlayers grown at room temperature. Using resonant X-ray reflectometry experiments, we quantify redox reactions from oxide overlayers on STO as well as polarity induced electronic reconstruction at epitaxial LSMO/STO interfaces. The analysis reveals how these effects can be combined in a STO/LSMO/disordered film trilayer system to yield high mobility modulation doped 2DELs, where the buffer layer undergoes a partial transformation from perovskite to brownmillerite structure. This uncovered interplay between polar discontinuities and redox reactions via buffer layers provides a new approach for the design of functional oxide interfaces.

  18. Perpendicularly magnetized (001)-textured D0{sub 22} MnGa films grown on an (Mg{sub 0.2}Ti{sub 0.8})O buffer with thermally oxidized Si substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hwachol; Sukegawa, Hiroaki, E-mail: sukegawa.hiroaki@nims.go.jp; Liu, Jun

    2015-10-28

    We report the growth of (001)-textured polycrystalline D0{sub 22} MnGa films with perpendicular magnetic anisotropy (PMA) on thermally oxidized Si substrates using an (Mg{sub 0.2}Ti{sub 0.8})O (MTO) buffer layer. The ordered D0{sub 22} MnGa film grown at the optimum substrate temperature of 530 °C on the MTO buffer layer shows PMA with magnetization of 80 kA/m, PMA energy density of 0.28 MJ/m{sup 3}, and coercivity of 2.3 T. The scanning transmission electron microscope analysis confirms the formation of a highly (001)-textured structure and the elementally sharp interfaces between the MTO layer and the MnGa layer. The achieved D0{sub 22} MnGa PMA films on anmore » amorphous substrate will provide the possible pathway of integration of a Mn-based PMA film into Si-based substrates.« less

  19. Fabrication of magnetic tunnel junctions with epitaxial and textured ferromagnetic layers

    DOEpatents

    Chang, Y. Austin; Yang, Jianhua Joshua

    2008-11-11

    This invention relates to magnetic tunnel junctions and methods for making the magnetic tunnel junctions. The magnetic tunnel junctions include a tunnel barrier oxide layer sandwiched between two ferromagnetic layers both of which are epitaxial or textured with respect to the underlying substrate upon which the magnetic tunnel junctions are grown. The magnetic tunnel junctions provide improved magnetic properties, sharper interfaces and few defects.

  20. High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film

    PubMed Central

    Primo, Ana; Esteve-Adell, Ivan; Blandez, Juan F.; Dhakshinamoorthy, Amarajothi; Álvaro, Mercedes; Candu, Natalia; Coman, Simona M.; Parvulescu, Vasile I.; García, Hermenegildo

    2015-01-01

    Metal oxide nanoparticles supported on graphene exhibit high catalytic activity for oxidation, reduction and coupling reactions. Here we show that pyrolysis at 900 °C under inert atmosphere of copper(II) nitrate embedded in chitosan films affords 1.1.1 facet-oriented copper nanoplatelets supported on few-layered graphene. Oriented (1.1.1) copper nanoplatelets on graphene undergo spontaneous oxidation to render oriented (2.0.0) copper(I) oxide nanoplatelets on few-layered graphene. These films containing oriented copper(I) oxide exhibit as catalyst turnover numbers that can be three orders of magnitude higher for the Ullmann-type coupling, dehydrogenative coupling of dimethylphenylsilane with n-butanol and C–N cross-coupling than those of analogous unoriented graphene-supported copper(I) oxide nanoplatelets. PMID:26509224

  1. Peculiarities of structure formation of layered metal-oxide system Ti-Ta-(Ti,Ta)xOy during electro-spark alloying and thermally stimulated modification

    NASA Astrophysics Data System (ADS)

    Fomina, Marina A.; Koshuro, Vladimir A.; Fomin, Aleksandr A.; Rodionov, Igor V.; Skaptsov, Aleksandr A.; Zakharevich, Andrey M.; Aman, Alexander; Oseev, Aleksandr; Hirsch, Soeren; Majcherek, Soeren

    2016-04-01

    The study focuses on high-performance combined electro-spark alloying of titanium and titanium alloy (VT1-0, VT16) surface and porous matrix structure oxidation. The metal-oxide coatings morphology is the result of melt drop transfer, heat treatment, and oxidation. The study establishes the influence of technological regimes of alloying and oxidation on morphological heterogeneity of biocompatible layered metal-oxide system Ti-Ta-(Ti,Ta)xOy. It was found that during electro-spark alloying the concentration of tantalum on the titanium surface ranges from 0.1 to 3.2 at.%. Morphology of the deposited splats is represented by uniformly grown crystals of titanium and tantalum oxides, which increase from nano- to submicron size.

  2. Growth of micrometric oxide layers for the study of metallic surfaces decontamination by laser

    NASA Astrophysics Data System (ADS)

    Carvalho, Luisa; Pacquentin, Wilfried; Tabarant, Michel; Maskrot, Hicham; Semerok, Alexandre

    2017-09-01

    The nuclear industry produces a wide range of radioactive waste in term of level of hazard, contaminants and material. For metallic equipment like steam generators, the radioactivity is mainly located in the oxide surface. In order to study and develop techniques for dismantling and for decontamination in a safe way, it is important to have access to oxide layers with a representative distribution of non-radioactive contaminants. We propose a method of formation of oxide layer on stainless steel 304L with europium (Eu) as contaminant marker. In this method, an Eu-solution is sprayed on the stainless steel samples. The specimen are firstly treated with a pulsed nanosecond laser and secondly the steel samples are exposed to a 600°C furnace for various durations in order to grow an oxide layer. The oxide structure and in-depth distribution of Eu in the oxide layer are analysed by scanning electron microscopy coupled with energy dispersive X-ray microanalyzer, and by glow discharge optical emission or mass spectrometry. The oxide layers were grown to thicknesses in the range of 200 nm to 4.5 μm regarding to the laser treatment parameters and the heating duration. These contaminated oxides have a `duplex structure' with a mean weight percentage of 0.5% of europium in the volume of the oxide layer. It appears that europium implementation prevents the oxide growth by furnace but has no impact on laser heating. These oxide layers are used to study the decontamination of metallic surfaces such as stainless steel 304L using a nanosecond pulsed laser.

  3. Comparative electrochemical analysis of crystalline and amorphous anodized iron oxide nanotube layers as negative electrode for LIB.

    PubMed

    Pervez, Syed Atif; Kim, Doohun; Farooq, Umer; Yaqub, Adnan; Choi, Jung-Hee; Lee, You-Jin; Doh, Chil-Hoon

    2014-07-23

    This work is a comparative study of the electrochemical performance of crystalline and amorphous anodic iron oxide nanotube layers. These nanotube layers were grown directly on top of an iron current collector with a vertical orientation via a simple one-step synthesis. The crystalline structures were obtained by heat treating the as-prepared (amorphous) iron oxide nanotube layers in ambient air environment. A detailed morphological and compositional characterization of the resultant materials was performed via transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and Raman spectroscopy. The XRD patterns were further analyzed using Rietveld refinements to gain in-depth information on their quantitative phase and crystal structures after heat treatment. The results demonstrated that the crystalline iron oxide nanotube layers exhibit better electrochemical properties than the amorphous iron oxide nanotube layers when evaluated in terms of the areal capacity, rate capability, and cycling performance. Such an improved electrochemical response was attributed to the morphology and three-dimensional framework of the crystalline nanotube layers offering short, multidirectional transport lengths, which favor rapid Li(+) ions diffusivity and electron transport.

  4. Surface Modification of Thermal Barrier Coatings by Single-Shot Defocused Laser Treatments

    NASA Astrophysics Data System (ADS)

    Akdoğan, Vakur; Dokur, Mehmet M.; Göller, Gültekin; Keleş, Özgül

    2013-09-01

    Thermal barrier coatings (TBC) consisting of atmospheric plasma-sprayed ZrO2-8 wt.% Y2O3 and a high velocity oxygen fuel-sprayed metallic bond coat were subjected to CO2 continuous wave laser treatments. The effects of laser power on TBCs were investigated as was the thermally grown oxide (TGO) layer development of all as-sprayed and laser-treated coatings after thermal oxidation tests in air environment for 50, 100, and 200 h at 1100 °C. The effects of laser power on TBCs were investigated. TGO layer development was examined on all as-sprayed and laser-treated coatings after thermal oxidation tests in air environment for 50, 100, and 200 h at 1100 °C. Melted and heat-affected zone regions were observed in all the laser-treated samples. Oxidation tests showed a stable alumina layer and mixed spinel oxides in the TGO layers of the as-sprayed and laser-treated TBCs.

  5. Characteristics of zinc oxide nanorod array/titanium oxide film heterojunction prepared by aqueous solution deposition

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Kwei; Hong, Min-Hsuan; Li, Bo-Wei

    2016-07-01

    The characteristics of a ZnO nanorod array/TiO2 film heterojunction were investigated. A TiO2 film was prepared on glass by aqueous solution deposition with precursors of ammonium hexafluorotitanate and boric acid at 40 °C. Then, a ZnO seed layer was prepared on a TiO2 film/glass substrate by RF sputtering. A vertically oriented ZnO nanorod array was grown on a ZnO seed layer/TiO2 film/glass substrate by aqueous solution deposition with precursors of zinc nitrate and hexamethylenetetramine (HMT) at 70 °C. After thermal annealing in N2O ambient at 300 °C, this heterojunction used as an oxygen gas sensor shows much better rise time, decay time, and on/off current ratio than as-grown and annealed ZnO nanorods.

  6. Electronic and Optical Properties of Atomic Layer-Deposited ZnO and TiO2

    NASA Astrophysics Data System (ADS)

    Ates, H.; Bolat, S.; Oruc, F.; Okyay, A. K.

    2018-05-01

    Metal oxides are attractive for thin film optoelectronic applications. Due to their wide energy bandgaps, ZnO and TiO2 are being investigated by many researchers. Here, we have studied the electrical and optical properties of ZnO and TiO2 as a function of deposition and post-annealing conditions. Atomic layer deposition (ALD) is a novel thin film deposition technique where the growth conditions can be controlled down to atomic precision. ALD-grown ZnO films are shown to exhibit tunable optical absorption properties in the visible and infrared region. Furthermore, the growth temperature and post-annealing conditions of ZnO and TiO2 affect the electrical properties which are investigated using ALD-grown metal oxide as the electron transport channel on thin film field-effect devices.

  7. Photo-Sensitivity of Large Area Physical Vapor Deposited Mono and Bilayer MoS2 (Postprint)

    DTIC Science & Technology

    2014-07-01

    layer MoS2 without any apparent rectifying junctions , making device fabrication straightforward. For bi-layers, no such effect was present, suggesting...layer MoS2 without any apparent rectifying junctions , making device fabrication straightforward. For bi-layers, no such effect was present, suggesting...pressure below 5×10−9 Torr for atomically sharp and clean interfaces. The mono and bi-layer specimens were grown on 100 nm thick thermal oxide coated silicon

  8. Protecting nickel with graphene spin-filtering membranes: A single layer is enough

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, M.-B.; Dlubak, B.; Piquemal-Banci, M.

    2015-07-06

    We report on the demonstration of ferromagnetic spin injectors for spintronics which are protected against oxidation through passivation by a single layer of graphene. The graphene monolayer is directly grown by catalytic chemical vapor deposition on pre-patterned nickel electrodes. X-ray photoelectron spectroscopy reveals that even with its monoatomic thickness, monolayer graphene still efficiently protects spin sources against oxidation in ambient air. The resulting single layer passivated electrodes are integrated into spin valves and demonstrated to act as spin polarizers. Strikingly, the atom-thick graphene layer is shown to be sufficient to induce a characteristic spin filtering effect evidenced through the signmore » reversal of the measured magnetoresistance.« less

  9. Complete suppression of boron transient-enhanced diffusion and oxidation-enhanced diffusion in silicon using localized substitutional carbon incorporation

    NASA Astrophysics Data System (ADS)

    Carroll, M. S.; Chang, C.-L.; Sturm, J. C.; Büyüklimanli, T.

    1998-12-01

    In this letter, we show the ability, through introduction of a thin Si1-x-yGexCy layer, to eliminate the enhancement of enhanced boron diffusion in silicon due to an oxidizing surface or ion implant damage. This reduction of diffusion is accomplished through a low-temperature-grown thin epitaxial Si1-x-yGexCy layer which completely filters out excess interstitials introduced by oxidation or ion implant damage. We also quantify the oxidation-enhanced diffusion (OED) and transient-enhanced diffusion (TED) dependence on substitutional carbon level, and further report both the observation of carbon TED and OED, and its dependence on carbon levels.

  10. Effects of Complex Structured Anodic Oxide Dielectric Layer Grown in Pore Matrix for Aluminum Capacitor.

    PubMed

    Shin, Jin-Ha; Yun, Sook Young; Lee, Chang Hyoung; Park, Hwa-Sun; Suh, Su-Jeong

    2015-11-01

    Anodization of aluminum is generally divided up into two types of anodic aluminum oxide structures depending on electrolyte type. In this study, an anodization process was carried out in two steps to obtain high dielectric strength and break down voltage. In the first step, evaporated high purity Al on Si wafer was anodized in oxalic acidic aqueous solution at various times at a constant temperature of 5 degrees C. In the second step, citric acidic aqueous solution was used to obtain a thickly grown sub-barrier layer. During the second anodization process, the anodizing potential of various ranges was applied at room temperature. An increased thickness of the sub-barrier layer in the porous matrix was obtained according to the increment of the applied anodizing potential. The microstructures and the growth of the sub-barrier layer were then observed with an increasing anodizing potential of 40 to 300 V by using a scanning electron microscope (SEM). An impedance analyzer was used to observe the change of electrical properties, including the capacitance, dissipation factor, impedance, and equivalent series resistance (ESR) depending on the thickness increase of the sub-barrier layer. In addition, the breakdown voltage was measured. The results revealed that dielectric strength was improved with the increase of sub-barrier layer thickness.

  11. Surface characterization of low-temperature grown yttrium oxide

    NASA Astrophysics Data System (ADS)

    Krawczyk, Mirosław; Lisowski, Wojciech; Pisarek, Marcin; Nikiforow, Kostiantyn; Jablonski, Aleksander

    2018-04-01

    The step-by-step growth of yttrium oxide layer was controlled in situ using X-ray photoelectron spectroscopy (XPS). The O/Y atomic concentration (AC) ratio in the surface layer of finally oxidized Y substrate was found to be equal to 1.48. The as-grown yttrium oxide layers were then analyzed ex situ using combination of Auger electron spectroscopy (AES), elastic-peak electron spectroscopy (EPES) and scanning electron microscopy (SEM) in order to characterize their surface chemical composition, electron transport phenomena and surface morphology. Prior to EPES measurements, the Y oxide surface was pre-sputtered by 3 kV argon ions, and the resulting AES-derived composition was found to be Y0.383O0.465C0.152 (O/Y AC ratio of 1.21). The SEM images revealed different surface morphology of sample before and after Ar sputtering. The oxide precipitates were observed on the top of un-sputtered Y oxide layer, whereas the oxide growth at the Ar ion-sputtered surface proceeded along defects lines normal to the layer plane. The inelastic mean free path (IMFP) characterizing electron transport was evaluated as a function of energy in the range of 0.5-2 keV from the EPES method. Two reference materials (Ni and Au) were used in these measurements. Experimental IMFPs determined for the Y0.383O0.465C0.152 and Y2O3 surface compositions, λ, were uncorrected for surface excitations and approximated by the simple function λ = kEp at electron energies E between 500 eV and 2000 eV, where k and p were fitted parameters. These values were also compared with IMFPs resulting from the TPP-2 M predictive equation for both oxide compositions. The fitted functions were found to be reasonably consistent with the measured and predicted IMFPs. In both cases, the average value of the mean percentage deviation from the fits varied between 5% and 37%. The IMFPs measured for Y0.383O0.465C0.152 surface composition were found to be similar to the IMFPs for Y2O3.

  12. X-ray analyses of thermally grown and reactively sputtered tantalum oxide films on NiTi alloy

    NASA Astrophysics Data System (ADS)

    McNamara, Karrina; Tofail, Syed A. M.; Conroy, Derek; Butler, James; Gandhi, Abbasi A.; Redington, Wynette

    2012-08-01

    Sputter deposition of tantalum (Ta) on the surface of NiTi alloy is expected to improve the alloy's corrosion resistance and biocompatibility. Tantalum is a well-known biomaterial which is not affected by body fluids and is not irritating to human tissue. Here we compare the oxidation chemistry crystal structure evolution of tantalum oxide films grown on NiTi by reactive O2 sputtering and by thermal oxidation of sputter deposited Ta films. The effect of sputtering parameters and post-sputtering treatments on the morphology, oxidation state and crystal structure of the tantalum oxide layer have been investigated by field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The study has found that it may be better to avoid oxidation at and above 600 °C. The study establishes that reactive sputtering in presence of low oxygen mixture yields thicker film with better control of the film quality except that the surface oxidation state of Ta is slightly lower.

  13. Epitaxial growth of YBa2Cu3O7 - delta films on oxidized silicon with yttria- and zirconia-based buffer layers

    NASA Astrophysics Data System (ADS)

    Pechen, E. V.; Schoenberger, R.; Brunner, B.; Ritzinger, S.; Renk, K. F.; Sidorov, M. V.; Oktyabrsky, S. R.

    1993-09-01

    A study of epitaxial growth of YBa2Cu3O7-δ films on oxidized Si with yttria- and zirconia-based buffer layers is reported. Using substrates with either SiO2 free or naturally oxidized (100) surfaces of Si it was found that a thin SiO2 layer on top of the Si favors high-quality superconducting film formation. Compared to yttria-stabilized ZrO2 (YSZ) single layers, YSZY2O3 double and YSZ/Y2O3YSZ triple layers allows the deposition of thin YBa2Cu3O7-δ films with improved properties including reduced aging effects. In epitaxial YBa2Cu3O7-δ films grown on the double buffer layers a critical temperature Tc(R=0)=89.5 K and critical current densities of 3.5×106 A/cm2 at 77 K and 1×107 A/cm2 at 66 K were reached.

  14. Synchrotron studies of top-down grown silicon nanowires

    NASA Astrophysics Data System (ADS)

    Turishchev, S. Yu.; Parinova, E. V.; Nesterov, D. N.; Koyuda, D. A.; Sivakov, V.; Schleusener, A.; Terekhov, V. A.

    2018-06-01

    Morphology of the top-down grown silicon nanowires obtained by metal-assisted wet-chemical approach on silicon substrates with different resistance were studied by scanning electron microscopy. Obtained arrays of compact grown Si nanowires were a subject for the high resolution electronic structures studies by X-ray absorption near edge structure technique performed with the usage of high intensity synchrotron radiation of the SRC storage ring of the University of Wisconsin-Madison. The different oxidation rates were found by investigation of silicon atoms local surrounding specificity of the highly developed surface and near surface layer that is not exceeded 70 nm. Flexibility of the wires arrays surface morphology and its composition is demonstrated allowing smoothly form necessary surface oxidation rate and using Si nanowires as a useful matrixes for a wide range of further functionalization.

  15. Negative charge trapping effects in Al{sub 2}O{sub 3} films grown by atomic layer deposition onto thermally oxidized 4H-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schilirò, Emanuela, E-mail: emanuela.schiliro@imm.cnr.it; Dipartimento di Scienze Chimiche, Università degli Studi di Catania, and INSTM udr Catania, viale Andrea Doria 6, 95125, Catania; Lo Nigro, Raffaella

    This letter reports on the negative charge trapping in Al{sub 2}O{sub 3} thin films grown by atomic layer deposition onto oxidized silicon carbide (4H-SiC). The films exhibited a permittivity of 8.4, a breakdown field of 9.2 MV/cm and small hysteresis under moderate bias cycles. However, severe electron trapping inside the Al{sub 2}O{sub 3} film (1 × 10{sup 12} cm{sup −2}) occurs upon high positive bias stress (>10 V). Capacitance-voltage measurements at different temperatures and stress conditions have been used to determine an activation energy of 0.1 eV. The results provide indications on the possible nature of the trapping defects and,more » hence, on the strategies to improve this technology for 4H-SiC devices.« less

  16. Patterned growth of p-type MoS 2 atomic layers using sol-gel as precursor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Wei; Lin, Junhao; Feng, Wei

    2D layered MoS 2 has drawn intense attention for its applications in flexible electronic, optoelectronic, and spintronic devices. Most of the MoS 2 atomic layers grown by conventional chemical vapor deposition techniques are n-type due to the abundant sulfur vacancies. Facile production of MoS 2 atomic layers with p-type behavior, however, remains challenging. Here, a novel one-step growth has been developed to attain p-type MoS 2 layers in large scale by using Mo-containing sol–gel, including 1% tungsten (W). Atomic-resolution electron microscopy characterization reveals that small tungsten oxide clusters are commonly present on the as-grown MoS 2 film due to themore » incomplete reduction of W precursor at the reaction temperature. These omnipresent small tungsten oxide clusters contribute to the p-type behavior, as verified by density functional theory calculations, while preserving the crystallinity of the MoS 2 atomic layers. The Mo containing sol–gel precursor is compatible with the soft-lithography techniques, which enables patterned growth of p-type MoS 2 atomic layers into regular arrays with different shapes, holding great promise for highly integrated device applications. Lastly, an atomically thin p–n junction is fabricated by the as-prepared MoS 2, which shows strong rectifying behavior.« less

  17. Patterned growth of p-type MoS 2 atomic layers using sol-gel as precursor

    DOE PAGES

    Zheng, Wei; Lin, Junhao; Feng, Wei; ...

    2016-07-19

    2D layered MoS 2 has drawn intense attention for its applications in flexible electronic, optoelectronic, and spintronic devices. Most of the MoS 2 atomic layers grown by conventional chemical vapor deposition techniques are n-type due to the abundant sulfur vacancies. Facile production of MoS 2 atomic layers with p-type behavior, however, remains challenging. Here, a novel one-step growth has been developed to attain p-type MoS 2 layers in large scale by using Mo-containing sol–gel, including 1% tungsten (W). Atomic-resolution electron microscopy characterization reveals that small tungsten oxide clusters are commonly present on the as-grown MoS 2 film due to themore » incomplete reduction of W precursor at the reaction temperature. These omnipresent small tungsten oxide clusters contribute to the p-type behavior, as verified by density functional theory calculations, while preserving the crystallinity of the MoS 2 atomic layers. The Mo containing sol–gel precursor is compatible with the soft-lithography techniques, which enables patterned growth of p-type MoS 2 atomic layers into regular arrays with different shapes, holding great promise for highly integrated device applications. Lastly, an atomically thin p–n junction is fabricated by the as-prepared MoS 2, which shows strong rectifying behavior.« less

  18. Direct synthesis of few-layer graphene supported platinum nanocatalyst for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Tan, Hong; Ma, Xiaohui; Sheng, Leimei; An, Kang; Yu, Liming; Zhao, Hongbin; Xu, Jiaqiang; Ren, Wei; Zhao, Xinluo

    2014-11-01

    High-crystalline few-layer graphene supported Pt nanoparticles have been synthesized by arc discharge evaporation of carbon electrodes containing Pt element. A high-temperature treatment under hydrogen atmosphere has been carried out to obtain a new type of Pt/graphene catalyst for methanol oxidation in direct methanol fuel cell. The morphology and structure characterizations of as-grown few-layer graphene supported Pt nanoparticles and Pt/graphene catalysts have been studied by Raman spectroscopy, scanning electron microscopy with energy-dispersive spectroscopy, and high-resolution transmission electron microscopy. Cyclic voltammograms and chronoamperometric curves show that our present Pt/graphene catalysts have larger current density for methanol oxidation, higher tolerance to carbon monoxide poisoning, and better stability during the operating procedure, compared to commercial Pt/C catalysts.

  19. Oxidation Behavior of Ferritic Stainless Steels under SOFC Interconnect Exposure Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhenguo; Walker, Matthew S.; Singh, Prabhakar

    The oxidation of ferritic stainless steels has been studied under solid oxide fuel cell (SOFC) interconnect “dual” exposure conditions, i.e. simultaneous exposure to air on one side of the sample, and moist hydrogen on the other side. This paper focuses on the oxidation behavior of ferritic stainless steels during the isothermal oxidation in the dual environments. It was found that scales grown on the air side under these dual exposure conditions can be significantly different from scales grown on samples exposed to air on both sides. In contrast, no substantial difference was observed between the scales grown on the fuelmore » side of the dual atmosphere samples and scales grown on samples exposed to moist hydrogen on both sides. AISI430, with 17% Cr, suffered localized attack via formation of Fe2O3 hematite-rich nodules on the air side of dual exposure samples, while the spinel top layer of the air side scale of Crofer22 APU (23% Cr) was enriched in iron. For E-brite, with the highest Cr content (27%), no unusual phases were found in the scale on the air side, but it was noticed the air side scale was less dense and appeared to be more prone to defects than the scale grown in air only. The anomalous oxidation behavior of ferritic stainless steels on the air side of dual exposure specimens is related to the transport of hydrogen through the steel and its subsequent presence in the air side scale.« less

  20. High-performance InGaN/GaN MQW LEDs with Al-doped ZnO transparent conductive layers grown by MOCVD using H2O as an oxidizer

    NASA Astrophysics Data System (ADS)

    Lin, Jia-Yong; Pei, Yan-Li; Zhuo, Yi; Chen, Zi-Min; Hu, Rui-Qin; Cai, Guang-Shuo; Wang, Gang

    2016-11-01

    In this study, the high performance of InGaN/GaN multiple quantum well light-emitting diodes (LEDs) with Al-doped ZnO (AZO) transparent conductive layers (TCLs) has been demonstrated. The AZO-TCLs were fabricated on the n+-InGaN contact layer by metal organic chemical vapor deposition (MOCVD) using H2O as an oxidizer at temperatures as low as 400 °C without any post-deposition annealing. It shows a high transparency (98%), low resistivity (510-4 Ω·cm), and an epitaxial-like excellent interface on p-GaN with an n+-InGaN contact layer. A forward voltage of 2.82 V @ 20 mA was obtained. Most importantly, the power efficiencies can be markedly improved by 53.8%@20 mA current injection and 39.6%@350 mA current injection compared with conventional LEDs with indium tin oxide TCL (LED-III), and by 28.8%@20 mA current injection and 4.92%@350 mA current injection compared with LEDs with AZO-TCL prepared by MOCVD using O2 as an oxidizer (LED-II), respectively. The results indicate that the AZO-TCL grown by MOCVD using H2O as an oxidizer is a promising TCL for a low-cost and high-efficiency GaN-based LED application. Project supported by the National Natural Science Foundation of China (Grant Nos. 61204091, 61404177, 51402366, and U1201254) and the Science and Technology Planning Project of Guangdong Province, China (Grant No. 2015B010132006).

  1. Characterization of zinc oxide thin film for pH detector

    NASA Astrophysics Data System (ADS)

    Hashim, Uda; Fathil, M. F. M.; Arshad, M. K. Md; Gopinath, Subash C. B.; Uda, M. N. A.

    2017-03-01

    This paper presents the fabrication process of the zinc oxide thin films for using to act as pH detection by using different PH solution. Sol-gel solution technique is used for preparing zinc oxide seed solution, followed by metal oxide deposition process by using spin coater on the silicon dioxide. Silicon dioxide layer is grown on the silicon wafer, then, ZnO seed solution is deposited on the silicon layer, baked, and annealing process carried on to undergo the characterization of its surface morphology, structural and crystalline phase. Electrical characterization is showed by using PH 4, 7, and 10 is dropped on the surface of the die, in addition, APTES solution is used as linker and also as a references of the electrical characterization.

  2. Structural and electrical properties of Pb(Zr ,Ti)O3 grown on (0001) GaN using a double PbTiO3/PbO bridge layer

    NASA Astrophysics Data System (ADS)

    Xiao, Bo; Gu, Xing; Izyumskaya, Natalia; Avrutin, Vitaliy; Xie, Jinqiao; Liu, Huiyong; Morkoç, Hadis

    2007-10-01

    Pb(Zr0.52Ti0.48)O3 films were deposited by rf magnetron sputtering on silicon-doped GaN(0001)/c-sapphire with a PbTiO3/PbO oxide bridge layer grown by molecular beam epitaxy. X-ray diffraction data showed the highly (111)-oriented perovskite phase in lead zirconate titanate (PZT) films with PbTiO3/PbO bridge layers, compared to the pyrochlore phase grown directly on GaN. The in-plane epitaxial relationships were found from x-ray pole figures to be PZT[112¯]‖GaN[11¯00] and PZT[11¯0]‖GaN[112¯0]. The polarization-electric field measurements revealed the ferroelectric behavior with remanent polarization of 30-40μC /cm2 and asymmetric hysteresis loops due to the depletion layer formed in GaN under reverse bias which resulted in a high negative coercive electric field (950kV/cm).

  3. Influence of substrates and rutile seed layers on the assembly of hydrothermally grown rutile TiO2 nanorod arrays

    NASA Astrophysics Data System (ADS)

    Kalb, Julian; Dorman, James A.; Folger, Alena; Gerigk, Melanie; Knittel, Vanessa; Plüisch, Claudia S.; Trepka, Bastian; Lehr, Daniela; Chua, Emily; Goodge, Berit H.; Wittemann, Alexander; Scheu, Christina; Polarz, Sebastian; Schmidt-Mende, Lukas

    2018-07-01

    Rutile TiO2 nanorod arrays (NRAs) are applicable in various prospective technologies. Hydrothermal methods present a simple technique to fabricate such NRAs. In this report, we present the fabrication of seed layers for the hydrothermal growth of rutile TiO2 nanorods via sputter deposition, electron-beam evaporation, and sol-gel method and study the influence of each on the growth behavior. To satisfy the requirements of numerous applications, p-type silicon, platinum, levitating carbon membranes, a template made of polystyrene spheres, and commercial fluorine tin oxide (FTO) were employed as substrates. We document the structural properties of the TiO2 seed layers and describe the relationship between the characteristics of the seed crystals, the growth evolution, and the appearance of as-grown nanorods. Various growth stages of rutile TiO2 nanorods are compared depending on whether they are grown on polycrystalline TiO2 or FTO seed layers. In both cases, a homogenous TiO2 bottom layer is formed at the seed layer/substrate interface, which is essential for electronic applications such as hybrid solar cells. Detached NRAs illustrate the effect of rutile FTO and TiO2 on the porosity of this bottom layer. Further details about the formation process of this layer are obtained from the growth on confined seed layers fabricated by electron-beam lithography.

  4. Understanding the mechanisms of interfacial reactions during TiO{sub 2} layer growth on RuO{sub 2} by atomic layer deposition with O{sub 2} plasma or H{sub 2}O as oxygen source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaker, A.; Szkutnik, P. D.; Pointet, J.

    2016-08-28

    In this paper, TiO{sub 2} layers grown on RuO{sub 2} by atomic layer deposition (ALD) using tetrakis (dimethyla-mino) titanium (TDMAT) and either oxygen plasma or H{sub 2}O as oxygen source were analyzed using X-ray diffraction (XRD), Raman spectroscopy, and depth-resolved X-ray Photoelectron spectroscopy (XPS). The main objective is to investigate the surface chemical reactions mechanisms and their influence on the TiO{sub 2} film properties. The experimental results using XRD show that ALD deposition using H{sub 2}O leads to anatase TiO{sub 2} whereas a rutile TiO{sub 2} is obtained when oxygen-plasma is used as oxygen source. Depth-resolved XPS analysis allows tomore » determine the reaction mechanisms at the RuO{sub 2} substrate surface after growth of thin TiO{sub 2} layers. Indeed, the XPS analysis shows that when H{sub 2}O assisted ALD process is used, intermediate Ti{sub 2}O{sub 3} layer is obtained and RuO{sub 2} is reduced into Ru as evidenced by high resolution transmission electron microscopy. In this case, there is no possibility to re-oxidize the Ru surface into RuO{sub 2} due to the weak oxidation character of H{sub 2}O and an anatase TiO{sub 2} layer is therefore grown on Ti{sub 2}O{sub 3}. In contrast, when oxygen plasma is used in the ALD process, its strong oxidation character leads to the re-oxidation of the partially reduced RuO{sub 2} following the first Ti deposition step. Consequently, the RuO{sub 2} surface is regenerated, allowing the growth of rutile TiO{sub 2}. A surface chemical reaction scheme is proposed that well accounts for the observed experimental results.« less

  5. Characterization of BN rich layer on ammonia treated Nextel{trademark}312 fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khasgiwale, N.R.; Butler, E.P.; Tsakalakos, L.

    A BN rich layer grown on Nextel{trademark}312 fibers by appropriate ammonia treatments was evaluated using various complimentary techniques including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM)/Parallel Electron Energy Loss Spectroscopy (PEELS in TEM). Three different ammonia treatments were studied. Ammonia treatment resulted in crystallization of the Nextel{trademark}312 fiber. The BN rich surface layer formed due to ammonia treatment was clearly detected in XPS and PEELS both before and after oxidation. The layer thickness was estimated to be between 5--10 nm. The layer was stable after oxidation treatment at 600 C formore » 100 hours. High resolution TEM observations of the fiber surface revealed a variable BN rich layer thickness. Patches of turbostratic BN were observed under certain conditions, however mostly the layer appeared to be amorphous.« less

  6. Enhanced Performance of GaN-Based Green Light-Emitting Diodes with Gallium-Doped ZnO Transparent Conducting Oxide

    NASA Astrophysics Data System (ADS)

    Oh, Min-Suk; Seo, Inseok

    2014-04-01

    Ga-doped ZnO (GZO) transparent conducting oxide was grown by oxygen plasma-enhanced pulsed laser deposition. GZO grown in the presence of oxygen radicals had resistivity of 1 × 10-3 Ω cm and average visible (500-700 nm) transmittance of 92.5%. A low specific contact resistance of 6.5 × 10-4 Ω cm2 of GZO on p-GaN was achieved by excimer laser annealing (ELA) treatment of p-GaN before GZO electrode deposition. The ELA-treated light emitting diode (LED) fabricated with the GZO electrode as a current-spreading layer resulted in light-output power enhanced by 56.2% at 100 mA compared with that fabricated with a conventional Ni/Au metal electrode. The high-light output and low degradation of light-output power were attributed to the decrease in contact resistance between the p-GaN layer and the GZO electrode and uniform current spreading over the p-GaN layer. In addition, low contact resistance results in a decrease of self-heat generation during current drive.

  7. Strong enhancement of the luminescence decay time of isoelectronic centers in GaP:N at low temperatures

    NASA Astrophysics Data System (ADS)

    St-Jean, Philippe; Ethier-Majcher, Gabriel; Bergeron, Alaric; Francoeur, Sebastien

    2013-03-01

    We report (i)- results from ac impedance measurements obtained for intrinsic indium oxide films, grown under O2-rich conditions, (ii)- current-voltage (I-V) curves for p-n homojunctions fabricated by sequential growth of a 200 nm thick p-type In2O3 layer on a 400 nm thick n-type In2O3, and (iii)- capacitance-voltage (C-V) curves for these junctions. Impedance as well as I-V and C-V measurements were performed under UV irradiation and in darkness. We find two distinct contributions to the ac conductivity. One of them is brought about by grain boundaries, and the other one by inversion layers, which are on grain surfaces. In addition, we have found that photocurrents relax extremely slowly in these films. All of this fits consistently within a model in which mobile holes in inversion layers are responsible for p-type dc conductivity in intrinsic indium oxide films grown under O2-rich conditions. Such mechanism might be important in other polycrystalline thin films which have a large number of oxidizing defects at grain boundaries. We acknowledge support from grant MAT2012-38213-C02-01, from the Ministerio de Economia y Competividad, Spain.

  8. Technique for producing highly planar Si/SiO0.64Ge0.36/Si metal-oxide-semiconductor field effect transistor channels

    NASA Astrophysics Data System (ADS)

    Grasby, T. J.; Parry, C. P.; Phillips, P. J.; McGregor, B. M.; Morris, , R. J. H.; Braithwaite, G.; Whall, T. E.; Parker, E. H. C.; Hammond, R.; Knights, A. P.; Coleman, P. G.

    1999-03-01

    Si/Si0.64Ge0.36/Si heterostructures have been grown at low temperature (450 °C) to avoid the strain-induced roughening observed for growth temperatures of 550 °C and above. The electrical properties of these structures are poor, and thought to be associated with grown-in point defects as indicated in positron annihilation spectroscopy. However, after an in situ annealing procedure (800 °C for 30 min) the electrical properties dramatically improve, giving an optimum 4 K mobility of 2500 cm2 V-1 s-1 for a sheet density of 6.2×1011 cm-2. The low temperature growth yields highly planar interfaces, which are maintained after anneal as evidenced from transmission electron microscopy. This and secondary ion mass spectroscopy measurements demonstrate that the metastably strained alloy layer can endure the in situ anneal procedure necessary for enhanced electrical properties. Further studies have shown that the layers can also withstand a 120 min thermal oxidation at 800 °C, commensurate with metal-oxide-semiconductor device fabrication.

  9. Electrical characterization of amorphous Al2O3 dielectric films on n-type 4H-SiC

    NASA Astrophysics Data System (ADS)

    Khosa, R. Y.; Thorsteinsson, E. B.; Winters, M.; Rorsman, N.; Karhu, R.; Hassan, J.; Sveinbjörnsson, E. Ö.

    2018-02-01

    We report on the electrical properties of Al2O3 films grown on 4H-SiC by successive thermal oxidation of thin Al layers at low temperatures (200°C - 300°C). MOS capacitors made using these films contain lower density of interface traps, are more immune to electron injection and exhibit higher breakdown field (5MV/cm) than Al2O3 films grown by atomic layer deposition (ALD) or rapid thermal processing (RTP). Furthermore, the interface state density is significantly lower than in MOS capacitors with nitrided thermal silicon dioxide, grown in N2O, serving as the gate dielectric. Deposition of an additional SiO2 film on the top of the Al2O3 layer increases the breakdown voltage of the MOS capacitors while maintaining low density of interface traps. We examine the origin of negative charges frequently encountered in Al2O3 films grown on SiC and find that these charges consist of trapped electrons which can be released from the Al2O3 layer by depletion bias stress and ultraviolet light exposure. This electron trapping needs to be reduced if Al2O3 is to be used as a gate dielectric in SiC MOS technology.

  10. Influences of ultra-thin Ti seed layers on the dewetting phenomenon of Au films deposited on Si oxide substrates

    NASA Astrophysics Data System (ADS)

    Kamiko, Masao; Kim, So-Mang; Jeong, Young-Seok; Ha, Jae-Ho; Koo, Sang-Mo; Ha, Jae-Geun

    2018-05-01

    The influences of a Ti seed layer (1 nm) on the dewetting phenomenon of Au films (5 nm) grown onto amorphous SiO2 substrates have been studied and compared. Atomic force microscopy results indicated that the introduction of Ti between the substrate and Au promoted the dewetting phenomenon. X-ray diffraction measurements suggested that the initial deposition of Ti promoted crystallinity of Au. A series of Auger electron spectroscopy and X-ray photoelectron spectroscopy results revealed that Ti transformed to a Ti oxide layer by reduction of the amorphous SiO2 substrate surface, and that the Ti seed layer remained on the substrate, without going through the dewetting process during annealing. We concluded that the enhancement of Au dewetting and the improvement in crystallinity of Au by the insertion of Ti could be attributed to the fact that Au location was changed from the surface of the amorphous SiO2 substrate to that of the Ti oxide layer.

  11. Single-layered graphene oxide nanosheet/polyaniline hybrids fabricated through direct molecular exfoliation.

    PubMed

    Chen, Guan-Liang; Shau, Shi-Min; Juang, Tzong-Yuan; Lee, Rong-Ho; Chen, Chih-Ping; Suen, Shing-Yi; Jeng, Ru-Jong

    2011-12-06

    In this study, we used direct molecular exfoliation for the rapid, facile, large-scale fabrication of single-layered graphene oxide nanosheets (GOSs). Using macromolecular polyaniline (PANI) as a layered space enlarger, we readily and rapidly synthesized individual GOSs at room temperature through the in situ polymerization of aniline on the 2D GOS platform. The chemically modified GOS platelets formed unique 2D-layered GOS/PANI hybrids, with the PANI nanorods embedded between the GO interlayers and extended over the GO surface. X-ray diffraction revealed that intergallery expansion occurred in the GO basal spacing after the PANI nanorods had anchored and grown onto the surface of the GO layer. Transparent folding GOSs were, therefore, observed in transmission electron microscopy images. GOS/PANI nanohybrids possessing high conductivities and large work functions have the potential for application as electrode materials in optoelectronic devices. Our dispersion/exfoliation methodology is a facile means of preparing individual GOS platelets with high throughput, potentially expanding the applicability of nanographene oxide materials. © 2011 American Chemical Society

  12. Microstructure of thermally grown and deposited alumina films probed with positrons

    NASA Astrophysics Data System (ADS)

    Somieski, Bertram; Hulett, Lester D.; Xu, Jun; Pint, Bruce A.; Tortorelli, Peter F.; Nielsen, Bent; Asoka-Kumar, Palakkal; Suzuki, Ryoichi; Ohdaira, Toshiyuki

    1999-03-01

    Aluminum oxide films used for corrosion protection of iron and nickel aluminides were generated by substrate oxidation as well as plasma and physical vapor depositions. The films grown by oxidation were crystalline. The others were amorphous. Defect structures of the films were studied by positron spectroscopy techniques. Lifetimes of the positrons, and Doppler broadening of the γ photons generated by their annihilation, were measured as functions of the energies with which they were injected. In this manner, densities and sizes of the defects were determined as functions of depths from the outer surfaces of the films. Alumina films generated by oxidation had high densities of open volume defects, mainly consisting of a few aggregated vacancies. In the outer regions of the films the structures of the defects did not depend on substrate compositions. Positron lifetime measurements, and the S and W parameters extracted from Doppler broadening spectra, showed uniform distributions of defects in the crystalline Al2O3 films grown on nickel aluminide substrates, but these data indicated intermediate layers of higher defect contents at the film/substrate interfaces of oxides grown on iron aluminide substrates. Amorphous films generated by plasma and physical vapor deposition had much larger open volume defects, which caused the average lifetimes of the injected positrons to be significantly longer. The plasma deposited film exhibited a high density of large cavities.

  13. Environmental resistance of oxide tags fabricated on 304L stainless steel via nanosecond pulsed laser irradiation

    DOE PAGES

    Lawrence, Samantha Kay; Adams, David P.; Bahr, David F.; ...

    2015-11-14

    Nanosecond pulsed laser irradiation was used to fabricate colored, mechanically robust oxide “tags” on 304L stainless steel. Immersion in simulated seawater solution, salt fog exposure, and anodic polarization in a 3.5% NaCl solution were employed to evaluate the environmental resistance of these oxide tags. Single layer oxides outside a narrow thickness range (~ 100–150 nm) are susceptible to dissolution in chloride containing environments. The 304L substrates immediately beneath the oxides corrode severely—attributed to Cr-depletion in the melt zone during laser processing. For the first time, multilayered oxides were fabricated with pulsed laser irradiation in an effort to expand the protectivemore » thickness range while also increasing the variety of film colors attainable in this range. Layered films grown using a laser scan rate of 475 mm/s are more resistant to both localized and general corrosion than oxides fabricated at 550 mm/s. Furthermore, in the absence of pre-processing to mitigate Cr-depletion, layered films can enhance environmental stability of the system.« less

  14. Synergistic approach to high-performance oxide thin film transistors using a bilayer channel architecture.

    PubMed

    Yu, Xinge; Zhou, Nanjia; Smith, Jeremy; Lin, Hui; Stallings, Katie; Yu, Junsheng; Marks, Tobin J; Facchetti, Antonio

    2013-08-28

    We report here a bilayer metal oxide thin film transistor concept (bMO TFT) where the channel has the structure: dielectric/semiconducting indium oxide (In2O3) layer/semiconducting indium gallium oxide (IGO) layer. Both semiconducting layers are grown from solution via a low-temperature combustion process. The TFT mobilities of bottom-gate/top-contact bMO TFTs processed at T = 250 °C are ~5tmex larger (~2.6 cm(2)/(V s)) than those of single-layer IGO TFTs (~0.5 cm(2)/(V s)), reaching values comparable to single-layer combustion-processed In2O3 TFTs (~3.2 cm(2)/(V s)). More importantly, and unlike single-layer In2O3 TFTs, the threshold voltage of the bMO TFTs is ~0.0 V, and the current on/off ratio is significantly enhanced to ~1 × 10(8) (vs ~1 × 10(4) for In2O3). The microstructure and morphology of the In2O3/IGO bilayers are analyzed by X-ray diffraction, atomic force microscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy, revealing the polycrystalline nature of the In2O3 layer and the amorphous nature of the IGO layer. This work demonstrates that solution-processed metal oxides can be implemented in bilayer TFT architectures with significantly enhanced performance.

  15. Synthesis of Novel Double-Layer Nanostructures of SiC–WOxby a Two Step Thermal Evaporation Process

    PubMed Central

    2009-01-01

    A novel double-layer nanostructure of silicon carbide and tungsten oxide is synthesized by a two-step thermal evaporation process using NiO as the catalyst. First, SiC nanowires are grown on Si substrate and then high density W18O49nanorods are grown on these SiC nanowires to form a double-layer nanostructure. XRD and TEM analysis revealed that the synthesized nanostructures are well crystalline. The growth of W18O49nanorods on SiC nanowires is explained on the basis of vapor–solid (VS) mechanism. The reasonably better turn-on field (5.4 V/μm) measured from the field emission measurements suggest that the synthesized nanostructures could be used as potential field emitters. PMID:20596292

  16. High-Quality Solution-Processed Silicon Oxide Gate Dielectric Applied on Indium Oxide Based Thin-Film Transistors.

    PubMed

    Jaehnike, Felix; Pham, Duy Vu; Anselmann, Ralf; Bock, Claudia; Kunze, Ulrich

    2015-07-01

    A silicon oxide gate dielectric was synthesized by a facile sol-gel reaction and applied to solution-processed indium oxide based thin-film transistors (TFTs). The SiOx sol-gel was spin-coated on highly doped silicon substrates and converted to a dense dielectric film with a smooth surface at a maximum processing temperature of T = 350 °C. The synthesis was systematically improved, so that the solution-processed silicon oxide finally achieved comparable break downfield strength (7 MV/cm) and leakage current densities (<10 nA/cm(2) at 1 MV/cm) to thermally grown silicon dioxide (SiO2). The good quality of the dielectric layer was successfully proven in bottom-gate, bottom-contact metal oxide TFTs and compared to reference TFTs with thermally grown SiO2. Both transistor types have field-effect mobility values as high as 28 cm(2)/(Vs) with an on/off current ratio of 10(8), subthreshold swings of 0.30 and 0.37 V/dec, respectively, and a threshold voltage close to zero. The good device performance could be attributed to the smooth dielectric/semiconductor interface and low interface trap density. Thus, the sol-gel-derived SiO2 is a promising candidate for a high-quality dielectric layer on many substrates and high-performance large-area applications.

  17. Nucleation of graphene layers on magnetic oxides: Co 3O 4(111) and Cr 2O 3(0001) from theory and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beatty, John; Cheng, Tao; Cao, Yuan

    We report directly grown strongly adherent graphene on Co 3O 4(111) by carbon molecular beam epitaxy (C MBE) at 850 K and density functional theory (DFT) findings that the first graphene layer is reconstructed to fit the Co 3O 4 surface, while subsequent layers retain normal graphene structure. This adherence to the Co 3O 4 structure results from partial bonding of half the carbons to top oxygens of the substrate. This structure is validated by X-ray photoelectron spectroscopy and low-energy electron diffraction studies, showing layer-by-layer graphene growth with ~0.08 electrons/carbon atom transferred to the oxide from the first graphene layer,more » in agreement with DFT. In contrast, for Cr 2O 3 DFT finds no strong bonding to the surface and C MBE on Cr 2O 3(0001) yields only graphite formation at 700 K, with C desorption above 800 K. As a result, strong graphene-to-oxide charge transfer aids nucleation of graphene on incommensurate oxide substrates and may have implications for spintronics.« less

  18. Nucleation of graphene layers on magnetic oxides: Co 3O 4(111) and Cr 2O 3(0001) from theory and experiment

    DOE PAGES

    Beatty, John; Cheng, Tao; Cao, Yuan; ...

    2016-12-14

    We report directly grown strongly adherent graphene on Co 3O 4(111) by carbon molecular beam epitaxy (C MBE) at 850 K and density functional theory (DFT) findings that the first graphene layer is reconstructed to fit the Co 3O 4 surface, while subsequent layers retain normal graphene structure. This adherence to the Co 3O 4 structure results from partial bonding of half the carbons to top oxygens of the substrate. This structure is validated by X-ray photoelectron spectroscopy and low-energy electron diffraction studies, showing layer-by-layer graphene growth with ~0.08 electrons/carbon atom transferred to the oxide from the first graphene layer,more » in agreement with DFT. In contrast, for Cr 2O 3 DFT finds no strong bonding to the surface and C MBE on Cr 2O 3(0001) yields only graphite formation at 700 K, with C desorption above 800 K. As a result, strong graphene-to-oxide charge transfer aids nucleation of graphene on incommensurate oxide substrates and may have implications for spintronics.« less

  19. Oxidative stress in entomopathogenic fungi grown on insect-like hydrocarbons.

    PubMed

    Huarte-Bonnet, Carla; Juárez, M Patricia; Pedrini, Nicolás

    2015-08-01

    Entomopathogenic fungi mostly attack their insect hosts by penetration through the cuticle. The outermost insect surface is covered by a lipid-rich layer, usually composed of very long chain hydrocarbons. These fungi are apt to grow on straight chain hydrocarbons (alkanes) as the sole carbon source. Insect-like hydrocarbons are first hydroxylated by a microsomal P450 monooxygenase system, and then fully catabolized by peroxisomal β-oxidation reactions in Beauveria bassiana. In this review, we will discuss lipid metabolism adaptations in alkane-grown fungi, and how an oxidative stress scenario is established under these conditions. Fungi have to pay a high cost for hydrocarbon utilization; high levels of reactive oxygen species are produced and a concomitant antioxidant response is triggered in fungal cells to cope with this drawback.

  20. Formation of crack-free nanoporous tin oxide layers via simple one-step anodic oxidation in NaOH at low applied voltages

    NASA Astrophysics Data System (ADS)

    Zaraska, Leszek; Gilek, Dominika; Gawlak, Karolina; Jaskuła, Marian; Sulka, Grzegorz D.

    2016-12-01

    A simple anodic oxidation of metallic tin in fluoride-free alkaline electrolyte at low potentials was proposed as a new and effective strategy for fabrication of crack-free nanoporous tin oxide layers. A low-purity Sn foil (98.8%) was used as a starting material, and a series of anodizations were performed in 1 M NaOH at different conditions such as anodizing potential, and duration of the process. It was proved for the first time that nanostructured tin oxides with ultra-small nanochannels having diameters of <15 nm can be synthesized by simple anodization of metallic tin at a potential of 2 V in 1 M NaOH electrolyte. Increasing anodizing potential to 3 and 4 V allowed for formation of tin oxide layers with much larger pores (40-50 nm in diameter) which were still free from internal cracks and transversal pores. Applying such low potentials significantly reduces the oxide growth rate and suppresses vigorous oxygen evolution at the anode. As a result mechanical deterioration of the oxide structure is prevented while strongly alkaline electrolyte is responsible for formation of the porous layer with completely open pores even at such low potentials. On the contrary, when anodization was carried out at potentials of 5 and 6 V, much faster formation of anodic layer, accompanied by vigorous oxygen gas formation, was observed. In consequence, as grown oxide layers exhibited typical cracked or even stacked internal structure. Finally, we demonstrated for the first time that nanoporous tin oxide layers with segments of different channel sizes can be successfully obtained by simple altering potential during anodization.

  1. Improving the electrical properties of lanthanum silicate films on ge metal oxide semiconductor capacitors by adopting interfacial barrier and capping layers.

    PubMed

    Choi, Yu Jin; Lim, Hajin; Lee, Suhyeong; Suh, Sungin; Kim, Joon Rae; Jung, Hyung-Suk; Park, Sanghyun; Lee, Jong Ho; Kim, Seong Gyeong; Hwang, Cheol Seong; Kim, HyeongJoon

    2014-05-28

    The electrical properties of La-silicate films grown by atomic layer deposition (ALD) on Ge substrates with different film configurations, such as various Si concentrations, Al2O3 interfacial passivation layers, and SiO2 capping layers, were examined. La-silicate thin films were deposited using alternating injections of the La[N{Si(CH3)3}2]3 precursor with O3 as the La and O precursors, respectively, at a substrate temperature of 310 °C. The Si concentration in the La-silicate films was further controlled by adding ALD cycles of SiO2. For comparison, La2O3 films were also grown using [La((i)PrCp)3] and O3 as the La precursor and oxygen source, respectively, at the identical substrate temperature. The capacitance-voltage (C-V) hysteresis decreased with an increasing Si concentration in the La-silicate films, although the films showed a slight increase in the capacitance equivalent oxide thickness. The adoption of Al2O3 at the interface as a passivation layer resulted in lower C-V hysteresis and a low leakage current density. The C-V hysteresis voltages of the La-silicate films with Al2O3 passivation and SiO2 capping layers was significantly decreased to ∼0.1 V, whereas the single layer La-silicate film showed a hysteresis voltage as large as ∼1.0 V.

  2. New X-ray insight into oxygen intercalation in epitaxial graphene grown on 4H-SiC(0001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalski, G., E-mail: kowal@fuw.edu.pl; Tokarczyk, M.; Dąbrowski, P.

    Efficient control of intercalation of epitaxial graphene by specific elements is a way to change properties of the graphene. Results of several experimental techniques, such as X-ray photoelectron spectroscopy, micro-Raman mapping, reflectivity, attenuated total reflection, X-ray diffraction, and X-ray reflectometry, gave a new insight into the intercalation of oxygen in the epitaxial graphene grown on 4H-SiC(0001). These results confirmed that oxygen intercalation decouples the graphene buffer layer from the 4H-SiC surface and converts it into the graphene layer. However, in contrast to the hydrogen intercalation, oxygen does not intercalate between carbon planes (in the case of few layer graphene) andmore » the interlayer spacing stays constant at the level of 3.35–3.32 Å. Moreover, X-ray reflectometry showed the presence of an oxide layer having the thickness of about 0.8 Å underneath the graphene layers. Apart from the formation of the nonuniform thin oxide layer, generation of defects in graphene caused by oxygen was also evidenced. Last but not least, water islands underneath defected graphene regions in both intercalated and non-intercalated samples were most probably revealed. These water islands are formed in the case of all the samples stored under ambient laboratory conditions. Water islands can be removed from underneath the few layer graphene stacks by relevant thermal treatment or by UV illumination.« less

  3. Electrical characterization of 4H-SiC metal-oxide-semiconductor structure with Al2O3 stacking layers as dielectric

    NASA Astrophysics Data System (ADS)

    Chang, P. K.; Hwu, J. G.

    2018-02-01

    Interface defects and oxide bulk traps conventionally play important roles in the electrical performance of SiC MOS device. Introducing the Al2O3 stack grown by repeated anodization of Al films can notably lower the leakage current in comparison to the SiO2 structure, and enhance the minority carrier response at low frequency when the number of Al2O3 layers increase. In addition, the interface quality is not deteriorated by the stacking of Al2O3 layers because the stacked Al2O3 structure grown by anodization possesses good uniformity. In this work, the capacitance equivalent thickness (CET) of stacking Al2O3 will be up to 19.5 nm and the oxidation process can be carried out at room temperature. For the Al2O3 gate stack with CET 19.5 nm on n-SiC substrate, the leakage current at 2 V is 2.76 × 10-10 A/cm2, the interface trap density at the flatband voltage is 3.01 × 1011 eV-1 cm-2, and the effective breakdown field is 11.8 MV/cm. Frequency dispersion and breakdown characteristics may thus be improved as a result of the reduction in trap density. The Al2O3 stacking layers are capable of maintaining the leakage current as low as possible even after constant voltage stress test, which will further ameliorate reliability characteristics.

  4. Developmental, nutritional and hormonal anomalies of weightlessness-grown wheat

    NASA Astrophysics Data System (ADS)

    Carman, J. G.; Hole, P.; Salisbury, F. B.; Bingham, G. E.

    2015-07-01

    The behavior of water in weightlessness, as occurs in orbiting spacecraft, presents multiple challenges for plant growth. Soils remain saturated, impeding aeration, and leaf surfaces remain wet, impeding gas exchange. Herein we report developmental and biochemical anomalies of "Super Dwarf" wheat (Triticum aestivum L.) grown aboard Space Station Mir during the 1996-97 "Greenhouse 2" experiment. Leaves of Mir-grown wheat were hyperhydric, senesced precociously and accumulated aromatic and branched-chain amino acids typical of tissues experiencing oxidative stress. The highest levels of stress-specific amino acids occurred in precociously-senescing leaves. Our results suggest that the leaf ventilation system of the Svet Greenhouse failed to remove sufficient boundary layer water, thus leading to poor gas exchange and onset of oxidative stress. As oxidative stress in plants has been observed in recent space-flight experiments, we recommend that percentage water content in apoplast free-spaces of leaves be used to evaluate leaf ventilation effectiveness. Mir-grown plants also tillered excessively. Crowns and culms of these plants contained low levels of abscisic acid but high levels of cytokinins. High ethylene levels may have suppressed abscisic acid synthesis, thus permitting cytokinins to accumulate and tillering to occur.

  5. Tuning the Phase and Microstructural Properties of TiO2 Films Through Pulsed Laser Deposition and Exploring Their Role as Buffer Layers for Conductive Films

    NASA Astrophysics Data System (ADS)

    Agarwal, S.; Haseman, M. S.; Leedy, K. D.; Winarski, D. J.; Saadatkia, P.; Doyle, E.; Zhang, L.; Dang, T.; Vasilyev, V. S.; Selim, F. A.

    2018-04-01

    Titanium oxide (TiO2) is a semiconducting oxide of increasing interest due to its chemical and thermal stability and broad applicability. In this study, thin films of TiO2 were deposited by pulsed laser deposition on sapphire and silicon substrates under various growth conditions, and characterized by x-ray diffraction (XRD), atomic force microscopy (AFM), optical absorption spectroscopy and Hall-effect measurements. XRD patterns revealed that a sapphire substrate is more suitable for the formation of the rutile phase in TiO2, while a silicon substrate yields a pure anatase phase, even at high-temperature growth. AFM images showed that the rutile TiO2 films grown at 805°C on a sapphire substrate have a smoother surface than anatase films grown at 620°C. Optical absorption spectra confirmed the band gap energy of 3.08 eV for the rutile phase and 3.29 eV for the anatase phase. All the deposited films exhibited the usual high resistivity of TiO2; however, when employed as a buffer layer, anatase TiO2 deposited on sapphire significantly improves the conductivity of indium gallium zinc oxide thin films. The study illustrates how to control the formation of TiO2 phases and reveals another interesting application for TiO2 as a buffer layer for transparent conducting oxides.

  6. Layer uniformity in glucose oxidase immobilization on SiO 2 surfaces

    NASA Astrophysics Data System (ADS)

    Libertino, Sebania; Scandurra, Antonino; Aiello, Venera; Giannazzo, Filippo; Sinatra, Fulvia; Renis, Marcella; Fichera, Manuela

    2007-09-01

    The goal of this work was the characterization, step by step, of the enzyme glucose oxidase (GOx) immobilization on silicon oxide surfaces, mainly by means of X-Ray photoelectron spectroscopy (XPS). The immobilization protocol consists of four steps: oxide activation, silanization, linker molecule deposition and GOx immobilization. The linker molecule, glutaraldehyde (GA) in this study, must be able to form a uniform layer on the sample surface in order to maximize the sites available for enzyme bonding and achieve the best enzyme deposition. Using a thin SiO 2 layer grown on Si wafers and following the XPS Si2p signal of the Si substrate during the immobilization steps, we demonstrated both the glutaraldehyde layer uniformity and the possibility to use XPS to monitor thin layer uniformity. In fact, the XPS substrate signal, not shielded by the oxide, is suppressed only when a uniform layer is deposited. The enzyme correct immobilization was monitored using the XPS C1s and N1s signals. Atomic force microscopy (AFM) measurements carried out on the same samples confirmed the results.

  7. CMOS-compatible method for doping of buried vertical polysilicon structures by solid phase diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turkulets, Yury; Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer-Sheva 8410501; Silber, Amir

    2016-03-28

    Polysilicon receives attention nowadays as a means to incorporate 3D-structured photonic devices into silicon processes. However, doping of buried layers of a typical 3D structure has been a challenge. We present a method for doping of buried polysilicon layers by solid phase diffusion. Using an underlying silicon oxide layer as a dopant source facilitates diffusion of dopants into the bottom side of the polysilicon layer. The polysilicon is grown on top of the oxide layer, after the latter has been doped by ion implantation. Post-growth heat treatment drives in the dopant from the oxide into the polysilicon. To model themore » process, we studied the diffusion of the two most common silicon dopants, boron (B) and phosphorus (P), using secondary ion mass spectroscopy profiles. Our results show that shallow concentration profiles can be achieved in a buried polysilicon layer using the proposed technique. We present a quantitative 3D model for the diffusion of B and P in polysilicon, which turns the proposed method into an engineerable technique.« less

  8. HfO2 Gate Dielectric on (NH4)2S Passivated (100) GaAs Grown by Atomic Layer Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, P.T.; /Stanford U., Materials Sci. Dept.; Sun, Y.

    2007-09-28

    The interface between hafnium oxide grown by atomic layer deposition and (100) GaAs treated with HCl cleaning and (NH{sub 4}){sub 2}S passivation has been characterized. Synchrotron radiation photoemission core level spectra indicated successful removal of the native oxides and formation of passivating sulfides on the GaAs surface. Layer-by-layer removal of the hafnia film revealed a small amount of As{sub 2}O{sub 3} formed at the interface during the dielectric deposition. Traces of arsenic and sulfur out-diffusion into the hafnia film were observed after a 450 C post-deposition anneal, and may be the origins for the electrically active defects. Transmission electron microscopymore » cross section images showed thicker HfO{sub 2} films for a given precursor exposure on S-treated GaAs versus the non-treated sample. In addition, the valence-band and the conduction-band offsets at the HfO{sub 2}/GaAs interface were deduced to be 3.18 eV and a range of 0.87-0.97 eV, respectively. It appears that HCl+(NH{sub 4})2{sub S} treatments provide a superior chemical passivation for GaAs and initial surface for ALD deposition.« less

  9. Resistance Switching Memory Characteristics of Si/CaF2/CdF2 Quantum-Well Structures Grown on Metal (CoSi2) Layer

    NASA Astrophysics Data System (ADS)

    Denda, Junya; Uryu, Kazuya; Watanabe, Masahiro

    2013-04-01

    A novel scheme of resistance switching random access memory (ReRAM) devices fabricated using Si/CaF2/CdF2/CaF2/Si quantum-well structures grown on metal CoSi2 layer formed on a Si substrate has been proposed, and embryonic write/erase memory operation has been demonstrated at room temperature. It has been found that the oxide-mediated epitaxy (OME) technique for forming the CoSi2 layer on Si dramatically improves the stability and reproducibility of the current-voltage (I-V) curve. This technology involves 10-nm-thick Co layer deposition on a protective oxide prepared by boiling in a peroxide-based solution followed by annealing at 550 °C for 30 min for silicidation in ultrahigh vacuum. A switching voltage of lower than 1 V, a peak current density of 32 kA/cm2, and an ON/OFF ratio of 10 have been observed for the sample with the thickness sequence of 0.9/0.9/2.5/0.9/5.0 nm for the respective layers in the Si/CaF2/CdF2/CaF2/Si structure. Results of surface morphology analysis suggest that the grain size of crystal islands with flat surfaces strongly affects the quality of device characteristics.

  10. Nanoindentation investigation of HfO2 and Al2O3 films grown by atomic layer deposition

    Treesearch

    K. Tapily; Joseph E. Jakes; D. S. Stone; P. Shrestha; D. Gu; H. Baumgart; A. A. Elmustafa

    2008-01-01

    The challenges of reducing gate leakage current and dielectric breakdown beyond the 45 nm technology node have shifted engineers’ attention from the traditional and proven dielectric SiO2 to materials of higher dielectric constant also known as high-k materials such as hafnium oxide (HfO2) and aluminum oxide (Al2O3). These high-k materials are projected to...

  11. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation.

    PubMed

    Gong, Ming; Li, Yanguang; Wang, Hailiang; Liang, Yongye; Wu, Justin Z; Zhou, Jigang; Wang, Jian; Regier, Tom; Wei, Fei; Dai, Hongjie

    2013-06-12

    Highly active, durable, and cost-effective electrocatalysts for water oxidation to evolve oxygen gas hold a key to a range of renewable energy solutions, including water-splitting and rechargeable metal-air batteries. Here, we report the synthesis of ultrathin nickel-iron layered double hydroxide (NiFe-LDH) nanoplates on mildly oxidized multiwalled carbon nanotubes (CNTs). Incorporation of Fe into the nickel hydroxide induced the formation of NiFe-LDH. The crystalline NiFe-LDH phase in nanoplate form is found to be highly active for oxygen evolution reaction in alkaline solutions. For NiFe-LDH grown on a network of CNTs, the resulting NiFe-LDH/CNT complex exhibits higher electrocatalytic activity and stability for oxygen evolution than commercial precious metal Ir catalysts.

  12. Two-dimensional electron gas in tricolor oxide interfaces

    NASA Astrophysics Data System (ADS)

    Cao, Yanwei; Kareev, Michael; Liu, Xiaoran; Middey, Srimanta; Meyers, Derek; Tchakhalian, Jak

    2014-03-01

    Understanding and manipulating spin of electrons in nanometer scale is the main challenge of current spintronics, recent emergent two-dimensional electron gas in oxide interface provides a good platform to investigate the spin behavior by covering an insulating magnetic oxide layer. In this work, take titanates as an example, ultra-thin tricolor (tri-compound) titanate superlattices ([LaTiO3/SrTiO3/YTiO3]) were grown in a layer-by-layer way by pulsed laser deposition. High sample quality and their electronic structures were characterized by the combination of in-situ photoelectron and ex-situ structure and surface morphology probes. Temperature-dependent sheet resistance indicates the presence of metallic interfaces in both [LaTiO3 /SrTiO3 ] and all the tricolor structures, whereas a [YTiO3 /SrTiO3] bi-layer shows insulating behavior. The tricolor titanate superlattices provide an opportunity to induce tunable spin-polarization into the two-dimensional electron gas (2DEG) with Mott carriers.

  13. Silver nanowires-templated metal oxide for broadband Schottky photodetector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Malkeshkumar; Kim, Hong-Sik; Kim, Joondong, E-mail: joonkim@inu.ac.kr

    2016-04-04

    Silver nanowires (AgNWs)-templated transparent metal oxide layer was applied for Si Schottky junction device, which remarked the record fastest photoresponse of 3.4 μs. Self-operating AgNWs-templated Schottky photodetector showed broad wavelength photodetection with high responsivity (42.4 A W{sup −1}) and detectivity (2.75 × 10{sup 15} Jones). AgNWs-templated indium-tin-oxide (ITO) showed band-to-band excitation due to the internal photoemission, resulting in significant carrier collection performances. Functional metal oxide layer was formed by AgNWs-templated from ITO structure. The grown ITO above AgNWs has a cylindrical shape and acts as a thermal protector of AgNWs for high temperature environment without any deformation. We developed thermal stable AgNWs-templated transparent oxidemore » devices and demonstrated the working mechanism of AgNWs-templated Schottky devices. We may propose the high potential of hybrid transparent layer design for various photoelectric applications, including solar cells.« less

  14. Engineering the Mechanical Properties of Ultrabarrier Films Grown by Atomic Layer Deposition for the Encapsulation of Printed Electronics

    DOE PAGES

    Bulusu, Anuradha; Singh, Ankit K.; Wang, Cheng-Yin; ...

    2015-08-28

    Direct deposition of barrier films by atomic layer deposition (ALD) onto printed electronics presents a promising method for packaging devices. Films made by ALD have been shown to possess desired ultrabarrier properties, but face challenges when directly grown onto surfaces with varying composition and topography. Challenges include differing nucleation and growth rates across the surface, stress concentrations from topography and coefficient of thermal expansion (CTE) mismatch, elastic mismatch, and particle contamination that may impact the performance of the ALD barrier. In such cases, a polymer smoothing layer may be needed to coat the surface prior to ALD barrier film deposition.more » We present the impact of architecture on the performance of aluminum oxide (Al2O3)/hafnium oxide (HfO2) ALD nanolaminate barrier films deposited on fluorinated polymer layer using an optical calcium (Ca) test under damp heat. It is found that with increasing polymer thickness, the barrier films with residual tensile stress are prone to cracking resulting in rapid failure of the Ca sensor at 50{degree sign}C/85% RH. Inserting a SiNx layer with residual compressive stress between the polymer and ALD layers is found to prevent cracking over a range of polymer thicknesses with more than 95% of the Ca sensor remaining after 500 h of testing. These results suggest that controlling mechanical properties and film architecture play an important role in the performance of direct deposited ALD barriers.« less

  15. Influences of Indium Tin Oxide Layer on the Properties of RF Magnetron-Sputtered (BaSr)TiO3 Thin Films on Indium Tin Oxide-Coated Glass Substrate

    NASA Astrophysics Data System (ADS)

    Kim, Tae Song; Oh, Myung Hwan; Kim, Chong Hee

    1993-06-01

    Nearly stoichiometric ((Ba+Sr)/Ti=1.08-1.09) and optically transparent (BaSr)TiO3 thin films were deposited on an indium tin oxide (ITO)-coated glass substrate by means of rf magnetron sputtering for their application to the insulating layer of an electroluminescent flat panel display. The influence of the ITO layer on the properties of (BaSr)TiO3 thin films deposited on the ITO-coated substrate was investigated. The ITO layer did not affect the crystallographic orientation of (BaSr)TiO3 thin film, but enhanced the grain growth. Another effect of the ITO layer on (BaSr)TiO3 thin films was the interdiffusion phenomenon, which was studied by means of secondary ion mass spectrometry (SIMS). As the substrate temperature increased, interdiffusion intensified at the interface not only between the grown film and ITO layer but also between the ITO layer and base glass substrate. The refractive index (nf) of (BaSr)TiO3 thin film deposited on a bare glass substrate was 2.138-2.286, as a function of substrate temperature.

  16. Mechanistic insights into the oxidation behavior of Ni alloys in high-temperature CO 2

    DOE PAGES

    Oleksak, Richard P.; Baltrus, John P.; Nakano, Jinichiro; ...

    2017-06-01

    We present results of a Ni superalloy oxidized for short times in high purity CO 2 and similarly in Ar containing ≤ 1 ppb O 2. A detailed analysis of the oxidized surfaces reveals striking similarities for the two exposure environments, suggesting O 2 impurities control the oxidation process in high-temperature CO 2. Selective oxidation results in Cr-rich oxide layers grown by 2 outward diffusion, while Cr vacancies left in the metal contribute to significant void formation at the oxide/metal interface. Unlike for most of the alloy surface, the oxidation behavior of secondary phase metal carbides is considerably different inmore » the two environments.« less

  17. Proton trapping in SiO 2 layers thermally grown on Si and SiC

    NASA Astrophysics Data System (ADS)

    Afanas'ev, V. V.; Ciobanu, F.; Pensl, G.; Stesmans, A.

    2002-11-01

    Positive charging of thermal SiO 2 layers on (1 0 0)Si and (0 0 0 1)6H-, 4H-SiC related to trapping of protons is studied using low-energy proton implantation into the oxide, and compared to the trapping of holes generated by 10-eV photons. Proton trapping has an initial probability close to 100% and shows little sensitivity to the annealing-induced oxygen deficiency of SiO 2. In contrast to protons, hole trapping in as-grown SiO 2 shows a much lower efficiency which increases upon oxide annealing, in qualitative correlation with the higher density of O 3Si• defects (E' centers) detected by electron spin resonance after hole injection. Despite these differences, the neutralization of positive charges induced by holes and protons has the same cross-section, and in both cases is accompanied by liberation of atomic H suggesting that protons account for positive charge in both cases. The rupture of Si-O bonds in the oxide observed upon proton injection suggests, as a first basic step, the bonding of a proton to a bridging oxygen atom in SiO 2 network.

  18. Flexible IZO/Ag/IZO/Ag multilayer electrode grown on a polyethylene terephthalate substrate using roll-to-roll sputtering

    PubMed Central

    2012-01-01

    We investigated the optical, electrical, structural, and surface properties of roll-to-roll [R2R] sputter-grown flexible IZO/Ag/IZO/Ag [IAIA] multilayer films on polyethylene terephthalate substrates as a function of the top indium zinc oxide [IZO] thickness. It was found that the optical transmittance of the IAIA multilayer was significantly influenced by the top IZO layer thickness, which was grown on identical AIA multilayers. However, the sheet resistance of the IAIA multilayer was maintained between the range 5.01 to 5.1 Ω/square regardless of the top IZO thickness because the sheet resistance of the IAIA multilayer was mainly dependent on the thickness of the Ag layers. Notably, the optimized IAIA multilayer had a constant resistance change (ΔR/R0) under repeated outer bending tests with a radius of 10 mm. The mechanical integrity of the R2R-sputtered IAIA multilayer indicated that hybridization of an IZO and Ag metal layer is a promising flexible electrode scheme for the next-generation flexible optoelectronics. PMID:22222144

  19. High-efficiency thin-film GaAs solar cells, phase2

    NASA Technical Reports Server (NTRS)

    Yeh, Y. C. M.

    1981-01-01

    Thin GaAs epi-layers with good crystallographic quality were grown using a (100) Si-substrate on which a thin Ge epi-interlayer was grown by CVD from germane. Both antireflection-coated metal oxide semiconductor (AMOS) and n(+)/p homojunction structures were studied. The AMOS cells were fabricated on undoped-GaAs epi-layers deposited on bulk poly-Ge substrates using organo-metallic CVD film-growth, with the best achieved AM1 conversion efficiency being 9.1%. Both p-type and n(+)-type GaAs growth were optimized using 50 ppm dimethyl zinc and 1% hydrogen sulfide, respectively. A direct GaAs deposition method in fabricating ultra-thin top layer, epitaxial n(+)/p shallow homojunction solar cells on (100) GaAs substrates (without anodic thinning) was developed to produce large area (1 sq/cm) cells, with 19.4% AM1 conversion efficiency achieved. Additionally, an AM1 conversion efficiency of 18.4% (17.5% with 5% grid coverage) was achieved for a single crystal GaAs n(+)/p cell grown by OM-CVD on a Ge wafer.

  20. Method for fabricating silicon cells

    DOEpatents

    Ruby, Douglas S.; Basore, Paul A.; Schubert, W. Kent

    1998-08-11

    A process for making high-efficiency solar cells. This is accomplished by forming a diffusion junction and a passivating oxide layer in a single high-temperature process step. The invention includes the class of solar cells made using this process, including high-efficiency solar cells made using Czochralski-grown silicon.

  1. Nano-scale zirconia and hafnia dielectrics grown by atomic layer deposition: Crystallinity, interface structures and electrical properties

    NASA Astrophysics Data System (ADS)

    Kim, Hyoungsub

    With the continued scaling of transistors, leakage current densities across the SiO2 gate dielectric have increased enormously through direct tunneling. Presently, metal oxides having higher dielectric constants than SiO2 are being investigated to reduce the leakage current by increasing the physical thickness of the dielectric. Many possible techniques exist for depositing high-kappa gate dielectrics. Atomic layer deposition (ALD) has drawn attention as a method for preparing ultrathin metal oxide layers with excellent electrical characteristics and near-perfect film conformality due to the layer-by-layer nature of the deposition mechanism. For this research, an ALD system using ZrCl4/HfCl4 and H2O was built and optimized. The microstructural and electrical properties of ALD-ZrO2 and HfO2 grown on SiO2/Si substrates were investigated and compared using various characterization tools. In particular, the crystallization kinetics of amorphous ALD-HfO2 films were studied using in-situ annealing experiments in a TEM. The effect of crystallization on the electrical properties of ALD-HfO 2 was also investigated using various in-situ and ex-situ post-deposition anneals. Our results revealed that crystallization had little effect on the magnitude of the gate leakage current or on the conduction mechanisms. Building upon the results for each metal oxide separately, more advanced investigations were made. Several nanolaminate structures using ZrO2 and HfO2 with different sequences and layer thicknesses were characterized. The effects of the starting microstructure on the microstructural evolution of nanolaminate stacks were studied. Additionally, a promising new approach for engineering the thickness of the SiO2-based interface layer between the metal oxide and silicon substrate after deposition of the metal oxide layer was suggested. Through experimental measurements and thermodynamic analysis, it is shown that a Ti overlayer, which exhibits a high oxygen solubility, can effectively getter oxygen from the interface layer, thus decomposing SiO2 and reducing the interface layer thickness in a controllable fashion. As one of several possible applications, ALD-ZrO2 and HfO 2 gate dielectric films were deposited on Ge (001) substrates with different surface passivations. After extensive characterization using various microstructural, electrical, and chemical analyses, excellent MOS electrical properties of high-kappa gate dielectrics on Ge were successfully demonstrated with optimized surface nitridation of the Ge substrates.

  2. Effective passivation of silicon surfaces by ultrathin atomic-layer deposited niobium oxide

    NASA Astrophysics Data System (ADS)

    Macco, B.; Bivour, M.; Deijkers, J. H.; Basuvalingam, S. B.; Black, L. E.; Melskens, J.; van de Loo, B. W. H.; Berghuis, W. J. H.; Hermle, M.; Kessels, W. M. M. Erwin

    2018-06-01

    This letter reports on effective surface passivation of n-type crystalline silicon by ultrathin niobium oxide (Nb2O5) films prepared by atomic layer deposition (ALD) and subjected to a forming gas anneal at 300 °C. A champion recombination parameter J0 of 20 fA/cm2 and a surface recombination velocity Seff of 4.8 cm/s have been achieved for ultrathin films of 1 nm. The surface pretreatment was found to have a strong impact on the passivation. Good passivation can be achieved on both HF-treated c-Si surfaces and c-Si surfaces with a wet-chemically grown interfacial silicon oxide layer. On HF-treated surfaces, a minimum film thickness of 3 nm is required to achieve a high level of surface passivation, whereas the use of a wet chemically-grown interfacial oxide enables excellent passivation even for Nb2O5 films of only 1 nm. This discrepancy in passivation between both surface types is attributed to differences in the formation and stoichiometry of interfacial silicon oxide, resulting in different levels of chemical passivation. On both surface types, the high level of passivation of ALD Nb2O5 is aided by field-effect passivation originating from a high fixed negative charge density of 1-2 × 1012 cm-3. Furthermore, it is demonstrated that the passivation level provided by 1 nm of Nb2O5 can be further enhanced through light-soaking. Finally, initial explorations show that a low contact resistivity can be obtained using Nb2O5-based contacts. Together, these properties make ALD Nb2O5 a highly interesting building block for high-efficiency c-Si solar cells.

  3. Controlled growth of semiconductor crystals

    DOEpatents

    Bourret-Courchesne, Edith D.

    1992-01-01

    A method for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B.sub.x O.sub.y are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T.sub.m1 of the oxide of boron (T.sub.m1 =723.degree. K. for boron oxide B.sub.2 O.sub.3), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T.sub.m2 of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm.sup.2. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 .mu.m.

  4. Controlled growth of semiconductor crystals

    DOEpatents

    Bourret-Courchesne, E.D.

    1992-07-21

    A method is disclosed for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B[sub x]O[sub y] are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T[sub m1] of the oxide of boron (T[sub m1]=723 K for boron oxide B[sub 2]O[sub 3]), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T[sub m2] of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm[sup 2]. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 [mu]m. 7 figs.

  5. Al2O3 Passivation Effect in HfO2·Al2O3 Laminate Structures Grown on InP Substrates.

    PubMed

    Kang, Hang-Kyu; Kang, Yu-Seon; Kim, Dae-Kyoung; Baik, Min; Song, Jin-Dong; An, Youngseo; Kim, Hyoungsub; Cho, Mann-Ho

    2017-05-24

    The passivation effect of an Al 2 O 3 layer on the electrical properties was investigated in HfO 2 -Al 2 O 3 laminate structures grown on indium phosphide (InP) substrate by atomic-layer deposition. The chemical state obtained using high-resolution X-ray photoelectron spectroscopy showed that interfacial reactions were dependent on the presence of the Al 2 O 3 passivation layer and its sequence in the HfO 2 -Al 2 O 3 laminate structures. Because of the interfacial reaction, the Al 2 O 3 /HfO 2 /Al 2 O 3 structure showed the best electrical characteristics. The top Al 2 O 3 layer suppressed the interdiffusion of oxidizing species into the HfO 2 films, whereas the bottom Al 2 O 3 layer blocked the outdiffusion of In and P atoms. As a result, the formation of In-O bonds was more effectively suppressed in the Al 2 O 3 /HfO 2 /Al 2 O 3 /InP structure than that in the HfO 2 -on-InP system. Moreover, conductance data revealed that the Al 2 O 3 layer on InP reduces the midgap traps to 2.6 × 10 12 eV -1 cm -2 (compared to that of HfO 2 /InP, that is, 5.4 × 10 12 eV -1 cm -2 ). The suppression of gap states caused by the outdiffusion of In atoms significantly controls the degradation of capacitors caused by leakage current through the stacked oxide layers.

  6. Hybrid Organic/ZnO p-n Junctions with n-Type ZnO Grown by Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Łuka, G.; Krajewski, T.; Szczerbakow, A.; Łusakowska, E.; Kopalko, K.; Guziewicz, E.; Wachnicki, Ł.; Szczepanik, A.; Godlewski, M.; Fidelus, J. D.

    2008-11-01

    We report on fabrication of hybrid inorganic-on-organic thin film structures with polycrystalline zinc oxide films grown by atomic layer deposition technique. ZnO films were deposited on two kinds of thin organic films, i.e. pentacene and poly(dimethylosiloxane) elastomer with a carbon nanotube content (PDMS:CNT). Surface morphology as well as electrical measurements of the films and devices were analyzed. The current density versus voltage (I-V) characteristics of ITO/pentacene/ZnO/Au structure show a low-voltage switching phenomenon typical of organic memory elements. The I-V studies of ITO/PDMS:CNT/ZnO/Au structure indicate some charging effects in the system under applied voltages.

  7. Aligned carbon nanotube, graphene and graphite oxide thin films via substrate-directed rapid interfacial deposition

    NASA Astrophysics Data System (ADS)

    D'Arcy, Julio M.; Tran, Henry D.; Stieg, Adam Z.; Gimzewski, James K.; Kaner, Richard B.

    2012-05-01

    A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated.A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated. Electronic supplementary information (ESI) available: Droplet coalescence, catenoid formation, mechanism of film growth, scanning electron micrographs showing carbon nanotube alignment, flexible transparent films of SWCNTs, AFM images of a chemically converted graphene film, and SEM images of SWCNT free-standing thin films. See DOI: 10.1039/c2nr00010e

  8. Demonstrating antiphase domain boundary-free GaAs buffer layer on zero off-cut Si (0 0 1) substrate for interfacial misfit dislocation GaSb film by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Ha, Minh Thien Huu; Hoang Huynh, Sa; Binh Do, Huy; Nguyen, Tuan Anh; Luc, Quang Ho; Chang, Edward Yi

    2017-08-01

    High quality 40 nm GaSb thin film was grown on the zero off-cut Si (0 0 1)-oriented substrate using metalorganic chemical vapor deposition with the temperature-graded GaAs buffer layer. The growth time of the GaAs nucleation layer, which was deposited at a low temperature of 490 °C, is systematically investigated in this paper. Cross-sections of the high resolution transmission electron microscopy images indicate that the GaAs compound formed 3D-islands first before to quasi-2D islands, and finally formed uniform GaAs layer. The optimum thickness of the 490 °C-GaAs layer was found to be 10 nm to suppress the formation of antiphase domain boundaries (APDs). The thin GaAs nucleation layer had a root-mean-square surface roughness of 0.483 nm. This allows the continued high temperature GaAs buffer layer to be achieved with low threading dislocation density of around 7.1  ×  106 cm-2 and almost invisible APDs. Finally, a fully relaxed GaSb film was grown on the top of the GaAs/Si heterostructure using interfacial misfit dislocation growth mode. These results indicate that the GaSb epitaxial layer can be grown on Si substrate with GaAs buffer layer for future p-channel metal-oxide-semiconductor field effect transistors (MOSFETs) applications.

  9. Method for fabricating silicon cells

    DOEpatents

    Ruby, D.S.; Basore, P.A.; Schubert, W.K.

    1998-08-11

    A process is described for making high-efficiency solar cells. This is accomplished by forming a diffusion junction and a passivating oxide layer in a single high-temperature process step. The invention includes the class of solar cells made using this process, including high-efficiency solar cells made using Czochralski-grown silicon. 9 figs.

  10. Heterostructure of ferromagnetic and ferroelectric materials with magneto-optic and electro-optic effects

    NASA Technical Reports Server (NTRS)

    Zou, Yingyin Kevin (Inventor); Jiang, Hua (Inventor); Li, Kewen Kevin (Inventor); Guo, Xiaomei (Inventor)

    2012-01-01

    A heterostructure of multiferroics or magnetoelectrics (ME) was disclosed. The film has both ferromagnetic and ferroelectric properties, as well as magneto-optic (MO) and electro-optic (EO) properties. Oxide buffer layers were employed to allow grown a cracking-free heterostructure a solution coating method.

  11. Epitaxial Gd2O3 on GaN and AlGaN: a potential candidate for metal oxide semiconductor based transistors on Si for high power application

    NASA Astrophysics Data System (ADS)

    Ghosh, Kankat; Das, S.; Khiangte, K. R.; Choudhury, N.; Laha, Apurba

    2017-11-01

    We report structural and electrical properties of hexagonal Gd2O3 grown epitaxially on GaN/Si (1 1 1) and AlGaN/GaN/Si(1 1 1) virtual substrates. GaN and AlGaN/GaN heterostructures were grown on Si(1 1 1) substrates by plasma assisted molecular beam epitaxy (PA-MBE), whereas the Gd2O3 layer was grown by the pulsed laser ablation (PLA) technique. Initial structural characterizations show that Gd2O3 grown on III-nitride layers by PLA, exhibit a hexagonal structure with an epitaxial relationship as {{≤ft[ 0 0 0 1 \\right]}G{{d2}{{O}3}}}||{{≤ft[ 0 0 0 1 \\right]}GaN} and {{≤ft[ 1 \\bar{1} 0 0 \\right]}G{{d2}{{O}3}}}||{{≤ft[ 1 \\bar{1} 0 0 \\right]}GaN} . X-ray photoelectron measurements of the valence bands revealed that Gd2O3 exhibits band offsets of 0.97 eV and 0.4 eV, for GaN and Al0.3Ga0.7N, respectively. Electrical measurements such as capacitance-voltage and leakage current characteristics further confirm that epi-Gd2O3 on III-nitrides could be a potential candidate for future metal-oxide-semiconductor (MOS)-based transistors also for high power applications in radio frequency range.

  12. Developmental, nutritional and hormonal anomalies of weightlessness-grown wheat.

    PubMed

    Carman, J G; Hole, P; Salisbury, F B; Bingham, G E

    2015-07-01

    The behavior of water in weightlessness, as occurs in orbiting spacecraft, presents multiple challenges for plant growth. Soils remain saturated, impeding aeration, and leaf surfaces remain wet, impeding gas exchange. Herein we report developmental and biochemical anomalies of "Super Dwarf" wheat (Triticum aestivum L.) grown aboard Space Station Mir during the 1996-97 "Greenhouse 2" experiment. Leaves of Mir-grown wheat were hyperhydric, senesced precociously and accumulated aromatic and branched-chain amino acids typical of tissues experiencing oxidative stress. The highest levels of stress-specific amino acids occurred in precociously-senescing leaves. Our results suggest that the leaf ventilation system of the Svet Greenhouse failed to remove sufficient boundary layer water, thus leading to poor gas exchange and onset of oxidative stress. As oxidative stress in plants has been observed in recent space-flight experiments, we recommend that percentage water content in apoplast free-spaces of leaves be used to evaluate leaf ventilation effectiveness. Mir-grown plants also tillered excessively. Crowns and culms of these plants contained low levels of abscisic acid but high levels of cytokinins. High ethylene levels may have suppressed abscisic acid synthesis, thus permitting cytokinins to accumulate and tillering to occur. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  13. Oxidation behavior of thermal barrier coating systems with Al interlayer under isothermal loading

    NASA Astrophysics Data System (ADS)

    Ali, I.; Sokołowski, P.; Grund, T.; Pawłowski, L.; Lampke, T.

    2018-06-01

    In the present study, the phenomena related to the Thermally Grown Oxides (TGO) in atmospheric plasma sprayed Thermal Barrier Coatings (TBCs) are discussed. CoNiCrAlY bond coatings were sprayed on Inconel 600 substrates. Subsequently, thin Al layers were deposited by DC-Magnetron sputtering. Finally, yttria-stabilized zirconia (YSZ) top coatings were deposited to form a three-layered TBC system. The thus produced aluminum interlayer containing thermal barrier coatings (Al-TBC) were subjected to isothermal exposure with different holding times at 1150 °C and compared with reference TBCs of the same kind, but without Al interlayers (R-TBC). The oxide film formation in the interface between bond coating (BC) and top coating (TC) was investigated by scanning electron microscope (SEM) after 100 and 300 h of high temperature isothermal exposure. The growth of this oxide film as a function of the isothermal exposure time was studied. As a result, the designed Al-TBC system exhibited better oxidation resistance in the BC/TC interface than the two-layered R-TBC system. This was lead back to the Al enrichment, which slows down the formation rate of transition metal oxides during thermal loading.

  14. Comparative study of LaNiO3/LaAlO3 heterostructures grown by pulsed laser deposition and oxide molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wrobel, F.; Mark, A. F.; Christiani, G.; Sigle, W.; Habermeier, H.-U.; van Aken, P. A.; Logvenov, G.; Keimer, B.; Benckiser, E.

    2017-01-01

    Variations in growth conditions associated with different deposition techniques can greatly affect the phase stability and defect structure of complex oxide heterostructures. We synthesized superlattices of the paramagnetic metal LaNiO3 and the large band gap insulator LaAlO3 by atomic layer-by-layer molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) and compared their crystallinity and microstructure as revealed by high-resolution transmission electron microscopy images and resistivity. The MBE samples show a higher density of stacking faults but smoother interfaces and generally higher electrical conductivity. Our study identifies the opportunities and challenges of MBE and PLD growth and serves as a general guide for the choice of the deposition technique for perovskite oxides.

  15. Stabilizing Ir(001) Epitaxy on Yttria-Stabilized Zirconia Using a Thin Ir Seed Layer Grown by Pulsed Laser Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Lisha; Jacobs, Christopher B.; Rouleau, Christopher M.

    In this paper, we demonstrate the reproducible epitaxial growth of 100 nm thick Ir(001) films on a heteroepitaxial stack consisting of 5 nm Ir and 100 nm yttria-stabilized zirconia (YSZ) grown on Si(001) substrates. It is shown that a 5 nm thick Ir layer grown by pulsed laser deposition in the same chamber as the YSZ film without breaking the vacuum is the key to stabilizing Ir(001) epitaxial growth. Growth of the Ir seed layer with pure (001) orientation occurs only in a narrow growth temperature window from 550 to 750 °C, and the fraction of Ir(111) increases at substratemore » temperatures outside of this window. The Ir seed layer prevents exposure of the YSZ film to air during sample transfer and enables highly reproducible Ir(001) heteroepitaxy on YSZ buffered Si(001). In contrast, if Ir is grown directly on a bare YSZ layer that was exposed to ambient conditions, the films are prone to change orientation to (111). These results reveal that preserving the chemical and structural purity of the YSZ surface is imperative for achieving Ir(001) epitaxy. The narrow range of the mosaic spread values from eight experiments demonstrates the high yield and high reproducibility of Ir(001) heteroepitaxy by this approach. Lastly, the improved Ir(001) epitaxial growth method is of great significance for integrating a variety of technologically important materials such as diamond, graphene, and functional oxides on a Si platform.« less

  16. Stabilizing Ir(001) Epitaxy on Yttria-Stabilized Zirconia Using a Thin Ir Seed Layer Grown by Pulsed Laser Deposition

    DOE PAGES

    Fan, Lisha; Jacobs, Christopher B.; Rouleau, Christopher M.; ...

    2016-11-18

    In this paper, we demonstrate the reproducible epitaxial growth of 100 nm thick Ir(001) films on a heteroepitaxial stack consisting of 5 nm Ir and 100 nm yttria-stabilized zirconia (YSZ) grown on Si(001) substrates. It is shown that a 5 nm thick Ir layer grown by pulsed laser deposition in the same chamber as the YSZ film without breaking the vacuum is the key to stabilizing Ir(001) epitaxial growth. Growth of the Ir seed layer with pure (001) orientation occurs only in a narrow growth temperature window from 550 to 750 °C, and the fraction of Ir(111) increases at substratemore » temperatures outside of this window. The Ir seed layer prevents exposure of the YSZ film to air during sample transfer and enables highly reproducible Ir(001) heteroepitaxy on YSZ buffered Si(001). In contrast, if Ir is grown directly on a bare YSZ layer that was exposed to ambient conditions, the films are prone to change orientation to (111). These results reveal that preserving the chemical and structural purity of the YSZ surface is imperative for achieving Ir(001) epitaxy. The narrow range of the mosaic spread values from eight experiments demonstrates the high yield and high reproducibility of Ir(001) heteroepitaxy by this approach. Lastly, the improved Ir(001) epitaxial growth method is of great significance for integrating a variety of technologically important materials such as diamond, graphene, and functional oxides on a Si platform.« less

  17. Bi-layer channel structure-based oxide thin-film transistors consisting of ZnO and Al-doped ZnO with different Al compositions and stacking sequences

    NASA Astrophysics Data System (ADS)

    Cho, Sung Woon; Yun, Myeong Gu; Ahn, Cheol Hyoun; Kim, So Hee; Cho, Hyung Koun

    2015-03-01

    Zinc oxide (ZnO)-based bi-layers, consisting of ZnO and Al-doped ZnO (AZO) layers grown by atomic layer deposition, were utilized as the channels of oxide thin-film transistors (TFTs). Thin AZO layers (5 nm) with different Al compositions (5 and 14 at. %) were deposited on top of and beneath the ZnO layers in a bi-layer channel structure. All of the bi-layer channel TFTs that included the AZO layers showed enhanced stability (Δ V Th ≤ 3.2 V) under a positive bias stress compared to the ZnO single-layer channel TFT (Δ V Th = 4.0 V). However, the AZO/ZnO bi-layer channel TFTs with an AZO interlayer between the gate dielectric and the ZnO showed a degraded field effect mobility (0.3 cm2/V·s for 5 at. % and 1.8 cm2/V·s for 14 at. %) compared to the ZnO single-layer channel TFT (5.5 cm2/V·s) due to increased scattering caused by Al-related impurities near the gate dielectric/channel interface. In contrast, the ZnO/AZO bi-layer channel TFTs with an AZO layer on top of the ZnO layer exhibited an improved field effect mobility (7.8 cm2/V·s for 14 at. %) and better stability. [Figure not available: see fulltext.

  18. Effects of SiO 2 overlayer at initial growth stage of epitaxial Y 2O 3 film growth

    NASA Astrophysics Data System (ADS)

    Cho, M.-H.; Ko, D.-H.; Choi, Y. G.; Lyo, I. W.; Jeong, K.; Whang, C. N.

    2000-12-01

    We investigated the dependence of the Y 2O 3 film growth on Si surface at initial growth stage. The reflection high-energy electron diffraction, X-ray scattering, and atomic force microscopy showed that the film crystallinity and morphology strongly depended on whether Si surface contained O or not. In particular, the films grown on oxidized surfaces revealed significant improvement in crystallinity and surface smoothness. A well-ordered atomic structure of Y 2O 3 film was formed on 1.5 nm thick SiO 2 layer with the surface and interfacial roughness markedly enhanced, compared with the film grown on the clean Si surfaces. The epitaxial film on the oxidized Si surface exhibited extremely small mosaic structures at interface, while the film on the clean Si surface displayed an island-like growth with large mosaic structures. The nucleation sites for Y 2O 3 were provided by the reaction between SiO 2 and Y at the initial growth stage. The SiO 2 layer known to hinder crystal growth is found to enhance the nucleation of Y 2O 3, and provides a stable buffer layer against the silicide formation. Thus, the formation of the initial SiO 2 layer is the key to the high-quality epitaxial growth of Y 2O 3 on Si.

  19. Comparative study on nitridation and oxidation plasma interface treatment for AlGaN/GaN MIS-HEMTs with AlN gate dielectric

    NASA Astrophysics Data System (ADS)

    Zhu, Jie-Jie; Ma, Xiao-Hua; Hou, Bin; Chen, Li-Xiang; Zhu, Qing; Hao, Yue

    2017-02-01

    This paper demonstrated the comparative study on interface engineering of AlN/AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MIS-HEMTs) by using plasma interface pre-treatment in various ambient gases. The 15 nm AlN gate dielectric grown by plasma-enhanced atomic layer deposition significantly suppressed the gate leakage current by about two orders of magnitude and increased the peak field-effect mobility by more than 50%. NH3/N2 nitridation plasma treatment (NPT) was used to remove the 3 nm poor-quality interfacial oxide layer and N2O/N2 oxidation plasma treatment (OPT) to improve the quality of interfacial layer, both resulting in improved dielectric/barrier interface quality, positive threshold voltage (V th) shift larger than 0.9 V, and negligible dispersion. In comparison, however, NPT led to further decrease in interface charges by 3.38 × 1012 cm-2 and an extra positive V th shift of 1.3 V. Analysis with fat field-effect transistors showed that NPT resulted in better sub-threshold characteristics and transconductance linearity for MIS-HEMTs compared with OPT. The comparative study suggested that direct removing the poor interfacial oxide layer by nitridation plasma was superior to improving the quality of interfacial layer by oxidation plasma for the interface engineering of GaN-based MIS-HEMTs.

  20. Oxidation behavior and electrical property of ferritic stainless steel interconnects with a Cr-La alloying layer by high-energy micro-arc alloying process

    NASA Astrophysics Data System (ADS)

    Feng, Z. J.; Zeng, C. L.

    Chromium volatility, poisoning of the cathode material and rapidly decreasing electrical conductivity are the major problems associated with the application of ferritic stainless steel interconnects of solid oxide fuel cells operated at intermediate temperatures. Recently, a novel and simple high-energy micro-arc alloying (HEMAA) process is proposed to prepare LaCrO 3-based coatings for the type 430 stainless steel interconnects using a LaCrO 3-Ni rod as deposition electrode. In this work, a Cr-La alloying layer is firstly obtained on the alloy surface by HEMAA using Cr and La as deposition electrode, respectively, followed by oxidation treatment at 850 °C in air to form a thermally grown LaCrO 3 coating. With the formation of a protective scale composed of a thick LaCrO 3 outer layer incorporated with small amounts of Cr-rich oxides and a thin Cr 2O 3-rich sub-layer, the oxidation rate of the coated steel is reduced remarkably. A low and stable electrical contact resistance is achieved with the application of LaCrO 3-based coatings, with a value less than 40 mΩ cm 2 during exposure at 850 °C in air for up to 500 h.

  1. The role of crystallographic texture in achieving low friction zinc oxide nanolaminate films

    NASA Astrophysics Data System (ADS)

    Mojekwu, Nneoma

    Metal oxide nanolaminate films are potential high temperature solid lubricants due to their ability to exhibit significant plasticity when grain size is reduced to the nanometer scale, and defective growth structure is achieved by condensation of oxygen vacancies to form intrinsic stacking faults. This is in contrast to conventional microcrystalline and single crystal oxides that exhibit brittle fracture during loading in a sliding contact. This study emphasizes the additional effect of growth orientation, in particular crystallographic texture, on determining the sliding friction behavior in nanocolumnar grain zinc oxide films grown by atomic layer deposition. It was determined that zinc oxide low (0002) versus higher (101¯3) surface energy crystallographic planes influenced the sliding friction coefficient. Texturing of the (0002) grains resulted in a decreased adhesive component of friction thereby lowering the sliding friction coefficient to ˜0.25, while the friction coefficient doubled to ˜0.5 with increasing contribution of surface (101¯3) grains. In addition, the variation of the x-ray grazing incident angle from 0.5° to 5° was studied to better understand the surface grain orientation as a function of ZnO layer thickness in one versus four bilayer nanolaminates where the under layer (seed layer) was load-bearing Zn(Ti,Zr)O3.

  2. Detachment of CVD-grown graphene from single crystalline Ni films by a pure gas phase reaction

    NASA Astrophysics Data System (ADS)

    Zeller, Patrick; Henß, Ann-Kathrin; Weinl, Michael; Diehl, Leo; Keefer, Daniel; Lippmann, Judith; Schulz, Anne; Kraus, Jürgen; Schreck, Matthias; Wintterlin, Joost

    2016-11-01

    Despite great previous efforts there is still a high need for a simple, clean, and upscalable method for detaching epitaxial graphene from the metal support on which it was grown. We present a method based on a pure gas phase reaction that is free of solvents and polymer supports and avoids mechanical transfer steps. The graphene was grown on 150 nm thick, single crystalline Ni(111) films on Si(111) wafers with YSZ buffer layers. Its quality was monitored by using low energy electron diffraction and scanning tunneling microscopy. The gas phase etching uses a chemical transport reaction, the so-called Mond process, based on the formation of gaseous nickel tetracarbonyl in 1 bar of CO at 75 °C and by adding small amounts of sulfide catalysts. X-ray photoelectron spectroscopy, Raman spectroscopy and scanning electron microscopy were used to characterize the detached graphene. It was found that the method successfully removes the nickel from underneath the graphene layer, so that the graphene lies on the insulating oxide buffer layer. Small residual particles of nickel sulfide and cracks in the obtained graphene layer were identified. The defect concentrations were comparable to graphene samples obtained by wet chemical etching and by the bubbling transfer.

  3. Metal-organic chemical vapor deposition of cerium oxide, gallium-indium-oxide, and magnesium oxide thin films: Precursor design, film growth, and film characterization

    NASA Astrophysics Data System (ADS)

    Edleman, Nikki Lynn

    A new class of volatile, low-melting, fluorine-free lanthanide metal-organic chemical vapor deposition (MOCVD) precursors has been developed. The neutral, monomeric cerium, neodymium, gadolinium, and erbium complexes are coordinatively saturated by a versatile, multidentate, ether-functionalized beta-ketoiminate ligand, and complex melting point and volatility characteristics can be tuned by altering the alkyl substituents on the ligand periphery. Direct comparison with lanthanide beta-diketonate complexes reveals that the present precursor class is a superior choice for lanthanide oxide MOCVD. Epitaxial CeO 2 buffer layer films have been grown on (001) YSZ substrates by MOCVD at significantly lower temperatures than previously reported using one of the newly developed cerium precursors. High-quality YBCO films grown on these CeO2 buffer layers by POMBE exhibit very good electrical transport properties. The cerium complex has therefore been explicitly demonstrated to be a stable and volatile precursor and is attractive for low-temperature growth of coated conductor multilayer structures by MOCVD. Gallium-indium-oxide thin films (GaxIn2-xO 3), x = 0.0˜1.1, have been grown by MOCVD using the volatile metal-organic precursors In(dpm)3 and Ga(dpm)3. The films have a homogeneously Ga-substituted, cubic In2O3 microstructure randomly oriented on quartz or heteroepitaxial on (100) YSZ single-crystal substrates. The highest conductivity of the as-grown films is found at x = 0.12. The optical transmission window and absolute transparency of the films rivals or exceeds that of the most transparent conductive oxides known. Reductive annealing results in improved charge transport characteristics with little loss of optical transparency. No significant difference in electrical properties is observed between randomly oriented and heteroepitaxial films, thus arguing that carrier scattering effects at high-angle grain boundaries play a minor role in the film conductivity mechanism. The synthesis and characterization of a new magnesium MOCVD precursor, Mg(dpm)2(TMEDA) is detailed. It is shown that the donating ligand TMEDA prevents oligomerization and subsequent volatility depression as observed in the commonly used [Mg(dpm)2]2. The superiority of Mg(dpm)2(TMEDA) as an MOCVD precursor is explicitly demonstrated by growth of epitaxial MgO thin films on single-crystal SrTiO3 substrates.

  4. Interaction between U/UO2 bilayers and hydrogen studied by in-situ X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Darnbrough, J. E.; Harker, R. M.; Griffiths, I.; Wermeille, D.; Lander, G. H.; Springell, R.

    2018-04-01

    This paper reports experiments investigating the reaction of H2 with uranium metal-oxide bilayers. The bilayers consist of ≤ 100 nm of epitaxial α-U (grown on a Nb buffer deposited on sapphire) with a UO2 overlayer of thicknesses of between 20 and 80 nm. The oxides were made either by depositing via reactive magnetron sputtering, or allowing the uranium metal to oxidise in air at room temperature. The bilayers were exposed to hydrogen, with sample temperatures between 80 and 200 C, and monitored via in-situ x-ray diffraction and complimentary experiments conducted using Scanning Transmission Electron Microscopy - Electron Energy Loss Spectroscopy (STEM-EELS). Small partial pressures of H2 caused rapid consumption of the U metal and lead to changes in the intensity and position of the diffraction peaks from both the UO2 overlayers and the U metal. There is an orientational dependence in the rate of U consumption. From changes in the lattice parameter we deduce that hydrogen enters both the oxide and metal layers, contracting the oxide and expanding the metal. The air-grown oxide overlayers appear to hinder the H2-reaction up to a threshold dose, but then on heating from 80 to 140 C the consumption is more rapid than for the as-deposited overlayers. STEM-EELS establishes that the U-hydride layer lies at the oxide-metal interface, and that the initial formation is at defects or grain boundaries, and involves the formation of amorphous and/or nanocrystalline UH3. This explains why no diffraction peaks from UH3 are observed.

  5. Effect of modification of oxide layer on NiTi stent corrosion resistance.

    PubMed

    Trépanier, C; Tabrizian, M; Yahia, L H; Bilodeau, L; Piron, D L

    1998-01-01

    Because of its good radiopacity, superelasticity, and shape memory properties, nickel-titanium (NiTi) is a potential material for fabrication of stents because these properties can facilitate their implantation and precise positioning. However, in vitro studies of NiTi alloys report the dependence of alloy biocompatibility and corrosion behavior on surface conditions. Surface oxidation seems to be very promising for improving the corrosion resistance and biocompatibility of NiTi. In this work, we studied the effect on corrosion resistance and surface characteristics of electropolishing, heat treatment, and nitric acid passivation of NiTi stents. Characterization techniques such as potentiodynamic polarization tests, scanning electron microscopy, Auger electron spectroscopy, and X-ray photoelectron spectroscopy were used to relate corrosion behavior to surface characteristics and surface treatments. Results show that all of these surface treatments improve the corrosion resistance of the alloy. This improvement is attributed to the plastically deformed native oxide layer removal and replacement by a newly grown, more uniform one. The uniformity of the oxide layer, rather than its thickness and composition, seems to be the predominant factor to explain the corrosion resistance improvement.

  6. Controlled growth of heteroepitaxial zinc oxide nanostructures on gallium nitride.

    PubMed

    Kong, Bo Hyun; Kim, Dong Chan; Mohanta, Sanjay Kumar; Han, Won Suk; Cho, Hyung Koun; Hong, Chang-Hee; Kim, Hyung Gu

    2009-07-01

    ZnO epitaxial layers were grown on GaN underlying films by metalorganic chemical vapor deposition at various temperatures. An increase in growth temperature led to morphological changes from a smooth film with hexagonal-shaped surface pits to honeycomb-like nanostructures with deep hollow, and additionally resulted in a decrease in dislocation density in the interfacial layers. The reduced dislocation density at the higher growth temperature was attributed to an increase in the size of the critical nucleus and the low nucleation density at the initial stage. The shifts in the peak positions in the X-ray diffraction and photoluminescence were also observed in the samples grown at different temperatures, and were caused by the variation of residual strains after the complete coalescence of the nuclei.

  7. Direct Growth of Crystalline Tungsten Oxide Nanorod Arrays by a Hydrothermal Process and Their Electrochromic Properties

    NASA Astrophysics Data System (ADS)

    Lu, Chih-Hao; Hon, Min Hsiung; Leu, Ing-Chi

    2017-04-01

    Transparent crystalline tungsten oxide nanorod arrays for use as an electrochromic layer have been directly prepared on fluorine-doped tin oxide-coated glass via a facile tungsten film-assisted hydrothermal process using aqueous tungsten hexachloride solution. X-ray diffraction analysis and field-emission scanning electron microscopy were used to characterize the phase and morphology of the grown nanostructures. Arrays of tungsten oxide nanorods with diameter of ˜22 nm and length of ˜240 nm were obtained at 200°C after 8 h of hydrothermal reaction. We propose a growth mechanism for the deposition of the monoclinic tungsten oxide phase in the hydrothermal environment. The tungsten film was first oxidized to tungsten oxide to provide seed sites for crystal growth and address the poor connection between the growing tungsten oxide and substrate. Aligned tungsten oxide nanorod arrays can be grown by a W thin film-assisted heterogeneous nucleation process with NaCl as a structure-directing agent. The fabricated electrochromic device demonstrated optical modulation (coloration/bleaching) at 632.8 nm of ˜41.2% after applying a low voltage of 0.1 V for 10 s, indicating the potential of such nanorod array films for use in energy-saving smart windows.

  8. Role of indium tin oxide electrode on the microstructure of self-assembled WO3-BiVO4 hetero nanostructures

    NASA Astrophysics Data System (ADS)

    Song, Haili; Li, Chao; Van, Chien Nguyen; Dong, Wenxia; Qi, Ruijuan; Zhang, Yuanyuan; Huang, Rong; Chu, Ying-Hao; Duan, Chun-Gang

    2017-11-01

    Self-assembled WO3-BiVO4 nanostructured thin films were grown on a (001) yttrium stabilized zirconia (YSZ) substrate by the pulsed laser deposition method with and without the indium tin oxide (ITO) bottom electrode. Their microstructures including surface morphologies, crystalline phases, epitaxial relationships, interface structures, and composition distributions were investigated by scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray energy dispersive spectroscopy. In both samples, WO3 formed nanopillars embedded into the monoclinic BiVO4 matrix with specific orientation relationships. In the sample with the ITO bottom electrode, an atomically sharp BiVO4/ITO interface was formed and the orthorhombic WO3 nanopillars were grown on a relaxed BiVO4 buffer layer with a mixed orthorhombic and hexagonal WO3 transition layer. In contrast, a thin amorphous layer appears at the interfaces between the thin film and the YSZ substrate in the sample without the ITO electrode. In addition, orthorhombic Bi2WO6 lamellar nanopillars were formed between WO3 and BiVO4 due to interdiffusion. Such a WO3-Bi2WO6-BiVO4 double heterojunction photoanode may promote the photo-generated charge separation and further improve the photoelectrochemical water splitting properties.

  9. Highly Oriented Growth of Piezoelectric Thin Films on Silicon Using Two-Dimensional Nanosheets as Growth Template Layer.

    PubMed

    Nguyen, Minh D; Yuan, Huiyu; Houwman, Evert P; Dekkers, Matthijn; Koster, Gertjan; Ten Elshof, Johan E; Rijnders, Guus

    2016-11-16

    Ca 2 Nb 3 O 10 (CNOns) and Ti 0.87 O 2 (TiOns) metal oxide nanosheets (ns) are used as a buffer layer for epitaxial growth of piezoelectric capacitor stacks on Si and Pt/Ti/SiO 2 /Si (Pt/Si) substrates. Highly (001)- and (110)-oriented Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) films are achieved by utilizing CNOns and TiOns, respectively. The piezoelectric capacitors are characterized by polarization and piezoelectric hysteresis loops and by fatigue measurements. The devices fabricated with SrRuO 3 top and bottom electrodes directly on nanosheets/Si have ferroelectric and piezoelectric properties well comparable with devices that use more conventional oxide buffer layers (stacks) such as YSZ, CeO 2 /YSZ, or SrTiO 3 on Si. The devices grown on nanosheets/Pt/Si with Pt top electrodes show significantly improved polarization fatigue properties over those of similar devices grown directly on Pt/Si. The differences in properties are ascribed to differences in the crystalline structures and the density of the films. These results show a route toward the fabrication of single crystal piezoelectric thin films and devices with high quality, long-lifetime piezoelectric capacitor structures on nonperovskite and even noncrystalline substrates such as glass or polished metal surfaces.

  10. Growth of p-type hematite by atomic layer deposition and its utilization for improved solar water splitting.

    PubMed

    Lin, Yongjing; Xu, Yang; Mayer, Matthew T; Simpson, Zachary I; McMahon, Gregory; Zhou, Sa; Wang, Dunwei

    2012-03-28

    Mg-doped hematite (α-Fe(2)O(3)) was synthesized by atomic layer deposition (ALD). The resulting material was identified as p-type with a hole concentration of ca. 1.7 × 10(15) cm(-3). When grown on n-type hematite, the p-type layer was found to create a built-in field that could be used to assist photoelectrochemical water splitting reactions. A nominal 200 mV turn-on voltage shift toward the cathodic direction was measured, which is comparable to what has been measured using water oxidation catalysts. This result suggests that it is possible to achieve desired energetics for solar water splitting directly on metal oxides through advanced material preparations. Similar approaches may be used to mitigate problems caused by energy mismatch between water redox potentials and the band edges of hematite and many other low-cost metal oxides, enabling practical solar water splitting as a means for solar energy storage.

  11. P-type field effect transistor based on Na-doped BaSnO3

    NASA Astrophysics Data System (ADS)

    Jang, Yeaju; Hong, Sungyun; Park, Jisung; Char, Kookrin

    We fabricated field effect transistors (FET) based on the p-type Na-doped BaSnO3 (BNSO) channel layer. The properties of epitaxial BNSO channel layer were controlled by the doping rate. In order to modulate the p-type FET, we used amorphous HfOx and epitaxial BaHfO3 (BHO) gate oxides, both of which have high dielectric constants. HfOx was deposited by atomic-layer-deposition and BHO was epitaxially grown by pulsed laser deposition. The pulsed laser deposited SrRuO3 (SRO) was used as the source and the drain contacts. Indium-tin oxide and La-doped BaSnO3 were used as the gate electrodes on top of the HfOx and the BHO gate oxides, respectively. We will analyze and present the performances of the BNSO field effect transistor such as the IDS-VDS, the IDS-VGS, the Ion/Ioff ratio, and the field effect mobility. Samsung Science and Technology Foundation.

  12. Fabrication of Vertically Aligned Carbon Nanotube or Zinc Oxide Nanorod Arrays for Optical Diffraction Gratings.

    PubMed

    Kim, Jeong; Kim, Sun Il; Cho, Seong-Ho; Hwang, Sungwoo; Lee, Young Hee; Hur, Jaehyun

    2015-11-01

    We report on new fabrication methods for a transparent, hierarchical, and patterned electrode comprised of either carbon nanotubes or zinc oxide nanorods. Vertically aligned carbon nanotubes or zinc oxide nanorod arrays were fabricated by either chemical vapor deposition or hydrothermal growth, in combination with photolithography. A transparent conductive graphene layer or zinc oxide seed layer was employed as the transparent electrode. On the patterned surface defined using photoresist, the vertically grown carbon nanotubes or zinc oxides could produce a concentrated electric field under applied DC voltage. This periodic electric field was used to align liquid crystal molecules in localized areas within the optical cell, effectively modulating the refractive index. Depending on the material and morphology of these patterned electrodes, the diffraction efficiency presented different behavior. From this study, we established the relationship between the hierarchical structure of the different electrodes and their efficiency for modulating the refractive index. We believe that this study will pave a new path for future optoelectronic applications.

  13. Purely electronic mechanism of electrolyte gating of indium tin oxide thin films

    DOE PAGES

    Leng, X.; Bozovic, I.; Bollinger, A. T.

    2016-08-10

    Epitaxial indium tin oxide films have been grown on both LaAlO 3 and yttria-stabilized zirconia substrates using RF magnetron sputtering. Electrolyte gating causes a large change in the film resistance that occurs immediately after the gate voltage is applied, and shows no hysteresis during the charging/discharging processes. When two devices are patterned next to one another and the first one gated through an electrolyte, the second one shows no changes in conductance, in contrast to what happens in materials (like tungsten oxide) susceptible to ionic electromigration and intercalation. These findings indicate that electrolyte gating in indium tin oxide triggers amore » pure electronic process (electron depletion or accumulation, depending on the polarity of the gate voltage), with no electrochemical reactions involved. Electron accumulation occurs in a very thin layer near the film surface, which becomes highly conductive. These results contribute to our understanding of the electrolyte gating mechanism in complex oxides and may be relevant for applications of electric double layer transistor devices.« less

  14. Microstructural and microtextural characterization of oxide scale on steel using electron backscatter diffraction.

    PubMed

    Birosca, S; Dingley, D; Higginson, R L

    2004-03-01

    High-temperature oxidation of steel has been extensively studied. The microstructure of iron oxides is, however, not well understood because of the difficulty in imaging it using conventional methods, such as optical or electron microscopy. A knowledge of the oxide microstructure and texture is critical in understanding how the oxide film behaves during high-temperature deformation of steels and more importantly how it can be removed following processing. Recently, electron back-scatter diffraction (EBSD) has proved to be a powerful technique for distinguishing the different phases in scales. This technique gives valuable information both on the microstructure and on the orientation relationships between the steel and the scale layers. In the current study EBSD has been used to investigate the microstructure and microtexture of iron oxide layers grown on interstitial free steel at different times and temperatures. Heat treatments have been carried out under normal oxidation conditions in order to relate the results to real steel manufacturing in industry. The composition, morphologies, microstructure and microtexture of selected conditions have been studied using EBSD.

  15. Intrinsic electron traps in atomic-layer deposited HfO{sub 2} insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerbu, F.; Madia, O.; Afanas'ev, V. V.

    2016-05-30

    Analysis of photodepopulation of electron traps in HfO{sub 2} films grown by atomic layer deposition is shown to provide the trap energy distribution across the entire oxide bandgap. The presence is revealed of two kinds of deep electron traps energetically distributed at around E{sub t} ≈ 2.0 eV and E{sub t} ≈ 3.0 eV below the oxide conduction band. Comparison of the trapped electron energy distributions in HfO{sub 2} layers prepared using different precursors or subjected to thermal treatment suggests that these centers are intrinsic in origin. However, the common assumption that these would implicate O vacancies cannot explain the charging behaviormore » of HfO{sub 2}, suggesting that alternative defect models should be considered.« less

  16. Properties of epitaxial BaTiO{sub 3} deposited on GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Contreras-Guerrero, R.; Droopad, R.; Veazey, J. P.

    2013-01-07

    Single crystal BaTiO{sub 3} (BTO) has been grown epitaxially on GaAs using molecular beam epitaxy with a 2 unit cell SrTiO{sub 3} nucleation layer. The oxide film is lattice-matched to GaAs through an in-plane rotation of 45 Degree-Sign relative to the (100) surface leading to c-axis orientation of the BaTiO{sub 3}. X-ray diffraction confirmed the crystallinity and orientation of the oxide film with a full width half maximum of 0.58 Degree-Sign for a 7.5 nm thick layer. Piezoresponse force microscopy was used to characterize the ferroelectric domains in the BaTiO{sub 3} layer, and a coercive voltage of 1-2 V andmore » piezoresponse amplitude {approx}5 pm/V was measured.« less

  17. Thermal barrier coatings

    DOEpatents

    Alvin, Mary Anne [Pittsburg, PA

    2010-06-22

    This disclosure addresses the issue of providing a metallic-ceramic overlay coating that potentially serves as an interface or bond coat layer to provide enhanced oxidation resistance to the underlying superalloy substrate via the formation of a diffusion barrier regime within the supporting base material. Furthermore, the metallic-ceramic coating is expected to limit the growth of a continuous thermally grown oxide (TGO) layer that has been primarily considered to be the principal cause for failure of existing TBC systems. Compositional compatibility of the metallic-ceramic with traditional yttria-stabilized zirconia (YSZ) top coats is provided to further limit debond or spallation of the coating during operational use. A metallic-ceramic architecture is disclosed wherein enhanced oxidation resistance is imparted to the surface of nickel-based superalloy or single crystal metal substrate, with simultaneous integration of the yttria stabilized zirconia (YSZ) within the metallic-ceramic overlayer.

  18. Processing of catalysts by atomic layer epitaxy: modification of supports

    NASA Astrophysics Data System (ADS)

    Lindblad, Marina; Haukka, Suvi; Kytökivi, Arla; Lakomaa, Eeva-Liisa; Rautiainen, Aimo; Suntola, Tuomo

    1997-11-01

    Different supports were modified with titania, zirconia and chromia by the atomic layer epitaxy technique (ALE). In ALE, a metal precursor is bound to the support in saturating gas-solid reactions. Surface oxides are grown by alternating reactions of the metal precursor and an oxidizing agent. Growth mechanisms differ depending on the precursor-support pair and the processing conditions. In this work, the influences of the support, precursor and reaction temperature were investigated by comparing the growth of titania from Ti(OCH(CH 3) 2) 4 on silica and alumina, titania from TiCl 4 and Ti(OCH(CH 3) 2) 4 on silica, and zirconia from ZrCl 4 on silica and alumina. The modification of porous oxides supported on metal substrates (monoliths) was demonstrated for the growth of chromia from Cr(acac) 3.

  19. Dye-sensitized photoelectrochemical water oxidation through a buried junction.

    PubMed

    Xu, Pengtao; Huang, Tian; Huang, Jianbin; Yan, Yun; Mallouk, Thomas E

    2018-06-18

    Water oxidation has long been a challenge in artificial photosynthetic devices that convert solar energy into fuels. Water-splitting dye-sensitized photoelectrochemical cells (WS-DSPECs) provide a modular approach for integrating light-harvesting molecules with water-oxidation catalysts on metal-oxide electrodes. Despite recent progress in improving the efficiency of these devices by introducing good molecular water-oxidation catalysts, WS-DSPECs have poor stability, owing to the oxidation of molecular components at very positive electrode potentials. Here we demonstrate that a solid-state dye-sensitized solar cell (ss-DSSC) can be used as a buried junction for stable photoelectrochemical water splitting. A thin protecting layer of TiO 2 grown by atomic layer deposition (ALD) stabilizes the operation of the photoanode in aqueous solution, although as a solar cell there is a performance loss due to increased series resistance after the coating. With an electrodeposited iridium oxide layer, a photocurrent density of 1.43 mA cm -2 was observed in 0.1 M pH 6.7 phosphate solution at 1.23 V versus reversible hydrogen electrode, with good stability over 1 h. We measured an incident photon-to-current efficiency of 22% at 540 nm and a Faradaic efficiency of 43% for oxygen evolution. While the potential profile of the catalyst layer suggested otherwise, we confirmed the formation of a buried junction in the as-prepared photoelectrode. The buried junction design of ss-DSSs adds to our understanding of semiconductor-electrocatalyst junction behaviors in the presence of a poor semiconducting material.

  20. Nano suboxide layer generated in Ta{sub 2}O{sub 5} by Ar{sup +} ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, W. D., E-mail: song-wendong@dsi.a-star.edu.sg, E-mail: ying-ji-feng@dsi.a-star.edu.sg; Ying, J. F., E-mail: song-wendong@dsi.a-star.edu.sg, E-mail: ying-ji-feng@dsi.a-star.edu.sg; He, W.

    2015-01-19

    Ta{sub 2}O{sub 5}/TaO{sub x} heterostructure has become a leading oxide layer in memory cells and/or a bidirectional selector for resistive random access memory (RRAM). Although atomic layer deposition (ALD) was found to be uniquely suitable for depositing uniform and conformal films on complex topographies, it is hard to use ALD to grow suboxide TaO{sub x} layer. In this study, tantalum oxide films with a composition of Ta{sub 2}O{sub 5} were grown by ALD. Using Ar{sup +} ion irradiation, the suboxide was formed in the top layer of Ta{sub 2}O{sub 5} films by observing the Ta core level shift toward lowermore » binding energy with angle-resolved X-ray photoelectron spectroscopy. By controlling the energy and irradiation time of an Ar{sup +} ion beam, Ta{sub 2}O{sub 5}/TaO{sub x} heterostructure can be reliably produced on ALD films, which provides a way to fabricate the critical switching layers of RRAM.« less

  1. Heat-transport mechanisms in molecular building blocks of inorganic/organic hybrid superlattices

    NASA Astrophysics Data System (ADS)

    Giri, Ashutosh; Niemelä, Janne-Petteri; Tynell, Tommi; Gaskins, John T.; Donovan, Brian F.; Karppinen, Maarit; Hopkins, Patrick E.

    2016-03-01

    Nanomaterial interfaces and concomitant thermal resistances are generally considered as atomic-scale planes that scatter the fundamental energy carriers. Given that the nanoscale structural and chemical properties of solid interfaces can strongly influence this thermal boundary conductance, the ballistic and diffusive nature of phonon transport along with the corresponding phonon wavelengths can affect how energy is scattered and transmitted across an interfacial region between two materials. In hybrid composites composed of atomic layer building blocks of inorganic and organic constituents, the varying interaction between the phononic spectrum in the inorganic crystals and vibronic modes in the molecular films can provide a new avenue to manipulate the energy exchange between the fundamental vibrational energy carriers across interfaces. Here, we systematically study the heat transfer mechanisms in hybrid superlattices of atomic- and molecular-layer-grown zinc oxide and hydroquinone with varying thicknesses of the inorganic and organic layers in the superlattices. We demonstrate ballistic energy transfer of phonons in the zinc oxide that is limited by scattering at the zinc oxide/hydroquinone interface for superlattices with a single monolayer of hydroquinone separating the thicker inorganic layers. The concomitant thermal boundary conductance across the zinc oxide interfacial region approaches the maximal thermal boundary conductance of a zinc oxide phonon flux, indicative of the contribution of long wavelength vibrations across the aromatic molecular monolayers in transmitting energy across the interface. This transmission of energy across the molecular interface decreases considerably as the thickness of the organic layers are increased.

  2. Structural and dielectric properties of thin ZrO2 films on silicon grown by atomic layer deposition from cyclopentadienyl precursor

    NASA Astrophysics Data System (ADS)

    Niinistö, J.; Putkonen, M.; Niinistö, L.; Kukli, K.; Ritala, M.; Leskelä, M.

    2004-01-01

    ZrO2 thin films with thicknesses below 20 nm were deposited by the atomic layer deposition process on Si(100) substrates at 350 °C. An organometallic precursor, Cp2Zr(CH3)2 (Cp=cyclopentadienyl, C5H5) was used as the zirconium source and water or ozone as oxygen source. The influence of oxygen source and substrate pretreatment on the dielectric properties of ZrO2 films was investigated. Structural characterization with high-resolution transmission electron microscopy was performed to films grown onto HF-etched or native oxide covered silicon. Strong inhibition of ZrO2 film growth was observed with the water process on HF-etched Si. Ozone process on HF-etched Si resulted in interfacial SiO2 formation between the dense and uniform film and the substrate while water process produced interfacial layer with intermixing of SiO2 and ZrO2. The effective permittivity of ZrO2 in Al/ZrO2/Si/Al capacitor structures was dependent on the ZrO2 layer thickness and oxygen source used. The interfacial layer formation increased the capacitance equivalent oxide thickness (CET). CET of 2.0 nm was achieved with 5.9 nm ZrO2 film deposited with the H2O process on HF-stripped Si. The ozone-processed films showed good dielectric properties such as low hysteresis and nearly ideal flatband voltage. The leakage current density was lower and breakdown field higher for the ozone-processed ZrO2 films.

  3. Fabrication and properties of ZnO/GaN heterostructure nanocolumnar thin film on Si (111) substrate

    PubMed Central

    2013-01-01

    Zinc oxide thin films have been obtained on bare and GaN buffer layer decorated Si (111) substrates by pulsed laser deposition (PLD), respectively. GaN buffer layer was achieved by a two-step method. The structure, surface morphology, composition, and optical properties of these thin films were investigated by X-ray diffraction, field emission scanning electron microscopy, infrared absorption spectra, and photoluminiscence (PL) spectra, respectively. Scanning electron microscopy images indicate that the flower-like grains were presented on the surface of ZnO thin films grown on GaN/Si (111) substrate, while the ZnO thin films grown on Si (111) substrate show the morphology of inclination column. PL spectrum reveals that the ultraviolet emission efficiency of ZnO thin film on GaN buffer layer is high, and the defect emission of ZnO thin film derived from Zni and Vo is low. The results demonstrate that the existence of GaN buffer layer can greatly improve the ZnO thin film on the Si (111) substrate by PLD techniques. PMID:23448090

  4. Fabrication and properties of ZnO/GaN heterostructure nanocolumnar thin film on Si (111) substrate.

    PubMed

    Wei, Xianqi; Zhao, Ranran; Shao, Minghui; Xu, Xijin; Huang, Jinzhao

    2013-02-28

    Zinc oxide thin films have been obtained on bare and GaN buffer layer decorated Si (111) substrates by pulsed laser deposition (PLD), respectively. GaN buffer layer was achieved by a two-step method. The structure, surface morphology, composition, and optical properties of these thin films were investigated by X-ray diffraction, field emission scanning electron microscopy, infrared absorption spectra, and photoluminiscence (PL) spectra, respectively. Scanning electron microscopy images indicate that the flower-like grains were presented on the surface of ZnO thin films grown on GaN/Si (111) substrate, while the ZnO thin films grown on Si (111) substrate show the morphology of inclination column. PL spectrum reveals that the ultraviolet emission efficiency of ZnO thin film on GaN buffer layer is high, and the defect emission of ZnO thin film derived from Zni and Vo is low. The results demonstrate that the existence of GaN buffer layer can greatly improve the ZnO thin film on the Si (111) substrate by PLD techniques.

  5. Ex situ n+ doping of GeSn alloys via non-equilibrium processing

    NASA Astrophysics Data System (ADS)

    Prucnal, S.; Berencén, Y.; Wang, M.; Rebohle, L.; Böttger, R.; Fischer, I. A.; Augel, L.; Oehme, M.; Schulze, J.; Voelskow, M.; Helm, M.; Skorupa, W.; Zhou, S.

    2018-06-01

    Full integration of Ge-based alloys like GeSn with complementary-metal-oxide-semiconductor technology would require the fabrication of p- and n-type doped regions for both planar and tri-dimensional device architectures which is challenging using in situ doping techniques. In this work, we report on the influence of ex situ doping on the structural, electrical and optical properties of GeSn alloys. n-type doping is realized by P implantation into GeSn alloy layers grown by molecular beam epitaxy (MBE) followed by flash lamp annealing. We show that effective carrier concentration of up to 1 × 1019 cm‑3 can be achieved without affecting the Sn distribution. Sn segregation at the surface accompanied with an Sn diffusion towards the crystalline/amorphous GeSn interface is found at P fluences higher than 3 × 1015 cm‑2 and electron concentration of about 4 × 1019 cm‑3. The optical and structural properties of ion-implanted GeSn layers are comparable with the in situ doped MBE grown layers.

  6. Stress-induced magnetization for epitaxial spinel ferrite films through interface engineering

    NASA Astrophysics Data System (ADS)

    Wakiya, Naoki; Shinozaki, Kazuo; Mizutani, Nobuyasu

    2004-08-01

    This study found "stress-induced magnetization" for epitaxial ferrite films with spinel structure. We grew (111)- and (001)-epitaxial Ni0.17Zn0.23Fe2.60O4(NZF) films on CeO2/Y0.15Zr0.85O1.93(YSZ )/Si(001) and oxide single-crystal substrates, respectively. There is a window of lattice mismatch (between 0 and 6.5%) to achieve bulk saturation magnetization (Ms). An NZF film grown on CeO2/YSZ //Si(001) showed tensile stress, but that stress was relaxed by introducing a ZnCo2O4(ZC ) buffer layer. NZF films grown on SrTiO3(ST )(001) and (La,Sr)(Al,Ta)O3(LSAT)(001) had compressive stress, which was enhanced by introducing a ZC buffer layer. In both cases, bulk Ms was achieved by introducing the ZC buffer layer. This similarity suggests that magnetization can be controlled by the stress.

  7. Photoelectrochemical Water Oxidation by GaAs Nanowire Arrays Protected with Atomic Layer Deposited NiO x Electrocatalysts

    NASA Astrophysics Data System (ADS)

    Zeng, Joy; Xu, Xiaoqing; Parameshwaran, Vijay; Baker, Jon; Bent, Stacey; Wong, H.-S. Philip; Clemens, Bruce

    2018-02-01

    Photoelectrochemical (PEC) hydrogen production makes possible the direct conversion of solar energy into chemical fuel. In this work, PEC photoanodes consisting of GaAs nanowire (NW) arrays were fabricated, characterized, and then demonstrated for the oxygen evolution reaction (OER). Uniform and periodic GaAs nanowire arrays were grown on a heavily n-doped GaAs substrates by metal-organic chemical vapor deposition selective area growth. The nanowire arrays were characterized using cyclic voltammetry and impedance spectroscopy in a non-aqueous electrochemical system using ferrocene/ferrocenium (Fc/Fc+) as a redox couple, and a maximum oxidation photocurrent of 11.1 mA/cm2 was measured. GaAs NW arrays with a 36 nm layer of nickel oxide (NiO x ) synthesized by atomic layer deposition were then used as photoanodes to drive the OER. In addition to acting as an electrocatalyst, the NiO x layer served to protect the GaAs NWs from oxidative corrosion. Using this strategy, GaAs NW photoanodes were successfully used for the oxygen evolution reaction. This is the first demonstration of GaAs NW arrays for effective OER, and the fabrication and protection strategy developed in this work can be extended to study any other nanostructured semiconductor materials systems for electrochemical solar energy conversion.

  8. Effect of heat treatment on interface driven magnetic properties of CoFe films

    NASA Astrophysics Data System (ADS)

    Singh, Akhilesh Kr.; Hsu, Jen-Hwa

    2017-06-01

    We report systematic studies on non-magnetic Ta underlayer and cap layer driven microstructural and magnetic properties at a wide temperature range for CoFe films. All the films were grown at room temperature and post annealed at different annealing temperatures (TA = 200 °C, 250 °C, 300 °C, 350 °C, 400 °C and 450 °C). The in-plane magnetic hysteresis (M-H) loops of 10 nm thick CoFe single layer films, grown directly on thermally oxidized Si substrate, exhibit anisotropic nature for TA above 250 °C. However, the CoFe (10 nm) films grown on the 5 nm thick Ta underlayer show reduced anisotropy. Moreover, with underlayer and cap layers (2 nm) the anisotropy is disappeared. The in-plane coercivity (HC) shows a strong variation with TA, underlayer and cap layers. HC increases significantly with Ta underlayer and cap layers. The out of plane M-H loops exhibit increase in the remanence magnetization and squareness with both Ta underlayer and cap layers due to transition of in-plane magnetization component to the out of plane direction. The atomic force microscopic observations revealed that grain/particle size and shape depend strongly on TA and Ta layers. Moreover, a large reduction in the surface roughness is observed with the Ta cap layer. The magnetic domain patterns depend on the TA, and Ta layers. However, for Ta/CoFe/Ta films no clear domains were observed for all the TA. Hence, the Ta cap layers not only protect the CoFe magnetic layer against the heat treatment, but also show a smooth surface at a wide temperature range. These results could be discussed on the basis of random anisotropy model, TA, underlayer and cap layers driven microstructure and magnetization orientation of the CoFe films.

  9. Interface magnetic anisotropy for monatomic layer-controlled Co/Ni epitaxial multilayers

    NASA Astrophysics Data System (ADS)

    Shioda, A.; Seki, T.; Shimada, J.; Takanashi, K.

    2015-05-01

    The magnetic properties for monatomic layer (ML)-controlled Co/Ni epitaxial multilayers were investigated in order to evaluate the interface magnetic anisotropy energy (Ks) between Ni and Co layers. The Co/Ni epitaxial multilayers were prepared on an Al2O3 (11-20) substrate with V/Au buffer layers. The value of Ks was definitely larger than that for the textured Co/Ni grown on a thermally oxidized Si substrate. We consider that the sharp interface for the epitaxial Co/Ni played a role to increase the value of Ks, which also enabled us to obtain perpendicular magnetization even for the 1 ML-Co/1 ML-Ni multilayer.

  10. Status of diffused junction p+n InP solar cells for space applications

    NASA Technical Reports Server (NTRS)

    Faur, Mircea; Goradia, C.; Faur, Maria; Fatemi, N. S.; Jenkins, P. P.; Flood, D. J.; Brinker, D. J.; Wilt, D. M.; Bailey, S.; Goradia, M.

    1994-01-01

    Recently, we have succeeded in fabricating diffused junction p(sup +)n(Cd,S) InP solar cells with measured AMO, 25 C open circuit voltage (V(sub OC)) of 887.6 mV, which, to the best of our knowledge, is higher than previously reported V(sub OC) values for any InP homojunction solar cells. The experiment-based projected achievable efficiency of these cells using LEC grown substrates is 21.3 percent. The maximum AMO, 25 C internal losses due to date on bare cells is, however, only 13.2 percent. This is because of large external and internal losses due to non-optimized front grid design, antireflection (AR) coating and emitter thickness. This paper summarizes recent advances in the technology of fabrication of p(sup +)n InP diffused structures and solar cells, resulted from a study undertaken in an effort to increase the cell efficiency. The topics discussed in this paper include advances in: (1) the formation on thin p(sup +) InP:Cd emitter layers, (2) electroplated front contacts, (3) surface passivation and (4) the design of a new native oxide/Al2O3/MgF2 tree layer AR coating using a chemically-grown P-rich passivating oxide as a first layer. Based on the high radiation resistance and the excellent post-irradiation annealing and recovery demonstrated in the early tests done to date, as well as the projected high efficiency and low-cost high-volume fabricability, these cells show a very good potential for space photovoltaic applications.

  11. Status of diffused junction p+n InP solar cells for space applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faur, M.; Goradia, C.; Faur, M.

    1994-09-01

    Recently, the authors have succeeded in fabricating diffused junction p{sup +}n(Cd,S) InP solar cells with measured AMO, 25 C open circuit voltage (V{sub OC}) of 887.6 mV, which, to the best of their knowledge, is higher than previously reported V{sub OC} values for any InP homojunction solar cells. The experiment-based projected achievable efficiency of these cells using LEC grown substrates is 21.3 percent. The maximum AMO, 25 C internal losses due to date on bare cells is, however, only 13.2 percent. This is because of large external and internal losses due to non-optimized front grid design, antireflection (AR) coating andmore » emitter thickness. This paper summarizes recent advances in the technology of fabrication of p{sup +}n InP diffused structures and solar cells, resulted from a study undertaken in an effort to increase the cell efficiency. The topics discussed in this paper include advances in: (1) the formation on thin p{sup +} InP:Cd emitter layers, (2) electroplated front contacts, (3) surface passivation and (4) the design of a new native oxide/Al2O3/MgF2 tree layer AR coating using a chemically-grown P-rich passivating oxide as a first layer. Based on the high radiation resistance and the excellent post-irradiation annealing and recovery demonstrated in the early tests done to date, as well as the projected high efficiency and low-cost high-volume fabricability, these cells show a very good potential for space photovoltaic applications.« less

  12. Performance optimization of AlGaN-based LEDs by use of ultraviolet-transparent indium tin oxide: Effect of in situ contact treatment

    NASA Astrophysics Data System (ADS)

    Tu, Wenbin; Chen, Zimin; Zhuo, Yi; Li, Zeqi; Ma, Xuejin; Wang, Gang

    2018-05-01

    Ultraviolet (UV)-transparent indium tin oxide (ITO) grown by metal–organic chemical vapor deposition (MOCVD) is used as the current-spreading layer for 368 nm AlGaN-based light-emitting diodes (LEDs). By performing in situ contact treatment on the LED/ITO interface, the morphology, resistivity, and contact resistance of electrodes become controllable. Resistivity of 2.64 × 10‑4 Ω cm and transmittance at 368 nm of 95.9% are realized for an ITO thin film grown with Sn-purge in situ treatment. Therefore, the high-power operating voltage decreases from 3.94 V (without treatment) to 3.83 V (with treatment). The improved performance is attributed to the lowering of the tunneling barrier at the LED/ITO interface.

  13. Fe Oxides on Ag Surfaces: Structure and Reactivity

    DOE PAGES

    Shipilin, M.; Lundgren, E.; Gustafson, J.; ...

    2016-09-09

    One layer thick iron oxide films are attractive from both applied and fundamental science perspectives. The structural and chemical properties of these systems can be tuned by changing the substrate, making them promising materials for heterogeneous catalysis. In the present work, we investigate the structure of FeO(111) monolayer films grown on Ag(100) and Ag(111) substrates by means of microscopy and diffraction techniques and compare it with the structure of FeO(111) grown on other substrates reported in literature. We also study the NO adsorption properties of FeO(111)/Ag(100) and FeO(111)/Ag(111) systems utilizing different spectroscopic techniques. Finally, we discuss similarities and differences inmore » the data obtained from adsorption experiments and compare it with previous results for FeO(111)/Pt(111).« less

  14. Fe Oxides on Ag Surfaces: Structure and Reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shipilin, M.; Lundgren, E.; Gustafson, J.

    One layer thick iron oxide films are attractive from both applied and fundamental science perspectives. The structural and chemical properties of these systems can be tuned by changing the substrate, making them promising materials for heterogeneous catalysis. In the present work, we investigate the structure of FeO(111) monolayer films grown on Ag(100) and Ag(111) substrates by means of microscopy and diffraction techniques and compare it with the structure of FeO(111) grown on other substrates reported in literature. We also study the NO adsorption properties of FeO(111)/Ag(100) and FeO(111)/Ag(111) systems utilizing different spectroscopic techniques. Finally, we discuss similarities and differences inmore » the data obtained from adsorption experiments and compare it with previous results for FeO(111)/Pt(111).« less

  15. CMOS Imager Has Better Cross-Talk and Full-Well Performance

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Cunningham, Thomas J.

    2011-01-01

    A complementary metal oxide/semiconductor (CMOS) image detector now undergoing development is designed to exhibit less cross-talk and greater full-well capacity than do prior CMOS image detectors of the same type. Imagers of the type in question are designed to operate from low-voltage power supplies and are fabricated by processes that yield device features having dimensions in the deep submicron range. Because of the use of low supply potentials, maximum internal electric fields and depletion widths are correspondingly limited. In turn, these limitations are responsible for increases in cross-talk and decreases in charge-handling capacities. Moreover, for small pixels, lateral depletion cannot be extended. These adverse effects are even more accentuated in a back-illuminated CMOS imager, in which photogenerated charge carriers must travel across the entire thickness of the device. The figure shows a partial cross section of the structure in the device layer of the present developmental CMOS imager. (In a practical imager, the device layer would sit atop either a heavily doped silicon substrate or a thin silicon oxide layer on a silicon substrate, not shown here.) The imager chip is divided into two areas: area C, which contains readout circuits and other electronic circuits; and area I, which contains the imaging (photodetector and photogenerated-charge-collecting) pixel structures. Areas C and I are electrically isolated from each other by means of a trench filled with silicon oxide. The electrical isolation between areas C and I makes it possible to apply different supply potentials to these areas, thereby enabling optimization of the supply potential and associated design features for each area. More specifically, metal oxide semiconductor field-effect transistors (MOSFETs) that are typically included in CMOS imagers now reside in area C and can remain unchanged from established designs and operated at supply potentials prescribed for those designs, while the dopings and the lower supply potentials in area I can be tailored to optimize imager performance. In area I, the device layer includes an n+ -doped silicon layer on which is grown an n-doped silicon layer. A p-doped silicon layer is grown on top of the n -doped layer. The total imaging device thickness is the sum of the thickness of the n+, n, and p layers. A pixel photodiode is formed between a surface n+ implant, a p implant underneath it, the aforementioned p layer, and the n and n+ layers. Adjacent to the diode is a gate for transferring photogenerated charges out of the photodiode and into a floating diffusion formed by an implanted p+ layer on an implanted n-doped region. Metal contact pads are added to the back-side for providing back-side bias.

  16. Strain-induced oxygen vacancies in ultrathin epitaxial CaMnO3 films

    NASA Astrophysics Data System (ADS)

    Chandrasena, Ravini; Yang, Weibing; Lei, Qingyu; Delgado-Jaime, Mario; de Groot, Frank; Arenholz, Elke; Kobayashi, Keisuke; Aschauer, Ulrich; Spaldin, Nicola; Xi, Xiaoxing; Gray, Alexander

    Dynamic control of strain-induced ionic defects in transition-metal oxides is considered to be an exciting new avenue towards creating materials with novel electronic, magnetic and structural properties. Here we use atomic layer-by-layer laser molecular beam epitaxy to synthesize high-quality ultrathin single-crystalline CaMnO3 films with systematically varying coherent tensile strain. We then utilize a combination of high-resolution soft x-ray absorption spectroscopy and bulk-sensitive hard x-ray photoemission spectroscopy in conjunction with first-principles theory and core-hole multiplet calculations to establish a direct link between the coherent in-plane strain and the oxygen-vacancy content. We show that the oxygen vacancies are highly mobile, which necessitates an in-situ-grown capping layer in order to preserve the original strain-induced oxygen-vacancy content. Our findings open the door for designing and controlling new ionically active properties in strongly-correlated transition-metal oxides.

  17. Materials science and integration bases for fabrication of (BaxSr1-x)TiO3 thin film capacitors with layered Cu-based electrodes

    NASA Astrophysics Data System (ADS)

    Fan, W.; Kabius, B.; Hiller, J. M.; Saha, S.; Carlisle, J. A.; Auciello, O.; Chang, R. P. H.; Ramesh, R.

    2003-11-01

    The synthesis and fundamental material properties of layered TiAl/Cu/Ta electrodes were investigated to achieve the integration of Cu electrodes with high-dielectric constant (κ) oxide thin films for application to the fabrication of high-frequency devices. The Ta layer is an excellent diffusion barrier to inhibit deleterious Cu diffusion into the Si substrate, while the TiAl layer provides an excellent barrier against oxygen diffusion into the Cu layer to inhibit Cu oxidation during the growth of the high-κ layer in an oxygen atmosphere. Polycrystalline (BaxSr1-x)TiO3 (BST) thin films were grown on the Cu-based bottom electrode by rf magnetron sputtering at temperatures in the range 400-600 °C in oxygen, to investigate the performance of BST/Cu-based capacitors. Characterization of the Cu-based layered structure using surface analytical methods showed that two amorphous oxide layers were formed on both sides of the TiAl barrier, such that the oxide layer on the free surface of the TiAl layer correlates with TiAlOx, while the oxide layer at the TiAl/Cu interface is an Al2O3-rich layer. This double amorphous barrier layer structure effectively prevents oxygen penetration towards the underlying Cu and Ta layers. The TiAlOx interfacial layer, which has a relatively low dielectric constant compared with BST, reduced the total capacitance of the BST thin film capacitors. In addition, the layered electrode-oxide interface roughening observed during the growth of BST films at high temperature, due to copper grain growth, resulted in large dielectric loss on the fabricated BST capacitors. These problems were solved by growing the BST layer at 450 °C followed by a rapid thermal annealing at 700 °C. This process significantly reduced the thickness of the TiAlOx layer and interface roughness resulting in BST capacitors exhibiting properties suitable for the fabrication of high-performance high-frequency devices. In summary, relatively high dielectric constant (280), low dielectric loss (0.007), and low leakage current (<2×10-8 A/cm2 at 100 kV/cm) were achieved for BST thin film capacitors with Cu-based electrodes.

  18. Thermal oxidation of single-crystal silicon carbide - Kinetic, electrical, and chemical studies

    NASA Technical Reports Server (NTRS)

    Petit, J. B.; Neudeck, P. G.; Matus, L. G.; Powell, J. A.

    1992-01-01

    This paper presents kinetic data from oxidation studies of the polar faces for 3C and 6H SiC in wet and dry oxidizing ambients. Values for the linear and parabolic rate constants were obtained, as well as preliminary results for the activation energies of the rate constants. Examples are presented describing how thermal oxidation can be used to map polytypes and characterize defects in epitaxial layers grown on low tilt angle 6H SiC substrates. Interface widths were measured using Auger electron spectroscopy (AES) with Ar ion beam depth profiling and variable angle spectroscopic ellipsometry (VASE) with effective medium approximation (EMA) models. Preliminary electrical measurements of MOS capacitors are also presented.

  19. Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells

    PubMed Central

    Brinkmann, K.O.; Zhao, J.; Pourdavoud, N.; Becker, T.; Hu, T.; Olthof, S.; Meerholz, K.; Hoffmann, L.; Gahlmann, T.; Heiderhoff, R.; Oszajca, M. F.; Luechinger, N. A.; Rogalla, D.; Chen, Y.; Cheng, B.; Riedl, T

    2017-01-01

    The area of thin-film photovoltaics has been overwhelmed by organometal halide perovskites. Unfortunately, serious stability concerns arise with perovskite solar cells. For example, methyl-ammonium lead iodide is known to decompose in the presence of water and, more severely, even under inert conditions at elevated temperatures. Here, we demonstrate inverted perovskite solar cells, in which the decomposition of the perovskite is significantly mitigated even at elevated temperatures. Specifically, we introduce a bilayered electron-extraction interlayer consisting of aluminium-doped zinc oxide and tin oxide. We evidence tin oxide grown by atomic layer deposition does form an outstandingly dense gas permeation barrier that effectively hinders the ingress of moisture towards the perovskite and—more importantly—it prevents the egress of decomposition products of the perovskite. Thereby, the overall decomposition of the perovskite is significantly suppressed, leading to an outstanding device stability. PMID:28067308

  20. High-voltage SPM oxidation of ZrN: materials for multiscale applications

    NASA Astrophysics Data System (ADS)

    Farkas, N.; Comer, J. R.; Zhang, G.; Evans, E. A.; Ramsier, R. D.; Dagata, J. A.

    2005-02-01

    Scanning probe microscope (SPM) oxidation was used to form zirconium oxide features on 200 nm thick ZrN films. The features exhibit rapid yet controlled growth kinetics, even in contact mode with 70 V dc applied between the probe tip and substrate. The features grown for times longer than 10 s are higher than 200 nm, and reach more than 1000 nm in height after 300 s. Long-time oxidation experiments and selective etching of the oxides and nitrides lead us to propose that as the oxidation reaches the silicon substrate, delamination occurs with the simultaneous formation of a thin layer of new material at the ZrN/Si interface. High-voltage oxide growth on ZrN is fast and sustainable, and the robust oxide features are promising candidates for multiscale (nanometre-to-micrometre) applications.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanheusden, K.; Warren, W.L.; Devine, R.A.B.

    It is shown how mobile H{sup +} ions can be generated thermally inside the oxide layer of Si/SiO{sub 2}/Si structures. The technique involves only standard silicon processing steps: the nonvolatile field effect transistor (NVFET) is based on a standard MOSFET with thermally grown SiO{sub 2} capped with a poly-silicon layer. The capped thermal oxide receives an anneal at {approximately}1100 C that enables the incorporation of the mobile protons into the gate oxide. The introduction of the protons is achieved by a subsequent 500-800 C anneal in a hydrogen-containing ambient, such as forming gas (N{sub 2}:H{sub 2} 95:5). The mobile protonsmore » are stable and entrapped inside the oxide layer, and unlike alkali ions, their space-charge distribution can be controlled and rapidly rearranged at room temperature by an applied electric field. Using this principle, a standard MOS transistor can be converted into a nonvolatile memory transistor that can be switched between normally on and normally off. Switching speed, retention, endurance, and radiation tolerance data are presented showing that this non-volatile memory technology can be competitive with existing Si-based non-volatile memory technologies such as the floating gate technologies (e.g. Flash memory).« less

  2. Hexagonal AlN Layers Grown on Sulfided Si(100) Substrate

    NASA Astrophysics Data System (ADS)

    Bessolov, V. N.; Gushchina, E. V.; Konenkova, E. V.; L'vova, T. V.; Panteleev, V. N.; Shcheglov, M. P.

    2018-01-01

    We have studied the influence of sulfide passivation on the initial stages of aluminum nitride (AlN)-layer nucleation and growth by hydride vapor-phase epitaxy (HVPE) on (100)-oriented single-crystalline silicon substrates. It is established that the substrate pretreatment in (NH4)2S aqueous solution leads to the columnar nucleation of hexagonal AlN crystals of two modifications rotated by 30° relative to each other. Based on the sulfide treatment, a simple method of oxide removal from and preparation of Si(100) substrate surface is developed that can be used for the epitaxial growth of group-III nitride layers.

  3. Arsenic silicide formation by oxidation of arsenic implanted silicon

    NASA Astrophysics Data System (ADS)

    Hagmann, D.; Euen, W.; Schorer, G.; Metzger, G.

    1989-07-01

    Wet oxidations of (100) silicon implanted with an arsenic dose of 2 × 1016 cm-2 and an energy of 30 keV were carried out in the temperature range between 600 and 900° C. The oxidation rate is increased on the arsenic implanted samples up to a factor of 2000 as compared to undoped samples. During these oxidations the arsenic suicide phase AsSi is precipitated at the oxide/silicon interface. After short oxidation times at 600° C, a continuous AsSi layer is found. It is dissolved during extended oxidation times and finally almost all As is incorporated in the oxide. After 900° C oxidations, substantial AsSi crystallites remain at the Si/SiO2 interface. They are still observed up to the larg-est oxide thickness grown (2.3 µm). The AsSi phase and the distribution of the im-planted arsenic were analyzed by TEM, SIMS and XRF measurements.

  4. Structural and optical characterization of highly anisotropic low loss Al:ZnO/ZnO multilayered metamaterial with hyperbolic dispersion grown by pulsed layer deposition

    NASA Astrophysics Data System (ADS)

    Kelly, Priscilla; Zhang, Wenrui; Liu, Mingzhao; Kuznetsova, Lyuba

    2017-08-01

    Transparent conductive oxide materials have shown unique optical properties, such as negative refraction, hyperbolic dispersion, and epsilon-near-zero dispersion. In particular, aluminum-doped zinc oxide (Al:ZnO) has shown the most promising results over traditionally used noble metals. Pulsed layer deposition is a popular technique due to its fast and controlled growth rate, as well as the stoichiometric target-to-substrate material transfer. But, since it uses large and inhomogeneous kinetic energy, samples could be prone to macro- and microscopic defects. In this work, we investigate multilayered samples of Al:ZnO/ZnO grown by pulsed laser deposition with the goal of developing a low-loss metamaterial with hyperbolic dispersion. Different fabrication conditions, such as Al:ZnO/ZnO ratio, the thickness of an individual layer, different substrates, and deposition temperatures, were investigated. Results of the ellipsometry analysis, based on fitting spectroscopy data using the Berreman formalism, show that the hyperbolic dispersion transition (Re ɛ∥>0, Re ɛ⊥< 0) is achieved at λc=1868 nm wavelength (Im (ɛ⊥) 0.03) for samples with 1:4 Al:ZnO/ZnO deposition ratio. The fitted dielectric functions for samples with various parameters show that a lower deposition temperature leads to a shorter transition wavelength.

  5. Positron Spectroscopy of Hydrothermally Grown Actinide Oxides

    DTIC Science & Technology

    2014-03-27

    POSITRON SPECTROSCOPY OF HYDROTHERMALLY GROWN ACTINIDE OXIDES THESIS Edward C. Schneider...United States Government. AFIT-ENP-14-M-33 POSITRON SPECTROSCOPY OF HYDROTHERMALLY GROWN ACTINIDE OXIDES THESIS...33 POSITRON SPECTROSCOPY OF HYDROTHERMALLY GROWN ACTINIDE OXIDES Edward C. Schneider, BS Captain, USAF Approved

  6. Remarkably stable amorphous metal oxide grown on Zr-Cu-Be metallic glass

    PubMed Central

    Lim, Ka Ram; Kim, Chang Eun; Yun, Young Su; Kim, Won Tae; Soon, Aloysius; Kim, Do Hyang

    2015-01-01

    In the present study, we investigated the role of an aliovalent dopant upon stabilizing the amorphous oxide film. We added beryllium into the Zr50Cu50 metallic glass system, and found that the amorphous oxide layer of Be-rich phase can be stabilized even at elevated temperature above Tg of the glass matrix. The thermal stability of the amorphous oxide layer is substantially enhanced due to Be addition. As confirmed by high-temperature cross-section HR-TEM, fully disordered Be-added amorphous layer is observed, while the rapid crystallization is observed without Be. To understand the role of Be, we employed ab-initio molecular dynamics to compare the mobility of ions with/without Be dopant, and propose a disordered model where Be dopant occupies Zr vacancy and induces structural disorder to the amorphous phase. We find that the oxygen mobility is slightly suppressed due to Be dopant, and Be mobility is unexpectedly lower than that of oxygen, which we attribute to the aliovalent nature of Be dopant whose diffusion always accompany multiple counter-diffusion of other ions. Here, we explain the origin of superior thermal stability of amorphous oxide film in terms of enhanced structural disorder and suppressed ionic mobility due to the aliovalent dopant. PMID:26658671

  7. Remarkably stable amorphous metal oxide grown on Zr-Cu-Be metallic glass.

    PubMed

    Lim, Ka Ram; Kim, Chang Eun; Yun, Young Su; Kim, Won Tae; Soon, Aloysius; Kim, Do Hyang

    2015-12-14

    In the present study, we investigated the role of an aliovalent dopant upon stabilizing the amorphous oxide film. We added beryllium into the Zr50Cu50 metallic glass system, and found that the amorphous oxide layer of Be-rich phase can be stabilized even at elevated temperature above Tg of the glass matrix. The thermal stability of the amorphous oxide layer is substantially enhanced due to Be addition. As confirmed by high-temperature cross-section HR-TEM, fully disordered Be-added amorphous layer is observed, while the rapid crystallization is observed without Be. To understand the role of Be, we employed ab-initio molecular dynamics to compare the mobility of ions with/without Be dopant, and propose a disordered model where Be dopant occupies Zr vacancy and induces structural disorder to the amorphous phase. We find that the oxygen mobility is slightly suppressed due to Be dopant, and Be mobility is unexpectedly lower than that of oxygen, which we attribute to the aliovalent nature of Be dopant whose diffusion always accompany multiple counter-diffusion of other ions. Here, we explain the origin of superior thermal stability of amorphous oxide film in terms of enhanced structural disorder and suppressed ionic mobility due to the aliovalent dopant.

  8. IR-LTS a powerful non-invasive tool to observe crystal defects in as-grown silicon, after device processing, and in heteroepitaxial layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kissinger, G.; Richter, H.; Vanhellemont, J.

    1996-12-01

    One of the main advantages of infrared light scattering tomography (IR-LST) is the wide range of defect densities that can be studied using this technique. As-grown defects of low density and very small size as well as oxygen precipitation related defects that appear in densities up to some 1010 cm{sup -3} can be observed. As-grown wafers with a {open_quotes}stacking fault ring{close_quotes} were investigated in order to correlate the defects observed by IR-LST with the results of Secco etching and alcaline cleaning solution (SC1) treatment revealing flow pattern defects (FPDs) and crystal originated particles (COPs), respectively. These wafers were studied aftermore » a wet oxidation at 1100{degrees}C for 100 min. In processed CZ silicon wafers it was possible to identify stacking faults and prismatic punching systems directly from the IR-LST image. Brewster angle illumination is a special mode to reveal defects in epitaxial layers in a non-destructive way. Misfit dislocations in the interface between a Ge{sub 0.92}Si{sub 0.08} layer and a silicon substrate were studied using this mode that allows to observe very low dislocation densities.« less

  9. Geometric confinement effects on the metal-insulator transition temperature and stress relaxation in VO2 thin films grown on silicon

    NASA Astrophysics Data System (ADS)

    Viswanath, Changhyun Ko, B.; Yang, Zheng; Ramanathan, Shriram

    2011-03-01

    VO2 undergoes a sharp metal-insulator transition at ˜67 °C with several orders of change in conductivity and optical transmittance. Understanding and control of the properties of vanadium oxide layers grown on technologically relevant substrates such as Si (100) single crystals is therefore of great interest. In this work, we show tunability of metal-insulator transition temperature as well as recoverable stress in VO2 thin films grown on Si substrate by introducing nanoscale atomic layer deposited HfO2 interfacial layers with no degradation in the resistance ratio. For a confined VO2 film, the metal-insulator transition temperature is suppressed by ˜16 °C and the recoverable stress is 150 MPa, compared to 400 MPa for a bare film. These observations are further correlated with in situ variable temperature measurement of stress changes occurring during the phase transition. Structural and microstructural studies on the various samples have been carried out by x ray diffraction and cross-sectional transmission electron microscopy. The strategy of tuning the metal-insulator transition characteristics by nanoscale interfacial dielectrics is of broader relevance in design of programmable materials and integration into solid state devices for electronics.

  10. Tunneling Spectroscopy of Superconducting MoN and NbTiN Grown by Atomic Layer Deposition.

    DOE PAGES

    Groll, Nickolas; Klug, Jeffrey A.; Cao, Chaoyue; ...

    2014-03-03

    A tunneling spectroscopy study is presented of superconducting MoN and Nbo.8Tio.2N thin films grown by atomic layer deposition (ALD). The films exhibited a superconducting gap of 2meV and 2.4meV, respectively, with a corresponding critical temperature of 11.5K and 13.4 K, among the highest reported Tc values achieved by the ALD technique.Tunnel junctions were obtained using a mechanical contact method with a Au tip. While the native oxides of these films provided poor tunnel barriers, high quality tunnel junctions with low zero bias conductance (below rvl0%) were obtained using an artificial tunnel barrier of Ah03 on the film's surface grown exmore » situ by ALD. We find a large critical current density on the order of 4 x 106Ncm2 at T =0.8Tc for a 60 run MoN film and demonstrate conformal coating capabilities of ALD onto high aspect ratio geometries. These results suggest that the ALD technique offers significant promise for thin film superconducting device applications.« less

  11. Tunneling spectroscopy of superconducting MoN and NbTiN grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Groll, Nickolas R.; Klug, Jeffrey A.; Cao, Chaoyue; Altin, Serdar; Claus, Helmut; Becker, Nicholas G.; Zasadzinski, John F.; Pellin, Michael J.; Proslier, Thomas

    2014-03-01

    A tunneling spectroscopy study is presented of superconducting MoN and Nb0.8Ti0.2N thin films grown by atomic layer deposition (ALD). The films exhibited a superconducting gap of 2 meV and 2.4 meV, respectively, with a corresponding critical temperature of 11.5 K and 13.4 K, among the highest reported Tc values achieved by the ALD technique. Tunnel junctions were obtained using a mechanical contact method with a Au tip. While the native oxides of these films provided poor tunnel barriers, high quality tunnel junctions with low zero bias conductance (below ˜10%) were obtained using an artificial tunnel barrier of Al2O3 on the film's surface grown ex situ by ALD. We find a large critical current density on the order of 4 × 106 A/cm2 at T = 0.8Tc for a 60 nm MoN film and demonstrate conformal coating capabilities of ALD onto high aspect ratio geometries. These results suggest that the ALD technique offers significant promise for thin film superconducting device applications.

  12. Thin transparent W-doped indium-zinc oxide (WIZO) layer on glass.

    PubMed

    Lee, Young-Jun; Lim, Byung-Wook; Kim, Joo-Hyung; Kim, Tae-Won; Oh, Byeong-Yun; Heo, Gi-Seok; Kim, Kwang-Young

    2012-07-01

    Annealing effect on structural and electrical properties of W-doped IZO (WIZO) films for thin film transistors (TFT) was studied under different process conditions. Thin WIZO films were deposited on glass substrates by RF magnetron co-sputtering technique using indium zinc oxide (10 wt.% ZnO-doped In2O3) and WO3 targets in room temperature. The post annealing temperature was executed from 200 degrees C to 500 degrees C under various O2/Ar ratios. We could not find any big difference from the surface observation of as grown films while it was found that the carrier density and sheet resistance of WIZO films were controlled by O2/Ar ratio and post annealing temperature. Furthermore, the crystallinity of WIZO film was changed as annealing temperature increased, resulting in amorphous structure at the annealing temperature of 200 degrees C, while clear In2O3 peak was observed for the annealed over 300 degrees C. The transmittance of as-grown films over 89% in visible range was obtained. As an active channel layer for TFT, it was found that the variation of resistivity, carrier density and mobility concentration of WIZO film decreased by annealing process.

  13. Isotope analysis of diamond-surface passivation effect of high-temperature H{sub 2}O-grown atomic layer deposition-Al{sub 2}O{sub 3} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiraiwa, Atsushi, E-mail: hiraiwa@aoni.waseda.jp, E-mail: qs4a-hriw@asahi-net.or.jp; Saito, Tatsuya; Matsumura, Daisuke

    2015-06-07

    The Al{sub 2}O{sub 3} film formed using an atomic layer deposition (ALD) method with trimethylaluminum as Al precursor and H{sub 2}O as oxidant at a high temperature (450 °C) effectively passivates the p-type surface conduction (SC) layer specific to a hydrogen-terminated diamond surface, leading to a successful operation of diamond SC field-effect transistors at 400 °C. In order to investigate this excellent passivation effect, we carried out an isotope analysis using D{sub 2}O instead of H{sub 2}O in the ALD and found that the Al{sub 2}O{sub 3} film formed at a conventional temperature (100 °C) incorporates 50 times more CH{sub 3} groups thanmore » the high-temperature film. This CH{sub 3} is supposed to dissociate from the film when heated afterwards at a higher temperature (550 °C) and causes peeling patterns on the H-terminated surface. The high-temperature film is free from this problem and has the largest mass density and dielectric constant among those investigated in this study. The isotope analysis also unveiled a relatively active H-exchange reaction between the diamond H-termination and H{sub 2}O oxidant during the high-temperature ALD, the SC still being kept intact. This dynamic and yet steady H termination is realized by the suppressed oxidation due to the endothermic reaction with H{sub 2}O. Additionally, we not only observed the kinetic isotope effect in the form of reduced growth rate of D{sub 2}O-oxidant ALD but found that the mass density and dielectric constant of D{sub 2}O-grown Al{sub 2}O{sub 3} films are smaller than those of H{sub 2}O-grown films. This is a new type of isotope effect, which is not caused by the presence of isotopes in the films unlike the traditional isotope effects that originate from the presence of isotopes itself. Hence, the high-temperature ALD is very effective in forming Al{sub 2}O{sub 3} films as a passivation and/or gate-insulation layer of high-temperature-operation diamond SC devices, and the knowledge of the aforementioned new isotope effect will be a basis for further enhancing ALD technologies in general.« less

  14. A study to investigate the chemical stability of gallium phosphate oxide/gallium arsenide phosphide

    NASA Technical Reports Server (NTRS)

    Kuhlman, G. J.

    1979-01-01

    The elemental composition with depth into the oxide films was examined using secondary ion mass spectrometry. Results indicate that the layers are arsenic-deficient through the bulk of the oxide and arsenic-rich near both the oxide surface and the oxide-semiconductor interface region. Phosphorus is incorporated into the oxide in an approximately uniform manner. The MIS capacitor structures exhibited deep-depletion characteristics and hysteresis indicative of electron trapping at the oxide-semiconductor interface. Post-oxidation annealing of the films in argon or nitrogen generally results in slightly increased dielectric leakage currents and decreased C-V hysteresis effects, and is associated with arsenic loss at the oxide surface. The results of bias-temperature stress experiments indicate that the major instability effects are due to changes in the electron trapping behavior. No changes were observed in the elemental profiles following electrical stressing, indicating that the grown films are chemically stable under device operating conditions.

  15. Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Huang, Ming; Mi, Rui; Liu, Hao; Li, Fei; Zhao, Xiao Li; Zhang, Wei; He, Shi Xuan; Zhang, Yu Xin

    2014-12-01

    Three-dimensional carbon nanotubes@MnO2 core-shell nanostructures grown on Ni foam for binder-free capacitor electrodes have been fabricated by a floating catalyst chemical vapor deposition process and a facile hydrothermal approach. Ultrathin layered MnO2 nanosheets are uniformly coated on the surface of the carbon nanotubes (CNTs), directly grown on Ni foam. This unique well-designed binder-free electrode exhibits a high specific capacitance (325.5 F g-1 at a current density of 0.3 A g-1), good rate capability (70.7% retention), and excellent cycling stability (90.5% capacitance retention after 5000 cycles), due to the high conductivity of the close contact between CNTs and Ni foam, as well as the moderate specific surface area of the CNTs@MnO2 core-shell nanostructures. The developed synthetic strategy may provide design guidelines for constructing advanced binder-free supercapacitors electrode.

  16. Optical properties of single ZnTe nanowires grown at low temperature

    NASA Astrophysics Data System (ADS)

    Artioli, A.; Rueda-Fonseca, P.; Stepanov, P.; Bellet-Amalric, E.; Den Hertog, M.; Bougerol, C.; Genuist, Y.; Donatini, F.; André, R.; Nogues, G.; Kheng, K.; Tatarenko, S.; Ferrand, D.; Cibert, J.

    2013-11-01

    Optically active gold-catalyzed ZnTe nanowires have been grown by molecular beam epitaxy, on a ZnTe(111) buffer layer, at low temperature (350 °C) under Te rich conditions, and at ultra-low density (from 1 to 5 nanowires per μm2). The crystalline structure is zinc blende as identified by transmission electron microscopy. All nanowires are tapered and the majority of them are ⟨111⟩ oriented. Low temperature micro-photoluminescence and cathodoluminescence experiments have been performed on single nanowires. We observe a narrow emission line with a blue-shift of 2 or 3 meV with respect to the exciton energy in bulk ZnTe. This shift is attributed to the strain induced by a 5 nm-thick oxide layer covering the nanowires, and this assumption is supported by a quantitative estimation of the strain in the nanowires.

  17. Atomic configurations in AP-MOVPE grown lattice-mismatched InGaAsN films unravelled by X-ray photoelectron spectroscopy combined with bulk and surface characterization techniques

    NASA Astrophysics Data System (ADS)

    López-Escalante, M. C.; Ściana, B.; Dawidowski, W.; Bielak, K.; Gabás, M.

    2018-03-01

    This work presents the results of X-ray photoelectron spectroscopy studies on the bonding N configuration in InGaAsN epilayers grown by atmospheric pressure metal organic vapour phase epitaxy. Growth temperature has been tuned in order to obtain both, relaxed and strained layers. The studies were concentrated on analysing the influence of the growth temperature, post growth thermal annealing process and surface quality on the formation of Ga-N and In-N bonds as well as N-related defects. The contamination of InGaAsN films by growth precursor residues and oxides has also been addressed. The growth temperature stands out as a decisive factor boosting In-N bonds formation, while the thermal annealing seems to affect the N-related defects density in the layers.

  18. A tunable microwave slot antenna based on graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dragoman, Mircea; Aldrigo, Martino; Vasilache, D.

    The paper presents the experimental and modeling results of a microwave slot antenna in a coplanar configuration based on graphene. The antennas are fabricated on a 4 in. high-resistivity Si wafer, with a ∼300 nm SiO{sub 2} layer grown through thermal oxidation. A CVD grown graphene layer is transferred on the SiO{sub 2}. The paper shows that the reflection parameter of the antenna can be tuned by a DC voltage. 2D radiation patterns at various frequencies in the X band (8–12 GHz) are then presented using as antenna backside a microwave absorbent and a metalized surface. Although the radiation efficiency is lower thanmore » a metallic antenna, the graphene antenna is a wideband antenna while the metal antennas with the same geometry and working at the same frequencies are narrowband.« less

  19. Growth of a delta-doped silicon layer by molecular beam epitaxy on a charge-coupled device for reflection-limited ultraviolet quantum efficiency

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E.; Grunthaner, Paula J.; Grunthaner, Frank J.; Terhune, R. W.; Fattahi, Masoud; Tseng, Hsin-Fu

    1992-01-01

    Low-temperature silicon molecular beam epitaxy is used to grow a delta-doped silicon layer on a fully processed charge-coupled device (CCD). The measured quantum efficiency of the delta-doped backside-thinned CCD is in agreement with the reflection limit for light incident on the back surface in the spectral range of 260-600 nm. The 2.5 nm silicon layer, grown at 450 C, contained a boron delta-layer with surface density of about 2 x 10 exp 14/sq cm. Passivation of the surface was done by steam oxidation of a nominally undoped 1.5 nm Si cap layer. The UV quantum efficiency was found to be uniform and stable with respect to thermal cycling and illumination conditions.

  20. Study of composite thin films for applications in high density data storage

    NASA Astrophysics Data System (ADS)

    Yuan, Hua

    Granular Co-alloy + oxide thin films are currently used as the magnetic recording layer of perpendicular media in hard disk drives. The microstructure of these films is composed mainly of fine (7--10 nm) magnetic grains physically surrounded by oxide phases, which produce magnetic isolation of the grains. As a result, the magnetic switching volume is maintained as small as the physical grain size. Consequently, ample number of magnetic switching units can be obtained in one recording bit, in other words, higher signal to noise ratios (SNR) can be achieved. Therefore, a good understanding and control of the microstructure of the films is very important for high areal density magnetic recording media. Interlayers and seedlayers play important roles in controlling the microstructure in terms of grain size, grain size distribution, oxide segregation and orientation dispersion of the crystallographic texture. Developing novel interlayers or seedlayers with smaller grain size is a key approach to produce smaller grain size in the recording layer. This study focuses on how to achieve smaller grain sizes in the recording layer through novel interlayer/seedlayer materials and processes. It also discusses the resulting microstructure in smaller-grain-size thin films. Metal + oxide (e.g. Ru + SiO2) composite thin films were chosen as interlayer and seedlayer materials due to their unique segregated microstructure. Such layers can be grown epitaxially on top of fcc metal seedlayers with good orientation. It can also provide an epitaxial growth template for the subsequent magnetic layer (recording layer). The metal and oxide phases in the composite thin films are immiscible. The final microstructure of the interlayer depends on factors, such as, sputtering pressure, oxide species, oxide volume fraction, thickness, alloy composition, temperature etc. Moreover, it has been found that the microstructure of the composite thin films is affected mostly by two important factors---oxide volume fraction and sputtering pressure. The latter affects grain size and grain segregation through surface-diffusion modification and the self-shadowing effect. The composite Ru + oxide interlayers were found to have various microstructures under various sputtering conditions. Four characteristic microstructure zones can be identified as a function of oxide volume fraction and sputtering pressure---"percolated" (A), "maze" (T), "granular" (B) and "embedded" (C), based on which, a new structural zone model (SZM) is established for composite thin films. The granular microstructure of zone B is of particular interest for recording media application. The grain size of interlayers is a strong function of pressure, oxide species and oxide volume fraction. Magnetic layers grown on top of these interlayers were found to be significantly affected by the interlayer microstructure. One-to-one grain epitaxial growth is very difficult to achieve when the grain size is too small. As a result, the magnetic properties of smaller grain size magnetic layers deteriorate due to poor growth. This presents a huge challenge to high areal density magnetic recording media. A novel approach of Ar-ion etched Ru seedlayer, which can improve epitaxy between interlayer and magnetic layer is proposed. This method produces interlayer thin films of: (1) smaller grain size and higher nucleation density due to both a rougher seedlayer surface and an oxide addition in the interlayer; (2) good (00.2) texture due to the growth on top of the low pressure deposited Ru seedlayer; (3) dome-shape grain morphology due to the high pressure deposition. Therefore, a significant Ru grain size reduction with enhanced granular morphology and improved grain-to-grain epitaxy with the magnetic layer was achieved. High resolution transmission electron microscopy (TEM) techniques, such as, electron energy loss spectroscopy (EELS), energy-filtered TEM (EFTEM), energy-dispersive X-ray spectroscopy (EDS) and mapping, and high angle annular dark field (HAADF) imaging have been utilized to investigate elemental distribution and grain morphology in composite magnetic thin films of different grain sizes. An oxygen-rich grain shell of about 0.5 ˜ 1 nm thickness is often observed for most media with different grain sizes. Reducing the grain size increases surface to volume ratio. With more surface area, smaller grains are more vulnerable to oxidization, resulting in even greater influence of the oxide on the magnetic properties of the grains.

  1. Integration of PLZT and BST family oxides with GaN[Lead Lanthanum Zirconate Titanate, Barium Strontium Titanate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osinsky, A.V.; Fuflyigin, V.N.; Wang, F.

    2000-07-01

    Recent advances in the processing of complex-oxide materials has allowed the authors to monolithically grow ferroelectrics of lead lanthanum zirconate titanate (PLZT) and barium strontium titanate (BST) systems on a GaN/sapphire structure. High quality films of PLZT and BST were grown on GaN/c-Al{sub 2}O{sub 3} in a thickness range of 0.3--5 {micro}m by a sol-gel technique. Field-induced birefringence, as large as 0.02, was measured from a PLZT layer grown on a buffered GaN/sapphire structure. UV illumination was found to result in more symmetrical electrooptic hysteresis loop. BST films on GaN demonstrated a low frequency dielectric constant of up to 800more » with leakage current density as low as 5.5 {center_dot} 10{sup {minus}8} A/cm{sup 2}.« less

  2. Investigation of sacrificial layer and building block for layered nanofabrication (LNF)

    NASA Astrophysics Data System (ADS)

    Shih, Ting-Yu

    Layered Nanoscale Fabrication (LNF) is a "bottom-up" procedure that uses multiple layers to build 3-dimensional nanoscale structures. Here, in this dissertation, several candidates for sacrificial layers were explored, The thermal stability of gold nanoparticles and simple patterns are also reported. In order to obtain information on layer thickness and film quality; the samples were characterized using atomic force microscopy (AFM) and ellipsometry. Octadecyltrichlorosilane (OTS) was first investigated for use as a sacrificial layer and we studied filth growth by targeted self-replication of silane multilayers with and without the presence of thiolated gold nanoparticles on silicon oxide substrates. The particles adhered to the substrate during layer grafting. The film grew selectively on the substrate, without covering the particles. AFM was used to investigate the growth mechanism and the process of embedding the nanoparticles. OTS multilayer films up to 9 layers were grown in a linear, bilayer-by bilayer mode, free of islands and defects. We also report on studies of monolayer and multilayer formation of Methyl-11-dimethylmonochlorosilyl-undecanoate films. Flat multilayers up to 3-layers thick were grown. AFM was used to measure the height of an observable "edge" of the multilayer film and this provides and independent determination of the MOSUD layer height of 1.5 nm: However, the particles detached from the surface when we attempted to grow multilayer. One strategy of linking the particles to form 2D arrays, thermal activation in ambient air, was investigated. The morphological properties of flaked nanoparticles and structures on silicon oxide substrates before and after heating were characterized by using AFM. For widely separated 5 nm gold nanoparticles height decreased over 50% at 600 °C. Further heating to 630 °C caused most particles to completely disappear, with small amount of particle residue left on the surface. Particles positioned near to other particles first formed a neck-like structure at 570 °C and then deformed into one wide particle with tail-shape residue at 650 °C. Clusters of Au nanoparticles rearranged and became one large collide with particles residues left on the surface at 630 °C.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evmenenko, Guennadi; Fister, Timothy T.; Buchholz, D. Bruce

    Oxide conversion reactions in lithium ion batteries are challenged by substantial irreversibility associated with significant volume change during the phase separation of an oxide into lithia and metal species (e.g., NiO + 2Li(+) + 2e(-) -> Ni + Li2O). We demonstrate that the confinement of nanometer-scale NiO layers within a Ni/NiO multilayer electrode can direct lithium transport and reactivity, leading to coherent expansion of the multilayer. The morphological changes accompanying lithiation were tracked in real-time by in-operando X-ray reflectivity (XRR) and ex situ cross-sectional transmission electron microscopy on well-defined periodic Ni/NiO multilayers grown by pulsed-laser deposition. Comparison of pristine andmore » lithiated structures reveals that the nm-thick nickel layers help initiate the conversion process at the interface and then provide an architecture that confines the lithiation to the individual oxide layers. XRR data reveal that the lithiation process starts at the top and progressed through the electrode stack, layer by layer resulting in a purely vertical expansion. Longer term cycling showed significant reversible capacity (similar to 800 mA h g(-1) after similar to 100 cycles), which we attribute to a combination of the intrinsic bulk lithiation capacity of the NiO and additional interfacial lithiation capacity. These observations provide new insight into the role of metal/metal oxide interfaces in controlling lithium ion conversion reactions by defining the relationships between morphological changes and film architecture during reaction.« less

  4. Remote catalyzation for direct formation of graphene layers on oxides.

    PubMed

    Teng, Po-Yuan; Lu, Chun-Chieh; Akiyama-Hasegawa, Kotone; Lin, Yung-Chang; Yeh, Chao-Hui; Suenaga, Kazu; Chiu, Po-Wen

    2012-03-14

    Direct deposition of high-quality graphene layers on insulating substrates such as SiO(2) paves the way toward the development of graphene-based high-speed electronics. Here, we describe a novel growth technique that enables the direct deposition of graphene layers on SiO(2) with crystalline quality potentially comparable to graphene grown on Cu foils using chemical vapor deposition (CVD). Rather than using Cu foils as substrates, our approach uses them to provide subliming Cu atoms in the CVD process. The prime feature of the proposed technique is remote catalyzation using floating Cu and H atoms for the decomposition of hydrocarbons. This allows for the direct graphitization of carbon radicals on oxide surfaces, forming isolated low-defect graphene layers without the need for postgrowth etching or evaporation of the metal catalyst. The defect density of the resulting graphene layers can be significantly reduced by tuning growth parameters such as the gas ratios, Cu surface areas, and substrate-to-Cu distance. Under optimized conditions, graphene layers with nondiscernible Raman D peaks can be obtained when predeposited graphite flakes are used as seeds for extended growth. © 2012 American Chemical Society

  5. Protective capping and surface passivation of III-V nanowires by atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhaka, Veer, E-mail: veer.dhaka@aalto.fi; Perros, Alexander; Kakko, Joona-Pekko

    2016-01-15

    Low temperature (∼200 °C) grown atomic layer deposition (ALD) films of AlN, TiN, Al{sub 2}O{sub 3}, GaN, and TiO{sub 2} were tested for protective capping and surface passivation of bottom-up grown III-V (GaAs and InP) nanowires (NWs), and top-down fabricated InP nanopillars. For as-grown GaAs NWs, only the AlN material passivated the GaAs surface as measured by photoluminescence (PL) at low temperatures (15K), and the best passivation was achieved with a few monolayer thick (2Å) film. For InP NWs, the best passivation (∼2x enhancement in room-temperature PL) was achieved with a capping of 2nm thick Al{sub 2}O{sub 3}. All othermore » ALD capping layers resulted in a de-passivation effect and possible damage to the InP surface. Top-down fabricated InP nanopillars show similar passivation effects as InP NWs. In particular, capping with a 2 nm thick Al{sub 2}O{sub 3} layer increased the carrier decay time from 251 ps (as-etched nanopillars) to about 525 ps. Tests after six months ageing reveal that the capped nanostructures retain their optical properties. Overall, capping of GaAs and InP NWs with high-k dielectrics AlN and Al{sub 2}O{sub 3} provides moderate surface passivation as well as long term protection from oxidation and environmental attack.« less

  6. Dopant incorporation in Al0.9Ga0.1As0.06Sb0.94 grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Patra, Saroj Kumar; Tran, Thanh-Nam; Vines, Lasse; Kolevatov, Ilia; Monakhov, Edouard; Fimland, Bjørn-Ove

    2017-04-01

    Incorporation of beryllium (Be) and tellurium (Te) dopants in epitaxially grown Al0.9Ga0.1As0.06Sb0.94 layers was investigated. Carrier concentrations and mobilities of the doped layers were obtained from room temperature Hall effect measurements, and dopant densities from secondary ion mass spectrometry depth profiling. An undoped Al0.3Ga0.7As cap layer and side wall passivation were used to reduce oxidation and improve accuracy in Hall effect measurements. The measurements on Be-doped samples revealed high doping efficiency and the carrier concentration varied linearly with dopant density up to the highest Be dopant density of 2.9 × 1019 cm-3, whereas for Te doped samples the doping efficiency was in general low and the carrier concentration saturated for Te-dopant densities above 8.0 × 1018 cm-3. The low doping efficiency in Te-doped Al0.9Ga0.1As0.06Sb0.94 layer was studied by deep-level transient spectroscopy, revealing existence of deep trap levels and related DX-centers which explains the low doping efficiency.

  7. Processing of n+/p-/p+ strip detectors with atomic layer deposition (ALD) grown Al2O3 field insulator on magnetic Czochralski silicon (MCz-si) substrates

    NASA Astrophysics Data System (ADS)

    Härkönen, J.; Tuovinen, E.; Luukka, P.; Gädda, A.; Mäenpää, T.; Tuominen, E.; Arsenovich, T.; Junkes, A.; Wu, X.; Li, Z.

    2016-08-01

    Detectors manufactured on p-type silicon material are known to have significant advantages in very harsh radiation environment over n-type detectors, traditionally used in High Energy Physics experiments for particle tracking. In p-type (n+ segmentation on p substrate) position-sensitive strip detectors, however, the fixed oxide charge in the silicon dioxide is positive and, thus, causes electron accumulation at the Si/SiO2 interface. As a result, unless appropriate interstrip isolation is applied, the n-type strips are short-circuited. Widely adopted methods to terminate surface electron accumulation are segmented p-stop or p-spray field implantations. A different approach to overcome the near-surface electron accumulation at the interface of silicon dioxide and p-type silicon is to deposit a thin film field insulator with negative oxide charge. We have processed silicon strip detectors on p-type Magnetic Czochralski silicon (MCz-Si) substrates with aluminum oxide (Al2O3) thin film insulator, grown with Atomic Layer Deposition (ALD) method. The electrical characterization by current-voltage and capacitance-voltage measurement shows reliable performance of the aluminum oxide. The final proof of concept was obtained at the test beam with 200 GeV/c muons. For the non-irradiated detector the charge collection efficiency (CCE) was nearly 100% with a signal-to-noise ratio (S/N) of about 40, whereas for the 2×1015 neq/cm2 proton irradiated detector the CCE was 35%, when the sensor was biased at 500 V. These results are comparable with the results from p-type detectors with the p-spray and p-stop interstrip isolation techniques. In addition, interestingly, when the aluminum oxide was irradiated with Co-60 gamma-rays, an accumulation of negative fixed oxide charge in the oxide was observed.

  8. The low coherence Fabry-Pérot interferometer with diamond and ZnO layers

    NASA Astrophysics Data System (ADS)

    Majchrowicz, D.; Den, W.; Hirsch, M.

    2016-09-01

    The authors present a fiber-optic Fabry-Pérot interferometer built with the application of diamond and zinc oxide (ZnO) thin layers. Thin ZnO films were deposited on the tip of a standard telecommunication single-mode optical fiber (SMF- 28) while the diamond layer was grown on the plate of silicon substrate. Investigated ZnO layers were fabricated by atomic layer deposition (ALD) and the diamond films were deposited using Microwave Plasma Enhanced Chemical Vapor Deposition (μPE CVD) system. Different thickness of layers was examined. The measurements were performed for the fiber-optic Fabry-Pérot interferometer working in the reflective mode. Spectra were registered for various thicknesses of ZnO layer and various length of the air cavity. As a light source, two superluminescent diodes (SLD) with central wavelength of 1300 nm and 1550 nm were used in measurement set-up.

  9. Tuning the dead-layer behavior of La{sub 0.67}Sr{sub 0.33}MnO{sub 3}/SrTiO{sub 3} via interfacial engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, R.; Xu, H. C.; Xia, M.

    The dead-layer behavior, deterioration of the bulk properties in near-interface layers, restricts the applications of many oxide heterostructures. We present the systematic study of the dead-layer in La{sub 0.67}Sr{sub 0.33}MnO{sub 3}/SrTiO{sub 3} grown by ozone-assisted molecular beam epitaxy. Dead-layer behavior is systematically tuned by varying the interfacial doping, while unchanged with varied doping at any other atomic layers. In situ photoemission and low energy electron diffraction measurements suggest intrinsic oxygen vacancies at the surface of ultra-thin La{sub 0.67}Sr{sub 0.33}MnO{sub 3}, which are more concentrated in thinner films. Our results show correlation between interfacial doping, oxygen vacancies, and the dead-layer, whichmore » can be explained by a simplified electrostatic model.« less

  10. Vertically grown zinc oxide nanorods functionalized with ferric oxide for in vivo and non-enzymatic glucose detection

    NASA Astrophysics Data System (ADS)

    Marie, Mohammed; Manoharan, Anishkumar; Kuchuk, Andrian; Ang, Simon; Manasreh, M. O.

    2018-03-01

    An enzyme-free glucose sensor based on vertically grown zinc oxide nanorods (NRs) functionalized with ferric oxide (Fe2O3) is investigated. The well-aligned and high density ZnO NRs were synthesized on an FTO/glass substrate by a sol-gel and hydrothermal growth method. A dip-coating technique was utilized to modify the surface of the as-grown ZnO NRs with Fe2O3. The immobilized surface was coated with a layer of nafion membrane. The fabricated glucose sensor was characterized amperometrically at room temperature using three electrodes stationed in the phosphate buffer solution, where ZnO NRs/Fe2O3/nafion membrane was the sensing or working electrode, and platinum plate and silver/silver chloride were used as the counter and reference electrodes, respectively. The proposed non-enzymatic and modified glucose sensor exhibited a high sensitivity in the order of 0.052 μA cm-2 (mg/dL)-1, a lower detection limit of around 0.95 mmol L-1, a sharp and fast response time of ˜1 s, and a linear response to changes in glucose concentrations from 100-400 mg dL-1. The linear amperometric response of the sensor covers the physiological and clinical interest of glucose levels for diabetic patients. The device continues to function accurately after multiple measurements with a good reproducibility. The proposed glucose sensor is expected to be used clinically for in vivo monitoring of glucose.

  11. Detection of thermally grown oxides in thermal barrier coatings by nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Fahr, A.; Rogé, B.; Thornton, J.

    2006-03-01

    The thermal-barrier coatings (TBC) sprayed on hot-section components of aircraft turbine engines commonly consist of a partially stabilized zirconia top-coat and an intermediate bond-coat applied on the metallic substrate. The bond-coat is made of an aluminide alloy that at high engine temperatures forms thermally grown oxides (TGO). Although formation of a thin layer of aluminum oxide at the interface between the ceramic top-coat and the bond-coat has the beneficial effect of protecting the metallic substrate from hot gases, oxide formation at splat boundaries or pores within the bond-coat is a source of weakness. In this study, plasma-sprayed TBC specimens are manufactured from two types of bond-coat powders and exposed to elevated temperatures to form oxides at the ceramic-bond-coat boundary and within the bond-coat. The specimens are then tested using nondestructive evaluation (NDE) and destructive metallography and compared with the as-manufactured samples. The objective is to determine if NDE can identify the oxidation within the bond-coat and give indication of its severity. While ultrasonic testing can provide some indication of the degree of bond-coat oxidation, the eddy current (EC) technique clearly identifies severe oxide formation within the bond-coat. Imaging of the EC signals as the function of probe location provides information on the spatial variations in the degree of oxidation, and thereby identifies which components or areas are prone to premature damage.

  12. Toward improved mechanical, tribological, corrosion and in-vitro bioactivity properties of mixed oxide nanotubes on Ti-6Al-7Nb implant using multi-objective PSO.

    PubMed

    Rafieerad, A R; Bushroa, A R; Nasiri-Tabrizi, B; Kaboli, S H A; Khanahmadi, S; Amiri, Ahmad; Vadivelu, J; Yusof, F; Basirun, W J; Wasa, K

    2017-05-01

    Recently, the robust optimization and prediction models have been highly noticed in district of surface engineering and coating techniques to obtain the highest possible output values through least trial and error experiments. Besides, due to necessity of finding the optimum value of dependent variables, the multi-objective metaheuristic models have been proposed to optimize various processes. Herein, oriented mixed oxide nanotubular arrays were grown on Ti-6Al-7Nb (Ti67) implant using physical vapor deposition magnetron sputtering (PVDMS) designed by Taguchi and following electrochemical anodization. The obtained adhesion strength and hardness of Ti67/Nb were modeled by particle swarm optimization (PSO) to predict the outputs performance. According to developed models, multi-objective PSO (MOPSO) run aimed at finding PVDMS inputs to maximize current outputs simultaneously. The provided sputtering parameters were applied as validation experiment and resulted in higher adhesion strength and hardness of interfaced layer with Ti67. The as-deposited Nb layer before and after optimization were anodized in fluoride-base electrolyte for 300min. To crystallize the coatings, the anodically grown mixed oxide TiO 2 -Nb 2 O 5 -Al 2 O 3 nanotubes were annealed at 440°C for 30min. From the FESEM observations, the optimized adhesive Nb interlayer led to further homogeneity of mixed nanotube arrays. As a result of this surface modification, the anodized sample after annealing showed the highest mechanical, tribological, corrosion resistant and in-vitro bioactivity properties, where a thick bone-like apatite layer was formed on the mixed oxide nanotubes surface within 10 days immersion in simulated body fluid (SBF) after applied MOPSO. The novel results of this study can be effective in optimizing a variety of the surface properties of the nanostructured implants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Reduced-droop green III-nitride light-emitting diodes utilizing GaN tunnel junction

    NASA Astrophysics Data System (ADS)

    Alhassan, Abdullah I.; Young, Erin C.; Alyamani, Ahmed Y.; Albadri, Abdulrahman; Nakamura, Shuji; DenBaars, Steven P.; Speck, James S.

    2018-04-01

    We report the fabrication of low-droop high-efficiency green c-plane light-emitting diodes (LEDs) utilizing GaN tunnel junction (TJ) contacts. The LED epitaxial layers with a top p-GaN layer were grown by metal organic chemical vapor deposition and an n++-GaN layer was deposited by molecular beam epitaxy to form a TJ. The TJ LEDs were then compared with equivalent LEDs having a tin-doped indium oxide (ITO) contact. The TJ LEDs exhibited a higher performance and a lower efficiency droop than did the ITO LEDs. At 35 A/cm2, the external quantum efficiencies for the TJ and ITO LEDs were 31.2 and 27%, respectively.

  14. Ellipsometric study of Si(0.5)Ge(0.5)/Si strained-layer superlattices

    NASA Technical Reports Server (NTRS)

    Sieg, R. M.; Alterovitz, S. A.; Croke, E. T.; Harrell, M. J.

    1993-01-01

    An ellipsometric study of two Si(0.5)Ge(0.5)/Si strained-layer super lattices grown by MBE at low temperature (500 C) is presented, and results are compared with x ray diffraction (XRD) estimates. Excellent agreement is obtained between target values, XRD, and ellipsometry when one of two available Si(x)Ge(1-x) databases is used. It is shown that ellipsometry can be used to nondestructively determine the number of superlattice periods, layer thicknesses, Si(x)Ge(1-x) composition, and oxide thickness without resorting to additional sources of information. It was also noted that we do not observe any strain effect on the E(sub 1) critical point.

  15. Hybrid tunnel junction contacts to III-nitride light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Young, Erin C.; Yonkee, Benjamin P.; Wu, Feng; Oh, Sang Ho; DenBaars, Steven P.; Nakamura, Shuji; Speck, James S.

    2016-02-01

    In this work, we demonstrate highly doped GaN p-n tunnel junction (TJ) contacts on III-nitride heterostructures where the active region of the device and the top p-GaN layers were grown by metal organic chemical vapor deposition and highly doped n-GaN was grown by NH3 molecular beam epitaxy to form the TJ. The regrowth interface in these hybrid devices was found to have a high concentration of oxygen, which likely enhanced tunneling through the diode. For optimized regrowth, the best tunnel junction device had a total differential resistivity of 1.5 × 10-4 Ω cm2, including contact resistance. As a demonstration, a blue-light-emitting diode on a (20\\bar{2}\\bar{1}) GaN substrate with a hybrid tunnel junction and an n-GaN current spreading layer was fabricated and compared with a reference sample with a transparent conducting oxide (TCO) layer. The tunnel junction LED showed a lower forward operating voltage and a higher efficiency at a low current density than the TCO LED.

  16. Ultraviolet GaN photodetectors on Si via oxide buffer heterostructures with integrated short period oxide-based distributed Bragg reflectors and leakage suppressing metal-oxide-semiconductor contacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szyszka, A., E-mail: szyszka@ihp-microelectronics.com, E-mail: adam.szyszka@pwr.wroc.pl; Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wroclaw; Lupina, L.

    2014-08-28

    Based on a novel double step oxide buffer heterostructure approach for GaN integration on Si, we present an optimized Metal-Semiconductor-Metal (MSM)-based Ultraviolet (UV) GaN photodetector system with integrated short-period (oxide/Si) Distributed Bragg Reflector (DBR) and leakage suppressing Metal-Oxide-Semiconductor (MOS) electrode contacts. In terms of structural properties, it is demonstrated by in-situ reflection high energy electron diffraction and transmission electron microscopy-energy dispersive x-ray studies that the DBR heterostructure layers grow with high thickness homogeneity and sharp interface structures sufficient for UV applications; only minor Si diffusion into the Y{sub 2}O{sub 3} films is detected under the applied thermal growth budget. Asmore » revealed by comparative high resolution x-ray diffraction studies on GaN/oxide buffer/Si systems with and without DBR systems, the final GaN layer structure quality is not significantly influenced by the growth of the integrated DBR heterostructure. In terms of optoelectronic properties, it is demonstrated that—with respect to the basic GaN/oxide/Si system without DBR—the insertion of (a) the DBR heterostructures and (b) dark current suppressing MOS contacts enhances the photoresponsivity below the GaN band-gap related UV cut-off energy by almost up to two orders of magnitude. Given the in-situ oxide passivation capability of grown GaN surfaces and the one order of magnitude lower number of superlattice layers in case of higher refractive index contrast (oxide/Si) systems with respect to classical III-N DBR superlattices, virtual GaN substrates on Si via functional oxide buffer systems are thus a promising robust approach for future GaN-based UV detector technologies.« less

  17. Air pollution with relation to agronomic crops. V. Oxidant stipple of grape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richards, B.L.; Middleton, J.T.; Hewitt, W.B.

    1958-01-01

    Small, brown to black, discrete, punctate lesions occur on the upper leaf surface of grape grown in areas polluted by air-borne oxidants. The lesions are typically restricted to the palisade layer and may be easily distinguished from other grape disorders because of their stippled appearance. The disease can be incited in grape by fumigation with ozone. Toxic ozone leaves occur in the polluted air mass above the Los Angeles and San Francisco areas where oxidant stipple is found. Stipple has not yet been seen in the grape producing areas in the Coachella, Napa, Sacramento, and San Joaquin valleys of California.more » 4 references, 3 figures.« less

  18. A high density two-dimensional electron gas in an oxide heterostructure on Si (001)

    NASA Astrophysics Data System (ADS)

    Jin, E. N.; Kornblum, L.; Kumah, D. P.; Zou, K.; Broadbridge, C. C.; Ngai, J. H.; Ahn, C. H.; Walker, F. J.

    2014-11-01

    We present the growth and characterization of layered heterostructures comprised of LaTiO3 and SrTiO3 epitaxially grown on Si (001). Magnetotransport measurements show that the sheet carrier densities of the heterostructures scale with the number of LaTiO3/SrTiO3 interfaces, consistent with the presence of an interfacial 2-dimensional electron gas (2DEG) at each interface. Sheet carrier densities of 8.9 × 1014 cm-2 per interface are observed. Integration of such high density oxide 2DEGs on silicon provides a bridge between the exceptional properties and functionalities of oxide 2DEGs and microelectronic technologies.

  19. Optical properties of wide gap semiconductors studied by means of cathodoluminescence

    NASA Astrophysics Data System (ADS)

    Fischer Ponce, Alec Mirco

    III-nitride semiconductors have been found to be a suitable material for the fabrication of light-emitting diodes (LEDs) emitting in the visible and ultraviolet range through the use of indium gallium nitride (InGaN) active layers. Yet, achieving high-efficient and long lasting LEDs in the long wavelength range, especially in the green spectral region, is limited by difficulties of growth of InGaN layers with high indium content. Additionally, device efficiency is strongly dependent on the formation of low-resistive p-type gallium nitride (GaN)-based layers. In this dissertation, the optical properties of wide gap semiconductor are analyzed using cathodoluminescence imaging and spectroscopy, and time-resolved spectroscopic techniques. A transition at 3.2 eV in magnesium (Mg)-doped GaN has been revealed and it has been identified as a Mg-related donor-acceptor pair, which may be responsible for the increase in intensity with increasing magnesium concentration in the commonly observed donor-acceptor pair region. In a separate study, a decrease of the Mg acceptor energy level and the bulk resistivity in Mg-doped InGaN with increasing indium composition is observed, implying that InGaN p-layers should improve the device performance. Next, Mg-doped GaN and InGaN capping layers in LED structures grown under different ambient gases are shown to alter the quantum well (QW) luminescence. QWs grown with InGaN p-layers exhibit an improvement in the luminescence efficiency and a blue-shift due to reduction of the compressive misfit strain in the QWs. However, p-GaN layers grown under hydrogen ambient gas present a blue-shift of the QW emission. Hydrogen diffusion occurring after thermal annealing of the p-GaN layer may explain the reduction of piezoelectric field effects in polar InGaN quantum wells. In another study, InGaN QWs with high indium content grown in non-polar m-plane GaN were found to exhibit stacking faults originating at the first QW, relaxing the misfit strain in the subsequent layers. Finally, the optical and structural properties of highly luminescent zinc oxide (ZnO) tetrapod powders emitting in the visible green spectral range were studied with high spatial resolution. ZnO nanostructures are strong candidates for devices emitting light with very high efficiencies.

  20. Post-annealing effect on optical absorbance of hydrothermally grown zinc oxide nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohar, Rahmat Setiawan; Djuhana, Dede; Imawan, Cuk

    In this study, the optical absorbance of zinc oxide (ZnO) nanorods was investigated. The ZnO thin film were deposited on indium tin oxide (ITO) layers using ultrasonic spray pyrolysis (USP) method and then grown by hydrothermal method. In order to improve the optical absorbance, the ZnO nanorods were then post-annealed for one hour at three different of temperatures, namely 250, 400, and 500 °C. The X-ray diffraction (XRD) spectra and FESEM images show that the ZnO nanorods have the hexagonal wurtzite crystal structure and the increasing of post-annealing temperature resulted in the increasing of crystallite size from 38.2 nm to 48.4 nm.more » The UV-vis spectra shows that all samples of ZnO nanorods exhibited the identical sharp absorption edge at 390 nm indicating that all samples have the same bandgap. The post-annealing process seemed to decrease the optical absorbance in the region of 300-550 nm and increase the optical absorbance in the region of 550-700 nm..« less

  1. Strain-induced phenomenon in complex oxide thin films

    NASA Astrophysics Data System (ADS)

    Haislmaier, Ryan

    Complex oxide materials wield an immense spectrum of functional properties such as ferroelectricity, ferromagnetism, magnetoelectricity, optoelectricity, optomechanical, magnetoresistance, superconductivity, etc. The rich coupling between charge, spin, strain, and orbital degrees of freedom makes this material class extremely desirable and relevant for next generation electronic devices and technologies which are trending towards nanoscale dimensions. Development of complex oxide thin film materials is essential for realizing their integration into nanoscale electronic devices, where theoretically predicted multifunctional capabilities of oxides could add tremendous value. Employing thin film growth strategies such as epitaxial strain and heterostructure interface engineering can greatly enhance and even unlock novel material properties in complex oxides, which will be the main focus of this work. However, physically incorporating oxide materials into devices remains a challenge. While advancements in molecular beam epitaxy (MBE) of thin film oxide materials has led to the ability to grow oxide materials with atomic layer precision, there are still major limitations such as controlling stoichiometric compositions during growth as well as creating abrupt interfaces in multi-component layered oxide structures. The work done in this thesis addresses ways to overcome these limitations in order to harness intrinsic material phenomena. The development of adsorption-controlled stoichiometric growth windows of CaTiO3 and SrTiO3 thin film materials grown by hybrid MBE where Ti is supplied using metal-organic titanium tetraisopropoxide material is thoroughly outlined. These growth windows enable superior epitaxial strain-induced ferroelectric and dielectric properties to be accessed as demonstrated by chemical, structural, electrical, and optical characterization techniques. For tensile strained CaTiO3 and compressive strained SrTiO 3 films, the critical effects of nonstoichiometry on ferroelectric properties are investigated, where enhanced ferroelectric responses are only found for stoichiometric films grown inside of the growth windows, whereas outside of the optimal growth window conditions, ferroelectric properties are greatly deteriorated and eventually disappear for highly nonstoichiometric film compositions. Utilizing these stoichiometric growth windows, high temperature polar phase transitions are discovered for compressively strained CaTiO3 films with transition temperatures in excess of 700 K, rendering this material as a strong candidate for high temperature electronic applications. Beyond the synthesis of single phase materials using hybrid MBE, a methodology is presented for constructing layered (SrTiO3)n/(CaTiO 3)n superlattice structures, where precise control over the unit cell layering thickness (n) is demonstrated using in-situ reflection high energy electron diffraction. The effects of interface roughness and layering periodicity (n) on the strain-induced ferroelectric properties for a series of n=1-10 (SrTiO3)n/(CaTiO3) n superlattice films are investigated. It is found that the stabilization of a ferroelectric phase is independent of n, but is however strongly dominated by the degree of interface roughness which is quantified by measuring the highest nth order X-ray diffraction peak splitting of each superlattice film. A counter-intuitive realization is made whereby a critical amount of interface roughness is required in order to enable the formation of the predicted strain-stabilized ferroelectric phase, whereas sharp interfaces actually suppress this ferroelectric phase from manifesting. It is shown how high-quality complex oxide superlattices can be constructed using hybrid MBE technique, allowing the ability to control layered materials at the atomic scale. Furthermore, a detailed growth methodology is provided for constructing a layered n=4 SrO(SrTiO3)n Ruddlesden-Popper (RP) phase by hybrid MBE, where the ability to deposit single monolayers of SrO and TiO2 is utilized to build the RP film structure over a time period of 5 hours. This is the first time that a thin film RP phase has been grown using hybrid MBE, where an a stable control over the fluxes is demonstrated during relatively long time periods of growth, which advantageously facilitates the synthesis of high-quality RP materials with excellent structural and chemical homogeneity. Additionally, this work demonstrates some major advancements in optical second harmonic generation (SHG) characterization techniques of ferroelectric thin film materials. The SHG characterization techniques developed here proved to be the 'bread-and-butter' for most of the work performed in this thesis, providing a powerful tool for identifying the existence of strain-induced ferroelectric phases, including their temperature dependence and polar symmetry. The work presented in this dissertation will hopefully provide a preliminary road map for future hybrid MBE growers, scientists and researchers, to develop and investigate epitaxial strain and heterostructure layering induced phenomena in other complex oxide systems.

  2. Growth of cubic silicon carbide on oxide using polysilicon as a seed layer for micro-electro-mechanical machine applications

    NASA Astrophysics Data System (ADS)

    Frewin, C. L.; Locke, C.; Wang, J.; Spagnol, P.; Saddow, S. E.

    2009-08-01

    The growth of highly oriented 3C-SiC directly on an oxide release layer, composed of a 20-nm-thick poly-Si seed layer and a 550-nm-thick thermally deposited oxide on a (1 1 1)Si substrate, was investigated as an alternative to using silicon-on-insulator (SOI) substrates for freestanding SiC films for MEMS applications. The resulting SiC film was characterized by X-ray diffraction (XRD) with the X-ray rocking curve of the (1 1 1) diffraction peak displaying a FWHM of 0.115° (414″), which was better than that for 3C-SiC films grown directly on (1 1 1)Si during the same deposition process. However, the XRD peak amplitude for the 3C-SiC film on the poly-Si seed layer was much less than for the (1 1 1)Si control substrate, due to slight in-plane misorientations in the film. Surprisingly, the film was solely composed of (1 1 1) 3C-SiC grains and possessed no 3C-SiC grains oriented along the <3 1 1> and <1 1 0> directions which were the original directions of the poly-Si seed layer. With this new process, MEMS structures such as cantilevers and membranes can be easily released leaving behind high-quality 3C-SiC structures.

  3. Nested potassium hydroxide etching and protective coatings for silicon-based microreactors

    NASA Astrophysics Data System (ADS)

    de Mas, Nuria; Schmidt, Martin A.; Jensen, Klavs F.

    2014-03-01

    We have developed a multilayer, multichannel silicon-based microreactor that uses elemental fluorine as a reagent and generates hydrogen fluoride as a byproduct. Nested potassium hydroxide etching (using silicon nitride and silicon oxide as masking materials) was developed to create a large number of channels (60 reaction channels connected to individual gas and liquid distributors) of significantly different depths (50-650 µm) with sloped walls (54.7° with respect to the (1 0 0) wafer surface) and precise control over their geometry. The wetted areas were coated with thermally grown silicon oxide and electron-beam evaporated nickel films to protect them from the corrosive fluorination environment. Up to four Pyrex layers were anodically bonded to three silicon layers in a total of six bonding steps to cap the microchannels and stack the reaction layers. The average pinhole density in as-evaporated films was 3 holes cm-2. Heating during anodic bonding (up to 350 °C for 4 min) did not significantly alter the film composition. Upon fluorine exposure, nickel films (160 nm thick) deposited on an adhesion layer of Cr (10 nm) over an oxidized silicon substrate (up to 500 nm thick SiO2) led to the formation of a nickel fluoride passivation layer. This microreactor was used to investigate direct fluorinations at room temperature over several hours without visible signs of film erosion.

  4. The surface properties of Shewanella putrefaciens 200 and S. oneidensis MR-1: the effect of pH and terminal electron acceptors.

    PubMed

    Furukawa, Yoko; Dale, Jason R

    2013-04-08

    We investigated the surface characteristics of two strains of Shewanella sp., S. oneidensis MR-1 and S. putrefaciens 200, that were grown under aerobic conditions as well as under anaerobic conditions with trimethylamine oxide (TMAO) as the electron acceptor. The investigation focused on the experimental determination of electrophoretic mobility (EPM) under a range of pH and ionic strength, as well as by subsequent modeling in which Shewanella cells were considered to be soft particles with water- and ion-permeable outermost layers. The soft layer of p200 is significantly more highly charged (i.e., more negative) than that of MR-1. The effect of electron acceptor on the soft particle characteristics of Shewanella sp. is complex. The fixed charge density, which is a measure of the deionized and deprotonated functional groups in the soft layer polymers, is slightly greater (i.e., more negative) for aerobically grown p200 than for p200 grown with TMAO. On the other hand, the fixed charge density of aerobically grown MR1 is slightly less than that of p200 grown with TMAO. The effect of pH on the soft particle characteristics is also complex, and does not exhibit a clear pH-dependent trend. The Shewanella surface characteristics were attributed to the nature of the outermost soft layer, the extracellular polymeric substances (EPS) in case of p200 and lypopolysaccharides (LPS) in case of MR1 which generally lacks EPS. The growth conditions (i.e., aerobic vs. anaerobic TMAO) have an influence on the soft layer characteristics of Shewanella sp. cells. Meanwhile, the clear pH dependency of the mechanical and morphological characteristics of EPS and LPS layers, observed in previous studies through atomic force microscopy, adhesion tests and spectroscopies, cannot be corroborated by the electrohydrodynamics-based soft particle characteristics which does not exhibited a clear pH dependency in this study. While the electrohydrodynamics-based soft-particle model is a useful tool in understanding bacteria's surface properties, it needs to be supplemented with other characterization methods and models (e.g., chemical and micromechanical) in order to comprehensively address all of the surface-related characteristics important in environmental and other aqueous processes.

  5. Frictional behavior of atomically thin sheets: hexagonal-shaped graphene islands grown on copper by chemical vapor deposition.

    PubMed

    Egberts, Philip; Han, Gang Hee; Liu, Xin Z; Johnson, A T Charlie; Carpick, Robert W

    2014-05-27

    Single asperity friction experiments using atomic force microscopy (AFM) have been conducted on chemical vapor deposited (CVD) graphene grown on polycrystalline copper foils. Graphene substantially lowers the friction force experienced by the sliding asperity of a silicon AFM tip compared to the surrounding oxidized copper surface by a factor ranging from 1.5 to 7 over loads from the adhesive minimum up to 80 nN. No damage to the graphene was observed over this range, showing that friction force microscopy serves as a facile, high contrast probe for identifying the presence of graphene on Cu. Consistent with studies of epitaxially grown, thermally grown, and mechanically exfoliated graphene films, the friction force measured between the tip and these CVD-prepared films depends on the number of layers of graphene present on the surface and reduces friction in comparison to the substrate. Friction results on graphene indicate that the layer-dependent friction properties result from puckering of the graphene sheet around the sliding tip. Substantial hysteresis in the normal force dependence of friction is observed with repeated scanning without breaking contact with a graphene-covered region. Because of the hysteresis, friction measured on graphene changes with time and maximum applied force, unless the tip slides over the edge of the graphene island or contact with the surface is broken. These results also indicate that relatively weak binding forces exist between the copper foil and these CVD-grown graphene sheets.

  6. Status of Diffused Junction p(+)n InP Solar Cells for Space Applications

    NASA Technical Reports Server (NTRS)

    Faur, Mircea; Faur, Maria; Flood, D. J.; Brinker, D. J.; Goradia, C.; Fatemi, N. S.; Jenkins, P. P.; Wilt, D. M.; Bailey, S.

    1994-01-01

    Recently, we have succeeded in fabricating diffused junction p(+)n(Cd,S) InP solar cells with measured AMO, 25 C open circuit voltage (V(sub OC)) of 887.6 mV, which, to the best of our knowledge, is higher than previously reported V(sub OC) values for any InP homojunction solar cells. The experiment-based projected achievable efficiency of these cells using LEC grown substrates is 21.3%. The maximum AMO, 25 C efficiency recorded to date on bare cells is, however, only 13.2%. This is because of large external and internal losses due to non-optimized front grid design, antireflection (AR) coating and emitter thickness. This paper summarizes recent advances in the technology of fabrication of p(+)n InP diffused structures and solar cells, resulted from a study undertaken in an effort to increase the cell efficiency. The topics discussed in this paper include advances in: 1) the formation of thin p(+) InP:Cd emitter layers, 2) electroplated front contacts, 3) surface passivation and 4) the design of a new native oxide/AI203/MgF2 three layer AR coating using a chemically-grown P-rich passivating oxide as a first layer. Based on the high radiation resistance and the excellent post-irradiation annealing and recovery demonstrated in the early tests done to date, as well as the projected high efficiency and low-cost high-volume fabricability, these cells show a very good potential for space photovoltaic applications.

  7. Epitaxial growth of CoO films on semiconductor and metal substrates by constructing a complex heterostructure

    NASA Astrophysics Data System (ADS)

    Entani, S.; Kiguchi, M.; Saiki, K.; Koma, A.

    2003-01-01

    Epitaxial growth of CoO films was studied using reflection high-energy electron diffraction (RHEED), electron energy loss spectroscopy (EELS), ultraviolet photoelectron spectroscopy (UPS) and Auger electron spectroscopy (AES). The RHEED results indicated that an epitaxial CoO film grew on semiconductor and metal substrates (CoO (0 0 1)∥GaAs (0 0 1), Cu (0 0 1), Ag (0 0 1) and [1 0 0]CoO∥[1 0 0] substrates) by constructing a complex heterostructure with two alkali halide buffer layers. The AES, EELS and UPS results showed that the grown CoO film had almost the same electronic structure as bulk CoO. We could show that use of alkali halide buffer layers was a good way to grow metal oxide films on semiconductor and metal substrates in an O 2 atmosphere. The alkali halide layers not only works as glue to connect very dissimilar materials but also prevents oxidation of metal and semiconductor substrates.

  8. Ultrathin planar graphene supercapacitors.

    PubMed

    Yoo, Jung Joon; Balakrishnan, Kaushik; Huang, Jingsong; Meunier, Vincent; Sumpter, Bobby G; Srivastava, Anchal; Conway, Michelle; Reddy, Arava Leela Mohana; Yu, Jin; Vajtai, Robert; Ajayan, Pulickel M

    2011-04-13

    With the advent of atomically thin and flat layers of conducting materials such as graphene, new designs for thin film energy storage devices with good performance have become possible. Here, we report an "in-plane" fabrication approach for ultrathin supercapacitors based on electrodes comprised of pristine graphene and multilayer reduced graphene oxide. The in-plane design is straightforward to implement and exploits efficiently the surface of each graphene layer for energy storage. The open architecture and the effect of graphene edges enable even the thinnest of devices, made from as grown 1-2 graphene layers, to reach specific capacities up to 80 μFcm(-2), while much higher (394 μFcm(-2)) specific capacities are observed multilayer reduced graphene oxide electrodes. The performances of devices with pristine as well as thicker graphene-based structures are examined using a combination of experiments and model calculations. The demonstrated all solid-state supercapacitors provide a prototype for a broad range of thin-film based energy storage devices.

  9. Oxidant effect of La(NO3)3·6H2O solution on the crystalline characteristics of nanocrystalline ZrO2 films grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Oh, Nam Khen; Kim, Jin-Tae; Kang, Goru; An, Jong-Ki; Nam, Minwoo; Kim, So Yeon; Park, In-Sung; Yun, Ju-Young

    2017-02-01

    Nanocrystalline ZrO2 films were synthesized by atomic layer deposition method using CpZr[N(CH3)2]3 (Cp = C5H5) as the metal precursor and La(NO3)3·6H2O solution as the oxygen source. La element in the deposited ZrO2 films could not be detected as its content was below the resolution limit of the X-ray photoelectron spectroscopy. The alternative introduction of La(NO3)3·6H2O solution to conventionally used H2O as the oxidant effectively altered the crystalline structure, grain size, and surface roughness of the grown ZrO2 films. Specifically, the crystalline structure of the ZrO2 film changed from a mixture of tetragonal and monoclinic phases to monoclinic phase. The average grain size also increased, and the resulting film surface became rougher. The average grain sizes of the ZrO2 films prepared from La(NO3)3·6H2O solution at concentrations of 10, 20, 30, and 40% were 280, 256, 208, and 200 nm, respectively, whereas that prepared using H2O oxidant was 142 nm. However, the concentration of La(NO3)3·6H2O solution minimally influenced the crystalline characteristics of the nanocrystalline ZrO2 films i.e., the crystalline structure, grain size, and surface roughness except for crystallite size.

  10. Fabrication and characterization of complex oxide RENiO3/LaAlO3 superlattices

    NASA Astrophysics Data System (ADS)

    Kareev, M.; Freeland, J. W.; Liu, J.; Kirby, B.; Keimer, B.; Chakhalian, J.

    2008-03-01

    Nowadays there has been growing interest to synthesis of atomically thin complex oxide superlattices which can result in novel electronic and magnetic properties at the interface. Here we report on digital synthesis of single unit cell nickel based heterostructures of RENiO3/LaAlO3 (RE = La, Nd and Pr) superlattices on SrTiO3 and LaAlO3 by laser MBE. RHEED analysis, grazing angle XRD and AFM imaging have confirmed the high quality of the epitaxially grown superlattices. The magnetic and electronic properties of the superlattices have been elucidated by polarized X-ray spectroscopies, which show a non-trivial evolution of magnetism and charge of the LNO layer with increasing LNO layer thickness. The work has been supported by U.S. DOD-ARO under Contract No. 0402-17291.

  11. Advanced Silicon-on-Insulator: Crystalline Silicon on Atomic Layer Deposited Beryllium Oxide.

    PubMed

    Min Lee, Seung; Hwan Yum, Jung; Larsen, Eric S; Chul Lee, Woo; Keun Kim, Seong; Bielawski, Christopher W; Oh, Jungwoo

    2017-10-16

    Silicon-on-insulator (SOI) technology improves the performance of devices by reducing parasitic capacitance. Devices based on SOI or silicon-on-sapphire technology are primarily used in high-performance radio frequency (RF) and radiation sensitive applications as well as for reducing the short channel effects in microelectronic devices. Despite their advantages, the high substrate cost and overheating problems associated with complexities in substrate fabrication as well as the low thermal conductivity of silicon oxide prevent broad applications of this technology. To overcome these challenges, we describe a new approach of using beryllium oxide (BeO). The use of atomic layer deposition (ALD) for producing this material results in lowering the SOI wafer production cost. Furthermore, the use of BeO exhibiting a high thermal conductivity might minimize the self-heating issues. We show that crystalline Si can be grown on ALD BeO and the resultant devices exhibit potential for use in advanced SOI technology applications.

  12. Intermixing and thermal oxidation of ZrO2 thin films grown on a-Si, SiN, and SiO2 by metallic and oxidic mode magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Coloma Ribera, R.; van de Kruijs, R. W. E.; Sturm, J. M.; Yakshin, A. E.; Bijkerk, F.

    2017-03-01

    The initial growth of DC sputtered ZrO2 on top of a-Si, SiN, and SiO2 layers has been studied by in vacuo high-sensitivity low energy ion scattering for two gas deposition conditions with different oxygen contents (high-O and low-O conditions). This unique surface sensitive technique allowed the determination of surface composition and thicknesses required to close the ZrO2 layer on all three substrates for both conditions. The ZrO2 layer closes similarly on all substrates due to more favorable enthalpies of formation for ZrO2 and ZrSiO4, resulting in passivation of the Si from the substrate. However, this layer closes at about half of the thickness (˜1.7 nm) for low-O conditions due to less oxidative conditions and less energetic particles arriving at the sample, which leads to less intermixing via silicate formation. In contrast, for high-O conditions, there is more ZrSiO4 and/or SiOx formation, giving more intermixing (˜3.4 nm). In vacuo X-ray photoelectron spectroscopy (XPS) measurements revealed similar stoichiometric ZrO2 layers deposited by both conditions and a higher interaction of the ZrO2 layer with the underlying a-Si for high-O conditions. In addition, oxygen diffusion through low-O ZrO2 films on a-Si has been investigated by ex situ angular-resolved XPS of samples annealed in atmospheric oxygen. For temperatures below 400 °C, no additional oxidation of the underlying a-Si was observed. This, together with the amorphous nature and smoothness of these samples, makes ZrO2 a good candidate as an oxidation protective layer on top of a-Si.

  13. Nanostructured diamond layers enhance the infrared spectroscopy of biomolecules.

    PubMed

    Kozak, Halyna; Babchenko, Oleg; Artemenko, Anna; Ukraintsev, Egor; Remes, Zdenek; Rezek, Bohuslav; Kromka, Alexander

    2014-03-04

    We report on the fabrication and practical use of high-quality optical elements based on Au mirrors coated with diamond layers with flat, nanocolumnar, and nanoporous morphologies. Diamond layers (100 nm thickness) are grown at low temperatures (about 300 °C) from a methane, carbon dioxide, and hydrogen gas mixture by a pulsed microwave plasma system with linear antennas. Using grazing angle reflectance (GAR) Fourier transform infrared spectroscopy with p-polarized light, we compare the IR spectra of fetal bovine serum proteins adsorbed on diamond layers with oxidized (hydrophilic) surfaces. We show that the nanoporous diamond layers provide IR spectra with a signal gain of about 600% and a significantly improved sensitivity limit. This is attributed to its enhanced internal surface area. The improved sensitivity enabled us to distinguish weak infrared absorption peaks of <10-nm-thick protein layers and thereby to analyze the intimate diamond-molecule interface.

  14. Film transfer enabled by nanosheet seed layers on arbitrary sacrificial substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dral, A. P.; Nijland, M.; Koster, G.

    An approach for film transfer is demonstrated that makes use of seed layers of nanosheets on arbitrary sacrificial substrates. Epitaxial SrTiO{sub 3}, SrRuO{sub 3}, and BiFeO{sub 3} films were grown on Ca{sub 2}Nb{sub 3}O{sub 10} nanosheet seed layers on phlogopite mica substrates. Cleavage of the mica substrates enabled film transfer to flexible polyethylene terephthalate substrates. Electron backscatter diffraction, X-ray diffraction, and atomic force microscopy confirmed that crystal orientation and film morphology remained intact during transfer. The generic nature of this approach is illustrated by growing films on zinc oxide substrates with a nanosheet seed layer. Film transfer to a flexiblemore » substrate was accomplished via acid etching.« less

  15. Large area ultraviolet photodetector on surface modified Si:GaN layers

    NASA Astrophysics Data System (ADS)

    Anitha, R.; R., Ramesh; Loganathan, R.; Vavilapalli, Durga Sankar; Baskar, K.; Singh, Shubra

    2018-03-01

    Unique features of semiconductor based heterostructured photoelectric devices have drawn considerable attention in the recent past. In the present work, large area UV photodetector has been fabricated utilizing interesting Zinc oxide microstructures on etched Si:GaN layers. The surface of Si:GaN layer grown by metal organic chemical vapor deposition method on sapphire has been modified by chemical etching to control the microstructure. The photodetector exhibits response to Ultraviolet light only. Optimum etching of Si:GaN was required to exhibit higher responsivity (0.96 A/W) and detectivity (∼4.87 × 109 Jones), the two important parameters for a photodetector. Present method offers a tunable functionality of photodetector through modification of top layer microstructure. A comparison with state of art materials has also been presented.

  16. Effects of nitrogen incorporation in HfO(2) grown on InP by atomic layer deposition: an evolution in structural, chemical, and electrical characteristics.

    PubMed

    Kang, Yu-Seon; Kim, Dae-Kyoung; Kang, Hang-Kyu; Jeong, Kwang-Sik; Cho, Mann-Ho; Ko, Dae-Hong; Kim, Hyoungsub; Seo, Jung-Hye; Kim, Dong-Chan

    2014-03-26

    We investigated the effects of postnitridation on the structural characteristics and interfacial reactions of HfO2 thin films grown on InP by atomic layer deposition (ALD) as a function of film thickness. By postdeposition annealing under NH3 vapor (PDN) at 600 °C, an InN layer formed at the HfO2/InP interface, and ionized NHx was incorporated in the HfO2 film. We demonstrate that structural changes resulting from nitridation of HfO2/InP depend on the film thickness (i.e., a single-crystal interfacial layer of h-InN formed at thin (2 nm) HfO2/InP interfaces, whereas an amorphous InN layer formed at thick (>6 nm) HfO2/InP interfaces). Consequently, the tetragonal structure of HfO2 transformed into a mixture structure of tetragonal and monoclinic because the interfacial InN layer relieved interfacial strain between HfO2 and InP. During postdeposition annealing (PDA) in HfO2/InP at 600 °C, large numbers of oxidation states were generated as a result of interfacial reactions between interdiffused oxygen impurities and out-diffused InP substrate elements. However, in the case of the PDN of HfO2/InP structures at 600 °C, nitrogen incorporation in the HfO2 film effectively blocked the out-diffusion of atomic In and P, thus suppressing the formation of oxidation states. Accordingly, the number of interfacial defect states (Dit) within the band gap of InP was significantly reduced, which was also supported by DFT calculations. Interfacial InN in HfO2/InP increased the electron-barrier height to ∼0.6 eV, which led to low-leakage-current density in the gate voltage region over 2 V.

  17. Solid State Research.

    DTIC Science & Technology

    1982-11-22

    48 Fabricated in Zone-Melting-Recrystallized Si Films on Si0 2-Coated Si Substrates V 4. MICROELECTRONICS 55 4.1 Charge-Coupled Devices: Time...OMCVD to the CLEFT (cleavage of lateral epitaxial films for transfer) process, a continuous epitaxial GaAs layer 3 Ym thick has been grown over a...complete-island-etch or local-oxidation-of-Si isolation, that were fabricated in zone-melting-recrystallized Si films on Si02-coated Si substrates. As

  18. Electrical properties of thin film transistors with zinc tin oxide channel layer

    NASA Astrophysics Data System (ADS)

    Hong, Seunghwan; Oh, Gyujin; Kim, Eun Kyu

    2017-10-01

    We have investigated thin film transistors (TFTs) with zinc tin oxide (ZTO) channel layer fabricated by using an ultra-high vacuum radio frequency sputter. ZTO thin films were grown at room temperature by co-sputtering of ZnO and SnO2, which applied power for SnO2 target was varied from 15 W to 90 W under a fixed sputtering power of 70 W for ZnO target. A post-annealing treatment to improve the film quality was done at temperature ranges from 300 to 600 °C by using the electrical furnace. The ZTO thin films showed good electrical and optical properties such as Hall mobility of more than 9 cm2/V·s, specific resistivity of about 2 × 102 Ω·cm, and optical transmittance of 85% in visible light region by optical bandgap of 3.3 eV. The ZTO-TFT with an excellent performance of channel mobility of 19.1 cm2/V·s and on-off ratio ( I on / I off ) of 104 was obtained from the films grown with SnO2 target power of 25 W and post-annealed at 450 °C. This result showed that ZTO film is promising on application to a high performance transparent TFTs.

  19. Characterization of nonpolar a-plane GaN epi-layers grown on high-density patterned r-plane sapphire substrates

    NASA Astrophysics Data System (ADS)

    Jinno, Daiki; Otsuki, Shunya; Sugimori, Shogo; Daicho, Hisayoshi; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Akasaki, Isamu

    2018-02-01

    To reduce the number of threading dislocations (TDs) in nonpolar a-plane GaN (a-GaN) epi-layers grown on flat r-plane sapphire substrates (r-FSS), we investigated the effects on the crystalline quality of the a-GaN epi-layers of high-density patterned r-plane sapphire substrates (r-HPSS), the patterns of which were placed at intervals of several hundred nanometers. Two types of r-HPSS, the patterns of which had diameters and heights on the order of several hundred nanometers (r-NHPSS) or several micrometers (r-MHPSS), were prepared with conventional r-FSS. The effect of these r-HPSS on the a-GaN epi-layers was demonstrated by evaluating the surface morphology and the crystalline quality of the epi-layers. The surfaces of the a-GaN epi-layer grown on r-FSS and r-NHPSS were pit-free and mirror-like, whereas the surface of the a-GaN epi-layer grown on r-MHPSS was very rough due to the large, irregular GaN islands that grew on the patterns, mainly at the initial growth stage. The crystalline quality of the a-GaN epi-layer grown on r-NHPSS was better than that of the a-GaN epi-layer grown on r-FSS. We confirmed that there were fewer TDs in the a-GaN epi-layer grown on r-NHPSS than there were in the a-GaN epi-layer grown on r-FSS. The TDs propagating to the surface in a-GaN epi-layer grown on r-NHPSS were mainly generated on the flat sapphire regions between the patterns. Interestingly, it was also found that the TDs that propagated to the surface concentrated with a periodic pitch along the c-axis direction. The TD densities of a-GaN epi-layers grown on r-FSS and r-NHPSS were estimated to be approximately 5.0 × 1010 and 1.5 × 109 cm-2, respectively. This knowledge will contribute to the further development of a-GaN epi-layers for high-performance devices.

  20. Study of the Anisotropic Elastoplastic Properties of β-Ga2O3 Films Synthesized on SiC/Si Substrates

    NASA Astrophysics Data System (ADS)

    Grashchenko, A. S.; Kukushkin, S. A.; Nikolaev, V. I.; Osipov, A. V.; Osipova, E. V.; Soshnikov, I. P.

    2018-05-01

    The structural and mechanical properties of gallium oxide films grown on silicon crystallographic planes (001), (011), and (111) with a buffer layer of silicon carbide are investigated. Nanoindentation was used to study the elastoplastic properties of gallium oxide and also to determine the elastic recovery parameter of the films under study. The tensile strength, hardness, elasticity tensor, compliance tensor, Young's modulus, Poisson's ratio, and other characteristics of gallium oxide were calculated using quantum chemistry methods. It was found that the gallium oxide crystal is auxetic because, for some stretching directions, the Poisson's ratio takes on negative values. The calculated values correspond quantitatively to the experimental data. It is concluded that the elastoplastic properties of gallium oxide films approximately correspond to the properties of bulk crystals and that a change in the orientation of the silicon surface leads to a significant change in the orientation of gallium oxide.

  1. Depletion-mode vertical Ga2O3 trench MOSFETs fabricated using Ga2O3 homoepitaxial films grown by halide vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Sasaki, Kohei; Thieu, Quang Tu; Wakimoto, Daiki; Koishikawa, Yuki; Kuramata, Akito; Yamakoshi, Shigenobu

    2017-12-01

    We developed depletion-mode vertical Ga2O3 trench metal-oxide-semiconductor field-effect transistors by using n+ contact and n- drift layers. These epilayers were grown on an n+ (001) Ga2O3 single-crystal substrate by halide vapor phase epitaxy. Cu and HfO2 were used for the gate metal and dielectric film, respectively. The mesa width and gate length were approximately 2 and 1 µm, respectively. The devices showed good DC characteristics, with a specific on-resistance of 3.7 mΩ cm2 and clear current modulation. An on-off ratio of approximately 103 was obtained.

  2. Growth of well-defined metal and oxide nanoparticles on biological surfaces

    NASA Astrophysics Data System (ADS)

    Tsukruk, Vladimir

    2009-03-01

    We present a brief overview of our recent studies in the field of bio-enabled surface-mediated growth of inorganic nanoparticles at room temperature and ambient conditions. We demonstrate that all titania, gold, and silver nanoparticles can be grown with relatively monodisperse diameter within 4-6 nm surrounded by biological shells of 1-2 nm thick. As biological templates we utilized ultrathin, molecular uniform and micropatterned surface layers of two different proteins: silk fibroin (for growth of gold and silver nanoparticles) and silaffin (for growth of titania nanoparticles). To identify the grown nanophases and chemical composition/secondary structure of biological templates we applied combined AFM, SEM, TEM, XPS, SERS, UV-vis, and ATR-FTIR techniques.

  3. Dimensional crossover of electron weak localization in ZnO/TiO{sub x} stacked layers grown by atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, D., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Misra, P., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Joshi, M. P.

    2016-01-25

    We report on the dimensional crossover of electron weak localization in ZnO/TiO{sub x} stacked layers having well-defined and spatially-localized Ti dopant profiles along film thickness. These films were grown by in situ incorporation of sub-monolayer TiO{sub x} on the growing ZnO film surface and subsequent overgrowth of thin conducting ZnO spacer layer using atomic layer deposition. Film thickness was varied in the range of ∼6–65 nm by vertically stacking different numbers (n = 1–7) of ZnO/TiO{sub x} layers of nearly identical dopant-profiles. The evolution of zero-field sheet resistance (R{sub ◻}) versus temperature with decreasing film thickness showed a metal to insulator transition. Onmore » the metallic side of the metal-insulator transition, R{sub ◻}(T) and magnetoresistance data were found to be well corroborated with the theoretical framework of electron weak localization in the diffusive transport regime. The temperature dependence of both R{sub ◻} and inelastic scattering length provided strong evidence for a smooth crossover from 2D to 3D weak localization behaviour. Results of this study provide deeper insight into the electron transport in low-dimensional n-type ZnO/TiO{sub x} stacked layers which have potential applications in the field of transparent oxide electronics.« less

  4. Dielectric function of InGaAs in the visible

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Sieg, R. E.; Yao, H. D.; Snyder, P. G.; Woollam, J. A.; Pamulapati, J.; Bhattacharya, P. K.; Sekula-Moise, P. A.

    1990-01-01

    Measurements are reported of the dielectric function of thermodynamically stable In(x)Ga(1-x)As in the composition range 0.3 equal to or less than X = to or less than 0.7. The optically thick samples of InGaAs were made by molecular beam epitaxy (MBE) in the range 0.4 = to or less than X = to or less than 0.7 and by metal-organic chemical vapor deposition (MOCVD) for X = 0.3. The MBE made samples, usually 1 micron thick, were grown on semi-insulating InP and included a strain release structure. The MOCVD sample was grown on GaAs and was 2 microns thick. The dielectric functions were measured by variable angle spectroscopic ellipsometry in the range 1.55 to 4.4 eV. The data was analyzed assuming an optically thick InGaAs material with an oxide layer on top. The thickness of this layer was estimated by comparing the results for the InP lattice matched material, i.e., X = 0.53, with results published in the literature. The top oxide layer mathematically for X = 0.3 and X = 0.53 was removed to get the dielectric function of the bare InGaAs. In addition, the dielectric function of GaAs in vacuum, after a protective arsenic layer was removed. The dielectric functions for X = 0, 0.3, and 0.53 together with the X = 1 result from the literature to evaluate an algorithm for calculating the dielectric function of InGaAs for an arbitrary value of X(0 = to or less than X = to or less than 1) were used. Results of the dielectric function calculated using the algorithm were compared with experimental data.

  5. Dielectric function of InGaAs in the visible

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Yao, H. D.; Snyder, P. G.; Woolam, J. A.; Pamulapati, J.; Bhattacharya, P. K.; Sekula-Moise, P. A.; Sieg, R. E.

    1990-01-01

    Measurements are reported of the dielectric function of thermodynamically stable In(x)Ga(1-x)As in the composition range 0.3 equal to or less than X = to or less than 0.7. The optically thick samples of InGaAs were made by molecular beam epitaxy (MBE) in the range 0.4 = to or less than X = to or less than 0.7 and by metal-organic chemical vapor deposition (MOCVD) for X = 0.3. The MBE made samples, usually 1 micron thick, were grown on semi-insulating InP and included a strain release structure. The MOCVD sample was grown on GaAs and was 2 microns thick. The dielectric functions were measured by variable angle spectroscopic ellipsometry in the range 1.55 to 4.4 eV. The data was analyzed assuming an optically thick InGaAs material with an oxide layer on top. The thickness of this layer was estimated by comparing the results for the InP lattice matched material, i.e., X = 0.53, with results published in the literature. The top oxide layer mathematically for X = 0.3 and X = 0.53 was removed to get the dielectric function of the bare InGaAs. In addition, the dielectric function of GaAs in vacuum, after a protective arsenic layer was removed. The dielectric functions for X = 0, 0.3, and 0.53 together with the X = 1 result from the literature to evaluate an algorithm for calculating the dielectric function of InGaAs for an arbitrary value of X (0 = to or less than X = to or less than 1) were used. Results of the dielectric function calculated using the algorithm were compared with experimental data.

  6. Strong metal support interaction of Pt on TiO2 grown by atomic layer deposition and physical vapor deposition for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Hansen, Robin Paul

    Several roadblocks prevent the large-scale commercialization of hydrogen fuel cells, including the stability of the Pt catalysts and their substrates, as well as the high cost of Pt. This is particularly true for the cathode, which requires a higher Pt loading because of the slow kinetics of the oxygen reduction reaction (ORR). The problem with the stability of the substrate can be solved by replacing the traditional carbon support with a conductive metal oxide such as reduced TiO2, which will not easily corrode and should result in longer lasting fuel cells. In this study, Pt was deposited either by atomic layer deposition (ALD) or physical vapor deposition (PVD). The typical size of the Pt islands that were grown using these deposition techniques was 3-8 nm. One factor that can inhibit the catalytic activity of a metal catalyst on a metal oxide is the strong metal support interaction (SMSI). This is where a metal on a reducible metal oxide can be encapsulated by a layer of the metal oxide support material at elevated temperatures. The processing of materials through atomic layer deposition can exceed this temperature. The TiO2 substrates used in this study were either grown by ALD, which results in a polycrystalline anatase film, or were single-crystal rutile TiO2(110) samples prepared in ultra-high vacuum (UHV). The Pt/TiO2 samples were tested electrochemically using cyclic voltammetry (CV) to determine the level of catalytic activity. To determine the effect of the SMSI interaction on the catalytic activity of the PVD grown samples, CV was performed on samples that were annealed in high vacuum after Pt deposition. Additional characterization was performed with scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), Rutherford backscattering spectrometry (RBS), and four point probe analysis. Platinum that was deposited by PVD was used as a standard since it is not affected by the SMSI at the low temperature of the substrate during deposition. These samples were analyzed after deposition and then annealed to higher temperatures to induce the SMSI effect. The AR-XPS results for the single crystal TiO2 substrate show that there is an increase in the Ti emission at glancing exit angle after an anneal at 150 °C, which indicates the onset of the SMSI. For the ALD TiO2 substrate, the onset of SMSI was at 380 °C. This work is believed to be the first time in which the SMSI was observed in this fashion. The CV data for the samples with PVD Pt the single crystal TiO2 substrate showed a large reduction of the hydrogen adsortion at 380 °C. For the ORR, there was a reduction in the ORR signal at 380 °C. By 750 °C, the ORR was almost completely suppressed. For the PVD Pt grown on the ALD TiO2 substrates, there was a large increase in the resistivity of the samples after exposure to the acidic electrolyte used during the CV measurements. This resulted in no CV signal for those samples. Another aspect that was significantly different for the two different substrates was the Pt growth morphology. Both the AR-XPS and SEM measurements indicate that the Pt on the single crystal TiO2 substrates grows as distinct islands. For the ALD TiO2 substrates, the Pt islands had a lower profile than the islands grown on the single crystal substrates. This morphology difference is believed to be due to the large defect density of the ALD generated TiO2 or possibly from the different chemical properties of the anatase surface. These results indicate that the ALD generated substrates are more resistant to the effects of the SMSI, but that the ALD substrates are more sensitive to surface contamination.

  7. Tunneling Spectroscopy of MoN and NbxTi1-xN Thin Films Grown by Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Cao, Chaoyue; Groll, Nickolas; Klug, Jeffrey; Becker, Nicholas; Altin, Serdar; Proslier, Thomas; Zasadzinski, John

    2014-03-01

    Tunneling I(V) and dI/dV vs. V are reported on superconducting thin films of MoN and NbxTi1-xN using a point contact method with a Au tip. The films are grown by the chemical process of atomic layer deposition (ALD) onto various substrates (Si, quartz, sapphire) held at 450 C. Resistively measured superconducting Tc values up to 12K and 13K are found for the MoN and NbxTi1-xN respectively. Artificial tunnel barriers (1-3 nm thick) of Al2O3, also grown by ALD, are shown to provide much improved tunneling characteristics compared to the native oxides. Relatively high quality gap features are observed with zero-bias conductance values as low as ~ 10% of the high bias values. Gap parameters Δ ~ 2.0meV are found for the MoN and Δ ~ 2.0-2.4 meV for the NbxTi1-xN which follow the BCS temperature dependence and close near the measured film Tc indicating bulk superconductivity at the surface. The suitability of such conformal ALD grown films for potential superconducting devices is discussed. This work was supported by the U.S. Department of Energy, Office of Science under contract No. DE-AC02-06CH11357.

  8. Atomic layer deposition of indium oxide thin film from a liquid indium complex containing 1-dimethylamino-2-methyl-2-propoxy ligands

    NASA Astrophysics Data System (ADS)

    Han, Jeong Hwan; Jung, Eun Ae; Kim, Hyo Yeon; Kim, Da Hye; Park, Bo Keun; Park, Jin-Seong; Son, Seung Uk; Chung, Taek-Mo

    2016-10-01

    In2O3 thin films were grown from a newly developed, liquid, homoleptic, In-based complex, tris(1-dimethylamino-2-methyl-2-propoxy)indium [In(dmamp)3], and O3 by atomic layer deposition (ALD) at growth temperatures of 150-200 °C. In(dmamp)3 exhibited single-step evaporation with negligible residue and excellent thermal stability between 30 and 250 °C. The self-limiting surface reaction of In2O3 during ALD was demonstrated by varying the In(dmamp)3 and O3 pulse lengths, with a growth rate of 0.027 nm/cycle achieved at 200 °C. The In2O3 films grown at temperatures over 175 °C exhibited negligible concentrations of impurities, whereas that grown below 175 °C had concentrations of residual C of 6-8 at.%. Glancing angle X-ray diffraction revealed that the In2O3 films were polycrystalline in nature when the deposition temperature was greater than 200 °C. The In2O3 films grown at 150-200 °C exhibited carrier concentrations of 1.5 × 1018-6.6 × 1019 cm-3, resistivities of 15.1-2 × 10-3 Ω cm, and Hall mobilities of 0.8-42 cm2/(V s).

  9. Influence of anodizing conditions on generation of internal cracks in anodic porous tin oxide films grown in NaOH electrolyte

    NASA Astrophysics Data System (ADS)

    Zaraska, Leszek; Gawlak, Karolina; Gurgul, Magdalena; Dziurka, Magdalena; Nowak, Marlena; Gilek, Dominika; Sulka, Grzegorz D.

    2018-05-01

    Nanoporous tin oxide layers were synthesized via simple one-step anodic oxidation of a low-purity Sn foil (98.8%) in sodium hydroxide electrolyte. The process of pore formation at the early stage of anodization was discussed on the basis of concepts of oxygen bubble mould effect and viscous flow of oxide. The effect of anodizing conditions on the generation of internal cracks and fractures within the anodic film was investigated in detail. It was confirmed that crack-free tin oxide films can be obtained if the anodization is carried out at the potential of 4 V independently of the electrolyte concentration. On the other hand, the porous anodic film with a totally stacked internal morphology is obtained at the potential of 5 V in 0.1 M NaOH electrolyte. The generation of internal cracks and voids can be attributed to a much lower surface porosity and local trapping of O2 inside the pores of the oxide layer. However, increasing electrolyte concentration allows for obtaining less cracked porous films due to effective and uniform liberation of oxygen bubbles from the channels through completely open pore mouths. Furthermore, it was confirmed that uniformity of the anodic tin oxide layers can be significantly improved by vigorous electrolyte stirring. Finally, we observed that the addition of ethanol to the electrolyte can reduce anodic current density and the oxide growth rate. In consequence, less cracked anodic film can be formed even at the potential of 6 V. The generation of oxygen at the pore bottoms, together with the open pore mouths were found to be critical factors responsible for the anodic formation of crack-free porous tin oxide films.

  10. Epitaxial CuInSe2 thin films grown by molecular beam epitaxy and migration enhanced epitaxy

    NASA Astrophysics Data System (ADS)

    Abderrafi, K.; Ribeiro-Andrade, R.; Nicoara, N.; Cerqueira, M. F.; Gonzalez Debs, M.; Limborço, H.; Salomé, P. M. P.; Gonzalez, J. C.; Briones, F.; Garcia, J. M.; Sadewasser, S.

    2017-10-01

    While CuInSe2 chalcopyrite materials are mainly used in their polycrystalline form to prepare thin film solar cells, epitaxial layers have been used for the characterization of defects. Typically, epitaxial layers are grown by metal-organic vapor phase epitaxy or molecular beam epitaxy (MBE). Here we present epitaxial layers grown by migration enhanced epitaxy (MEE) and compare the materials quality to MBE grown layers. CuInSe2 layers were grown on GaAs (0 0 1) substrates by co-evaporation of Cu, In, and Se using substrate temperatures of 450 °C, 530 °C, and 620 °C. The layers were characterized by high resolution X-ray diffraction (HR-XRD), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and atomic force microscopy (AFM). HR-XRD and HR-TEM show a better crystalline quality of the MEE grown layers, and Raman scattering measurements confirm single phase CuInSe2. AFM shows the previously observed faceting of the (0 0 1) surface into {1 1 2} facets with trenches formed along the [1 1 0] direction. The surface of MEE-grown samples appears smoother compared to MBE-grown samples, a similar trend is observed with increasing growth temperature.

  11. Epitaxial pentacene films grown on the surface of ion-beam-processed gate dielectric layer

    NASA Astrophysics Data System (ADS)

    Chou, W. Y.; Kuo, C. W.; Cheng, H. L.; Mai, Y. S.; Tang, F. C.; Lin, S. T.; Yeh, C. Y.; Horng, J. B.; Chia, C. T.; Liao, C. C.; Shu, D. Y.

    2006-06-01

    The following research describes the process of fabrication of pentacene films with submicron thickness, deposited by thermal evaporation in high vacuum. The films were fabricated with the aforementioned conditions and their characteristics were analyzed using x-ray diffraction, scanning electron microscopy, polarized Raman spectroscopy, and photoluminescence. Organic thin-film transistors (OTFTs) were fabricated on an indium tin oxide coated glass substrate, using an active layer of ordered pentacene molecules, which were grown at room temperature. Pentacene film was aligned using the ion-beam aligned method, which is typically employed to align liquid crystals. Electrical measurements taken on a thin-film transistor indicated an increase in the saturation current by a factor of 15. Pentacene-based OTFTs with argon ion-beam-processed gate dielectric layers of silicon dioxide, in which the direction of the ion beam was perpendicular to the current flow, exhibited a mobility that was up to an order of magnitude greater than that of the controlled device without ion-beam process; current on/off ratios of approximately 106 were obtained. Polarized Raman spectroscopy investigation indicated that the surface of the gate dielectric layer, treated with argon ion beam, enhanced the intermolecular coupling of pentacene molecules. The study also proposes the explanation for the mechanism of carrier transportation in pentacene films.

  12. Synchrotron X-ray studies of model SOFC cathodes, part II: Porous powder cathodes

    DOE PAGES

    Chang, Kee-Chul; Ingram, Brian; Ilavsky, Jan; ...

    2017-10-28

    Infiltrated La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ (LSCF) sintered porous powder cathodes for solid oxide fuel cells have been investigated by synchrotron ultra-small angle x-ray scattering (USAXS). Here, we demonstrated that atomic layer deposition (ALD) is the method for a uniform coating and liquid-phase infiltration for growing nanoscale particles on the porous LSCF surfaces. The MnO infiltrate, grown by ALD, forms a conformal layer with a uniform thickness throughout the pores evidenced by USAXS thickness fringes. The La 0.6Sr 0.4CoO 3 (LSC) and La 2Zr 2O 7 (LZO) infiltrates, grown by liquid-phase infiltration, were found to form nanoscale particles onmore » the surfaces of LSCF particles resulting in increased surface areas. In conclusion, impedance measurements suggest that the catalytic property of LSC infiltrate, not the increased surface area of LZO, is important for increasing oxygen reduction activities.« less

  13. Synchrotron X-ray studies of model SOFC cathodes, part II: Porous powder cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Kee-Chul; Ingram, Brian; Ilavsky, Jan

    Infiltrated La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ (LSCF) sintered porous powder cathodes for solid oxide fuel cells have been investigated by synchrotron ultra-small angle x-ray scattering (USAXS). Here, we demonstrated that atomic layer deposition (ALD) is the method for a uniform coating and liquid-phase infiltration for growing nanoscale particles on the porous LSCF surfaces. The MnO infiltrate, grown by ALD, forms a conformal layer with a uniform thickness throughout the pores evidenced by USAXS thickness fringes. The La 0.6Sr 0.4CoO 3 (LSC) and La 2Zr 2O 7 (LZO) infiltrates, grown by liquid-phase infiltration, were found to form nanoscale particles onmore » the surfaces of LSCF particles resulting in increased surface areas. In conclusion, impedance measurements suggest that the catalytic property of LSC infiltrate, not the increased surface area of LZO, is important for increasing oxygen reduction activities.« less

  14. Electronic Structure of C60/Zinc Phthalocyanine/V₂O₅ Interfaces Studied Using Photoemission Spectroscopy for Organic Photovoltaic Applications.

    PubMed

    Lim, Chang Jin; Park, Min Gyu; Kim, Min Su; Han, Jeong Hwa; Cho, Soohaeng; Cho, Mann-Ho; Yi, Yeonjin; Lee, Hyunbok; Cho, Sang Wan

    2018-02-18

    The interfacial electronic structures of a bilayer of fullerene (C 60 ) and zinc phthalocyanine (ZnPc) grown on vanadium pentoxide (V₂O₅) thin films deposited using radio frequency sputtering under various conditions were studied using X-ray and ultraviolet photoelectron spectroscopy. The energy difference between the highest occupied molecular orbital (HOMO) level of the ZnPc layer and the lowest unoccupied molecular orbital (LUMO) level of the C 60 layer was determined and compared with that grown on an indium tin oxide (ITO) substrate. The energy difference of a heterojunction on all V₂O₅ was found to be 1.3~1.4 eV, while that on ITO was 1.1 eV. This difference could be due to the higher binding energy of the HOMO of ZnPc on V₂O₅ than that on ITO regardless of work functions of the substrates. We also determined the complete energy level diagrams of C 60 /ZnPc on V₂O₅ and ITO.

  15. Method and apparatus for stable silicon dioxide layers on silicon grown in silicon nitride ambient

    NASA Technical Reports Server (NTRS)

    Cohen, R. A.; Wheeler, R. K. (Inventor)

    1974-01-01

    A method and apparatus for thermally growing stable silicon dioxide layers on silicon is disclosed. A previously etched and baked silicon nitride tube placed in a furnace is used to grow the silicon dioxide. First, pure oxygen is allowed to flow through the tube to initially coat the inside surface of the tube with a thin layer of silicon dioxide. After the tube is coated with the thin layer of silicon dioxide, the silicon is oxidized thermally in a normal fashion. If the tube becomes contaminated, the silicon dioxide is etched off thereby exposing clean silicon nitride and then the inside of the tube is recoated with silicon dioxide. As is disclosed, the silicon nitride tube can also be used as the ambient for the pyrolytic decomposition of silane and ammonia to form thin layers of clean silicon nitride.

  16. Structural enhancement of ZnO on SiO2 for photonic applications

    NASA Astrophysics Data System (ADS)

    Ruth, Marcel; Meier, Cedrik

    2013-07-01

    Multi-layer thin films are often the basis of photonic devices. Zinc oxide (ZnO) with its excellent optoelectronic properties can serve as a high quality emitter in structures like microdisks or photonic crystals. Here, we present a detailed study on the enhancement of the structural properties of low-temperature MBE grown ZnO on silica (SiO2). By thermal annealing a grain coalescence of the initially polycrystalline layer leads to an enhancement of the electronic structure, indicated by a blue shift of the photoluminescence (PL) signal maximum. Oxygen atmosphere during the annealing process prevents the creation of intrinsic defects by out-diffusion. Pre-annealing deposited SiO2 capping layers instead obstruct the recrystallization and lead to less intense emission. While thin capping layers partially detach from the ZnO film at high temperatures and cause higher surface roughness and the weakest emission, thicker layers remain smoother and exhibit a significantly stronger photoluminescence.

  17. Studies of electrochemical oxidation of Zircaloy nuclear reactor fuel cladding using time-of-flight-energy elastic recoil detection analysis

    NASA Astrophysics Data System (ADS)

    Whitlow, H. J.; Zhang, Y.; Wang, Y.; Winzell, T.; Simic, N.; Ahlberg, E.; Limbäck, M.; Wikmark, G.

    2000-03-01

    The trend towards increased fuel burn-up and higher operating temperatures in order to achieve more economic operation of nuclear power plants places demands on a better understanding of oxidative corrosion of Zircaloy (Zry) fuel rod cladding. As part of a programme to study these processes we have applied time-of-flight-energy elastic recoil detection (ToF-E ERD), electrochemical impedance measurements and scanning electron microscopy to quantitatively characterise thin-oxide films corresponding to the pre-transition oxidation regime. Oxide films of different nominal thickness in the 9-300 nm range were grown on a series of rolled Zr and Zry-2 plates by anodisation in dilute H 2SO 4 with applied voltages. The dielectric thickness of the oxide layer was determined from the electrochemical impedance measurements and the surface topography characterised by scanning electron microscopy. ToF-E ERD with a 60 MeV 127I 11+ ion beam was used to determine the oxygen content and chemical composition of the oxide layer. In the Zr samples, the oxygen content (O atom cm -2) that was determined by ERD was closely similar to the O content derived from impedance measurements from the dielectric film. The absolute agreement was well within the uncertainty associated with the stopping powers. Moreover, the measured composition of the thick oxide layers corresponded to ZrO 2 for the films thicker than 65 nm where the oxide layer was resolved in the ERD depth profile. Zry-2 samples exhibited a similar behaviour for small thickness ( ⩽130 nm) but had an enhanced O content at larger thicknesses that could be associated either with enhanced rough surface topography or porous oxide formation that was correlated with the presence of Second Phase Particles (SPP) in Zry-2. The concentration of SPP elements (Fe, Cr, Ni) in relation to Zr was the same in the outer 9×10 17 atom cm -2 of oxide as in the same thickness of metal. The results also revealed the presence of about 1 at.% 32S in the oxides on the Zr and Zry-2 samples which presumably originates from the electrolyte.

  18. Grain size dependence of dielectric relaxation in cerium oxide as high-k layer

    PubMed Central

    2013-01-01

    Cerium oxide (CeO2) thin films used liquid injection atomic layer deposition (ALD) for deposition and ALD procedures were run at substrate temperatures of 150°C, 200°C, 250°C, 300°C, and 350°C, respectively. CeO2 were grown on n-Si(100) wafers. Variations in the grain sizes of the samples are governed by the deposition temperature and have been estimated using Scherrer analysis of the X-ray diffraction patterns. The changing grain size correlates with the changes seen in the Raman spectrum. Strong frequency dispersion is found in the capacitance-voltage measurement. Normalized dielectric constant measurement is quantitatively utilized to characterize the dielectric constant variation. The relationship extracted between grain size and dielectric relaxation for CeO2 suggests that tuning properties for improved frequency dispersion can be achieved by controlling the grain size, hence the strain at the nanoscale dimensions. PMID:23587419

  19. High sensitive formaldehyde graphene gas sensor modified by atomic layer deposition zinc oxide films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Haichuan; Zhang, Zhiqiang; Wang, Keke

    2014-07-21

    Zinc oxide (ZnO) thin films with various thicknesses were fabricated by Atomic Layer Deposition on Chemical Vapor Deposition grown graphene films and their response to formaldehyde has been investigated. It was found that 0.5 nm ZnO films modified graphene sensors showed high response to formaldehyde with the resistance change up to 52% at the concentration of 9 parts-per-million (ppm) at room temperature. Meanwhile, the detection limit could reach 180 parts-per-billion (ppb) and fast response of 36 s was also obtained. The high sensitivity could be attributed to the combining effect from the highly reactive, top mounted ZnO thin films, and high conductivemore » graphene base network. The dependence of ZnO films surface morphology and its sensitivity on the ZnO films thickness was also investigated.« less

  20. Metal-oxide thin-film transistor-based pH sensor with a silver nanowire top gate electrode

    NASA Astrophysics Data System (ADS)

    Yoo, Tae-Hee; Sang, Byoung-In; Wang, Byung-Yong; Lim, Dae-Soon; Kang, Hyun Wook; Choi, Won Kook; Lee, Young Tack; Oh, Young-Jei; Hwang, Do Kyung

    2016-04-01

    Amorphous InGaZnO (IGZO) metal-oxide-semiconductor thin-film transistors (TFTs) are one of the most promising technologies to replace amorphous and polycrystalline Si TFTs. Recently, TFT-based sensing platforms have been gaining significant interests. Here, we report on IGZO transistor-based pH sensors in aqueous medium. In order to achieve stable operation in aqueous environment and enhance sensitivity, we used Al2O3 grown by using atomic layer deposition (ALD) and a porous Ag nanowire (NW) mesh as the top gate dielectric and electrode layers, respectively. Such devices with a Ag NW mesh at the top gate electrode rapidly respond to the pH of solutions by shifting the turn-on voltage. Furthermore, the output voltage signals induced by the voltage shifts can be directly extracted by implantation of a resistive load inverter.

  1. Apatite grown in niobium by two-step plasma electrolytic oxidation.

    PubMed

    Pereira, Bruno Leandro; Lepienski, Carlos Maurício; Mazzaro, Irineu; Kuromoto, Neide Kazue

    2017-08-01

    Plasma electrolytic oxidation (PEO) of niobium plates were done electrochemically in two steps with electrolytes containing phosphorous and calcium being observed the formation of crystalline apatite. All samples were submitted to a first step of PEO using an electrolyte containing phosphate ions. The second oxidization step was made using three different electrolytes. Some samples were oxidized by PEO in electrolyte containing calcium, while in other samples it was used two mixtures of phosphoric acid and calcium acetate monohydrate solutions. Three different surface layers were obtained. The morphology and chemical composition of the films were analyzed by scanning electronic microscopy (SEM), and energy dispersive spectroscopy (EDS) respectively. It was observed that all samples submitted to two-step oxidation shown porous surface and a calcium and phosphorus rich layer. Average surface roughness (Ra) was measured by a profilometer remaining in the sub-micrometric range. The contact angle by sessile drop technique, using 1μL of distilled water was performed with an optical goniometer. It was verified a higher hydrophilicity in all surfaces compared to the polished niobium. Orthorhombic Nb 2 O 5 was identified by XRD in the oxide layer. Crystalline apatite was identified by XRD in surfaces after the second oxidation made with the Ca-rich electrolyte and a mixture of an electrolyte richer in Ca compared to P. These results indicate that a two-step oxidized niobium surface present great features for applications in the osseointegration processes: favorable chemical composition that increase the biocompatibility, the formation of crystalline niobium pentoxide (orthorhombic), high hydrophilicity and formation of crystalline calcium phosphate (apatite) under adequate electrolyte composition. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Layer-by-layer growth by pulsed laser deposition in the unit-cell limit.

    NASA Astrophysics Data System (ADS)

    Kareev, M.; Prosandeev, S.; Liu, J.; Ryan, P.; Freeland, J. W.; Chakhalian, J.

    2009-03-01

    Unlike conventional growth of complex oxide heterostructures, the ultimate unit cell limit imposes strict constrains for a multitude of parameters critical to layer-by-layer growth. Here we report on detailed analysis of far-from-equilibrium growth by interrupted pulsed laser deposition with application to RENiO3/LaAlO3 superlattices grown on a diverse set of substrates SrTiO3, NdGaO3, LSAT and LaAlO3. A combination of in-situ high-pressure RHEED and AFM along with extensive data obtained from synchrotron based XRD and resonant XAS allows us critically assess the meaning of RHEED intensity oscillation and the effect of a polar/non-polar interface on the heteroepitaxial growth. The role of defects formed during the initial stages of growth is also addressed.

  3. Heterojunction light emitting diodes fabricated with different n-layer oxide structures on p-GaN layers by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kong, Bo Hyun; Han, Won Suk; Kim, Young Yi; Cho, Hyung Koun; Kim, Jae Hyun

    2010-06-01

    We grew heterojunction light emitting diode (LED) structures with various n-type semiconducting layers by magnetron sputtering on p-type GaN at high temperature. Because the undoped ZnO used as an active layer was grown under oxygen rich atmosphere, all LED devices showed the EL characteristics corresponding to orange-red wavelength due to high density of oxygen interstitial, which was coincident with the deep level photoluminescence emission of undoped ZnO. The use of the Ga doped layers as a top layer provided the sufficient electron carriers to active region and resulted in the intense EL emission. The LED sample with small quantity of Mg incorporated in MgZnO as an n-type top layer showed more intense emission than the LED with ZnO, in spite of the deteriorated electrical and structural properties of the MgZnO film. This might be due to the improvement of output extraction efficiency induced by rough surface.

  4. Growth and characterization of PbSe and Pb{sub 1{minus}x}Sn{sub x}Se layers on Si (100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachar, H.K.; Chao, I.; Fang, X.M.

    1998-12-31

    Crack-free layers of PbSe were grown on Si (100) by a combination of liquid phase epitaxy (LPE) and molecular beam epitaxy (MBE) techniques. The PbSe layer was grown by LPE on Si(100) using a MBE-grown PbSe/BaF{sub 2}/CaF{sub 2} buffer layer structure. Pb{sub 1{minus}x}Sn{sub x}Se layers with tin contents in the liquid growth solution equal to 3%, 5%, 6%, 7%, and 10%, respectively, were also grown by LPE on Si(100) substrates using similar buffer layer structures. The LPE-grown PbSe and Pb{sub 1{minus}x}Sn{sub x}Se layers were characterized by optical Nomarski microscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electronmore » microscopy (SEM). Optical Nomarski characterization of the layers revealed their excellent surface morphologies and good growth solution wipe-offs. FTIR transmission experiments showed that the absorption edge of the Pb{sub 1{minus}x}Sn{sub x}Se layers shifted to lower energies with increasing tin contents. The PbSe epilayers were also lifted-off from the Si substrate by dissolving the MBE-grown BaF{sub 2} buffer layer. SEM micrographs of the cleaved edges revealed that the lifted-off layers formed structures suitable for laser fabrication.« less

  5. In-plane reversal of the magnetic anisotropy in (110)-oriented LaCoO3/La0.67Sr0.33MnO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Yan, Xi; Han, Furong; Zhang, Jine; Liu, Dan; Shen, Baogen; Sun, Jirong

    2018-05-01

    The interface engineering of the complex oxides with strongly coupled degrees of freedom opens a wide space for the exploration of novel effects. La0.67Sr0.33MnO3 is one of the most typical complex oxides used for atomic level material engineering. Herein we reported an in-plane reversal of the magnetic anisotropy in (110)-oriented LaCoO3/La0.67Sr0.33MnO3 (LCO/LSMO) bilayers grown on (110)-oriented LaAlO3 substrates. Fixing the LSMO layer thickness to 8 nm and varying the LCO layer from 0 to 8 nm, totally six bilayers were fabricated. Without the LCO layer, the LSMO film exhibits an easy axis along the [1-10] direction. However, when the thickness of the LCO layer exceeds 1 nm, a signature of spin-reorientation appears; the easy axis turns from the [1-10] to the [001] direction below 225 K. This tendency is continuously enhanced by increasing the LCO. We reveal that lattice strains are different along these two directions. The magnetic anisotropy is not only controlled by lattice strain but also by structural distortion at interface. This work shows the great potential of the interface engineering with differently structured oxides for the exploration of novel functional materials.

  6. Effects of anodizing conditions and annealing temperature on the morphology and crystalline structure of anodic oxide layers grown on iron

    NASA Astrophysics Data System (ADS)

    Pawlik, Anna; Hnida, Katarzyna; Socha, Robert P.; Wiercigroch, Ewelina; Małek, Kamilla; Sulka, Grzegorz D.

    2017-12-01

    Anodic iron oxide layers were formed by anodization of the iron foil in an ethylene glycol-based electrolyte containing 0.2 M NH4F and 0.5 M H2O at 40 V for 1 h. The anodizing conditions such as electrolyte composition and applied potential were optimized. In order to examine the influence of electrolyte stirring and applied magnetic field, the anodic samples were prepared under the dynamic and static conditions in the presence or absence of magnetic field. It was shown that ordered iron oxide nanopore arrays could be obtained at lower anodizing temperatures (10 and 20 °C) at the static conditions without the magnetic field or at the dynamic conditions with the applied magnetic field. Since the as-prepared anodic layers are amorphous in nature, the samples were annealed in air at different temperatures (200-500 °C) for a fixed duration of time (1 h). The morphology and crystal phases developed after anodization and subsequent annealing were characterized using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The results proved that the annealing process transforms the amorphous layer into magnetite and hematite phases. In addition, the heat treatment results in a substantial decrease in the fluorine content and increase in the oxygen content.

  7. Determination of a refractive index and an extinction coefficient of standard production of CVD-graphene.

    PubMed

    Ochoa-Martínez, Efraín; Gabás, Mercedes; Barrutia, Laura; Pesquera, Amaia; Centeno, Alba; Palanco, Santiago; Zurutuza, Amaia; Algora, Carlos

    2015-01-28

    The refractive index and extinction coefficient of chemical vapour deposition grown graphene are determined by ellipsometry analysis. Graphene films were grown on copper substrates and transferred as both monolayers and bilayers onto SiO2/Si substrates by using standard manufacturing procedures. The chemical nature and thickness of residual debris formed after the transfer process were elucidated using photoelectron spectroscopy. The real layered structure so deduced has been used instead of the nominal one as the input in the ellipsometry analysis of monolayer and bilayer graphene, transferred onto both native and thermal silicon oxide. The effect of these contamination layers on the optical properties of the stacked structure is noticeable both in the visible and the ultraviolet spectral regions, thus masking the graphene optical response. Finally, the use of heat treatment under a nitrogen atmosphere of the graphene-based stacked structures, as a method to reduce the water content of the sample, and its effect on the optical response of both graphene and the residual debris layer are presented. The Lorentz-Drude model proposed for the optical response of graphene fits fairly well the experimental ellipsometric data for all the analysed graphene-based stacked structures.

  8. Switching properties of SrRuO3/Pb(Zr0.4Ti0.6)O3/SrRuO3 capacitor grown on Cu-coated Si substrate measured at various temperatures

    NASA Astrophysics Data System (ADS)

    Chen, J. H.; Liu, B. T.; Li, C. R.; Li, X. H.; Dai, X. H.; Guo, J. X.; Zhou, Y.; Wang, Y. L.; Zhao, Q. X.; Ma, L. X.

    2014-09-01

    SrRuO3(SRO)/Ni-Al/Cu/Ni-Al/SiO2/Si heterostructures annealed at various temperatures are found to remain intact after 750 \\circ\\text{C} annealing. Moreover, a SRO/Pb(Zr0.4Ti0.6)O3 (PZT)/SRO capacitor is grown on a Ni-Al/Cu/Ni-Al/SiO2/Si heterostructure, which is tested up to 100 \\circ\\text{C} to investigate the reliability of the memory capacitor. It is found that besides the good fatigue resistance and retention characteristic, the capacitor, measured at 5 V and room temperature, possesses a large remnant polarization of 25.0 μ \\text{C/cm}2 and a small coercive voltage of 0.83 V, respectively. Its dominant leakage current behavior satisfies the space-charge-limited conduction at various temperatures. Very clear interfaces can be observed from the cross-sectional images of transmission electron microscopy, indicating that the Ni-Al film can be used as a diffusion barrier layer for copper metallization as well as a conducting barrier layer between copper and oxide layer.

  9. Observation of dopant-profile independent electron transport in sub-monolayer TiO{sub x} stacked ZnO thin films grown by atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, D., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Misra, P., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Joshi, M. P.

    2016-01-18

    Dopant-profile independent electron transport has been observed through a combined study of temperature dependent electrical resistivity and magnetoresistance measurements on a series of Ti incorporated ZnO thin films with varying degree of static-disorder. These films were grown by atomic layer deposition through in-situ vertical stacking of multiple sub-monolayers of TiO{sub x} in ZnO. Upon decreasing ZnO spacer layer thickness, electron transport smoothly evolved from a good metallic to an incipient non-metallic regime due to the intricate interplay of screening of spatial potential fluctuations and strength of static-disorder in the films. Temperature dependent phase-coherence length as extracted from the magnetotransport measurementmore » revealed insignificant role of inter sub-monolayer scattering as an additional channel for electron dephasing, indicating that films were homogeneously disordered three-dimensional electronic systems irrespective of their dopant-profiles. Results of this study are worthy enough for both fundamental physics perspective and efficient applications of multi-stacked ZnO/TiO{sub x} structures in the emerging field of transparent oxide electronics.« less

  10. Interdiffusion-driven synthesis of tetragonal chromium (III) oxide on BaTi O3

    NASA Astrophysics Data System (ADS)

    Asa, M.; Vinai, G.; Hart, J. L.; Autieri, C.; Rinaldi, C.; Torelli, P.; Panaccione, G.; Taheri, M. L.; Picozzi, S.; Cantoni, M.

    2018-03-01

    Interfaces play a crucial role in the study of novel phenomena emerging at heterostructures comprising metals and functional oxides. For this reason, attention should be paid to the interface chemistry, which can favor the interdiffusion of atomic species and, under certain conditions, lead to the formation of radically different compounds with respect to the original constituents. In this work, we consider Cr/BaTi O3 heterostructures grown on SrTi O3 (100) substrates. Chromium thin films (1-2 nm thickness) are deposited by molecular beam epitaxy on the BaTi O3 layer, and subsequently annealed in vacuum at temperatures ranging from 473 to 773 K. A disordered metallic layer is detected for annealing temperatures up to 573 K, whereas, at higher temperatures, we observe a progressive oxidation of chromium, which we relate to the thermally activated migration of oxygen from the substrate. The chromium oxidation state is +3 and the film shows a defective rocksalt structure, which grows lattice matched on the underlying BaTi O3 layer. One out of every three atoms of chromium is missing, producing an uncommon tetragonal phase with C r2O3 stoichiometry. Despite the structural difference with respect to the ordinary corundum α-C r2O3 phase, we demonstrate both experimentally and theoretically that the electronic properties of the two phases are, to a large extent, equivalent.

  11. As-Received, Ozone Cleaned and Ar+ Sputtered Surfaces of Hafnium Oxide Grown by Atomic Layer Deposition and Studied by XPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engelhard, Mark H.; Herman, Jacob A.; Wallace, Robert

    2012-06-27

    In this study, X-ray photoelectron spectroscopy (XPS) characterization was performed on 47 nm thick hafnium oxide (HfO{sub 2}) films grown by atomic layer deposition using TEMA-Hf/H{sub 2}O at 250 C substrate temperature. HfO{sub 2} is currently being studied as a possible replacement for Silicon Oxide (SiO{sub 2}) as a gate dielectric in electronics transistors. XPS spectra were collected on a Physical Electronics Quantum 2000 Scanning ESCA Microprobe using a monochromatic Al K{sub a} X-ray (1486.7 eV) excitation source. The sample was analyzed under the following conditions: as received, after UV irradiation for five minutes, and after sputter cleaning with 2more » kV Ar{sup +} ions for 180 seconds. Survey scans showed carbon, oxygen, and hafnium as the major species in the film, while the only minor species of argon and carbide was detected after sputtering. Adventitious carbon initially composed approximately 18.6 AT% of the surface, but after UV cleaning it was reduced to 2.4 AT%. This demonstrated that that the majority of carbon was due to adventitious carbon. However, after 2 kV Ar{sup +} sputtering there was still only trace amounts of carbon at {approx}1 AT%, Some of this trace carbon is now in the form of a carbide due to the interaction with Ar{sup +} used for sputter cleaning. Furthermore, the stoiciometric ratio of oxygen and hafnium is consistent with a high quality HfO{sub 2} film.« less

  12. Heat-induced redistribution of surface oxide in uranium

    NASA Astrophysics Data System (ADS)

    Swissa, Eli; Shamir, Noah; Mintz, Moshe H.; Bloch, Joseph

    1990-09-01

    The redistribution of oxygen and uranium metal at the vicinity of the metal-oxide interface of native and grown oxides due to vacuum thermal annealing was studied for uranium and uranium-chromium alloy using Auger depth profiling and metallographic techniques. It was found that uranium metal is segregating out through the uranium oxide layer for annealing temperatures above 450°C. At the same time the oxide is redistributed in the metal below the oxide-metal interface in a diffusion like process. By applying a diffusion equation of a finite source, the diffusion coefficients for the process were obtained from the oxygen depth profiles measured for different annealing times. An Arrhenius like behavior was found for the diffusion coefficient between 400 and 800°C. The activation energy obtained was Ea = 15.4 ± 1.9 kcal/mole and the pre-exponential factor, D0 = 1.1 × 10 -8cm2/ s. An internal oxidation mechanism is proposed to explain the results.

  13. Film growth and structure design in the barium oxide-strontium oxide-titanium dioxide system

    NASA Astrophysics Data System (ADS)

    Fisher, Patrick J.

    This thesis describes the growth and characterization of thin films in the SrO-BaO-TiO2 system. The films are grown by molecular beam cpitaxy (MBE) and pulsed laser deposition (PLD) on ceramic substrates, and characterized using X-ray diffraction (XRD), atomic force microscopy (AFM), reflection-high energy electron diffraction (RHEED), and transmission electron microscopy (TEM). Films are grown with varied global and initial local stoichiometries, with the goal of determining the stability of specific cation organizations. Simple oxides, TiO2 (anatase) and SrO (rock salt) were grown on oxide substrates using MBE. Growth conditions, including substrate material, substrate temperature, O3 flux, and metal flux, are varied in each case. It is observed that the growth morphology of anatase is highly dependent on the ozone flux, with fluxes of 1.00 sccm and greater resulting in flat anatase surfaces. Increased roughness at higher substrate was determined to be a result of rutile inclusions. Growth oscillations are observed in the RHEED intensity for both TiO2 and SrO in overlapping regions of growth space, indicating 2D growth modes. Varied shuttering sequences were used during MBE growth of perovskites: globally non-stoichiometric films, as well as locally non-stoichiometric but globally stoichiometric perovskite. Films were grown within a (SrO) m(TiO2)n framework, where growth cycles involved m monolayers of SrO followed by n monolayers of TiO2. XRD results indicate that Ruddlesden-Popper defects, that is, rock salt double layers, enable incorporation of all levels of Sr excess, whereas excess Ti is observed to incorporate into the perovskite structure only at extreme excesses. A series of films with m equal to n were grown; that is, multiple monolayers of SrO deposited followed by multiple monolayers of TiO2. These initially locally non-stoichiometric arrangements interreact to form highly crystalline perovskite, even with layer thicknesses of up to 33 monolayers. The Ba0.6Sr0.4TiO3 films were characterized for their microwave dielectric properties, and were found to have high dielectric constants (epsilonr ˜1300 in each case, implying high tunabilities) but high tan delta values as well. The mechanisms by which the perovskite structure incorporates cation excesses is discussed, and it is argued that two probable mechanisms, one involving plane-sharing of Ti and Sr cations and the other involving rock salt multilayers, also enable the observed transport necessary for multilayer reaction. Working under the argument that these mechanisms involve low-energy architectures, a novel homologous series of phases based on rock salt multilayers is grown using monotayer control: the SrmTiO2+ m series, with each TiO2 monolayer followed by m SrO monolayers (m = 1-5). The phases in this series were characterized structurally, and an in-plane contraction was observed between the m = 2 and m = 3 phases, which is argued to be a relaxation of the SrO monolayers. Considering Ti-excess organizations, the BaTi2O5 structure is grown and observed to nucleate over a narrow window of growth conditions and substrates. LaAlO 3(100) promotes the nucleation of anatasc and ejection of perovskite; SrTiO3(100) promotes the nucleation of perovskite and ejection of TiO2; importantly, MgO(100) promotes the nucleation (010)-oriented BaTi2O5 growing with multiple domains. A BaTi2 O5 buffer layer was then used to promote the inclusion of Sr into (Ba,SOTi205 epilayers. Sr incorporation into a perovskite-related structure was observed to occur over the full range of (Ba,Sr)Ti2O 5 compositions.

  14. Cobalt silicide nanocables grown on Co films: synthesis and physical properties.

    PubMed

    Hsin, Cheng-Lun; Yu, Shih-Ying; Wu, Wen-Wei

    2010-12-03

    Single-crystalline cobalt silicide/SiO(x) nanocables have been grown on Co thin films on an SiO(2) layer by a self-catalysis process via vapor-liquid-solid mechanism. The nanocables consist of a core of CoSi nanowires and a silicon oxide shell with a length of several tens of micrometers. In the confined space in the oxide shell, the CoSi phase is stable and free from agglomeration in samples annealed in air ambient at 900 °C for 1 h. The nanocable structure came to a clear conclusion that the thermal stability of the silicide nanowires can be resolved by the shell encapsulation. Cobalt silicide nanowires were obtained from the nanocable structure. The electrical properties of the CoSi nanowires have been found to be compatible with their thin film counterpart and a high maximum current density of the nanowires has been measured. One way to obtain silicate nanowires has been demonstrated. The silicate compound, which is composed of cobalt, silicon and oxygen, was achieved. The Co silicide/oxide nanocables are potentially useful as a key component of silicate nanowires, interconnects and magnetic units in nanoelectronics.

  15. Comparing XPS on bare and capped ZrN films grown by plasma enhanced ALD: Effect of ambient oxidation

    NASA Astrophysics Data System (ADS)

    Muneshwar, Triratna; Cadien, Ken

    2018-03-01

    In this article we compare x-ray photoelectron spectroscopy (XPS) measurements on bare- and capped- zirconium nitride (ZrN) films to investigate the effect of ambient sample oxidation on the detected bound O in the form of oxide ZrO2 and/or oxynitride ZrOxNy. ZrN films in both bare- and Al2O3/AlN capped- XPS samples were grown by plasma-enhanced atomic layer deposition (PEALD) technique using tetrakis dimethylamino zirconium (TDMAZr) precursor, forming gas (5% H2, rest N2) inductively coupled plasma (ICP), and as received research grade process gases under identical process conditions. Capped samples were prepared by depositing 1 nm thick PEALD AlN on ZrN, followed by additional deposition of 1 nm thick ALD Al2O3, without venting of ALD reactor. On bare ZrN sample at room temperature, spectroscopic ellipsometry (SE) measurements with increasing ambient exposure times (texp) showed a self-limiting surface oxidation with the oxide thickness (dox) approaching 3.7 ± 0.02 nm for texp > 120 min. In XPS data measured prior to sample sputtering (tsput = 0), ZrO2 and ZrOxNy were detected in bare- samples, whereas only ZrN and Al2O3/AlN from capping layer were detected in capped- samples. For bare-ZrN samples, appearance of ZrO2 and ZrOxNy up to sputter depth (dsput) of 15 nm in depth-profile XPS data is in contradiction with measured dox = 3.7 nm, but explained from sputtering induced atomic inter-diffusion within analyzed sample. Appearance of artifacts in the XPS spectra from moderately sputtered (dsput = 0.2 nm and 0.4 nm) capped-ZrN sample, provides an evidence to ion-bombardment induced modifications within analyzed sample.

  16. Synthesis of ultrathin polymer insulating layers by initiated chemical vapour deposition for low-power soft electronics.

    PubMed

    Moon, Hanul; Seong, Hyejeong; Shin, Woo Cheol; Park, Won-Tae; Kim, Mincheol; Lee, Seungwon; Bong, Jae Hoon; Noh, Yong-Young; Cho, Byung Jin; Yoo, Seunghyup; Im, Sung Gap

    2015-06-01

    Insulating layers based on oxides and nitrides provide high capacitance, low leakage, high breakdown field and resistance to electrical stresses when used in electronic devices based on rigid substrates. However, their typically high process temperatures and brittleness make it difficult to achieve similar performance in flexible or organic electronics. Here, we show that poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane) (pV3D3) prepared via a one-step, solvent-free technique called initiated chemical vapour deposition (iCVD) is a versatile polymeric insulating layer that meets a wide range of requirements for next-generation electronic devices. Highly uniform and pure ultrathin films of pV3D3 with excellent insulating properties, a large energy gap (>8 eV), tunnelling-limited leakage characteristics and resistance to a tensile strain of up to 4% are demonstrated. The low process temperature, surface-growth character, and solvent-free nature of the iCVD process enable pV3D3 to be grown conformally on plastic substrates to yield flexible field-effect transistors as well as on a variety of channel layers, including organics, oxides, and graphene.

  17. Mechanics of graded glass composites and zinc oxide thin films grown at 90 degrees Celsius in water

    NASA Astrophysics Data System (ADS)

    Fillery, Scott Pierson

    2007-06-01

    The purpose of this research was to study the mechanical stability of two different material systems. The glass laminate system, exhibiting a threshold strength when placed under an applied load and ZnO thin films grown on GaN buffered Al2O3 substrates, exhibiting variations in film stability with changes to the Lateral Epitaxial Overgrowth architecture. The glass laminates were fabricated to contain periodic thin layers containing biaxial compressive stresses using ion exchange treatments to create residual compressive stresses at the surface of soda lime silicate glass sheets. Wafer direct bonding of the ion exchanged glass sheets resulted in the fabrication of glass laminates with thin layers of compressive stress adjacent to the glass interfaces. The threshold flexural strength of the ion exchanged glass laminates was determined to be 112 MPa after the introduction of indentation cracks with indent loads ranging from 1kg to 5kg and the laminates were found to exhibit a threshold strength, i.e., a stress below which failure will not occur. Contrary to similar ceramic laminates where cracks either propagate across the compressive layer or bifurcate within the compressive layer, the cracks in the glass laminates were deflected along the interface between the bonded sheets. ZnO films were grown on (0001) GaN buffered Al2O3 substrates by aqueous solution routes at 90°C. The films were found to buckle under compressive residual stresses at film thicknesses greater than 4mum. Lateral epitaxial overgrowth techniques using hexagonal hole arrays showed an increasing film stability with larger array spacing, resulting in film thicknesses up to 92mum. Stress determinations using Raman spectroscopy indicated that stress relaxation at the free surface during film growth played a major role in film stability. Investigations using Finite Element Analysis and Raman spectroscopy demonstrated that the strain energy within the film/substrate system decreased with increasing array spacing. ZnO films grown on III-nitride LED devices for use as transparent conducting layers showed intrinsic n-type doping, high transparency and adequate electrical contact resistance, resulting in linear light output with forward bias current and improved light extraction.

  18. Influence of high energy electron irradiation on the characteristics of polysilicon thin film transistors

    NASA Astrophysics Data System (ADS)

    Aleksandrova, P. V.; Gueorguiev, V. K.; Ivanov, Tz. E.; Kaschieva, S.

    2006-08-01

    The influence of high energy electron (23 MeV) irradiation on the electrical characteristics of p-channel polysilicon thin film transistors (PSTFTs) was studied. The channel 220 nm thick LPCVD (low pressure chemical vapor deposition) deposited polysilicon layer was phosphorus doped by ion implantation. A 45 nm thick, thermally grown, SiO2 layer served as gate dielectric. A self-alignment technology for boron doping of the source and drain regions was used. 200 nm thick polysilicon film was deposited as a gate electrode. The obtained p-channel PSTFTs were irradiated with different high energy electron doses. Leakage currents through the gate oxide and transfer characteristics of the transistors were measured. A software model describing the field enhancement and the non-uniform current distribution at textured polysilicon/oxide interface was developed. In order to assess the irradiation-stimulated changes of gate oxide parameters the gate oxide tunneling conduction and transistor characteristics were studied. At MeV dose of 6×1013 el/cm2, a negligible degradation of the transistor properties was found. A significant deterioration of the electrical properties of PSTFTs at MeV irradiation dose of 3×1014 el/cm2 was observed.

  19. Spatial Atmospheric Pressure Atomic Layer Deposition of Tin Oxide as an Impermeable Electron Extraction Layer for Perovskite Solar Cells with Enhanced Thermal Stability.

    PubMed

    Hoffmann, Lukas; Brinkmann, Kai O; Malerczyk, Jessica; Rogalla, Detlef; Becker, Tim; Theirich, Detlef; Shutsko, Ivan; Görrn, Patrick; Riedl, Thomas

    2018-02-14

    Despite the notable success of hybrid halide perovskite-based solar cells, their long-term stability is still a key-issue. Aside from optimizing the photoactive perovskite, the cell design states a powerful lever to improve stability under various stress conditions. Dedicated electrically conductive diffusion barriers inside the cell stack, that counteract the ingress of moisture and prevent the migration of corrosive halogen species, can substantially improve ambient and thermal stability. Although atomic layer deposition (ALD) is excellently suited to prepare such functional layers, ALD suffers from the requirement of vacuum and only allows for a very limited throughput. Here, we demonstrate for the first time spatial ALD-grown SnO x at atmospheric pressure as impermeable electron extraction layers for perovskite solar cells. We achieve optical transmittance and electrical conductivity similar to those in SnO x grown by conventional vacuum-based ALD. A low deposition temperature of 80 °C and a high substrate speed of 2.4 m min -1 yield SnO x layers with a low water vapor transmission rate of ∼10 -4 gm -2 day -1 (at 60 °C/60% RH). Thereby, in perovskite solar cells, dense hybrid Al:ZnO/SnO x electron extraction layers are created that are the key for stable cell characteristics beyond 1000 h in ambient air and over 3000 h at 60 °C. Most notably, our work of introducing spatial ALD at atmospheric pressure paves the way to the future roll-to-roll manufacturing of stable perovskite solar cells.

  20. The Possibility of Improved and Higher Tc Superconductors in Hybrid Systems

    DTIC Science & Technology

    2014-10-15

    Approved for public release; distribution is unlimited. of the oxygen sub-lattice precisely in thin films and heterostrutures; which plays a pivotal role...to influence the structure-property affair in complex oxide thin films. We have focused our study to effectively control the oxygen position...that by varying precisely the thickness of SCO layers grown on SrTiO3, one can re-arrange the oxygen ions. In particular, we show that it is possible

  1. Room-temperature bonding of epitaxial layer to carbon-cluster ion-implanted silicon wafers for CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Koga, Yoshihiro; Kadono, Takeshi; Shigematsu, Satoshi; Hirose, Ryo; Onaka-Masada, Ayumi; Okuyama, Ryousuke; Okuda, Hidehiko; Kurita, Kazunari

    2018-06-01

    We propose a fabrication process for silicon wafers by combining carbon-cluster ion implantation and room-temperature bonding for advanced CMOS image sensors. These carbon-cluster ions are made of carbon and hydrogen, which can passivate process-induced defects. We demonstrated that this combination process can be used to form an epitaxial layer on a carbon-cluster ion-implanted Czochralski (CZ)-grown silicon substrate with a high dose of 1 × 1016 atoms/cm2. This implantation condition transforms the top-surface region of the CZ-grown silicon substrate into a thin amorphous layer. Thus, an epitaxial layer cannot be grown on this implanted CZ-grown silicon substrate. However, this combination process can be used to form an epitaxial layer on the amorphous layer of this implanted CZ-grown silicon substrate surface. This bonding wafer has strong gettering capability in both the wafer-bonding region and the carbon-cluster ion-implanted projection range. Furthermore, this wafer inhibits oxygen out-diffusion to the epitaxial layer from the CZ-grown silicon substrate after device fabrication. Therefore, we believe that this bonding wafer is effective in decreasing the dark current and white-spot defect density for advanced CMOS image sensors.

  2. On-surface synthesis: a promising strategy toward the encapsulation of air unstable ultra-thin 2D materials.

    PubMed

    Li, Qiang; Zhao, Yinghe; Guo, Jiyuan; Zhou, Qionghua; Chen, Qian; Wang, Jinlan

    2018-02-22

    2D black phosphorus (BP) and transition metal chalcogenides (TMCs) have beneficial electronic, optical, and physical properties at the few-layer limit. However, irreversible degradation of exfoliated or chemical vapor deposition-grown ultrathin BP and TMCs like GaSe via oxidation under ambient conditions limits their applications. Herein, the on-surface growth of an oxidation-resistant 2D thin film of a metal coordination polymer is demonstrated by multiscale simulations. We show that the preparation of such heterostructures can be conducted in solution, in which pristine BP and GaSe present better stability than in an air environment. Our calculations reveal that the interaction between the polymer layer and 2D materials is dominated by van der Waals forces; thus, the electronic properties of pristine BP and GaSe are well preserved. Meanwhile, the isolation from oxygen and water can be achieved by monolayer polymers, due to the nature of their close-packed layers. Our facile strategy for enhancing the environmental stability of ultrathin materials is expected to accelerate efforts to implement 2D materials in electronic and optoelectronic applications.

  3. Attachment of 3-(Aminopropyl)triethoxysilane on silicon oxide surfaces: dependence on solution temperature.

    PubMed

    Pasternack, Robert M; Rivillon Amy, Sandrine; Chabal, Yves J

    2008-11-18

    Parameters important to the self-assembly of 3-(aminopropyl)triethoxysilane (APTES) on chemically grown silicon oxide (SiO 2) to form an aminopropyl silane (APS) film have been investigated using in situ infrared (IR) absorption spectroscopy. Preannealing to approximately 70 degrees C produces significant improvements in the quality of the film: the APS film is denser, and the Si-O-Si bonds between the molecules and the SiO 2 surface are more structured and ordered with only a limited number of remaining unreacted ethoxy groups. In contrast, post-annealing the functionalized SiO 2 samples after room temperature reaction with APTES (i.e., ex situ annealing) does not lead to any spectral change, suggesting that post-annealing has no strong effect on the horizontal polymerization as suggested earlier. Both IR and ellipsometry data show that the higher the solution temperature, the denser and thinner the APS layer is for a given immersion time. Finally, the APS layer obtained by preannealing the solution at 70 degrees C exhibits a better stability in deionized water than the APS layer prepared at room temperature.

  4. Characterization of the Alumina Scale formed on Coated and Uncoated Doped Superalloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unocic, Kinga A; Parish, Chad M; Pint, Bruce A

    2011-01-01

    To investigate the mechanisms by which Y and La dopants affect the oxidation behavior of Ni base single crystal superalloys, the oxide scales formed on two variants of a commercial X4 alloy, each with and without a MCrAlYHfSi coating were characterized. The alloy systems were oxidized for 100h at 1100 C and then examined using analytical transmission electron microscopy. Without a coating, a duplex scale was formed on the superalloy surface comprised of an outer Ni rich spinel type layer and an inner columnar Al2O3 layer. In this case, Hf and Ti were found segregated to the alumina grain boundariesmore » in the outer part of the scale on both alloys but only Hf was detected near the metal alumina interface. There was no evidence of Ta, Y or La segregation to the scale grain boundaries after this exposure. The scale formed on the alloys with the thermally sprayed coating was primarily alumina, and Y and Hf segregated to the alumina grain boundaries for both alloys. There was evidence of Ti rich oxides in the outer part of the scale indicating that Ti had diffused through the coating into the thermally grown oxide but La was not found.« less

  5. Electrical and band structural analyses of Ti1-x Al x O y films grown by atomic layer deposition on p-type GaAs

    NASA Astrophysics Data System (ADS)

    An, Youngseo; Mahata, Chandreswar; Lee, Changmin; Choi, Sungho; Byun, Young-Chul; Kang, Yu-Seon; Lee, Taeyoon; Kim, Jiyoung; Cho, Mann-Ho; Kim, Hyoungsub

    2015-10-01

    Amorphous Ti1-x Al x O y films in the Ti-oxide-rich regime (x  <  0.5) were deposited on p-type GaAs via atomic layer deposition with titanium isopropoxide, trimethylaluminum, and H2O precursor chemistry. The electrical properties and energy band alignments were examined for the resulting materials with their underlying substrates, and significant frequency dispersion was observed in the accumulation region of the Ti-oxide-rich Ti1-x Al x O y films. Although a further reduction in the frequency dispersion and leakage current (under gate electron injection) could be somewhat achieved through a greater addition of Al-oxide in the Ti1-x Al x O y film, the simultaneous decrease in the dielectric constant proved problematic in finding an optimal composition for application as a gate dielectric on GaAs. The spectroscopic band alignment measurements of the Ti-oxide-rich Ti1-x Al x O y films indicated that the band gaps had a rather slow increase with the addition of Al-oxide, which was primarily compensated for by an increase in the valance band offset, while a nearly-constant conduction band offset with a negative electron barrier height was maintained.

  6. Raman spectroscopy analysis of air grown oxide scale developed on pure zirconium substrate

    NASA Astrophysics Data System (ADS)

    Kurpaska, L.; Favergeon, J.; Lahoche, L.; El-Marssi, M.; Grosseau Poussard, J.-L.; Moulin, G.; Roelandt, J.-M.

    2015-11-01

    Using Raman spectroscopy technique, external and internal parts of zirconia oxide films developed at 500 °C and 600 °C on pure zirconium substrate under air at normal atmospheric pressure have been examined. Comparison of Raman peak positions of tetragonal and monoclinic zirconia phases, recorded during the oxide growth at elevated temperature, and after cooling at room temperature have been presented. Subsequently, Raman peak positions (or shifts) were interpreted in relation with the stress evolution in the growing zirconia scale, especially closed to the metal/oxide interface, where the influence of compressive stress in the oxide is the biggest. Reported results, for the first time show the presence of a continuous layer of tetragonal zirconia phase developed in the proximity of pure zirconium substrate. Based on the Raman peak positions we prove that this tetragonal layer is stabilized by the high compressive stress and sub-stoichiometry level. Presence of the tetragonal phase located in the outer part of the scale have been confirmed, yet its Raman characteristics suggest a stress-free tetragonal phase, therefore different type of stabilization mechanism. Presented study suggest that its stabilization could be related to the lattice defects introduced by highstoichiometry of zirconia or presence of heterovalent cations.

  7. Atomic and Molecular Layer Deposition for Enhanced Lithium Ion Battery Electrodes and Development of Conductive Metal Oxide/Carbon Composites

    NASA Astrophysics Data System (ADS)

    Travis, Jonathan

    The performance and safety of lithium-ion batteries (LIBs) are dependent on interfacial processes at the positive and negative electrodes. For example, the surface layers that form on cathodes and anodes are known to affect the kinetics and capacity of LIBs. Interfacial reactions between the electrolyte and the electrodes are also known to initiate electrolyte combustion during thermal runaway events that compromise battery safety. Atomic layer deposition (ALD) and molecular layer deposition (MLD) are thin film deposition techniques based on sequential, self-limiting surface reactions. ALD and MLD can deposit ultrathin and conformal films on high aspect ratio and porous substrates such as composite particulate electrodes in lithium-ion batteries. The effects of electrode surface modification via ALD and MLD are studied using a variety of techniques. It was found that sub-nm thick coatings of Al2O 3 deposited via ALD have beneficial effects on the stability of LIB anodes and cathodes. These same Al2O3 ALD films were found to improve the safety of graphite based anodes through prevention of exothermic solid electrolyte interface (SEI) degradation at elevated temperatures. Ultrathin and conformal metal alkoxide polymer films known as "metalcones" were grown utilizing MLD techniques with trimethylaluminum (TMA) or titanium tetrachloride (TiCl4) and organic diols or triols, such as ethylene glycol (EG), glycerol (GL) or hydroquinone (HQ), as the reactants. Pyrolysis of these metalcone films under inert gas conditions led to the development of conductive metal oxide/carbon composites. The composites were found to contain sp2 carbon using micro-Raman spectroscopy in the pyrolyzed films with pyrolysis temperatures ≥ 600°C. Four point probe measurements demonstrated that the graphitic sp2 carbon domains in the metalcone films grown using GL and HQ led to significant conductivity. The pyrolysis of conformal MLD films to obtain conductive metal oxide/carbon composite films is presented as a method for enabling non-conductive, but possibly electrochemically active materials, to be used for electrochemical applications.

  8. Preferred orientations of laterally grown silicon films over amorphous substrates using the vapor-liquid-solid technique

    NASA Astrophysics Data System (ADS)

    LeBoeuf, J. L.; Brodusch, N.; Gauvin, R.; Quitoriano, N. J.

    2014-12-01

    A novel method has been optimized so that adhesion layers are no longer needed to reliably deposit patterned gold structures on amorphous substrates. Using this technique allows for the fabrication of amorphous oxide templates known as micro-crucibles, which confine a vapor-liquid-solid (VLS) catalyst of nominally pure gold to a specific geometry. Within these confined templates of amorphous materials, faceted silicon crystals have been grown laterally. The novel deposition technique, which enables the nominally pure gold catalyst, involves the undercutting of an initial chromium adhesion layer. Using electron backscatter diffraction it was found that silicon nucleated in these micro-crucibles were 30% single crystals, 45% potentially twinned crystals and 25% polycrystals for the experimental conditions used. Single, potentially twinned, and polycrystals all had an aversion to growth with the {1 0 0} surface parallel to the amorphous substrate. Closer analysis of grain boundaries of potentially twinned and polycrystalline samples revealed that the overwhelming majority of them were of the 60° Σ3 coherent twin boundary type. The large amount of coherent twin boundaries present in the grown, two-dimensional silicon crystals suggest that lateral VLS growth occurs very close to thermodynamic equilibrium. It is suggested that free energy fluctuations during growth or cooling, and impurities were the causes for this twinning.

  9. Magnetomechanical effect in silicon (Cz-Si) surface layers

    NASA Astrophysics Data System (ADS)

    Koplak, O. V.; Dmitriev, A. I.; Morgunov, R. B.

    2012-07-01

    The mechanical properties of near-surface layers of Czochralski-grown silicon crystals Cz- n-Si(111) have been found to undergo changes in response to an external constant magnetic field ( B ˜ 0.1 T). A magnetically induced variation in the microhardness, Young's modulus, and coefficient of plasticity of silicon crystals correlates with the change in the lattice parameter and internal stresses of the sample. The growth of an oxide film under exposure to a magnetic field plays the principal role in the magnetomechanical effect due to a decrease in the concentration of oxygen complexes in the near-surface layers of the sample. In microstructured silicon, where the surface is considerably more developed, the magnetic field induces more profound changes in the internal stresses as compared to single crystals.

  10. Quantitative analysis of magnetic spin and orbital moments from an oxidized iron (1 1 0) surface using electron magnetic circular dichroism.

    PubMed

    Thersleff, Thomas; Rusz, Jan; Rubino, Stefano; Hjörvarsson, Björgvin; Ito, Yasuo; J Zaluzec, Nestor; Leifer, Klaus

    2015-08-17

    Understanding the ramifications of reduced crystalline symmetry on magnetic behavior is a critical step in improving our understanding of nanoscale and interfacial magnetism. However, investigations of such effects are often controversial largely due to the challenges inherent in directly correlating nanoscale stoichiometry and structure to magnetic behavior. Here, we describe how to use Transmission Electron Microscope (TEM) to obtain Electron Magnetic Circular Dichroism (EMCD) signals as a function of scattering angle to locally probe the magnetic behavior of thin oxide layers grown on an Fe (1 1 0) surface. Experiments and simulations both reveal a strong dependence of the magnetic orbital to spin ratio on its scattering vector in reciprocal space. We exploit this variation to extract the magnetic properties of the oxide cladding layer, showing that it locally may exhibit an enhanced orbital to spin moment ratio. This finding is supported here by both spatially and angularly resolved EMCD measurements, opening up the way for compelling investigations into how magnetic properties are affected by nanoscale features.

  11. Quantitative analysis of magnetic spin and orbital moments from an oxidized iron (1 1 0) surface using electron magnetic circular dichroism

    DOE PAGES

    Thersleff, Thomas; Rusz, Jan; Rubino, Stefano; ...

    2015-08-17

    Understanding the ramifications of reduced crystalline symmetry on magnetic behavior is a critical step in improving our understanding of nanoscale and interfacial magnetism. However, investigations of such effects are often controversial largely due to the challenges inherent in directly correlating nanoscale stoichiometry and structure to magnetic behavior. Here, we describe how to use Transmission Electron Microscope (TEM) to obtain Electron Magnetic Circular Dichroism (EMCD) signals as a function of scattering angle to locally probe the magnetic behavior of thin oxide layers grown on an Fe (1 1 0) surface. Experiments and simulations both reveal a strong dependence of the magneticmore » orbital to spin ratio on its scattering vector in reciprocal space. We exploit this variation to extract the magnetic properties of the oxide cladding layer, showing that it locally may exhibit an enhanced orbital to spin moment ratio. This finding is supported here by both spatially and angularly resolved EMCD measurements, opening up the way for compelling investigations into how magnetic properties are affected by nanoscale features.« less

  12. Polydopamine-Coated TiO2 Nanotubes for Selective Photocatalytic Oxidation of Benzyl Alcohol to Benzaldehyde Under Visible Light.

    PubMed

    Tripathy, Jyotsna; Loget, Gabriel; Altomare, Marco; Schmuki, Patrik

    2016-05-01

    TiO2 nanotube arrays grown by anodization were coated with thin layers of polydopamine as visible light sensitizer. The PDA-coated TiO2 scaffolds were used as photocatalyst for selective oxidation of benzyl alcohol under monochromatic irradiation at 473 nm. Benzaldehyde was selectively formed and no by-products could be detected. A maximized reaction yield was obtained in O2-saturated acetonitrile. A mechanism is proposed that implies firstly the charge carrier generation in polydopamine as a consequence of visible light absorption. Secondly, photo-promoted electrons are injected in TiO2 conduction band, and subsequently transferred to dissolved O2 to form O*2- radicals. These radicals react with benzyl alcohol and lead to its selective dehydrogenation oxidation towards benzaldehyde.

  13. Electronic structure and fine structural features of the air-grown UNxOy on nitrogen-rich uranium nitride

    NASA Astrophysics Data System (ADS)

    Long, Zhong; Zeng, Rongguang; Hu, Yin; Liu, Jing; Wang, Wenyuan; Zhao, Yawen; Luo, Zhipeng; Bai, Bin; Wang, Xiaofang; Liu, Kezhao

    2018-06-01

    Oxide formation on surface of nitrogen-rich uranium nitride film/particles was investigated using X-ray photoelectron spectroscopy (XPS), auger electron spectroscopy (AES), aberration-corrected transmission electron microscopy (TEM), and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) coupled with electron energy-loss spectroscopy (EELS). XPS and AES studies indicated that the oxidized layer on UN2-x film is ternary compound uranium oxynitride (UNxOy) in 5-10 nm thickness. TEM/HAADF-STEM and EELS studies revealed the UNxOy crystallizes in the FCC CaF2-type structure with the lattice parameter close to the CaF2-type UN2-x matrix. The work can provide further information to the oxidation mechanism of uranium nitride.

  14. MBE grown III-V strain relaxed buffer layers and superlattices characterized by atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, A.J.; Fritz, I.J.; Drummond, T.J.

    1993-11-01

    Using atomic force microscopy (AFM), the authors have investigated the effects of growth temperature and dopant incorporation on the surface morphology of MBE grown graded buffer layers and strained layer superlattices (SLSs) in the InGaAlAs/GaAs and InAsSb/InSb material systems. The AFM results show quantitatively that over the temperature range from 380 to 545 C, graded in{sub x}Al{sub 1{minus}x}As(x = 0.05 {minus} 0.32) buffer layers grown at high temperatures ({approximately}520 C), and graded In{sub x}Ga{sub 1{minus}x}As (x = 0.05 {minus} 0.33) buffer layers and In{sub 0.4}Ga{sub 0.6}As/In{sub 0.26}Al{sub 0.35}Ga{sub 0.39}As SLSs grown at low temperatures ({approximately}400 C) have the lowest RMSmore » roughness. Also, for SLSs InAs{sub 0.21}Sb{sub 0.79}/InSb, undoped layers grown at 470 C were smoother than undoped layers grown at 420 C and Be-doped layers grown at 470 C. These results illustrate the role of surface tension in the growth of strained layer materials near the melting temperature of the InAs{sub x}Sb{sub {minus}x}/InSb superlattice. Nomarski interference and transmission electron microscopies, IR photoluminescence, x-ray diffraction, and photocurrent spectroscopy were also used to evaluate the relative quality of the material but usually, the results were not conclusive.« less

  15. Morphology, structure, and metal binding mechanisms of biogenic manganese oxides in a superfund site treatment system.

    PubMed

    Duckworth, O W; Rivera, N A; Gardner, T G; Andrews, M Y; Santelli, C M; Polizzotto, M L

    2017-01-25

    Manganese oxides, which may be biogenically produced in both pristine and contaminated environments, have a large affinity for many trace metals. In this study, water and Mn oxide-bearing biofilm samples were collected from the components of a pump and treat remediation system at a superfund site. To better understand the factors leading to their formation and their effects on potentially toxic metal fate, we conducted a chemical, microscopic, and spectroscopic characterization of these biofilm samples. Scanning electron microscopy revealed the presence of Mn oxides in close association with biological structures with morphologies consistent with fungi. X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) revealed the oxides to be a mixture of layer and tunnel structure Mn(iv) oxides. In addition, XAS suggested that Ba, Co, and Zn all primarily bind to oxides in the biofilm in a manner that is analogous to synthetic or laboratory grown bacteriogenic Mn oxides. The results indicate that Mn oxides produced by organisms in the system may effectively scavenge metals, thus highlighting the potential utility of these organisms in designed remediation systems.

  16. Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes.

    PubMed

    Bauer, Sebastian; Park, Jung; von der Mark, Klaus; Schmuki, Patrik

    2008-09-01

    Self-organized layers of vertically orientated TiO(2) nanotubes providing defined diameters ranging from 15 up to 100nm were grown on titanium by anodic oxidation. These TiO(2) nanotube layers show super-hydrophilic behavior. After coating TiO(2) nanotube layers with a self-assembled monolayer (octadecylphosphonic acid) they showed a diameter-dependent wetting behavior ranging from hydrophobic (108+/-2 degrees ) up to super-hydrophobic (167+/-2 degrees ). Cell adhesion, spreading and growth of mesenchymal stem cells on the unmodified and modified nanotube layers were investigated and compared. We show that cell adhesion and proliferation are strongly affected in the super-hydrophobic range. Adsorption of extracellular matrix proteins as fibronectin, type I collagen and laminin, as well as bovine serum albumin, on the coated and uncoated surfaces showed a strong influence on wetting behavior and dependence on tube diameter.

  17. Magnetotransport properties of a few-layer graphene-ferromagnetic metal junctions in vertical spin valve devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Entani, Shiro, E-mail: entani.shiro@jaea.go.jp; Naramoto, Hiroshi; Sakai, Seiji

    2015-05-07

    Magnetotransport properties were studied for the vertical spin valve devices with two junctions of permalloy electrodes and a few-layer graphene interlayer. The graphene layer was directly grown on the bottom electrode by chemical vapor deposition. X-ray photoelectron spectroscopy showed that the permalloy surface fully covered with a few-layer graphene is kept free from oxidation and contamination even after dispensing and removing photoresist. This enabled fabrication of the current perpendicular to plane spin valve devices with a well-defined interface between graphene and permalloy. Spin-dependent electron transport measurements revealed a distinct spin valve effect in the devices. The magnetotransport ratio was 0.8%more » at room temperature and increased to 1.75% at 50 K. Linear current-voltage characteristics and resistance increase with temperature indicated that ohmic contacts are realized at the relevant interfaces.« less

  18. Variable angle spectroscopic ellipsometry - Application to GaAs-AlGaAs multilayer homogeneity characterization

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Snyder, Paul G.; Merkel, Kenneth G.; Woollam, John A.; Radulescu, David C.

    1988-01-01

    Variable angle spectroscopic ellipsometry has been applied to a GaAs-AlGaAs multilayer structure to obtain a three-dimensional characterization, using repetitive measurements at several spots on the same sample. The reproducibility of the layer thickness measurements is of order 10 A, while the lateral dimension is limited by beam diameter, presently of order 1 mm. Thus, the three-dimensional result mainly gives the sample homogeneity. In the present case three spots were used to scan the homogeneity over 1 in of a wafer which had molecular-beam epitaxially grown layers. The thickness of the AlGaAs, GaAs, and oxide layers and the Al concentration varied by 1 percent or less from edge to edge. This result was confirmed by two methods of data analysis. No evidence of an interfacial layer was observed on top of the AlGaAs.

  19. Fabrication of por-Si/SnO{sub x} nanocomposite layers for gas microsensors and nanosensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotov, V. V., E-mail: bolotov@obisp.oscsbras.ru; Korusenko, P. M.; Nesov, S. N.

    2011-05-15

    Two-phase nanocomposite layers based on porous silicon and nonstoichiometric tin oxide were fabricated by various methods. The structure, as well as elemental and phase composition, of the obtained nanocomposites were studied using transmission and scanning electron microscopy, Raman spectroscopy, Auger electron spectroscopy, and X-ray photoelectron spectroscopy. The results obtained confirm the formation of nanocomposite layers with a thickness as large as 2 {mu}m thick and SnO{sub x} stoichiometry coefficients x = 1.0-2.0. Significant tin diffusion into the porous silicon matrix with D{sub eff} Almost-Equal-To 10{sup -14} cm{sup 2} s{sup -1} was observed upon annealing at 770 K. Test sensor structuresmore » based on por-Si/SnO{sub x} nanocomposite layers grown by magnetron deposition showed fairly high stability of properties and sensitivity to NO{sub 2}.« less

  20. La0.7Sr0.3MnO3: A single, conductive-oxide buffer layer for the development of YBa2Cu3O7-δ coated conductors

    NASA Astrophysics Data System (ADS)

    Aytug, T.; Paranthaman, M.; Kang, B. W.; Sathyamurthy, S.; Goyal, A.; Christen, D. K.

    2001-10-01

    Coated conductor applications in power technologies require stabilization of the high-temperature superconducting (HTS) layers against thermal runaway. Conductive La0.7Sr0.3MnO3 (LSMO) has been epitaxially grown on biaxially textured Ni substrates as a single buffer layer. The subsequent epitaxial growth of YBa2Cu3O7-δ (YBCO) coatings by pulsed laser deposition yielded self-field critical current densities (Jc) of 0.5×106A/cm2 at 77 K, and provided good electrical connectivity over the entire structure (HTS+conductive-buffer+metal substrate). Property characterizations of YBCO/LSMO/Ni architecture revealed excellent crystallographic and morphological properties. These results have demonstrated that LSMO, used as a single, conductive buffer layer, may offer potential for use in fully stabilized YBCO coated conductors.

  1. Effect of ZnO seed layer on the morphology and optical properties of ZnO nanorods grown on GaN buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandi, R., E-mail: rajunandi@iitb.ac.in; Mohan, S., E-mail: rajunandi@iitb.ac.in; Major, S. S.

    2014-04-24

    ZnO nanorods were grown by chemical bath deposition on sputtered, polycrystalline GaN buffer layers with and without ZnO seed layer. Scanning electron microscopy and X-ray diffraction show that the ZnO nanorods on GaN buffer layers are not vertically well aligned. Photoluminescence spectrum of ZnO nanorods grown on GaN buffer layer, however exhibits a much stronger near-band-edge emission and negligible defect emission, compared to the nanorods grown on ZnO buffer layer. These features are attributed to gallium incorporation at the ZnO-GaN interface. The introduction of a thin (25 nm) ZnO seed layer on GaN buffer layer significantly improves the morphology andmore » vertical alignment of ZnO-NRs without sacrificing the high optical quality of ZnO nanorods on GaN buffer layer. The presence of a thick (200 nm) ZnO seed layer completely masks the effect of the underlying GaN buffer layer on the morphology and optical properties of nanorods.« less

  2. The role of nanoscale seed layers on the enhanced performance of niobium doped TiO 2 thin films on glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikodemski, Stefan; Dameron, Arrelaine A.; Perkins, John D.

    Transparent conducting oxide (TCO) coatings with decreased cost and greater process or performance versatility are needed for a variety of optoelectronic applications. Among potential new TCO candidates, doped titanium dioxide is receiving particular interest. In this study, niobium-doped titania bilayer structures consisting of a nanoscale seed layer (deposited by atomic layer deposition or RF magnetron sputtering) followed by a thick bulk-like layer were grown directly on glass in order to examine the effects of the seed layer processing on the subsequent crystallization and electrical properties of these heterostructures. Observations from Raman spectroscopy suggest that higher oxygen content in the seedmore » layer suppresses the formation of detrimental titania polymorph phases, found in films produced by annealing directly after synthesis without any exposure to oxygen. Here, our results indicate that the generation of excellent Nb:TiO 2 conductors on glass (without breaking vacuum) only occurs within a narrow processing range and that the sequential deposition of oxygen-poor layers on oxygen-rich layers is a critical step towards achieving films with low resistivity.« less

  3. The role of nanoscale seed layers on the enhanced performance of niobium doped TiO 2 thin films on glass

    DOE PAGES

    Nikodemski, Stefan; Dameron, Arrelaine A.; Perkins, John D.; ...

    2016-09-09

    Transparent conducting oxide (TCO) coatings with decreased cost and greater process or performance versatility are needed for a variety of optoelectronic applications. Among potential new TCO candidates, doped titanium dioxide is receiving particular interest. In this study, niobium-doped titania bilayer structures consisting of a nanoscale seed layer (deposited by atomic layer deposition or RF magnetron sputtering) followed by a thick bulk-like layer were grown directly on glass in order to examine the effects of the seed layer processing on the subsequent crystallization and electrical properties of these heterostructures. Observations from Raman spectroscopy suggest that higher oxygen content in the seedmore » layer suppresses the formation of detrimental titania polymorph phases, found in films produced by annealing directly after synthesis without any exposure to oxygen. Here, our results indicate that the generation of excellent Nb:TiO 2 conductors on glass (without breaking vacuum) only occurs within a narrow processing range and that the sequential deposition of oxygen-poor layers on oxygen-rich layers is a critical step towards achieving films with low resistivity.« less

  4. Tunable blue organic light emitting diode based on aluminum calixarene supramolecular complex

    NASA Astrophysics Data System (ADS)

    Legnani, C.; Reyes, R.; Cremona, M.; Bagatin, I. A.; Toma, H. E.

    2004-07-01

    In this letter, the results of supramolecular organic light emitting diodes using a calix[4] arene complex thin film as emitter and electron transporting layer are presented. The devices were grown onto glass substrates coated with indium-tin-oxide layer and aluminum thick (150nm) cathode. By applying a dc voltage between the device electrodes in forward bias condition, a blue light emission in the active area of the device was observed. It was found that the electroluminescent emission peak can be tuned between 470 and 510nm changing the applied voltage bias from 4.3 to 5.4V. The observed tunable emission can be associated with an energy transfer from the calixarene compound.

  5. Controlled Synthesis of Atomically Layered Hexagonal Boron Nitride via Chemical Vapor Deposition.

    PubMed

    Liu, Juanjuan; Kutty, R Govindan; Liu, Zheng

    2016-11-29

    Hexagonal boron nitrite (h-BN) is an attractive material for many applications including electronics as a complement to graphene, anti-oxidation coatings, light emitters, etc. However, the synthesis of high-quality h-BN is still a great challenge. In this work, via controlled chemical vapor deposition, we demonstrate the synthesis of h-BN films with a controlled thickness down to atomic layers. The quality of as-grown h-BN is confirmed by complementary characterizations including high-resolution transition electron microscopy, atomic force microscopy, Raman spectroscopy and X-ray photo-electron spectroscopy. This work will pave the way for production of large-scale and high-quality h-BN and its applications as well.

  6. Room temperature photoluminescence in the visible range from silicon nanowires grown by a solid-state reaction

    NASA Astrophysics Data System (ADS)

    Anguita, J. V.; Sharma, P.; Henley, S. J.; Silva, S. R. P.

    2009-11-01

    The solid-liquid-solid method (also known as the solid-state method) is used to produce silicon nanowires at the core of silica nanowires with a support catalyst layer structure of nickel and titanium layers sputtered on oxide-coated silicon wafers. This silane-free process is low cost and large-area compatible. Using electron microscopy and Raman spectroscopy we deduce that the wires have crystalline silicon cores. The nanowires show photoluminescence in the visible range (orange), and we investigate the origin of this band. We further show that the nanowires form a random mesh that acts as an efficient optical trap, giving rise to an optically absorbing medium.

  7. Fabrication and characterization of {110}-oriented Pb(Zr,Ti)O3 thin films on Pt/SiO2/Si substrates using PdO//Pd buffer layer

    NASA Astrophysics Data System (ADS)

    Oshima, Naoya; Uchiyama, Kiyoshi; Ehara, Yoshitaka; Oikawa, Takahiro; Ichinose, Daichi; Tanaka, Hiroki; Sato, Tomoya; Uchida, Hiroshi; Funakubo, Hiroshi

    2017-10-01

    A strongly {110}-oriented perovskite-type thin film of tetragonal Pb(Zr0.4Ti0.6)O3 (PZT) was successfully obtained on a (100)Si substrate using a {101}PdO//{111}Pd thin film as a buffer layer. The {101}PdO//{111}Pd thin film buffer layer was obtained by oxidizing {111}Pd after depositing {111}Pd on a {111}Pt/TiO x /SiO2/{100}Si substrate. Using this buffer layer, a {110} c -oriented SrRuO3 (SRO) thin film was deposited by sputtering as a bottom electrode of PZT thin films. Subsequently, the {110}-oriented PZT thin film can be deposited on a (110) c SRO thin film by metal-organic chemical deposition (MOCVD) and its properties can be compared with those of PZT thin films with other orientations of {100} and {111}. Among the {100}, {110}, {111}-oriented PZT films, the {100}-oriented one showed the largest remnant polarization, which is in good agreement with those of the PZTs epitaxially grown in the 〈100〉, 〈110〉, and 〈111〉 directions. The other properties, i.e., piezoelectricity and dielectric constants, also showed similar anisotropic tendencies, which is in good agreement with the data reported in the epitaxially grown PZTs.

  8. SrZnO nanostructures grown on templated <0001> Al2O3 substrates by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Labis, Joselito P.; Alanazi, Anwar Q.; Albrithen, Hamad A.; El-Toni, Ahmed Mohamed; Hezam, Mahmoud; Elafifi, Hussein Elsayed; Abaza, Osama M.

    2017-09-01

    The parameters of pulsed laser deposition (PLD) have been optimized to design different nanostructures of Strontium-alloyed zinc oxide (SrZnO). In this work, SrZnO nanostructures are grown on <0001>Al2O3 substrates via two-step templating/seeding approach. In the temperature range between 300 - 750 oC and O2 background pressures between 0.01 and 10 Torr, the growth conditions have been tailored to grow unique pointed leaf-like- and pitted olive-like nanostructures. Prior to the growth of the nanostructures, a thin SrZnO layer that serves as seed layer/template is first deposited on the Al2O3 substrates at ˜300oC and background oxygen pressure of 10 mTorr. The optical properties of the nanostructures were examined by UV/Vis spectroscopy and photoluminescence (PL), while the structures/morphologies were examined by SEM, TEM, and XRD. The alloyed SrZnO nanostructures, grown by ablating ZnO targets with 5, 10, 25% SrO contents, have in common a single-crystal hexagonal nanostructure with (0002) preferential orientation and have shown remarkable changes in the morphological and optical properties of the materials. To date, this is the only reported work on optimization of laser ablation parameters to design novel SrZnO nanostructures in the 5-25% alloying range, as most related Sr-doped ZnO studies were done below 7% doping. Although the physical properties of ZnO are modified via Sr doping, the mechanism remains unclear. The PLD-grown SrZnO nanostructures were directly grown onto the Al2O3 substrates; thus making these nanomaterials very promising for potential applications in biosensors, love-wave filters, solar cells, and ultrasonic oscillators.

  9. Substrate nitridation induced modulations in transport properties of wurtzite GaN/p-Si (100) heterojunctions grown by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, Thirumaleshwara N.; Rajpalke, Mohana K.; Krupanidhi, S. B.

    Phase pure wurtzite GaN films were grown on Si (100) substrates by introducing a silicon nitride layer followed by low temperature GaN growth as buffer layers. GaN films grown directly on Si (100) were found to be phase mixtured, containing both cubic ({beta}) and hexagonal ({alpha}) modifications. The x-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) spectroscopy studies reveal that the significant enhancement in the structural as well as in the optical properties of GaN films grown with silicon nitride buffer layer grown at 800 deg. C when compared to the samples grown in the absence of silicon nitridemore » buffer layer and with silicon nitride buffer layer grown at 600 deg. C. Core-level photoelectron spectroscopy of Si{sub x}N{sub y} layers reveals the sources for superior qualities of GaN epilayers grown with the high temperature substrate nitridation process. The discussion has been carried out on the typical inverted rectification behavior exhibited by n-GaN/p-Si heterojunctions. Considerable modulation in the transport mechanism was observed with the nitridation conditions. The heterojunction fabricated with the sample of substrate nitridation at high temperature exhibited superior rectifying nature with reduced trap concentrations. Lowest ideality factors ({approx}1.5) were observed in the heterojunctions grown with high temperature substrate nitridation which is attributed to the recombination tunneling at the space charge region transport mechanism at lower voltages and at higher voltages space charge limited current conduction is the dominating transport mechanism. Whereas, thermally generated carrier tunneling and recombination tunneling are the dominating transport mechanisms in the heterojunctions grown without substrate nitridation and low temperature substrate nitridation, respectively.« less

  10. High-acoustic-impedance tantalum oxide layers for insulating acoustic reflectors.

    PubMed

    Capilla, Jose; Olivares, Jimena; Clement, Marta; Sangrador, Jesús; Iborra, Enrique; Devos, Arnaud

    2012-03-01

    This work describes the assessment of the acoustic properties of sputtered tantalum oxide films intended for use as high-impedance films of acoustic reflectors for solidly mounted resonators operating in the gigahertz frequency range. The films are grown by sputtering a metallic tantalum target under different oxygen and argon gas mixtures, total pressures, pulsed dc powers, and substrate biases. The structural properties of the films are assessed through infrared absorption spectroscopy and X-ray diffraction measurements. Their acoustic impedance is assessed by deriving the mass density from X-ray reflectometry measurements and the acoustic velocity from picosecond acoustic spectroscopy and the analysis of the frequency response of the test resonators.

  11. Heavily boron-doped Si layers grown below 700 C by molecular beam epitaxy using a HBO2 source

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Fathauer, R. W.; Grunthaner, P. J.

    1989-01-01

    Boron doping in Si layers grown by molecular beam epitaxy (MBE) at 500-700 C using an HBO2 source has been studied. The maximum boron concentration without detectable oxygen incorporation for a given substrate temperature and Si growth rate has been determined using secondary-ion mass spectrometry analysis. Boron present in the Si MBE layers grown at 550-700 C was found to be electrically active, independent of the amount of oxygen incorporation. By reducing the Si growth rate, highly boron-doped layers have been grown at 600 C without detectable oxygen incorporation.

  12. Effects of a GaSb buffer layer on an InGaAs overlayer grown on Ge(111) substrates: Strain, twin generation, and surface roughness

    NASA Astrophysics Data System (ADS)

    Kajikawa, Y.; Nishigaichi, M.; Tenma, S.; Kato, K.; Katsube, S.

    2018-04-01

    InGaAs layers were grown by molecular-beam epitaxy on nominal and vicinal Ge(111) substrates with inserting GaSb buffer layers. High-resolution X-ray diffraction using symmetric 333 and asymmetric 224 reflections was employed to analyze the crystallographic properties of the grown layers. By using the two reflections, we determined the lattice constants (the unit cell length a and the angle α between axes) of the grown layers with taking into account the rhombohedral distortion of the lattices of the grown layers. This allowed us the independent determination of the strain components (perpendicular and parallel components to the substrate surface, ε⊥ and ε//) and the composition x of the InxGa1-xAs layers by assuming the distortion coefficient D, which is defined as the ratio of ε⊥ against ε//. Furthermore, the twin ratios were determined for the GaSb and the InGaAs layers by comparing asymmetric 224 reflections from the twin domain with that from the normal domain of the layers. As a result, it has been shown that the twin ratio in the InGaAs layer can be decreased to be less than 0.1% by the use of the vicinal substrate together with annealing the GaSb buffer layer during the growth interruption before the InGaAs overgrowth.

  13. Stress generation and evolution in oxide heteroepitaxy

    NASA Astrophysics Data System (ADS)

    Fluri, Aline; Pergolesi, Daniele; Wokaun, Alexander; Lippert, Thomas

    2018-03-01

    Many physical properties of oxides can be changed by inducing lattice distortions in the crystal through heteroepitaxial growth of thin films. The average lattice strain can often be tuned by changing the film thickness or using suitable buffer layers between film and substrate. The exploitation of the full potential of strain engineering for sample or device fabrication rests on the understanding of the fundamental mechanisms of stress generation and evolution. For this study an optical measurement of the substrate curvature is used to monitor in situ how the stress builds up and relaxes during the growth of oxide thin films by pulsed laser deposition. The relaxation behavior is correlated with the growth mode, which is monitored simultaneously with reflection high-energy electron diffraction. The stress relaxation data is fitted and compared with theoretical models for stress evolution which were established for semiconductor epitaxy. The initial stage of the growth appears to be governed by surface stress and surface energy effects, while the subsequent stress relaxation is found to be fundamentally different between films grown on single-crystal substrates and on buffer layers. The first case can be rationalized with established theoretical models, but these models fail in the attempt to describe the growth on buffer layers. This is most probably due to the larger average density of crystalline defects in the buffer layers, which leads to a two-step stress relaxation mechanism, driven first by the nucleation and later by the migration of dislocation lines.

  14. Nanoporous Aluminum Oxide Membranes Coated with Atomic Layer Deposition-Grown Titanium Dioxide for Biomedical Applications: An In Vitro Evaluation.

    PubMed

    Petrochenko, Peter E; Kumar, Girish; Fu, Wujun; Zhang, Qin; Zheng, Jiwen; Liang, Chengdu; Goering, Peter L; Narayan, Roger J

    2015-12-01

    The surface topographies of nanoporous anodic aluminum oxide (AAO) and titanium dioxide (TiO2) membranes have been shown to modulate cell response in orthopedic and skin wound repair applications. In this study, we: (1) demonstrate an improved atomic layer deposition (ALD) method for coating the porous structures of 20, 100, and 200 nm pore diameter AAO with nanometer-thick layers of TiO2 and (2) evaluate the effects of uncoated AAO and TiO2-coated AAO on cellular responses. The TiO2 coatings were deposited on the AAO membranes without compromising the openings of the nanoscale pores. The 20 nm TiO2-coated membranes showed the highest amount of initial protein adsorption via the micro bicinchoninic acid (micro-BCA) assay; all of the TiO2-coated membranes showed slightly higher protein adsorption than the uncoated control materials. Cell viability, proliferation, and inflammatory responses on the TiO2-coated AAO membranes showed no adverse outcomes. For all of the tested surfaces, normal increases in proliferation (DNA content) of L929 fibroblasts were observed over from 4 hours to 72 hours. No increases in TNF-alpha production were seen in RAW 264.7 macrophages grown on TiO2-coated AAO membranes compared to uncoated AAO membranes and tissue culture polystyrene (TCPS) surfaces. Both uncoated AAO membranes and TiO2-coated AAO membranes showed no significant effects on cell growth and inflammatory responses. The results suggest that TiO2-coated AAO may serve as a reasonable prototype material for the development of nanostructured wound repair devices and orthopedic implants.

  15. Metal-Free CVD Graphene Synthesis on 200 mm Ge/Si(001) Substrates.

    PubMed

    Lukosius, M; Dabrowski, J; Kitzmann, J; Fursenko, O; Akhtar, F; Lisker, M; Lippert, G; Schulze, S; Yamamoto, Y; Schubert, M A; Krause, H M; Wolff, A; Mai, A; Schroeder, T; Lupina, G

    2016-12-14

    Good quality, complementary-metal-oxide-semiconductor (CMOS) technology compatible, 200 mm graphene was obtained on Ge(001)/Si(001) wafers in this work. Chemical vapor depositions were carried out at the deposition temperatures of 885 °C using CH 4 as carbon source on epitaxial Ge(100) layers, which were grown on Si(100), prior to the graphene synthesis. Graphene layer with the 2D/G ratio ∼3 and low D mode (i.e., low concentration of defects) was measured over the entire 200 mm wafer by Raman spectroscopy. A typical full-width-at-half-maximum value of 39 cm -1 was extracted for the 2D mode, further indicating that graphene of good structural quality was produced. The study also revealed that the lack of interfacial oxide correlates with superior properties of graphene. In order to evaluate electrical properties of graphene, its 2 × 2 cm 2 pieces were transferred onto SiO 2 /Si substrates from Ge/Si wafers. The extracted sheet resistance and mobility values of transferred graphene layers were ∼1500 ± 100 Ω/sq and μ ≈ 400 ± 20 cm 2 /V s, respectively. The transferred graphene was free of metallic contaminations or mechanical damage. On the basis of results of DFT calculations, we attribute the high structural quality of graphene grown by CVD on Ge to hydrogen-induced reduction of nucleation probability, explain the appearance of graphene-induced facets on Ge(001) as a kinetic effect caused by surface step pinning at linear graphene nuclei, and clarify the orientation of graphene domains on Ge(001) as resulting from good lattice matching between Ge(001) and graphene nucleated on such nuclei.

  16. A comparative study of p(+)n and n(+)p InP solar cells made by a closed ampoule diffusion

    NASA Technical Reports Server (NTRS)

    Faur, M.; Faur, M.; Flood, D. J.; Weinberg, I.; Brinker, D. J.; Goradia, C.; Fatemi, N.; Goradia, M.; Thesling, W.

    1991-01-01

    The purpose was to demonstrate the possibility of fabricating thermally diffused p(+)n InP solar cells having high open-circuit voltage without sacrificing the short circuit current. The p(+)n junctions were formed by closed-ampoule diffusion of Cd through a 3 to 5 nm thick anodic or chemical phosphorus-rich oxide cap layer grown on n-InP:S Czochralski LEC grown substrates. For solar cells made by thermal diffusion the p(+)n configuration is expected to have a higher efficiency than the n(+)p configuration. It is predicted that the AM0, BOL efficiencies approaching 19 percent should be readily achieved providing that good ohmic front contacts could be realized on the p(+) emitters of thickness lower than 1 micron.

  17. As-grown graphene/copper nanoparticles hybrid nanostructures for enhanced intensity and stability of surface plasmon resonance

    PubMed Central

    Li, Yun-Fei; Dong, Feng-Xi; Chen, Yang; Zhang, Xu-Lin; Wang, Lei; Bi, Yan-Gang; Tian, Zhen-Nan; Liu, Yue-Feng; Feng, Jing; Sun, Hong-Bo

    2016-01-01

    The transfer-free fabrication of the high quality graphene on the metallic nanostructures, which is highly desirable for device applications, remains a challenge. Here, we develop the transfer-free method by direct chemical vapor deposition of the graphene layers on copper (Cu) nanoparticles (NPs) to realize the hybrid nanostructures. The graphene as-grown on the Cu NPs permits full electric contact and strong interactions, which results in a strong localization of the field at the graphene/copper interface. An enhanced intensity of the localized surface plasmon resonances (LSPRs) supported by the hybrid nanostructures can be obtained, which induces a much enhanced fluorescent intensity from the dye coated hybrid nanostructures. Moreover, the graphene sheets covering completely and uniformly on the Cu NPs act as a passivation layer to protect the underlying metal surface from air oxidation. As a result, the stability of the LSPRs for the hybrid nanostructures is much enhanced compared to that of the bare Cu NPs. The transfer-free hybrid nanostructures with enhanced intensity and stability of the LSPRs will enable their much broader applications in photonics and optoelectronics. PMID:27872494

  18. Effects of Rapid Thermal Annealing on the Structural, Electrical, and Optical Properties of Zr-Doped ZnO Thin Films Grown by Atomic Layer Deposition.

    PubMed

    Wu, Jingjin; Zhao, Yinchao; Zhao, Ce Zhou; Yang, Li; Lu, Qifeng; Zhang, Qian; Smith, Jeremy; Zhao, Yongming

    2016-08-13

    The 4 at. % zirconium-doped zinc oxide (ZnO:Zr) films grown by atomic layer deposition (ALD) were annealed at various temperatures ranging from 350 to 950 °C. The structural, electrical, and optical properties of rapid thermal annealing (RTA) treated ZnO:Zr films have been evaluated to find out the stability limit. It was found that the grain size increased at 350 °C and decreased between 350 and 850 °C, while creeping up again at 850 °C. UV-vis characterization shows that the optical band gap shifts towards larger wavelengths. The Hall measurement shows that the resistivity almost keeps constant at low annealing temperatures, and increases rapidly after treatment at 750 °C due to the effect of both the carrier concentration and the Hall mobility. The best annealing temperature is found in the range of 350-550 °C. The ZnO:Zr film-coated glass substrates show good optical and electrical performance up to 550 °C during superstrate thin film solar cell deposition.

  19. Effects of Rapid Thermal Annealing on the Structural, Electrical, and Optical Properties of Zr-Doped ZnO Thin Films Grown by Atomic Layer Deposition

    PubMed Central

    Wu, Jingjin; Zhao, Yinchao; Zhao, Ce Zhou; Yang, Li; Lu, Qifeng; Zhang, Qian; Smith, Jeremy; Zhao, Yongming

    2016-01-01

    The 4 at. % zirconium-doped zinc oxide (ZnO:Zr) films grown by atomic layer deposition (ALD) were annealed at various temperatures ranging from 350 to 950 °C. The structural, electrical, and optical properties of rapid thermal annealing (RTA) treated ZnO:Zr films have been evaluated to find out the stability limit. It was found that the grain size increased at 350 °C and decreased between 350 and 850 °C, while creeping up again at 850 °C. UV–vis characterization shows that the optical band gap shifts towards larger wavelengths. The Hall measurement shows that the resistivity almost keeps constant at low annealing temperatures, and increases rapidly after treatment at 750 °C due to the effect of both the carrier concentration and the Hall mobility. The best annealing temperature is found in the range of 350–550 °C. The ZnO:Zr film-coated glass substrates show good optical and electrical performance up to 550 °C during superstrate thin film solar cell deposition. PMID:28773816

  20. Graphene: corrosion-inhibiting coating.

    PubMed

    Prasai, Dhiraj; Tuberquia, Juan Carlos; Harl, Robert R; Jennings, G Kane; Rogers, Bridget R; Bolotin, Kirill I

    2012-02-28

    We report the use of atomically thin layers of graphene as a protective coating that inhibits corrosion of underlying metals. Here, we employ electrochemical methods to study the corrosion inhibition of copper and nickel by either growing graphene on these metals, or by mechanically transferring multilayer graphene onto them. Cyclic voltammetry measurements reveal that the graphene coating effectively suppresses metal oxidation and oxygen reduction. Electrochemical impedance spectroscopy measurements suggest that while graphene itself is not damaged, the metal under it is corroded at cracks in the graphene film. Finally, we use Tafel analysis to quantify the corrosion rates of samples with and without graphene coatings. These results indicate that copper films coated with graphene grown via chemical vapor deposition are corroded 7 times slower in an aerated Na(2)SO(4) solution as compared to the corrosion rate of bare copper. Tafel analysis reveals that nickel with a multilayer graphene film grown on it corrodes 20 times slower while nickel surfaces coated with four layers of mechanically transferred graphene corrode 4 times slower than bare nickel. These findings establish graphene as the thinnest known corrosion-protecting coating.

  1. Structural, chemical, and magnetic properties of Fe films grown on InAs(100)

    NASA Astrophysics Data System (ADS)

    Ruppel, L.; Witte, G.; Wöll, Ch.; Last, T.; Fischer, S. F.; Kunze, U.

    2002-12-01

    The structure of epitaxial Fe films grown on an InAs(100)-c(8×2)/(4×2) surface has been studied in situ by means of low-energy electron diffraction and x-ray photoelectron spectroscopy, while their magnetic properties were characterized ex situ by superconducting quantum interference device magnetometry at temperatures of 5 300 K. Deposition of iron at room temperature or below leads to the formation of a thin iron arsenide layer that floats on the Fe film upon further deposition. Postdeposition annealing causes no significant improvement of the film structure but activates a further arsenic diffusion through the Fe film. Significant exchange-bias effects were found at low temperatures for insufficiently capped and partially oxidized Fe films, and are attributed to noncollinear spin order at the Ag capping layer/Fe interface. For perfect, nonoxidized Fe films, such a noncollinear spin order at the Fe/InAs interface is excluded as no thermomagnetic irreversibilities were found. This indicates that the spin order at the Fe/InAs interface is suitable for spin injection.

  2. The impact of ultra-thin titania interlayers on open circuit voltage and carrier lifetime in thin film solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moerman, David; Colbert, Adam E.; Ginger, David S., E-mail: ginger@chem.washington.edu

    We study the effects of modifying indium tin oxide electrodes with ultrathin titania (TiO{sub 2}) layers grown via plasma-enhanced atomic layer deposition (PE-ALD). We find an optimal thickness of PE-ALD-grown titania by tracking performance, which initially increases, peaks, and eventually decreases with increasing TiO{sub 2} thickness. We use scanning Kelvin probe microscopy (SKPM) to measure both the local work function and its distribution as a function of TiO{sub 2} thickness. We find that the variance in contact potential difference across the surface of the film is related to either the amorphous or anatase TiO{sub 2} form. Finally, we use localmore » SKPM recombination rate experiments, supported by bulk transient photovoltage and charge extraction measurements. We show that the optimum TiO{sub 2} thickness is the one for which the carrier lifetime is the longest and the charge carrier density is the highest, when the TiO{sub 2} is amorphous, in agreement with the device measurements.« less

  3. Large-area, laterally-grown epitaxial semiconductor layers

    DOEpatents

    Han, Jung; Song, Jie; Chen, Danti

    2017-07-18

    Structures and methods for confined lateral-guided growth of a large-area semiconductor layer on an insulating layer are described. The semiconductor layer may be formed by heteroepitaxial growth from a selective growth area in a vertically-confined, lateral-growth guiding structure. Lateral-growth guiding structures may be formed in arrays over a region of a substrate, so as to cover a majority of the substrate region with laterally-grown epitaxial semiconductor tiles. Quality regions of low-defect, stress-free GaN may be grown on silicon.

  4. Small, highly oriented Ru grains in intermediate layer realized through suppressing relaxation of low-angle grain boundaries for perpendicular recording media

    NASA Astrophysics Data System (ADS)

    Itagaki, Norikazu; Saito, Shin; Takahashi, Migaku

    2009-04-01

    Through analyzing the growth mechanism of the Ru layer in a nonmagnetic intermediate layer (NMIL) for perpendicular magnetic recording media, a concept for the NMIL is proposed in order to realize a recording layer of small, highly c-plane oriented grains with no intergranular exchange coupling. It was found that (1) fast Fourier transform analysis of plan-view transmission electron microscopy lattice images of Ru layers revealed that hexagonal close packed Ru grains in a c-plane oriented film readily coalesce with each other due to the disappearance of low-angle tilt boundaries. (2) A promising candidate for a NMIL consists of three individual epitaxially grown functional layers: a large-grain seed layer with a highly oriented sheet texture, a first interlayer of small grains, and a second interlayer of nonmagnetic grains isolated by a segregated oxide. (3) The Ru-SiO2/Ru/Mg NMIL based on the proposed concept exhibited small (diameter: 4.8 nm) Ru grains while retaining a narrow orientation distribution of 4.1°.

  5. Photo-induced wettability of TiO{sub 2} film with Au buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purkayastha, Debarun Dhar; Sangani, L. D. Varma; Krishna, M. Ghanashyam

    2014-04-24

    The effect of thickness of Au buffer layer (15-25 nm) between TiO{sub 2} film and substrate on the wettability of TiO{sub 2} films is reported. TiO{sub 2} films grown on Au buffer layer have a higher contact angle of 96-;100° as compared to 47.6o for the film grown without buffer layer. The transition from hydrophobicity to hydrophilicity under UV irradiation occurs within 10 min. for the buffer layered films whereas it is almost 30 min. for the film grown without buffer layer. The enhanced photo induced hydrophilicity is shown to be surface energy driven.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutzer, B.; Simsek, S.; Zimmermann, C.

    In order to improve the electrical behaviour of metal-insulator-metal capacitors with ZrO{sub 2} insulator grown by Atomic Layer Deposition, the influence of the insertion of interfacial Cr layers between Pt electrodes and the zirconia is investigated. An improvement of the α-voltage coefficient of capacitance as low as 567 ppm/V{sup 2} is achieved for a single layer of Cr while maintaining a high capacitance density of 10.7 fF/μm{sup 2} and a leakage current of less than 1.2 × 10{sup −8} A/cm{sup 2} at +1 V. The role of the interface is discussed by means of X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy showing themore » formation of Zr stabilized chromia oxide phase with a dielectric constant of 16.« less

  7. Bipolar resistive switching in room temperature grown disordered vanadium oxide thin-film devices

    NASA Astrophysics Data System (ADS)

    Wong, Franklin J.; Sriram, Tirunelveli S.; Smith, Brian R.; Ramanathan, Shriram

    2013-09-01

    We demonstrate bipolar switching with high OFF/ON resistance ratios (>104) in Pt/vanadium oxide/Cu structures deposited entirely at room temperature. The SET (RESET) process occurs when negative (positive) bias is applied to the top Cu electrode. The vanadium oxide (VOx) films are amorphous and close to the vanadium pentoxide stoichiometry. We also investigated Cu/VOx/W structures, reversing the position of the Cu electrode, and found the same polarity dependence with respect to the top and bottom electrodes, which suggests that the bipolar nature is linked to the VOx layer itself. Bipolar switching can be observed at 100 °C, indicating that it not due to a temperature-induced metal-insulator transition of a vanadium dioxide second phase. We discuss how ionic drift can lead to the bipolar electrical behavior of our junctions, similar to those observed in devices based on several other defective oxides. Such low-temperature processed oxide switches could be of relevance to back-end or package integration processing schemes.

  8. One dimensional metallic edges in atomically thin WSe2 induced by air exposure

    NASA Astrophysics Data System (ADS)

    Addou, Rafik; Smyth, Christopher M.; Noh, Ji-Young; Lin, Yu-Chuan; Pan, Yi; Eichfeld, Sarah M.; Fölsch, Stefan; Robinson, Joshua A.; Cho, Kyeongjae; Feenstra, Randall M.; Wallace, Robert M.

    2018-04-01

    Transition metal dichalcogenides are a unique class of layered two-dimensional (2D) crystals with extensive promising applications. Tuning the electronic properties of low-dimensional materials is vital for engineering new functionalities. Surface oxidation is of particular interest because it is a relatively simple method of functionalization. By means of scanning probe microscopy and x-ray photoelectron spectroscopy, we report the observation of metallic edges in atomically thin WSe2 monolayers grown by chemical vapor deposition on epitaxial graphene. Scanning tunneling microscopy shows structural details of WSe2 edges and scanning tunneling spectroscopy reveals the metallic nature of the oxidized edges. Photoemission demonstrates that the formation of metallic sub-stoichiometric tungsten oxide (WO2.7) is responsible for the high conductivity measured along the edges. Ab initio calculations validate the susceptibility of WSe2 nanoribbon edges to oxidation. The zigzag terminated edge exhibits metallic behavior prior the air-exposure and remains metallic after oxidation. Comprehending and exploiting this property opens a new opportunity for application in advanced electronic devices.

  9. Sputtered gold-coated ITO nanowires by alternating depositions from Indium and ITO targets for application in surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Setti, Grazielle O.; Mamián-López, Mónica B.; Pessoa, Priscila R.; Poppi, Ronei J.; Joanni, Ednan; Jesus, Dosil P.

    2015-08-01

    Indium Tin oxide (ITO) nanowires were deposited by RF sputtering over oxidized silicon using ITO and Indium targets. The nanowires grew on the substrate with a catalyst layer of Indium by the vapor-liquid-solid (VLS) mechanism. Modifications in the deposition conditions affected the morphology and dimensions of the nanowires. The samples, after being covered with gold, were evaluated as surface-enhanced Raman scattering (SERS) substrates for detection of dye solutions and very good intensifications of the Raman signal were obtained. The SERS performance of the samples was also compared to that of a commercial SERS substrate and the results achieved were similar. To the best of our knowledge, this is the first time ITO nanowires were grown by the sputtering technique using oxide and metal targets.

  10. Release of MEMS devices with hard-baked polyimide sacrificial layer

    NASA Astrophysics Data System (ADS)

    Boroumand Azad, Javaneh; Rezadad, Imen; Nath, Janardan; Smith, Evan; Peale, Robert E.

    2013-03-01

    Removal of polyimides used as sacrificial layer in fabricating MEMS devices can be challenging after hardbaking, which may easily result by the end of multiple-step processing. We consider the specific commercial co-developable polyimide ProLift 100 (Brewer Science). Excessive heat hardens this material, so that during wet release in TMAH based solvents, intact sheets break free from the substrate, move around in the solution, and break delicate structures. On the other hand, dry reactive-ion etching of hard-baked ProLift is so slow, that MEMS structures are damaged from undesirably-prolonged physical bombardment by plasma ions. We found that blanket exposure to ultraviolet light allows rapid dry etch of the ProLift surrounding the desired structures without damaging them. Subsequent removal of ProLift from under the devices can then be safely performed using wet or dry etch. We demonstrate the approach on PECVD-grown silicon-oxide cantilevers of 100 micron × 100 micron area supported 2 microns above the substrate by ~100-micron-long 8-micron-wide oxide arms.

  11. Electron irradiation induced amorphous SiO2 formation at metal oxide/Si interface at room temperature; electron beam writing on interfaces.

    PubMed

    Gurbán, S; Petrik, P; Serényi, M; Sulyok, A; Menyhárd, M; Baradács, E; Parditka, B; Cserháti, C; Langer, G A; Erdélyi, Z

    2018-02-01

    Al 2 O 3 (5 nm)/Si (bulk) sample was subjected to irradiation of 5 keV electrons at room temperature, in a vacuum chamber (pressure 1 × 10 -9 mbar) and formation of amorphous SiO 2 around the interface was observed. The oxygen for the silicon dioxide growth was provided by the electron bombardment induced bond breaking in Al 2 O 3 and the subsequent production of neutral and/or charged oxygen. The amorphous SiO 2 rich layer has grown into the Al 2 O 3 layer showing that oxygen as well as silicon transport occurred during irradiation at room temperature. We propose that both transports are mediated by local electric field and charged and/or uncharged defects created by the electron irradiation. The direct modification of metal oxide/silicon interface by electron-beam irradiation is a promising method of accomplishing direct write electron-beam lithography at buried interfaces.

  12. Nanocrystal grain growth and device architectures for high-efficiency CdTe ink-based photovoltaics.

    PubMed

    Crisp, Ryan W; Panthani, Matthew G; Rance, William L; Duenow, Joel N; Parilla, Philip A; Callahan, Rebecca; Dabney, Matthew S; Berry, Joseph J; Talapin, Dmitri V; Luther, Joseph M

    2014-09-23

    We study the use of cadmium telluride (CdTe) nanocrystal colloids as a solution-processable "ink" for large-grain CdTe absorber layers in solar cells. The resulting grain structure and solar cell performance depend on the initial nanocrystal size, shape, and crystal structure. We find that inks of predominantly wurtzite tetrapod-shaped nanocrystals with arms ∼5.6 nm in diameter exhibit better device performance compared to inks composed of smaller tetrapods, irregular faceted nanocrystals, or spherical zincblende nanocrystals despite the fact that the final sintered film has a zincblende crystal structure. Five different working device architectures were investigated. The indium tin oxide (ITO)/CdTe/zinc oxide structure leads to our best performing device architecture (with efficiency >11%) compared to others including two structures with a cadmium sulfide (CdS) n-type layer typically used in high efficiency sublimation-grown CdTe solar cells. Moreover, devices without CdS have improved response at short wavelengths.

  13. Nanoscale Cu{sub 2}O films: Radio-frequency magnetron sputtering and structural and optical studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudryashov, D. A., E-mail: kudryashovda@apbau.ru; Gudovskikh, A. S.; Babichev, A. V.

    2017-01-15

    Nanoscale copper (I) oxide layers are formed by magnetron-assisted sputtering onto glassy and silicon substrates in an oxygen-free environment at room temperature, and the structural and optical properties of the layers are studied. It is shown that copper oxide formed on a silicon substrate exhibits a lower degree of disorder than that formed on a glassy substrate, which is supported by the observation of a higher intensity and a smaller half-width of reflections in the diffraction pattern. The highest intensity of reflections in the diffraction pattern is observed for Cu{sub 2}O films grown on silicon at a magnetron power ofmore » 150 W. The absorption and transmittance spectra of these Cu{sub 2}O films are in agreement with the well-known spectra of bulk crystals. In the Raman spectra of the films, phonons inherent in the crystal lattice of cubic Cu{sub 2}O crystals are identified.« less

  14. Epitaxial growth of 6H silicon carbide in the temperature range 1320 C to 1390 C

    NASA Technical Reports Server (NTRS)

    Will, H. A.; Powell, J. A.

    1974-01-01

    High-quality epitaxial layers of 6H SiC have been grown on 6H SiC substrates with the grown direction perpendicular to the crystal c-axis. The growth was by chemical vapor deposition from methyltrichlorosilane (CH3SiCl3) in hydrogen at temperatures in the range of 1320 to 1390 C. Epitaxial layers up to 80 microns thick were grown at rates of 0.4 microns/min. Attempts at growth on the (0001) plane of 6H SiC substrates under similar conditions resulted in polycrystalline cubic SiC layers. Optical and X-ray diffraction techniques were used to characterize the grown layers.

  15. Impact of oxygen stoichiometry on electroforming and multiple switching modes in TiN/TaOx/Pt based ReRAM

    NASA Astrophysics Data System (ADS)

    Sharath, S. U.; Joseph, M. J.; Vogel, S.; Hildebrandt, E.; Komissinskiy, P.; Kurian, J.; Schroeder, T.; Alff, L.

    2016-10-01

    We have investigated the material and electrical properties of tantalum oxide thin films (TaOx) with engineered oxygen contents grown by RF-plasma assisted molecular beam epitaxy. The optical bandgap and the density of the TaOx films change consistently with oxygen contents in the range of 3.63 to 4.66 eV and 12.4 to 9.0 g/cm3, respectively. When exposed to atmosphere, an oxidized Ta2O5-y surface layer forms with a maximal thickness of 1.2 nm depending on the initial oxygen deficiency of the film. X-ray photoelectron spectroscopy studies show that multiple sub-stoichiometric compositions occur in oxygen deficient TaOx thin films, where all valence states of Ta including metallic Ta are possible. Devices of the form Pt/Ta2O5-y/TaOx/TiN exhibit highly tunable forming voltages of 10.5 V to 1.5 V with decreasing oxygen contents in TaOx. While a stable bipolar resistive switching (BRS) occurs in all devices irrespective of oxygen content, unipolar switching was found to coexist with BRS only at higher oxygen contents, which transforms to a threshold switching behaviour in the devices grown under highest oxidation.

  16. Seed layer effect on different properties and UV detection capability of hydrothermally grown ZnO nanorods over SiO2/p-Si substrate

    NASA Astrophysics Data System (ADS)

    Sannakashappanavar, Basavaraj S.; Byrareddy, C. R.; Kumar, Pesala Sudheer; Yadav, Aniruddh Bahadur

    2018-05-01

    Hydrothermally grown one dimensional ZnO nanostructures are among the most widely used semiconductor materials to build high-efficiency electronic devices for various applications. Few researchers have addressed the growth mechanism and effect of ZnO seed layer on different properties of ZnO nanorods grown by hydrothermal method, instead, no one has synthesized ZnO nanorod over SiO2/p-Si substrate. The aim of this study is to study the effect of ZnO seed layer and the growth mechanism of ZnO nanorods over SiO2/p-Si substrate. To achieve the goal, we have synthesized ZnO nanorods over different thickness ZnO seed layers by using the hydrothermal method on SiO2/p-Si substrate. The effects of c-plane area ratio were identified for the growth rate of c-plane, reaction rate constant and stagnant layer thickness also calculated by using a modified rate growth equation. We have identified maximum seed layer thickness for the growth of vertical ZnO nanorod. A step dislocation in the ZnO nanorods grown on 150and 200 nm thick seed layers was observed, the magnitude of Burges vector was calculated for this disorder. The seed layer and ZnO nanorods were characterized by AFM, XPS, UV-visible, XRD (X-ray diffraction, and SEM(scanning electron microscope). To justify the application of the grown ZnO nanorods Ti/Au was deposited over ZnO nanorods grown over all seed layers for the fabrication of photoconductor type UV detector.

  17. Improved Optical Transmittance and Crystal Characteristics of ZnS:TbOF Thin Film on Bi4Ti3O12/Indium Tin Oxide/Glass Substrate by Using a SiO2 Buffer Layer

    NASA Astrophysics Data System (ADS)

    Chia, Wei‑Kuo; Yokoyama, Meiso; Yang, Cheng‑Fu; Chiang, Wang‑Ta; Chen, Ying‑Chung

    2006-07-01

    Bi4Ti3O12 thin films are deposited on indium tin oxide (ITO)/glass substrates using RF magnetron sputtering technology and are annealed at 675 °C in a rapid thermal annealing furnace in an oxygen atmosphere. The resulting films have high optical transmittances and good crystalline characteristics. ZnS:TbOF films are then deposited on the Bi4Ti3O12 films, causing the originally highly transparent specimens to blacken and to resemble a glass surface coated with carbon powder. The optical transmittance of the specimen is less than 15% under the visible wavelength range, and neither a crystalline phase nor a distinct ZnS grain structure is evident in X-ray diffractometer (XRD) and scanning electronic microscope (SEM). Secondary ion mass spectrometer (SIMS) analysis reveals the occurrence of interdiffusion between the ZnS and Bi4Ti3O12 layers. This suggests that one or more unknown chemical reactions take place among the elements Bi, S, and O at the interface during the deposition of ZnS:TbOF film on a Bi4Ti3O12/ITO/glass substrate. These reactions cause the visible transmittance of the specimens to deteriorate dramatically. To prevent interdiffusion, a silicon dioxide (SiO2) buffer layer 100 nm thick was grown on the Bi4Ti3O12/ITO/glass substrate using plasma-enhanced chemical vapor deposition (PECVD), then the ZnS:TbOF film was grown on the SiO2 buffer layer. The transmittance of the resulting specimen is enhanced approximately 8-fold in the visible region. XRD patterns reveal the ZnS(111)-oriented phase is dominant. Furthermore, dense, crack-free ZnS:TbOF grains are observed by SEM. The results imply that the SiO2 buffer layer sandwiched between the ZnS:TbOF and Bi4Ti3O2 layers effectively separates the two layers. Therefore, interdiffusion and chemical reactions are prevented at the interface of the two layers, and the crystalline characteristics of the ZnS:TbOF layer and the optical transmittance of the specimen are improved as a result. Finally, the dielectric constant of the stacked structure is lower than that of the single layer structure without SiO2, but the dielectric breakdown strength is enhanced.

  18. Enhancing the oxidation resistance of graphite by applying an SiC coat with crack healing at an elevated temperature

    NASA Astrophysics Data System (ADS)

    Park, Jae-Won; Kim, Eung-Seon; Kim, Jae-Un; Kim, Yootaek; Windes, William E.

    2016-08-01

    The potential of reducing the oxidation of the supporting graphite components during normal and/or accident conditions in the Very High Temperature Reactor (VHTR) design has been studied. In this work efforts have been made to slow the oxidation process of the graphite with a thin SiC coating (∼ 10 μm). Upon heating at ≥ 1173 K in air, the spallations and cracks were formed in the dense columnar structured SiC coating layer grown on the graphite with a functionally gradient electron beam physical vapor deposition (EB-PVD. In accordance with the formations of these defects, the sample was vigorously oxidized, leaving only the SiC coating layer. Then, efforts were made to heal the surface defects using additional EB-PVD with ion beam bombardment and chemical vapor deposition (CVD). The EB-PVD did not effectively heal the cracks. But, the CVD was more appropriate for crack healing, likely due to its excellent crack line filling capability with a high density and high aspect ratio. It took ∼ 34 min for the 20% weight loss of the CVD crack healed sample in the oxidation test with annealing at 1173 K, while it took ∼ 8 min for the EB-PVD coated sample, which means it took ∼4 times longer at 1173 K for the same weight reduction in this experimental set-up.

  19. Superconductivity proximate to antiferromagnetism in a copper-oxide monolayer grown on Bi2Sr2CaCu2O8 +δ

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Zhang, Long; Wang, Fa

    2018-01-01

    A nodeless superconducting (SC) gap was reported in a recent scanning tunneling spectroscopy experiment of a copper-oxide monolayer grown on a Bi2Sr2CaCu2O8 +δ (Bi2212) substrate [Zhong et al., Sci. Bull. 61, 1239 (2016), 10.1007/s11434-016-1145-4], which is in stark contrast to the nodal d -wave pairing gap in the bulk cuprates. Motivated by this experiment, we first show with first-principles calculations that the tetragonal CuO (T-CuO) monolayer on the Bi2212 substrate is more stable than the commonly postulated CuO2 structure. The T-CuO monolayer is composed of two CuO2 layers sharing the same O atoms. The band structure is obtained by first-principles calculations, and its strong electron correlation is treated with the renormalized mean-field theory. We argue that one CuO2 sublattice is hole doped while the other sublattice remains half filled and may have antiferromagnetic (AF) order. The doped Cu sublattice can show d -wave SC; however, its proximity to the AF Cu sublattice induces a spin-dependent hopping, which splits the Fermi surface and may lead to a full SC gap. Therefore, the nodeless SC gap observed in the experiment could be accounted for by the d -wave SC proximity to an AF order, thus it is extrinsic rather than intrinsic to the CuO2 layers.

  20. Growth of High-Density Zinc Oxide Nanorods on Porous Silicon by Thermal Evaporation

    PubMed Central

    Rusli, Nurul Izni; Tanikawa, Masahiro; Mahmood, Mohamad Rusop; Yasui, Kanji; Hashim, Abdul Manaf

    2012-01-01

    The formation of high-density zinc oxide (ZnO) nanorods on porous silicon (PS) substrates at growth temperatures of 600–1000 °C by a simple thermal evaporation of zinc (Zn) powder in the presence of oxygen (O2) gas was systematically investigated. The high-density growth of ZnO nanorods with (0002) orientation over a large area was attributed to the rough surface of PS, which provides appropriate planes to promote deposition of Zn or ZnOx seeds as nucleation sites for the subsequent growth of ZnO nanorods. The geometrical morphologies of ZnO nanorods are determined by the ZnOx seed structures, i.e., cluster or layer structures. The flower-like hexagonal-faceted ZnO nanorods grown at 600 °C seem to be generated from the sparsely distributed ZnOx nanoclusters. Vertically aligned hexagonal-faceted ZnO nanorods grown at 800 °C may be inferred from the formation of dense arrays of ZnOx clusters. The formation of disordered ZnO nanorods formed at 1000 °C may due to the formation of a ZnOx seed layer. The growth mechanism involved has been described by a combination of self-catalyzed vapor-liquid-solid (VLS) and vapor-solid (VS) mechanism. The results suggest that for a more precise study on the growth of ZnO nanostructures involving the introduction of seeds, the initial seed structures must be taken into account given their significant effects.

  1. Preferred orientations of laterally grown silicon films over amorphous substrates using the vapor–liquid–solid technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeBoeuf, J. L., E-mail: jerome.leboeuf@mail.mcgill.ca; Brodusch, N.; Gauvin, R.

    2014-12-28

    A novel method has been optimized so that adhesion layers are no longer needed to reliably deposit patterned gold structures on amorphous substrates. Using this technique allows for the fabrication of amorphous oxide templates known as micro-crucibles, which confine a vapor–liquid–solid (VLS) catalyst of nominally pure gold to a specific geometry. Within these confined templates of amorphous materials, faceted silicon crystals have been grown laterally. The novel deposition technique, which enables the nominally pure gold catalyst, involves the undercutting of an initial chromium adhesion layer. Using electron backscatter diffraction it was found that silicon nucleated in these micro-crucibles were 30%more » single crystals, 45% potentially twinned crystals and 25% polycrystals for the experimental conditions used. Single, potentially twinned, and polycrystals all had an aversion to growth with the (1 0 0) surface parallel to the amorphous substrate. Closer analysis of grain boundaries of potentially twinned and polycrystalline samples revealed that the overwhelming majority of them were of the 60° Σ3 coherent twin boundary type. The large amount of coherent twin boundaries present in the grown, two-dimensional silicon crystals suggest that lateral VLS growth occurs very close to thermodynamic equilibrium. It is suggested that free energy fluctuations during growth or cooling, and impurities were the causes for this twinning.« less

  2. Heteroepitaxial Growth of Germanium-on-Silicon Using Ultrahigh-Vacuum Chemical Vapor Deposition with RF Plasma Enhancement

    NASA Astrophysics Data System (ADS)

    Alharthi, Bader; Grant, Joshua M.; Dou, Wei; Grant, Perry C.; Mosleh, Aboozar; Du, Wei; Mortazavi, Mansour; Li, Baohua; Naseem, Hameed; Yu, Shui-Qing

    2018-05-01

    Germanium (Ge) films have been grown on silicon (Si) substrate by ultrahigh-vacuum chemical vapor deposition with plasma enhancement (PE). Argon plasma was generated using high-power radiofrequency (50 W) to assist in germane decomposition at low temperature. The growth temperature was varied in the low range of 250°C to 450°C to make this growth process compatible with complementary metal-oxide-semiconductor technology. The material and optical properties of the grown Ge films were investigated. The material quality was determined by Raman and x-ray diffraction techniques, revealing growth of crystalline films in the temperature range of 350°C to 450°C. Photoluminescence spectra revealed improved optical quality at growth temperatures of 400°C and 450°C. Furthermore, material quality study using transmission electron microscopy revealed existence of defects in the Ge layer grown at 400°C. Based on the etch pit density, the average threading dislocation density in the Ge layer obtained at this growth temperature was measured to be 4.5 × 108 cm-2. This result was achieved without any material improvement steps such as use of graded buffer or thermal annealing. Comparison between PE and non-plasma-enhanced growth, in the same machine at otherwise the same growth conditions, indicated increased growth rate and improved material and optical qualities for PE growth.

  3. Corrosion Behavior of Plasma-Passivated Cu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbour, J.C.; Braithwaite, J.W.; Son, K.A.

    1999-07-09

    A new approach is being pursued to study corrosion in Cu alloy systems by using combinatorial analysis combined with microscopic experimentation (the Combinatorial Microlab) to determine mechanisms for copper corrosion in air. Corrosion studies are inherently difficult because of complex interactions between materials and environment, forming a multidimensional phase space of corrosion variables. The Combinatorial Microlab was specifically developed to address the mechanism of Cu sulfidation, which is an important reliability issue for electronic components. This approach differs from convention by focusing on microscopic length scales, the relevant scale for corrosion. During accelerated aging, copper is exposed to a varietymore » of corrosive environments containing sulfidizing species that cause corrosion. A matrix experiment was done to determine independent and synergistic effects of initial Cu oxide thickness and point defect density. The CuO{sub x} was controlled by oxidizing Cu in an electron cyclotron resonance (ECR) O{sub 2} plasma, and the point defect density was modified by Cu ion irradiation. The matrix was exposed to 600 ppb H{sub 2}S in 65% relative humidity air atmosphere. This combination revealed the importance of oxide quality in passivating Cu and prevention of the sulfidizing reaction. A native oxide and a defect-laden ECR oxide both react at 20 C to form a thick Cu{sub 2}S layer after exposure to H{sub 2}S, while different thicknesses of as-grown ECR oxide stop the formation of Cu{sub 2}S. The species present in the ECR oxide will be compared to that of an air oxide, and the sulfide layer growth rate will be presented.« less

  4. TiOx thin films grown on Pd(100) and Pd(111) by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Farstad, M. H.; Ragazzon, D.; Grönbeck, H.; Strømsheim, M. D.; Stavrakas, C.; Gustafson, J.; Sandell, A.; Borg, A.

    2016-07-01

    The growth of ultrathin TiOx (0≤x≤2) films on Pd(100) and Pd(111) surfaces by chemical vapor deposition (CVD), using Titanium(IV)isopropoxide (TTIP) as precursor, has been investigated by high resolution photoelectron spectroscopy, low energy electron diffraction and scanning tunneling microscopy. Three different TiOx phases and one Pd-Ti alloy phase have been identified for both surfaces. The Pd-Ti alloy phase is observed at the initial stages of film growth. Density functional theory (DFT) calculations for Pd(100) and Pd(111) suggest that Ti is alloyed into the second layer of the substrate. Increasing the TTIP dose yields a wetting layer comprising Ti2 + species (TiOx, x ∼0.75). On Pd(100), this phase exhibits a mixture of structures with (3 × 5) and (4 × 5) periodicity with respect to the Pd(100) substrate, while an incommensurate structure is formed on Pd(111). Most importantly, on both surfaces this phase consists of a zigzag pattern similar to observations on other reactive metal surfaces. Further increase in coverage results in growth of a fully oxidized (TiO2) phase on top of the partially oxidized layer. Preliminary investigations indicate that the fully oxidized phase on both Pd(100) and Pd(111) may be the TiO2(B) phase.

  5. Physicochemical properties of nanocomposite: Hydroxyapatite in reduced graphene oxide.

    PubMed

    Rajesh, A; Mangamma, G; Sairam, T N; Subramanian, S; Kalavathi, S; Kamruddin, M; Dash, S

    2017-07-01

    Graphene oxide (GO) based nanocomposites have gained considerable attention in the field of material science due to their excellent physicochemical and biological properties. Incorporation of nanomaterials into GO sheets prevents the formation of π-π stacking bond thereby giving rise to composites that show the improved properties compared to their individual counterparts. In this work, reduced graphene oxide (rGO) - hydroxyapatite (HAP) nanocomposites were synthesized by ultrasonic method. Increasing the c/a ratio of HAP in the diffraction pattern of rGO/HAP nanocomposites indicates the c-axis oriented grown HAP nanorods interacting with rGO layers. Shift in wavenumber (15cm -1 ) and increase of full width at half maximum (45cm -1 ) of G band in Raman spectra of the rGO/HAP nanocomposites are observed and attributed to the tensile strain induced due to the intercalated HAP nanorods between the rGO layers. Atomic force microscopy (AFM) and phase imaging studies revealed the intercalation of HAP nanorod with diameter 30nm and length 110-120nm in rGO sheets was clearly perceived along with improved elasticity compared to pristine HAP. 13 C-NMR results proved the synergistic interaction between both components in rGO/HAP nanocomposite. The novel properties observed and the microscopic mechanism responsible for this are a result of the structural modification in rGO layers brought about by the intercalation of HAP nanorods. Copyright © 2017. Published by Elsevier B.V.

  6. Forward-bias diode parameters, electronic noise, and photoresponse of graphene/silicon Schottky junctions with an interfacial native oxide layer

    NASA Astrophysics Data System (ADS)

    An, Yanbin; Behnam, Ashkan; Pop, Eric; Bosman, Gijs; Ural, Ant

    2015-09-01

    Metal-semiconductor Schottky junction devices composed of chemical vapor deposition grown monolayer graphene on p-type silicon substrates are fabricated and characterized. Important diode parameters, such as the Schottky barrier height, ideality factor, and series resistance, are extracted from forward bias current-voltage characteristics using a previously established method modified to take into account the interfacial native oxide layer present at the graphene/silicon junction. It is found that the ideality factor can be substantially increased by the presence of the interfacial oxide layer. Furthermore, low frequency noise of graphene/silicon Schottky junctions under both forward and reverse bias is characterized. The noise is found to be 1/f dominated and the shot noise contribution is found to be negligible. The dependence of the 1/f noise on the forward and reverse current is also investigated. Finally, the photoresponse of graphene/silicon Schottky junctions is studied. The devices exhibit a peak responsivity of around 0.13 A/W and an external quantum efficiency higher than 25%. From the photoresponse and noise measurements, the bandwidth is extracted to be ˜1 kHz and the normalized detectivity is calculated to be 1.2 ×109 cm Hz1/2 W-1. These results provide important insights for the future integration of graphene with silicon device technology.

  7. Thickness scaling of atomic-layer-deposited HfO2 films and their application to wafer-scale graphene tunnelling transistors

    PubMed Central

    Jeong, Seong-Jun; Gu, Yeahyun; Heo, Jinseong; Yang, Jaehyun; Lee, Chang-Seok; Lee, Min-Hyun; Lee, Yunseong; Kim, Hyoungsub; Park, Seongjun; Hwang, Sungwoo

    2016-01-01

    The downscaling of the capacitance equivalent oxide thickness (CET) of a gate dielectric film with a high dielectric constant, such as atomic layer deposited (ALD) HfO2, is a fundamental challenge in achieving high-performance graphene-based transistors with a low gate leakage current. Here, we assess the application of various surface modification methods on monolayer graphene sheets grown by chemical vapour deposition to obtain a uniform and pinhole-free ALD HfO2 film with a substantially small CET at a wafer scale. The effects of various surface modifications, such as N-methyl-2-pyrrolidone treatment and introduction of sputtered ZnO and e-beam-evaporated Hf seed layers on monolayer graphene, and the subsequent HfO2 film formation under identical ALD process parameters were systematically evaluated. The nucleation layer provided by the Hf seed layer (which transforms to the HfO2 layer during ALD) resulted in the uniform and conformal deposition of the HfO2 film without damaging the graphene, which is suitable for downscaling the CET. After verifying the feasibility of scaling down the HfO2 thickness to achieve a CET of ~1.5 nm from an array of top-gated metal-oxide-graphene field-effect transistors, we fabricated graphene heterojunction tunnelling transistors with a record-low subthreshold swing value of <60 mV/dec on an 8″ glass wafer. PMID:26861833

  8. Structural defects in GaN revealed by Transmission Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liliental-Weber, Zuzanna

    This paper reviews the various types of structural defects observed by Transmission Electron Microscopy in GaN heteroepitaxial layers grown on foreign substrates and homoepitaxial layers grown on bulk GaN substrates. The structural perfection of these layers is compared to the platelet self-standing crystals grown by High Nitrogen Pressure Solution. Defects in undoped and Mg doped GaN are discussed. Lastly, some models explaining the formation of inversion domains in heavily Mg doped layers that are possible defects responsible for the difficulties of p-doping in GaN are also reviewed.

  9. Structural defects in GaN revealed by Transmission Electron Microscopy

    DOE PAGES

    Liliental-Weber, Zuzanna

    2014-09-08

    This paper reviews the various types of structural defects observed by Transmission Electron Microscopy in GaN heteroepitaxial layers grown on foreign substrates and homoepitaxial layers grown on bulk GaN substrates. The structural perfection of these layers is compared to the platelet self-standing crystals grown by High Nitrogen Pressure Solution. Defects in undoped and Mg doped GaN are discussed. Lastly, some models explaining the formation of inversion domains in heavily Mg doped layers that are possible defects responsible for the difficulties of p-doping in GaN are also reviewed.

  10. Room-Temperature-Processed Flexible Amorphous InGaZnO Thin Film Transistor.

    PubMed

    Xiao, Xiang; Zhang, Letao; Shao, Yang; Zhou, Xiaoliang; He, Hongyu; Zhang, Shengdong

    2017-12-13

    A room-temperature flexible amorphous indium-gallium-zinc oxide thin film transistor (a-IGZO TFT) technology is developed on plastic substrates, in which both the gate dielectric and passivation layers of the TFTs are formed by an anodic oxidation (anodization) technique. While the gate dielectric Al 2 O 3 is grown with a conventional anodization on an Al:Nd gate electrode, the channel passivation layer Al 2 O 3 is formed using a localized anodization technique. The anodized Al 2 O 3 passivation layer shows a superior passivation effect to that of PECVD SiO 2 . The room-temperature-processed flexible a-IGZO TFT exhibits a field-effect mobility of 7.5 cm 2 /V·s, a subthreshold swing of 0.44 V/dec, an on-off ratio of 3.1 × 10 8 , and an acceptable gate-bias stability with threshold voltage shifts of 2.65 and -1.09 V under positive gate-bias stress and negative gate-bias stress, respectively. Bending and fatigue tests confirm that the flexible a-IGZO TFT also has a good mechanical reliability, with electrical performances remaining consistent up to a strain of 0.76% as well as after 1200 cycles of fatigue testing.

  11. Atomic layer deposited cobalt oxide: An efficient catalyst for NaBH{sub 4} hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandi, Dip K.; Manna, Joydev; Dhara, Arpan

    2016-01-15

    Thin films of cobalt oxide are deposited by atomic layer deposition using dicobalt octacarbonyl [Co{sub 2}(CO){sub 8}] and ozone (O{sub 3}) at 50 °C on microscope glass substrates and polished Si(111) wafers. Self-saturated growth mechanism is verified by x-ray reflectivity measurements. As-deposited films consist of both the crystalline phases; CoO and Co{sub 3}O{sub 4} that gets converted to pure cubic-Co{sub 3}O{sub 4} phase upon annealing at 500 °C under ambient condition. Elemental composition and uniformity of the films is examined by x-ray photoelectron spectroscopy and secondary ion-mass spectroscopy. Both as-deposited and the annealed films have been successfully tested as a catalyst formore » hydrogen evolution from sodium borohydride hydrolysis. The activation energy of the hydrolysis reaction in the presence of the as-grown catalyst is found to be ca. 38 kJ mol{sup −1}. Further implementation of multiwalled carbon nanotube, as a scaffold layer, improves the hydrogen generation rate by providing higher surface area of the deposited catalyst.« less

  12. A study of the physical, chemical and biological properties of TiO2 coatings produced by micro-arc oxidation in a Ca-P-based electrolyte.

    PubMed

    dos Santos, Amanda; Araujo, Joyce R; Landi, Sandra M; Kuznetsov, Alexei; Granjeiro, José M; de Sena, Lidia Ágata; Achete, Carlos Alberto

    2014-07-01

    In this work, a porous and homogeneous titanium dioxide layer was grown on commercially pure titanium substrate using a micro-arc oxidation (MAO) process and Ca-P-based electrolyte. The structure and morphology of the TiO2 coatings were characterized by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy, and profilometry. The chemical properties were studied using electron dispersive X-ray spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy. The wettability of the coating was evaluated using contact angle measurements. During the MAO process, Ca and P ions were incorporated into the oxide layer. The TiO2 coating was composed of a mixture of crystalline and amorphous structures. The crystalline part of the sample consisted of a major anatase phase and a minor rutile phase. A cross-sectional image of the coating-substrate interface reveals the presence of voids elongated along the interface. An osteoblast culture was performed to verify the cytocompatibility of the anodized surface. The results of the cytotoxicity tests show satisfactory cell viability of the titanium dioxide films produced in this study.

  13. Aerosol-assisted chemical vapor deposition of ultra-thin CuOx films as hole transport material for planar perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Zhixin; Chen, Shuqun; Li, Pingping; Li, Hongyi; Wu, Junshu; Hu, Peng; Wang, Jinshu

    This paper reports on the fabrication of CuOx films to be used as hole transporting layer (HTL) in CH3NH3PbI3 perovskite solar cells (PSCs). Ultra-thin CuOx coatings were grown onto FTO substrates for the first time via aerosol-assisted chemical vapor deposition (AACVD) of copper acetylacetonate in methanol. After incorporating into the PSCs prepared at ambient air, a highest power conversion efficiency (PCE) of 8.26% with HTL and of 3.34% without HTL were achieved. Our work represents an important step in the development of low-cost CVD technique for fabricating ultra-thin metal oxide functional layers in thin film photovoltaics.

  14. New advanced surface modification technique: titanium oxide ceramic surface implants: long-term clinical results

    NASA Astrophysics Data System (ADS)

    Szabo, Gyorgy; Kovacs, Lajos; Barabas, Jozsef; Nemeth, Zsolt; Maironna, Carlo

    2001-11-01

    The purpose of this paper is to discuss the background to advanced surface modification technologies and to present a new technique, involving the formation of a titanium oxide ceramic coating, with relatively long-term results of its clinical utilization. Three general techniques are used to modify surfaces: the addition or removal of material and the change of material already present. Surface properties can also be changed without the addition or removal of material, through the laser or electron beam thermal treatment. The new technique outlined in this paper relates to the production of a corrosion-resistant 2000-2500 A thick, ceramic oxide layer with a coherent crystalline structure on the surface of titanium implants. The layer is grown electrochemically from the bulk of the metal and is modified by heat treatment. Such oxide ceramic-coated implants have a number of advantageous properties relative to implants covered with various other coatings: a higher external hardness, a greater force of adherence between the titanium and the oxide ceramic coating, a virtually perfect insulation between the organism and the metal (no possibility of metal allergy), etc. The coated implants were subjected to various physical, chemical, electronmicroscopic, etc. tests for a qualitative characterization. Finally, these implants (plates, screws for maxillofacial osteosynthesis and dental root implants) were applied in surgical practice for a period of 10 years. Tests and the experience acquired demonstrated the good properties of the titanium oxide ceramic-coated implants.

  15. Penetrating the oxide barrier in situ and separating freestanding porous anodic alumina films in one step.

    PubMed

    Tian, Mingliang; Xu, Shengyong; Wang, Jinguo; Kumar, Nitesh; Wertz, Eric; Li, Qi; Campbell, Paul M; Chan, Moses H W; Mallouk, Thomas E

    2005-04-01

    A simple method for penetrating the barrier layer of an anodic aluminum oxide (AAO) film and for detaching the AAO film from residual Al foil was developed by reversing the bias voltage in situ after the anodization process is completed. With this technique, we have been able to obtain large pieces of free-standing AAO membranes with regular pore sizes of sub-10 nm. By combining Ar ion milling and wetting enhancement processes, Au nanowires were grown in the sub-10 nm pores of the AAO films. Further scaling down of the pore size and extension to the deposition of nanowires and nanotubes of materials other than Au should be possible by further optimizing this procedure.

  16. Remarkably high mobility ultra-thin-film metal-oxide transistor with strongly overlapped orbitals

    NASA Astrophysics Data System (ADS)

    Wei Shih, Chen; Chin, Albert; Fu Lu, Chun; Fang Su, Wei

    2016-01-01

    High mobility channel thin-film-transistor (TFT) is crucial for both display and future generation integrated circuit. We report a new metal-oxide TFT that has an ultra-thin 4.5 nm SnO2 thickness for both active channel and source-drain regions, very high 147 cm2/Vs field-effect mobility, high ION/IOFF of 2.3 × 107, small 110 mV/dec sub-threshold slope, and a low VD of 2.5 V for low power operation. This mobility is already better than chemical-vapor-deposition grown multi-layers MoS2 TFT. From first principle quantum-mechanical calculation, the high mobility TFT is due to strongly overlapped orbitals.

  17. Remarkably high mobility ultra-thin-film metal-oxide transistor with strongly overlapped orbitals

    PubMed Central

    Wei Shih, Chen; Chin, Albert; Fu Lu, Chun; Fang Su, Wei

    2016-01-01

    High mobility channel thin-film-transistor (TFT) is crucial for both display and future generation integrated circuit. We report a new metal-oxide TFT that has an ultra-thin 4.5 nm SnO2 thickness for both active channel and source-drain regions, very high 147 cm2/Vs field-effect mobility, high ION/IOFF of 2.3 × 107, small 110 mV/dec sub-threshold slope, and a low VD of 2.5 V for low power operation. This mobility is already better than chemical-vapor-deposition grown multi-layers MoS2 TFT. From first principle quantum-mechanical calculation, the high mobility TFT is due to strongly overlapped orbitals. PMID:26744240

  18. Carbon dioxide fixation in the metabolism of propylene and propylene oxide by Xanthobacter strain Py2.

    PubMed Central

    Small, F J; Ensign, S A

    1995-01-01

    Evidence for a requirement for CO2 in the productive metabolism of aliphatic alkenes and epoxides by the propylene-oxidizing bacterium Xanthobacter strain Py2 is presented. In the absence of CO2, whole-cell suspensions of propylene-grown cells catalyzed the isomerization of propylene oxide (epoxypropane) to acetone. In the presence of CO2, no acetone was produced. Acetone was not metabolized by suspensions of propylene-grown cells, in either the absence or presence of CO2. The degradation of propylene and propylene oxide by propylene-grown cells supported the fixation of 14CO2 into cell material, and the time course of 14C fixation correlated with the time course of propylene and propylene oxide degradation. The degradation of glucose and propionaldehyde by propylene-grown or glucose-grown cells did not support significant 14CO2 fixation. With propylene oxide as the substrate, the concentration dependence of 14CO2 fixation exhibited saturation kinetics, and at saturation, 0.9 mol of CO2 was fixed per mol of propylene oxide consumed. Cultures grown with propylene in a nitrogen-deficient medium supplemented with NaH13CO3 specifically incorporated 13C label into the C-1 (major labeled position) and C-3 (minor labeled position) carbon atoms of the endogenous storage compound poly-beta-hydroxybutyrate. No specific label incorporation was observed when cells were cultured with glucose or n-propanol as a carbon source. The depletion of CO2 from cultures grown with propylene, but not glucose or n-propanol, inhibited bacterial growth. We propose that propylene oxide metabolism in Xanthobacter strain Py2 proceeds by terminal carboxylation of an isomerization intermediate, which, in the absence of CO2, is released as acetone. PMID:7592382

  19. Control of optical properties of YAG crystals by thermal annealing

    NASA Astrophysics Data System (ADS)

    Tkachenko, S.; Arhipov, P.; Gerasymov, I.; Kurtsev, D.; Vasyukov, S.; Nesterkina, V.; Shiran, N.; Mateichenko, P.; Sidletskiy, O.

    2018-02-01

    Optical properties of YAG crystals grown and annealed under different atmosphere conditions have been compared. Simultaneously we have registered the surface composition of crystals and content of basic admixtures in the crystals grown under the reducing conditions. Unlike YAG grown under weakly oxidizing conditions in Ir crucibles and bleached under oxidizing annealing, YAGMo crystals grown in Mo crucibles under reducing Ar + CO atmosphere can be bleached by both oxidizing and reducing thermal annealing. The bleaching of YAGMo is not reversed by further annealing under any available conditions. Mechanisms of this phenomenon have been discussed, including a possible role of admixtures in elimination of color centers in YAG grown under the reducing conditions.

  20. Freestanding polyaniline nanorods grown on graphene for highly capacitive energy storage

    NASA Astrophysics Data System (ADS)

    Li, Zijiong; Qin, Zhen; Yang, Baocheng; Guo, Jian; Wang, Haiyan; Zhang, Weiyang; Lv, Xiaowei; Stack, Alison

    2015-02-01

    Freestanding polyaniline (PANI) nanorods grown in situ on microwave-expanded graphene oxide (MEGO) sheets were prepared through a facile solution method. The morphological characterization indicates that large quantity of free-standing PANI nanorods with average diameter of 50 nm were uniformly deposited onto the double sides of the MEGO nanosheets to form a sandwich structure. The hybrid of PANI/MEGO (GPANI) exhibit high specific surface area and high electrical conductivity, compared with pristine PANI nanorods. When evaluated as electrodes for supercapacitors, the GPANI demonstrate high specific capacitance of 628 F g-1 at a current density of 1.1 A g-1, high-rate performance, and excellent cycle stability compared to individual component. Such excellent electrochemical performance should be attributed to the combined double-layer capacitance and pseudo -capacitance mechanisms from the MEGO sheets and PANI nanorods.

  1. Fabrication and characterization of AlN metal-insulator-semiconductor grown Si substrate

    NASA Astrophysics Data System (ADS)

    Mahyuddin, A.; Azrina, A.; Mohd Yusoff, M. Z.; Hassan, Z.

    2017-11-01

    An experimental investigation was conducted to explore the effect of inserting a single AlGaN interlayer between AlN epilayer and GaN/AlN heterostructures on Si (111) grown by molecular beam epitaxy (MBE). It is confirmed from the scanning electron microscopy (SEM) that the AlGaN interlayer has a remarkable effect on reducing the tensile stress and dislocation density in AlN top layer. Capacitance-voltage (C-V) measurements were conducted to study the electrical properties of AlN/GaN heterostructures. While deriving the findings through the calculation it is suggested that the AlGaN interlayer can significantly reduce the value of effective oxide charge density and total effective number of charges per unit area which are 1.37 × 10-6C/cm2 and 8.55 × 1012cm-2, respectively.

  2. Writing and Reading of Ultrathin Ferroelectric Domains on Commensurate SrTiO3 on Silicon

    NASA Astrophysics Data System (ADS)

    Levy, Jeremy; Cen, Cheng; Sleasman, Charles R.; Warusawithana, Maitri; Schlom, Darrell G.

    2008-03-01

    Ferroelectricity in ultrathin epitaxial SrTiO3 grown commensurately by oxide-molecular beam epitaxy (MBE) on silicon substrates was investigated using piezoforce microscopy (PFM). A series of samples containing n molecular layers (ML) of SrTiO3 (n = 3, 4, 5, 6, 8, 10, 20) was grown on silicon substrates. Room-temperature ferroelectricity was observed for samples containing n = 5, 6, 8, 10 ML. Temperature-dependent measurements indicate that the sample with n = 5 exhibits a ferroelectric phase transition at Tc˜317 K. Sample with n = 6 remains ferroelectric up to at least 393K. Polar domains created on the n = 6 was found to be stable at room temperature for more than 72 hours. The implications of these results for fundamental and device-related applications will be discussed briefly.

  3. Layer-by-layer grown scalable redox-active ruthenium-based molecular multilayer thin films for electrochemical applications and beyond.

    PubMed

    Kaliginedi, Veerabhadrarao; Ozawa, Hiroaki; Kuzume, Akiyoshi; Maharajan, Sivarajakumar; Pobelov, Ilya V; Kwon, Nam Hee; Mohos, Miklos; Broekmann, Peter; Fromm, Katharina M; Haga, Masa-aki; Wandlowski, Thomas

    2015-11-14

    Here we report the first study on the electrochemical energy storage application of a surface-immobilized ruthenium complex multilayer thin film with anion storage capability. We employed a novel dinuclear ruthenium complex with tetrapodal anchoring groups to build well-ordered redox-active multilayer coatings on an indium tin oxide (ITO) surface using a layer-by-layer self-assembly process. Cyclic voltammetry (CV), UV-Visible (UV-Vis) and Raman spectroscopy showed a linear increase of peak current, absorbance and Raman intensities, respectively with the number of layers. These results indicate the formation of well-ordered multilayers of the ruthenium complex on ITO, which is further supported by the X-ray photoelectron spectroscopy analysis. The thickness of the layers can be controlled with nanometer precision. In particular, the thickest layer studied (65 molecular layers and approx. 120 nm thick) demonstrated fast electrochemical oxidation/reduction, indicating a very low attenuation of the charge transfer within the multilayer. In situ-UV-Vis and resonance Raman spectroscopy results demonstrated the reversible electrochromic/redox behavior of the ruthenium complex multilayered films on ITO with respect to the electrode potential, which is an ideal prerequisite for e.g. smart electrochemical energy storage applications. Galvanostatic charge-discharge experiments demonstrated a pseudocapacitor behavior of the multilayer film with a good specific capacitance of 92.2 F g(-1) at a current density of 10 μA cm(-2) and an excellent cycling stability. As demonstrated in our prototypical experiments, the fine control of physicochemical properties at nanometer scale, relatively good stability of layers under ambient conditions makes the multilayer coatings of this type an excellent material for e.g. electrochemical energy storage, as interlayers in inverted bulk heterojunction solar cell applications and as functional components in molecular electronics applications.

  4. Optical properties of ultrathin CIGS films studied by spectroscopic ellipsometry assisted by chemical engineering

    NASA Astrophysics Data System (ADS)

    Loubat, Anaïs; Eypert, Céline; Mollica, Fabien; Bouttemy, Muriel; Naghavi, Negar; Lincot, Daniel; Etcheberry, Arnaud

    2017-11-01

    CIGS (Cu(In1-x,Gax)Se2) based devices are very efficient for photovoltaic conversion. A non-destructive optical study of CIGS is an important challenge as for evaluation of the material quality, and for device modeling. Spectroscopic Ellipsometry (SE) is well adapted for a quantitative characterization only if the handicaps of the roughness limitation, the oxidized surface, or the compositional gradient are minimized. For this SE study, ungraded and thin CIGS samples are prepared with GGI (x) ratio (=[Ga]/([Ga] + [In])) ranging from 0.15 to 0.60. Thanks to chemical engineering based on acidic bromine solution etching and/or HCl de-oxidation, the SE experiments are performed on flattened surfaces, and also, on as grown de-oxidized samples. Using assumptions based on XPS, AFM and SEM complementary characterizations, we give proof of oxide free flattening surfaces and chemical homogeneity in depth. Using these observations, the SE data are modeled on the basis of a three layer model using an Adachi/Tauc-Lorentz formula for the CIGS dispersion. The optical gap values are determined in good agreement with the x ratio measured by the other characterization techniques. SE is able to well estimate the thickness and roughness variations on each sample. Furthermore, the CIGS optical constant extracted on such reference flat surfaces are then applied to the as grown-de-oxidized surfaces, enabling to describe the SE data obtained on rougher surfaces. A complete consistency of the proposed model is shown as well as the capability of SE to be sensitive to the chemistry of the surface.

  5. 4H-SiC p i n diodes grown by sublimation epitaxy in vacuum (SEV) and their application as microwave diodes

    NASA Astrophysics Data System (ADS)

    Camara, N.; Zekentes, K.; Zelenin, V. V.; Abramov, P. L.; Kirillov, A. V.; Romanov, L. P.; Boltovets, N. S.; Krivutsa, V. A.; Thuaire, A.; Bano, E.; Tsoi, E.; Lebedev, A. A.

    2008-02-01

    Sublimation epitaxy under vacuum (SEV) was investigated as a method for growing 4H-SiC epitaxial structures for p-i-n diode fabrication. The SEV-grown 4H-SiC material was investigated with scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray diffraction, photo-luminescence spectroscopy (PL), cathodo-luminescence (CL) spectroscopy, photocurrent method for carrier diffusion length determination, electro-luminescence microscopy (EL), deep level transient spectroscopy (DLTS), C-V profiling and Hall-effect measurements. When possible, the same investigation techniques were used in parallel with similar layers grown by chemical vapour deposition (CVD) epitaxy and the physical properties of the two kind of epitaxied layers were compared. p-i-n diodes were fabricated in parallel on SEV and CVD-grown layers and showed close electrical performances in dc mode in term of capacitance, resistance and transient time switching, despite the lower mobility and the diffusion length of the SEV-grown layers. X-band microwave switches based on the SEV-grown p-i-n diodes have been demonstrated with insertion loss lower than 4 dB and an isolation higher than 17 dB. These single-pole single-throw (SPST) switches were able to handle a pulsed power up to 1800 W in isolation mode, similar to the value obtained with switches incorporating diodes with CVD-grown layers.

  6. Stress engineering in GaN structures grown on Si(111) substrates by SiN masking layer application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szymański, Tomasz, E-mail: tomasz.szymanski@pwr.edu.pl; Wośko, Mateusz; Paszkiewicz, Bogdan

    2015-07-15

    GaN layers without and with an in-situ SiN mask were grown by using metal organic vapor phase epitaxy for three different approaches used in GaN on silicon(111) growth, and the physical and optical properties of the GaN layers were studied. For each approach applied, GaN layers of 1.4 μm total thickness were grown, using silan SiH{sub 4} as Si source in order to grow Si{sub x}N{sub x} masking layer. The optical micrographs, scanning electron microscope images, and atomic force microscope images of the grown samples revealed cracks for samples without SiN mask, and micropits, which were characteristic for the samples grownmore » with SiN mask. In situ reflectance signal traces were studied showing a decrease of layer coalescence time and higher degree of 3D growth mode for samples with SiN masking layer. Stress measurements were conducted by two methods—by recording micro-Raman spectra and ex-situ curvature radius measurement—additionally PLs spectra were obtained revealing blueshift of PL peak positions with increasing stress. The authors have shown that a SiN mask significantly improves physical and optical properties of GaN multilayer systems reducing stress in comparison to samples grown applying the same approaches but without SiN masking layer.« less

  7. Implementation of atomic layer deposition-based AlON gate dielectrics in AlGaN/GaN MOS structure and its physical and electrical properties

    NASA Astrophysics Data System (ADS)

    Nozaki, Mikito; Watanabe, Kenta; Yamada, Takahiro; Shih, Hong-An; Nakazawa, Satoshi; Anda, Yoshiharu; Ueda, Tetsuzo; Yoshigoe, Akitaka; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2018-06-01

    Alumina incorporating nitrogen (aluminum oxynitride; AlON) for immunity against charge injection was grown on a AlGaN/GaN substrate through the repeated atomic layer deposition (ALD) of AlN layers and in situ oxidation in ozone (O3) ambient under optimized conditions. The nitrogen distribution was uniform in the depth direction, the composition was controllable over a wide range (0.5–32%), and the thickness could be precisely controlled. Physical analysis based on synchrotron radiation X-ray photoelectron spectroscopy (SR-XPS) revealed that harmful intermixing at the insulator/AlGaN interface causing Ga out-diffusion in the gate stack was effectively suppressed by this method. AlON/AlGaN/GaN MOS capacitors were fabricated, and they had excellent electrical properties and immunity against electrical stressing as a result of the improved interface stability.

  8. Growth of heterostructures on InAs for high mobility device applications

    NASA Astrophysics Data System (ADS)

    Contreras-Guerrero, R.; Wang, S.; Edirisooriya, M.; Priyantha, W.; Rojas-Ramirez, J. S.; Bhuwalka, K.; Doornbos, G.; Holland, M.; Oxland, R.; Vellianitis, G.; Van Dal, M.; Duriez, B.; Passlack, M.; Diaz, C. H.; Droopad, R.

    2013-09-01

    The growth of heterostructures lattice matched to InAs(100) substrates for high mobility electronic devices has been investigated. The oxide removal process and homoepitaxial nucleation depends on the deposition parameters to avoid the formation of surface defects that can propagate through the structure during growth which can result in degraded device performance. The growth parameters for InAs homoepitaxy were found to be within an extremely narrow range when using As4 with a slight increase using As2. High structural quality lattice matched AlAsxSb1-x buffer layer was grown on InAs(100) substrates using a digital growth technique with the AlAs mole fraction adjusted by varying the incident As flux. Using the AlAsxSb1-x buffer layer, the transport properties of thin InAs channel layers were determined on conducting native substrates.

  9. Resistivity control of unintentionally doped GaN films

    NASA Astrophysics Data System (ADS)

    Grzegorczyk, A. P.; Macht, L.; Hageman, P. R.; Rudzinski, M.; Larsen, P. K.

    2005-05-01

    GaN epilayers were grown on sapphire substrates via low temperature GaN and AlN nucleation layers (NL) by metalorganic chemical vapor phase epitaxy (MOCVD). The morphology of the individual NLs strongly depends on the carrier gas used during the growth and recrystallization and this is the key factor for control of the resistivity of the GaN layer grown on it. The GaN nucleation layer grown in presence of N2 has a higher density of islands with a statistically smaller diameter than the samples grown in H2 atmosphere. The NL grown in N2 enables the growth GaN with a sheet resistivity higher than 3×104 cm as opposed to a 0.5 cm value obtained for the NL grown in H2. Introduction of an additional intermediate (IL) low temperature (GaN or AlN) nucleation layer changes the GaN epilayer resistivity to about 50 cm, regardless of the carrier gas used during the growth of the IL. Defect selective etching demonstrated that control of the type and density of the dislocations in GaN enables the growth of highly resistive layers without any intentional acceptor doping (Mg, Zn). It will be demonstrated that by changing the ratio of edge type to screw dislocations the resistivity of the layer can be changed by a few orders of magnitude.

  10. High-performance hybrid (electrostatic double-layer and faradaic capacitor-based) polymer actuators incorporating nickel oxide and vapor-grown carbon nanofibers.

    PubMed

    Terasawa, Naohiro; Asaka, Kinji

    2014-12-02

    The electrochemical and electromechanical properties of polymeric actuators prepared using nickel peroxide hydrate (NiO2·xH2O) or nickel peroxide anhydride (NiO2)/vapor-grown carbon nanofibers (VGCF)/ionic liquid (IL) electrodes were compared with actuators prepared using solely VGCFs or single-walled carbon nanotubes (SWCNTs) and an IL. The electrode in these actuator systems is equivalent to an electrochemical capacitor (EC) exhibiting both electrostatic double-layer capacitor (EDLC)- and faradaic capacitor (FC)-like behaviors. The capacitance of the metal oxide (NiO2·xH2O or NiO2)/VGCF/IL electrode is primarily attributable to the EDLC mechanism such that, at low frequencies, the strains exhibited by the NiO2·xH2O/VGCF/IL and NiO2/VGCF/IL actuators primarily result from the FC mechanism. The VGCFs in the NiO2·xH2O/VGCF/IL and NiO2/VGCF/IL actuators strengthen the EDLC mechanism and increase the electroconductivity of the devices. The mechanism underlying the functioning of the NiO2·xH2O/VGCF/IL actuator in which NiO2·xH2O/VGCF = 1.0 was found to be different from that of the devices produced using solely VGCFs or SWCNTs, which exhibited only the EDLC mechanism. In addition, it was found that both NiO2 and VGCFs are essential with regard to producing actuators that are capable of exhibiting strain levels greater than those of SWCNT-based polymer actuators and are thus suitable for practical applications. Furthermore, the frequency dependence of the displacement responses of the NiO2·xH2O/VGCF and NiO2/VGCF polymer actuators were successfully simulated using a double-layer charging kinetic model. This model, which accounted for the oxidization and reduction reactions of the metal oxide, can also be applied to SWCNT-based actuators. The results of electromechanical response simulations for the NiO2·xH2O/VGCF and NiO2/VGCF actuators predicted the strains at low frequencies as well as the time constants of the devices, confirming that the model is applicable not only to EDLC-based actuator systems but also to the fabricated EDLC/FC system.

  11. Effects of dc bias on the kinetics and electrical properties of silicon dioxide grown in an electron cyclotron resonance plasma

    NASA Astrophysics Data System (ADS)

    Carl, D. A.; Hess, D. W.; Lieberman, M. A.; Nguyen, T. D.; Gronsky, R.

    1991-09-01

    Thin (3-300-nm) oxides were grown on single-crystal silicon substrates at temperatures from 523 to 673 K in a low-pressure electron cyclotron resonance (ECR) oxygen plasma. Oxides were grown under floating, anodic or cathodic bias conditions, although only the oxides grown under floating or anodic bias conditions are acceptable for use as gate dielectrics in metal-oxide-semiconductor technology. Oxide thickness uniformity as measured by ellipsometry decreased with increasing oxidation time for all bias conditions. Oxidation kinetics under anodic conditions can be explained by negatively charged atomic oxygen, O-, transport limited growth. Constant current anodizations yielded three regions of growth: (1) a concentration gradient dominated regime for oxides thinner than 10 nm, (2) a field dominated regime with ohmic charged oxidant transport for oxide thickness in the range of 10 nm to approximately 100 nm, and (3) a space-charge limited regime for films thicker than approximately 100 nm. The relationship between oxide thickness (xox), overall potential drop (Vox) and ion current (ji) in the space-charge limited transport region was of the form: ji ∝ V2ox/x3ox. Transmission electron microscopy analysis of 5-60-nm-thick anodized films indicated that the silicon-silicon dioxide interface was indistinguishable from that of thermal oxides grown at 1123 K. High-frequency capacitance-voltage (C-V) and ramped bias current-voltage (I-V) studies performed on 5.4-30-nm gate thickness capacitors indicated that the as-grown ECR films had high levels of fixed oxide charge (≳1011 cm-2) and interface traps (≳1012 cm-2 eV-1). The fixed charge level could be reduced to ≊4×1010 cm-2 by a 20 min polysilicon gate activation anneal at 1123 K in nitrogen; the interface trap density at mid-band gap decreased to ≊(1-2)×1011 cm-2 eV-1 after this process. The mean breakdown strength for anodic oxides grown under optimum conditions was 10.87±0.83 MV cm-1. Electrical properties of the 5.4-8-nm gates compared well with thicker films and control dry thermal oxides of similar thicknesses.

  12. Evaluation of the optical characteristics of c-axis oriented zinc oxide thin films grown by sol gel spin coating technique

    NASA Astrophysics Data System (ADS)

    Baisakh, K.; Behera, S.; Pati, S.

    2018-03-01

    In this work we have systematically studied the optical characteristics of synthesized wurzite zinc oxide thin films exhibiting (002) orientation. Using sol gel spin coating technique zinc oxide thin films are grown on pre cleaned fused quartz substrates. Structural properties of the films are studied using X-ray diffraction analysis. Micro structural analysis and thickness of the grown samples are analyzed using field emission scanning electron microscopy. With an aim to investigate the optical characteristics of the grown zinc oxide thin films the transmission and reflection spectra are evaluated in the ultraviolet-visible (UV-VIS) range. Using envelope method, the refractive index, extinction coefficient, absorption coefficient, band gap energy and the thickness of the synthesized films are estimated from the recorded UV-VIS spectra. An attempt has also been made to study the influence of crystallographic orientation on the optical characteristics of the grown films.

  13. The utilization of aconate and itaconate by Micrococcus sp

    PubMed Central

    Cooper, R. A.; Itiaba, K.; Kornberg, H. L.

    1965-01-01

    1. An organism, identified as Micrococcus sp., was isolated by elective culture on aconate; it also grew on itaconate. 2. Washed suspensions of the aconate-grown organism readily oxidized intermediates of the tricarboxylic acid cycle, aconate and succinic semialdehyde, but not itaconate. Itaconate-grown cells oxidized tricarboxylic acid-cycle intermediates, succinic semialdehyde and itaconate, but not aconate. Succinate-grown cells oxidized neither itaconate nor aconate. 3. Extracts of aconate-grown cells catalysed the formation of succinic semialdehyde and carbon dioxide, in equimolar amounts, from aconate. In the presence of NAD or NADP, succinic semialdehyde was oxidized to succinate with concomitant reduction of the coenzyme. 4. Extracts of itaconate-grown cells catalysed the formation of pyruvate and acetyl-CoA from itaconyl-CoA. 5. Key enzymes involved in the formation of succinate from aconate, and of pyruvate and acetyl-CoA from itaconate, were distinct and inducible: their formation preceded growth on the appropriate substrate. PMID:14342240

  14. Crystallization of accessory phases in magmas by local saturation adjacent to phenocrysts

    USGS Publications Warehouse

    Bacon, C.R.

    1989-01-01

    Accessory minerals commonly occur attached to or included in the major crystalline phases of felsic and some intermediate igneous rocks. Apatite is particularly common as inclusions, but Fe-Ti oxides, pyrrhotite, zircon, monazite, chevkinite and xenotime are also known from silicic rocks. Accessories may nucleate near the host crystal/ liquid interface as a result of local saturation owing to formation of a differentiated chemical boundary layer in which accessory mineral solubility would be lower than in the surrounding liquid. Differentiation of this boundary layer would be greatest adjacent to ferromagnesian phenocrysts, especially Fe-Ti oxides; it is with oxides that accessories are most commonly associated in rocks. A boundary layer may develop if the crystal grows more rapidly than diffusion can transport incorporated and rejected elements to and from the phenocryst. Diffusion must dominate over convection as a mode of mass transfer near the advancing crystal/liquid interface in order for a boundary layer to exist. Accumulation of essential structural constituent elements of accessory minerals owing to their slow diffusion in evolved silicate melt also may force local saturation, but this is not a process that applies to all cases. Local saturation is an attractive mechanism for enhancing fractionation during crystallization differentiation. If accessory minerals attached to or included in phenocrysts formed because of local saturation, their host phenocrysts must have grown rapidly when accessories nucleated in comparison to lifetimes of magma reservoirs. Some inconsistencies remain in a local saturation origin for accessory phases that cannot be evaluated without additional information. ?? 1989.

  15. 230% room-temperature magnetoresistance in CoFeB /MgO/CoFeB magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Djayaprawira, David D.; Tsunekawa, Koji; Nagai, Motonobu; Maehara, Hiroki; Yamagata, Shinji; Watanabe, Naoki; Yuasa, Shinji; Suzuki, Yoshishige; Ando, Koji

    2005-02-01

    Magnetoresistance (MR) ratio up to 230% at room temperature (294% at 20 K) has been observed in spin-valve-type magnetic tunnel junctions (MTJs) using MgO tunnel barrier layer fabricated on thermally oxidized Si substrates. We found that such a high MR ratio can be obtained when the MgO barrier layer was sandwiched with amorphous CoFeB ferromagnetic electrodes. Microstructure analysis revealed that the MgO layer with (001) fiber texture was realized when the MgO layer was grown on amorphous CoFeB rather than on polycrystalline CoFe. Since there have been no theoretical studies on the MTJs with a crystalline tunnel barrier and amorphous electrodes, the detailed mechanism of the huge tunneling MR effect observed in this study is not clear at the present stage. Nevertheless, the present work is of paramount importance in realizing high-density magnetoresistive random access memory and read head for ultra high-density hard-disk drives into practical use.

  16. Performance and Stability Enhancement of In-Sn-Zn-O TFTs Using SiO2 Gate Dielectrics Grown by Low Temperature Atomic Layer Deposition.

    PubMed

    Sheng, Jiazhen; Han, Ju-Hwan; Choi, Wan-Ho; Park, Jozeph; Park, Jin-Seong

    2017-12-13

    Silicon dioxide (SiO 2 ) films were synthesized by plasma-enhanced atomic layer deposition (PEALD) using BTBAS [bis(tertiarybutylamino) silane] as the precursor and O 2 plasma as the reactant, at a temperature range from 50 to 200 °C. While dielectric constant values larger than 3.7 are obtained at all deposition temperatures, the leakage current levels are drastically reduced to below 10 -12 A at temperatures above 150 °C, which are similar to those obtained in thermally oxidized and PECVD grown SiO 2 . Thin film transistors (TFTs) based on In-Sn-Zn-O (ITZO) semiconductors were fabricated using thermal SiO 2 , PECVD SiO 2 , and PEALD SiO 2 grown at 150 °C as the gate dielectrics, and superior device performance and stability are observed in the last case. A linear field effect mobility of 68.5 cm 2 /(V s) and a net threshold voltage shift (ΔV th ) of approximately 1.2 V under positive bias stress (PBS) are obtained using the PEALD SiO 2 as the gate insulator. The relatively high concentration of hydrogen in the PEALD SiO 2 is suggested to induce a high carrier density in the ITZO layer deposited onto it, which results in enhanced charge transport properties. Also, it is most likely that the hydrogen atoms have passivated the electron traps related to interstitial oxygen defects, thus resulting in improved stability under PBS. Although the PECVD SiO 2 contains a hydrogen concentration similar to that of PEALD SiO 2 , its relatively large surface roughness appears to induce scattering effects and the generation of electron traps, which result in inferior device performance and stability.

  17. Influence of defect luminescence and structural modification on the electrical properties of Magnesium Doped Zinc Oxide Nanorods

    NASA Astrophysics Data System (ADS)

    Santoshkumar, B.; Biswas, Amrita; Kalyanaraman, S.; Thangavel, R.; Udayabhanu, G.; Annadurai, G.; Velumani, S.

    2017-06-01

    Magnesium doped zinc oxide nanorod arrays on zinc oxide seed layers were grown by hydrothermal method. X-ray diffraction (XRD) patterns revealed the growth orientation along the preferential (002) direction. The hexagonal morphology was revealed from the field emission scanning electron microscope (FESEM) images. The elemental composition of the samples was confirmed by energy dispersive x-ray analysis spectra (EDS) and mapping dots. Carrier concentration, resistivity and mobility of the samples were obtained by Hall measurements. I-V characteristic curve confirmed the increase in resistivity upon doping. Photoluminescence (PL) spectra exposed the characteristic of UV emission along with defect mediated visible emission in the samples. Electrochemical impedance spectroscopy and cyclic voltammetry were undertaken to study the charge transport property. Owing to the change in the structural parameters and defect concentration the electrical properties of the doped samples were altered.

  18. Resistive switching in TiO2 nanocolumn arrays electrochemically grown

    NASA Astrophysics Data System (ADS)

    Marik, M.; Mozalev, A.; Hubalek, J.; Bendova, M.

    2017-04-01

    Resistive switching in metal oxides, especially in TiO2, has been intensively investigated for potential application in non-volatile memory microdevices. As one of the working mechanisms, a conducting filament consisting of a substoichiometric oxide phase is created within the oxide layer. With the aim of investigating the filament formation in spatially confined elements, we fabricate arrays of self-ordered TiO2 nanocolumns by porous-anodic-alumina (PAA)-assisted anodizing, incorporate them into solid-state microdevices, study their electron transport properties, and reveal that this anodizing approach is suitable for growing TiO2 nanostructures exhibiting resistive switching. The electrical properties and resistive switching behavior are both dependent on the electrolytic formation conditions, influencing the concentration and distribution of oxygen vacancies in the nanocolumn material during the film growth. Therefore, the PAA-assisted TiO2 nanocolumn arrays can be considered as a platform for investigating various phenomena related to resistive switching in valve metal oxides at the nanoscale.

  19. Large area tunnel oxide passivated rear contact n -type Si solar cells with 21.2% efficiency: Large area tunnel oxide passivated rear contact n -type Si solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Yuguo; Upadhyaya, Vijaykumar; Chen, Chia-Wei

    This paper reports on the implementation of carrier-selective tunnel oxide passivated rear contact for high-efficiency screen-printed large area n-type front junction crystalline Si solar cells. It is shown that the tunnel oxide grown in nitric acid at room temperature (25°C) and capped with n+ polysilicon layer provides excellent rear contact passivation with implied open-circuit voltage iVoc of 714mV and saturation current density J0b of 10.3 fA/cm2 for the back surface field region. The durability of this passivation scheme is also investigated for a back-end high temperature process. In combination with an ion-implanted Al2O3-passivated boron emitter and screen-printed front metal grids,more » this passivated rear contact enabled 21.2% efficient front junction Si solar cells on 239 cm2 commercial grade n-type Czochralski wafers.« less

  20. Fabrication of Coaxial Si1−xGex Heterostructure Nanowires by O2 Flow-Induced Bifurcate Reactions

    PubMed Central

    2010-01-01

    We report on bifurcate reactions on the surface of well-aligned Si1−xGex nanowires that enable fabrication of two different coaxial heterostructure nanowires. The Si1−xGex nanowires were grown in a chemical vapor transport process using SiCl4 gas and Ge powder as a source. After the growth of nanowires, SiCl4 flow was terminated while O2 gas flow was introduced under vacuum. On the surface of nanowires was deposited Ge by the vapor from the Ge powder or oxidized into SiO2 by the O2 gas. The transition from deposition to oxidation occurred abruptly at 2 torr of O2 pressure without any intermediate region and enables selectively fabricated Ge/Si1−xGex or SiO2/Si1−xGex coaxial heterostructure nanowires. The rate of deposition and oxidation was dominated by interfacial reaction and diffusion of oxygen through the oxide layer, respectively. PMID:21076699

  1. Fabrication of Coaxial Si1- x Ge x Heterostructure Nanowires by O2 Flow-Induced Bifurcate Reactions

    NASA Astrophysics Data System (ADS)

    Kim, Ilsoo; Lee, Ki-Young; Kim, Ungkil; Park, Yong-Hee; Park, Tae-Eon; Choi, Heon-Jin

    2010-10-01

    We report on bifurcate reactions on the surface of well-aligned Si1- x Ge x nanowires that enable fabrication of two different coaxial heterostructure nanowires. The Si1- x Ge x nanowires were grown in a chemical vapor transport process using SiCl4 gas and Ge powder as a source. After the growth of nanowires, SiCl4 flow was terminated while O2 gas flow was introduced under vacuum. On the surface of nanowires was deposited Ge by the vapor from the Ge powder or oxidized into SiO2 by the O2 gas. The transition from deposition to oxidation occurred abruptly at 2 torr of O2 pressure without any intermediate region and enables selectively fabricated Ge/Si1- x Ge x or SiO2/Si1- x Ge x coaxial heterostructure nanowires. The rate of deposition and oxidation was dominated by interfacial reaction and diffusion of oxygen through the oxide layer, respectively.

  2. Comparison of interfaces for (Ba,Sr)TiO3 films deposited on Si and SiO2/Si substrates

    NASA Astrophysics Data System (ADS)

    Suvorova, N. A.; Lopez, C. M.; Irene, E. A.; Suvorova, A. A.; Saunders, M.

    2004-03-01

    (Ba,Sr)TiO3(BST) thin films were deposited by ion sputtering on both bare and oxidized Si. Spectroscopic ellipsometry results have shown that a SiO2 underlayer of nearly the same thickness (2.6 nm in average) is found at the Si interface for BST sputter depositions onto nominally bare Si, 1 nm SiO2 on Si or 3.5 nm SiO2 on Si. This result was confirmed by high-resolution electron microscopy analysis of the films, and it is believed to be due to simultaneous subcutaneous oxidation of Si and reaction of the BST layer with SiO2. Using the conductance method, capacitance-voltage measurements show a decrease in the interface trap density Dit of an order of magnitude for oxidized Si substrates with a thicker SiO2 underlayer. Further reduction of Dit was achieved for the capacitors grown on oxidized Si and annealed in forming gas after metallization.

  3. Fabrication of Coaxial Si(1-x)Ge(x) Heterostructure Nanowires by O(2) Flow-Induced Bifurcate Reactions.

    PubMed

    Kim, Ilsoo; Lee, Ki-Young; Kim, Ungkil; Park, Yong-Hee; Park, Tae-Eon; Choi, Heon-Jin

    2010-06-17

    We report on bifurcate reactions on the surface of well-aligned Si(1-x)Ge(x) nanowires that enable fabrication of two different coaxial heterostructure nanowires. The Si(1-x)Ge(x) nanowires were grown in a chemical vapor transport process using SiCl(4) gas and Ge powder as a source. After the growth of nanowires, SiCl(4) flow was terminated while O(2) gas flow was introduced under vacuum. On the surface of nanowires was deposited Ge by the vapor from the Ge powder or oxidized into SiO(2) by the O(2) gas. The transition from deposition to oxidation occurred abruptly at 2 torr of O(2) pressure without any intermediate region and enables selectively fabricated Ge/Si(1-x)Ge(x) or SiO(2)/Si(1-x)Ge(x) coaxial heterostructure nanowires. The rate of deposition and oxidation was dominated by interfacial reaction and diffusion of oxygen through the oxide layer, respectively.

  4. Characteristics of the surface layer of barium strontium titanate thin films deposited by laser ablation

    NASA Astrophysics Data System (ADS)

    Craciun, V.; Singh, R. K.

    2000-04-01

    Ba0.5Sr0.5TiO3 (BST) thin films grown on Si by an in situ ultraviolet-assisted pulsed laser deposition (UVPLD) technique exhibited significantly higher dielectric constant and refractive index values and lower leakage current densities than films grown by conventional PLD under similar conditions. X-ray photoelectron spectroscopy (XPS) investigations have shown that the surface layer of the grown films contained, besides the usual BST perovskite phase, an additional phase with Ba atoms in a different chemical state. PLD grown films always exhibited larger amounts of this phase, which was homogeneously mixed with the BST phase up to several nm depth, while UVPLD grown films exhibited a much thinner (˜1 nm) and continuous layer. The relative fraction of this phase was not correlated with the amount of C atoms present on the surface. Fourier transform infrared spectroscopy did not find any BaCO3 contamination layer, which was believed to be related to this new phase. X-ray diffraction measurement showed that although PLD grown films contained less oxygen atoms, the lattice parameter was closer to the bulk value than that of UVPLD grown films. After 4 keV Ar ion sputtering for 6 min, XPS analysis revealed a small suboxide Ba peak for the PLD grown films. This finding indicates that the average Ba-O bonds are weaker in these films, likely due to the presence of oxygen vacancies. It is suggested here that this new Ba phase corresponds to a relaxed BST surface layer.

  5. Vertical III-nitride thin-film power diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wierer, Jr., Jonathan; Fischer, Arthur J.; Allerman, Andrew A.

    2017-03-14

    A vertical III-nitride thin-film power diode can hold off high voltages (kV's) when operated under reverse bias. The III-nitride device layers can be grown on a wider bandgap template layer and growth substrate, which can be removed by laser lift-off of the epitaxial device layers grown thereon.

  6. Effect of substrate nitridation temperature on the persistent photoconductivity of unintentionally-doped GaN layer grown by PAMBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prakash, Nisha, E-mail: prakasnisha@gmail.com; Barvat, Arun; Anand, Kritika

    2016-05-23

    The surface roughness and defect density of GaN epitaxial layers grown on c-plane sapphire substrate are investigated and found to be dependent on nitridation temperature. GaN epitaxial layers grown after nitridation of sapphire at 200°C have a higher defect density and higher surface roughness compared to the GaN layers grown at 646°C nitridation as confirmed by atomic force microscopy (AFM). The persistent photoconductivity (PPC) was observed in both samples and it was found to be decreasing with decreasing temperature in the range 150-300°C due to long carrier lifetime and high electron mobility at low temperature. The photoresponse of the GaNmore » films grown in this study exhibit improved PPC due to their better surface morphology at 646°C nitrided sample. The point defects or extended microstructure defects limits the photocarrier lifetime and electron mobility at 200°C nitrided sample.« less

  7. Preferential orientation of NV defects in CVD diamond films grown on (113)-oriented substrates

    NASA Astrophysics Data System (ADS)

    Lesik, M.; Plays, T.; Tallaire, A.; Achard, J.; Brinza, O.; William, L.; Chipaux, M.; Toraille, L.; Debuisschert, T.; Gicquel, A.; Roch, J. F.; Jacques, V.

    2015-06-01

    Thick CVD diamond layers were successfully grown on (113)-oriented substrates. They exhibited smooth surface morphologies and a crystalline quality comparable to (100) electronic grade material, and much better than (111)-grown layers. High growth rates (15-50 {\\mu}m/h) were obtained while nitrogen doping could be achieved in a fairly wide range without seriously imparting crystalline quality. Electron spin resonance measurements were carried out to determine NV centers orientation and concluded that one specific orientation has an occurrence probability of 73 % when (100)-grown layers show an equal distribution in the 4 possible directions. A spin coherence time of around 270 {\\mu}s was measured which is equivalent to that reported for material with similar isotopic purity. Although a higher degree of preferential orientation was achieved with (111)-grown layers (almost 100 %), the ease of growth and post-processing of the (113) orientation make it a potentially useful material for magnetometry or other quantum mechanical applications.

  8. Investigation of anodic and chemical oxides grown on p-type InP with applications to surface passivation for n(+)-p solar cell fabrication

    NASA Technical Reports Server (NTRS)

    Faur, Maria; Faur, Mircea; Goradia, Manju; Goradia, Chandra; Jenkins, Phillip; Jayne, Douglas; Weinberg, Irving

    1991-01-01

    Most of the previously reported InP anodic oxides were grown on a n-type InP with applications to fabrication of MISFET structures and were described as a mixture of In2O3 and P2O5 stoichiometric compounds or nonstoichiometric phases which have properties similar to crystalline compounds In(OH)3, InPO4, and In(PO3)3. Details of the compositional change of the anodic oxides grown under different anodization conditions were previously reported. The use of P-rich oxides grown either by anodic or chemical oxidation are investigated for surface passivation of p-type InP and as a protective cap during junction formation by closed-ampoule sulfur diffusion. The investigation is based on but not limited to correlations between PL intensity and X-ray photoelectron spectroscopy (XPS) chemical composition data.

  9. Optical models for radio-frequency-magnetron reactively sputtered AlN films

    NASA Astrophysics Data System (ADS)

    Easwarakhanthan, T.; Assouar, M. B.; Pigeat, P.; Alnot, P.

    2005-10-01

    The optical properties of aluminum nitrate (AlN) films reactively sputtered on Si substrates using radio-frequency (rf) magnetron have been studied in this work from multiwavelength spectroscopic ellipsometry (SE) measurements performed over the 290-615 nm wavelength range. The SE modeling carried out with care to adhere as much to the ellipsometric fitting qualities is also backed up with atomic force microscopy and x-ray-diffraction measurements taken on these films thus grown to nominal thicknesses from 40 to 150 nm under the same optimized experimental conditions. It follows that the model describing the optical properties of the thicker AlN films should consist at least in three layers on the Si substrate: an almost roughnessless smooth surface overlayer that is presumed essentially of Al2O3, a bulk AlN layer, and an AlN interface layer that has a refractive index dispersion falling in the range from 2.04 [312 nm] to 1.91 [615 nm] on the average and is fairly distinguishable from the slightly higher bulk layer index which drops correspondingly from 2.12 to 1.99. These index values imply that, beneath the partly or mostly oxidized surface AlN layer, the films comprise a polycrystalline-structured bulk AlN layer above a less-microstructurally-ordered interface layer that extends over 40-55 nm from the substrate among thicker films. This ellipsometric evidence indicating the existence of the interface layer is consistent with those interface layers confirmed through electron microscopy in some previous works. However, the ellipsometrically insufficient thinner AlN films may be only modeled with the surface layer and an AlN layer. The film surface oxide layer thickness varies between 5 and 15 nm among samples. The refractive index dispersions, the layer thicknesses, and the lateral thickness variation of the films are given and discussed regarding the optical constitution of these films and the ellipsometric validity of these parameters.

  10. The interaction of small metal particles with refractory oxide supports

    NASA Technical Reports Server (NTRS)

    Park, C.; Heinemann, K.

    1985-01-01

    Islands and continuous layers of Pd were grown in UHV on Mo and MoO subtrates. As-deposited Pd islands and layers exhibited bulk Pd adsorption properties for CO when the Pd had been deposited at RT and at thicknesses exceeding 3 ML. However, CO adsorption was drastically reduced upon annealing. This deactivation was interpreted in terms of substrate/support interaction involving the diffusion of substrate species toward the Pd surface, using AES, TPD, and work function measurement techniques. A study of the growth and annealing behavior of Pd on Mo(110) was made for thicknesses up to 12 monolayers and substrate temperatures up to 1300K, using AES, XPS, LEED, and work function measurements. At low tempertures Pd formed a monolayer without alloying. In thick layers (12 ML) annealed about 700 K, Mo diffusion into the Pd layer and alloying were noted. Such layers remained continuous up to 1100 K. Thinner Pd layers were less stable and started coalescing upon annealing to as little as 550 K. Significant changes in Pd Auger peak shape, as well as shifts of Pd core levels, were observed during layer growth and annealing.

  11. Electrical properties of metal/Al2O3/In0.53Ga0.47As capacitors grown on InP

    NASA Astrophysics Data System (ADS)

    Ferrandis, Philippe; Billaud, Mathilde; Duvernay, Julien; Martin, Mickael; Arnoult, Alexandre; Grampeix, Helen; Cassé, Mikael; Boutry, Hervé; Baron, Thierry; Vinet, Maud; Reimbold, Gilles

    2018-04-01

    To overcome the Fermi-level pinning in III-V metal-oxide-semiconductor capacitors, attention is usually focused on the choice of dielectric and surface chemical treatments prior to oxide deposition. In this work, we examined the influence of the III-V material surface cleaning and the semiconductor growth technique on the electrical properties of metal/Al2O3/In0.53Ga0.47As capacitors grown on InP(100) substrates. By means of the capacitance-voltage measurements, we demonstrated that samples do not have the same total oxide charge density depending on the cleaning solution used [(NH4)2S or NH4OH] prior to oxide deposition. The determination of the interface trap density revealed that a Fermi-level pinning occurs for samples grown by metalorganic chemical vapor deposition but not for similar samples grown by molecular beam epitaxy. Deep level transient spectroscopy analysis explained the Fermi-level pinning by an additional signal for samples grown by metalorganic chemical vapor deposition, attributed to the tunneling effect of carriers trapped in oxide toward interface states. This work emphasizes that the choice of appropriate oxide and cleaning treatment is not enough to prevent a Fermi-level pinning in III-V metal-oxide-semiconductor capacitors. The semiconductor growth technique needs to be taken into account because it impacts the trapping properties of the oxide.

  12. Copper Oxide Thin Films through Solution Based Methods for Electrical Energy Conversion and Storage

    NASA Astrophysics Data System (ADS)

    Zhu, Changqiong

    Copper oxides (Cu2O and CuO), composed of non-toxic and earth abundant elements, are promising materials for electrical energy generation and storage devices. Solution based techniques for creating thin films of these materials, such as electrodeposition, are important to understand and develop because of their potential for realizing substantial energy savings compared to traditional fabrication methods. Cuprous oxide (Cu2O), with its direct band gap, is a p-type semiconductor that is well suited for creating solution-processed photovoltaic devices (solar cells); several key advancements made toward this application are the primary focus of this thesis. Electrodeposition of single-phase, crystalline Cu2O thin films is demonstrated using previously unexplored, acidic lactate/Cu2+ solutions, which has provided additional understanding of the impacts of growth solution chemistry on film formation. The influence of pH on the resulting Cu2O thin film properties is revealed by using the same ligand (sodium lactate) at various solution pH values. Cu2O films grown from acidic lactate solutions can exhibit a distinctive flowerlike, dendritic morphology, in contrast to the faceted, dense films obtained using alkaline lactate solutions. Relative speciation distributions of the various metal complex ions present under different growth conditions are calculated using reported equilibrium association constants and experimentally supported by UV-Visible absorption spectroscopy. Dependence of thin film morphology on the lactate/Cu2+ molar ratio and applied potential is described. Cu2O/eutectic gallium-indium Schottky junction devices are formed and devices are tested under monochromatic green LED illumination. Further surface examination of the Cu2O films using X-ray photoelectron spectroscopy (XPS) reveals the fact that films grown from acidic lactate solution with a small lactate/Cu2+ molar ratio, which exhibit improved photovoltaic performance compared to films grown from basic lactate solution with a large lactate/Cu2+ molar ratio, are sodium-free. This finding stands in contrast to the observation that films grown in basic solution contain a significant amount of sodium impurity at their top surfaces. Therefore, it is concluded that the sodium impurities present in films grown from basic lactate solutions are detrimental to overall photovoltaic device performance by introducing interface traps and recombination centers for charge carriers, which suggests that removing these impurities may be a promising strategy for improving Cu2O based solar cells. It has been found that impurities at the surface of electrodeposited p-Cu2O films can be efficiently removed through the use of concentrated aqueous ammonia solution as a wet etching agent. The performance of Cu 2O homojunction photovoltaic devices incorporating etched p-Cu 2O as the bottom layer is higher compared to devices with as-deposited p-Cu2O layers due to an improvement of the homojunction interface quality. Reducing the density of defect states that act as carrier recombination centers is found to lead to larger open circuit voltages. Zinc-doped cuprous oxide (Zn:Cu2O) thin films have also been prepared via single step electrodeposition from an aqueous solution containing sodium perchlorate. The Zn/Cu molar ratio in the Cu2O films can be tuned by adjusting the magnitude of the applied potential and the sodium perchlorate concentration. Electrical characterization reveals that zinc dopants increase the Fermi level in Zn:Cu2O films, enabling a three-fold improvement in the power conversion efficiency of a fully electrodeposited Cu2O homojunction photovoltaic device. Complementary to the development of Cu2O based photovoltaic devices, the use of solution deposited cupric oxide (CuO) thin films for capacitive energy storage has also been investigated. A seed layer-assisted chemical bath deposition (SCBD) method has been developed to create high quality CuO thin films on transparent conductive electrode (ITO)/glass substrates. A CuO seed layer is formed by the electrodeposition of Cu2O on ITO electrode for 10 s, followed by a brief (15 min) heating step to convert the Cu 2O to CuO. The seed layer is found to be essential for the growth of micrometer-thick, adherent CuO thin films on ITO-coated glass, as no films were observed to form on substrates without a seed layer. The addition of sodium lactate to the SCBD solution can be used to tune the morphology and relative crystallinity of the CuO films. A highly crystalline CuO film has been deposited from a solution without sodium lactate, while a largely amorphous CuO film was realized using lactate/Cu2+ molar ratio equal to 1.0. The CuO film with greater amorphous character exhibited a significantly larger specific capacitance as a redox active electrode compared to the crystalline film (2700 mF/g vs. 96 mF/g).

  13. Self-organization of dislocation-free, high-density, vertically aligned GaN nanocolumns involving InGaN quantum wells on graphene/SiO2 covered with a thin AlN buffer layer.

    PubMed

    Hayashi, Hiroaki; Konno, Yuta; Kishino, Katsumi

    2016-02-05

    We demonstrated the self-organization of high-density GaN nanocolumns on multilayer graphene (MLG)/SiO2 covered with a thin AlN buffer layer by RF-plasma-assisted molecular beam epitaxy. MLG/SiO2 substrates were prepared by the transfer of CVD graphene onto thermally oxidized SiO2/Si [100] substrates. Employing the MLG with an AlN buffer layer enabled the self-organization of high-density and vertically aligned nanocolumns. Transmission electron microscopy observation revealed that no threading dislocations, stacking faults, or twinning defects were included in the self-organized nanocolumns. The photoluminescence (PL) peak intensities of the self-organized GaN nanocolumns were 2.0-2.6 times higher than those of a GaN substrate grown by hydride vapor phase epitaxy. Moreover, no yellow luminescence or ZB-phase GaN emission was observed from the nanocolumns. An InGaN/GaN MQW and p-type GaN were integrated into GaN nanocolumns grown on MLG, displaying a single-peak PL emission at a wavelength of 533 nm. Thus, high-density nitride p-i-n nanocolumns were fabricated on SiO2/Si using the transferred MLG interlayer, indicating the possibility of developing visible nanocolumn LEDs on graphene/SiO2.

  14. Antioxidative role of nitric oxide on copper toxicity to a chlorophycean alga, Chlorella.

    PubMed

    Singh, Akhilesh kumar; Sharma, Laxuman; Mallick, Nirupama

    2004-10-01

    The response of Chlorella vulgaris to copper exposure was investigated under laboratory batch culture conditions. Increased toxicity of Cu with respect to photosynthetic carbon fixation, O(2) evolution, chlorophyll fluorescence, and oxidative burst was observed for N-NH(4)(+)-grown cultures. The addition of sodium nitroprusside, a nitric oxide (NO) donor, in combination with Cu to N-NH(4)(+)-grown Chlorella not only lowered the inhibition levels of carbon fixation, O(2) evolution, and maximum quantum yield of PS II, but also significantly reduced the oxidative burst. The protective action of sodium nitroprusside was, however, arrested in cultures in which sodium nitroprusside was supplemented in combination with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, a specific scavenger of NO in the experimental system. The N-NO(3)(-)-grown Chlorella depicted less sensitivity to Cu compared to its N-NH(4)(+)-grown counterpart. The N-NO(3)(-)-, N-NH(4)(+)-, and N-NH(4)(+)+sodium nitroprusside-grown Chlorella did not show any significant differences with respect to their Cu uptake potential. The role of NO as an antioxidant is discussed.

  15. Topotaxial growth of α-Fe{sub 2}O{sub 3} nanowires on iron substrate in thermal annealing method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Himanshu, E-mail: himsri@rrcat.gov.in; Srivastava, A. K.; Babu, Mahendra

    2016-06-28

    A detail cross-sectional transmission electron microscopy of as-grown α-Fe{sub 2}O{sub 3} nanowire sample, synthesized on iron substrate by thermal annealing method, was carried out to understand the mechanism of growth in this system. Iron undergoes sequential oxidation to form a layered structure of Fe/FeO/Fe{sub 3}O{sub 4}/α-Fe{sub 2}O{sub 3}. α-Fe{sub 2}O{sub 3} nanowires grow on to the top of α-Fe{sub 2}O{sub 3} layer. It was found that subsequent oxide layers grow topotaxially on the grains of iron, which results in a direct orientation relationship between the α-Fe{sub 2}O{sub 3} nanowire and the parent grain of iron. The results also showed thatmore » the grains of α-Fe{sub 2}O{sub 3} layer, which were uniquely oriented in [110] direction, undergo highly anisotropic growth to form the nanowire. This anisotropic growth occurs at a twin interface, given by (−11−1), in the α-Fe{sub 2}O{sub 3} layer. It was concluded that the growth at twin interface could be the main driving factor for such anisotropic growth. These observations are not only helpful in understanding the growth mechanism of α-Fe{sub 2}O{sub 3} nanowires, but it also demonstrates a way of patterning the nanowires by controlling the texture of iron substrate.« less

  16. Phase transformation of molecular beam epitaxy-grown nanometer-thick Gd₂O₃ and Y₂O₃ on GaN.

    PubMed

    Chang, Wen-Hsin; Wu, Shao-Yun; Lee, Chih-Hsun; Lai, Te-Yang; Lee, Yi-Jun; Chang, Pen; Hsu, Chia-Hung; Huang, Tsung-Shiew; Kwo, J Raynien; Hong, Minghwei

    2013-02-01

    High quality nanometer-thick Gd₂O₃ and Y₂O₃ (rare-earth oxide, R₂O₃) films have been epitaxially grown on GaN (0001) substrate by molecular beam epitaxy (MBE). The R₂O₃ epi-layers exhibit remarkable thermal stability at 1100 °C, uniformity, and highly structural perfection. Structural investigation was carried out by in situ reflection high energy electron diffraction (RHEED) and ex-situ X-ray diffraction (XRD) with synchrotron radiation. In the initial stage of epitaxial growth, the R₂O₃ layers have a hexagonal phase with the epitaxial relationship of R₂O₃ (0001)(H)<1120>(H)//GaN(0001)(H)<1120>(H). With the increase in R₂O₃ film thickness, the structure of the R₂O₃ films changes from single domain hexagonal phase to monoclinic phase with six different rotational domains, following the R₂O₃ (201)(M)[020](M)//GaN(0001)(H)<1120>(H) orientational relationship. The structural details and fingerprints of hexagonal and monoclinic phase Gd₂O₃ films have also been examined by using electron energy loss spectroscopy (EELS). Approximate 3-4 nm is the critical thickness for the structural phase transition depending on the composing rare earth element.

  17. Hybrid solar cells based on dc magnetron sputtered films of n-ITO on APMOVPE grown p-InP

    NASA Technical Reports Server (NTRS)

    Coutts, T. J.; Li, X.; Wanlass, M. W.; Emery, K. A.; Gessert, T. A.

    1988-01-01

    Hybrid indium-tin-oxide (ITO)/InP solar cells are discussed. The cells are constructed by dc magnetron sputter deposition of ITO onto high-quality InP films grown by atmospheric pressure metal-organic vapor-phase epitaxy (APMOVPE). A record efficiency of 18.9 percent, measured under standard Solar Energy Research Institute reporting conditions, has been obtained. The p-InP surface is shown to be type converted, principally by the ITO, but with the extent of conversion being modified by the nature of the sputtering gas. The deposition process, in itself, is not responsible for the type conversion. Dark currents have been suppressed by more than three orders of magnitude by the addition of hydrogen to the sputtering gas during deposition of a thin (5 nm) interface layer. Without this layer, and using only the more usual argon/oxygen mixture, the devices had poorer efficiencies and were unstable. A discussion of associated quantum efficiencies and capacitance/voltage measurements is also presented from which it is concluded that further improvements in efficiency will result from better control over the type-conversion process.

  18. Naturally formed ultrathin V2O5 heteroepitaxial layer on VO2/sapphire(001) film

    NASA Astrophysics Data System (ADS)

    Littlejohn, Aaron J.; Yang, Yunbo; Lu, Zonghuan; Shin, Eunsung; Pan, KuanChang; Subramanyam, Guru; Vasilyev, Vladimir; Leedy, Kevin; Quach, Tony; Lu, Toh-Ming; Wang, Gwo-Ching

    2017-10-01

    Vanadium dioxide (VO2) and vanadium pentoxide (V2O5) thin films change their properties in response to external stimuli such as photons, temperature, electric field and magnetic field and have applications in electronics, optical devices, and sensors. Due to the multiple valence states of V and non-stoichiometry in thin films, it is challenging to grow epitaxial, single-phase V-oxide on a substrate, or a heterostructure of two epitaxial V-oxides. We report the formation of a heterostructure consisting of a few nm thick ultrathin V2O5 epitaxial layer on pulsed laser deposited tens of nm thick epitaxial VO2 thin films grown on single crystal Al2O3(001) substrates without post annealing of the VO2 film. The simultaneous observation of the ultrathin epitaxial V2O5 layer and VO2 epitaxial film is only possible by our unique reflection high energy electron diffraction pole figure analysis. The out-of-plane and in-plane epitaxial relationships are V2O5[100]||VO2[010]||Al2O3[001] and V2O5[03 2 bar ]||VO2[100]||Al2O3[1 1 bar 0], respectively. The existence of the V2O5 layer on the surface of the VO2 film is also supported by X-ray photoelectron spectroscopy and Raman spectroscopy.

  19. Structural and electrical properties of AlN layers grown on silicon by reactive RF magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazlov, N., E-mail: n.bazlov@spbu.ru; Pilipenko, N., E-mail: nelly.pilipenko@gmail.com; Vyvenko, O.

    2016-06-17

    AlN films of different thicknesses were deposited on n-Si (100) substrates by reactive radio frequency (rf) magnetron sputtering. Dependences of structure and electrical properties on thickness of deposited films were researched. The structures of the films were analyzed with scanning electron microscopy (SEM) and with transmitting electron microscopy (TEM). Electrical properties of the films were investigated on Au-AlN-(n-Si) structures by means of current-voltage (I-V), capacitance-voltage (C-V) and deep level transient spectroscopy (DLTS) techniques. Electron microscopy investigations had shown that structure and chemical composition of the films were thickness stratified. Near silicon surface layer was amorphous aluminum oxide one contained trapsmore » of positive charges with concentration of about 4 × 10{sup 18} cm{sup −3}. Upper layers were nanocrystalline ones consisted of both wurzite AlN and cubic AlON nanocrystals. They contained traps both positive and negative charges which were situated within 30 nm distance from silicon surface. Surface densities of these traps were about 10{sup 12} cm{sup −2}. Electron traps with activation energies of (0.2 ÷ 0.4) eV and densities of about 10{sup 10} cm{sup −2} were revealed on interface between aluminum oxide layer and silicon substrate. Their densities varied weakly with the film thickness.« less

  20. Dielectric properties of thin C r2O3 films grown on elemental and oxide metallic substrates

    NASA Astrophysics Data System (ADS)

    Mahmood, Ather; Street, Michael; Echtenkamp, Will; Kwan, Chun Pui; Bird, Jonathan P.; Binek, Christian

    2018-04-01

    In an attempt to optimize leakage characteristics of α-C r2O3 thin films, its dielectric properties were investigated at local and macroscopic scale. The films were grown on Pd(111), Pt(111), and V2O3 (0001), supported on A l2O3 substrate. The local conductivity was measured by conductive atomic force microscopy mapping of C r2O3 surfaces, which revealed the nature of defects that formed conducting paths with the bottom Pd or Pt layer. A strong correlation was found between these electrical defects and the grain boundaries revealed in the corresponding topographic scans. In comparison, the C r2O3 film on V2O3 exhibited no leakage paths at similar tip bias value. Electrical resistance measurements through e-beam patterned top electrodes confirmed the resistivity mismatch between the films grown on different electrodes. The x-ray analysis attributes this difference to the twin free C r2O3 growth on V2O3 seeding.

  1. Origins of Moiré Patterns in CVD-grown MoS2 Bilayer Structures at the Atomic Scales.

    PubMed

    Wang, Jin; Namburu, Raju; Dubey, Madan; Dongare, Avinash M

    2018-06-21

    The chemical vapor deposition (CVD)-grown two-dimensional molybdenum disulfide (MoS 2 ) structures comprise of flakes of few layers with different dimensions. The top layers are relatively smaller in size than the bottom layers, resulting in the formation of edges/steps across adjacent layers. The strain response of such few-layer terraced structures is therefore likely to be different from exfoliated few-layered structures with similar dimensions without any terraces. In this study, the strain response of CVD-grown few-layered MoS 2 terraced structures is investigated at the atomic scales using classic molecular dynamics (MD) simulations. MD simulations suggest that the strain relaxation of CVD-grown triangular terraced structures is observed in the vertical displacement of the atoms across the layers that results in the formation of Moiré patterns. The Moiré islands are observed to nucleate at the corners or edges of the few-layered structure and propagate inwards under both tensile and compressive strains. The nucleation of these islands is observed to happen at tensile strains of ~ 2% and at compressive strains of ~2.5%. The vertical displacements of the atoms and the dimensions of the Moiré islands predicted using the MD simulation are in excellent agreement with that observed experimentally.

  2. Elimination of macrostep-induced current flow nonuniformity in vertical GaN PN diode using carbon-free drift layer grown by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Fujikura, Hajime; Hayashi, Kentaro; Horikiri, Fumimasa; Narita, Yoshinobu; Konno, Taichiro; Yoshida, Takehiro; Ohta, Hiroshi; Mishima, Tomoyoshi

    2018-04-01

    In vertical GaN PN diodes (PNDs) grown entirely by metal–organic chemical vapor deposition (MOCVD), large current nonuniformity was observed. This nonuniformity was induced by macrosteps on the GaN surface through modulation of carbon incorporation into the n-GaN crystal. It was eliminated in a hybrid PND consisting of a carbon-free n-GaN layer grown by hydride vapor phase epitaxy (HVPE) and an MOCVD-regrown p-GaN layer. The hybrid PND showed a fairly low on-resistance (2 mΩ cm2) and high breakdown voltage (2 kV) even without a field plate electrode. These results clearly indicated the strong advantages of the HVPE-grown drift layer for improving power device performance, uniformity, and yield.

  3. Growth, microstructure and electrical properties of sputter-deposited hafnium oxide (HfO2) thin films grown using HfO2 ceramic target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguirre, B.; Vemuri, R. S.; Zubia, David

    2011-01-01

    Hafnium oxide (HfO₂) thin films have been made by radio-frequency (rf) magnetron-sputtering onto Si(100) substrates under varying growth temperature (Ts). HfO₂ ceramic target has been employed for sputtering while varying the Ts from room temperature to 500⁰C during deposition. The effect of Ts on the growth and microstructure of deposited HfO₂ films has been studied using grazing incidence x-ray diffraction (GIXRD), X-ray photoelectron spectroscopy (XPS), and high-resolution scanning electron microscopy (HR-SEM) coupled with energy dispersive x-ray spectrometry (EDS). The results indicate that the effect of Ts is significant on the growth, surface and interface structure, morphology and chemical composition ofmore » the HfO₂ films. Structural characterization indicates that the HfO₂ films grown at Ts<200 ⁰C are amorphous while films grown at Ts>200 ⁰C are nanocrystalline. An amorphous-to-crystalline transition occurs at Ts=200 ⁰C. Nanocrystalline HfO₂ films crystallized in a monoclinic structure with a (-111) orientation. XPS measurements indicated the high surface-chemical quality and stoichiometric nature of the grown HfO₂ films. An interface layer (IL) formation occurs due to reaction at the HfO₂-Si interface for HfO₂ films deposited at Ts>200 ⁰C. The thickness of IL increases with increasing Ts. XPS and EDS at the HfO₂-Si cross-section indicate the IL is a (Hf, Si)-O compound. The electrical characterization using capacitance-voltage measurements indicate that the dielectric constant decreases from 25 to 16 with increasing Ts.« less

  4. Hydrothermal Growth of ZnO Nanowires on UV-Nanoimprinted Polymer Structures.

    PubMed

    Park, Sooyeon; Moore, Sean A; Lee, Jaejong; Song, In-Hyouk; Farshchian, Bahador; Kim, Namwon

    2018-05-01

    Integration of zinc oxide (ZnO) nanowires on miniaturized polymer structures can broaden its application in multi-functional polymer devices by taking advantages of unique physical properties of ZnO nanowires and recent development of polymer microstructures in analytical systems. In this paper, we demonstrate the hydrothermal growth of ZnO nanowires on polymer microstructures fabricated by UV nanoimprinting lithography (NIL) using a polyurethane acrylate (PUA). Since PUA is a siloxane-urethane-acrylate compound containing the alpha-hydroxyl ketone, UV-cured PUA include carboxyl groups, which inhibit and suppress the nucleation and growth of ZnO nanowires on polymer structures. The presence of carboxyl groups in UV-cured PUA was substantiated by Fourier transform infrared spectroscopy (FTIR), and a Ag thin film was deposited on the nanoimprinted polymer structures to limit their inhibitive influence on the growth of ZnO nanowires. Furthermore, the naturally oxidized Ag layer (Ag2O) reduced crystalline lattice mismatches at the interface between ZnO-Ag during the seed annealing process. The ZnO nanowires grown on the Ag-deposited PUA microstructures were found to have comparable morphological characteristics with ZnO nanowires grown on a Si wafer.

  5. Charge Trapping Properties of Ge Nanocrystals Grown via Solid-State Dewetting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Steven; Jadli, I.; Aouassa, M.

    2018-05-04

    In the present work, we report on the charge trapping properties of Germanium Nanocrystals (Ge NCs) self assembled on SiO2 thin layer for promising applications in next-generation non volatile memory by the means of Deep Level Transient Spectroscopy (DLTS) and high frequency C-V method. The Ge NCs were grown via dewetting phenomenon at solid state by Ultra-High Vacuum (UHV) annealing and passivated with silicon before SiO2 capping. The role of the surface passivation is to reduce the electrical defect density at the Ge NCs-SiO2 interface. The presence of the Ge NCs in the oxide of the MOS capacitors strongly affectsmore » the C-V characteristics and increases the accumulation capacitance, causes a negative flat band voltage (VFB) shift. The DLTS has been used to study the individual Ge NCs as a single point deep level defect in the oxide. DLTS reveals two main features: the first electron traps around 255 K could correspond to dangling bonds at the Si/SiO2 interface and the second, at high-temperature (>300 K) response, could be originated from minority carrier generation in Ge NCs.« less

  6. Cometabolism of Methyl tertiary Butyl Ether and Gaseous n-Alkanes by Pseudomonas mendocina KR-1 Grown on C5 to C8 n-Alkanes

    PubMed Central

    Smith, Christy A.; O'Reilly, Kirk T.; Hyman, Michael R.

    2003-01-01

    Pseudomonas mendocina KR-1 grew well on toluene, n-alkanes (C5 to C8), and 1° alcohols (C2 to C8) but not on other aromatics, gaseous n-alkanes (C1 to C4), isoalkanes (C4 to C6), 2° alcohols (C3 to C8), methyl tertiary butyl ether (MTBE), or tertiary butyl alcohol (TBA). Cells grown under carbon-limited conditions on n-alkanes in the presence of MTBE (42 μmol) oxidized up to 94% of the added MTBE to TBA. Less than 3% of the added MTBE was oxidized to TBA when cells were grown on either 1° alcohols, toluene, or dextrose in the presence of MTBE. Concentrated n-pentane-grown cells oxidized MTBE to TBA without a lag phase and without generating tertiary butyl formate (TBF) as an intermediate. Neither TBF nor TBA was consumed by n-pentane-grown cells, while formaldehyde, the expected C1 product of MTBE dealkylation, was rapidly consumed. Similar Ks values for MTBE were observed for cells grown on C5 to C8 n-alkanes (12.95 ± 2.04 mM), suggesting that the same enzyme oxidizes MTBE in cells grown on each n-alkane. All growth-supporting n-alkanes (C5 to C8) inhibited MTBE oxidation by resting n-pentane-grown cells. Propane (Ki = 53 μM) and n-butane (Ki = 16 μM) also inhibited MTBE oxidation, and both gases were also consumed by cells during growth on n-pentane. Cultures grown on C5 to C8 n-alkanes also exhibited up to twofold-higher levels of growth in the presence of propane or n-butane, whereas no growth stimulation was observed with methane, ethane, MTBE, TBA, or formaldehyde. The results are discussed in terms of their impacts on our understanding of MTBE biodegradation and cometabolism. PMID:14660389

  7. Evaluation of Ni-Cr-base alloys for SOFC interconnect applications

    NASA Astrophysics Data System (ADS)

    Yang, Zhenguo; Xia, Guan-Guang; Stevenson, Jeffry W.

    To further understand the suitability of Ni-Cr-base alloys for solid oxide fuel cell (SOFC) interconnect applications, three commercial Ni-Cr-base alloys, Haynes 230, Hastelloy S and Haynes 242 were selected and evaluated for oxidation behavior under different exposure conditions, scale conductivity and thermal expansion. Haynes 230 and Hastelloy S, which have a relatively high Cr content, formed a thin scale mainly comprised of Cr 2O 3 and (Mn,Cr,Ni) 3O 4 spinels under SOFC operating conditions, demonstrating excellent oxidation resistance and a high scale electrical conductivity. In contrast, a thick double-layer scale with a NiO outer layer above a chromia-rich substrate was grown on Haynes 242 in moist air or at the air side of dual exposure samples, indicating limited oxidation resistance for the interconnect application. With a face-centered-cubic (FCC) substrate, all three alloys possess a coefficient of thermal expansion (CTE) that is higher than that of candidate ferritic stainless steels, e.g. Crofer22 APU. Among the three alloys, Haynes 242, which is heavily alloyed with W and Mo and contains a low Cr content, demonstrated the lowest average CTE at 13.1 × 10 -6 K -1 from room temperature to 800 °C, but it was also observed that the CTE behavior of Haynes 242 was very non-linear.

  8. Direct current performance and current collapse in AlGaN/GaN insulated gate high-electron mobility transistors on Si (1 1 1) substrate with very thin SiO2 gate dielectric

    NASA Astrophysics Data System (ADS)

    Lachab, M.; Sultana, M.; Fatima, H.; Adivarahan, V.; Fareed, Q.; Khan, M. A.

    2012-12-01

    This work reports on the dc performance of AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors (MOSHEMTs) grown on Si (1 1 1) substrate and the study of current dispersion in these devices using various widely adopted methods. The MOSHEMTs were fabricated using a very thin (4.2 nm) SiO2 film as the gate insulator and were subsequently passivated with about 30 nm thick Si3N4 layer. For devices with 2.5 µm long gates and a 4 µm drain-to-source spacing, the maximum saturation drain current density was 822 mA mm-1 at + 4 V gate bias and the peak external transconductance was ˜100 mS mm-1. Furthermore, the oxide layer successfully suppressed the drain and gate leakage currents with the subthreshold current and the gate diode current levels exceeding by more than three orders of magnitude the levels found in their Schottky gate counterparts. Capacitance-voltage and dynamic current-voltage measurements were carried out to assess the oxide quality as well as the devices’ surface properties after passivation. The efficacy of each of these characterization techniques to probe the presence of interface traps and oxide charge in the nitride-based transistors is also discussed.

  9. Accumulation of Background Impurities in Hydride Vapor Phase Epitaxy Grown GaN Layers

    NASA Astrophysics Data System (ADS)

    Usikov, Alexander; Soukhoveev, Vitali; Kovalenkov, Oleg; Syrkin, Alexander; Shapovalov, Liza; Volkova, Anna; Ivantsov, Vladimir

    2013-08-01

    We report on accumulation of background Si and O impurities measured by secondary ion mass spectrometry (SIMS) at the sub-interfaces in undoped, Zn- and Mg-doped multi-layer GaN structures grown by hydride vapor phase epitaxy (HVPE) on sapphire substrates with growth interruptions. The impurities accumulation is attributed to reaction of ammonia with the rector quartz ware during the growth interruptions. Because of this effect, HVPE-grown GaN layers had excessive Si and O concentration on the surface that may hamper forming of ohmic contacts especially in the case of p-type layers and may complicate homo-epitaxial growth of a device structure.

  10. The role of annealing temperature variation on ZnO nanorods array deposited on TiO2 seed layer

    NASA Astrophysics Data System (ADS)

    Asib, N. A. M.; Aadila, A.; Afaah, A. N.; Rusop, M.; Khusaimi, Z.

    2018-05-01

    Seed layer of Titanium dioxide (TiO2) by sol-gel spin coating technique were coated on glass substrate to grow Zinc oxide nanorods (ZNR) by solution-immersion method. The fabricated ZNR were annealed at various temperatures ranged from 400 to 600° C. FESEM images revealed that smaller ZNR were densely grown at optimum temperature of 450 and 500°C. Meanwhile, for all samples a dominant (0 0 2) diffraction peak of ZNR recorded by XRD patterns was at 34.4° which corresponding to hexagonal ZNR with a wurtzite structure. UV-Vis absorbance spectra showed the maximum absorption properties at UV region were detected at 450 and 500°C. The samples also showed high absorbance values at visible region.

  11. Oxidation of the Ru(0001) surface covered by weakly bound, ultrathin silicate films

    DOE PAGES

    Emmez, Emre; Anibal Boscoboinik, J.; Tenney, Samuel; ...

    2015-06-30

    Bilayer silicate films grown on metal substrates are weakly bound to the metal surfaces, which allows ambient gas molecules to intercalate the oxide/metal interface. In this work, we studied the interaction of oxygen with Ru(0001) supported ultrathin silicate and aluminosilicate films at elevated O 2 pressures (10 -5–10 mbar) and temperatures (450–923 K). The results show that the silicate films stay essentially intact under these conditions, and oxygen in the film does not exchange with oxygen in the ambient. O 2 molecules readily penetrate the film and dissociate on the underlying Ru surface underneath. Also, the silicate layer does howevermore » strongly passivate the Ru surface towards RuO 2(110) oxide formation that readily occurs on bare Ru(0001) under the same conditions. Lastly, the results indicate considerable spatial effects for oxidation reactions on metal surfaces in the confined space at the interface. Moreover, the aluminosilicate films completely suppress the Ru oxidation, providing some rationale for using crystalline aluminosilicates in anti-corrosion coatings.« less

  12. Effect of doping on the forward current-transport mechanisms in a metal-insulator-semiconductor contact to INP:ZN grown by metal organic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Cova, P.; Singh, A.; Medina, A.; Masut, R. A.

    1998-04-01

    A detailed study of the effect of doping density on current transport was undertaken in Au metal-insulator-semiconductor (MIS) contacts fabricated on Zn-doped InP layers grown by metal organic vapor phase epitaxy. A recently developed method was used for the simultaneous analysis of the current-voltage ( I- V) and capacitance-voltage ( C- V) characteristics in an epitaxial MIS diode which brings out the contributions of different current-transport mechanisms to the total current. I- V and high-frequency C- V measurements were performed on two MIS diodes at different temperatures in the range 220-395 K. The barrier height at zero bias of Au/InP:Zn MIS diodes, φ0 (1.06 V±10%), was independent both of the Zn-doping density and of the surface preparation. The interface state density distribution Nss as well as the thickness of the oxide layer (2.2±15% nm) unintentionally grown before Au deposition were independent of the Zn-doping concentration in the range 10 16< NA<10 17 cm -3; not so the effective potential barrier χ of the insulator layer and the density of the mid-gap traps. χ was much lower for the highly-doped sample. Our results indicate that at high temperatures, independent of the Zn-doping concentration, the interfacial layer-thermionic (ITE) and interfacial layer-diffusion (ID) mechanisms compete with each other to control the current transport. At intermediate temperatures, however, ITE and ID will no longer be the only dominant mechanisms in the MIS diode fabricated on the highly-doped sample. In this case, the assumption of a generation-recombination current permits a better fit to the experimental data. Analysis of the data suggests that the generation-recombination current, observed only in the highly-doped sample, is associated with an increase in the Zn-doping density. From the forward I- V data for this diode we obtained the energy level (0.60 eV from the conduction band) for the most effective recombination centers.

  13. Method to grow group III-nitrides on copper using passivation layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qiming; Wang, George T; Figiel, Jeffrey T

    Group III-nitride epilayers can be grown directly on copper substrates using intermediate passivation layers. For example, single crystalline c-plane GaN can be grown on Cu (110) substrates with MOCVD. The growth relies on a low temperature AlN passivation layer to isolate any alloying reaction between Ga and Cu.

  14. High performance GaN-based LEDs on patterned sapphire substrate with patterned composite SiO2/Al2O3 passivation layers and TiO2/Al2O3 DBR backside reflector.

    PubMed

    Guo, Hao; Zhang, Xiong; Chen, Hongjun; Zhang, Peiyuan; Liu, Honggang; Chang, Hudong; Zhao, Wei; Liao, Qinghua; Cui, Yiping

    2013-09-09

    GaN-based light-emitting diodes (LEDs) on patterned sapphire substrate (PSS) with patterned composite SiO(2)/Al(2)O(3) passivation layers and TiO(2)/Al(2)O(3) distributed Bragg reflector (DBR) backside reflector have been proposed and fabricated. Highly passivated Al(2)O(3) layer deposited on indium tin oxide (ITO) layer with excellent uniformity and quality has been achieved with atomic layer deposition (ALD) technology. With a 60 mA current injection, an enhancement of 21.6%, 59.7%, and 63.4% in the light output power (LOP) at 460 nm wavelength was realized for the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layers, the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layers and Ag mirror + 3-pair TiO(2)/SiO(2) DBR backside reflector, and the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layer and Ag mirror + 3-pair ALD-grown TiO(2)/Al(2)O(3) DBR backside reflector as compared with the conventional LED only with a single SiO(2) passivation layer, respectively.

  15. Oxygen Partial Pressure Impact on Characteristics of Indium Titanium Zinc Oxide Thin Film Transistor Fabricated via RF Sputtering

    PubMed Central

    Hsu, Ming-Hung; Chang, Sheng-Po; Chang, Shoou-Jinn; Wu, Wei-Ting; Li, Jyun-Yi

    2017-01-01

    Indium titanium zinc oxide (InTiZnO) as the channel layer in thin film transistor (TFT) grown by RF sputtering system is proposed in this work. Optical and electrical properties were investigated. By changing the oxygen flow ratio, we can suppress excess and undesirable oxygen-related defects to some extent, making it possible to fabricate the optimized device. XPS patterns for O 1s of InTiZnO thin films indicated that the amount of oxygen vacancy was apparently declined with the increasing oxygen flow ratio. The fabricated TFTs showed a threshold voltage of −0.9 V, mobility of 0.884 cm2/Vs, on-off ratio of 5.5 × 105, and subthreshold swing of 0.41 V/dec. PMID:28672868

  16. Oxygen Partial Pressure Impact on Characteristics of Indium Titanium Zinc Oxide Thin Film Transistor Fabricated via RF Sputtering.

    PubMed

    Hsu, Ming-Hung; Chang, Sheng-Po; Chang, Shoou-Jinn; Wu, Wei-Ting; Li, Jyun-Yi

    2017-06-26

    Indium titanium zinc oxide (InTiZnO) as the channel layer in thin film transistor (TFT) grown by RF sputtering system is proposed in this work. Optical and electrical properties were investigated. By changing the oxygen flow ratio, we can suppress excess and undesirable oxygen-related defects to some extent, making it possible to fabricate the optimized device. XPS patterns for O 1s of InTiZnO thin films indicated that the amount of oxygen vacancy was apparently declined with the increasing oxygen flow ratio. The fabricated TFTs showed a threshold voltage of -0.9 V, mobility of 0.884 cm²/Vs, on-off ratio of 5.5 × 10⁵, and subthreshold swing of 0.41 V/dec.

  17. Structural and electrical properties of atomic layer deposited Al-doped ZrO2 films and of the interface with TaN electrode

    NASA Astrophysics Data System (ADS)

    Spiga, S.; Rao, R.; Lamagna, L.; Wiemer, C.; Congedo, G.; Lamperti, A.; Molle, A.; Fanciulli, M.; Palma, F.; Irrera, F.

    2012-07-01

    Al-doped ZrO2 (Al-ZrO2) films deposited by atomic layer deposition onto silicon substrates and the interface with the TaN metal gate are investigated. In particular, structural properties of as-grown and annealed films in the 6-26 nm thickness range, as well as leakage and capacitive behavior of metal-oxide-semiconductor stacks are characterized. As-deposited Al-ZrO2 films in the mentioned thickness range are amorphous and crystallize in the ZrO2 cubic phase after thermal treatment at 900 °C. Correspondingly, the dielectric constant (k) value increases from 20 ± 1 to 27 ± 2. The Al-ZrO2 layers exhibit uniform composition through the film thickness and are thermally stable on Si, whereas chemical reactions take place at the TaN/Al-ZrO2 interface. A transient capacitance technique is adopted for monitoring charge trapping and flat band instability at short and long time scales. The role of traps nearby the TaN/Al-ZrO2 interface is discussed and compared with other metal/high-k oxide films. Further, analytical modeling of the flat band voltage shift with a power-law dependence on time allows extracting features of bulk traps close to the silicon/oxide interface, which exhibit energy levels in the 1.4-1.9 eV range above the valence band of the Al-ZrO2.

  18. Interplay between strain, quantum confinement, and ferromagnetism in strained ferromagnetic semiconductor (In,Fe)As thin films

    NASA Astrophysics Data System (ADS)

    Sasaki, Daisuke; Anh, Le Duc; Nam Hai, Pham; Tanaka, Masaaki

    2014-04-01

    We systematically investigated the influence of strain on the electronic structure and ferromagnetism of (In,Fe)As thin films. It is found that while the shift of the critical point energies of compressive-strained (In,Fe)As layers grown on (In1-y,Gay)As (y = 0.05, 0.1) buffer layers can be explained by the hydrostatic deformation effect (HDE) alone, those of tensile-strained (In,Fe)As layers grown on (Ga1-z,Alz)Sb (z = 0, 0.5, 1) buffer layers can be explained by the combination of HDE and the quantum confinement effect (QCE). The Curie temperature TC of the (In,Fe)As layers strongly depends on the strain, and shows a maximum for the (In,Fe)As layer grown on a GaSb buffer layer. The strain dependence of TC can be explained by the s-d exchange mechanism taking into account HDE and QCE.

  19. Memory characteristics of metal-oxide-semiconductor structures based on Ge nanoclusters-embedded GeO(x) films grown at low temperature.

    PubMed

    Lin, Tzu-Shun; Lou, Li-Ren; Lee, Ching-Ting; Tsai, Tai-Cheng

    2012-03-01

    The memory devices constructed from the Ge-nanoclusters embedded GeO(x) layer deposited by the laser-assisted chemical vapor deposition (LACVD) system were fabricated. The Ge nanoclusters were observed by a high-resolution transmission electron microscopy. Using the capacitance versus voltage (C-V) and the conductance versus voltage (G-V) characteristics measured under various frequencies, the memory effect observed in the C-V curves was dominantly attributed to the charge storage in the Ge nanoclusters. Furthermore, the defects existed in the deposited film and the interface states were insignificant to the memory performances. Capacitance versus time (C-t) measurement was also executed to evaluate the charge retention characteristics. The charge storage and retention behaviors of the devices demonstrated that the Ge nanoclusters grown by the LACVD system at low temperature are promising for memory device applications.

  20. Comparing electrical characteristics of in situ and ex situ Al2O3/GaN interfaces formed by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Chan, Silvia H.; Bisi, Davide; Tahhan, Maher; Gupta, Chirag; DenBaars, Steven P.; Keller, Stacia; Zanoni, Enrico; Mishra, Umesh K.

    2018-04-01

    Al2O3/n-GaN MOS-capacitors grown by metalorganic chemical vapor deposition with in-situ- and ex-situ-formed Al2O3/GaN interfaces were characterized. Capacitors grown entirely in situ exhibited ˜4 × 1012 cm-2 fewer positive fixed charges and up to ˜1 × 1013 cm-2 eV-1 lower interface-state density near the band-edge than did capacitors with ex situ oxides. When in situ Al2O3/GaN interfaces were reformed via the insertion of a 10-nm-thick GaN layer, devices exhibited behavior between the in situ and ex situ limits. These results illustrate the extent to which an in-situ-formed dielectric/GaN gate stack improves the interface quality and breakdown performance.

  1. Development program for 1.93-micron lasers

    NASA Technical Reports Server (NTRS)

    Longeway, P.; Zamerowski, T.; Martinelli, R.; Stolzenberger, R.; Digiuseppe, N.

    1988-01-01

    For the first time lasers operating at 1.93 microns were demonstrated. The lasers were fabricated by Vapor Phase Epitaxial (VPE) growth techniques currently used for the fabrication of high power lasers at 1.3 microns. The structure of these laser diodes consisted of compositionally graded, sulfur-doped InAsP, grown on an InP substrate; a constant-composition n+InAs(0.27)P(0.73) layer, which is the first cladding layer; an In(0.66)Ga(0.34)As layer, which is the active region, and a second InAs(0.27)P(0.73) layer. The devices were oxide-stripe DH lasers (gain-guided only). The best devices had 80 K lasing thresholds in the range of from 80 to 150 mA, and T sub o (below 220 K) in the range of 60 to 90 K. The highest observed temperature of oscillation was 15.5 C. The highest observed power output at 80 K was in the range of 3 to 5 mW. The calculated delta I/delta T was 4.4 A/K. As a part of the materials development, PIN homojunction detectors having the band edge near 1.93 were also fabricated. The best devices (100 micron diameter, mesa structure) exhibited room temperature dark currents in the range of from 20 to 50 nA and had QE at 1.93 microns in the range of 35 to 40 percent. In addition to the device results, the InGaAs-InAsP materials system was extensively investigated and low defect density layers can now be grown allowing for significant device performance improvement.

  2. Visualizing ferromagnetic domains in undoped and Fe-doped Sr4Ru3O10

    NASA Astrophysics Data System (ADS)

    Sass, Paul; Wu, Weida; Mao, Zhiqiang; Li, Peigang

    Transition-metal oxides have proven to be a great source of interesting phenomena and new quantum phases of matter with high potential for developing exciting technologies. A remarkable sub-class of these materials with layer dependent properties is the ruthenium perovskites of the Ruddlesden-Popper series, specifically Srn + 1RunO3 n + 1 , exhibiting a range of behavior from ferromagnetism and metamagnetic quantum criticality to p-wave superconductivity. The triple layered oxide Sr4Ru3O10 exhibits coexistence of ferro- (TC < 105 K) and meta- (TM < 50 K) magnetism with strong anisotropy. Despite many studies on bulk magnetic properties of this material, the microscopic nature of the magnetic phase is still unclear. What is lacking is the real space imaging of magnetic domains. To this end, we report our variable temperature magnetic force microscopy studies on floating-zone grown undoped and Fe-doped Sr4Ru3O10 single crystals. Various stripe and branch-like domain patterns were observed below This work is supported by DOE BES under award DE-SC0008147.

  3. Guided-wave approaches to spectrally selective energy absorption

    NASA Technical Reports Server (NTRS)

    Stegeman, G. I.; Burke, J. J.

    1987-01-01

    Results of experiments designed to demonstrate spectrally selective absorption in dielectric waveguides on semiconductor substrates are reported. These experiments were conducted with three waveguides formed by sputtering films of PSK2 glass onto silicon-oxide layers grown on silicon substrates. The three waveguide samples were studied at 633 and 532 nm. The samples differed only in the thickness of the silicon-oxide layer, specifically 256 nm, 506 nm, and 740 nm. Agreement between theoretical predictions and measurements of propagation constants (mode angles) of the six or seven modes supported by these samples was excellent. However, the loss measurements were inconclusive because of high scattering losses in the structures fabricated (in excess of 10 dB/cm). Theoretical calculations indicated that the power distribution among all the modes supported by these structures will reach its steady state value after a propagation length of only 1 mm. Accordingly, the measured loss rates were found to be almost independent of which mode was initially excited. The excellent agreement between theory and experiment leads to the conclusion that low loss waveguides confirm the predicted loss rates.

  4. AlN Surface Passivation of GaN-Based High Electron Mobility Transistors by Plasma-Enhanced Atomic Layer Deposition.

    PubMed

    Tzou, An-Jye; Chu, Kuo-Hsiung; Lin, I-Feng; Østreng, Erik; Fang, Yung-Sheng; Wu, Xiao-Peng; Wu, Bo-Wei; Shen, Chang-Hong; Shieh, Jia-Ming; Yeh, Wen-Kuan; Chang, Chun-Yen; Kuo, Hao-Chung

    2017-12-01

    We report a low current collapse GaN-based high electron mobility transistor (HEMT) with an excellent thermal stability at 150 °C. The AlN was grown by N 2 -based plasma enhanced atomic layer deposition (PEALD) and shown a refractive index of 1.94 at 633 nm of wavelength. Prior to deposit AlN on III-nitrides, the H 2 /NH 3 plasma pre-treatment led to remove the native gallium oxide. The X-ray photoelectron spectroscopy (XPS) spectroscopy confirmed that the native oxide can be effectively decomposed by hydrogen plasma. Following the in situ ALD-AlN passivation, the surface traps can be eliminated and corresponding to a 22.1% of current collapse with quiescent drain bias (V DSQ ) at 40 V. Furthermore, the high temperature measurement exhibited a shift-free threshold voltage (V th ), corresponding to a 40.2% of current collapse at 150 °C. The thermal stable HEMT enabled a breakdown voltage (BV) to 687 V at high temperature, promising a good thermal reliability under high power operation.

  5. Metamorphic InAsSb-based Barrier Photodetectors for the Long Wave Infrared Region

    DTIC Science & Technology

    2013-08-02

    The character of the I–V for structures with AlInSb layer grown undoped reflects the complex nature of the potential profile in the valence band ...Al0.75In0.25Sb-based barrier photodetectors were grown metamorphically on compositionally graded Ga1?xInxSb buffer layers and GaSb substrates by...ABSTRACT InAs0.6Sb0.4/Al0.75In0.25Sb-based barrier photodetectors were grown metamorphically on compositionally graded Ga1?xInxSb buffer layers and GaSb

  6. Liftoff process for exfoliation of thin film photovoltaic devices and back contact formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haight, Richard A.; Hannon, James B.; Oida, Satoshi

    A method for forming a back contact on an absorber layer in a photovoltaic device includes forming a two dimensional material on a first substrate. An absorber layer including Cu--Zn--Sn--S(Se) (CZTSSe) is grown over the first substrate on the two dimensional material. A buffer layer is grown on the absorber layer on a side opposite the two dimensional material. The absorber layer is exfoliated from the two dimensional material to remove the first substrate from a backside of the absorber layer opposite the buffer layer. A back contact is deposited on the absorber layer.

  7. Growth and characterization of molecular beam epitaxial GaAs layers on porous silicon

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Liu, J. K.; Sadwick, L.; Wang, K. L.; Kao, Y. C.

    1987-01-01

    GaAs layers have been grown on porous silicon (PS) substrates with good crystallinity by molecular beam epitaxy. In spite of the surface irregularity of PS substrates, no surface morphology deterioration was observed on epitaxial GaAs overlayers. A 10-percent Rutherford backscattering spectroscopy minimum channeling yield for GaAs-on-PS layers as compared to 16 percent for GaAs-on-Si layers grown under the same condition indicates a possible improvement of crystallinity when GaAs is grown on PS. Transmission electron microscopy reveals that the dominant defects in the GaAs-on-PS layers are microtwins and stacking faults, which originate from the GaAs/PS interface. GaAs is found to penetrate into the PS layers. n-type GaAs/p-type PS heterojunction diodes were fabricated with good rectifying characteristics.

  8. Influence of growth conditions on subsequent submonolayer oxide decomposition on Si(111)

    NASA Astrophysics Data System (ADS)

    Shklyaev, A. A.; Aono, Masakazu; Suzuki, Takanori

    1996-10-01

    The decomposition kinetics of oxide with a coverage between 0.1 and 0.5 ML, grown by oxidation of the Si(111)-7×7 surface at temperatures between 550 and 800 °C for oxygen pressures (Pox) between 3×10-8 and 2×10-6 Torr, is investigated with optical second-harmonic generation. Through the analysis of the pressure dependence of the initial oxide-growth rate, we separate the conditions for a slow oxide growth at Pox near Ptr(T) and for a rapid oxide growth at Pox>3Ptr(T), where Ptr(T) is the transition pressure to Si-etching regime without oxide growth. For the rapidly grown oxide, the oxide decomposition rate decreases with increasing oxide coverage, whereas the activation energy of about 3 eV does not change significantly. While in the case when the oxide is desorbed at the same temperature as are used for oxide growth, the oxide decomposition is described by an apparent activation energy of 1.5 eV. For the slowly grown oxide of 0.1 ML coverage, the oxide desorption kinetics shows a rapid decomposition stage followed by a slow stage. For the slowly grown oxide of 0.3 ML coverage, the slow stage with a large activation energy of 4.1 eV becomes dominant in the latter part of decomposition. The dependence of the desorption kinetics on the oxide-growth conditions described here could be a reason for the scattering of the kinetic parameters in the literature for O2 interaction with silicon at elevated temperatures.

  9. Nanoscale friction properties of graphene and graphene oxide

    DOE PAGES

    Berman, Diana; Erdemir, Ali; Zinovev, Alexander V.; ...

    2015-04-03

    Achieving superlow friction and wear at the micro/nano-scales through the uses of solid and liquid lubricants may allow superior performance and long-lasting operations in a range of micromechanical system including micro-electro mechanical systems (MEMS). Previous studies have indicated that conventional solid lubricants such as highly ordered pyrolitic graphite (HOPG) can only afford low friction in humid environments at micro/macro scales; but, HOPG is not suitable for practical micro-scale applications. Here, we explored the nano-scale frictional properties of multi-layered graphene films as a potential solid lubricant for such applications. Atomic force microscopy (AFM) measurements have revealed that for high-purity multilayered graphenemore » (7–9 layers), the friction force is significantly lower than what can be achieved by the use of HOPG, regardless of the counterpart AFM tip material. We have demonstrated that the quality and purity of multilayered graphene plays an important role in reducing lateral forces, while oxidation of graphene results in dramatically increased friction values. Furthermore, for the first time, we demonstrated the possibility of achieving ultralow friction for CVD grown single layer graphene on silicon dioxide. This confirms that the deposition process insures a stronger adhesion to substrate and hence enables superior tribological performance than the previously reported mechanical exfoliation processes.« less

  10. Growth Kinetics of Magnesio-Aluminate Spinel in Al/Mg Lamellar Composite Interface

    NASA Astrophysics Data System (ADS)

    Fouad, Yasser; Rabeeh, Bakr Mohamed

    The synthesis of Mg-Al2O3 double layered interface is introduced via the application of hot isostatic pressing, HIPing, in Al-Mg foils. Polycrystalline spinel layers are grown experimentally at the interfacial contacts between Al-Mg foils. The growth behavior of the spinel layers along with the kinetic parameters characterizing interface motion and long-range diffusion is established. Low melting depressant (LMD), Zn, and alloying element segregation tends to form micro laminated and/or Nano structure interphase in a lamellar composite solid state processing. Nano composite ceramic interphase materials offer interesting mechanical properties not achievable in other materials, such as superplastic flow and metal-like machinability. Microstructural characterization, mechanical characterization is also established via optical microscopy scanning electron microscopy, energy dispersive X-ray spectroscopy and tensile testing. Chemical and mechanical bonding via inter diffusion processing with alloy segregation are dominant for interphase kinetics. Mechanical characterization with interfacial shear strength is also introduced. HIPing processing is successfully applied on 6082 Al-alloy and AZ31 magnesium alloy for either particulate or micro-laminated interfacial composite processing. The interphase kinetic established through localized micro plasticity, metal flow, alloy segregation and delocalized Al oxide and Mg oxide. The kinetic of interface/interphase induce new nontraditional crack mitigation a long with new bridging and toughening mechanisms.

  11. Two-dimensional X-ray diffraction and transmission electron microscopy study on the effect of magnetron sputtering atmosphere on GaN/SiC interface and gallium nitride thin film crystal structure

    NASA Astrophysics Data System (ADS)

    Shen, Huaxiang; Zhu, Guo-Zhen; Botton, Gianluigi A.; Kitai, Adrian

    2015-03-01

    The growth mechanisms of high quality GaN thin films on 6H-SiC by sputtering were investigated by X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM). The XRD θ-2θ scans show that high quality ( 0002 ) oriented GaN was deposited on 6H-SiC by reactive magnetron sputtering. Pole figures obtained by 2D-XRD clarify that GaN thin films are dominated by ( 0002 ) oriented wurtzite GaN and { 111 } oriented zinc-blende GaN. A thin amorphous silicon oxide layer on SiC surfaces observed by STEM plays a critical role in terms of the orientation information transfer from the substrate to the GaN epilayer. The addition of H2 into Ar and/or N2 during sputtering can reduce the thickness of the amorphous layer. Moreover, adding 5% H2 into Ar can facilitate a phase transformation from amorphous to crystalline in the silicon oxide layer and eliminate the unwanted { 3 3 ¯ 02 } orientation in the GaN thin film. Fiber texture GaN thin films can be grown by adding 10% H2 into N2 due to the complex reaction between H2 and N2.

  12. Oxide Ceramic Films Grown on 60 Nitinol for NASA and Department of Defense Applications

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Street, Kenneth W.; Lukco, Dorothy; Cytron, Sheldon J.

    2005-01-01

    Both the NASA Glenn Research Center and the U.S. Army Research Laboratory, Development and Engineering Center (ARDEC) have worked to develop oxide ceramic films grown on 60 nitinol (60-wt% nickel and 40-wt% titanium) to decrease friction and increase wear resistance under unlubricated conditions. In general, oxide and nonoxide ceramic films have unique capabilities as mechanical-, chemical-, and thermal-barrier materials in diverse applications, including high-temperature bearings and gas bearings requiring low friction, wear resistance, and chemical stability. All oxide ceramic films grown on 60 nitinol were furnished by ARDEC, and materials and surface characterization and tribological experiments were conducted at Glenn.

  13. In situ reduced graphene oxide interlayer for improving electrode performance in ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Venkatesan, A.; Ramesha, C. K.; Kannan, E. S.

    2016-06-01

    The effect of reduced graphene oxide (RGO) thin film on the transport characteristics of vertically aligned zinc oxide nanorods (ZnO NRs) grown on ITO substrate was studied. GO was uniformly drop casted on ZnO NRs as a passivation layer and then converted into RGO by heating it at 60 °C prior to metal electrode deposition. This low temperature reduction is facilitated by the thermally excited electrons from ZnI interstitial sites (~30 meV). Successful reduction of GO was ascertained from the increased disorder band (D) intensity in the Raman spectra. Temperature (298 K-10 K) dependent transport measurements of RGO-ZnO NRs indicate that the RGO layer not only acts as a short circuiting inhibitor but also reduces the height of the potential barrier for electron tunneling. This is confirmed from the temperature dependent electrical characteristics which revealed a transition of carrier transport from thermionic emission at high temperature (T  >  100 K) to tunneling at low temperature (T  <  100 K) across the interface. Our technique is the most promising approach for making reliable electrical contacts on vertically aligned ZnO NRs and improving the reproducibility of device characteristics.

  14. Interface formation of epitaxial MgO/Co2MnSi(001) structures: Elemental segregation and oxygen migration

    NASA Astrophysics Data System (ADS)

    McFadden, Anthony; Wilson, Nathaniel; Brown-Heft, Tobias; Pennachio, Daniel; Pendharkar, Mihir; Logan, John A.; Palmstrøm, Chris J.

    2017-12-01

    The interface formation in epitaxial MgO /Co2MnSi (001) films was studied using in-situ X-ray photoelectron spectroscopy (XPS). MgO was deposited on single crystal Co2MnSi (001) layers using e-beam evaporation: a technique which is expected to oxidize the Co2MnSi layer somewhat due to the rise in oxygen partial pressure during MgO deposition while leaving the deposited MgO oxygen deficient. Not unexpectedly, we find that e-beam evaporation of MgO raises the oxygen background in the deposition chamber to a level that readily oxidizes the Co2MnSi surface, with oxygen bonding preferentially to Mn and Si over Co. Interestingly, this oxidation causes an elemental segregation, with Mn-Si effectively moving toward the surface, resulting in an MgO /Co2MnSi interface with a composition significantly differing from the original surface of the unoxidized Co2MnSi film. As MgO is deposited on the oxidized Co2MnSi , the Mn-oxides are reduced, while the Si oxide remains, and is only somewhat reduced after additional annealing in ultrahigh vacuum. Annealing after the MgO is grown on Co2MnSi causes oxygen to move away from the oxidized Co2MnSi interface toward the surface and into the MgO. This observation is consistent with an increase in the tunneling magnetoresistance ratio with post-growth annealing measured in fabricated magnetic tunnel junctions (MTJs). The findings are discussed in light of fabrication of MgO/Heusler based MTJs, where the exponential decay of tunneling probability with contact separation exemplifies the importance of the ferromagnet/tunnel barrier interface.

  15. Growth characteristics of (100)HgCdTe layers in low-temperature MOVPE with ditertiarybutyltelluride

    NASA Astrophysics Data System (ADS)

    Yasuda, K.; Hatano, H.; Ferid, T.; Minamide, M.; Maejima, T.; Kawamoto, K.

    1996-09-01

    Low-temperature growth of (100)HgCdTe (MCT) layers in MOVPE has been studied using ditertiarybutyltelluride (DtBTe), dimethylcadmium (DMCd), and elementary mercury as precursors. MCT layers were grown at 275°C on (100)GaAs substrates. Growths were carried out in a vertical growth cell which has a narrow spacing between the substrate and cell ceiling. Using the growth cell, the Cd-composition ( x) of MCT layers was controlled over a wide range from 0 to 0.98 by the DMCd flow. The growth rate of the MCT layers was constant at 5 μm h -1 for the increased DMCd flow. Preferential Cd-incorporation into MCT layers and an increase of the growth rate were observed in the presence of mercury vapor. The growth characteristics were considered to be due to the alkyl-exchange reaction between DMCd and mercury. The electrical properties and crystallinity of grown layers were also evaluated, which showed that layers with high quality can be grown at 275°C.

  16. Surface potential driven dissolution phenomena of [0 0 0 1]-oriented ZnO nanorods grown from ZnO and Pt seed layers

    NASA Astrophysics Data System (ADS)

    Seo, Youngmi; Kim, Jung Hyeun

    2011-06-01

    Highly oriented ZnO nanorods are synthesized hydrothermally on ZnO and Pt seed layers, and they are dissolved in KOH solution. The rods grown on ZnO seed layer show uniform dissolution, but those grown on Pt seed layer are rod-selectively dissolved. The ZnO nanorods from both seed layers show the same crystalline structure through XRD and Raman spectrometer data. However, the surface potential analysis reveals big difference for ZnO and Pt seed cases. The surface potential distribution is very uniform for the ZnO seed case, but it is much fluctuated on the Pt seed case. It suggests that the rod-selective dissolution phenomena on Pt seed case are likely due to the surface energy difference.

  17. Atomic force microscopy studies of homoepitaxial GaN layers grown on GaN template by laser MBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, B. S.; Rajasthan Technical University, Rawatbhata Road, Kota 324010; Singh, A.

    We have grown homoepitaxial GaN films on metal organic chemical vapor deposition (MOCVD) grown 3.5 µm thick GaN on sapphire (0001) substrate (GaN template) using an ultra-high vacuum (UHV) laser assisted molecular beam epitaxy (LMBE) system. The GaN films were grown by laser ablating a polycrystalline solid GaN target in the presence of active r.f. nitrogen plasma. The influence of laser repetition rates (10-30 Hz) on the surface morphology of homoepitaxial GaN layers have been studied using atomic force microscopy. It was found that GaN layer grown at 10 Hz shows a smooth surface with uniform grain size compared to the rough surfacemore » with irregular shape grains obtained at 30 Hz. The variation of surface roughness of the homoepitaxial GaN layer with and without wet chemical etching has been also studied and it was observed that the roughness of the film decreased after wet etching due to the curved structure/rough surface.« less

  18. Quality-enhanced In{sub 0.3}Ga{sub 0.7}As film grown on GaAs substrate with an ultrathin amorphous In{sub 0.6}Ga{sub 0.4}As buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Fangliang; Li, Guoqiang, E-mail: msgli@scut.edu.cn

    2014-01-27

    Using low-temperature molecular beam epitaxy, amorphous In{sub 0.6}Ga{sub 0.4}As layers have been grown on GaAs substrates to act as buffer layers for the subsequent epitaxial growth of In{sub 0.3}Ga{sub 0.7}As films. It is revealed that the crystallinity of as-grown In{sub 0.3}Ga{sub 0.7}As films is strongly affected by the thickness of the large-mismatched amorphous In{sub 0.6}Ga{sub 0.4}As buffer layer. Given an optimized thickness of 2 nm, this amorphous In{sub 0.6}Ga{sub 0.4}As buffer layer can efficiently release the misfit strain between the In{sub 0.3}Ga{sub 0.7}As epi-layer and the GaAs substrate, trap the threading and misfit dislocations from propagating to the following In{sub 0.3}Ga{submore » 0.7}As epi-layer, and reduce the surface fluctuation of the as-grown In{sub 0.3}Ga{sub 0.7}As, leading to a high-quality In{sub 0.3}Ga{sub 0.7}As film with competitive crystallinity to that grown on GaAs substrate using compositionally graded In{sub x}Ga{sub 1-x}As metamorphic buffer layers. Considering the complexity of the application of the conventional In{sub x}Ga{sub 1-x}As graded buffer layers, this work demonstrates a much simpler approach to achieve high-quality In{sub 0.3}Ga{sub 0.7}As film on GaAs substrate and, therefore, is of huge potential for the InGaAs-based high-efficiency photovoltaic industry.« less

  19. Long term high temperature oxidation characteristics of La and Cu alloyed ferritic stainless steels for solid oxide fuel cell interconnects

    NASA Astrophysics Data System (ADS)

    Swaminathan, Srinivasan; Lee, Young-Su; Kim, Dong-Ik

    2016-09-01

    To ensure the best performance of solid oxide fuel cell metallic interconnects, the Fe-22 wt.% Cr ferritic stainless steels with various La contents (0.006-0.6 wt.%) and Cu addition (1.57 wt.%), are developed. Long-term isothermal oxidation behavior of these steels is investigated in air at 800 °C, for 2700 h. Chemistry, morphology, and microstructure of the thermally grown oxide scale are examined using XPS, SEM-EDX, and XRD techniques. Broadly, all the steels show a double layer consisting of an inner Cr2O3 and outer (Mn, Cr)3O4. Distinctly, in the La-added steels, binary oxides of Cr, Mn and Ti are found at the oxide scale surface together with (Mn, Cr)3O4. Furthermore, all La-varied steels possess the metallic Fe protrusions along with discontinuous (Mn, Cr)3O4 spinel zones at the oxide scale/metal interface and isolated precipitates of Ti-oxides in the underlying matrix. Increase of La content to 0.6 wt.% is detrimental to the oxidation resistance. For the Cu-added steel, Cu is found to segregate strongly at the oxide scale/metal interface which inhibits the ingress of oxygen thereby suppressing the subscale formation of (Mn, Cr)3O4. Thus, Cu addition to the Fe-22Cr ferritic stainless steels benefits the oxidation resistance.

  20. Mechanical tearing of graphene on an oxidizing metal surface.

    PubMed

    George, Lijin; Gupta, Aparna; Shaina, P R; Das Gupta, Nandita; Jaiswal, Manu

    2015-12-11

    Graphene, the thinnest possible anticorrosion and gas-permeation barrier, is poised to transform the protective coatings industry for a variety of surface applications. In this work, we have studied the structural changes of graphene when the underlying copper surface undergoes oxidation upon heating. Single-layer graphene directly grown on a copper surface by chemical vapour deposition was annealed under ambient atmosphere conditions up to 400 °C. The onset temperature of the surface oxidation of copper is found to be higher for graphene-coated foils. Parallel arrays of graphene nanoripples are a ubiquitous feature of pristine graphene on copper, and we demonstrate that these form crucial sites for the onset of the oxidation of copper, particularly for ∼0.3-0.4 μm ripple widths. In these regions, the oxidation proceeds along the length of the nanoripples, resulting in the formation of parallel stripes of oxidized copper regions. We demonstrate from temperature-dependent Raman spectroscopy that the primary defect formation process in graphene involves boundary-type defects rather than vacancy or sp(3)-type defects. This observation is consistent with a mechanical tearing process that splits graphene into small polycrystalline domains. The size of these is estimated to be sub-50 nm.

  1. An electrochemical approach to monitor pH change in agar media during plant tissue culture.

    PubMed

    Wang, Min; Ha, Yang

    2007-05-15

    In this work, metal oxide microelectrodes were developed to monitor pH change in agar media during plant tissue culture. An antimony wire was produced by a new approach "capillary melt method". The surface of the obtained antimony wire was oxidized in a potassium nitrate melt to fabricate an antimony oxide film for pH sensing. Characterization results show that the oxide layer grown on the wire surface consists of Sb(2)O(3) crystal phase. The sensing response, open-circuit potential, of the electrode has a good linear relationship (R(2)=1.00) with pH value of the test solution. Adding organic compounds into the test media would not affect the linear relationship, although the slope of the lines varied with different ingredients added. The antimony oxide electrodes were employed to continuously monitor pH change of agar culture media during a 2-week plant tissue culture of Dendrobium candidum. The antimony oxide electrode fabricated this way has the advantages of low cost, easy fabrication, fast response, and almost no contamination introduced into the system. It would be suitable for in situ and continuous pH measurement in many bio applications.

  2. Impact of Reduced Graphene Oxide on MoS2 Grown by Sulfurization of Sputtered MoO3 and Mo Precursor Films (Postprint)

    DTIC Science & Technology

    2016-05-26

    AFRL-RX-WP-JA-2017-0137 IMPACT OF REDUCED GRAPHENE OXIDE ON MOS2 GROWN BY SULFURIZATION OF SPUTTERED MOO3 AND MO PRECURSOR FILMS...OXIDE ON MOS2 GROWN BY SULFURIZATION OF SPUTTERED MOO3 AND Mo PRECURSOR FILMS (POSTPRINT) 5a. CONTRACT NUMBER FA8650-11-D-5401-0008 5b. GRANT...2016. © 2016 American Vacuum Society. The U.S. Government is joint author of the work and has the right to use, modify , reproduce, release, perform

  3. High frequency capacitance-voltage characteristics of thermally grown SiO2 films on beta-SiC

    NASA Technical Reports Server (NTRS)

    Tang, S. M.; Berry, W. B.; Kwor, R.; Zeller, M. V.; Matus, L. G.

    1990-01-01

    Silicon dioxide films grown under dry and wet oxidation environment on beta-SiC films have been studied. The beta-SiC films had been heteroepitaxially grown on both on-axis and 2-deg off-axis (001) Si substrates. Capacitance-voltage and conductance-voltage characteristics of metal-oxide-semiconductor structures were measured in a frequency range of 10 kHz to 1 MHz. From these measurements, the interface trap density and the effective fixed oxide charge density were observed to be generally lower for off-axis samples.

  4. All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001).

    PubMed

    Kwoen, Jinkwan; Jang, Bongyong; Lee, Joohang; Kageyama, Takeo; Watanabe, Katsuyuki; Arakawa, Yasuhiko

    2018-04-30

    Directly grown III-V quantum dot (QD) laser on on-axis Si (001) is a good candidate for achieving monolithically integrated Si photonics light source. Nowadays, laser structures containing high quality InAs / GaAs QD are generally grown by molecular beam epitaxy (MBE). However, the buffer layer between the on-axis Si (001) substrate and the laser structure are usually grown by metal-organic chemical vapor deposition (MOCVD). In this paper, we demonstrate all MBE grown high-quality InAs/GaAs QD lasers on on-axis Si (001) substrates without using patterning and intermediate layers of foreign material.

  5. Stable Water Oxidation in Acid Using Manganese-Modified TiO2 Protective Coatings.

    PubMed

    Siddiqi, Georges; Luo, Zhenya; Xie, Yujun; Pan, Zhenhua; Zhu, Qianhong; Röhr, Jason A; Cha, Judy J; Hu, Shu

    2018-06-06

    Accomplishing acid-stable water oxidation is a critical matter for achieving both long-lasting water-splitting devices and other fuel-forming electro- and photocatalytic processes. Because water oxidation releases protons into the local electrolytic environment, it becomes increasingly acidic during device operation, which leads to corrosion of the photoactive component and hence loss in device performance and lifetime. In this work, we show that thin films of manganese-modified titania, (Ti,Mn)O x , topped with an iridium catalyst, can be used in a coating stabilization scheme for acid-stable water oxidation. We achieved a device lifetime of more than 100 h in pH = 0 acid. We successfully grew (Ti,Mn)O x coatings with uniform elemental distributions over a wide range of manganese compositions using atomic layer deposition (ALD), and using X-ray photoelectron spectroscopy, we show that (Ti,Mn)O x films grown in this manner give rise to closer-to-valence-band Fermi levels, which can be further tuned with annealing. In contrast to the normally n-type or intrinsic TiO 2 coatings, annealed (Ti,Mn)O x films can make direct charge transfer to a Fe(CN) 6 3-/4- redox couple dissolved in aqueous electrolytes. Using the Fe(CN) 6 3-/4- redox, we further demonstrated anodic charge transfer through the (Ti,Mn)O x films to high work function metals, such as iridium and gold, which is not previously possible with ALD-grown TiO 2 . We correlated changes in the crystallinity (amorphous to rutile TiO 2 ) and oxidation state (2+ to 3+) of the annealed (Ti,Mn)O x films to their hole conductivity and electrochemical stability in acid. Finally, by combining (Ti,Mn)O x coatings with iridium, an acid-stable water-oxidation anode, using acid-sensitive conductive fluorine-doped tin oxides, was achieved.

  6. Planar Metal-Insulator-Metal Diodes Based on the Nb/Nb2O5/X Material System

    DTIC Science & Technology

    2013-10-01

    high -quality Nb2O5 insulator can be grown reproducibly as a pinhole-free, uniform layer on top of the Nb using an anodic oxidation process under atmos...harvesting applications. Six cathode materials (M2): Nb, Ag, Cu, Ni, Au, and Pt are studied in conjunction with Nb as the anode (M1) and Nb2O5 (I) as the...are studied in conjunction with Nb as the anode (M1) and Nb2O5 (I) as the dielectric. The cathode materials selections were based on results from a

  7. The study of surface acoustic wave charge transfer device

    NASA Technical Reports Server (NTRS)

    Papanicolaou, N.; Lin, H. C.

    1978-01-01

    A surface acoustic wave-charge transfer device, consisting of an n-type silicon substrate, a thermally grown silicon dioxide layer, and a sputtered film of piezoelectric zinc oxide is proposed as a means of circumventing problems associated with charge-coupled device (CCD) applications in memory, signal processing, and imaging. The proposed device creates traveling longitudinal electric fields in the silicon and replaces the multiphase clocks in CCD's. The traveling electric fields create potential wells which carry along charges stored there. These charges may be injected into the wells by light or by using a p-n junction as in conventional CCD's.

  8. Nanostructured Transparent Conducting Oxides for Device Applications

    NASA Astrophysics Data System (ADS)

    Dutta, Titas

    2011-12-01

    Research on transparent conducting oxides (TCOs) alternative to indium tin oxide (ITO) has attracted a lot of attention due to the serious concern related to cost and chemical stability of indium tin oxide. The primary aim of this research is to develop low cost alternative transparent conducting oxides with an eye towards (1) increasing the organic solar cell efficiency and (2) fabricating transparent electronic devices utilizing p-type TCOs. To investigate the fundamental properties, the novel TCO films have been grown on sapphire and economical glass substrates using pulsed laser deposition (PLD) technique. The films were also grown under different deposition conditions in order to understand the effect of processing parameters on the film properties. The characteristics of the thin films have been investigated in detail using (X-ray diffraction, TEM, X-ray photoelectron spectroscopy (XPS), UV- photoelectron spectroscopy (UPS), four probe resistivity and UV-Vis transmittance measurements) in order to establish processing-structure-property correlation. ZnO doped with group III elements is a promising candidate because of its superior stability in hydrogen environment, benign nature and relatively inexpensive supply. However, ZnO based TCO films suffer from low work function (4.4 eV, compared to that of 4.8 eV for ITO), which increases the energy barrier and affects the carrier transport across ZnGa0.05O/organic layer interface. To overcome this issue of ZnO based TCOs, the growth of bilayered structure consisting of very thin MoOx (2.0 < x < 2.75), and/or p-Li xNi1-xO (0 ≤ x≤ 0.07) over layer on Zn0.95Ga 0.05O (GZO) film by pulsed laser ablation is proposed. The multiple oxidation states present in the over layers (Mo4+, Mo 5+ and Mo6+ in MoOx and Ni2+ and Ni3+ in NiO1+x), which result in desired TCO characteristics were determined and controlled by growth parameters and optimal target composition. These optimized bilayer films exhibited good optical transmittance (≥ 80%) and low resistivity of ˜ 10-4 O-cm. The optimized NiO1+x / GZO and MoOx / GZO bilayers showed significant increase in work function values (˜5.3 eV). The work function of the bilayer films was tuned by varying the processing conditions and doping of over layers. Preliminary test device results of the organic photovoltaic cells (OPVs) based on these surfaces modified TCO layers have shown an increase in the open circuit voltage (Voc) and/or increase in Fill factor (FF) and the power conversion efficiency of these devices. These results suggest that the surface modified GZO films have a potential to substitute for ITO in transparent electrode applications. To gain a better understanding of the fundamentals and factors affecting the properties of p-type TCO, NiO thin films have been grown on c-sapphire and glass substrates with controlled properties. Growth of NiO on c-sapphire occurs epitaxially in [111] direction with two types of crystalline grains rotated by 60° with respect to each other. We have also investigated the effects of the deposition parameters and Li doping concentration variations on the electrical and optical properties of NiO thin films. The analysis of the resistivity measurement showed that doped Li+ ions occupy the substitutional sites in the NiO films, enhancing the p-type conductivity. The minimum resistivity of 0.15 O-cm was obtained for Li0.07Ni 0.93O film. The results of this research help to understand the conduction mechanisms in TCOs and are critical to further improvement and optimization of TCO properties. This work has also demonstrated interesting possibilities for fabricating a p-LixNi1-xO/ i-MgZnO /n-ZnO heterojunction diode on c-sapphire. It has been demonstrated that epitaxial LixNi 1-xO can be grown on ZnO integrated with c-sapphire. Heteroeptaxial growth of the p-n junction is technologically important as it minimizes the electron scattering at the interface. The insertion of i-MgZnO between the p and n layer led to improved current-voltage characteristics with reduced leakage current. An attempt has been made to elucidate the role of point defects, in controlling the carrier concentration and transport characteristics of nanostructured TCO films. This study presents the systematic changes in structural, electrical and optical properties of NiO thin films introduced by nanosecond duration Ultraviolet Excimer laser pulses. NiO films show transformation from p-type semiconducting to n-type conducting behavior with three order of magnitude decrease in resistivity, while maintaining its cubic crystal structure and good epitaxial relationship. This phenomenon is reversible via oxygen annealing. From XPS analysis, a strong correlation has been established between n-type conductivity and non-equilibrium concentrations of laser induced Ni 0-like defect states.

  9. Design and Characterization of High-strength Bond Coats for Improved Thermal Barrier Coating Durability

    NASA Astrophysics Data System (ADS)

    Jorgensen, David John

    High pressure turbine blades in gas turbine engines rely on thermal barrier coating (TBC) systems for protection from the harsh combustion environment. These coating systems consist of a ceramic topcoat for thermal protection, a thermally grown oxide (TGO) for oxidation passivation, and an intermetallic bond coat to provide compatibility between the substrate and ceramic over-layers while supplying aluminum to sustain Al2O 3 scale growth. As turbine engines are pushed to higher operating temperatures in pursuit of better thermal efficiency, the strength of industry-standard bond coats limits the lifetime of these coating systems. Bond coat creep deformation during thermal cycling leads to a failure mechanism termed rumpling. The interlayer thermal expansion differences, combined with TGO-imposed growth stresses, lead to the development of periodic undulations in the bond coat. The ceramic topcoat has low out-of-plane compliance and thus detaches and spalls from the substrate, resulting in a loss of thermal protection and subsequent degradation of mechanical properties. New creep resistant Ni3Al bond coats were designed with improved high-temperature strength to inhibit this type of premature failure at elevated temperatures. These coatings resist rumpling deformation while maintaining compatibility with the other layers in the system. Characterization methods are developed to quantify rumpling and assess the TGO-bond coat interface toughness of experimental systems. Cyclic oxidation experiments at 1163 °C show that the Ni3Al bond coats do not experience rumpling but have faster oxide growth rates and are quicker to spall TGO than the (Pt,Ni)Al benchmark. However, the Ni 3Al coatings outperformed the benchmark by over threefold in TBC system life due to a higher resistance to rumpling (mechanical degradation) while maintaining adequate oxidation passivation. The Ni3Al coatings eventually grow spinel NiAl2O4 on top of the protective Al2O3 layer, which leads to the detachment of the ceramic topcoat. Furthermore, bilayer Ni3Al+NiAl architectures have been investigated to improve the oxidation performance of the monolithic Ni 3Al coatings while maintaining their high strength. These bilayer architectures are shown to improve the cyclic oxidation performance of the monolithic layers and increase the TBC system life. The design, characterization, and experimentation of these coatings is discussed and related to the development of high-strength coatings.

  10. Selective Inhibition of the Oxidation of Ferrous Iron or Sulfur in Thiobacillus ferrooxidans

    PubMed Central

    Harahuc, Lesia; Lizama, Hector M.; Suzuki, Isamu

    2000-01-01

    The oxidation of either ferrous iron or sulfur by Thiobacillus ferrooxidans was selectively inhibited or controlled by various anions, inhibitors, and osmotic pressure. Iron oxidation was more sensitive than sulfur oxidation to inhibition by chloride, phosphate, and nitrate at low concentrations (below 0.1 M) and also to inhibition by azide and cyanide. Sulfur oxidation was more sensitive than iron oxidation to the inhibitory effect of high osmotic pressure. These differences were evident not only between iron oxidation by iron-grown cells and sulfur oxidation by sulfur-grown cells but also between the iron and sulfur oxidation activities of the same iron-grown cells. Growth experiments with ferrous iron or sulfur as an oxidizable substrate confirmed the higher sensitivity of iron oxidation to inhibition by phosphate, chloride, azide, and cyanide. Sulfur oxidation was actually stimulated by 50 mM phosphate or chloride. Leaching of Fe and Zn from pyrite (FeS2) and sphalerite (ZnS) by T. ferrooxidans was differentially affected by phosphate and chloride, which inhibited the solubilization of Fe without significantly affecting the solubilization of Zn. PMID:10698768

  11. A coupled mechanical-chemical model for reflecting the influence of stress on oxidation reactions in thermal barrier coating

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Yueming, Li

    2018-06-01

    In this paper, a coupled mechanical-chemical model is established based on the thermodynamic framework, in which the contribution of chemical expansion to free energy is introduced. The stress-dependent chemical potential equilibrium at the gas-solid interface and the stress gradient-dependent diffusion equation as well as a so-called generalized force which is conjugate to the oxidation rate are derived from the proposed model, which could reflect the influence of stresses on the oxidation reaction. Based on the proposed coupled mechanical-chemical model, a user element subroutine is developed in ABAQUS. The numerical simulation of the high temperature oxidation in the thermal barrier coating is carried out to verify the accuracy of the proposed model, and then the influence of stresses on the oxidation reaction is investigated. In thermally grown oxide, the considerable stresses would be induced by permanent volumetric swelling during the oxidation. The stresses play an important role in the chemical potential equilibrium at the gas-solid interface and strongly affect the oxidation reaction. The gradient of the stresses, however, only occurs in the extremely thin oxidation front layer, which plays a very limited role in the oxidation reaction. The generalized force could be divided into the stress-dependent and the stress-independent parts. Comparing with the stress-independent part, the stress-dependent part is smaller, which has little influence on oxidation reaction.

  12. Broadband light-emitting diode

    DOEpatents

    Fritz, Ian J.; Klem, John F.; Hafich, Michael J.

    1998-01-01

    A broadband light-emitting diode. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3-2 .mu.m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-division-multiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft.

  13. Broadband light-emitting diode

    DOEpatents

    Fritz, I.J.; Klem, J.F.; Hafich, M.J.

    1998-07-14

    A broadband light-emitting diode is disclosed. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3--2 {micro}m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-divisionmultiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft. 10 figs.

  14. Size effects in the thermal conductivity of gallium oxide (β-Ga{sub 2}O{sub 3}) films grown via open-atmosphere annealing of gallium nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szwejkowski, Chester J.; Giri, Ashutosh; Donovan, Brian F.

    2015-02-28

    Gallium nitride (GaN) is a widely used semiconductor for high frequency and high power devices due to of its unique electrical properties: a wide band gap, high breakdown field, and high electron mobility. However, thermal management has become a limiting factor regarding efficiency, lifetime, and advancement of GaN devices and GaN-based applications. In this work, we study the thermal conductivity of beta-phase gallium oxide (β-Ga{sub 2}O{sub 3}) thin films, a component of typical gate oxides used in such devices. We use time domain thermoreflectance to measure the thermal conductivity of a variety of polycrystalline β-Ga{sub 2}O{sub 3} films of differentmore » thicknesses grown via open atmosphere annealing of the surfaces of GaN films on sapphire substrates. We show that the measured effective thermal conductivity of these β-Ga{sub 2}O{sub 3} films can span 1.5 orders of magnitude, increasing with an increased film thickness, which is indicative of the relatively large intrinsic thermal conductivity of the β-Ga{sub 2}O{sub 3} grown via this technique (8.8 ± 3.4 W m{sup −1} K{sup −1}) and large mean free paths compared to typical gate dielectrics commonly used in GaN device contacts. By conducting time domain thermoreflectance (TDTR) measurements with different metal transducers (Al, Au, and Au with a Ti wetting layer), we attribute this variation in effective thermal conductivity to a combination of size effects in the β-Ga{sub 2}O{sub 3} film resulting from phonon scattering at the β-Ga{sub 2}O{sub 3}/GaN interface and thermal transport across the β-Ga{sub 2}O{sub 3}/GaN interface. The measured thermal properties of open atmosphere-grown β-Ga{sub 2}O{sub 3} and its interface with GaN set the stage for thermal engineering of gate contacts in high frequency GaN-based devices.« less

  15. Growth rate independence of Mg doping in GaN grown by plasma-assisted MBE

    NASA Astrophysics Data System (ADS)

    Turski, Henryk; Muzioł, Grzegorz; Siekacz, Marcin; Wolny, Pawel; Szkudlarek, Krzesimir; Feduniewicz-Żmuda, Anna; Dybko, Krzysztof; Skierbiszewski, Czeslaw

    2018-01-01

    Doping of Ga(Al)N layers by plasma-assisted molecular beam epitaxy in Ga-rich conditions on c-plane bulk GaN substrates was studied. Ga(Al)N samples, doped with Mg or Si, grown using different growth conditions were compared. In contrast to Si doped layers, no change in the Mg concentration was observed for layers grown using different growth rates for a constant Mg flux and constant growth temperature. This effect enables the growth of Ga(Al)N:Mg layers at higher growth rates, leading to shorter growth time and lower residual background doping, without the need of increasing Mg flux. Enhancement of Mg incorporation for Al containing layers was also observed. Change of Al content from 0% to 17% resulted in more than two times higher Mg concentration.

  16. Atomic layer deposition of ZrO2 on W for metal-insulator-metal capacitor application

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Yun; Kim, Hyoungsub; McIntyre, Paul C.; Saraswat, Krishna C.; Byun, Jeong-Soo

    2003-04-01

    A metal-insulator-metal (MIM) capacitor using ZrO2 on tungsten (W) metal bottom electrode was demonstrated and characterized in this letter. Both ZrO2 and W metal were synthesized by an atomic layer deposition (ALD) method. High-quality 110˜115 Å ZrO2 films were grown uniformly on ALD W using ZrCl4 and H2O precursors at 300 °C, and polycrystalline ZrO2 in the ALD regime could be obtained. A 13˜14-Å-thick interfacial layer between ZrO2 and W was observed after fabrication, and it was identified as WOx through angle-resolved x-ray photoelectron spectroscopy analysis with wet chemical etching. The apparent equivalent oxide thickness was 20˜21 Å. An effective dielectric constant of 22˜25 including an interfacial WOx layer was obtained by measuring capacitance and thickness of MIM capacitors with Pt top electrodes. High capacitance per area (16˜17 fF/μm2) and low leakage current (10-7 A/cm2 at ±1 V) were achieved.

  17. Growth of IZO/IGZO dual-active-layer for low-voltage-drive and high-mobility thin film transistors based on an ALD grown Al2O3 gate insulator

    NASA Astrophysics Data System (ADS)

    Ding, Xingwei; Zhang, Hao; Ding, He; Zhang, Jianhua; Huang, Chuanxin; Shi, Weimin; Li, Jun; Jiang, Xueyin; Zhang, Zhilin

    2014-12-01

    We successfully integrated the high-performance oxide thin film transistors with novel IZO/IGZO dual-active-layers. The results showed that dual-active-layer (IZO/IGZO) TFTs, compared with single active layer IGZO TFTs and IZO TFTs, exhibited the excellent performances; specifically, a high field effect mobility of 14.4 cm2/Vs, a suitable threshold voltage of 0.8 V, a high on/off ratio of more than 107, a steep sub-threshold swing of 0.13 V/dec, and a substantially small threshold voltage shift of 0.51 V after temperature stress from 293 K to 353 K. In order to understand the superior performance, the density-of-states (DOS) were investigated based on the temperature-dependent transfer curves. The superior electric properties were attributed to the smaller DOS and higher carrier concentration. The proposed IZO/IGZO-TFT in this paper can be used as driving devices in the next-generation flat panel displays.

  18. Layer Protecting the Surface of Zirconium Used in Nuclear Reactors.

    PubMed

    Ashcheulov, Petr; Skoda, Radek; Skarohlíd, Jan; Taylor, Andrew; Fendrych, Frantisek; Kratochvílová, Irena

    2016-01-01

    Zirconium alloys have very useful properties for nuclear facilities applications having low absorption cross-section of thermal electrons, high ductility, hardness and corrosion resistance. However, there is also a significant disadvantage: it reacts with water steam and during this (oxidative) reaction it releases hydrogen gas, which partly diffuses into the alloy forming zirconium hydrides. A new strategy for surface protection of zirconium alloys against undesirable oxidation in nuclear reactors by polycrystalline diamond film has been patented- Czech patent 305059: Layer protecting the surface of zirconium alloys used in nuclear reactors and PCT patent: Layer for protecting surface of zirconium alloys (Patent Number: WO2015039636-A1). The zirconium alloy surface was covered by polycrystalline diamond layer grown in plasma enhanced chemical vapor deposition apparatus with linear antenna delivery system. Substantial progress in the description and understanding of the polycrystalline diamond/ zirconium alloys interface and material properties under standard and nuclear reactors conditions (irradiation, hot steam oxidation experiments and heating-quenching cycles) was made. In addition, process technology for the deposition of protective polycrystalline diamond films onto the surface of zirconium alloys was optimized. Zircaloy2 nuclear fuel pins were covered by 300 nm thick protective polycrystalline diamond layer (PCD) using plasma enhanced chemical vapor deposition apparatus with linear antenna delivery system. The polycrystalline diamond layer protects the zirconium alloy surface against undesirable oxidation and consolidates its chemical stability while preserving its functionality. PCD covered Zircaloy2 and standard Zircaloy2 pins were for 30 min. oxidized in 1100°C hot steam. Under these conditions α phase of zirconium changes to β phase (more opened for oxygen/hydrogen diffusion). PCD anticorrosion protection of Zircaloy nuclear fuel assemblies can significantly prolong lifetime of Zirconium alloy in nuclear reactors even above Zirconium phase transition temperatures. Even after ion beam irradiation (10 dpa, 3 MeV Fe(2+)) the diamond film still shows satisfactory structural integrity with both sp(3) and sp(2) carbon phases. Zircaloy2 under the carbon-based protective layer after hot steam oxidation test differed from the original Zircaloy2 material composition only very slightly, proving that the diamond coating increases the material resistance to high temperature oxidation. Zirconium alloys nuclear fuel pins' surfaces were covered by compact and homogeneous polycrystalline diamond layers consisting of sp(3) and sp(2) carbon phases with a high crystalline diamond content and low roughness. Diamond withstands very high temperatures, has excellent thermal conductivity and low chemical reactivity, it does not degrade over time and (important for the nuclear fuel cladding) being pure carbon, it has perfect neutron cross-section properties. Moreover, polycrystalline diamond layers consisting of crystalline (sp(3)) and amorphous (sp(2)) carbon phases could have suitable thermal expansion. Zirconium alloys coated with polycrystalline diamond film are protected against undesirable changes and processes. Further, the polycrystalline diamond layer prevents the reaction between the alloy surface and water vapor. During such reaction, water molecules dissociate and initiate formation of zirconium dioxide and hydrogen, accompanied by the release of large amount of heat. Thus the protective layer prevents the formation of hydrogen and the release of reaction heat. Few relevant patents to the topic have been reviewed and cited.

  19. Substrate-Free InGaN/GaN Nanowire Light-Emitting Diodes.

    PubMed

    Neplokh, Vladimir; Messanvi, Agnes; Zhang, Hezhi; Julien, Francois H; Babichev, Andrey; Eymery, Joel; Durand, Christophe; Tchernycheva, Maria

    2015-12-01

    We report on the demonstration of substrate-free nanowire/polydimethylsiloxane (PDMS) membrane light-emitting diodes (LEDs). Metal-organic vapour-phase epitaxy (MOVPE)-grown InGaN/GaN core-shell nanowires were encapsulated into PDMS layer. After metal deposition to p-GaN, a thick PDMS cap layer was spin-coated and the membrane was manually peeled from the sapphire substrate, flipped upside down onto a steel holder, and transparent indium tin oxide (ITO) contact to n-GaN was deposited. The fabricated LEDs demonstrate rectifying diode characteristics. For the electroluminescence (EL) measurements, the samples were manually bonded using silver paint. The EL spectra measured at different applied voltages demonstrate a blue shift with the current increase. This shift is explained by the current injection into the InGaN areas of the active region with different average indium content.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Sang Wan; Lee, Sangho; Kim, Minsoo

    The interfacial electronic structure of a bilayer of chloroaluminum phthalocyanine (ClAlPc) and pentacene grown on indium tin oxide (ITO) has been studied using synchrotron-radiation-excited photoelectron spectroscopy. The energy difference between the highest occupied molecular orbital (HOMO) level of the pentacene layer and the lowest unoccupied molecular orbital (LUMO) level of the ClAlPc layer (E HOMO D - E LUMO A ) was determined and compared with that of C 60/pentacene bilayers. The E HOMO D - E LUMO A of a heterojunction with ClAlPc was found to be 1.3 eV while that with C 60 was 0.9 eV. This differencemore » is discussed in terms of the difference in the ionization energy of each acceptor materials. We also obtained the complete energy level diagrams of both ClAlPc/pentacene/ITO and C 60/pentacene/ITO.« less

  1. Large-area, continuous and high electrical performances of bilayer to few layers MoS2 fabricated by RF sputtering via post-deposition annealing method

    PubMed Central

    Hussain, Sajjad; Singh, Jai; Vikraman, Dhanasekaran; Singh, Arun Kumar; Iqbal, Muhammad Zahir; Khan, Muhammad Farooq; Kumar, Pushpendra; Choi, Dong-Chul; Song, Wooseok; An, Ki-Seok; Eom, Jonghwa; Lee, Wan-Gyu; Jung, Jongwan

    2016-01-01

    We report a simple and mass-scalable approach for thin MoS2 films via RF sputtering combined with the post-deposition annealing process. We have prepared as-sputtered film using a MoS2 target in the sputtering system. The as-sputtered film was subjected to post-deposition annealing to improve crystalline quality at 700 °C in a sulfur and argon environment. The analysis confirmed the growth of continuous bilayer to few-layer MoS2 film. The mobility value of ~29 cm2/Vs and current on/off ratio on the order of ~104 were obtained for bilayer MoS2. The mobility increased up to ~173–181 cm2/Vs, respectively, for few-layer MoS2. The mobility of our bilayer MoS2 FETs is larger than any previously reported values of single to bilayer MoS2 grown on SiO2/Si substrate with a SiO2 gate oxide. Moreover, our few-layer MoS2 FETs exhibited the highest mobility value ever reported for any MoS2 FETs with a SiO2 gate oxide. It is presumed that the high mobility behavior of our film could be attributed to low charged impurities of our film and dielectric screening effect by an interfacial MoOxSiy layer. The combined preparation route of RF sputtering and post-deposition annealing process opens up the novel possibility of mass and batch production of MoS2 film. PMID:27492282

  2. Methods for making thin layers of crystalline materials

    DOEpatents

    Lagally, Max G; Paskiewicz, Deborah M; Tanto, Boy

    2013-07-23

    Methods for making growth templates for the epitaxial growth of compound semiconductors and other materials are provided. The growth templates are thin layers of single-crystalline materials that are themselves grown epitaxially on a substrate that includes a thin layer of sacrificial material. The thin layer of sacrificial material, which creates a coherent strain in the single-crystalline material as it is grown thereon, includes one or more suspended sections and one or more supported sections.

  3. Influence of growth temperature on laser molecular beam epitaxy and properties of GaN layers grown on c-plane sapphire

    NASA Astrophysics Data System (ADS)

    Dixit, Ripudaman; Tyagi, Prashant; Kushvaha, Sunil Singh; Chockalingam, Sreekumar; Yadav, Brajesh Singh; Sharma, Nita Dilawar; Kumar, M. Senthil

    2017-04-01

    We have investigated the influence of growth temperature on the in-plane strain, structural, optical and mechanical properties of heteroepitaxially grown GaN layers on sapphire (0001) substrate by laser molecular beam epitaxy (LMBE) technique in the temperature range 500-700 °C. The GaN epitaxial layers are found to have a large in-plane compressive stress of about 1 GPa for low growth temperatures but the strain drastically reduced in the layer grown at 700 °C. The nature of the in-plane strain has been analyzed using high resolution x-ray diffraction, atomic force microscopy (AFM), Raman spectroscopy and photoluminescence (PL) measurements. From AFM, a change in GaN growth mode from grain to island is observed at the high growth temperature above 600 °C. A blue shift of 20-30 meV in near band edge PL emission line has been noticed for the GaN layers containing the large in-plane strain. These observations indicate that the in-plane strain in the GaN layers is dominated by a biaxial strain. Using nanoindentation, it is found that the indentation hardness and Young's modulus of the GaN layers increases with increasing growth temperature. The results disclose the critical role of growth mode in determining the in-plane strain and mechanical properties of the GaN layers grown by LMBE technique.

  4. Rutile IrO2/TiO2 superlattices: A hyperconnected analog to the Ruddelsden-Popper structure

    NASA Astrophysics Data System (ADS)

    Kawasaki, Jason K.; Baek, David; Paik, Hanjong; Nair, Hari P.; Kourkoutis, Lena F.; Schlom, Darrell G.; Shen, Kyle M.

    2018-05-01

    Dimensionality and connectivity among octahedra play important roles in determining the properties, electronic structure, and phase transitions of transition-metal oxides. Here we demonstrate the epitaxial growth of (110)-oriented alternating layers of IrO2 and TiO2, both of which have the rutile structure. These (IrO2)n/(TiO2)2 superlattices consist of IrO6 and TiO6 octahedra tiled in a hyperconnected, edge- and corner-sharing network. Despite the large lattice mismatch between constituent layers (Δ d∥=-2.1 % and Δ c =+6.6 % ), our reactive molecular-beam epitaxy-grown superlattices show high structural quality as determined by x-ray diffraction and sharp interfaces as observed by transmission electron microscopy. The large strain at the interface is accommodated by an ordered interfacial reconstruction. The superlattices show persistent metallicity down to n =3 atomic layers, and angle-resolved photoemission spectroscopy measurements reveal quantized sub-bands with signatures of IrO2-IrO2 interlayer coupling.

  5. Nanoair-bridged lateral overgrowth of GaN on ordered nanoporous GaN template

    NASA Astrophysics Data System (ADS)

    Wang, Y. D.; Zang, K. Y.; Chua, S. J.; Tripathy, S.; Chen, P.; Fonstad, C. G.

    2005-12-01

    We report the growth of high-quality GaN epilayers on an ordered nanoporous GaN template by metalorganic chemical vapor deposition. The nanopores in GaN template were created by inductively coupled plasma etching using anodic aluminum oxide film as an etch mask. The average pore diameter and interpore distance is about 65 and 110nm, respectively. Subsequent overgrowth of GaN first begins at the GaN crystallite surface between the pores, and then air-bridge-mediated lateral overgrowth leads to the formation of the continuous layer. Microphotoluminescence and micro-Raman measurements show improved optical properties and significant strain relaxation in the overgrown layer when compared to GaN layer of same thickness simultaneously grown on sapphire without any template. Similar to conventional epitaxial lateral overgrown GaN, such overgrown GaN on a nanopatterned surface would also serve as a template for the growth of ultraviolet-visible light-emitting III-nitride devices.

  6. Performance of ZnO based piezo-generators under controlled compression

    NASA Astrophysics Data System (ADS)

    Tao, Ran; Parmar, Mitesh; Ardila, Gustavo; Oliveira, Paulo; Marques, Daniel; Montès, Laurent; Mouis, Mireille

    2017-06-01

    This paper reports on the fabrication and characterization of ZnO based vertically integrated nanogenerator (VING) devices under controlled compression. The basic NG structure is a composite material integrating hydrothermally grown vertical piezoelectric zinc oxide (ZnO) nanowires (NWs) into a dielectric matrix (PMMA). A specific characterization set-up has been developed to control the applied compression and the perpendicularity of the applied force on the devices. The role of different fabrication parameters has been evaluated experimentally and compared with previously reported theoretical models, including the thickness of the top PMMA layer and the density of the NWs array in the matrix. Finally, the performance of the VING structure has been evaluated experimentally for different resistive loads obtaining a power density of 85 μW cm-3 considering only the active layer of the device. This has been compared to the performance of a commercial bulk layer of PZT (25 μW cm-3) under the same applied force of 5 N.

  7. Anti-oxidant properties and polyphenolic profile screening of Vitis vinifera stems and leaves crude extracts grown in Perlis, Malaysia

    NASA Astrophysics Data System (ADS)

    Zakaria, Nursyahda; Zulkifli, Razauden Mohamed; Akhir, Fazrena Nadia Md; Basar, Norazah

    2014-03-01

    Grape has become a fast growing agricultural sector in Malaysia producing between 0.62 kg to 2.03 kg waste per vinestock. This study aims to generate useful information on anti-oxidative properties as well as polyphenolic composition of grapevine waste. Stems and leaves of Vitis vinifera cultivated in Perlis, Malaysia were extracted using methanol, ethyl acetate and petroleum ether. Ethyl acetate stems extract exhibited highest total phenolic content. While in DPPH assay, methanolic stems extract show the highest antioxidant activities. This result indicates that total phenolic content in the extracts may not contribute directly to the antioxidant activities. Thin Layer Chromatograms of all crude extracts exhibited good separation under solvent system petroleum ether-ethyl acetate (2:3) resulted in detection of resveratrol in ethyl acetate stems crude extract.

  8. Water oxidation by size selected Co 27 clusters supported on Fe 2O 3

    DOE PAGES

    Pellin, Michael J.; Riha, Shannon C.; Tyo, Eric C.; ...

    2016-09-22

    The complexity of the water oxidation reaction makes understanding the role of individual catalytic sites critical to improving the process. Here, size-selected 27-atom cobalt clusters (Co 27) deposited on hematite (Fe 2O 3) anodes were tested for water oxidation activity. The uniformity of these anodes allows measurement of the activity of catalytic sites of well-defined nuclearity and known density. Grazing incidence X-ray absorption near-edge spectroscopy (GIXANES) characterization of the anodes before and after electrochemical cycling demonstrates that these Co 27 clusters are stable to dissolution even in the harsh water oxidation electrochemical environment. They are also stable under illumination atmore » the equivalent of 0.4suns irradiation. The clusters show turnover rates for water oxidation that are comparable or higher than those reported for Pd- and Co-based materials or for hematite. The support for the Co 27 clusters is Fe 2O 3 grown by atomic layer deposition on a Si chip. We have chosen to deposit a Fe2O3 layer that is only a few unit cells thick (2nm), to remove complications related to exciton diffusion. We find that the electrocatalytic and the photoelectrocatalytic activity of the Co 27/Fe 2O 3 material is significantly improved when the samples are annealed (with the clusters already deposited). Lastly, given that the support is thin and that the cluster deposition density is equivalent to approximately 5% of an atomic monolayer, we suggest that annealing may significantly improve the exciton diffusion from the support to the catalytic moiety.« less

  9. Multifunctional epitaxial systems on silicon substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singamaneni, Srinivasa Rao, E-mail: ssingam@ncsu.edu; Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709; Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968

    2016-09-15

    Multifunctional heterostructures can exhibit a wide range of functional properties, including colossal magneto-resistance, magnetocaloric, and multiferroic behavior, and can display interesting physical phenomena including spin and charge ordering and strong spin-orbit coupling. However, putting this functionality to work remains a challenge. To date, most of the work reported in the literature has dealt with heterostructures deposited onto closely lattice matched insulating substrates such as DyScO{sub 3}, SrTiO{sub 3} (STO), or STO buffered Si(100) using concepts of lattice matching epitaxy (LME). However, strain in heterostructures grown by LME is typically not fully relaxed and the layers contain detrimental defects such asmore » threading dislocations that can significantly degrade the physical properties of the films and adversely affect the device characteristics. In addition, most of the substrates are incompatible with existing CMOS-based technology, where Si (100) substrates dominate. This review discusses recent advances in the integration of multifunctional oxide and non-oxide materials onto silicon substrates. An alternative thin film growth approach, called “domain matching epitaxy,” is presented which identifies approaches for minimizing lattice strain and unwanted defects in large misfit systems (7%–25% and higher). This approach broadly allows for the integration of multifunctional materials onto silicon substrates, such that sensing, computation, and response functions can be combined to produce next generation “smart” devices. In general, pulsed laser deposition has been used to epitaxially grow these materials, although the concepts developed here can be extended to other deposition techniques, as well. It will be shown that TiN and yttria-stabilized zirconia template layers provide promising platforms for the integration of new functionality into silicon-based computer chips. This review paper reports on a number of thin-film heterostructure systems that span a variety of ferroelectric, multiferroic, magnetic, photocatalytic, and smart materials. Their properties have been extensively investigated and their functionality found to be comparable to films grown on single-crystal oxide substrates previously reported by researchers in this field. In addition, this review explores the utility of using laser processing to introduce stable defects in a controlled way and induce magnetism and engineer the optical and electrical properties of nonmagnetic oxides such as BaTiO{sub 3}, VO{sub 2}, NiO, and TiO{sub 2} as an alternative for incorporating additional magnetic and conducting layers into the structure. These significant materials advancements herald a flurry of exciting new advances in CMOS-compatible multifunctional devices.« less

  10. Theoretical Insights into Direct Methane to Methanol Conversion over Supported Dicopper Oxo Nanoclusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doan, Hieu A.; Li, Zhanyong; Farha, Omar K.

    In this study, the prospect of using copper oxide nanoclusters grown by atomic layer deposition on a porphyrin support for selective oxidation of methane to methanol was examined by means of density functional theory (DFT) calculations. Ab initio thermodynamic analysis indicates that an active site in the form of Cu(μ-O)Cu can be stabilized by activation in O2 at 465K. Furthermore, a moderate methane activation energy barrier (Ea=54kJ/mol) is predicted, and the hydrogen abstraction activity of the active site could be attributed to the radical character of the bridging oxygen. Methanol extraction in this system is limited by a thermodynamic barriermore » to desorption of ΔG=57kJ/mol at 473K; however, desorption can be facilitated by the addition of water in a “stepped conversion” process. Overall, our results indicate similar activity between porphyrin-supported copper oxide nanoclusters and existing Cu-exchanged zeolites and provide a computational proof-of-concept for utilizing functionalized organic linkers in metal-organic frameworks (MOFs) for selective oxidation of methane to methanol.« less

  11. High quality HfO{sub 2}/p-GaSb(001) metal-oxide-semiconductor capacitors with 0.8 nm equivalent oxide thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barth, Michael; Datta, Suman, E-mail: sdatta@engr.psu.edu; Bruce Rayner, G.

    2014-12-01

    We investigate in-situ cleaning of GaSb surfaces and its effect on the electrical performance of p-type GaSb metal-oxide-semiconductor capacitor (MOSCAP) using a remote hydrogen plasma. Ultrathin HfO{sub 2} films grown by atomic layer deposition were used as a high permittivity gate dielectric. Compared to conventional ex-situ chemical cleaning methods, the in-situ GaSb surface treatment resulted in a drastic improvement in the impedance characteristics of the MOSCAPs, directly evidencing a much lower interface trap density and enhanced Fermi level movement efficiency. We demonstrate that by using a combination of ex-situ and in-situ surface cleaning steps, aggressively scaled HfO{sub 2}/p-GaSb MOSCAP structuresmore » with a low equivalent oxide thickness of 0.8 nm and efficient gate modulation of the surface potential are achieved, allowing to push the Fermi level far away from the valence band edge high up into the band gap of GaSb.« less

  12. Theoretical Insights into Direct Methane to Methanol Conversion over Supported Dicopper Oxo Nanoclusters

    DOE PAGES

    Doan, Hieu A.; Li, Zhanyong; Farha, Omar K.; ...

    2018-04-08

    In this study, the prospect of using copper oxide nanoclusters grown by atomic layer deposition on a porphyrin support for selective oxidation of methane to methanol was examined by means of density functional theory (DFT) calculations. Ab initio thermodynamic analysis indicates that an active site in the form of Cu(μ-O)Cu can be stabilized by activation in O2 at 465K. Furthermore, a moderate methane activation energy barrier (Ea=54kJ/mol) is predicted, and the hydrogen abstraction activity of the active site could be attributed to the radical character of the bridging oxygen. Methanol extraction in this system is limited by a thermodynamic barriermore » to desorption of ΔG=57kJ/mol at 473K; however, desorption can be facilitated by the addition of water in a “stepped conversion” process. Overall, our results indicate similar activity between porphyrin-supported copper oxide nanoclusters and existing Cu-exchanged zeolites and provide a computational proof-of-concept for utilizing functionalized organic linkers in metal-organic frameworks (MOFs) for selective oxidation of methane to methanol.« less

  13. UiO-66-NH2 Metal-Organic Framework (MOF) Nucleation on TiO2, ZnO, and Al2O3 Atomic Layer Deposition-Treated Polymer Fibers: Role of Metal Oxide on MOF Growth and Catalytic Hydrolysis of Chemical Warfare Agent Simulants.

    PubMed

    Lee, Dennis T; Zhao, Junjie; Oldham, Christopher J; Peterson, Gregory W; Parsons, Gregory N

    2017-12-27

    Metal-organic frameworks (MOFs) chemically bound to polymeric microfibrous textiles show promising performance for many future applications. In particular, Zr-based UiO-66-family MOF-textiles have been shown to catalytically degrade highly toxic chemical warfare agents (CWAs), where favorable MOF/polymer bonding and adhesion are attained by placing a nanoscale metal-oxide layer on the polymer fiber preceding MOF growth. To date, however, the nucleation mechanism of Zr-based MOFs on different metal oxides and how product performance is affected are not well understood. Herein, we provide new insight into how different inorganic nucleation films (i.e., Al 2 O 3 , ZnO, or TiO 2 ) conformally coated on polypropylene (PP) nonwoven textiles via atomic layer deposition (ALD) influence the quality, overall surface area, and the fractional yield of UiO-66-NH 2 MOF crystals solvothermally grown on fiber substrates. Of the materials explored, we find that TiO 2 ALD layers lead to the most effective overall MOF/fiber adhesion, uniformity, and a rapid catalytic degradation rate for a CWA simulant, dimethyl p-nitrophenyl phosphate (DMNP) with t 1/2 = 15 min, 580-fold faster than the catalytic performance of untreated PP textiles. Interestingly, compared to ALD TiO 2 and Al 2 O 3 , ALD ZnO induces a larger MOF yield in solution and mass loading on PP fibrous mats. However, this larger MOF yield is ascribed to chemical instability of the ZnO layer under MOF formation condition, leading to Zn 2+ ions that promote further homogeneous MOF growth. Insights presented here improve understanding of compatibility between active MOF materials and substrate surfaces, which we believe will help advanced MOF composite materials for a variety of useful functions.

  14. Tailoring graphene layer-to-layer growth

    NASA Astrophysics Data System (ADS)

    Li, Yongtao; Wu, Bin; Guo, Wei; Wang, Lifeng; Li, Jingbo; Liu, Yunqi

    2017-06-01

    A layered material grown between a substrate and the upper layer involves complex interactions and a confined reaction space, representing an unusual growth mode. Here, we show multi-layer graphene domains grown on liquid or solid Cu by the chemical vapor deposition method via this ‘double-substrate’ mode. We demonstrate the interlayer-induced coupling effect on the twist angle in bi- and multi-layer graphene. We discover dramatic growth disunity for different graphene layers, which is explained by the ideas of a chemical ‘gate’ and a material transport process within a confined space. These key results lead to a consistent framework for understanding the dynamic evolution of multi-layered graphene flakes and tailoring the layer-to-layer growth for practical applications.

  15. Interfacial bonding stabilizes rhodium and rhodium oxide nanoparticles on layered Nb oxide and Ta oxide supports.

    PubMed

    Strayer, Megan E; Binz, Jason M; Tanase, Mihaela; Shahri, Seyed Mehdi Kamali; Sharma, Renu; Rioux, Robert M; Mallouk, Thomas E

    2014-04-16

    Metal nanoparticles are commonly supported on metal oxides, but their utility as catalysts is limited by coarsening at high temperatures. Rhodium oxide and rhodium metal nanoparticles on niobate and tantalate supports are anomalously stable. To understand this, the nanoparticle-support interaction was studied by isothermal titration calorimetry (ITC), environmental transmission electron microscopy (ETEM), and synchrotron X-ray absorption and scattering techniques. Nanosheets derived from the layered oxides KCa2Nb3O10, K4Nb6O17, and RbTaO3 were compared as supports to nanosheets of Na-TSM, a synthetic fluoromica (Na0.66Mg2.68(Si3.98Al0.02)O10.02F1.96), and α-Zr(HPO4)2·H2O. High surface area SiO2 and γ-Al2O3 supports were also used for comparison in the ITC experiments. A Born-Haber cycle analysis of ITC data revealed an exothermic interaction between Rh(OH)3 nanoparticles and the layered niobate and tantalate supports, with ΔH values in the range -32 kJ·mol(-1) Rh to -37 kJ·mol(-1) Rh. In contrast, the interaction enthalpy was positive with SiO2 and γ-Al2O3 supports. The strong interfacial bonding in the former case led to "reverse" ripening of micrometer-size Rh(OH)3, which dispersed as 0.5 to 2 nm particles on the niobate and tantalate supports. In contrast, particles grown on Na-TSM and α-Zr(HPO4)2·H2O nanosheets were larger and had a broad size distribution. ETEM, X-ray absorption spectroscopy, and pair distribution function analyses were used to study the growth of supported nanoparticles under oxidizing and reducing conditions, as well as the transformation from Rh(OH)3 to Rh nanoparticles. Interfacial covalent bonding, possibly strengthened by d-electron acid/base interactions, appear to stabilize Rh(OH)3, Rh2O3, and Rh nanoparticles on niobate and tantalate supports.

  16. I-V curve hysteresis induced by gate-free charging of GaAs nanowires' surface oxide

    NASA Astrophysics Data System (ADS)

    Alekseev, P. A.; Geydt, P.; Dunaevskiy, M. S.; Lähderanta, E.; Haggrén, T.; Kakko, J.-P.; Lipsanen, H.

    2017-09-01

    The control of nanowire-based device performance requires knowledge about the transport of charge carriers and its limiting factors. We present the experimental and modeled results of a study of electrical properties of GaAs nanowires (NWs), considering their native oxide cover. Measurements of individual vertical NWs were performed by conductive atomic force microscopy (C-AFM). Experimental C-AFM observations with numerical simulations revealed the complex resistive behavior of NWs. A hysteresis of current-voltage characteristics of the p-doped NWs as-grown on substrates with different types of doping was registered. The emergence of hysteresis was explained by the trapping of majority carriers in the surface oxide layer near the reverse-biased barriers under the source-drain current. It was found that the accumulation of charge increases the current for highly doped p+-NWs on n+-substrates, while for moderately doped p-NWs on p+-substrates, charge accumulation decreases the current due to blocking of the conductive channel of NWs.

  17. Tuning the band gap in silicene by oxidation.

    PubMed

    Du, Yi; Zhuang, Jincheng; Liu, Hongsheng; Xu, Xun; Eilers, Stefan; Wu, Kehui; Cheng, Peng; Zhao, Jijun; Pi, Xiaodong; See, Khay Wai; Peleckis, Germanas; Wang, Xiaolin; Dou, Shi Xue

    2014-10-28

    Silicene monolayers grown on Ag(111) surfaces demonstrate a band gap that is tunable by oxygen adatoms from semimetallic to semiconducting type. With the use of low-temperature scanning tunneling microscopy, we find that the adsorption configurations and amounts of oxygen adatoms on the silicene surface are critical for band gap engineering, which is dominated by different buckled structures in √13 × √13, 4 × 4, and 2√3 × 2√3 silicene layers. The Si-O-Si bonds are the most energy-favored species formed on √13 × √13, 4 × 4, and 2√3 × 2√3 structures under oxidation, which is verified by in situ Raman spectroscopy as well as first-principles calculations. The silicene monolayers retain their structures when fully covered by oxygen adatoms. Our work demonstrates the feasibility of tuning the band gap of silicene with oxygen adatoms, which, in turn, expands the base of available two-dimensional electronic materials for devices with properties that is hardly achieved with graphene oxide.

  18. Interfaces between hexagonal and cubic oxides and their structure alternatives

    DOE PAGES

    Zhou, Hua; Wu, Lijun; Wang, Hui-Qiong; ...

    2017-11-14

    Multi-layer structure of functional materials often involves the integration of different crystalline phases. The film growth orientation thus frequently exhibits a transformation, owing to multiple possibilities caused by incompatible in-plane structural symmetry. Nevertheless, the detailed mechanism of the transformation has not yet been fully explored. Here we thoroughly probe the heteroepitaxially grown hexagonal zinc oxide (ZnO) films on cubic (001)-magnesium oxide (MgO) substrates using advanced scanning transition electron microscopy, X-ray diffraction and first principles calculations, revealing two distinct interface models of (001) ZnO/(001) MgO and (100) ZnO/(001) MgO. Here we have found that the structure alternatives are controlled thermodynamically bymore » the nucleation, while kinetically by the enhanced Zn adsorption and O diffusion upon the phase transformation. Finally, this work not only provides a guideline for the interface fabrication with distinct crystalline phases but also shows how polar and non-polar hexagonal ZnO films might be manipulated on the same cubic substrate.« less

  19. An Ultrathin Single Crystalline Relaxor Ferroelectric Integrated on a High Mobility Semiconductor.

    PubMed

    Moghadam, Reza M; Xiao, Zhiyong; Ahmadi-Majlan, Kamyar; Grimley, Everett D; Bowden, Mark; Ong, Phuong-Vu; Chambers, Scott A; Lebeau, James M; Hong, Xia; Sushko, Peter V; Ngai, Joseph H

    2017-10-11

    The epitaxial growth of multifunctional oxides on semiconductors has opened a pathway to introduce new functionalities to semiconductor device technologies. In particular, the integration of gate materials that enable nonvolatile or hysteretic functionality in field-effect transistors could lead to device technologies that consume less power or allow for novel modalities in computing. Here we present electrical characterization of ultrathin single crystalline SrZr x Ti 1-x O 3 (x = 0.7) films epitaxially grown on a high mobility semiconductor, Ge. Epitaxial films of SrZr x Ti 1-x O 3 exhibit relaxor behavior, characterized by a hysteretic polarization that can modulate the surface potential of Ge. We find that gate layers as thin as 5 nm corresponding to an equivalent-oxide thickness of just 1.0 nm exhibit a ∼2 V hysteretic window in the capacitance-voltage characteristics. The development of hysteretic metal-oxide-semiconductor capacitors with nanoscale gate thicknesses opens new vistas for nanoelectronic devices.

  20. High Electron Mobility Thin‐Film Transistors Based on Solution‐Processed Semiconducting Metal Oxide Heterojunctions and Quasi‐Superlattices

    PubMed Central

    Lin, Yen‐Hung; Faber, Hendrik; Labram, John G.; Stratakis, Emmanuel; Sygellou, Labrini; Kymakis, Emmanuel; Hastas, Nikolaos A.; Li, Ruipeng; Zhao, Kui; Amassian, Aram; Treat, Neil D.; McLachlan, Martyn

    2015-01-01

    High mobility thin‐film transistor technologies that can be implemented using simple and inexpensive fabrication methods are in great demand because of their applicability in a wide range of emerging optoelectronics. Here, a novel concept of thin‐film transistors is reported that exploits the enhanced electron transport properties of low‐dimensional polycrystalline heterojunctions and quasi‐superlattices (QSLs) consisting of alternating layers of In2O3, Ga2O3, and ZnO grown by sequential spin casting of different precursors in air at low temperatures (180–200 °C). Optimized prototype QSL transistors exhibit band‐like transport with electron mobilities approximately a tenfold greater (25–45 cm2 V−1 s−1) than single oxide devices (typically 2–5 cm2 V−1 s−1). Based on temperature‐dependent electron transport and capacitance‐voltage measurements, it is argued that the enhanced performance arises from the presence of quasi 2D electron gas‐like systems formed at the carefully engineered oxide heterointerfaces. The QSL transistor concept proposed here can in principle extend to a range of other oxide material systems and deposition methods (sputtering, atomic layer deposition, spray pyrolysis, roll‐to‐roll, etc.) and can be seen as an extremely promising technology for application in next‐generation large area optoelectronics such as ultrahigh definition optical displays and large‐area microelectronics where high performance is a key requirement. PMID:27660741

Top