Science.gov

Sample records for oxide regulates bdnf

  1. Endothelial nitric oxide synthase regulates white matter changes via the BDNF/TrkB pathway after stroke in mice.

    PubMed

    Cui, Xu; Chopp, Michael; Zacharek, Alex; Ning, Ruizhuo; Ding, Xiaoshuang; Roberts, Cynthia; Chen, Jieli

    2013-01-01

    Stroke induced white matter (WM) damage is associated with neurological functional deficits, but the underlying mechanisms are not well understood. In this study, we investigate whether endothelial nitric oxide synthase (eNOS) affects WM-damage post-stroke. Adult male wild-type (WT) and eNOS knockout (eNOS(-/-)) mice were subjected to middle cerebral artery occlusion. Functional evaluation, infarct volume measurement, immunostaining and primary cortical cell culture were performed. To obtain insight into the mechanisms underlying the effects of eNOS(-/-) on WM-damage, measurement of eNOS, brain-derived neurotrophic factor (BDNF) and its receptor TrkB in vivo and in vitro were also performed. No significant differences were detected in the infarction volume, myelin density in the ipsilateral striatal WM-bundles and myelin-based protein expression in the cerebral ischemic border between WT and eNOS(-/-) mice. However, eNOS(-/-) mice showed significantly: 1) decreased functional outcome, concurrent with decreases of total axon density and phosphorylated high-molecular weight neurofilament density in the ipsilateral striatal WM-bundles. Correlation analysis showed that axon density is significantly positive correlated with neurological functional outcome; 2) decreased numbers of oligodendrocytes / oligodendrocyte progenitor cells in the ipsilateral striatum; 3) decreased synaptophysin, BDNF and TrkB expression in the ischemic border compared with WT mice after stroke (n = 12/group, p<0.05). Primary cortical cell culture confirmed that the decrease of neuronal neurite outgrowth in the neurons derived from eNOS(-/-) mice is mediated by the reduction of BDNF/TrkB (n = 6/group, p<0.05). Our data show that eNOS plays a critical role in WM-damage after stroke, and eNOS(-/-)-induced decreases in the BDNF/TrkB pathway may contribute to increased WM-damage, and thereby decrease functional outcome.

  2. Epigenetic Regulation of BDNF Gene during Development and Diseases

    PubMed Central

    Chen, Kuan-Wei; Chen, Linyi

    2017-01-01

    Brain-derived neurotrophic factor (BDNF) is required for the development of the nervous system, proper cognitive function and memory formation. While aberrant expression of BDNF has been implicated in neurological disorders, the transcriptional regulation of BDNF remains to be elucidated. In response to different stimuli, BDNF expression can be initiated from different promoters. Several studies have suggested that the expression of BDNF is regulated by promoter methylation. An emerging theme points to the possibility that histone modifications at the BDNF promoters may link to the neurological pathology. Thus, understanding the epigenetic regulation at the BDNF promoters will shed light on future therapies for neurological disorders. The present review summarizes the current knowledge of histone modifications of the BDNF gene in neuronal diseases, as well as the developmental regulation of the BDNF gene based on data from the Encyclopedia of DNA Elements (ENCODE). PMID:28272318

  3. Mixture of Peanut Skin Extract and Fish Oil Improves Memory in Mice via Modulation of Anti-Oxidative Stress and Regulation of BDNF/ERK/CREB Signaling Pathways

    PubMed Central

    Xiang, Lan; Cao, Xue-Li; Xing, Tian-Yan; Mori, Daisuke; Tang, Rui-Qi; Li, Jing; Gao, Li-Juan; Qi, Jian-Hua

    2016-01-01

    Long-term use of fish oil (FO) is known to induce oxidative stress and increase the risk of Alzheimer’s disease in humans. In the present study, peanut skin extract (PSE), which has strong antioxidant capacity, was mixed with FO to reduce its side effects while maintaining its beneficial properties. Twelve-week Institute of Cancer Research (ICR) mice were used to conduct animal behavior tests in order to evaluate the memory-enhancing ability of the mixture of peanut skin extract and fish oil (MPF). MPF significantly increased alternations in the Y-maze and cognitive index in the novel object recognition test. MPF also improved performance in the water maze test. We further sought to understand the mechanisms underlying these effects. A significant decrease in superoxide dismutase (SOD) activity and an increase in malonyldialdehyde (MDA) in plasma were observed in the FO group. The MPF group showed reduced MDA level and increased SOD activity in the plasma, cortex and hippocampus. Furthermore, the gene expression levels of brain-derived neurotrophic factor (BDNF) and cAMP responsive element-binding protein (CREB) in the hippocampus were increased in the MPF group, while phosphorylation of protein kinase B (AKT), extracellular signal-regulated kinase (ERK) and CREB in the hippocampus were enhanced. MPF improves memory in mice via modulation of anti-oxidative stress and activation of BDNF/ERK/CREB signaling pathways. PMID:27136583

  4. BDNF pro-peptide regulates dendritic spines via caspase-3

    PubMed Central

    Guo, J; Ji, Y; Ding, Y; Jiang, W; Sun, Y; Lu, B; Nagappan, G

    2016-01-01

    The precursor of brain-derived neurotrophic factor (BDNF) (proBDNF) is enzymatically cleaved, by either intracellular (furin/PC1) or extracellular proteases (tPA/plasmin/MMP), to generate mature BDNF (mBDNF) and its pro-peptide (BDNF pro-peptide). Little is known about the function of BDNF pro-peptide. We have developed an antibody that specifically detects cleaved BDNF pro-peptide, but not proBDNF or mBDNF. Neuronal depolarization elicited a marked increase in extracellular BDNF pro-peptide, suggesting activity-dependent regulation of its extracellular levels. Exposure of BDNF pro-peptide to mature hippocampal neurons in culture dramatically reduced dendritic spine density. This effect was mediated by caspase-3, as revealed by studies with pharmacological inhibitors and genetic knockdown. BDNF pro-peptide also increased the number of ‘elongated' mitochondria and cytosolic cytochrome c, suggesting the involvement of mitochondrial-caspase-3 pathway. These results, along with BDNF pro-peptide effects recently reported on growth cones and long-term depression (LTD), suggest that BDNF pro-peptide is a negative regulator of neuronal structure and function. PMID:27310873

  5. BDNF pro-peptide regulates dendritic spines via caspase-3.

    PubMed

    Guo, J; Ji, Y; Ding, Y; Jiang, W; Sun, Y; Lu, B; Nagappan, G

    2016-06-16

    The precursor of brain-derived neurotrophic factor (BDNF) (proBDNF) is enzymatically cleaved, by either intracellular (furin/PC1) or extracellular proteases (tPA/plasmin/MMP), to generate mature BDNF (mBDNF) and its pro-peptide (BDNF pro-peptide). Little is known about the function of BDNF pro-peptide. We have developed an antibody that specifically detects cleaved BDNF pro-peptide, but not proBDNF or mBDNF. Neuronal depolarization elicited a marked increase in extracellular BDNF pro-peptide, suggesting activity-dependent regulation of its extracellular levels. Exposure of BDNF pro-peptide to mature hippocampal neurons in culture dramatically reduced dendritic spine density. This effect was mediated by caspase-3, as revealed by studies with pharmacological inhibitors and genetic knockdown. BDNF pro-peptide also increased the number of 'elongated' mitochondria and cytosolic cytochrome c, suggesting the involvement of mitochondrial-caspase-3 pathway. These results, along with BDNF pro-peptide effects recently reported on growth cones and long-term depression (LTD), suggest that BDNF pro-peptide is a negative regulator of neuronal structure and function.

  6. Synaptic regulation of affective behaviors; role of BDNF

    PubMed Central

    Ninan, Ipe

    2013-01-01

    Brain derived neurotrophic factor (BDNF), a neurotrophin essential for nervous system development and synaptic plasticity, has been found to have a significant influence on affective behaviors. The notion that an impairment in BDNF signaling might be involved in affective disorders is originated primarily from the opposing effects of antidepressants and stress on BDNF signaling. Antidepressants enhance BDNF signaling and synaptic plasticity. On the other hand, negative environmental factors such as severe stress suppress BDNF signaling, impair synaptic activity and increase susceptibility to affective disorders. Postmortem studies provided strong support for decreased BDNF signaling in depressive disorders. Remarkably, studies in humans with a single nucleotide polymorphism in the BDNF gene, the BDNF Val66Met which affects regulated release of BDNF, showed profound deficits in hippocampal and prefrontal cortical (PFC) plasticity and cognitive behaviors. BDNF regulates synaptic mechanisms responsible for various cognitive processes including attenuation of aversive memories, a key process in the regulation of affective behaviors. The unique role of BDNF in cognitive and affective behaviors suggests that cognitive deficits due to altered BDNF signaling might underlie affective disorders. Understanding how BDNF modulates synapses in neural circuits relevant to affective behaviors, particularly the medial prefrontal cortical (mPFC)-hippocampus-amygdala pathway, and its interaction with development, sex, and environmental risk factors might shed light on potential therapeutic targets for affective disorders. PMID:23747574

  7. Cranial irradiation regulates CREB-BDNF signaling and variant BDNF transcript levels in the mouse hippocampus.

    PubMed

    Son, Yeonghoon; Yang, Miyoung; Kang, Sohi; Lee, Sueun; Kim, Jinwook; Kim, Juhwan; Park, Seri; Kim, Joong-Sun; Jo, Sung-Kee; Jung, Uhee; Shin, Taekyun; Kim, Sung-Ho; Wang, Hongbing; Moon, Changjong

    2015-05-01

    The brain can be exposed to ionizing radiation in various ways, and such irradiation can trigger adverse effects, particularly on learning and memory. However, the precise mechanisms of cognitive impairments induced by cranial irradiation remain unknown. In the hippocampus, brain-derived neurotrophic factor (BDNF) plays roles in neurogenesis, neuronal survival, neuronal differentiation, and synaptic plasticity. The significance of BDNF transcript variants in these contexts is becoming clearer. In the present study, both object recognition memory and contextual fear conditioning task performance in adult C57BL/6 mice were assessed 1 month after a single exposure to cranial irradiation (10 Gy) to evaluate hippocampus-related behavioral dysfunction following such irradiation. Furthermore, changes in the levels of BDNF, the cAMP-response element binding protein (CREB) phosphorylation, and BDNF transcript variants were measured in the hippocampus 1 month after cranial irradiation. On object recognition memory and contextual fear conditioning tasks, mice evaluated 1 month after irradiation exhibited significant memory deficits compared to sham-irradiated controls, but no apparent change was evident in locomotor activity. Both phosphorylated CREB and BDNF protein levels were significantly downregulated after irradiation of the hippocampus. Moreover, the levels of mRNAs encoding common BDNF transcripts, and exons IIC, III, IV, VII, VIII, and IXA, were significantly downregulated after irradiation. The reductions in CREB phosphorylation and BDNF expression induced by differential regulation of BDNF hippocampal exon transcripts may be associated with the memory deficits evident in mice after cranial irradiation.

  8. Pre- and post-treatments with escitalopram protect against experimental ischemic neuronal damage via regulation of BDNF expression and oxidative stress.

    PubMed

    Lee, Choong Hyun; Park, Joon Ha; Yoo, Ki-Yeon; Choi, Jung Hoon; Hwang, In Koo; Ryu, Pan Dong; Kim, Do-Hoon; Kwon, Young-Guen; Kim, Young-Myeong; Won, Moo-Ho

    2011-06-01

    Selective serotonin re-uptake inhibitors (SSRI) have been widely used in treatment of major depression because of their efficacy, safety, and tolerability. Escitalopram, an SSRI, is known to decrease oxidative stress in chronic stress animal models. In the present study, we examined the neuroprotective effects of pre- and post-treatments with 20 mg/kg and 30 mg/kg escitalopram in the gerbil hippocampal CA1 region (CA1) after transient cerebral ischemia. Pre-treatment with escitalopram protected against ischemia-induced neuronal death in the CA1 after ischemia/reperfusion (I/R). Post-treatment with 30 mg/kg, not 20 mg/kg, escitalopram had a neuroprotective effect against ischemic damage. In addition, 20 mg/kg pre- and 30 mg/kg post-treatments with escitalopram increased brain-derived neurotrophic factor (BDNF) protein levels in the ischemic CA1 compared to vehicle-treated ischemia animals. In addition, 20 mg/kg pre- and 30 mg/kg post-treatments with escitalopram reduced microglia activation and decreased 4-hydroxy-2-nonenal and Cu,Zn-superoxide dismutase immunoreactivity and their levels in the ischemic CA1 compared to vehicle-treated ischemia animals after transient cerebral ischemia. In conclusion, these results indicated that pre- and post-treatments with escitalopram can protect against ischemia-induced neuronal death in the CA1 induced by transient cerebral ischemic damage by increase of BDNF as well as decrease of microglia activation and oxidative stress.

  9. DREAM regulates BDNF-dependent spinal sensitization

    PubMed Central

    2010-01-01

    Background The transcriptional repressor DREAM (downstream regulatory element antagonist modulator) controls the expression of prodynorphin and has been involved in the modulation of endogenous responses to pain. To investigate the role of DREAM in central mechanisms of pain sensitization, we used a line of transgenic mice (L1) overexpressing a Ca2+- and cAMP-insensitive DREAM mutant in spinal cord and dorsal root ganglia. Results L1 DREAM transgenic mice showed reduced expression in the spinal cord of several genes related to pain, including prodynorphin and BDNF (brain-derived neurotrophic factor) and a state of basal hyperalgesia without change in A-type currents. Peripheral inflammation produced enhancement of spinal reflexes and increased expression of BDNF in wild type but not in DREAM transgenic mice. The enhancement of the spinal reflexes was reproduced in vitro by persistent electrical stimulation of C-fibers in wild type but not in transgenic mice. Exposure to exogenous BDNF produced a long-term enhancement of dorsal root-ventral root responses in transgenic mice. Conclusions Our results indicate that endogenous BDNF is involved in spinal sensitization following inflammation and that blockade of BDNF induction in DREAM transgenic mice underlies the failure to develop spinal sensitization. PMID:21167062

  10. DREAM regulates BDNF-dependent spinal sensitization.

    PubMed

    Rivera-Arconada, Ivan; Benedet, Tomaso; Roza, Carolina; Torres, Begoña; Barrio, Jorge; Krzyzanowska, Agnieszka; Avendaño, Carlos; Mellström, Britt; Lopez-Garcia, José A; Naranjo, José R

    2010-12-18

    The transcriptional repressor DREAM (downstream regulatory element antagonist modulator) controls the expression of prodynorphin and has been involved in the modulation of endogenous responses to pain. To investigate the role of DREAM in central mechanisms of pain sensitization, we used a line of transgenic mice (L1) overexpressing a Ca(2+)- and cAMP-insensitive DREAM mutant in spinal cord and dorsal root ganglia. L1 DREAM transgenic mice showed reduced expression in the spinal cord of several genes related to pain, including prodynorphin and BDNF (brain-derived neurotrophic factor) and a state of basal hyperalgesia without change in A-type currents. Peripheral inflammation produced enhancement of spinal reflexes and increased expression of BDNF in wild type but not in DREAM transgenic mice. The enhancement of the spinal reflexes was reproduced in vitro by persistent electrical stimulation of C-fibers in wild type but not in transgenic mice. Exposure to exogenous BDNF produced a long-term enhancement of dorsal root-ventral root responses in transgenic mice. Our results indicate that endogenous BDNF is involved in spinal sensitization following inflammation and that blockade of BDNF induction in DREAM transgenic mice underlies the failure to develop spinal sensitization.

  11. BDNF, produced by a TPO-stimulated megakaryocytic cell line, regulates autocrine proliferation

    SciTech Connect

    Tamura, Shogo; Nagasawa, Ayumi; Masuda, Yuya; Tsunematsu, Tetsuya; Hayasaka, Koji; Matsuno, Kazuhiko; Shimizu, Chikara; Ozaki, Yukio; Moriyama, Takanori

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer It has been thought that BDNF is not produced in the megakaryocytic lineage. Black-Right-Pointing-Pointer MEG-01 produces BDNF upon TPO stimulation and regulates its proliferation. Black-Right-Pointing-Pointer BDNF accelerates proliferation of MEG-01 in an autocrine manner. Black-Right-Pointing-Pointer BDNF may be an autocrine MEG-CSF, which regulates megakaryopoiesis. -- Abstract: While human platelets release endogenous brain-derived neurotrophic factor (BDNF) upon activation, a previous report on MEG-01, a megakaryocytic cell line, found no trace of BDNF production, and the pathophysiological function of platelet BDNF has remained elusive. In the present study, we demonstrate that MEG-01 produces BDNF in the presence of TPO and that this serves to potentiate cell proliferation. Our in vitro findings suggest that BDNF regulates MEG-01 proliferation in an autocrine manner, and we suggest that BDNF may be a physiological autocrine regulator of megakaryocyte progenitors.

  12. Activity-dependent BDNF release via endocytic pathways is regulated by synaptotagmin-6 and complexin.

    PubMed

    Wong, Yu-Hui; Lee, Chia-Ming; Xie, Wenjun; Cui, Bianxiao; Poo, Mu-ming

    2015-08-11

    Brain-derived neurotrophic factor (BDNF) is known to modulate synapse development and plasticity, but the source of synaptic BDNF and molecular mechanisms regulating BDNF release remain unclear. Using exogenous BDNF tagged with quantum dots (BDNF-QDs), we found that endocytosed BDNF-QDs were preferentially localized to postsynaptic sites in the dendrite of cultured hippocampal neurons. Repetitive neuronal spiking induced the release of BDNF-QDs at these sites, and this process required activation of glutamate receptors. Down-regulating complexin 1/2 (Cpx1/2) expression eliminated activity-induced BDNF-QD secretion, although the overall activity-independent secretion was elevated. Among eight synaptotagmin (Syt) isoforms examined, down-regulation of only Syt6 impaired activity-induced BDNF-QD secretion. In contrast, activity-induced release of endogenously synthesized BDNF did not depend on Syt6. Thus, neuronal activity could trigger the release of endosomal BDNF from postsynaptic dendrites in a Cpx- and Syt6-dependent manner, and endosomes containing BDNF may serve as a source of BDNF for activity-dependent synaptic modulation.

  13. Differential regulation of Bdnf expression in cortical neurons by class-selective histone deacetylase inhibitors.

    PubMed

    Koppel, Indrek; Timmusk, Tõnis

    2013-12-01

    Histone deactylase (HDAC) inhibitors show promise as therapeutics for neurodegenerative and psychiatric diseases. Increased expression of brain-derived neurotrophic factor (BDNF) has been associated with memory-enhancing and neuroprotective properties of these drugs, but the mechanism of BDNF induction is not well understood. Here, we compared the effects of a class I/IIb selective HDAC inhibitor SAHA, a class I selective inhibitor MS-275, a class II selective inhibitor MC1568 and a HDAC6 selective inhibitor tubacin on Bdnf mRNA expression in rat primary neurons. We show that inhibition of class II HDACs resulted in rapid upregulation of Bdnf mRNA levels, whereas class I HDAC inhibition produced a markedly delayed Bdnf induction. In contrast to relatively slow upregulation of Bdnf transcripts, histone acetylation at BDNF promoters I and IV was rapidly induced by SAHA. Bdnf induction by SAHA and MS-275 at 24 h was sensitive to protein synthesis inhibition, suggesting that delayed Bdnf induction by HDAC inhibitors is secondary to changed expression of its regulators. HDAC4 and HDAC5 repressed Bdnf promoter IV activity, supporting the role of class II HDACs in regulation of Bdnf expression. In addition, we show a critical role for the cAMP/Ca2+ response element (CRE) in induction of Bdnf promoter IV by MS-275, MC1568, SAHA and sodium valproate. In contrast, MEF2-binding CaRE1 element was not necessary for promoter IV induction by HDAC inhibition. Finally, we show that similarly to Bdnf, the studied HDAC inhibitors differentially induced expression of neuronal activity-regulated genes c-fos and Arc. Together, our findings implicate class II HDACs in transcriptional regulation of Bdnf and indicate that class II selective HDAC inhibitors may have potential as therapeutics for nervous system disorders.

  14. Regulation of Energy Balance via BDNF Expressed in Nonparaventricular Hypothalamic Neurons.

    PubMed

    Yang, Haili; An, Juan Ji; Sun, Chao; Xu, Baoji

    2016-05-01

    Brain-derived neurotrophic factor (BDNF) expressed in the paraventricular hypothalamus (PVH) has been shown to play a key role in regulating energy intake and energy expenditure. BDNF is also expressed in other hypothalamic nuclei; however, the role in the control of energy balance for BDNF produced in these structures remains largely unknown. We found that deleting the Bdnf gene in the ventromedial hypothalamus (VMH) during embryogenesis using the Sf1-Cre transgene had no effect on body weight in mice. In contrast, deleting the Bdnf gene in the adult VMH using Cre-expressing virus led to significant hyperphagia and obesity. These observations indicate that the lack of a hyperphagia phenotype in the Sf1-Cre/Bdnf mutant mice is likely due to developmental compensation. To investigate the role of BDNF expressed in other hypothalamic areas, we employed the hypothalamus-specific Nkx2.1-Cre transgene to delete the Bdnf gene. We found that the Nkx2.1-Cre transgene could abolish BDNF expression in many hypothalamic nuclei, but not in the PVH, and that the resulting mutant mice developed modest obesity due to reduced energy expenditure. Thus, BDNF produced in the VMH plays a role in regulating energy intake. Furthermore, BDNF expressed in hypothalamic areas other than PVH and VMH is also involved in the control of energy expenditure.

  15. More Insight into BDNF against Neurodegeneration: Anti-Apoptosis, Anti-Oxidation, and Suppression of Autophagy

    PubMed Central

    Chen, Shang-Der; Wu, Chia-Lin; Hwang, Wei-Chao; Yang, Ding-I

    2017-01-01

    In addition to its well-established neurotrophic action, brain-derived neurotrophic factor (BDNF) also possesses other neuroprotective effects including anti-apoptosis, anti-oxidation, and suppression of autophagy. We have shown before that BDNF triggers multiple mechanisms to confer neuronal resistance against 3-nitropropionic acid (3-NP)-induced mitochondrial dysfunction in primary rat cortical cultures. The beneficial effects of BDNF involve the induction of anti-oxidative thioredoxin with the resultant expression of anti-apoptotic B-cell lymphoma 2 (Bcl-2) as well as erythropoietin (EPO)-dependent stimulation of sonic hedgehog (SHH). We further revealed that BDNF may bring the expression of sulfiredoxin, an ATP-dependent antioxidant enzyme, to offset mitochondrial inhibition in cortical neurons. Recently, we provided insights into another novel anti-oxidative mechanism of BDNF, which involves the augmentation of sestrin2 expression to endow neuronal resistance against oxidative stress induced by 3-NP; BDNF induction of sestrin2 entails the activation of a pathway involving nitric oxide (NO), cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG), and nuclear factor-κB (NF-κB). Apart from anti-apoptosis and anti-oxidation, we demonstrated in our most recent study that BDNF may activate the mammalian target of rapamycin (mTOR) with resultant activation of transcription factor c-Jun, thereby stimulating the expression of p62/sequestosome-1 to suppress heightened autophagy as a result of 3-NP exposure. Together, our results provide in-depth insight into multi-faceted protective mechanisms of BDNF against mitochondrial dysfunction commonly associated with the pathogenesis of many chronic neurodegenerative disorders. Delineation of the protective signaling pathways elicited by BDNF would endow a rationale to develop novel therapeutic regimens to halt or prevent the progression of neurodegeneration. PMID:28273832

  16. The BDNF Val66Met polymorphism regulates glucocorticoid-induced corticohippocampal remodeling and behavioral despair.

    PubMed

    Notaras, M; Du, X; Gogos, J; van den Buuse, M; Hill, R A

    2017-09-19

    The BDNF Val66Met polymorphism has been associated with sensitivity to stress and affective disorders. We therefore sought to model the inter-causality of these relationships under controlled laboratory conditions. We subjected humanized BDNF Val66Met (hBDNF(Val66Met)) transgenic mice to a history of stress, modeled by chronic late-adolescent corticosterone (CORT) exposure, before evaluating affective-related behavior using the forced-swim test (FST) in adulthood. While hBDNF(Met/Met) mice had a depression-like phenotype in the FST irrespective of CORT, hBDNF(Val/Val) wildtype mice had a resilient phenotype but developed an equally robust depressive-like phenotype following CORT. A range of stress-sensitive molecules were studied across the corticohippocampal axis, and where genotype differences occurred following CORT they tended to inversely coincide with the behavior of the hBDNF(Val/Val) group. Notably, tyrosine hydroxylase was markedly down-regulated in the mPFC of hBDNF(Val/Val) mice as a result of CORT treatment, which mimicked expression levels of hBDNF(Met/Met) mice and the FST behavior of both groups. The expression of calretinin, PSD-95, and truncated TrkB were also concomitantly reduced in the mPFC of hBDNF(Val/Val) mice by CORT. This work establishes BDNF(Val66Met) genotype as a regulator of behavioral despair, and identifies new biological targets of BDNF genetic variation relevant to stress-inducible disorders such as depression.

  17. proBDNF negatively regulates neuronal remodeling, synaptic transmission, and synaptic plasticity in hippocampus.

    PubMed

    Yang, Jianmin; Harte-Hargrove, Lauren C; Siao, Chia-Jen; Marinic, Tina; Clarke, Roshelle; Ma, Qian; Jing, Deqiang; Lafrancois, John J; Bath, Kevin G; Mark, Willie; Ballon, Douglas; Lee, Francis S; Scharfman, Helen E; Hempstead, Barbara L

    2014-05-08

    Experience-dependent plasticity shapes postnatal development of neural circuits, but the mechanisms that refine dendritic arbors, remodel spines, and impair synaptic activity are poorly understood. Mature brain-derived neurotrophic factor (BDNF) modulates neuronal morphology and synaptic plasticity, including long-term potentiation (LTP) via TrkB activation. BDNF is initially translated as proBDNF, which binds p75(NTR). In vitro, recombinant proBDNF modulates neuronal structure and alters hippocampal long-term plasticity, but the actions of endogenously expressed proBDNF are unclear. Therefore, we generated a cleavage-resistant probdnf knockin mouse. Our results demonstrate that proBDNF negatively regulates hippocampal dendritic complexity and spine density through p75(NTR). Hippocampal slices from probdnf mice exhibit depressed synaptic transmission, impaired LTP, and enhanced long-term depression (LTD) in area CA1. These results suggest that proBDNF acts in vivo as a biologically active factor that regulates hippocampal structure, synaptic transmission, and plasticity, effects that are distinct from those of mature BDNF. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  18. ProBDNF negatively regulates neuronal remodeling, synaptic transmission and synaptic plasticity in hippocampus

    PubMed Central

    Yang, Jianmin; Harte-Hargrove, Lauren C.; Siao, Chia-Jen; Marinic, Tina; Clarke, Roshelle; Ma, Qian; Jing, Deqiang; LaFrancois, John J.; Bath, Kevin G.; Mark, Willie; Ballon, Douglas; Lee, Francis S.; Scharfman, Helen E.; Hempstead, Barbara L.

    2014-01-01

    Summary Experience-dependent plasticity shapes postnatal development of neural circuits, but the mechanisms that refine dendritic arbors, remodel spines, and impair synaptic activity are poorly understood. Mature brain-derived neurotrophic factor (BDNF) modulates neuronal morphology and synaptic plasticity, including long-term potentiation (LTP) via TrkB activation. BDNF is initially translated as proBDNF which binds p75NTR. In vitro, recombinant proBDNF modulates neuronal structure and alters hippocampal long-term plasticity, but the actions of endogenously expressed proBDNF are unclear. Therefore, we generated a cleavage-resistant probdnf knock-in mouse. Our results demonstrate that proBDNF negatively regulates hippocampal dendritic complexity and spine density through p75NTR. Hippocampal slices from probdnf mice exhibit depressed synaptic transmission, impaired LTP and enhanced long-term depression (LTD) in area CA1. These results suggest that proBDNF acts in vivo as a biologically active factor that regulates hippocampal structure, synaptic transmission and plasticity, effects that are distinct from mature BDNF. PMID:24746813

  19. Light regulates the expression of the BDNF/TrkB system in the adult zebrafish retina.

    PubMed

    Sánchez-Ramos, C; Bonnin-Arias, C; Guerrera, M C; Calavia, M G; Chamorro, E; Montalbano, G; López-Velasco, S; López-Muñiz, A; Germanà, A; Vega, J A

    2013-01-01

    The retina of the adult zebrafish express brain-derived neurotrophic factor (BDNF) and its signaling receptor TrkB. This functional system is involved in the biology of the vertebrate retina and its expression is regulated by light. This study was designed to investigate the effects of cyclic (12 h light/12 h darkness) or continuous (24 h) exposure during 10 days to white light, white-blue light, and blue light, as well as of darkness, on the expression of BDNF and TrkB in the retina. BDNF and TrkB were assessed in the retina of adult zebrafish using quantitative real-time polymerase chain reaction and immunohistochemistry. Exposure to white, white-blue, and blue light causes a decrease of BDNF mRNA and of BDNF immunostaining, independently of the pattern of light exposition. Conversely, in the same experimental conditions, the expression of TrkB mRNA was upregulated and TrkB immunostaining increased. Exposition to darkness diminished BDNF and TrkB mRNAs, and abolished the immunostaining for BDNF but not modified that for TrkB. These results demonstrate the regulation of BDNF and TrkB by light in the retina of adult zebrafish and might contribute to explain some aspects of the complex pathophysiology of light-induced retinopathies. Copyright © 2012 Wiley Periodicals, Inc.

  20. BDNF regulation in the rat dorsal vagal complex during stress-induced anorexia.

    PubMed

    Charrier, Céline; Chigr, Fatiha; Tardivel, Catherine; Mahaut, Stéphanie; Jean, André; Najimi, Mohamed; Moyse, Emmanuel

    2006-08-30

    The dorsal vagal complex (DVC) is the satiety reflex-integrating center of adult mammals. Immobilization stress (IS) is known to elicit anorexia and to up-regulate BDNF expression in adult rat forebrain; intra-DVC delivery of BDNF was shown to elicit anorexia. Therefore, we addressed here whether IS would increase BDNF signaling in rat DVC by using PCR and western-blot on microdissected tissue extracts. Significant variations of BDNF expression in DVC after IS include exon V mRNA increase at 3 h, decreases of both protein and exon III mRNA at 24 h, and exon I mRNA decrease at 72 h. At the receptor level, IS elicited a highly significant induction of both full-length and truncated-1 TrkB mRNAs at 24 h after IS. In vivo recruitment of BDNF signaling in DVC during stress thus differs from hypothalamus, the relevance of which to anorexia is discussed.

  1. BDNF up-regulates alpha7 nicotinic acetylcholine receptor levels on subpopulations of hippocampal interneurons.

    PubMed

    Massey, Kerri A; Zago, Wagner M; Berg, Darwin K

    2006-12-01

    In the hippocampus, brain-derived neurotrophic factor (BDNF) regulates a number of synaptic components. Among these are nicotinic acetylcholine receptors containing alpha7 subunits (alpha7-nAChRs), which are interesting because of their relative abundance in the hippocampus and their high relative calcium permeability. We show here that BDNF elevates surface and intracellular pools of alpha7-nAChRs on cultured hippocampal neurons and that glutamatergic activity is both necessary and sufficient for the effect. Blocking transmission through NMDA receptors with APV blocked the BDNF effect; increasing spontaneous excitatory activity with the GABA(A) receptor antagonist bicuculline replicated the BDNF effect. BDNF antibodies blocked the BDNF-mediated increase but not the bicuculline one, consistent with enhanced glutamatergic activity acting downstream from BDNF. Increased alpha7-nAChR clusters were most prominent on interneuron subtypes known to directly innervate excitatory neurons. The results suggest that BDNF, acting through glutamatergic transmission, can modulate hippocampal output in part by controlling alpha7-nAChR levels.

  2. Regulation of BDNF chromatin status and promoter accessibility in a neural correlate of associative learning

    PubMed Central

    Ambigapathy, Ganesh; Zheng, Zhaoqing; Keifer, Joyce

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) gene expression critically controls learning and its aberrant regulation is implicated in Alzheimer's disease and a host of neurodevelopmental disorders. The BDNF gene is target of known DNA regulatory mechanisms but details of its activity-dependent regulation are not fully characterized. We performed a comprehensive analysis of the epigenetic regulation of the turtle BDNF gene (tBDNF) during a neural correlate of associative learning using an in vitro model of eye blink classical conditioning. Shortly after conditioning onset, the results from ChIP-qPCR show conditioning-dependent increases in methyl-CpG-binding protein 2 (MeCP2) and repressor basic helix-loop-helix binding protein 2 (BHLHB2) binding to tBDNF promoter II that corresponds with transcriptional repression. In contrast, enhanced binding of ten-eleven translocation protein 1 (Tet1), extracellular signal-regulated kinase 1/2 (ERK1/2), and cAMP response element-binding protein (CREB) to promoter III corresponds with transcriptional activation. These actions are accompanied by rapid modifications in histone methylation and phosphorylation status of RNA polymerase II (RNAP II). Significantly, these remarkably coordinated changes in epigenetic factors for two alternatively regulated tBDNF promoters during conditioning are controlled by Tet1 and ERK1/2. Our findings indicate that Tet1 and ERK1/2 are critical partners that, through complementary functions, control learning-dependent tBDNF promoter accessibility required for rapid transcription and acquisition of classical conditioning. PMID:26336984

  3. Epigenetic regulation of BDNF in the learned helplessness-induced animal model of depression.

    PubMed

    Su, Chun-Lin; Su, Chun-Wei; Hsiao, Ya-Hsin; Gean, Po-Wu

    2016-05-01

    Major depressive disorder (MDD), one of the most common mental disorders, is a significant risk factor for suicide and causes a low quality of life for many people. However, the causes and underlying mechanism of depression remain elusive. In the current work, we investigated epigenetic regulation of BDNF in the learned helplessness-induced animal model of depression. Mice were exposed to inescapable stress and divided into learned helplessness (LH) and resilient (LH-R) groups depending on the number they failed to escape. We found that the LH group had longer immobility duration in the forced swimming test (FST) and tail suspension tests (TST), which is consistent with a depression-related phenotype. Western blotting analysis and enzyme-linked immunosorbent assay (ELISA) revealed that the LH group had lower BDNF expression than that of the LH-R group. The LH group consistently had lower BDNF mRNA levels, as detected by qPCR assay. In addition, we found BDNF exon IV was down-regulated in the LH group. Intraperitoneal injection of imipramine or histone deacetylase inhibitors (HDACi) to the LH mice for 14 consecutive days ameliorated depression-like behaviors and reversed the decrease in BDNF. The expression of HDAC5 was up-regulated in the LH mice, and a ChIP assay revealed that the level of HDAC5 binding to the promoter region of BDNF exon IV was higher than that seen in other groups. Knockdown of HDAC5 reduced depression-like behaviors in the LH mice. Taken together, these results suggest that epigenetic regulation of BDNF by HDAC5 plays an important role in the learned helplessness model of depression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. BDNF deficiency and young-adult methamphetamine induce sex-specific effects on prepulse inhibition regulation

    PubMed Central

    Manning, Elizabeth E.; van den Buuse, Maarten

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) has been implicated in the pathophysiology of schizophrenia, yet its role in the development of specific symptoms is unclear. Methamphetamine (METH) users have an increased risk of psychosis and schizophrenia, and METH-treated animals have been used extensively as a model to study the positive symptoms of schizophrenia. We investigated whether METH treatment in BDNF heterozygous (HET) mutant mice has cumulative effects on sensorimotor gating, including the disruptive effects of psychotropic drugs. BDNF HETs and wildtype (WT) littermates were treated during young adulthood with METH and, following a 2-week break, prepulse inhibition (PPI) was examined. At baseline, BDNF HETs showed reduced PPI compared to WT mice irrespective of METH pre-treatment. An acute challenge with amphetamine (AMPH) disrupted PPI but male BDNF HETs were more sensitive to this effect, irrespective of METH pre-treatment. In contrast, female mice treated with METH were less sensitive to the disruptive effects of AMPH, and there were no effects of BDNF genotype. Similar changes were not observed in the response to an acute apomorphine (APO) or MK-801 challenge. These results show that genetically-induced reduction of BDNF caused changes in a behavioral endophenotype relevant to the positive symptoms of schizophrenia. However, major sex differences were observed in the effects of a psychotropic drug challenge on this behavior. These findings suggest sex differences in the effects of BDNF depletion and METH treatment on the monoamine signaling pathways that regulate PPI. Given that these same pathways are thought to contribute to the expression of positive symptoms in schizophrenia, this work suggests that there may be significant sex differences in the pathophysiology underlying these symptoms. Elucidating these sex differences may be important for our understanding of the neurobiology of schizophrenia and developing better treatments strategies for the

  5. The ganglioside GQ1b regulates BDNF expression via the NMDA receptor signaling pathway.

    PubMed

    Shin, Min Kyoo; Jung, Woo Ram; Kim, Hong Gi; Roh, Seung Eon; Kwak, Choong Hwan; Kim, Cheorl Ho; Kim, Sang Jeong; Kim, Kil Lyong

    2014-02-01

    Gangliosides are sialic acid-containing glycosphingolipids which play a role in neuronal functions. Among the gangliosides, tetrasialoganglioside GQ1b shows neurotrophic factor-like actions, such as increasing neurite outgrowth, cell proliferation, and long-term potentiation. In addition, we recently reported that GQ1b improves spatial learning and memory performance in naïve rats. However, it is still unknown how GQ1b exerts its diverse neuronal functions. Thus, we hypothesized that GQ1b might influence synaptic activity by regulating brain-derived neurotrophic factor (BDNF) expression, which is an important protein for synaptic plasticity and cognition. Interestingly, GQ1b treatment increased BDNF expression in GQ1b-null SH-SY5Y cell lines and rat primary cortical neurons. Additionally, we confirmed whether the observed effects were due to GQ1b or due to a ganglioside with fewer sialic acid molecules (GT1b and GD1b) created by the sialidases present on the plasma membranes, by directly applying GT1b and GD1b or GQ1b co-treated with a sialidase inhibitor. Treatment with GT1b or GD1b had no effect on BDNF expression, whereas co-treatment with a sialidase inhibitor and GQ1b significantly increased BDNF levels. Moreover, GQ1b restored the decreased BDNF expression induced by the ganglioside synthesis inhibitor, D-PDMP, in rat primary cortical neurons. GQ1b treatment significantly increased BDNF levels, whereas pretreatment with the N-methyl-d-aspartate (NMDA) receptor antagonist D-AP5 blocked the effects of GQ1b on BDNF expression, suggesting that GQ1b regulates BDNF expression via the NMDA receptor signaling. Finally, we performed an intracerebroventricular GQ1b injection, which resulted in increased prefrontal and hippocampal BDNF expression in vivo. These findings demonstrate, for the first time, that tetrasialoganglioside GQ1b regulates BDNF expression in vitro and in vivo. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. BDNF interacts with endocannabinoids to regulate cocaine-induced synaptic plasticity in mouse midbrain dopamine neurons.

    PubMed

    Zhong, Peng; Liu, Yong; Hu, Ying; Wang, Tong; Zhao, Yong-ping; Liu, Qing-song

    2015-03-11

    Brain-derived neurotrophic factor (BDNF) and endocannabinoids (eCBs) have been individually implicated in behavioral effects of cocaine. The present study examined how BDNF-eCB interaction regulates cocaine-induced synaptic plasticity in the ventral tegmental area and behavioral effects. We report that BDNF and selective tyrosine kinase receptor B (TrkB) agonist 7,8-dihydroxyflavone (DHF) activated the TrkB receptor to facilitate two forms of eCB-mediated synaptic depression, depolarization-induced suppression of inhibition (DSI), and long-term depression (I-LTD) of IPSCs in ventral tegmental area dopamine neurons in mouse midbrain slices. The facilitation appears to be mediated by an increase in eCB production via phospholipase Cγ pathway, but not by an increase in CB1 receptor responsiveness or a decrease in eCB hydrolysis. Using Cre-loxP technology to specifically delete BDNF in dopamine neurons, we showed that eCB-mediated I-LTD, cocaine-induced reduction of GABAergic inhibition, and potentiation of glutamatergic excitation remained intact in wild-type control mice, but were impaired in BDNF conditional knock-out mice. We also showed that cocaine-induced conditioned place preference was attenuated in BDNF conditional knock-out mice, in vivo pretreatments with DHF before place conditioning restored cocaine conditioned place preference in these mice, and the behavioral effect of DHF was blocked by a CB₁ receptor antagonist. Together, these results suggest that BDNF in dopamine neurons regulates eCB responses, cocaine-induced synaptic plasticity, and associative learning. Copyright © 2015 the authors 0270-6474/15/354469-13$15.00/0.

  7. BDNF Interacts with Endocannabinoids to Regulate Cocaine-Induced Synaptic Plasticity in Mouse Midbrain Dopamine Neurons

    PubMed Central

    Zhong, Peng; Liu, Yong; Hu, Ying; Wang, Tong; Zhao, Yong-ping

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) and endocannabinoids (eCBs) have been individually implicated in behavioral effects of cocaine. The present study examined how BDNF-eCB interaction regulates cocaine-induced synaptic plasticity in the ventral tegmental area and behavioral effects. We report that BDNF and selective tyrosine kinase receptor B (TrkB) agonist 7,8-dihydroxyflavone (DHF) activated the TrkB receptor to facilitate two forms of eCB-mediated synaptic depression, depolarization-induced suppression of inhibition (DSI), and long-term depression (I-LTD) of IPSCs in ventral tegmental area dopamine neurons in mouse midbrain slices. The facilitation appears to be mediated by an increase in eCB production via phospholipase Cγ pathway, but not by an increase in CB1 receptor responsiveness or a decrease in eCB hydrolysis. Using Cre-loxP technology to specifically delete BDNF in dopamine neurons, we showed that eCB-mediated I-LTD, cocaine-induced reduction of GABAergic inhibition, and potentiation of glutamatergic excitation remained intact in wild-type control mice, but were impaired in BDNF conditional knock-out mice. We also showed that cocaine-induced conditioned place preference was attenuated in BDNF conditional knock-out mice, in vivo pretreatments with DHF before place conditioning restored cocaine conditioned place preference in these mice, and the behavioral effect of DHF was blocked by a CB1 receptor antagonist. Together, these results suggest that BDNF in dopamine neurons regulates eCB responses, cocaine-induced synaptic plasticity, and associative learning. PMID:25762688

  8. Loss of promoter IV-driven BDNF expression impacts oscillatory activity during sleep, sensory information processing and fear regulation

    PubMed Central

    Hill, J L; Hardy, N F; Jimenez, D V; Maynard, K R; Kardian, A S; Pollock, C J; Schloesser, R J; Martinowich, K

    2016-01-01

    Posttraumatic stress disorder is characterized by hyperarousal, sensory processing impairments, sleep disturbances and altered fear regulation; phenotypes associated with changes in brain oscillatory activity. Molecules associated with activity-dependent plasticity, including brain-derived neurotrophic factor (BDNF), may regulate neural oscillations by controlling synaptic activity. BDNF synthesis includes production of multiple Bdnf transcripts, which contain distinct 5′ noncoding exons. We assessed arousal, sensory processing, fear regulation and sleep in animals where BDNF expression from activity-dependent promoter IV is disrupted (Bdnf-e4 mice). Bdnf-e4 mice display sensory hyper-reactivity and impaired electrophysiological correlates of sensory information processing as measured by event-related potentials (ERP). Utilizing electroencephalogram, we identified a decrease in slow-wave activity during non-rapid eye movement sleep, suggesting impaired sleep homeostasis. Fear extinction is controlled by hippocampal–prefrontal cortical BDNF signaling, and neurophysiological communication patterns between the hippocampus (HPC) and medial prefrontal cortex (mPFC) correlate with behavioral performance during extinction. Impaired fear extinction in Bdnf-e4 mice is accompanied by increased HPC activation and decreased HPC–mPFC theta phase synchrony during early extinction, as well as increased mPFC activation during extinction recall. These results suggest that activity-dependent BDNF signaling is critical for regulating oscillatory activity, which may contribute to altered behavior. PMID:27552586

  9. Differential regulation of BDNF, synaptic plasticity and sprouting in the hippocampal mossy fiber pathway of male and female rats.

    PubMed

    Scharfman, Helen E; MacLusky, Neil J

    2014-01-01

    Many studies have described potent effects of BDNF, 17β-estradiol or androgen on hippocampal synapses and their plasticity. Far less information is available about the interactions between 17β-estradiol and BDNF in hippocampus, or interactions between androgen and BDNF in hippocampus. Here we review the regulation of BDNF in the mossy fiber pathway, a critical part of hippocampal circuitry. We discuss the emerging view that 17β-estradiol upregulates mossy fiber BDNF synthesis in the adult female rat, while testosterone exerts a tonic suppression of mossy fiber BDNF levels in the adult male rat. The consequences are interesting to consider: in females, increased excitability associated with high levels of BDNF in mossy fibers could improve normal functions of area CA3, such as the ability to perform pattern completion. However, memory retrieval may lead to anxiety if stressful events are recalled. Therefore, the actions of 17β-estradiol on the mossy fiber pathway in females may provide a potential explanation for the greater incidence of anxiety-related disorders and post-traumatic stress syndrome (PTSD) in women relative to men. In males, suppression of BDNF-dependent plasticity in the mossy fibers may be protective, but at the 'price' of reduced synaptic plasticity in CA3. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.

  10. Increase in Levels of BDNF is Associated with Inflammation and Oxidative Stress during Cardiopulmonary Bypass

    PubMed Central

    Amoureux, Sébastien; Sicard, Pierre; Korandji, Claudia; Borey, Angélique; Benkhadra, Salima; Sequeira-Le Grand, Anabelle; Vergely, Catherine; Girard, Claude; Rochette, Luc

    2008-01-01

    Cardiopulmonary Bypass (CPB) is thought to generate reactive oxygen species associated with a systemic inflammation and neurotrophins seem to be involved in cardiovascular inflammatory reactions. The aim of this study was to determine the impact of CPB on plasma neurotrophins levels and to appreciate the links existing between inflammation, oxidative stress and neurotrophins. Blood samples were taken from 27 patients undergoing cardiac surgery: before CPB, during ischemia and at reperfusion under CPB. Oxidative stress was evaluated using an Electron Spin Resonance technique by superoxide detection, and antioxidant defences by measurement of Endogenous Peroxidase Activity (EPA). The evolution of two neurotrophins: Brain Derived Neurotrophic Factor (BDNF) and Nerve Growth Factor (NGF) was assessed with an ELISA method. An inflammatory index was determined by a multiplex flow cytometry method. The inflammatory index showed that MCP-1, P-selectin, t-PA and interleukins 6, 8 and 10 levels increased during CPB (p<0.05). Superoxide production and EPA were higher during ischemia and reperfusion than before CPB (p<0.05). BDNF plasma levels were higher at reperfusion (p<0.05). NGF levels did not change. Our study shows an increase of BDNF levels, associated with an inflammatory phenomenon and a redox modification, in the plasma of patients undergoing cardiac surgery under CPB. The role played by this neurotrophin in this complex situation still needs to be elucidated, in particular its cellular origin. It is also necessary to understand whether BDNF has a beneficial or deleterious effect during CPB. PMID:23675091

  11. CREB-Dependent Regulation of GAD65 Transcription by BDNF/TrkB in Cortical Interneurons.

    PubMed

    Sánchez-Huertas, Carlos; Rico, Beatriz

    2011-04-01

    In the cerebral cortex, the functional output of projection neurons is fine-tuned by inhibitory neurons present in the network, which use γ-aminobutyric acid (GABA) as their main neurotransmitter. Previous studies have suggested that the expression levels of the rate-limiting GABA synthetic enzyme, GAD65, depend on brain derived neurotrophic factor (BDNF)/TrkB activation. However, the molecular mechanisms by which this neurotrophic factor and its receptor controls GABA synthesis are still unknown. Here, we show a direct regulation of the GAD65 gene by BDNF-TrkB signaling via CREB in cortical interneurons. Conditional ablation of TrkB in cortical interneurons causes a cell-autonomous decrease in the synaptically enriched GAD65 protein and its transcripts levels, suggesting that transcriptional regulation of the GAD65 gene is altered. Dissection of the intracellular pathway that underlies this process revealed that BDNF/TrkB signaling controls the transcription of GAD65 in a Ras-ERK-CREB-dependent manner. Our study reveals a novel molecular mechanism through which BDNF/TrkB signaling may modulate the maturation and function of cortical inhibitory circuits.

  12. BDNF Selectively Regulates GABAA Receptor Transcription by Activation of the JAK/STAT Pathway

    PubMed Central

    Lund, Ingrid V.; Hu, Yinghui; Raol, YogendraSinh H.; Benham, Rebecca S.; Faris, Ramona; Russek, Shelley J.; Brooks-Kayal, Amy R.

    2009-01-01

    The γ-aminobutyric acid (GABA) type A receptor (GABAAR) is the major inhibitory neurotransmitter receptor in the brain. Its multiple subunits show regional, developmental, and disease-related plasticity of expression; however, the regulatory networks controlling GABAAR subunit expression remain poorly understood. We report that the seizure-induced decrease in GABAAR α1 subunit expression associated with epilepsy is mediated by the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway regulated by brain-derived neurotrophic factor (BDNF). BDNF- and seizure-dependent phosphorylation of STAT3 cause the adenosine 3′,5′-monophosphate (cAMP) response element–binding protein (CREB) family member ICER (inducible cAMP early repressor) to bind with phosphorylated CREB at the Gabra1:CRE site. JAK/STAT pathway inhibition prevents the seizure-induced decrease in GABAAR α1 abundance in vivo and, given that BDNF is known to increase the abundance of GABAAR α4 in a JAK/STAT-independent manner, indicates that BDNF acts through at least two distinct pathways to influence GABAAR-dependent synaptic inhibition. PMID:18922788

  13. Differential regulation of BDNF, synaptic plasticity and sprouting in the hippocampal mossy fiber pathway of male and female rats

    PubMed Central

    Scharfman, Helen E.; MacLusky, Neil J.

    2013-01-01

    Many studies have described potent effects of BDNF, 17β-estradiol or androgen on hippocampal synapses and their plasticity. Far less information is available about the interactions between 17β-estradiol and BDNF in hippocampus, or interactions between androgen and BDNF in hippocampus. Here we review the regulation of BDNF in the mossy fiber pathway, a critical part of hippocampal circuitry. We discuss the emerging view that 17β-estradiol upregulates mossy fiber BDNF synthesis in the adult female rat, while testosterone exerts a tonic suppression of mossy fiber BDNF levels in the adult male rat. The consequences are interesting to consider: in females, increased excitability associated with high levels of BDNF in mossy fibers could - on the one hand - improve normal functions of area CA3, such as the ability to perform pattern completion. On the other hand, memory retrieval may lead to anxiety if stressful events are recalled. Therefore, the actions of 17β-estradiol on the mossy fiber pathway in females may provide a potential explanation for the greater incidence of anxiety-related disorders and post-traumatic stress syndrome (PTSD) in women relative to men. In males, suppression of BDNF-dependent plasticity in the mossy fibers may be protective, but at the `price' of reduced synaptic plasticity in CA3. PMID:23660230

  14. ANTIDEPRESSANTS REVERSE CORTICOSTERONE-MEDIATED DECREASE IN BDNF EXPRESSION: DIFFERENTIAL REGULATION OF SPECIFIC EXONS BY ANTIDEPRESSANTS AND CORTICOSTERONE

    PubMed Central

    Dwivedi, Yogesh; Rizavi, Hooriyah S.; Pandey, Ghanshyam N.

    2006-01-01

    Earlier studies have implicated BDNF in stress and in the mechanism of action of antidepressants. It has been shown that antidepressants upregulate, whereas corticosterone downregulates, BDNF expression in rat brain. Whether various classes of antidepressants reverse corticosterone-mediated downregulation of BDNF is unclear. Also not known is how antidepressants or corticosterone regulate BDNF expression. To clarify this, we examined the effects of various classes of antidepressants and corticosterone, alone and in combination, on the mRNA expression of total BDNF and of individual BDNF exons, in rat brain. Normal or corticosterone pellet-implanted (100 mg, 21 days) rats were injected with different classes of antidepressants, fluoxetine, desipramine, or phenelzine, intraperitoneally for 21 days and sacrificed 2 h after the last injection. mRNA expression of total BDNF and of exons I-IV was measured in frontal cortex and hippocampus. Given to normal rats, fluoxetine increased total BDNF mRNA only in hippocampus, whereas desipramine or phenelzine increased BDNF mRNA in both frontal cortex and hippocampus. When specifc exons were examined, desipramine increased expression of exons I and III in both brain areas, whereas phenelzine increased exon I in both frontal cortex and hippocampus but exon IV only in hippocampus. On the other hand, fluoxetine increased only exon II in hippocampus. Corticosterone treatment of normal rats decreased expression of total BDNF mRNA in both brain areas, specifically decreasing exons II and IV. Treatment with desipramine or phenelzine of corticosterone pellet-implanted rats reversed the corticosterone-induced decrease in total BDNF expression in both brain areas; however, fluoxetine reversed the decrease only partially in hippocampus. Interestingly, antidepressant treatment of corticosterone pellet-implanted rats increased only those specific exons that are increased during treatment of normal rats with each particular antidepressant. We

  15. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex.

    PubMed

    Huang, Z J; Kirkwood, A; Pizzorusso, T; Porciatti, V; Morales, B; Bear, M F; Maffei, L; Tonegawa, S

    1999-09-17

    Maturation of the visual cortex is influenced by visual experience during an early postnatal period. The factors that regulate such a critical period remain unclear. We examined the maturation and plasticity of the visual cortex in transgenic mice in which the postnatal rise of brain-derived neurotrophic factor (BDNF) was accelerated. In these mice, the maturation of GABAergic innervation and inhibition was accelerated. Furthermore, the age-dependent decline of cortical long-term potentiation induced by white matter stimulation, a form of synaptic plasticity sensitive to cortical inhibition, occurred earlier. Finally, transgenic mice showed a precocious development of visual acuity and an earlier termination of the critical period for ocular dominance plasticity. We propose that BDNF promotes the maturation of cortical inhibition during early postnatal life, thereby regulating the critical period for visual cortical plasticity.

  16. Down-regulation of BDNF in cell and animal models increases striatal-enriched protein tyrosine phosphatase 61 (STEP61 ) levels.

    PubMed

    Xu, Jian; Kurup, Pradeep; Azkona, Garikoitz; Baguley, Tyler D; Saavedra, Ana; Nairn, Angus C; Ellman, Jonathan A; Pérez-Navarro, Esther; Lombroso, Paul J

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) regulates synaptic strengthening and memory consolidation, and altered BDNF expression is implicated in a number of neuropsychiatric and neurodegenerative disorders. BDNF potentiates N-methyl-D-aspartate receptor function through activation of Fyn and ERK1/2. STriatal-Enriched protein tyrosine Phosphatase (STEP) is also implicated in many of the same disorders as BDNF but, in contrast to BDNF, STEP opposes the development of synaptic strengthening. STEP-mediated dephosphorylation of the NMDA receptor subunit GluN2B promotes internalization of GluN2B-containing NMDA receptors, while dephosphorylation of the kinases Fyn, Pyk2, and ERK1/2 leads to their inactivation. Thus, STEP and BDNF have opposing functions. In this study, we demonstrate that manipulation of BDNF expression has a reciprocal effect on STEP61 levels. Reduced BDNF signaling leads to elevation of STEP61 both in BDNF(+/-) mice and after acute BDNF knockdown in cortical cultures. Moreover, a newly identified STEP inhibitor reverses the biochemical and motor abnormalities in BDNF(+/-) mice. In contrast, increased BDNF signaling upon treatment with a tropomyosin receptor kinase B agonist results in degradation of STEP61 and a subsequent increase in the tyrosine phosphorylation of STEP substrates in cultured neurons and in mouse frontal cortex. These findings indicate that BDNF-tropomyosin receptor kinase B signaling leads to degradation of STEP61 , while decreased BDNF expression results in increased STEP61 activity. A better understanding of the opposing interaction between STEP and BDNF in normal cognitive functions and in neuropsychiatric disorders will hopefully lead to better therapeutic strategies. Altered expression of BDNF and STEP61 has been implicated in several neurological disorders. BDNF and STEP61 are known to regulate synaptic strengthening, but in opposite directions. Here, we report that reduced BDNF signaling leads to elevation of STEP61 both in

  17. BDNF Activates mTOR to Regulate GluR1 Expression Required for Memory Formation

    PubMed Central

    Katche, Cynthia; Cammarota, Martín; Izquierdo, Iván; Medina, Jorge H.

    2009-01-01

    Background The mammalian target of Rapamycin (mTOR) kinase plays a key role in translational control of a subset of mRNAs through regulation of its initiation step. In neurons, mTOR is present at the synaptic region, where it modulates the activity-dependent expression of locally-translated proteins independently of mRNA synthesis. Indeed, mTOR is necessary for different forms of synaptic plasticity and long-term memory (LTM) formation. However, little is known about the time course of mTOR activation and the extracellular signals governing this process or the identity of the proteins whose translation is regulated by this kinase, during mnemonic processing. Methodology/Principal Findings Here we show that consolidation of inhibitory avoidance (IA) LTM entails mTOR activation in the dorsal hippocampus at the moment of and 3 h after training and is associated with a rapid and rapamycin-sensitive increase in AMPA receptor GluR1 subunit expression, which was also blocked by intra-hippocampal delivery of GluR1 antisense oligonucleotides (ASO). In addition, we found that pre- or post-training administration of function-blocking anti-BDNF antibodies into dorsal CA1 hampered IA LTM retention, abolished the learning-induced biphasic activation of mTOR and its readout, p70S6K and blocked GluR1 expression, indicating that BDNF is an upstream factor controlling mTOR signaling during fear-memory consolidation. Interestingly, BDNF ASO hindered LTM retention only when given into dorsal CA1 1 h after but not 2 h before training, suggesting that BDNF controls the biphasic requirement of mTOR during LTM consolidation through different mechanisms: an early one involving BDNF already available at the moment of training, and a late one, happening around 3 h post-training that needs de novo synthesis of this neurotrophin. Conclusions/Significance In conclusion, our findings demonstrate that: 1) mTOR-mediated mRNA translation is required for memory consolidation during at least two

  18. BDNF mRNA abundance regulated by antidromic action potentials and AP-LTD in hippocampus.

    PubMed

    Bukalo, Olena; Lee, Philip R; Fields, R Douglas

    2016-12-02

    Action-potential-induced LTD (AP-LTD) is a form of synaptic plasticity that reduces synaptic strength in CA1 hippocampal neurons firing antidromically during sharp-wave ripples. This firing occurs during slow-wave sleep and quiet moments of wakefulness, which are periods of offline replay of neural sequences learned during encoding sensory information. Here we report that rapid and persistent down-regulation of different mRNA transcripts of the BDNF gene accompanies AP-LTD, and that AP-LTD is abolished in mice with the BDNF gene knocked out in CA1 hippocampal neurons. These findings increase understanding of the mechanism of AP-LTD and the cellular mechanisms of memory consolidation.

  19. Diabetes impairs synaptic plasticity in the superior cervical ganglion: possible role for BDNF and oxidative stress.

    PubMed

    Alzoubi, K H; Khabour, O F; Alhaidar, I A; Aleisa, A M; Alkadhi, K A

    2013-11-01

    The majority of diabetics develop serious disorders of the autonomic nervous system; however, there is no clear understanding on the causes of these complications. In this study, we examined the effect of streptozocin (STZ)-induced diabetes on activity-dependent synaptic plasticity, associated levels of brain-derived neurotrophic factor (BDNF) and antioxidant biomarkers in the rat sympathetic superior cervical ganglion. Diabetes (STZ-induced) was achieved by a single intraperitoneal injection of streptozocin (55 mg/kg).Compound action potentials were recorded from isolated ganglia before (basal) and after repetitive stimulation, or trains of paired pulses to express ganglionic long-term potentiation (gLTP) or long-term depression (gLTD). The input/output curves of ganglia from STZ-treated animals showed a marked rightward shift along most stimulus intensities, compared to those of ganglia from control animals, indicating impaired basal synaptic transmission in ganglia from STZ-induced diabetic animals. Repetitive stimulation induced robust gLTP and gLTD in ganglia isolated from control animals; the same protocols failed to induce gLTP or gLTD in ganglia from STZ-induced diabetic animals, indicating impairment of activity-dependent synaptic plasticity in these animals. Molecular analysis revealed significant reduction in the levels of BDNF and the ratio of glutathione/oxidized glutathione. Additionally, the activity of glutathione peroxidase, glutathione reductase, catalase, and the levels of thiobarbituric acid-reactive substances were increased in ganglia from STZ-treated animals. In conclusion, impaired basal synaptic transmission and synaptic plasticity are associated with reduced BDNF and altered oxidative stress biomarkers in the sympathetic ganglia from STZ-induced diabetic animals, suggesting a possible correlation of these factors with the manifestations of STZ-induced diabetes in the peripheral nervous system.

  20. The release of glutamate from cortical neurons regulated by BDNF via the TrkB/Src/PLC-γ1 pathway.

    PubMed

    Zhang, Zitao; Fan, Jin; Ren, Yongxin; Zhou, Wei; Yin, Guoyong

    2013-01-01

    The brain-derived neurotrophic factor (BDNF) participates in the regulation of cortical neurons by influencing the release of glutamate. However, the specific mechanisms are unclear. Hence, we isolated and cultured the cortical neurons of Sprague Dawley rats. Specific inhibitors of TrkB, Src, PLC-γ1, Akt, and MEK1/2 (i.e., K252a, PP2, U73122, LY294002, and PD98059, respectively) were used to treat cortical neurons and to detect the glutamate release from cortical neurons stimulated with BDNF. BDNF significantly increased glutamate release, and simultaneously enhanced phosphorylation levels of TrkB, Src, PLC-γ, Akt, and Erk1/2. For BDNF-stimulated cortical neurons, K252a inhibited glutamate release and inhibited the phosphorylation levels of TrkB, Src, PLC-γ, Erk1/2, and Akt (P < 0.05). PP2 reduced the glutamate release from BDNF-stimulated cortical neurons (P < 0.05) and inhibited the phosphorylation levels of TrkB and PLC-γ1 (P < 0.05). However, PP2 had no effect on the phosphorylation levels of Erk1/2 or Akt (P > 0.05). U73122 inhibited the glutamate release from BDNF-stimulated cortical neurons, but had no influence on the phosphorylation levels of TrkB, Src, Erk1/2, or Akt (P > 0.05). LY294002 and PD98059 did not affect the BDNF-stimulated glutamate release and did not inhibit the phosphorylation levels of TrkB, Src, or PLC-γ1. In summary, BDNF stimulated the glutamate release from cortical neurons via the TrkB/Src/PLC-γ1 signaling pathway.

  1. Brain-derived neurotrophic factor (BDNF) induces sustained intracellular Ca2+ elevation through the up-regulation of surface transient receptor potential 3 (TRPC3) channels in rodent microglia.

    PubMed

    Mizoguchi, Yoshito; Kato, Takahiro A; Seki, Yoshihiro; Ohgidani, Masahiro; Sagata, Noriaki; Horikawa, Hideki; Yamauchi, Yusuke; Sato-Kasai, Mina; Hayakawa, Kohei; Inoue, Ryuji; Kanba, Shigenobu; Monji, Akira

    2014-06-27

    Microglia are immune cells that release factors, including proinflammatory cytokines, nitric oxide (NO), and neurotrophins, following activation after disturbance in the brain. Elevation of intracellular Ca(2+) concentration ([Ca(2+)]i) is important for microglial functions such as the release of cytokines and NO from activated microglia. There is increasing evidence suggesting that pathophysiology of neuropsychiatric disorders is related to the inflammatory responses mediated by microglia. Brain-derived neurotrophic factor (BDNF) is a neurotrophin well known for its roles in the activation of microglia as well as in pathophysiology and/or treatment of neuropsychiatric disorders. In this study, we sought to examine the underlying mechanism of BDNF-induced sustained increase in [Ca(2+)]i in rodent microglial cells. We observed that canonical transient receptor potential 3 (TRPC3) channels contribute to the maintenance of BDNF-induced sustained intracellular Ca(2+) elevation. Immunocytochemical technique and flow cytometry also revealed that BDNF rapidly up-regulated the surface expression of TRPC3 channels in rodent microglial cells. In addition, pretreatment with BDNF suppressed the production of NO induced by tumor necrosis factor α (TNFα), which was prevented by co-adiministration of a selective TRPC3 inhibitor. These suggest that BDNF induces sustained intracellular Ca(2+) elevation through the up-regulation of surface TRPC3 channels and TRPC3 channels could be important for the BDNF-induced suppression of the NO production in activated microglia. We show that TRPC3 channels could also play important roles in microglial functions, which might be important for the regulation of inflammatory responses and may also be involved in the pathophysiology and/or the treatment of neuropsychiatric disorders.

  2. Neuronal release of proBDNF

    PubMed Central

    Yang, Jianmin; Siao, Chia-Jen; Nagappan, Guhan; Marinic, Tina; Jing, Deqiang; McGrath, Kelly; Chen, Zhe-Yu; Mark, Willie; Tessarollo, Lino; Lee, Francis S; Lu, Bai; Hempstead, Barbara L

    2009-01-01

    Pro–brain-derived neurotrophic factor (proBDNF) and mature BDNF utilize distinct receptors to mediate divergent neuronal actions. Using new tools to quantitate endogenous BDNF isoforms, we found that mouse neurons secrete both proBDNF and mature BDNF. The highest levels of proBDNF and p75 were observed perinatally and declined, but were still detectable, in adulthood. Thus, BDNF actions are developmentally regulated by secretion of proBDNF or mature BDNF and by local expression of p75 and TrkB. PMID:19136973

  3. Neuronal release of proBDNF.

    PubMed

    Yang, Jianmin; Siao, Chia-Jen; Nagappan, Guhan; Marinic, Tina; Jing, Deqiang; McGrath, Kelly; Chen, Zhe-Yu; Mark, Willie; Tessarollo, Lino; Lee, Francis S; Lu, Bai; Hempstead, Barbara L

    2009-02-01

    Pro-brain-derived neurotrophic factor (proBDNF) and mature BDNF utilize distinct receptors to mediate divergent neuronal actions. Using new tools to quantitate endogenous BDNF isoforms, we found that mouse neurons secrete both proBDNF and mature BDNF. The highest levels of proBDNF and p75 were observed perinatally and declined, but were still detectable, in adulthood. Thus, BDNF actions are developmentally regulated by secretion of proBDNF or mature BDNF and by local expression of p75 and TrkB.

  4. BDNF up-regulates TrkB protein and prevents the death of CA1 neurons following transient forebrain ischemia.

    PubMed

    Ferrer, I; Ballabriga, J; Martí, E; Pérez, E; Alberch, J; Arenas, E

    1998-04-01

    The neurotrophin family of growth factors, which includes Nerve Growth Factor (NGF), Brain-Derived Neurotrophic Factor (BDNF), Neurotrophin-3 (NT3) and Neurotrophin-4/5 (NT4/5) bind and activate specific tyrosine kinase (Trk) receptors to promote cell survival and growth of different cell populations. For these reasons, growing attention has been paid to the use of neurotrophins as therapeutic agents in neurodegeneration, and to the regulation of the expression of their specific receptors by the ligands. BDNF expression, as revealed by immunohistochemistry, is found in the pre-subiculum, CA1, CA3, and dentate gyrus of the hippocampus. Strong TrkB immunoreactivity is present in most CA3 neurons but only in scattered neurons of the CA1 area. Weak TrkB immunoreactivity is found in the granule cell layer of the dentate gyrus. Unilateral grafting of BDNF-transfected fibroblasts into the hippocampus resulted in a marked increase in the intensity of the immunoreaction and in the number of TrkB-immunoreactive neurons in the granule cell layer of the dentate gyrus, pre-subiculum and CA1 area in the vicinity of the graft. No similar effects were produced after the injection of control mock-transfected fibroblasts. Delayed cell death in the CA1 area was produced following 5 min of forebrain ischemia in the gerbil. The majority of living cells in the CA1 area at the fourth day were BDNF/TrkB immunoreactive. Unilateral grafting of control mock-transfected or BDNF fibroblasts two days before ischemia resulted in a moderate non-specific protection of TrkB-negative, but not TrkB-positive cells, in the CA1 area of the grafted side. This finding is in line with a vascular and glial reaction, as revealed, by immunohistochemistry using astroglial and microglial cell markers. This astroglial response was higher in the grafted side than in the contralateral side in ischemic gerbils, but no differences were seen between BDNF-producing and non-BDNF-producing grafts. However, grafting of

  5. BDNF-mediates Down-regulation of MicroRNA-195 Inhibits Ischemic Cardiac Apoptosis in Rats

    PubMed Central

    Hang, Pengzhou; Sun, Chuan; Guo, Jing; Zhao, Jing; Du, Zhimin

    2016-01-01

    Background: Our previous studies suggested that brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) axis inhibited cardiomyocyte apoptosis in myocardial infarction (MI). However, the relationship between BDNF and microRNA (miRNA) in cardiomyocytes are unclear. The present study was performed to investigate the role of miR-195 and the interplay between BDNF and miR-195 in ischemic cardiomyocyte apoptosis. Methods: Male Wistar rats were subjected to coronary artery ligation, and primary neonatal rat ventricular myocytes were treated with hypoxia or hydrogen peroxide (H2O2). BDNF level in rat ventricles was measured by enzyme linked immunosorbent assay (ELISA). miR-195 mimic, inhibitor or negative control was transfected into the cardiomyocytes. Cell viability and apoptosis were detected by MTT assay and TdT-mediated dUTP nick end labeling (TUNEL) staining, respectively. Cardiac function and apoptosis were detected in MI rats intravenously injected with antagomiR-195. Luciferase assay, Western blot and Real-time RT-PCR were employed to clarify the interplay between miR-195 and BDNF. Results: miR-195 level was dynamically regulated in response to MI and significantly increased in ischemic regions 24 h post-MI as well as in hypoxic or H2O2-treated cardiomyocytes. Meanwhile, BDNF protein level was rapidly increased in MI rats and H2O2-treated cardiomyocytes. Apoptosis in both hypoxic and H2O2-treated cardiomyocytes were markedly reduced and cell viability was increased by miR-195 inhibitor. Moreover, inhibition of miR-195 significantly improved cardiac function of MI rats. Bcl-2 but not BDNF was validated as the direct target of miR-195. Furthermore, BDNF abolished the pro-apoptotic role of miR-195, which was reversed by its scavenger TrkB-Fc. Conclusion: Up-regulation of miR-195 in ischemic cardiomyocytes promotes ischemic apoptosis by targeting Bcl-2. BDNF mitigated the pro-apoptotic effect of miR-195 in rat cardiomyocytes. These findings may

  6. Differential Expression and Regulation of Brain-Derived Neurotrophic Factor (BDNF) mRNA Isoforms in Brain Cells from Mecp2(308/y) Mouse Model.

    PubMed

    Rousseaud, Audrey; Delépine, Chloé; Nectoux, Juliette; Billuart, Pierre; Bienvenu, Thierry

    2015-08-01

    Rett syndrome (RTT) is a severe neurodevelopmental disease caused by mutations in methyl-CpG-binding protein 2 (MECP2), which encodes a transcriptional modulator of many genes including BDNF. BDNF comprises nine distinct promoter regions, each triggering the expression of a specific transcript. The role of this diversity of transcripts remains unknown. MeCP2 being highly expressed in neurons, RTT was initially considered as a neuronal disease. However, recent studies have shown that MeCP2 was also expressed in astrocytes. Though several studies explored Bdnf IV expression in Mecp2-deficient mice, the differential expression of Bdnf isoforms in Mecp2-deficient neurons and astrocytes was never studied. By using TaqMan technology and a mouse model expressing a truncated Mecp2 (Mecp2(308/y)), we firstly showed in neurons that Bdnf transcripts containing exon I, IIb, IIc, IV, and VI are prominently expressed, whereas in astrocytes, Bdnf transcript containing exon VI is preferentially expressed, suggesting a specific regulation of Bdnf expression at the cellular level. Secondly, we confirmed the repressive role of Mecp2 only on the expression of Bdnf VI in neurons. Our data suggested that the truncated Mecp2 protein maintains its function on Bdnf expression regulation in neurons and in astrocytes. Interestingly, we observed that Bdnf transcripts (I and IXA), regulated by neural activity induced by bicuculline in Mecp2(308/y) neurons, were not affected by histone deacetylase inhibition. In contrast, Bdnf transcripts (IIb, IIc, and VI), regulated by histone deacetylation, were not affected by bicuculline treatment in wild-type and Mecp2(308/y) neurons. All these results reflect the complexity of regulation of Bdnf gene.

  7. HDAC1 negatively regulates Bdnf and Pvalb required for parvalbumin interneuron maturation in an experience-dependent manner.

    PubMed

    Koh, Dawn X P; Sng, Judy C G

    2016-11-01

    During early postnatal development, neuronal circuits are sculpted by sensory experience provided by the external environment. This experience-dependent regulation of circuitry development consolidates the balance of excitatory-inhibitory (E/I) neurons in the brain. The cortical barrel-column that innervates a single principal whisker is used to provide a clear reference frame for studying the consolidation of E/I circuitry. Sensory deprivation of S1 at birth disrupts the consolidation of excitatory-inhibitory balance by decreasing inhibitory transmission of parvalbumin interneurons. The molecular mechanisms underlying this decrease in inhibition are not completely understood. Our findings show that epigenetic mechanisms, in particular histone deacetylation by histone deacetylases, negatively regulate the expression of brain-derived neurotrophic factor (Bdnf) and parvalbumin (Pvalb) genes during development, which are required for the maturation of parvalbumin interneurons. After whisker deprivation, increased histone deacetylase 1 expression and activity led to increased histone deacetylase 1 binding and decreased histone acetylation at Bdnf promoters I-IV and Pvalb promoter, resulting in the repression of Bdnf and Pvalb gene transcription. The decrease in Bdnf expression further affected parvalbumin interneuron maturation at layer II/III in S1, demonstrated by decreased parvalbumin expression, a marker for parvalbumin interneuron maturation. Knockdown of HDAC1 recovered Bdnf and Pvalb gene transcription and also prevented the decrease of inhibitory synapses accompanying whisker deprivation.

  8. Viral depletion of VTA BDNF in rats modulates social behavior, consequences of intermittent social defeat stress, and long-term weight regulation.

    PubMed

    Fanous, Sanya; Terwilliger, Ernest F; Hammer, Ronald P; Nikulina, Ella M

    2011-09-20

    Mesolimbic brain-derived neurotrophic factor (BDNF) is implicated in sustained behavioral changes following chronic social stress, and its depletion may reduce susceptibility to such behavioral alterations. Enhanced mesolimbic BDNF is proposed as pro-depressive and anhedonic, while depleting ventral tegmetal area (VTA) BDNF increases weight by enhancing hedonic eating. Here, we questioned whether depletion of VTA BDNF would alleviate social defeat stress-induced deficits in weight regulation, or affect social behavior in the presence or absence of social stress. Male Sprague-Dawley rats received bilateral intra-VTA infusions of adeno-associated virus (AAV) vectors containing shRNA against BDNF or a control virus. Three weeks later, rats underwent 4 episodes of social defeat stress involving exposure to an aggressive Long-Evans resident rat, or control handling every third day. Depleted VTA BDNF conferred resistance to the deficient weight regulation normally observed during intermittent social defeat stress, and enhanced long-term weight gain regardless of stress history. In addition, social approach and avoidance behavior towards a novel social target were measured 7 weeks after stress. Social defeat stress chronically reduced social behavior, whereas depletion of VTA BDNF chronically increased social behavior. Our results reveal that depletion of VTA BDNF alleviates some consequences of intermittent social defeat stress, enhances social behavior, and may contribute to weight gain. These data implicate VTA BDNF in protracted behavioral responses to stress, social stimuli, and weight regulation. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. N-palmitoyl serotonin alleviates scopolamine-induced memory impairment via regulation of cholinergic and antioxidant systems, and expression of BDNF and p-CREB in mice.

    PubMed

    Min, A Young; Doo, Choon Nan; Son, Eun Jung; Sung, Nak Yun; Lee, Kun Jong; Sok, Dai-Eun; Kim, Mee Ree

    2015-12-05

    N-Palmitoyl-5-hydroxytryptamines (Pal-5HT), a cannabinoid, has recently been reported to express anti-allergic and anti-inflammatory actions in RBL-2H3 cells, and ameliorate glutamate-induced cytotoxicity in HT-22 cells. In this study, we examined the effect of Pal-5HT on deficits of learning and memory induced by scopolamine in mice. Memory performance was evaluated using Morris water maze test and passive avoidance test. Activities of acetylcholinesterase (AChE) and choline acetyltransferase (ChAT), level of oxidative stress markers, and expression of brain-derived neurotrophic factor (BDNF), phosphorylation of cAMP response element-binding protein (p-CREB) were determined. Loss of neuronal cells in hippocampus was evaluated by histological examinations. Pal-5HT significantly improved the amnesia in the behavioral assessment. Pal-5HT regulated cholinergic function by inhibiting scopolamine-induced elevation of AChE activity and decline of ChAT activity. Pal-5HT suppressed oxidative stress by increasing activities of glutathione peroxidase (GPx), glutathione reductase (GR) or NAD(P)H quinine oxidoreductase-1 (NQO-1) and lowering MDA level. Additionally, it prevented against scopolamine-induced expression of iNOS and COX-2. Moreover, Pal-5HT suppressed the death of neuronal cells in CA1 and CA3 regions, while it restored expression of p-CREB and BDNF in hippocampus. Taken together, Pal-5HT is suggested to ameliorate deficits of memory and learning through regulation of cholinergic function, activation of antioxidant systems as well as restoration of BDNF and p-CREB expression. From these, Pal-5HT may be a potential candidate to prevent against neurodegeneration related to the memory deficit.

  10. BDNF regulates spontaneous correlated activity at early developmental stages by increasing synaptogenesis and expression of the K+/Cl- co-transporter KCC2.

    PubMed

    Aguado, Fernando; Carmona, Maria A; Pozas, Esther; Aguiló, Agustín; Martínez-Guijarro, Francisco J; Alcantara, Soledad; Borrell, Victor; Yuste, Rafael; Ibañez, Carlos F; Soriano, Eduardo

    2003-04-01

    Spontaneous neural activity is a basic property of the developing brain, which regulates key developmental processes, including migration, neural differentiation and formation and refinement of connections. The mechanisms regulating spontaneous activity are not known. By using transgenic embryos that overexpress BDNF under the control of the nestin promoter, we show here that BDNF controls the emergence and robustness of spontaneous activity in embryonic hippocampal slices. Further, BDNF dramatically increases spontaneous co-active network activity, which is believed to synchronize gene expression and synaptogenesis in vast numbers of neurons. In fact, BDNF raises the spontaneous activity of E18 hippocampal neurons to levels that are typical of postnatal slices. We also show that BDNF overexpression increases the number of synapses at much earlier stages (E18) than those reported previously. Most of these synapses were GABAergic, and GABAergic interneurons showed hypertrophy and a 3-fold increase in GAD expression. Interestingly, whereas BDNF does not alter the expression of GABA and glutamate ionotropic receptors, it does raise the expression of the recently cloned K(+)/Cl(-) KCC2 co-transporter, which is responsible for the conversion of GABA responses from depolarizing to inhibitory, through the control of the Cl(-) potential. Together, results indicate that both the presynaptic and postsynaptic machineries of GABAergic circuits may be essential targets of BDNF actions to control spontaneous activity. The data indicate that BDNF is a potent regulator of spontaneous activity and co-active networks, which is a new level of regulation of neurotrophins. Given that BDNF itself is regulated by neuronal activity, we suggest that BDNF acts as a homeostatic factor controlling the emergence, complexity and networking properties of spontaneous networks.

  11. Brain Derived Neurotrophic Factor (BDNF) Expression Is Regulated by MicroRNAs miR-26a and miR-26b Allele-Specific Binding

    PubMed Central

    Caputo, Viviana; Parisi, Chiara; Catalanotto, Caterina; Pasini, Augusto; Cogoni, Carlo; Pizzuti, Antonio

    2011-01-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin that plays an essential role in neuronal development and plasticity. MicroRNA (miRNAs) are small non-coding RNAs of about 22-nucleotides in length regulating gene expression at post-transcriptional level. In this study we explore the role of miRNAs as post-transcriptional inhibitors of BDNF and the effect of 3′UTR sequence variations on miRNAs binding capacity. Using an in silico approach we identified a group of miRNAs putatively regulating BDNF expression and binding to BDNF 3′UTR polymorphic sequences. Luciferase assays demonstrated that these miRNAs (miR-26a1/2 and miR-26b) downregulates BDNF expression and that the presence of the variant alleles of two single nucleotide polymorphisms (rs11030100 and rs11030099) mapping in BDNF 3′UTR specifically abrogates miRNAs targeting. Furthermore we found a high linkage disequilibrium rate between rs11030100, rs11030099 and the non-synonymous coding variant rs6265 (Val66Met), which modulates BDNF mRNA localization and protein intracellular trafficking. Such observation led to hypothesize that miR-26s mediated regulation could extend to rs6265 leading to an allelic imbalance with potentially functional effects, such as peptide's localization and activity-dependent secretion. Since rs6265 has been previously implicated in various neuropsychiatric disorders, we evaluated the distribution of rs11030100, rs11030099 and rs6265 both in a control and schizophrenic group, but no significant difference in allele frequencies emerged. In conclusion, in the present study we identified two novel miRNAs regulating BDNF expression and the first BDNF 3′UTR functional variants altering miRNAs-BDNF binding. PMID:22194877

  12. Omega-3 deficiency and neurodegeneration in the substantia nigra: involvement of increased nitric oxide production and reduced BDNF expression.

    PubMed

    Cardoso, Henriqueta Dias; dos Santos Junior, Eraldo Fonseca; de Santana, David Filipe; Gonçalves-Pimentel, Catarina; Angelim, Monara Kaélle; Isaac, Alinny R; Lagranha, Cláudia Jacques; Guedes, Rubem Carlos Araújo; Beltrão, Eduardo Isidoro; Morya, Edgar; Rodrigues, Marcelo Cairrão Araújo; Andrade-da-Costa, Belmira Lara da Silveira

    2014-06-01

    Our previous study demonstrated that essential fatty acid (EFA) dietary restriction over two generations induced midbrain dopaminergic cell loss and oxidative stress in the substantia nigra (SN) but not in the striatum of young rats. In the present study we hypothesized that omega-3 deficiency until adulthood would reduce striatum's resilience, increase nitric oxide (NO) levels and the number of BDNF-expressing neurons, both potential mechanisms involved in SN neurodegeneration. Second generation rats were raised from gestation on control or EFA-restricted diets until young or adulthood. Lipoperoxidation, NO content, total superoxide dismutase (t-SOD) and catalase enzymatic activities were assessed in the SN and striatum. The number of tyrosine hydroxylase (TH)- and BDNF-expressing neurons was analyzed in the SN. Increased NO levels were observed in the striatum of both young and adult EFA-deficient animals but not in the SN, despite a similar omega-3 depletion (~65%) in these regions. Increased lipoperoxidation and decreased catalase activity were found in both regions, while lower tSOD activity was observed only in the striatum. Fewer TH- (~40%) and BDNF-positive cells (~20%) were detected at the SN compared to the control. The present findings demonstrate a differential effect of omega-3 deficiency on NO production in the rat's nigrostriatal system. Prolonging omega-3 depletion until adulthood impaired striatum's anti-oxidant resources and BDNF distribution in the SN, worsening dopaminergic cell degeneration. Omega-3 deficiency can reduce the nigrostriatal system's ability to maintain homeostasis under oxidative conditions, which may enhance the risk of Parkinson's disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Presynaptic GABAergic inhibition regulated by BDNF contributes to neuropathic pain induction

    PubMed Central

    Chen, Jeremy Tsung-chieh; Guo, Da; Campanelli, Dario; Frattini, Flavia; Mayer, Florian; Zhou, Luming; Kuner, Rohini; Heppenstall, Paul A.; Knipper, Marlies; Hu, Jing

    2014-01-01

    The gate control theory proposes the importance of both pre- and post-synaptic inhibition in processing pain signal in the spinal cord. However, although postsynaptic disinhibition caused by brain-derived neurotrophic factor (BDNF) has been proved as a crucial mechanism underlying neuropathic pain, the function of presynaptic inhibition in acute and neuropathic pain remains elusive. Here we show that a transient shift in the reversal potential (EGABA) together with a decline in the conductance of presynaptic GABAA receptor result in a reduction of presynaptic inhibition after nerve injury. BDNF mimics, whereas blockade of BDNF signalling reverses, the alteration in GABAA receptor function and the neuropathic pain syndrome. Finally, genetic disruption of presynaptic inhibition leads to spontaneous development of behavioural hypersensitivity, which cannot be further sensitized by nerve lesions or BDNF. Our results reveal a novel effect of BDNF on presynaptic GABAergic inhibition after nerve injury and may represent new strategy for treating neuropathic pain. PMID:25354791

  14. Apoptosis signal-regulating kinase 1 is involved in brain-derived neurotrophic factor (BDNF)-enhanced cell motility and matrix metalloproteinase 1 expression in human chondrosarcoma cells.

    PubMed

    Lin, Chih-Yang; Chang, Sunny Li-Yun; Fong, Yi-Chin; Hsu, Chin-Jung; Tang, Chih-Hsin

    2013-07-25

    Chondrosarcoma is the primary malignancy of bone that is characterized by a potent capacity to invade locally and cause distant metastasis, and is therefore associated with poor prognoses. Chondrosarcoma further shows a predilection for metastasis to the lungs. The brain-derived neurotrophic factor (BDNF) is a small molecule in the neurotrophin family of growth factors that is associated with the disease status and outcome of cancers. However, the effect of BDNF on cell motility in human chondrosarcoma cells is mostly unknown. Here, we found that human chondrosarcoma cell lines had significantly higher cell motility and BDNF expression compared to normal chondrocytes. We also found that BDNF increased cell motility and expression of matrix metalloproteinase-1 (MMP-1) in human chondrosarcoma cells. BDNF-mediated cell motility and MMP-1 up-regulation were attenuated by Trk inhibitor (K252a), ASK1 inhibitor (thioredoxin), JNK inhibitor (SP600125), and p38 inhibitor (SB203580). Furthermore, BDNF also promoted Sp1 activation. Our results indicate that BDNF enhances the migration and invasion activity of chondrosarcoma cells by increasing MMP-1 expression through a signal transduction pathway that involves the TrkB receptor, ASK1, JNK/p38, and Sp1. BDNF thus represents a promising new target for treating chondrosarcoma metastasis.

  15. BDNF expression is up-regulated by progesterone in human umbilical cord mesenchymal stem cells.

    PubMed

    Yang, Jie; Wang, Xianying; Liu, Sha; Xue, Gai

    2016-12-01

    To investigate whether promotion of neuronal differentiation of human umbilical cord mesenchymal stem cells (HUMSCs) by progesterone (PROG) involves changes in brain-derived neurotrophic factor (BDNF) levels. We used rat brain tissue extracts to mimic the brain microenvironment. Quantitative sandwich enzyme-linked immunosorbent assay was performed to measure levels of BDNF in cultured medium with or without PROG. Progesterone increased levels of BDNF in HUMSCs. Progesterone enhancement of brain-derived neurotrophic factor levels may be involved in PROG activated-pathways to promote neuronal differentiation of HUMSCs.

  16. Eps8 Regulates Axonal Filopodia in Hippocampal Neurons in Response to Brain-Derived Neurotrophic Factor (BDNF)

    PubMed Central

    Cagnoli, Cinzia; Schenk, Ursula; Gelsomino, Giuliana; Frittoli, Emanuela; Hertzog, Maud; Offenhauser, Nina; Sawallisch, Corinna; Kreienkamp, Hans-Jürgen; Gertler, Frank B.; Di Fiore, Pier Paolo; Scita, Giorgio; Matteoli, Michela

    2009-01-01

    The regulation of filopodia plays a crucial role during neuronal development and synaptogenesis. Axonal filopodia, which are known to originate presynaptic specializations, are regulated in response to neurotrophic factors. The structural components of filopodia are actin filaments, whose dynamics and organization are controlled by ensembles of actin-binding proteins. How neurotrophic factors regulate these latter proteins remains, however, poorly defined. Here, using a combination of mouse genetic, biochemical, and cell biological assays, we show that genetic removal of Eps8, an actin-binding and regulatory protein enriched in the growth cones and developing processes of neurons, significantly augments the number and density of vasodilator-stimulated phosphoprotein (VASP)-dependent axonal filopodia. The reintroduction of Eps8 wild type (WT), but not an Eps8 capping-defective mutant, into primary hippocampal neurons restored axonal filopodia to WT levels. We further show that the actin barbed-end capping activity of Eps8 is inhibited by brain-derived neurotrophic factor (BDNF) treatment through MAPK-dependent phosphorylation of Eps8 residues S624 and T628. Additionally, an Eps8 mutant, impaired in the MAPK target sites (S624A/T628A), displays increased association to actin-rich structures, is resistant to BDNF-mediated release from microfilaments, and inhibits BDNF-induced filopodia. The opposite is observed for a phosphomimetic Eps8 (S624E/T628E) mutant. Thus, collectively, our data identify Eps8 as a critical capping protein in the regulation of axonal filopodia and delineate a molecular pathway by which BDNF, through MAPK-dependent phosphorylation of Eps8, stimulates axonal filopodia formation, a process with crucial impacts on neuronal development and synapse formation. PMID:19564905

  17. Social isolation mediated anxiety like behavior is associated with enhanced expression and regulation of BDNF in the female mouse brain.

    PubMed

    Kumari, Anita; Singh, Padmanabh; Baghel, Meghraj Singh; Thakur, M K

    2016-05-01

    Adverse early life experience is prominent risk factors for numerous psychiatric illnesses, including mood and anxiety disorders. It imposes serious long-term costs on the individual as well as health and social systems. Hence, developing therapies that prevent the long-term consequences of early life stress is of utmost importance, and necessitates a better understanding of the mechanisms by which early life stress triggers long-lasting alterations in gene expression and behavior. Post-weaning isolation rearing of rodents models the behavioral consequences of adverse early life experiences in humans and it is reported to cause anxiety like behavior which is more common in case of females. Therefore, in the present study, we have studied the impact of social isolation of young female mice for 8weeks on the anxiety like behavior and the underlying molecular mechanism. Elevated plus maze and open field test revealed that social isolation caused anxiety like behavior. BDNF, a well-known molecule implicated in the anxiety like behavior, was up-regulated both at the message and protein level in cerebral cortex by social isolation. CREB-1 and CBP, which play a crucial role in BDNF transcription, were up-regulated at mRNA level in cerebral cortex by social isolation. HDAC-2, which negatively regulates BDNF expression, was down-regulated at mRNA and protein level in cerebral cortex by social isolation. Furthermore, BDNF acts in concert with Limk-1, miRNA-132 and miRNA-134 for the regulation of structural and morphological plasticity. Social isolation resulted in up-regulation of Limk-1 mRNA and miRNA-132 expression in the cerebral cortex. MiRNA-134, which inhibits the translation of Limk-1, was decreased in cerebral cortex by social isolation. Taken together, our study suggests that social isolation mediated anxiety like behavior is associated with up-regulation of BDNF expression and concomitant increase in the expression of CBP, CREB-1, Limk-1 and miRNA-132, and decrease

  18. Identification of a novel brain derived neurotrophic factor (BDNF)-inhibitory factor: regulation of BDNF by teneurin C-terminal associated peptide (TCAP)-1 in immortalized embryonic mouse hypothalamic cells.

    PubMed

    Ng, Tiffany; Chand, Dhan; Song, Lifang; Al Chawaf, Arij; Watson, John D; Boutros, Paul C; Belsham, Denise D; Lovejoy, David A

    2012-02-10

    The teneurins are a family of four large transmembrane proteins that are highly expressed in the central nervous system (CNS) where they have been implicated in development and CNS function. At the tip of the carboxyl terminus of each teneurin lies a 43-amino acid sequence, that when processed, could liberate an amidated 41-residue peptide. We have called this region the teneurin C-terminal associated peptide (TCAP). Picomolar concentrations of the synthetic version of TCAP-1 inhibit stress-induced cocaine reinstatement in rats. Because cocaine-seeking is associated with increased brain derived neurotrophic factor (BDNF) in the brain, we examined whether synthetic mouse TCAP-1 has the potential to regulate BDNF expression in immortalized mouse neurons. Immortalized mouse neurons (N38; mHypoE38) show strong FITC-labeled [K(8)]-TCAP-1 uptake and BDNF labeling in the cytosol. Moreover, FITC-labeled [K(8)]-TCAP-1 bound competitively to membrane fractions. In culture, the labeled TCAP-1 peptide could be detected on cell membranes within 15 min and subsequently became internalized in the cytosol and trafficked toward the nucleus. Administration of 10(-8)M unlabeled TCAP-1 to cultures of the N38 cells resulted in a significant decrease of total cell BDNF immunoreactivity over 4h as determined by western blot and ELISA analyses. Real-time PCR, utilizing primers to the various BDNF transcripts showed a significant decline of promoter IIB- and VI-driven transcripts. Taken together, these studies indicated that in vitro, TCAP-1 induces a significant decline in BDNF transcription and protein labeling in embyronic mouse immortalized hypothalamic neurons. Thus, TCAP-1 may act as a novel BDNF inhibitory factor.

  19. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments.

    PubMed

    Nibuya, M; Morinobu, S; Duman, R S

    1995-11-01

    The influence of chronic electroconvulsive seizure (ECS) or antidepressant drug treatments on expression of brain-derived neurotrophic factor (BDNF) and its receptor, trkB, was examined by in situ hybridization and Northern blot. In frontal cortex, acute ECS increased BDNF mRNA approximately twofold, an effect significantly augmented by a prior course of chronic ECS treatment (10 d). In the hippocampus, the influence of chronic ECS varied between the major subfields. In the dentate gyrus granule cell layer, chronic ECS decreased the acute induction of BDNF and trkB mRNA by approximately 50%, but prolonged their expression: levels remained elevated two- to threefold 18 hr later after the last chronic ECS treatment, but returned to control 18 hr after acute ECS. In CA3 and CA1 pyramidal cell layers, chronic ECS significantly elevated the acute induction of BDNF, and tended to prolong the expression of BDNF and trkB mRNA. A similar effect was observed in layer 2 of the piriform cortex, where chronic ECS significantly increased the acute induction and prolonged the expression of BDNF and trkB mRNA. Chronic (21 d), but not acute (1 d), administration of several different antidepressant drugs, including tranylcypromine, sertraline, desipramine, or mianserin, significantly increased BDNF mRNA and all but mianserin increased trkB mRNA in hippocampus. In contrast, chronic administration of nonantidepressant psychotropic drugs, including morphine, cocaine, or haloperidol, did not increase levels of BDNF mRNA. Furthermore, chronic administration of ECS or antidepressant drugs completely blocked the down-regulation of BDNF mRNA in the hippocampus in response to restraint stress. The enhanced induction and prolonged expression of BDNF in response to chronic ECS and antidepressant drug treatments could promote neuronal survival, and protect neurons from the damaging effects of stress.

  20. Long-lasting regulation of hippocampal Bdnf gene transcription after contextual fear conditioning

    PubMed Central

    Mizuno, K.; Dempster, E.; Mill, J.; Giese, K.P.

    2014-01-01

    Long-term memory formation requires de novo protein synthesis and gene transcription. During contextual long-term memory formation brain-derived neurotrophic factor (BDNF) gene expression changes in conjunction with alterations of DNA methylation in the Bdnf gene. However, little is known about the molecular mechanisms underlying the maintenance and persistence of contextual long-term memory. Here, we examined the transcription of specific Bdnf exons in the hippocampus for long periods after contextual fear conditioning. We found changes in transcription lasting for at least 24 hours after contextual fear conditioning, with some sex-specific effects. In addition, hypomethylation at a CpG site in CpG island 2 located at the end of Bdnf exon III sequence was detected at 0.5 h and maintained for up to 24 h after contextual fear conditioning. The identification of these long-lasting changes in transcription and DNA methylation at the Bdnf gene suggests that BDNF might have a role for storage of contextual long-term memory in the hippocampus. PMID:22574690

  1. Melatonin ameliorates cognitive impairment induced by sleep deprivation in rats: role of oxidative stress, BDNF and CaMKII.

    PubMed

    Zhang, Lei; Zhang, Hu-Qin; Liang, Xiang-Yan; Zhang, Hai-Feng; Zhang, Ting; Liu, Fang-E

    2013-11-01

    Sleep deprivation (SD) has been shown to induce oxidative stress which causes cognitive impairment. Melatonin, an endogenous potent antioxidant, protects neurons from oxidative stress in many disease models. The present study investigated the effect of melatonin against SD-induced cognitive impairment and attempted to define the possible mechanisms involved. SD was induced in rats using modified multiple platform model. Melatonin (15 mg/kg) was administered to the rats via intraperitoneal injection. The open field test and Morris water maze were used to evaluate cognitive ability. The cerebral cortex (CC) and hippocampus were dissected and homogenized. Nitric oxide (NO) and malondialdehyde (MDA) levels and the superoxide dismutase (SOD) enzyme activity of hippocampal and cortical tissues (10% wet weight per volume) were performed to determine the level of oxidative stress. The expression of brain-derived neurotrophic factor (BDNF) and calcium-calmodulin dependent kinase II (CaMKII) proteins in CC and hippocampus was assayed by means of immunohistochemistry. The results revealed that SD impairs cognitive ability, while melatonin treatment prevented these changes. In addition, melatonin reversed SD-induced changes in NO, MDA and SOD in both of the CC and hippocampus. The results of immunoreactivity showed that SD decreased gray values of BDNF and CaMKII in CC and hippocamal CA1, CA3 and dentate gyrus regions, whereas melatonin improved the gray values. In conclusion, our results suggest that melatonin prevents cognitive impairment induced by SD. The possible mechanism may be attributed to its ability to reduce oxidative stress and increase the levels of CaMKII and BDNF in CC and hippocampus.

  2. Up-regulation of dorsal root ganglia BDNF and trkB receptor in inflammatory pain: an in vivo and in vitro study

    PubMed Central

    2011-01-01

    Background During inflammation, immune cells accumulate in damaged areas and release pro-inflammatory cytokines and neurotrophins. Brain-derived neurotrophic factor (BDNF) plays a neuromodulatory role in spinal cord dorsal horn via the post-synaptic tyrosine protein kinase B (trkB) receptor to facilitate pain transmission. However, the precise role of BDNF and trkB receptor in the primary sensory neurons of dorsal root ganglia (DRG) during inflammation remains to be clarified. The aim of this study was to investigate whether and how BDNF-trkB signaling in the DRG is involved in the process of inflammatory pain. Methods We used complete Freund's adjuvant- (CFA-) induced and tumor necrosis factor-α- (TNF-α-) induced inflammation in rat hindpaw as animal models of inflammatory pain. Quantification of protein and/or mRNA levels of pain mediators was performed in separate lumbar L3-L5 DRGs. The cellular mechanism of TNF-α-induced BDNF and/or trkB receptor expression was examined in primary DRG cultures collected from pooled L1-L6 DRGs. Calcitonin gene-related peptide (CGRP), BDNF and substance P release were also evaluated by enzyme immunoassay. Results CFA injection into rat hindpaw resulted in mechanical hyperalgesia and significant increases in levels of TNF-α in the inflamed tissues, along with enhancement of BDNF and trkB receptor as well as the pain mediators CGRP and transient receptor potential vanilloid receptor subtype 1 (TRPV1) in DRG. Direct injection of TNF-α into rat hindpaw resulted in similar effects with retrograde transport of TNF-α along the saphenous nerve to DRG during CFA-induced inflammation. Primary DRG cultures chronically treated with TNF-α showed significant enhancement of mRNA and protein levels of BDNF and trkB receptor, BDNF release and trkB-induced phospho-ERK1/2 signal. Moreover, CGRP and substance P release were enhanced in DRG cultures after chronic TNF-α treatment or acute BDNF stimulation. In addition, we found that BDNF up-regulated

  3. Berberine up-regulates the BDNF expression in hippocampus and attenuates corticosterone-induced depressive-like behavior in mice.

    PubMed

    Shen, Ji-Duo; Ma, Li-Gang; Hu, Chun-Yue; Pei, Yang-Yi; Jin, Shuang-Li; Fang, Xiao-Yan; Li, Yu-Cheng

    2016-02-12

    Depression is increasingly become a global public healthy problem. This study was to investigate whether berberine could attenuate the depressive-like behavior induced by repeated corticosterone injection and explore the possible mechanisms. The present results showed that exogenous corticosterone injection caused depressive-like behaviors in mice, such as decreased sucrose intake in sucrose preference test (SPT) and increased immobility time in forced swimming test (FST). These behavioral alterations were accompanying with the decreased BDNF mRNA and protein levels in hippocampus and the elevated serum corticosterone levels. Treatment with berberine prevented these changes above. Our findings confirmed the antidepressant-like effect of berberine and suggested its mechanisms might be partially mediated by up-regulation of BDNF in hippocampus.

  4. Proteolytic Cleavage of ProBDNF into Mature BDNF in the Basolateral Amygdala Is Necessary for Defeat-Induced Social Avoidance

    ERIC Educational Resources Information Center

    Dulka, Brooke N.; Ford, Ellen C.; Lee, Melissa A.; Donnell, Nathaniel J.; Goode, Travis D.; Prosser, Rebecca; Cooper, Matthew A.

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is essential for memory processes. The present study tested whether proteolytic cleavage of proBDNF into mature BDNF (mBDNF) within the basolateral amygdala (BLA) regulates the consolidation of defeat-related memories. We found that acute social defeat increases the expression of mBDNF, but not proBDNF, in…

  5. Proteolytic Cleavage of ProBDNF into Mature BDNF in the Basolateral Amygdala Is Necessary for Defeat-Induced Social Avoidance

    ERIC Educational Resources Information Center

    Dulka, Brooke N.; Ford, Ellen C.; Lee, Melissa A.; Donnell, Nathaniel J.; Goode, Travis D.; Prosser, Rebecca; Cooper, Matthew A.

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is essential for memory processes. The present study tested whether proteolytic cleavage of proBDNF into mature BDNF (mBDNF) within the basolateral amygdala (BLA) regulates the consolidation of defeat-related memories. We found that acute social defeat increases the expression of mBDNF, but not proBDNF, in…

  6. Ethanol-induced epigenetic regulations at the Bdnf gene in C57BL/6J mice.

    PubMed

    Stragier, E; Massart, R; Salery, M; Hamon, M; Geny, D; Martin, V; Boulle, F; Lanfumey, L

    2015-03-01

    High ethanol intake is well known to induce both anxiolytic and anxiogenic effects, in correlation with chromatin remodeling in the amygdaloid brain region and deficits in cell proliferation and survival in the hippocampus of rodents. Whether only moderate but chronic ethanol intake in C57BL/6J mice could also have an impact on chromatin remodeling and neuroplasticity was addressed here. Chronic ethanol consumption in a free choice paradigm was found to induce marked changes in the expression of genes implicated in neural development and histone post-translational modifications in the mouse hippocampus. Transcripts encoding neural bHLH activators and those from Bdnf exons II, III and VI were upregulated, whereas those from Bdnf exon VIII and Hdacs were downregulated by ethanol compared with water consumption. These ethanol-induced changes were associated with enrichment in both acetylated H3 at Bdnf promoter PVI and trimethylated H3 at PII and PIII. Conversely, acetylated H3 at PIII and PVIII and trimethylated H3 at PVIII were decreased in ethanol-exposed mice. In parallel, hippocampal brain-derived neurotrophic factor (BDNF) levels and TrkB-mediated neurogenesis in the dentate gyrus were significantly enhanced by ethanol consumption. These results suggest that, in C57BL/6J mice, chronic and moderate ethanol intake produces marked epigenetic changes underlying BDNF overexpression and downstream hippocampal neurogenesis.

  7. Laser Acupuncture Exerts Neuroprotective Effects via Regulation of Creb, Bdnf, Bcl-2, and Bax Gene Expressions in the Hippocampus

    PubMed Central

    Yun, Yeong-Chan; Yoon, Sun-Bee; Kim, Dohyeong; Choi, Dong-Hee; Lee, Yu-Mi

    2017-01-01

    Acupuncture has a positive effect on cognitive deficits. However, the effects of laser acupuncture (LA) on cognitive function and its mechanisms of action are unclear. The present study aimed to evaluate the effects of LA on middle cerebral artery occlusion- (MCAO-) induced cognitive impairment and its mechanisms of action. Transient focal cerebral ischemia was modeled in adult Sprague-Dawley rats by MCAO. After LA or manual-acupuncture (MA) treatment at the GV20 and HT7 for 2 weeks, hippocampal-dependent memory was evaluated using the Morris water maze (MWM) test. The hippocampus was dissected to analyze choline acetyltransferase (ChAT) immunoreactivity and Creb, Bdnf, Bcl-2, and Bax gene expressions. MWM test demonstrated a significant improvement in hippocampal-dependent memory in the MCAO rats after LA treatment. LA treatment significantly reversed the postischemic decrease in ChAT immunoreactivity in the hippocampal CA1 region. LA treatment significantly normalized gene expression in the hippocampus which had been altered by MCAO, especially upregulating gene expression of Creb, Bdnf, and Bcl-2 and downregulating gene expression of Bax. This study suggests that LA treatment could improve cognitive impairment in MCAO rats to enhance the cholinergic system in the hippocampal CA1 region and to exert a neuroprotective effect by regulating Creb, Bdnf, Bcl-2, and Bax gene expressions. PMID:28408940

  8. Laser Acupuncture Exerts Neuroprotective Effects via Regulation of Creb, Bdnf, Bcl-2, and Bax Gene Expressions in the Hippocampus.

    PubMed

    Yun, Yeong-Chan; Jang, Dongyeop; Yoon, Sun-Bee; Kim, Dohyeong; Choi, Dong-Hee; Kwon, O-Sang; Lee, Yu-Mi; Youn, Daehwan

    2017-01-01

    Acupuncture has a positive effect on cognitive deficits. However, the effects of laser acupuncture (LA) on cognitive function and its mechanisms of action are unclear. The present study aimed to evaluate the effects of LA on middle cerebral artery occlusion- (MCAO-) induced cognitive impairment and its mechanisms of action. Transient focal cerebral ischemia was modeled in adult Sprague-Dawley rats by MCAO. After LA or manual-acupuncture (MA) treatment at the GV20 and HT7 for 2 weeks, hippocampal-dependent memory was evaluated using the Morris water maze (MWM) test. The hippocampus was dissected to analyze choline acetyltransferase (ChAT) immunoreactivity and Creb, Bdnf, Bcl-2, and Bax gene expressions. MWM test demonstrated a significant improvement in hippocampal-dependent memory in the MCAO rats after LA treatment. LA treatment significantly reversed the postischemic decrease in ChAT immunoreactivity in the hippocampal CA1 region. LA treatment significantly normalized gene expression in the hippocampus which had been altered by MCAO, especially upregulating gene expression of Creb, Bdnf, and Bcl-2 and downregulating gene expression of Bax. This study suggests that LA treatment could improve cognitive impairment in MCAO rats to enhance the cholinergic system in the hippocampal CA1 region and to exert a neuroprotective effect by regulating Creb, Bdnf, Bcl-2, and Bax gene expressions.

  9. Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington's disease knockin mice.

    PubMed

    Simmons, Danielle A; Rex, Christopher S; Palmer, Linda; Pandyarajan, Vijay; Fedulov, Vadim; Gall, Christine M; Lynch, Gary

    2009-03-24

    Cognitive problems occur in asymptomatic gene carriers of Huntington's disease (HD), and mouse models of the disease exhibit impaired learning and substantial deficits in the cytoskeletal changes that stabilize long-term potentiation (LTP). The latter effects may be related to the decreased production of brain-derived neurotrophic factor (BDNF) associated with the HD mutation. This study asked whether up-regulating endogenous BDNF levels with an ampakine, a positive modulator of AMPA-type glutamate receptors, rescues plasticity and reduces learning problems in HD (CAG140) mice. Twice-daily injections of a short half-life ampakine normalized BDNF levels, activity-driven actin polymerization in dendritic spines, and LTP stabilization in 8-week-old mutants. Comparable results were obtained in 16-week-old HD mice with more severe LTP deficits. Ampakine treatments had no measurable effect on the decreased locomotor activity observed in the mutants but offset their impairments in long-term memory. Given that ampakines are well tolerated in clinical trials and were effective in this study after brief exposures, these results suggest a novel strategy for chronic treatment of the cognitive difficulties that occur in the early stages of HD.

  10. Sonic Hedgehog Promotes Neurite Outgrowth of Primary Cortical Neurons Through Up-Regulating BDNF Expression.

    PubMed

    He, Weiliang; Cui, Lili; Zhang, Cong; Zhang, Xiangjian; He, Junna; Xie, Yanzhao

    2016-04-01

    Sonic hedgehog (Shh), a secreted glycoprotein factor, can activate the Shh pathway, which has been implicated in neuronal polarization involving neurite outgrowth. However, little evidence is available about the effect of Shh on neurite outgrowth in primary cortical neurons and its potential mechanism. Here, we revealed that Shh increased neurite outgrowth in primary cortical neurons, while the Shh pathway inhibitor (cyclopamine, CPM) partially suppressed Shh-induced neurite outgrowth. Similar results were found for the expressions of Shh and Patched genes in Shh-induced primary cortical neurons. Moreover, Shh increased the levels of brain-derived neurotrophic factor (BDNF) not only in lysates and in culture medium but also in the longest neurites of primary cortical neurons, which was partially blocked by CPM. In addition, blocking of BDNF action suppressed Shh-mediated neurite elongation in primary cortical neurons. In conclusion, these findings suggest that Shh promotes neurite outgrowth in primary cortical neurons at least partially through modulating BDNF expression.

  11. Role of morphine, miR-212/132 and mu opioid receptor in the regulation of Bdnf in zebrafish embryos.

    PubMed

    Jimenez-Gonzalez, Ada; García-Concejo, Adrián; López-Benito, Saray; Gonzalez-Nunez, Verónica; Arévalo, Juan Carlos; Rodriguez, Raquel E

    2016-06-01

    Morphine is one of the first-line therapies for the treatment of pain despite its secondary effects. It modifies the expression of epigenetic factors like miRNAs. In the present study, we analyzed miR-212 and miR-132 and their implication in morphine effects in the zebrafish Central Nervous System (CNS) through the regulation of Bdnf expression. We used control and knock-down zebrafish embryos to assess the effects of morphine in miRNAs 212/132 and mitotic or apoptotic cells by qPCR, immunohistochemistry and TUNEL assay, respectively. Bdnf and TrkB were studied by western blot and through a primary neuron culture. A luciferase assay was performed to confirm the binding of miRNAs 212/132 to mecp2. Morphine exposure decreases miR-212 but upregulates miR-132, as wells as Bdnf and TrkB, and changes the localization of proliferative cells. However, Bdnf expression was downregulated when miRNAs 212/132 and oprm1 were knocked-down. Furthermore, we proved that these miRNAs inhibit mecp2 expression by binding to its mRNA sequence. The described effects were corroborated in a primary neuron culture from zebrafish embryos. We propose a mechanism in which morphine alters the levels of miRNAs 212/132 increasing Bdnf expression through mecp2 inhibition. oprm1 is also directly involved in this regulation. The present work confirms a relationship between the opioid system and neurotrophins and shows a key role of miR-212 and miR-132 on morphine effects through the regulation of Bdnf pathway. miRNAs 212/132 are novel regulators of morphine effects on CNS. Oprm1 controls the normal expression of Bdnf. Copyright © 2016. Published by Elsevier B.V.

  12. Steroid hormones and BDNF.

    PubMed

    Pluchino, N; Russo, M; Santoro, A N; Litta, P; Cela, V; Genazzani, A R

    2013-06-03

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin abundantly expressed in several areas of the central nervous system (CNS) and is known to induce a lasting potentiation of synaptic efficacy, to enhance specific learning and memory processes. BDNF is one of the key molecules modulating brain plasticity and it affects cognitive deficit associated with aging and neurodegenerative disease. Several studies have shown an altered BDNF production and secretion in a variety of neurodegenerative diseases like Alzheimer's and Parkinson's diseases but also in mood disorders like depression, eating disorders and schizophrenia. Plasma BDNF is also a biomarker of impaired memory and general cognitive function in aging women. Gonadal steroids are involved in the regulation of several CNS processes, specifically mood, affective and cognitive functions during fertile life and reproductive aging. These observations lead many scientists to investigate a putative co-regulation between BDNF and gonadal and/or adrenal steroids and their relationship with gender difference in the incidence of mental diseases. This overview aims to summarize the current knowledge on the correlation between BDNF expression/function and both gonadal (progesterone, estrogens, and testosterone) and adrenal hormones (mainly cortisol and dehydroepiandrosterone (DHEA)) with relevance in clinical application.

  13. Muscle Contraction Regulates BDNF/TrkB Signaling to Modulate Synaptic Function through Presynaptic cPKCα and cPKCβI.

    PubMed

    Hurtado, Erica; Cilleros, Víctor; Nadal, Laura; Simó, Anna; Obis, Teresa; Garcia, Neus; Santafé, Manel M; Tomàs, Marta; Halievski, Katherine; Jordan, Cynthia L; Lanuza, Maria A; Tomàs, Josep

    2017-01-01

    The neurotrophin brain-derived neurotrophic factor (BDNF) acts via tropomyosin-related kinase B receptor (TrkB) to regulate synapse maintenance and function in the neuromuscular system. The potentiation of acetylcholine (ACh) release by BDNF requires TrkB phosphorylation and Protein Kinase C (PKC) activation. BDNF is secreted in an activity-dependent manner but it is not known if pre- and/or postsynaptic activities enhance BDNF expression in vivo at the neuromuscular junction (NMJ). Here, we investigated whether nerve and muscle cell activities regulate presynaptic conventional PKC (cPKCα and βI) via BDNF/TrkB signaling to modulate synaptic strength at the NMJ. To differentiate the effects of presynaptic activity from that of muscle contraction, we stimulated the phrenic nerve of rat diaphragms (1 Hz, 30 min) with or without contraction (abolished by μ-conotoxin GIIIB). Then, we performed ELISA, Western blotting, qRT-PCR, immunofluorescence and electrophysiological techniques. We found that nerve-induced muscle contraction: (1) increases the levels of mature BDNF protein without affecting pro-BDNF protein or BDNF mRNA levels; (2) downregulates TrkB.T1 without affecting TrkB.FL or p75 neurotrophin receptor (p75) levels; (3) increases presynaptic cPKCα and cPKCβI protein level through TrkB signaling; and (4) enhances phosphorylation of cPKCα and cPKCβI. Furthermore, we demonstrate that cPKCβI, which is exclusively located in the motor nerve terminals, increases activity-induced acetylcholine release. Together, these results show that nerve-induced muscle contraction is a key regulator of BDNF/TrkB signaling pathway, retrogradely activating presynaptic cPKC isoforms (in particular cPKCβI) to modulate synaptic function. These results indicate that a decrease in neuromuscular activity, as occurs in several neuromuscular disorders, could affect the BDNF/TrkB/PKC pathway that links pre- and postsynaptic activity to maintain neuromuscular function.

  14. Neuroprotective effects of curcumin alleviate lumbar intervertebral disc degeneration through regulating the expression of iNOS, COX‑2, TGF‑β1/2, MMP‑9 and BDNF in a rat model.

    PubMed

    Hu, Yuan; Tang, Jin-Shu; Hou, Shu-Xun; Shi, Xiu-Xiu; Qin, Jiang; Zhang, Tie-Song; Wang, Xiao-Jing

    2017-09-12

    Curcumin is a natural product with antimutagenic, antitumor, antioxidant and neuroprotective properties. However, to the best of our knowledge, curcumin has yet to be investigated for the treatment of lumbar intervertebral disc degeneration LIDD). The aim of the present study was to investigate whether curcumin can alleviate LIDD through regulating the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)‑2, transforming growth factor (TGF)‑β1/2, matrix metalloproteinase (MMP)‑9 and brain‑derived neurotrophic factor (BDNF) in a rat model of LIDD. The results of the present study suggest that pretreatment with curcumin can prevent the development of LIDD in rats. It was revealed that treatment with curcumin significantly reduced interleukin (IL)‑1β and IL‑6, iNOS, COX‑2 and MMP‑9 levels in rats with LIDD. In addition, treatment with curcumin reduced the mRNA expression levels of TGF‑β1 and TGF‑β2, whereas it increased the mRNA expression levels of BDNF in rats with LIDD. In conclusion, the present findings indicate that curcumin may exert protective effects on LIDD development, exerting its action through the regulation of iNOS, COX‑2, TGF‑β1/2, MMP‑9 and BDNF.

  15. BDNF — EDRN Public Portal

    Cancer.gov

    BDNF (brain-derived neurotrophic factor) is a member of the nerve growth factor family. It is induced by cortical neurons, and is necessary for survival of striatal neurons in the brain. During development, BDNF promotes the survival and differentiation of selected neuronal populations of the peripheral and central nervous systems. Decreased expression of the BDNF gene is seen in both Alzheimer's and Huntington disease patients. BDNF may play a role in the regulation of stress response and in the biology of mood disorders. Multiple transcript variants encoding distinct isoforms have been described for this gene.

  16. Persistent neural activity in the prefrontal cortex: a mechanism by which BDNF regulates working memory?

    PubMed

    Galloway, Evan M; Woo, Newton H; Lu, Bai

    2008-01-01

    Working memory is the ability to maintain representations of task-relevant information for short periods of time to guide subsequent actions or make decisions. Neurons of the prefrontal cortex exhibit persistent firing during the delay period of working memory tasks. Despite extensive studies, the mechanisms underlying this persistent neural activity remain largely obscure. The neurotransmitter systems of dopamine, NMDA, and GABA have been implicated, but further investigations are necessary to establish their precise roles and relationships. Recent research has suggested a new component: brain-derived neurotrophic factor (BDNF) and its high-affinity receptor, TrkB. We review the research on persistent activity and suggest that BDNF/TrkB signaling in a distinct class of interneurons plays an important role in organizing persistent neural activity at the single-neuron and network levels.

  17. VGF and Its C-Terminal Peptide TLQP-62 Regulate Memory Formation in Hippocampus via a BDNF-TrkB-Dependent Mechanism.

    PubMed

    Lin, Wei-Jye; Jiang, Cheng; Sadahiro, Masato; Bozdagi, Ozlem; Vulchanova, Lucy; Alberini, Cristina M; Salton, Stephen R

    2015-07-15

    Regulated expression and secretion of BDNF, which activates TrkB receptor signaling, is known to play a critical role in cognition. Identification of additional modulators of cognitive behavior that regulate activity-dependent BDNF secretion and/or potentiate TrkB receptor signaling would therefore be of considerable interest. In this study, we show in the adult mouse hippocampus that expression of the granin family gene Vgf and secretion of its C-terminal VGF-derived peptide TLQP-62 are required for fear memory formation. We found that hippocampal VGF expression and TLQP-62 levels were transiently induced after fear memory training and that sequestering secreted TLQP-62 peptide in the hippocampus immediately after training impaired memory formation. Reduced VGF expression was found to impair learning-evoked Rac1 induction and phosphorylation of the synaptic plasticity markers cofilin and synapsin in the adult mouse hippocampus. Moreover, TLQP-62 induced acute, transient activation of the TrkB receptor and subsequent CREB phosphorylation in hippocampal slice preparations and its administration immediately after training enhanced long-term memory formation. A critical role of BDNF-TrkB signaling as a downstream effector in VGF/TLQP-62-mediated memory consolidation was further revealed by posttraining activation of BDNF-TrkB signaling, which rescued impaired fear memory resulting from hippocampal administration of anti-VGF antibodies or germline VGF ablation in mice. We propose that VGF is a critical component of a positive BDNF-TrkB regulatory loop and, upon its induced expression by memory training, the TLQP-62 peptide rapidly reinforces BDNF-TrkB signaling, regulating hippocampal memory consolidation. Identification of the cellular and molecular mechanisms that regulate long-term memory formation and storage may provide alternative treatment modalities for degenerative and neuropsychiatric memory disorders. The neurotrophin BDNF plays a prominent role in cognitive

  18. VGF and Its C-Terminal Peptide TLQP-62 Regulate Memory Formation in Hippocampus via a BDNF-TrkB-Dependent Mechanism

    PubMed Central

    Lin, Wei-Jye; Jiang, Cheng; Sadahiro, Masato; Bozdagi, Ozlem; Vulchanova, Lucy; Alberini, Cristina M.

    2015-01-01

    Regulated expression and secretion of BDNF, which activates TrkB receptor signaling, is known to play a critical role in cognition. Identification of additional modulators of cognitive behavior that regulate activity-dependent BDNF secretion and/or potentiate TrkB receptor signaling would therefore be of considerable interest. In this study, we show in the adult mouse hippocampus that expression of the granin family gene Vgf and secretion of its C-terminal VGF-derived peptide TLQP-62 are required for fear memory formation. We found that hippocampal VGF expression and TLQP-62 levels were transiently induced after fear memory training and that sequestering secreted TLQP-62 peptide in the hippocampus immediately after training impaired memory formation. Reduced VGF expression was found to impair learning-evoked Rac1 induction and phosphorylation of the synaptic plasticity markers cofilin and synapsin in the adult mouse hippocampus. Moreover, TLQP-62 induced acute, transient activation of the TrkB receptor and subsequent CREB phosphorylation in hippocampal slice preparations and its administration immediately after training enhanced long-term memory formation. A critical role of BDNF-TrkB signaling as a downstream effector in VGF/TLQP-62-mediated memory consolidation was further revealed by posttraining activation of BDNF-TrkB signaling, which rescued impaired fear memory resulting from hippocampal administration of anti-VGF antibodies or germline VGF ablation in mice. We propose that VGF is a critical component of a positive BDNF-TrkB regulatory loop and, upon its induced expression by memory training, the TLQP-62 peptide rapidly reinforces BDNF-TrkB signaling, regulating hippocampal memory consolidation. SIGNIFICANCE STATEMENT Identification of the cellular and molecular mechanisms that regulate long-term memory formation and storage may provide alternative treatment modalities for degenerative and neuropsychiatric memory disorders. The neurotrophin BDNF plays a

  19. Developmental fluoxetine exposure increases behavioral despair and alters epigenetic regulation of the hippocampal BDNF gene in adult female offspring.

    PubMed

    Boulle, Fabien; Pawluski, Jodi L; Homberg, Judith R; Machiels, Barbie; Kroeze, Yvet; Kumar, Neha; Steinbusch, Harry W M; Kenis, Gunter; van den Hove, Daniel L A

    2016-04-01

    A growing number of infants are exposed to selective serotonin reuptake inhibitor (SSRI) medications during the perinatal period. Perinatal exposure to SSRI medications alter neuroplasticity and increase depressive- and anxiety-related behaviors, particularly in male offspring as little work has been done in female offspring to date. The long-term effects of SSRI on development can also differ with previous exposure to prenatal stress, a model of maternal depression. Because of the limited work done on the role of developmental SSRI exposure on neurobehavioral outcomes in female offspring, the aim of the present study was to investigate how developmental fluoxetine exposure affects anxiety and depression-like behavior, as well as the regulation of hippocampal brain-derived neurotrophic factor (BDNF) signaling in the hippocampus of adult female offspring. To do this female Sprague-Dawley rat offspring were exposed to prenatal stress and fluoxetine via the dam, for a total of four groups of female offspring: 1) No Stress+Vehicle, 2) No Stress+Fluoxetine, 3) Prenatal Stress+Vehicle, and 4) Prenatal Stress+Fluoxetine. Primary results show that, in adult female offspring, developmental SSRI exposure significantly increases behavioral despair measures on the forced swim test, decreases hippocampal BDNF exon IV mRNA levels, and increases levels of the repressive histone 3 lysine 27 tri-methylated mark at the corresponding promoter. There was also a significant negative correlation between hippocampal BDNF exon IV mRNA levels and immobility in the forced swim test. No effects of prenatal stress or developmental fluoxetine exposure were seen on tests of anxiety-like behavior. This research provides important evidence for the long-term programming effects of early-life exposure to SSRIs on female offspring, particularily with regard to affect-related behaviors and their underlying molecular mechanisms.

  20. Age-related changes of NGF, BDNF, parvalbumin and neuronal nitric oxide synthase immunoreactivity in the mouse hippocampal CA1 sector.

    PubMed

    Hayakawa, Natsumi; Abe, Manami; Eto, Risa; Kato, Hiroyuki; Araki, Tsutomu

    2008-06-01

    We investigated the age-related alterations in nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), parvalbumin and neuronal nitric oxide synthase (nNOS) immunoreactivity of the mouse hippocampal CA1 sector. NGF and BDNF immunoreactivity was unchanged in the hippocampal CA1 pyramidal neurons from 2 to 50-59 weeks of birth. In contrast, a significant increase in the NGF and BDNF immunoreactivity was observed in glial cells of the hippocampal CA1 sector from 40-42 to 50-59 weeks of birth. On the other hand, the number of parvalbumin- and nNOS-positive interneurons was unchanged in the hippocampal CA1 sector during aging processes, except for a significant decrease of nNOS-positive interneurons 2 weeks of birth. Our results indicate that NGF and BDNF immunoreactivity was unaltered in the hippocampal CA1 pyramidal neurons during aging processes. In contrast, a significant increase in the NGF and BDNF immunoreactivity was observed in glial cells of the hippocampal CA1 sector during aging processes. The present study also shows that the number of parvalbumin- and nNOS-positive interneurons was unchanged in the hippocampal CA1 sector during aging processes, except for a significant decrease of nNOS-positive interneurons 2 weeks of birth. These results demonstrate that the expression of glial NGF and BDNF may play a key role for helping survival and maintenance of pyramidal neurons and neuronal functions in the hippocampal CA1 sector during aging processes. Furthermore, our findings suggest that parvalbumin- and nNOS-positive interneurons in the hippocampal CA1 sector are resistant to aging processes. Moreover, our findings suggest that nitric oxide synthesized by the nNOS may play some role for neuronal growth during postnatal development.

  1. Activity-Dependent Bidirectional Regulation of GAD Expression in a Homeostatic Fashion Is Mediated by BDNF-Dependent and Independent Pathways.

    PubMed

    Hanno-Iijima, Yoko; Tanaka, Masami; Iijima, Takatoshi

    2015-01-01

    Homeostatic synaptic plasticity, or synaptic scaling, is a mechanism that tunes neuronal transmission to compensate for prolonged, excessive changes in neuronal activity. Both excitatory and inhibitory neurons undergo homeostatic changes based on synaptic transmission strength, which could effectively contribute to a fine-tuning of circuit activity. However, gene regulation that underlies homeostatic synaptic plasticity in GABAergic (GABA, gamma aminobutyric) neurons is still poorly understood. The present study demonstrated activity-dependent dynamic scaling in which NMDA-R (N-methyl-D-aspartic acid receptor) activity regulated the expression of GABA synthetic enzymes: glutamic acid decarboxylase 65 and 67 (GAD65 and GAD67). Results revealed that activity-regulated BDNF (brain-derived neurotrophic factor) release is necessary, but not sufficient, for activity-dependent up-scaling of these GAD isoforms. Bidirectional forms of activity-dependent GAD expression require both BDNF-dependent and BDNF-independent pathways, both triggered by NMDA-R activity. Additional results indicated that these two GAD genes differ in their responsiveness to chronic changes in neuronal activity, which could be partially caused by differential dependence on BDNF. In parallel to activity-dependent bidirectional scaling in GAD expression, the present study further observed that a chronic change in neuronal activity leads to an alteration in neurotransmitter release from GABAergic neurons in a homeostatic, bidirectional fashion. Therefore, the differential expression of GAD65 and 67 during prolonged changes in neuronal activity may be implicated in some aspects of bidirectional homeostatic plasticity within mature GABAergic presynapses.

  2. Activity-Dependent Bidirectional Regulation of GAD Expression in a Homeostatic Fashion Is Mediated by BDNF-Dependent and Independent Pathways

    PubMed Central

    Hanno-Iijima, Yoko; Tanaka, Masami; Iijima, Takatoshi

    2015-01-01

    Homeostatic synaptic plasticity, or synaptic scaling, is a mechanism that tunes neuronal transmission to compensate for prolonged, excessive changes in neuronal activity. Both excitatory and inhibitory neurons undergo homeostatic changes based on synaptic transmission strength, which could effectively contribute to a fine-tuning of circuit activity. However, gene regulation that underlies homeostatic synaptic plasticity in GABAergic (GABA, gamma aminobutyric) neurons is still poorly understood. The present study demonstrated activity-dependent dynamic scaling in which NMDA-R (N-methyl-D-aspartic acid receptor) activity regulated the expression of GABA synthetic enzymes: glutamic acid decarboxylase 65 and 67 (GAD65 and GAD67). Results revealed that activity-regulated BDNF (brain-derived neurotrophic factor) release is necessary, but not sufficient, for activity-dependent up-scaling of these GAD isoforms. Bidirectional forms of activity-dependent GAD expression require both BDNF-dependent and BDNF-independent pathways, both triggered by NMDA-R activity. Additional results indicated that these two GAD genes differ in their responsiveness to chronic changes in neuronal activity, which could be partially caused by differential dependence on BDNF. In parallel to activity-dependent bidirectional scaling in GAD expression, the present study further observed that a chronic change in neuronal activity leads to an alteration in neurotransmitter release from GABAergic neurons in a homeostatic, bidirectional fashion. Therefore, the differential expression of GAD65 and 67 during prolonged changes in neuronal activity may be implicated in some aspects of bidirectional homeostatic plasticity within mature GABAergic presynapses. PMID:26241953

  3. Opposing roles of synaptic and extrasynaptic NMDA receptors in neuronal calcium signalling and BDNF gene regulation.

    PubMed

    Vanhoutte, Peter; Bading, Hilmar

    2003-06-01

    Neuronal responses to electrical activity-induced calcium signals are specified by the localization of the calcium entry site and the spatial properties of the calcium transient. Calcium flux through NMDA receptors located in the synapse initiates changes in synaptic efficacy and promotes pro-survival events, whereas calcium flux through extrasynaptic NMDA receptors is coupled to cell death pathways. The dialogue between the synaptic NMDA receptors and the nucleus is also modulated by extrasynaptic NMDA receptors, which shut down activity of CRE-binding protein (CREB) and antagonize the increase in brain-derived neurotrophic factor (BDNF) expression induced by synaptic NMDA receptors. The specification of the biological response by the localization of the receptor activated is a new concept in neuronal calcium signalling that can explain many of the opposing roles of NMDA receptors.

  4. Positive feedback regulation between gamma-aminobutyric acid type A (GABA(A)) receptor signaling and brain-derived neurotrophic factor (BDNF) release in developing neurons.

    PubMed

    Porcher, Christophe; Hatchett, Caroline; Longbottom, Rebecca E; McAinch, Kristina; Sihra, Talvinder S; Moss, Stephen J; Thomson, Alex M; Jovanovic, Jasmina N

    2011-06-17

    During the early development of the nervous system, γ-aminobutyric acid (GABA) type A receptor (GABA(A)R)-mediated signaling parallels the neurotrophin/tropomyosin-related kinase (Trk)-dependent signaling in controlling a number of processes from cell proliferation and migration, via dendritic and axonal outgrowth, to synapse formation and plasticity. Here we present the first evidence that these two signaling systems regulate each other through a complex positive feedback mechanism. We first demonstrate that GABA(A)R activation leads to an increase in the cell surface expression of these receptors in cultured embryonic cerebrocortical neurons, specifically at the stage when this activity causes depolarization of the plasma membrane and Ca(2+) influx through L-type voltage-gated Ca(2+) channels. We further demonstrate that GABA(A)R activity triggers release of the brain-derived neurotrophic factor (BDNF), which, in turn by activating TrkB receptors, mediates the observed increase in cell surface expression of GABA(A)Rs. This BDNF/TrkB-dependent increase in surface levels of GABA(A)Rs requires the activity of phosphoinositide 3-kinase (PI3K) and protein kinase C (PKC) and does not involve the extracellular signal-regulated kinase (ERK) 1/2 activity. The increase in GABA(A)R surface levels occurs due to an inhibition of the receptor endocytosis by BDNF, whereas the receptor reinsertion into the plasma membrane remains unaltered. Thus, GABA(A)R activity is a potent regulator of the BDNF release during neuronal development, and at the same time, it is strongly enhanced by the activity of the BDNF/TrkB/PI3K/PKC signaling pathway.

  5. Long noncoding RNA BDNF-AS regulates ketamine-induced neurotoxicity in neural stem cell derived neurons.

    PubMed

    Zheng, Xiaozhu; Lin, Chunshui; Li, Yuhong; Ye, Jing; Zhou, Jiali; Guo, Peipei

    2016-08-01

    Ketamine is an anesthetic commonly used in both humans and animals. Emerging evidence has demonstrated that ketamine may induce neurotoxicity in neural stem cell-derived neurons. In this work, we investigated whether long noncoding RNA (lncRNA) Brain derived neurotrophic factor antisense (BDNF-AS) was involved in ketamine-induced neurotoxicity in differentiation of mouse embryonic neural stem cells. Mouse embryonic neural stem cells were differentiated in vitro, and treated with ketamine. The corresponding change in gene expression levels of BDNF and BDNF-AS were assessed by qRT-PCR. BDNF-AS was subsequently downregulated by siRNA. And its effect on protecting neuronal apoptosis, promoting neurite regrowth, and activating TrkB signaling pathways were assessed by TUNEL assay, neurite outgrowth assay, and western blot assay, respectively. In ketamine-injured mouse embryonic neural stem cell-derived neurons, BDNF was downregulated, whereas BDNF-AS was upregulated in dose-dependent manner. SiRNA-mediated BDNF-AS downregulation ameliorated neuronal apoptosis, induced neurite outgrowth, and phosphorylated TrkB signaling pathway after ketamine-induce neurotoxicity in mouse embryonic neural stem cell-derived neurons. Inhibition of BDNF-AS is a novel method to protect ketamine-induced neurotoxicity in mouse embryonic neural stem cell-derived neurons, very likely through the activation of TrkB signaling pathway. Copyright © 2016. Published by Elsevier Masson SAS.

  6. EGCG ameliorates high-fat- and high-fructose-induced cognitive defects by regulating the IRS/AKT and ERK/CREB/BDNF.

    PubMed

    Mi, Yashi; Qi, Guoyuan; Fan, Rong; Qiao, Qinglian; Sun, Yali; Gao, Yuqi; Liu, Xuebo

    2017-07-24

    Obesity, which is caused by an energy imbalance between calorie intake and consumption, has become a major international health burden. Obesity increases the risk of insulin resistance and age-related cognitive decline, accompanied by peripheral inflammation. (-)-Epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, possesses antioxidant, anti-inflammatory, and cardioprotective activities; however, few reports have focused on its potential effect on cognitive disorders. In this study, our goal was to investigate the protective effects of EGCG treatment on insulin resistance and memory impairment induced by a high-fat and high-fructose diet (HFFD). We randomly assigned 3-mo-old C57BL/6J mice to 3 groups with different diets: control group, HFFD group, and HFFD plus EGCG group. Memory loss was assessed by using the Morris water maze test, during which EGCG was observed to prevent HFFD-elicited memory impairment and neuronal loss. Consistent with these results, EGCG attenuated HFFD-induced neuronal damage. Of note, EGCG significantly ameliorated insulin resistance and cognitive disorder by up-regulating the insulin receptor substrate-1 (IRS-1)/AKT and ERK/cAMP response element binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling pathways. Long-term HFFD-triggered neuroinflammation was restored by EGCG supplementation by inhibiting the MAPK and NF-κB pathways, as well as the expression of inflammatory mediators, such as TNF-α. EGCG also reversed high glucose and glucosamine-induced insulin resistance in SH-SY5Y neuronal cells by improving the oxidized cellular status and mitochondrial function. To our knowledge, this study is the first to provide compelling evidence that the nutritional compound EGCG has the potential to ameliorate HFFD-triggered learning and memory loss.-Mi, Y., Qi, G., Fan, R., Qiao, Q., Sun, Y., Gao, Y., Liu, X. EGCG ameliorates high-fat- and high-fructose-induced cognitive defects by regulating the IRS/AKT and

  7. Neuroprotective effects of various doses of topiramate against methylphenidate-induced oxidative stress and inflammation in isolated rat amygdala: the possible role of CREB/BDNF signaling pathway.

    PubMed

    Motaghinejad, Majid; Motevalian, Manijeh; Falak, Reza; Heidari, Mansour; Sharzad, Mahshid; Kalantari, Elham

    2016-12-01

    Methylphenidate (MPH) abuse damages brain cells. The neuroprotective effects of topiramate (TPM) have been reported previously, but its exact mechanism of action still remains unclear. This study investigated the in vivo role of various doses of TPM in the protection of rat amygdala cells against methylphenidate-induced oxidative stress and inflammation. Seventy adult male rats were divided into seven groups. Groups 1 and 2 received normal saline (0.7 ml/rat) and MPH (10 mg/kg), respectively, for 21 days. Groups 3, 4, 5, 6, and 7 were concurrently treated with MPH (10 mg/kg) and TPM (10, 30, 50, 70, and 100 mg/kg), respectively, for 21 days. elevated plus maze (EPM) was used to assess motor activity disturbances. In addition, oxidative, antioxidantand inflammatory factors and CREB, Ak1, CAMK4, MAPK3, PKA, BDNF, and c FOS gene levels were measured by RT-PCR, and also, CREB and BDNF protein levels were measured by WB in isolated amygdalae. MPH significantly disturbed motor activity and TPM (70 and 100 mg/kg) neutralized its effects. MPH significantly increased lipid peroxidation, mitochondrial GSSG levels and IL-1β and TNF-α level and CAMK4 gene expression in isolated amygdala cells. In contrast, superoxide dismutase, glutathione peroxidase, and glutathione reductase activities and CREB, BDNF Ak1, MAPK3, PKA, BDNF, and c FOS expression significantly decreased. The various doses of TPM attenuated these effects of MPH. It seems that TPM can be used as a neuroprotective agent and is a good candidate against MPH-induced neurodegeneration.

  8. Curcumin Alleviates Neuropathic Pain by Inhibiting p300/CBP Histone Acetyltransferase Activity-Regulated Expression of BDNF and Cox-2 in a Rat Model

    PubMed Central

    Zhu, Xiaoyan; Li, Qian; Chang, Ruimin; Yang, Dong; Song, Zongbing; Guo, Qulian; Huang, Changsheng

    2014-01-01

    The management of neuropathic pain is still a major challenge because of its unresponsiveness to most common treatments. Curcumin has been reported to play an active role in the treatment of various neurological disorders, such as neuropathic pain. Curcumin has long been recognized as a p300/CREB-binding protein (CBP) inhibitor of histone acetyltransferase (HAT) activity. However, this mechanism has never been investigated for the treatment of neuropathic pain with curcumin. The aim of the present study was to investigate the anti-nociceptive role of curcumin in the chronic constriction injury (CCI) rat model of neuropathic pain. Furthermore, with this model we investigated the effect of curcumin on P300/CBP HAT activity-regulated release of the pro-nociceptive molecules, brain-derived neurotrophic factor (BDNF) and cyclooxygenase-2 (Cox-2). Treatment with 40 and 60 mg/kg body weight curcumin for 7 consecutive days significantly attenuated CCI-induced thermal hyperalgesia and mechanical allodynia, whereas 20 mg/kg curcumin showed no significant analgesic effect. Chromatin immunoprecipitation analysis revealed that curcumin dose-dependently reduced the recruitment of p300/CBP and acetyl-Histone H3/acetyl-Histone H4 to the promoter of BDNF and Cox-2 genes. A similar dose-dependent decrease of BDNF and Cox-2 in the spinal cord was also observed after curcumin treatment. These results indicated that curcumin exerted a therapeutic role in neuropathic pain by down-regulating p300/CBP HAT activity-mediated gene expression of BDNF and Cox-2. PMID:24603592

  9. 17β-Estradiol regulates histone alterations associated with memory consolidation and increases Bdnf promoter acetylation in middle-aged female mice.

    PubMed

    Fortress, Ashley M; Kim, Jaekyoon; Poole, Rachel L; Gould, Thomas J; Frick, Karyn M

    2014-09-01

    Histone acetylation is essential for hippocampal memory formation in young adult rodents. Although dysfunctional histone acetylation has been associated with age-related memory decline in male rodents, little is known about whether histone acetylation is altered by aging in female rodents. In young female mice, the ability of 17β-estradiol (E2) to enhance object recognition memory consolidation requires histone H3 acetylation in the dorsal hippocampus. However, the extent to which histone acetylation is regulated by E2 in middle-aged females is unknown. The mnemonic benefits of E2 in aging females appear to be greatest in middle age, and so pinpointing the molecular mechanisms through which E2 enhances memory at this age could lead to the development of safer and more effective treatments for maintaining memory function without the side effects of current therapies. Here, we show that dorsal hippocampal infusion of E2 rapidly enhanced object recognition and spatial memory, and increased histone H3 acetylation in the dorsal hippocampus, while also significantly reducing levels of histone deacetylase (HDAC2 and HDAC3) proteins. E2 specifically increased histone H3 acetylation at Bdnf promoters pII and pIV in the dorsal hippocampus of both young and middle-aged mice, despite age-related decreases in pI and pIV acetylation. Furthermore, levels of mature BDNF and pro-BDNF proteins in the dorsal hippocampus were increased by E2 in middle-aged females. Together, these data suggest that the middle-aged female dorsal hippocampus remains epigenetically responsive to E2, and that E2 may enhance memory in middle-aged females via epigenetic regulation of Bdnf.

  10. Flavonoid Chrysin prevents age-related cognitive decline via attenuation of oxidative stress and modulation of BDNF levels in aged mouse brain.

    PubMed

    Souza, Leandro Cattelan; Antunes, Michelle Silva; Filho, Carlos Borges; Del Fabbro, Lucian; de Gomes, Marcelo Gomes; Goes, André Tiago Rossito; Donato, Franciele; Prigol, Marina; Boeira, Silvana Peterini; Jesse, Cristiano R

    2015-07-01

    In this study, the effect of Chrysin (5,7-dihydroxyflavone), an important member of the flavonoid family, on memory impairment, oxidative stress and BDNF reduction generated by aging in mice were investigated. Young and aged mice were treated daily per 60days with Chrysin (1 and 10mg/kg; per oral, p.o.) or veichle (10ml/kg; p.o.). Mice were trained and tested in Morris Water Maze task. After the behavioural test, the levels of reactive species (RS), the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), as well as the activity of Na(+), K(+)-ATPase and the levels of brain-derived neurotrophic factor (BDNF) were determined in the prefrontal cortex (PFC) and hippocampus (HC) of mice. Results demonstrated that the age-related memory decline was partially protected by Chrysin at a dose of 1mg/kg, and normalized at the dose of 10mg/kg (p<0.001). Treatment with Chrysin significantly attenuated the increase of RS levels and the inhibition of SOD, CAT and GPx activities of aged mice. Inhibition of Na(+), K(+)-ATPase activity in PFC and HP of aged mice was also attenuated by Chrysin treatment. Moreover, Chrysin marked mitigated the decrease of BDNF levels in the PFC and HC of aged mice. These results demonstrated that flavonoid Chrysin, an antioxidant compound, was able to prevent age-associated memory probably by their free radical scavenger action and modulation of BDNF production. Thus, this study indicates that Chrysin may represent a new pharmacological approach to alleviate the age-related declines during normal age, acting as an anti-aging agent.

  11. Two standardized fractions of Gardenia jasminoides Ellis with rapid antidepressant effects are differentially associated with BDNF up-regulation in the hippocampus.

    PubMed

    Ren, Li; Tao, Weiwei; Zhang, Hailou; Xue, Wenda; Tang, Juanjuan; Wu, Ruyan; Xia, Baomei; Wu, Haoxing; Chen, Gang

    2016-07-01

    Gardenia jasminoides Ellis (GJ) is one of the five constituents of Yueju pill, a Traditional Chinese Medicine for treatment of syndromes associated with mood disorders. Recently, preclinical and clinical studies suggest that Yueju pill confers rapid antidepressant effects. GJ is identified as the constituent primary for Yueju pill's rapid antidepressant effects. GJ's antidepressant action is temporally associated with up-regulated expression of brain-derived neurotrophic factor (BDNF) in the hippocampus. The present study aimed to identify chemical fractions responsible for the rapid antidepressant efficacy of GJ and its association with BDNF signaling. Four fractions of GJ were extracted using standardized procedure. The four fractions were screened for rapid antidepressant potential, using the behavioral paradigm of forced swimming test (FST) and tail suspension test (TST) assessed at 24h post a single administration. A single dose of the putatively effective fractions was further tested in mice exposed to chronic mild stress (CMS), followed with a comprehensive behavioral testing including TST, FST, sucrose preference test (SPT), and novelty suppressed-feeding (NSF). To test the association of BDNF signaling with rapid antidepressant effects of effective factions, the expressions of BDNF and its receptor tropomyosin receptor kinase B (TrkB) in the hippocampus were assessed at different times post a single administration of effective fractions. Both petroleum ether (GJ-PE) and n-butyl alcohol fraction (GJ-BO) fractions of GJ displayed rapid antidepressant potential in the FST. In the TST, the antidepressant effects of GJ-PE lasted for a longer time than GJ-BO. Acute administration of either GJ-PE or GJ-BO significantly reversed the behavioral deficits in the tests of TST, FST, SPT and NSF in chronically stressed mice, confirming both fractions conferred rapid antidepressant efficacy. Interestingly, GJ-PE, but not GJ-BO, increased the expression of BDNF and Trk

  12. Acute stress alters transcript expression pattern and reduces processing of proBDNF to mature BDNF in Dicentrarchus labrax

    PubMed Central

    2010-01-01

    Background Stress involves alterations of brain functioning that may precipitate to mood disorders. The neurotrophin Brain Derived Neurotrophic Factor (BDNF) has recently been involved in stress-induced adaptation. BDNF is a key regulator of neuronal plasticity and adaptive processes. Regulation of BDNF is complex and may reflect not only stress-specific mechanisms but also hormonal and emotional responses. For this reason we used, as an animal model of stress, a fish whose brain organization is very similar to that of higher vertebrates, but is generally considered free of emotional reactions. Results We provide a comprehensive characterization of BDNF gene in the Dicentrarchus labrax and its transcriptional, translational and post-translational regulation following acute stress. While total BDNF mRNA levels are unchanged, BDNF transcripts 1c and 1d resulted down regulated after acute stress. Acute stress induces also a significant increase in proBDNF levels and reduction in mature BDNF suggesting altered regulation of proBDNF proteolytic processing. Notably, we provide here the first evidence that fishes possess a simplified proteolytic regulation of BDNF since the pro28Kda form, generated by the SKI-1 protease in mammals, is absent in fishes because the cleavage site has first emerged in reptilians. Finally, we show that the proBDNF/totBDNF ratio is a highly predictive novel quantitative biomarker to detect stress in fishes with sensitivity = 100%, specificity = 87%, and Negative Predictive Value = 100%. Conclusion The high predictivity of proBDNF/totBDNF ratio for stress in lower vertebrates indicates that processing of BDNF is a central mechanism in adaptation to stress and predicts that a similar regulation of pro/mature BDNF has likely been conserved throughout evolution of vertebrates from fish to man. PMID:20074340

  13. Acute stress alters transcript expression pattern and reduces processing of proBDNF to mature BDNF in Dicentrarchus labrax.

    PubMed

    Tognoli, Chiara; Rossi, Federica; Di Cola, Francesco; Baj, Gabriele; Tongiorgi, Enrico; Terova, Genciana; Saroglia, Marco; Bernardini, Giovanni; Gornati, Rosalba

    2010-01-14

    Stress involves alterations of brain functioning that may precipitate to mood disorders. The neurotrophin Brain Derived Neurotrophic Factor (BDNF) has recently been involved in stress-induced adaptation. BDNF is a key regulator of neuronal plasticity and adaptive processes. Regulation of BDNF is complex and may reflect not only stress-specific mechanisms but also hormonal and emotional responses. For this reason we used, as an animal model of stress, a fish whose brain organization is very similar to that of higher vertebrates, but is generally considered free of emotional reactions. We provide a comprehensive characterization of BDNF gene in the Dicentrarchus labrax and its transcriptional, translational and post-translational regulation following acute stress. While total BDNF mRNA levels are unchanged, BDNF transcripts 1c and 1d resulted down regulated after acute stress. Acute stress induces also a significant increase in proBDNF levels and reduction in mature BDNF suggesting altered regulation of proBDNF proteolytic processing. Notably, we provide here the first evidence that fishes possess a simplified proteolytic regulation of BDNF since the pro28Kda form, generated by the SKI-1 protease in mammals, is absent in fishes because the cleavage site has first emerged in reptilians. Finally, we show that the proBDNF/totBDNF ratio is a highly predictive novel quantitative biomarker to detect stress in fishes with sensitivity = 100%, specificity = 87%, and Negative Predictive Value = 100%. The high predictivity of proBDNF/totBDNF ratio for stress in lower vertebrates indicates that processing of BDNF is a central mechanism in adaptation to stress and predicts that a similar regulation of pro/mature BDNF has likely been conserved throughout evolution of vertebrates from fish to man.

  14. Anodal transcranial direct current stimulation boosts synaptic plasticity and memory in mice via epigenetic regulation of Bdnf expression

    PubMed Central

    Podda, Maria Vittoria; Cocco, Sara; Mastrodonato, Alessia; Fusco, Salvatore; Leone, Lucia; Barbati, Saviana Antonella; Colussi, Claudia; Ripoli, Cristian; Grassi, Claudio

    2016-01-01

    The effects of transcranial direct current stimulation (tDCS) on brain functions and the underlying molecular mechanisms are yet largely unknown. Here we report that mice subjected to 20-min anodal tDCS exhibited one-week lasting increases in hippocampal LTP, learning and memory. These effects were associated with enhanced: i) acetylation of brain-derived neurotrophic factor (Bdnf) promoter I; ii) expression of Bdnf exons I and IX; iii) Bdnf protein levels. The hippocampi of stimulated mice also exhibited enhanced CREB phosphorylation, pCREB binding to Bdnf promoter I and recruitment of CBP on the same regulatory sequence. Inhibition of acetylation and blockade of TrkB receptors hindered tDCS effects at molecular, electrophysiological and behavioral levels. Collectively, our findings suggest that anodal tDCS increases hippocampal LTP and memory via chromatin remodeling of Bdnf regulatory sequences leading to increased expression of this gene, and support the therapeutic potential of tDCS for brain diseases associated with impaired neuroplasticity. PMID:26908001

  15. Mature BDNF, but not proBDNF, reduces excitability of fast-spiking interneurons in mouse dentate gyrus.

    PubMed

    Holm, Mai Marie; Nieto-Gonzalez, Jose Luis; Vardya, Irina; Vaegter, Christian Bjerggaard; Nykjaer, Anders; Jensen, Kimmo

    2009-10-07

    Mature BDNF and its precursor proBDNF may both be secreted to exert opposite effects on synaptic plasticity in the hippocampus. However, it is unknown how proBDNF and mature BDNF affect the excitability of GABAergic interneurons and thereby regulate GABAergic inhibition. We made recordings of GABAergic spontaneous IPSCs (sIPSCs) in mouse dentate gyrus granule cells and found that chronic or acute BDNF reductions led to large increases in the sIPSC frequencies, which were TTX (tetrodotoxin) sensitive and therefore action-potential driven. Conversely, addition of mature BDNF, but not proBDNF, within minutes led to a decrease in the sIPSC frequency to 44%. Direct recordings from fast-spiking GABAergic interneurons revealed that mature BDNF reduced their excitability and depressed their action potential firing, whereas proBDNF had no effect. Using the TrkB inhibitor K-252a, or mice deficient for the common neurotrophin receptor p75(NTR), the regulation of GABAergic activity was shown specifically to be mediated by BDNF binding to the neurotrophin receptor TrkB. In agreement, immunohistochemistry demonstrated that TrkB, but not p75(NTR), was expressed in parvalbumin-positive interneurons. Our results suggest that mature BDNF decreases the excitability of GABAergic interneurons via activation of TrkB, while proBDNF does not impact on GABAergic activity. Thus, by affecting the firing of GABAergic interneurons, mature BDNF may play an important role in regulating network oscillations in the hippocampus.

  16. MeCP2 regulates Tet1-catalyzed demethylation, CTCF binding, and learning-dependent alternative splicing of the BDNF gene in Turtle

    PubMed Central

    Zheng, Zhaoqing; Ambigapathy, Ganesh; Keifer, Joyce

    2017-01-01

    MECP2 mutations underlying Rett syndrome cause widespread misregulation of gene expression. Functions for MeCP2 other than transcriptional are not well understood. In an ex vivo brain preparation from the pond turtle Trachemys scripta elegans, an intraexonic splicing event in the brain-derived neurotrophic factor (BDNF) gene generates a truncated mRNA transcript in naïve brain that is suppressed upon classical conditioning. MeCP2 and its partners, splicing factor Y-box binding protein 1 (YB-1) and methylcytosine dioxygenase 1 (Tet1), bind to BDNF chromatin in naïve but dissociate during conditioning; the dissociation correlating with decreased DNA methylation. Surprisingly, conditioning results in new occupancy of BDNF chromatin by DNA insulator protein CCCTC-binding factor (CTCF), which is associated with suppression of splicing in conditioning. Knockdown of MeCP2 shows it is instrumental for splicing and inhibits Tet1 and CTCF binding thereby negatively impacting DNA methylation and conditioning-dependent splicing regulation. Thus, mutations in MECP2 can have secondary effects on DNA methylation and alternative splicing. DOI: http://dx.doi.org/10.7554/eLife.25384.001 PMID:28594324

  17. Regulation of the spatial code for BDNF mRNA isoforms in the rat hippocampus following pilocarpine-treatment: a systematic analysis using laser microdissection and quantitative real-time PCR.

    PubMed

    Baj, Gabriele; Del Turco, Domenico; Schlaudraff, Jessica; Torelli, Lucio; Deller, Thomas; Tongiorgi, Enrico

    2013-05-01

    Brain-derived neurotrophic factor (BDNF) is essential for neuronal survival, differentiation, and plasticity and is one of those genes that generate multiple mRNAs with different alternatively spliced 5'UTRs. The functional significance of many BDNF transcripts, each producing the same protein, is emerging. On the basis of the analysis of the four most abundant brain BDNF transcripts, we recently proposed the "spatial code hypothesis of BDNF splice variants" according to which the BDNF transcripts, through their differential subcellular localization in soma or dendrites, represent a mechanism to synthesize the protein at distinct locations and produce local effects. In this study, using laser microdissection of hippocampal laminae and reverse transcription-quantitative real-time PCR (RT-qPCR), we analyzed all known BDNF mRNA variants at resting conditions or following 3 h pilocarpine-induced status epilepticus. In untreated rats, we found dendritic enrichment of BDNF transcripts encoding exons 6 and 7 in CA1; exons 1, 6, and 9a in CA3; and exons 5, 6, 7, and 8 in DG. Considering the low abundance of the other transcripts, exon 6 was the main transcript in dendrites under resting conditions. Pilocarpine treatment induced an increase of BDNF transcripts encoding exons 4 and 6 in all dendritic laminae and, additionally, of exon 2 in CA1 stratum radiatum and exons 2, 3, 9a in DG molecular layer while the other transcripts were decreased in dendrites, suggesting restriction to the soma. These results support the hypothesis of a spatial code to differentially regulate BDNF in the somatic or dendritic compartment under conditions of pilocarpine-induced status epilepticus and, furthermore, highlight the existence of subfield-specific differences.

  18. BDNF modulates contextual fear learning during adolescence.

    PubMed

    Dincheva, Iva; Pattwell, Siobhan S; Tessarollo, Lino; Bath, Kevin G; Lee, Francis S

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) is a growth factor that plays key roles in regulating higher-order emotional and cognitive processes including fear learning and memory. A common single-nucleotide polymorphism (SNP) has been identified in the human BDNF gene (BDNF Val66Met) that leads to decreased BDNF secretion and impairments in specific forms of fear learning in adult humans and genetically modified mice containing this SNP. As the emergence of anxiety and other fear-related disorders peaks during adolescence, we sought to better understand the impact of this BDNF SNP on fear learning during the transition through adolescence in BDNF Val66Met knock-in mice. Previously, we have shown that contextual fear expression is temporarily suppressed in wild-type mice during a distinct period in adolescence, but re-emerges at later, postadolescent ages. Until recently, it was unclear whether BDNF-TrkB signaling is involved in the modulation of hippocampal-dependent contextual fear learning and memory during this adolescent period. Here we show that in BDNF Val66Met mice, the presence of the Met allele does not alter contextual fear expression during adolescence, but when previously conditioned BDNF(Met/Met) mice are tested in adulthood, they fail to display the delayed expression of contextual fear compared to wild-type BDNF(Val/Val) controls, indicating that the Met allele may permanently alter hippocampal function, leading to persistent functioning that is indistinguishable from the adolescent state. Conversely, truncated TrkB receptor (TrkB.T1)-deficient (TrkB.T1(-/-)) mice, a genetic mouse model with increased BDNF-TrkB signaling through full-length TrkB receptors, exhibit an accelerated expression of contextual fear during adolescence compared to wild-type controls. Our results point to a critical function for BDNF-TrkB signaling in fear regulation in vivo, particularly during a potentially sensitive period in adolescence. © 2014 S. Karger AG, Basel.

  19. Oxidative stress and glycemic regulation.

    PubMed

    Ceriello, A

    2000-02-01

    Oxidative stress is an acknowledged pathogenetic mechanism in diabetic complications. Hyperglycemia is a widely known cause of enhanced free radical concentration, whereas oxidative stress involvement in glycemic regulation is still debated. Glucose transport is a cascade of events starting from the interaction of insulin with its own receptor at the plasma membrane and ending with intracellular glucose metabolism. In this complex series of events, each step plays an important role and can be inhibited by a negative effect of oxidative stress. Several studies show that an acute increase in the blood glucose level may impair the physiological homeostasis of many systems in living organisms. The mechanisms through which acute hyperglycemia exerts these effects may be identified in the production of free radicals. It has been suggested that insulin resistance may be accompanied by intracellular production of free radicals. In adipocytes cultured in vitro, insulin increases the production of hydrogen peroxide, which has been shown to mimic the action of insulin. These data allow us to hypothesize that a vicious circle between hyperinsulinemia and free radicals could be operating: insulin resistance might cause elevated plasma free radical concentrations, which, in turn, might be responsible for a deterioration of insulin action, with hyperglycemia being a contributory factor. Data supporting this hypothesis are available. Vitamin E improves insulin action in healthy, elderly, and non-insulin-dependent diabetic subjects. Similar results can be obtained by vitamin C administration.

  20. Spontaneous sleep-wake cycle and sleep deprivation differently induce Bdnf1, Bdnf4 and Bdnf9a DNA methylation and transcripts levels in the basal forebrain and frontal cortex in rats.

    PubMed

    Ventskovska, Olena; Porkka-Heiskanen, Tarja; Karpova, Nina N

    2015-04-01

    Brain-derived neurotrophic factor (Bdnf) regulates neuronal plasticity, slow wave activity and sleep homeostasis. Environmental stimuli control Bdnf expression through epigenetic mechanisms, but there are no data on epigenetic regulation of Bdnf by sleep or sleep deprivation. Here we investigated whether 5-methylcytosine (5mC) DNA modification at Bdnf promoters p1, p4 and p9 influences Bdnf1, Bdnf4 and Bdnf9a expression during the normal inactive phase or after sleep deprivation (SD) (3, 6 and 12 h, end-times being ZT3, ZT6 and ZT12) in rats in two brain areas involved in sleep regulation, the basal forebrain and cortex. We found a daytime variation in cortical Bdnf expression: Bdnf1 expression was highest at ZT6 and Bdnf4 lowest at ZT12. Such variation was not observed in the basal forebrain. Also Bdnf p1 and p9 methylation levels differed only in the cortex, while Bdnf p4 methylation did not vary in either area. Factorial analysis revealed that sleep deprivation significantly induced Bdnf1 and Bdnf4 with the similar pattern for Bdnf9a in both basal forebrain and cortex; 12 h of sleep deprivation decreased 5mC levels at the cortical Bdnf p4 and p9. Regression analysis between the 5mC promoter levels and the corresponding Bdnf transcript expression revealed significant negative correlations for the basal forebrain Bdnf1 and cortical Bdnf9a transcripts in only non-deprived rats, while these correlations were lost after sleep deprivation. Our results suggest that Bdnf transcription during the light phase of undisturbed sleep-wake cycle but not after SD is regulated at least partially by brain site-specific DNA methylation.

  1. Multiple faces of BDNF in cocaine addiction.

    PubMed

    Li, Xuan; Wolf, Marina E

    2015-02-15

    Brain-derived neurotrophic factor (BDNF) has been found to play roles in many types of plasticity including drug addiction. Here, we focus on rodent studies over the past two decades that have demonstrated diverse roles of BDNF in models of cocaine addiction. First, we will provide an overview of studies showing that cocaine exposure alters (and generally increases) BDNF levels in reward-related regions including the ventral tegmental area, nucleus accumbens, prefrontal cortex, and amygdala. Then we will review evidence that BDNF contributes to behavioral changes in animal models of cocaine addiction, focusing on conditioned place preference, behavioral sensitization, maintenance and reinstatement of self-administration, and incubation of cocaine craving. Last, we will review the role of BDNF in synaptic plasticity, particularly as it relates to plasticity of AMPA receptor transmission after cocaine exposure. We conclude that BDNF regulates cocaine-induced behaviors in a highly complex manner that varies depending on the brain region (and even among different cell types within the same brain region), the nature of cocaine exposure, and the "addiction phase" examined (e.g., acquisition vs maintenance; early vs late withdrawal). These complexities make BDNF a daunting therapeutic target for treating cocaine addiction. However, recent clinical evidence suggests that the serum BDNF level may serve as a biomarker in cocaine addicts to predict future relapse, providing an alternative direction for exploring BDNF's potential relevance to treating cocaine addiction. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The suppressive effect of an intra-prefrontal cortical infusion of BDNF on cocaine-seeking is Trk receptor and extracellular signal-regulated protein kinase mitogen-activated protein kinase dependent.

    PubMed

    Whitfield, Timothy W; Shi, Xiangdang; Sun, Wei-Lun; McGinty, Jacqueline F

    2011-01-19

    Cocaine-mediated neuroadaptations in the prefrontal cortical-nucleus accumbens pathway underlie drug-seeking in animals with a cocaine self-administration (SA) history. Neuroplasticity in the cortico-accumbens pathway is regulated, in part, by the expression and availability of neurotrophic factors, such as BDNF. We have previously demonstrated that infusion of BDNF into the dorsomedial prefrontal cortex (dmPFC) immediately after the last of 10 cocaine SA sessions attenuates contextual, cue- and cocaine prime-induced reinstatement of cocaine-seeking (Berglind et al., 2007) and normalizes cocaine-induced disruption of glutamatergic transmission in the nucleus accumbens (Berglind et al., 2009). In the present study, the suppressive effect of intra-dmPFC BDNF on cocaine-seeking is shown to depend on Trk receptor-mediated activation of extracellular signal-regulated kinase (ERK) signaling in the dmPFC. The tyrosine kinase inhibitor, K252a, and the mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor, U0126 (1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene), prevented BDNF's suppressive effects on cocaine-seeking. Vehicle-infused rats with a cocaine SA history showed significant decreases in ERK and cyclic AMP response element binding protein (CREB), but not Akt, phosphorylation after the final cocaine SA session that were reversed by intra-dmPFC BDNF. Additionally, BDNF's ability to normalize cocaine-mediated decreases in ERK and CREB phosphorylation was blocked by U0126, demonstrating that ERK/MAPK activation mediated the behavioral effects. This study elucidates a mechanism whereby BDNF/TrkB (tropomyosin receptor kinase B) activates ERK-regulated CREB phosphorylation in the dmPFC to counteract the neuroadaptations induced by cocaine SA and subsequent relapse to cocaine-seeking.

  3. Working Memory Deficits, Increased Anxiety-Like Traits, and Seizure Susceptibility in BDNF Overexpressing Mice

    ERIC Educational Resources Information Center

    Papaleo, Francesco; Silverman, Jill L.; Aney, Jordan; Tian, Qingjun; Barkan, Charlotte L.; Chadman, Kathryn K.; Crawley, Jacqueline N.

    2011-01-01

    BDNF regulates components of cognitive processes and has been implicated in psychiatric disorders. Here we report that genetic overexpression of the BDNF mature isoform (BDNF-tg) in female mice impaired working memory functions while sparing components of fear conditioning. BDNF-tg mice also displayed reduced breeding efficiency, higher…

  4. Working Memory Deficits, Increased Anxiety-Like Traits, and Seizure Susceptibility in BDNF Overexpressing Mice

    ERIC Educational Resources Information Center

    Papaleo, Francesco; Silverman, Jill L.; Aney, Jordan; Tian, Qingjun; Barkan, Charlotte L.; Chadman, Kathryn K.; Crawley, Jacqueline N.

    2011-01-01

    BDNF regulates components of cognitive processes and has been implicated in psychiatric disorders. Here we report that genetic overexpression of the BDNF mature isoform (BDNF-tg) in female mice impaired working memory functions while sparing components of fear conditioning. BDNF-tg mice also displayed reduced breeding efficiency, higher…

  5. Maternal supply of BDNF to mouse fetal brain through the placenta.

    PubMed

    Kodomari, Ikuko; Wada, Etsuko; Nakamura, Shun; Wada, Keiji

    2009-02-01

    Gastrointestinal peptides and hormones are known to penetrate through the utero-placental barrier and regulate fetal development. In the present study, we tested permeation of maternal brain-derived neurotrophic factor (BDNF) to fetuses, using BDNF-gene deficient mice and exogenous BDNF administration. At embryonic day 13.5 (E13.5)-14.5, BDNF protein concentrations in the fetal brain of BDNF homozygous null mutant (bdnf (-/-)) were comparable to the levels seen in wild-type fetuses. After E17.5, BDNF protein levels in bdnf (-/-) fetal brain were still detectable but its levels were significantly decreased below those in wild-type brain. When recombinant BDNF protein was injected into pregnant wild-type mice carrying E14.5 embryos, BDNF protein levels in fetal brain were elevated dose-dependently. These findings suggest that maternal BDNF reaches the fetal brain through utero-placental barrier and might contribute to its development.

  6. Role of pro-brain-derived neurotrophic factor (proBDNF) to mature BDNF conversion in activity-dependent competition at developing neuromuscular synapses.

    PubMed

    Je, H Shawn; Yang, Feng; Ji, Yuanyuan; Nagappan, Guhan; Hempstead, Barbara L; Lu, Bai

    2012-09-25

    Formation of specific neuronal connections often involves competition between adjacent axons, leading to stabilization of the active terminal, while retraction of the less active ones. The underlying molecular mechanisms remain unknown. We show that activity-dependent conversion of pro-brain-derived neurotrophic factor (proBDNF) to mature (m)BDNF mediates synaptic competition. Stimulation of motoneurons triggers proteolytic conversion of proBDNF to mBDNF at nerve terminals. In Xenopus nerve-muscle cocultures, in which two motoneurons innervate one myocyte, proBDNF-p75(NTR) signaling promotes retraction of the less active terminal, whereas mBDNF-tyrosine-related kinase B (TrkB) p75NTR (p75 neurotrophin receptor) facilitates stabilization of the active one. Thus, proBDNF and mBDNF may serve as potential "punishment" and "reward" signals for inactive and active terminals, respectively, and activity-dependent conversion of proBDNF to mBDNF may regulate synapse elimination.

  7. Maternal infection regulates BDNF and NGF expression in fetal and neonatal brain and maternal-fetal unit of the rat.

    PubMed

    Gilmore, John H; Jarskog, L Fredrik; Vadlamudi, Swarooparani

    2003-05-01

    Maternal infection during pregnancy is associated with increased risk for neurodevelopmental disorders. Lipopolysaccharide (LPS) or saline was administered to rats to model maternal infection, and levels of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in maternal plasma, placenta, amniotic fluid, fetal liver/spleen, fetal brain, and cerebral cortex after birth were determined by ELISA or semiquantitative Western blot analysis. BDNF expression was significantly increased in the fetal brain (p=0.039); NGF expression was significantly increased in neonatal cortex (p=0.0009). Neurotrophic factor expression was also altered in other tissues of the maternal-fetal unit. Abnormal expression of neurotrophic factors represents a potential mechanism through which maternal infection increases risk for neurodevelopmental disorders.

  8. BDNF in fragile X syndrome.

    PubMed

    Castrén, Maija L; Castrén, Eero

    2014-01-01

    Fragile X syndrome (FXS) is a monogenic disorder that is caused by the absence of FMR1 protein (FMRP). FXS serves as an excellent model disorder for studies investigating disturbed molecular mechanisms and synapse function underlying cognitive impairment, autism, and behavioral disturbance. Abnormalities in dendritic spines and synaptic transmission in the brain of FXS individuals and mouse models for FXS indicate perturbations in the development, maintenance, and plasticity of neuronal network connectivity. However, numerous alterations are found during the early development in FXS, including abnormal differentiation of neural progenitors and impaired migration of newly born neurons. Several aspects of FMRP function are modulated by brain-derived neurotrophic factor (BDNF) signaling. Here, we review the evidence of the role for BDNF in the developing and adult FXS brain. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.

  9. Developmentally regulated Ca2+-dependent activator protein for secretion 2 (CAPS2) is involved in BDNF secretion and is associated with autism susceptibility.

    PubMed

    Sadakata, Tetsushi; Furuichi, Teiichi

    2009-09-01

    The postnatal development of the cerebellum is accomplished via a series of cytogenetic and morphogenetic events encoded in the genome. To decipher the underlying genetic basis of these events we have systematized the spatio-temporal gene expression profiles during mouse cerebellar development in the Cerebellar Development Transcriptome Database (CDT-DB). Using the CDT-DB, Ca(2+)-dependent activator protein for secretion 2 (CAPS2 or CADPS2) was identified as a developmentally regulated gene that is predominantly expressed in cerebellar granule cells (GCs) with an expression peak around the first or second postnatal week. CAPS2 protein is concentrated in parallel fiber (PF) terminals and is associated with secretory vesicles containing brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3). CAPS2 enhances release of BDNF and NT-3, both of which are essential for normal cerebellar development. CAPS2-deficient (CAPS2(-/-)) mice show reduced secretion of BDNF and NT-3; consequently, the cerebella of these mice exhibit developmental deficits, such as delayed development and increased cell death in GCs, fewer branched dendrites on Purkinje cells (PCs), and loss of the intercrural fissure. The PF-PC synapses have aberrant cytoarchitectures and electrophysiological properties. These abnormal cellular and morphological phenotypes are more severe around the cerebellar vermis, in which hypoplasia has been reported in autism patients. Moreover, CAPS2(-/-) mice had fewer cortical and hippocampal parvalbumin-positive interneurons and some autistic-like behavioral phenotypes. In the CAPS2 genes of some autistic patients an aberrant splicing variant and non-synonymous SNPs have been identified. These recent studies implicate CAPS2 in autism susceptibility. Therefore, CAPS2(-/-) mice will be a useful model animal in which to study aspects of the neuropathology and behaviors characteristic of developmental disorders.

  10. Multiple faces of BDNF in cocaine addiction

    PubMed Central

    Li, Xuan; Wolf, Marina E.

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) has been found to play roles in many types of plasticity including drug addiction. Here we focus on rodent studies over the past two decades that have demonstrated diverse roles of BDNF in models of cocaine addiction. First, we will provide an overview of studies showing that cocaine exposure alters (and generally increases) BDNF levels in reward-related regions including the ventral tegmental area, nucleus accumbens, prefrontal cortex, and amygdala. Then we will review evidence that BDNF contributes to behavioral changes in animal models of cocaine addiction, focusing on conditioned place preference, behavioral sensitization, maintenance and reinstatement of self-administration, and incubation of cocaine craving. Last, we will review the role of BDNF in synaptic plasticity, particularly as it relates to plasticity of AMPA receptor transmission after cocaine exposure. We conclude that BDNF regulates cocaine-induced behaviors in a highly complex manner that varies depending on the brain region (and even among different cell types within the same brain region), the nature of cocaine exposure, and the “addiction phase” examined (e.g., acquisition vs maintenance; early vs late withdrawal). These complexities make BDNF a daunting therapeutic target for treating cocaine addiction. However, recent clinical evidence suggests that the serum BDNF level may serve as a biomarker in cocaine addicts to predict future relapse, providing an alternative direction for exploring BDNF’s potential relevance to treating cocaine addiction. PMID:25449839

  11. Prenatal Cocaine Exposure Upregulates BDNF-TrkB Signaling

    PubMed Central

    Stucky, Andres; Bakshi, Kalindi P.; Friedman, Eitan; Wang, Hoau-Yan

    2016-01-01

    Prenatal cocaine exposure causes profound changes in neurobehavior as well as synaptic function and structure with compromised glutamatergic transmission. Since synaptic health and glutamatergic activity are tightly regulated by brain-derived neurotrophic factor (BDNF) signaling through its cognate tyrosine receptor kinase B (TrkB), we hypothesized that prenatal cocaine exposure alters BDNF-TrkB signaling during brain development. Here we show prenatal cocaine exposure enhances BDNF-TrkB signaling in hippocampus and prefrontal cortex (PFCX) of 21-day-old rats without affecting the expression levels of TrkB, P75NTR, signaling molecules, NMDA receptor—NR1 subunit as well as proBDNF and BDNF. Prenatal cocaine exposure reduces activity-dependent proBDNF and BDNF release and elevates BDNF affinity for TrkB leading to increased tyrosine-phosphorylated TrkB, heightened Phospholipase C-γ1 and N-Shc/Shc recruitment and higher downstream PI3K and ERK activation in response to ex vivo BDNF. The augmented BDNF-TrkB signaling is accompanied by increases in association between activated TrkB and NMDARs. These data suggest that cocaine exposure during gestation upregulates BDNF-TrkB signaling and its interaction with NMDARs by increasing BDNF affinity, perhaps in an attempt to restore the diminished excitatory neurotransmission. PMID:27494324

  12. Inhibition of BDNF-AS Provides Neuroprotection for Retinal Ganglion Cells against Ischemic Injury

    PubMed Central

    Xu, Lifang; Zhang, Ziyin; Xie, Tianhua; Zhang, Xiaoyang; Dai, Tu

    2016-01-01

    Background: Brain-derived neurotrophic factor (BDNF) protects retinal ganglion cells against ischemia in ocular degenerative diseases. We aimed to determine the effect of BDNF-AS on the ischemic injury of retinal ganglion cells. Methods: The levels of BDNF and BDNF-AS were measured in retinal ganglion cells subjected to oxygen and glucose deprivation. The lentiviral vectors were constructed to either overexpress or knock out BDNF-AS. The luciferase reporter gene assay was used to determine whether BDNF-AS could target its seed sequence on BDNF mRNA. The methyl thiazolyl tetrazolium assay was used to determine cell viability, and TUNEL staining was used for cell apoptosis. Results: The levels of BDNF-AS were negatively correlated with BDNF in ischemic retinal ganglion cells. BDNF-AS directly targeted its complementary sequences on BDNF mRNA. BDNF-AS regulated the expression of BDNF and its related genes in retinal ganglion cells. Down-regulation of BDNF-AS increased cell viability and decreased the number of TUNEL-positive retinal ganglion cells under oxygen and glucose deprivation conditions. Conclusion: Inhibition of BDNF-AS protected retinal ganglion cells against ischemia by increasing the levels of BDNF. PMID:27935942

  13. Human NR5A1/SF-1 mutations show decreased activity on BDNF (brain-derived neurotrophic factor), an important regulator of energy balance: testing impact of novel SF-1 mutations beyond steroidogenesis.

    PubMed

    Malikova, Jana; Camats, Núria; Fernández-Cancio, Mónica; Heath, Karen; González, Isabel; Caimarí, María; del Campo, Miguel; Albisu, Marian; Kolouskova, Stanislava; Audí, Laura; Flück, Christa E

    2014-01-01

    Human NR5A1/SF-1 mutations cause 46,XY disorder of sex development (DSD) with broad phenotypic variability, and rarely cause adrenal insufficiency although SF-1 is an important transcription factor for many genes involved in steroidogenesis. In addition, the Sf-1 knockout mouse develops obesity with age. Obesity might be mediated through Sf-1 regulating activity of brain-derived neurotrophic factor (BDNF), an important regulator of energy balance in the ventromedial hypothalamus. To characterize novel SF-1 gene variants in 4 families, clinical, genetic and functional studies were performed with respect to steroidogenesis and energy balance. 5 patients with 46,XY DSD were found to harbor NR5A1/SF-1 mutations including 2 novel variations. One patient harboring a novel mutation also suffered from adrenal insufficiency. SF-1 mutations were studied in cell systems (HEK293, JEG3) for impact on transcription of genes involved in steroidogenesis (CYP11A1, CYP17A1, HSD3B2) and in energy balance (BDNF). BDNF regulation by SF-1 was studied by promoter assays (JEG3). Two novel NR5A1/SF-1 mutations (Glu7Stop, His408Profs*159) were confirmed. Glu7Stop is the 4th reported SF-1 mutation causing DSD and adrenal insufficiency. In vitro studies revealed that transcription of the BDNF gene is regulated by SF-1, and that mutant SF-1 decreased BDNF promoter activation (similar to steroid enzyme promoters). However, clinical data from 16 subjects carrying SF-1 mutations showed normal birth weight and BMI. Glu7Stop and His408Profs*159 are novel SF-1 mutations identified in patients with 46,XY DSD and adrenal insufficiency (Glu7Stop). In vitro, SF-1 mutations affect not only steroidogenesis but also transcription of BDNF which is involved in energy balance. However, in contrast to mice, consequences on weight were not found in humans with SF-1 mutations.

  14. Human NR5A1/SF-1 Mutations Show Decreased Activity on BDNF (Brain-Derived Neurotrophic Factor), an Important Regulator of Energy Balance: Testing Impact of Novel SF-1 Mutations Beyond Steroidogenesis

    PubMed Central

    Malikova, Jana; Camats, Núria; Fernández-Cancio, Mónica; Heath, Karen; González, Isabel; Caimarí, María; del Campo, Miguel; Albisu, Marian; Kolouskova, Stanislava; Audí, Laura; Flück, Christa E.

    2014-01-01

    Context Human NR5A1/SF-1 mutations cause 46,XY disorder of sex development (DSD) with broad phenotypic variability, and rarely cause adrenal insufficiency although SF-1 is an important transcription factor for many genes involved in steroidogenesis. In addition, the Sf-1 knockout mouse develops obesity with age. Obesity might be mediated through Sf-1 regulating activity of brain-derived neurotrophic factor (BDNF), an important regulator of energy balance in the ventromedial hypothalamus. Objective To characterize novel SF-1 gene variants in 4 families, clinical, genetic and functional studies were performed with respect to steroidogenesis and energy balance. Patients 5 patients with 46,XY DSD were found to harbor NR5A1/SF-1 mutations including 2 novel variations. One patient harboring a novel mutation also suffered from adrenal insufficiency. Methods SF-1 mutations were studied in cell systems (HEK293, JEG3) for impact on transcription of genes involved in steroidogenesis (CYP11A1, CYP17A1, HSD3B2) and in energy balance (BDNF). BDNF regulation by SF-1 was studied by promoter assays (JEG3). Results Two novel NR5A1/SF-1 mutations (Glu7Stop, His408Profs*159) were confirmed. Glu7Stop is the 4th reported SF-1 mutation causing DSD and adrenal insufficiency. In vitro studies revealed that transcription of the BDNF gene is regulated by SF-1, and that mutant SF-1 decreased BDNF promoter activation (similar to steroid enzyme promoters). However, clinical data from 16 subjects carrying SF-1 mutations showed normal birth weight and BMI. Conclusions Glu7Stop and His408Profs*159 are novel SF-1 mutations identified in patients with 46,XY DSD and adrenal insufficiency (Glu7Stop). In vitro, SF-1 mutations affect not only steroidogenesis but also transcription of BDNF which is involved in energy balance. However, in contrast to mice, consequences on weight were not found in humans with SF-1 mutations. PMID:25122490

  15. New insights in the biology of BDNF synthesis and release: implications in CNS function.

    PubMed

    Greenberg, Michael E; Xu, Baoji; Lu, Bai; Hempstead, Barbara L

    2009-10-14

    BDNF has pleiotropic effects on neuronal development and synaptic plasticity that underlie circuit formation and cognitive function. Recent breakthroughs reveal that neuronal activity regulates BDNF cell biology, including Bdnf transcription, dendritic targeting and trafficking of BDNF mRNA and protein, and secretion and extracellular conversion of proBDNF to mature BDNF. Defects in these mechanisms contribute differentially to cognitive dysfunction and anxiety-like behaviors. Here we review recent studies, presented at a symposium at Neuroscience 2009, that describe regulatory mechanisms that permit rapid and dynamic refinement of BDNF actions in neurons.

  16. Gestational stress induces depressive-like and anxiety-like phenotypes through epigenetic regulation of BDNF expression in offspring hippocampus.

    PubMed

    Zheng, Yu; Fan, Weidong; Zhang, Xianquan; Dong, Erbo

    2016-01-01

    Exposure to stressful life events during pregnancy exerts profound effects on neurodevelopment and increases the risk for several neurodevelopmental disorders including major depression. The mechanisms underlying the consequences of gestational stress are complex and remain to be elucidated. This study investigated the effects of gestational stress on depressive-like behavior and epigenetic modifications in young adult offspring. Gestational stress was induced by a combination of restraint and 24-hour light disturbance to pregnant dams throughout gestation. Depressive-like and anxiety-like behaviors of young adult offspring were examined. The expression and promoter methylation of brain derived neurotrophic factor (BDNF) were measured using RT-qPCR, Western blot, methylated DNA immunoprecipitation (MeDIP) and chromatin immunoprecipitation (ChIP). In addition, the expressions of histone deacetylases (HDACs) and acetylated histone H3 lysine 14 (AcH3K14) were also analyzed. Our results show that offspring from gestational stress dams exhibited depressive-like and anxiety-like behaviors. Biochemically, stress-offspring showed decreased expression of BDNF, increased expression of DNMT1, HDAC1, and HDAC2, and decreased expression of AcH3K14 in the hippocampus as compared to non-stress offspring. Data from MeDIP and ChIP assays revealed an increased methylation as well as decreased binding of AcH3K14 on specific BDNF promoters. Pearson analyses indicated that epigenetic changes induced by gestational stress were correlated with depressive-like and anxiety-like behaviors. These data suggest that gestational stress may be a suitable model for understanding the behavioral and molecular epigenetic changes observed in patients with depression.

  17. Gestational stress induces depressive-like and anxiety-like phenotypes through epigenetic regulation of BDNF expression in offspring hippocampus

    PubMed Central

    Zheng, Yu; Fan, Weidong; Zhang, Xianquan; Dong, Erbo

    2016-01-01

    ABSTRACT Exposure to stressful life events during pregnancy exerts profound effects on neurodevelopment and increases the risk for several neurodevelopmental disorders including major depression. The mechanisms underlying the consequences of gestational stress are complex and remain to be elucidated. This study investigated the effects of gestational stress on depressive-like behavior and epigenetic modifications in young adult offspring. Gestational stress was induced by a combination of restraint and 24-hour light disturbance to pregnant dams throughout gestation. Depressive-like and anxiety-like behaviors of young adult offspring were examined. The expression and promoter methylation of brain derived neurotrophic factor (BDNF) were measured using RT-qPCR, Western blot, methylated DNA immunoprecipitation (MeDIP) and chromatin immunoprecipitation (ChIP). In addition, the expressions of histone deacetylases (HDACs) and acetylated histone H3 lysine 14 (AcH3K14) were also analyzed. Our results show that offspring from gestational stress dams exhibited depressive-like and anxiety-like behaviors. Biochemically, stress-offspring showed decreased expression of BDNF, increased expression of DNMT1, HDAC1, and HDAC2, and decreased expression of AcH3K14 in the hippocampus as compared to non-stress offspring. Data from MeDIP and ChIP assays revealed an increased methylation as well as decreased binding of AcH3K14 on specific BDNF promoters. Pearson analyses indicated that epigenetic changes induced by gestational stress were correlated with depressive-like and anxiety-like behaviors. These data suggest that gestational stress may be a suitable model for understanding the behavioral and molecular epigenetic changes observed in patients with depression. PMID:26890656

  18. ACTIVITY-DEPENDENT, STRESS-RESPONSIVE BDNF SIGNALING AND THE QUEST FOR OPTIMAL BRAIN HEALTH AND RESILIENCE THROUGHOUT THE LIFESPAN

    PubMed Central

    Rothman, S. M.; Mattson, M. P.

    2013-01-01

    During development of the nervous system, the formation of connections (synapses) between neurons is dependent upon electrical activity in those neurons, and neurotrophic factors produced by target cells play a pivotal role in such activity-dependent sculpting of the neural networks. A similar interplay between neurotransmitter and neurotrophic factor signaling pathways mediates adaptive responses of neural networks to environmental demands in adult mammals, with the excitatory neurotransmitter glutamate and brain-derived neurotrophic factor (BDNF) being particularly prominent regulators of synaptic plasticity throughout the central nervous system. Optimal brain health throughout the lifespan is promoted by intermittent challenges such as exercise, cognitive stimulation and dietary energy restriction, that subject neurons to activity-related metabolic stress. At the molecular level, such challenges to neurons result in the production of proteins involved in neurogenesis, learning and memory and neuronal survival; examples include proteins that regulate mitochondrial biogenesis, protein quality control, and resistance of cells to oxidative, metabolic and proteotoxic stress. BDNF signaling mediates up-regulation of several such proteins including the protein chaperone GRP-78, antioxidant enzymes, the cell survival protein Bcl-2, and the DNA repair enzyme APE1. Insufficient exposure to such challenges, genetic factors may conspire to impair BDNF production and/or signaling resulting in the vulnerability of the brain to injury and neurodegenerative disorders including Alzheimer’s, Parkinson’s and Huntington’s diseases. Further, BDNF signaling is negatively regulated by glucocorticoids. Glucocorticoids impair synaptic plasticity in the brain by negatively regulating spine density, neurogenesis and long-term potentiation, effects that are potentially linked to glucocorticoid regulation of BDNF. Findings suggest that BDNF signaling in specific brain regions mediates

  19. Age-dependent deficits in fear learning in heterozygous BDNF knock-out mice.

    PubMed

    Endres, Thomas; Lessmann, Volkmar

    2012-11-15

    Beyond its trophic function, the neurotrophin BDNF (brain-derived neurotrophic factor) is well known to crucially mediate synaptic plasticity and memory formation. Whereas recent studies suggested that acute BDNF/TrkB signaling regulates amygdala-dependent fear learning, no impairments of cued fear learning were reported in heterozygous BDNF knock-out mice (BDNF(+/-)). Since brain BDNF levels are known to decline with aging, we hypothesized that BDNF(+/-) mice might show reduced fear learning at older ages. Indeed, BDNF(+/-) animals revealed an age-dependent deficit in fear learning 3 mo after birth and beyond. Since there were no alterations between the two genotypes during the conditioning training and when testing short-term memory, this learning deficit most likely reflects a deficit in memory consolidation. Importantly, there were no differences in spontaneous motor behavior and baseline anxiety in BDNF(+/-) animals at any age tested. Following behavioral testing quantification of BDNF levels in the basolateral amygdala with a sensitive BDNF ELISA revealed a positive correlation between the levels of BDNF in the amygdala and the individual learning performance. However, the age-dependent decline in the efficiency of fear conditioning in BDNF(+/-) mice was not accompanied by reduced BDNF expression in the amygdala. Thus, while reduced BDNF levels in general correlate with less efficient fear learning, this lack of BDNF can be compensated in young but not in older animals, suggesting that the cellular mechanisms responsible for fear learning consolidation become BDNF-dependent 3 mo after birth.

  20. Regulation of brain-derived neurotrophic factor (BDNF) expression and release from hippocampal neurons is mediated by non-NMDA type glutamate receptors.

    PubMed

    Wetmore, C; Olson, L; Bean, A J

    1994-03-01

    We have examined the influence of glutamate on cortical brain-derived neurotrophic factor (BDNF) expression using in situ hybridization and immunohistochemistry. Kainic acid (KA) produced an upregulation of hippocampal and neocortical BDNF mRNA as well as BDNF protein that was blocked by a non-NMDA antagonist, 6,7-dinitroquinoxaline-2,3-dione (DNQX), but was not affected by the NMDA antagonist 2-amino-7-phosphonoheptanoic acid (AP7). Basal levels of BDNF mRNA were not affected by NMDA, DNQX, or AP7 treatment. BDNF protein was also increased after kainate exposure with a spatial and temporal course distinct from that seen for the expression of BDNF mRNA. A dramatic shift in BDNF immunoreactivity (-IR) was observed from intracellular compartments to the neuropil surrounding CA3 pyramidal cells 2-3 hr after KA exposure. This shift in localization of BDNF-IR suggests a constitutive release of BDNF at the level of the cell body and dendrites. Moreover, we have localized mRNAs for full-length and truncated trkB, to a co-incident population of neurons and glia. These data suggest the neurons that produce BDNF also express components necessary for a biological response to the same neurotrophic factor. The present study also demonstrates increased BDNF-IR in the mossy fiber terminal zone of hippocampus after exposure to KA, as well as an increase in trkB mRNA, and provides evidence of local release of this neurotrophin into the surrounding neuropil where it would be available for local utilization. The synthesis and putative release of BDNF from somatic and/or dendritic sites within the hippocampus provide evidence of a potential autocrine or paracrine role for BDNF, and establish a local source of trophic support for the maintenance of synaptic plasticity and anatomic reorganization in the mature nervous system.

  1. Harpagoside ameliorates the amyloid-β-induced cognitive impairment in rats via up-regulating BDNF expression and MAPK/PI3K pathways.

    PubMed

    Li, J; Ding, X; Zhang, R; Jiang, W; Sun, X; Xia, Z; Wang, X; Wu, E; Zhang, Y; Hu, Y

    2015-09-10

    So far, no effective disease-modifying therapies for Alzheimer's disease (AD) aiming at protecting or reversing neurodegeneration of the disease have been established yet. The present work aims to elucidate the effect of Harpagoside (abbreviated HAR), an iridoid glycosides purified from the Chinese medicinal herb Scrophularia ningpoensis, on neurodegeneration induced by β-amyloid peptide (Aβ) and the underlying molecular mechanism. Here we show that HAR exerts neuroprotective effects against Aβ neurotoxicity. Rats injected aggregated Aβ₁₋₄₀ into the bilateral hippocampus displayed impaired spatial learning and memory ability in a Y-maze test and novel object recognition test, while HAR treatment ameliorated Aβ₁₋₄₀-induced behavioral deficits. Moreover, administration of HAR increased the expression levels of brain-derived neurotrophic factor (BDNF) and activated the extracellular-regulated protein kinase (ERK) and the phosphatidylinositol 3-kinase (PI3-kinase) pathways both in the cerebral cortex and hippocampus of the Aβ₁₋₄₀-insulted rat model. Furthermore, in cultured primary cortical neurons, Aβ₁₋₄₂ induced significant decrease of choline acetyltransferase (ChAT)-positive neuron number and neurite outgrowth length, both of which were dose dependently increased by HAR. In addition, HAR pretreatment also significantly attenuated the decrease of cell viability in Aβ₁₋₄₂-injured primary cortical neurons. Finally, when K252a, an inhibitor of Trk tyrosine kinases, and a BDNF neutralizing antibody were added to the culture medium 2 h prior to HAR addition, the protective effect of HAR on Aβ₁₋₄₂-induced neurodegeneration in the primary cortical neuron was almost inhibited. Taken together, HAR exerting neuroprotection effect and ameliorating learning and memory deficit appears to be associated, at least in part, with up-regulation of BDNF content as well as activating its downstream signaling pathways, e.g., MAPK

  2. Expression and Dendritic Trafficking of BDNF-6 Splice Variant are Impaired in Knock-In Mice Carrying Human BDNF Val66Met Polymorphism

    PubMed Central

    Baj, Gabriele; Ieraci, Alessandro; Corna, Stefano; Musazzi, Laura; Lee, Francis S.; Tongiorgi, Enrico; Popoli, Maurizio

    2015-01-01

    Background: The human Val66Met polymorphism in brain-derived neurotrophic factor (BDNF), a key factor in neuroplasticity, synaptic function, and cognition, has been implicated in the pathophysiology of neuropsychiatric and neurodegenerative disorders. BDNF is encoded by multiple transcripts with distinct regulation and localization, but the impact of the Val66Met polymorphism on BDNF regulation remains unclear. Methods: In BDNF Val66Met knock-in mice, which recapitulate the phenotypic hallmarks of individuals carrying the BDNFMet allele, we measured expression levels, epigenetic changes at promoters, and dendritic trafficking of distinct BDNF transcripts using quantitative PCR, chromatin immunoprecipitation (ChIP), and in situ hybridization. Results: BDNF-4 and BDNF-6 transcripts were reduced in BDNFMet/Met mice, compared with BDNFVal/Val mice. ChIP for acetyl-histone H3, a marker of active gene transcription, and trimethyl-histone-H3-Lys27 (H3K27me3), a marker of gene repression, showed higher H3K27me3 binding to exon 5, 6, and 8 promoters in BDNFMet/Met. The H3K27 methyltransferase enhancer of zeste homolog 2 (EZH2) is involved in epigenetic regulation of BDNF expression, because in neuroblastoma cells BDNF expression was increased both by short interference RNA for EZH2 and incubation with 3-deazaneplanocin A, an inhibitor of EZH2. In situ hybridization for BDNF-2, BDNF-4, and BDNF-6 after pilocarpine treatment showed that BDNF-6 transcript was virtually absent from distal dendrites of the CA1 and CA3 regions in BDNFMet/Met mice, while no changes were found for BDNF-2 and BDNF-4. Conclusions: Impaired BDNF expression and dendritic targeting in BDNFMet/Met mice may contribute to reduced regulated secretion of BDNF at synapses, and may be a specific correlate of pathology in individuals carrying the Met allele. PMID:26108221

  3. Differential effects of NT-4, NGF and BDNF on development of neurochemical architecture and cell size regulation in rat visual cortex during the critical period.

    PubMed

    Engelhardt, Maren; Di Cristo, Graziella; Berardi, Nicoletta; Maffei, Lamberto; Wahle, Petra

    2007-01-01

    Development of inhibition is a crucial determinant of the time course of visual cortical plasticity. BDNF strongly affects interneuron development and the onset and closure of the critical period for ocular dominance plasticity. Less is known on the effects of NT-4 despite a clear involvement in ocular dominance plasticity. We have investigated the effects of NT-4 on interneuron development by supplying NT-4 with osmotic minipumps during two time windows overlapping the onset (P12-20) and the peak (P20-28) of the critical period. We assessed the expression of interneuronal markers and soma size maturation either after the end of the infusion periods or at the end of the critical period (P45). We found that NT-4 was very effective in regulating interneuron development. NPY, SOM and PARV neuron somata grew faster during both infusion periods whereas CR neurons only responded during the early infusion period. The effects of soma size elicited during the earlier infusion period were still present at P45. In PARV neurons, NT-4 caused a long-lasting stabilization of CB and NPY expression. Furthermore, NT-4 accelerated the expression of GAD-65 mRNA in a subset of non-PARV neurons of layer V, which normally up-regulate GAD-65 towards the end of the critical period. Most of these effects were shared by NT-4 and BDNF. Some were unexpectedly also shared by NGF, which promoted growth of layer V PARV neurons, stabilized the CB expression and accelerated the GAD-65 expression. The results suggest that neurotrophins act on critical period plasticity by strengthening inhibition.

  4. Orchestrated Regulation of Nogo Receptors, Lotus, AMPA Receptors and BDNF in an ECT Model Suggests Opening and Closure of a Window of Synaptic Plasticity

    PubMed Central

    Nordgren, Max; Karlsson, Tobias; Svensson, Maria; Koczy, Josefin; Josephson, Anna; Olson, Lars; Tingström, Anders; Brené, Stefan

    2013-01-01

    Electroconvulsive therapy (ECT) is an efficient and relatively fast acting treatment for depression. However, one severe side effect of the treatment is retrograde amnesia, which in certain cases can be long-term. The mechanisms behind the antidepressant effect and the amnesia are not well understood. We hypothesized that ECT causes transient downregulation of key molecules needed to stabilize synaptic structure and to prevent Ca2+ influx, and a simultaneous increase in neurotrophic factors, thus providing a short time window of increased structural synaptic plasticity. Here we followed regulation of NgR1, NgR3, LOTUS, BDNF, and AMPA subunits GluR1 and GluR2 flip and flop mRNA levels in hippocampus at 2, 4, 12, 24, and 72 hours after a single episode of induced electroconvulsive seizures (ECS) in rats. NgR1 and LOTUS mRNA levels were transiently downregulated in the dentate gyrus 2, 4, 12 and 4, 12, 24 h after ECS treatment, respectively. GluR2 flip, flop and GluR1 flop were downregulated at 4 h. GluR2 flip remained downregulated at 12 h. In contrast, BDNF, NgR3 and GluR1 flip mRNA levels were upregulated. Thus, ECS treatment induces a transient regulation of factors important for neuronal plasticity. Our data provide correlations between ECS treatment and molecular events compatible with the hypothesis that both effects and side effects of ECT may be caused by structural synaptic rearrangements. PMID:24244357

  5. Lactoferrin up-regulates intestinal gene expression of brain-derived neurotrophic factors BDNF, UCHL1 and alkaline phosphatase activity to alleviate early weaning diarrhea in postnatal piglets.

    PubMed

    Yang, Changwei; Zhu, Xi; Liu, Ni; Chen, Yue; Gan, Hexia; Troy, Frederic A; Wang, Bing

    2014-08-01

    The molecular mechanisms underlying how dietary lactoferrin (Lf) impacts gut development and maturation and protects against early weaning diarrhea are not well understood. In this study, we supplemented postnatal piglets with an Lf at a dose level of 155 and 285 mg/kg/day from 3 to 38 days following birth. Our findings show that the high dose of Lf up-regulated messenger RNA expression levels of genes encoding brain-derived neurotrophic factor (BDNF) and ubiquitin carboxy-terminal hydrolase L1 (ubiquitin thiolesterase (UCHL1) and, to a lesser extent, glial cell line-derived neurotrophic factor, in the duodenum (P<.05). Piglets in the high and low Lf group had 30% and 7% larger jejunal crypts compared with the control group (P<.05). Escherichia coli 16S rRNA copy number per gram of ascending colon contents was significantly reduced (P=.001), while the copy number of Bifidobacteria and Lactobacillus spp. was not affected. In addition, Lf increased intestinal alkaline phosphatase activity (P<.05) and delayed the onset of food transitional diarrhea, reducing its frequency and duration (P<.05). The incidence of diarrhea in the high and low Lf groups was decreased 54% and 15%, respectively, compared with the control group (P=.035). In summary, these findings provide new evidence that dietary Lf supplementation up-regulated gene expression of BDNF and UCHL1, decreased the colon microbiota of E. coli, improved gut maturation and reduced early weaning diarrhea in piglets. The molecular basis underlying these findings suggests that Lf may enhance gut development and immune function by providing new insight into the gut-brain-microbe axis that has not been previously reported. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. A simple role for BDNF in learning and memory?

    PubMed

    Cunha, Carla; Brambilla, Riccardo; Thomas, Kerrie L

    2010-01-01

    Since its discovery almost three decades ago, the secreted neurotrophin brain-derived neurotrophic factor (BDNF) has been firmly implicated in the differentiation and survival of neurons of the CNS. More recently, BDNF has also emerged as an important regulator of synaptogenesis and synaptic plasticity mechanisms underlying learning and memory in the adult CNS. In this review we will discuss our knowledge about the multiple intracellular signalling pathways activated by BDNF, and the role of this neurotrophin in long-term synaptic plasticity and memory formation as well as in synaptogenesis. We will show that maturation of BDNF, its cellular localization and its ability to regulate both excitatory and inhibitory synapses in the CNS may result in conflicting alterations in synaptic plasticity and memory formation. Lack of a precise knowledge about the mechanisms by which BDNF influences higher cognitive functions and complex behaviours may constitute a severe limitation in the possibility to devise BDNF-based therapeutics for human disorders of the CNS.

  7. Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons.

    PubMed

    Chen, Zhe-Yu; Patel, Paresh D; Sant, Gayatree; Meng, Chui-Xiang; Teng, Kenneth K; Hempstead, Barbara L; Lee, Francis S

    2004-05-05

    Brain-derived neurotrophic factor (BDNF) plays a critical role in nervous system and cardiovascular development and function. Recently, a common single nucleotide polymorphism in the bdnf gene, resulting in a valine to methionine substitution in the prodomain (BDNF(Met)), has been shown to lead to memory impairment and susceptibility to neuropsychiatric disorders in humans heterozygous for the variant BDNF. When expressed by itself in hippocampal neurons, less BDNF(Met) is secreted in an activity-dependent manner. The nature of the cellular defect when both BDNF(Met) and wild-type BDNF (BDNF(Val)) are present in the same cell is not known. Given that this is the predominant expression profile in humans, we examined the effect of coexpressed BDNF(Met) on BDNF(Val) intracellular trafficking and processing. Our data indicate that abnormal trafficking of BDNF(Met) occurred only in neuronal and neurosecretory cells and that BDNF(Met) could alter the intracellular distribution and activity-dependent secretion of BDNF(Val). We determined that, when coexpressed in the same cell, approximately 70% of the variant BDNF forms BDNF(Val).BDNF(Met) heterodimers, which are inefficiently sorted into secretory granules resulting in a quantitative decreased secretion. Finally, we determined the form of BDNF secreted in an activity-dependent manner and observed no differences in the forms of BDNF(Met) or the BDNF(Val).BDNF(Met) heterodimer compared with BDNF(Val). Together, these findings indicate that components of the regulated secretory machinery interacts specifically with a signal in the BDNF prodomain and that perturbations in BDNF trafficking may lead to selective impairment in CNS function.

  8. Caffeine-mediated BDNF release regulates long-term synaptic plasticity through activation of IRS2 signaling.

    PubMed

    Lao-Peregrín, Cristina; Ballesteros, Jesús Javier; Fernández, Miriam; Zamora-Moratalla, Alfonsa; Saavedra, Ana; Gómez Lázaro, María; Pérez-Navarro, Esther; Burks, Deborah; Martín, Eduardo D

    2016-07-25

    Caffeine has cognitive-enhancing properties with effects on learning and memory, concentration, arousal and mood. These effects imply changes at circuital and synaptic level, but the mechanism by which caffeine modifies synaptic plasticity remains elusive. Here we report that caffeine, at concentrations representing moderate to high levels of consumption in humans, induces an NMDA receptor-independent form of LTP (CAF LTP) in the CA1 region of the hippocampus by promoting calcium-dependent secretion of BDNF, which subsequently activates TrkB-mediated signaling required for the expression of CAF LTP. Our data include the novel observation that insulin receptor substrate 2 (IRS2) is phosphorylated during induction of CAF LTP, a process that requires cytosolic free Ca(2+) . Consistent with the involvement of IRS2 signals in caffeine-mediated synaptic plasticity, phosphorylation of Akt (Ser473) in response to LTP induction is defective in Irs2(-/-) mice, demonstrating that these plasticity changes are associated with downstream targets of the phosphoinositide 3-kinase (PI3K) pathway. These findings indicate that TrkB-IRS2 signals are essential for activation of PI3K during the induction of LTP by caffeine.

  9. Exercise induces BDNF and synapsin I to specific hippocampal subfields.

    PubMed

    Vaynman, Shoshanna; Ying, Zhe; Gómez-Pinilla, Fernando

    2004-05-01

    To assess the relationship between brain-derived neurotrophic factor (BDNF) and synapsin I in the hippocampus during exercise, we employed a novel microsphere injection method to block the action of BDNF through its tyrosine kinase (Trk) receptor and subsequently measure the mRNA levels of synapsin I, using real-time TaqMan RT-PCR for RNA quantification. After establishing a causal link between BDNF and exercise-induced synapsin I mRNA levels, we studied the exercise-induced distribution of BDNF and synapsin I in the rodent hippocampus. Quantitative immunohistochemical analysis revealed increases of BDNF and synapsin I in CA3 stratum lucidum and dentate gyrus, and synapsin I alone in CA1 stratum radiatum and stratum laconosum moleculare. These results indicate that exercise induces plasticity of select hippocampal transsynaptic circuitry, possibly comprising a spatial restriction on synapsin I regulation by BDNF.

  10. BDNF Mediates Adaptive Brain and Body Responses to Energetic Challenges

    PubMed Central

    Marosi, Krisztina; Mattson, Mark P.

    2014-01-01

    Emerging findings suggest that brain-derived neurotrophic factor (BDNF) serves widespread roles in regulating energy homeostasis by controlling patterns of feeding and physical activity, and by modulating glucose metabolism in peripheral tissues. BDNF mediates beneficial effects of energetic challenges such as vigorous exercise and fasting on cognition, mood, cardiovascular function and peripheral metabolism. By stimulating glucose transport and mitochondrial biogenesis BDNF bolsters cellular bioenergetics and protects neurons against injury and disease. By acting in the brain and periphery, BDNF increases insulin sensitivity and parasympathetic tone. Genetic factors, a ‘couch potato’ lifestyle and chronic stress impair BDNF signaling, which may contribute to the pathogenesis of metabolic syndrome. Novel BDNF-focused interventions are being developed for obesity, diabetes and neurological disorders. PMID:24361004

  11. Acute exercise modulates BDNF and pro-BDNF protein content in immune cells.

    PubMed

    Brunelli, Andrea; Dimauro, Ivan; Sgrò, Paolo; Emerenziani, Gian Pietro; Magi, Fiorenza; Baldari, Carlo; Guidetti, Laura; Di Luigi, Luigi; Parisi, Paolo; Caporossi, Daniela

    2012-10-01

    Although several studies have shown that immune cells stimulated by in vitro stress are capable to produce neurotrophins, there is still no evidence whether physiological stress, such as exercise, can modulate the in vivo levels of brain-derived neurotrophic factor (BDNF) in peripheral blood mononuclear cells (PBMCs). This work investigated whether acute exercise modulates the expression of BDNF, pro-BDNF, and p75(NTR) in the PBMCs of 10 healthy young men who performed a cycling incremental test to exhaustion (MAX) or exercised at individual anaerobic threshold (IAT). The PBMC expression of stress response proteins and the level of circulating BDNF, vascular endothelial growth growth factor, platelet-derived growth factor subunit B, basic fibroblast growth factor pro-inflammatory, and anti-inflammatory cytokines were analyzed as well. A major finding is that both sessions of acute exercise regulated the content of BDNF isoforms within PBMCs in a manner related to the physiological stress exerted. Although the pro-BDNF increased after both MAX and IAT protocols, BDNF showed a kinetics dependent on exercise type: MAX induced a 54% protein increase immediately after exercise, followed by a significant drop 60 min after its conclusion (38% lower than the baseline). Differently, in the IAT, BDNF increased significantly up to 75% from the baseline throughout the recovery phase. All physiological parameters, as well as the p75(NTR) receptor and the stress-inducible proteins, were also differently regulated by the two exercise conditions. These data supported the hypothesis that PBMCs might produce and secrete BDNF isoforms, as well as modulate the proteins p75(NTR) , Bcl-xL, hsp90, hsp27, and αB-crystallin, as part of the physiological stress response induced by acute exercise, offering a novel example of bidirectional interaction between nervous and immune systems.

  12. Persistent inflammation-induced up-regulation of brain-derived neurotrophic factor (BDNF) promotes synaptic delivery of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor GluA1 subunits in descending pain modulatory circuits.

    PubMed

    Tao, Wenjuan; Chen, Quan; Zhou, Wenjie; Wang, Yunping; Wang, Lu; Zhang, Zhi

    2014-08-08

    The enhanced AMPA receptor phosphorylation at GluA1 serine 831 sites in the central pain-modulating system plays a pivotal role in descending pain facilitation after inflammation, but the underlying mechanisms remain unclear. We show here that, in the rat brain stem, in the nucleus raphe magnus, which is a critical relay in the descending pain-modulating system of the brain, persistent inflammatory pain induced by complete Freund adjuvant (CFA) can enhance AMPA receptor-mediated excitatory postsynaptic currents and the GluA2-lacking AMPA receptor-mediated rectification index. Western blot analysis showed an increase in GluA1 phosphorylation at Ser-831 but not at Ser-845. This was accompanied by an increase in distribution of the synaptic GluA1 subunit. In parallel, the level of histone H3 acetylation at bdnf gene promoter regions was reduced significantly 3 days after CFA injection, as indicated by ChIP assays. This was correlated with an increase in BDNF mRNA levels and BDNF protein levels. Sequestering endogenous extracellular BDNF with TrkB-IgG in the nucleus raphe magnus decreased AMPA receptor-mediated synaptic transmission and GluA1 phosphorylation at Ser-831 3 days after CFA injection. Under the same conditions, blockade of TrkB receptor functions, phospholipase C, or PKC impaired GluA1 phosphorylation at Ser-831 and decreased excitatory postsynaptic currents mediated by GluA2-lacking AMPA receptors. Taken together, these results suggest that epigenetic up-regulation of BDNF by peripheral inflammation induces GluR1 phosphorylation at Ser-831 sites through activation of the phospholipase C-PKC signaling cascade, leading to the trafficking of GluA1 to pain-modulating neuronal synapses.

  13. Maternal poly I:C exposure during pregnancy regulates TNF alpha, BDNF, and NGF expression in neonatal brain and the maternal-fetal unit of the rat.

    PubMed

    Gilmore, John H; Jarskog, L Fredrik; Vadlamudi, Swarooparani

    2005-02-01

    Maternal infection during pregnancy is associated with increased risk for neurodevelopmental disorders. Polyriboinosinic-polyribocytidilic acid (poly I:C) or saline was administered to rats to model maternal infection; levels of TNFalpha, brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF) were determined by ELISA. TNFalpha was significantly increased in maternal plasma, placenta, and amniotic fluid, while it was significantly decreased in fetal liver/spleen and neonatal brain. NGF and BDNF were significantly decreased in the placenta and fetal liver/spleen. There was no change in BDNF or NGF in the fetal or neonatal brain. Changes in TNFalpha, BDNF, and NGF after maternal exposure to poly I:C represent a potential mechanism through which maternal infection increases risk for neurodevelopmental disorders.

  14. DNA Methylation of BDNF Gene in Schizophrenia

    PubMed Central

    Çöpoğlu, Ümit Sertan; İğci, Mehri; Bozgeyik, Esra; Kokaçya, M. Hanifi; İğci, Yusuf Ziya; Dokuyucu, Recep; Arı, Mustafa; Savaş, Haluk A.

    2016-01-01

    Background Although genetic factors are risk factors for schizophrenia, some environmental factors are thought to be required for the manifestation of disease. Epigenetic mechanisms regulate gene functions without causing a change in the nucleotide sequence of DNA. Brain-derived neurotrophic factor (BDNF) is a neurotrophin that regulates synaptic transmission and plasticity. It has been suggested that BDNF may play a role in the pathophysiology of schizophrenia. It is established that methylation status of the BDNF gene is associated with fear learning, memory, and stressful social interactions. In this study, we aimed to investigate the DNA methylation status of BDNF gene in patients with schizophrenia. Material/Methods The study included 49 patients (33 male and 16 female) with schizophrenia and 65 unrelated healthy controls (46 male and 19 female). Determination of methylation pattern of CpG islands was based on the principle that bisulfite treatment of DNA results in conversion of unmethylated cytosine residues into uracil, whereas methylated cytosine residues remain unmodified. Methylation-specific PCR was performed with primers specific for either methylated or unmethylated DNA. Results There was no significant difference in methylated or un-methylated status for BDNF promoters between schizophrenia patients and controls. The mean duration of illness was significantly lower in the hemi-methylated group compared to the non-methylated group for BDNF gene CpG island-1 in schizophrenia patients. Conclusions Although there were no differences in BDNF gene methylation status between schizophrenia patients and healthy controls, there was an association between duration of illness and DNA methylation. PMID:26851233

  15. DNA Methylation of BDNF Gene in Schizophrenia.

    PubMed

    Çöpoğlu, Ümit Sertan; Igci, Mehri; Bozgeyik, Esra; Kokaçya, M Hanifi; İğci, Yusuf Ziya; Dokuyucu, Recep; Ari, Mustafa; Savaş, Haluk A

    2016-02-06

    BACKGROUND Although genetic factors are risk factors for schizophrenia, some environmental factors are thought to be required for the manifestation of disease. Epigenetic mechanisms regulate gene functions without causing a change in the nucleotide sequence of DNA. Brain-derived neurotrophic factor (BDNF) is a neurotrophin that regulates synaptic transmission and plasticity. It has been suggested that BDNF may play a role in the pathophysiology of schizophrenia. It is established that methylation status of the BDNF gene is associated with fear learning, memory, and stressful social interactions. In this study, we aimed to investigate the DNA methylation status of BDNF gene in patients with schizophrenia. MATERIAL AND METHODS The study included 49 patients (33 male and 16 female) with schizophrenia and 65 unrelated healthy controls (46 male and 19 female). Determination of methylation pattern of CpG islands was based on the principle that bisulfite treatment of DNA results in conversion of unmethylated cytosine residues into uracil, whereas methylated cytosine residues remain unmodified. Methylation-specific PCR was performed with primers specific for either methylated or unmethylated DNA. RESULTS There was no significant difference in methylated or un-methylated status for BDNF promoters between schizophrenia patients and controls. The mean duration of illness was significantly lower in the hemi-methylated group compared to the non-methylated group for BDNF gene CpG island-1 in schizophrenia patients. CONCLUSIONS Although there were no differences in BDNF gene methylation status between schizophrenia patients and healthy controls, there was an association between duration of illness and DNA methylation.

  16. BDNF/ TrkB interaction regulates migration of SVZ precursor cells via PI3-K and MAP-K signalling pathways.

    PubMed

    Chiaramello, S; Dalmasso, G; Bezin, L; Marcel, D; Jourdan, F; Peretto, P; Fasolo, A; De Marchis, S

    2007-10-01

    Neuroblasts born in the subventricular zone (SVZ) migrate along the rostral migratory stream, reaching the olfactory bulb (OB) where they differentiate into local interneurons. Several extracellular factors have been suggested to control specific steps of this process. The brain-derived neurotrophic factor (BDNF) has been demonstrated to promote morphological differentiation and survival of OB interneurons. Here we show that BDNF and its receptor TrkB are expressed in vivo throughout the migratory pathway, implying that BDNF might also mediate migratory signals. By using in vitro models we demonstrate that BDNF promotes migration of SVZ neuroblasts, acting both as inducer and attractant through TrkB activation. We show that BDNF induces cAMP response element-binding protein (CREB) activation in migrating neuroblasts via phosphatidylinositol 3-kinase (PI3-K) and mitogen-activated protein kinase (MAP-K) signalling. Pharmacological blockade of these pathways on SVZ explants significantly reduces CREB activation and impairs neuronal migration. This study identifies a function of BDNF in the SVZ system, which involves multiple protein kinase pathways leading to neuroblast migration.

  17. Regulation of brain-derived neurotrophic factor (BDNF) in the chronic unpredictable stress rat model and the effects of chronic antidepressant treatment.

    PubMed

    Larsen, Marianne H; Mikkelsen, Jens D; Hay-Schmidt, Anders; Sandi, Carmen

    2010-10-01

    Chronic unpredictable stress (CUS) is a widely used animal model of depression. The present study was undertaken to investigate behavioral, physiological and molecular effects of CUS and/or chronic antidepressant treatment (venlafaxine or imipramine) in the same set of animals. Anhedonia, a core symptom of depression, was assessed by measuring consumption of a palatable solution. Exposure to CUS reduced intake of a palatable solution and this effect was prevented by chronic antidepressant treatment. Moreover, chronic antidepressant treatment decreased depressive-like behavior in a modified forced swim test in stressed rats. Present evidence suggests a role for brain-derived neurotrophic factor (BDNF) in depression. BDNF mRNA levels in the ventral and dorsal hippocampus were assessed by in situ hybridization. Exposure to CUS was not correlated with a decrease but rather with an increase in BDNF mRNA expression in both the dentate gyrus of the dorsal hippocampus and the CA3 region of the ventral hippocampus indicating that there is no simple link between depression-like behaviors per se and brain BDNF levels in rats. However, a significant increase in BDNF mRNA levels in the dentate gyrus of the dorsal hippocampus correlated with chronic antidepressant treatment emphasizing a role for BDNF in the mechanisms underlying antidepressant activity.

  18. Early enriched environment induces an increased conversion of proBDNF to BDNF in the adult rat's hippocampus.

    PubMed

    Cao, Wenyu; Duan, Juan; Wang, Xueqin; Zhong, Xiaolin; Hu, Zhaolan; Huang, Fulian; Wang, Hongtao; Zhang, Juan; Li, Fang; Zhang, Jianyi; Luo, Xuegang; Li, Chang-Qi

    2014-05-15

    An enriched environment has been shown to influence brain plasticity and function by involving the action of brain-derived neurotrophic factor (BDNF). BDNF, which is synthesized as a precursor molecule (proBDNF) that undergoes proteolytic cleavage, plays an important role in synaptic plasticity and contributes to several brain functions such as memory, learning, and behavior. The neurotrophins and proneurotrophins often play opposite roles in the brain, suggesting that proteolytic cleavage of proneurotrophins controls the action of neurotrophins. However, few studies have focused on the expression and cleavage of proBDNF after exposure to an enriched environment. Our study aimed to explore the effects of an early-enriched environment on the conversion of proBDNF to BDNF in the adult rats' hippocampus. We found that there was no difference in the expression of proBDNF in the hippocampus between the SE (standard environment) and EE (enriched environment) rats, but a significantly increased BDNF protein level was found in the EE rats. Thus, a remarkably enhanced ratio of BDNF to proBDNF (BDNF/proBDNF) was observed in the EE rats. In addition, the EE resulted in a remarkably up-regulated matrix metalloproteinase-9 (MMP-9) in the hippocampus, which played a key role in converting proBDNF to BDNF in the extracellular space. Furthermore, the expression of synapse-related proteins (NR1 and NR2A) was analyzed, and the results indicated that EE could significantly increase the expression of NR1 and NR2A in the hippocampus. In addition, the behavioral results showed that EE reduced anxiety-like behavior in the elevated-plus maze test and reduced immobility time in the forced swimming test. Moreover, the EE resulted in an increased preference for sucrose compared to the SE. These results suggested that the EE up-regulated MMP-9 levels within the hippocampus, which might facilitate the conversion of proBDNF to BDNF, thereby contributing to the long lasting alterations of

  19. The regulation of methane oxidation in soil

    NASA Technical Reports Server (NTRS)

    Mancinelli, R. L.

    1995-01-01

    The atmospheric concentration of methane, a greenhouse gas, has more than doubled during the past 200 years. Consequently, identifying the factors influencing the flux of methane into the atmosphere is becoming increasingly important. Methanotrophs, microaerophilic organisms widespread in aerobic soils and sediments, oxidize methane to derive energy and carbon for biomass. In so doing, they play an important role in mitigating the flux of methane into the atmosphere. Several physico-chemical factors influence rates of methane oxidation in soil, including soil diffusivity; water potential; and levels of oxygen, methane, ammonium, nitrate, nitrite, and copper. Most of these factors exert their influence through interactions with methane monooxygenase (MMO), the enzyme that catalyzes the reaction converting methane to methanol, the first step in methane oxidation. Although biological factors such as competition and predation undoubtedly play a role in regulating the methanotroph population in soils, and thereby limit the amount of methane consumed by methanotrophs, the significance of these factors is unknown. Obtaining a better understanding of the ecology of methanotrophs will help elucidate the mechanisms that regulate soil methane oxidation.

  20. The regulation of methane oxidation in soil

    NASA Technical Reports Server (NTRS)

    Mancinelli, R. L.

    1995-01-01

    The atmospheric concentration of methane, a greenhouse gas, has more than doubled during the past 200 years. Consequently, identifying the factors influencing the flux of methane into the atmosphere is becoming increasingly important. Methanotrophs, microaerophilic organisms widespread in aerobic soils and sediments, oxidize methane to derive energy and carbon for biomass. In so doing, they play an important role in mitigating the flux of methane into the atmosphere. Several physico-chemical factors influence rates of methane oxidation in soil, including soil diffusivity; water potential; and levels of oxygen, methane, ammonium, nitrate, nitrite, and copper. Most of these factors exert their influence through interactions with methane monooxygenase (MMO), the enzyme that catalyzes the reaction converting methane to methanol, the first step in methane oxidation. Although biological factors such as competition and predation undoubtedly play a role in regulating the methanotroph population in soils, and thereby limit the amount of methane consumed by methanotrophs, the significance of these factors is unknown. Obtaining a better understanding of the ecology of methanotrophs will help elucidate the mechanisms that regulate soil methane oxidation.

  1. Ethanol-BDNF interactions: Still More Questions than Answers

    PubMed Central

    Davis, Margaret I.

    2008-01-01

    Brain Derived Neurotrophic Factor (BDNF) has emerged as a regulator of development, plasticity and, recently, addiction. Decreased neurotrophic activity may be involved in ethanol-induced neurodegeneration in the adult brain and in the etiology of alcohol-related neurodevelopmental disorders. This can occur through decreased expression of BDNF or through inability of the receptor to transduce signals in the presence of ethanol. In contrast, recent studies implicate region-specific up-regulation of BDNF and associated signaling pathways in anxiety, addiction and homeostasis after ethanol exposure. Anxiety and depression are precipitating factors for substance abuse and these disorders also involve region-specific changes in BDNF in both pathogenesis and response to pharmacotherapy. Polymorphisms in the genes coding for BDNF and its receptor TrkB are linked to affective, substance abuse and appetitive disorders and therefore may play a role in the development of alcoholism. This review summarizes historical and pre-clinical data on BDNF and TrkB as it relates to ethanol toxicity and addiction. Many unresolved questions about region-specific changes in BDNF expression and the precise role of BDNF in neuropsychiatric disorders and addiction remain to be elucidated. Resolution of these questions will require significant integration of the literature on addiction and comorbid psychiatric disorders that contribute to the development of alcoholism. PMID:18394710

  2. The human BDNF gene: peripheral gene expression and protein levels as biomarkers for psychiatric disorders

    PubMed Central

    Cattaneo, A; Cattane, N; Begni, V; Pariante, C M; Riva, M A

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) regulates the survival and growth of neurons, and influences synaptic efficiency and plasticity. The human BDNF gene consists of 11 exons, and distinct BDNF transcripts are produced through the use of alternative promoters and splicing events. The majority of the BDNF transcripts can be detected not only in the brain but also in the blood cells, although no study has yet investigated the differential expression of BDNF transcripts at the peripheral level. This review provides a description of the human BDNF gene structure as well as a summary of clinical and preclinical evidence supporting the role of BDNF in the pathogenesis of psychiatric disorders. We will discuss several mechanisms as possibly underlying BDNF modulation, including epigenetic mechanisms. We will also discuss the potential use of peripheral BDNF as a biomarker for psychiatric disorders, focusing on the factors that can influence BDNF gene expression and protein levels. Within this context, we have also characterized, for we believe the first time, the expression of BDNF transcripts in the blood, with the aim to provide novel insights into the molecular mechanisms and signaling that may regulate peripheral BDNF gene expression levels. PMID:27874848

  3. PI3-kinase/Akt pathway-regulated membrane insertion of acid-sensing ion channel 1a underlies BDNF-induced pain hypersensitivity.

    PubMed

    Duan, Bo; Liu, Di-Shi; Huang, Yu; Zeng, Wei-Zheng; Wang, Xiang; Yu, Hui; Zhu, Michael X; Chen, Zhe-Yu; Xu, Tian-Le

    2012-05-02

    Central neural plasticity plays a key role in pain hypersensitivity. This process is modulated by brain-derived neurotrophic factor (BDNF) and also involves the type 1a acid-sensing ion channel (ASIC1a). However, the interactions between the BDNF receptor, tropomyosin-related kinase B (TrkB), and ASIC1a are unclear. Here, we show that deletion of ASIC1 gene suppressed the sustained mechanical hyperalgesia induced by intrathecal BDNF application in mice. In both rat spinal dorsal horn neurons and heterologous cell cultures, the BDNF/TrkB pathway enhanced ASIC1a currents via phosphoinositide 3-kinase (PI3K)-protein kinase B (PKB/Akt) cascade and phosphorylation of cytoplasmic residue Ser-25 of ASIC1a, resulting in enhanced forward trafficking and increased surface expression. Moreover, in both rats and mice, this enhanced ASIC1a activity was required for BDNF-mediated hypersensitivity of spinal dorsal horn nociceptive neurons and central mechanical hyperalgesia, a process that was abolished by intrathecal application of a peptide representing the N-terminal region of ASIC1a encompassing Ser-25. Thus, our results reveal a novel mechanism underlying central sensitization and pain hypersensitivity, and reinforce the critical role of ASIC1a channels in these processes.

  4. BDNF control of adult SVZ neurogenesis.

    PubMed

    Bath, Kevin G; Akins, Michael R; Lee, Francis S

    2012-09-01

    The sensory processing of odorants is a dynamic process that requires plasticity at multiple levels. In the olfactory bulb (OB), inhibitory interneurons undergo lifelong replacement through a process known as adult neurogenesis. These newly born cells are incorporated in a learning-dependent fashion, a process which has led some to suggest this as a primary mechanism through which the OB retains a high degree of plasticity throughout life. A continued focus of researchers in this field has been to understand the molecular mechanisms controlling adult subventricular zone (SVZ) neurogenesis and the innate functional role of these cells. Brain-derived neurotrophic factor (BDNF) has been identified as a strong candidate molecule regulating adult OB neurogenesis. We review what is known regarding the functional role of newly born cells, highlight the role of BDNF in this process, and describe preliminary findings from our lab implicating BDNF in the process of selecting of newly born cells for survival.

  5. Semax, an analog of ACTH(4-10) with cognitive effects, regulates BDNF and trkB expression in the rat hippocampus.

    PubMed

    Dolotov, Oleg V; Karpenko, Ekaterina A; Inozemtseva, Lyudmila S; Seredenina, Tamara S; Levitskaya, Natalia G; Rozyczka, Joanna; Dubynina, Elena V; Novosadova, Ekaterina V; Andreeva, Lyudmila A; Alfeeva, Lyudmila Yu; Kamensky, Andrey A; Grivennikov, Igor A; Myasoedov, Nikolay F; Engele, Jürgen

    2006-10-30

    The heptapeptide Semax (Met-Glu-His-Phe-Pro-Gly-Pro) is an analog of the adrenocorticotropin fragment (4-10) which after intranasal application has profound effects on learning and exerts marked neuroprotective activities. Here, we found that a single application of Semax (50 microg/kg body weight) results in a maximal 1.4-fold increase of BDNF protein levels accompanying with 1.6-fold increase of trkB tyrosine phosporylation levels, and a 3-fold and a 2-fold increase of exon III BDNF and trkB mRNA levels, respectively, in the rat hippocampus. Semax-treated animals showed a distinct increase in the number of conditioned avoidance reactions. We suggest that Semax affects cognitive brain functions by modulating the expression and the activation of the hippocampal BDNF/trkB system.

  6. Glioactive ATP controls BDNF recycling in cortical astrocytes

    PubMed Central

    Vignoli, Beatrice; Canossa, Marco

    2017-01-01

    ABSTRACT We have recently reported that long-term memory retention requires synaptic glia for proBDNF uptake and recycling. Through the recycling course, glial cells release endocytic BDNF, a mechanism that is activated in response to glutamate via AMPA and mGluRI/II receptors. Cortical astrocytes express receptors for many different transmitters suggesting for a complex signaling controlling endocytic BDNF secretion. Here, we demonstrated that the extracellular nucleotide ATP, activating P2X and P2Y receptors, regulates endocytic BDNF secretion in cultured astrocytes. Our data indicate that distinct glioactive molecules can participate in BDNF glial recycling and suggest that cortical astrocytes contributing to neuronal plasticity can be influenced by neurotransmitters in tune with synaptic needs. PMID:28289489

  7. Plasma levels of mature brain-derived neurotrophic factor (BDNF) and matrix metalloproteinase-9 (MMP-9) in treatment-resistant schizophrenia treated with clozapine.

    PubMed

    Yamamori, Hidenaga; Hashimoto, Ryota; Ishima, Tamaki; Kishi, Fukuko; Yasuda, Yuka; Ohi, Kazutaka; Fujimoto, Michiko; Umeda-Yano, Satomi; Ito, Akira; Hashimoto, Kenji; Takeda, Masatoshi

    2013-11-27

    Brain-derived neurotrophic factor (BDNF) regulates the survival and growth of neurons, and influences synaptic efficiency and plasticity. Peripheral BDNF levels in patients with schizophrenia have been widely reported in the literature. However, it is still controversial whether peripheral levels of BDNF are altered in patients with schizophrenia. The peripheral BDNF levels previously reported in patients with schizophrenia were total BDNF (proBDNF and mature BDNF) as it was unable to specifically measure mature BDNF due to limited BDNF antibody specificity. In this study, we examined whether peripheral levels of mature BDNF were altered in patients with treatment-resistant schizophrenia. Matrix metalloproteinase-9 (MMP-9) levels were also measured, as MMP-9 plays a role in the conversion of proBDNF to mature BDNF. Twenty-two patients with treatment-resistant schizophrenia treated with clozapine and 22 age- and sex-matched healthy controls were enrolled. The plasma levels of mature BDNF and MMP-9 were measured using ELISA kits. No significant difference was observed for mature BDNF however, MMP-9 was significantly increased in patients with schizophrenia. The significant correlation was observed between mature BDNF and MMP-9 plasma levels. Neither mature BDNF nor MMP-9 plasma levels were associated clinical variables. Our results do not support the view that peripheral BDNF levels are associated with schizophrenia. MMP-9 may play a role in the pathophysiology of schizophrenia and serve as a biomarker for schizophrenia.

  8. Chelidonic acid evokes antidepressant-like effect through the up-regulation of BDNF in forced swimming test

    PubMed Central

    Jeong, Hyun-Ja; Yang, Shi-Young; Kim, Hee-Yun; Kim, Na-Rae; Jang, Jae-Bum

    2016-01-01

    Depression is usually accompanied by neuro-inflammatory reactions. Chelidonic acid, in particular, has shown anti-inflammatory effects. The objective of this study was to evaluate the anti-depressant effects of chelidonic acid and to discuss the potential mechanisms of a forced swimming test. Chelidonic acid was administered orally once a day for 14 days. On the 14th day, chelidonic acid resulted in a significant decrease in immobility time during the forced swimming test without alteration of locomotor activity, in an open field test. Chelidonic acid also increased the number of nissl bodies in the hippocampus. Brain-derived neurotrophic factor expression and extracellular signal-regulated protein kinase phosphorylation in the hippocampus were up-regulated by the administration of chelidonic acid. Chelidonic acid administration significantly increased the mRNA expression of hippocampal estrogen receptor-β. The levels of hippocampal interleukin (IL)-1β, IL-6, and tumor necrosis factor-α were effectively attenuated by the administration of chelidonic acid. In addition, chelidonic acid significantly increased the levels of 5-hydroxytryptamine (serotonin), dopamine, and norepinephrine compared with those levels for the mice that were administered distilled water in the hippocampus. These results suggest that chelidonic acid might serve as a new therapeutic strategy for the regulation of depression associated with inflammation. PMID:27037280

  9. Chelidonic acid evokes antidepressant-like effect through the up-regulation of BDNF in forced swimming test.

    PubMed

    Jeong, Hyun-Ja; Yang, Shi-Young; Kim, Hee-Yun; Kim, Na-Rae; Jang, Jae-Bum; Kim, Hyung-Min

    2016-08-01

    Depression is usually accompanied by neuro-inflammatory reactions. Chelidonic acid, in particular, has shown anti-inflammatory effects. The objective of this study was to evaluate the anti-depressant effects of chelidonic acid and to discuss the potential mechanisms of a forced swimming test. Chelidonic acid was administered orally once a day for 14 days. On the 14th day, chelidonic acid resulted in a significant decrease in immobility time during the forced swimming test without alteration of locomotor activity, in an open field test. Chelidonic acid also increased the number of nissl bodies in the hippocampus. Brain-derived neurotrophic factor expression and extracellular signal-regulated protein kinase phosphorylation in the hippocampus were up-regulated by the administration of chelidonic acid. Chelidonic acid administration significantly increased the mRNA expression of hippocampal estrogen receptor-β. The levels of hippocampal interleukin (IL)-1β, IL-6, and tumor necrosis factor-α were effectively attenuated by the administration of chelidonic acid. In addition, chelidonic acid significantly increased the levels of 5-hydroxytryptamine (serotonin), dopamine, and norepinephrine compared with those levels for the mice that were administered distilled water in the hippocampus. These results suggest that chelidonic acid might serve as a new therapeutic strategy for the regulation of depression associated with inflammation. © 2016 by the Society for Experimental Biology and Medicine.

  10. The function of BDNF in the adult auditory system.

    PubMed

    Singer, Wibke; Panford-Walsh, Rama; Knipper, Marlies

    2014-01-01

    The inner ear of vertebrates is specialized to perceive sound, gravity and movements. Each of the specialized sensory organs within the cochlea (sound) and vestibular system (gravity, head movements) transmits information to specific areas of the brain. During development, brain-derived neurotrophic factor (BDNF) orchestrates the survival and outgrowth of afferent fibers connecting the vestibular organ and those regions in the cochlea that map information for low frequency sound to central auditory nuclei and higher-auditory centers. The role of BDNF in the mature inner ear is less understood. This is mainly due to the fact that constitutive BDNF mutant mice are postnatally lethal. Only in the last few years has the improved technology of performing conditional cell specific deletion of BDNF in vivo allowed the study of the function of BDNF in the mature developed organ. This review provides an overview of the current knowledge of the expression pattern and function of BDNF in the peripheral and central auditory system from just prior to the first auditory experience onwards. A special focus will be put on the differential mechanisms in which BDNF drives refinement of auditory circuitries during the onset of sensory experience and in the adult brain. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.

  11. Plasma BDNF levels following weight recovery in anorexia nervosa.

    PubMed

    Phillips, Kathryn E; Jimerson, David C; Pillai, Anilkumar; Wolfe, Barbara E

    2016-10-15

    Preclinical studies have implicated brain-derived neurotrophic factor (BDNF) in the regulation of eating behavior and body weight. As reviewed in this report, prior studies of BDNF levels in anorexia nervosa have yielded variable results, perhaps reflecting effects of malnutrition and psychiatric comorbidity. The goal of the current report was to assess plasma BDNF as a biomarker in weight-recovered individuals with a history of anorexia nervosa (ANWR). Study groups included women meeting criteria for ANWR and healthy female controls. Participants were in a normal weight range, free of current major psychiatric disorder, and free of medication. Self-ratings included eating disorder symptoms, depression and anxiety. Plasma BDNF levels were measured by enzyme linked immunoassay. Plasma BDNF levels were not significantly different for ANWR and control groups. Plasma BDNF levels were inversely correlated with anxiety ratings in controls (p<0.02) but not in the ANWR group. This report provides new evidence that circulating BDNF concentrations do not differ in healthy controls and ANWR free of psychiatric comorbidity. Additionally, the data provide new information on the relationship between plasma BDNF and anxiety in these two study groups. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Spinal Plasticity and Behavior: BDNF-Induced Neuromodulation in Uninjured and Injured Spinal Cord

    PubMed Central

    Huie, J. Russell

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophic factor family of signaling molecules. Since its discovery over three decades ago, BDNF has been identified as an important regulator of neuronal development, synaptic transmission, and cellular and synaptic plasticity and has been shown to function in the formation and maintenance of certain forms of memory. Neural plasticity that underlies learning and memory in the hippocampus shares distinct characteristics with spinal cord nociceptive plasticity. Research examining the role BDNF plays in spinal nociception and pain overwhelmingly suggests that BDNF promotes pronociceptive effects. BDNF induces synaptic facilitation and engages central sensitization-like mechanisms. Also, peripheral injury-induced neuropathic pain is often accompanied with increased spinal expression of BDNF. Research has extended to examine how spinal cord injury (SCI) influences BDNF plasticity and the effects BDNF has on sensory and motor functions after SCI. Functional recovery and adaptive plasticity after SCI are typically associated with upregulation of BDNF. Although neuropathic pain is a common consequence of SCI, the relation between BDNF and pain after SCI remains elusive. This article reviews recent literature and discusses the diverse actions of BDNF. We also highlight similarities and differences in BDNF-induced nociceptive plasticity in naïve and SCI conditions. PMID:27721996

  13. BDNF pro-peptide actions facilitate hippocampal LTD and are altered by the common BDNF polymorphism Val66Met.

    PubMed

    Mizui, Toshiyuki; Ishikawa, Yasuyuki; Kumanogoh, Haruko; Lume, Maria; Matsumoto, Tomoya; Hara, Tomoko; Yamawaki, Shigeto; Takahashi, Masami; Shiosaka, Sadao; Itami, Chiaki; Uegaki, Koichi; Saarma, Mart; Kojima, Masami

    2015-06-09

    Most growth factors are initially synthesized as precursor proteins and subsequently processed into their mature form by proteolytic cleavage, resulting in simultaneous removal of a pro-peptide. However, compared with that of mature form, the biological role of the pro-peptide is poorly understood. Here, we investigated the biological role of the pro-peptide of brain-derived neurotrophic factor (BDNF) and first showed that the pro-peptide is expressed and secreted in hippocampal tissues and cultures, respectively. Interestingly, we found that the BDNF pro-peptide directly facilitates hippocampal long-term depression (LTD), requiring the activation of GluN2B-containing NMDA receptors and the pan-neurotrophin receptor p75(NTR). The BDNF pro-peptide also enhances NMDA-induced α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor endocytosis, a mechanism crucial for LTD expression. Thus, the BDNF pro-peptide is involved in synaptic plasticity that regulates a mechanism responsible for promoting LTD. The well-known BDNF polymorphism valine for methionine at amino acid position 66 (Val66Met) affects human memory function. Here, the BDNF pro-peptide with Met mutation completely inhibits hippocampal LTD. These findings demonstrate functional roles for the BDNF pro-peptide and a naturally occurring human BDNF polymorphism in hippocampal synaptic depression.

  14. BDNF pro-peptide actions facilitate hippocampal LTD and are altered by the common BDNF polymorphism Val66Met

    PubMed Central

    Mizui, Toshiyuki; Ishikawa, Yasuyuki; Kumanogoh, Haruko; Lume, Maria; Matsumoto, Tomoya; Hara, Tomoko; Yamawaki, Shigeto; Takahashi, Masami; Shiosaka, Sadao; Itami, Chiaki; Uegaki, Koichi; Saarma, Mart; Kojima, Masami

    2015-01-01

    Most growth factors are initially synthesized as precursor proteins and subsequently processed into their mature form by proteolytic cleavage, resulting in simultaneous removal of a pro-peptide. However, compared with that of mature form, the biological role of the pro-peptide is poorly understood. Here, we investigated the biological role of the pro-peptide of brain-derived neurotrophic factor (BDNF) and first showed that the pro-peptide is expressed and secreted in hippocampal tissues and cultures, respectively. Interestingly, we found that the BDNF pro-peptide directly facilitates hippocampal long-term depression (LTD), requiring the activation of GluN2B-containing NMDA receptors and the pan-neurotrophin receptor p75NTR. The BDNF pro-peptide also enhances NMDA-induced α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor endocytosis, a mechanism crucial for LTD expression. Thus, the BDNF pro-peptide is involved in synaptic plasticity that regulates a mechanism responsible for promoting LTD. The well-known BDNF polymorphism valine for methionine at amino acid position 66 (Val66Met) affects human memory function. Here, the BDNF pro-peptide with Met mutation completely inhibits hippocampal LTD. These findings demonstrate functional roles for the BDNF pro-peptide and a naturally occurring human BDNF polymorphism in hippocampal synaptic depression. PMID:26015580

  15. Alcohol dependence-induced regulation of the proliferation and survival of adult brain progenitors is associated with altered BDNF-TrkB signaling.

    PubMed

    Somkuwar, Sucharita S; Fannon, McKenzie J; Staples, Miranda C; Zamora-Martinez, Eva R; Navarro, Alvaro I; Kim, Airee; Quigley, Jacqueline A; Edwards, Scott; Mandyam, Chitra D

    2016-12-01

    Effects of withdrawal from ethanol drinking in chronic intermittent ethanol vapor (CIE)-exposed dependent rats and air-exposed nondependent rats on proliferation and survival of progenitor cells in the hippocampus and the medial prefrontal cortex (mPFC) were investigated. Rats were injected with 5'-Bromo 2-deoxyuridine 72 h post-CIE to measure proliferation (2 h-old cells) and survival (29-day-old cells) of progenitors born during a time-point previously reported to elicit a proliferative burst in the hippocampus. Hippocampal and mPFC brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B receptor (TrkB) expression were measured 3 h or 21d post-CIE to evaluate neurotrophic signaling during a time point preceding the proliferative burst and survival of newly born progenitors. CIE rats demonstrated elevated drinking compared to nondependent rats and CIE rats maintained elevated drinking following protracted abstinence. Withdrawal from CIE increased BDNF levels in the hippocampus and mPFC, and subsequently increased proliferation in the hippocampus and mPFC compared to nondependent rats and controls. Protracted abstinence from CIE reduced BDNF expression to control levels, and subsequently reduced neurogenesis compared to controls and nondependent rats in the hippocampus. In the mPFC, protracted abstinence reduced BDNF expression to control levels, whereas increased oligodendrogenesis in dependent rats compared to nondependent rats and controls. These results suggest a novel relationship between BDNF and progenitors in the hippocampus and mPFC, in which increased ethanol drinking may alter hippocampal and cortical function in alcohol dependent subjects by altering the cellular composition of newly born progenitors in the hippocampus and mPFC.

  16. 40 CFR 52.231 - Regulations: Sulfur oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Regulations: Sulfur oxides. 52.231... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.231 Regulations: Sulfur oxides... Ambient Air Quality Standard for Sulfur Oxides. (1) Lake County Intrastate Region. (i) Lake County,...

  17. 40 CFR 52.231 - Regulations: Sulfur oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Regulations: Sulfur oxides. 52.231... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.231 Regulations: Sulfur oxides... Ambient Air Quality Standard for Sulfur Oxides. (1) Lake County Intrastate Region. (i) Lake County,...

  18. 40 CFR 52.231 - Regulations: Sulfur oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Regulations: Sulfur oxides. 52.231... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.231 Regulations: Sulfur oxides... Ambient Air Quality Standard for Sulfur Oxides. (1) Lake County Intrastate Region. (i) Lake County,...

  19. 40 CFR 52.231 - Regulations: Sulfur oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Regulations: Sulfur oxides. 52.231... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.231 Regulations: Sulfur oxides... Ambient Air Quality Standard for Sulfur Oxides. (1) Lake County Intrastate Region. (i) Lake County,...

  20. 40 CFR 52.231 - Regulations: Sulfur oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Regulations: Sulfur oxides. 52.231... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.231 Regulations: Sulfur oxides... Ambient Air Quality Standard for Sulfur Oxides. (1) Lake County Intrastate Region. (i) Lake County,...

  1. Role of BDNF epigenetics in activity-dependent neuronal plasticity.

    PubMed

    Karpova, Nina N

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) is a key mediator of the activity-dependent processes in the brain that have a major impact on neuronal development and plasticity. Impaired control of neuronal activity-induced BDNF expression mediates the pathogenesis of various neurological and psychiatric disorders. Different environmental stimuli, such as the use of pharmacological compounds, physical and learning exercises or stress exposure, lead to activation of specific neuronal networks. These processes entail tight temporal and spatial transcriptional control of numerous BDNF splice variants through epigenetic mechanisms. The present review highlights recent findings on the dynamic and long-term epigenetic programming of BDNF gene expression by the DNA methylation, histone-modifying and microRNA machineries. The review also summarizes the current knowledge on the activity-dependent BDNF mRNA trafficking critical for rapid local regulation of BDNF levels and synaptic plasticity. Current data open novel directions for discovery of new promising therapeutic targets for treatment of neuropsychiatric disorders. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Physiology of BDNF: focus on hypothalamic function.

    PubMed

    Tapia-Arancibia, Lucia; Rage, Florence; Givalois, Laurent; Arancibia, Sandor

    2004-07-01

    Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family which interacts with high-affinity protein kinase receptors (Trk) and the unselective p75(NGFR) receptor. The BDNF gene has a complex structure with multiple regulatory elements and four promoters that are differentially expressed in central or peripheral tissue. BDNF expression is regulated by neuronal activity or peripheral hormones. Neurotrophins regulate the survival and differentiation of neurons during development but growing evidence indicates that they are also involved in several functions in adulthood, including plasticity processes. BDNF expression in the central nervous system (CNS) is modified by various kinds of brain insult (stress, ischemia, seizure activity, hypoglycemia, etc.) and alterations in its expression may contribute to some pathologies such as depression, epilepsy, Alzheimer's, and Parkinson's disease. Apart from very traumatic situations, the brain functioning is resilient to stress and capable of adaptive plasticity. Neurotrophins might act as plasticity mediators enhancing this trait which seems to be crucial in adaptive processes. In addition to documenting all of the topics mentioned above in the CNS, we review the state of the art concerning neurotrophins and their receptors, including our personal contribution which is essentially focused on the stress response.

  3. Polarized signaling endosomes coordinate BDNF-induced chemotaxis of cerebellar precursors

    PubMed Central

    Zhou, Pengcheng; Porcionatto, Marimelia; Pilapil, Mariecel; Chen, Yicheng; Choi, Yoojin; Tolias, Kimberley F.; Bikoff, Jay B.; Hong, Elizabeth J.; Greenberg, Michael E.; Segal, Rosalind A.

    2007-01-01

    Summary During development, neural precursors migrate in response to positional cues such as growth factor gradients. However, the mechanisms that enable precursors to sense and respond to such gradients are poorly understood. Here we show that cerebellar granule cell precursors (GCPs) migrate along a gradient of brain-derived neurotrophic factor (BDNF), and we demonstrate that vesicle trafficking is critical for this chemotactic process. Activation of TrkB, the BDNF receptor, stimulates GCPs to secrete BDNF, thereby amplifying the ambient gradient. The BDNF gradient stimulates endocytosis of TrkB and associated signaling molecules, causing asymmetric accumulation of signaling endosomes at the subcellular location where BDNF concentration is maximal. Thus regulated BDNF exocytosis and TrkB endocytosis enable precursors to polarize and migrate in a directed fashion along a shallow BDNF gradient. PMID:17610817

  4. Polarized signaling endosomes coordinate BDNF-induced chemotaxis of cerebellar precursors.

    PubMed

    Zhou, Pengcheng; Porcionatto, Marimelia; Pilapil, Mariecel; Chen, Yicheng; Choi, Yoojin; Tolias, Kimberley F; Bikoff, Jay B; Hong, Elizabeth J; Greenberg, Michael E; Segal, Rosalind A

    2007-07-05

    During development, neural precursors migrate in response to positional cues such as growth factor gradients. However, the mechanisms that enable precursors to sense and respond to such gradients are poorly understood. Here we show that cerebellar granule cell precursors (GCPs) migrate along a gradient of brain-derived neurotrophic factor (BDNF), and we demonstrate that vesicle trafficking is critical for this chemotactic process. Activation of TrkB, the BDNF receptor, stimulates GCPs to secrete BDNF, thereby amplifying the ambient gradient. The BDNF gradient stimulates endocytosis of TrkB and associated signaling molecules, causing asymmetric accumulation of signaling endosomes at the subcellular location where BDNF concentration is maximal. Thus, regulated BDNF exocytosis and TrkB endocytosis enable precursors to polarize and migrate in a directed fashion along a shallow BDNF gradient.

  5. The lighter side of BDNF

    PubMed Central

    Noble, Emily E.; Billington, Charles J.; Kotz, Catherine M.

    2011-01-01

    Brain-derived neurotrophic factor (BDNF) mediates energy metabolism and feeding behavior. As a neurotrophin, BDNF promotes neuronal differentiation, survival during early development, adult neurogenesis, and neural plasticity; thus, there is the potential that BDNF could modify circuits important to eating behavior and energy expenditure. The possibility that “faulty” circuits could be remodeled by BDNF is an exciting concept for new therapies for obesity and eating disorders. In the hypothalamus, BDNF and its receptor, tropomyosin-related kinase B (TrkB), are extensively expressed in areas associated with feeding and metabolism. Hypothalamic BDNF and TrkB appear to inhibit food intake and increase energy expenditure, leading to negative energy balance. In the hippocampus, the involvement of BDNF in neural plasticity and neurogenesis is important to learning and memory, but less is known about how BDNF participates in energy homeostasis. We review current research about BDNF in specific brain locations related to energy balance, environmental, and behavioral influences on BDNF expression and the possibility that BDNF may influence energy homeostasis via its role in neurogenesis and neural plasticity. PMID:21346243

  6. Identification of a Functionally Distinct Truncated BDNF mRNA Splice Variant and Protein in Trachemys scripta elegans

    PubMed Central

    Ambigapathy, Ganesh; Zheng, Zhaoqing; Li, Wei; Keifer, Joyce

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) has a diverse functional role and complex pattern of gene expression. Alternative splicing of mRNA transcripts leads to further diversity of mRNAs and protein isoforms. Here, we describe the regulation of BDNF mRNA transcripts in an in vitro model of eyeblink classical conditioning and a unique transcript that forms a functionally distinct truncated BDNF protein isoform. Nine different mRNA transcripts from the BDNF gene of the pond turtle Trachemys scripta elegans (tBDNF) are selectively regulated during classical conditioning: exon I mRNA transcripts show no change, exon II transcripts are downregulated, while exon III transcripts are upregulated. One unique transcript that codes from exon II, tBDNF2a, contains a 40 base pair deletion in the protein coding exon that generates a truncated tBDNF protein. The truncated transcript and protein are expressed in the naïve untrained state and are fully repressed during conditioning when full-length mature tBDNF is expressed, thereby having an alternate pattern of expression in conditioning. Truncated BDNF is not restricted to turtles as a truncated mRNA splice variant has been described for the human BDNF gene. Further studies are required to determine the ubiquity of truncated BDNF alternative splice variants across species and the mechanisms of regulation and function of this newly recognized BDNF protein. PMID:23825634

  7. Neuroprotective action of N-acetyl serotonin in oxidative stress-induced apoptosis through the activation of both TrkB/CREB/BDNF pathway and Akt/Nrf2/Antioxidant enzyme in neuronal cells.

    PubMed

    Yoo, Jae-Myung; Lee, Bo Dam; Sok, Dai-Eun; Ma, Jin Yuel; Kim, Mee Ree

    2017-04-01

    N-acetyl serotonin (NAS) as a melatonin precursor has neuroprotective actions. Nonetheless, it is not clarified how NAS protects neuronal cells against oxidative stress. Recently, we have reported that N-palmitoyl serotonins possessed properties of antioxidants and neuroprotection. Based on those, we hypothesized that NAS, a N-acyl serotonin, may have similar actions in oxidative stress-induced neuronal cells, and examined the effects of NAS based on in vitro and in vivo tests. NAS dose-dependently inhibited oxidative stress-induced cell death in HT-22 cells. Moreover, NAS suppressed glutamate-induced apoptosis by suppressing expression of AIF, Bax, calpain, cytochrome c and cleaved caspase-3, whereas it enhanced expression of Bcl-2. Additionally, NAS improved phosphorylation of tropomyosin-related kinase receptor B (TrkB) and cAMP response element-binding protein (CREB) as well as expression of brain-derived neurotrophic factor (BDNF), whereas the inclusion of each inhibitor of JNK, p38 or Akt neutralized the neuroprotective effect of NAS, but not that of ERK. Meanwhile, NAS dose-dependently reduced the level of reactive oxygen species, and enhanced the level of glutathione in glutamate-treated HT-22 cells. Moreover, NAS significantly increased expression of heme oxygenase-1, NAD(P)H quinine oxidoreductase-1 and glutamate-cysteine ligase catalytic subunit as well as nuclear translocation of NF-E2-related factor-2. Separately, NAS at 30mg/kg suppressed scopolamine-induced memory impairment and cell death in CA1 and CA3 regions in mice. In conclusion, NAS shows actions of antioxidant and anti-apoptosis by activating TrkB/CREB/BDNF pathway and expression of antioxidant enzymes in oxidative stress-induced neurotoxicity. Therefore, such effects of NAS may provide the information for the application of NAS against neurodegenerative diseases.

  8. Scorpion venom heat-resistant peptide (SVHRP) enhances neurogenesis and neurite outgrowth of immature neurons in adult mice by up-regulating brain-derived neurotrophic factor (BDNF).

    PubMed

    Wang, Tao; Wang, Shi-Wei; Zhang, Yue; Wu, Xue-Fei; Peng, Yan; Cao, Zhen; Ge, Bi-Ying; Wang, Xi; Wu, Qiong; Lin, Jin-Tao; Zhang, Wan-Qin; Li, Shao; Zhao, Jie

    2014-01-01

    Scorpion venom heat-resistant peptide (SVHRP) is a component purified from Buthus martensii Karsch scorpion venom. Although scorpions and their venom have been used in Traditional Chinese Medicine (TCM) to treat chronic neurological disorders, the underlying mechanisms of these treatments remain unknown. We applied SVHRP in vitro and in vivo to understand its effects on the neurogenesis and maturation of adult immature neurons and explore associated molecular mechanisms. SVHRP administration increased the number of 5-bromo-2'-dexoxyuridine (BrdU)-positive cells, BrdU-positive/neuron-specific nuclear protein (NeuN)-positive neurons, and polysialylated-neural cell adhesion molecule (PSA-NCAM)-positive immature neurons in the subventricular zone (SVZ) and subgranular zone (SGZ) of hippocampus. Furthermore immature neurons incubated with SVHRP-pretreated astrocyte-conditioned medium exhibited significantly increased neurite length compared with those incubated with normal astrocyte-conditioned medium. This neurotrophic effect was further confirmed in vivo by detecting an increased average single area and whole area of immature neurons in the SGZ, SVZ and olfactory bulb (OB) in the adult mouse brain. In contrast to normal astrocyte-conditioned medium, higher concentrations of brain-derived neurotrophic factor (BDNF) but not nerve growth factor (NGF) or glial cell line-derived neurotrophic factor (GDNF) was detected in the conditioned medium of SVHRP-pretreated astrocytes, and blocking BDNF using anti-BDNF antibodies eliminated these SVHRP-dependent neurotrophic effects. In SVHRP treated mouse brain, more glial fibrillary acidic protein (GFAP)-positive cells were detected. Furthermore, immunohistochemistry revealed increased numbers of GFAP/BDNF double-positive cells, which agrees with the observed changes in the culture system. This paper describes novel effects of scorpion venom-originated peptide on the stem cells and suggests the potential therapeutic values of SVHRP.

  9. Long-term treadmill exercise improves spatial memory of male APPswe/PS1dE9 mice by regulation of BDNF expression and microglia activation

    PubMed Central

    Xiong, JY; Li, SC; Sun, YX; Zhang, XS; Dong, ZZ; Zhong, P

    2015-01-01

    Increasing evidence suggests that physical activity could delay or attenuate the symptoms of Alzheimer's disease (AD). But the underlying mechanisms are still not fully understood. To investigate the effect of long-term treadmill exercise on the spatial memory of AD mice and the possible role of β-amyloid, brain-derived neurotrophic factor (BDNF) and microglia in the effect, male APPswe/PS1dE9 AD mice aged 4 months were subjected to treadmill exercise for 5 months with 6 sessions per week and gradually increased load. A Morris water maze was used to evaluate the spatial memory. Expression levels of β-amyloid, BDNF and Iba-1 (a microglia marker) in brain tissue were detected by immunohistochemistry. Sedentary AD mice and wildtype C57BL/6J mice served as controls. The results showed that 5-month treadmill exercise significantly decreased the escape latencies (P < 0.01 on the 4th day) and improved the spatial memory of the AD mice in the water maze test. Meanwhile, treadmill exercise significantly increased the number of BDNF-positive cells and decreased the ratios of activated microglia in both the cerebral cortex and the hippocampus. However, treadmill exercise did not significantly alleviate the accumulation of β-amyloid in either the cerebral cortex or the hippocampus of the AD mice (P > 0.05). The study suggested that long-term treadmill exercise could improve the spatial memory of the male APPswe/PS1dE9 AD mice. The increase in BDNF-positive cells and decrease in activated microglia might underpin the beneficial effect. PMID:26681831

  10. Long-term treadmill exercise improves spatial memory of male APPswe/PS1dE9 mice by regulation of BDNF expression and microglia activation.

    PubMed

    Xiong, J Y; Li, S C; Sun, Y X; Zhang, X S; Dong, Z Z; Zhong, P; Sun, X R

    2015-11-01

    Increasing evidence suggests that physical activity could delay or attenuate the symptoms of Alzheimer's disease (AD). But the underlying mechanisms are still not fully understood. To investigate the effect of long-term treadmill exercise on the spatial memory of AD mice and the possible role of β-amyloid, brain-derived neurotrophic factor (BDNF) and microglia in the effect, male APPswe/PS1dE9 AD mice aged 4 months were subjected to treadmill exercise for 5 months with 6 sessions per week and gradually increased load. A Morris water maze was used to evaluate the spatial memory. Expression levels of β-amyloid, BDNF and Iba-1 (a microglia marker) in brain tissue were detected by immunohistochemistry. Sedentary AD mice and wildtype C57BL/6J mice served as controls. The results showed that 5-month treadmill exercise significantly decreased the escape latencies (P < 0.01 on the 4th day) and improved the spatial memory of the AD mice in the water maze test. Meanwhile, treadmill exercise significantly increased the number of BDNF-positive cells and decreased the ratios of activated microglia in both the cerebral cortex and the hippocampus. However, treadmill exercise did not significantly alleviate the accumulation of β-amyloid in either the cerebral cortex or the hippocampus of the AD mice (P > 0.05). The study suggested that long-term treadmill exercise could improve the spatial memory of the male APPswe/PS1dE9 AD mice. The increase in BDNF-positive cells and decrease in activated microglia might underpin the beneficial effect.

  11. Corticosterone regulates expression of BDNF and trkB but not NT-3 and trkC mRNA in the rat hippocampus.

    PubMed

    Schaaf, M J; Hoetelmans, R W; de Kloet, E R; Vreugdenhil, E

    1997-05-15

    Corticosterone has profound effects on growth, differentiation, and synaptic transmission of hippocampal neurons by activation of mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs). In the present study we tested if neurotrophins can be implicated in these effects. For this purpose we injected 30, 300, and 1,000 microg corticosterone s.c. (per kg body weight) in adrenalectomized rats and measured the mRNA levels of brain-derived neurotrophic factor (BDNF), tyrosine receptor kinase (trk)B, neurotrophin (NT)-3, and trkC in hippocampal cell fields at 6 hr after steroid administration by in situ hybridization. NT-3 and trkC mRNA did not show significant changes in any hippocampal region after the various doses of corticosterone. BDNF mRNA decreased after corticosterone administration dose dependently, resulting in a maximal suppression of 35, 20, and 50% in dentate gyrus, CA3, and CA1, respectively. Interestingly, trkB responded to corticosterone in an inverted U-shaped fashion in CA3 and dentate gyrus: the low dose of corticosterone increased trkB mRNA expression in both regions by approximately 30%, while the effect of the two higher doses was not different from the vehicle injected controls. In conclusion, we found differential effects of low and high doses of corticosterone on BDNF and trkB expression in hippocampus, which suggests involvement of a coordinated MR- and GR-mediated action.

  12. Impaired neurogenesis and neurite outgrowth in an HIV-gp120 transgenic model is reversed by exercise via BDNF production and Cdk5 regulation

    PubMed Central

    Lee, Myoung-Hwa; Amin, Niranjana D.; Venkatesan, Arun; Wang, Tongguang; Tyagi, Richa; Pant, Harish C.; Nath, Avindra

    2013-01-01

    Human immunodeficiency virus (HIV) infection associated neurocognitive disorders (HAND) is accompanied with brain atrophy. In these patients, impairment of adult neurogenesis and neurite outgrowth in the hippocampus may contribute to the cognitive dysfunction. Although running exercises can enhance neurogenesis and normalize neurite outgrowth, the underlying molecular mechanisms are not well understood. The HIV envelope protein, gp120, has been shown to impair neurogenesis. Using a gp120 transgenic mouse model, we demonstrate that exercise stimulated neural progenitor cell (NPC) proliferation in the hippocampal dentate gyrus and increased the survival rate and generation of newborn cells. However sustained exercise activity was necessary since the effects were reversed by detraining. Exercise also normalized dendritic outgrowth of neurons. Furthermore, it also increased the expression of hippocampal brainderived neurotrophic factor (BDNF) and normalized hyperactivation of cyclin-dependent kinase 5 (Cdk5). Hyper-activated Cdk5 or gp120 treatment led to aberrant neurite outgrowth and BDNF treatment normalized the neurite outgrowth in NPC cultures. These results suggest that sustained exercise has trophic activity on the neuronal lineage which is mediated by Cdk5 modulation of the BDNF pathway. PMID:23982957

  13. Nitric oxide negatively regulates mammalian adult neurogenesis

    NASA Astrophysics Data System (ADS)

    Packer, Michael A.; Stasiv, Yuri; Benraiss, Abdellatif; Chmielnicki, Eva; Grinberg, Alexander; Westphal, Heiner; Goldman, Steven A.; Enikolopov, Grigori

    2003-08-01

    Neural progenitor cells are widespread throughout the adult central nervous system but only give rise to neurons in specific loci. Negative regulators of neurogenesis have therefore been postulated, but none have yet been identified as subserving a significant role in the adult brain. Here we report that nitric oxide (NO) acts as an important negative regulator of cell proliferation in the adult mammalian brain. We used two independent approaches to examine the function of NO in adult neurogenesis. In a pharmacological approach, we suppressed NO production in the rat brain by intraventricular infusion of an NO synthase inhibitor. In a genetic approach, we generated a null mutant neuronal NO synthase knockout mouse line by targeting the exon encoding active center of the enzyme. In both models, the number of new cells generated in neurogenic areas of the adult brain, the olfactory subependyma and the dentate gyrus, was strongly augmented, which indicates that division of neural stem cells in the adult brain is controlled by NO and suggests a strategy for enhancing neurogenesis in the adult central nervous system.

  14. Autocrine action of BDNF on dendrite development of adult-born hippocampal neurons.

    PubMed

    Wang, Liang; Chang, Xingya; She, Liang; Xu, Duo; Huang, Wei; Poo, Mu-ming

    2015-06-03

    Dendrite development of newborn granule cells (GCs) in the dentate gyrus of adult hippocampus is critical for their incorporation into existing hippocampal circuits, but the cellular mechanisms regulating their dendrite development remains largely unclear. In this study, we examined the function of brain-derived neurotrophic factor (BDNF), which is expressed in adult-born GCs, in regulating their dendrite morphogenesis. Using retrovirus-mediated gene transfection, we found that deletion and overexpression of BDNF in adult-born GCs resulted in the reduction and elevation of dendrite growth, respectively. This effect was mainly due to the autocrine rather than paracrine action of BDNF, because deletion of BDNF only in the newborn GCs resulted in dendrite abnormality of these neurons to a similar extent as that observed in conditional knockout (cKO) mice with BDNF deleted in the entire forebrain. Furthermore, selective expression of BDNF in adult-born GCs in BDNF cKO mice fully restored normal dendrite development. The BDNF autocrine action was also required for the development of normal density of spines and normal percentage of spines containing the postsynaptic marker PSD-95, suggesting autocrine BDNF regulation of synaptogenesis. Furthermore, increased dendrite growth of adult-born GCs caused by voluntary exercise was abolished by BDNF deletion specifically in these neurons and elevated dendrite growth due to BDNF overexpression in these neurons was prevented by reducing neuronal activity with coexpression of inward rectifier potassium channels, consistent with activity-dependent autocrine BDNF secretion. Therefore, BDNF expressed in adult-born GCs plays a critical role in dendrite development by acting as an autocrine factor.

  15. BDNF-mediated modulation of glycine transmission on rat spinal motoneurons.

    PubMed

    Ding, Jian-Dong; Tang, Xian-Ye; Shi, Jian-Gang; Jia, Lian-Shun

    2014-08-22

    BDNF has a widespread distribution in the central and peripheral nervous systems, suggesting that BDNF may play a role in the regulation of motor control. However, the direct actions of BDNF on the motoneurons and their underlying mechanisms are still largely unknown to date. Therefore, by using whole-cell patch clamp recordings, quantitative RT-PCR and immunocytochemistry, the present study was designed to investigate the effects of BDNF on electrical activity and glycinergic transmission on the motoneurons and the underlying receptor mechanism. The results reveal: (i) BDNF did not produce a direct excitatory or inhibitory effect on the motoneurons; (ii) BDNF dose-dependently increased the glycinergic transmission on the motoneurons; (iii) glycinergic transmission on motoneurons was a direct postsynaptic effect; (iv) BDNF-induced enhancement of the glycinergic transmission was mediated by the activation of TrkB receptors; and (v) BDNF and its receptors TrkB had an extensive expression in the motoneurons. These results suggest that BDNF is directly involved in the regulation of glycinergic transmission on the motoneurons through postsynaptic TrkB receptors. Considering that the glycinergic synaptic transmission of motoneurons mainly comes from Renshaw cells, the important inhibitory interneurons of spinal cord, we speculate that BDNF may play an important role in the information integration in the spinal cord and participate in the sensitivity of motoneurons.

  16. BDNF promotes differentiation and maturation of adult-born neurons through GABAergic transmission.

    PubMed

    Waterhouse, Emily G; An, Juan Ji; Orefice, Lauren L; Baydyuk, Maryna; Liao, Guey-Ying; Zheng, Kang; Lu, Bai; Xu, Baoji

    2012-10-10

    Brain-derived neurotrophic factor (BDNF) has been implicated in regulating adult neurogenesis in the subgranular zone (SGZ) of the dentate gyrus; however, the mechanism underlying this regulation remains unclear. In this study, we found that Bdnf mRNA localized to distal dendrites of dentate gyrus granule cells isolated from wild-type (WT) mice, but not from Bdnf(klox/klox) mice where the long 3' untranslated region (UTR) of Bdnf mRNA is truncated. KCl-induced membrane depolarization stimulated release of dendritic BDNF translated from long 3' UTR Bdnf mRNA in cultured hippocampal neurons, but not from short 3' UTR Bdnf mRNA. Bdnf(klox/klox) mice exhibited reduced expression of glutamic acid decarboxylase 65 (a GABA synthase), increased proliferation of progenitor cells, and impaired differentiation and maturation of newborn neurons in the SGZ. These deficits in adult neurogenesis were rescued with administration of phenobarbital, an enhancer of GABA(A) receptor activity. Furthermore, we observed similar neurogenesis deficits in mice where the receptor for BDNF, TrkB, was selectively abolished in parvalbumin (PV)-expressing GABAergic interneurons. Thus, our data suggest that locally synthesized BDNF in dendrites of granule cells promotes differentiation and maturation of progenitor cells in the SGZ by enhancing GABA release, at least in part, from PV-expressing GABAergic interneurons.

  17. Brain derived neurotrophic factor (BDNF) and autism spectrum disorders (ASD) in childhood.

    PubMed

    Bryn, V; Halvorsen, B; Ueland, T; Isaksen, J; Kolkova, K; Ravn, K; Skjeldal, O H

    2015-07-01

    Neurotrophic factors are essential regulators of neuronal maturation including synaptic synthesis. Among those, Brain derived neurotrophic factor (BDNF) has been in particular focus in the understanding of autism spectrum disorders (ASD). The aim of our study was to investigate whether BNDF could be used as diagnostic/biological marker for ASD. For this purpose we examined the plasma levels of BDNF and the precursors pro- BDNF in patients with ASD and compared it with non-autistic controls; determined whether there was a correlation between the BDNF and proBDNF levels and clinical severity. We also investigated the coding region of BDNF identify for well-variations which could be associated to ASD. The 65 ASD patients (51 boys) were enrolled from a recent completed epidemiological survey covering two counties (Oppland and Hedmark) in Norway. The mean age of the total number of children who participated in this study was 11,7 years. 30 non-autistic children were included as controls, 14 boys and 16 girls. The mean age was 11.3 years. Exclusion criteria for control group were individuals suffering from either neurological, endocrine, or immune insuffiency. Patients with ASD were characterized by moderately but significantly elevated plasma levels of BDNF compared to matched controls. No differences were observed in the proBDNF level between patients and controls. Within the ASD group, children with intellectual disability demonstrated increased BDNF, but not proBDNF levels, while the presence of ADHD had no impact on circulating proBDNF or BDNF. No further associations between plasma proBDNF or BDNF and other clinical demographics were observed. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  18. Conditional BDNF release under pathological conditions improves Huntington's disease pathology by delaying neuronal dysfunction

    PubMed Central

    2011-01-01

    Background Brain-Derived Neurotrophic Factor (BDNF) is the main candidate for neuroprotective therapy for Huntington's disease (HD), but its conditional administration is one of its most challenging problems. Results Here we used transgenic mice that over-express BDNF under the control of the Glial Fibrillary Acidic Protein (GFAP) promoter (pGFAP-BDNF mice) to test whether up-regulation and release of BDNF, dependent on astrogliosis, could be protective in HD. Thus, we cross-mated pGFAP-BDNF mice with R6/2 mice to generate a double-mutant mouse with mutant huntingtin protein and with a conditional over-expression of BDNF, only under pathological conditions. In these R6/2:pGFAP-BDNF animals, the decrease in striatal BDNF levels induced by mutant huntingtin was prevented in comparison to R6/2 animals at 12 weeks of age. The recovery of the neurotrophin levels in R6/2:pGFAP-BDNF mice correlated with an improvement in several motor coordination tasks and with a significant delay in anxiety and clasping alterations. Therefore, we next examined a possible improvement in cortico-striatal connectivity in R62:pGFAP-BDNF mice. Interestingly, we found that the over-expression of BDNF prevented the decrease of cortico-striatal presynaptic (VGLUT1) and postsynaptic (PSD-95) markers in the R6/2:pGFAP-BDNF striatum. Electrophysiological studies also showed that basal synaptic transmission and synaptic fatigue both improved in R6/2:pGAP-BDNF mice. Conclusions These results indicate that the conditional administration of BDNF under the GFAP promoter could become a therapeutic strategy for HD due to its positive effects on synaptic plasticity. PMID:21985529

  19. Prefrontal cortical BDNF: A regulatory key in cocaine- and food-reinforced behaviors

    PubMed Central

    Pitts, Elizabeth G.; Taylor, Jane R.; Gourley, Shannon L.

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) affects synaptic plasticity and neural structure and plays key roles in learning and memory processes. Recent evidence also points to important, yet complex, roles for BDNF in rodent models of cocaine abuse and addiction. Here we examine the role of prefrontal cortical (PFC) BDNF in reward-related decision making and behavioral sensitivity to, and responding for, cocaine. We focus on BDNF within the medial and orbital PFC, its regulation by cocaine during early postnatal development and in adulthood, and how BDNF in turn influences responding for drug reinforcement, including in reinstatement models. When relevant, we draw comparisons and contrasts with experiments using natural (food) reinforcers. We also summarize findings supporting, or refuting, the possibility that BDNF in the medial and orbital PFC regulate the development and maintenance of stimulus-response habits. Further investigation could assist in the development of novel treatment approaches for cocaine use disorders. PMID:26923993

  20. [Research progress of BDNF and depression].

    PubMed

    Qiao, Hui; An, Shu-Cheng; Xu, Chang

    2011-06-01

    BDNF is widespread existed in CNS and PNS, because of its function in nerve regeneration and restoration, more and more researches focused on the effect of BDNF on neural plasticity in the development of depression and the mechanisms of antidepressant. This article review the basic results and the research trends on BDNF and depression at present, more researches about the interactions of BDNF and proBDNF, BDNF and other transmitters and their receptors should be expected.

  1. Effect of dietary fat and the circadian clock on the expression of brain-derived neurotrophic factor (BDNF).

    PubMed

    Genzer, Yoni; Dadon, Maayan; Burg, Chen; Chapnik, Nava; Froy, Oren

    2016-07-15

    Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the brain and its decreased levels are associated with the development of obesity and neurodegeneration. Our aim was to test the effect of dietary fat, its timing and the circadian clock on the expression of BDNF and associated signaling pathways in mouse brain and liver. Bdnf mRNA oscillated robustly in brain and liver, but with a 12-h shift between the tissues. Brain and liver Bdnf mRNA showed a 12-h phase shift when fed ketogenic diet (KD) compared with high-fat diet (HFD) or low-fat diet (LFD). Brain or liver Bdnf mRNA did not show the typical phase advance usually seen under time-restricted feeding (RF). Clock knockdown in HT-4 hippocampal neurons led to 86% up-regulation of Bdnf mRNA, whereas it led to 60% down-regulation in AML-12 hepatocytes. Dietary fat in mice or cultured hepatocytes and hippocampal neurons led to increased Bdnf mRNA expression. At the protein level, HFD increased the ratio of the mature BDNF protein (mBDNF) to its precursor (proBDNF). In the liver, RF under LFD or HFD reduced the mBDNF/proBDNF ratio. In the brain, the two signaling pathways related to BDNF, mTOR and AMPK, showed reduced and increased levels, respectively, under timed HFD. In the liver, the reverse was achieved. In summary, Bdnf expression is mediated by the circadian clock and dietary fat. Although RF does not affect its expression phase, in the brain, when combined with high-fat diet, it leads to a unique metabolic state in which AMPK is activated, mTOR is down-regulated and the levels of mBDNF are high.

  2. ERβ and ApoE isoforms interact to regulate BDNF-5-HT2A signaling and synaptic function in the female brain.

    PubMed

    Chhibber, Anindit; Zhao, Liqin

    2017-09-21

    Depression has been reported to be commonly manifested in patients with Alzheimer's disease (AD) and is considered a risk factor for AD. The human apolipoprotein E (ApoE) gene exists in three major isoforms (coded by ε2, ε3, and ε4), and the ε4 allele has been associated with a greater incidence of both depression and AD. Although mounting evidence points to the potentially complex interaction between these two brain disorders in which ApoE might play a role, the underlying mechanisms are largely unknown. Using human ApoE2, ApoE3, and ApoE4 gene-targeted replacement (hApoE-TR) mouse models, we investigated the role of ApoE isoforms and their potential interactions with estrogen receptor β (ERβ) signaling in modulating the brain mechanisms involved in depression. Our initial analyses in 6-month-old female hApoE-TR mice demonstrated that ApoE influenced the expression of brain-derived neurotrophic factor (BDNF) and the 5-hydroxytryptamine 2A (5-HT2A) serotonin receptor in an isoform-dependent manner, with the ApoE4 brain exhibiting the lowest level of BDNF and the highest level of 5-HT2A. In addition, both presynaptic and postsynaptic proteins were downregulated, indicating a synaptic deficit in ApoE4 brains. Our subsequent analyses revealed that a 3-month chronic treatment with an ERβ-targeted (83-fold selectivity over ERα) phytoestrogenic diet induced several changes in ApoE2 and ApoE3 brains, including a significant decrease in the expression of 5-HT2A receptors and an increase in BDNF/tropomyosin receptor kinase B and synaptic proteins. In contrast, ApoE4 brains were largely unresponsive to the treatment, with an increase only in select synaptic proteins in the treated group. Taken together, these results indicate that ApoE4 negatively impacts BDNF-5-HT2A signaling in the female brain, which could in part underlie the ApoE4-mediated increased risk for depression. In a larger context, this mechanism could serve as a molecular link between depression and AD

  3. Plasma BDNF Levels Vary in Relation to Body Weight in Females

    PubMed Central

    Pillai, Anilkumar; Bruno, Davide; Sarreal, Antero S.; Hernando, Raymundo T.; Saint-Louis, Leslie A.; Nierenberg, Jay; Ginsberg, Stephen D.; Pomara, Nunzio; Mehta, Pankaj D.; Zetterberg, Henrik; Blennow, Kaj; Buckley, Peter F.

    2012-01-01

    Brain derived neurotrophic factor (BDNF) has been implicated in the pathophysiology of depression as well as neuropsychiatric and neurodegenerative disorders. Recent studies show a role of BDNF in energy metabolism and body weight regulation. We examined BDNF levels in plasma and cerebrospinal fluid (CSF) samples from age matched elderly depressed and control subjects. Also, the association of BDNF levels with age, gender, body weight, body mass index (BMI), and cognitive performance was evaluated. We did not find any significant differences in plasma and CSF BDNF levels between depressed and control subjects. Plasma BDNF levels were negatively correlated with age (but not with BMI and body weight), when analyses were performed including both depressed and control subjects. A significant reduction in plasma BDNF levels was observed in females as compared to male subjects, and the change in BDNF levels were significantly and positively related to body weight in females. Furthermore, significant increases in Total Recall and Delayed Recall values were found in females as compared to males. In conclusion, the lower BDNF levels observed in females suggest that changes in peripheral BDNF levels are likely secondary to an altered energy balance. However, further studies using larger sample size are warranted. PMID:22768299

  4. BDNF Val66Met is associated with introversion and interacts with 5-HTTLPR to influence neuroticism.

    PubMed

    Terracciano, Antonio; Tanaka, Toshiko; Sutin, Angelina R; Deiana, Barbara; Balaci, Lenuta; Sanna, Serena; Olla, Nazario; Maschio, Andrea; Uda, Manuela; Ferrucci, Luigi; Schlessinger, David; Costa, Paul T

    2010-04-01

    Brain-derived neurotrophic factor (BDNF) regulates synaptic plasticity and neurotransmission, and has been linked to neuroticism, a major risk factor for psychiatric disorders. A recent genome-wide association (GWA) scan, however, found the BDNF Val66Met polymorphism (rs6265) associated with extraversion but not with neuroticism. In this study, we examine the links between BDNF and personality traits, assessed using the Revised NEO Personality Inventory (NEO-PI-R), in a sample from SardiNIA (n=1560) and the Baltimore Longitudinal Study of Aging (BLSA; n=1131). Consistent with GWA results, we found that BDNF Met carriers were more introverted. By contrast, in both samples and in a meta-analysis inclusive of published data (n=15251), we found no evidence for a main effect of BDNF Val66Met on neuroticism. Finally, on the basis of recent reports of an epistatic effect between BDNF and the serotonin transporter, we explored a Val66Met x 5-HTTLPR interaction in a larger SardiNIA sample (n=2333). We found that 5-HTTLPR LL carriers scored lower on neuroticism in the presence of the BDNF Val variant, but scored higher on neuroticism in the presence of the BDNF Met variant. Our findings support the association between the BDNF Met variant and introversion and suggest that BDNF interacts with the serotonin transporter gene to influence neuroticism.

  5. Neurogenic and neurotrophic effects of BDNF peptides in mouse hippocampal primary neuronal cell cultures.

    PubMed

    Cardenas-Aguayo, Maria del Carmen; Kazim, Syed Faraz; Grundke-Iqbal, Inge; Iqbal, Khalid

    2013-01-01

    The level of brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, is down regulated in Alzheimer's disease (AD), Parkinson's disease (PD), depression, stress, and anxiety; conversely the level of this neurotrophin is increased in autism spectrum disorders. Thus, modulating the level of BDNF can be a potential therapeutic approach for nervous system pathologies. In the present study, we designed five different tetra peptides (peptides B-1 to B-5) corresponding to different active regions of BDNF. These tetra peptides were found to be non-toxic, and they induced the expression of neuronal markers in mouse embryonic day 18 (E18) primary hippocampal neuronal cultures. Additionally, peptide B-5 induced the expression of BDNF and its receptor, TrkB, suggesting a positive feedback mechanism. The BDNF peptides induced only a moderate activation (phosphorylation at Tyr 706) of the TrkB receptor, which could be blocked by the Trk's inhibitor, K252a. Peptide B-3, when combined with BDNF, potentiated the survival effect of this neurotrophin on H(2)O(2)-treated E18 hippocampal cells. Peptides B-3 and B-5 were found to work as partial agonists and as partial antagonists competing with BDNF to activate the TrkB receptor in a dose-dependent manner. Taken together, these results suggest that the described BDNF tetra peptides are neurotrophic, can modulate BDNF signaling in a partial agonist/antagonist way, and offer a novel therapeutic approach to neural pathologies where BDNF levels are dysregulated.

  6. BDNF Val66Met Polymorphism Influences Age Differences in Microstructure of the Corpus Callosum

    PubMed Central

    Kennedy, Kristen M.; Rodrigue, Karen M.; Land, Susan J.; Raz, Naftali

    2009-01-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in neuroplasticity and promotes axonal growth, but its secretion, regulated by a BDNF gene, declines with age. The low-activity (met) allele of common polymorphism BDNF val66met is associated with reduced production of BDNF. We examined whether age-related reduction in the integrity of cerebral white matter (WM) depends on the BDNF val66met genotype. Forty-one middle-aged and older adults participated in the study. Regional WM integrity was assessed by fractional anisotropy (FA) computed from manually drawn regions of interest in the genu and splenium of the corpus callosum on diffusion tensor imaging scans. After controlling for effects of sex and hypertension, we found that only the BDNF 66met carriers displayed age-related declines in the splenium FA, whereas no age-related declines were shown by BDNF val homozygotes. No genotype-related differences were observed in the genu of the corpus callosum. This finding is consistent with a view that genetic risk for reduced BDNF affects posterior regions that otherwise are considered relatively insensitive to normal aging. Those individuals with a genetic predisposition for decreased BDNF expression may not be able to fully benefit from BDNF-based plasticity and repair mechanisms. PMID:19738930

  7. BDNF Val66Met is Associated with Introversion and Interacts with 5-HTTLPR to Influence Neuroticism

    PubMed Central

    Terracciano, Antonio; Tanaka, Toshiko; Sutin, Angelina R; Deiana, Barbara; Balaci, Lenuta; Sanna, Serena; Olla, Nazario; Maschio, Andrea; Uda, Manuela; Ferrucci, Luigi; Schlessinger, David; Costa, Paul T

    2010-01-01

    Brain-derived neurotrophic factor (BDNF) regulates synaptic plasticity and neurotransmission, and has been linked to neuroticism, a major risk factor for psychiatric disorders. A recent genome-wide association (GWA) scan, however, found the BDNF Val66Met polymorphism (rs6265) associated with extraversion but not with neuroticism. In this study, we examine the links between BDNF and personality traits, assessed using the Revised NEO Personality Inventory (NEO-PI-R), in a sample from SardiNIA (n=1560) and the Baltimore Longitudinal Study of Aging (BLSA; n=1131). Consistent with GWA results, we found that BDNF Met carriers were more introverted. By contrast, in both samples and in a meta-analysis inclusive of published data (n=15251), we found no evidence for a main effect of BDNF Val66Met on neuroticism. Finally, on the basis of recent reports of an epistatic effect between BDNF and the serotonin transporter, we explored a Val66Met × 5-HTTLPR interaction in a larger SardiNIA sample (n=2333). We found that 5-HTTLPR LL carriers scored lower on neuroticism in the presence of the BDNF Val variant, but scored higher on neuroticism in the presence of the BDNF Met variant. Our findings support the association between the BDNF Met variant and introversion and suggest that BDNF interacts with the serotonin transporter gene to influence neuroticism. PMID:20042999

  8. Amphetamine-induced locomotion and gene expression are altered in BDNF heterozygous mice

    PubMed Central

    Saylor, Alicia J.; McGinty, Jacqueline F.

    2008-01-01

    Administration of amphetamine over-stimulates medium spiny neurons by releasing dopamine and glutamate from afferents in the striatum. However, these afferents also release brain-derived neurotrophic factor (BDNF) that protects striatal medium spiny neurons from over-stimulation. Intriguingly, all three neurochemicals increase opioid gene expression in medium spiny neurons. In contrast, striatal opioid expression is less in naïve BDNF heterozygous (BDNF+/-) versus wildtype mice. This study was designed to determine whether partial genetic depletion of BDNF influences the behavioral and molecular response to an acute amphetamine injection. An acute injection of amphetamine (5 mg/kg, i.p.) or saline was administered to wildtype and BDNF+/- mice. Wildtype and BDNF+/- mice exhibited similar locomotor activity during habituation whereas BDNF+/- mice exhibited more prolonged locomotor activation during the third hour after injection of amphetamine. Three hours after amphetamine injection, there was an increase of preprodynorphin mRNA in the caudate putamen and nucleus accumbens and D3R mRNA levels were increased in the nucleus accumbens of BDNF+/- and wildtype mice. Striatal/cortical trkB and BDNF, and mesencephalic TH mRNA levels were only increased in wildtype mice. These results indicate that BDNF modifies the locomotor responses of mice to acute amphetamine and differentially regulates amphetamine-induced gene expression. PMID:18681898

  9. Role of pro-brain-derived neurotrophic factor (proBDNF) to mature BDNF conversion in activity-dependent competition at developing neuromuscular synapses

    PubMed Central

    Je, H. Shawn; Yang, Feng; Ji, Yuanyuan; Nagappan, Guhan; Hempstead, Barbara L.; Lu, Bai

    2012-01-01

    Formation of specific neuronal connections often involves competition between adjacent axons, leading to stabilization of the active terminal, while retraction of the less active ones. The underlying molecular mechanisms remain unknown. We show that activity-dependent conversion of pro–brain-derived neurotrophic factor (proBDNF) to mature (m)BDNF mediates synaptic competition. Stimulation of motoneurons triggers proteolytic conversion of proBDNF to mBDNF at nerve terminals. In Xenopus nerve–muscle cocultures, in which two motoneurons innervate one myocyte, proBDNF-p75NTR signaling promotes retraction of the less active terminal, whereas mBDNF–tyrosine-related kinase B (TrkB) p75NTR (p75 neurotrophin receptor) facilitates stabilization of the active one. Thus, proBDNF and mBDNF may serve as potential “punishment” and “reward” signals for inactive and active terminals, respectively, and activity-dependent conversion of proBDNF to mBDNF may regulate synapse elimination. PMID:23019376

  10. BDNF-TrkB Pathway Mediates Neuroprotection of Hydrogen Sulfide against Formaldehyde-Induced Toxicity to PC12 Cells

    PubMed Central

    Gao, Sheng-Lan; Tian, Ying; Wang, Chun-Yan; Wang, Li; Gu, Hong-Feng; Tang, Xiao-Qing

    2015-01-01

    Formaldehyde (FA) is a common environmental contaminant that has toxic effects on the central nervous system (CNS). Our previous data demonstrated that hydrogen sulfide (H2S), the third endogenous gaseous mediator, has protective effects against FA-induced neurotoxicity. As is known to all, Brain-derived neurotropic factor (BDNF), a member of the neurotrophin gene family, mediates its neuroprotective properties via various intracellular signaling pathways triggered by activating the tyrosine kinase receptor B (TrkB). Intriguingly, our previous data have illustrated the upregulatory role of H2S on BDNF protein expression in the hippocampus of rats. Therefore, in this study, we hypothesized that H2S provides neuroprotection against FA toxicity by regulating BDNF-TrkB pathway. In the present study, we found that NaHS, a donor of H2S, upregulated the level of BDNF protein in PC12 cells, and significantly rescued FA-induced downregulation of BDNF levels. Furthermore, we found that pretreatment of PC12 cells with K252a, an inhibitor of the BDNF receptor TrkB, markedly reversed the inhibition of NaHS on FA-induced cytotoxicity and ablated the protective effects of NaHS on FA-induced oxidative stress, including the accumulation of intracellular reactive oxygen species (ROS), 4-hydroxy-2-trans-nonenal (4-HNE), and malondialdehyde (MDA). We also showed that K252a abolished the inhibition of NaHS on FA-induced apoptosis, as well as the activation of caspase-3 in PC12 cells. In addition, K252a reversed the protection of H2S against FA-induced downregulation of Bcl-2 protein expression and upregulation of Bax protein expression in PC12 cells. These data indicate that the BDNF-TrkB pathway mediates the neuroprotection of H2S against FA-induced cytotoxicity, oxidative stress and apoptosis in PC12 cells. These findings provide a novel mechanism underlying the protection of H2S against FA-induced neurotoxicity. PMID:25749582

  11. Involvement of BDNF signaling transmission from basolateral amygdala to infralimbic prefrontal cortex in conditioned taste aversion extinction.

    PubMed

    Xin, Jian; Ma, Ling; Zhang, Tian-Yi; Yu, Hui; Wang, Yue; Kong, Liang; Chen, Zhe-Yu

    2014-05-21

    Brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase receptor B (TrkB), play a critical role in memory extinction. However, the detailed role of BDNF in memory extinction on the basis of neural circuit has not been fully understood. Here, we aim to investigate the role of BDNF signaling circuit in mediating conditioned taste aversion (CTA) memory extinction of the rats. We found region-specific changes in BDNF gene expression during CTA extinction. CTA extinction led to increased BDNF gene expression in the basolateral amygdala (BLA) and infralimbic prefrontal cortex (IL) but not in the central amygdaloid nucleus (CeA) and hippocampus (HIP). Moreover, blocking BDNF signaling or exogenous microinjection of BDNF into the BLA or IL could disrupt or enhance CTA extinction, which suggested that BDNF signaling in the BLA and IL is necessary and sufficient for CTA extinction. Interestingly, we found that microinjection of BDNF-neutralizing antibody into the BLA could abolish the extinction training-induced BDNF mRNA level increase in the IL, but not vice versa, demonstrating that BDNF signaling is transmitted from the BLA to IL during extinction. Finally, the accelerated extinction learning by infusion of exogenous BDNF in the BLA could also be blocked by IL infusion of BDNF-neutralizing antibody rather than vice versa, indicating that the IL, but not BLA, is the primary action site of BDNF in CTA extinction. Together, these data suggest that BLA-IL circuit regulates CTA memory extinction by identifying BDNF as a key regulator.

  12. BDNF and its pro-peptide are stored in presynaptic dense core vesicles in brain neurons

    PubMed Central

    Dieni, Sandra; Matsumoto, Tomoya; Dekkers, Martijn; Rauskolb, Stefanie; Ionescu, Mihai S.; Deogracias, Ruben; Gundelfinger, Eckart D.; Kojima, Masami; Nestel, Sigrun; Frotscher, Michael

    2012-01-01

    Although brain-derived neurotrophic factor (BDNF) regulates numerous and complex biological processes including memory retention, its extremely low levels in the mature central nervous system have greatly complicated attempts to reliably localize it. Using rigorous specificity controls, we found that antibodies reacting either with BDNF or its pro-peptide both stained large dense core vesicles in excitatory presynaptic terminals of the adult mouse hippocampus. Both moieties were ∼10-fold more abundant than pro-BDNF. The lack of postsynaptic localization was confirmed in Bassoon mutants, a seizure-prone mouse line exhibiting markedly elevated levels of BDNF. These findings challenge previous conclusions based on work with cultured neurons, which suggested activity-dependent dendritic synthesis and release of BDNF. They instead provide an ultrastructural basis for an anterograde mode of action of BDNF, contrasting with the long-established retrograde model derived from experiments with nerve growth factor in the peripheral nervous system. PMID:22412021

  13. Role of exercise-induced brain-derived neurotrophic factor production in the regulation of energy homeostasis in mammals.

    PubMed

    Pedersen, Bente K; Pedersen, Maria; Krabbe, Karen S; Bruunsgaard, Helle; Matthews, Vance B; Febbraio, Mark A

    2009-12-01

    Brain-derived neurotrophic factor (BDNF) has been shown to regulate neuronal development and plasticity and plays a role in learning and memory. Moreover, it is well established that BDNF plays a role in the hypothalamic pathway that controls body weight and energy homeostasis. Recent evidence identifies BDNF as a player not only in central metabolism, but also in regulating energy metabolism in peripheral organs. Low levels of BDNF are found in patients with neurodegenerative diseases, including Alzheimer's disease and major depression. In addition, BDNF levels are low in obesity and independently so in patients with type 2 diabetes. Brain-derived neurotrophic factor is expressed in non-neurogenic tissues, including skeletal muscle, and exercise increases BDNF levels not only in the brain and in plasma, but in skeletal muscle as well. Brain-derived neurotrophic factor mRNA and protein expression was increased in muscle cells that were electrically stimulated, and BDNF increased phosphorylation of AMP-activated protein kinase (AMPK) and acetyl coenzyme A carboxylase-beta (ACCbeta) and enhanced fatty oxidation both in vitro and ex vivo. These data identify BDNF as a contraction-inducible protein in skeletal muscle that is capable of enhancing lipid oxidation in skeletal muscle via activation of AMPK. Thus, BDNF appears to play a role both in neurobiology and in central as well as peripheral metabolism. The finding of low BDNF levels both in neurodegenerative diseases and in type 2 diabetes may explain the clustering of these diseases. Brain-derived neurotrophic factor is likely to mediate some of the beneficial effects of exercise with regard to protection against dementia and type 2 diabetes.

  14. Glucocorticoid affects dendritic transport of BDNF-containing vesicles.

    PubMed

    Adachi, Naoki; Numakawa, Tadahiro; Nakajima, Shingo; Fukuoka, Masashi; Odaka, Haruki; Katanuma, Yusuke; Ooshima, Yoshiko; Hohjoh, Hirohiko; Kunugi, Hiroshi

    2015-08-04

    Brain-derived neurotrophic factor (BDNF) is essential for neuronal survival, differentiation, and functions in the central nervous system (CNS). Because BDNF protein is sorted into secretory vesicles at the trans-Golgi network in the cell body after translation, transport of BDNF-containing vesicles to the secretion sites is an important process for its function. Here we examined the effect of dexamethasone (DEX), a synthetic glucocorticoid, on BDNF-containing vesicle transport and found that DEX decreased the proportion of stationary vesicles and increased velocity of the microtubule-based vesicle transport in dendrites of cortical neurons. Furthermore, DEX increased huntingtin (Htt) protein levels via glucocorticoid receptor (GR) activation, and reduction in the amount of Htt by a specific shRNA reversed the action of DEX on BDNF vesicle transport. Given that Htt protein is a positive regulator for the microtubule-dependent vesicular transport in neurons, our data suggest that glucocorticoid stimulates BDNF vesicle transport through upregulation of Htt protein levels.

  15. Glucocorticoid affects dendritic transport of BDNF-containing vesicles

    PubMed Central

    Adachi, Naoki; Numakawa, Tadahiro; Nakajima, Shingo; Fukuoka, Masashi; Odaka, Haruki; Katanuma, Yusuke; Ooshima, Yoshiko; Hohjoh, Hirohiko; Kunugi, Hiroshi

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) is essential for neuronal survival, differentiation, and functions in the central nervous system (CNS). Because BDNF protein is sorted into secretory vesicles at the trans-Golgi network in the cell body after translation, transport of BDNF-containing vesicles to the secretion sites is an important process for its function. Here we examined the effect of dexamethasone (DEX), a synthetic glucocorticoid, on BDNF-containing vesicle transport and found that DEX decreased the proportion of stationary vesicles and increased velocity of the microtubule-based vesicle transport in dendrites of cortical neurons. Furthermore, DEX increased huntingtin (Htt) protein levels via glucocorticoid receptor (GR) activation, and reduction in the amount of Htt by a specific shRNA reversed the action of DEX on BDNF vesicle transport. Given that Htt protein is a positive regulator for the microtubule-dependent vesicular transport in neurons, our data suggest that glucocorticoid stimulates BDNF vesicle transport through upregulation of Htt protein levels. PMID:26239075

  16. An evaluation of the effects of acute and chronic L-tyrosine administration on BDNF levels and BDNF mRNA expression in the rat brain.

    PubMed

    Ferreira, Gabriela K; Scaini, Giselli; Jeremias, Isabela C; Carvalho-Silva, Milena; Gonçalves, Cinara L; Pereira, Talita C B; Oliveira, Giovanna M T; Kist, Luiza W; Bogo, Maurício R; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L

    2014-04-01

    Tyrosinemia type II, which is also known as Richner-Hanhart syndrome, is an inborn error of metabolism that is due to a block in the transamination reaction that converts tyrosine to p-hydroxyphenylpyruvate. Because the mechanisms of neurological dysfunction in hypertyrosinemic patients are poorly known and the symptoms of these patients are related to the central nervous system, the present study evaluated brain-derived neurotrophic factor (BDNF) levels and bdnf mRNA expression in young rats and during growth. In our acute protocol, Wistar rats (10 and 30 days old) were killed 1 h after a single intraperitoneal L-tyrosine injection (500 mg/kg) or saline. Chronic administration consisted of L-tyrosine (500 mg/kg) or saline injections 12 h apart for 24 days in Wistar rats (7 days old), and the rats were killed 12 h after the last injection. The brains were rapidly removed, and we evaluated the BDNF levels and bdnf mRNA expression. The present results showed that the acute administration of L-tyrosine decreased both BDNF and bdnf mRNA levels in the striatum of 10-day-old rats. In the 30-day-old rats, we observed decreased BDNF levels without modifications in bdnf transcript level in the hippocampus and striatum. Chronic administration of L-tyrosine increased the BDNF levels in the striatum of rats during their growth, whereas bdnf mRNA expression was not altered. We hypothesize that oxidative stress can interact with the BDNF system to modulate synaptic plasticity and cognitive function. The present results enhance our knowledge of the pathophysiology of hypertyrosinemia.

  17. Brain-derived neurotrophic factor (BDNF)-induced mitochondrial motility arrest and presynaptic docking contribute to BDNF-enhanced synaptic transmission.

    PubMed

    Su, Bo; Ji, Yun-Song; Sun, Xu-lu; Liu, Xiang-Hua; Chen, Zhe-Yu

    2014-01-17

    Appropriate mitochondrial transport and distribution are essential for neurons because of the high energy and Ca(2+) buffering requirements at synapses. Brain-derived neurotrophic factor (BDNF) plays an essential role in regulating synaptic transmission and plasticity. However, whether and how BDNF can regulate mitochondrial transport and distribution are still unclear. Here, we find that in cultured hippocampal neurons, application of BDNF for 15 min decreased the percentage of moving mitochondria in axons, a process dependent on the activation of the TrkB receptor and its downstream PI3K and phospholipase-Cγ signaling pathways. Moreover, the BDNF-induced mitochondrial stopping requires the activation of transient receptor potential canonical 3 and 6 (TRPC3 and TRPC6) channels and elevated intracellular Ca(2+) levels. The Ca(2+) sensor Miro1 plays an important role in this process. Finally, the BDNF-induced mitochondrial stopping leads to the accumulation of more mitochondria at presynaptic sites. Mutant Miro1 lacking the ability to bind Ca(2+) prevents BDNF-induced mitochondrial presynaptic accumulation and synaptic transmission, suggesting that Miro1-mediated mitochondrial motility is involved in BDNF-induced mitochondrial presynaptic docking and neurotransmission. Together, these data suggest that mitochondrial transport and distribution play essential roles in BDNF-mediated synaptic transmission.

  18. Alternative Splicing Variants and DNA Methylation Status of BDNF in Inbred Chicken Lines

    USDA-ARS?s Scientific Manuscript database

    Brain derived neurotrophic factor (BDNF) plays essential roles in neuronal survival and differentiation, synaptic plasticity, central regulation of energy homeostasis, and neuronal development of the central and peripheral nerve system. Here, we report two new splicing variants of the chicken BDNF g...

  19. Age-Dependent Deficits in Fear Learning in Heterozygous BDNF Knock-Out Mice

    ERIC Educational Resources Information Center

    Endres, Thomas; Lessmann, Volkmar

    2012-01-01

    Beyond its trophic function, the neurotrophin BDNF (brain-derived neurotrophic factor) is well known to crucially mediate synaptic plasticity and memory formation. Whereas recent studies suggested that acute BDNF/TrkB signaling regulates amygdala-dependent fear learning, no impairments of cued fear learning were reported in heterozygous BDNF…

  20. Age-Dependent Deficits in Fear Learning in Heterozygous BDNF Knock-Out Mice

    ERIC Educational Resources Information Center

    Endres, Thomas; Lessmann, Volkmar

    2012-01-01

    Beyond its trophic function, the neurotrophin BDNF (brain-derived neurotrophic factor) is well known to crucially mediate synaptic plasticity and memory formation. Whereas recent studies suggested that acute BDNF/TrkB signaling regulates amygdala-dependent fear learning, no impairments of cued fear learning were reported in heterozygous BDNF…

  1. Antidepressant-Like Effects of Central BDNF Administration in Mice of Antidepressant Sensitive Catalepsy (ASC) Strain.

    PubMed

    Tikhonova, Maria; Kulikov, Alexander V

    2012-08-31

    Although numerous data evidence the implication of brain-derived neurotrophic factor (BDNF) in the pathophysiology of depression, the potential for BDNF to correct genetically defined depressive-like states is poorly studied. This study was aimed to reveal antidepressant-like effects of BDNF (300 ng, 2×, i.c.v.) on behavior and mRNA expression of genes associated with depression-like state in the brain in mice of antidepressant sensitive catalepsy (ASC) strain characterized by high hereditary predisposition to catalepsy and depressive-like features. Behavioral tests were held on the 7th-16th days after the first (4th-13th after the second) BDNF injection. Results showed that BDNF normalized impaired sexual motivation in the ASC males, and this BDNF effect differed, with advantageous effects, from that of widely used antidepressants. The anticataleptic effect of two BDNF injections was enhanced compared with a single administration. A tendency to decrease the immobility duration in tail-suspension test was observed in BDNF-treated ASC mice. The effects on catalepsy and sexual motivation were specific since BDNF did not alter locomotor and exploratory activity or social interest in the ASC mice. Along with behavioral antidepressant-like effects on the ASC mice, BDNF increased hippocampal mRNA levels of Bdnf and Creb1 (cAMP response element-binding protein gene). BDNF also augmented mRNA levels of Arc gene encoding Arc (Activity-regulated cytoskeleton-associated) protein involved in BDNF-induced processes of neuronal and synaptic plasticity in hippocampus and prefrontal cortex. The data suggest that: [1] BDNF is effective in the treatment of some genetically defined behavioral disturbances; [2] BDNF influences sexually-motivated behavior; [3] Arc mRNA levels may serve as a molecular marker of BDNF physiological activity associated with its long-lasting behavioral effects; [4] ASC mouse strain can be used as a suitable model to study mechanisms of BDNF effects on

  2. BDNF: no gain without pain?

    PubMed

    Smith, Peter A

    2014-12-26

    Injury to the adult nervous system promotes the expression and secretion of brain-derived neurotrophic factor (BDNF). Because it promotes neuronal growth, survival and neurogenesis, BDNF may initiate compensatory processes that mitigate the deleterious effects of injury, disease or stress. Despite this, BDNF has been implicated in several injury-induced maladaptive processes including pain, spasticity and convulsive activity. This review will concentrate on the predominant role of BDNF in the initiation and maintenance of chronic and/or neuropathic pain at the spinal, peripheral and central levels. Within the spinal dorsal horn, the pattern of BDNF-induced changes in synaptic transmission across five different, identified neuronal phenotypes bears a striking resemblance to that produced by chronic constriction injury (CCI) of peripheral nerves. The appearance of this "pain footprint" thus reflects multiple sensitizing actions of microglial-derived BDNF. These include changes in the chloride equilibrium potential, decreased excitatory synaptic drive to inhibitory neurons, complex changes in inhibitory (GABA/glycinergic) synaptic transmission, increases in excitatory synaptic drive to excitatory neurons and the appearance of oscillatory activity. BDNF effects are confined to changes in synaptic transmission as there is little change in the passive or active properties of neurons in the superficial dorsal horn. Actions of BDNF in the brain stem and periphery also contribute to the onset and persistence of chronic pain. In spite of its role in compensatory processes that facilitate the recovery of the nervous system from injury, the widespread maladaptive actions of BDNF mean that there is literally "no gain without pain".

  3. The role of brain-derived neurotrophic factor (BDNF) in the development of neurogenic detrusor overactivity (NDO).

    PubMed

    Frias, Bárbara; Santos, João; Morgado, Marlene; Sousa, Mónica Mendes; Gray, Susannah M Y; McCloskey, Karen D; Allen, Shelley; Cruz, Francisco; Cruz, Célia Duarte

    2015-02-04

    Neurogenic detrusor overactivity (NDO) is a well known consequence of spinal cord injury (SCI), recognizable after spinal shock, during which the bladder is areflexic. NDO emergence and maintenance depend on profound plastic changes of the spinal neuronal pathways regulating bladder function. It is well known that neurotrophins (NTs) are major regulators of such changes. NGF is the best-studied NT in the bladder and its role in NDO has already been established. Another very abundant neurotrophin is BDNF. Despite being shown that, acting at the spinal cord level, BDNF is a key mediator of bladder dysfunction and pain during cystitis, it is presently unclear if it is also important for NDO. This study aimed to clarify this issue. Results obtained pinpoint BDNF as an important regulator of NDO appearance and maintenance. Spinal BDNF expression increased in a time-dependent manner together with NDO emergence. In chronic SCI rats, BDNF sequestration improved bladder function, indicating that, at later stages, BDNF contributes NDO maintenance. During spinal shock, BDNF sequestration resulted in early development of bladder hyperactivity, accompanied by increased axonal growth of calcitonin gene-related peptide-labeled fibers in the dorsal horn. Chronic BDNF administration inhibited the emergence of NDO, together with reduction of axonal growth, suggesting that BDNF may have a crucial role in bladder function after SCI via inhibition of neuronal sprouting. These findings highlight the role of BDNF in NDO and may provide a significant contribution to create more efficient therapies to manage SCI patients.

  4. Liquiritigenin reverses depression-like behavior in unpredictable chronic mild stress-induced mice by regulating PI3K/Akt/mTOR mediated BDNF/TrkB pathway.

    PubMed

    Tao, Weiwei; Dong, Yu; Su, Qiang; Wang, Hanqing; Chen, Yanyan; Xue, Wenda; Chen, Chang; Xia, Baomei; Duan, Jinao; Chen, Gang

    2016-07-15

    Major depression is a common long-lasting or recurrent psychiatric disease with high lifetime prevalence and high incidence of suicide. The main purpose of the current study was to verify whether liquiritigenin conferred an antidepressant-like effect on the depressive mouse model established by unpredictable chronic mild stress (UCMS) and explore its possible mechanism. The results of depression-related behaviors including sucrose preference test (SPT), open field test (OFT), forced swimming test (FST) and tail suspension test (TST) indicated that both liquiritigenin (7.5mg/kg, 15mg/kg) and fluoxetine (20mg/kg) dramatically improved the depression symptoms. Enzyme-linked immunosorbent assay (ELISA) revealed that treatment with liquiritigenin significantly reduced the concentrations of pro-inflammatory cytokines including interleukin (IL)-6, IL-1β and tumor necrosis factor (TNF)-α in serum and hippocampus. Compared with the UCMS group, the administrations of liquiritigenin, increased levels of superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), and decreased Malondialdehyde (MDA) content. Meanwhile, glucocorticoids (GC) content was reduced in the liquiritigenin group, which suggested that liquiritigenin exhibiting the ameliorative effect on activated hypothalamic-pituitary-adrenal (HPA) axis stimulated with UCMS. Mice treated with liquiritigenin showed restored levels of neurotransmitter norepinephrine (NE) and serotonin (5-HT). Western blot analysis displayed up-regulated expressions of p-phosphatidylinositol 3-kinase (PI3K), p-Akt, p- mammalian target of rapamycin (mTOR), p-tropomyosin-related kinase B (TrkB), brain-derived neurotrophic factor (BDNF). Thus, it was supposed that liquiritigenin might be useful for the treatment of chronic depression possibly through PI3K/Akt/mTOR mediated BDNF/TrkB pathway.

  5. Processes regulating nitric oxide emissions from soils.

    PubMed

    Pilegaard, Kim

    2013-07-05

    Nitric oxide (NO) is a reactive gas that plays an important role in atmospheric chemistry by influencing the production and destruction of ozone and thereby the oxidizing capacity of the atmosphere. NO also contributes by its oxidation products to the formation of acid rain. The major sources of NO in the atmosphere are anthropogenic emissions (from combustion of fossil fuels) and biogenic emission from soils. NO is both produced and consumed in soils as a result of biotic and abiotic processes. The main processes involved are microbial nitrification and denitrification, and chemodenitrification. Thus, the net result is complex and dependent on several factors such as nitrogen availability, organic matter content, oxygen status, soil moisture, pH and temperature. This paper reviews recent knowledge on processes forming NO in soils and the factors controlling its emission to the atmosphere. Schemes for simulating these processes are described, and the results are discussed with the purpose of scaling up to global emission.

  6. Processes regulating nitric oxide emissions from soils

    PubMed Central

    Pilegaard, Kim

    2013-01-01

    Nitric oxide (NO) is a reactive gas that plays an important role in atmospheric chemistry by influencing the production and destruction of ozone and thereby the oxidizing capacity of the atmosphere. NO also contributes by its oxidation products to the formation of acid rain. The major sources of NO in the atmosphere are anthropogenic emissions (from combustion of fossil fuels) and biogenic emission from soils. NO is both produced and consumed in soils as a result of biotic and abiotic processes. The main processes involved are microbial nitrification and denitrification, and chemodenitrification. Thus, the net result is complex and dependent on several factors such as nitrogen availability, organic matter content, oxygen status, soil moisture, pH and temperature. This paper reviews recent knowledge on processes forming NO in soils and the factors controlling its emission to the atmosphere. Schemes for simulating these processes are described, and the results are discussed with the purpose of scaling up to global emission. PMID:23713124

  7. BDNF function as a potential mediator of bipolar disorder and post-traumatic stress disorder comorbidity

    PubMed Central

    Rakofsky, JJ; Ressler, KJ; Dunlop, BW

    2013-01-01

    Bipolar disorder (BD) and post-traumatic stress disorder (PTSD) frequently co-occur among psychiatric patients, leading to increased morbidity and mortality. Brain-derived neurotrophic factor (BDNF) function is associated with core characteristics of both BD and PTSD. We propose a neurobiological model that underscores the role of reduced BDNF function resulting from several contributing sources, including the met variant of the BDNF val66met (rs6265) single-nucleotide polymorphism, trauma-induced epigenetic regulation and current stress, as a contributor to the onset of both illnesses within the same person. Further studies are needed to evaluate the genetic association between the val66met allele and the BD-PTSD population, along with central/peripheral BDNF levels and epigenetic patterns of BDNF gene regulation within these patients. PMID:21931317

  8. Regulation of alkane oxidation in Pseudomonas putida.

    PubMed Central

    Grund, A; Shapiro, J; Fennewald, M; Bacha, P; Leahy, J; Markbreiter, K; Nieder, M; Toepfer, M

    1975-01-01

    We have studied the appearance of whole-cell oxidizing activity for n-alkanes and their oxidation products in strains of Pseudomonas putida carrying the OCT plasmid. Our results indicate that the OCT plasmid codes for inducible alkane-hydroxylating and primary alcohol-dehydrogenating activities and that the chromosome codes for constitutive oxidizing activities for primary alcohols, aliphatic aldehydes, and fatty acids. Mutant isolation confirms the presence of an alcohol dehydrogenase locus on the OCT plasmid and indicated the presence of multiple alcohol and aldehyde dehydrogenase loci on the P. putida chromosome. Induction tests with various compounds indicate that inducer recognition has specificity for chain length and can be affected by the degree of oxidation of the carbon chain. Some inducers are neither growth nor respiration substrates. Growth tests with and without a gratuitous inducer indicate that undecane is not a growth substrate because it does not induce alkane hydroxylase activity. Using a growth test for determining induction of the plasmid alcohol dehydrogenase it is possible to show that heptane induces this activity in hydroxylase-negative mutants. This suggests that unoxidized alkane molecules are the physiological inducers of both plasmid activities. PMID:1150626

  9. Control of Spine Maturation and Pruning through ProBDNF Synthesized and Released in Dendrites

    PubMed Central

    Orefice, Lauren L.; Shih, Chien-Cheng; Xu, Haifei; Waterhouse, Emily G.; Xu, Baoji

    2015-01-01

    Excess synapses formed during early postnatal development are pruned over an extended period, while the remaining synapses mature. Synapse pruning is critical for activity-dependent refinement of neuronal connections and its dysregulation has been found in neurodevelopmental disorders such as autism spectrum disorders; however, the mechanism underlying synapse pruning remains largely unknown. As dendritic spines are the postsynaptic sites for the vast majority of excitatory synapses, spine maturation and pruning are indicators for maturation and elimination of these synapses. Our previous studies have found that dendritically localized mRNA for brain-derived neurotrophic factor (BDNF) regulates spine maturation and pruning. Here we investigated the mechanism by which dendritic Bdnf mRNA, but not somatically restricted Bdnf mRNA, promotes spine maturation and pruning. We found that neuronal activity stimulates both translation of dendritic Bdnf mRNA and secretion of its translation product mainly as proBDNF. The secreted proBDNF promotes spine maturation and pruning, and its effect on spine pruning is in part mediated by the p75NTR receptor via RhoA activation. Furthermore, some proBDNF is extracellularly converted to mature BDNF and then promotes maturation of stimulated spines by activating Rac1 through the TrkB receptor. In contrast, translation of somatic Bdnf mRNA and the release of its translation product mainly as mature BDNF are independent of action potentials. These results not only reveal a biochemical pathway regulating synapse pruning, but also suggest that BDNF synthesized in the soma and dendrites is released through distinct secretory pathways. PMID:26705735

  10. BDNF as a pain modulator.

    PubMed

    Merighi, Adalberto; Salio, Chiara; Ghirri, Alessia; Lossi, Laura; Ferrini, Francesco; Betelli, Chiara; Bardoni, Rita

    2008-07-01

    At least some neurotrophins may be powerful modulators of synapses, thereby influencing short- and long-term synaptic efficiency. BDNF acts at central synapses in pain pathways both at spinal and supraspinal levels. Neuronal synthesis, subcellular storage/co-storage and release of BDNF at these synapses have been characterized on anatomical and physiological grounds, in parallel with trkB (the high affinity BDNF receptor) distribution. Histological and functional evidence has been provided, mainly from studies on acute slices and intact animals, that BDNF modulates fast excitatory (glutamatergic) and inhibitory (GABAergic/glycinergic) signals, as well as slow peptidergic neurotrasmission in spinal cord. Recent studies have unraveled some of the neuronal circuitries and mechanisms involved, highlighting the key role of synaptic glomeruli in lamina II as the main sites for such a modulation.

  11. Methionine increases BDNF DNA methylation and improves memory in epilepsy

    PubMed Central

    Parrish, R Ryley; Buckingham, Susan C; Mascia, Katherine L; Johnson, Jarvis J; Matyjasik, Michal M; Lockhart, Roxanne M; Lubin, Farah D

    2015-01-01

    Objective Temporal lobe epilepsy (TLE) patients exhibit signs of memory impairments even when seizures are pharmacologically controlled. Surprisingly, the underlying molecular mechanisms involved in TLE-associated memory impairments remain elusive. Memory consolidation requires epigenetic transcriptional regulation of genes in the hippocampus; therefore, we aimed to determine how epigenetic DNA methylation mechanisms affect learning-induced transcription of memory-permissive genes in the epileptic hippocampus. Methods Using the kainate rodent model of TLE and focusing on the brain-derived neurotrophic factor (Bdnf) gene as a candidate of DNA methylation-mediated transcription, we analyzed DNA methylation levels in epileptic rats following learning. After detection of aberrant DNA methylation at the Bdnf gene, we investigated functional effects of altered DNA methylation on hippocampus-dependent memory formation in our TLE rodent model. Results We found that behaviorally driven BdnfDNA methylation was associated with hippocampus-dependent memory deficits. Bisulfite sequencing revealed that decreased BdnfDNA methylation levels strongly correlated with abnormally high levels of BdnfmRNA in the epileptic hippocampus during memory consolidation. Methyl supplementation via methionine (Met) increased BdnfDNA methylation and reduced BdnfmRNA levels in the epileptic hippocampus during memory consolidation. Met administration reduced interictal spike activity, increased theta rhythm power, and reversed memory deficits in epileptic animals. The rescue effect of Met treatment on learning-induced BdnfDNA methylation, Bdnf gene expression, and hippocampus-dependent memory, were attenuated by DNA methyltransferase blockade. Interpretation Our findings suggest that manipulation of DNA methylation in the epileptic hippocampus should be considered as a viable treatment option to ameliorate memory impairments associated with TLE. PMID:25909085

  12. Taste bud-derived BDNF maintains innervation of a subset of TrkB-expressing gustatory nerve fibers.

    PubMed

    Tang, Tao; Rios-Pilier, Jennifer; Krimm, Robin

    2017-07-01

    Taste receptor cells transduce different types of taste stimuli and transmit this information to gustatory neurons that carry it to the brain. Taste receptor cells turn over continuously in adulthood, requiring constant new innervation from nerve fibers. Therefore, the maintenance of innervation to taste buds is an active process mediated by many factors, including brain-derived neurotrophic factor (BDNF). Specifically, 40% of taste bud innervation is lost when Bdnf is removed during adulthood. Here we speculated that not all gustatory nerve fibers express the BDNF receptor, TrkB, resulting in subsets of neurons that vary in their response to BDNF. However, it is also possible that the partial loss of innervation occurred because the Bdnf gene was not effectively removed. To test these possibilities, we first determined that not all gustatory nerve fibers express the TrkB receptor in adult mice. We then verified the efficiency of Bdnf removal specifically in taste buds of K14-CreER:Bdnf mice and found that Bdnf expression was reduced to 1%, indicating efficient Bdnf gene recombination. BDNF removal resulted in a 55% loss of TrkB-expressing nerve fibers, which was greater than the loss of P2X3-positive fibers (39%), likely because taste buds were innervated by P2X3+/TrkB- fibers that were unaffected by BDNF removal. We conclude that gustatory innervation consists of both TrkB-positive and TrkB-negative taste fibers and that BDNF is specifically important for maintaining TrkB-positive innervation to taste buds. In addition, although taste bud size was not affected by inducible Bdnf removal, the expression of the γ subunit of the ENaC channel was reduced. So, BDNF may regulate expression of some molecular components of taste transduction pathways. Copyright © 2017. Published by Elsevier Inc.

  13. Efficient use of a translation start codon in BDNF exon I.

    PubMed

    Koppel, Indrek; Tuvikene, Jürgen; Lekk, Ingrid; Timmusk, Tõnis

    2015-09-01

    The brain-derived neurotrophic factor (BDNF) gene contains a number of 5' exons alternatively spliced with a common 3' exon. BDNF protein is synthesized from alternative transcripts as a prepro-precursor encoded by the common 3' exon IX, which has a translation start site 21 bp downstream of the splicing site. BDNF mRNAs containing exon I are an exception to this arrangement as the last three nucleotides of this exon constitute an in-frame AUG. Here, we show that this AUG is efficiently used for translation initiation in PC12 cells and cultured cortical neurons. Use of exon I-specific AUG produces higher levels of BDNF protein than use of the common translation start site, resulting from a higher translation rate. No differences in protein degradation, constitutive or regulated secretion were detected between BDNF isoforms with alternative 5' termini. As the BDNF promoter preceding exon I is known to be highly regulated by neuronal activity, our results suggest that the function of this translation start site may be efficient stimulus-dependent synthesis of BDNF protein. The brain-derived neurotrophic factor (BDNF) gene contains multiple untranslated 5' exons alternatively spliced to one common protein-coding 3' exon. However, exon I contains an in-frame ATG in a favorable translation context. Here, we show that use of this ATG is associated with more efficient protein synthesis than the commonly used ATG in exon IX. © 2015 International Society for Neurochemistry.

  14. Increased production of BDNF in colonic epithelial cells induced by fecal supernatants from diarrheic IBS patients.

    PubMed

    Wang, Peng; Chen, Fei-Xue; Du, Chao; Li, Chang-Qing; Yu, Yan-Bo; Zuo, Xiu-Li; Li, Yan-Qing

    2015-05-22

    Colonic brain-derived neurotrophic factor (BDNF) plays an essential role in pathogenesis of abdominal pain in diarrhea-predominant irritable bowel syndrome (IBS-D), but regulation on its expression remains unclear. We investigated the role of fecal supernatants (FSN) from IBS-D patients on regulating BDNF expression in colonic epithelial cells of human and mice. Using human Caco-2 cells, we found that IBS-D FSN significantly increased BDNF mRNA and protein levels compared to control FSN, which were remarkably suppressed by the serine protease inhibitor. To further explore the potential mechanisms, we investigated the impact of protease-activated receptor-2 (PAR-2) on BDNF expression. We found a significant increase in PAR-2 expression in Caco-2 after IBS-D FSN stimulation. Knockdown of PAR-2 significantly inhibited IBS-D FSN-induced upregulation of BDNF. Moreover, we found that phosphorylation of p38 MAPK, not NF-κB p65, contributed to PAR-2-mediated BDNF overexpression. To confirm these results, we intracolonically infused IBS-D or control FSN in mice and found that IBS-D FSN significantly elevated colonic BDNF and visceral hypersensitivity in mice, which were both suppressed by the inhibitor of serine protease or antagonist of PAR-2. Together, our data indicate that activation of PAR-2 signaling by IBS-D FSN promotes expression of colonic BDNF, thereby contributing to IBS-like visceral hypersensitivity.

  15. Increased production of BDNF in colonic epithelial cells induced by fecal supernatants from diarrheic IBS patients

    PubMed Central

    Wang, Peng; Chen, Fei-Xue; Du, Chao; Li, Chang-Qing; Yu, Yan-Bo; Zuo, Xiu-Li; Li, Yan-Qing

    2015-01-01

    Colonic brain-derived neurotrophic factor (BDNF) plays an essential role in pathogenesis of abdominal pain in diarrhea-predominant irritable bowel syndrome (IBS-D), but regulation on its expression remains unclear. We investigated the role of fecal supernatants (FSN) from IBS-D patients on regulating BDNF expression in colonic epithelial cells of human and mice. Using human Caco-2 cells, we found that IBS-D FSN significantly increased BDNF mRNA and protein levels compared to control FSN, which were remarkably suppressed by the serine protease inhibitor. To further explore the potential mechanisms, we investigated the impact of protease-activated receptor-2 (PAR-2) on BDNF expression. We found a significant increase in PAR-2 expression in Caco-2 after IBS-D FSN stimulation. Knockdown of PAR-2 significantly inhibited IBS-D FSN-induced upregulation of BDNF. Moreover, we found that phosphorylation of p38 MAPK, not NF-κB p65, contributed to PAR-2-mediated BDNF overexpression. To confirm these results, we intracolonically infused IBS-D or control FSN in mice and found that IBS-D FSN significantly elevated colonic BDNF and visceral hypersensitivity in mice, which were both suppressed by the inhibitor of serine protease or antagonist of PAR-2. Together, our data indicate that activation of PAR-2 signaling by IBS-D FSN promotes expression of colonic BDNF, thereby contributing to IBS-like visceral hypersensitivity. PMID:25998025

  16. Chronic Mild Stress Modulates Activity-Dependent Transcription of BDNF in Rat Hippocampal Slices.

    PubMed

    Molteni, Raffaella; Rossetti, Andrea C; Savino, Elisa; Racagni, Giorgio; Calabrese, Francesca

    2016-01-01

    Although activity-dependent transcription represents a crucial mechanism for long-lasting experience-dependent changes in the hippocampus, limited data exist on its contribution to pathological conditions. We aim to investigate the influence of chronic stress on the activity-dependent transcription of brain-derived neurotrophic factor (BDNF). The ex vivo methodology of acute stimulation of hippocampal slices obtained from rats exposed to chronic mild stress (CMS) was used to evaluate whether the adverse experience may alter activity-dependent BDNF gene expression. CMS reduces BDNF expression and that acute depolarization significantly upregulates total BDNF mRNA levels only in control animals, showing that CMS exposure may alter BDNF transcription under basal conditions and during neuronal activation. Moreover, while the basal effect of CMS on total BDNF reflects parallel modulations of all the transcripts examined, isoform-specific changes were found after depolarization. This different effect was also observed in the activation of intracellular signaling pathways related to the neurotrophin. In conclusion, our study discloses a functional alteration of BDNF transcription as a consequence of stress. Being the activity-regulated transcription a critical process in synaptic and neuronal plasticity, the different regulation of individual BDNF promoters may contribute to long-lasting changes, which are fundamental for the vulnerability of the hippocampus to stress-related diseases.

  17. Dendritically targeted Bdnf mRNA is essential for energy balance and response to leptin.

    PubMed

    Liao, Guey-Ying; An, Juan Ji; Gharami, Kusumika; Waterhouse, Emily G; Vanevski, Filip; Jones, Kevin R; Xu, Baoji

    2012-03-18

    Mutations in the Bdnf gene, which produces transcripts with either short or long 3' untranslated regions (3' UTRs), cause human obesity; however, the precise role of brain-derived neurotrophic factor (BDNF) in the regulation of energy balance is unknown. Here we show the relationship between Bdnf mRNA with a long 3' UTR (long 3' UTR Bdnf mRNA), leptin, neuronal activation and body weight. We found that long 3' UTR Bdnf mRNA was enriched in the dendrites of hypothalamic neurons and that insulin and leptin could stimulate its translation in dendrites. Furthermore, mice harboring a truncated long Bdnf 3' UTR developed severe hyperphagic obesity, which was completely reversed by viral expression of long 3' UTR Bdnf mRNA in the hypothalamus. In these mice, the ability of leptin to activate hypothalamic neurons and inhibit food intake was compromised despite normal activation of leptin receptors. These results reveal a novel mechanism linking leptin action to BDNF expression during hypothalamic-mediated regulation of body weight, while also implicating dendritic protein synthesis in this process.

  18. LKB1 regulates lipid oxidation during exercise independently of AMPK.

    PubMed

    Jeppesen, Jacob; Maarbjerg, Stine J; Jordy, Andreas B; Fritzen, Andreas M; Pehmøller, Christian; Sylow, Lykke; Serup, Annette Karen; Jessen, Niels; Thorsen, Kasper; Prats, Clara; Qvortrup, Klaus; Dyck, Jason R B; Hunter, Roger W; Sakamoto, Kei; Thomson, David M; Schjerling, Peter; Wojtaszewski, Jørgen F P; Richter, Erik A; Kiens, Bente

    2013-05-01

    Lipid metabolism is important for health and insulin action, yet the fundamental process of regulating lipid metabolism during muscle contraction is incompletely understood. Here, we show that liver kinase B1 (LKB1) muscle-specific knockout (LKB1 MKO) mice display decreased fatty acid (FA) oxidation during treadmill exercise. LKB1 MKO mice also show decreased muscle SIK3 activity, increased histone deacetylase 4 expression, decreased NAD⁺ concentration and SIRT1 activity, and decreased expression of genes involved in FA oxidation. In AMP-activated protein kinase (AMPK)α2 KO mice, substrate use was similar to that in WT mice, which excluded that decreased FA oxidation in LKB1 MKO mice was due to decreased AMPKα2 activity. Additionally, LKB1 MKO muscle demonstrated decreased FA oxidation in vitro. A markedly decreased phosphorylation of TBC1D1, a proposed regulator of FA transport, and a low CoA content could contribute to the low FA oxidation in LKB1 MKO. LKB1 deficiency did not reduce muscle glucose uptake or oxidation during exercise in vivo, excluding a general impairment of substrate use during exercise in LKB1 MKO mice. Our findings demonstrate that LKB1 is a novel molecular regulator of major importance for FA oxidation but not glucose uptake in muscle during exercise.

  19. LKB1 Regulates Lipid Oxidation During Exercise Independently of AMPK

    PubMed Central

    Jeppesen, Jacob; Maarbjerg, Stine J.; Jordy, Andreas B.; Fritzen, Andreas M.; Pehmøller, Christian; Sylow, Lykke; Serup, Annette Karen; Jessen, Niels; Thorsen, Kasper; Prats, Clara; Qvortrup, Klaus; Dyck, Jason R.B.; Hunter, Roger W.; Sakamoto, Kei; Thomson, David M.; Schjerling, Peter; Wojtaszewski, Jørgen F.P.; Richter, Erik A.; Kiens, Bente

    2013-01-01

    Lipid metabolism is important for health and insulin action, yet the fundamental process of regulating lipid metabolism during muscle contraction is incompletely understood. Here, we show that liver kinase B1 (LKB1) muscle-specific knockout (LKB1 MKO) mice display decreased fatty acid (FA) oxidation during treadmill exercise. LKB1 MKO mice also show decreased muscle SIK3 activity, increased histone deacetylase 4 expression, decreased NAD+ concentration and SIRT1 activity, and decreased expression of genes involved in FA oxidation. In AMP-activated protein kinase (AMPK)α2 KO mice, substrate use was similar to that in WT mice, which excluded that decreased FA oxidation in LKB1 MKO mice was due to decreased AMPKα2 activity. Additionally, LKB1 MKO muscle demonstrated decreased FA oxidation in vitro. A markedly decreased phosphorylation of TBC1D1, a proposed regulator of FA transport, and a low CoA content could contribute to the low FA oxidation in LKB1 MKO. LKB1 deficiency did not reduce muscle glucose uptake or oxidation during exercise in vivo, excluding a general impairment of substrate use during exercise in LKB1 MKO mice. Our findings demonstrate that LKB1 is a novel molecular regulator of major importance for FA oxidation but not glucose uptake in muscle during exercise. PMID:23349504

  20. Oxidative Regulation of Large Conductance Calcium-Activated Potassium Channels

    PubMed Central

    Tang, Xiang D.; Daggett, Heather; Hanner, Markus; Garcia, Maria L.; McManus, Owen B.; Brot, Nathan; Weissbach, Herbert; Heinemann, Stefan H.; Hoshi, Toshinori

    2001-01-01

    Reactive oxygen/nitrogen species are readily generated in vivo, playing roles in many physiological and pathological conditions, such as Alzheimer's disease and Parkinson's disease, by oxidatively modifying various proteins. Previous studies indicate that large conductance Ca2+-activated K+ channels (BKCa or Slo) are subject to redox regulation. However, conflicting results exist whether oxidation increases or decreases the channel activity. We used chloramine-T, which preferentially oxidizes methionine, to examine the functional consequences of methionine oxidation in the cloned human Slo (hSlo) channel expressed in mammalian cells. In the virtual absence of Ca2+, the oxidant shifted the steady-state macroscopic conductance to a more negative direction and slowed deactivation. The results obtained suggest that oxidation enhances specific voltage-dependent opening transitions and slows the rate-limiting closing transition. Enhancement of the hSlo activity was partially reversed by the enzyme peptide methionine sulfoxide reductase, suggesting that the upregulation is mediated by methionine oxidation. In contrast, hydrogen peroxide and cysteine-specific reagents, DTNB, MTSEA, and PCMB, decreased the channel activity. Chloramine-T was much less effective when concurrently applied with the K+ channel blocker TEA, which is consistent with the possibility that the target methionine lies within the channel pore. Regulation of the Slo channel by methionine oxidation may represent an important link between cellular electrical excitability and metabolism. PMID:11222629

  1. Impact of partial dopamine depletion on cognitive flexibility in BDNF heterozygous mice

    PubMed Central

    Parikh, Vinay; Naughton, Sean X.; Yegla, Brittney; Guzman, Dawn M.

    2016-01-01

    Rationale Cognitive flexibility is a key component of executive function and is disrupted in major psychiatric disorders. Brain-derived neurotrophic factor (BDNF) exerts neuromodulatory effects on synaptic transmission and cognitive/affective behaviors. However the causal mechanisms linking BDNF hypofunction with executive deficits are not well understood. Objectives Here, we assessed the consequences of BDNF hemizygosity on cognitive flexibility in mice performing an operant conditioning task. As dopaminergic-glutamatergic interaction in the striatum is important for cognitive processing, and BDNF heterozygous (BDNF+/−) mice display a higher dopamine tone in the dorsal striatum, we also assessed the effects of partial striatal dopamine depletion on task performance and glutamate release. Results BDNF+/− mice acquired discrimination learning as well as new rule learning during set-shifting as efficiently as wild-type mice. However, partial removal of striatal dopaminergic inputs with 6-hydroxydopamine (6-OHDA) impaired these cognitive processes by impeding the maintenance of a new learning strategy in both genotypes. BDNF mutants exhibited performance impairments during reversal learning and these deficits were associated with increased perseveration to the previously acquired strategy. Partial dopamine depletion of the striatum reversed these cognitive impairments. Additionally, reduction in depolarization-evoked glutamate release noted in the dorsal striatum of BDNF+/− mice was not observed in 6-OHDA-infused BDNF mutants indicating normalization of glutamatergic transmission in these animals. Conclusions Our data illustrate that BDNF signaling regulates cognitive control processes presumably by maintaining striatal dopamine-glutamate balance. Moreover, aberrations in BDNF signaling may act as a common neurobiological substrate that accounts for executive dysfunction observed in multiple psychiatric conditions. PMID:26861892

  2. [The role of BDNF in brain ischemia pulmonary edema].

    PubMed

    Zhang, Yun-Hui; Wang, Ting-Hua

    2012-11-01

    Brain ischemia pulmonary edema(BIPE)is a critical type of the neurogenic pulmonary edema (NPE), with acute development and progression and high mortality. The study on mechanism of BIPE has important scientific significance and substantial practice values. NPE, as a complicated physiopathology condition, is not resulted from single factor but systemic events including the changes in nervous system, body fluid regulation and endocrine involved in central nervous system after the injury. The studies on this topic in this current issue suggested that brain-derived neurotrophic factor (BDNF) could involve in the pathogenesis procedure of NPE following brain ischemia, which indicated that the crucial role of BDNF in the NPE after BIPE. The findings of these studies pave a way for the treatment of BIPE by using BDNF administration in future clinic trail.

  3. MicroRNA function and neurotrophin BDNF.

    PubMed

    Numakawa, Tadahiro; Richards, Misty; Adachi, Naoki; Kishi, Soichiro; Kunugi, Hiroshi; Hashido, Kazuo

    2011-10-01

    MicroRNAs (miRs), endogenous small RNAs, regulate gene expression through repression of translational activity after binding to target mRNAs. miRs are involved in various cellular processes including differentiation, metabolism, and apoptosis. Furthermore, possible involvement of miRs in neuronal function have been proposed. For example, miR-132 is closely related to neuronal outgrowth while miR-134 plays a role in postsynaptic regulation, suggesting that brain-specific miRs are critical for synaptic plasticity. On the other hand, numerous studies indicate that BDNF (brain-derived neurotrophic factor), one of the neurotrophins, is essential for a variety of neuronal aspects such as cell differentiation, survival, and synaptic plasticity in the central nervous system (CNS). Interestingly, recent studies, including ours, suggest that BDNF exerts its beneficial effects on CNS neurons via up-regulation of miR-132. Here, we present a broad overview of the current knowledge concerning the association between neurotrophins and various miRs.

  4. Molecular and neural bases underlying roles of BDNF in the control of body weight

    PubMed Central

    Vanevski, Filip; Xu, Baoji

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) is a potent regulator of neuronal development and synaptic plasticity that is fundamental to neural circuit formation and cognition. It is also involved in the control of appetite and body weight, with mutations in the genes for BDNF and its receptor, TrkB, resulting in remarkable hyperphagia and severe obesity in humans and mice. Recent studies have made significant progress in elucidating the source, action sites, and regulatory pathways of BDNF with regard to its role in the control of energy homeostasis, and have shed light on the relationships between BDNF and other molecules involved in the control of body weight. Here we provide a comprehensive review of evidence from pharmacological, genetic, and mechanistic studies, linking BDNF to the control of body weight. This review also aims to organize the main findings on this subject into a more refined framework and to discuss the future research directions necessary to advance the field. PMID:23519010

  5. Biphasic regulation of lysosomal exocytosis by oxidative stress.

    PubMed

    Ravi, Sreeram; Peña, Karina A; Chu, Charleen T; Kiselyov, Kirill

    2016-11-01

    Oxidative stress drives cell death in a number of diseases including ischemic stroke and neurodegenerative diseases. A better understanding of how cells recover from oxidative stress is likely to lead to better treatments for stroke and other diseases. The recent evidence obtained in several models ties the process of lysosomal exocytosis to the clearance of protein aggregates and toxic metals. The mechanisms that regulate lysosomal exocytosis, under normal or pathological conditions, are only beginning to emerge. Here we provide evidence for the biphasic effect of oxidative stress on lysosomal exocytosis. Lysosomal exocytosis was measured using the extracellular levels of the lysosomal enzyme beta-hexosaminidase (ß-hex). Low levels or oxidative stress stimulated lysosomal exocytosis, but inhibited it at high levels. Deletion of the lysosomal ion channel TRPML1 eliminated the stimulatory effect of low levels of oxidative stress. The inhibitory effects of oxidative stress appear to target the component of lysosomal exocytosis that is driven by extracellular Ca(2+). We propose that while moderate oxidative stress promotes cellular repair by stimulating lysosomal exocytosis, at high levels oxidative stress has a dual pathological effect: it directly causes cell damage and impairs damage repair by inhibiting lysosomal exocytosis. Harnessing these adaptive mechanisms may point to pharmacological interventions for diseases involving oxidative proteotoxicity or metal toxicity.

  6. Regulation and Function of Lactate Oxidation in Streptococcus faecium

    PubMed Central

    London, Jack

    1968-01-01

    Regulation of the synthesis and function of an l(+)-specific lactate-oxidizing enzyme system found in a homofermentative Streptococcus was investigated. With the exception of fructose, aerobic growth at the expense of a variety of substrates resulted in the formation of a lactate oxidation system; anaerobic growth resulted in a marked reduction or complete loss of lactate-oxidizing activity. Growth on fructose, under aerobic and anaerobic conditions, invariably produced a decrease in the activity of the lactate oxidation system. A negative control, activated by an early intermediate product of glycolysis, appeared to be responsible for repression of the lactate-oxidizing enzyme(s). The enzyme system confers upon the organism the ability to grow aerobically at the expense of l(+)-lactic acid. PMID:5646625

  7. Critical role of promoter IV-driven BDNF transcription in GABAergic transmission and synaptic plasticity in the prefrontal cortex.

    PubMed

    Sakata, Kazuko; Woo, Newton H; Martinowich, Keri; Greene, Joshua S; Schloesser, Robert J; Shen, Liya; Lu, Bai

    2009-04-07

    Transcription of Bdnf is controlled by multiple promoters, which drive expression of multiple transcripts encoding for the same protein. Promoter IV contributes significantly to activity-dependent brain-derived neurotrophic factor (BDNF) transcription. We have generated promoter IV mutant mice (BDNF-KIV) by inserting a GFP-STOP cassette within the Bdnf exon IV locus. This genetic manipulation results in disruption of promoter IV-mediated Bdnf expression. BDNF-KIV animals exhibited significant deficits in GABAergic interneurons in the prefrontal cortex (PFC), particularly those expressing parvalbumin, a subtype implicated in executive function and schizophrenia. Moreover, disruption of promoter IV-driven Bdnf transcription impaired inhibitory but not excitatory synaptic transmission recorded from layer V pyramidal neurons in the PFC. The attenuation of GABAergic inputs resulted in an aberrant appearance of spike-timing-dependent synaptic potentiation (STDP) in PFC slices derived from BDNF-KIV, but not wild-type littermates. These results demonstrate the importance of promoter IV-dependent Bdnf transcription in GABAergic function and reveal an unexpected regulation of STDP in the PFC by BDNF.

  8. Chronic Unpredictable Stress Decreases Expression of Brain-Derived Neurotrophic Factor (BDNF) in Mouse Ovaries: Relationship to Oocytes Developmental Potential

    PubMed Central

    Tong, Xian-Hong; Han, Hui; Shen, Ni; Jin, Ren-Tao; Wang, Wei; Zhou, Gui-Xiang; He, Guo-Ping; Liu, Yu-Sheng

    2012-01-01

    Background Brain-derived neurotropic factor (BDNF) was originally described in the nervous system but has been shown to be expressed in ovary tissues recently, acting as a paracrine/autocrine regulator required for developments of follicles and oocytes. Although it is generally accepted that chronic stress impairs female reproduction and decreases the expression of BDNF in limbic structures of central nervous system, which contributes to mood disorder. However, it is not known whether chronic stress affects oocytes developments, nor whether it affects expression of BDNF in ovary. Methods Mice were randomly assigned into control group, stressed group, BDNF-treated group and BDNF-treated stressed group. The chronic unpredictable mild stress model was used to produce psychosocial stress in mice, and the model was verified by open field test and hypothalamic-pituitary-adrenal (HPA) axis activity. The methods of immunohistochemistry and western blotting were used to detect BDNF protein level and distribution. The number of retrieved oocytes, oocyte maturation, embryo cleavage and the rates of blastocyst formation after parthenogenetic activation were evaluated. Results Chronic unpredictable stress decreased the BDNF expression in antral follicles, but didn’t affect the BDNF expression in primordial, primary and secondary follicles. Chronic unpredictable stress also decreased the number of retrieved oocytes and the rate of blastocyst formation, which was rescued by exogenous BDNF treatment. Conclusion BDNF in mouse ovaries may be related to the decreased number of retrieved oocytes and impaired oocytes developmental potential induced by chronic unpredictable stress. PMID:23284991

  9. Regulation of thrombosis and vascular function by protein methionine oxidation.

    PubMed

    Gu, Sean X; Stevens, Jeff W; Lentz, Steven R

    2015-06-18

    Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis.

  10. Regulation of thrombosis and vascular function by protein methionine oxidation

    PubMed Central

    Gu, Sean X.; Stevens, Jeff W.

    2015-01-01

    Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis. PMID:25900980

  11. Androgen-dependent loss of muscle BDNF mRNA in two mouse models of SBMA.

    PubMed

    Halievski, Katherine; Henley, Casey L; Domino, Laurel; Poort, Jessica E; Fu, Martina; Katsuno, Masahisa; Adachi, Hiroaki; Sobue, Gen; Breedlove, S Marc; Jordan, Cynthia L

    2015-07-01

    Transgenic expression of neurotrophic factors in skeletal muscle has been found to protect mice from neuromuscular disease, including spinal bulbar muscular atrophy (SBMA), triggering renewed interest in neurotrophic factors as therapeutic agents for treating neuromuscular disease. Because SBMA is an androgen-dependent disease, and brain-derived neurotrophic factor (BDNF) mediates effects of androgens on neuromuscular systems, we asked whether BDNF expression is impaired in two different transgenic (Tg) mouse models of SBMA, the so called "97Q" and "myogenic" SBMA models. The 97Q model globally overexpresses a full length human AR with 97 glutamine repeats whereas the myogenic model of SBMA overexpresses a wild-type rat androgen receptor (AR) only in skeletal muscle fibers. Using quantitative PCR, we find that muscle BDNF mRNA declines in an androgen-dependent manner in both models, paralleling changes in motor function, with robust deficits (6-8 fold) in both fast and slow twitch muscles of impaired Tg males. Castration rescues or reverses disease-related deficits in muscle BDNF mRNA in both models, paralleling its effect on motor function. Moreover, when disease is acutely induced in Tg females, both motor function and muscle BDNF mRNA expression plummet, with the deficit in muscle BDNF emerging before overt motor dysfunction. That androgen-dependent motor dysfunction is tightly associated with a robust and early down-regulation of muscle BDNF mRNA suggests that BDNF delivered to skeletal muscle may have therapeutic value for SBMA.

  12. Epigenetic alterations of the BDNF gene in combat-related post-traumatic stress disorder.

    PubMed

    Kim, T Y; Kim, S J; Chung, H G; Choi, J H; Kim, S H; Kang, J I

    2017-02-01

    Brain-derived neurotrophic factor (BDNF) plays a crucial role in modulating resilience and vulnerability to stress. The aim of this study was to investigate whether epigenetic regulation of the BDNF gene is a biomarker of post-traumatic stress disorder (PTSD) development among veterans exposed to combat in the Vietnam War. Using the Clinician-Administered PTSD Scale, combat veterans were grouped into those with (n = 126) and without (n = 122) PTSD. DNA methylation levels at four CpG sites within the BDNF promoter I region were quantified in the peripheral blood using pyrosequencing. The effects of BDNF DNA methylation levels and clinical variables on the diagnosis of PTSD were tested using binary logistic regression analysis. Subjects with PTSD showed a higher DNA methylation of four CpG sites at the BDNF promoter compared with those without PTSD. High methylation levels at the BDNF promoter CpG site, high combat exposure, and alcohol problems were significantly associated with PTSD diagnosis. This study demonstrated an association between higher DNA methylation of the BDNF promoter and PTSD diagnosis in combat-exposed individuals. Our findings suggest that altered BDNF methylation may be a valuable biomarker of PTSD after trauma exposure. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Computer Simulations Support a Morphological Contribution to BDNF Enhancement of Action Potential Generation.

    PubMed

    Galati, Domenico F; Hiester, Brian G; Jones, Kevin R

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) regulates both action potential (AP) generation and neuron morphology. However, whether BDNF-induced changes in neuron morphology directly impact AP generation is unclear. We quantified BDNF's effect on cultured cortical neuron morphological parameters and found that BDNF stimulates dendrite growth and addition of dendrites while increasing both excitatory and inhibitory presynaptic inputs in a spatially restricted manner. To gain insight into how these combined changes in neuron structure and synaptic input impact AP generation, we used the morphological parameters we gathered to generate computational models. Simulations suggest that BDNF-induced neuron morphologies generate more APs under a wide variety of conditions. Synapse and dendrite addition have the greatest impact on AP generation. However, subtle alterations in excitatory/inhibitory synapse ratio and strength have a significant impact on AP generation when synaptic activity is low. Consistent with these simulations, BDNF rapidly enhances spontaneous activity in cortical cultures. We propose that BDNF promotes neuron morphologies that are intrinsically more efficient at translating barrages of synaptic activity into APs, which is a previously unexplored aspect of BDNF's function.

  14. Plasma BDNF Concentration, Val66Met Genetic Variant, and Depression-Related Personality Traits

    PubMed Central

    Terracciano, Antonio; Martin, Bronwen; Ansari, David; Tanaka, Toshiko; Ferrucci, Luigi; Maudsley, Stuart; Mattson, Mark P.; Costa, Paul T.

    2010-01-01

    Brain derived neurotrophic factor (BDNF) regulates synaptic plasticity and neurogenesis, and BDNF plasma and serum levels have been associated with depression, Alzheimer's disease, and other psychiatric and neurodegenerative disorders. In a relatively large community sample, drawn from the Baltimore Longitudinal Study of Aging (BLSA), we examine whether BDNF plasma concentration is associated with the Val66Met functional polymorphism of the BDNF gene (n = 335) and with depression-related personality traits assessed with the NEO-PI-R (n = 391). Plasma concentration of BDNF was not associated with the Val66Met variant in either men or women. However, in men, but not in women, BDNF plasma level was associated with personality traits linked to depression. Contrary to the notion that low BDNF is associated with negative outcomes, we found lower plasma levels in men who score lower on depression and vulnerability to stress (two facets of Neuroticism) and higher on Conscientiousness and Extraversion. These findings challenge the prevailing hypothesis that lower peripheral levels of BDNF are a marker of depression. PMID:20345896

  15. The BDNF Val66Met polymorphism impairs NMDA receptor-dependent synaptic plasticity in the hippocampus.

    PubMed

    Ninan, Ipe; Bath, Kevin G; Dagar, Karishma; Perez-Castro, Rosalia; Plummer, Mark R; Lee, Francis S; Chao, Moses V

    2010-06-30

    The Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) gene results in a defect in regulated release of BDNF and affects episodic memory and affective behaviors. However, the precise role of the BDNF Val66Met polymorphism in hippocampal synaptic transmission and plasticity has not yet been studied. Therefore, we examined synaptic properties in the hippocampal CA3-CA1 synapses of BDNF(Met/Met) mice and matched wild-type mice. Although basal glutamatergic neurotransmission was normal, both young and adult mice showed a significant reduction in NMDA receptor-dependent long-term potentiation. We also found that NMDA receptor-dependent long-term depression was decreased in BDNF(Met/Met) mice. However, mGluR-dependent long-term depression was not affected by the BDNF Val66Met polymorphism. Consistent with the NMDA receptor-dependent synaptic plasticity impairment, we observed a significant decrease in NMDA receptor neurotransmission in the CA1 pyramidal neurons of BDNF(Met/Met) mice. Thus, these results show that the BDNF Val66Met polymorphism has a direct effect on NMDA receptor transmission, which may account for changes in synaptic plasticity in the hippocampus.

  16. Androgen-dependent loss of muscle BDNF mRNA in two mouse models of SBMA

    PubMed Central

    Halievski, Katherine; Henley, Casey L.; Domino, Laurel; Poort, Jessica E.; Fu, Martina; Katsuno, Masahisa; Adachi, Hiroaki; Sobue, Gen; Breedlove, S. Marc; Jordan, Cynthia L.

    2015-01-01

    Transgenic expression of neurotrophic factors in skeletal muscle has been found to protect mice from neuromuscular disease, including spinal bulbar muscular atrophy (SBMA), triggering renewed interest in neurotrophic factors as therapeutic agents for treating neuromuscular disease. Because SBMA is an androgen-dependent disease, and brain-derived neurotrophic factor (BDNF) mediates effects of androgens on neuromuscular systems, we asked whether BDNF expression is impaired in two different transgenic (Tg) mouse models of SBMA, the so called “97Q” and “myogenic” SBMA models. The 97Q model globally overexpresses a full length human AR with 97 glutamine repeats whereas the myogenic model of SBMA overexpresses a wild-type rat androgen receptor (AR) only in skeletal muscle fibers. Using quantitative PCR, we find that muscle BDNF mRNA declines in an androgen-dependent manner in both models, paralleling changes in motor function, with robust deficits (6-8 fold) in both fast and slow twitch muscle of impaired Tg males. Castration rescues or reverses disease-related deficits in muscle BDNF mRNA in both models, paralleling its effect on motor function. Moreover, when disease is acutely induced in Tg females, both motor function and muscle BDNF mRNA expression plummet, with the deficit in muscle BDNF emerging before overt motor dysfunction. That androgen-dependent motor dysfunction is tightly associated with a robust and early down-regulation of muscle BDNF mRNA suggests that BDNF delivered to muscle may have therapeutic value for SBMA. PMID:25929689

  17. Plasma BDNF concentration, Val66Met genetic variant and depression-related personality traits.

    PubMed

    Terracciano, A; Martin, B; Ansari, D; Tanaka, T; Ferrucci, L; Maudsley, S; Mattson, M P; Costa, P T

    2010-07-01

    Brain-derived neurotrophic factor (BDNF) regulates synaptic plasticity and neurogenesis, and BDNF plasma and serum levels have been associated with depression, Alzheimer's disease, and other psychiatric and neurodegenerative disorders. In a relatively large community sample, drawn from the Baltimore Longitudinal Study of Aging (BLSA), we examine whether BDNF plasma concentration is associated with the Val66Met functional polymorphism of the BDNF gene (n = 335) and with depression-related personality traits assessed with the NEO-PI-R (n = 391). Plasma concentration of BDNF was not associated with the Val66Met variant in either men or women. However, in men, but not in women, BDNF plasma level was associated with personality traits linked to depression. Contrary to the notion that low BDNF is associated with negative outcomes, we found lower plasma levels in men who score lower on depression and vulnerability to stress (two facets of Neuroticism) and higher on Conscientiousness and Extraversion. These findings challenge the prevailing hypothesis that lower peripheral levels of BDNF are a marker of depression.

  18. Long Non-coding RNA in Neurons: New Players in Early Response to BDNF Stimulation.

    PubMed

    Aliperti, Vincenza; Donizetti, Aldo

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin family member that is highly expressed and widely distributed in the brain. BDNF is critical for neural survival and plasticity both during development and in adulthood, and dysfunction in its signaling may contribute to a number of neurodegenerative disorders. Deep understanding of the BDNF-activated molecular cascade may thus help to find new biomarkers and therapeutic targets. One interesting direction is related to the early phase of BDNF-dependent gene expression regulation, which is responsible for the activation of selective gene programs that lead to stable functional and structural remodeling of neurons. Immediate-early coding genes activated by BDNF are under investigation, but the involvement of the non-coding RNAs is largely unexplored, especially the long non-coding RNAs (lncRNAs). lncRNAs are emerging as key regulators that can orchestrate different aspects of nervous system development, homeostasis, and plasticity, making them attractive candidate markers and therapeutic targets for brain diseases. We used microarray technology to identify differentially expressed lncRNAs in the immediate response phase of BDNF stimulation in a neuronal cell model. Our observations on the putative functional role of lncRNAs provide clues to their involvement as master regulators of gene expression cascade triggered by BDNF.

  19. Argininosuccinate lyase is an essential regulator of nictric oxide homeostatis

    USDA-ARS?s Scientific Manuscript database

    The regulation of nitric oxide synthesis is a complex mechanism, depending on the availability of substrates and the activity of the enzymes involved. Here we describe in a mouse model the channeling of urea cycle intermediates for the recycling of citrulline and the transport of extracellular argin...

  20. Genomic Organization and Identification of Promoter Regions for the BDNF Gene in the Pond Turtle Trachemys scripta elegans

    PubMed Central

    Zheng, Zhaoqing; Keifer, Joyce

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) is an important regulator of neuronal development and synaptic function. The BDNF gene undergoes significant activity-dependent regulation during learning. Here, we identified the BDNF promoter regions, transcription start sites, and potential regulatory sequences for BDNF exons I–III that may contribute to activity-dependent gene and protein expression in the pond turtle Trachemys scripta elegans (tBDNF). By using transfection of BDNF promoter/luciferase plasmid constructs into human neuroblastoma SHSY5Y cells and mouse embryonic fibroblast NIH3T3 cells, we identified the basal regulatory activity of promoter sequences located upstream of each tBDNF exon, designated as pBDNFI–III. Further, through chromatin immunoprecipitation (ChIP) assays, we detected CREB binding directly to exon I and exon III promoters, while BHLHB2, but not CREB, binds within the exon II promoter. Elucidation of the promoter regions and regulatory protein binding sites in the tBDNF gene is essential for understanding the regulatory mechanisms that control tBDNF gene expression. PMID:24443176

  1. AP-1 Transcription Factors Mediate BDNF-Positive Feedback Loop in Cortical Neurons.

    PubMed

    Tuvikene, Jürgen; Pruunsild, Priit; Orav, Ester; Esvald, Eli-Eelika; Timmusk, Tõnis

    2016-01-27

    Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, regulates both survival and differentiation of several neuronal populations in the nervous system during development, as well as synaptic plasticity in the adult brain. BDNF exerts its biological functions through its receptor TrkB. Although the regulation of BDNF transcription by neuronal activity has been widely studied, little is known about TrkB signaling-dependent expression of BDNF. Using rat primary cortical neuron cultures, we show that the BDNF gene is a subject to an extensive autoregulatory loop, where TrkB signaling upregulates the expression of all major BDNF transcripts, mainly through activating MAPK pathways. Investigating the mechanisms behind this autoregulation, we found that AP-1 transcription factors, comprising Jun and Fos family members, participate in the induction of BDNF exon I, III, and VI transcripts. AP-1 transcription factors directly upregulate the expression of exon I transcripts by binding two novel AP-1 cis-elements in promoter I. Moreover, our results show that the effect of AP-1 proteins on the activity of rat BDNF promoters III and VI is indirect, because AP-1 proteins were not detected to bind the respective promoter regions by chromatin immunoprecipitation (ChIP). Collectively, we describe an extensive positive feedback system in BDNF regulation, adding a new layer to the elaborate control of BDNF gene expression. Here, we show for the first time that in rat primary cortical neurons the expression of all major BDNF transcripts (exon I, II, III, IV, VI, and IXa transcripts) is upregulated in response to TrkB signaling, and that AP-1 transcription factors participate in the induction of exon I, III, and VI transcripts. Moreover, we have described two novel functional AP-1 cis-elements in BDNF promoter I, responsible for the activation of the promoter in response to TrkB signaling. Our results indicate the existence of a positive feedback loop for

  2. Positive feedback loop of autocrine BDNF from microglia causes prolonged microglia activation.

    PubMed

    Zhang, Xin; Zeng, Lulu; Yu, Tingting; Xu, Yongming; Pu, Shaofeng; Du, Dongping; Jiang, Wei

    2014-01-01

    Microglia, which represent the immune cells of the central nervous system (CNS), have long been a subject of study in CNS disease research. Substantial evidence indicates that microglial activation functions as a strong neuro-inflammatory response in neuropathic pain, promoting the release of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α. In addition, activated microglia release brain-derived neurotrophic factor (BDNF), which acts as a powerful cytokine. In this study, we performed a series of in vitro experiments to examine whether a positive autocrine feedback loop existed between microglia-derived BDNF and subsequent microglial activation as well as the mechanisms underlying this positive feedback loop. Because ATP is a classic inducer of microglial activation, firstly, we examined ATP-activated microglia in the present study. Secondly, we used TrkB/Fc, the BDNF sequester, to eliminate the effects of endogenous BDNF. ATP-stimulated microglia without BDNF was examined. Finally, we used exogenous BDNF to further determine whether BDNF could directly activate BV2 microglia. In all experiments, to quantify BV2 microglia activation, the protein levels of CD11b, a microglial activation marker, were measured by western blot. A Transwell migration assay was used to examine microglial migration. To assess the synthesis and release of proinflammatory cytokines, western blot was used to measure BDNF synthesis, and ELISA was used to quantify TNF-α release. In our present research, we have observed that ATP dramatically activates microglia, enhancing microglial migration, increasing the synthesis of BDNF and up-regulating the release of TNF-α. Microglial activation is inhibited following the sequestration of endogenous BDNF, resulting in impaired microglial migration and decreased TNF-α release. Furthermore, exogenous BDNF can also activate microglia to subsequently enhance migration and increase TNF-α release. Therefore, we suggest that microglial

  3. Oxidant-specific regulation of protein synthesis in Candida albicans.

    PubMed

    Sundaram, Arunkumar; Grant, Chris M

    2014-06-01

    Eukaryotic cells typically respond to stress conditions by inhibiting global protein synthesis. The initiation phase is the main target of regulation and represents a key control point for eukaryotic gene expression. In Saccharomyces cerevisiae and mammalian cells this is achieved by phosphorylation of eukaryotic initiation factor 2 (eIF2α). We have examined how the fungal pathogen Candida albicans responds to oxidative stress conditions and show that oxidants including hydrogen peroxide, the heavy metal cadmium and the thiol oxidant diamide inhibit translation initiation. The inhibition in response to hydrogen peroxide and cadmium largely depends on phosphorylation of eIF2α since minimal inhibition is observed in a gcn2 mutant. In contrast, translation initiation is inhibited in a Gcn2-independent manner in response to diamide. Our data indicate that all three oxidants inhibit growth of C. albicans in a dose-dependent manner, however, loss of GCN2 does not improve growth in the presence of hydrogen peroxide or cadmium. Examination of translational activity indicates that these oxidants inhibit translation at a post-initiation phase which may account for the growth inhibition in a gcn2 mutant. As well as inhibiting global translation initiation, phosphorylation of eIF2α also enhances expression of the GCN4 mRNA in yeast via a well-known translational control mechanism. We show that C. albicans GCN4 is similarly induced in response to oxidative stress conditions and Gcn4 is specifically required for hydrogen peroxide tolerance. Thus, the response of C. albicans to oxidative stress is mediated by oxidant-specific regulation of translation initiation and we discuss our findings in comparison to other eukaryotes including the yeast S. cerevisiae. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. BDNF promoter-mediated beta-galactosidase expression in the olfactory epithelium and bulb.

    PubMed

    Clevenger, Amy C; Salcedo, Ernesto; Jones, Kevin R; Restrepo, Diego

    2008-07-01

    The neurotrophin brain-derived neurotrophic factor (BDNF) has been implicated in the generation and differentiation of new olfactory sensory neurons (OSNs) and in the regulation of branching of OSN axons in their target glomeruli. However, previous reports of BDNF mRNA and protein expression in olfactory epithelium and olfactory bulb (OB) have been inconsistent, raising questions on the proposed roles for BDNF. Here, we report on beta-galactosidase (beta-gal) expression in adult gene-targeted mice where the BDNF promoter drives expression of the Escherichia coli lacZ gene (BDNF(lacZneo) mice). We find that beta-gal is expressed in a small subset of OSNs with axons that reach the olfactory nerve layers throughout the OB. In the OB, we find expression of beta-gal in gamma-aminobutyric acidergic but not dopaminergic periglomerular cells and external tufted cells and in interneurons located in the mitral cell layer. Our results are inconsistent with the regulation of generation and differentiation of new OSNs elicited by the release of BDNF from horizontal basal cells. The results are consistent with a role for BDNF in competitive branching of OSN axons within the glomeruli of the OB.

  5. Chronic antidepressant administration alleviates frontal and hippocampal BDNF deficits in CUMS rat.

    PubMed

    Zhang, Yang; Gu, Fenghua; Chen, Jia; Dong, Wenxin

    2010-12-17

    Stress activates the hypothalamo-pituitary-adrenal (HPA) axis, regulates the expression of brain-derived neurotrophic factor (BDNF) in the brain, and mediates mood. Antidepressants alleviate stress and up-regulate BDNF gene expression. In this study, we investigated the effect of chronic unpredictable mild stress (CUMS) and the different kinds of antidepressant treatments on the HPA axis and the BDNF expression in the rat brain. Adult Wistar male rats were exposed to a six-week CUMS procedure and received different antidepressant treatments including venlafaxine, mirtazapine, and fluoxetine. Immunohistochemistry and real-time PCR were used to measure BDNF expression levels in the rat brain, and ELISAs were used to investigate the plasma corticosterone (CORT) and adrenocorticotropic hormone (ACTH) levels. CUMS significantly decreased the BDNF protein level in the DG, CA1, and CA3 of the hippocampus and increased plasma CORT level. Chronic antidepressant treatments all significantly increased BDNF protein levels in the hippocampus and the pre-frontal cortex. In addition, venlafaxine and mirtazapine inhibited the increase of plasma CORT level. These results suggested that an increase in the BDNF level in the brain could be a pivotal mechanism of various antidepressants to exert their therapeutic effects.

  6. A Positive Autoregulatory BDNF Feedback Loop via C/EBPβ Mediates Hippocampal Memory Consolidation

    PubMed Central

    Bambah-Mukku, Dhananjay; Travaglia, Alessio; Chen, Dillon Y.; Pollonini, Gabriella

    2014-01-01

    Little is known about the temporal progression and regulation of the mechanisms underlying memory consolidation. Brain-derived-neurotrophic-factor (BDNF) has been shown to mediate the maintenance of memory consolidation, but the mechanisms of this regulation remain unclear. Using inhibitory avoidance (IA) in rats, here we show that a hippocampal BDNF-positive autoregulatory feedback loop via CCAAT-enhancer binding protein β (C/EBPβ) is necessary to mediate memory consolidation. At training, a very rapid, learning-induced requirement of BDNF accompanied by rapid de novo translation controls the induction of a persistent activation of cAMP-response element binding-protein (CREB) and C/EBPβ expression. The latter, in turn, controls an increase in expression of bdnf exon IV transcripts and BDNF protein, both of which are necessary and, together with the initial BDNF requirement, mediate memory consolidation. The autoregulatory loop terminates by 48 h after training with decreased C/EBPβ and pCREB and increased methyl-CpG binding protein-2, histone-deacetylase-2, and switch-independent-3a binding at the bdnf exon IV promoter. PMID:25209292

  7. Pre- and postsynaptic twists in BDNF secretion and action in synaptic plasticity.

    PubMed

    Edelmann, Elke; Lessmann, Volkmar; Brigadski, Tanja

    2014-01-01

    Overwhelming evidence collected since the early 1990's strongly supports the notion that BDNF is among the key regulators of synaptic plasticity in many areas of the mammalian central nervous system. Still, due to the extremely low expression levels of endogenous BDNF in most brain areas, surprisingly little data i) pinpointing pre- and postsynaptic release sites, ii) unraveling the time course of release, and iii) elucidating the physiological levels of synaptic activity driving this secretion are available. Likewise, our knowledge regarding pre- and postsynaptic effects of endogenous BDNF at the single cell level in mediating long-term potentiation still is sparse. Thus, our review will discuss the data currently available regarding synaptic BDNF secretion in response to physiologically relevant levels of activity, and will discuss how endogenously secreted BDNF affects synaptic plasticity, giving a special focus on spike timing-dependent types of LTP and on mossy fiber LTP. We will attempt to open up perspectives how the remaining challenging questions regarding synaptic BDNF release and action might be addressed by future experiments. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.

  8. Silencing Status Epilepticus-Induced BDNF Expression with Herpes Simplex Virus Type-1 Based Amplicon Vectors

    PubMed Central

    Falcicchia, Chiara; Trempat, Pascal; Binaschi, Anna; Perrier-Biollay, Coline; Roncon, Paolo; Soukupova, Marie; Berthommé, Hervé; Simonato, Michele

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) has been found to produce pro- but also anti-epileptic effects. Thus, its validity as a therapeutic target must be verified using advanced tools designed to block or to enhance its signal. The aim of this study was to develop tools to silence the BDNF signal. We generated Herpes simplex virus type 1 (HSV-1) derived amplicon vectors, i.e. viral particles containing a genome of 152 kb constituted of concatameric repetitions of an expression cassette, enabling the expression of the gene of interest in multiple copies. HSV-1 based amplicon vectors are non-pathogenic and have been successfully employed in the past for gene delivery into the brain of living animals. Therefore, amplicon vectors should represent a logical choice for expressing a silencing cassette, which, in multiple copies, is expected to lead to an efficient knock-down of the target gene expression. Here, we employed two amplicon-based BDNF silencing strategies. The first, antisense, has been chosen to target and degrade the cytoplasmic mRNA pool of BDNF, whereas the second, based on the convergent transcription technology, has been chosen to repress transcription at the BDNF gene. Both these amplicon vectors proved to be effective in down-regulating BDNF expression in vitro, in BDNF-expressing mesoangioblast cells. However, only the antisense strategy was effective in vivo, after inoculation in the hippocampus in a model of status epilepticus in which BDNF mRNA levels are strongly increased. Interestingly, the knocking down of BDNF levels induced with BDNF-antisense was sufficient to produce significant behavioral effects, in spite of the fact that it was produced only in a part of a single hippocampus. In conclusion, this study demonstrates a reliable effect of amplicon vectors in knocking down gene expression in vitro and in vivo. Therefore, this approach may find broad applications in neurobiological studies. PMID:26954758

  9. Neurogenic and Neurotrophic Effects of BDNF Peptides in Mouse Hippocampal Primary Neuronal Cell Cultures

    PubMed Central

    Cardenas-Aguayo, Maria del Carmen; Kazim, Syed Faraz; Grundke-Iqbal, Inge; Iqbal, Khalid

    2013-01-01

    The level of brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, is down regulated in Alzheimer’s disease (AD), Parkinson’s disease (PD), depression, stress, and anxiety; conversely the level of this neurotrophin is increased in autism spectrum disorders. Thus, modulating the level of BDNF can be a potential therapeutic approach for nervous system pathologies. In the present study, we designed five different tetra peptides (peptides B-1 to B-5) corresponding to different active regions of BDNF. These tetra peptides were found to be non-toxic, and they induced the expression of neuronal markers in mouse embryonic day 18 (E18) primary hippocampal neuronal cultures. Additionally, peptide B-5 induced the expression of BDNF and its receptor, TrkB, suggesting a positive feedback mechanism. The BDNF peptides induced only a moderate activation (phosphorylation at Tyr 706) of the TrkB receptor, which could be blocked by the Trk’s inhibitor, K252a. Peptide B-3, when combined with BDNF, potentiated the survival effect of this neurotrophin on H2O2-treated E18 hippocampal cells. Peptides B-3 and B-5 were found to work as partial agonists and as partial antagonists competing with BDNF to activate the TrkB receptor in a dose-dependent manner. Taken together, these results suggest that the described BDNF tetra peptides are neurotrophic, can modulate BDNF signaling in a partial agonist/antagonist way, and offer a novel therapeutic approach to neural pathologies where BDNF levels are dysregulated. PMID:23320097

  10. The relationship between serum brain-derived neurotrophic factor (BDNF) and cardiometabolic indices in schizophrenia.

    PubMed

    Nurjono, Milawaty; Tay, Yi Hang; Lee, Jimmy

    2014-08-01

    Brain derived neurotrophic factor (BDNF), which has been implicated in the pathogenesis of schizophrenia, has been recently shown to be involved in the regulation of metabolism and energy homeostasis. This study seeks to examine the relationship between BDNF, metabolic indices and cardiovascular (CVD) risk in patients with schizophrenia. Medical histories, demographic information and anthropometric measurements were collected and analyzed from 61 participants with schizophrenia. Fasting glucose and lipids were measured in a central laboratory, and serum BDNF was analyzed using commercially available enzyme-linked immunosorbent assay (ELISA). The 10-year CVD risk for each participant was computed using the Framingham risk score (FRS). Linear regressions were performed to examine the relationships between serum BDNF with body mass index (BMI), blood pressure (BP), triglycerides (TG), total cholesterol, high-density lipoprotein cholesterol (HDL-C) and glucose. To examine the relationship between serum BDNF and FRS, serum BDNF was categorized into quartiles, and a multiple regression was performed. After adjusting for age, gender and current smoking status, diastolic BP (dBP) (p=0.045) and TG (p=0.015) were found to be significantly associated with serum BDNF. Participants in the highest quartile of serum BDNF had a 3.3 times increase in FRS over those in the lowest quartile. Our findings support the possible regulatory role of BDNF in metabolism and cardiovascular homeostasis among patients with schizophrenia similar to that observed among the non-mentally ill. Serum BDNF not only present itself as a candidate biomarker of schizophrenia but also might be a viable marker of metabolic co-morbidities associated with schizophrenia.

  11. Silencing Status Epilepticus-Induced BDNF Expression with Herpes Simplex Virus Type-1 Based Amplicon Vectors.

    PubMed

    Falcicchia, Chiara; Trempat, Pascal; Binaschi, Anna; Perrier-Biollay, Coline; Roncon, Paolo; Soukupova, Marie; Berthommé, Hervé; Simonato, Michele

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) has been found to produce pro- but also anti-epileptic effects. Thus, its validity as a therapeutic target must be verified using advanced tools designed to block or to enhance its signal. The aim of this study was to develop tools to silence the BDNF signal. We generated Herpes simplex virus type 1 (HSV-1) derived amplicon vectors, i.e. viral particles containing a genome of 152 kb constituted of concatameric repetitions of an expression cassette, enabling the expression of the gene of interest in multiple copies. HSV-1 based amplicon vectors are non-pathogenic and have been successfully employed in the past for gene delivery into the brain of living animals. Therefore, amplicon vectors should represent a logical choice for expressing a silencing cassette, which, in multiple copies, is expected to lead to an efficient knock-down of the target gene expression. Here, we employed two amplicon-based BDNF silencing strategies. The first, antisense, has been chosen to target and degrade the cytoplasmic mRNA pool of BDNF, whereas the second, based on the convergent transcription technology, has been chosen to repress transcription at the BDNF gene. Both these amplicon vectors proved to be effective in down-regulating BDNF expression in vitro, in BDNF-expressing mesoangioblast cells. However, only the antisense strategy was effective in vivo, after inoculation in the hippocampus in a model of status epilepticus in which BDNF mRNA levels are strongly increased. Interestingly, the knocking down of BDNF levels induced with BDNF-antisense was sufficient to produce significant behavioral effects, in spite of the fact that it was produced only in a part of a single hippocampus. In conclusion, this study demonstrates a reliable effect of amplicon vectors in knocking down gene expression in vitro and in vivo. Therefore, this approach may find broad applications in neurobiological studies.

  12. Neurochemical properties of BDNF-containing neurons projecting to rostral ventromedial medulla in the ventrolateral periaqueductal gray

    PubMed Central

    Yin, Jun-Bin; Wu, Huang-Hui; Dong, Yu-Lin; Zhang, Ting; Wang, Jian; Zhang, Yong; Wei, Yan-Yan; Lu, Ya-Cheng; Wu, Sheng-Xi; Wang, Wen; Li, Yun-Qing

    2014-01-01

    The periaqueductal gray (PAG) modulates nociception via a descending pathway that relays in the rostral ventromedial medulla (RVM) and terminates in the spinal cord. Previous behavioral pharmacology and electrophysiological evidence suggests that brain-derived neurotrophic factor (BDNF) plays an important role in descending pain modulation, likely through the PAG-RVM pathway. However, detailed information is still lacking on the distribution of BDNF, activation of BDNF-containing neurons projecting to RVM in the condition of pain, and neurochemical properties of these neurons within the PAG. Through fluorescent in situ hybridization (FISH) and immunofluorescent staining, the homogenous distributions of BDNF mRNA and protein were observed in the four subregions of PAG. Both neurons and astrocytes expressed BDNF, but not microglia. By combining retrograde tracing methods and formalin pain model, there were more BDNF-containing neurons projecting to RVM being activated in the ventrolateral subregion of PAG (vlPAG) than other subregions of PAG. The neurochemical properties of BDNF-containing projection neurons in the vlPAG were investigated. BDNF-containing projection neurons expressed the autoreceptor TrkB in addition to serotonin (5-HT), neurotensin (NT), substance P (SP), calcitonin gene related peptide (CGRP), nitric oxide synthase (NOS), and parvalbumin (PV) but not tyrosine decarboxylase (TH). It is speculated that BDNF released from projection neurons in the vlPAG might participate in the descending pain modulation through enhancing the presynaptic release of other neuroactive substances (NSs) in the RVM. PMID:25477786

  13. Plasma BDNF Is Reduced among Middle-Aged and Elderly Women with Impaired Insulin Function: Evidence of a Compensatory Mechanism

    ERIC Educational Resources Information Center

    Arentoft, Alyssa; Sweat, Victoria; Starr, Vanessa; Oliver, Stephen; Hassenstab, Jason; Bruehl, Hannah; Tirsi, Aziz; Javier, Elizabeth; McHugh, Pauline F.; Convit, Antonio

    2009-01-01

    Brain-derived neurotrophic factor (BDNF) plays a regulatory role in neuronal differentiation and synaptic plasticity and has been linked to glucose regulation and cognition. Associations among plasma BDNF, cognition, and insulin function were explored. Forty-one participants with impaired insulin function (IIF), ranging from insulin resistance to…

  14. Plasma BDNF Is Reduced among Middle-Aged and Elderly Women with Impaired Insulin Function: Evidence of a Compensatory Mechanism

    ERIC Educational Resources Information Center

    Arentoft, Alyssa; Sweat, Victoria; Starr, Vanessa; Oliver, Stephen; Hassenstab, Jason; Bruehl, Hannah; Tirsi, Aziz; Javier, Elizabeth; McHugh, Pauline F.; Convit, Antonio

    2009-01-01

    Brain-derived neurotrophic factor (BDNF) plays a regulatory role in neuronal differentiation and synaptic plasticity and has been linked to glucose regulation and cognition. Associations among plasma BDNF, cognition, and insulin function were explored. Forty-one participants with impaired insulin function (IIF), ranging from insulin resistance to…

  15. Epigenetic Regulation of Oxidative Stress in Ischemic Stroke

    PubMed Central

    Zhao, Haiping; Han, Ziping; Ji, Xunming; Luo, Yumin

    2016-01-01

    The prevalence and incidence of stroke rises with life expectancy. However, except for the use of recombinant tissue-type plasminogen activator, the translation of new therapies for acute stroke from animal models into humans has been relatively unsuccessful. Oxidative DNA and protein damage following stroke is typically associated with cell death. Cause-effect relationships between reactive oxygen species and epigenetic modifications have been established in aging, cancer, acute pancreatitis, and fatty liver disease. In addition, epigenetic regulatory mechanisms during stroke recovery have been reviewed, with focuses mainly on neural apoptosis, necrosis, and neuroplasticity. However, oxidative stress-induced epigenetic regulation in vascular neural networks following stroke has not been sufficiently explored. Improved understanding of the epigenetic regulatory network upon oxidative stress may provide effective antioxidant approaches for treating stroke. In this review, we summarize the epigenetic events, including DNA methylation, histone modification, and microRNAs, that result from oxidative stress following experimental stroke in animal and cell models, and the ways in which epigenetic changes and their crosstalk influence the redox state in neurons, glia, and vascular endothelial cells, helping us to understand the foregone and vicious epigenetic regulation of oxidative stress in the vascular neural network following stroke. PMID:27330844

  16. Acute and chronic interference with BDNF/TrkB-signaling impair LTP selectively at mossy fiber synapses in the CA3 region of mouse hippocampus.

    PubMed

    Schildt, Sandra; Endres, Thomas; Lessmann, Volkmar; Edelmann, Elke

    2013-08-01

    Brain-derived neurotrophic factor (BDNF) signaling via TrkB crucially regulates synaptic plasticity in the brain. Although BDNF is abundant at hippocampal mossy fiber (MF) synapses, which critically contribute to hippocampus dependent memory, its role in MF synaptic plasticity (long-term potentiation, LTP) remained largely unclear. Using field potential recordings in CA3 of adult heterozygous BDNF knockout (ko, BDNF+/-) mice we observed impaired (∼50%) NMDAR-independent MF-LTP. In contrast to MF synapses, LTP at neighboring associative/commissural (A/C) fiber synapses remained unaffected. To exclude that impaired MF-LTP in BDNF+/- mice was due to developmental changes in response to chronically reduced BDNF levels, and to prove the importance of acute availability of BDNF in MF-LTP, we also tested effects of acute interference with BDNF/TrkB signaling. Inhibition of TrkB tyrosine kinase signaling with k252a, or with the selective BDNF scavenger TrkB-Fc, both inhibited MF-LTP to the same extent as observed in BDNF+/- mice. Basal synaptic transmission, short-term plasticity, and synaptic fatigue during LTP induction were not significantly altered by treatment with k252a or TrkB-Fc, or by chronic BDNF reduction in BDNF+/- mice. Since the acute interference with BDNF-signaling did not completely block MF-LTP, our results provide evidence that an additional mechanism besides BDNF induced TrkB signaling contributes to this type of LTP. Our results prove for the first time a mechanistic action of acute BDNF/TrkB signaling in presynaptic expression of MF-LTP in adult hippocampus.

  17. Calcium-Dependent and Synapsin-Dependent Pathways for the Presynaptic Actions of BDNF

    PubMed Central

    Cheng, Qing; Song, Sang-Ho; Augustine, George J.

    2017-01-01

    We used cultured hippocampal neurons to determine the signaling pathways mediating brain-derived neurotrophic factor (BDNF) regulation of spontaneous glutamate and GABA release. BDNF treatment elevated calcium concentration in presynaptic terminals; this calcium signal reached a peak within 1 min and declined in the sustained presence of BDNF. This BDNF-induced transient rise in presynaptic calcium was reduced by SKF96365, indicating that BDNF causes presynaptic calcium influx via TRPC channels. BDNF treatment increased the frequency of miniature excitatory postsynaptic currents (mEPSCs). This response consisted of two components: a transient component that peaked within 1 min of initiating BDNF application and a second component that was sustained, at a lower mEPSC frequency, for the duration of BDNF application. The initial transient component was greatly reduced by removing external calcium or by treatment with SKF96365, as well as by Pyr3, a selective blocker of TRPC3 channels. In contrast, the sustained component was unaffected in these conditions but was eliminated by U0126, an inhibitor of the MAP kinase (MAPK) pathway, as well as by genetic deletion of synapsins in neurons from a synapsin triple knock-out (TKO) mouse. Thus, two pathways mediate the ability of BDNF to enhance spontaneous glutamate release: the transient component arises from calcium influx through TRPC3 channels, while the sustained component is mediated by MAPK phosphorylation of synapsins. We also examined the ability of these two BDNF-dependent pathways to regulate spontaneous release of the inhibitory neurotransmitter, GABA. BDNF had no effect on the frequency of spontaneous miniature inhibitory postsynaptic currents (mIPSCs) in neurons from wild-type (WT) mice, but surprisingly did increase mIPSC frequency in synapsin TKO mice. This covert BDNF response was blocked by removal of external calcium or by treatment with SKF96365 or Pyr3, indicating that it results from calcium influx

  18. Disruption of glucocorticoid receptors in the noradrenergic system leads to BDNF up-regulation and altered serotonergic transmission associated with a depressive-like phenotype in female GR(DBHCre) mice.

    PubMed

    Chmielarz, Piotr; Kreiner, Grzegorz; Kot, Marta; Zelek-Molik, Agnieszka; Kowalska, Marta; Bagińska, Monika; Daniel, Władysława Anna; Nalepa, Irena

    2015-10-01

    Recently, we have demonstrated that conditional inactivation of glucocorticoid receptors (GRs) in the noradrenergic system, may evoke depressive-like behavior in female but not male mutant mice (GR(DBHCre) mice). The aim of the current study was to dissect how selective ablation of glucocorticoid signaling in the noradrenergic system influences the previously reported depressive-like phenotype and whether it might be linked to neurotrophic alterations or secondary changes in the serotonergic system. We demonstrated that selective depletion of GRs enhances brain derived neurotrophic factor (BDNF) expression in female but not male GR(DBHCre) mice on both the mRNA and protein levels. The possible impact of the mutation on brain noradrenergic and serotonergic systems was addressed by investigating the tissue neurotransmitter levels under basal conditions and after acute restraint stress. The findings indicated a stress-provoked differential response in tissue noradrenaline content in the GR(DBHCre) female but not male mutant mice. An analogous gender-specific effect was identified in the diminished content of 5-hydroxyindoleacetic acid, the main metabolite of serotonin, in the prefrontal cortex, which suggests down-regulation of this monoamine system in female GR(DBHCre) mice. The lack of GR also resulted in an up-regulation of alpha2-adrenergic receptor (α2-AR) density in the female but not male mutants in the locus coeruleus. We have also confirmed the utility of the investigated model in pharmacological studies, which demonstrates that the depressive-like phenotype of GR(DBHCre) female mice can be reversed by antidepressant treatment with desipramine or fluoxetine, with the latter drug evoking more pronounced effects. Overall, our study validates the use of female GR(DBHCre) mice as an interesting and novel genetic tool for the investigation of the cross-connected mechanisms of depression that is not only based on behavioral phenotypes.

  19. BDNF deregulation in Rett syndrome

    PubMed Central

    Li, Wei; Pozzo-Miller, Lucas

    2013-01-01

    BDNF is the best-characterized neurotrophin in terms of its gene structure and modulation, secretion processing, and signaling cascades following its release. In addition to diverse features at the genetic and molecular levels, the abundant expression in several regions of the central nervous system has implicated BDNF as a potent modulator in many aspects of neuronal development, as well as synaptic transmission and plasticity. Impairments in any of these critical functions likely contribute to a wide array of neurodevelopmental, neurodegenerative, and neuropsychiatric diseases. In this review, we focus on a prevalent neurodevelopmental disorder, Rett syndrome (RTT), which afflicts 1:15,000 women world-wide. We describe the consequences of loss-of-function mutations in the gene encoding the transcription factor methyl-CpG binding protein 2 (MeCP2) in RTT, and then elaborate on the current understanding of how MeCP2 controls BDNF expression. Finally, we discuss the literature regarding alterations in BDNF levels in RTT individuals and MeCP2-based mouse models, as well as recent progress in searching for rational therapeutic interventions. PMID:23597512

  20. BDNF - a key transducer of antidepressant effects.

    PubMed

    Björkholm, Carl; Monteggia, Lisa M

    2016-03-01

    How do antidepressants elicit an antidepressant response? Here, we review accumulating evidence that the neurotrophin brain-derived neurotrophic factor (BDNF) serves as a transducer, acting as the link between the antidepressant drug and the neuroplastic changes that result in the improvement of the depressive symptoms. Over the last decade several studies have consistently highlighted BDNF as a key player in antidepressant action. An increase in hippocampal and cortical expression of BDNF mRNA parallels the antidepressant-like response of conventional antidepressants such as SSRIs. Subsequent studies showed that a single bilateral infusion of BDNF into the ventricles or directly into the hippocampus is sufficient to induce a relatively rapid and sustained antidepressant-like effect. Importantly, the antidepressant-like response to conventional antidepressants is attenuated in mice where the BDNF signaling has been disrupted by genetic manipulations. Low dose ketamine, which has been found to induce a rapid antidepressant effect in patients with treatment-resistant depression, is also dependent on increased BDNF signaling. Ketamine transiently increases BDNF translation in hippocampus, leading to enhanced synaptic plasticity and synaptic strength. Ketamine has been shown to increase BDNF translation by blocking NMDA receptor activity at rest, thereby inhibiting calcium influx and subsequently halting eukaryotic elongation factor 2 (eEF2) kinase leading to a desuppression of protein translation, including BDNF translation. The antidepressant-like response of ketamine is abolished in BDNF and TrkB conditional knockout mice, eEF2 kinase knockout mice, in mice carrying the BDNF met/met allele, and by intra-cortical infusions of BDNF-neutralizing antibodies. In summary, current data suggests that conventional antidepressants and ketamine mediate their antidepressant-like effects by increasing BDNF in forebrain regions, in particular the hippocampus, making BDNF an

  1. Pharmacological profile of brain-derived neurotrophic factor (BDNF) splice variant translation using a novel drug screening assay: a "quantitative code".

    PubMed

    Vaghi, Valentina; Polacchini, Alessio; Baj, Gabriele; Pinheiro, Vera L M; Vicario, Annalisa; Tongiorgi, Enrico

    2014-10-03

    The neurotrophin brain-derived neurotrophic factor (BDNF) is a key regulator of neuronal development and plasticity. BDNF is a major pharmaceutical target in neurodevelopmental and psychiatric disorders. However, pharmacological modulation of this neurotrophin is challenging because BDNF is generated by multiple, alternatively spliced transcripts with different 5'- and 3'UTRs. Each BDNF mRNA variant is transcribed independently, but translation regulation is unknown. To evaluate the translatability of BDNF transcripts, we developed an in vitro luciferase assay in human neuroblastoma cells. In unstimulated cells, each BDNF 5'- and 3'UTR determined a different basal translation level of the luciferase reporter gene. However, constructs with either a 5'UTR or a 3'UTR alone showed poor translation modulation by BDNF, KCl, dihydroxyphenylglycine, AMPA, NMDA, dopamine, acetylcholine, norepinephrine, or serotonin. Constructs consisting of the luciferase reporter gene flanked by the 5'UTR of one of the most abundant BDNF transcripts in the brain (exons 1, 2c, 4, and 6) and the long 3'UTR responded selectively to stimulation with the different receptor agonists, and only transcripts 2c and 6 were increased by the antidepressants desipramine and mirtazapine. We propose that BDNF mRNA variants represent "a quantitative code" for regulated expression of the protein. Thus, to discriminate the efficacy of drugs in stimulating BDNF synthesis, it is appropriate to use variant-specific in vitro screening tests.

  2. Functional and structural specific roles of activity-driven BDNF within circuits formed by single spiny stellate neurons of the barrel cortex.

    PubMed

    Sun, Qian-Quan; Zhang, Zhi; Sun, June; Nair, Anand S; Petrus, Dan P; Zhang, Chunzhao

    2014-01-01

    Brain derived neurotrophic factor (BDNF) plays key roles in several neurodevelopmental disorders and actions of pharmacological treatments. However, it is unclear how specific BDNF's effects are on different circuit components. Current studies have largely focused on the role of BDNF in modification of synaptic development. The precise roles of BDNF in the refinement of a functional circuit in vivo remain unclear. Val66Met polymorphism of BDNF may be associated with increased risk for cognitive impairments and is mediated at least in part by activity-dependent trafficking and/or secretion of BDNF. Using mutant mice that lacked activity-driven BDNF expression (bdnf-KIV), we previously reported that experience regulation of the cortical GABAergic network is mediated by activity-driven BDNF expression. Here, we demonstrate that activity-driven BDNF's effects on circuits formed by the layer IV spiny stellate cells are highly specific. Structurally, dendritic but not axonal morphology was altered in the mutant. Physiologically, GABAergic but not glutamatergic synapses were severely affected. The effects on GABA transmission occurs via presynaptic alteration of calcium-dependent release probability. These results suggest that neuronal activity through activity-driven BDNF expression, can selectively regulate specific features of layer IV circuits in vivo. We postulate that the role of activity-dependent BDNF is to modulate the computational ability of circuits that relate to the gain control (i.e., feed-forward inhibition); whereas the basic wiring of circuits relevant to the sensory pathway is spared. Gain control modulation within cortical circuits has broad impact on cognitive processing and brain state-transitions. Cognitive behavior and mode is determined by brain states, thus the studying of circuit alteration by endogenous BDNF provides insights into the cellular and molecular mechanisms of diseases mediated by BDNF.

  3. Nitric oxide regulates synaptic transmission between spiny projection neurons.

    PubMed

    Sagi, Yotam; Heiman, Myriam; Peterson, Jayms D; Musatov, Sergei; Scarduzio, Mariangela; Logan, Stephen M; Kaplitt, Michael G; Surmeier, Dalton J; Heintz, Nathaniel; Greengard, Paul

    2014-12-09

    Recurrent axon collaterals are a major means of communication between spiny projection neurons (SPNs) in the striatum and profoundly affect the function of the basal ganglia. However, little is known about the molecular and cellular mechanisms that underlie this communication. We show that intrastriatal nitric oxide (NO) signaling elevates the expression of the vesicular GABA transporter (VGAT) within recurrent collaterals of SPNs. Down-regulation of striatal NO signaling resulted in an attenuation of GABAergic signaling in SPN local collaterals, down-regulation of VGAT expression in local processes of SPNs, and impaired motor behavior. PKG1 and cAMP response element-binding protein are involved in the signal transduction that transcriptionally regulates VGAT by NO. These data suggest that transcriptional control of the vesicular GABA transporter by NO regulates GABA transmission and action selection.

  4. Nitrogen oxide cycle regulates nitric oxide levels and bacterial cell signaling

    PubMed Central

    Sasaki, Yasuyuki; Oguchi, Haruka; Kobayashi, Takuya; Kusama, Shinichiro; Sugiura, Ryo; Moriya, Kenta; Hirata, Takuya; Yukioka, Yuriya; Takaya, Naoki; Yajima, Shunsuke; Ito, Shinsaku; Okada, Kiyoshi; Ohsawa, Kanju; Ikeda, Haruo; Takano, Hideaki; Ueda, Kenji; Shoun, Hirofumi

    2016-01-01

    Nitric oxide (NO) signaling controls various metabolic pathways in bacteria and higher eukaryotes. Cellular enzymes synthesize and detoxify NO; however, a mechanism that controls its cellular homeostasis has not been identified. Here, we found a nitrogen oxide cycle involving nitrate reductase (Nar) and the NO dioxygenase flavohemoglobin (Fhb), that facilitate inter-conversion of nitrate, nitrite, and NO in the actinobacterium Streptomyces coelicolor. This cycle regulates cellular NO levels, bacterial antibiotic production, and morphological differentiation. NO down-regulates Nar and up-regulates Fhb gene expression via the NO-dependent transcriptional factors DevSR and NsrR, respectively, which are involved in the auto-regulation mechanism of intracellular NO levels. Nitrite generated by the NO cycles induces gene expression in neighboring cells, indicating an additional role of the cycle as a producer of a transmittable inter-cellular communication molecule. PMID:26912114

  5. TOOTH PULP INFLAMMATION INCREASES BDNF EXPRESSION IN RODENT TRIGEMINAL GANGLION NEURONS

    PubMed Central

    Tarsa, Leila; Bałkowiec-Iskra, Ewa; Kratochvil, F. James; Jenkins, Victoria K.; McLean, Anne; Brown, Alexandra; Smith, Julie Ann; Baumgartner, J. Craig; Balkowiec, Agnieszka

    2010-01-01

    Nociceptive pathways with first-order neurons located in the trigeminal ganglion (TG) provide sensory innervation to the head, and are responsible for a number of common chronic pain conditions, including migraines, temporomandibular disorders and trigeminal neuralgias. Many of those conditions are associated with inflammation. Yet, the mechanisms of chronic inflammatory pain remain poorly understood. Our previous studies show that the neurotrophin brain-derived neurotrophic factor (BDNF) is expressed by adult rat TG neurons, and released from cultured newborn rat TG neurons by electrical stimulation and calcitonin gene-related peptide (CGRP), a well-established mediator of trigeminal inflammatory pain. These data suggest that BDNF plays a role in activity-dependent plasticity at first-order trigeminal synapses, including functional changes that take place in trigeminal nociceptive pathways during chronic inflammation. The present study was designed to determine the effects of peripheral inflammation, using tooth pulp inflammation as a model, on regulation of BDNF expression in TG neurons of juvenile rats and mice. Cavities were prepared in right-side maxillary first and second molars of 4-week-old animals, and left open to oral microflora. BDNF expression in right TG was compared with contralateral TG of the same animal, and with right TG of sham-operated controls, 7 and 28 days after cavity preparation. Our ELISA data indicate that exposing the tooth pulp for 28 days, with confirmed inflammation, leads to a significant upregulation of BDNF in the TG ipsilateral to the affected teeth. Double-immunohistochemistry with antibodies against BDNF combined with one of nociceptor markers, CGRP or TRPV1, revealed that BDNF is significantly upregulated in TRPV1-immunoreactive (IR) neurons in both rats and mice, and CGRP-IR neurons in mice, but not rats. Overall, the inflammation-induced upregulation of BDNF is stronger in mice compared to rats. Thus, mouse TG provides a

  6. BDNF Methylation and Maternal Brain Activity in a Violence-Related Sample

    PubMed Central

    Moser, Dominik A.; Paoloni-Giacobino, Ariane; Stenz, Ludwig; Adouan, Wafae; Manini, Aurélia; Suardi, Francesca; Cordero, Maria I.; Vital, Marylene; Sancho Rossignol, Ana; Rusconi-Serpa, Sandra; Ansermet, François; Dayer, Alexandre G.; Schechter, Daniel S.

    2015-01-01

    It is known that increased circulating glucocorticoids in the wake of excessive, chronic, repetitive stress increases anxiety and impairs Brain-Derived Neurotrophic Factor (BDNF) signaling. Recent studies of BDNF gene methylation in relation to maternal care have linked high BDNF methylation levels in the blood of adults to lower quality of received maternal care measured via self-report. Yet the specific mechanisms by which these phenomena occur remain to be established. The present study examines the link between methylation of the BDNF gene promoter region and patterns of neural activity that are associated with maternal response to stressful versus non-stressful child stimuli within a sample that includes mothers with interpersonal violence-related PTSD (IPV-PTSD). 46 mothers underwent fMRI. The contrast of neural activity when watching children—including their own—was then correlated to BDNF methylation. Consistent with the existing literature, the present study found that maternal BDNF methylation was associated with higher levels of maternal anxiety and greater childhood exposure to domestic violence. fMRI results showed a positive correlation of BDNF methylation with maternal brain activity in the anterior cingulate (ACC), and ventromedial prefrontal cortex (vmPFC), regions generally credited with a regulatory function toward brain areas that are generating emotions. Furthermore we found a negative correlation of BDNF methylation with the activity of the right hippocampus. Since our stimuli focus on stressful parenting conditions, these data suggest that the correlation between vmPFC/ACC activity and BDNF methylation may be linked to mothers who are at a disadvantage with respect to emotion regulation when facing stressful parenting situations. Overall, this study provides evidence that epigenetic signatures of stress-related genes can be linked to functional brain regions regulating parenting stress, thus advancing our understanding of mothers at risk

  7. BDNF and its TrkB receptor in human fracture healing.

    PubMed

    Kilian, Olaf; Hartmann, Sonja; Dongowski, Nicole; Karnati, Srikanth; Baumgart-Vogt, Eveline; Härtel, Frauke V; Noll, Thomas; Schnettler, Reinhard; Lips, Katrin Susanne

    2014-09-01

    Fracture healing is a physiological process of repair which proceeds in stages, each characterized by a different predominant tissue in the fracture gap. Matrix reorganization is regulated by cytokines and growth factors. Neurotrophins and their receptors might be of importance to osteoblasts and endothelial cells during fracture healing. The aim of this study was to examine the presence of brain-derived neurotrophic factor (BDNF) and its tropomyosin-related kinase B receptor (TrkB) during human fracture healing. BDNF and TrkB were investigated in samples from human fracture gaps and cultured cells using RT-PCR, Western blot, and immunohistochemistry. Endothelial cells and osteoblastic cell lines demonstrated a cytoplasmic staining pattern of BDNF and TrkB in vitro. At the mRNA level, BDNF and TrkB were expressed in the initial and osteoid formation phase of human fracture healing. In the granulation tissue of fracture gap, both proteins--BDNF and TrkB--are concentrated in endothelial and osteoblastic cells at the margins of woven bone suggesting their involvement in the formation of new vessels. There was no evidence of BDNF or TrkB during fracture healing in chondrocytes of human enchondral tissue. Furthermore, BDNF is absent in mature bone. Taken together, BDNF and TrkB are involved in vessel formation and osteogenic processes during human fracture healing. The detection of BDNF and its TrkB receptor during various stages of the bone formation process in human fracture gap tissue were shown for the first time. The current study reveals that both proteins are up-regulated in human osteoblasts and endothelial cells in fracture healing. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. BDNF-estrogen interactions in hippocampal mossy fiber pathway: implications for normal brain function and disease

    PubMed Central

    Harte-Hargrove, Lauren; MacLusky, Neil J.; Scharfman, Helen E.

    2013-01-01

    The neurotrophin BDNF and the steroid hormone estrogen exhibit potent effects on hippocampal neurons during development and in adulthood. BDNF and estrogen have also been implicated in the etiology of diverse types of neurological disorders or psychiatric illnesses, or have been discussed as potentially important in treatment. Although both are typically studied independently, it has been suggested that BDNF mediates several of the effects of estrogen in hippocampus, and that these interactions play a role in the normal brain as well as disease. Here we focus on the mossy fiber (MF) pathway of the hippocampus, a critical pathway in normal hippocampal function, and a prime example of a location where numerous studies support an interaction between BDNF and estrogen in the rodent brain. We first review the temporal and spatially-regulated expression of BDNF and estrogen in the MFs, as well as their receptors. Then we consider the results of studies that suggest that 17β-estradiol alters hippocampal function by its influence on BDNF expression in the MF pathway. We also address the hypothesis that estrogen influences hippocampus by mechanisms related not only to the mature form of BDNF, acting at trkB receptors, but also by regulating the precursor, proBDNF, acting at p75NTR. We suggest that the interactions between BDNF and 17β-estradiol in the MFs are potentially important in the normal function of the hippocampus, and have implications for sex differences in functions that depend on the MFs and in diseases where MF plasticity has been suggested to play an important role, Alzheimer’s disease, epilepsy and addiction. PMID:23276673

  9. BDNF and the central control of feeding: accidental bystander or essential player?

    PubMed

    Rios, Maribel

    2013-02-01

    A considerable body of evidence links diminished brain-derived neurotrophic factor (BDNF) signaling to energy balance dysregulation and severe obesity in humans and rodents. Because BDNF exhibits broad neurotrophic properties, the underpinnings of these effects and its true role in the central regulation of food intake remain topics of debate in the field. Here, I discuss recent evidence supporting a critical role for this neurotrophin in physiological mechanisms regulating nutrient intake and body weight in the mature brain. They include reports of functional interactions of BDNF with central anorexigenic and orexigenic signaling pathways and evidence of recognized appetite hormones exerting neurotrophic effects similar to those of BDNF. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. H2S regulation of nitric oxide metabolism

    PubMed Central

    Kolluru, Gopi K.; Yuan, Shuai; Shen, Xinggui; Kevil, Christopher G.

    2015-01-01

    Nitric oxide (NO) and hydrogen sulfide (H2S) are two major gaseous signaling molecules that regulate diverse physiological functions. Recent publications indicate the regulatory role of H2S on NO metabolism. In this chapter, we discuss the latest findings on H2S-NO interactions through formation of novel chemical derivatives, and experimental approaches to study these adducts. This chapter also addresses potential H2S interference on various NO detection techniques, along with precautions for analyzing biological samples from various sources. This information will facilitate critical evaluation and clearer insight into H2S regulation of NO signaling and its influence on various physiological functions. PMID:25725527

  11. The Kinase Function of MSK1 Regulates BDNF Signaling to CREB and Basal Synaptic Transmission, But Is Not Required for Hippocampal Long-Term Potentiation or Spatial Memory

    PubMed Central

    Daumas, Stephanie; Hunter, Christopher J.; Mistry, Rajen B.; Cooper, Daniel D.; Reyskens, Kathleen M.; Flynn, Harry T.

    2017-01-01

    Abstract The later stages of long-term potentiation (LTP) in vitro and spatial memory in vivo are believed to depend upon gene transcription. Accordingly, considerable attempts have been made to identify both the mechanisms by which transcription is regulated and indeed the gene products themselves. Previous studies have shown that deletion of one regulator of transcription, the mitogen- and stress-activated kinase 1 (MSK1), causes an impairment of spatial memory. Given the ability of MSK1 to regulate gene expression via the phosphorylation of cAMP response element binding protein (CREB) at serine 133 (S133), MSK1 is a plausible candidate as a prime regulator of transcription underpinning synaptic plasticity and learning and memory. Indeed, prior work has revealed the necessity for MSK1 in homeostatic and experience-dependent synaptic plasticity. However, using a knock-in kinase-dead mouse mutant of MSK1, the current study demonstrates that, while the kinase function of MSK1 is important in regulating the phosphorylation of CREB at S133 and basal synaptic transmission in hippocampal area CA1, it is not required for metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD), two forms of LTP or several forms of spatial learning in the watermaze. These data indicate that other functions of MSK1, such as a structural role for the whole enzyme, may explain previous observations of a role for MSK1 in learning and memory. PMID:28275711

  12. The Oxidation Status of Mic19 Regulates MICOS Assembly.

    PubMed

    Sakowska, Paulina; Jans, Daniel C; Mohanraj, Karthik; Riedel, Dietmar; Jakobs, Stefan; Chacinska, Agnieszka

    2015-12-01

    The function of mitochondria depends on the proper organization of mitochondrial membranes. The morphology of the inner membrane is regulated by the recently identified mitochondrial contact site and crista organizing system (MICOS) complex. MICOS mutants exhibit alterations in crista formation, leading to mitochondrial dysfunction. However, the mechanisms that underlie MICOS regulation remain poorly understood. MIC19, a peripheral protein of the inner membrane and component of the MICOS complex, was previously reported to be required for the proper function of MICOS in maintaining the architecture of the inner membrane. Here, we show that human and Saccharomyces cerevisiae MIC19 proteins undergo oxidation in mitochondria and require the mitochondrial intermembrane space assembly (MIA) pathway, which couples the oxidation and import of mitochondrial intermembrane space proteins for mitochondrial localization. Detailed analyses identified yeast Mic19 in two different redox forms. The form that contains an intramolecular disulfide bond is bound to Mic60 of the MICOS complex. Mic19 oxidation is not essential for its integration into the MICOS complex but plays a role in MICOS assembly and the maintenance of the proper inner membrane morphology. These findings suggest that Mic19 is a redox-dependent regulator of MICOS function.

  13. The Oxidation Status of Mic19 Regulates MICOS Assembly

    PubMed Central

    Sakowska, Paulina; Jans, Daniel C.; Mohanraj, Karthik; Riedel, Dietmar; Jakobs, Stefan

    2015-01-01

    The function of mitochondria depends on the proper organization of mitochondrial membranes. The morphology of the inner membrane is regulated by the recently identified mitochondrial contact site and crista organizing system (MICOS) complex. MICOS mutants exhibit alterations in crista formation, leading to mitochondrial dysfunction. However, the mechanisms that underlie MICOS regulation remain poorly understood. MIC19, a peripheral protein of the inner membrane and component of the MICOS complex, was previously reported to be required for the proper function of MICOS in maintaining the architecture of the inner membrane. Here, we show that human and Saccharomyces cerevisiae MIC19 proteins undergo oxidation in mitochondria and require the mitochondrial intermembrane space assembly (MIA) pathway, which couples the oxidation and import of mitochondrial intermembrane space proteins for mitochondrial localization. Detailed analyses identified yeast Mic19 in two different redox forms. The form that contains an intramolecular disulfide bond is bound to Mic60 of the MICOS complex. Mic19 oxidation is not essential for its integration into the MICOS complex but plays a role in MICOS assembly and the maintenance of the proper inner membrane morphology. These findings suggest that Mic19 is a redox-dependent regulator of MICOS function. PMID:26416881

  14. Exercise Does Not Protect against MPTP-Induced Neurotoxicity in BDNF Happloinsufficent Mice

    PubMed Central

    Gerecke, Kim M.; Jiao, Yun; Pagala, Viswajeeth; Smeyne, Richard J.

    2012-01-01

    Exercise has been demonstrated to potently protect substantia nigra pars compacta (SN) dopaminergic neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity. One mechanism proposed to account for this neuroprotection is the upregulation of neurotrophic factors. Several neurotrophic factors, including Brain Derived Neurotrophic Factor (BDNF), have been shown to upregulate in response to exercise. In order to determine if exercise-induced neuroprotection is dependent upon BDNF, we compared the neuroprotective effects of voluntary exercise in mice heterozygous for the BDNF gene (BDNF+/−) with strain-matched wild-type (WT) mice. Stereological estimates of SNpc DA neurons from WT mice allowed 90 days exercise via unrestricted running demonstrated complete protection against the MPTP-induced neurotoxicity. However, BDNF+/− mice allowed 90 days of unrestricted exercise were not protected from MPTP-induced SNpc DA neuron loss. Proteomic analysis comparing SN and striatum from 90 day exercised WT and BDNF+/− mice showed differential expression of proteins related to energy regulation, intracellular signaling and trafficking. These results suggest that a full genetic complement of BDNF is critical for the exercise-induced neuroprotection of SNpc DA neurons. PMID:22912838

  15. Low BDNF is associated with cognitive deficits in patients with type 2 diabetes.

    PubMed

    Zhen, Yan Feng; Zhang, Jia; Liu, Xing Yu; Fang, Hui; Tian, Luo Bing; Zhou, Dong Hao; Kosten, Thomas R; Zhang, Xiang Yang

    2013-05-01

    Studies suggest that brain-derived neurotrophic factor (BDNF) plays an essential role in regulating memory-related neuroplasticity in the hippocampus. Type 2 diabetes (T2DM) is associated with impairment in many domains of cognitive function which may result from reduced BDNF; however, the correlation of BDNF with cognitive impairment in T2DM has not been investigated. We compared 208 patients with T2DM to 212 normal controls on serum BDNF and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Serum BDNF levels were significantly decreased in T2DM patients compared to normal controls (p < 0.001). The total score and nearly all indexes (all p < 0.01) except for attention and visuospatial/constructional indexes (all p > 0.05) of RBANS were markedly lower in T2DM than controls. There was a positive relationship between serum BDNF and delayed memory in patients with T2DM. Our results suggest that BDNF may play a role in the pathophysiology of cognitive deficits, especially delayed memory in T2DM.

  16. The neuroprotective roles of BDNF in hypoxic ischemic brain injury

    PubMed Central

    CHEN, AI; XIONG, LI-JING; TONG, YU; MAO, MENG

    2013-01-01

    Hypoxia-ischemia (H/I) brain injury results in various degrees of damage to the body, and the immature brain is particularly fragile to oxygen deprivation. Hypothermia and erythropoietin (EPO) have long been known to be neuroprotective in ischemic brain injury. Brain-derived neurotrophic factor (BDNF) has recently been recognized as a potent modulator capable of regulating a wide repertoire of neuronal functions. This review was based on studies concerning the involvement of BDNF in the protection of H/I brain injury following a search in PubMed between 1995 and December, 2011. We initially examined the background of BDNF, and then focused on its neuroprotective mechanisms against ischemic brain injury, including its involvement in promoting neural regeneration/cognition/memory rehabilitation, angiogenesis within ischemic penumbra and the inhibition of the inflammatory process, neurotoxicity, epilepsy and apoptosis. We also provided a literature overview of experimental studies, discussing the safety and the potential clinical application of BDNF as a neuroprotective agent in the ischemic brain injury. PMID:24648914

  17. BDNF in sleep, insomnia, and sleep deprivation.

    PubMed

    Schmitt, Karen; Holsboer-Trachsler, Edith; Eckert, Anne

    2016-01-01

    The protein brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors involved in plasticity of neurons in several brain regions. There are numerous evidence that BDNF expression is decreased by experiencing psychological stress and that, accordingly, a lack of neurotrophic support causes major depression. Furthermore, disruption in sleep homeostatic processes results in higher stress vulnerability and is often associated with stress-related mental disorders. Recently, we reported, for the first time, a relationship between BDNF and insomnia and sleep deprivation (SD). Using a biphasic stress model as explanation approach, we discuss here the hypothesis that chronic stress might induce a deregulation of the hypothalamic-pituitary-adrenal system. In the long-term it leads to sleep disturbance and depression as well as decreased BDNF levels, whereas acute stress like SD can be used as therapeutic intervention in some insomniac or depressed patients as compensatory process to normalize BDNF levels. Indeed, partial SD (PSD) induced a fast increase in BDNF serum levels within hours after PSD which is similar to effects seen after ketamine infusion, another fast-acting antidepressant intervention, while traditional antidepressants are characterized by a major delay until treatment response as well as delayed BDNF level increase. Key messages Brain-derived neurotrophic factor (BDNF) plays a key role in the pathophysiology of stress-related mood disorders. The interplay of stress and sleep impacts on BDNF level. Partial sleep deprivation (PSD) shows a fast action on BDNF level increase.

  18. Oxidative guanine base damage regulates human telomerase activity

    PubMed Central

    Fouquerel, Elise; Lormand, Justin; Bose, Arindam; Lee, Hui-Ting; Kim, Grace S.; Li, Jianfeng; Sobol, Robert W.; Freudenthal, Bret D.; Myong, Sua; Opresko, Patricia L.

    2016-01-01

    Changes in telomere length are associated with degenerative diseases and cancer. Oxidative stress and DNA damage have been linked to both positive and negative alterations in telomere length and integrity. Here we examined how the common oxidative lesion 8-oxo-7,8-dihydro-2′-deoxyguanine (8-oxoG) regulates telomere elongation by telomerase. When present in the deoxynucleoside triphosphate pool as 8-oxodGTP, telomerase utilization of the oxidized nucleotide during telomere extension is mutagenic and terminates further elongation. Depletion of the enzyme that removes oxidized dNTPs, MTH1, increases telomere dysfunction and cell death in telomerase positive cancer cells harboring shortened telomeres. In contrast, a pre-existing 8-oxoG within the telomeric DNA sequence promotes telomerase activity by destabilizing G-quadruplex structure in the DNA. We show that the mechanism by which 8-oxoG arises in the telomere, either by insertion of oxidized nucleotides or by direct reaction with free radicals, dictates whether telomerase is inhibited or stimulated and thereby, mediates the biological outcome. PMID:27820808

  19. An AMPA receptor potentiator modulates hippocampal expression of BDNF: an in vivo study.

    PubMed

    Mackowiak, Marzena; O'Neill, Michael J; Hicks, Caroline A; Bleakman, David; Skolnick, Phil

    2002-07-01

    AMPA receptor activation has been demonstrated to increase the neuronal expression of brain derived neurotrophic factor (BDNF). In the present study, we investigated the effect of a novel AMPA receptor potentiator (LY404187) and its active isomer (LY451646) on the expression of BDNF protein and mRNA, as well as TrkB mRNA in rat hippocampus. LY404187 administered for 7 days (1 mg/kg) significantly increased the number of BDNF immunopositive cells in the dentate gyrus, but not other hippocampal subfields. Chronic treatment (7 days) with LY451646 (0.5 mg/kg, comparable to 1 mg/kg of LY404187) increased the level of both BDNF and TrkB mRNA expression in the dentate gyrus, CA3 and CA4 of the hippocampus. However, chronic treatment with lower doses of LY451646 (0.125 and 0.25 mg/kg) decreased the level of BDNF and TrkB mRNA in hippocampus, whilst the highest used dose of LY451646 (1 mg/kg) had no effect on BDNF and TrkB mRNA in hippocampus. In contrast, acute treatment with LY451646 produced an increase in BDNF mRNA levels at doses of 0.125 and 0.25 mg/kg in the hippocampus (CA4, CA3 and dentate gyrus, but not in CA1). LY451646 at 0.5 mg/kg had no effect, but at 1.0 mg/kg decreased the level of BDNF mRNA in hippocampus. Acute treatment with LY451646 did not affect the TrkB receptor mRNA levels in hippocampus. Our results demonstrate that biarylpropylsulfonamide AMPA receptor potentiators are capable of modulating the expression of BDNF and TrkB mRNA in a dose- and time-dependent manner. The increase in both BDNF protein and mRNA expression in the dentate gyrus but not in CA1 indicates a specific role of AMPA receptors in the regulation of BDNF expression in this hippocampal subfield. The regulation of BDNF expression by biarylpropylsulfonamids such as LY451646 may have important therapeutical implications for this class of molecule in the treatment of depression and other CNS disorders.

  20. Redox regulation of Rac1 by thiol oxidation

    PubMed Central

    Hobbs, G. Aaron; Mitchell, Lauren E.; Arrington, Megan E.; Gunawardena, Harsha P.; DeCristo, Molly J.; Loeser, Richard F.; Chen, Xian; Cox, Adrienne D.; Campbell, Sharon L.

    2016-01-01

    The Rac1 GTPase is an essential and ubiquitous protein that signals through numerous pathways to control critical cellular processes, including cell growth, morphology, and motility. Rac1 deletion is embryonic lethal, and its dysregulation or mutation can promote cancer, arthritis, cardiovascular disease, and neurological disorders. Rac1 activity is highly regulated by modulatory proteins and posttranslational modifications. Whereas much attention has been devoted to guanine nucleotide exchange factors that act on Rac1 to promote GTP loading and Rac1 activation, cellular oxidants may also regulate Rac1 activation by promoting guanine nucleotide exchange. Herein, we show that Rac1 contains a redox-sensitive cysteine (Cys18) that can be selectively oxidized at physiological pH because of its lowered pKa. Consistent with these observations, we show that Rac1 is glutathiolated in primary chondrocytes. Oxidation of Cys18 by glutathione greatly perturbs Rac1 guanine nucleotide binding and promotes nucleotide exchange. As aspartate substitutions have been previously used to mimic cysteine oxidation, we characterized the biochemical properties of Rac1C18D. We also evaluated Rac1C18S as a redox-insensitive variant and found that it retains structural and biochemical properties similar to those of Rac1WT but is resistant to thiol oxidation. In addition, Rac1C18D, but not Rac1C18S, shows greatly enhanced nucleotide exchange, similar to that observed for Rac1 oxidation by glutathione. We employed Rac1C18D in cell-based studies to assess whether this fast-cycling variant, which mimics Rac1 oxidation by glutathione, affects Rac1 activity and function. Expression of Rac1C18D in Swiss 3T3 cells showed greatly enhanced GTP-bound Rac1 relative to Rac1WT and the redox-insensitive Rac1C18S variant. Moreover, expression of Rac1C18D in HEK-293T cells greatly promoted lamellipodia formation. Our results suggest that Rac1 oxidation at Cys18 is a novel posttranslational modification that

  1. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds123

    PubMed Central

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun

    2015-01-01

    Abstract Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood. PMID:26730405

  2. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds.

    PubMed

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun; Krimm, Robin F

    2015-01-01

    Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood.

  3. Fear extinction and BDNF: translating animal models of PTSD to the clinic.

    PubMed

    Andero, R; Ressler, K J

    2012-07-01

    Brain-derived neurotrophic factor (BDNF) is the most studied neurotrophin involved in synaptic plasticity processes that are required for long-term learning and memory. Specifically, BDNF gene expression and activation of its high-affinity tropomyosin-related kinase B (TrkB) receptor are necessary in the amygdala, hippocampus and prefrontal cortex for the formation of emotional memories, including fear memories. Among the psychiatric disorders with altered fear processing, there is post-traumatic stress disorder (PTSD) which is characterized by an inability to extinguish fear memories. Since BDNF appears to enhance extinction of fear, targeting impaired extinction in anxiety disorders such as PTSD via BDNF signalling may be an important and novel way to enhance treatment efficacy. The aim of this review is to provide a translational point of view that stems from findings in the BDNF regulation of synaptic plasticity and fear extinction. In addition, there are different systems that seem to alter fear extinction through BDNF modulation like the endocannabinoid system and the hypothalamic-pituitary adrenal axis. Recent work also finds that the pituitary adenylate cyclase-activating polypeptide and PAC1 receptor, which are upstream of BDNF activation, may be implicated in PTSD. Especially interesting are data that exogenous fear extinction enhancers such as antidepressants, histone deacetylases inhibitors and D-cycloserine, a partial N-methyl d-aspartate agonist, may act through or in concert with the BDNF-TrkB system. Finally, we review studies where recombinant BDNF and a putative TrkB agonist, 7,8-dihydroxyflavone, may enhance extinction of fear. These approaches may lead to novel agents that improve extinction in animal models and eventually humans.

  4. A meta-analysis of circulating BDNF concentrations in anorexia nervosa.

    PubMed

    Brandys, Marek K; Kas, Martien J H; van Elburg, Annemarie A; Campbell, Iain C; Adan, Roger A H

    2011-09-01

    Brain derived neurotrophic factor (BDNF) is involved in neuroplasticity, and in the homeostatic regulation of food intake and energy expenditure. It also has a role in stress responsivity and reward processing. On the basis of its involvement in these various processes, BDNF can be hypothesized to be an important factor in the development and maintenance of anorexia nervosa (AN). This study meta-analytically summarizes investigations of serum BDNF concentrations in people currently ill with AN, in comparison to healthy controls. Seven studies measuring BDNF in serum of individuals with AN (n=155) and healthy controls (n=174) were identified and included in the meta-analysis of the mean differences between case and control groups. This study confirms that AN is associated with decreased serum BDNF concentrations, in comparison to healthy controls. The combined effect size (standardized mean difference, SMD) was large (SMD=-0.96; 95% CI -1.33 to -0.59; P<0.001). Significant heterogeneity of effect sizes was identified (I(2)=58.3%; P<0.001), which emerged as being primarily attributable to the first published study on the investigated association. The present meta-analytical summary of studies measuring circulating BDNF concentrations in women with AN and healthy controls confirms that it is significantly reduced in this patient group. Difficulties associated with the measurement of BDNF have been identified and potential confounding factors have been discussed. Current data do not allow inferences to be made about causal links between levels of circulating BDNF and AN. However, possible explanations for the relationship between BDNF and AN have been presented. © 2011 Informa Healthcare

  5. Calpain-2-mediated PTEN degradation contributes to BDNF-induced stimulation of dendritic protein synthesis.

    PubMed

    Briz, Victor; Hsu, Yu-Tien; Li, Yi; Lee, Erin; Bi, Xiaoning; Baudry, Michel

    2013-03-06

    Memory consolidation has been suggested to be protein synthesis dependent. Previous data indicate that BDNF-induced dendritic protein synthesis is a key event in memory formation through activation of the mammalian target of rapamycin (mTOR) pathway. BDNF also activates calpain, a calcium-dependent cysteine protease, which has been shown to play a critical role in learning and memory. This study was therefore directed at testing the hypothesis that calpain activity is required for BDNF-stimulated local protein synthesis, and at identifying the underlying molecular mechanism. In rat hippocampal slices, cortical synaptoneurosomes, and cultured neurons, BDNF-induced mTOR pathway activation and protein translation were blocked by calpain inhibition. BDNF treatment rapidly reduced levels of hamartin and tuberin, negative regulators of mTOR, in a calpain-dependent manner. Treatment of brain homogenates with purified calpain-1 and calpain-2 truncated both proteins. BDNF treatment increased phosphorylation of both Akt and ERK, but only the effect on Akt was blocked by calpain inhibition. Levels of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a phosphatase that inactivates Akt, were decreased following BDNF treatment, and calpain inhibition reversed this effect. Calpain-2, but not calpain-1, treatment of brain homogenates resulted in PTEN degradation. In cultured cortical neurons, knockdown of calpain-2, but not calpain-1, by small interfering RNA completely suppressed the effect of BDNF on mTOR activation. Our results reveal a critical role for calpain-2 in BDNF-induced mTOR signaling and dendritic protein synthesis via PTEN, hamartin, and tuberin degradation. This mechanism therefore provides a link between proteolysis and protein synthesis that might contribute to synaptic plasticity.

  6. Fear extinction and BDNF: Translating animal models of PTSD to the clinic

    PubMed Central

    Andero, Raül; Ressler, Kerry J

    2012-01-01

    Brain-derived neurotrophic factor (BDNF) is the most studied neurotrophin involved in synaptic plasticity processes that are required for long-term learning and memory. Specifically, BDNF gene expression and activation of its high-affinity TrkB receptor are necessary in the amygdala, hippocampus and prefrontal cortex for the formation of emotional memories, including fear memories. Among the psychiatric disorders with altered fear processing there is Post-traumatic Stress Disorder (PTSD) which is characterized by an inability to extinguish fear memories. Since BDNF appears to enhance extinction of fear, targeting impaired extinction in anxiety disorders such as PTSD via BDNF signalling may be an important and novel way to enhance treatment efficacy. The aim of this review is to provide a translational point of view that stems from findings in the BDNF regulation of synaptic plasticity and fear extinction. In addition, there are different systems that seem to alter fear extinction through BDNF modulation like the endocannabionoid system and the hypothalamic-pituitary adrenal axis (HPA). Recent work also finds that the pituitary adenylate cyclase-activating polypeptide (PACAP) and PAC1 receptor, which are upstream of BDNF activation, may be implicated in PTSD. Especially interesting are data that exogenous fear extinction enhancers such as antidepressants, histone deacetylases inhibitors (HDACi) and D-cycloserine, a partial NMDA agonist, may act through or in concert with the BDNF-TrkB system. Finally, we review studies where recombinant BDNF and a putative TrkB agonist, 7,8-DHF, may enhance extinction of fear. These approaches may lead to novel agents that improve extinction in animal models and eventually humans. PMID:22530815

  7. Inhibition of in vivo leishmanicidal mechanisms by tempol: nitric oxide down-regulation and oxidant scavenging.

    PubMed

    Linares, Edlaine; Giorgio, Selma; Augusto, Ohara

    2008-04-15

    Tempol (4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxy) has long been known to protect experimental animals from the injury associated with oxidative and inflammatory conditions. In the latter case, a parallel decrease in tissue protein nitration levels has been observed. Protein nitration represents a shift in nitric oxide actions from physiological to pathophysiological and potentially damaging pathways involving its derived oxidants such as nitrogen dioxide and peroxynitrite. In infectious diseases, protein tyrosine nitration of tissues and cells has been taken as evidence for the involvement of nitric oxide-derived oxidants in microbicidal mechanisms. To examine whether tempol inhibits the microbicidal action of macrophages, we investigated its effects on Leishmania amazonensis infection in vitro (RAW 264.7 murine macrophages) and in vivo (C57Bl/6 mice). Tempol was administered in the drinking water at 2 mM throughout the experiments and shown to reach infected footpads as the nitroxide plus the hydroxylamine derivative by EPR analysis. At the time of maximum infection (6 weeks), tempol increased footpad lesion size (120%) and parasite burden (150%). In lesion extracts, tempol decreased overall nitric oxide products and expression of inducible nitric oxide synthase to about 80% of the levels in control animals. Nitric oxide-derived products produced by radical mechanisms, such as 3-nitrotyrosine and nitrosothiol, decreased to about 40% of the levels in control mice. The results indicate that tempol worsened L. amazonensis infection by a dual mechanism involving down-regulation of iNOS expression and scavenging of nitric oxide-derived oxidants. Thus, the development of therapeutic strategies based on nitroxides should take into account the potential risk of altering host resistance to parasite infection.

  8. Association Between Smoking, Nicotine Dependence, and BDNF Val66Met Polymorphism with BDNF Concentrations in Serum

    PubMed Central

    Van der Does, Willem; Elzinga, Bernet M.; Molendijk, Marc L.; Penninx, Brenda W.J.H.

    2015-01-01

    Introduction: Nicotine use is associated with the upregulation of brain-derived neurotrophic factor (BDNF) in serum. An association between smoking and the BDNF Val66Met polymorphism has also been found. The aim of this study is to examine the levels of serum BDNF in never-smokers, former smokers, and current smokers—with and without nicotine dependence—and to examine the interaction of the polymorphism and smoking status with serum BDNF. Methods: We used baseline serum and gene data of BDNF on 2,088 participants from the Netherlands Study of Depression and Anxiety (NESDA) to investigate smoking-BDNF association while controlling for potential confounding variables. Nicotine dependence was assessed with the Fagerstrom Test for Nicotine Dependence (FTND). Results: Smokers with and without nicotine dependence had higher levels of serum BDNF than former and never-smokers. Nicotine dependence and number of cigarettes smoked per day did not add to the prediction of serum BDNF; however, total number of smoking years was a significant predictor of serum BDNF. There was no association of BDNF Val66Met, nor an interaction of this polymorphism and smoking status, with serum BDNF. Conclusions: Current smoking and higher number of smoking years are associated with higher levels of serum BDNF, and this is independent of the BDNF genotype. Nicotine dependence itself is not associated with a further increase or decrease of serum BDNF. Longitudinal investigations that address changes in serum BDNF in incident smokers and/or in quitters may be useful to understand the association of smoking with BDNF. PMID:25183693

  9. Mitochondrial nitric oxide synthase regulates mitochondrial matrix pH.

    PubMed

    Ghafourifar, P; Richter, C

    1999-01-01

    Nitric oxide (nitrogen monoxide, NO) exerts a wide profile of its biological activities via regulation of respiration and respiration-dependent functions. The presence of nitric oxide synthase (NOS) in mitochondria (mtNOS) was recently reported by us (Ghafourifar and Richter, FEBS Lett. 418, 291-296, 1997) and others (Giulivi et al., J. Biol. Chem. 273, 11038-11043, 1998). Here we report that NO, provided by an NO donor as well as by mtNOS stimulation, regulates mitochondrial matrix pH, transmembrane potential and Ca2+ buffering capacity. Exogenously-added NO causes a dose-dependent matrix acidification. Also mtNOS stimulation, induced by loading mitochondria with Ca2+, causes mitochondrial matrix acidification and a drop in mitochondrial transmembrane potential. Inhibition of mtNOS's basal activity causes mitochondrial matrix alkalinization and provides a resistance to the sudden drop of mitochondrial transmembrane potential induced by mitochondrial Ca2+ uptake. We conclude that mtNOS plays a critical role in regulating mitochondrial delta(pH).

  10. BDNF has opposite effects on the quantal amplitude of pyramidal neuron and interneuron excitatory synapses.

    PubMed

    Rutherford, L C; Nelson, S B; Turrigiano, G G

    1998-09-01

    Recently, we have identified a novel form of synaptic plasticity that acts to stabilize neocortical firing rates by scaling the quantal amplitude of AMPA-mediated synaptic inputs up or down as a function of neuronal activity. Here, we show that the effects of activity blockade on quantal amplitude are mediated through the neurotrophin brain-derived neurotrophic factor (BDNF). Exogenous BDNF prevented, and a TrkB-IgG fusion protein reproduced, the effects of activity blockade on pyramidal quantal amplitude. BDNF had opposite effects on pyramidal neuron and interneuron quantal amplitudes and modified the ratio of pyramidal neuron to interneuron firing rates. These data demonstrate a novel role for BDNF in the homeostatic regulation of excitatory synaptic strengths and in the maintenance of the balance of cortical excitation and inhibition.

  11. BDNF and its receptors in human myasthenic thymus: implications for cell fate in thymic pathology.

    PubMed

    Berzi, Angela; Ayata, C Korcan; Cavalcante, Paola; Falcone, Chiara; Candiago, Elisabetta; Motta, Teresio; Bernasconi, Pia; Hohlfeld, Reinhard; Mantegazza, Renato; Meinl, Edgar; Farina, Cinthia

    2008-07-15

    Here we show that in myasthenic thymus several cell types, including thymic epithelial cells (TEC) and immune cells, were the source and the target of the neurotrophic factor brain-derived growth factor (BDNF). Interestingly, many actively proliferating medullary thymocytes expressed the receptor TrkB in vivo in involuted thymus, while this population was lost in hyperplastic or neoplastic thymuses. Furthermore, in hyperplastic thymuses the robust coordinated expression of BDNF in the germinal centers together with the receptor p75NTR on all proliferating B cells strongly suggests that this factor regulates germinal center reaction. Finally, all TEC dying of apoptosis expressed BDNF receptors, indicating that this neurotrophin is involved in TEC turnover. In thymomas both BDNF production and receptor expression in TEC were strongly hindered. This may represent an attempt of tumour escape from cell death.

  12. In vivo BDNF modulation of adult functional and morphological synaptic plasticity at hippocampal mossy fibers.

    PubMed

    Gómez-Palacio-Schjetnan, Andrea; Escobar, Martha L

    2008-11-07

    Brain-derived neurotrophic factor (BDNF) has been proposed as a key regulator and mediator of long-term synaptic modifications related to learning and memory maintenance. Our previous studies show that application of high-frequency stimulation (HFS) sufficient to elicit LTP at the dentate gyrus (DG)-CA3 pathway produces mossy fiber structural modifications 7 days after tetanic stimulation. In the present study, we show that acute intrahippocampal microinfusion of BDNF induces a lasting potentiation of synaptic efficacy in the DG-CA3 projection of anesthetized adult rats. Furthermore, we show that BDNF functional modifications in synaptic efficacy are accompanied by a presynaptic structural long-lasting reorganization at the hippocampal mossy fiber pathway. These findings support the idea that BDNF plays an important role as synaptic messenger of activity-dependent synaptic plasticity in the adult mammalian brain, in vivo.

  13. Pathological neoangiogenesis depends on oxidative stress regulation by ATM.

    PubMed

    Okuno, Yuji; Nakamura-Ishizu, Ayako; Otsu, Kinya; Suda, Toshio; Kubota, Yoshiaki

    2012-08-01

    The ataxia telangiectasia mutated (ATM) kinase, a master regulator of the DNA damage response (DDR), acts as a barrier to cellular senescence and tumorigenesis. Aside from DDR signaling, ATM also functions in oxidative defense. Here we show that Atm in mice is activated specifically in immature vessels in response to the accumulation of reactive oxygen species (ROS). Global or endothelial-specific Atm deficiency in mice blocked pathological neoangiogenesis in the retina. This block resulted from increased amounts of ROS and excessive activation of the mitogen activated kinase p38α rather than from defects in the canonical DDR pathway. Atm deficiency also lowered tumor angiogenesis and enhanced the antiangiogenic action of vascular endothelial growth factor (Vegf) blockade. These data suggest that pathological neoangiogenesis requires ATM-mediated oxidative defense and that agents that promote excessive ROS generation may have beneficial effects in the treatment of neovascular disease.

  14. Salmonella Rapidly Regulates Membrane Permeability To Survive Oxidative Stress.

    PubMed

    van der Heijden, Joris; Reynolds, Lisa A; Deng, Wanyin; Mills, Allan; Scholz, Roland; Imami, Koshi; Foster, Leonard J; Duong, Franck; Finlay, B Brett

    2016-08-09

    The outer membrane (OM) of Gram-negative bacteria provides protection against toxic molecules, including reactive oxygen species (ROS). Decreased OM permeability can promote bacterial survival under harsh circumstances and protects against antibiotics. To better understand the regulation of OM permeability, we studied the real-time influx of hydrogen peroxide in Salmonella bacteria and discovered two novel mechanisms by which they rapidly control OM permeability. We found that pores in two major OM proteins, OmpA and OmpC, could be rapidly opened or closed when oxidative stress is encountered and that the underlying mechanisms rely on the formation of disulfide bonds in the periplasmic domain of OmpA and TrxA, respectively. Additionally, we found that a Salmonella mutant showing increased OM permeability was killed more effectively by treatment with antibiotics. Together, these results demonstrate that Gram-negative bacteria regulate the influx of ROS for defense against oxidative stress and reveal novel targets that can be therapeutically targeted to increase bacterial killing by conventional antibiotics. Pathogenic bacteria have evolved ways to circumvent inflammatory immune responses. A decrease in bacterial outer membrane permeability during infection helps protect bacteria from toxic molecules produced by the host immune system and allows for effective colonization of the host. In this report, we reveal molecular mechanisms that rapidly alter outer membrane pores and their permeability in response to hydrogen peroxide and oxidative stress. These mechanisms are the first examples of pores that are rapidly opened or closed in response to reactive oxygen species. Moreover, one of these mechanisms can be targeted to artificially increase membrane permeability and thereby increase bacterial killing by the antibiotic cefotaxime during in vitro experiments and in a mouse model of infection. We envision that a better understanding of the regulation of membrane

  15. RNA interference-mediated knockdown of brain-derived neurotrophic factor (BDNF) promotes cell cycle arrest and apoptosis in B-cell lymphoma cells.

    PubMed

    Xia, D; Li, W; Zhang, L; Qian, H; Yao, S; Qi, X

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin superfamily that has been reported to be involved in a number of neurological and psychological situations. Recently, high expression level of BDNF is observed in diverse human malignancies, delineating a role of BDNF in tumorigenesis. Nevertheless, its effect on B-cell lymphoma remains unclear. In this study, RNA interference technology mediated by short hairpin RNA (shRNA) was performed to inhibit endogenous BDNF expression in B-cell lymphoma cells. Results showed that knockdown of BDNF reduced cell growth and proliferation of Raji and Ramos cells. Furthermore, down-regulation of BDNF induced a cell cycle arrest at G0/G1 phase in Raji cells, and consequently led to cell apoptosis in vitro. Meanwhile, down-regulation of Bcl-2 and up-regulation of Bax, activated caspase-3 and caspase-9 and cleaved poly (ADP-ribose) polymerase (PARP) were observed in Raji cells when endogenous BDNF was inhibited. Besides, we also found that suppression of BDNF in Raji cells increased their sensitivity to chemotherapeutic drug, 5-Fluorouracil (5-FU). Our research provides a promising therapeutic strategy for human B-cell lymphoma by targeting BDNF.

  16. Evaluation of TrkB and BDNF transcripts in prefrontal cortex, hippocampus, and striatum from subjects with schizophrenia, bipolar disorder, and major depressive disorder.

    PubMed

    Reinhart, Veronica; Bove, Susan E; Volfson, Dmitri; Lewis, David A; Kleiman, Robin J; Lanz, Thomas A

    2015-05-01

    Brain-derived neurotrophic factor (BDNF) signaling is integral to a range of neural functions, including synaptic plasticity and exhibits activity-dependent regulation of expression. As altered BDNF signaling has been implicated in multiple psychiatric diseases, here we report a quantitative reverse transcription polymerase chain reaction (RT-PCR) analysis of mRNAs encoding TrkB, total BDNF, and the four most abundant BDNF transcripts (I, IIc, IV, and VI) in postmortem tissue from matched tetrads of subjects with schizophrenia, bipolar disorder, or major depressive disorder (MDD) and healthy comparison subjects. In all three regions examined, dorsolateral prefrontal cortex (DLPFC), associative striatum and hippocampus, total BDNF mRNA levels did not differ in any disease state. In DLPFC, BDNF IIc was significantly lower in schizophrenia relative to healthy comparison subjects. In hippocampus, BDNF I, IIc, and VI were lower in subjects with both schizophrenia and bipolar disorder relative to comparison subjects. In striatum, TrkB mRNA was lower in bipolar disorder and MDD, while BDNF IIc was elevated in MDD, relative to comparison subjects. These data highlight potential alterations in BDNF signaling in the corticohippocampal circuit in schizophrenia, and within the striatum in mood disorders. Novel therapies aimed at improving BDNF-TrkB signaling may therefore have potential to impact on a range of psychiatric disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Regional differences in the expression of brain-derived neurotrophic factor (BDNF) pro-peptide, proBDNF and preproBDNF in the brain confer stress resilience.

    PubMed

    Yang, Bangkun; Yang, Chun; Ren, Qian; Zhang, Ji-Chun; Chen, Qian-Xue; Shirayama, Yukihiko; Hashimoto, Kenji

    2016-12-01

    Using learned helplessness (LH) model of depression, we measured protein expression of brain-derived neurotrophic factor (BDNF) pro-peptide, BDNF precursors (proBDNF and preproBDNF) in the brain regions of LH (susceptible) and non-LH rats (resilience). Expression of preproBDNF, proBDNF and BDNF pro-peptide in the medial prefrontal cortex of LH rats, but not non-LH rats, was significantly higher than control rats, although expression of these proteins in the nucleus accumbens of LH rats was significantly lower than control rats. This study suggests that regional differences in conversion of BDNF precursors into BDNF and BDNF pro-peptide by proteolytic cleavage may contribute to stress resilience.

  18. Disruption of the expression of the proprotein convertase PC7 reduces BDNF production and affects learning and memory in mice.

    PubMed

    Wetsel, William C; Rodriguiz, Ramona M; Guillemot, Johann; Rousselet, Estelle; Essalmani, Rachid; Kim, Il Hwan; Bryant, Jesse C; Marcinkiewicz, Jadwiga; Desjardins, Roxane; Day, Robert; Constam, Daniel B; Prat, Annik; Seidah, Nabil G

    2013-10-22

    PC7 belongs to the proprotein convertase family, whose members are implicated in the cleavage of secretory precursors. The in vivo function of PC7 is unknown. Herein, we find that the precursor proBDNF is processed into mature BDNF in COS-1 cells coexpressing proBDNF with either PC7 or Furin. Conversely, the processing of proBDNF into BDNF is markedly reduced in the absence of either Furin or PC7 in mouse primary hepatocytes. In vivo we observe that BDNF and PC7 mRNAs are colocalized in mouse hippocampus and amygdala and that mature BDNF protein levels are reduced in these brain areas in PC7 KO mice but not in the hippocampus of PC1/3 KO mice. Various behavioral tests reveal that in PC7 KO mice spatial memory is intact and plasticity of responding is mildly abnormal. Episodic and emotional memories are severely impaired, but both are rescued with the tyrosine receptor kinase B agonist 7,8-dihydroxyflavone. Altogether, these results support an in vivo role for PC7 in the regulation of certain types of cognitive performance, in part via proBDNF processing. Because polymorphic variants of human PC7 are being characterized, it will be important in future studies to determine their effects on additional physiological and behavioral processes.

  19. Disruption of the expression of the proprotein convertase PC7 reduces BDNF production and affects learning and memory in mice

    PubMed Central

    Wetsel, William C.; Rodriguiz, Ramona M.; Guillemot, Johann; Rousselet, Estelle; Essalmani, Rachid; Kim, Il Hwan; Bryant, Jesse C.; Marcinkiewicz, Jadwiga; Desjardins, Roxane; Day, Robert; Constam, Daniel B.; Prat, Annik; Seidah, Nabil G.

    2013-01-01

    PC7 belongs to the proprotein convertase family, whose members are implicated in the cleavage of secretory precursors. The in vivo function of PC7 is unknown. Herein, we find that the precursor proBDNF is processed into mature BDNF in COS-1 cells coexpressing proBDNF with either PC7 or Furin. Conversely, the processing of proBDNF into BDNF is markedly reduced in the absence of either Furin or PC7 in mouse primary hepatocytes. In vivo we observe that BDNF and PC7 mRNAs are colocalized in mouse hippocampus and amygdala and that mature BDNF protein levels are reduced in these brain areas in PC7 KO mice but not in the hippocampus of PC1/3 KO mice. Various behavioral tests reveal that in PC7 KO mice spatial memory is intact and plasticity of responding is mildly abnormal. Episodic and emotional memories are severely impaired, but both are rescued with the tyrosine receptor kinase B agonist 7,8-dihydroxyflavone. Altogether, these results support an in vivo role for PC7 in the regulation of certain types of cognitive performance, in part via proBDNF processing. Because polymorphic variants of human PC7 are being characterized, it will be important in future studies to determine their effects on additional physiological and behavioral processes. PMID:24101515

  20. BDNF impairment is associated with age-related changes in the inner retina and exacerbates experimental glaucoma.

    PubMed

    Gupta, Vivek; You, Yuyi; Li, Jonathan; Gupta, Veer; Golzan, Mojtaba; Klistorner, Alexander; van den Buuse, Maarten; Graham, Stuart

    2014-09-01

    Brain-derived neurotrophic factor (BDNF) stimulation of its high-affinity receptor TrkB results in activation of pro-survival cell-signalling pathways that can afford neuroprotection to the retina. Reduction in retrograde axonal transport of neurotrophic factors such as BDNF from the brain to the neuronal cell bodies in the retina has been suggested as a critical factor underlying progressive and selective degeneration of ganglion cell layer and optic nerve in glaucoma. We investigated the role of BDNF in preserving inner retinal homeostasis in normal and glaucoma states using BDNF(+/-) mice and compared it with wild type controls. This study demonstrated that BDNF(+/-) animals were more susceptible to functional, morphological and molecular degenerative changes in the inner retina caused by age as well as upon exposure to experimental glaucoma caused by increased intraocular pressure. Glaucoma induced a down regulation of BDNF/TrkB signalling and an increase in levels of neurotoxic amyloid β 1-42 in the optic nerve head which were exacerbated in BDNF(+/-) mice. Similar results were obtained upon analysing the human optic nerve head tissues. Our data highlighted the role of BDNF in maintaining the inner retinal integrity under normal conditions and the detrimental effects of its insufficiency on the retina and optic nerve in glaucoma. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. REGULATION OF OBESITY AND INSULIN RESISTANCE BY NITRIC OXIDE

    PubMed Central

    Sansbury, Brian E.; Hill, Bradford G.

    2014-01-01

    Obesity is a risk factor for developing type 2 diabetes and cardiovascular disease and has quickly become a world-wide pandemic with few tangible and safe treatment options. While it is generally accepted that the primary cause of obesity is energy imbalance, i.e., the calories consumed are greater than are utilized, understanding how caloric balance is regulated has proven a challenge. Many “distal” causes of obesity, such as the structural environment, occupation, and social influences, are exceedingly difficult to change or manipulate. Hence, molecular processes and pathways more proximal to the origins of obesity—those that directly regulate energy metabolism or caloric intake—appear to be more feasible targets for therapy. In particular, nitric oxide (NO) is emerging as a central regulator of energy metabolism and body composition. NO bioavailability is decreased in animal models of diet-induced obesity and in obese and insulin resistant patients, and increasing NO output has remarkable effects on obesity and insulin resistance. This review discusses the role of NO in regulating adiposity and insulin sensitivity and places its modes of action into context with the known causes and consequences of metabolic disease. PMID:24878261

  2. Does genetic BDNF deficiency in rats interact with neurotransmitter control of prepulse inhibition? Implications for schizophrenia.

    PubMed

    van den Buuse, Maarten; Biel, Davina; Radscheit, Kathrin

    2017-04-03

    Several studies have suggested a role of BDNF in the development of schizophrenia. For example, post-mortem studies have shown significantly reduced levels of BDNF protein expression in the brain of schizophrenia patients. We investigated the relationship between reduced levels of BDNF in the brain and the regulation of prepulse inhibition (PPI), a behavioral endophenotype of schizophrenia. We used BDNF heterozygous mutant rats which display a 50% decrease of mature BDNF protein levels. Previously, we observed normal baseline PPI and responses to the dopamine D1/D2 receptor agonist, apomorphine, in these rats. Here, we focused on the effects of the NMDA receptor antagonist, MK-801, its interaction with mGluR2/3 and mGluR5 receptors, and the PPI response to serotonergic drugs. MK-801 administration caused a dose-dependent reduction of PPI and increase of startle amplitudes. Baseline PPI and the effect of 0.02-0.1mg/kg of MK-801 were not significantly altered in male or female BDNF heterozygous rats, although the MK-801-induced increase in startle levels was reduced. Co-treatment with the mGluR2/3 agonist, LY379,268, or the mGluR5 antagonist, MPEP, did not alter the effect of MK-801 on PPI in controls or BDNF mutant rats. Treatment with the serotonin-1A receptor agonist, 8-OH-DPAT, the serotonin-2A receptor agonist, DOI, or the serotonin releaser, fenfluramine, induced differential effects on PPI and startle but these effects were not different between the genotypes. These results show that a significant decrease of BDNF protein expression does not lead to reduced PPI at baseline or changes in the regulation of PPI via NMDA receptors or serotonergic mechanisms. These findings in a genetic rat model of BDNF deficiency do not support a role for similar reductions of BDNF levels in schizophrenia in the disruption of PPI, widely reported as an endophenotype of the illness. The potential implications of these results for our understanding of changes in PPI and BDNF

  3. Long-term lithium treatment increases intracellular and extracellular brain-derived neurotrophic factor (BDNF) in cortical and hippocampal neurons at subtherapeutic concentrations.

    PubMed

    De-Paula, Vanessa J; Gattaz, Wagner F; Forlenza, Orestes V

    2016-12-01

    The putative neuroprotective effects of lithium treatment rely on the fact that it modulates several homeostatic mechanisms involved in the neurotrophic response, autophagy, oxidative stress, inflammation, and mitochondrial function. Lithium is a well-established therapeutic option for the acute and long-term management of bipolar disorder and major depression. The aim of this study was to evaluate the effects of subtherapeutic and therapeutic concentrations of chronic lithium treatment on brain-derived neurotrophic factor (BDNF) synthesis and secretion. Primary cultures of cortical and hippocampal neurons were treated with different subtherapeutic (0.02 and 0.2 mM) and therapeutic (2 mM) concentrations of chronic lithium treatment in cortical and hippocampal cell culture. Lithium treatment increased the intracellular protein expression of cortical neurons (10% at 0.02 mM) and hippocampal neurons (28% and 14% at 0.02 mM and 0.2 mM, respectively). Extracellular BDNF of cortical neurons increased 30% and 428% at 0.02 and 0.2 mM, respectively and in hippocampal neurons increased 44% at 0.02 mM. The present study indicates that chronic, low-dose lithium treatment up-regulates BDNF production in primary neuronal cell culture. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Retrolinkin cooperates with endophilin A1 to mediate BDNF-TrkB early endocytic trafficking and signaling from early endosomes.

    PubMed

    Fu, Xiuping; Yang, Yanrui; Xu, Chenchang; Niu, Yang; Chen, Tielin; Zhou, Qin; Liu, Jia-Jia

    2011-10-01

    Brain-derived neurotrophic factor (BDNF) binds to its cell surface receptor TrkB to regulate differentiation, development, synaptic plasticity, and functional maintenance of neuronal cells. Binding of BDNF triggers TrkB dimerization and autophosphorylation, which provides docking sites for adaptor proteins to recruit and activate downstream signaling molecules. The molecular mechanisms underlying BDNF-TrkB endocytic trafficking crucial for spatiotemporal control of signaling pathways remain to be elucidated. Here we show that retrolinkin, a transmembrane protein, interacts with endophilin A1 and mediates BDNF-activated TrkB (pTrk) trafficking and signaling in CNS neurons. We find that activated TrkB colocalizes and interacts with the early endosome marker APPL1. Both retrolinkin and endophilin A1 are required for BDNF-induced dendrite development and acute extracellular signal-regulated kinase activation from early endosomes. Suppression of retrolinkin expression not only blocks BDNF-triggered TrkB internalization, but also prevents recruitment of endophilin A1 to pTrk vesicles trafficking through APPL1-positive endosomes. These findings reveal a novel mechanism for BDNF-TrkB to regulate signaling both in time and space through a specific membrane trafficking pathway.

  5. Salmonella Rapidly Regulates Membrane Permeability To Survive Oxidative Stress

    PubMed Central

    van der Heijden, Joris; Reynolds, Lisa A.; Deng, Wanyin; Mills, Allan; Scholz, Roland; Imami, Koshi; Foster, Leonard J.; Duong, Franck

    2016-01-01

    ABSTRACT The outer membrane (OM) of Gram-negative bacteria provides protection against toxic molecules, including reactive oxygen species (ROS). Decreased OM permeability can promote bacterial survival under harsh circumstances and protects against antibiotics. To better understand the regulation of OM permeability, we studied the real-time influx of hydrogen peroxide in Salmonella bacteria and discovered two novel mechanisms by which they rapidly control OM permeability. We found that pores in two major OM proteins, OmpA and OmpC, could be rapidly opened or closed when oxidative stress is encountered and that the underlying mechanisms rely on the formation of disulfide bonds in the periplasmic domain of OmpA and TrxA, respectively. Additionally, we found that a Salmonella mutant showing increased OM permeability was killed more effectively by treatment with antibiotics. Together, these results demonstrate that Gram-negative bacteria regulate the influx of ROS for defense against oxidative stress and reveal novel targets that can be therapeutically targeted to increase bacterial killing by conventional antibiotics. PMID:27507830

  6. The impact of Bdnf gene deficiency to the memory impairment and brain pathology of APPswe/PS1dE9 mouse model of Alzheimer's disease.

    PubMed

    Rantamäki, Tomi; Kemppainen, Susanna; Autio, Henri; Stavén, Saara; Koivisto, Hennariikka; Kojima, Masami; Antila, Hanna; Miettinen, Pasi O; Kärkkäinen, Elisa; Karpova, Nina; Vesa, Liisa; Lindemann, Lothar; Hoener, Marius C; Tanila, Heikki; Castrén, Eero

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) importantly regulates learning and memory and supports the survival of injured neurons. Reduced BDNF levels have been detected in the brains of Alzheimer's disease (AD) patients but the exact role of BDNF in the pathophysiology of the disorder remains obscure. We have recently shown that reduced signaling of BDNF receptor TrkB aggravates memory impairment in APPswe/PS1dE9 (APdE9) mice, a model of AD. The present study examined the influence of Bdnf gene deficiency (heterozygous knockout) on spatial learning, spontaneous exploratory activity and motor coordination/balance in middle-aged male and female APdE9 mice. We also studied brain BDNF protein levels in APdE9 mice in different ages showing progressive amyloid pathology. Both APdE9 and Bdnf mutations impaired spatial learning in males and showed a similar trend in females. Importantly, the effect was additive, so that double mutant mice performed the worst. However, APdE9 and Bdnf mutations influenced spontaneous locomotion in contrasting ways, such that locomotor hyperactivity observed in APdE9 mice was normalized by Bdnf deficiency. Obesity associated with Bdnf deficiency did not account for the reduced hyperactivity in double mutant mice. Bdnf deficiency did not alter amyloid plaque formation in APdE9 mice. Before plaque formation (3 months), BDNF protein levels where either reduced (female) or unaltered (male) in the APdE9 mouse cortex. Unexpectedly, this was followed by an age-dependent increase in mature BDNF protein. Bdnf mRNA and phospho-TrkB levels remained unaltered in the cortical tissue samples of middle-aged APdE9 mice. Immunohistological studies revealed increased BDNF immunoreactivity around amyloid plaques indicating that the plaques may sequester BDNF protein and prevent it from activating TrkB. If similar BDNF accumulation happens in human AD brains, it would suggest that functional BDNF levels in the AD brains are even lower than reported, which could

  7. Nitric oxide as a regulator of B. anthracis pathogenicity

    PubMed Central

    Popova, Taissia G.; Teunis, Allison; Vaseghi, Haley; Zhou, Weidong; Espina, Virginia; Liotta, Lance A.; Popov, Serguei G.

    2015-01-01

    Nitric oxide (NO) is a key physiological regulator in eukaryotic and prokaryotic organisms. It can cause a variety of biological effects by reacting with its targets or/and indirectly inducing oxidative stress. NO can also be produced by bacteria including the pathogenic Bacillus anthracis; however, its role in the infectious process only begins to emerge. NO incapacitates macrophages by S-nitrosylating the intracellular proteins and protects B. anthracis from oxidative stress. It is also implicated in the formation of toxic peroxynitrite. In this study we further assessed the effects of B. anthracis NO produced by the NO synthase (bNOS) on bacterial metabolism and host cells in experiments with the bNOS knockout Sterne strain. The mutation abrogated accumulation of nitrite and nitrate as tracer products of NO in the culture medium and markedly attenuated growth in both aerobic and microaerobic conditions. The regulatory role of NO was also suggested by the abnormally high rate of nitrate denitrification by the mutant in the presence of oxygen. Anaerobic regulation mediated by NO was reflected in reduced fermentation of glucose by the mutant correlating with the reduced toxicity of bacteria toward host cells in culture. The toxic effect of NO required permeabilization of the target cells as well as the activity of fermentation-derived metabolite in the conditions of reduced pH. The host cells demonstrated increased phosphorylation of major survivor protein kinase AKT correlating with reduced toxicity of the mutant in comparison with Sterne. Our global proteomic analysis of lymph from the lymph nodes of infected mice harboring bacteria revealed numerous changes in the pattern and levels of proteins associated with the activity of bNOS influencing key cell physiological processes relevant to energy metabolism, growth, signal transduction, stress response, septic shock, and homeostasis. This is the first in vivo observation of the bacterial NO effect on the lymphatic

  8. BDNF controls object recognition memory reconsolidation.

    PubMed

    Radiske, Andressa; Rossato, Janine I; Gonzalez, Maria Carolina; Köhler, Cristiano A; Bevilaqua, Lia R; Cammarota, Martín

    2017-03-06

    Reconsolidation restabilizes memory after reactivation. Previously, we reported that the hippocampus is engaged in object recognition memory reconsolidation to allow incorporation of new information into the original engram. Here we show that BDNF is sufficient for this process, and that blockade of BDNF function in dorsal CA1 impairs updating of the reactivated recognition memory trace.

  9. Neuronal nitric oxide contributes to neuroplasticity-associated protein expression through cGMP, protein kinase G, and extracellular signal-regulated kinase.

    PubMed

    Gallo, Eduardo F; Iadecola, Costantino

    2011-05-11

    Nitric oxide (NO) synthesized by neuronal NO synthase (nNOS) has long been implicated in brain plasticity. However, it is unclear how this short-lived mediator contributes to the long-term molecular changes underlying neuroplasticity, which typically require activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) signaling pathway and gene expression. To address this issue, we used a neuroplasticity model based on treatment of neuronal cultures with bicuculline and a model of experience-dependent plasticity in the barrel cortex. In neuronal cultures, NOS inhibition attenuated the bicuculline-induced activation of ERK and the expression of c-Fos, Egr-1, Arc, and brain-derived neurotrophic factor (BDNF), proteins essential for neuroplasticity. Furthermore, inhibition of the NO target soluble guanylyl cyclase or of the cGMP effector kinase protein kinase G (PKG) reduced both ERK activation and plasticity-related protein expression. NOS inhibition did not affect phosphorylation of cAMP response element-binding protein (CREB), a well-established ERK nuclear target, but it attenuated the nuclear accumulation of the CREB coactivator TORC1 and suppressed the activation of Elk-1, another transcription factor target of ERK. Consistent with these in vitro observations, induction of c-Fos, Egr-1, and BDNF was attenuated in the D1 cortical barrel of nNOS(-/-) mice subjected to single whisker experience. These results establish nNOS-derived NO as a key factor in the expression of proteins involved in neuroplasticity, an effect mediated through cGMP, PKG, and ERK signaling. These actions of NO do not depend on CREB phosphorylation but may involve TORC1 and Elk-1. Our data unveil a previously unrecognized link between neuronal NO and the molecular machinery responsible for the sustained synaptic changes underlying neuroplasticity.

  10. Inhibition of the tyrosine phosphatase STEP61 restores BDNF expression and reverses motor and cognitive deficits in phencyclidine-treated mice.

    PubMed

    Xu, Jian; Kurup, Pradeep; Baguley, Tyler D; Foscue, Ethan; Ellman, Jonathan A; Nairn, Angus C; Lombroso, Paul J

    2016-04-01

    Brain-derived neurotrophic factor (BDNF) and STriatal-Enriched protein tyrosine Phosphatase 61 (STEP61) have opposing functions in the brain, with BDNF supporting and STEP61 opposing synaptic strengthening. BDNF and STEP61 also exhibit an inverse pattern of expression in a number of brain disorders, including schizophrenia (SZ). NMDAR antagonists such as phencyclidine (PCP) elicit SZ-like symptoms in rodent models and unaffected individuals, and exacerbate psychotic episodes in SZ. Here we characterize the regulation of BDNF expression by STEP61, utilizing PCP-treated cortical culture and PCP-treated mice. PCP-treated cortical neurons showed both an increase in STEP61 levels and a decrease in BDNF expression. The reduction in BDNF expression was prevented by STEP61 knockdown or use of the STEP inhibitor, TC-2153. The PCP-induced increase in STEP61 expression was associated with the inhibition of CREB-dependent BDNF transcription. Similarly, both genetic and pharmacologic inhibition of STEP prevented the PCP-induced reduction in BDNF expression in vivo and normalized PCP-induced hyperlocomotion and cognitive deficits. These results suggest a mechanism by which STEP61 regulates BDNF expression, with implications for cognitive functioning in CNS disorders.

  11. Mechanism of GABAB receptor-induced BDNF secretion and promotion of GABAA receptor membrane expression.

    PubMed

    Kuczewski, Nicola; Fuchs, Celine; Ferrand, Nadine; Jovanovic, Jasmina N; Gaiarsa, Jean-Luc; Porcher, Christophe

    2011-08-01

    Recent studies have shown that GABA(B) receptors play more than a classical inhibitory role and can function as an important synaptic maturation signal early in life. In a previous study, we reported that GABA(B) receptor activation triggers secretion of brain-derived neurotrophic factor (BDNF) and promotes the functional maturation of GABAergic synapses in the developing rat hippocampus. To identify the signalling pathway linking GABA(B) receptor activation to BDNF secretion in these cells, we have now used the phosphorylated form of the cAMP response element-binding protein as a biological sensor for endogenous BDNF release. In the present study, we show that GABA(B) receptor-induced secretion of BDNF relies on the activation of phospholipase C, followed by the formation of diacylglycerol, activation of protein kinase C, and the opening of L-type voltage-dependent Ca(2+) channels. We further show that once released by GABA(B) receptor activation, BDNF increases the membrane expression of β(2/3) -containing GABA(A) receptors in neuronal cultures. These results reveal a novel function of GABA(B) receptors in regulating the expression of GABA(A) receptor through BDNF-tropomyosin-related kinase B receptor dependent signalling pathway.

  12. Sulforaphane epigenetically enhances neuronal BDNF expression and TrkB signaling pathways.

    PubMed

    Kim, Jisung; Lee, Siyoung; Choi, Bo-Ryoung; Yang, Hee; Hwang, Youjin; Park, Jung Han Yoon; LaFerla, Frank M; Han, Jung-Soo; Lee, Ki Won; Kim, Jiyoung

    2017-02-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin that supports the survival of existing neurons and encourages the growth and differentiation of new neurons and synapses. We investigated the effect of sulforaphane, a hydrolysis product of glucoraphanin present in Brassica vegetables, on neuronal BDNF expression and its synaptic signaling pathways. Mouse primary cortical neurons and a triple-transgenic mouse model of Alzheimer's disease (3 × Tg-AD) were used to study the effect of sulforaphane. Sulforaphane enhanced neuronal BDNF expression and increased levels of neuronal and synaptic molecules such as MAP2, synaptophysin, and PSD-95 in primary cortical neurons and 3 × Tg-AD mice. Sulforaphane elevated levels of synaptic TrkB signaling pathway components, including CREB, CaMKII, ERK, and Akt in both primary cortical neurons and 3 × Tg-AD mice. Sulforaphane increased global acetylation of histone 3 (H3) and H4, inhibited HDAC activity, and decreased the level of HDAC2 in primary cortical neurons. Chromatin immunoprecipitation analysis revealed that sulforaphane increased acetylated H3 and H4 at BDNF promoters, suggesting that sulforaphane regulates BDNF expression via HDAC inhibition. These findings suggest that sulforaphane has the potential to prevent neuronal disorders such as Alzheimer's disease by epigenetically enhancing neuronal BDNF expression and its TrkB signaling pathways. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A significant association between BDNF promoter methylation and the risk of drug addiction.

    PubMed

    Xu, Xuting; Ji, Huihui; Liu, Guili; Wang, Qinwen; Liu, Huifen; Shen, Wenwen; Li, Longhui; Xie, Xiaohu; Zhou, Wenhua; Duan, Shiwei

    2016-06-10

    As a member of the neurotrophic factor family, brain derived neurotrophic factor (BDNF) plays an important role in the survival and differentiation of neurons. The aim of our work was to evaluate the role of BDNF promoter methylation in drug addiction. A total of 60 drug abusers (30 heroin and 30 methylamphetamine addicts) and 52 healthy age- and gender-matched controls were recruited for the current case control study. Bisulfite pyrosequencing technology was used to determine the methylation levels of five CpGs (CpG1-5) on the BDNF promoter. Among the five CpGs, CpG5 methylation was significantly lower in drug abusers than controls. Moreover, significant associations were found between CpG5 methylation and addictive phenotypes including tension-anxiety, anger-hostility, fatigue-inertia, and depression-dejection. In addition, luciferase assay showed that the DNA fragment of BDNF promoter played a key role in the regulation of gene expression. Our results suggest that BDNF promoter methylation is associated with drug addiction, although further studies are needed to understand the mechanisms by which BDNF promoter methylation contributes to the pathophysiology of drug addiction.

  14. Computer Simulations Support a Morphological Contribution to BDNF Enhancement of Action Potential Generation

    PubMed Central

    Hiester, Brian G.; Jones, Kevin R.

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) regulates both action potential (AP) generation and neuron morphology. However, whether BDNF-induced changes in neuron morphology directly impact AP generation is unclear. We quantified BDNF’s effect on cultured cortical neuron morphological parameters and found that BDNF stimulates dendrite growth and addition of dendrites while increasing both excitatory and inhibitory presynaptic inputs in a spatially restricted manner. To gain insight into how these combined changes in neuron structure and synaptic input impact AP generation, we used the morphological parameters we gathered to generate computational models. Simulations suggest that BDNF-induced neuron morphologies generate more APs under a wide variety of conditions. Synapse and dendrite addition have the greatest impact on AP generation. However, subtle alterations in excitatory/inhibitory synapse ratio and strength have a significant impact on AP generation when synaptic activity is low. Consistent with these simulations, BDNF rapidly enhances spontaneous activity in cortical cultures. We propose that BDNF promotes neuron morphologies that are intrinsically more efficient at translating barrages of synaptic activity into APs, which is a previously unexplored aspect of BDNF’s function. PMID:27683544

  15. Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males.

    PubMed

    Griffin, Éadaoin W; Mullally, Sinéad; Foley, Carole; Warmington, Stuart A; O'Mara, Shane M; Kelly, Aine M

    2011-10-24

    Physical activity has been reported to improve cognitive function in humans and rodents, possibly via a brain-derived neurotrophic factor (BDNF)-regulated mechanism. In this study of human subjects, we have assessed the effects of acute and chronic exercise on performance of a face-name matching task, which recruits the hippocampus and associated structures of the medial temporal lobe, and the Stroop word-colour task, which does not, and have assessed circulating concentrations of BDNF and IGF-1 in parallel. The results show that a short period of high-intensity cycling results in enhancements in performance of the face-name matching, but not the Stroop, task. These changes in cognitive function were paralleled by increased concentration of BDNF, but not IGF-1, in the serum of exercising subjects. 3 weeks of cycling training had no effect on cardiovascular fitness, as assessed by VO2 scores, cognitive function, or serum BDNF concentration. Increases in fitness, cognitive function and serum BDNF response to acute exercise were observed following 5 weeks of aerobic training. These data indicate that both acute and chronic exercise improve medial temporal lobe function concomitant with increased concentrations of BDNF in the serum, suggesting a possible functional role for this neurotrophic factor in exercise-induced cognitive enhancement in humans.

  16. Increased Hippocampal ProBDNF Contributes to Memory Impairments in Aged Mice.

    PubMed

    Buhusi, Mona; Etheredge, Chris; Granholm, Ann-Charlotte; Buhusi, Catalin V

    2017-01-01

    Memory decline during aging or accompanying neurodegenerative diseases, represents a major health problem. Neurotrophins have long been considered relevant to the mechanisms of aging-associated cognitive decline and neurodegeneration. Mature Brain-Derived Neurotrophic Factor (BDNF) and its precursor (proBDNF) can both be secreted in response to neuronal activity and exert opposing effects on neuronal physiology and plasticity. In this study, biochemical analyses revealed that increased levels of proBDNF are present in the aged mouse hippocampus relative to young and that the level of hippocampal proBDNF inversely correlates with the ability to perform in a spatial memory task, the water radial arm maze (WRAM). To ascertain the role of increased proBDNF levels on hippocampal function and memory we performed infusions of proBDNF into the CA1 region of the dorsal hippocampus in male mice trained in the WRAM paradigm: In well-performing aged mice, intra-hippocampal proBDNF infusions resulted in a progressive and significant impairment of memory performance. This impairment was associated with increased p-cofilin levels, an important regulator of dendritic spines and synapse physiology. On the other hand, in poor performers, intra-hippocampal infusions of TAT-Pep5, a peptide which blocks the interaction between the p75 Neurotrophin Receptor (p75NTR) and RhoGDI, significantly improved learning and memory, while saline infusions had no effect. Our results support a role for proBDNF and its receptor p75NTR in aging-related memory impairments.

  17. HuD-mediated distinct BDNF regulatory pathways promote regeneration after nerve injury.

    PubMed

    Sanna, Maria Domenica; Ghelardini, Carla; Galeotti, Nicoletta

    2017-03-15

    Up-regulation of brain-derived neurotrophic factor (BDNF) synthesis is an important mechanism of peripheral nerve regeneration after injury. However, the cellular and molecular mechanisms underlying this process are not fully understood. This study examines the role of BDNF in the spared nerve injury (SNI) mice model. Protein expression and cellular localization were investigated in the dorsal root ganglia (DRG) and spinal cord by western blotting and immunofluorescence experiments respectively. BDNF protein was markedly increased 3 and 7days post-injury in the spinal cord and DRG. Following nerve injury sensory neurons produce molecules to promote regeneration, such as growth-associated protein 43 (GAP-43) and cytoskeletal proteins. Our results show that the expression of GAP-43 was increased in the DRG and spinal cord while, an increased of p-NFH content was detected in the spinal cord, with no modification in the DRG. Both events were counteracted by the administration of an anti-BDNF antibody. In DRG of SNI mice we also detected an increase of HuD expression, a RNA-binding protein known to stabilize BDNF and GAP-43 mRNA. Silencing of HuD prevented the nerve injury-induced BDNF and GAP-43 enhanced expression in the DRG. HuD-mediated BDNF synthesis in the primary sensory neurons, is followed by an anterograde transport of the neurotrophin to the central terminals of the primary afferents in the spinal dorsal horn, to modulate GAP-43 and NFH activation. Our data suggest that BDNF, GAP-43 and p-NFH proteins increase are linked events required for the enhanced regeneration after nerve injury.

  18. Functional and structural specific roles of activity-driven BDNF within circuits formed by single spiny stellate neurons of the barrel cortex

    PubMed Central

    Sun, Qian-Quan; Zhang, Zhi; Sun, June; Nair, Anand S.; Petrus, Dan P.; Zhang, Chunzhao

    2014-01-01

    Brain derived neurotrophic factor (BDNF) plays key roles in several neurodevelopmental disorders and actions of pharmacological treatments. However, it is unclear how specific BDNF’s effects are on different circuit components. Current studies have largely focused on the role of BDNF in modification of synaptic development. The precise roles of BDNF in the refinement of a functional circuit in vivo remain unclear. Val66Met polymorphism of BDNF may be associated with increased risk for cognitive impairments and is mediated at least in part by activity-dependent trafficking and/or secretion of BDNF. Using mutant mice that lacked activity-driven BDNF expression (bdnf-KIV), we previously reported that experience regulation of the cortical GABAergic network is mediated by activity-driven BDNF expression. Here, we demonstrate that activity-driven BDNF’s effects on circuits formed by the layer IV spiny stellate cells are highly specific. Structurally, dendritic but not axonal morphology was altered in the mutant. Physiologically, GABAergic but not glutamatergic synapses were severely affected. The effects on GABA transmission occurs via presynaptic alteration of calcium-dependent release probability. These results suggest that neuronal activity through activity-driven BDNF expression, can selectively regulate specific features of layer IV circuits in vivo. We postulate that the role of activity-dependent BDNF is to modulate the computational ability of circuits that relate to the gain control (i.e., feed-forward inhibition); whereas the basic wiring of circuits relevant to the sensory pathway is spared. Gain control modulation within cortical circuits has broad impact on cognitive processing and brain state-transitions. Cognitive behavior and mode is determined by brain states, thus the studying of circuit alteration by endogenous BDNF provides insights into the cellular and molecular mechanisms of diseases mediated by BDNF. PMID:25414642

  19. Arsenite oxidation regulator AioR regulates bacterial chemotaxis towards arsenite in Agrobacterium tumefaciens GW4

    PubMed Central

    Shi, Kaixiang; Fan, Xia; Qiao, Zixu; Han, Yushan; McDermott, Timothy R.; Wang, Qian; Wang, Gejiao

    2017-01-01

    Some arsenite [As(III)]-oxidizing bacteria exhibit positive chemotaxis towards As(III), however, the related As(III) chemoreceptor and regulatory mechanism remain unknown. The As(III)-oxidizing bacterium Agrobacterium tumefaciens GW4 displays positive chemotaxis towards 0.5–2 mM As(III). Genomic analyses revealed a putative chemoreceptor-encoding gene, mcp, located in the arsenic gene island and having a predicted promoter binding site for the As(III) oxidation regulator AioR. Expression of mcp and other chemotaxis related genes (cheA, cheY2 and fliG) was inducible by As(III), but not in the aioR mutant. Using capillary assays and intrinsic tryptophan fluorescence spectra analysis, Mcp was confirmed to be responsible for chemotaxis towards As(III) and to bind As(III) (but not As(V) nor phosphate) as part of the sensing mechanism. A bacterial one-hybrid system technique and electrophoretic mobility shift assays showed that AioR interacts with the mcp regulatory region in vivo and in vitro, and the precise AioR binding site was confirmed using DNase I foot-printing. Taken together, these results indicate that this Mcp is responsible for the chemotactic response towards As(III) and is regulated by AioR. Additionally, disrupting the mcp gene affected bacterial As(III) oxidation and growth, inferring that Mcp may exert some sort of functional connection between As(III) oxidation and As(III) chemotaxis. PMID:28256605

  20. BDNF-GFP containing secretory granules are localized in the vicinity of synaptic junctions of cultured cortical neurons.

    PubMed

    Haubensak, W; Narz, F; Heumann, R; Lessmann, V

    1998-06-01

    The protein family of mammalian neurotrophins, comprising nerve-growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 and -4/5 (NT-3, NT-4/5), supports the survival and the phenotype of neurons from the central as well as the peripheral nervous system (CNS, PNS). In addition, exogenous application of neurotrophins has recently been found to modulate synaptic transmission in the rodent CNS. However, to provide evidence for a role of neurotophins as endogenous fast acting modulators of synaptic transmission, the synaptic localization and secretion of neurotrophins needs to be shown. We have now constructed a fusion protein consisting of N-terminal BDNF (the most abundant neurotrophin in the rodent hippocampus and neocortex) and C-terminal green fluorescent protein (GFP) to elucidate the cellular localization of BDNF in cortical neurons. Transient expression of BDNF-GFP in COS-7 cells revealed that the cellular localization in the trans-Golgi network (TGN), the processing of precursor proteins and the secretion of mature BDNF-GFP is indistinguishable from the properties of untagged BDNF. Upon transient transfection of primary rat cortical neurons, BDNF-GFP was found in secretory granules of the regulated pathway of secretion, as indicated by colocalization with the secretory granule marker secretogranin II. BDNF-GFP vesicles were found in the neurites of transfected neurons with a pattern reminiscent of the localization of endogenous BDNF in untransfected cortical neurons. BDNF-GFP vesicles were found predominantly in the somatodendritic compartment of the neurons, whereas additional axonal localization was found less frequently. Immunocytochemical staining of synaptic terminals with synapsin I antibodies revealed that the density of BDNF-GFP vesicles is elevated in the vicinity of synaptic junctions, indicating that BDNF is localized appropriately to function as an acute modulator of synaptic transmission. These data suggest that BDNF-GFP will

  1. BDNF Val66Met polymorphism moderates the link between child maltreatment and reappraisal ability.

    PubMed

    Miu, A C; Cărnuţă, M; Vulturar, R; Szekely-Copîndean, R D; Bîlc, M I; Chiş, A; Cioară, M; Fernandez, K C; Szentágotai-Tătar, A; Gross, J J

    2017-04-01

    Child maltreatment is associated with increased risk for virtually all common mental disorders, but it is not yet clear why. One possible mechanism is emotion regulation ability. The present study investigated for the first time the influence of a BDNF Val66Met genotype × child maltreatment interaction on emotion regulation, and compared differential susceptibility and diathesis-stress models. A sample of N = 254 healthy volunteers were genotyped for the BDNF Val66Met polymorphism and underwent an experimental assessment of reappraisal ability (i.e. the success of using reappraisal to downregulate negative affect). A self-report instrument previously validated against a clinical interview was used to investigate child maltreatment. There was a significant BDNF Val66Met genotype × child maltreatment interaction (B = -0.31, P < 0.015), with Met carriers showing both the lowest level of reappraisal ability in maltreated participants, and the highest level of reappraisal ability in non-maltreated participants. By assessing alternative models, we found that the best fitting model was in line with strong differential susceptibility. As expected, reappraisal ability was negatively correlated with depressive symptoms. Therefore, the BDNF Val66Met polymorphism moderates the link between child maltreatment and emotion regulation ability. Future studies could investigate whether improving reappraisal in maltreated BDNF Met carriers results in reduced risk for mental disorders. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  2. Nitric Oxide Regulates Neurogenesis in the Hippocampus following Seizures

    PubMed Central

    Carreira, Bruno P.; Santos, Daniela F.; Santos, Ana I.; Carvalho, Caetana M.; Araújo, Inês M.

    2015-01-01

    Hippocampal neurogenesis is changed by brain injury. When neuroinflammation accompanies injury, activation of resident microglial cells promotes the release of inflammatory cytokines and reactive oxygen/nitrogen species like nitric oxide (NO). In these conditions, NO promotes proliferation of neural stem cells (NSC) in the hippocampus. However, little is known about the role of NO in the survival and differentiation of newborn cells in the injured dentate gyrus. Here we investigated the role of NO following seizures in the regulation of proliferation, migration, differentiation, and survival of NSC in the hippocampus using the kainic acid (KA) induced seizure mouse model. We show that NO increased the proliferation of NSC and the number of neuroblasts following seizures but was detrimental to the survival of newborn neurons. NO was also required for the maintenance of long-term neuroinflammation. Taken together, our data show that NO positively contributes to the initial stages of neurogenesis following seizures but compromises survival of newborn neurons. PMID:26587180

  3. Regulation of Injury-Induced Neurogenesis by Nitric Oxide

    PubMed Central

    Carreira, Bruno P.; Carvalho, Caetana M.; Araújo, Inês M.

    2012-01-01

    The finding that neural stem cells (NSCs) are able to divide, migrate, and differentiate into several cellular types in the adult brain raised a new hope for restorative neurology. Nitric oxide (NO), a pleiotropic signaling molecule in the central nervous system (CNS), has been described to be able to modulate neurogenesis, acting as a pro- or antineurogenic agent. Some authors suggest that NO is a physiological inhibitor of neurogenesis, while others described NO to favor neurogenesis, particularly under inflammatory conditions. Thus, targeting the NO system may be a powerful strategy to control the formation of new neurons. However, the exact mechanisms by which NO regulates neural proliferation and differentiation are not yet completely clarified. In this paper we will discuss the potential interest of the modulation of the NO system for the treatment of neurodegenerative diseases or other pathological conditions that may affect the CNS. PMID:22997523

  4. A protective effect of the BDNF Met/Met genotype in obesity in healthy Caucasian subjects but not in patients with coronary heart disease.

    PubMed

    Sustar, A; Nikolac Perkovic, M; Nedic Erjavec, G; Svob Strac, D; Pivac, N

    2016-08-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophic factor with an important role in the regulation of body weight, body mass index (BMI) and obesity. Increased BMI that leads to obesity is a substantial risk factor for coronary heart disease (CHD). The functional BDNF Val66Met polymorphism (rs6265) has been associated with CHD, obesity and BMI. The aim of the study was to determine the association between BDNF rs6265 polymorphism and CHD and/or BMI in patients with CHD and healthy control subjects. The study included 704 Caucasian subjects: 206 subjects with CHD and 498 healthy control subjects. The BDNF rs6265 genotype frequency was similar in male and female subjects, and there were no differences in the frequency of the BDNF rs6265 genotypes in 206 patients with CHD and in 498 healthy subjects. When study participants were subdivided according to the BMI categories into normal weight, overweight and obese subjects, significantly different BDNF rs6265 genotype frequency was found within healthy subjects, but not within patients with CHD. Healthy subjects, but not patients with CHD, subdivided into carriers of the Met/Met, Met/Val and Val/Val genotype, had different BMI scores. The BDNF rs6265 genotype frequency was similar in male and female subjects, and there were no differences in the frequency of the BDNF rs6265 genotypes in 206 patients with CHD and in 498 healthy subjects. When study participants were subdivided according to the BMI categories into normal weight, overweight and obese subjects, significantly different BDNF rs6265 genotype frequency was found within healthy subjects, but not within patients with CHD. Healthy subjects, but not patients with CHD, subdivided into carriers of the Met/Met, Met/Val and Val/Val genotype, had different BMI scores. BDNF rs6265 polymorphism was not associated with a diagnosis of CHD or with BMI categories among patients with CHD. In contrast, healthy Caucasians, carriers of the BDNF Met/Met genotype, had more

  5. Are BDNF and glucocorticoid activities calibrated?

    PubMed Central

    Jeanneteau, Freddy; Chao, Moses V.

    2012-01-01

    One hypothesis to account for the onset and severity of neurological disorders is the loss of trophic support. Indeed, changes in the levels and activities of brain-derived neurotrophic factor (BDNF) occur in numerous neurodegenerative and neuropsychiatric diseases. A deficit promotes vulnerability whereas a gain of function facilitates recovery by enhancing survival, synapse formation and synaptic plasticity. Implementation of ‘BDNF therapies’, however, faces numerous methodological and pharmacokinetic issues. Identifying BDNF mimetics that activate the BDNF receptor or downstream targets of BDNF signaling represent an alternative approach. One mechanism that shows great promise is to study the interplay of BDNF and glucocorticoid hormones, a major class of natural steroid secreted during stress reactions and in synchrony with circadian rhythms. While small amounts of glucocorticoids support normal brain function, excess stimulation by these steroid hormones precipitate stress-related affective disorders. To date, however, because of the paucity of knowledge of underlying cellular mechanisms, deleterious effects of glucocorticoids are not prevented following extreme stress. In the present review, we will discuss the complementary roles share by BDNF and glucocorticoids in synaptic plasticity, and delineate possible signaling mechanisms mediating these effects. PMID:23022538

  6. Analyzing the influence of BDNF heterozygosity on spatial memory response to 17β-estradiol.

    PubMed

    Wu, Y W C; Du, X; van den Buuse, M; Hill, R A

    2015-01-20

    The recent use of estrogen-based therapies as adjunctive treatments for the cognitive impairments of schizophrenia has produced promising results; however the mechanism behind estrogen-based cognitive enhancement is relatively unknown. Brain-derived neurotrophic factor (BDNF) regulates learning and memory and its expression is highly responsive to estradiol. We recently found that estradiol modulates the expression of hippocampal parvalbumin-positive GABAergic interneurons, known to regulate neuronal synchrony and cognitive function. What is unknown is whether disruptions to the aforementioned estradiol-parvalbumin pathway alter learning and memory, and whether BDNF may mediate these events. Wild-type (WT) and BDNF heterozygous (+/-) mice were ovariectomized (OVX) at 5 weeks of age and simultaneously received empty, estradiol- or progesterone-filled implants for 7 weeks. At young adulthood, mice were tested for spatial and recognition memory in the Y-maze and novel-object recognition test, respectively. Hippocampal protein expression of BDNF and GABAergic interneuron markers, including parvalbumin, were assessed. WT OVX mice show impaired performance on Y-maze and novel-object recognition test. Estradiol replacement in OVX mice prevented the Y-maze impairment, a Behavioral abnormality of dorsal hippocampal origin. BDNF and parvalbumin protein expression in the dorsal hippocampus and parvalbumin-positive cell number in the dorsal CA1 were significantly reduced by OVX in WT mice, while E2 replacement prevented these deficits. In contrast, BDNF(+/-) mice showed either no response or an opposite response to hormone manipulation in both behavioral and molecular indices. Our data suggest that BDNF status is an important biomarker for predicting responsiveness to estrogenic compounds which have emerged as promising adjunctive therapeutics for schizophrenia patients.

  7. Serum BDNF Concentrations Show Strong Seasonal Variation and Correlations with the Amount of Ambient Sunlight

    PubMed Central

    Molendijk, Marc L.; Haffmans, Judith P. M.; Bus, Boudewijn A. A.; Spinhoven, Philip; Penninx, Brenda W. J. H.; Prickaerts, Jos; Voshaar, Richard C. Oude; Elzinga, Bernet M.

    2012-01-01

    Earlier findings show seasonality in processes and behaviors such as brain plasticity and depression that in part are regulated by Brain-Derived Neurotrophic Factor (BDNF). Based on this we investigated seasonal variation in serum BDNF concentrations in 2,851 persons who took part in the Netherlands Study of Depression and Anxiety (NESDA). Analyses by month of sampling (monthly n’s >196) showed pronounced seasonal variation in serum BDNF concentrations (P<.0001) with increasing concentrations in the spring-summer period (standardized regression weight (ß) = 0.19, P<.0001) and decreasing concentrations in the autumn-winter period (ß = −0.17, P<.0001). Effect sizes [Cohen’s d] ranged from 0.27 to 0.66 for monthly significant differences. We found similar seasonal variation for both sexes and for persons with a DSM-IV depression diagnosis and healthy control subjects. In explorative analyses we found that the number of sunshine hours (a major trigger to entrain seasonality) in the week of blood withdrawal and the 10 weeks prior to this event positively correlated with serum BDNF concentrations (Pearson’s correlation coefficients ranged: 0.05 – 0.18) and this could partly explain the observed monthly variation. These results provide strong evidence that serum BDNF concentrations systematically vary over the year. This finding is important for our understanding of those factors that regulate BDNF expression and may provide novel avenues to understand seasonal dependent changes in behavior and illness such as depression. Finally, the findings reported here should be taken into account when designing and interpreting studies on BDNF. PMID:23133609

  8. Metabolic regulation of aldose reductase activity by nitric oxide donors.

    PubMed

    Dixit, B L; Ramana, K V; Chandra, D; Jackson, E B; Srivastava, S; Bhatnagar, A; Srivastava, S K

    2001-01-30

    Regulation of aldose reductase (AR), a member of the aldo-keto reductase superfamily, by nitric oxide (NO) donors was examined. Incubation of human recombinant AR with S-nitrosoglutathione (GSNO) led to inactivation of the enzyme and the formation of an AR-glutathione adduct. In contrast, incubation with S-nitroso-N-acetyl penicillamine (SNAP) or N-(beta-D-glucopyranosyl)-SNAP (GlycoSNAP) led to an increase in enzyme activity which was accompanied by the direct nitrosation of the enzyme and the formation of a mixed disulfide with the NO-donor. To examine in vivo modification, red blood cells (RBC) and rat aortic vascular smooth muscle cells (VSMC) were incubated with 1 mM GSNO or SNAP. Exposure of VSMC to SNAP and GSNO for 2 h at 37 degrees C led to approximately 71% decrease in the enzyme activity with DL-glyceraldehyde as the substrate. Similarly, exposure of RBC in 5 mM glucose to NO-donors for 30 min at room temperature, followed by increasing the glucose concentration to 40 mM, resulted in >75% decrease in the formation of sorbitol. These investigations indicate that NO and/or its bioactive metabolites can regulate cellular AR, leading to either activation (by nitrosation) or inactivation (by S-thiolation).

  9. Nitric oxide regulates neutrophil migration through microparticle formation.

    PubMed

    Nolan, Sarah; Dixon, Rachel; Norman, Keith; Hellewell, Paul; Ridger, Victoria

    2008-01-01

    The role of nitric oxide (NO) in regulating neutrophil migration has been investigated. Human neutrophil migration to interleukin (IL)-8 (1 nmol/L) was measured after a 1-hour incubation using a 96-well chemotaxis plate assay. The NO synthase inhibitor N(G)-nitro-l-arginine methyl ester (L-NAME) significantly (P < 0.001) enhanced IL-8-induced migration by up to 45%. Anti-CD18 significantly (P < 0.001) inhibited both IL-8-induced and L-NAME enhanced migration. Antibodies to L-selectin or PSGL-1 had no effect on IL-8-induced migration but prevented the increased migration to IL-8 induced by L-NAME. L-NAME induced generation of neutrophil-derived microparticles that was significantly (P < 0.01) greater than untreated neutrophils or D-NAME. This microparticle formation was dependent on calpain activity and superoxide production. Only microparticles from L-NAME and not untreated or D-NAME-treated neutrophils induced a significant (P < 0.01) increase in IL-8-induced migration and transendothelial migration. Pretreatment of microparticles with antibodies to L-selectin (DREG-200) or PSGL-1 (PL-1) significantly (P < 0.001) inhibited this effect. The ability of L-NAME-induced microparticles to enhance migration was found to be dependent on the number of microparticles produced and not an increase in microparticle surface L-selectin or PSGL-1 expression. These data show that NO can modulate neutrophil migration by regulating microparticle formation.

  10. Molecular regulation of tumour angiogenesis by nitric oxide.

    PubMed

    Ziche, Marina; Morbidelli, Lucia

    2009-12-01

    As tumors grow, their original vasculature can be insufficient to supply the growing tissue mass, and consequently local hypoxia develops. Thus neovascularisation is a key feature determining growth and metastasis of malignant tumors. This is, at least in part, mediated by humoral factors known to stimulate angiogenesis, such as vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2). Among the multiple angiogenic modulators released by tumor and stromal cells, a key role is played by nitric oxide (NO). Beside its capacity to regulate permeability and blood flow, NO has been reported to exert angiogenic properties in various tumor models. The focus of this review will be the proangiogenic role of NO in the tumor microenvironment and its multiple mechanism of action on vascular endothelium. Particular attention will be devoted to the role of NO in regulating metalloproteinase activity on cultured microvascular endothelium and in the in vivo rabbit cornea assay. Finally, the potential clinical outcomes and expectations related to this topic will be discussed.

  11. Hypermethylation of BDNF and SST Genes in the Orbital Frontal Cortex of Older Individuals: A Putative Mechanism for Declining Gene Expression with Age

    PubMed Central

    McKinney, Brandon C; Lin, Chien-Wei; Oh, Hyunjung; Tseng, George C; Lewis, David A; Sibille, Etienne

    2015-01-01

    Expression of brain-derived neurotrophic factor (BDNF) and somatostatin (SST) mRNAs in the brain decreases progressively and robustly with age, and lower BDNF and SST expression in the brain has been observed in many brain disorders. BDNF is known to regulate SST expression; however, the mechanisms underlying decreased expression of both genes are not understood. DNA methylation (DNAm) is an attractive candidate mechanism. To investigate the contribution of DNAm to the age-related decline in BDNF and SST expression, the Illumina Infinium HumanMethylation450 Beadchip Array was used to quantify DNAm of BDNF (26 CpG loci) and SST (9 CpG loci) in the orbital frontal cortices of postmortem brains from 22 younger (age <42 years) and 22 older individuals (age >60 years) with known age-dependent BDNF and SST expression differences. Relative to the younger individuals, 10 of the 26 CpG loci in BDNF and 8 of the 9 CpG loci in SST were significantly hypermethylated in the older individuals. DNAm in BDNF exons/promoters I, II, and IV negatively correlated with BDNF expression (r=−0.37, p<0.05; r=−0.40, p<0.05; r=−0.24, p=0.07), and DNAm in SST 5′ UTR and first exon/intron negatively correlated with SST expression (r=−0.48, p<0.01; r=−0.63, p<0.001), respectively. An expanded set of BDNF- and GABA-related genes exhibited similar age-related changes in DNAm and correlation with gene expression. These results suggest that DNAm may be a proximal mechanism for decreased expression of BDNF, SST, and other BDNF- and GABA-related genes with brain aging and, by extension, for brain disorders in which their expression is decreased. PMID:25881116

  12. Hypermethylation of BDNF and SST Genes in the Orbital Frontal Cortex of Older Individuals: A Putative Mechanism for Declining Gene Expression with Age.

    PubMed

    McKinney, Brandon C; Lin, Chien-Wei; Oh, Hyunjung; Tseng, George C; Lewis, David A; Sibille, Etienne

    2015-10-01

    Expression of brain-derived neurotrophic factor (BDNF) and somatostatin (SST) mRNAs in the brain decreases progressively and robustly with age, and lower BDNF and SST expression in the brain has been observed in many brain disorders. BDNF is known to regulate SST expression; however, the mechanisms underlying decreased expression of both genes are not understood. DNA methylation (DNAm) is an attractive candidate mechanism. To investigate the contribution of DNAm to the age-related decline in BDNF and SST expression, the Illumina Infinium HumanMethylation450 Beadchip Array was used to quantify DNAm of BDNF (26 CpG loci) and SST (9 CpG loci) in the orbital frontal cortices of postmortem brains from 22 younger (age <42 years) and 22 older individuals (age >60 years) with known age-dependent BDNF and SST expression differences. Relative to the younger individuals, 10 of the 26 CpG loci in BDNF and 8 of the 9 CpG loci in SST were significantly hypermethylated in the older individuals. DNAm in BDNF exons/promoters I, II, and IV negatively correlated with BDNF expression (r=-0.37, p<0.05; r=-0.40, p<0.05; r=-0.24, p=0.07), and DNAm in SST 5' UTR and first exon/intron negatively correlated with SST expression (r=-0.48, p<0.01; r=-0.63, p<0.001), respectively. An expanded set of BDNF- and GABA-related genes exhibited similar age-related changes in DNAm and correlation with gene expression. These results suggest that DNAm may be a proximal mechanism for decreased expression of BDNF, SST, and other BDNF- and GABA-related genes with brain aging and, by extension, for brain disorders in which their expression is decreased.

  13. Effect of food deprivation or short-term Western diet feeding on BDNF protein expression in the hypothalamic arcuate, paraventricular, and ventromedial nuclei.

    PubMed

    Gilland, Kaitlyn E; Fox, Edward A

    2017-04-01

    Mutations in the brain-derived neurotrophic factor (BDNF) gene are associated with human obesity, and BDNF has potent inhibitory effects on eating and body weight. Little is known about the effects of energy balance manipulations on BDNF protein in the hypothalamus, though this brain region is critical for regulation of feeding and body weight and has high levels of BDNF. Here we investigated the effects of negative and positive energy status on BDNF protein levels in the arcuate (ARC), paraventricular, and ventromedial (VMH) hypothalamic nuclei and the ectorhinal cortex. To achieve this, mice were food deprived for 48 h or fed a Western diet (WD), a restricted amount of WD, or chow for 6 h, 48 h, 1 wk, or 3 wk. BDNF protein levels were estimated as the number of neurons in each brain region that exhibited BDNF-like immunoreactivity. Food deprivation decreased BDNF protein (and mRNA) expression in the ARC compared with fed mice (32%). In contrast, 1 wk of WD consumption increased BDNF protein expression in the VMH compared with chow or restricted WD feeding (40%) and, unexpectedly, increased BDNF protein in the ectorhinal cortex (20%). Furthermore, of the diet conditions and durations tested, only 1 wk of WD consumption was associated with both hyperphagia and excess weight, suggesting that effects of one or both contributed to the changes in BDNF levels. The decrease in ARC BDNF may support increased feeding in food-deprived mice, whereas the increase in the VMH may moderate overeating in WD-fed mice.

  14. Stress induces altered CRE/CREB pathway activity and BDNF expression in the hippocampus of glucocorticoid receptor-impaired mice.

    PubMed

    Alboni, Silvia; Tascedda, Fabio; Corsini, Daniela; Benatti, Cristina; Caggia, Federica; Capone, Giacomo; Barden, Nicholas; Blom, Joan M C; Brunello, Nicoletta

    2011-06-01

    The gene coding for the neurotrophin Brain-Derived Neurotrophic Factor (BDNF) is a stress-responsive gene. Changes in its expression may underlie some of the pathological effects of stress-related disorders like depression. Data on the stress-induced regulation of the expression of BDNF in pathological conditions are rare because often research is conducted using healthy animals. In our experiments, we used transgenic mice with glucocorticoid receptor impaired (GR-i) expression in the hypothalamus created as a tool to study the neuroendocrine changes occurring in stress-related disorders. First, under basal condition, GR-i mice displayed lower levels of BDNF exons IX and IV and decreased CRE(BDNF) binding activity with respect to wild-type (WT) mice in the hippocampus. Then, we exposed GR-i and WT mice to an acute restraint stress (ARS) to test the hypothesis that GR-i mice display: 1] different ARS induced expression of BDNF, and 2] altered activation of signaling pathways implicated in regulating BDNF gene expression in the hippocampus with respect to WT mice. Results indicate that ARS enhanced BDNF mRNA expression mainly in the CA3 hippocampal sub-region of GR-i mice in the presence of enhanced levels of pro-BDNF protein, while no effect was observed in WT mice. Moreover, ARS reduced CREB signaling and binding to the BDNF promoter in GR-i mice but enhanced signaling and binding, possibly through ERK1/2 activation, in WT mice. Thus, life-long central GR dysfunction resulted in an altered sensitivity at the transcriptional level that may underlie an impaired response to an acute psycho-physical stress. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.

  15. GABAergic stimulation regulates the phenotype of hippocampal interneurons through the regulation of brain-derived neurotrophic factor.

    PubMed

    Marty, S; Berninger, B; Carroll, P; Thoenen, H

    1996-03-01

    Gamma-Aminobutyric acid (GABA) switches from enhancing to repressing brain-derived neurotrophic factor (BDNF) mRNA synthesis during the maturation of hippocampal neurons in vitro. Interneurons do not produce BDNF themselves, but BDNF enhances their differentiation. Therefore, the question arose whether hippocampal interneurons regulate their phenotype by regulating BDNF expression and release from adjacent cells. The GABA(A) receptor agonist muscimol and BDNF increased the size and neuropeptide Y (NPY) immunoreactivity of hippocampal interneurons. However, GABAergic stimulation failed to increase NPY immunoreactivity in cultures from BDNF knockout embryos. At later developmental stages, when GABA represses BDNF synthesis, treatment with muscimol induced a decrease in cell size and NPY immunoreactivity of interneurons. Interneurons might thus control their phenotype through the regulation of BDNF synthesis in, and release from, their target neurons.

  16. Peripheral Brain Derived Neurotrophic Factor Precursor Regulates Pain as an Inflammatory Mediator

    PubMed Central

    Luo, Cong; Zhong, Xiao-Lin; Zhou, Fiona H.; Li, Jia-yi; Zhou, Pei; Xu, Jun-Mei; Song, Bo; Li, Chang-Qi; Zhou, Xin-Fu; Dai, Ru-Ping

    2016-01-01

    The precursor of brain derived neurotrophic factor (proBDNF), the unprocessed BDNF gene product, binds to its receptors and exerts the opposing biologic functions of mature BDNF. proBDNF is expressed in the peripheral tissues but the functions of peripheral proBDNF remain elusive. Here we showed that proBDNF and its predominant receptor, p75 pan-neurotrophin receptor were upregulated in the nerve fibers and inflammatory cells in the local tissue in inflammatory pain. Neutralization of proBDNF by polyclonal antibody attenuated pain in different models of inflammatory pain. Unilateral intra-plantar supplementation of proBDNF by injecting exogenous proBDNF or ectopic overexpression resulted in pain hypersensitivity and induced spinal phosphorylated extracellular signal-regulated kinase activation. Exogenous proBDNF injection induced the infiltration of inflammatory cells and the activation of proinflammatory cytokines, suggesting that inflammatory reaction contributed to the pro-algesic effect of proBDNF. Finally, we generated monoclonal anti-proBDNF antibody that could biologically block proBDNF. Administration of monoclonal Ab-proBDNF attenuated various types of inflammatory pain and surgical pain. Thus, peripheral proBDNF is a potential pain mediator and anti-proBDNF pretreatment may alleviate the development of inflammatory pain. PMID:27251195

  17. Disruption of a novel regulatory locus results in decreased Bdnf expression, obesity, and type 2 diabetes in mice.

    PubMed

    Sha, Haibo; Xu, Jingyue; Tang, Jing; Ding, Jun; Gong, Jianfeng; Ge, Xiaomei; Kong, Dong; Gao, Xiang

    2007-10-22

    Mutants of brain-derived neurotrophic factor (BDNF) are associated with obesity. However, the regulatory mechanism of BDNF expression is still unclear. We developed a novel mutant mouse line, transgenic insertional mutants with obesity, named Timo, in which a potential regulatory locus of Bdnf was disrupted by transgene insertion. The insertion site was identified and lies 857 kb upstream of the Bdnf gene. The disrupted genomic locus is conserved across the mouse, rat, dog, and human genome and contains several highly conserved elements that are able to upregulate reporter gene expression in vitro. Along with downregulation of BDNF to approximately 30% of wild-type animals, Timo/Timo mice exhibited increased body weight and fat content with hepatic steatosis and elevated serum levels of leptin, cholesterol, and LDL cholesterol. These mutant mice also showed obesity-independent insulin resistance, hyperinsulinemia, impaired glucose tolerance, age-dependent hyperglycemia, and shortened life span. Molecular and phenotype analysis of Timo/Timo mice indicated the existence of a genome locus, lying 857 kb upstream of the Bdnf gene, that regulates BDNF expression, body weight, and glucose homeostasis.

  18. Intracellular Ca2+ stores and Ca2+ influx are both required for BDNF to rapidly increase quantal vesicular transmitter release.

    PubMed

    Amaral, Michelle D; Pozzo-Miller, Lucas

    2012-01-01

    Brain-derived neurotrophic factor (BDNF) is well known as a survival factor during brain development as well as a regulator of adult synaptic plasticity. One potential mechanism to initiate BDNF actions is through its modulation of quantal presynaptic transmitter release. In response to local BDNF application to CA1 pyramidal neurons, the frequency of miniature excitatory postsynaptic currents (mEPSC) increased significantly within 30 seconds; mEPSC amplitude and kinetics were unchanged. This effect was mediated via TrkB receptor activation and required both full intracellular Ca(2+) stores as well as extracellular Ca(2+). Consistent with a role of Ca(2+)-permeable plasma membrane channels of the TRPC family, the inhibitor SKF96365 prevented the BDNF-induced increase in mEPSC frequency. Furthermore, labeling presynaptic terminals with amphipathic styryl dyes and then monitoring their post-BDNF destaining in slice cultures by multiphoton excitation microscopy revealed that the increase in frequency of mEPSCs reflects vesicular fusion events. Indeed, BDNF application to CA3-CA1 synapses in TTX rapidly enhanced FM1-43 or FM2-10 destaining with a time course that paralleled the phase of increased mEPSC frequency. We conclude that BDNF increases mEPSC frequency by boosting vesicular fusion through a presynaptic, Ca(2+)-dependent mechanism involving TrkB receptors, Ca(2+) stores, and TRPC channels.

  19. Brain-derived neurotrophic factor (BDNF) and its precursor (proBDNF) in genetically defined fear-induced aggression.

    PubMed

    Ilchibaeva, Tatiana V; Kondaurova, Elena M; Tsybko, Anton S; Kozhemyakina, Rimma V; Popova, Nina K; Naumenko, Vladimir S

    2015-09-01

    The brain-derived neurotrophic factor (BDNF), its precursor (proBDNF) and BDNF mRNA levels were studied in the brain of wild rats selectively bred for more than 70 generations for either high level or for the lack of affective aggressiveness towards man. Significant increase of BDNF mRNA level in the frontal cortex and increase of BDNF level in the hippocampus of aggressive rats was revealed. In the midbrain and hippocampus of aggressive rats proBDNF level was increased, whereas BDNF/proBDNF ratio was reduced suggesting the prevalence and increased influence of proBDNF in highly aggressive rats. In the frontal cortex, proBDNF level in aggressive rats was decreased. Thus, considerable structure-specific differences in BDNF and proBDNF levels as well as in BDNF gene expression between highly aggressive and nonaggressive rats were shown. The data suggested the implication of BDNF and its precursor proBDNF in the mechanism of aggressiveness and in the creation of either aggressive or nonaggressive phenotype.

  20. Ipsilateral versus contralateral spontaneous post-stroke neuroplastic changes: involvement of BDNF?

    PubMed

    Madinier, A; Bertrand, N; Rodier, M; Quirié, A; Mossiat, C; Prigent-Tessier, A; Marie, C; Garnier, P

    2013-02-12

    regulation between the two hemispheres. While highlighting the complexity of changes in BDNF metabolism after stroke, our data suggest that BDNF involvement in spontaneous post-stroke plasticity is region-dependent.

  1. MicroRNA-322 protects hypoxia-induced apoptosis in cardiomyocytes via BDNF gene

    PubMed Central

    Yang, Liguo; Song, Shigang; Lv, Hang

    2016-01-01

    Background: Cardiomyocytes apoptosis under hypoxia condition contributes significantly to various cardiovascular diseases. In this study, we investigated the role of microRNA-322 (miR-322) in regulating hypoxia-induced apoptosis in neonatal murine cardiomyocytes in vitro. Method: Cardiomyocytes of C57BL/6J mice were treated with hypoxia condition in vitro. Cardiomyocyte apoptosis was measured by TUNEL assay. Gene expression pattern of miR-322 was measured by qRT-PCR. Stable downregulation of miR-322 in cardiomyocytes were achieved by lentiviral transduction, and the effect of miR-322 downregulation on hypoxia-induced cardiomyocyte apoptosis was investigated. Possible regulation of miR-322 on its downstream target gene, brain derived neurotrophic factor (BDNF) was investigated in cardiomyocytes. BDNF was then genetically silenced by siRNA to evaluate its role in miR-137 mediated cardiomyocyte apoptosis protection under hypoxia condition. Results: Under hypoxia condition, significant apoptosis was induced and miR-322 was significantly upregulated in cardiomyocytes in vitro. Through lentiviral transduction, miR-322 was efficiently knocked down in cardiomyocytes. Downregulation of miR-322 protected hypoxia-induced cardiomyocyte apoptosis. Luciferase assay showed BDNF was the target gene of miR-322. QRT-PCR showed BDNF expression was associated with miR-322 regulation on hypoxia-induced cardiomyocyte apoptosis. Silencing BDNF in cardiomyocyte through siRNA transfection reversed the protective effect of miR-322 downregulation on hypoxia-induced apoptosis. Conclusion: Our study revealed that miR-322, in association with BDNF, played important role in regulating hypoxia-induced apoptosis in cardiomyocyte. PMID:27398164

  2. 40 CFR 52.269 - Control strategy and regulations: Photochemical oxidants (hydrocarbons) and carbon monoxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: Photochemical oxidants (hydrocarbons) and carbon monoxide. 52.269 Section 52.269 Protection of Environment... PLANS California § 52.269 Control strategy and regulations: Photochemical oxidants (hydrocarbons) and... provide for attainment and maintenance of the national standards for photochemical oxidants (hydrocarbons...

  3. 40 CFR 52.269 - Control strategy and regulations: Photochemical oxidants (hydrocarbons) and carbon monoxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: Photochemical oxidants (hydrocarbons) and carbon monoxide. 52.269 Section 52.269 Protection of Environment... PLANS California § 52.269 Control strategy and regulations: Photochemical oxidants (hydrocarbons) and... provide for attainment and maintenance of the national standards for photochemical oxidants (hydrocarbons...

  4. 40 CFR 52.269 - Control strategy and regulations: Photochemical oxidants (hydrocarbons) and carbon monoxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: Photochemical oxidants (hydrocarbons) and carbon monoxide. 52.269 Section 52.269 Protection of Environment... PLANS California § 52.269 Control strategy and regulations: Photochemical oxidants (hydrocarbons) and... provide for attainment and maintenance of the national standards for photochemical oxidants (hydrocarbons...

  5. 40 CFR 52.269 - Control strategy and regulations: Photochemical oxidants (hydrocarbons) and carbon monoxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: Photochemical oxidants (hydrocarbons) and carbon monoxide. 52.269 Section 52.269 Protection of Environment... PLANS California § 52.269 Control strategy and regulations: Photochemical oxidants (hydrocarbons) and... provide for attainment and maintenance of the national standards for photochemical oxidants (hydrocarbons...

  6. 40 CFR 52.269 - Control strategy and regulations: Photochemical oxidants (hydrocarbons) and carbon monoxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: Photochemical oxidants (hydrocarbons) and carbon monoxide. 52.269 Section 52.269 Protection of Environment... PLANS California § 52.269 Control strategy and regulations: Photochemical oxidants (hydrocarbons) and... provide for attainment and maintenance of the national standards for photochemical oxidants (hydrocarbons...

  7. 40 CFR 52.1475 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: Sulfur oxides. 52.1475 Section 52.1475 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 52.1475 Control strategy and regulations: Sulfur oxides. (a) The requirements of subpart G of this... National Ambient Air Quality Standards for sulfur oxides in the Nevada Intrastate Region. (b) Article...

  8. 40 CFR 52.2731 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: Sulfur oxides. 52.2731 Section 52.2731 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Rico § 52.2731 Control strategy and regulations: Sulfur oxides. (a) The requirements of subpart G of... the national standards for sulfur oxides in the areas of Aguirre, Barceloneta, Trujillo...

  9. 40 CFR 52.1475 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: Sulfur oxides. 52.1475 Section 52.1475 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 52.1475 Control strategy and regulations: Sulfur oxides. (a) The requirements of subpart G of this... National Ambient Air Quality Standards for sulfur oxides in the Nevada Intrastate Region. (b) Article...

  10. 40 CFR 52.2731 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: Sulfur oxides. 52.2731 Section 52.2731 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Rico § 52.2731 Control strategy and regulations: Sulfur oxides. (a) The requirements of subpart G of... the national standards for sulfur oxides in the areas of Aguirre, Barceloneta, Trujillo...

  11. 40 CFR 52.1475 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: Sulfur oxides. 52.1475 Section 52.1475 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 52.1475 Control strategy and regulations: Sulfur oxides. (a) The requirements of subpart G of this... National Ambient Air Quality Standards for sulfur oxides in the Nevada Intrastate Region. (b) Article...

  12. 40 CFR 52.2731 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: Sulfur oxides. 52.2731 Section 52.2731 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Rico § 52.2731 Control strategy and regulations: Sulfur oxides. (a) The requirements of subpart G of... the national standards for sulfur oxides in the areas of Aguirre, Barceloneta, Trujillo...

  13. 40 CFR 52.2731 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: Sulfur oxides. 52.2731 Section 52.2731 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Rico § 52.2731 Control strategy and regulations: Sulfur oxides. (a) The requirements of subpart G of... the national standards for sulfur oxides in the areas of Aguirre, Barceloneta, Trujillo...

  14. 40 CFR 52.1475 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: Sulfur oxides. 52.1475 Section 52.1475 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 52.1475 Control strategy and regulations: Sulfur oxides. (a) The requirements of subpart G of this... National Ambient Air Quality Standards for sulfur oxides in the Nevada Intrastate Region. (b) Article...

  15. 40 CFR 52.1475 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: Sulfur oxides. 52.1475 Section 52.1475 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 52.1475 Control strategy and regulations: Sulfur oxides. (a) The requirements of subpart G of this... National Ambient Air Quality Standards for sulfur oxides in the Nevada Intrastate Region. (b) Article...

  16. 40 CFR 52.2731 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: Sulfur oxides. 52.2731 Section 52.2731 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Rico § 52.2731 Control strategy and regulations: Sulfur oxides. (a) The requirements of subpart G of... the national standards for sulfur oxides in the areas of Aguirre, Barceloneta, Trujillo...

  17. BDNF - A key player in cardiovascular system.

    PubMed

    Pius-Sadowska, Ewa; Machaliński, Bogusław

    2017-09-01

    Neurotrophins (NTs) were first identified as target-derived survival factors for neurons of the central and peripheral nervous system (PNS). They are known to control neural cell fate, development and function. Independently of their neuronal properties, NTs exert unique cardiovascular activity. The heart is innervated by sensory, sympathetic and parasympathetic neurons, which require NTs during early development and in the establishment of mature properties, contributing to the maintenance of cardiovascular homeostasis. The identification of molecular mechanisms regulated by NTs and involved in the crosstalk between cardiac sympathetic nerves, cardiomyocytes, cardiac fibroblasts, and vascular cells, has a fundamental importance in both normal heart function and disease. The article aims to review the recent data on the effects of Brain-Derived Neurotrophic Factor (BDNF) on various cardiovascular neuronal and non-neuronal functions such as the modulation of synaptic properties of autonomic neurons, axonal outgrowth and sprouting, formation of the vascular and neural networks, smooth muscle migration, and control of endothelial cell survival and cardiomyocytes. Understanding these mechanisms may be crucial for developing novel therapeutic strategies, including stem cell-based therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Superparamagnetic iron oxide nanoparticles regulate smooth muscle cell phenotype

    PubMed Central

    Angelopoulos, Ioannis; Southern, Paul; Pankhurst, Quentin A.

    2016-01-01

    Abstract Superparamagnetic iron oxide nanoparticles (SPION) are used for an increasing range of biomedical applications, from imaging to mechanical actuation of cells and tissue. The aim of this study was to investigate the loading of smooth muscle cells (SMC) with SPION and to explore what effect this has on the phenotype of the cells. Adherent human SMC were loaded with ∼17 pg of unconjugated, negatively charged, 50 nm SPION. Clusters of the internalized SPION particles were held in discrete cytoplasmic vesicles. Internalized SPION did not cause any change in cell morphology, proliferation, metabolic activity, or staining pattern of actin and calponin, two of the muscle contractile proteins involved in force generation. However, internalized SPION inhibited the increased gene expression of actin and calponin normally observed when cells are incubated under differentiation conditions. The observed change in the control of gene expression of muscle contractile apparatus by SPION has not previously been described. This finding could offer novel approaches for regulating the phenotype of SMC and warrants further investigation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2412–2419, 2016. PMID:27176658

  19. Aspects of the regulation of long-chain fatty acid oxidation in bovine liver

    SciTech Connect

    Jesse, B.W.; Emery, R.S.; Thomas, J.W.

    1986-09-01

    Factors involved in regulation of bovine hepatic fatty acid oxidation were examined using liver slices. Fatty acid oxidation was measured as the conversion of l-(/sup 14/C) palmitate to /sup 14/CO/sub 2/ and total (/sup 14/C) acid-soluble metabolites. Extended (5 to 7 d) fasting of Holstein cows had relatively little effect on palmitate oxidation to acid-soluble metabolites by liver slices, although oxidation to CO/sup 2/ was decreased. Feeding a restricted roughage, high concentrate ration to lactating cows resulted in inhibition of palmitate oxidation. Insulin, glucose, and acetate inhibited palmitate oxidation by bovine liver slices. The authors suggest the regulation of bovine hepatic fatty acid oxidation may be less dependent on hormonally induced alterations in enzyme activity as observed in rat liver and more dependent upon action of rumen fermentation products or their metabolites on enzyme systems involved in fatty acid oxidation.

  20. Exercise-dependent BDNF as a Modulatory Factor for the Executive Processing of Individuals in Course of Cognitive Decline. A Systematic Review.

    PubMed

    de Assis, Gilmara G; de Almondes, Katie Moraes

    2017-01-01

    Background: Aging naturally triggers a decline in cognition as result of deterioration in cerebral circuits, thus the executive functions (EFs) suffer changes that progress from mild to severe states of impairment. Exercise instead, works as a strategy for cognitive enhancement by modulating neuronal plasticity through the regulation of BDNF. However, whether the exercise-dependent BDNF may improve higher complexity processes such as the EFs is still in a studying process. Results: Current data on exercise-dependent BDNF changes for aging individuals in a course of cognitive impairment was summarized to investigate whether the exercise regulation of BDNF is effective to pronounce long term changes on executive controls. While the exercise-dependent regulation of BDNF is currently undeniable, the role of exercise dependent BDNF as a tool for the improvement of EFs in individuals with dementia is still less clear and seldom discussed. The summary of findings indicate a limited number of studies addressing exercise in order to discuss parameters related to either BDNF or executive functioning in such population conditions (n = 215), further narrowing to a total of 5 studies presenting analysis of both parameters. Nonetheless, positive outcomes from BDNF and EF variables were displayed by all the populations exposed to exercise across studies. Aerobic exercise was shown to be a major source for the enhancement of the BDNF-dependent executive functioning, when compared to cognitive stimulation. Moreover, the effect of exercise-dependent BDNF on domains of executive functioning appears to occur in a dose-dependent manner for the aging individuals, independently of cognitive condition.

  1. Different serum BDNF levels in depression: results from BDNF studies in FYR Macedonia and Bulgaria.

    PubMed

    Ristevska-Dimitrovska, Gordana; Shishkov, Rinaldo; Gerazova, Vesna Pejoska; Vujovik, Viktorija; Stefanovski, Branislav; Novotni, Antoni; Marinov, Petar; Filov, Izabela

    2013-06-01

    A growing body of evidence shows that brain-derived neurotrophic factor (BDNF) plays a role in depressive disorder. Serum BDNF levels are lower in depressed patients and they increase after a long course of antidepressant treatment. Our study aims to test the effect of antidepressant treatment on serum BDNF levels in patients with a depressive episode, after they have achieved remission in two studies in Macedonia and Bulgaria. In the Macedonian study 23 patients were included (11 female, 12 male) diagnosed with a first depressive episode according to ICD-10, as well as 23 control subjects age- and sex-matched without a history of psychiatric disorder. In the Bulgarian study 10 female patients with depression and 10 control subjects were included. We have applied the Hamilton Depression Rating Scale (HDRS) to assess depression severity. Blood samples were collected before antidepressive treatment and after remission was achieved (decrease to 7 points or less on HDRS). In the Macedonian study, mean serum BDNF level at baseline was 13.15±6.75 ng/ml and the mean HDRS score was 28.52±4.02. Untreated depressed patients showed significantly lower serum BDNF levels compared to the control group (25.95±9.17 ng/ml). After remission was achieved, the mean serum BDNF level was 24.73±11.80 ng/ml whereas the mean HDRS score was 7.04±3.15. After 8 weeks of treatment there was no statistically significant difference in the serum BDNF levels between the two groups. In the Bulgarian study, baseline mean serum BDNF levels were 26.84±8.66 ng/ml, after 3 weeks treatment and remission was achieved mean serum BDNF levels were 30.33±9.25 ng/ml and in the control group mean serum BDNF levels were 25.04±2.88 ng/ml. Integrated results showed baseline mean serum BDNF levels of 17.30±9.66 ng/ml, after achieved remission 26.43±11.25 ng/ml and in the control group mean serum BDNF levels of 25.68±7.76 ng/ml. The Bulgarian results showed no statistical difference between the depressed

  2. BDNF modulates heart contraction force and long-term homeostasis through truncated TrkB.T1 receptor activation

    PubMed Central

    Fulgenzi, Gianluca; Tomassoni-Ardori, Francesco; Babini, Lucia; Becker, Jodi; Barrick, Colleen; Puverel, Sandrine

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) is critical for mammalian development and plasticity of neuronal circuitries affecting memory, mood, anxiety, pain sensitivity, and energy homeostasis. Here we report a novel unexpected role of BDNF in regulating the cardiac contraction force independent of the nervous system innervation. This function is mediated by the truncated TrkB.T1 receptor expressed in cardiomyocytes. Loss of TrkB.T1 in these cells impairs calcium signaling and causes cardiomyopathy. TrkB.T1 is activated by BDNF produced by cardiomyocytes, suggesting an autocrine/paracrine loop. These findings unveil a novel signaling mechanism in the heart that is activated by BDNF and provide evidence for a global role of this neurotrophin in the homeostasis of the organism by signaling through different TrkB receptor isoforms. PMID:26347138

  3. Increased BDNF expression in fetal brain in the valproic acid model of autism.

    PubMed

    Almeida, Luis E F; Roby, Clinton D; Krueger, Bruce K

    2014-03-01

    Human fetal exposure to valproic acid (VPA), a widely-used anti-epileptic and mood-stabilizing drug, leads to an increased incidence of behavioral and intellectual impairments including autism; VPA administration to pregnant rats and mice at gestational days 12.5 (E12.5) or E13.5 leads to autistic-like symptoms in the offspring and is widely used as an animal model for autism. We report here that this VPA administration protocol transiently increased both BDNF mRNA and BDNF protein levels 5-6-fold in the fetal mouse brain. VPA exposure in utero induced smaller increases in the expression of mRNA encoding the other neurotrophins, NT3 (2.5-fold) and NT4 (2-fold). Expression of the neurotrophin receptors, trkA, trkB and trkC were minimally affected, while levels of the low-affinity neurotrophin receptor, p75(NTR), doubled. Of the nine 5'-untranslated exons of the mouse BDNF gene, only expression of exons I, IV and VI was stimulated by VPA in utero. In light of the well-established role of BDNF in regulating neurogenesis and the laminar fate of postmitotic neurons in the developing cortex, an aberrant increase in BDNF expression in the fetal brain may contribute to VPA-induced cognitive disorders by altering brain development. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. BDNF Mediates Neuroprotection against Oxygen-Glucose Deprivation by the Cardiac Glycoside Oleandrin

    PubMed Central

    Van Kanegan, Michael J.; He, Dong Ning; Dunn, Denise E.; Yang, Peiying; Newman, Robert A.; West, Anne E.

    2014-01-01

    We have previously shown that the botanical drug candidate PBI-05204, a supercritical CO2 extract of Nerium oleander, provides neuroprotection in both in vitro and in vivo brain slice-based models for focal ischemia (Dunn et al., 2011). Intriguingly, plasma levels of the neurotrophin BDNF were increased in patients treated with PBI-05204 in a phase I clinical trial (Bidyasar et al., 2009). We thus tested the hypothesis that neuroprotection provided by PBI-05204 to rat brain slices damaged by oxygen-glucose deprivation (OGD) is mediated by BDNF. We found, in fact, that exogenous BDNF protein itself is sufficient to protect brain slices against OGD, whereas downstream activation of TrkB receptors for BDNF is necessary for neuroprotection provided by PBI-05204, using three independent methods. Finally, we provide evidence that oleandrin, the principal cardiac glycoside component of PBI-05204, can quantitatively account for regulation of BDNF at both the protein and transcriptional levels. Together, these findings support further investigation of cardiac glycosides in providing neuroprotection in the context of ischemic stroke. PMID:24431454

  5. BDNF over-expression increases olfactory bulb granule cell dendritic spine density in vivo

    PubMed Central

    McDole, Brittnee; Isgor, Ceylan; Pare, Christopher; Guthrie, Kathleen

    2015-01-01

    Olfactory bulb granule cells are axon-less, inhibitory interneurons that regulate the activity of the excitatory output neurons, the mitral and tufted cells, through reciprocal dendrodendritic synapses located on granule cell spines. These contacts are established in the distal apical dendritic compartment, while granule cell basal dendrites and more proximal apical segments bear spines that receive glutamatergic inputs from the olfactory cortices. This synaptic connectivity is vital to olfactory circuit function and is remodeled during development, and in response to changes in sensory activity and lifelong granule cell neurogenesis. Manipulations that alter levels of the neurotrophin brain-derived neurotrophic factor (BDNF) in vivo have significant effects on dendritic spine morphology, maintenance and activity-dependent plasticity for a variety of CNS neurons, yet little is known regarding BDNF effects on bulb granule cell spine maturation or maintenance. Here we show that, in vivo, sustained bulbar over-expression of BDNF produces a marked increase in granule cell spine density that includes an increase in mature spines on their apical dendrites. Morphometric analysis demonstrated that changes in spine density were most notable in the distal and proximal apical domains, indicating that multiple excitatory inputs are potentially modified by BDNF. Our results indicate that increased levels of endogenous BDNF can promote the maturation and/or maintenance of dendritic spines on granule cells, suggesting a role for this factor in modulating granule cell functional connectivity within adult olfactory circuitry. PMID:26211445

  6. BDNF mediates neuroprotection against oxygen-glucose deprivation by the cardiac glycoside oleandrin.

    PubMed

    Van Kanegan, Michael J; He, Dong Ning; Dunn, Denise E; Yang, Peiying; Newman, Robert A; West, Anne E; Lo, Donald C

    2014-01-15

    We have previously shown that the botanical drug candidate PBI-05204, a supercritical CO2 extract of Nerium oleander, provides neuroprotection in both in vitro and in vivo brain slice-based models for focal ischemia (Dunn et al., 2011). Intriguingly, plasma levels of the neurotrophin BDNF were increased in patients treated with PBI-05204 in a phase I clinical trial (Bidyasar et al., 2009). We thus tested the hypothesis that neuroprotection provided by PBI-05204 to rat brain slices damaged by oxygen-glucose deprivation (OGD) is mediated by BDNF. We found, in fact, that exogenous BDNF protein itself is sufficient to protect brain slices against OGD, whereas downstream activation of TrkB receptors for BDNF is necessary for neuroprotection provided by PBI-05204, using three independent methods. Finally, we provide evidence that oleandrin, the principal cardiac glycoside component of PBI-05204, can quantitatively account for regulation of BDNF at both the protein and transcriptional levels. Together, these findings support further investigation of cardiac glycosides in providing neuroprotection in the context of ischemic stroke.

  7. BDNF over-expression increases olfactory bulb granule cell dendritic spine density in vivo.

    PubMed

    McDole, B; Isgor, C; Pare, C; Guthrie, K

    2015-09-24

    Olfactory bulb granule cells (GCs) are axon-less, inhibitory interneurons that regulate the activity of the excitatory output neurons, the mitral and tufted cells, through reciprocal dendrodendritic synapses located on GC spines. These contacts are established in the distal apical dendritic compartment, while GC basal dendrites and more proximal apical segments bear spines that receive glutamatergic inputs from the olfactory cortices. This synaptic connectivity is vital to olfactory circuit function and is remodeled during development, and in response to changes in sensory activity and lifelong GC neurogenesis. Manipulations that alter levels of the neurotrophin brain-derived neurotrophic factor (BDNF) in vivo have significant effects on dendritic spine morphology, maintenance and activity-dependent plasticity for a variety of CNS neurons, yet little is known regarding BDNF effects on bulb GC spine maturation or maintenance. Here we show that, in vivo, sustained bulbar over-expression of BDNF in transgenic mice produces a marked increase in GC spine density that includes an increase in mature spines on their apical dendrites. Morphometric analysis demonstrated that changes in spine density were most notable in the distal and proximal apical domains, indicating that multiple excitatory inputs are potentially modified by BDNF. Our results indicate that increased levels of endogenous BDNF can promote the maturation and/or maintenance of dendritic spines on GCs, suggesting a role for this factor in modulating GC functional connectivity within adult olfactory circuitry.

  8. Association of brain-derived neurotrophic factor (BDNF) haploinsufficiency with lower adaptive behaviour and reduced cognitive functioning in WAGR/11p13 deletion syndrome

    PubMed Central

    Han, Joan C.; Thurm, Audrey; Williams, Christine Golden; Joseph, Lisa A.; Zein, Wadih M.; Brooks, Brian P.; Butman, John A.; Brady, Sheila M.; Fuhr, Shannon R.; Hicks, Melanie D.; Huey, Amanda E.; Hanish, Alyson E.; Danley, Kristen M.; Raygada, Margarita J.; Rennert, Owen M.; Martinowich, Keri; Sharp, Stephen J.; Tsao, Jack W.; Swedo, Susan E.

    2013-01-01

    In animal studies, brain-derived neurotrophic factor (BDNF) is an important regulator of central nervous system development and synaptic plasticity. WAGR (Wilms tumour, Aniridia, Genitourinary anomalies, and mental Retardation) syndrome is caused by 11p13 deletions of variable size near the BDNF locus and can serve as a model for studying human BDNF haploinsufficiency (+/−). We hypothesized that BDNF+/− would be associated with more severe cognitive impairment in subjects with WAGR syndrome. Twenty-eight subjects with WAGR syndrome (6–28y), 12 subjects with isolated aniridia due to PAX6 mutations/microdeletions (7–54y), and 20 healthy controls (4–32y) received neurocognitive assessments. Deletion boundaries for the subjects in the WAGR group were determined by high resolution oligonucleotide array comparative genomic hybridization. Within the WAGR group, BDNF+/− subjects (n=15), compared with BDNF intact (+/+) subjects (n=13), had lower adaptive behaviour (p=.02), reduced cognitive functioning (p=.04), higher levels of reported historical (p=.02) and current (p=.02) social impairment, and higher percentage meeting cut-off score for autism (p=.047) on Autism Diagnostic Interview-Revised. These differences remained nominally significant after adjusting for visual acuity. Using diagnostic measures and clinical judgment, 3 subjects (2 BDNF+/− and 1 BDNF+/+) in the WAGR group (10.7%) were classified with autism spectrum disorder. A comparison group of visually impaired subjects with isolated aniridia had cognitive functioning comparable to that of healthy controls. In summary, among subjects with WAGR syndrome, BDNF+/− subjects had a mean Vineland Adaptive Behaviour Compose score that was 14 points lower and a mean IQ that was 20 points lower than BDNF+/+ subjects. Our findings support the hypothesis that BDNF plays an important role in human neurocognitive development. PMID:23517654

  9. Association of brain-derived neurotrophic factor (BDNF) haploinsufficiency with lower adaptive behaviour and reduced cognitive functioning in WAGR/11p13 deletion syndrome.

    PubMed

    Han, Joan C; Thurm, Audrey; Golden Williams, Christine; Joseph, Lisa A; Zein, Wadih M; Brooks, Brian P; Butman, John A; Brady, Sheila M; Fuhr, Shannon R; Hicks, Melanie D; Huey, Amanda E; Hanish, Alyson E; Danley, Kristen M; Raygada, Margarita J; Rennert, Owen M; Martinowich, Keri; Sharp, Stephen J; Tsao, Jack W; Swedo, Susan E

    2013-01-01

    In animal studies, brain-derived neurotrophic factor (BDNF) is an important regulator of central nervous system development and synaptic plasticity. WAGR (Wilms tumour, Aniridia, Genitourinary anomalies, and mental Retardation) syndrome is caused by 11p13 deletions of variable size near the BDNF locus and can serve as a model for studying human BDNF haploinsufficiency (+/-). We hypothesized that BDNF+/- would be associated with more severe cognitive impairment in subjects with WAGR syndrome. Twenty-eight subjects with WAGR syndrome (6-28 years), 12 subjects with isolated aniridia due to PAX6 mutations/microdeletions (7-54 years), and 20 healthy controls (4-32 years) received neurocognitive assessments. Deletion boundaries for the subjects in the WAGR group were determined by high-resolution oligonucleotide array comparative genomic hybridization. Within the WAGR group, BDNF+/- subjects (n = 15), compared with BDNF intact (+/+) subjects (n = 13), had lower adaptive behaviour (p = .02), reduced cognitive functioning (p = .04), higher levels of reported historical (p = .02) and current (p = .02) social impairment, and higher percentage meeting cut-off score for autism (p = .047) on Autism Diagnostic Interview-Revised. These differences remained nominally significant after adjusting for visual acuity. Using diagnostic measures and clinical judgement, 3 subjects (2 BDNF+/- and 1 BDNF+/+) in the WAGR group (10.7%) were classified with autism spectrum disorder. A comparison group of visually impaired subjects with isolated aniridia had cognitive functioning comparable to that of healthy controls. In summary, among subjects with WAGR syndrome, BDNF+/- subjects had a mean Vineland Adaptive Behaviour Compose score that was 14-points lower and a mean intelligence quotient (IQ) that was 20-points lower than BDNF+/+ subjects. Our findings support the hypothesis that BDNF plays an important role in human neurocognitive development.

  10. BDNF Val 66 Met and 5-HTTLPR genotype moderate the impact of early psychosocial adversity on plasma brain-derived neurotrophic factor and depressive symptoms: a prospective study.

    PubMed

    Buchmann, Arlette F; Hellweg, Rainer; Rietschel, Marcella; Treutlein, Jens; Witt, Stephanie H; Zimmermann, Ulrich S; Schmidt, Martin H; Esser, Günter; Banaschewski, Tobias; Laucht, Manfred; Deuschle, Michael

    2013-08-01

    Recent studies have emphasized an important role for neurotrophins, such as brain-derived neurotrophic factor (BDNF), in regulating the plasticity of neural circuits involved in the pathophysiology of stress-related diseases. The aim of the present study was to examine the interplay of the BDNF Val⁶⁶Met and the serotonin transporter promoter (5-HTTLPR) polymorphisms in moderating the impact of early-life adversity on BDNF plasma concentration and depressive symptoms. Participants were taken from an epidemiological cohort study following the long-term outcome of early risk factors from birth into young adulthood. In 259 individuals (119 males, 140 females), genotyped for the BDNF Val⁶⁶Met and the 5-HTTLPR polymorphisms, plasma BDNF was assessed at the age of 19 years. In addition, participants completed the Beck Depression Inventory (BDI). Early adversity was determined according to a family adversity index assessed at 3 months of age. Results indicated that individuals homozygous for both the BDNF Val and the 5-HTTLPR L allele showed significantly reduced BDNF levels following exposure to high adversity. In contrast, BDNF levels appeared to be unaffected by early psychosocial adversity in carriers of the BDNF Met or the 5-HTTLPR S allele. While the former group appeared to be most susceptible to depressive symptoms, the impact of early adversity was less pronounced in the latter group. This is the first preliminary evidence indicating that early-life adverse experiences may have lasting sequelae for plasma BDNF levels in humans, highlighting that the susceptibility to this effect is moderated by BDNF Val⁶⁶Met and 5-HTTLPR genotype.

  11. Altering BDNF expression by genetics and/or environment: impact for emotional and depression-like behaviour in laboratory mice.

    PubMed

    Chourbaji, Sabine; Brandwein, Christiane; Gass, Peter

    2011-01-01

    According to the "neurotrophin hypothesis", brain-derived neurotrophic factor (BDNF) is an important candidate gene in depression. Moreover, environmental stress is known to represent a risk factor in the pathophysiology and treatment of this disease. To elucidate, whether changes of BDNF availability signify cause or consequence of depressive-like alterations, it is essential to look for endophenotypes under distinct genetic conditions (e.g. altered BDNF expression). Furthermore it is crucial to examine environment-driven BDNF regulation and its effect on depressive-linked features. Consequently, gene × environment studies investigating prospective genetic mouse models of depression in different environmental contexts become increasingly important. The present review summarizes recent findings in BDNF-mutant mice, which have been controversially discussed as models of depression and anxiety. It furthermore illustrates the potential of environment to serve as naturalistic stressor with the potential to modulate the phenotype in wildtype and mutant mice. Moreover, environment may exert protective effects by regulating BDNF levels as attributed to "environmental enrichment". The effect of this beneficial condition will also be discussed with regard to probable "curative/therapeutic" approaches. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. BDNF-induced LTP is associated with rapid Arc/Arg3.1-dependent enhancement in adult hippocampal neurogenesis

    PubMed Central

    Kuipers, Sjoukje D.; Trentani, Andrea; Tiron, Adrian; Mao, Xiaosong; Kuhl, Dietmar; Bramham, Clive R.

    2016-01-01

    Adult neurogenesis in the hippocampus is a remarkable phenomenon involved in various aspects of learning and memory as well as disease pathophysiology. Brain-derived neurotrophic factor (BDNF) represents a major player in the regulation of this unique form of neuroplasticity, yet the mechanisms underlying its pro-neurogenic actions remain unclear. Here, we examined the effects associated with brief (25 min), unilateral infusion of BDNF in the rat dentate gyrus. Acute BDNF infusion induced long-term potentiation (LTP) of medial perforant path-evoked synaptic transmission and, concomitantly, enhanced hippocampal neurogenesis bilaterally, reflected by increased dentate gyrus BrdU + cell numbers. Importantly, inhibition of activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) translation through local, unilateral infusion of anti-sense oligodeoxynucleotides (ArcAS) prior to BDNF infusion blocked both BDNF-LTP induction and the associated pro-neurogenic effects. Notably, basal rates of proliferation and newborn cell survival were unaltered in homozygous Arc/Arg3.1 knockout mice. Taken together these findings link the pro-neurogenic effects of acute BDNF infusion to induction of Arc/Arg3.1-dependent LTP in the adult rodent dentate gyrus. PMID:26888068

  13. BDNF Val66Met Polymorphism Interacts with Sleep Consolidation to Predict Ability to Create New Declarative Memories.

    PubMed

    Gosselin, Nadia; De Beaumont, Louis; Gagnon, Katia; Baril, Andrée-Ann; Mongrain, Valérie; Blais, Hélène; Montplaisir, Jacques; Gagnon, Jean-François; Pelleieux, Sandra; Poirier, Judes; Carrier, Julie

    2016-08-10

    It is hypothesized that a fundamental function of sleep is to restore an individual's day-to-day ability to learn and to constantly adapt to a changing environment through brain plasticity. Brain-derived neurotrophic factor (BDNF) is among the key regulators that shape brain plasticity. However, advancing age and carrying the BDNF Met allele were both identified as factors that potentially reduce BDNF secretion, brain plasticity, and memory. Here, we investigated the moderating role of BDNF polymorphism on sleep and next-morning learning ability in 107 nondemented individuals who were between 55 and 84 years of age. All subjects were tested with 1 night of in-laboratory polysomnography followed by a cognitive evaluation the next morning. We found that in subjects carrying the BDNF Val66Val polymorphism, consolidated sleep was associated with significantly better performance on hippocampus-dependent episodic memory tasks the next morning (β-values from 0.290 to 0.434, p ≤ 0.01). In subjects carrying at least one copy of the BDNF Met allele, a more consolidated sleep was not associated with better memory performance in most memory tests (β-values from -0.309 to -0.392, p values from 0.06 to 0.15). Strikingly, increased sleep consolidation was associated with poorer performance in learning a short story presented verbally in Met allele carriers (β = -0.585, p = 0.005). This study provides new evidence regarding the interacting roles of consolidated sleep and BDNF polymorphism in the ability to learn and stresses the importance of considering BDNF polymorphism when studying how sleep affects cognition. Individuals with the BDNF Val/Val (valine allele) polymorphism showed better memory performance after a night of consolidated sleep. However, we observed that middle-aged and older individuals who are carriers of the BDNF Met allele displayed no positive association between sleep quality and their ability to learn the next morning. This interaction between sleep and

  14. Brain-derived neurotrophic factor regulates cholesterol metabolism for synapse development.

    PubMed

    Suzuki, Shingo; Kiyosue, Kazuyuki; Hazama, Shunsuke; Ogura, Akihiko; Kashihara, Megumi; Hara, Tomoko; Koshimizu, Hisatsugu; Kojima, Masami

    2007-06-13

    Brain-derived neurotrophic factor (BDNF) exerts multiple biological functions in the CNS. Although BDNF can control transcription and protein synthesis, it still remains open to question whether BDNF regulates lipid biosynthesis. Here we show that BDNF elicits cholesterol biosynthesis in cultured cortical and hippocampal neurons. Importantly, BDNF elicited cholesterol synthesis in neurons, but not in glial cells. Quantitative reverse transcriptase-PCR revealed that BDNF stimulated the transcription of enzymes in the cholesterol biosynthetic pathway. BDNF-induced cholesterol increases were blocked by specific inhibitors of cholesterol synthesis, mevastatin and zaragozic acid, suggesting that BDNF stimulates de novo synthesis of cholesterol rather than the incorporation of extracellular cholesterol. Because cholesterol is a major component of lipid rafts, we investigated whether BDNF would increase the cholesterol content in lipid rafts or nonraft membrane domains. Interestingly, the BDNF-mediated increase in cholesterol occurred in rafts, but not in nonrafts, suggesting that BDNF promotes the development of neuronal lipid rafts. Consistent with this notion, BDNF raised the level of the lipid raft marker protein caveolin-2 in rafts. Remarkably, BDNF increased the levels of presynaptic proteins in lipid rafts, but not in nonrafts. An electrophysiological study revealed that BDNF-dependent cholesterol biosynthesis plays an important role for the development of a readily releasable pool of synaptic vesicles. Together, these results suggest a novel role for BDNF in cholesterol metabolism and synapse development.

  15. RACK1 affects morphine reward via BDNF.

    PubMed

    Wan, Lihong; Xie, Yizhou; Su, Lan; Liu, Yanyou; Wang, Yuhui; Wang, Zhengrong

    2011-10-06

    Chronic morphine addiction may trigger functional changes in the mesolimbic dopamine system, which is believed to be the neurobiological substrate of opiate addiction. Brain derived neurotrophic factor (BDNF) has been implicated in addiction-related pathology in animal studies. Our previous studies have shown that RACK1 is involved in morphine reward in mice. The recent research indicates nuclear RACK1 by localizing at the promoter IV region of the BDNF gene and the subsequent chromatin modifications leads to the activation of the promoter and transcription of BDNF. The present study was designed to investigate if shRACK1 (a short hairpin RNA of RACK1) could reverse the mice's behavioral responses to morphine and BDNF expression in hippocampus and prefrontal cortex. No significant changes were observed in vehicle-infused mice which received no morphine treatment (CONC) and shRACK1-infused mice which received no morphine treatment (CONR), whereas vehicle-infused mice preceded the morphine injection (MIC) showed increased BDNF expression in hippocampus and prefrontal cortex, as compared to vehicle-infused mice which received no morphine treatment (CONC). Intracerebroventricular shRACK1 treatment reversed these, and in fact, ShRACK1-infused mice preceded the morphine injection (MIR) showed reduced BDNF expression in hippocampus and prefrontal cortex, as compared to MIC. In the conditioned place preference (CPP) test, inactivating RACK1 markedly reduces morphine-induced conditioned place preference. Non-specific changes in CPP could not account for these effects since general CPP of shRACK1- and vehicle-infused animals was not different. Combined behavioral and molecular approaches have support the possibility that the RACK1-BDNF system plays an important role in the response to morphine-induced reward.

  16. LIM kinase 1 (LIMK1) interacts with tropomyosin-related kinase B (TrkB) and Mediates brain-derived neurotrophic factor (BDNF)-induced axonal elongation.

    PubMed

    Dong, Qing; Ji, Yun-Song; Cai, Chang; Chen, Zhe-Yu

    2012-12-07

    BDNF/TrkB signaling plays critical roles in axonal outgrowth of neurons, the process of which requires the remodeling of the cytoskeleton structure, including microtubules and filamentous actin. However, the mechanism by which BDNF/TrkB signaling regulates cytoskeleton reorganization is still unclear. Here, we identified a novel interaction between LIMK1 and TrkB, which is required for the BDNF-induced axonal elongation. We demonstrated that BDNF-induced TrkB dimerization led to LIMK1 dimerization and transphosphorylation independent of TrkB kinase activity, which could further enhance the activation and stabilization of LIMK1. Moreover, activated LIMK1 translocated to the membrane fraction and phosphorylated its substrate cofilin, thus promoting actin polymerization and axonal elongation. Our findings provided evidence of a novel mechanism for the BDNF-mediated signal transduction leading to axonal elongation.

  17. HIF and reactive oxygen species regulate oxidative phosphorylation in cancer.

    PubMed

    Hervouet, Eric; Cízková, Alena; Demont, Jocelyne; Vojtísková, Alena; Pecina, Petr; Franssen-van Hal, Nicole L W; Keijer, Jaap; Simonnet, Hélène; Ivánek, Robert; Kmoch, Stanislav; Godinot, Catherine; Houstek, Josef

    2008-08-01

    A decrease in oxidative phosphorylation (OXPHOS) is characteristic of many cancer types and, in particular, of clear cell renal carcinoma (CCRC) deficient in von Hippel-Lindau (vhl) gene. In the absence of functional pVHL, hypoxia-inducible factor (HIF) 1-alpha and HIF2-alpha subunits are stabilized, which induces the transcription of many genes including those involved in glycolysis and reactive oxygen species (ROS) metabolism. Transfection of these cells with vhl is known to restore HIF-alpha subunit degradation and to reduce glycolytic genes transcription. We show that such transfection with vhl of 786-0 CCRC (which are devoid of HIF1-alpha) also increased the content of respiratory chain subunits. However, the levels of most transcripts encoding OXPHOS subunits were not modified. Inhibition of HIF2-alpha synthesis by RNA interference in pVHL-deficient 786-0 CCRC also restored respiratory chain subunit content and clearly demonstrated a key role of HIF in OXPHOS regulation. In agreement with these observations, stabilization of HIF-alpha subunit by CoCl(2) decreased respiratory chain subunit levels in CCRC cells expressing pVHL. In addition, HIF stimulated ROS production and mitochondrial manganese superoxide dismutase content. OXPHOS subunit content was also decreased by added H(2)O(2.) Interestingly, desferrioxamine (DFO) that also stabilized HIF did not decrease respiratory chain subunit level. While CoCl(2) significantly stimulates ROS production, DFO is known to prevent hydroxyl radical production by inhibiting Fenton reactions. This indicates that the HIF-induced decrease in OXPHOS is at least in part mediated by hydroxyl radical production.

  18. Prolonged maternal separation attenuates BDNF-ERK signaling correlated with spine formation in the hippocampus during early brain development.

    PubMed

    Ohta, Ken-Ichi; Suzuki, Shingo; Warita, Katsuhiko; Kaji, Tomohiro; Kusaka, Takashi; Miki, Takanori

    2017-04-01

    Maternal separation (MS) is known to affect hippocampal function such as learning and memory, yet the molecular mechanism remains unknown. We hypothesized that these impairments are attributed to abnormities of neural circuit formation by MS, and focused on brain-derived neurotrophic factor (BDNF) as key factor because BDNF signaling has an essential role in synapse formation during early brain development. Using rat offspring exposed to MS for 6 h/day during postnatal days (PD) 2-20, we estimated BDNF signaling in the hippocampus during brain development. Our results show that MS attenuated BDNF expression and activation of extracellular signal-regulated kinase (ERK) around PD 7. Moreover, plasticity-related immediate early genes, which are transcriptionally regulated by BDNF-ERK signaling, were also reduced by MS around PD 7. Interestingly, detailed analysis revealed that MS particularly reduced expression of BDNF gene and immediate early genes in the cornu ammonis 1 (CA1) of hippocampus at PD 7. Considering that BDNF-ERK signaling is involved in spine formation, we next evaluated spine formation in the hippocampus during the weaning period. Our results show that MS particularly reduced mature spine density in proximal apical dendrites of CA1 pyramidal neurons at PD 21. These results suggest that MS could attenuate BDNF-ERK signaling during primary synaptogenesis with a region-specific manner, which is likely to lead to decreased spine formation and maturation observed in the hippocampal CA1 region. It is speculated that this incomplete spine formation during early brain development has an influence on learning capabilities throughout adulthood.

  19. Sex-based differential regulation of oxidative stress in the vasculature by nitric oxide

    PubMed Central

    Morales, Rommel C.; Bahnson, Edward S.M.; Havelka, George E.; Cantu-Medellin, Nadiezhda; Kelley, Eric E.; Kibbe, Melina R.

    2015-01-01

    Background Nitric oxide (•NO) is more effective at inhibiting neointimal hyperplasia following arterial injury in male versus female rodents, though the etiology is unclear. Given that superoxide (O2•−) regulates cellular proliferation, and •NO regulates superoxide dismutase-1 (SOD-1) in the vasculature, we hypothesized that •NO differentially regulates SOD-1 based on sex. Materials and methods Male and female vascular smooth muscle cells (VSMC) were harvested from the aortae of Sprague-Dawley rats. O2•− levels were quantified by electron paramagnetic resonance (EPR) and HPLC. sod-1 gene expression was assayed by qPCR. SOD-1, SOD-2, and catalase protein levels were detected by Western blot. SOD-1 activity was measured via colorimetric assay. The rat carotid artery injury model was performed on Sprague-Dawley rats ±•NO treatment and SOD-1 protein levels were examined by Western blot. Results In vitro, male VSMC have higher O2•− levels and lower SOD − 1 activity at baseline compared to female VSMC (P < 0.05). •NO decreased O2•− levels and increased SOD − 1 activity in male (P<0.05) but not female VSMC. •NO also increased sod− 1 gene expression and SOD − 1 protein levels in male (P<0.05) but not female VSMC. In vivo, SOD-1 levels were 3.7-fold higher in female versus male carotid arteries at baseline. After injury, SOD-1 levels decreased in both sexes, but •NO increased SOD-1 levels 3-fold above controls in males, but returned to baseline in females. Conclusions Our results provide evidence that regulation of the redox environment at baseline and following exposure to •NO is sex-dependent in the vasculature. These data suggest that sex-based differential redox regulation may be one mechanism by which •NO is more effective at inhibiting neointimal hyperplasia in male versus female rodents. PMID:25617803

  20. Lack of an association of BDNF Val66Met polymorphism and plasma BDNF with hippocampal volume and memory

    PubMed Central

    Kim, Ana; Fagan, Anne M; Goate, Alison M; Benzinger, Tammie LS; Morris, John C; Head, Denise

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) has been shown to be important for neuronal survival and synaptic plasticity in the hippocampus in non-human animals. The Val66Met polymorphism in the BDNF gene, involving a valine (Val) to methionine (Met) substitution at codon 66, has been associated with lower BDNF secretion in vitro. However, there have been mixed results regarding associations between either circulating BDNF or the BDNF Val66Met polymorphism with hippocampal volume and memory in humans. The current study examined the association of BDNF genotype and plasma BDNF with hippocampal volume and memory in two large independent cohorts of middle-aged and older adults (both cognitively normal and early-stage dementia). Sample sizes ranged from 123 to 649. Measures of the BDNF genotype, plasma BDNF, MRI-based hippocampal volume and memory performance were obtained from the Knight Alzheimer Disease Research Center (ADRC) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). There were no significant differences between BDNF Met+ and Met- groups on either hippocampal volume or memory in either cohort. In addition, plasma BDNF was not significantly associated with either hippocampal volume or memory in either cohort. Neither age, cognitive status nor gender moderated any of the relationships. Overall, current findings suggest that BDNF genotype and plasma BDNF may not be robust predictors for variance in hippocampal volume and memory in middle age and older adult cohorts. PMID:25784293

  1. Neuromodulatory propensity of Bacopa monniera against scopolamine-induced cytotoxicity in PC12 cells via down-regulation of AChE and up-regulation of BDNF and muscarnic-1 receptor expression.

    PubMed

    Pandareesh, M D; Anand, T

    2013-10-01

    Scopolamine is a competitive antagonist of muscarinic acetylcholine receptors, and thus classified as an anti-muscarinic and anti-cholinergic drug. PC12 cell lines possess muscarinic receptors and mimic the neuronal cells. These cells were treated with different concentrations of scopolamine for 24 h and were protected from the cellular damage by pretreatment with Bacopa monniera extract (BME). In current study, we have explored the molecular mechanism of neuromodulatory and antioxidant propensity of (BME) to attenuate scopolamine-induced cytotoxicity using PC12 cells. Our results elucidate that pretreatment of PC12 cells with BME ameliorates the mitochondrial and plasma membrane damage induced by 3 μg/ml scopolamine to 54.83 and 30.30 % as evidenced by MTT and lactate dehydrogenase assays respectively. BME (100 μg/ml) ameliorated scopolamine effect by down-regulating acetylcholine esterase and up-regulating brain-derived neurotropic factor and muscarinic muscarinic-1 receptor expression. BME pretreated cells also showed significant protection against scopolamine-induced toxicity by restoring the levels of antioxidant enzymes and lipid peroxidation. This result indicates that the scopolamine-induced cytotoxicity and neuromodulatory changes were restored with the pretreatment of BME.

  2. NPY modulates miR-30a-5p and BDNF in opposite direction in an in vitro model of Alzheimer disease: a possible role in neuroprotection?

    PubMed

    Croce, Nicoletta; Gelfo, Francesca; Ciotti, Maria Teresa; Federici, Giorgio; Caltagirone, Carlo; Bernardini, Sergio; Angelucci, Francesco

    2013-04-01

    Using in vitro models of Alzheimer's disease (AD), we found that the toxic effects of amyloid beta 25-35 (Aβ(25-35)) on the neurotrophin brain-derived neurotrophic factor (BDNF) were counteracted by pre-incubation with neuropeptide Y (NPY), a neuropeptide expressed within the central nervous system. Nonetheless, the mechanism of action of NPY on BDNF neuronal production in the presence of Aβ is not known. BDNF expression might be directly regulated by microRNA (miRs), small non-coding DNA fragments that regulate the expression of target genes. Thus, there is the possibility that miRs alterations are present in AD-affected neurons and that NPY influences miR expression. To test this hypothesis, we exposed NPY-pretreated primary rat cortical neurons to Aβ(25-35) and measured miR-30a-5p (a member of the miR-30a family involved in BDNF tuning expression) and BDNF mRNA and protein expression after 24 and 48 h. Our results demonstrated that pre-treatment with NPY decreased miR-30a-5p expression and increased BDNF mRNA and protein expression at 24 and 48 h of incubation with Aβ. Therefore, this study demonstrates that NPY modulates BDNF and its regulating microRNA miR-30a-5p in opposite direction with a mechanism that possibly contributes to the neuroprotective effect of NPY in rat cortical neurons exposed to Aβ.

  3. Role for Mitochondrial Oxidants as Regulators of Cellular Metabolism

    PubMed Central

    Nemoto, Shino; Takeda, Kazuyo; Yu, Zu-Xi; Ferrans, Victor J.; Finkel, Toren

    2000-01-01

    Leakage of mitochondrial oxidants contributes to a variety of harmful conditions ranging from neurodegenerative diseases to cellular senescence. We describe here, however, a physiological and heretofore unrecognized role for mitochondrial oxidant release. Mitochondrial metabolism of pyruvate is demonstrated to activate the c-Jun N-terminal kinase (JNK). This metabolite-induced rise in cytosolic JNK1 activity is shown to be triggered by increased release of mitochondrial H2O2. We further demonstrate that in turn, the redox-dependent activation of JNK1 feeds back and inhibits the activity of the metabolic enzymes glycogen synthase kinase 3β and glycogen synthase. As such, these results demonstrate a novel metabolic regulatory pathway activated by mitochondrial oxidants. In addition, they suggest that although chronic oxidant production may have deleterious effects, mitochondrial oxidants can also function acutely as signaling molecules to provide communication between the mitochondria and the cytosol. PMID:10982848

  4. Blocking GSK3β-mediated dynamin1 phosphorylation enhances BDNF-dependent TrkB endocytosis and the protective effects of BDNF in neuronal and mouse models of Alzheimer's disease.

    PubMed

    Liu, Xiang-Hua; Geng, Zhao; Yan, Jing; Li, Ting; Chen, Qun; Zhang, Qun-Ye; Chen, Zhe-Yu

    2015-02-01

    Endocytosis of tropomyosin related kinase B (TrkB) receptors has critical roles in brain-derived neurotrophic factor (BDNF) mediated signal transduction and biological function, however the mechanism that is governing TrkB endocytosis is still not completely understood. In this study, we showed that GSK3β, a key kinase in neuronal development and survival, could regulate TrkB endocytosis through phosphorylating dynamin1 (Dyn1) but not dynamin2 (Dyn2). Moreover, we found that beta-amyloid (Aβ) oligomer exposure could impair BDNF-dependent TrkB endocytosis and Akt activation through enhancing GSK3β activity in cultured hippocampal neurons, which suggested that BDNF-induced TrkB endocytosis and the subsequent signaling were impaired in neuronal model of Alzheimer's disease (AD). Notably, we found that inhibiting GSK3β phosphorylating Dyn1 by using TAT-Dyn1SpS could rescue the impaired TrkB endocytosis and Akt activation upon BDNF stimuli under Aβ exposure. Finally, TAT-Dyn1SpS could facilitate BDNF-mediated neuronal survival and cognitive enhancement in mouse models of AD. These results clarified a role of GSK3β in BDNF-dependent TrkB endocytosis and the subsequent signaling, and provided a potential new strategy by inhibiting GSK3β-induced Dyn1 phosphorylation for AD treatment.

  5. Products of lipid, protein and RNA oxidation as signals and regulators of gene expression in plants

    PubMed Central

    Chmielowska-Bąk, Jagna; Izbiańska, Karolina; Deckert, Joanna

    2015-01-01

    Reactive oxygen species (ROS) are engaged in several processes essential for normal cell functioning, such as differentiation, anti-microbial defense, stimulus sensing and signaling. Interestingly, recent studies imply that cellular signal transduction and gene regulation are mediated not only directly by ROS but also by the molecules derived from ROS-mediated oxidation. Lipid peroxidation leads to non-enzymatic formation of oxylipins. These molecules were shown to modulate expression of signaling associated genes including genes encoding phosphatases, kinases and transcription factors. Oxidized peptides derived from protein oxidation might be engaged in organelle-specific ROS signaling. In turn, oxidation of particular mRNAs leads to decrease in the level of encoded proteins and thus, contributes to the post-transcriptional regulation of gene expression. Present mini review summarizes latest findings concerning involvement of products of lipid, protein and RNA oxidation in signal transduction and gene regulation. PMID:26082792

  6. Emerging importance of oxidative stress in regulating striated muscle elasticity.

    PubMed

    Beckendorf, Lisa; Linke, Wolfgang A

    2015-02-01

    The contractile function of striated muscle cells is altered by oxidative/nitrosative stress, which can be observed under physiological conditions but also in diseases like heart failure or muscular dystrophy. Oxidative stress causes oxidative modifications of myofilament proteins and can impair myocyte contractility. Recent evidence also suggests an important effect of oxidative stress on muscle elasticity and passive stiffness via modifications of the giant protein titin. In this review we provide a short overview of known oxidative modifications in thin and thick filament proteins and then discuss in more detail those oxidative stress-related modifications altering titin stiffness directly or indirectly. Direct modifications of titin include reversible disulfide bonding within the cardiac-specific N2-Bus domain, which increases titin stiffness, and reversible S-glutathionylation of cryptic cysteines in immunoglobulin-like domains, which only takes place after the domains have unfolded and which reduces titin stiffness in cardiac and skeletal muscle. Indirect effects of oxidative stress on titin can occur via reversible modifications of protein kinase signalling pathways (especially the NO-cGMP-PKG axis), which alter the phosphorylation level of certain disordered titin domains and thereby modulate titin stiffness. Oxidative stress also activates proteases such as matrix-metalloproteinase-2 and (indirectly via increasing the intracellular calcium level) calpain-1, both of which cleave titin to irreversibly reduce titin-based stiffness. Although some of these mechanisms require confirmation in the in vivo setting, there is evidence that oxidative stress-related modifications of titin are relevant in the context of biomarker design and represent potential targets for therapeutic intervention in some forms of muscle and heart disease.

  7. The effects of motor rehabilitation training on clinical symptoms and serum BDNF levels in Parkinson's disease subjects.

    PubMed

    Angelucci, Francesco; Piermaria, Jacopo; Gelfo, Francesca; Shofany, Jacob; Tramontano, Marco; Fiore, Marco; Caltagirone, Carlo; Peppe, Antonella

    2016-04-01

    Increasing evidence suggests that motor rehabilitation may delay Parkinson's disease (PD) progression. Moreover, parallel treatments in animals up-regulate brain-derived neurotrophic factor (BDNF). Thus, we investigated the effect of a motor rehabilitation protocol on PD symptoms and BDNF serum levels. Motor rehabilitation training consisted of a cycle of 20 days/month of physiotherapy divided in 3 daily sessions. Clinical data were collected at the beginning, at the end, and at 90 days follow-up. BDNF serum levels were detected by ELISA at 0, 7, 14, 21, 30, and 90 days. The follow-up period had a duration of 60 days (T30-T90). The results showed that at the end of the treatment (day 30), an improvement in extrapyramidal signs (UPDRS III; UPDRS III - Gait and Balance items), motor (6 Minute Walking Test), and daily living activities (UPDRS II; PDQ-39) was observed. BDNF levels were increased at day 7 as compared with baseline. After that, no changes in BDNF were observed during the treatment and in the successive follow-up. This study demonstrates that motor rehabilitation training is able to ameliorate PD symptoms and to increase temporarily BDNF serum levels. The latter effect may potentially contribute to the therapeutic action.

  8. The role of the BDNF Val66Met polymorphism for the synchronization of error-specific neural networks.

    PubMed

    Beste, Christian; Kolev, Vasil; Yordanova, Juliana; Domschke, Katharina; Falkenstein, Michael; Baune, Bernhard T; Konrad, Carsten

    2010-08-11

    Behavioral adaptation depends on the recognition of response errors and processing of this error-information. Error processing is a specific cognitive function crucial for behavioral adaptation. Neurophysiologically, these processes are reflected by an event-related potential (ERP), the error negativity (Ne/ERN). Even though synchronization processes are important in information processing, its role and neurobiological foundation in behavioral adaptation are not understood. The brain-derived neurotrophic factor (BDNF) strongly modulates the establishment of neural connectivity that determines neural network dynamics and synchronization properties. Therefore altered synchronization processes may constitute a mechanism via which BDNF affects processes of error-induced behavioral adaptation. We investigate how variants of the BDNF gene regulate EEG-synchronization processes underlying error processing. Subjects (n=65) were genotyped for the functional BDNF Val66Met polymorphism (rs6265). We show that Val/Val genotype is associated with stronger error-specific phase-locking, compared with Met allele carriers. Posterror behavioral adaptation seems to be strongly dependent on these phase-locking processes and efficacy of EEG-phase-locking-behavioral coupling was genotype dependent. After correct responses, neurophysiological processes were not modulated by the polymorphism, underlining that BDNF becomes especially necessary in situations requiring behavioral adaptation. The results suggest that alterations in neural synchronization processes modulated by the genetic variants of BDNF Val66Met may be the mechanism by which cognitive functions are affected.

  9. Genetic Contributions to Age-Related Decline in Executive Function: A 10-Year Longitudinal Study of COMT and BDNF Polymorphisms

    PubMed Central

    Erickson, Kirk I.; Kim, Jennifer S.; Suever, Barbara L.; Voss, Michelle W.; Francis, B. Magnus; Kramer, Arthur F.

    2008-01-01

    Genetic variability in the dopaminergic and neurotrophic systems could contribute to age-related impairments in executive control and memory function. In this study we examined whether genetic polymorphisms for catechol-O-methyltransferase (COMT) and brain-derived neurotrophic factor (BDNF) were related to the trajectory of cognitive decline occurring over a 10-year period in older adults. A single nucleotide polymorphism in the COMT (Val158/108Met) gene affects the concentration of dopamine in the prefrontal cortex. In addition, a Val/Met substitution in the pro-domain for BDNF (Val66Met) affects the regulated secretion and trafficking of BDNF with Met carriers showing reduced secretion and poorer cognitive function. We found that impairments over the 10-year span on a task-switching paradigm did not vary as a function of the COMT polymorphism. However, for the BDNF polymorphism the Met carriers performed worse than Val homozygotes at the first testing session but only the Val homozygotes demonstrated a significant reduction in performance over the 10-year span. Our results argue that the COMT polymorphism does not affect the trajectory of age-related executive control decline, whereas the Val/Val polymorphism for BDNF may promote faster rates of cognitive decay in old age. These results are discussed in relation to the role of BDNF in senescence and the transforming impact of the Met allele on cognitive function in old age. PMID:18958211

  10. NCAM-deficient mice show prominent abnormalities in serotonergic and BDNF systems in brain - Restoration by chronic amitriptyline.

    PubMed

    Aonurm-Helm, Anu; Anier, Kaili; Zharkovsky, Tamara; Castrén, Eero; Rantamäki, Tomi; Stepanov, Vladimir; Järv, Jaak; Zharkovsky, Alexander

    2015-12-01

    Mood disorders are associated with alterations in serotonergic system, deficient BDNF (brain-derived neurotrophic factor) signaling and abnormal synaptic plasticity. Increased degradation and reduced functions of NCAM (neural cell adhesion molecule) have recently been associated with depression and NCAM deficient mice show depression-related behavior and impaired learning. The aim of the present study was to investigate potential changes in serotonergic and BDNF systems in NCAM knock-out mice. Serotonergic nerve fiber density and SERT (serotonin transporter) protein levels were robustly reduced in the hippocampus, prefrontal cortex and basolateral amygdala of adult NCAM(-)(/-) mice. This SERT reduction was already evident during early postnatal development. [(3)H]MADAM binding experiments further demonstrated reduced availability of SERT in cell membranes of NCAM(-)(/-) mice. Moreover, the levels of serotonin and its major metabolite 5-HIAA were down regulated in the brains of NCAM(-)(/-) mice. NCAM(-)(/-) mice also showed a dramatic reduction in the BDNF protein levels in the hippocampus and prefrontal cortex. This BDNF deficiency was associated with reduced phosphorylation of its receptor TrkB. Importantly, chronic administration of antidepressant amitriptyline partially or completely restored these changes in serotonergic and BDNF systems, respectively. In conclusion, NCAM deficiency lead to prominent and persistent abnormalities in brain serotonergic and BDNF systems, which likely contributes to the behavioral and neurobiological phenotype of NCAM(-/-) mice.

  11. Accelerated dendritic development of rat cortical pyramidal cells and interneurons after biolistic transfection with BDNF and NT4/5.

    PubMed

    Wirth, Marcus J; Brun, Annika; Grabert, Jochen; Patz, Silke; Wahle, Petra

    2003-12-01

    Neurotrophins are candidate molecules for regulating dendritogenesis. We report here on dendritic growth of rat visual cortex pyramidal and interneurons overexpressing 'brain-derived neurotrophic factor' BDNF and 'neurotrophin 4/5' NT4/5. Neurons in organotypic cultures were transfected with plasmids encoding either 'enhanced green fluorescent protein' EGFP, BDNF/EGFP or NT4/5/EGFP either at the day of birth with analysis at 5 days in vitro, or at 5 days in vitro with analysis at 10 days in vitro. In pyramidal neurons, both TrkB ligands increased dendritic length and number of segments without affecting maximum branch order and number of primary dendrites. In the early time window, only infragranular neurons were responsive. Neurons in layers II/III became responsive to NT4/5, but not BDNF, during the later time window. BDNF and NT4/5 transfectants at 10 days in vitro had still significantly shorter dendrites than adult pyramidal neurons, suggesting a massive growth spurt after 10 days in vitro. However, segment numbers were already in the range of adult neurons. Although this suggested a role for BDNF, long-term activity-deprived, and thus BDNF-deprived, pyramidal cells developed a dendritic complexity not different from neurons in active cultures except for higher spine densities on neurons of layers II/III and VI. Neutralization of endogenous NT4/5 causes shorter and less branched dendrites at 10 days in vitro suggesting an essential role for NT4/5. Neutralization of BDNF had no effect. Transfected multipolar interneurons became identifiable during the second time window. Both TrkB ligands significantly increased number of segments and branch order towards the adult state with little effects on dendritic length. The results suggested that early in development BDNF and NT4/5 probably accelerate dendritogenesis in an autocrine fashion. In particular, branch formation was advanced towards the adult pattern in pyramidal cells and interneurons.

  12. Higher serum S100B and BDNF levels are correlated with a lower pressure-pain threshold in fibromyalgia

    PubMed Central

    2014-01-01

    Background Fibromyalgia (FM) is conceptualized as a central sensitization (CS) condition, that presents high serum brain-derived neurotrophic factor (BDNF) and neuroglia activation. Although the S100B protein regulates neuroglia functions, it has been traditionally used as a proxy of central nervous system damage. However, neither BDNF nor S100B association with the clinical picture of FM has been elucidated. To explore their association with the pressure-pain threshold (PPT) in FM, we performed a cross-sectional study, including 56 females with confirmed FM aged 18–65 years. Linear regression models were used to adjust for potential confounding factors between serum BDNF, S100B and PPT. Results Serum BDNF and S100B were correlated (Spearman’s Rho = 0.29). Serum BDNF (log) and S100B (log) were correlated with the PPT (log) (Partial η2 = 0.129, P = 0.012 for the BDNF (log), and Partial η2 = 0.105, P = 0.025 for the S100B (log)). Serum BDNF (log) was inversely associated with PPT (log) (β = -1.01, SE = 0.41), age (β = -0.02, SE = 0.15) and obsessive compulsive disorder (β = -0.36, SE = 0.15), while serum S100B (log) was inversely associated with PPT (log) (β = -1.38, SE = 0.50), only. Conclusions Both neuroglia key mediators in the CS process were inversely correlated with the PPT. Serum assessment of BDNF and S100B deserve further study to determine its potential as a proxy for the CS spectrum in FM. PMID:25005881

  13. BDNF Depresses Excitability of Parvalbumin-Positive Interneurons through an M-Like Current in Rat Dentate Gyrus.

    PubMed

    Nieto-Gonzalez, Jose Luis; Jensen, Kimmo

    2013-01-01

    In addition to their classical roles in neuronal growth, survival and differentiation, neurotrophins are also rapid regulators of excitability, synaptic transmission and activity-dependent synaptic plasticity. We have recently shown that mature BDNF (Brain Derived Neurotrophic Factor), but not proBDNF, modulates the excitability of interneurons in dentate gyrus within minutes. Here, we used brain slice patch-clamp recordings to study the mechanisms through which BDNF modulates the firing of interneurons in rat dentate gyrus by binding to TrkB receptors. Bath application of BDNF (15 ng/ml) under current-clamp decreased the firing frequency (by 80%) and input resistance, blocking the delayed firing observed at near-threshold voltage ranges, with no changes in resting membrane potential or action potential waveform. Using TEA (tetraethylammonium), or XE991(a Kv7/KCNQ channel antagonist), the effect of BDNF was abolished, whereas application of retigabine (a Kv7/KCNQ channel opener) mimicked the effect of BDNF, suggesting that the M-current could be implicated in the modulation of the firing. In voltage-clamp experiments, BDNF increased the M-like current amplitude with no change in holding current. This effect was again blocked by XE991 and mimicked by retigabine, the latter accompanied with a change in holding current. In agreement with the electrophysiology, parvalbumin-positive interneurons co-expressed TrkB receptors and Kv7.2/KCNQ2 channels. In conclusion, BDNF depresses the excitability of interneurons by activating an M-like current and possibly blocking Kv1 channels, thereby controlling interneuron resting membrane potential and excitability.

  14. Hepatic oleate regulates adipose tissue lipogenesis and fatty acid oxidation[S

    PubMed Central

    Burhans, Maggie S.; Flowers, Matthew T.; Harrington, Kristin R.; Bond, Laura M.; Guo, Chang-An; Anderson, Rozalyn M.; Ntambi, James M.

    2015-01-01

    Hepatic steatosis is associated with detrimental metabolic phenotypes including enhanced risk for diabetes. Stearoyl-CoA desaturases (SCDs) catalyze the synthesis of MUFAs. In mice, genetic ablation of SCDs reduces hepatic de novo lipogenesis (DNL) and protects against diet-induced hepatic steatosis and adiposity. To understand the mechanism by which hepatic MUFA production influences adipose tissue stores, we created two liver-specific transgenic mouse models in the SCD1 knockout that express either human SCD5 or mouse SCD3, that synthesize oleate and palmitoleate, respectively. We demonstrate that hepatic de novo synthesized oleate, but not palmitoleate, stimulate hepatic lipid accumulation and adiposity, reversing the protective effect of the global SCD1 knockout under lipogenic conditions. Unexpectedly, the accumulation of hepatic lipid occurred without induction of the hepatic DNL program. Changes in hepatic lipid composition were reflected in plasma and in adipose tissue. Importantly, endogenously synthesized hepatic oleate was associated with suppressed DNL and fatty acid oxidation in white adipose tissue. Regression analysis revealed a strong correlation between adipose tissue lipid fuel utilization and hepatic and adipose tissue lipid storage. These data suggest an extrahepatic mechanism where endogenous hepatic oleate regulates lipid homeostasis in adipose tissues. PMID:25555387

  15. EPO protects Müller cell under high glucose state through BDNF/TrkB pathway.

    PubMed

    Wang, Ping; Xia, Fei

    2015-01-01

    Neurotrophic factor decreased in the early stage of diabetic retinal nerve cells. Neurons damage brain derived neurotrophic factor (BDNF) and receptor TrkB expression reduced. Erythropoietin (EPO) plays an important role in protecting early diabetic retinopathy. The rats were euthanized at 24 h after EPO vitreous injection and the retina was separated. HE staining was applied to observe the pathological tissue morphology. Immunohistochemistry, immunofluorescence, and Western blot were used to detect BDNF, TrkB, extracellular signal-regulated kinase (ERK), and glial fibrillary acidic portein (GFAP) expression. Retinal structure was clear in group C, while the retinal thickness and RGCs number decreased in group B at 24 w. Retinal thickness in group E was greater than in group B but lower than in group C. GFAP and ERK expression increased in both group B and E, whereas the latter was significantly lower than the former. TrkB protein level was in group E > B > C at 4 w, while it was in group C > group E > group B at 24 w. BDNF expression in group B was higher than in group C at 4 w, whereas it was opposite at 24 w. BDNF expression increased in group E at 4 w, and it was similar in group E compared with group C at 24 w. EPO vitreous injection can increase BDNF and TrkB expression, while reduce GFAP and ERK expression in diabetes rat retina. It could protect Müller cells through BDNF/TrkB pathway to play a role of nerve nutrition.

  16. EPO protects Müller cell under high glucose state through BDNF/TrkB pathway

    PubMed Central

    Wang, Ping; Xia, Fei

    2015-01-01

    Neurotrophic factor decreased in the early stage of diabetic retinal nerve cells. Neurons damage brain derived neurotrophic factor (BDNF) and receptor TrkB expression reduced. Erythropoietin (EPO) plays an important role in protecting early diabetic retinopathy. The rats were euthanized at 24 h after EPO vitreous injection and the retina was separated. HE staining was applied to observe the pathological tissue morphology. Immunohistochemistry, immunofluorescence, and Western blot were used to detect BDNF, TrkB, extracellular signal-regulated kinase (ERK), and glial fibrillary acidic portein (GFAP) expression. Retinal structure was clear in group C, while the retinal thickness and RGCs number decreased in group B at 24 w. Retinal thickness in group E was greater than in group B but lower than in group C. GFAP and ERK expression increased in both group B and E, whereas the latter was significantly lower than the former. TrkB protein level was in group E > B > C at 4 w, while it was in group C > group E > group B at 24 w. BDNF expression in group B was higher than in group C at 4 w, whereas it was opposite at 24 w. BDNF expression increased in group E at 4 w, and it was similar in group E compared with group C at 24 w. EPO vitreous injection can increase BDNF and TrkB expression, while reduce GFAP and ERK expression in diabetes rat retina. It could protect Müller cells through BDNF/TrkB pathway to play a role of nerve nutrition. PMID:26339375

  17. Activity-Based Anorexia Alters the Expression of BDNF Transcripts in the Mesocorticolimbic Reward Circuit

    PubMed Central

    Ho, Emily V.; Klenotich, Stephanie J.; McMurray, Matthew S.; Dulawa, Stephanie C

    2016-01-01

    Anorexia nervosa (AN) is a complex eating disorder with severe dysregulation of appetitive behavior. The activity-based anorexia (ABA) paradigm is an animal model in which rodents exposed to both running wheels and scheduled feeding develop aspects of AN including paradoxical hypophagia, dramatic weight loss, and hyperactivity, while animals exposed to only one condition maintain normal body weight. Brain-derived neurotrophic factor (BDNF), an activity-dependent modulator of neuronal plasticity, is reduced in the serum of AN patients, and is a known regulator of feeding and weight maintenance. We assessed the effects of scheduled feeding, running wheel access, or both on the expression of BDNF transcripts within the mesocorticolimbic pathway. We also assessed the expression of neuronal cell adhesion molecule 1 (NCAM1) to explore the specificity of effects on BDNF within the mesocorticolimbic pathway. Scheduled feeding increased the levels of both transcripts in the hippocampus (HPC), increased NCAM1 mRNA expression in the ventral tegmental area (VTA), and decreased BDNF mRNA levels in the medial prefrontal cortex (mPFC). In addition, wheel running increased BDNF mRNA expression in the VTA. No changes in either transcript were observed in the nucleus accumbens (NAc). Furthermore, no changes in either transcript were induced by the combined scheduled feeding and wheel access condition. These data indicate that scheduled feeding or wheel running alter BDNF and NCAM1 expression levels in specific regions of the mesocorticolimbic pathway. These findings contribute to our current knowledge of the molecular alterations induced by ABA and may help elucidate possible mechanisms of AN pathology. PMID:27861553

  18. Activity-Based Anorexia Alters the Expression of BDNF Transcripts in the Mesocorticolimbic Reward Circuit.

    PubMed

    Ho, Emily V; Klenotich, Stephanie J; McMurray, Matthew S; Dulawa, Stephanie C

    2016-01-01

    Anorexia nervosa (AN) is a complex eating disorder with severe dysregulation of appetitive behavior. The activity-based anorexia (ABA) paradigm is an animal model in which rodents exposed to both running wheels and scheduled feeding develop aspects of AN including paradoxical hypophagia, dramatic weight loss, and hyperactivity, while animals exposed to only one condition maintain normal body weight. Brain-derived neurotrophic factor (BDNF), an activity-dependent modulator of neuronal plasticity, is reduced in the serum of AN patients, and is a known regulator of feeding and weight maintenance. We assessed the effects of scheduled feeding, running wheel access, or both on the expression of BDNF transcripts within the mesocorticolimbic pathway. We also assessed the expression of neuronal cell adhesion molecule 1 (NCAM1) to explore the specificity of effects on BDNF within the mesocorticolimbic pathway. Scheduled feeding increased the levels of both transcripts in the hippocampus (HPC), increased NCAM1 mRNA expression in the ventral tegmental area (VTA), and decreased BDNF mRNA levels in the medial prefrontal cortex (mPFC). In addition, wheel running increased BDNF mRNA expression in the VTA. No changes in either transcript were observed in the nucleus accumbens (NAc). Furthermore, no changes in either transcript were induced by the combined scheduled feeding and wheel access condition. These data indicate that scheduled feeding or wheel running alter BDNF and NCAM1 expression levels in specific regions of the mesocorticolimbic pathway. These findings contribute to our current knowledge of the molecular alterations induced by ABA and may help elucidate possible mechanisms of AN pathology.

  19. Oxidative Stress: A Master Regulator of Plant Trade-Offs?

    PubMed

    Morales, Melanie; Munné-Bosch, Sergi

    2016-12-01

    Trade-offs between growth, reproduction, and defence have been documented. Oxidative stress is one of the physiological mechanisms that underlie trade-offs at the cellular and organ levels. The diversity of plant life forms and the complexity of scaling up limit our knowledge of oxidative stress as a universal mediator of life-history trade-offs at the organism level. Joint efforts by plant physiologists and ecologists will undoubtedly provide novel insights into this topic in the near future.

  20. Interactive actions of Bdnf methylation and cell metabolism for building neural resilience under the influence of diet

    PubMed Central

    Tyagi, Ethika; Zhuang, Yumei; Agrawal, Rahul; Ying, Zhe; Gomez-Pinilla, Fernando

    2015-01-01

    Quality nutrition during the period of brain formation is a predictor of brain functional capacity and plasticity during adulthood; however it is not clear how this conferred plasticity imparts long-term neural resilience. Here we report that early exposure to dietary omega-3 fatty acids orchestrates key interactions between metabolic signals and Bdnf methylation creating a reservoir of neuroplasticity that can protect the brain against the deleterious effects of switching to a western diet (WD). We observed that the switch to a WD increased Bdnf methylation specific to exon IV, in proportion to anxiety-like behavior, in Sprague Dawley rats reared in low omega-3 fatty acid diet, and these effects were abolished by the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine. Blocking methylation also counteracted the reducing action of WD on the transcription regulator CTCF binding to Bdnf promoter IV. In vitro studies confirmed that CTCF binding to Bdnf promoter IV is essential for the action of DHA on BDNF regulation. Diet is also intrinsically associated to cell metabolism, and here we show that the switch to WD downregulated cell metabolism (NAD/NADH ratio and SIRT1). The fact that DNA methyltransferase inhibitor did not alter these parameters suggests they occur upstream to methylation. In turn, the methylation inhibitor counteracted the action of WD on PGC-1α, a mitochondrial transcription co-activator and BDNF regulator, suggesting that PGC-1α is an effector of Bdnf methylation. Results support a model in which diet can build an “epigenetic memory” during brain formation that confers resilience to metabolic perturbations occurring in adulthood. PMID:25283985

  1. 40 CFR 52.1601 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: Sulfur oxides. 52.1601 Section 52.1601 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 52.1601 Control strategy and regulations: Sulfur oxides. (a) The applicable limitation on the sulfur... permit applied for that would authorize a relaxation in the sulfur-in-coal limitation at any...

  2. 40 CFR 52.1601 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: Sulfur oxides. 52.1601 Section 52.1601 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 52.1601 Control strategy and regulations: Sulfur oxides. (a) The applicable limitation on the sulfur... permit applied for that would authorize a relaxation in the sulfur-in-coal limitation at any...

  3. 40 CFR 52.1601 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: Sulfur oxides. 52.1601 Section 52.1601 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 52.1601 Control strategy and regulations: Sulfur oxides. (a) The applicable limitation on the sulfur... permit applied for that would authorize a relaxation in the sulfur-in-coal limitation at any...

  4. 40 CFR 52.1601 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: Sulfur oxides. 52.1601 Section 52.1601 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 52.1601 Control strategy and regulations: Sulfur oxides. (a) The applicable limitation on the sulfur... permit applied for that would authorize a relaxation in the sulfur-in-coal limitation at any...

  5. 40 CFR 52.1601 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: Sulfur oxides. 52.1601 Section 52.1601 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 52.1601 Control strategy and regulations: Sulfur oxides. (a) The applicable limitation on the sulfur... permit applied for that would authorize a relaxation in the sulfur-in-coal limitation at any...

  6. Quantitative Analysis of BDNF/TrkB Protein and mRNA in Cortical and Striatal Neurons Using α-Tubulin as a Normalization Factor

    PubMed Central

    Ma, Bin; Savas, Jeffrey N.; Chao, Moses V.; Tanese, Naoko

    2013-01-01

    The neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase TrkB serve important regulatory roles for multiple aspects of the biology of neurons including cell death, survival, growth, differentiation, and plasticity. Regulation of the local availability of BDNF/TrkB at distinct subcellular domains such as soma, dendrites, axons, growth cones, nerve terminals, and spines appears to contribute to their specific functions. In view of the variance in size and shape of neurons and their compartments, previous quantitative studies of the BDNF/TrkB protein and mRNA lacked a robust normalization procedure. To overcome this problem, we have established methods that use immunofluorescence detection of α-tubulin as a normalization factor for the quantitative analysis of protein and mRNA in primary rat cortical and striatal neurons in culture. The efficacy of this approach is demonstrated by studying the dynamic distribution of proteins and mRNA at different growth stages or conditions. Treatment of cultured neurons with KCl resulted in increased levels of TrkB protein, reduced levels of BDNF mRNA (composite of multiple transcripts) and a slight reduction in BDNF protein levels in the dendrites from the cortex. The KCl treatment also lowered the percentage of BDNF and TrkB proteins in the soma indicative of protein transport. Finally, analysis of the rat cortical and striatal neurons demonstrated comparable or even higher levels of BDNF/TrkB protein and BDNF mRNA in the neurons from the striatum. Thus, in contrast to previous observations made in vivo, striatal neurons are capable of synthesizing BDNF mRNA when cultured in growth media in vitro. The analytical approach presented here provides a detailed understanding of BDNF/TrkB levels in response to a variety of neuronal activities. Our methods could be used broadly, including applications in cell and tissue cytometry, to yield accurate quantitative data of gene expression in cellular and

  7. Cellular hybridization for BDNF, trkB, and NGF mRNAs and BDNF-immunoreactivity in rat forebrain after pilocarpine-induced status epilepticus.

    PubMed

    Schmidt-Kastner, R; Humpel, C; Wetmore, C; Olson, L

    1996-01-01

    The messenger RNAs (mRNAs) for the neurotrophins, brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF), are upregulated during epileptic seizure activity, as visualized by in situ hybridization techniques. Neurotrophins might be protective against excitotoxic cell stress, and the upregulation during seizures might provide such cell protection. In this study, a high dose of pilocarpine (300 mg/kg) was used to induce long-lasting, limbic motor status epilepticus and a selective pattern of brain damage. The regulation of BDNF, trkB, and NGF mRNA was studied by in situ hybridization at 1, 3, 6, and 24 h after induction of limbic motor status epilepticus. BDNF immunoreactivity was examined with an anti-peptide antibody and the neuropathological process studied in parallel. BDNF mRNA increased in hippocampus, neocortex, piriform cortex, striatum, and thalamus with a maximum at 3-6 h. Hybridization levels increased earlier in the resistant granule and CA1 cells as compared to the vulnerable CA3 neurons. BDNF immunoreactivity was elevated in dentate gyrus at 3-6 h. trkB mRNA increased in the entire hippocampus. NGF mRNA in hippocampus appeared in dentate gyrus at 3-6 h and declined in hilar neurons at 6-24 h. Cell damage was found in the CA3 area, entire basal cortex, and layers II/III of neocortex. Endogenous neurotrophins are upregulated during status epilepticus caused by pilocarpine, which is related to the coupling between neuronal excitation and trophic factor expression. This upregulation of neurotrophic factors may serve endogenous protective effects; however, the excessive levels of neuronal hyperexcitation resulting from pilocarpine seizures lead to cell damage which cannot be prevented by endogenous neurotrophins.

  8. BDNF parabrachio-amygdaloid pathway in morphine-induced analgesia.

    PubMed

    Sarhan, Maysa; Pawlowski, Sophie Anne; Barthas, Florent; Yalcin, Ipek; Kaufling, Jennifer; Dardente, Hugues; Zachariou, Venetia; Dileone, Ralph Joseph; Barrot, Michel; Veinante, Pierre

    2013-08-01

    In addition to its neurotrophic role, brain-derived neurotrophic factor (BDNF) is involved in a wide array of functions, including anxiety and pain. The central amygdaloid nucleus (CeA) contains a high concentration of BDNF in terminals, originating from the pontine parabrachial nucleus. Since the spino-parabrachio-amygdaloid neural pathway is known to convey nociceptive information, we hypothesized a possible involvement of BDNF in supraspinal pain-related processes. To test this hypothesis, we generated localized deletion of BDNF in the parabrachial nucleus using local bilateral injections of adeno-associated viruses in adult floxed-BDNF mice. Basal thresholds of thermal and mechanical nociceptive responses were not altered by BDNF loss and no behavioural deficit was noticed in anxiety and motor tests. However, BDNF-deleted animals displayed a major decrease in the analgesic effect of morphine. In addition, intra-CeA injections of the BDNF scavenger TrkB-Fc in control mice also decreased morphine-induced analgesia. Finally, the number of c-Fos immunoreactive nuclei after acute morphine injection was decreased by 45% in the extended amygdala of BDNF-deleted animals. The absence of BDNF in the parabrachial nucleus thus altered the parabrachio-amygdaloid pathway. Overall, our study provides evidence that BDNF produced in the parabrachial nucleus modulates the functions of the parabrachio-amygdaloid pathway in opiate analgesia.

  9. Blood BDNF Level Is Gender Specific in Severe Depression

    PubMed Central

    Kreinin, Anatoly; Lisson, Serah; Nesher, Elimelech; Schneider, Jenny; Bergman, Josef; Farhat, Kamal; Farah, Joseph; Lejbkowicz, Flavio; Yadid, Gal; Raskin, Leon; Koman, Igor; Pinhasov, Albert

    2015-01-01

    Though the role of brain derived neurotrophic factor (BDNF) as a marker for major depressive disorder (MDD) and antidepressant efficacy has been widely studied, the role of BDNF in distinct groups of patients remains unclear. We evaluated the diagnostic value of BDNF as a marker of disease severity measured by HAM-D scores and antidepressants efficacy among MDD patients. Fifty-one patients who met DSM-IV criteria for MDD and were prescribed antidepressants and 38 controls participated in this study. BDNF in serum was measured at baseline, 1st, 2nd and 8th treatment weeks. Depression severity was evaluated using the Hamilton Rating Scale for Depression (HAM-D). BDNF polymorphism rs6265 (val66met) was genotyped. We found a positive correlation between blood BDNF levels and severity of depression only among untreated women with severe MDD (HAM-D>24). Serum BDNF levels were lower in untreated MDD patients compared to control group. Antidepressants increased serum BDNF levels and reduced between-group differences after two weeks of treatment. No correlations were observed between BDNF polymorphism, depression severity, duration of illness, age and BDNF serum levels. Further supporting the role of BDNF in the pathology and treatment of MDD, we suggest that it should not be used as a universal biomarker for diagnosis of MDD in the general population. However, it has diagnostic value for the assessment of disease progression and treatment efficacy in individual patients. PMID:26010085

  10. Oxidative stress and DNA methylation regulation in the metabolic syndrome.

    PubMed

    Yara, Sabrina; Lavoie, Jean-Claude; Levy, Emile

    2015-01-01

    DNA methylation is implicated in tissue-specific gene expression and genomic imprinting. It is modulated by environmental factors, especially nutrition. Modified DNA methylation patterns may contribute to health problems and susceptibility to complex diseases. Current advances have suggested that the metabolic syndrome (MS) is a programmable disease, which is characterized by epigenetic modifications of vital genes when exposed to oxidative stress. Therefore, the main objective of this paper is to critically review the central context of MS while presenting the most recent knowledge related to epigenetic alterations that are promoted by oxidative stress. Potential pro-oxidant mechanisms that orchestrate changes in methylation profiling and are related to obesity, diabetes and hypertension are discussed. It is anticipated that the identification and understanding of the role of DNA methylation marks could be used to uncover early predictors and define drugs or diet-related treatments able to delay or reverse epigenetic changes, thereby combating MS burden.

  11. Induction of fear extinction with hippocampal-infralimbic BDNF.

    PubMed

    Peters, Jamie; Dieppa-Perea, Laura M; Melendez, Loyda M; Quirk, Gregory J

    2010-06-04

    The extinction of conditioned fear memories requires plasticity in the infralimbic medial prefrontal cortex (IL mPFC), but little is known about the molecular mechanisms involved. Brain-derived neurotrophic factor (BDNF) is a key mediator of synaptic plasticity in multiple brain areas. In rats subjected to auditory fear conditioning, BDNF infused into the IL mPFC reduced conditioned fear for up to 48 hours, even in the absence of extinction training, which suggests that BDNF substituted for extinction. Similar to extinction, BDNF-induced reduction in fear required N-methyl-D-aspartate receptors and did not erase the original fear memory. Rats failing to learn extinction showed reduced BDNF in hippocampal inputs to the IL mPFC, and augmenting BDNF in this pathway prevented extinction failure. Hence, boosting BDNF activity in hippocampal-infralimbic circuits may ameliorate disorders of learned fear.

  12. Central expression and anorectic effect of brain-derived neurotrophic factor are regulated by circulating estradiol levels.

    PubMed

    Zhu, Zheng; Liu, Xian; Senthil Kumar, Shiva Priya Dharshan; Zhang, Jing; Shi, Haifei

    2013-03-01

    Estrogens potently suppress food intake. Compelling evidence suggests that estradiol, the primary form of estrogens, reduces food intake by facilitating other anorectic signals. Brain-derived neurotrophic factor (BDNF), like estradiol, appears to suppress food intake by affecting meal size. We hypothesized that estradiol modulates Bdnf expression and the anorectic effect of BDNF. The first goal was to determine whether Bdnf expression was regulated by endogenous estradiol of cycling rats and by cyclic estradiol treatment using ovariectomized rats. Bdnf expression within the ventromedial nucleus of hypothalamus (VMH) was temporally elevated at estrus following the estradiol peak, which coincided with the decline in feeding at this phase of the ovarian cycle. Additionally, food intake and body weight were increased following ovariectomy with a parallel decrease in Bdnf expression in the VMH. All of these alterations were reversed by cyclic estradiol treatment, suggesting that Bdnf expression within the VMH was regulated in an estradiol-dependent manner. The second goal was to determine whether estradiol modulates the anorectic effect of BDNF. Sham-operated estrous rats and ovariectomized rats cyclically treated with estradiol responded to a lower dose of central administration of BDNF to decrease food intake than male rats and oil-treated ovariectomized rats, implying that endogenous estradiol or cyclic estradiol replacement increased the sensitivity to anorectic effect of BDNF. These data indicate that Bdnf expression within the VMH and the anorectic effect of BDNF varied depending on plasma estradiol levels, suggesting that estradiol may regulate BDNF signaling to regulate feeding.

  13. BDNF — a key transducer of antidepressant effects

    PubMed Central

    Björkholm, Carl; Monteggia, Lisa M.

    2016-01-01

    How do antidepressants elicit an antidepressant response? Here, we review accumulating evidence that the neurotrophin brain-derived neurotrophic factor (BDNF) serves as a transducer, acting as the link between the antidepressant drug and the neuroplastic changes that result in the improvement of the depressive symptoms. Over the last decade several studies have consistently highlighted BDNF as a key player in antidepressant action. An increase in hippocampal and cortical expression of BDNF mRNA parallels the antidepressant-like response of conventional antidepressants such as SSRIs. Subsequent studies showed that a single bilateral infusion of BDNF into the ventricles or directly into the hippocampus is sufficient to induce a relatively rapid and sustained antidepressant-like effect. Importantly, the antidepressant-like response to conventional antidepressants is attenuated in mice where the BDNF signaling has been disrupted by genetic manipulations. Low dose ketamine, which has been found to induce a rapid antidepressant effect in patients with treatment-resistant depression, is also dependent on increased BDNF signaling. Ketamine transiently increases BDNF translation in hippocampus, leading to enhanced synaptic plasticity and synaptic strength. Ketamine has been shown to increase BDNF translation by blocking NMDA receptor activity at rest, thereby inhibiting calcium influx and subsequently halting eukaryotic elongation factor 2 (eEF2) kinase leading to a desuppression of protein translation, including BDNF translation. The antidepressant-like response of ketamine is abolished in BDNF and TrkB conditional knockout mice, eEF2 kinase knockout mice, in mice carrying the BDNF met/met allele, and by intra-cortical infusions of BDNF-neutralizing antibodies. In summary, current data suggests that conventional antidepressants and ketamine mediate their antidepressant-like effects by increasing BDNF in forebrain regions, in particular the hippocampus, making BDNF an

  14. Transcriptional regulators of oxidative stress-inducible genes in prokaryotes and eukaryotes.

    PubMed

    Storz, G; Polla, B S

    1996-01-01

    It appears that redox regulation is an important mechanism for the control of transcription factor activation. The role of oxidation-reduction is probably determined in part by the structure of the transcription factors. For example, the presence of cysteine residues within the DNA binding sites may sensitize a transcription factor to ROS. The ROS-mediated regulation of transcription factors is specific, some ROS are more efficient than other ROS in activating defined regulators. While the protective antioxidant responses induced by ROS in prokaryotes and eukaryotes are rather conserved (for example, SOD, HSP...), the regulators for these genes do not appear to be conserved. Further studies designed to fully characterize these regulators and understand the subtle mechanisms involved in redox gene regulation are ongoing, and should provide the theoretical basis for clinical approaches using antioxidant therapies in human diseases in which oxidative stress is implicated.

  15. BDNF Val66met and 5-HTTLPR polymorphisms predict a human in vivo marker for brain serotonin levels.

    PubMed

    Fisher, Patrick M; Holst, Klaus K; Adamsen, Dea; Klein, Anders Bue; Frokjaer, Vibe G; Jensen, Peter S; Svarer, Claus; Gillings, Nic; Baare, William F C; Mikkelsen, Jens D; Knudsen, Gitte M

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) has been implicated in multiple aspects of brain function including regulation of serotonin signaling. The BDNF val66met polymorphism (rs6265) has been linked to aspects of serotonin signaling in humans but its effects are not well understood. To address this, we evaluated whether BDNF val66met was predictive of a putative marker of brain serotonin levels, serotonin 4 receptor (5-HT4 ) binding assessed with [11C]SB207145 positron emission tomography, which has also been associated with the serotonin-transporter-linked polymorphic region (5-HTTLPR) polymorphism. We applied a linear latent variable model (LVM) using regional 5-HT4 binding values (neocortex, amygdala, caudate, hippocampus, and putamen) from 68 healthy humans, allowing us to explicitly model brain-wide and region-specific genotype effects on 5-HT4 binding. Our data supported an LVM wherein BDNF val66met significantly predicted a LV reflecting [11C]SB207145 binding across regions (P = 0.005). BDNF val66met met-carriers showed 2-9% higher binding relative to val/val homozygotes. In contrast, 5-HTTLPR did not predict the LV but S-carriers showed 7% lower neocortical binding relative to LL homozygotes (P = 7.3 × 10(-6)). We observed no evidence for genetic interaction. Our findings indicate that BDNF val66met significantly predicts a common regulator of brain [11C]SB207145 binding, which we hypothesize reflects brain serotonin levels. In contrast, our data indicate that 5-HTTLPR specifically affects 5-HT4 binding in the neocortex. These findings implicate serotonin signaling as an important molecular mediator underlying the effects of BDNF val66met and 5-HTTLPR on behavior and related risk for neuropsychiatric illness in humans. © 2014 Wiley Periodicals, Inc.

  16. Iron oxides, dissolved silica, and regulation of marine phosphate concentration

    NASA Astrophysics Data System (ADS)

    Planavsky, N.; Reinhard, C.; Lyons, T.

    2008-12-01

    Phosphorous concentrations in iron oxide-rich sediments reflect orthophosphate levels in the water column from which iron oxides precipitated. Sediment P/Fe ratios are also strongly influenced by the concentrations of dissolved species that inhibit orthophosphate-to-ferrihydrite sorption, most notably silica. It may, therefore, be possible to use P/Fe ratios in iron oxide-rich sediments to estimate past dissolved P concentrations, if one considers the evolution of the silica cycle. A compilation of Fe and P data in iron oxide-rich sediments through time reveals an increase in P/Fe ratios after the Jurassic. We propose that this trend indicates evolution of the iron-oxide phosphate removal mechanism caused by decreasing levels of sorption inhibition by dissolved silica. The large difference in P/Fe ratios in Cenozoic versus older iron-oxide rich sediments can be linked with Si drawdown caused by the proliferation of siliceous plankton in the Cretaceous. There is also a late Mesozoic or Cenozoic increase in V/Fe ratios, which provides additional evidence for lower ferrihydrite anion sorption efficiency prior to diatom radiation. P/Fe ratios in iron oxide-rich sediments from the early and middle Phanerozoic are comparable to the ratios in iron formations previously presented as evidence for an early Precambrian phosphate crisis (Bjerrum and Canfield, 2002, Nature, 417:159-162). Given the compelling evidence for higher Si concentrations in the Precambrian compared to the Phanerozoic and dissolved P concentrations comparable to modern levels throughout the Phanerozoic, the presented trend of P/Fe ratios suggests dissolved P concentrations were higher in Precambrian than Phanerozoic oceans. High dissolved P levels in the Precambrian may have been linked to inhibited carbonate fluorapatite (CFA) formation as a result of persistently high levels of carbonate supersaturation. Carbonate ion substitution into CFA scales with the ambient carbonate ion activity and increases

  17. Alterations in BDNF (brain derived neurotrophic factor) and GDNF (glial cell line-derived neurotrophic factor) serum levels in bipolar disorder: The role of lithium.

    PubMed

    Tunca, Zeliha; Ozerdem, Aysegul; Ceylan, Deniz; Yalçın, Yaprak; Can, Güneş; Resmi, Halil; Akan, Pınar; Ergör, Gül; Aydemir, Omer; Cengisiz, Cengiz; Kerim, Doyuran

    2014-09-01

    Brain-derived neurotrophic factor (BDNF) has been consistently reported to be decreased in mania or depression in bipolar disorders. Evidence suggests that Glial cell line-derived neurotrophic factor (GDNF) has a role in the pathogenesis of mood disorders. Whether GDNF and BDNF act in the same way across different episodes in bipolar disorders is unclear. BDNF and GDNF serum levels were measured simultaneously by enzyme-linked immunosorbent assay (ELISA) method in 96 patients diagnosed with bipolar disorder according to DSM-IV (37 euthymic, 33 manic, 26 depressed) in comparison to 61 healthy volunteers. SCID- I and SCID-non patient version were used for clinical evaluation of the patients and healthy volunteers respectively. Correlations between the two trophic factor levels, and medication dose, duration and serum levels of lithium or valproate were studied across different episodes of illness. Patients had significantly lower BDNF levels during mania and depression compared to euthymic patients and healthy controls. GDNF levels were not distinctive. However GDNF/BDNF ratio was higher in manic state compared to euthymia and healthy controls. Significant negative correlation was observed between BDNF and GDNF levels in euthymic patients. While BDNF levels correlated positively, GDNF levels correlated negatively with lithium levels. Regression analysis confirmed that lithium levels predicted only GDNF levels positively in mania, and negatively in euthymia. Small sample size in different episodes and drug-free patients was the limitation of thestudy. Current data suggests that lithium exerts its therapeutic action by an inverse effect on BDNF and GDNF levels, possibly by up-regulating BDNF and down-regulating GDNF to achieve euthymia. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Role of Nitric Oxide in the Regulation of Renin and Vasopressin Secretion

    NASA Technical Reports Server (NTRS)

    Reid, Ian A.

    1994-01-01

    Research during recent years has established nitric oxide as a unique signaling molecule that plays important roles in the regulation of the cardiovascular, nervous, immune, and other systems. Nitric oxide has also been implicated in the control of the secretion of hormones by the pancreas, hypothalamus, and anterior pituitary gland, and evidence is accumulating that it contributes to the regulation of the secretion of renin and vasopressin, hormones that play key roles in the control of sodium and water balance. Several lines of evidence have implicated nitric oxide in the control of renin secretion. The enzyme nitric oxide synthase is present in vascular and tubular elements of the kidney, particularly in cells of the macula densa, a structure that plays an important role in the control of renin secretion. Guanylyl cyclase, a major target for nitric oxide, is also present in the kidney. Drugs that inhibit nitric oxide synthesis generally suppress renin release in vivo and in vitro, suggesting a stimulatory role for the L-arginine/nitric oxide pathway in the control of renin secretion. Under some conditions, however, blockade of nitric oxide synthesis increases renin secretion. Recent studies indicate that nitric oxide not only contributes to the regulation of basal renin secretion, but also participates in the renin secretory responses to activation of the renal baroreceptor, macula densa, and beta adrenoceptor mechanisms that regulate renin secretion. Histochemical and immunocytochemical studies have revealed the presence of nitric oxide synthase in the supraoptic and paraventricular nuclei of the hypothalamus and in the posterior pituitary gland. Colocalization of nitric oxide synthase and vasopressin has been demonstrated in some hypothalamic neurons. Nitric oxide synthase activity in the hypothalamus and pituitary is increased by maneuvers known to stimulate vasopressin secretion, including salt loading and dehydration, Administration of L-arginine and nitric

  19. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System.

    PubMed

    Liu, Fu-Wei; Liu, Fu-Chao; Wang, Yu-Ren; Tsai, Hsin-I; Yu, Huang-Ping

    2015-01-01

    Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system.

  20. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System

    PubMed Central

    Wang, Yu-Ren; Tsai, Hsin-I; Yu, Huang-Ping

    2015-01-01

    Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system. PMID:26637174

  1. Protein oxidation mediated by heme-induced active site conversion specific for heme-regulated transcription factor, iron response regulator.

    PubMed

    Kitatsuji, Chihiro; Izumi, Kozue; Nambu, Shusuke; Kurogochi, Masaki; Uchida, Takeshi; Nishimura, Shin-ichiro; Iwai, Kazuhiro; O'Brian, Mark R; Ikeda-Saito, Masao; Ishimori, Koichiro

    2016-01-05

    The Bradyrhizobium japonicum transcriptional regulator Irr (iron response regulator) is a key regulator of the iron homeostasis, which is degraded in response to heme binding via a mechanism that involves oxidative modification of the protein. Here, we show that heme-bound Irr activates O2 to form highly reactive oxygen species (ROS) with the "active site conversion" from heme iron to non-heme iron to degrade itself. In the presence of heme and reductant, the ROS scavenging experiments show that Irr generates H2O2 from O2 as found for other hemoproteins, but H2O2 is less effective in oxidizing the peptide, and further activation of H2O2 is suggested. Interestingly, we find a time-dependent decrease of the intensity of the Soret band and appearance of the characteristic EPR signal at g = 4.3 during the oxidation, showing the heme degradation and the successive formation of a non-heme iron site. Together with the mutational studies, we here propose a novel "two-step self-oxidative modification" mechanism, during which O2 is activated to form H2O2 at the heme regulatory motif (HRM) site and the generated H2O2 is further converted into more reactive species such as ·OH at the non-heme iron site in the His-cluster region formed by the active site conversion.

  2. Regulation of nitric oxide synthesis by dimethylarginine dimethylaminohydrolase.

    PubMed Central

    MacAllister, R. J.; Parry, H.; Kimoto, M.; Ogawa, T.; Russell, R. J.; Hodson, H.; Whitley, G. S.; Vallance, P.

    1996-01-01

    1. Dimethylarginine dimethylaminohydrolase (DDAH), an enzyme that metabolizes the endogenous nitric oxide synthase inhibitors NG-monomethyl-arginine and NG,NG-dimethy-L-arginine to citrulline, was identified by Western blotting in rat and human tissue homogenates. 2. S-2-amino-4(3-methylguanidino)butanoic acid (4124W) inhibited the metabolism of [14C]-NG-monomethyl-L-arginine to [14C]-citrulline by rat liver homogenates (IC50 416 +/- 66 microM; n = 9), human cultured endothelial cells (IC50 250 +/- 34 microM; n = 9) and isolated purified dimethylarginine dimethylaminohydrolase. 3. Addition of 4124W to culture medium increased the accumulation of endogenously-generated NG,NG-dimethy-L-arginine in the supernatant of human cultured endothelial cells from 3.1 +/- 0.3 to 5 +/- 0.7 microM (n = 15; P < 0.005). 4. 4124W (1 microM - 1 mM) had no direct effect on endothelial nitric oxide synthase activity but caused endothelium-dependent contraction of rat aortic rings (1 mM 4124W increased tone by 81.5 +/- 9.6% of that caused by phenylephrine 100 nM). This effect was reversed by L-arginine (100 microM). 4124W reversed endothelium-dependent relaxation of human saphenous vein (19.2 +/- 6.7% reversal of bradykinin-induced relaxation at 1 mM 4124W). 5. These data suggest that inhibition of dimethylarginine dimethylaminohydrolase increases the intracellular contraction of NG,NG-dimethyl-L-arginine sufficiently to inhibit nitric oxide synthesis. Inhibiting the activity of DDAH may provide an alternative mechanism for inhibition of nitric oxide synthases and changes in the activity of DDAH could contribute to pathophysiological alterations in NO generation. Images Figure 1 Figure 2 Figure 3 PMID:8982498

  3. The BDNF Val66Met Polymorphism Modulates Sleep Intensity: EEG Frequency- and State-Specificity

    PubMed Central

    Bachmann, Valérie; Klein, Carina; Bodenmann, Sereina; Schäfer, Nikolaus; Berger, Wolfgang; Brugger, Peter; Landolt, Hans-Peter

    2012-01-01

    Study Objectives: EEG slow waves are the hallmark of deep NREM sleep and may reflect the restorative functions of sleep. Evidence suggests that increased sleep slow waves after sleep deprivation reflect plastic synaptic processes, and that brain-derived neurotrophic factor (BDNF) is causally involved in their homeostatic regulation. The functional Val66Met polymorphism of the gene encoding pro-BDNF causes impaired activity-dependent secretion of mature BDNF protein. We investigated whether this polymorphism contributes to the pronounced inter-individual variation in sleep slow wave activity (SWA) in humans. Setting: Sleep laboratory in temporal isolation unit. Participants: Eleven heterozygous Met allele carriers and 11 individually sex- and age-matched Val/Val homozygotes. Interventions: Forty hours prolonged wakefulness. Measurements and Results: Cognitive performance, subjective state, and waking and sleep EEG in baseline and after sleep deprivation were studied. Val/Val homozygotes showed better response accuracy than Met allele carriers on a verbal 2-back working memory task. This difference did not reflect genotype-dependent differences in sleepiness, well-being, or sustained attention. In baseline and recovery nights, deep stage 4 sleep and NREM sleep intensity as quantified by EEG SWA (0.75-4.5 Hz) were higher in Val/Val compared to Val/Met genotype. Similar to sleep deprivation, the difference was most pronounced in the first NREM sleep episode. By contrast, increased activity in higher EEG frequencies (> 6 Hz) in wakefulness and REM sleep was distinct from the effects of prolonged wakefulness. Conclusion: BDNF contributes to the regulation of sleep slow wave oscillations, suggesting that genetically determined variation in neuronal plasticity modulates NREM sleep intensity in humans. Citation: Bachmann V; Klein C; Bodenmann S; Schäfer N; Berger W; Brugger P; Landolt HP. The BDNF Val66Met polymorphism modulates sleep intensity: EEG frequency- and state

  4. Calorie restriction improves cognitive decline via up-regulation of brain-derived neurotrophic factor: tropomyosin-related kinase B in hippocampus ofobesity-induced hypertensive rats.

    PubMed

    Kishi, Takuya; Hirooka, Yoshitaka; Nagayama, Tomomi; Isegawa, Kengo; Katsuki, Masato; Takesue, Ko; Sunagawa, Kenji

    2015-01-01

    In metabolic syndrome (MetS), previous studies have suggested that cognitive decline is worsened. Among the factors associated with cognition, decreased brain-derived neurotrophic factor (BDNF) in the hippocampus causes cognitive decline. We previously reported that exercise training with calorie restriction yielded protection against cognitive decline via BDNF in the hippocampus of hypertensive rats. The aim of the present study was to determine whether or not calorie restriction results in protection against cognitive decline via BDNF and its receptor tropomyosin-related kinase B (TrkB) in the hippocampus of MetS model rats. We divided dietary-induced obesity-prone and hypertensive rats (OP), as metabolic syndrome model rats, into three groups, fed with a high fat diet (HF), treated with calorie restriction (CR) plus vehicle, and treated with CR and ANA-12 (a TrkB antagonist) (CR+A). After treatment for 28 days, body weight, insulin, fasting blood glucose, adiponectin, systolic blood pressure, and oxidative stress in the hippocampus were significantly lower, and BDNF expression in the hippocampus was significantly higher in CR and CR+A than in HF. Cognitive performance determined by the Morris water maze test was significantly higher in CR than in HF, whereas the benefit was attenuated in CR+A. In conclusion, calorie restriction protects against cognitive decline via up-regulation of BDNF/TrkB through an antioxidant effect in the hippocampus of dietary-induced obesity rats.

  5. Mitochondrial oxidant stress in locus coeruleus is regulated by activity and nitric oxide synthase

    PubMed Central

    Sanchez–Padilla, J.; Guzman, J.N.; Ilijic, E.; Kondapalli, J.; Galtieri, D.J.; Yang, B.; Schieber, S.; Oertel, W.; Wokosin, D.; Schumacker, P. T.; Surmeier, D. J.

    2014-01-01

    Summary Loss of noradrenergic locus coeruleus (LC) neurons is a prominent feature of aging–related neurodegenerative diseases, like Parkinson’s disease (PD). The basis of this vulnerability is not understood. To explore possible physiological determinants, LC neurons were studied using electrophysiological and optical approaches in ex vivo mouse brain slices. These studies revealed that autonomous activity in LC neurons was accompanied by oscillations in dendritic Ca2+ concentration attributable to opening of L–type Ca2+ channels. This oscillation elevated mitochondrial oxidant stress and was attenuated by inhibition of nitric oxide synthase. The relationship between activity and stress was malleable, as arousal and carbon dioxide, each increased the spike rate, but differentially affected mitochondrial oxidant stress. Oxidant stress also was increased in an animal model of PD. Thus, our results point to activity–dependent Ca2+ entry and a resulting mitochondrial oxidant stress as factors contributing to the vulnerability of LC neurons. PMID:24816140

  6. The brain-uterus connection: brain derived neurotrophic factor (BDNF) and its receptor (Ntrk2) are conserved in the mammalian uterus.

    PubMed

    Wessels, Jocelyn M; Wu, Liang; Leyland, Nicholas A; Wang, Hongmei; Foster, Warren G

    2014-01-01

    The neurotrophins are neuropeptides that are potent regulators of neurite growth and survival. Although mainly studied in the brain and nervous system, recent reports have shown that neurotrophins are expressed in multiple target tissues and cell types throughout the body. Additionally, dysregulation of neurotrophins has been linked to several disease conditions including Alzheimer's, Parkinson's, Huntington's, psychiatric disorders, and cancer. Brain derived neurotrophic factor (BDNF) is a member of the neurotrophin family that elicits its actions through the neurotrophic tyrosine receptor kinase type 2 (Ntrk2). Together BDNF and Ntrk2 are capable of activating the adhesion, angiogenesis, apoptosis, and proliferation pathways. These pathways are prominently involved in reproductive physiology, yet a cross-species examination of BDNF and Ntrk2 expression in the mammalian uterus is lacking. Herein we demonstrated the conserved nature of BDNF and Ntrk2 across several mammalian species by mRNA and protein sequence alignment, isolated BDNF and Ntrk2 transcripts in the uterus by Real-Time PCR, localized both proteins to the glandular and luminal epithelium, vascular smooth muscle, and myometrium of the uterus, determined that the major isoforms expressed in the human endometrium were pro-BDNF, and truncated Ntrk2, and finally demonstrated antibody specificity. Our findings suggest that BDNF and Ntrk2 are transcribed, translated, and conserved across mammalian species including human, mouse, rat, pig, horse, and the bat.

  7. Impaired TrkB Signaling Underlies Reduced BDNF-Mediated Trophic Support of Striatal Neurons in the R6/2 Mouse Model of Huntington’s Disease

    PubMed Central

    Nguyen, Khanh Q.; Rymar, Vladimir V.; Sadikot, Abbas F.

    2016-01-01

    The principal projection neurons of the striatum are critically dependent on an afferent supply of brain derived neurotrophic factor (BDNF) for neurotrophic support. These neurons express TrkB, the cognate receptor for BDNF, which activates signaling pathways associated with neuronal survival and phenotypic maintenance. Impairment of the BDNF-TrkB pathway is suspected to underlie the early dysfunction and prominent degeneration of striatal neurons in Huntington disease (HD). Some studies in HD models indicate that BDNF supply is reduced, while others suggest that TrkB signaling is impaired earlier in disease progression. It remains important to determine whether a primary defect in TrkB signaling underlies reduced neurotrophic support and the early vulnerability of striatal neurons in HD. Using the transgenic R6/2 mouse model of HD we found that prior to striatal degeneration there are early deficits in striatal protein levels of activated phospho-TrkB and the downstream-regulated protein DARPP-32. In contrast, total-TrkB and BDNF protein levels remained normal. Primary neurons cultured from R6/2 striatum exhibited reduced survival in response to exogenous BDNF applications. Moreover, BDNF activation of phospho-TrkB and downstream signal transduction was attenuated in R6/2 striatal cultures. These results suggest that neurotrophic support of striatal neurons is attenuated early in disease progression due to defects in TrkB signal transduction in the R6/2 model of HD. PMID:27013968

  8. Daily serum and salivary BDNF levels correlate with morning-evening personality type in women and are affected by light therapy.

    PubMed

    Tirassa, Paola; Iannitelli, Angela; Sornelli, Federica; Cirulli, Francesca; Mazza, Monica; Calza, Arianna; Alleva, Enrico; Branchi, Igor; Aloe, Luigi; Bersani, Giuseppe; Pacitti, Francesca

    2012-01-01

    BDNF is present in human serum and its level changes have been used as a marker of antidepressant efficacy in some psychiatric disorders. In addition, the positive effects of light therapy on major depression suggest that circadian-regulated factors should be taken into account in the management of mood disorders. The aim of the present study was to test ultradian fluctuations in serum and salivary BDNF levels and their interaction with light therapy in a sample of healthy women. The study included 16 young women. Psychopathological status and chronotype traits were assessed by SPAQ, BDI, STAI, TAS, and MEQ. Standard light treatment protocol was applied. Serum and saliva were collected at 8.00, 13.00 and 20.00 hrs on the same day and at the end of light therapy. BDNF levels declined over the course of the day both in serum and saliva, and a correlation between diurnal BDNF trend and personality traits and habits characterizing the morning and evening types in healthy women was found. The present study is one of the first to show measurable BDNF in human saliva and to demonstrate its daily fluctuations in both saliva and serum of healthy young women. The correlation between diurnal changes in BDNF and the personality traits associated with body rhythms corroborates the notion that salivary BDNF may be a useful biomarker for stress-related research and different clinical investigations.

  9. Estrogen and brain-derived neurotrophic factor (BDNF) in hippocampus: complexity of steroid hormone-growth factor interactions in the adult CNS.

    PubMed

    Scharfman, Helen E; MacLusky, Neil J

    2006-12-01

    In the CNS, there are widespread and diverse interactions between growth factors and estrogen. Here we examine the interactions of estrogen and brain-derived neurotrophic factor (BDNF), two molecules that have historically been studied separately, despite the fact that they seem to share common targets, effects, and mechanisms of action. The demonstration of an estrogen-sensitive response element on the BDNF gene provided an impetus to explore a direct relationship between estrogen and BDNF, and predicted that the effects of estrogen, at least in part, might be due to the induction of BDNF. This hypothesis is discussed with respect to the hippocampus, where substantial evidence has accumulated in favor of it, but alternate hypotheses are also raised. It is suggested that some of the interactions between estrogen and BDNF, as well as the controversies and implications associated with their respective actions, may be best appreciated in light of the ability of BDNF to induce neuropeptide Y (NPY) synthesis in hippocampal neurons. Taken together, this tri-molecular cascade, estrogen-BDNF-NPY, may be important in understanding the hormonal regulation of hippocampal function. It may also be relevant to other regions of the CNS where estrogen is known to exert profound effects, such as amygdala and hypothalamus; and may provide greater insight into neurological disorders and psychiatric illness, including Alzheimer's disease, depression and epilepsy.

  10. The Brain-Uterus Connection: Brain Derived Neurotrophic Factor (BDNF) and Its Receptor (Ntrk2) Are Conserved in the Mammalian Uterus

    PubMed Central

    Wessels, Jocelyn M.; Wu, Liang; Leyland, Nicholas A.; Wang, Hongmei; Foster, Warren G.

    2014-01-01

    The neurotrophins are neuropeptides that are potent regulators of neurite growth and survival. Although mainly studied in the brain and nervous system, recent reports have shown that neurotrophins are expressed in multiple target tissues and cell types throughout the body. Additionally, dysregulation of neurotrophins has been linked to several disease conditions including Alzheimer's, Parkinson's, Huntington's, psychiatric disorders, and cancer. Brain derived neurotrophic factor (BDNF) is a member of the neurotrophin family that elicits its actions through the neurotrophic tyrosine receptor kinase type 2 (Ntrk2). Together BDNF and Ntrk2 are capable of activating the adhesion, angiogenesis, apoptosis, and proliferation pathways. These pathways are prominently involved in reproductive physiology, yet a cross-species examination of BDNF and Ntrk2 expression in the mammalian uterus is lacking. Herein we demonstrated the conserved nature of BDNF and Ntrk2 across several mammalian species by mRNA and protein sequence alignment, isolated BDNF and Ntrk2 transcripts in the uterus by Real-Time PCR, localized both proteins to the glandular and luminal epithelium, vascular smooth muscle, and myometrium of the uterus, determined that the major isoforms expressed in the human endometrium were pro-BDNF, and truncated Ntrk2, and finally demonstrated antibody specificity. Our findings suggest that BDNF and Ntrk2 are transcribed, translated, and conserved across mammalian species including human, mouse, rat, pig, horse, and the bat. PMID:24714156

  11. Tranquilizing and Allaying Excitement Needling Method Affects BDNF and SYP Expression in Hippocampus

    PubMed Central