Science.gov

Sample records for oxide regulates bdnf

  1. Regulation of hippocampal synaptic plasticity by BDNF.

    PubMed

    Leal, Graciano; Afonso, Pedro M; Salazar, Ivan L; Duarte, Carlos B

    2015-09-24

    The neurotrophin brain-derived neurotrophic factor (BDNF) has emerged as a major regulator of activity-dependent plasticity at excitatory synapses in the mammalian central nervous system. In particular, much attention has been given to the role of the neurotrophin in the regulation of hippocampal long-term potentiation (LTP), a sustained enhancement of excitatory synaptic strength believed to underlie learning and memory processes. In this review we summarize the evidence pointing to a role for BDNF in generating functional and structural changes at synapses required for both early- and late phases of LTP in the hippocampus. The available information regarding the pre- and/or postsynaptic release of BDNF and action of the neurotrophin during LTP will be also reviewed. Finally, we discuss the effects of BDNF on the synaptic proteome, either by acting on the protein synthesis machinery and/or by regulating protein degradation by calpains and possibly by the ubiquitin-proteasome system (UPS). This fine-tuned control of the synaptic proteome rather than a simple upregulation of the protein synthesis may play a key role in BDNF-mediated synaptic potentiation. This article is part of a Special Issue entitled SI: Brain and Memory. PMID:25451089

  2. Mixture of Peanut Skin Extract and Fish Oil Improves Memory in Mice via Modulation of Anti-Oxidative Stress and Regulation of BDNF/ERK/CREB Signaling Pathways

    PubMed Central

    Xiang, Lan; Cao, Xue-Li; Xing, Tian-Yan; Mori, Daisuke; Tang, Rui-Qi; Li, Jing; Gao, Li-Juan; Qi, Jian-Hua

    2016-01-01

    Long-term use of fish oil (FO) is known to induce oxidative stress and increase the risk of Alzheimer’s disease in humans. In the present study, peanut skin extract (PSE), which has strong antioxidant capacity, was mixed with FO to reduce its side effects while maintaining its beneficial properties. Twelve-week Institute of Cancer Research (ICR) mice were used to conduct animal behavior tests in order to evaluate the memory-enhancing ability of the mixture of peanut skin extract and fish oil (MPF). MPF significantly increased alternations in the Y-maze and cognitive index in the novel object recognition test. MPF also improved performance in the water maze test. We further sought to understand the mechanisms underlying these effects. A significant decrease in superoxide dismutase (SOD) activity and an increase in malonyldialdehyde (MDA) in plasma were observed in the FO group. The MPF group showed reduced MDA level and increased SOD activity in the plasma, cortex and hippocampus. Furthermore, the gene expression levels of brain-derived neurotrophic factor (BDNF) and cAMP responsive element-binding protein (CREB) in the hippocampus were increased in the MPF group, while phosphorylation of protein kinase B (AKT), extracellular signal-regulated kinase (ERK) and CREB in the hippocampus were enhanced. MPF improves memory in mice via modulation of anti-oxidative stress and activation of BDNF/ERK/CREB signaling pathways. PMID:27136583

  3. Mechanisms of BDNF regulation in asthmatic airway smooth muscle.

    PubMed

    Aravamudan, Bharathi; Thompson, Michael A; Pabelick, Christina M; Prakash, Y S

    2016-08-01

    Brain-derived neurotrophic factor (BDNF), a neurotrophin produced by airway smooth muscle (ASM), enhances inflammation effects on airway contractility, supporting the idea that locally produced growth factors influence airway diseases such as asthma. We endeavored to dissect intrinsic mechanisms regulating endogenous, as well as inflammation (TNF-α)-induced BDNF secretion in ASM of nonasthmatic vs. asthmatic humans. We focused on specific Ca(2+) regulation- and inflammation-related signaling cascades and quantified BDNF secretion. We find that TNF-α enhances BDNF release by ASM cells, via several mechanisms relevant to asthma, including transient receptor potential channels TRPC3 and TRPC6 (but not TRPC1), ERK 1/2, PI3K, PLC, and PKC cascades, Rho kinase, and transcription factors cAMP response element binding protein and nuclear factor of activated T cells. Basal BDNF expression and secretion are elevated in asthmatic ASM and increase further with TNF-α exposure, involving many of these regulatory mechanisms. We conclude that airway BDNF secretion is regulated at multiple levels, providing a basis for autocrine effects of BDNF under conditions of inflammation and disease, with potential downstream influences on contractility and remodeling. PMID:27317689

  4. BDNF, produced by a TPO-stimulated megakaryocytic cell line, regulates autocrine proliferation

    SciTech Connect

    Tamura, Shogo; Nagasawa, Ayumi; Masuda, Yuya; Tsunematsu, Tetsuya; Hayasaka, Koji; Matsuno, Kazuhiko; Shimizu, Chikara; Ozaki, Yukio; Moriyama, Takanori

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer It has been thought that BDNF is not produced in the megakaryocytic lineage. Black-Right-Pointing-Pointer MEG-01 produces BDNF upon TPO stimulation and regulates its proliferation. Black-Right-Pointing-Pointer BDNF accelerates proliferation of MEG-01 in an autocrine manner. Black-Right-Pointing-Pointer BDNF may be an autocrine MEG-CSF, which regulates megakaryopoiesis. -- Abstract: While human platelets release endogenous brain-derived neurotrophic factor (BDNF) upon activation, a previous report on MEG-01, a megakaryocytic cell line, found no trace of BDNF production, and the pathophysiological function of platelet BDNF has remained elusive. In the present study, we demonstrate that MEG-01 produces BDNF in the presence of TPO and that this serves to potentiate cell proliferation. Our in vitro findings suggest that BDNF regulates MEG-01 proliferation in an autocrine manner, and we suggest that BDNF may be a physiological autocrine regulator of megakaryocyte progenitors.

  5. Activity-dependent BDNF release via endocytic pathways is regulated by synaptotagmin-6 and complexin

    PubMed Central

    Wong, Yu-Hui; Lee, Chia-Ming; Xie, Wenjun; Cui, Bianxiao; Poo, Mu-ming

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) is known to modulate synapse development and plasticity, but the source of synaptic BDNF and molecular mechanisms regulating BDNF release remain unclear. Using exogenous BDNF tagged with quantum dots (BDNF-QDs), we found that endocytosed BDNF-QDs were preferentially localized to postsynaptic sites in the dendrite of cultured hippocampal neurons. Repetitive neuronal spiking induced the release of BDNF-QDs at these sites, and this process required activation of glutamate receptors. Down-regulating complexin 1/2 (Cpx1/2) expression eliminated activity-induced BDNF-QD secretion, although the overall activity-independent secretion was elevated. Among eight synaptotagmin (Syt) isoforms examined, down-regulation of only Syt6 impaired activity-induced BDNF-QD secretion. In contrast, activity-induced release of endogenously synthesized BDNF did not depend on Syt6. Thus, neuronal activity could trigger the release of endosomal BDNF from postsynaptic dendrites in a Cpx- and Syt6-dependent manner, and endosomes containing BDNF may serve as a source of BDNF for activity-dependent synaptic modulation. PMID:26216953

  6. Regulation of Energy Balance via BDNF Expressed in Nonparaventricular Hypothalamic Neurons.

    PubMed

    Yang, Haili; An, Juan Ji; Sun, Chao; Xu, Baoji

    2016-05-01

    Brain-derived neurotrophic factor (BDNF) expressed in the paraventricular hypothalamus (PVH) has been shown to play a key role in regulating energy intake and energy expenditure. BDNF is also expressed in other hypothalamic nuclei; however, the role in the control of energy balance for BDNF produced in these structures remains largely unknown. We found that deleting the Bdnf gene in the ventromedial hypothalamus (VMH) during embryogenesis using the Sf1-Cre transgene had no effect on body weight in mice. In contrast, deleting the Bdnf gene in the adult VMH using Cre-expressing virus led to significant hyperphagia and obesity. These observations indicate that the lack of a hyperphagia phenotype in the Sf1-Cre/Bdnf mutant mice is likely due to developmental compensation. To investigate the role of BDNF expressed in other hypothalamic areas, we employed the hypothalamus-specific Nkx2.1-Cre transgene to delete the Bdnf gene. We found that the Nkx2.1-Cre transgene could abolish BDNF expression in many hypothalamic nuclei, but not in the PVH, and that the resulting mutant mice developed modest obesity due to reduced energy expenditure. Thus, BDNF produced in the VMH plays a role in regulating energy intake. Furthermore, BDNF expressed in hypothalamic areas other than PVH and VMH is also involved in the control of energy expenditure.

  7. Cooperation between BDNF and glutamate in the regulation of synaptic transmission and neuronal development.

    PubMed

    Martin, Jean-Luc; Finsterwald, Charles

    2011-01-01

    Ample evidence supports a role of brain-derived neurotrophic factor (BDNF) in the survival and differentiation of selective populations of neurons in the peripheral and central nervous systems. In addition to its trophic actions, BDNF exerts acute effects on synaptic transmission and plasticity. In particular, BDNF enhances excitatory synaptic transmission through pre- and postsynaptic mechanisms. In this regard, BDNF enhances glutamate release, the frequency of miniature excitatory postsynaptic currents (mEPSCs), NMDA receptor activity and the phosphorylation of NMDA receptor subunits. Our recent studies revealed a novel cooperative interaction between BDNF and glutamate in the regulation of dendritic development. Indeed, we found that the effects of BDNF on dendritic growth of cortical neurons require both the stimulation of cAMP response element-binding protein (CREB) phosphorylation by BDNF and the activation of the CREB-regulated transcription coactivator 1 (CRTC1) by glutamate. Together, these studies highlight the importance of the cooperation between BDNF and glutamate in the regulation of synaptic transmission and neuronal development.

  8. Postnatal reduction of BDNF regulates the developmental remodeling of taste bud innervation.

    PubMed

    Huang, Tao; Ma, Liqun; Krimm, Robin F

    2015-09-15

    The refinement of innervation is a common developmental mechanism that serves to increase the specificity of connections following initial innervation. In the peripheral gustatory system, the extent to which innervation is refined and how refinement might be regulated is unclear. The initial innervation of taste buds is controlled by brain-derived neurotrophic factor (BDNF). Following initial innervation, taste receptor cells are added and become newly innervated. The connections between the taste receptor cells and nerve fibers are likely to be specific in order to retain peripheral coding mechanisms. Here, we explored the possibility that the down-regulation of BDNF regulates the refinement of taste bud innervation during postnatal development. An analysis of BDNF expression in Bdnf(lacZ/+) mice and real-time reverse transcription polymerase chain reaction (RT-PCR) revealed that BDNF was down-regulated between postnatal day (P) 5 and P10. This reduction in BDNF expression was due to a loss of precursor/progenitor cells that express BDNF, while the expression of BDNF in the subpopulations of taste receptor cells did not change. Gustatory innervation, which was identified by P2X3 immunohistochemistry, was lost around the perimeter where most progenitor/precursor cells are located. In addition, the density of innervation in the taste bud was reduced between P5 and P10, because taste buds increase in size without increasing innervation. This reduction of innervation density was blocked by the overexpression of BDNF in the precursor/progenitor population of taste bud cells. Together these findings indicate that the process of BDNF restriction to a subpopulation of taste receptor cells between P5 and P10, results in a refinement of gustatory innervation. We speculate that this refinement results in an increased specificity of connections between neurons and taste receptor cells during development.

  9. Postnatal reduction of BDNF regulates the developmental remodeling of taste bud innervation.

    PubMed

    Huang, Tao; Ma, Liqun; Krimm, Robin F

    2015-09-15

    The refinement of innervation is a common developmental mechanism that serves to increase the specificity of connections following initial innervation. In the peripheral gustatory system, the extent to which innervation is refined and how refinement might be regulated is unclear. The initial innervation of taste buds is controlled by brain-derived neurotrophic factor (BDNF). Following initial innervation, taste receptor cells are added and become newly innervated. The connections between the taste receptor cells and nerve fibers are likely to be specific in order to retain peripheral coding mechanisms. Here, we explored the possibility that the down-regulation of BDNF regulates the refinement of taste bud innervation during postnatal development. An analysis of BDNF expression in Bdnf(lacZ/+) mice and real-time reverse transcription polymerase chain reaction (RT-PCR) revealed that BDNF was down-regulated between postnatal day (P) 5 and P10. This reduction in BDNF expression was due to a loss of precursor/progenitor cells that express BDNF, while the expression of BDNF in the subpopulations of taste receptor cells did not change. Gustatory innervation, which was identified by P2X3 immunohistochemistry, was lost around the perimeter where most progenitor/precursor cells are located. In addition, the density of innervation in the taste bud was reduced between P5 and P10, because taste buds increase in size without increasing innervation. This reduction of innervation density was blocked by the overexpression of BDNF in the precursor/progenitor population of taste bud cells. Together these findings indicate that the process of BDNF restriction to a subpopulation of taste receptor cells between P5 and P10, results in a refinement of gustatory innervation. We speculate that this refinement results in an increased specificity of connections between neurons and taste receptor cells during development. PMID:26164656

  10. ProBDNF negatively regulates neuronal remodeling, synaptic transmission and synaptic plasticity in hippocampus

    PubMed Central

    Yang, Jianmin; Harte-Hargrove, Lauren C.; Siao, Chia-Jen; Marinic, Tina; Clarke, Roshelle; Ma, Qian; Jing, Deqiang; LaFrancois, John J.; Bath, Kevin G.; Mark, Willie; Ballon, Douglas; Lee, Francis S.; Scharfman, Helen E.; Hempstead, Barbara L.

    2014-01-01

    Summary Experience-dependent plasticity shapes postnatal development of neural circuits, but the mechanisms that refine dendritic arbors, remodel spines, and impair synaptic activity are poorly understood. Mature brain-derived neurotrophic factor (BDNF) modulates neuronal morphology and synaptic plasticity, including long-term potentiation (LTP) via TrkB activation. BDNF is initially translated as proBDNF which binds p75NTR. In vitro, recombinant proBDNF modulates neuronal structure and alters hippocampal long-term plasticity, but the actions of endogenously expressed proBDNF are unclear. Therefore, we generated a cleavage-resistant probdnf knock-in mouse. Our results demonstrate that proBDNF negatively regulates hippocampal dendritic complexity and spine density through p75NTR. Hippocampal slices from probdnf mice exhibit depressed synaptic transmission, impaired LTP and enhanced long-term depression (LTD) in area CA1. These results suggest that proBDNF acts in vivo as a biologically active factor that regulates hippocampal structure, synaptic transmission and plasticity, effects that are distinct from mature BDNF. PMID:24746813

  11. Intracerebral Administration of BDNF Protects Rat Brain Against Oxidative Stress Induced by Ouabain in an Animal Model of Mania.

    PubMed

    Valvassori, Samira S; Arent, Camila O; Steckert, Amanda V; Varela, Roger B; Jornada, Luciano K; Tonin, Paula T; Budni, Josiane; Mariot, Edemilson; Kapczinski, Flávio; Quevedo, João

    2015-08-01

    Several studies have suggested that alterations in brain-derived neurotrophic factor (BDNF) and increased oxidative stress have a central role in bipolar disorder (BD). Intracerebroventricular (ICV) injection of ouabain (OUA) in rats alters oxidative stress parameters and decreases BDNF levels in the brain. In this context, the present study aims to investigate the effects of BDNF ICV administration on BDNF levels and oxidative stress parameters in brains of rats submitted to animal model of mania induced by OUA. Wistar rats received an ICV injection of OUA, artificial cerebrospinal fluid (ACSF), OUA plus BDNF, or ACSF plus BDNF. Locomotor activity and risk-taking behavior in the rats were measured using the open-field test. In addition, we analyzed the BDNF levels and oxidative stress parameters (TBARS, Carbonyl, CAT, SOD, GR, and GPx) in the frontal cortex and hippocampus of rats. The BDNF was unable to reverse the ouabain-induced hyperactivity and risk-taking behavior. Nevertheless, BDNF treatment increased BDNF levels, modulated the antioxidant enzymes, and protected the OUA-induced oxidative damage in the brain of rats. These results suggest that BDNF alteration observed in BD patients may be associated with oxidative damage, both seen in this disorder. PMID:25164569

  12. Postnatal reduction of BDNF regulates the developmental remodeling of taste bud innervation

    PubMed Central

    Huang, Tao; Ma, Liqun; Krimm, Robin F

    2015-01-01

    The refinement of innervation is a common developmental mechanism that serves to increase the specificity of connections following initial innervation. In the peripheral gustatory system, the extent to which innervation is refined and how refinement might be regulated is unclear. The initial innervation of taste buds is controlled by brain-derived neurotrophic factor (BDNF). Following initial innervation, taste receptor cells are added and become newly innervated. The connections between the taste receptor cells and nerve fibers are likely to be specific in order to retain peripheral coding mechanisms. Here, we explored the possibility that the down-regulation of BDNF regulates the refinement of taste bud innervation during postnatal development. An analysis of BDNF expression in BdnflacZ/+ mice and real-time reverse transcription polymerase chain reaction (RT-PCR) revealed that BDNF was down-regulated between postnatal day (P) 5 and P10. This reduction in BDNF expression was due to a loss of precursor/progenitor cells that express BDNF, while the expression of BDNF in the subpopulations of taste receptor cells did not change. Gustatory innervation, which was identified by P2X3 immunohistochemistry, was lost around the perimeter where most progenitor/precursor cells are located. In addition, the density of innervation in the taste bud was reduced between P5 and P10, because taste buds increase in size without increasing innervation. This reduction of innervation density was blocked by the overexpression of BDNF in the precursor/progenitor population of taste bud cells. Together these findings indicate that the process of BDNF restriction to a subpopulation of taste receptor cells between P5 and P10, results in a refinement of gustatory innervation. We speculate that this refinement results in an increased specificity of connections between neurons and taste receptor cells during development. PMID:26164656

  13. Brain BDNF levels are dependent on cerebrovascular endothelium-derived nitric oxide.

    PubMed

    Banoujaafar, Hayat; Monnier, Alice; Pernet, Nicolas; Quirié, Aurore; Garnier, Philippe; Prigent-Tessier, Anne; Marie, Christine

    2016-09-01

    Scientific evidence continues to demonstrate a link between endothelial function and cognition. Besides, several studies have identified a complex interplay between nitric oxide (NO) and brain-derived neurotrophic factor (BDNF), a neurotrophin largely involved in cognition. Therefore, this study investigated the link between cerebral endothelium-derived NO and BDNF signaling. For this purpose, levels of BDNF and the phosphorylated form of endothelial NO synthase at serine 1177 (p-eNOS) were simultaneously measured in the cortex and hippocampus of rats subjected to either bilateral common carotid occlusion (n = 6), physical exercise (n = 6) or a combination of both (n = 6) as experimental approaches to modulate flow-induced NO production by the cerebrovasculature. Tropomyosin-related kinase type B (TrkB) receptors and its phosphorylated form at tyrosine 816 (p-TrkB) were also measured. Moreover, we investigated BDNF synthesis in brain slices exposed to the NO donor glyceryl trinitrate. Our results showed increased p-eNOS and BDNF levels after exercise and decreased levels after vascular occlusion as compared to corresponding controls, with a positive correlation between changes in p-eNOS and BDNF (r = 0.679). Exercise after vascular occlusion did not change levels of these proteins. Gyceryl trinitrate increased proBDNF and BDNF levels in brain slices, thus suggesting a possible causal relationship between NO and BDNF. Moreover, vascular occlusion, like exercise, resulted in increased TrkB and p-TrkB levels, whereas no change was observed with the combination of both. These results suggest that brain BDNF signaling may be dependent on cerebral endothelium-derived NO production. PMID:27306299

  14. TrkB/BDNF Signaling Regulates Photoreceptor Progenitor Cell Fate Decisions

    PubMed Central

    Turner, Brian A.; Sparrow, Janet; Cai, Bolin; Monroe, Julie; Mikawa, Takashi; Hempstead, Barbara L.

    2008-01-01

    Neurotrophins, via activation of Trk receptor tyrosine kinases, serve as mitogens, survival factors and regulators of arborization during retinal development. Brain-derived neurotrophic factor (BDNF) and TrkB regulate neuronal arborization and survival in late retinal development. However, TrkB is expressed during early retinal developmet where its functions are unclear. To assess TrkB/BDNF actions in the early chick retina, replication-incompetent retroviruses were utilized to over-express a dominant negative truncated form of TrkB (trunc TrkB), or BDNF and effects were assessed at E15. Clones expressing trunc TrkB were smaller than controls, and proliferation and apoptosis assays suggest that decreased clone size correlated with increased cell death when BDNF/TrkB signaling was impaired. Analysis of clonal composition revealed that trunc TrkB over-expression decreased photoreceptor numbers (41%) and increased cell numbers in the middle third of the inner nuclear layer (INL) (23%). Conversely, BDNF over-expression increased photoreceptor numbers (25%) and decreased INL numbers (17%). Photoreceptors over-expressing trunc TrkB demonstrated no increase in apoptosis nor abnormalities in lamination suggesting that TrkB activation is not required for photoreceptor cell survival or migration. These studies suggest that TrkB signaling regulates commitment to and/or differentiation of photoreceptor cells from retinal progenitor cells, identifying a novel role for TrkB/BDNF in regulating cell fate decisions. PMID:17005175

  15. Endogenous BDNF regulates inhibitory synaptic transmission in the ventromedial nucleus of the hypothalamus.

    PubMed

    Jo, Young-Hwan

    2012-01-01

    Output from steroidogenic factor-1 (SF-1) neurons in the ventromedial nucleus of the hypothalamus (VMH) is anorexigenic. SF-1 neurons express brain-derived neurotrophic factor (BDNF) that contributes to the regulation of food intake and body weight. Here I show that regulation of GABAergic inputs onto SF-1 neurons by endogenous BDNF determines the anorexigenic outcome from the VMH. Single-cell RT-PCR analysis reveals that one-third of SF-1 neurons express BDNF and that only a subset of BDNF-expressing SF-1 neurons coexpresses the melanocortin receptor type 4. Whole cell patch-clamp analysis of SF-1 neurons in the VMH shows that exogenous BDNF significantly increases the frequency of spontaneous GABAergic inhibitory postsynaptic currents (sIPSCs). This enhancement of GABA drive readily decreases the excitability of SF-1 neurons. However, treatment with BDNF has no significant effect on the frequency of TTX-independent GABAergic IPSCs. Moreover, TrkB receptors are not localized at the postsynaptic sites of GABAergic synapses on SF-1 neurons as there is no change in the amplitude of miniature IPSCs in the presence of BDNF. Dual patch-clamp recordings in mouse hypothalamic slices reveal that stimulation of one SF-1 neuron induces an increase in sIPSC frequency onto the neighboring SF-1 neuron. More importantly, this effect is blocked by a tyrosine kinase inhibitor. Hence, this increased GABA drive onto SF-1 neurons may, in part, explain the cellular mechanisms that mediate the anorexigenic effects of BDNF.

  16. Regulation of BDNF chromatin status and promoter accessibility in a neural correlate of associative learning

    PubMed Central

    Ambigapathy, Ganesh; Zheng, Zhaoqing; Keifer, Joyce

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) gene expression critically controls learning and its aberrant regulation is implicated in Alzheimer's disease and a host of neurodevelopmental disorders. The BDNF gene is target of known DNA regulatory mechanisms but details of its activity-dependent regulation are not fully characterized. We performed a comprehensive analysis of the epigenetic regulation of the turtle BDNF gene (tBDNF) during a neural correlate of associative learning using an in vitro model of eye blink classical conditioning. Shortly after conditioning onset, the results from ChIP-qPCR show conditioning-dependent increases in methyl-CpG-binding protein 2 (MeCP2) and repressor basic helix-loop-helix binding protein 2 (BHLHB2) binding to tBDNF promoter II that corresponds with transcriptional repression. In contrast, enhanced binding of ten-eleven translocation protein 1 (Tet1), extracellular signal-regulated kinase 1/2 (ERK1/2), and cAMP response element-binding protein (CREB) to promoter III corresponds with transcriptional activation. These actions are accompanied by rapid modifications in histone methylation and phosphorylation status of RNA polymerase II (RNAP II). Significantly, these remarkably coordinated changes in epigenetic factors for two alternatively regulated tBDNF promoters during conditioning are controlled by Tet1 and ERK1/2. Our findings indicate that Tet1 and ERK1/2 are critical partners that, through complementary functions, control learning-dependent tBDNF promoter accessibility required for rapid transcription and acquisition of classical conditioning. PMID:26336984

  17. BDNF deficiency and young-adult methamphetamine induce sex-specific effects on prepulse inhibition regulation

    PubMed Central

    Manning, Elizabeth E.; van den Buuse, Maarten

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) has been implicated in the pathophysiology of schizophrenia, yet its role in the development of specific symptoms is unclear. Methamphetamine (METH) users have an increased risk of psychosis and schizophrenia, and METH-treated animals have been used extensively as a model to study the positive symptoms of schizophrenia. We investigated whether METH treatment in BDNF heterozygous (HET) mutant mice has cumulative effects on sensorimotor gating, including the disruptive effects of psychotropic drugs. BDNF HETs and wildtype (WT) littermates were treated during young adulthood with METH and, following a 2-week break, prepulse inhibition (PPI) was examined. At baseline, BDNF HETs showed reduced PPI compared to WT mice irrespective of METH pre-treatment. An acute challenge with amphetamine (AMPH) disrupted PPI but male BDNF HETs were more sensitive to this effect, irrespective of METH pre-treatment. In contrast, female mice treated with METH were less sensitive to the disruptive effects of AMPH, and there were no effects of BDNF genotype. Similar changes were not observed in the response to an acute apomorphine (APO) or MK-801 challenge. These results show that genetically-induced reduction of BDNF caused changes in a behavioral endophenotype relevant to the positive symptoms of schizophrenia. However, major sex differences were observed in the effects of a psychotropic drug challenge on this behavior. These findings suggest sex differences in the effects of BDNF depletion and METH treatment on the monoamine signaling pathways that regulate PPI. Given that these same pathways are thought to contribute to the expression of positive symptoms in schizophrenia, this work suggests that there may be significant sex differences in the pathophysiology underlying these symptoms. Elucidating these sex differences may be important for our understanding of the neurobiology of schizophrenia and developing better treatments strategies for the

  18. BDNF regulates atypical PKC at spinal synapses to initiate and maintain a centralized chronic pain state

    PubMed Central

    2013-01-01

    Background Chronic pain is an important medical problem affecting hundreds of millions of people worldwide. Mechanisms underlying the maintenance of chronic pain states are poorly understood but the elucidation of such mechanisms have the potential to reveal novel therapeutics capable of reversing a chronic pain state. We have recently shown that the maintenance of a chronic pain state is dependent on an atypical PKC, PKMζ, but the mechanisms involved in controlling PKMζ in chronic pain are completely unknown. Here we have tested the hypothesis that brain derived neurotrophic factor (BDNF) regulates PKMζ, and possibly other aPKCs, to maintain a centralized chronic pain state. Results We first demonstrate that although other kinases play a role in the initiation of persistent nociceptive sensitization, they are not involved in the maintenance of this chronic pain state indicating that a ZIP-reversible process is responsible for the maintenance of persistent sensitization. We further show that BDNF plays a critical role in initiating and maintaining persistent nociceptive sensitization and that this occurs via a ZIP-reversible process. Moreover, at spinal synapses, BDNF controls PKMζ and PKCλ nascent synthesis via mTORC1 and BDNF enhances PKMζ phosphorylaton. Finally, we show that BDNF signaling to PKMζ and PKCλ is conserved across CNS synapses demonstrating molecular links between pain and memory mechanisms. Conclusions Hence, BDNF is a key regulator of aPKC synthesis and phosphorylation and an essential mediator of the maintenance of a centralized chronic pain state. These findings point to BDNF regulation of aPKC as a potential therapeutic target for the permanent reversal of a chronic pain state. PMID:23510079

  19. BDNF Interacts with Endocannabinoids to Regulate Cocaine-Induced Synaptic Plasticity in Mouse Midbrain Dopamine Neurons

    PubMed Central

    Zhong, Peng; Liu, Yong; Hu, Ying; Wang, Tong; Zhao, Yong-ping

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) and endocannabinoids (eCBs) have been individually implicated in behavioral effects of cocaine. The present study examined how BDNF-eCB interaction regulates cocaine-induced synaptic plasticity in the ventral tegmental area and behavioral effects. We report that BDNF and selective tyrosine kinase receptor B (TrkB) agonist 7,8-dihydroxyflavone (DHF) activated the TrkB receptor to facilitate two forms of eCB-mediated synaptic depression, depolarization-induced suppression of inhibition (DSI), and long-term depression (I-LTD) of IPSCs in ventral tegmental area dopamine neurons in mouse midbrain slices. The facilitation appears to be mediated by an increase in eCB production via phospholipase Cγ pathway, but not by an increase in CB1 receptor responsiveness or a decrease in eCB hydrolysis. Using Cre-loxP technology to specifically delete BDNF in dopamine neurons, we showed that eCB-mediated I-LTD, cocaine-induced reduction of GABAergic inhibition, and potentiation of glutamatergic excitation remained intact in wild-type control mice, but were impaired in BDNF conditional knock-out mice. We also showed that cocaine-induced conditioned place preference was attenuated in BDNF conditional knock-out mice, in vivo pretreatments with DHF before place conditioning restored cocaine conditioned place preference in these mice, and the behavioral effect of DHF was blocked by a CB1 receptor antagonist. Together, these results suggest that BDNF in dopamine neurons regulates eCB responses, cocaine-induced synaptic plasticity, and associative learning. PMID:25762688

  20. BDNF interacts with endocannabinoids to regulate cocaine-induced synaptic plasticity in mouse midbrain dopamine neurons.

    PubMed

    Zhong, Peng; Liu, Yong; Hu, Ying; Wang, Tong; Zhao, Yong-ping; Liu, Qing-song

    2015-03-11

    Brain-derived neurotrophic factor (BDNF) and endocannabinoids (eCBs) have been individually implicated in behavioral effects of cocaine. The present study examined how BDNF-eCB interaction regulates cocaine-induced synaptic plasticity in the ventral tegmental area and behavioral effects. We report that BDNF and selective tyrosine kinase receptor B (TrkB) agonist 7,8-dihydroxyflavone (DHF) activated the TrkB receptor to facilitate two forms of eCB-mediated synaptic depression, depolarization-induced suppression of inhibition (DSI), and long-term depression (I-LTD) of IPSCs in ventral tegmental area dopamine neurons in mouse midbrain slices. The facilitation appears to be mediated by an increase in eCB production via phospholipase Cγ pathway, but not by an increase in CB1 receptor responsiveness or a decrease in eCB hydrolysis. Using Cre-loxP technology to specifically delete BDNF in dopamine neurons, we showed that eCB-mediated I-LTD, cocaine-induced reduction of GABAergic inhibition, and potentiation of glutamatergic excitation remained intact in wild-type control mice, but were impaired in BDNF conditional knock-out mice. We also showed that cocaine-induced conditioned place preference was attenuated in BDNF conditional knock-out mice, in vivo pretreatments with DHF before place conditioning restored cocaine conditioned place preference in these mice, and the behavioral effect of DHF was blocked by a CB₁ receptor antagonist. Together, these results suggest that BDNF in dopamine neurons regulates eCB responses, cocaine-induced synaptic plasticity, and associative learning. PMID:25762688

  1. Loss of promoter IV-driven BDNF expression impacts oscillatory activity during sleep, sensory information processing and fear regulation

    PubMed Central

    Hill, J L; Hardy, N F; Jimenez, D V; Maynard, K R; Kardian, A S; Pollock, C J; Schloesser, R J; Martinowich, K

    2016-01-01

    Posttraumatic stress disorder is characterized by hyperarousal, sensory processing impairments, sleep disturbances and altered fear regulation; phenotypes associated with changes in brain oscillatory activity. Molecules associated with activity-dependent plasticity, including brain-derived neurotrophic factor (BDNF), may regulate neural oscillations by controlling synaptic activity. BDNF synthesis includes production of multiple Bdnf transcripts, which contain distinct 5′ noncoding exons. We assessed arousal, sensory processing, fear regulation and sleep in animals where BDNF expression from activity-dependent promoter IV is disrupted (Bdnf-e4 mice). Bdnf-e4 mice display sensory hyper-reactivity and impaired electrophysiological correlates of sensory information processing as measured by event-related potentials (ERP). Utilizing electroencephalogram, we identified a decrease in slow-wave activity during non-rapid eye movement sleep, suggesting impaired sleep homeostasis. Fear extinction is controlled by hippocampal–prefrontal cortical BDNF signaling, and neurophysiological communication patterns between the hippocampus (HPC) and medial prefrontal cortex (mPFC) correlate with behavioral performance during extinction. Impaired fear extinction in Bdnf-e4 mice is accompanied by increased HPC activation and decreased HPC–mPFC theta phase synchrony during early extinction, as well as increased mPFC activation during extinction recall. These results suggest that activity-dependent BDNF signaling is critical for regulating oscillatory activity, which may contribute to altered behavior. PMID:27552586

  2. Loss of promoter IV-driven BDNF expression impacts oscillatory activity during sleep, sensory information processing and fear regulation.

    PubMed

    Hill, J L; Hardy, N F; Jimenez, D V; Maynard, K R; Kardian, A S; Pollock, C J; Schloesser, R J; Martinowich, K

    2016-01-01

    Posttraumatic stress disorder is characterized by hyperarousal, sensory processing impairments, sleep disturbances and altered fear regulation; phenotypes associated with changes in brain oscillatory activity. Molecules associated with activity-dependent plasticity, including brain-derived neurotrophic factor (BDNF), may regulate neural oscillations by controlling synaptic activity. BDNF synthesis includes production of multiple Bdnf transcripts, which contain distinct 5' noncoding exons. We assessed arousal, sensory processing, fear regulation and sleep in animals where BDNF expression from activity-dependent promoter IV is disrupted (Bdnf-e4 mice). Bdnf-e4 mice display sensory hyper-reactivity and impaired electrophysiological correlates of sensory information processing as measured by event-related potentials (ERP). Utilizing electroencephalogram, we identified a decrease in slow-wave activity during non-rapid eye movement sleep, suggesting impaired sleep homeostasis. Fear extinction is controlled by hippocampal-prefrontal cortical BDNF signaling, and neurophysiological communication patterns between the hippocampus (HPC) and medial prefrontal cortex (mPFC) correlate with behavioral performance during extinction. Impaired fear extinction in Bdnf-e4 mice is accompanied by increased HPC activation and decreased HPC-mPFC theta phase synchrony during early extinction, as well as increased mPFC activation during extinction recall. These results suggest that activity-dependent BDNF signaling is critical for regulating oscillatory activity, which may contribute to altered behavior. PMID:27552586

  3. PKA-CREB-BDNF signaling regulated long lasting antidepressant activities of Yueju but not ketamine

    PubMed Central

    Xue, Wenda; Wang, Wei; Gong, Tong; Zhang, Hailou; Tao, Weiwei; Xue, Lihong; Sun, Yan; Wang, Fushun; Chen, Gang

    2016-01-01

    Yueju confers antidepressant effects in a rapid and long-lasting manner, similar to ketamine. CREB (cAMP-response element binding protein) signaling is implicated in depression pathology and antidepressant responses. However, the role of CREB and associated brain derived neurotrophic factor (BDNF) signaling in rapid and long-lasting antidepressant effects remains unclear. Here, we demonstrated that ICR and Kunming strain mice conferred antidepressant responses lasting for 1 and 5 days, respectively, following a single dose of Yueju. One day post Yueju in Kunming but not ICR strain mice, expression of total and phosphorylated CREB, as well as the CREB signaling activator, PKA (protein kinase A) was up-regulated in the hippocampus. Although BDNF gene expression increased at 3 hours in both strains, it remained up-regulated at 1 day only in Kunming mice. Ketamine showed similar strain-dependent behavioral effects. However, blockade of PKA/CREB signaling blunted the antidepressant effects and reversed the up-regulation of BDNF gene expression by Yueju, but not ketamine. Conversely, blockade of mammalian target of rapamycin signaling led to opposite effects. Taken altogether, prolonged transcriptional up-regulation of hippocampal BDNF may account for the stain-dependent enduring antidepressant responses to Yueju and ketamine, but it was mediated via PKA/CREB pathway only for Yueju. PMID:27197752

  4. BDNF-mediated regulation of ethanol consumption requires the activation of the MAP kinase pathway and protein synthesis.

    PubMed

    Jeanblanc, Jerome; Logrip, Marian L; Janak, Patricia H; Ron, Dorit

    2013-02-01

    We previously found that the brain-derived neurotrophic factor (BDNF) in the dorsolateral striatum (DLS) is part of a homeostatic pathway that gates ethanol self-administration [Jeanblanc et al. (2009). J Neurosci, 29, 13494-13502)]. Specifically, we showed that moderate levels (10%) of ethanol consumption increase BDNF expression within the DLS, and that direct infusion of BDNF into the DLS decreases operant self-administration of a 10% ethanol solution. BDNF binding to its receptor, TrkB, activates the mitogen-activated protein kinase (MAPK), phospholipase C-γ (PLC-γ) and phosphatidylinositol 3-kinase (PI3K) pathways. Thus, here, we set out to identify which of these intracellular pathway(s) plays a role in the regulation of ethanol consumption by BDNF. We found that inhibition of the MAPK, but not PLC-γ or PI3K, activity blocks the BDNF-mediated reduction of ethanol consumption. As activation of the MAPK pathway leads to the initiation of transcription and/or translation events, we tested whether the BDNF-mediated reduction of ethanol self-administration requires de novo protein synthesis. We found that the inhibitory effect of BDNF on ethanol intake is blocked by the protein synthesis inhibitor cycloheximide. Together, our results show that BDNF attenuates ethanol drinking via activation of the MAPK pathway in a protein synthesis-dependent manner within the DLS.

  5. BDNF-mediated regulation of ethanol consumption requires the activation of the MAP kinase pathway and protein synthesis

    PubMed Central

    Jeanblanc, Jerome; Logrip, Marian L.; Janak, Patricia H.; Ron, Dorit

    2013-01-01

    We previously found that the brain-derived neurotrophic factor (BDNF) in the dorsolateral striatum (DLS) is part of a homeostatic pathway that gates ethanol self-administration [Jeanblanc et al. (2009). J Neurosci, 29, 13494–13502)]. Specifically, we showed that moderate levels (10%) of ethanol consumption increase BDNF expression within the DLS, and that direct infusion of BDNF into the DLS decreases operant self-administration of a 10% ethanol solution. BDNF binding to its receptor, TrkB, activates the mitogen-activated protein kinase (MAPK), phospholipase C-γ (PLC-γ) and phosphatidylinositol 3-kinase (PI3K) pathways. Thus, here, we set out to identify which of these intracellular pathway(s) plays a role in the regulation of ethanol consumption by BDNF. We found that inhibition of the MAPK, but not PLC-γ or PI3K, activity blocks the BDNF-mediated reduction of ethanol consumption. As activation of the MAPK pathway leads to the initiation of transcription and/or translation events, we tested whether the BDNF-mediated reduction of ethanol self-administration requires de novo protein synthesis. We found that the inhibitory effect of BDNF on ethanol intake is blocked by the protein synthesis inhibitor cycloheximide. Together, our results show that BDNF attenuates ethanol drinking via activation of the MAPK pathway in a protein synthesis-dependent manner within the DLS. PMID:23189980

  6. NMDA-mediated and self-induced bdnf exon IV transcriptions are differentially regulated in cultured cortical neurons.

    PubMed

    Zheng, Fei; Wang, Hongbing

    2009-01-01

    Activity-dependent transcriptional up-regulation of bdnf (brain-derived neurotrophic factor) is involved in regulating many aspects of neuronal functions. The NMDA (N-methyl-D-aspartic acid)-mediated and BDNF-mediated exon IV transcription may represent mechanistically different responses, and relevant to activity-dependent changes in neurons. We found that the activities of ERK (extracellular signal regulated kinase), CaM KII/IV (calmodulin-dependent protein kinase II and IV), PI3K (phosphoinositide 3-kinase), and PLC (phospholipase C) are required for NMDA receptor-mediated bdnf exon IV transcription in cultured cortical neurons. In contrast, the BDNF-induced and TrkB-dependent exon IV transcription was regulated by ERK and CaM KII/IV, but not by PI3K and PLC. While ERK and CaM KII/IV are separate signaling pathways in BDNF-stimulated neurons, CaM KII/IV appeared to regulate exon IV transcription through ERK in NMDA-stimulated neurons. Similarly, the PI3K and PLC signaling pathways converged on ERK in NMDA- but not BDNF-stimulated neurons. Our results implicate that the NMDA-induced and the self-maintenance of bdnf transcription are differentially regulated.

  7. Down-regulation of BDNF in cell and animal models increases striatal-enriched protein tyrosine phosphatase 61 (STEP61 ) levels.

    PubMed

    Xu, Jian; Kurup, Pradeep; Azkona, Garikoitz; Baguley, Tyler D; Saavedra, Ana; Nairn, Angus C; Ellman, Jonathan A; Pérez-Navarro, Esther; Lombroso, Paul J

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) regulates synaptic strengthening and memory consolidation, and altered BDNF expression is implicated in a number of neuropsychiatric and neurodegenerative disorders. BDNF potentiates N-methyl-D-aspartate receptor function through activation of Fyn and ERK1/2. STriatal-Enriched protein tyrosine Phosphatase (STEP) is also implicated in many of the same disorders as BDNF but, in contrast to BDNF, STEP opposes the development of synaptic strengthening. STEP-mediated dephosphorylation of the NMDA receptor subunit GluN2B promotes internalization of GluN2B-containing NMDA receptors, while dephosphorylation of the kinases Fyn, Pyk2, and ERK1/2 leads to their inactivation. Thus, STEP and BDNF have opposing functions. In this study, we demonstrate that manipulation of BDNF expression has a reciprocal effect on STEP61 levels. Reduced BDNF signaling leads to elevation of STEP61 both in BDNF(+/-) mice and after acute BDNF knockdown in cortical cultures. Moreover, a newly identified STEP inhibitor reverses the biochemical and motor abnormalities in BDNF(+/-) mice. In contrast, increased BDNF signaling upon treatment with a tropomyosin receptor kinase B agonist results in degradation of STEP61 and a subsequent increase in the tyrosine phosphorylation of STEP substrates in cultured neurons and in mouse frontal cortex. These findings indicate that BDNF-tropomyosin receptor kinase B signaling leads to degradation of STEP61 , while decreased BDNF expression results in increased STEP61 activity. A better understanding of the opposing interaction between STEP and BDNF in normal cognitive functions and in neuropsychiatric disorders will hopefully lead to better therapeutic strategies. Altered expression of BDNF and STEP61 has been implicated in several neurological disorders. BDNF and STEP61 are known to regulate synaptic strengthening, but in opposite directions. Here, we report that reduced BDNF signaling leads to elevation of STEP61 both in

  8. MicroRNAs downregulated in neuropathic pain regulate MeCP2 and BDNF related to pain sensitivity.

    PubMed

    Manners, Melissa T; Tian, Yuzhen; Zhou, Zhaolan; Ajit, Seena K

    2015-01-01

    Nerve injury induces chronic pain and dysregulation of microRNAs in dorsal root ganglia (DRG). Several downregulated microRNAs are predicted to target Mecp2. MECP2 mutations cause Rett syndrome and these patients report decreased pain perception. We confirmed MeCP2 upregulation in DRG following nerve injury and repression of MeCP2 by miRNAs in vitro. MeCP2 regulates brain-derived neurotrophic factor (BDNF) and downregulation of MeCP2 by microRNAs decreased Bdnf in vitro. MeCP2 T158A mice exhibited reduced mechanical sensitivity and Mecp2-null and MeCP2 T158A mice have decreased Bdnf in DRG. MeCP2-mediated regulation of Bdnf in the DRG could contribute to altered pain sensitivity. PMID:26448907

  9. The release of glutamate from cortical neurons regulated by BDNF via the TrkB/Src/PLC-γ1 pathway.

    PubMed

    Zhang, Zitao; Fan, Jin; Ren, Yongxin; Zhou, Wei; Yin, Guoyong

    2013-01-01

    The brain-derived neurotrophic factor (BDNF) participates in the regulation of cortical neurons by influencing the release of glutamate. However, the specific mechanisms are unclear. Hence, we isolated and cultured the cortical neurons of Sprague Dawley rats. Specific inhibitors of TrkB, Src, PLC-γ1, Akt, and MEK1/2 (i.e., K252a, PP2, U73122, LY294002, and PD98059, respectively) were used to treat cortical neurons and to detect the glutamate release from cortical neurons stimulated with BDNF. BDNF significantly increased glutamate release, and simultaneously enhanced phosphorylation levels of TrkB, Src, PLC-γ, Akt, and Erk1/2. For BDNF-stimulated cortical neurons, K252a inhibited glutamate release and inhibited the phosphorylation levels of TrkB, Src, PLC-γ, Erk1/2, and Akt (P < 0.05). PP2 reduced the glutamate release from BDNF-stimulated cortical neurons (P < 0.05) and inhibited the phosphorylation levels of TrkB and PLC-γ1 (P < 0.05). However, PP2 had no effect on the phosphorylation levels of Erk1/2 or Akt (P > 0.05). U73122 inhibited the glutamate release from BDNF-stimulated cortical neurons, but had no influence on the phosphorylation levels of TrkB, Src, Erk1/2, or Akt (P > 0.05). LY294002 and PD98059 did not affect the BDNF-stimulated glutamate release and did not inhibit the phosphorylation levels of TrkB, Src, or PLC-γ1. In summary, BDNF stimulated the glutamate release from cortical neurons via the TrkB/Src/PLC-γ1 signaling pathway.

  10. BDNF-mediates Down-regulation of MicroRNA-195 Inhibits Ischemic Cardiac Apoptosis in Rats

    PubMed Central

    Hang, Pengzhou; Sun, Chuan; Guo, Jing; Zhao, Jing; Du, Zhimin

    2016-01-01

    Background: Our previous studies suggested that brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) axis inhibited cardiomyocyte apoptosis in myocardial infarction (MI). However, the relationship between BDNF and microRNA (miRNA) in cardiomyocytes are unclear. The present study was performed to investigate the role of miR-195 and the interplay between BDNF and miR-195 in ischemic cardiomyocyte apoptosis. Methods: Male Wistar rats were subjected to coronary artery ligation, and primary neonatal rat ventricular myocytes were treated with hypoxia or hydrogen peroxide (H2O2). BDNF level in rat ventricles was measured by enzyme linked immunosorbent assay (ELISA). miR-195 mimic, inhibitor or negative control was transfected into the cardiomyocytes. Cell viability and apoptosis were detected by MTT assay and TdT-mediated dUTP nick end labeling (TUNEL) staining, respectively. Cardiac function and apoptosis were detected in MI rats intravenously injected with antagomiR-195. Luciferase assay, Western blot and Real-time RT-PCR were employed to clarify the interplay between miR-195 and BDNF. Results: miR-195 level was dynamically regulated in response to MI and significantly increased in ischemic regions 24 h post-MI as well as in hypoxic or H2O2-treated cardiomyocytes. Meanwhile, BDNF protein level was rapidly increased in MI rats and H2O2-treated cardiomyocytes. Apoptosis in both hypoxic and H2O2-treated cardiomyocytes were markedly reduced and cell viability was increased by miR-195 inhibitor. Moreover, inhibition of miR-195 significantly improved cardiac function of MI rats. Bcl-2 but not BDNF was validated as the direct target of miR-195. Furthermore, BDNF abolished the pro-apoptotic role of miR-195, which was reversed by its scavenger TrkB-Fc. Conclusion: Up-regulation of miR-195 in ischemic cardiomyocytes promotes ischemic apoptosis by targeting Bcl-2. BDNF mitigated the pro-apoptotic effect of miR-195 in rat cardiomyocytes. These findings may

  11. Brain-derived neurotrophic factor (BDNF) induces sustained intracellular Ca2+ elevation through the up-regulation of surface transient receptor potential 3 (TRPC3) channels in rodent microglia.

    PubMed

    Mizoguchi, Yoshito; Kato, Takahiro A; Seki, Yoshihiro; Ohgidani, Masahiro; Sagata, Noriaki; Horikawa, Hideki; Yamauchi, Yusuke; Sato-Kasai, Mina; Hayakawa, Kohei; Inoue, Ryuji; Kanba, Shigenobu; Monji, Akira

    2014-06-27

    Microglia are immune cells that release factors, including proinflammatory cytokines, nitric oxide (NO), and neurotrophins, following activation after disturbance in the brain. Elevation of intracellular Ca(2+) concentration ([Ca(2+)]i) is important for microglial functions such as the release of cytokines and NO from activated microglia. There is increasing evidence suggesting that pathophysiology of neuropsychiatric disorders is related to the inflammatory responses mediated by microglia. Brain-derived neurotrophic factor (BDNF) is a neurotrophin well known for its roles in the activation of microglia as well as in pathophysiology and/or treatment of neuropsychiatric disorders. In this study, we sought to examine the underlying mechanism of BDNF-induced sustained increase in [Ca(2+)]i in rodent microglial cells. We observed that canonical transient receptor potential 3 (TRPC3) channels contribute to the maintenance of BDNF-induced sustained intracellular Ca(2+) elevation. Immunocytochemical technique and flow cytometry also revealed that BDNF rapidly up-regulated the surface expression of TRPC3 channels in rodent microglial cells. In addition, pretreatment with BDNF suppressed the production of NO induced by tumor necrosis factor α (TNFα), which was prevented by co-adiministration of a selective TRPC3 inhibitor. These suggest that BDNF induces sustained intracellular Ca(2+) elevation through the up-regulation of surface TRPC3 channels and TRPC3 channels could be important for the BDNF-induced suppression of the NO production in activated microglia. We show that TRPC3 channels could also play important roles in microglial functions, which might be important for the regulation of inflammatory responses and may also be involved in the pathophysiology and/or the treatment of neuropsychiatric disorders.

  12. Differential Expression and Regulation of Brain-Derived Neurotrophic Factor (BDNF) mRNA Isoforms in Brain Cells from Mecp2(308/y) Mouse Model.

    PubMed

    Rousseaud, Audrey; Delépine, Chloé; Nectoux, Juliette; Billuart, Pierre; Bienvenu, Thierry

    2015-08-01

    Rett syndrome (RTT) is a severe neurodevelopmental disease caused by mutations in methyl-CpG-binding protein 2 (MECP2), which encodes a transcriptional modulator of many genes including BDNF. BDNF comprises nine distinct promoter regions, each triggering the expression of a specific transcript. The role of this diversity of transcripts remains unknown. MeCP2 being highly expressed in neurons, RTT was initially considered as a neuronal disease. However, recent studies have shown that MeCP2 was also expressed in astrocytes. Though several studies explored Bdnf IV expression in Mecp2-deficient mice, the differential expression of Bdnf isoforms in Mecp2-deficient neurons and astrocytes was never studied. By using TaqMan technology and a mouse model expressing a truncated Mecp2 (Mecp2(308/y)), we firstly showed in neurons that Bdnf transcripts containing exon I, IIb, IIc, IV, and VI are prominently expressed, whereas in astrocytes, Bdnf transcript containing exon VI is preferentially expressed, suggesting a specific regulation of Bdnf expression at the cellular level. Secondly, we confirmed the repressive role of Mecp2 only on the expression of Bdnf VI in neurons. Our data suggested that the truncated Mecp2 protein maintains its function on Bdnf expression regulation in neurons and in astrocytes. Interestingly, we observed that Bdnf transcripts (I and IXA), regulated by neural activity induced by bicuculline in Mecp2(308/y) neurons, were not affected by histone deacetylase inhibition. In contrast, Bdnf transcripts (IIb, IIc, and VI), regulated by histone deacetylation, were not affected by bicuculline treatment in wild-type and Mecp2(308/y) neurons. All these results reflect the complexity of regulation of Bdnf gene.

  13. The Responsiveness of TrkB to BDNF and Antidepressant Drugs Is Differentially Regulated during Mouse Development

    PubMed Central

    Vesa, Liisa; Yanpallewar, Sudhirkumar; Antila, Hanna; Lindholm, Jesse; Rios, Maribel; Tessarollo, Lino; Castrén, Eero

    2012-01-01

    Background Previous studies suggest that the responsiveness of TrkB receptor to BDNF is developmentally regulated in rats. Antidepressant drugs (AD) have been shown to increase TrkB signalling in the adult rodent brain, and recent findings implicate a BDNF-independent mechanism behind this phenomenon. When administered during early postnatal life, ADs produce long-lasting biochemical and behavioural alterations that are observed in adult animals. Methodology We have here examined the responsiveness of brain TrkB receptors to BDNF and ADs during early postnatal life of mouse, measured as autophosphorylation of TrkB (pTrkB). Principal Findings We found that ADs fail to induce TrkB signalling before postnatal day 12 (P12) after which an adult response of TrkB to ADs was observed. Interestingly, there was a temporally inverse correlation between the appearance of the responsiveness of TrkB to systemic ADs and the marked developmental reduction of BDNF-induced TrkB in brain microslices ex vivo. Basal p-TrkB status in the brain of BDNF deficient mice was significantly reduced only during early postnatal period. Enhancing cAMP (cyclic adenosine monophosphate) signalling failed to facilitate TrkB responsiveness to BDNF. Reduced responsiveness of TrkB to BDNF was not produced by the developmental increase in the expression of dominant-negative truncated TrkB.T1 because this reduction was similarly observed in the brain microslices of trkB.T1−/− mice. Moreover, postnatal AD administration produced long-lasting behavioural alterations observable in adult mice, but the responses were different when mice were treated during the time when ADs did not (P4-9) or did (P16-21) activate TrkB. Conclusions We have found that ADs induce the activation of TrkB only in mice older than 2 weeks and that responsiveness of brain microslices to BDNF is reduced during the same time period. Exposure to ADs before and after the age when ADs activate TrkB produces differential long

  14. Hydrogen Sulfide Protects against Chronic Unpredictable Mild Stress-Induced Oxidative Stress in Hippocampus by Upregulation of BDNF-TrkB Pathway.

    PubMed

    Hu, Min; Zou, Wei; Wang, Chun-Yan; Chen, Xi; Tan, Hui-Ying; Zeng, Hai-Ying; Zhang, Ping; Gu, Hong-Feng; Tang, Xiao-Qing

    2016-01-01

    Chronic unpredictable mild stress (CUMS) induces hippocampal oxidative stress. H2S functions as a neuroprotectant against oxidative stress in brain. We have previously shown the upregulatory effect of H2S on BDNF protein expression in the hippocampus of rats. Therefore, we hypothesized that H2S prevents CUMS-generated oxidative stress by upregulation of BDNF-TrkB pathway. We showed that NaHS (0.03 or 0.1 mmol/kg/day) ameliorates the level of hippocampal oxidative stress, including reduced levels of malondialdehyde (MDA) and 4-hydroxy-2-trans-nonenal (4-HNE), as well as increased level of glutathione (GSH) and activity of superoxide dismutase (SOD) in the hippocampus of CUMS-treated rats. We also found that H2S upregulated the level of BDNF and p-TrkB protein in the hippocampus of CUMS rats. Furthermore, inhibition of BDNF signaling by K252a, an inhibitor of the BDNF receptor TrkB, blocked the antioxidant effects of H2S on CUMS-induced hippocampal oxidative stress. These results reveal the inhibitory role of H2S in CUMS-induced hippocampal oxidative stress, which is through upregulation of BDNF/TrkB pathway. PMID:27525050

  15. Hydrogen Sulfide Protects against Chronic Unpredictable Mild Stress-Induced Oxidative Stress in Hippocampus by Upregulation of BDNF-TrkB Pathway

    PubMed Central

    Zou, Wei; Wang, Chun-Yan; Tan, Hui-Ying; Zeng, Hai-Ying; Zhang, Ping; Gu, Hong-Feng

    2016-01-01

    Chronic unpredictable mild stress (CUMS) induces hippocampal oxidative stress. H2S functions as a neuroprotectant against oxidative stress in brain. We have previously shown the upregulatory effect of H2S on BDNF protein expression in the hippocampus of rats. Therefore, we hypothesized that H2S prevents CUMS-generated oxidative stress by upregulation of BDNF-TrkB pathway. We showed that NaHS (0.03 or 0.1 mmol/kg/day) ameliorates the level of hippocampal oxidative stress, including reduced levels of malondialdehyde (MDA) and 4-hydroxy-2-trans-nonenal (4-HNE), as well as increased level of glutathione (GSH) and activity of superoxide dismutase (SOD) in the hippocampus of CUMS-treated rats. We also found that H2S upregulated the level of BDNF and p-TrkB protein in the hippocampus of CUMS rats. Furthermore, inhibition of BDNF signaling by K252a, an inhibitor of the BDNF receptor TrkB, blocked the antioxidant effects of H2S on CUMS-induced hippocampal oxidative stress. These results reveal the inhibitory role of H2S in CUMS-induced hippocampal oxidative stress, which is through upregulation of BDNF/TrkB pathway. PMID:27525050

  16. The Neurotrophin-Inducible Gene Vgf Regulates Hippocampal Function and Behavior Through a BDNF-Dependent Mechanism

    PubMed Central

    Bozdagi, Ozlem; Rich, Erin; Tronel, Sophie; Sadahiro, Masato; Patterson, Kamara; Shapiro, Matthew L.; Alberini, Cristina M.; Huntley, George W.; Salton, Stephen R. J.

    2009-01-01

    VGF is a neurotrophin-inducible, activity-regulated gene product that is expressed in CNS and PNS neurons, where it is processed into peptides and secreted. VGF synthesis is stimulated by BDNF, a critical regulator of hippocampal development and function, and two VGF C-terminal peptides increase synaptic activity in cultured hippocampal neurons. To assess VGF function in the hippocampus, we tested heterozygous and homozygous VGF knockout mice in two different learning tasks, assessed long-term potentiation (LTP) and depression (LTD) in hippocampal slices from VGF mutant mice, and investigated how VGF C-terminal peptides modulate synaptic plasticity. Treatment of rat hippocampal slices with the VGF-derived peptide TLQP62 resulted in transient potentiation through a mechanism that was selectively blocked by the BDNF scavenger TrkB-Fc, the Trk tyrosine kinase inhibitor K252a (100 nM), and by tPASTOP, an inhibitor of tissue plasminogen activator (tPA), an enzyme involved in pro-BDNF cleavage to BDNF, but was not blocked by the NMDA receptor antagonist APV, anti-p75NTR function-blocking antiserum, nor by prior tetanic stimulation. Although LTP was normal in slices from VGF knockout mice, LTD could not be induced, and VGF mutant mice were impaired in hippocampal-dependent spatial learning and contextual fear conditioning tasks. Our studies indicate that the VGF C-terminal peptide TLQP62 modulates hippocampal synaptic transmission through a BDNF-dependent mechanism, and that VGF deficiency in mice impacts synaptic plasticity and memory in addition to depressive behavior. PMID:18815270

  17. Apoptosis signal-regulating kinase 1 is involved in brain-derived neurotrophic factor (BDNF)-enhanced cell motility and matrix metalloproteinase 1 expression in human chondrosarcoma cells.

    PubMed

    Lin, Chih-Yang; Chang, Sunny Li-Yun; Fong, Yi-Chin; Hsu, Chin-Jung; Tang, Chih-Hsin

    2013-07-25

    Chondrosarcoma is the primary malignancy of bone that is characterized by a potent capacity to invade locally and cause distant metastasis, and is therefore associated with poor prognoses. Chondrosarcoma further shows a predilection for metastasis to the lungs. The brain-derived neurotrophic factor (BDNF) is a small molecule in the neurotrophin family of growth factors that is associated with the disease status and outcome of cancers. However, the effect of BDNF on cell motility in human chondrosarcoma cells is mostly unknown. Here, we found that human chondrosarcoma cell lines had significantly higher cell motility and BDNF expression compared to normal chondrocytes. We also found that BDNF increased cell motility and expression of matrix metalloproteinase-1 (MMP-1) in human chondrosarcoma cells. BDNF-mediated cell motility and MMP-1 up-regulation were attenuated by Trk inhibitor (K252a), ASK1 inhibitor (thioredoxin), JNK inhibitor (SP600125), and p38 inhibitor (SB203580). Furthermore, BDNF also promoted Sp1 activation. Our results indicate that BDNF enhances the migration and invasion activity of chondrosarcoma cells by increasing MMP-1 expression through a signal transduction pathway that involves the TrkB receptor, ASK1, JNK/p38, and Sp1. BDNF thus represents a promising new target for treating chondrosarcoma metastasis.

  18. Social isolation mediated anxiety like behavior is associated with enhanced expression and regulation of BDNF in the female mouse brain.

    PubMed

    Kumari, Anita; Singh, Padmanabh; Baghel, Meghraj Singh; Thakur, M K

    2016-05-01

    Adverse early life experience is prominent risk factors for numerous psychiatric illnesses, including mood and anxiety disorders. It imposes serious long-term costs on the individual as well as health and social systems. Hence, developing therapies that prevent the long-term consequences of early life stress is of utmost importance, and necessitates a better understanding of the mechanisms by which early life stress triggers long-lasting alterations in gene expression and behavior. Post-weaning isolation rearing of rodents models the behavioral consequences of adverse early life experiences in humans and it is reported to cause anxiety like behavior which is more common in case of females. Therefore, in the present study, we have studied the impact of social isolation of young female mice for 8weeks on the anxiety like behavior and the underlying molecular mechanism. Elevated plus maze and open field test revealed that social isolation caused anxiety like behavior. BDNF, a well-known molecule implicated in the anxiety like behavior, was up-regulated both at the message and protein level in cerebral cortex by social isolation. CREB-1 and CBP, which play a crucial role in BDNF transcription, were up-regulated at mRNA level in cerebral cortex by social isolation. HDAC-2, which negatively regulates BDNF expression, was down-regulated at mRNA and protein level in cerebral cortex by social isolation. Furthermore, BDNF acts in concert with Limk-1, miRNA-132 and miRNA-134 for the regulation of structural and morphological plasticity. Social isolation resulted in up-regulation of Limk-1 mRNA and miRNA-132 expression in the cerebral cortex. MiRNA-134, which inhibits the translation of Limk-1, was decreased in cerebral cortex by social isolation. Taken together, our study suggests that social isolation mediated anxiety like behavior is associated with up-regulation of BDNF expression and concomitant increase in the expression of CBP, CREB-1, Limk-1 and miRNA-132, and decrease

  19. Up-regulation of dorsal root ganglia BDNF and trkB receptor in inflammatory pain: an in vivo and in vitro study

    PubMed Central

    2011-01-01

    Background During inflammation, immune cells accumulate in damaged areas and release pro-inflammatory cytokines and neurotrophins. Brain-derived neurotrophic factor (BDNF) plays a neuromodulatory role in spinal cord dorsal horn via the post-synaptic tyrosine protein kinase B (trkB) receptor to facilitate pain transmission. However, the precise role of BDNF and trkB receptor in the primary sensory neurons of dorsal root ganglia (DRG) during inflammation remains to be clarified. The aim of this study was to investigate whether and how BDNF-trkB signaling in the DRG is involved in the process of inflammatory pain. Methods We used complete Freund's adjuvant- (CFA-) induced and tumor necrosis factor-α- (TNF-α-) induced inflammation in rat hindpaw as animal models of inflammatory pain. Quantification of protein and/or mRNA levels of pain mediators was performed in separate lumbar L3-L5 DRGs. The cellular mechanism of TNF-α-induced BDNF and/or trkB receptor expression was examined in primary DRG cultures collected from pooled L1-L6 DRGs. Calcitonin gene-related peptide (CGRP), BDNF and substance P release were also evaluated by enzyme immunoassay. Results CFA injection into rat hindpaw resulted in mechanical hyperalgesia and significant increases in levels of TNF-α in the inflamed tissues, along with enhancement of BDNF and trkB receptor as well as the pain mediators CGRP and transient receptor potential vanilloid receptor subtype 1 (TRPV1) in DRG. Direct injection of TNF-α into rat hindpaw resulted in similar effects with retrograde transport of TNF-α along the saphenous nerve to DRG during CFA-induced inflammation. Primary DRG cultures chronically treated with TNF-α showed significant enhancement of mRNA and protein levels of BDNF and trkB receptor, BDNF release and trkB-induced phospho-ERK1/2 signal. Moreover, CGRP and substance P release were enhanced in DRG cultures after chronic TNF-α treatment or acute BDNF stimulation. In addition, we found that BDNF up-regulated

  20. Proteolytic Cleavage of ProBDNF into Mature BDNF in the Basolateral Amygdala Is Necessary for Defeat-Induced Social Avoidance

    ERIC Educational Resources Information Center

    Dulka, Brooke N.; Ford, Ellen C.; Lee, Melissa A.; Donnell, Nathaniel J.; Goode, Travis D.; Prosser, Rebecca; Cooper, Matthew A.

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is essential for memory processes. The present study tested whether proteolytic cleavage of proBDNF into mature BDNF (mBDNF) within the basolateral amygdala (BLA) regulates the consolidation of defeat-related memories. We found that acute social defeat increases the expression of mBDNF, but not proBDNF, in…

  1. Berberine up-regulates the BDNF expression in hippocampus and attenuates corticosterone-induced depressive-like behavior in mice.

    PubMed

    Shen, Ji-Duo; Ma, Li-Gang; Hu, Chun-Yue; Pei, Yang-Yi; Jin, Shuang-Li; Fang, Xiao-Yan; Li, Yu-Cheng

    2016-02-12

    Depression is increasingly become a global public healthy problem. This study was to investigate whether berberine could attenuate the depressive-like behavior induced by repeated corticosterone injection and explore the possible mechanisms. The present results showed that exogenous corticosterone injection caused depressive-like behaviors in mice, such as decreased sucrose intake in sucrose preference test (SPT) and increased immobility time in forced swimming test (FST). These behavioral alterations were accompanying with the decreased BDNF mRNA and protein levels in hippocampus and the elevated serum corticosterone levels. Treatment with berberine prevented these changes above. Our findings confirmed the antidepressant-like effect of berberine and suggested its mechanisms might be partially mediated by up-regulation of BDNF in hippocampus.

  2. SEIZURE ACTIVITY INVOLVED IN THE UP-REGULATION OF BDNF mRNA EXPRESSION BY ACTIVATION OF CENTRAL MU OPIOID RECEPTORS

    PubMed Central

    ZHANG, H. N.; KO, M. C.

    2009-01-01

    Chemical-induced seizures up-regulated brain-derived neurotrophic factor (BDNF) mRNA expression. Intracerebroventricular (i.c.v.) administration of endogenous opioids preferentially activating μ opioid receptor (MOR) could also increase BDNF mRNA expression. The aim of this study was to determine to what extent i.c.v. administration of synthetic MOR-selective agonists in rats can modulate both seizure activity and up-regulation of BDNF mRNA expression. Effects and potencies of i.c.v. administration of morphine and [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO), were directly investigated by scoring behavioral seizures and measuring BDNF mRNA expression. In addition, effects of the opioid receptor antagonist naloxone and antiepileptic drugs, diazepam, phenobarbital, and valproate, on i.c.v. MOR agonist-induced behavioral seizures and up-regulation of BDNF mRNA expression were determined. A single i.c.v. administration of morphine (10–100 μg) or DAMGO (0.15–1.5 μg) dose-dependently elicited behavioral seizures and increased BDNF mRNA expression in the widespread brain regions. However, subcutaneous administration of MOR agonists neither produced behavioral seizures nor increased BDNF mRNA expression. Pretreatment with naloxone 1 mg/kg significantly reduced behavioral seizure scores and the up-regulation of BDNF mRNA expression elicited by i.c.v. morphine or DAMGO. Similarly, diazepam 10 mg/kg and phenobarbital 40 mg/kg significantly blocked i.c.v. MOR agonist-induced actions. Pretreatment with valproate 300 mg/kg only attenuated behavioral seizures, but it did not affect morphine-induced increase of BDNF mRNA expression. This study provides supporting evidence that seizure activity plays an important role in the up-regulation of BDNF mRNA expression elicited by central MOR activation and that decreased inhibitory action of GABAergic system through the modulation on GABA receptor synaptic function by central MOR activation is involved in its regulation of BDNF m

  3. Melatonin ameliorates cognitive impairment induced by sleep deprivation in rats: role of oxidative stress, BDNF and CaMKII.

    PubMed

    Zhang, Lei; Zhang, Hu-Qin; Liang, Xiang-Yan; Zhang, Hai-Feng; Zhang, Ting; Liu, Fang-E

    2013-11-01

    Sleep deprivation (SD) has been shown to induce oxidative stress which causes cognitive impairment. Melatonin, an endogenous potent antioxidant, protects neurons from oxidative stress in many disease models. The present study investigated the effect of melatonin against SD-induced cognitive impairment and attempted to define the possible mechanisms involved. SD was induced in rats using modified multiple platform model. Melatonin (15 mg/kg) was administered to the rats via intraperitoneal injection. The open field test and Morris water maze were used to evaluate cognitive ability. The cerebral cortex (CC) and hippocampus were dissected and homogenized. Nitric oxide (NO) and malondialdehyde (MDA) levels and the superoxide dismutase (SOD) enzyme activity of hippocampal and cortical tissues (10% wet weight per volume) were performed to determine the level of oxidative stress. The expression of brain-derived neurotrophic factor (BDNF) and calcium-calmodulin dependent kinase II (CaMKII) proteins in CC and hippocampus was assayed by means of immunohistochemistry. The results revealed that SD impairs cognitive ability, while melatonin treatment prevented these changes. In addition, melatonin reversed SD-induced changes in NO, MDA and SOD in both of the CC and hippocampus. The results of immunoreactivity showed that SD decreased gray values of BDNF and CaMKII in CC and hippocamal CA1, CA3 and dentate gyrus regions, whereas melatonin improved the gray values. In conclusion, our results suggest that melatonin prevents cognitive impairment induced by SD. The possible mechanism may be attributed to its ability to reduce oxidative stress and increase the levels of CaMKII and BDNF in CC and hippocampus.

  4. Dendritic targeting of short and long 3′ UTR BDNF mRNA is regulated by BDNF or NT-3 and distinct sets of RNA-binding proteins

    PubMed Central

    Vicario, Annalisa; Colliva, Andrea; Ratti, Antonia; Davidovic, Laetitia; Baj, Gabriele; Gricman, Łukasz; Colombrita, Claudia; Pallavicini, Alberto; Jones, Kevin R.; Bardoni, Barbara; Tongiorgi, Enrico

    2015-01-01

    Sorting of mRNAs in neuronal dendrites relies upon inducible transport mechanisms whose molecular bases are poorly understood. We investigated here the mechanism of inducible dendritic targeting of rat brain-derived neurotrophic factor (BDNF) mRNAs as a paradigmatic example. BDNF encodes multiple mRNAs with either short or long 3′ UTR, both hypothesized to harbor inducible dendritic targeting signals. However, the mechanisms of sorting of the two 3′ UTR isoforms are controversial. We found that dendritic localization of BDNF mRNAs with short 3′ UTR was induced by depolarization and NT3 in vitro or by seizures in vivo and required CPEB-1, -2 and ELAV-2, -4. Dendritic targeting of long 3′ UTR was induced by activity or BDNF and required CPEB-1 and the relief of soma-retention signals mediated by ELAV-1, -3, -4, and FXR proteins. Thus, long and short 3′ UTRs, by using different sets of RNA-binding proteins provide a mechanism of selective targeting in response to different stimuli which may underlay distinct roles of BDNF variants in neuronal development and plasticity. PMID:26578876

  5. BDNF — EDRN Public Portal

    Cancer.gov

    BDNF (brain-derived neurotrophic factor) is a member of the nerve growth factor family. It is induced by cortical neurons, and is necessary for survival of striatal neurons in the brain. During development, BDNF promotes the survival and differentiation of selected neuronal populations of the peripheral and central nervous systems. Decreased expression of the BDNF gene is seen in both Alzheimer's and Huntington disease patients. BDNF may play a role in the regulation of stress response and in the biology of mood disorders. Multiple transcript variants encoding distinct isoforms have been described for this gene.

  6. Bi-directional regulation of postsynaptic cortactin distribution by BDNF and NMDA receptor activity.

    PubMed

    Iki, Junko; Inoue, Akihiro; Bito, Haruhiko; Okabe, Shigeo

    2005-12-01

    Abstract Cortactin is an F-actin-associated protein which interacts with the postsynaptic scaffolding protein Shank at the SH3 domain and is localized within the dendritic spine in the mouse neuron. Green fluorescent protein (GFP)-based time-lapse imaging revealed cortactin redistribution from dendritic cytoplasm to postsynaptic sites by application of brain-derived neurotrophic factor (BDNF). This response was mediated by mitogen-activated protein (MAP) kinase activation and was dependent on the C-terminal SH3 domain. In contrast, activation of N-methyl-D-aspartate (NMDA) receptors induced loss of cortactin from postsynaptic sites. This NMDA-dependent redistribution was blocked by an Src family kinase inhibitor. Conversely, increasing Src family kinase activity induced cortactin phosphorylation and loss of cortactin from the postsynaptic sites. Finally, blocking of endogenous BDNF reduced the amount of cortactin at the postsynaptic sites and an NMDA receptor antagonist prevented this reduction. These results indicate the importance of counterbalance between BDNF and NMDA receptor-mediated signalling in the reorganization of the postsynaptic actin cytoskeleton during neuronal development.

  7. Down-regulation of hippocampal BDNF and Arc associated with improvement in aversive spatial memory performance in socially isolated rats.

    PubMed

    Pisu, Maria Giuseppina; Dore, Riccardo; Mostallino, Maria Cristina; Loi, Manila; Pibiri, Francesca; Mameli, Roberta; Cadeddu, Roberto; Secci, Pietro Paolo; Serra, Mariangela

    2011-09-12

    Rats deprived of social contact with other rats at a young age experience a form of prolonged stress that leads to long-lasting changes in behavioral profile. Such isolation is thought to be anxiogenic for these normally gregarious animals, and the abnormal reactivity of isolated rats to environmental stimuli is thought to be a product of prolonged stress. We now show that isolation of rats at weaning reduced immobility time in the forced swim test, decreased sucrose intake and preference, and down-regulated both brain-derived neurotrophic factor (BDNF) and activity-regulated cytoskeletal associated protein (Arc) in the hippocampus. In the Morris water maze, isolated rats showed a reduced latency to reach the hidden platform during training, indicative of an improved learning performance, compared with group-housed rats. The cumulative search error during place training trials indicated a reliable difference between isolated and group-housed rats on days 4 and 5. The probe trial revealed a significant decrease of the average proximity to the target location in the isolated rats suggesting an improvement in spatial memory. Isolated rats also showed an increase in the plasma level of corticosterone on the 5th day of training and increased expression of BDNF and Arc in the hippocampus on both days 1 and 5. These results show that social isolation from weaning in rats results in development of depressive-like behavior but has a positive effect on spatial learning, supporting the existence of a facilitating effect of stress on cognitive function.

  8. Developmental fluoxetine exposure increases behavioral despair and alters epigenetic regulation of the hippocampal BDNF gene in adult female offspring.

    PubMed

    Boulle, Fabien; Pawluski, Jodi L; Homberg, Judith R; Machiels, Barbie; Kroeze, Yvet; Kumar, Neha; Steinbusch, Harry W M; Kenis, Gunter; van den Hove, Daniel L A

    2016-04-01

    A growing number of infants are exposed to selective serotonin reuptake inhibitor (SSRI) medications during the perinatal period. Perinatal exposure to SSRI medications alter neuroplasticity and increase depressive- and anxiety-related behaviors, particularly in male offspring as little work has been done in female offspring to date. The long-term effects of SSRI on development can also differ with previous exposure to prenatal stress, a model of maternal depression. Because of the limited work done on the role of developmental SSRI exposure on neurobehavioral outcomes in female offspring, the aim of the present study was to investigate how developmental fluoxetine exposure affects anxiety and depression-like behavior, as well as the regulation of hippocampal brain-derived neurotrophic factor (BDNF) signaling in the hippocampus of adult female offspring. To do this female Sprague-Dawley rat offspring were exposed to prenatal stress and fluoxetine via the dam, for a total of four groups of female offspring: 1) No Stress+Vehicle, 2) No Stress+Fluoxetine, 3) Prenatal Stress+Vehicle, and 4) Prenatal Stress+Fluoxetine. Primary results show that, in adult female offspring, developmental SSRI exposure significantly increases behavioral despair measures on the forced swim test, decreases hippocampal BDNF exon IV mRNA levels, and increases levels of the repressive histone 3 lysine 27 tri-methylated mark at the corresponding promoter. There was also a significant negative correlation between hippocampal BDNF exon IV mRNA levels and immobility in the forced swim test. No effects of prenatal stress or developmental fluoxetine exposure were seen on tests of anxiety-like behavior. This research provides important evidence for the long-term programming effects of early-life exposure to SSRIs on female offspring, particularily with regard to affect-related behaviors and their underlying molecular mechanisms. PMID:26844865

  9. A novel role for BDNF-TrkB in the regulation of chemotherapy resistance in head and neck squamous cell carcinoma.

    PubMed

    Lee, Junegoo; Jiffar, Tilahun; Kupferman, Michael E

    2012-01-01

    Mechanisms of resistance for HNSCC to cisplatin (CDDP), the foundational chemotherapeutic agent in the treatment of this disease, remain poorly understood. We previously demonstrated that cisplatin resistance (CR) can be overcome by targeting Trk receptor. In the current study, we explored the potential mechanistic role of the BDNF-TrkB signaling system in the development of CDDP resistance in HNSCC. Utilizing an in vitro system of acquired CR, we confirmed a substantial up-regulation of both BDNF and TrkB at the protein and mRNA levels in CR cells, suggesting an autocrine pathway dysregulation in this system. Exogenous BDNF stimulation led to an enhanced expression of the drug-resistance and anti-apoptotic proteins MDR1 and XiAP, respectively, in a dose-dependently manner, demonstrating a key role for BDNF-TrkB signaling in modulating the response to cytotoxic agents. In addition, modulation of TrkB expression induced an enhanced sensitivity of cells to CDDP in HNSCC. Moreover, genetic suppression of TrkB resulted in changes in expression of Bim, XiAP, and MDR1 contributing to HNSCC survival. To elucidate intracellular signaling pathways responsible for mechanisms underlying BDNF/TrkB induced CDDP-resistance, we analyzed expression levels of these molecules following inhibition of Akt. Inhibition of Akt eliminated BDNF effect on MDR1 and Bim expression in OSC-19P cells as well as modulated expressions of MDR1, Bim, and XiAP in OSC-19CR cells. These results suggest BDNF/TrkB system plays critical roles in CDDP-resistance development by utilizing Akt-dependent signaling pathways.

  10. BDNF-induced nitric oxide signals in cultured rat hippocampal neurons: time course, mechanism of generation, and effect on neurotrophin secretion

    PubMed Central

    Kolarow, Richard; Kuhlmann, Christoph R. W.; Munsch, Thomas; Zehendner, Christoph; Brigadski, Tanja; Luhmann, Heiko J.; Lessmann, Volkmar

    2014-01-01

    BDNF and nitric oxide signaling both contribute to plasticity at glutamatergic synapses. However, the role of combined signaling of both pathways at the same synapse is largely unknown. Using NO imaging with diaminofluoresceine in cultured hippocampal neurons we analyzed the time course of neurotrophin-induced NO signals. Application of exogenous BDNF, NT-4, and NT-3 (but not NGF) induced NO signals in the soma and in proximal dendrites of hippocampal neurons that were sensitive to NO synthase activity, TrkB signaling, and intracellular calcium elevation. The effect of NO signaling on neurotrophin secretion was analyzed in BDNF-GFP, and NT-3-GFP transfected hippocampal neurons. Exogenous application of the NO donor sodium-nitroprusside markedly inhibited neurotrophin secretion. However, endogenously generated NO in response to depolarization and neurotrophin stimulation, both did not result in a negative feedback on neurotrophin secretion. These results suggest that a negative feedback of NO signaling on synaptic secretion of neurotrophins operates only at high intracellular levels of nitric oxide that are under physiological conditions not reached by depolarization or BDNF signaling. PMID:25426021

  11. Cisplatin regulates SH-SY5Y cell growth through downregulation of BDNF via miR-16.

    PubMed

    Sun, Yun-Xiao; Yang, Jian; Wang, Ping-Yu; Li, You-Jie; Xie, Shu-Yang; Sun, Ruo-Peng

    2013-11-01

    Brain-derived neurotropic factor (BDNF) is a member of the neurotropin family. High levels of BDNF are associated with more aggressive malignant behavior in human cancer. In the present study, we observed the effect of cisplatin on BDNF expression in SH-SY5Y cells and investigated the mechanism of cisplatin in inducing the apoptosis of SH-SY5Y cells. Our results revealed that the expression of BDNF was obviously decreased in cisplatin-treated SH-SY5Y cells. In addition, the 3'-untranslated region of BDNF was found to be targeted by miR-16 using microRNA analysis software. After miR-16 was synthesized chemically, SH-SY5Y cells were transfected with miR-16 to investigate the regulatory role of miR-16 in regards to BDNF. The results showed that the expression of BDNF was markedly decreased in the miR‑16-transfected cells when compared with that in the control cultures as determined by western blotting. Moreover, miR-16 expression was obviously upregulated in the cisplatin-treated cells when compared with the untreated controls. Furthermore, SH-SY5Y cells were xenografted subcutaneously in nude mice to study the effect of cisplatin on the growth of SH-SY5Y cells in vivo. The results further showed that cisplatin inhibited the proliferation of SH-SY5Y cells in the cisplatin-treated mice when compared with the saline-treated control. The expression of miR-16 was increased, while the expression of BDNF was decreased in the cisplatin-treated mice. Our results demonstrated that cisplatin downregulated the expression of BDNF through miR-16 to inhibit SH-SY5Y cell proliferation in vitro and in vivo. These findings provide the basis for new targets for drug design or cancer therapy.

  12. Reciprocal regulation of very low density lipoprotein receptors (VLDLRs) in neurons by brain-derived neurotrophic factor (BDNF) and Reelin: involvement of the E3 ligase Mylip/Idol.

    PubMed

    Do, Hai Thi; Bruelle, Céline; Tselykh, Timofey; Jalonen, Pilvi; Korhonen, Laura; Lindholm, Dan

    2013-10-11

    BDNF positively influences various aspects of neuronal migration, maturation, and survival in the developing brain. Reelin in turn mediates inhibitory signals to migrating neuroblasts, which is crucial for brain development. The interplay between BDNF and Reelin signaling in neurodevelopment is not fully understood. We show here that BDNF increased the levels of the Reelin receptor (VLDL receptor (VLDLR)) in hippocampal neurons by increasing gene expression. In contrast, Reelin decreased VLDLRs, which was accompanied by an increase in the levels of the E3 ligase Mylip/Idol in neurons. Down-regulation of Mylip/Idol using shRNAs abrogated the decrease in VLDLRs induced by Reelin. These results show that VLDLRs are tightly regulated in hippocampal neurons by both transcriptional and post-transcriptional mechanisms. The regulation of VLDLR by BDNF and Reelin may affect the migration of neurons and contribute to neurodevelopmental disorders in the nervous system.

  13. Acute stress alters transcript expression pattern and reduces processing of proBDNF to mature BDNF in Dicentrarchus labrax

    PubMed Central

    2010-01-01

    Background Stress involves alterations of brain functioning that may precipitate to mood disorders. The neurotrophin Brain Derived Neurotrophic Factor (BDNF) has recently been involved in stress-induced adaptation. BDNF is a key regulator of neuronal plasticity and adaptive processes. Regulation of BDNF is complex and may reflect not only stress-specific mechanisms but also hormonal and emotional responses. For this reason we used, as an animal model of stress, a fish whose brain organization is very similar to that of higher vertebrates, but is generally considered free of emotional reactions. Results We provide a comprehensive characterization of BDNF gene in the Dicentrarchus labrax and its transcriptional, translational and post-translational regulation following acute stress. While total BDNF mRNA levels are unchanged, BDNF transcripts 1c and 1d resulted down regulated after acute stress. Acute stress induces also a significant increase in proBDNF levels and reduction in mature BDNF suggesting altered regulation of proBDNF proteolytic processing. Notably, we provide here the first evidence that fishes possess a simplified proteolytic regulation of BDNF since the pro28Kda form, generated by the SKI-1 protease in mammals, is absent in fishes because the cleavage site has first emerged in reptilians. Finally, we show that the proBDNF/totBDNF ratio is a highly predictive novel quantitative biomarker to detect stress in fishes with sensitivity = 100%, specificity = 87%, and Negative Predictive Value = 100%. Conclusion The high predictivity of proBDNF/totBDNF ratio for stress in lower vertebrates indicates that processing of BDNF is a central mechanism in adaptation to stress and predicts that a similar regulation of pro/mature BDNF has likely been conserved throughout evolution of vertebrates from fish to man. PMID:20074340

  14. Anodal transcranial direct current stimulation boosts synaptic plasticity and memory in mice via epigenetic regulation of Bdnf expression

    PubMed Central

    Podda, Maria Vittoria; Cocco, Sara; Mastrodonato, Alessia; Fusco, Salvatore; Leone, Lucia; Barbati, Saviana Antonella; Colussi, Claudia; Ripoli, Cristian; Grassi, Claudio

    2016-01-01

    The effects of transcranial direct current stimulation (tDCS) on brain functions and the underlying molecular mechanisms are yet largely unknown. Here we report that mice subjected to 20-min anodal tDCS exhibited one-week lasting increases in hippocampal LTP, learning and memory. These effects were associated with enhanced: i) acetylation of brain-derived neurotrophic factor (Bdnf) promoter I; ii) expression of Bdnf exons I and IX; iii) Bdnf protein levels. The hippocampi of stimulated mice also exhibited enhanced CREB phosphorylation, pCREB binding to Bdnf promoter I and recruitment of CBP on the same regulatory sequence. Inhibition of acetylation and blockade of TrkB receptors hindered tDCS effects at molecular, electrophysiological and behavioral levels. Collectively, our findings suggest that anodal tDCS increases hippocampal LTP and memory via chromatin remodeling of Bdnf regulatory sequences leading to increased expression of this gene, and support the therapeutic potential of tDCS for brain diseases associated with impaired neuroplasticity. PMID:26908001

  15. Identification of a new splice variant of BDNF in chicken

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brain-derived neurotrophic factor (BDNF) appears to be involved in the central regulation of energy homeostasis. BDNF splicing variants were discovered in vertebrates. Results from human, mouse and rat suggest that alternative BDNF splicing variants potentially play a role in fat deposition. Using t...

  16. Spontaneous sleep-wake cycle and sleep deprivation differently induce Bdnf1, Bdnf4 and Bdnf9a DNA methylation and transcripts levels in the basal forebrain and frontal cortex in rats.

    PubMed

    Ventskovska, Olena; Porkka-Heiskanen, Tarja; Karpova, Nina N

    2015-04-01

    Brain-derived neurotrophic factor (Bdnf) regulates neuronal plasticity, slow wave activity and sleep homeostasis. Environmental stimuli control Bdnf expression through epigenetic mechanisms, but there are no data on epigenetic regulation of Bdnf by sleep or sleep deprivation. Here we investigated whether 5-methylcytosine (5mC) DNA modification at Bdnf promoters p1, p4 and p9 influences Bdnf1, Bdnf4 and Bdnf9a expression during the normal inactive phase or after sleep deprivation (SD) (3, 6 and 12 h, end-times being ZT3, ZT6 and ZT12) in rats in two brain areas involved in sleep regulation, the basal forebrain and cortex. We found a daytime variation in cortical Bdnf expression: Bdnf1 expression was highest at ZT6 and Bdnf4 lowest at ZT12. Such variation was not observed in the basal forebrain. Also Bdnf p1 and p9 methylation levels differed only in the cortex, while Bdnf p4 methylation did not vary in either area. Factorial analysis revealed that sleep deprivation significantly induced Bdnf1 and Bdnf4 with the similar pattern for Bdnf9a in both basal forebrain and cortex; 12 h of sleep deprivation decreased 5mC levels at the cortical Bdnf p4 and p9. Regression analysis between the 5mC promoter levels and the corresponding Bdnf transcript expression revealed significant negative correlations for the basal forebrain Bdnf1 and cortical Bdnf9a transcripts in only non-deprived rats, while these correlations were lost after sleep deprivation. Our results suggest that Bdnf transcription during the light phase of undisturbed sleep-wake cycle but not after SD is regulated at least partially by brain site-specific DNA methylation.

  17. Proteolytic cleavage of proBDNF into mature BDNF in the basolateral amygdala is necessary for defeat-induced social avoidance.

    PubMed

    Dulka, Brooke N; Ford, Ellen C; Lee, Melissa A; Donnell, Nathaniel J; Goode, Travis D; Prosser, Rebecca; Cooper, Matthew A

    2016-04-01

    Brain-derived neurotrophic factor (BDNF) is essential for memory processes. The present study tested whether proteolytic cleavage of proBDNF into mature BDNF (mBDNF) within the basolateral amygdala (BLA) regulates the consolidation of defeat-related memories. We found that acute social defeat increases the expression of mBDNF, but not proBDNF, in the BLA/central amygdala. We also showed that blocking plasmin in the BLA with microinjection of α2-antiplasmin immediately following social defeat decreases social avoidance 24 h later. These data suggest the proteolytic cleavage of BDNF in the BLA is necessary for defeat-induced social avoidance. PMID:26980783

  18. Working Memory Deficits, Increased Anxiety-Like Traits, and Seizure Susceptibility in BDNF Overexpressing Mice

    ERIC Educational Resources Information Center

    Papaleo, Francesco; Silverman, Jill L.; Aney, Jordan; Tian, Qingjun; Barkan, Charlotte L.; Chadman, Kathryn K.; Crawley, Jacqueline N.

    2011-01-01

    BDNF regulates components of cognitive processes and has been implicated in psychiatric disorders. Here we report that genetic overexpression of the BDNF mature isoform (BDNF-tg) in female mice impaired working memory functions while sparing components of fear conditioning. BDNF-tg mice also displayed reduced breeding efficiency, higher…

  19. Multiple faces of BDNF in cocaine addiction

    PubMed Central

    Li, Xuan; Wolf, Marina E.

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) has been found to play roles in many types of plasticity including drug addiction. Here we focus on rodent studies over the past two decades that have demonstrated diverse roles of BDNF in models of cocaine addiction. First, we will provide an overview of studies showing that cocaine exposure alters (and generally increases) BDNF levels in reward-related regions including the ventral tegmental area, nucleus accumbens, prefrontal cortex, and amygdala. Then we will review evidence that BDNF contributes to behavioral changes in animal models of cocaine addiction, focusing on conditioned place preference, behavioral sensitization, maintenance and reinstatement of self-administration, and incubation of cocaine craving. Last, we will review the role of BDNF in synaptic plasticity, particularly as it relates to plasticity of AMPA receptor transmission after cocaine exposure. We conclude that BDNF regulates cocaine-induced behaviors in a highly complex manner that varies depending on the brain region (and even among different cell types within the same brain region), the nature of cocaine exposure, and the “addiction phase” examined (e.g., acquisition vs maintenance; early vs late withdrawal). These complexities make BDNF a daunting therapeutic target for treating cocaine addiction. However, recent clinical evidence suggests that the serum BDNF level may serve as a biomarker in cocaine addicts to predict future relapse, providing an alternative direction for exploring BDNF’s potential relevance to treating cocaine addiction. PMID:25449839

  20. Prenatal Cocaine Exposure Upregulates BDNF-TrkB Signaling

    PubMed Central

    Stucky, Andres; Bakshi, Kalindi P.; Friedman, Eitan; Wang, Hoau-Yan

    2016-01-01

    Prenatal cocaine exposure causes profound changes in neurobehavior as well as synaptic function and structure with compromised glutamatergic transmission. Since synaptic health and glutamatergic activity are tightly regulated by brain-derived neurotrophic factor (BDNF) signaling through its cognate tyrosine receptor kinase B (TrkB), we hypothesized that prenatal cocaine exposure alters BDNF-TrkB signaling during brain development. Here we show prenatal cocaine exposure enhances BDNF-TrkB signaling in hippocampus and prefrontal cortex (PFCX) of 21-day-old rats without affecting the expression levels of TrkB, P75NTR, signaling molecules, NMDA receptor—NR1 subunit as well as proBDNF and BDNF. Prenatal cocaine exposure reduces activity-dependent proBDNF and BDNF release and elevates BDNF affinity for TrkB leading to increased tyrosine-phosphorylated TrkB, heightened Phospholipase C-γ1 and N-Shc/Shc recruitment and higher downstream PI3K and ERK activation in response to ex vivo BDNF. The augmented BDNF-TrkB signaling is accompanied by increases in association between activated TrkB and NMDARs. These data suggest that cocaine exposure during gestation upregulates BDNF-TrkB signaling and its interaction with NMDARs by increasing BDNF affinity, perhaps in an attempt to restore the diminished excitatory neurotransmission. PMID:27494324

  1. Prenatal Cocaine Exposure Upregulates BDNF-TrkB Signaling.

    PubMed

    Stucky, Andres; Bakshi, Kalindi P; Friedman, Eitan; Wang, Hoau-Yan

    2016-01-01

    Prenatal cocaine exposure causes profound changes in neurobehavior as well as synaptic function and structure with compromised glutamatergic transmission. Since synaptic health and glutamatergic activity are tightly regulated by brain-derived neurotrophic factor (BDNF) signaling through its cognate tyrosine receptor kinase B (TrkB), we hypothesized that prenatal cocaine exposure alters BDNF-TrkB signaling during brain development. Here we show prenatal cocaine exposure enhances BDNF-TrkB signaling in hippocampus and prefrontal cortex (PFCX) of 21-day-old rats without affecting the expression levels of TrkB, P75NTR, signaling molecules, NMDA receptor-NR1 subunit as well as proBDNF and BDNF. Prenatal cocaine exposure reduces activity-dependent proBDNF and BDNF release and elevates BDNF affinity for TrkB leading to increased tyrosine-phosphorylated TrkB, heightened Phospholipase C-γ1 and N-Shc/Shc recruitment and higher downstream PI3K and ERK activation in response to ex vivo BDNF. The augmented BDNF-TrkB signaling is accompanied by increases in association between activated TrkB and NMDARs. These data suggest that cocaine exposure during gestation upregulates BDNF-TrkB signaling and its interaction with NMDARs by increasing BDNF affinity, perhaps in an attempt to restore the diminished excitatory neurotransmission. PMID:27494324

  2. Human NR5A1/SF-1 Mutations Show Decreased Activity on BDNF (Brain-Derived Neurotrophic Factor), an Important Regulator of Energy Balance: Testing Impact of Novel SF-1 Mutations Beyond Steroidogenesis

    PubMed Central

    Malikova, Jana; Camats, Núria; Fernández-Cancio, Mónica; Heath, Karen; González, Isabel; Caimarí, María; del Campo, Miguel; Albisu, Marian; Kolouskova, Stanislava; Audí, Laura; Flück, Christa E.

    2014-01-01

    Context Human NR5A1/SF-1 mutations cause 46,XY disorder of sex development (DSD) with broad phenotypic variability, and rarely cause adrenal insufficiency although SF-1 is an important transcription factor for many genes involved in steroidogenesis. In addition, the Sf-1 knockout mouse develops obesity with age. Obesity might be mediated through Sf-1 regulating activity of brain-derived neurotrophic factor (BDNF), an important regulator of energy balance in the ventromedial hypothalamus. Objective To characterize novel SF-1 gene variants in 4 families, clinical, genetic and functional studies were performed with respect to steroidogenesis and energy balance. Patients 5 patients with 46,XY DSD were found to harbor NR5A1/SF-1 mutations including 2 novel variations. One patient harboring a novel mutation also suffered from adrenal insufficiency. Methods SF-1 mutations were studied in cell systems (HEK293, JEG3) for impact on transcription of genes involved in steroidogenesis (CYP11A1, CYP17A1, HSD3B2) and in energy balance (BDNF). BDNF regulation by SF-1 was studied by promoter assays (JEG3). Results Two novel NR5A1/SF-1 mutations (Glu7Stop, His408Profs*159) were confirmed. Glu7Stop is the 4th reported SF-1 mutation causing DSD and adrenal insufficiency. In vitro studies revealed that transcription of the BDNF gene is regulated by SF-1, and that mutant SF-1 decreased BDNF promoter activation (similar to steroid enzyme promoters). However, clinical data from 16 subjects carrying SF-1 mutations showed normal birth weight and BMI. Conclusions Glu7Stop and His408Profs*159 are novel SF-1 mutations identified in patients with 46,XY DSD and adrenal insufficiency (Glu7Stop). In vitro, SF-1 mutations affect not only steroidogenesis but also transcription of BDNF which is involved in energy balance. However, in contrast to mice, consequences on weight were not found in humans with SF-1 mutations. PMID:25122490

  3. Repeated aripiprazole treatment regulates Bdnf, Arc and Npas4 expression under basal condition as well as after an acute swim stress in the rat brain.

    PubMed

    Luoni, Alessia; Fumagalli, Fabio; Racagni, Giorgio; Riva, Marco A

    2014-02-01

    Despite the rapid control of schizophrenic symptoms is due to the ability of antipsychotic drugs (APDs) to block D2 receptors in the mesolimbic pathway, it is now well-established that the therapeutic effects rely on adaptive mechanisms set in motion by their long-term administration. Such neuroplastic mechanisms depend on the pharmacological profile of the drug employed, with marked differences existing between first and second generation APDs. On these bases, the major accomplishment of this work was to investigate neuroadaptive changes set in motion by repeated treatment with aripiprazole, a novel APD that is unique for being a partial agonist at dopamine D2 receptors. Moreover, given that stress plays a critical role in the exacerbation of disease symptoms, we also investigated whether aripiprazole could influence the dynamic response of the brain to an acute challenge. We found that repeated aripiprazole treatment in rats regulates the expression of different markers of neuroplasticity such as Bdnf, Arc and Npas4 in a brain-region specific fashion; more importantly, the expression of these molecules was significantly up-regulated by an acute swim stress only in aripiprazole-treated animals, which is suggestive of increased ability to cope with the adverse event. We indeed found an overall facilitation of Bdnf expression, an effect that is mainly evident in the prefrontal cortex on the pool of transcripts undergoing dendritic localization. Overall, our results provide novel information regarding the mechanisms through which aripiprazole may regulate brain function and could contribute to improve neuroplastic defects that are associated with schizophrenia symptomatology.

  4. BDNF mediates adaptive brain and body responses to energetic challenges.

    PubMed

    Marosi, Krisztina; Mattson, Mark P

    2014-02-01

    Emerging findings suggest that brain-derived neurotrophic factor (BDNF) serves widespread roles in regulating energy homeostasis by controlling patterns of feeding and physical activity, and by modulating glucose metabolism in peripheral tissues. BDNF mediates the beneficial effects of energetic challenges such as vigorous exercise and fasting on cognition, mood, cardiovascular function, and on peripheral metabolism. By stimulating glucose transport and mitochondrial biogenesis BDNF bolsters cellular bioenergetics and protects neurons against injury and disease. By acting in the brain and periphery, BDNF increases insulin sensitivity and parasympathetic tone. Genetic factors, a 'couch potato' lifestyle, and chronic stress impair BDNF signaling, and this may contribute to the pathogenesis of metabolic syndrome. Novel BDNF-focused interventions are being developed for obesity, diabetes, and neurological disorders. PMID:24361004

  5. Persistent inflammation-induced up-regulation of brain-derived neurotrophic factor (BDNF) promotes synaptic delivery of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor GluA1 subunits in descending pain modulatory circuits.

    PubMed

    Tao, Wenjuan; Chen, Quan; Zhou, Wenjie; Wang, Yunping; Wang, Lu; Zhang, Zhi

    2014-08-01

    The enhanced AMPA receptor phosphorylation at GluA1 serine 831 sites in the central pain-modulating system plays a pivotal role in descending pain facilitation after inflammation, but the underlying mechanisms remain unclear. We show here that, in the rat brain stem, in the nucleus raphe magnus, which is a critical relay in the descending pain-modulating system of the brain, persistent inflammatory pain induced by complete Freund adjuvant (CFA) can enhance AMPA receptor-mediated excitatory postsynaptic currents and the GluA2-lacking AMPA receptor-mediated rectification index. Western blot analysis showed an increase in GluA1 phosphorylation at Ser-831 but not at Ser-845. This was accompanied by an increase in distribution of the synaptic GluA1 subunit. In parallel, the level of histone H3 acetylation at bdnf gene promoter regions was reduced significantly 3 days after CFA injection, as indicated by ChIP assays. This was correlated with an increase in BDNF mRNA levels and BDNF protein levels. Sequestering endogenous extracellular BDNF with TrkB-IgG in the nucleus raphe magnus decreased AMPA receptor-mediated synaptic transmission and GluA1 phosphorylation at Ser-831 3 days after CFA injection. Under the same conditions, blockade of TrkB receptor functions, phospholipase C, or PKC impaired GluA1 phosphorylation at Ser-831 and decreased excitatory postsynaptic currents mediated by GluA2-lacking AMPA receptors. Taken together, these results suggest that epigenetic up-regulation of BDNF by peripheral inflammation induces GluR1 phosphorylation at Ser-831 sites through activation of the phospholipase C-PKC signaling cascade, leading to the trafficking of GluA1 to pain-modulating neuronal synapses.

  6. DNA Methylation of BDNF Gene in Schizophrenia

    PubMed Central

    Çöpoğlu, Ümit Sertan; İğci, Mehri; Bozgeyik, Esra; Kokaçya, M. Hanifi; İğci, Yusuf Ziya; Dokuyucu, Recep; Arı, Mustafa; Savaş, Haluk A.

    2016-01-01

    Background Although genetic factors are risk factors for schizophrenia, some environmental factors are thought to be required for the manifestation of disease. Epigenetic mechanisms regulate gene functions without causing a change in the nucleotide sequence of DNA. Brain-derived neurotrophic factor (BDNF) is a neurotrophin that regulates synaptic transmission and plasticity. It has been suggested that BDNF may play a role in the pathophysiology of schizophrenia. It is established that methylation status of the BDNF gene is associated with fear learning, memory, and stressful social interactions. In this study, we aimed to investigate the DNA methylation status of BDNF gene in patients with schizophrenia. Material/Methods The study included 49 patients (33 male and 16 female) with schizophrenia and 65 unrelated healthy controls (46 male and 19 female). Determination of methylation pattern of CpG islands was based on the principle that bisulfite treatment of DNA results in conversion of unmethylated cytosine residues into uracil, whereas methylated cytosine residues remain unmodified. Methylation-specific PCR was performed with primers specific for either methylated or unmethylated DNA. Results There was no significant difference in methylated or un-methylated status for BDNF promoters between schizophrenia patients and controls. The mean duration of illness was significantly lower in the hemi-methylated group compared to the non-methylated group for BDNF gene CpG island-1 in schizophrenia patients. Conclusions Although there were no differences in BDNF gene methylation status between schizophrenia patients and healthy controls, there was an association between duration of illness and DNA methylation. PMID:26851233

  7. Functional interactions between steroid hormones and neurotrophin BDNF.

    PubMed

    Numakawa, Tadahiro; Yokomaku, Daisaku; Richards, Misty; Hori, Hiroaki; Adachi, Naoki; Kunugi, Hiroshi

    2010-05-26

    Brain-derived neurotrophic factor (BDNF), a critical neurotrophin, regulates many neuronal aspects including cell differentiation, cell survival, neurotransmission, and synaptic plasticity in the central nervous system (CNS). Though BDNF has two types of receptors, high affinity tropomyosin-related kinase (Trk)B and low affinity p75 receptors, BDNF positively exerts its biological effects on neurons via activation of TrkB and of resultant intracellular signaling cascades including mitogen-activated protein kinase/extracellular signal-regulated protein kinase, phospholipase Cγ, and phosphoinositide 3-kinase pathways. Notably, it is possible that alteration in the expression and/or function of BDNF in the CNS is involved in the pathophysiology of various brain diseases such as stroke, Parkinson's disease, Alzheimer's disease, and mental disorders. On the other hand, glucocorticoids, stress-induced steroid hormones, also putatively contribute to the pathophysiology of depression. Interestingly, in addition to the reduction in BDNF levels due to increased glucocorticoid exposure, current reports demonstrate possible interactions between glucocorticoids and BDNF-mediated neuronal functions. Other steroid hormones, such as estrogen, are involved in not only sexual differentiation in the brain, but also numerous neuronal events including cell survival and synaptic plasticity. Furthermore, it is well known that estrogen plays a role in the pathophysiology of Parkinson's disease, Alzheimer's disease, and mental illness, while serving to regulate BDNF expression and/or function. Here, we present a broad overview of the current knowledge concerning the association between BDNF expression/function and steroid hormones (glucocorticoids and estrogen). PMID:21540998

  8. THE ROLE OF BDNF IN THE DEVELOPMENT OF FEAR LEARNING

    PubMed Central

    Dincheva, Iva; Lynch, Niccola B.; Lee, Francis S.

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is a growth factor that is dynamically expressed in the brain across postnatal development, regulating neuronal differentiation and synaptic plasticity. The neurotrophic hypothesis of psychiatric mood disorders postulates that in the adult brain, decreased BDNF levels leads to altered neural plasticity, contributing to disease. Although BDNF has been established as a key factor regulating the critical period plasticity in the developing visual system, it has recently been shown to also play a role in fear circuitry maturation, which has implications for the emergence of fear-related mood disorders. This review provides a detailed overview of developmental changes in expression of BDNF isoforms, as well as their receptors across postnatal life. In addition, recent developmental studies utilizing a genetic BDNF single nucleotide polymorphism (Val66Met) knock-in mouse highlight the impact of BDNF on fear learning during a sensitive period spanning the transition into adolescent time frame. We hypothesize that BDNF in the developing brain regulates fear circuit plasticity during a sensitive period in early adolescence, and alterations in BDNF expression (genetic or environmental) have a persistent impact on fear behavior and fear-related disorders. PMID:27699937

  9. Early enriched environment induces an increased conversion of proBDNF to BDNF in the adult rat's hippocampus.

    PubMed

    Cao, Wenyu; Duan, Juan; Wang, Xueqin; Zhong, Xiaolin; Hu, Zhaolan; Huang, Fulian; Wang, Hongtao; Zhang, Juan; Li, Fang; Zhang, Jianyi; Luo, Xuegang; Li, Chang-Qi

    2014-05-15

    An enriched environment has been shown to influence brain plasticity and function by involving the action of brain-derived neurotrophic factor (BDNF). BDNF, which is synthesized as a precursor molecule (proBDNF) that undergoes proteolytic cleavage, plays an important role in synaptic plasticity and contributes to several brain functions such as memory, learning, and behavior. The neurotrophins and proneurotrophins often play opposite roles in the brain, suggesting that proteolytic cleavage of proneurotrophins controls the action of neurotrophins. However, few studies have focused on the expression and cleavage of proBDNF after exposure to an enriched environment. Our study aimed to explore the effects of an early-enriched environment on the conversion of proBDNF to BDNF in the adult rats' hippocampus. We found that there was no difference in the expression of proBDNF in the hippocampus between the SE (standard environment) and EE (enriched environment) rats, but a significantly increased BDNF protein level was found in the EE rats. Thus, a remarkably enhanced ratio of BDNF to proBDNF (BDNF/proBDNF) was observed in the EE rats. In addition, the EE resulted in a remarkably up-regulated matrix metalloproteinase-9 (MMP-9) in the hippocampus, which played a key role in converting proBDNF to BDNF in the extracellular space. Furthermore, the expression of synapse-related proteins (NR1 and NR2A) was analyzed, and the results indicated that EE could significantly increase the expression of NR1 and NR2A in the hippocampus. In addition, the behavioral results showed that EE reduced anxiety-like behavior in the elevated-plus maze test and reduced immobility time in the forced swimming test. Moreover, the EE resulted in an increased preference for sucrose compared to the SE. These results suggested that the EE up-regulated MMP-9 levels within the hippocampus, which might facilitate the conversion of proBDNF to BDNF, thereby contributing to the long lasting alterations of

  10. Plasma levels of mature brain-derived neurotrophic factor (BDNF) and matrix metalloproteinase-9 (MMP-9) in treatment-resistant schizophrenia treated with clozapine.

    PubMed

    Yamamori, Hidenaga; Hashimoto, Ryota; Ishima, Tamaki; Kishi, Fukuko; Yasuda, Yuka; Ohi, Kazutaka; Fujimoto, Michiko; Umeda-Yano, Satomi; Ito, Akira; Hashimoto, Kenji; Takeda, Masatoshi

    2013-11-27

    Brain-derived neurotrophic factor (BDNF) regulates the survival and growth of neurons, and influences synaptic efficiency and plasticity. Peripheral BDNF levels in patients with schizophrenia have been widely reported in the literature. However, it is still controversial whether peripheral levels of BDNF are altered in patients with schizophrenia. The peripheral BDNF levels previously reported in patients with schizophrenia were total BDNF (proBDNF and mature BDNF) as it was unable to specifically measure mature BDNF due to limited BDNF antibody specificity. In this study, we examined whether peripheral levels of mature BDNF were altered in patients with treatment-resistant schizophrenia. Matrix metalloproteinase-9 (MMP-9) levels were also measured, as MMP-9 plays a role in the conversion of proBDNF to mature BDNF. Twenty-two patients with treatment-resistant schizophrenia treated with clozapine and 22 age- and sex-matched healthy controls were enrolled. The plasma levels of mature BDNF and MMP-9 were measured using ELISA kits. No significant difference was observed for mature BDNF however, MMP-9 was significantly increased in patients with schizophrenia. The significant correlation was observed between mature BDNF and MMP-9 plasma levels. Neither mature BDNF nor MMP-9 plasma levels were associated clinical variables. Our results do not support the view that peripheral BDNF levels are associated with schizophrenia. MMP-9 may play a role in the pathophysiology of schizophrenia and serve as a biomarker for schizophrenia.

  11. Spinal Plasticity and Behavior: BDNF-Induced Neuromodulation in Uninjured and Injured Spinal Cord

    PubMed Central

    Huie, J. Russell

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophic factor family of signaling molecules. Since its discovery over three decades ago, BDNF has been identified as an important regulator of neuronal development, synaptic transmission, and cellular and synaptic plasticity and has been shown to function in the formation and maintenance of certain forms of memory. Neural plasticity that underlies learning and memory in the hippocampus shares distinct characteristics with spinal cord nociceptive plasticity. Research examining the role BDNF plays in spinal nociception and pain overwhelmingly suggests that BDNF promotes pronociceptive effects. BDNF induces synaptic facilitation and engages central sensitization-like mechanisms. Also, peripheral injury-induced neuropathic pain is often accompanied with increased spinal expression of BDNF. Research has extended to examine how spinal cord injury (SCI) influences BDNF plasticity and the effects BDNF has on sensory and motor functions after SCI. Functional recovery and adaptive plasticity after SCI are typically associated with upregulation of BDNF. Although neuropathic pain is a common consequence of SCI, the relation between BDNF and pain after SCI remains elusive. This article reviews recent literature and discusses the diverse actions of BDNF. We also highlight similarities and differences in BDNF-induced nociceptive plasticity in naïve and SCI conditions. PMID:27721996

  12. BDNF pro-peptide actions facilitate hippocampal LTD and are altered by the common BDNF polymorphism Val66Met

    PubMed Central

    Mizui, Toshiyuki; Ishikawa, Yasuyuki; Kumanogoh, Haruko; Lume, Maria; Matsumoto, Tomoya; Hara, Tomoko; Yamawaki, Shigeto; Takahashi, Masami; Shiosaka, Sadao; Itami, Chiaki; Uegaki, Koichi; Saarma, Mart; Kojima, Masami

    2015-01-01

    Most growth factors are initially synthesized as precursor proteins and subsequently processed into their mature form by proteolytic cleavage, resulting in simultaneous removal of a pro-peptide. However, compared with that of mature form, the biological role of the pro-peptide is poorly understood. Here, we investigated the biological role of the pro-peptide of brain-derived neurotrophic factor (BDNF) and first showed that the pro-peptide is expressed and secreted in hippocampal tissues and cultures, respectively. Interestingly, we found that the BDNF pro-peptide directly facilitates hippocampal long-term depression (LTD), requiring the activation of GluN2B-containing NMDA receptors and the pan-neurotrophin receptor p75NTR. The BDNF pro-peptide also enhances NMDA-induced α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor endocytosis, a mechanism crucial for LTD expression. Thus, the BDNF pro-peptide is involved in synaptic plasticity that regulates a mechanism responsible for promoting LTD. The well-known BDNF polymorphism valine for methionine at amino acid position 66 (Val66Met) affects human memory function. Here, the BDNF pro-peptide with Met mutation completely inhibits hippocampal LTD. These findings demonstrate functional roles for the BDNF pro-peptide and a naturally occurring human BDNF polymorphism in hippocampal synaptic depression. PMID:26015580

  13. BDNF pro-peptide actions facilitate hippocampal LTD and are altered by the common BDNF polymorphism Val66Met.

    PubMed

    Mizui, Toshiyuki; Ishikawa, Yasuyuki; Kumanogoh, Haruko; Lume, Maria; Matsumoto, Tomoya; Hara, Tomoko; Yamawaki, Shigeto; Takahashi, Masami; Shiosaka, Sadao; Itami, Chiaki; Uegaki, Koichi; Saarma, Mart; Kojima, Masami

    2015-06-01

    Most growth factors are initially synthesized as precursor proteins and subsequently processed into their mature form by proteolytic cleavage, resulting in simultaneous removal of a pro-peptide. However, compared with that of mature form, the biological role of the pro-peptide is poorly understood. Here, we investigated the biological role of the pro-peptide of brain-derived neurotrophic factor (BDNF) and first showed that the pro-peptide is expressed and secreted in hippocampal tissues and cultures, respectively. Interestingly, we found that the BDNF pro-peptide directly facilitates hippocampal long-term depression (LTD), requiring the activation of GluN2B-containing NMDA receptors and the pan-neurotrophin receptor p75(NTR). The BDNF pro-peptide also enhances NMDA-induced α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor endocytosis, a mechanism crucial for LTD expression. Thus, the BDNF pro-peptide is involved in synaptic plasticity that regulates a mechanism responsible for promoting LTD. The well-known BDNF polymorphism valine for methionine at amino acid position 66 (Val66Met) affects human memory function. Here, the BDNF pro-peptide with Met mutation completely inhibits hippocampal LTD. These findings demonstrate functional roles for the BDNF pro-peptide and a naturally occurring human BDNF polymorphism in hippocampal synaptic depression. PMID:26015580

  14. The lighter side of BDNF

    PubMed Central

    Noble, Emily E.; Billington, Charles J.; Kotz, Catherine M.

    2011-01-01

    Brain-derived neurotrophic factor (BDNF) mediates energy metabolism and feeding behavior. As a neurotrophin, BDNF promotes neuronal differentiation, survival during early development, adult neurogenesis, and neural plasticity; thus, there is the potential that BDNF could modify circuits important to eating behavior and energy expenditure. The possibility that “faulty” circuits could be remodeled by BDNF is an exciting concept for new therapies for obesity and eating disorders. In the hypothalamus, BDNF and its receptor, tropomyosin-related kinase B (TrkB), are extensively expressed in areas associated with feeding and metabolism. Hypothalamic BDNF and TrkB appear to inhibit food intake and increase energy expenditure, leading to negative energy balance. In the hippocampus, the involvement of BDNF in neural plasticity and neurogenesis is important to learning and memory, but less is known about how BDNF participates in energy homeostasis. We review current research about BDNF in specific brain locations related to energy balance, environmental, and behavioral influences on BDNF expression and the possibility that BDNF may influence energy homeostasis via its role in neurogenesis and neural plasticity. PMID:21346243

  15. Long-term treadmill exercise improves spatial memory of male APPswe/PS1dE9 mice by regulation of BDNF expression and microglia activation.

    PubMed

    Xiong, J Y; Li, S C; Sun, Y X; Zhang, X S; Dong, Z Z; Zhong, P; Sun, X R

    2015-11-01

    Increasing evidence suggests that physical activity could delay or attenuate the symptoms of Alzheimer's disease (AD). But the underlying mechanisms are still not fully understood. To investigate the effect of long-term treadmill exercise on the spatial memory of AD mice and the possible role of β-amyloid, brain-derived neurotrophic factor (BDNF) and microglia in the effect, male APPswe/PS1dE9 AD mice aged 4 months were subjected to treadmill exercise for 5 months with 6 sessions per week and gradually increased load. A Morris water maze was used to evaluate the spatial memory. Expression levels of β-amyloid, BDNF and Iba-1 (a microglia marker) in brain tissue were detected by immunohistochemistry. Sedentary AD mice and wildtype C57BL/6J mice served as controls. The results showed that 5-month treadmill exercise significantly decreased the escape latencies (P < 0.01 on the 4th day) and improved the spatial memory of the AD mice in the water maze test. Meanwhile, treadmill exercise significantly increased the number of BDNF-positive cells and decreased the ratios of activated microglia in both the cerebral cortex and the hippocampus. However, treadmill exercise did not significantly alleviate the accumulation of β-amyloid in either the cerebral cortex or the hippocampus of the AD mice (P > 0.05). The study suggested that long-term treadmill exercise could improve the spatial memory of the male APPswe/PS1dE9 AD mice. The increase in BDNF-positive cells and decrease in activated microglia might underpin the beneficial effect.

  16. Scorpion venom heat-resistant peptide (SVHRP) enhances neurogenesis and neurite outgrowth of immature neurons in adult mice by up-regulating brain-derived neurotrophic factor (BDNF).

    PubMed

    Wang, Tao; Wang, Shi-Wei; Zhang, Yue; Wu, Xue-Fei; Peng, Yan; Cao, Zhen; Ge, Bi-Ying; Wang, Xi; Wu, Qiong; Lin, Jin-Tao; Zhang, Wan-Qin; Li, Shao; Zhao, Jie

    2014-01-01

    Scorpion venom heat-resistant peptide (SVHRP) is a component purified from Buthus martensii Karsch scorpion venom. Although scorpions and their venom have been used in Traditional Chinese Medicine (TCM) to treat chronic neurological disorders, the underlying mechanisms of these treatments remain unknown. We applied SVHRP in vitro and in vivo to understand its effects on the neurogenesis and maturation of adult immature neurons and explore associated molecular mechanisms. SVHRP administration increased the number of 5-bromo-2'-dexoxyuridine (BrdU)-positive cells, BrdU-positive/neuron-specific nuclear protein (NeuN)-positive neurons, and polysialylated-neural cell adhesion molecule (PSA-NCAM)-positive immature neurons in the subventricular zone (SVZ) and subgranular zone (SGZ) of hippocampus. Furthermore immature neurons incubated with SVHRP-pretreated astrocyte-conditioned medium exhibited significantly increased neurite length compared with those incubated with normal astrocyte-conditioned medium. This neurotrophic effect was further confirmed in vivo by detecting an increased average single area and whole area of immature neurons in the SGZ, SVZ and olfactory bulb (OB) in the adult mouse brain. In contrast to normal astrocyte-conditioned medium, higher concentrations of brain-derived neurotrophic factor (BDNF) but not nerve growth factor (NGF) or glial cell line-derived neurotrophic factor (GDNF) was detected in the conditioned medium of SVHRP-pretreated astrocytes, and blocking BDNF using anti-BDNF antibodies eliminated these SVHRP-dependent neurotrophic effects. In SVHRP treated mouse brain, more glial fibrillary acidic protein (GFAP)-positive cells were detected. Furthermore, immunohistochemistry revealed increased numbers of GFAP/BDNF double-positive cells, which agrees with the observed changes in the culture system. This paper describes novel effects of scorpion venom-originated peptide on the stem cells and suggests the potential therapeutic values of SVHRP.

  17. The regulation of methane oxidation in soil

    NASA Technical Reports Server (NTRS)

    Mancinelli, R. L.

    1995-01-01

    The atmospheric concentration of methane, a greenhouse gas, has more than doubled during the past 200 years. Consequently, identifying the factors influencing the flux of methane into the atmosphere is becoming increasingly important. Methanotrophs, microaerophilic organisms widespread in aerobic soils and sediments, oxidize methane to derive energy and carbon for biomass. In so doing, they play an important role in mitigating the flux of methane into the atmosphere. Several physico-chemical factors influence rates of methane oxidation in soil, including soil diffusivity; water potential; and levels of oxygen, methane, ammonium, nitrate, nitrite, and copper. Most of these factors exert their influence through interactions with methane monooxygenase (MMO), the enzyme that catalyzes the reaction converting methane to methanol, the first step in methane oxidation. Although biological factors such as competition and predation undoubtedly play a role in regulating the methanotroph population in soils, and thereby limit the amount of methane consumed by methanotrophs, the significance of these factors is unknown. Obtaining a better understanding of the ecology of methanotrophs will help elucidate the mechanisms that regulate soil methane oxidation.

  18. Combined cisplatin and aurora inhibitor treatment increase neuroblastoma cell death but surviving cells overproduce BDNF.

    PubMed

    Polacchini, Alessio; Albani, Clara; Baj, Gabriele; Colliva, Andrea; Carpinelli, Patrizia; Tongiorgi, Enrico

    2016-07-15

    Drug-resistance to chemotherapics in aggressive neuroblastoma (NB) is characterized by enhanced cell survival mediated by TrkB and its ligand, brain-derived neurotrophic factor (BDNF); thus reduction in BDNF levels represent a promising strategy to overcome drug-resistance, but how chemotherapics regulate BDNF is unknown. Here, cisplatin treatment in SK-N-BE neuroblastoma upregulated multiple BDNF transcripts, except exons 5 and 8 variants. Cisplatin increased BDNF mRNA and protein, and enhanced translation of a firefly reporter gene flanked by BDNF 5'UTR exons 1, 2c, 4 or 6 and 3'UTR-long. To block BDNF translation we focused on aurora kinases inhibitors which are proposed as new chemotherapeutics. NB cell survival after 24 h treatment was 43% with cisplatin, and 22% by cisplatin+aurora kinase inhibitor PHA-680632, while the aurora kinases inhibitor alone was less effective; however the combined treatment induced a paradoxical increase of BDNF in surviving cells with strong translational activation of exon6-3'UTR-long transcript, while translation of BDNF transcripts 1, 2C and 4 was suppressed. In conclusion, combined cisplatin and aurora kinase inhibitor treatment increases cell death, but induces BDNF overproduction in surviving cells through an aurora kinase-independent mechanism.

  19. Combined cisplatin and aurora inhibitor treatment increase neuroblastoma cell death but surviving cells overproduce BDNF.

    PubMed

    Polacchini, Alessio; Albani, Clara; Baj, Gabriele; Colliva, Andrea; Carpinelli, Patrizia; Tongiorgi, Enrico

    2016-01-01

    Drug-resistance to chemotherapics in aggressive neuroblastoma (NB) is characterized by enhanced cell survival mediated by TrkB and its ligand, brain-derived neurotrophic factor (BDNF); thus reduction in BDNF levels represent a promising strategy to overcome drug-resistance, but how chemotherapics regulate BDNF is unknown. Here, cisplatin treatment in SK-N-BE neuroblastoma upregulated multiple BDNF transcripts, except exons 5 and 8 variants. Cisplatin increased BDNF mRNA and protein, and enhanced translation of a firefly reporter gene flanked by BDNF 5'UTR exons 1, 2c, 4 or 6 and 3'UTR-long. To block BDNF translation we focused on aurora kinases inhibitors which are proposed as new chemotherapeutics. NB cell survival after 24 h treatment was 43% with cisplatin, and 22% by cisplatin+aurora kinase inhibitor PHA-680632, while the aurora kinases inhibitor alone was less effective; however the combined treatment induced a paradoxical increase of BDNF in surviving cells with strong translational activation of exon6-3'UTR-long transcript, while translation of BDNF transcripts 1, 2C and 4 was suppressed. In conclusion, combined cisplatin and aurora kinase inhibitor treatment increases cell death, but induces BDNF overproduction in surviving cells through an aurora kinase-independent mechanism. PMID:27256407

  20. Neurogenic and neurotrophic effects of BDNF peptides in mouse hippocampal primary neuronal cell cultures.

    PubMed

    Cardenas-Aguayo, Maria del Carmen; Kazim, Syed Faraz; Grundke-Iqbal, Inge; Iqbal, Khalid

    2013-01-01

    The level of brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, is down regulated in Alzheimer's disease (AD), Parkinson's disease (PD), depression, stress, and anxiety; conversely the level of this neurotrophin is increased in autism spectrum disorders. Thus, modulating the level of BDNF can be a potential therapeutic approach for nervous system pathologies. In the present study, we designed five different tetra peptides (peptides B-1 to B-5) corresponding to different active regions of BDNF. These tetra peptides were found to be non-toxic, and they induced the expression of neuronal markers in mouse embryonic day 18 (E18) primary hippocampal neuronal cultures. Additionally, peptide B-5 induced the expression of BDNF and its receptor, TrkB, suggesting a positive feedback mechanism. The BDNF peptides induced only a moderate activation (phosphorylation at Tyr 706) of the TrkB receptor, which could be blocked by the Trk's inhibitor, K252a. Peptide B-3, when combined with BDNF, potentiated the survival effect of this neurotrophin on H(2)O(2)-treated E18 hippocampal cells. Peptides B-3 and B-5 were found to work as partial agonists and as partial antagonists competing with BDNF to activate the TrkB receptor in a dose-dependent manner. Taken together, these results suggest that the described BDNF tetra peptides are neurotrophic, can modulate BDNF signaling in a partial agonist/antagonist way, and offer a novel therapeutic approach to neural pathologies where BDNF levels are dysregulated. PMID:23320097

  1. Combined cisplatin and aurora inhibitor treatment increase neuroblastoma cell death but surviving cells overproduce BDNF

    PubMed Central

    Polacchini, Alessio; Albani, Clara; Baj, Gabriele; Colliva, Andrea; Carpinelli, Patrizia

    2016-01-01

    ABSTRACT Drug-resistance to chemotherapics in aggressive neuroblastoma (NB) is characterized by enhanced cell survival mediated by TrkB and its ligand, brain-derived neurotrophic factor (BDNF); thus reduction in BDNF levels represent a promising strategy to overcome drug-resistance, but how chemotherapics regulate BDNF is unknown. Here, cisplatin treatment in SK-N-BE neuroblastoma upregulated multiple BDNF transcripts, except exons 5 and 8 variants. Cisplatin increased BDNF mRNA and protein, and enhanced translation of a firefly reporter gene flanked by BDNF 5′UTR exons 1, 2c, 4 or 6 and 3′UTR-long. To block BDNF translation we focused on aurora kinases inhibitors which are proposed as new chemotherapeutics. NB cell survival after 24 h treatment was 43% with cisplatin, and 22% by cisplatin+aurora kinase inhibitor PHA-680632, while the aurora kinases inhibitor alone was less effective; however the combined treatment induced a paradoxical increase of BDNF in surviving cells with strong translational activation of exon6-3′UTR-long transcript, while translation of BDNF transcripts 1, 2C and 4 was suppressed. In conclusion, combined cisplatin and aurora kinase inhibitor treatment increases cell death, but induces BDNF overproduction in surviving cells through an aurora kinase-independent mechanism. PMID:27256407

  2. BDNF Val66Met is Associated with Introversion and Interacts with 5-HTTLPR to Influence Neuroticism

    PubMed Central

    Terracciano, Antonio; Tanaka, Toshiko; Sutin, Angelina R; Deiana, Barbara; Balaci, Lenuta; Sanna, Serena; Olla, Nazario; Maschio, Andrea; Uda, Manuela; Ferrucci, Luigi; Schlessinger, David; Costa, Paul T

    2010-01-01

    Brain-derived neurotrophic factor (BDNF) regulates synaptic plasticity and neurotransmission, and has been linked to neuroticism, a major risk factor for psychiatric disorders. A recent genome-wide association (GWA) scan, however, found the BDNF Val66Met polymorphism (rs6265) associated with extraversion but not with neuroticism. In this study, we examine the links between BDNF and personality traits, assessed using the Revised NEO Personality Inventory (NEO-PI-R), in a sample from SardiNIA (n=1560) and the Baltimore Longitudinal Study of Aging (BLSA; n=1131). Consistent with GWA results, we found that BDNF Met carriers were more introverted. By contrast, in both samples and in a meta-analysis inclusive of published data (n=15251), we found no evidence for a main effect of BDNF Val66Met on neuroticism. Finally, on the basis of recent reports of an epistatic effect between BDNF and the serotonin transporter, we explored a Val66Met × 5-HTTLPR interaction in a larger SardiNIA sample (n=2333). We found that 5-HTTLPR LL carriers scored lower on neuroticism in the presence of the BDNF Val variant, but scored higher on neuroticism in the presence of the BDNF Met variant. Our findings support the association between the BDNF Met variant and introversion and suggest that BDNF interacts with the serotonin transporter gene to influence neuroticism. PMID:20042999

  3. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition.

    PubMed

    Vaynman, Shoshanna; Ying, Zhe; Gomez-Pinilla, Fernando

    2004-11-01

    We found that a short exercise period enhanced cognitive function on the Morris water maze (MWM), such that exercised animals were significantly better than sedentary controls at learning and recalling the location of the platform. The finding that exercise increased brain-derived neurotrophic factor (BDNF), a molecule important for synaptic plasticity and learning and memory, impelled us to examine whether a BDNF-mediated mechanism subserves the capacity of exercise to improve hippocampal-dependent learning. A specific immunoadhesin chimera (TrkB-IgG), that mimics the BDNF receptor, TrkB, to selectively bind BDNF molecules, was used to block BDNF in the hippocampus during a 1-week voluntary exercise period. After this, a 2-trial-per-day MWM was performed for 5 consecutive days, succeeded by a probe trial 2 days later. By inhibiting BDNF action we blocked the benefit of exercise on cognitive function, such that the learning and recall abilities of exercising animals receiving the BDNF blocker were reduced to sedentary control levels. Inhibiting BDNF action also blocked the effect of exercise on downstream systems regulated by BDNF and important for synaptic plasticity, cAMP response-element-binding protein (CREB) and synapsin I. Specific to exercise, we found an association between CREB and BDNF expression and cognitive function, such that animals who were the fastest learners and had the best recall showed the highest expression of BDNF and associated CREB mRNA levels. These findings suggest a functional role for CREB under the control of BDNF in mediating the exercise-induced enhancement in learning and memory. Our results indicate that synapsin I might also contribute to this BDNF-mediated mechanism.

  4. Involvement of BDNF signaling transmission from basolateral amygdala to infralimbic prefrontal cortex in conditioned taste aversion extinction.

    PubMed

    Xin, Jian; Ma, Ling; Zhang, Tian-Yi; Yu, Hui; Wang, Yue; Kong, Liang; Chen, Zhe-Yu

    2014-05-21

    Brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase receptor B (TrkB), play a critical role in memory extinction. However, the detailed role of BDNF in memory extinction on the basis of neural circuit has not been fully understood. Here, we aim to investigate the role of BDNF signaling circuit in mediating conditioned taste aversion (CTA) memory extinction of the rats. We found region-specific changes in BDNF gene expression during CTA extinction. CTA extinction led to increased BDNF gene expression in the basolateral amygdala (BLA) and infralimbic prefrontal cortex (IL) but not in the central amygdaloid nucleus (CeA) and hippocampus (HIP). Moreover, blocking BDNF signaling or exogenous microinjection of BDNF into the BLA or IL could disrupt or enhance CTA extinction, which suggested that BDNF signaling in the BLA and IL is necessary and sufficient for CTA extinction. Interestingly, we found that microinjection of BDNF-neutralizing antibody into the BLA could abolish the extinction training-induced BDNF mRNA level increase in the IL, but not vice versa, demonstrating that BDNF signaling is transmitted from the BLA to IL during extinction. Finally, the accelerated extinction learning by infusion of exogenous BDNF in the BLA could also be blocked by IL infusion of BDNF-neutralizing antibody rather than vice versa, indicating that the IL, but not BLA, is the primary action site of BDNF in CTA extinction. Together, these data suggest that BLA-IL circuit regulates CTA memory extinction by identifying BDNF as a key regulator.

  5. Working memory deficits, increased anxiety-like traits, and seizure susceptibility in BDNF overexpressing mice.

    PubMed

    Papaleo, Francesco; Silverman, Jill L; Aney, Jordan; Tian, Qingjun; Barkan, Charlotte L; Chadman, Kathryn K; Crawley, Jacqueline N

    2011-08-01

    BDNF regulates components of cognitive processes and has been implicated in psychiatric disorders. Here we report that genetic overexpression of the BDNF mature isoform (BDNF-tg) in female mice impaired working memory functions while sparing components of fear conditioning. BDNF-tg mice also displayed reduced breeding efficiency, higher anxiety-like scores, high self-grooming, impaired prepulse inhibition, and higher susceptibility to seizures when placed in a new empty cage, as compared with wild-type (WT) littermate controls. Control measures of general health, locomotor activity, motor coordination, depression-related behaviors, and sociability did not differ between genotypes. The present findings, indicating detrimental effects of life-long increased BDNF in mice, may inform human studies evaluating the role of BDNF functional genetic variations on cognitive abilities and vulnerability to psychiatric disorders. PMID:21791566

  6. Glucocorticoids modulate BDNF mRNA expression in the rat hippocampus after traumatic brain injury.

    PubMed

    Grundy, P L; Patel, N; Harbuz, M S; Lightman, S L; Sharples, P M

    2000-10-20

    Brain-derived neurotrophic factor (BDNF) expression in rat hippocampus is increased after experimental traumatic brain injury (TBI) and may be neuroprotective. Glucocorticoids are important regulators of brain neurotrophin levels and are often prescribed following TBI. The effect of adrenalectomy (ADX) on the expression of BDNF mRNA in the hippocampus after TBI has not been investigated to date. We used fluid percussion injury (FPI) and in situ hybridization to evaluate the expression of BDNF mRNA in the hippocampus 4 h after TBI in adrenal-intact or adrenalectomized rats (with or without corticosterone replacement). FPI and ADX independently increased expression of BDNF mRNA. In animals undergoing FPI, prior ADX caused further elevation of BDNF mRNA and this upregulation was prevented by corticosterone replacement in ADX rats. These findings suggest that glucocorticoids are involved in the modulation of the BDNF mRNA response to TBI.

  7. Working memory deficits, increased anxiety-like traits, and seizure susceptibility in BDNF overexpressing mice

    PubMed Central

    Papaleo, Francesco; Silverman, Jill L.; Aney, Jordan; Tian, Qingjun; Barkan, Charlotte L.; Chadman, Kathryn K.; Crawley, Jacqueline N.

    2011-01-01

    BDNF regulates components of cognitive processes and has been implicated in psychiatric disorders. Here we report that genetic overexpression of the BDNF mature isoform (BDNF-tg) in female mice impaired working memory functions while sparing components of fear conditioning. BDNF-tg mice also displayed reduced breeding efficiency, higher anxiety-like scores, high self-grooming, impaired prepulse inhibition, and higher susceptibility to seizures when placed in a new empty cage, as compared with wild-type (WT) littermate controls. Control measures of general health, locomotor activity, motor coordination, depression-related behaviors, and sociability did not differ between genotypes. The present findings, indicating detrimental effects of life-long increased BDNF in mice, may inform human studies evaluating the role of BDNF functional genetic variations on cognitive abilities and vulnerability to psychiatric disorders. PMID:21791566

  8. BDNF-TrkB pathway mediates neuroprotection of hydrogen sulfide against formaldehyde-induced toxicity to PC12 cells.

    PubMed

    Jiang, Jia-Mei; Zhou, Cheng-Fang; Gao, Sheng-Lan; Tian, Ying; Wang, Chun-Yan; Wang, Li; Gu, Hong-Feng; Tang, Xiao-Qing

    2015-01-01

    Formaldehyde (FA) is a common environmental contaminant that has toxic effects on the central nervous system (CNS). Our previous data demonstrated that hydrogen sulfide (H2S), the third endogenous gaseous mediator, has protective effects against FA-induced neurotoxicity. As is known to all, Brain-derived neurotropic factor (BDNF), a member of the neurotrophin gene family, mediates its neuroprotective properties via various intracellular signaling pathways triggered by activating the tyrosine kinase receptor B (TrkB). Intriguingly, our previous data have illustrated the upregulatory role of H2S on BDNF protein expression in the hippocampus of rats. Therefore, in this study, we hypothesized that H2S provides neuroprotection against FA toxicity by regulating BDNF-TrkB pathway. In the present study, we found that NaHS, a donor of H2S, upregulated the level of BDNF protein in PC12 cells, and significantly rescued FA-induced downregulation of BDNF levels. Furthermore, we found that pretreatment of PC12 cells with K252a, an inhibitor of the BDNF receptor TrkB, markedly reversed the inhibition of NaHS on FA-induced cytotoxicity and ablated the protective effects of NaHS on FA-induced oxidative stress, including the accumulation of intracellular reactive oxygen species (ROS), 4-hydroxy-2-trans-nonenal (4-HNE), and malondialdehyde (MDA). We also showed that K252a abolished the inhibition of NaHS on FA-induced apoptosis, as well as the activation of caspase-3 in PC12 cells. In addition, K252a reversed the protection of H2S against FA-induced downregulation of Bcl-2 protein expression and upregulation of Bax protein expression in PC12 cells. These data indicate that the BDNF-TrkB pathway mediates the neuroprotection of H2S against FA-induced cytotoxicity, oxidative stress and apoptosis in PC12 cells. These findings provide a novel mechanism underlying the protection of H2S against FA-induced neurotoxicity.

  9. BDNF-TrkB Pathway Mediates Neuroprotection of Hydrogen Sulfide against Formaldehyde-Induced Toxicity to PC12 Cells

    PubMed Central

    Gao, Sheng-Lan; Tian, Ying; Wang, Chun-Yan; Wang, Li; Gu, Hong-Feng; Tang, Xiao-Qing

    2015-01-01

    Formaldehyde (FA) is a common environmental contaminant that has toxic effects on the central nervous system (CNS). Our previous data demonstrated that hydrogen sulfide (H2S), the third endogenous gaseous mediator, has protective effects against FA-induced neurotoxicity. As is known to all, Brain-derived neurotropic factor (BDNF), a member of the neurotrophin gene family, mediates its neuroprotective properties via various intracellular signaling pathways triggered by activating the tyrosine kinase receptor B (TrkB). Intriguingly, our previous data have illustrated the upregulatory role of H2S on BDNF protein expression in the hippocampus of rats. Therefore, in this study, we hypothesized that H2S provides neuroprotection against FA toxicity by regulating BDNF-TrkB pathway. In the present study, we found that NaHS, a donor of H2S, upregulated the level of BDNF protein in PC12 cells, and significantly rescued FA-induced downregulation of BDNF levels. Furthermore, we found that pretreatment of PC12 cells with K252a, an inhibitor of the BDNF receptor TrkB, markedly reversed the inhibition of NaHS on FA-induced cytotoxicity and ablated the protective effects of NaHS on FA-induced oxidative stress, including the accumulation of intracellular reactive oxygen species (ROS), 4-hydroxy-2-trans-nonenal (4-HNE), and malondialdehyde (MDA). We also showed that K252a abolished the inhibition of NaHS on FA-induced apoptosis, as well as the activation of caspase-3 in PC12 cells. In addition, K252a reversed the protection of H2S against FA-induced downregulation of Bcl-2 protein expression and upregulation of Bax protein expression in PC12 cells. These data indicate that the BDNF-TrkB pathway mediates the neuroprotection of H2S against FA-induced cytotoxicity, oxidative stress and apoptosis in PC12 cells. These findings provide a novel mechanism underlying the protection of H2S against FA-induced neurotoxicity. PMID:25749582

  10. Nitric oxide regulates vascular adaptive mitochondrial dynamics.

    PubMed

    Miller, Matthew W; Knaub, Leslie A; Olivera-Fragoso, Luis F; Keller, Amy C; Balasubramaniam, Vivek; Watson, Peter A; Reusch, Jane E B

    2013-06-15

    Cardiovascular disease risk factors, such as diabetes, hypertension, dyslipidemia, obesity, and physical inactivity, are all correlated with impaired endothelial nitric oxide synthase (eNOS) function and decreased nitric oxide (NO) production. NO-mediated regulation of mitochondrial biogenesis has been established in many tissues, yet the role of eNOS in vascular mitochondrial biogenesis and dynamics is unclear. We hypothesized that genetic eNOS deletion and 3-day nitric oxide synthase (NOS) inhibition in rodents would result in impaired mitochondrial biogenesis and defunct fission/fusion and autophagy profiles within the aorta. We observed a significant, eNOS expression-dependent decrease in mitochondrial electron transport chain (ETC) protein subunits from complexes I, II, III, and V in eNOS heterozygotes and eNOS null mice compared with age-matched controls. In response to NOS inhibition with NG-nitro-L-arginine methyl ester (L-NAME) treatment in Sprague Dawley rats, significant decreases were observed in ETC protein subunits from complexes I, III, and IV as well as voltage-dependent anion channel 1. Decreased protein content of upstream regulators of mitochondrial biogenesis, cAMP response element-binding protein and peroxisome proliferator-activated receptor-γ coactivator-1α, were observed in response to 3-day L-NAME treatment. Both genetic eNOS deletion and NOS inhibition resulted in decreased manganese superoxide dismutase protein. L-NAME treatment resulted in significant changes to mitochondrial dynamic protein profiles with decreased fusion, increased fission, and minimally perturbed autophagy. In addition, L-NAME treatment blocked mitochondrial adaptation to an exercise intervention in the aorta. These results suggest that eNOS/NO play a role in basal and adaptive mitochondrial biogenesis in the vasculature and regulation of mitochondrial turnover. PMID:23585138

  11. An evaluation of the effects of acute and chronic L-tyrosine administration on BDNF levels and BDNF mRNA expression in the rat brain.

    PubMed

    Ferreira, Gabriela K; Scaini, Giselli; Jeremias, Isabela C; Carvalho-Silva, Milena; Gonçalves, Cinara L; Pereira, Talita C B; Oliveira, Giovanna M T; Kist, Luiza W; Bogo, Maurício R; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L

    2014-04-01

    Tyrosinemia type II, which is also known as Richner-Hanhart syndrome, is an inborn error of metabolism that is due to a block in the transamination reaction that converts tyrosine to p-hydroxyphenylpyruvate. Because the mechanisms of neurological dysfunction in hypertyrosinemic patients are poorly known and the symptoms of these patients are related to the central nervous system, the present study evaluated brain-derived neurotrophic factor (BDNF) levels and bdnf mRNA expression in young rats and during growth. In our acute protocol, Wistar rats (10 and 30 days old) were killed 1 h after a single intraperitoneal L-tyrosine injection (500 mg/kg) or saline. Chronic administration consisted of L-tyrosine (500 mg/kg) or saline injections 12 h apart for 24 days in Wistar rats (7 days old), and the rats were killed 12 h after the last injection. The brains were rapidly removed, and we evaluated the BDNF levels and bdnf mRNA expression. The present results showed that the acute administration of L-tyrosine decreased both BDNF and bdnf mRNA levels in the striatum of 10-day-old rats. In the 30-day-old rats, we observed decreased BDNF levels without modifications in bdnf transcript level in the hippocampus and striatum. Chronic administration of L-tyrosine increased the BDNF levels in the striatum of rats during their growth, whereas bdnf mRNA expression was not altered. We hypothesize that oxidative stress can interact with the BDNF system to modulate synaptic plasticity and cognitive function. The present results enhance our knowledge of the pathophysiology of hypertyrosinemia. PMID:24091827

  12. An evaluation of the effects of acute and chronic L-tyrosine administration on BDNF levels and BDNF mRNA expression in the rat brain.

    PubMed

    Ferreira, Gabriela K; Scaini, Giselli; Jeremias, Isabela C; Carvalho-Silva, Milena; Gonçalves, Cinara L; Pereira, Talita C B; Oliveira, Giovanna M T; Kist, Luiza W; Bogo, Maurício R; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L

    2014-04-01

    Tyrosinemia type II, which is also known as Richner-Hanhart syndrome, is an inborn error of metabolism that is due to a block in the transamination reaction that converts tyrosine to p-hydroxyphenylpyruvate. Because the mechanisms of neurological dysfunction in hypertyrosinemic patients are poorly known and the symptoms of these patients are related to the central nervous system, the present study evaluated brain-derived neurotrophic factor (BDNF) levels and bdnf mRNA expression in young rats and during growth. In our acute protocol, Wistar rats (10 and 30 days old) were killed 1 h after a single intraperitoneal L-tyrosine injection (500 mg/kg) or saline. Chronic administration consisted of L-tyrosine (500 mg/kg) or saline injections 12 h apart for 24 days in Wistar rats (7 days old), and the rats were killed 12 h after the last injection. The brains were rapidly removed, and we evaluated the BDNF levels and bdnf mRNA expression. The present results showed that the acute administration of L-tyrosine decreased both BDNF and bdnf mRNA levels in the striatum of 10-day-old rats. In the 30-day-old rats, we observed decreased BDNF levels without modifications in bdnf transcript level in the hippocampus and striatum. Chronic administration of L-tyrosine increased the BDNF levels in the striatum of rats during their growth, whereas bdnf mRNA expression was not altered. We hypothesize that oxidative stress can interact with the BDNF system to modulate synaptic plasticity and cognitive function. The present results enhance our knowledge of the pathophysiology of hypertyrosinemia.

  13. Brain-derived neurotrophic factor (BDNF)-induced mitochondrial motility arrest and presynaptic docking contribute to BDNF-enhanced synaptic transmission.

    PubMed

    Su, Bo; Ji, Yun-Song; Sun, Xu-lu; Liu, Xiang-Hua; Chen, Zhe-Yu

    2014-01-17

    Appropriate mitochondrial transport and distribution are essential for neurons because of the high energy and Ca(2+) buffering requirements at synapses. Brain-derived neurotrophic factor (BDNF) plays an essential role in regulating synaptic transmission and plasticity. However, whether and how BDNF can regulate mitochondrial transport and distribution are still unclear. Here, we find that in cultured hippocampal neurons, application of BDNF for 15 min decreased the percentage of moving mitochondria in axons, a process dependent on the activation of the TrkB receptor and its downstream PI3K and phospholipase-Cγ signaling pathways. Moreover, the BDNF-induced mitochondrial stopping requires the activation of transient receptor potential canonical 3 and 6 (TRPC3 and TRPC6) channels and elevated intracellular Ca(2+) levels. The Ca(2+) sensor Miro1 plays an important role in this process. Finally, the BDNF-induced mitochondrial stopping leads to the accumulation of more mitochondria at presynaptic sites. Mutant Miro1 lacking the ability to bind Ca(2+) prevents BDNF-induced mitochondrial presynaptic accumulation and synaptic transmission, suggesting that Miro1-mediated mitochondrial motility is involved in BDNF-induced mitochondrial presynaptic docking and neurotransmission. Together, these data suggest that mitochondrial transport and distribution play essential roles in BDNF-mediated synaptic transmission.

  14. Age-Dependent Deficits in Fear Learning in Heterozygous BDNF Knock-Out Mice

    ERIC Educational Resources Information Center

    Endres, Thomas; Lessmann, Volkmar

    2012-01-01

    Beyond its trophic function, the neurotrophin BDNF (brain-derived neurotrophic factor) is well known to crucially mediate synaptic plasticity and memory formation. Whereas recent studies suggested that acute BDNF/TrkB signaling regulates amygdala-dependent fear learning, no impairments of cued fear learning were reported in heterozygous BDNF…

  15. Alternative Splicing Variants and DNA Methylation Status of BDNF in Inbred Chicken Lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brain derived neurotrophic factor (BDNF) plays essential roles in neuronal survival and differentiation, synaptic plasticity, central regulation of energy homeostasis, and neuronal development of the central and peripheral nerve system. Here, we report two new splicing variants of the chicken BDNF g...

  16. Antidepressant-Like Effects of Central BDNF Administration in Mice of Antidepressant Sensitive Catalepsy (ASC) Strain.

    PubMed

    Tikhonova, Maria; Kulikov, Alexander V

    2012-08-31

    Although numerous data evidence the implication of brain-derived neurotrophic factor (BDNF) in the pathophysiology of depression, the potential for BDNF to correct genetically defined depressive-like states is poorly studied. This study was aimed to reveal antidepressant-like effects of BDNF (300 ng, 2×, i.c.v.) on behavior and mRNA expression of genes associated with depression-like state in the brain in mice of antidepressant sensitive catalepsy (ASC) strain characterized by high hereditary predisposition to catalepsy and depressive-like features. Behavioral tests were held on the 7th-16th days after the first (4th-13th after the second) BDNF injection. Results showed that BDNF normalized impaired sexual motivation in the ASC males, and this BDNF effect differed, with advantageous effects, from that of widely used antidepressants. The anticataleptic effect of two BDNF injections was enhanced compared with a single administration. A tendency to decrease the immobility duration in tail-suspension test was observed in BDNF-treated ASC mice. The effects on catalepsy and sexual motivation were specific since BDNF did not alter locomotor and exploratory activity or social interest in the ASC mice. Along with behavioral antidepressant-like effects on the ASC mice, BDNF increased hippocampal mRNA levels of Bdnf and Creb1 (cAMP response element-binding protein gene). BDNF also augmented mRNA levels of Arc gene encoding Arc (Activity-regulated cytoskeleton-associated) protein involved in BDNF-induced processes of neuronal and synaptic plasticity in hippocampus and prefrontal cortex. The data suggest that: [1] BDNF is effective in the treatment of some genetically defined behavioral disturbances; [2] BDNF influences sexually-motivated behavior; [3] Arc mRNA levels may serve as a molecular marker of BDNF physiological activity associated with its long-lasting behavioral effects; [4] ASC mouse strain can be used as a suitable model to study mechanisms of BDNF effects on

  17. Glutamatergic axon-derived BDNF controls GABAergic synaptic differentiation in the cerebellum.

    PubMed

    Chen, Albert I; Zang, Keling; Masliah, Eliezer; Reichardt, Louis F

    2016-01-01

    To study mechanisms that regulate the construction of inhibitory circuits, we examined the role of brain-derived neurotrophic factor (BDNF) in the assembly of GABAergic inhibitory synapses in the mouse cerebellar cortex. We show that within the cerebellum, BDNF-expressing cells are restricted to the internal granular layer (IGL), but that the BDNF protein is present within mossy fibers which originate from cells located outside of the cerebellum. In contrast to deletion of TrkB, the cognate receptor for BDNF, deletion of Bdnf from cerebellar cell bodies alone did not perturb the localization of pre- or postsynaptic constituents at the GABAergic synapses formed by Golgi cell axons on granule cell dendrites within the IGL. Instead, we found that BDNF derived from excitatory mossy fiber endings controls their differentiation. Our findings thus indicate that cerebellar BDNF is derived primarily from excitatory neurons--precerebellar nuclei/spinal cord neurons that give rise to mossy fibers--and promotes GABAergic synapse formation as a result of release from axons. Thus, within the cerebellum the preferential localization of BDNF to axons enhances the specificity through which BDNF promotes GABAergic synaptic differentiation. PMID:26830657

  18. Pharmacological Profile of Brain-derived Neurotrophic Factor (BDNF) Splice Variant Translation Using a Novel Drug Screening Assay

    PubMed Central

    Vaghi, Valentina; Polacchini, Alessio; Baj, Gabriele; Pinheiro, Vera L. M.; Vicario, Annalisa; Tongiorgi, Enrico

    2014-01-01

    The neurotrophin brain-derived neurotrophic factor (BDNF) is a key regulator of neuronal development and plasticity. BDNF is a major pharmaceutical target in neurodevelopmental and psychiatric disorders. However, pharmacological modulation of this neurotrophin is challenging because BDNF is generated by multiple, alternatively spliced transcripts with different 5′- and 3′UTRs. Each BDNF mRNA variant is transcribed independently, but translation regulation is unknown. To evaluate the translatability of BDNF transcripts, we developed an in vitro luciferase assay in human neuroblastoma cells. In unstimulated cells, each BDNF 5′- and 3′UTR determined a different basal translation level of the luciferase reporter gene. However, constructs with either a 5′UTR or a 3′UTR alone showed poor translation modulation by BDNF, KCl, dihydroxyphenylglycine, AMPA, NMDA, dopamine, acetylcholine, norepinephrine, or serotonin. Constructs consisting of the luciferase reporter gene flanked by the 5′UTR of one of the most abundant BDNF transcripts in the brain (exons 1, 2c, 4, and 6) and the long 3′UTR responded selectively to stimulation with the different receptor agonists, and only transcripts 2c and 6 were increased by the antidepressants desipramine and mirtazapine. We propose that BDNF mRNA variants represent “a quantitative code” for regulated expression of the protein. Thus, to discriminate the efficacy of drugs in stimulating BDNF synthesis, it is appropriate to use variant-specific in vitro screening tests. PMID:25074925

  19. The Role of Brain-Derived Neurotrophic Factor (BDNF) in the Development of Neurogenic Detrusor Overactivity (NDO)

    PubMed Central

    Frias, Bárbara; Santos, João; Morgado, Marlene; Sousa, Mónica Mendes; Gray, Susannah M.Y.; McCloskey, Karen D.; Allen, Shelley; Cruz, Francisco

    2015-01-01

    Neurogenic detrusor overactivity (NDO) is a well known consequence of spinal cord injury (SCI), recognizable after spinal shock, during which the bladder is areflexic. NDO emergence and maintenance depend on profound plastic changes of the spinal neuronal pathways regulating bladder function. It is well known that neurotrophins (NTs) are major regulators of such changes. NGF is the best-studied NT in the bladder and its role in NDO has already been established. Another very abundant neurotrophin is BDNF. Despite being shown that, acting at the spinal cord level, BDNF is a key mediator of bladder dysfunction and pain during cystitis, it is presently unclear if it is also important for NDO. This study aimed to clarify this issue. Results obtained pinpoint BDNF as an important regulator of NDO appearance and maintenance. Spinal BDNF expression increased in a time-dependent manner together with NDO emergence. In chronic SCI rats, BDNF sequestration improved bladder function, indicating that, at later stages, BDNF contributes NDO maintenance. During spinal shock, BDNF sequestration resulted in early development of bladder hyperactivity, accompanied by increased axonal growth of calcitonin gene-related peptide-labeled fibers in the dorsal horn. Chronic BDNF administration inhibited the emergence of NDO, together with reduction of axonal growth, suggesting that BDNF may have a crucial role in bladder function after SCI via inhibition of neuronal sprouting. These findings highlight the role of BDNF in NDO and may provide a significant contribution to create more efficient therapies to manage SCI patients. PMID:25653370

  20. The role of brain-derived neurotrophic factor (BDNF) in the development of neurogenic detrusor overactivity (NDO).

    PubMed

    Frias, Bárbara; Santos, João; Morgado, Marlene; Sousa, Mónica Mendes; Gray, Susannah M Y; McCloskey, Karen D; Allen, Shelley; Cruz, Francisco; Cruz, Célia Duarte

    2015-02-01

    Neurogenic detrusor overactivity (NDO) is a well known consequence of spinal cord injury (SCI), recognizable after spinal shock, during which the bladder is areflexic. NDO emergence and maintenance depend on profound plastic changes of the spinal neuronal pathways regulating bladder function. It is well known that neurotrophins (NTs) are major regulators of such changes. NGF is the best-studied NT in the bladder and its role in NDO has already been established. Another very abundant neurotrophin is BDNF. Despite being shown that, acting at the spinal cord level, BDNF is a key mediator of bladder dysfunction and pain during cystitis, it is presently unclear if it is also important for NDO. This study aimed to clarify this issue. Results obtained pinpoint BDNF as an important regulator of NDO appearance and maintenance. Spinal BDNF expression increased in a time-dependent manner together with NDO emergence. In chronic SCI rats, BDNF sequestration improved bladder function, indicating that, at later stages, BDNF contributes NDO maintenance. During spinal shock, BDNF sequestration resulted in early development of bladder hyperactivity, accompanied by increased axonal growth of calcitonin gene-related peptide-labeled fibers in the dorsal horn. Chronic BDNF administration inhibited the emergence of NDO, together with reduction of axonal growth, suggesting that BDNF may have a crucial role in bladder function after SCI via inhibition of neuronal sprouting. These findings highlight the role of BDNF in NDO and may provide a significant contribution to create more efficient therapies to manage SCI patients.

  1. Nitric oxide regulation of monkey myometrial contractility

    PubMed Central

    Kuenzli, Karri A; Buxton, Iain L O; Bradley, Michael E

    1998-01-01

    We evaluated the effect of the nitric oxide (NO) donor CysNO (S-nitroso-L-cysteine) and endogenous NO upon spontaneous contractility in non-pregnant cynomolgus monkeys. We also assessed the role of intracellular guanosine 3′,5′-cyclic monophosphate ([cyclic GMP]i) as a second messenger for NO in monkey uterine smooth muscle.CysNO reduced spontaneous contractility by 84% (P<0.05) at maximal concentrations, and significantly elevated [cyclic GMP]i (P<0.05). However, increases in [cyclic GMP]i were not required for CysNO-induced relaxations; CysNO inhibited contractile activity despite the complete inhibition of guanylyl cyclase by methylene blue or LY83,583.Analogues of cyclic GMP had no significant effect upon spontaneous contractile activity. L-arginine produced a 62% reduction in spontaneous activity (P<0.05) while D-arginine had no effect. The competitive nitric oxide synthase (NOS) inhibitor Nω-nitro-L-arginine (L-NOARG) not only blocked L-arginine-induced relaxations, but also significantly increased spontaneous contractile activity when added alone (P<0.05); the inactive D-enantiomer of NOARG had no such effect.While both endogenous NO and the NO donor CysNO relax monkey myometrium, this effect is not causally related to CysNO-induced elevations in [cyclic GMP]i. The failure of cyclic GMP analogues to alter monkey uterine smooth muscle tension also argues against a role for [cyclic GMP]i in the regulation of uterine contractility. Not only do these findings argue for the existence of a functionally-relevant NOS in the monkey uterus, but increases in contractile activity seen in the presence of NOS inhibitors suggest a role for NO in the moment-to-moment regulation of contractile activity in this organ. PMID:9630344

  2. Nitric oxide negatively regulates mammalian adult neurogenesis

    NASA Astrophysics Data System (ADS)

    Packer, Michael A.; Stasiv, Yuri; Benraiss, Abdellatif; Chmielnicki, Eva; Grinberg, Alexander; Westphal, Heiner; Goldman, Steven A.; Enikolopov, Grigori

    2003-08-01

    Neural progenitor cells are widespread throughout the adult central nervous system but only give rise to neurons in specific loci. Negative regulators of neurogenesis have therefore been postulated, but none have yet been identified as subserving a significant role in the adult brain. Here we report that nitric oxide (NO) acts as an important negative regulator of cell proliferation in the adult mammalian brain. We used two independent approaches to examine the function of NO in adult neurogenesis. In a pharmacological approach, we suppressed NO production in the rat brain by intraventricular infusion of an NO synthase inhibitor. In a genetic approach, we generated a null mutant neuronal NO synthase knockout mouse line by targeting the exon encoding active center of the enzyme. In both models, the number of new cells generated in neurogenic areas of the adult brain, the olfactory subependyma and the dentate gyrus, was strongly augmented, which indicates that division of neural stem cells in the adult brain is controlled by NO and suggests a strategy for enhancing neurogenesis in the adult central nervous system.

  3. Liquiritigenin reverses depression-like behavior in unpredictable chronic mild stress-induced mice by regulating PI3K/Akt/mTOR mediated BDNF/TrkB pathway.

    PubMed

    Tao, Weiwei; Dong, Yu; Su, Qiang; Wang, Hanqing; Chen, Yanyan; Xue, Wenda; Chen, Chang; Xia, Baomei; Duan, Jinao; Chen, Gang

    2016-07-15

    Major depression is a common long-lasting or recurrent psychiatric disease with high lifetime prevalence and high incidence of suicide. The main purpose of the current study was to verify whether liquiritigenin conferred an antidepressant-like effect on the depressive mouse model established by unpredictable chronic mild stress (UCMS) and explore its possible mechanism. The results of depression-related behaviors including sucrose preference test (SPT), open field test (OFT), forced swimming test (FST) and tail suspension test (TST) indicated that both liquiritigenin (7.5mg/kg, 15mg/kg) and fluoxetine (20mg/kg) dramatically improved the depression symptoms. Enzyme-linked immunosorbent assay (ELISA) revealed that treatment with liquiritigenin significantly reduced the concentrations of pro-inflammatory cytokines including interleukin (IL)-6, IL-1β and tumor necrosis factor (TNF)-α in serum and hippocampus. Compared with the UCMS group, the administrations of liquiritigenin, increased levels of superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), and decreased Malondialdehyde (MDA) content. Meanwhile, glucocorticoids (GC) content was reduced in the liquiritigenin group, which suggested that liquiritigenin exhibiting the ameliorative effect on activated hypothalamic-pituitary-adrenal (HPA) axis stimulated with UCMS. Mice treated with liquiritigenin showed restored levels of neurotransmitter norepinephrine (NE) and serotonin (5-HT). Western blot analysis displayed up-regulated expressions of p-phosphatidylinositol 3-kinase (PI3K), p-Akt, p- mammalian target of rapamycin (mTOR), p-tropomyosin-related kinase B (TrkB), brain-derived neurotrophic factor (BDNF). Thus, it was supposed that liquiritigenin might be useful for the treatment of chronic depression possibly through PI3K/Akt/mTOR mediated BDNF/TrkB pathway. PMID:27113683

  4. Methionine increases BDNF DNA methylation and improves memory in epilepsy

    PubMed Central

    Parrish, R Ryley; Buckingham, Susan C; Mascia, Katherine L; Johnson, Jarvis J; Matyjasik, Michal M; Lockhart, Roxanne M; Lubin, Farah D

    2015-01-01

    Objective Temporal lobe epilepsy (TLE) patients exhibit signs of memory impairments even when seizures are pharmacologically controlled. Surprisingly, the underlying molecular mechanisms involved in TLE-associated memory impairments remain elusive. Memory consolidation requires epigenetic transcriptional regulation of genes in the hippocampus; therefore, we aimed to determine how epigenetic DNA methylation mechanisms affect learning-induced transcription of memory-permissive genes in the epileptic hippocampus. Methods Using the kainate rodent model of TLE and focusing on the brain-derived neurotrophic factor (Bdnf) gene as a candidate of DNA methylation-mediated transcription, we analyzed DNA methylation levels in epileptic rats following learning. After detection of aberrant DNA methylation at the Bdnf gene, we investigated functional effects of altered DNA methylation on hippocampus-dependent memory formation in our TLE rodent model. Results We found that behaviorally driven BdnfDNA methylation was associated with hippocampus-dependent memory deficits. Bisulfite sequencing revealed that decreased BdnfDNA methylation levels strongly correlated with abnormally high levels of BdnfmRNA in the epileptic hippocampus during memory consolidation. Methyl supplementation via methionine (Met) increased BdnfDNA methylation and reduced BdnfmRNA levels in the epileptic hippocampus during memory consolidation. Met administration reduced interictal spike activity, increased theta rhythm power, and reversed memory deficits in epileptic animals. The rescue effect of Met treatment on learning-induced BdnfDNA methylation, Bdnf gene expression, and hippocampus-dependent memory, were attenuated by DNA methyltransferase blockade. Interpretation Our findings suggest that manipulation of DNA methylation in the epileptic hippocampus should be considered as a viable treatment option to ameliorate memory impairments associated with TLE. PMID:25909085

  5. NMDA-Dependent Switch of proBDNF Actions on Developing GABAergic Synapses

    PubMed Central

    Langlois, Anais; Diabira, Diabe; Ferrand, Nadine; Porcher, Christophe

    2013-01-01

    The brain-derived neurotrophic factor (BDNF) has emerged as an important messenger for activity-dependent development of neuronal network. Recent findings have suggested that a significant proportion of BDNF can be secreted as a precursor (proBDNF) and cleaved by extracellular proteases to yield the mature form. While the actions of proBDNF on maturation and plasticity of excitatory synapses have been studied, the effect of the precursor on developing GABAergic synapses remains largely unknown. Here, we show that regulated secretion of proBDNF exerts a bidirectional control of GABAergic synaptic activity with NMDA receptors driving the polarity of the plasticity. When NMDA receptors are activated during ongoing synaptic activity, regulated Ca2+-dependent secretion of proBDNF signals via p75NTR to depress GABAergic synaptic activity, while in the absence of NMDA receptors activation, secreted proBDNF induces a p75NTR-dependent potentiation of GABAergic synaptic activity. These results revealed a new function for proBDNF-p75NTR signaling in synaptic plasticity and a novel mechanism by which synaptic activity can modulate the development of GABAergic synaptic connections. PMID:22510533

  6. BDNF signaling in the rat cerebello-vestibular pathway during vestibular compensation: BDNF signaling in vestibular compensation.

    PubMed

    Zhou, Liuqing; Zhou, Wen; Zhang, Sulin; Liu, Bo; Liang, Pei; Zhou, Yan; Zhou, Tao; Zhang, Kun; Leng, Yangming; Kong, Weijia

    2015-09-01

    Vestibular compensation, which is the behavioral recovery from lesions to the peripheral vestibular system, is attributed to plasticity of the central vestibular system. It has been reported that brain-derived neurotrophic factor (BDNF) is expressed and released in an activity-dependent manner. Upon binding to the tyrosine receptor kinase B (TrkB), BDNF can acutely modulate synaptic transmission and plasticity in the central nervous system. To assess the possible contribution of BDNF to this recovery process, we studied the expression of BDNF, TrkB.FL, TrkB.T1 and KCC2 (K(+) -Cl(-) cotransporter isoform 2) in the bilateral medial vestibular nucleus (MVN) and the flocculus of rats at 4 h, 8 h, 1, 3 and 7 days following unilateral labyrinthectomy (UL) using immunohistochemistry, quantitative real-time PCR and western blotting. Our results have shown that, compared with the sham controls and the contra-lesional side, (a) the expression of BDNF and TrkB.FL increased at 4 h in the ipsi-lesional flocculus after UL; (b) the expression of TrkB.T1 decreased at 4 h and KCC2 decreased at 8 h and 1 day in the ipsi-lesional flocculus after UL; and (c) BDNF and TrkB.FL expression was enhanced and KCC2 expression was reduced in the ipsi-lesional MVN at 8 h after UL. Our data supported the hypothesis that BDNF upregulation may reduce the inhibitory effects of the flocculus and commissural inhibition system by regulating inhibitory GABAergic synaptic transmission in floccular Purkinje cells and Purkinje cell terminals in the MVN. Additionally, KCC2 may be a switch in this process. PMID:26111610

  7. Impact of partial dopamine depletion on cognitive flexibility in BDNF heterozygous mice

    PubMed Central

    Parikh, Vinay; Naughton, Sean X.; Yegla, Brittney; Guzman, Dawn M.

    2016-01-01

    Rationale Cognitive flexibility is a key component of executive function and is disrupted in major psychiatric disorders. Brain-derived neurotrophic factor (BDNF) exerts neuromodulatory effects on synaptic transmission and cognitive/affective behaviors. However the causal mechanisms linking BDNF hypofunction with executive deficits are not well understood. Objectives Here, we assessed the consequences of BDNF hemizygosity on cognitive flexibility in mice performing an operant conditioning task. As dopaminergic-glutamatergic interaction in the striatum is important for cognitive processing, and BDNF heterozygous (BDNF+/−) mice display a higher dopamine tone in the dorsal striatum, we also assessed the effects of partial striatal dopamine depletion on task performance and glutamate release. Results BDNF+/− mice acquired discrimination learning as well as new rule learning during set-shifting as efficiently as wild-type mice. However, partial removal of striatal dopaminergic inputs with 6-hydroxydopamine (6-OHDA) impaired these cognitive processes by impeding the maintenance of a new learning strategy in both genotypes. BDNF mutants exhibited performance impairments during reversal learning and these deficits were associated with increased perseveration to the previously acquired strategy. Partial dopamine depletion of the striatum reversed these cognitive impairments. Additionally, reduction in depolarization-evoked glutamate release noted in the dorsal striatum of BDNF+/− mice was not observed in 6-OHDA-infused BDNF mutants indicating normalization of glutamatergic transmission in these animals. Conclusions Our data illustrate that BDNF signaling regulates cognitive control processes presumably by maintaining striatal dopamine-glutamate balance. Moreover, aberrations in BDNF signaling may act as a common neurobiological substrate that accounts for executive dysfunction observed in multiple psychiatric conditions. PMID:26861892

  8. Molecular and neural bases underlying roles of BDNF in the control of body weight

    PubMed Central

    Vanevski, Filip; Xu, Baoji

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) is a potent regulator of neuronal development and synaptic plasticity that is fundamental to neural circuit formation and cognition. It is also involved in the control of appetite and body weight, with mutations in the genes for BDNF and its receptor, TrkB, resulting in remarkable hyperphagia and severe obesity in humans and mice. Recent studies have made significant progress in elucidating the source, action sites, and regulatory pathways of BDNF with regard to its role in the control of energy homeostasis, and have shed light on the relationships between BDNF and other molecules involved in the control of body weight. Here we provide a comprehensive review of evidence from pharmacological, genetic, and mechanistic studies, linking BDNF to the control of body weight. This review also aims to organize the main findings on this subject into a more refined framework and to discuss the future research directions necessary to advance the field. PMID:23519010

  9. Chronic Unpredictable Stress Decreases Expression of Brain-Derived Neurotrophic Factor (BDNF) in Mouse Ovaries: Relationship to Oocytes Developmental Potential

    PubMed Central

    Tong, Xian-Hong; Han, Hui; Shen, Ni; Jin, Ren-Tao; Wang, Wei; Zhou, Gui-Xiang; He, Guo-Ping; Liu, Yu-Sheng

    2012-01-01

    Background Brain-derived neurotropic factor (BDNF) was originally described in the nervous system but has been shown to be expressed in ovary tissues recently, acting as a paracrine/autocrine regulator required for developments of follicles and oocytes. Although it is generally accepted that chronic stress impairs female reproduction and decreases the expression of BDNF in limbic structures of central nervous system, which contributes to mood disorder. However, it is not known whether chronic stress affects oocytes developments, nor whether it affects expression of BDNF in ovary. Methods Mice were randomly assigned into control group, stressed group, BDNF-treated group and BDNF-treated stressed group. The chronic unpredictable mild stress model was used to produce psychosocial stress in mice, and the model was verified by open field test and hypothalamic-pituitary-adrenal (HPA) axis activity. The methods of immunohistochemistry and western blotting were used to detect BDNF protein level and distribution. The number of retrieved oocytes, oocyte maturation, embryo cleavage and the rates of blastocyst formation after parthenogenetic activation were evaluated. Results Chronic unpredictable stress decreased the BDNF expression in antral follicles, but didn’t affect the BDNF expression in primordial, primary and secondary follicles. Chronic unpredictable stress also decreased the number of retrieved oocytes and the rate of blastocyst formation, which was rescued by exogenous BDNF treatment. Conclusion BDNF in mouse ovaries may be related to the decreased number of retrieved oocytes and impaired oocytes developmental potential induced by chronic unpredictable stress. PMID:23284991

  10. BDNF mediates improvements in executive function following a 1-year exercise intervention

    PubMed Central

    Leckie, Regina L.; Oberlin, Lauren E.; Voss, Michelle W.; Prakash, Ruchika S.; Szabo-Reed, Amanda; Chaddock-Heyman, Laura; Phillips, Siobhan M.; Gothe, Neha P.; Mailey, Emily; Vieira-Potter, Victoria J.; Martin, Stephen A.; Pence, Brandt D.; Lin, Mingkuan; Parasuraman, Raja; Greenwood, Pamela M.; Fryxell, Karl J.; Woods, Jeffrey A.; McAuley, Edward; Kramer, Arthur F.; Erickson, Kirk I.

    2014-01-01

    Executive function declines with age, but engaging in aerobic exercise may attenuate decline. One mechanism by which aerobic exercise may preserve executive function is through the up-regulation of brain-derived neurotropic factor (BDNF), which also declines with age. The present study examined BDNF as a mediator of the effects of a 1-year walking intervention on executive function in 90 older adults (mean age = 66.82). Participants were randomized to a stretching and toning control group or a moderate intensity walking intervention group. BDNF serum levels and performance on a task-switching paradigm were collected at baseline and follow-up. We found that age moderated the effect of intervention group on changes in BDNF levels, with those in the highest age quartile showing the greatest increase in BDNF after 1-year of moderate intensity walking exercise (p = 0.036). The mediation analyses revealed that BDNF mediated the effect of the intervention on task-switch accuracy, but did so as a function of age, such that exercise-induced changes in BDNF mediated the effect of exercise on task-switch performance only for individuals over the age of 71. These results demonstrate that both age and BDNF serum levels are important factors to consider when investigating the mechanisms by which exercise interventions influence cognitive outcomes, particularly in elderly populations. PMID:25566019

  11. Computer Simulations Support a Morphological Contribution to BDNF Enhancement of Action Potential Generation.

    PubMed

    Galati, Domenico F; Hiester, Brian G; Jones, Kevin R

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) regulates both action potential (AP) generation and neuron morphology. However, whether BDNF-induced changes in neuron morphology directly impact AP generation is unclear. We quantified BDNF's effect on cultured cortical neuron morphological parameters and found that BDNF stimulates dendrite growth and addition of dendrites while increasing both excitatory and inhibitory presynaptic inputs in a spatially restricted manner. To gain insight into how these combined changes in neuron structure and synaptic input impact AP generation, we used the morphological parameters we gathered to generate computational models. Simulations suggest that BDNF-induced neuron morphologies generate more APs under a wide variety of conditions. Synapse and dendrite addition have the greatest impact on AP generation. However, subtle alterations in excitatory/inhibitory synapse ratio and strength have a significant impact on AP generation when synaptic activity is low. Consistent with these simulations, BDNF rapidly enhances spontaneous activity in cortical cultures. We propose that BDNF promotes neuron morphologies that are intrinsically more efficient at translating barrages of synaptic activity into APs, which is a previously unexplored aspect of BDNF's function. PMID:27683544

  12. Plasma BDNF Concentration, Val66Met Genetic Variant, and Depression-Related Personality Traits

    PubMed Central

    Terracciano, Antonio; Martin, Bronwen; Ansari, David; Tanaka, Toshiko; Ferrucci, Luigi; Maudsley, Stuart; Mattson, Mark P.; Costa, Paul T.

    2010-01-01

    Brain derived neurotrophic factor (BDNF) regulates synaptic plasticity and neurogenesis, and BDNF plasma and serum levels have been associated with depression, Alzheimer's disease, and other psychiatric and neurodegenerative disorders. In a relatively large community sample, drawn from the Baltimore Longitudinal Study of Aging (BLSA), we examine whether BDNF plasma concentration is associated with the Val66Met functional polymorphism of the BDNF gene (n = 335) and with depression-related personality traits assessed with the NEO-PI-R (n = 391). Plasma concentration of BDNF was not associated with the Val66Met variant in either men or women. However, in men, but not in women, BDNF plasma level was associated with personality traits linked to depression. Contrary to the notion that low BDNF is associated with negative outcomes, we found lower plasma levels in men who score lower on depression and vulnerability to stress (two facets of Neuroticism) and higher on Conscientiousness and Extraversion. These findings challenge the prevailing hypothesis that lower peripheral levels of BDNF are a marker of depression. PMID:20345896

  13. Systematic assessment of BDNF and its receptor levels in human cortices affected by Huntington's disease.

    PubMed

    Zuccato, Chiara; Marullo, Manuela; Conforti, Paola; MacDonald, Marcy E; Tartari, Marzia; Cattaneo, Elena

    2008-04-01

    One cardinal feature of Huntington's disease (HD) is the degeneration of striatal neurons, whose survival greatly depends on the binding of cortical brain-derived neurotrophic factor (BDNF) with high-affinity (TrkB) and low-affinity neurotrophin receptors [p75 pan-neurotrophin receptor (p75(NTR))]. With a few exceptions, results obtained in HD mouse models demonstrate a reduction in cortical BDNF mRNA and protein, although autopsy data from a limited number of human HD cortices are conflicting. These studies indicate the presence of defects in cortical BDNF gene transcription and transport to striatum. We provide new evidence indicating a significant reduction in BDNF mRNA and protein in the cortex of 20 HD subjects in comparison with 17 controls, which supports the hypothesis of impaired BDNF production in human HD cortex. Analyses of the BDNF isoforms show that transcription from BDNF promoter II and IV is down-regulated in human HD cortex from an early symptomatic stage. We also found that TrkB mRNA levels are reduced in caudate tissue but not in the cortex, whereas the mRNA levels of T-Shc (a truncated TrkB isoform) and p75(NTR) are increased in the caudate. This indicates that, in addition to the reduction in BDNF mRNA, there is also unbalanced neurotrophic receptor signaling in HD. PMID:18093249

  14. Long Non-coding RNA in Neurons: New Players in Early Response to BDNF Stimulation

    PubMed Central

    Aliperti, Vincenza; Donizetti, Aldo

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin family member that is highly expressed and widely distributed in the brain. BDNF is critical for neural survival and plasticity both during development and in adulthood, and dysfunction in its signaling may contribute to a number of neurodegenerative disorders. Deep understanding of the BDNF-activated molecular cascade may thus help to find new biomarkers and therapeutic targets. One interesting direction is related to the early phase of BDNF-dependent gene expression regulation, which is responsible for the activation of selective gene programs that lead to stable functional and structural remodeling of neurons. Immediate-early coding genes activated by BDNF are under investigation, but the involvement of the non-coding RNAs is largely unexplored, especially the long non-coding RNAs (lncRNAs). lncRNAs are emerging as key regulators that can orchestrate different aspects of nervous system development, homeostasis, and plasticity, making them attractive candidate markers and therapeutic targets for brain diseases. We used microarray technology to identify differentially expressed lncRNAs in the immediate response phase of BDNF stimulation in a neuronal cell model. Our observations on the putative functional role of lncRNAs provide clues to their involvement as master regulators of gene expression cascade triggered by BDNF. PMID:26973456

  15. Cognitive dysfunction and epigenetic alterations of the BDNF gene are induced by social isolation during early adolescence.

    PubMed

    Li, Man; Du, Wei; Shao, Feng; Wang, Weiwen

    2016-10-15

    Early life adversity, such as social isolation, causes a variety of changes to the development of cognitive abilities and the nervous system. Increasing evidence has shown that epigenetic modifications mediate gene-environment interactions throughout the lifespan. In this study, we investigated the effect of adolescent social isolation on cognitive behaviours and epigenetic alterations of the brain-derived neurotrophic factor (BDNF) gene. Male Sprague Dawley rats were randomly assigned to either group-reared or isolation-reared conditions during post-natal days (PNDs) 21-34. On PND 56, all rats underwent behavioural testing and were then sacrificed for biochemical testing. Adolescent social isolation induced impaired PPI. Regarding BDNF, the isolation-reared rats demonstrated increased BDNF mRNA levels, H3 acetylation at the BDNF gene and BDNF protein expression in the medial prefrontal cortex (mPFC). In contrast, the BDNF mRNA levels, H3 acetylation of the BDNF gene and BDNF protein expression were decreased in the hippocampus of the isolation-reared rats. The present study indicated that epigenetic regulation of BDNF may be one of the molecular mechanisms that mediated the cognitive dysfunction. Moreover, the interaction between the mPFC and hippocampus might play an important role in the regulation of cognitive behaviour.

  16. Cognitive dysfunction and epigenetic alterations of the BDNF gene are induced by social isolation during early adolescence.

    PubMed

    Li, Man; Du, Wei; Shao, Feng; Wang, Weiwen

    2016-10-15

    Early life adversity, such as social isolation, causes a variety of changes to the development of cognitive abilities and the nervous system. Increasing evidence has shown that epigenetic modifications mediate gene-environment interactions throughout the lifespan. In this study, we investigated the effect of adolescent social isolation on cognitive behaviours and epigenetic alterations of the brain-derived neurotrophic factor (BDNF) gene. Male Sprague Dawley rats were randomly assigned to either group-reared or isolation-reared conditions during post-natal days (PNDs) 21-34. On PND 56, all rats underwent behavioural testing and were then sacrificed for biochemical testing. Adolescent social isolation induced impaired PPI. Regarding BDNF, the isolation-reared rats demonstrated increased BDNF mRNA levels, H3 acetylation at the BDNF gene and BDNF protein expression in the medial prefrontal cortex (mPFC). In contrast, the BDNF mRNA levels, H3 acetylation of the BDNF gene and BDNF protein expression were decreased in the hippocampus of the isolation-reared rats. The present study indicated that epigenetic regulation of BDNF may be one of the molecular mechanisms that mediated the cognitive dysfunction. Moreover, the interaction between the mPFC and hippocampus might play an important role in the regulation of cognitive behaviour. PMID:27435421

  17. Silencing Status Epilepticus-Induced BDNF Expression with Herpes Simplex Virus Type-1 Based Amplicon Vectors.

    PubMed

    Falcicchia, Chiara; Trempat, Pascal; Binaschi, Anna; Perrier-Biollay, Coline; Roncon, Paolo; Soukupova, Marie; Berthommé, Hervé; Simonato, Michele

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) has been found to produce pro- but also anti-epileptic effects. Thus, its validity as a therapeutic target must be verified using advanced tools designed to block or to enhance its signal. The aim of this study was to develop tools to silence the BDNF signal. We generated Herpes simplex virus type 1 (HSV-1) derived amplicon vectors, i.e. viral particles containing a genome of 152 kb constituted of concatameric repetitions of an expression cassette, enabling the expression of the gene of interest in multiple copies. HSV-1 based amplicon vectors are non-pathogenic and have been successfully employed in the past for gene delivery into the brain of living animals. Therefore, amplicon vectors should represent a logical choice for expressing a silencing cassette, which, in multiple copies, is expected to lead to an efficient knock-down of the target gene expression. Here, we employed two amplicon-based BDNF silencing strategies. The first, antisense, has been chosen to target and degrade the cytoplasmic mRNA pool of BDNF, whereas the second, based on the convergent transcription technology, has been chosen to repress transcription at the BDNF gene. Both these amplicon vectors proved to be effective in down-regulating BDNF expression in vitro, in BDNF-expressing mesoangioblast cells. However, only the antisense strategy was effective in vivo, after inoculation in the hippocampus in a model of status epilepticus in which BDNF mRNA levels are strongly increased. Interestingly, the knocking down of BDNF levels induced with BDNF-antisense was sufficient to produce significant behavioral effects, in spite of the fact that it was produced only in a part of a single hippocampus. In conclusion, this study demonstrates a reliable effect of amplicon vectors in knocking down gene expression in vitro and in vivo. Therefore, this approach may find broad applications in neurobiological studies.

  18. The relationship between serum brain-derived neurotrophic factor (BDNF) and cardiometabolic indices in schizophrenia.

    PubMed

    Nurjono, Milawaty; Tay, Yi Hang; Lee, Jimmy

    2014-08-01

    Brain derived neurotrophic factor (BDNF), which has been implicated in the pathogenesis of schizophrenia, has been recently shown to be involved in the regulation of metabolism and energy homeostasis. This study seeks to examine the relationship between BDNF, metabolic indices and cardiovascular (CVD) risk in patients with schizophrenia. Medical histories, demographic information and anthropometric measurements were collected and analyzed from 61 participants with schizophrenia. Fasting glucose and lipids were measured in a central laboratory, and serum BDNF was analyzed using commercially available enzyme-linked immunosorbent assay (ELISA). The 10-year CVD risk for each participant was computed using the Framingham risk score (FRS). Linear regressions were performed to examine the relationships between serum BDNF with body mass index (BMI), blood pressure (BP), triglycerides (TG), total cholesterol, high-density lipoprotein cholesterol (HDL-C) and glucose. To examine the relationship between serum BDNF and FRS, serum BDNF was categorized into quartiles, and a multiple regression was performed. After adjusting for age, gender and current smoking status, diastolic BP (dBP) (p=0.045) and TG (p=0.015) were found to be significantly associated with serum BDNF. Participants in the highest quartile of serum BDNF had a 3.3 times increase in FRS over those in the lowest quartile. Our findings support the possible regulatory role of BDNF in metabolism and cardiovascular homeostasis among patients with schizophrenia similar to that observed among the non-mentally ill. Serum BDNF not only present itself as a candidate biomarker of schizophrenia but also might be a viable marker of metabolic co-morbidities associated with schizophrenia.

  19. Silencing Status Epilepticus-Induced BDNF Expression with Herpes Simplex Virus Type-1 Based Amplicon Vectors

    PubMed Central

    Falcicchia, Chiara; Trempat, Pascal; Binaschi, Anna; Perrier-Biollay, Coline; Roncon, Paolo; Soukupova, Marie; Berthommé, Hervé; Simonato, Michele

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) has been found to produce pro- but also anti-epileptic effects. Thus, its validity as a therapeutic target must be verified using advanced tools designed to block or to enhance its signal. The aim of this study was to develop tools to silence the BDNF signal. We generated Herpes simplex virus type 1 (HSV-1) derived amplicon vectors, i.e. viral particles containing a genome of 152 kb constituted of concatameric repetitions of an expression cassette, enabling the expression of the gene of interest in multiple copies. HSV-1 based amplicon vectors are non-pathogenic and have been successfully employed in the past for gene delivery into the brain of living animals. Therefore, amplicon vectors should represent a logical choice for expressing a silencing cassette, which, in multiple copies, is expected to lead to an efficient knock-down of the target gene expression. Here, we employed two amplicon-based BDNF silencing strategies. The first, antisense, has been chosen to target and degrade the cytoplasmic mRNA pool of BDNF, whereas the second, based on the convergent transcription technology, has been chosen to repress transcription at the BDNF gene. Both these amplicon vectors proved to be effective in down-regulating BDNF expression in vitro, in BDNF-expressing mesoangioblast cells. However, only the antisense strategy was effective in vivo, after inoculation in the hippocampus in a model of status epilepticus in which BDNF mRNA levels are strongly increased. Interestingly, the knocking down of BDNF levels induced with BDNF-antisense was sufficient to produce significant behavioral effects, in spite of the fact that it was produced only in a part of a single hippocampus. In conclusion, this study demonstrates a reliable effect of amplicon vectors in knocking down gene expression in vitro and in vivo. Therefore, this approach may find broad applications in neurobiological studies. PMID:26954758

  20. Hippocampal BDNF signaling restored with chronic asiaticoside treatment in depression-like mice.

    PubMed

    Luo, Liu; Liu, Xiao-Long; Mu, Rong-Hao; Wu, Yong-Jing; Liu, Bin-Bin; Geng, Di; Liu, Qing; Yi, Li-Tao

    2015-05-01

    Brain-derived neurotrophic factor (BDNF) plays a key role in the regulation of depression in the brain. Recently, increasing studies have focused on the antidepressant-like mechanism of BDNF and its downstream signaling pathway. A previous study has shown that asiaticoside produced an antidepressant-like action in the mouse tail suspension test and forced swimming test. However, the neurotrophic mechanism that is affected by asiaticoside is unclear. Our present study aimed to verify whether asiaticoside produces an antidepressant-like effect through the activation of BDNF signaling in chronic unpredictable mild stress (CUMS). The results showed that mice treated with asiaticoside for four weeks reversed the decreased sucrose preference and increased immobility time that was observed in CUMS mice. In addition, we found that asiaticoside up-regulated BDNF, PSD-95 and synapsin I expression only in the hippocampus but not in the frontal cortex in both non-stressed and CUMS mice. However, K252a, an inhibitor of BDNF receptor tropomyosin-related kinase receptor B (TrkB), completely abolished the antidepressant-like effect of asiaticoside. Moreover, the expression of hippocampal BDNF, PSD-95 and synapsin I that had increased with asiaticoside also declined with K252a pretreatment. In conclusion, our study implies that it is possible that asiaticoside exerts its antidepressant-like action by activating BDNF signaling in the hippocampus.

  1. Plasma BDNF Is Reduced among Middle-Aged and Elderly Women with Impaired Insulin Function: Evidence of a Compensatory Mechanism

    ERIC Educational Resources Information Center

    Arentoft, Alyssa; Sweat, Victoria; Starr, Vanessa; Oliver, Stephen; Hassenstab, Jason; Bruehl, Hannah; Tirsi, Aziz; Javier, Elizabeth; McHugh, Pauline F.; Convit, Antonio

    2009-01-01

    Brain-derived neurotrophic factor (BDNF) plays a regulatory role in neuronal differentiation and synaptic plasticity and has been linked to glucose regulation and cognition. Associations among plasma BDNF, cognition, and insulin function were explored. Forty-one participants with impaired insulin function (IIF), ranging from insulin resistance to…

  2. Cholesterol overload induces apoptosis in SH-SY5Y human neuroblastoma cells through the up regulation of flotillin-2 in the lipid raft and the activation of BDNF/Trkb signaling.

    PubMed

    Huang, Yen-Ning; Lin, Ching-I; Liao, Hsiang; Liu, Chin-Yu; Chen, Yue-Hua; Chiu, Wan-Chun; Lin, Shyh-Hsiang

    2016-07-22

    Epidemiological investigations have shown that Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. It has been indicated that the cholesterol concentration in the brain of AD patients is higher than that in normal people. In this study, we investigated the effects of cholesterol concentrations, 0, as the control, 3.125, 12.5, and 25μM, on cholesterol metabolism, neuron survival, AD-related protein expressions, and cell morphology and apoptosis using SH-SY5Y human neuroblastoma cells. We observed that expressions of cholesterol hydroxylase (Cyp46), flotillin-2 (a marker of lipid raft content), and truncated tyrosine kinase B (TrkBtc) increased, while expressions of brain-derived neurotrophic factor (BDNF) and full-length TrkB (TrkBfl) decreased as the concentration of cholesterol loading increased. Down-regulation of the PI3K-Akt-glycogen synthase kinase (GSK)-3β cascade and cell apoptosis were also observed at higher concentrations of cholesterol, along with elevated levels of β-amyloid (Aβ), β-secretase (BACE), and reactive oxygen species (ROS). In conclusion, we found that cholesterol overload in neuronal cells imbalanced the cholesterol homeostasis and increased the protein expressions causing cell apoptosis, which illustrates the neurodegenerative pathology of abnormally elevated cholesterol concentrations found in AD patients.

  3. Calcium regulation of oxidative phosphorylation in rat skeletal muscle mitochondria.

    PubMed

    Kavanagh, N I; Ainscow, E K; Brand, M D

    2000-02-24

    Activation of oxidative phosphorylation by physiological levels of calcium in mitochondria from rat skeletal muscle was analysed using top-down elasticity and regulation analysis. Oxidative phosphorylation was conceptually divided into three subsystems (substrate oxidation, proton leak and phosphorylation) connected by the membrane potential or the protonmotive force. Calcium directly activated the phosphorylation subsystem and (with sub-saturating 2-oxoglutarate) the substrate oxidation subsystem but had no effect on the proton leak kinetics. The response of mitochondria respiring on 2-oxoglutarate at two physiological concentrations of free calcium was quantified using control and regulation analysis. The partial integrated response coefficients showed that direct stimulation of substrate oxidation contributed 86% of the effect of calcium on state 3 oxygen consumption, and direct activation of the phosphorylation reactions caused 37% of the increase in phosphorylation flux. Calcium directly activated phosphorylation more strongly than substrate oxidation (78% compared to 45%) to achieve homeostasis of mitochondrial membrane potential during large increases in flux.

  4. BDNF deregulation in Rett syndrome

    PubMed Central

    Li, Wei; Pozzo-Miller, Lucas

    2013-01-01

    BDNF is the best-characterized neurotrophin in terms of its gene structure and modulation, secretion processing, and signaling cascades following its release. In addition to diverse features at the genetic and molecular levels, the abundant expression in several regions of the central nervous system has implicated BDNF as a potent modulator in many aspects of neuronal development, as well as synaptic transmission and plasticity. Impairments in any of these critical functions likely contribute to a wide array of neurodevelopmental, neurodegenerative, and neuropsychiatric diseases. In this review, we focus on a prevalent neurodevelopmental disorder, Rett syndrome (RTT), which afflicts 1:15,000 women world-wide. We describe the consequences of loss-of-function mutations in the gene encoding the transcription factor methyl-CpG binding protein 2 (MeCP2) in RTT, and then elaborate on the current understanding of how MeCP2 controls BDNF expression. Finally, we discuss the literature regarding alterations in BDNF levels in RTT individuals and MeCP2-based mouse models, as well as recent progress in searching for rational therapeutic interventions. PMID:23597512

  5. Pharmacological profile of brain-derived neurotrophic factor (BDNF) splice variant translation using a novel drug screening assay: a "quantitative code".

    PubMed

    Vaghi, Valentina; Polacchini, Alessio; Baj, Gabriele; Pinheiro, Vera L M; Vicario, Annalisa; Tongiorgi, Enrico

    2014-10-01

    The neurotrophin brain-derived neurotrophic factor (BDNF) is a key regulator of neuronal development and plasticity. BDNF is a major pharmaceutical target in neurodevelopmental and psychiatric disorders. However, pharmacological modulation of this neurotrophin is challenging because BDNF is generated by multiple, alternatively spliced transcripts with different 5'- and 3'UTRs. Each BDNF mRNA variant is transcribed independently, but translation regulation is unknown. To evaluate the translatability of BDNF transcripts, we developed an in vitro luciferase assay in human neuroblastoma cells. In unstimulated cells, each BDNF 5'- and 3'UTR determined a different basal translation level of the luciferase reporter gene. However, constructs with either a 5'UTR or a 3'UTR alone showed poor translation modulation by BDNF, KCl, dihydroxyphenylglycine, AMPA, NMDA, dopamine, acetylcholine, norepinephrine, or serotonin. Constructs consisting of the luciferase reporter gene flanked by the 5'UTR of one of the most abundant BDNF transcripts in the brain (exons 1, 2c, 4, and 6) and the long 3'UTR responded selectively to stimulation with the different receptor agonists, and only transcripts 2c and 6 were increased by the antidepressants desipramine and mirtazapine. We propose that BDNF mRNA variants represent "a quantitative code" for regulated expression of the protein. Thus, to discriminate the efficacy of drugs in stimulating BDNF synthesis, it is appropriate to use variant-specific in vitro screening tests.

  6. BDNF-estrogen interactions in hippocampal mossy fiber pathway: implications for normal brain function and disease

    PubMed Central

    Harte-Hargrove, Lauren; MacLusky, Neil J.; Scharfman, Helen E.

    2013-01-01

    The neurotrophin BDNF and the steroid hormone estrogen exhibit potent effects on hippocampal neurons during development and in adulthood. BDNF and estrogen have also been implicated in the etiology of diverse types of neurological disorders or psychiatric illnesses, or have been discussed as potentially important in treatment. Although both are typically studied independently, it has been suggested that BDNF mediates several of the effects of estrogen in hippocampus, and that these interactions play a role in the normal brain as well as disease. Here we focus on the mossy fiber (MF) pathway of the hippocampus, a critical pathway in normal hippocampal function, and a prime example of a location where numerous studies support an interaction between BDNF and estrogen in the rodent brain. We first review the temporal and spatially-regulated expression of BDNF and estrogen in the MFs, as well as their receptors. Then we consider the results of studies that suggest that 17β-estradiol alters hippocampal function by its influence on BDNF expression in the MF pathway. We also address the hypothesis that estrogen influences hippocampus by mechanisms related not only to the mature form of BDNF, acting at trkB receptors, but also by regulating the precursor, proBDNF, acting at p75NTR. We suggest that the interactions between BDNF and 17β-estradiol in the MFs are potentially important in the normal function of the hippocampus, and have implications for sex differences in functions that depend on the MFs and in diseases where MF plasticity has been suggested to play an important role, Alzheimer’s disease, epilepsy and addiction. PMID:23276673

  7. BDNF and its TrkB receptor in human fracture healing.

    PubMed

    Kilian, Olaf; Hartmann, Sonja; Dongowski, Nicole; Karnati, Srikanth; Baumgart-Vogt, Eveline; Härtel, Frauke V; Noll, Thomas; Schnettler, Reinhard; Lips, Katrin Susanne

    2014-09-01

    Fracture healing is a physiological process of repair which proceeds in stages, each characterized by a different predominant tissue in the fracture gap. Matrix reorganization is regulated by cytokines and growth factors. Neurotrophins and their receptors might be of importance to osteoblasts and endothelial cells during fracture healing. The aim of this study was to examine the presence of brain-derived neurotrophic factor (BDNF) and its tropomyosin-related kinase B receptor (TrkB) during human fracture healing. BDNF and TrkB were investigated in samples from human fracture gaps and cultured cells using RT-PCR, Western blot, and immunohistochemistry. Endothelial cells and osteoblastic cell lines demonstrated a cytoplasmic staining pattern of BDNF and TrkB in vitro. At the mRNA level, BDNF and TrkB were expressed in the initial and osteoid formation phase of human fracture healing. In the granulation tissue of fracture gap, both proteins--BDNF and TrkB--are concentrated in endothelial and osteoblastic cells at the margins of woven bone suggesting their involvement in the formation of new vessels. There was no evidence of BDNF or TrkB during fracture healing in chondrocytes of human enchondral tissue. Furthermore, BDNF is absent in mature bone. Taken together, BDNF and TrkB are involved in vessel formation and osteogenic processes during human fracture healing. The detection of BDNF and its TrkB receptor during various stages of the bone formation process in human fracture gap tissue were shown for the first time. The current study reveals that both proteins are up-regulated in human osteoblasts and endothelial cells in fracture healing. PMID:24984919

  8. Processes regulating nitric oxide emissions from soils.

    PubMed

    Pilegaard, Kim

    2013-07-01

    Nitric oxide (NO) is a reactive gas that plays an important role in atmospheric chemistry by influencing the production and destruction of ozone and thereby the oxidizing capacity of the atmosphere. NO also contributes by its oxidation products to the formation of acid rain. The major sources of NO in the atmosphere are anthropogenic emissions (from combustion of fossil fuels) and biogenic emission from soils. NO is both produced and consumed in soils as a result of biotic and abiotic processes. The main processes involved are microbial nitrification and denitrification, and chemodenitrification. Thus, the net result is complex and dependent on several factors such as nitrogen availability, organic matter content, oxygen status, soil moisture, pH and temperature. This paper reviews recent knowledge on processes forming NO in soils and the factors controlling its emission to the atmosphere. Schemes for simulating these processes are described, and the results are discussed with the purpose of scaling up to global emission.

  9. Processes regulating nitric oxide emissions from soils.

    PubMed

    Pilegaard, Kim

    2013-07-01

    Nitric oxide (NO) is a reactive gas that plays an important role in atmospheric chemistry by influencing the production and destruction of ozone and thereby the oxidizing capacity of the atmosphere. NO also contributes by its oxidation products to the formation of acid rain. The major sources of NO in the atmosphere are anthropogenic emissions (from combustion of fossil fuels) and biogenic emission from soils. NO is both produced and consumed in soils as a result of biotic and abiotic processes. The main processes involved are microbial nitrification and denitrification, and chemodenitrification. Thus, the net result is complex and dependent on several factors such as nitrogen availability, organic matter content, oxygen status, soil moisture, pH and temperature. This paper reviews recent knowledge on processes forming NO in soils and the factors controlling its emission to the atmosphere. Schemes for simulating these processes are described, and the results are discussed with the purpose of scaling up to global emission. PMID:23713124

  10. Processes regulating nitric oxide emissions from soils

    PubMed Central

    Pilegaard, Kim

    2013-01-01

    Nitric oxide (NO) is a reactive gas that plays an important role in atmospheric chemistry by influencing the production and destruction of ozone and thereby the oxidizing capacity of the atmosphere. NO also contributes by its oxidation products to the formation of acid rain. The major sources of NO in the atmosphere are anthropogenic emissions (from combustion of fossil fuels) and biogenic emission from soils. NO is both produced and consumed in soils as a result of biotic and abiotic processes. The main processes involved are microbial nitrification and denitrification, and chemodenitrification. Thus, the net result is complex and dependent on several factors such as nitrogen availability, organic matter content, oxygen status, soil moisture, pH and temperature. This paper reviews recent knowledge on processes forming NO in soils and the factors controlling its emission to the atmosphere. Schemes for simulating these processes are described, and the results are discussed with the purpose of scaling up to global emission. PMID:23713124

  11. 40 CFR 52.231 - Regulations: Sulfur oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... previously approved under 40 CFR 52.223, is retained as applicable to sources other than sulfur recovery... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Regulations: Sulfur oxides. 52.231... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.231 Regulations: Sulfur...

  12. 40 CFR 52.231 - Regulations: Sulfur oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... previously approved under 40 CFR 52.223, is retained as applicable to sources other than sulfur recovery... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Regulations: Sulfur oxides. 52.231... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.231 Regulations: Sulfur...

  13. 40 CFR 52.231 - Regulations: Sulfur oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... previously approved under 40 CFR 52.223, is retained as applicable to sources other than sulfur recovery... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Regulations: Sulfur oxides. 52.231... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.231 Regulations: Sulfur...

  14. 40 CFR 52.231 - Regulations: Sulfur oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... previously approved under 40 CFR 52.223, is retained as applicable to sources other than sulfur recovery... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Regulations: Sulfur oxides. 52.231... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.231 Regulations: Sulfur...

  15. 40 CFR 52.231 - Regulations: Sulfur oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... previously approved under 40 CFR 52.223, is retained as applicable to sources other than sulfur recovery... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Regulations: Sulfur oxides. 52.231... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.231 Regulations: Sulfur...

  16. Hippocampal BDNF content in response to short- and long-term exercise.

    PubMed

    Sheikhzadeh, Farzam; Etemad, Asieh; Khoshghadam, Sahar; Asl, Naser Ahmadi; Zare, Peyman

    2015-07-01

    The hippocampus is a region in the brain that is crucial for learning and memory. Previous researches proved that brain-derived neurotrophic factor (BDNF) is a probable responsible protein in the learning and memory formation process. BDNF content is thought to be affected by environmental enrichment and physical activity. The purpose of this research was to identify the effect of short- and long-term forced exercise on hippocampal BDNF levels. A total of 30 Wistar rats were randomly divided into three groups (control, short-term exercise and long-term exercise) and treated by treadmill running based on their group. As the treadmill running period finished, the animals were anesthetized. The hippocampus was dissected out immediately and BDNF content of the samples was assessed by ELISA. None of the exercise paradigms did make any significant change on hippocampal BDNF levels. Although exercise was proposed to up-regulate BDNF levels, these results show that the intensity or the duration of running paradigm used in forced exercise protocols here was not enough to affect BDNF levels in the hippocampus significantly.

  17. Hippocampal BDNF content in response to short- and long-term exercise.

    PubMed

    Sheikhzadeh, Farzam; Etemad, Asieh; Khoshghadam, Sahar; Asl, Naser Ahmadi; Zare, Peyman

    2015-07-01

    The hippocampus is a region in the brain that is crucial for learning and memory. Previous researches proved that brain-derived neurotrophic factor (BDNF) is a probable responsible protein in the learning and memory formation process. BDNF content is thought to be affected by environmental enrichment and physical activity. The purpose of this research was to identify the effect of short- and long-term forced exercise on hippocampal BDNF levels. A total of 30 Wistar rats were randomly divided into three groups (control, short-term exercise and long-term exercise) and treated by treadmill running based on their group. As the treadmill running period finished, the animals were anesthetized. The hippocampus was dissected out immediately and BDNF content of the samples was assessed by ELISA. None of the exercise paradigms did make any significant change on hippocampal BDNF levels. Although exercise was proposed to up-regulate BDNF levels, these results show that the intensity or the duration of running paradigm used in forced exercise protocols here was not enough to affect BDNF levels in the hippocampus significantly. PMID:25860428

  18. Increased serum brain-derived neurotrophic factor (BDNF) levels in patients with narcolepsy.

    PubMed

    Klein, Anders B; Jennum, Poul; Knudsen, Stine; Gammeltoft, Steen; Mikkelsen, Jens D

    2013-06-01

    Narcolepsy is a lifelong sleep disorder characterized by excessive daytime sleepiness, sudden loss of muscle tone (cataplexy), fragmentation of nocturnal sleep and sleep paralysis. The symptoms of the disease strongly correlate with a reduction in hypocretin levels in CSF and a reduction in hypocretin neurons in hypothalamus in post-mortem tissue. Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are important for activity-dependent neuronal function and synaptic modulation and it is considered that these mechanisms are important in sleep regulation. We hypothesized that serum levels of these factors are altered in patients with narcolepsy compared to healthy controls without sleep disturbances. Polysomnography data was obtained and serum BDNF and NGF levels measured using ELISA, while hypocretin was measured using RIA. Serum BDNF levels were significantly higher in narcolepsy patients than in healthy controls (64.2±3.9 ng/ml vs. 47.3±2.6 ng/ml, P<0.01), while there were no significant differences in NGF levels. As expected, narcolepsy patients had higher BMI compared to controls, but BMI did not correlate with the serum BDNF levels. The change in BDNF levels was not related to disease duration and sleep parameters did not correlate with BDNF in narcolepsy patients. The mechanisms behind the marked increase in BDNF levels in narcolepsy patients remain unknown. PMID:23570723

  19. BDNF in sleep, insomnia, and sleep deprivation.

    PubMed

    Schmitt, Karen; Holsboer-Trachsler, Edith; Eckert, Anne

    2016-01-01

    The protein brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors involved in plasticity of neurons in several brain regions. There are numerous evidence that BDNF expression is decreased by experiencing psychological stress and that, accordingly, a lack of neurotrophic support causes major depression. Furthermore, disruption in sleep homeostatic processes results in higher stress vulnerability and is often associated with stress-related mental disorders. Recently, we reported, for the first time, a relationship between BDNF and insomnia and sleep deprivation (SD). Using a biphasic stress model as explanation approach, we discuss here the hypothesis that chronic stress might induce a deregulation of the hypothalamic-pituitary-adrenal system. In the long-term it leads to sleep disturbance and depression as well as decreased BDNF levels, whereas acute stress like SD can be used as therapeutic intervention in some insomniac or depressed patients as compensatory process to normalize BDNF levels. Indeed, partial SD (PSD) induced a fast increase in BDNF serum levels within hours after PSD which is similar to effects seen after ketamine infusion, another fast-acting antidepressant intervention, while traditional antidepressants are characterized by a major delay until treatment response as well as delayed BDNF level increase. Key messages Brain-derived neurotrophic factor (BDNF) plays a key role in the pathophysiology of stress-related mood disorders. The interplay of stress and sleep impacts on BDNF level. Partial sleep deprivation (PSD) shows a fast action on BDNF level increase. PMID:26758201

  20. Fear extinction and BDNF: translating animal models of PTSD to the clinic.

    PubMed

    Andero, R; Ressler, K J

    2012-07-01

    Brain-derived neurotrophic factor (BDNF) is the most studied neurotrophin involved in synaptic plasticity processes that are required for long-term learning and memory. Specifically, BDNF gene expression and activation of its high-affinity tropomyosin-related kinase B (TrkB) receptor are necessary in the amygdala, hippocampus and prefrontal cortex for the formation of emotional memories, including fear memories. Among the psychiatric disorders with altered fear processing, there is post-traumatic stress disorder (PTSD) which is characterized by an inability to extinguish fear memories. Since BDNF appears to enhance extinction of fear, targeting impaired extinction in anxiety disorders such as PTSD via BDNF signalling may be an important and novel way to enhance treatment efficacy. The aim of this review is to provide a translational point of view that stems from findings in the BDNF regulation of synaptic plasticity and fear extinction. In addition, there are different systems that seem to alter fear extinction through BDNF modulation like the endocannabinoid system and the hypothalamic-pituitary adrenal axis. Recent work also finds that the pituitary adenylate cyclase-activating polypeptide and PAC1 receptor, which are upstream of BDNF activation, may be implicated in PTSD. Especially interesting are data that exogenous fear extinction enhancers such as antidepressants, histone deacetylases inhibitors and D-cycloserine, a partial N-methyl d-aspartate agonist, may act through or in concert with the BDNF-TrkB system. Finally, we review studies where recombinant BDNF and a putative TrkB agonist, 7,8-dihydroxyflavone, may enhance extinction of fear. These approaches may lead to novel agents that improve extinction in animal models and eventually humans.

  1. Fyn is an intermediate kinase that BDNF utilizes to promote oligodendrocyte myelination.

    PubMed

    Peckham, Haley; Giuffrida, Lauren; Wood, Rhiannon; Gonsalvez, David; Ferner, Anita; Kilpatrick, Trevor J; Murray, Simon S; Xiao, Junhua

    2016-02-01

    Fyn, a member of the Src family of nonreceptor tyrosine kinases, promotes central nervous system myelination during development; however the mechanisms mediating this effect remain unknown. Here we show that Fyn phosphorylation is modulated by BDNF in vivo. Concordant with this, we find that BDNF stimulates Fyn phosphorylation in myelinating cocultures, an effect dependent on oligodendroglial expression of TrkB. Importantly, PP2, a pharmacological inhibitor of Src family kinases, not only abrogated the promyelinating influence of BDNF in vitro, but also attenuated BDNF-induced phosphorylation of Erk1/2 in oligodendrocytes. Over-expression of Fyn in oligodendrocytes significantly promotes phosphorylation of Erk1/2, and promotes myelination to the extent that exogenous BDNF exerts no additive effect in vitro. In contrast, expression of a kinase-dead mutant of Fyn in oligodendrocytes significantly inhibited BDNF-induced activation of Erk1/2 and abrogated the promyelinating effect of BDNF. Analysis of white matter tracts in vivo revealed that phosphorylated Fyn primarily colocalized with mature oligodendrocytes, and was rarely observed in oligodendrocyte progenitor cells, a profile that closely parallels the detection of phosphorylated Erk1/2 in the developing central nervous system. Taken together, these data identify that Fyn kinase exerts a key role in mediating the promyelinating influence of BDNF. Here we identify a pathway in which BDNF activation of oligodendroglial TrkB receptors stimulates the phosphorylation of Fyn, a necessary step required to potentiate the phosphorylation of Erk1/2, which in turn regulates oligodendrocyte myelination.

  2. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds.

    PubMed

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun; Krimm, Robin F

    2015-01-01

    Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood.

  3. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds123

    PubMed Central

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun

    2015-01-01

    Abstract Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood. PMID:26730405

  4. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds.

    PubMed

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun; Krimm, Robin F

    2015-01-01

    Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood. PMID:26730405

  5. BDNF and its receptors in human myasthenic thymus: implications for cell fate in thymic pathology.

    PubMed

    Berzi, Angela; Ayata, C Korcan; Cavalcante, Paola; Falcone, Chiara; Candiago, Elisabetta; Motta, Teresio; Bernasconi, Pia; Hohlfeld, Reinhard; Mantegazza, Renato; Meinl, Edgar; Farina, Cinthia

    2008-07-15

    Here we show that in myasthenic thymus several cell types, including thymic epithelial cells (TEC) and immune cells, were the source and the target of the neurotrophic factor brain-derived growth factor (BDNF). Interestingly, many actively proliferating medullary thymocytes expressed the receptor TrkB in vivo in involuted thymus, while this population was lost in hyperplastic or neoplastic thymuses. Furthermore, in hyperplastic thymuses the robust coordinated expression of BDNF in the germinal centers together with the receptor p75NTR on all proliferating B cells strongly suggests that this factor regulates germinal center reaction. Finally, all TEC dying of apoptosis expressed BDNF receptors, indicating that this neurotrophin is involved in TEC turnover. In thymomas both BDNF production and receptor expression in TEC were strongly hindered. This may represent an attempt of tumour escape from cell death.

  6. Regulation and function of lactate oxidation in Streptococcus faecium.

    PubMed

    London, J

    1968-04-01

    Regulation of the synthesis and function of an l(+)-specific lactate-oxidizing enzyme system found in a homofermentative Streptococcus was investigated. With the exception of fructose, aerobic growth at the expense of a variety of substrates resulted in the formation of a lactate oxidation system; anaerobic growth resulted in a marked reduction or complete loss of lactate-oxidizing activity. Growth on fructose, under aerobic and anaerobic conditions, invariably produced a decrease in the activity of the lactate oxidation system. A negative control, activated by an early intermediate product of glycolysis, appeared to be responsible for repression of the lactate-oxidizing enzyme(s). The enzyme system confers upon the organism the ability to grow aerobically at the expense of l(+)-lactic acid.

  7. Cleavage of proBDNF to BDNF by a tolloid-like metalloproteinase is required for acquisition of in vitro eyeblink classical conditioning.

    PubMed

    Keifer, Joyce; Sabirzhanov, Boris E; Zheng, Zhaoqing; Li, Wei; Clark, Timothy G

    2009-11-25

    The tolloid/bone morphogenetic protein-1 family of metalloproteinases have an important role in the regulation of embryonic pattern formation and tissue morphogenesis. Studies suggest that they participate in mechanisms of synaptic plasticity in adults, but very little is known about their function. Recently, we isolated a reptilian ortholog of the tolloid gene family designated turtle tolloid-like gene (tTll). Here, we examined the role of tTLL in an in vitro model of eyeblink classical conditioning using an isolated brainstem preparation to assess its role in synaptic plasticity during conditioning. Analysis by real-time reverse transcription-PCR shows that an extracellularly secreted form of tTLL, tTLLs, is transiently expressed in the early stages of conditioning during conditioned response acquisition, whereas a cytosolic form, tTLLc, is not. Short interfering RNA (siRNA)-directed gene knockdown and rescue of tTLL expression demonstrate that it is required for conditioning. Significantly, we show that tTLLs cleaves the precursor proBDNF into mature BDNF in cleavage assay studies, and application of recombinant tTLLs protein alone to preparations results in induction of mature BDNF expression. The mature form of BDNF is minimally expressed in preparations treated with anti-tTLL siRNA, and the synaptic incorporation of both GluR1- and GluR4-containing AMPA receptors is significantly reduced, resulting in suppression of conditioning. This is the first study to demonstrate that expression of an extracellularly secreted tolloid-like metalloproteinase is regulated in the early stages of classical conditioning and functions in the conversion of proBDNF to mature BDNF. The mature form of BDNF is required for synaptic delivery of AMPA receptors and acquisition of conditioned responses.

  8. CLEAVAGE OF proBDNF TO BDNF BY A TOLLOID-LIKE METALLOPROTEINASE (tTLL) IS REQUIRED FOR ACQUISITION OF IN VITRO EYEBLINK CLASSICAL CONDITIONING

    PubMed Central

    Keifer, Joyce; Sabirzhanov, Boris E.; Zheng, Zhaoqing; Li, Wei; Clark, Timothy G.

    2010-01-01

    The tolloid/bone morphogenetic protein-1 (BMP-1) family of metalloproteinases have an important role in the regulation of embryonic pattern formation and tissue morphogenesis. Studies suggest they participate in mechanisms of synaptic plasticity in adults, but very little is known about their function. Recently, we isolated a reptilian orthologue of the tolloid gene family designated turtle tolloid-like gene (tTll). Here, we examined the role of tTLL in an in vitro model of eyeblink classical conditioning using an isolated brain stem preparation to assess its role in synaptic plasticity during conditioning. Analysis by real-time RT-PCR shows that an extracellularly secreted form of tTLL, tTLLs, is transiently expressed in the early stages of conditioning during CR acquisition while a cytosolic form, tTLLc, is not. siRNA-directed gene knockdown and rescue of tTLL expression demonstrate that it is required for conditioning. Significantly, we show that tTLLs cleaves the precursor proBDNF into mature BDNF in cleavage assay studies and application of recombinant tTLLs protein alone to preparations results in induction of mature BDNF expression. The mature form of BDNF is minimally expressed in preparations treated with anti-tTLL siRNA, and the synaptic incorporation of both GluR1- and GluR4-containing AMPARs is significantly reduced resulting in suppression of conditioning. This is the first study to demonstrate that expression of an extracellularly secreted tolloid-like metalloproteinase is regulated in the early stages of classical conditioning and functions in the conversion of proBDNF to mature BDNF. The mature form of BDNF is required for synaptic delivery of AMPARs and acquisition of conditioned responses. PMID:19940191

  9. Regulation of thrombosis and vascular function by protein methionine oxidation.

    PubMed

    Gu, Sean X; Stevens, Jeff W; Lentz, Steven R

    2015-06-18

    Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis.

  10. RNA interference-mediated knockdown of brain-derived neurotrophic factor (BDNF) promotes cell cycle arrest and apoptosis in B-cell lymphoma cells.

    PubMed

    Xia, D; Li, W; Zhang, L; Qian, H; Yao, S; Qi, X

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin superfamily that has been reported to be involved in a number of neurological and psychological situations. Recently, high expression level of BDNF is observed in diverse human malignancies, delineating a role of BDNF in tumorigenesis. Nevertheless, its effect on B-cell lymphoma remains unclear. In this study, RNA interference technology mediated by short hairpin RNA (shRNA) was performed to inhibit endogenous BDNF expression in B-cell lymphoma cells. Results showed that knockdown of BDNF reduced cell growth and proliferation of Raji and Ramos cells. Furthermore, down-regulation of BDNF induced a cell cycle arrest at G0/G1 phase in Raji cells, and consequently led to cell apoptosis in vitro. Meanwhile, down-regulation of Bcl-2 and up-regulation of Bax, activated caspase-3 and caspase-9 and cleaved poly (ADP-ribose) polymerase (PARP) were observed in Raji cells when endogenous BDNF was inhibited. Besides, we also found that suppression of BDNF in Raji cells increased their sensitivity to chemotherapeutic drug, 5-Fluorouracil (5-FU). Our research provides a promising therapeutic strategy for human B-cell lymphoma by targeting BDNF.

  11. BDNF-induced synaptic delivery of AMPAR subunits is differentially dependent on NMDA receptors and requires ERK.

    PubMed

    Li, Wei; Keifer, Joyce

    2009-03-01

    Previous studies using an in vitro model of eyeblink classical conditioning in turtles suggest that increased numbers of synaptic AMPARs supports the acquisition and expression of conditioned responses (CRs). Brain-derived neurotrophic factor (BDNF) and its associated receptor tyrosine kinase, TrkB, is also required for acquisition of CRs. Bath application of BDNF alone induces synaptic delivery of GluR1- and GluR4-containing AMPARs that is blocked by coapplication of the receptor tyrosine kinase inhibitor K252a. The molecular mechanisms involved in BDNF-induced AMPAR trafficking remain largely unknown. The aim of this study was to determine whether BDNF-induced synaptic AMPAR incorporation utilizes similar cellular mechanisms as AMPAR trafficking that occurs during in vitro classical conditioning. Using pharmacological blockade and confocal imaging, the results show that synaptic delivery of GluR1 subunits during conditioning or BDNF application does not require activity of NMDARs but is mediated by extracellular signal-regulated kinase (ERK). In contrast, synaptic delivery of GluR4-containing AMPARs during both conditioning and BDNF application is NMDAR- as well as ERK-dependent. These findings indicate that BDNF application mimics AMPAR trafficking observed during conditioning by activation of some of the same intracellular signaling pathways and suggest that BDNF is a key signal transduction element in postsynaptic events that mediate conditioning.

  12. Disruption of the expression of the proprotein convertase PC7 reduces BDNF production and affects learning and memory in mice.

    PubMed

    Wetsel, William C; Rodriguiz, Ramona M; Guillemot, Johann; Rousselet, Estelle; Essalmani, Rachid; Kim, Il Hwan; Bryant, Jesse C; Marcinkiewicz, Jadwiga; Desjardins, Roxane; Day, Robert; Constam, Daniel B; Prat, Annik; Seidah, Nabil G

    2013-10-22

    PC7 belongs to the proprotein convertase family, whose members are implicated in the cleavage of secretory precursors. The in vivo function of PC7 is unknown. Herein, we find that the precursor proBDNF is processed into mature BDNF in COS-1 cells coexpressing proBDNF with either PC7 or Furin. Conversely, the processing of proBDNF into BDNF is markedly reduced in the absence of either Furin or PC7 in mouse primary hepatocytes. In vivo we observe that BDNF and PC7 mRNAs are colocalized in mouse hippocampus and amygdala and that mature BDNF protein levels are reduced in these brain areas in PC7 KO mice but not in the hippocampus of PC1/3 KO mice. Various behavioral tests reveal that in PC7 KO mice spatial memory is intact and plasticity of responding is mildly abnormal. Episodic and emotional memories are severely impaired, but both are rescued with the tyrosine receptor kinase B agonist 7,8-dihydroxyflavone. Altogether, these results support an in vivo role for PC7 in the regulation of certain types of cognitive performance, in part via proBDNF processing. Because polymorphic variants of human PC7 are being characterized, it will be important in future studies to determine their effects on additional physiological and behavioral processes. PMID:24101515

  13. Disruption of the expression of the proprotein convertase PC7 reduces BDNF production and affects learning and memory in mice.

    PubMed

    Wetsel, William C; Rodriguiz, Ramona M; Guillemot, Johann; Rousselet, Estelle; Essalmani, Rachid; Kim, Il Hwan; Bryant, Jesse C; Marcinkiewicz, Jadwiga; Desjardins, Roxane; Day, Robert; Constam, Daniel B; Prat, Annik; Seidah, Nabil G

    2013-10-22

    PC7 belongs to the proprotein convertase family, whose members are implicated in the cleavage of secretory precursors. The in vivo function of PC7 is unknown. Herein, we find that the precursor proBDNF is processed into mature BDNF in COS-1 cells coexpressing proBDNF with either PC7 or Furin. Conversely, the processing of proBDNF into BDNF is markedly reduced in the absence of either Furin or PC7 in mouse primary hepatocytes. In vivo we observe that BDNF and PC7 mRNAs are colocalized in mouse hippocampus and amygdala and that mature BDNF protein levels are reduced in these brain areas in PC7 KO mice but not in the hippocampus of PC1/3 KO mice. Various behavioral tests reveal that in PC7 KO mice spatial memory is intact and plasticity of responding is mildly abnormal. Episodic and emotional memories are severely impaired, but both are rescued with the tyrosine receptor kinase B agonist 7,8-dihydroxyflavone. Altogether, these results support an in vivo role for PC7 in the regulation of certain types of cognitive performance, in part via proBDNF processing. Because polymorphic variants of human PC7 are being characterized, it will be important in future studies to determine their effects on additional physiological and behavioral processes.

  14. Disruption of the expression of the proprotein convertase PC7 reduces BDNF production and affects learning and memory in mice

    PubMed Central

    Wetsel, William C.; Rodriguiz, Ramona M.; Guillemot, Johann; Rousselet, Estelle; Essalmani, Rachid; Kim, Il Hwan; Bryant, Jesse C.; Marcinkiewicz, Jadwiga; Desjardins, Roxane; Day, Robert; Constam, Daniel B.; Prat, Annik; Seidah, Nabil G.

    2013-01-01

    PC7 belongs to the proprotein convertase family, whose members are implicated in the cleavage of secretory precursors. The in vivo function of PC7 is unknown. Herein, we find that the precursor proBDNF is processed into mature BDNF in COS-1 cells coexpressing proBDNF with either PC7 or Furin. Conversely, the processing of proBDNF into BDNF is markedly reduced in the absence of either Furin or PC7 in mouse primary hepatocytes. In vivo we observe that BDNF and PC7 mRNAs are colocalized in mouse hippocampus and amygdala and that mature BDNF protein levels are reduced in these brain areas in PC7 KO mice but not in the hippocampus of PC1/3 KO mice. Various behavioral tests reveal that in PC7 KO mice spatial memory is intact and plasticity of responding is mildly abnormal. Episodic and emotional memories are severely impaired, but both are rescued with the tyrosine receptor kinase B agonist 7,8-dihydroxyflavone. Altogether, these results support an in vivo role for PC7 in the regulation of certain types of cognitive performance, in part via proBDNF processing. Because polymorphic variants of human PC7 are being characterized, it will be important in future studies to determine their effects on additional physiological and behavioral processes. PMID:24101515

  15. The impact of Bdnf gene deficiency to the memory impairment and brain pathology of APPswe/PS1dE9 mouse model of Alzheimer's disease.

    PubMed

    Rantamäki, Tomi; Kemppainen, Susanna; Autio, Henri; Stavén, Saara; Koivisto, Hennariikka; Kojima, Masami; Antila, Hanna; Miettinen, Pasi O; Kärkkäinen, Elisa; Karpova, Nina; Vesa, Liisa; Lindemann, Lothar; Hoener, Marius C; Tanila, Heikki; Castrén, Eero

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) importantly regulates learning and memory and supports the survival of injured neurons. Reduced BDNF levels have been detected in the brains of Alzheimer's disease (AD) patients but the exact role of BDNF in the pathophysiology of the disorder remains obscure. We have recently shown that reduced signaling of BDNF receptor TrkB aggravates memory impairment in APPswe/PS1dE9 (APdE9) mice, a model of AD. The present study examined the influence of Bdnf gene deficiency (heterozygous knockout) on spatial learning, spontaneous exploratory activity and motor coordination/balance in middle-aged male and female APdE9 mice. We also studied brain BDNF protein levels in APdE9 mice in different ages showing progressive amyloid pathology. Both APdE9 and Bdnf mutations impaired spatial learning in males and showed a similar trend in females. Importantly, the effect was additive, so that double mutant mice performed the worst. However, APdE9 and Bdnf mutations influenced spontaneous locomotion in contrasting ways, such that locomotor hyperactivity observed in APdE9 mice was normalized by Bdnf deficiency. Obesity associated with Bdnf deficiency did not account for the reduced hyperactivity in double mutant mice. Bdnf deficiency did not alter amyloid plaque formation in APdE9 mice. Before plaque formation (3 months), BDNF protein levels where either reduced (female) or unaltered (male) in the APdE9 mouse cortex. Unexpectedly, this was followed by an age-dependent increase in mature BDNF protein. Bdnf mRNA and phospho-TrkB levels remained unaltered in the cortical tissue samples of middle-aged APdE9 mice. Immunohistological studies revealed increased BDNF immunoreactivity around amyloid plaques indicating that the plaques may sequester BDNF protein and prevent it from activating TrkB. If similar BDNF accumulation happens in human AD brains, it would suggest that functional BDNF levels in the AD brains are even lower than reported, which could

  16. Hold the salt: vasopressor role for BDNF.

    PubMed

    Marosi, Krisztina; Mattson, Mark P

    2015-04-01

    In a recent publication in Neuron, Choe et al. (2015) demonstrate that brain-derived neurotrophic factor (BDNF) signaling mediates salt-induced blood pressure elevation by increasing the excitability of hypothalamic vasopressin-secreting neurons. These findings suggest complex roles for BDNF in adaptive cardiovascular responses to physiological challenges and in the pathogenesis of hypertension. PMID:25863241

  17. NRF2 Regulates PINK1 Expression under Oxidative Stress Conditions

    PubMed Central

    Murata, Hitoshi; Takamatsu, Hitoshi; Liu, Sulai; Kataoka, Ken; Huh, Nam-ho; Sakaguchi, Masakiyo

    2015-01-01

    Mutations of the PTEN-induced putative kinase 1 (PINK1) gene are a cause of autosomal recessive forms of Parkinson’s disease. Recent studies have revealed that PINK1 is an essential factor for controlling mitochondrial quality, and that it protects cells from oxidative stresses. Although there has been considerable progress in the elucidation of various aspects of PINK1 protein regulation such as activation, stability and degradation, the transcriptional regulation of PINK1 mRNA under stress conditions remains unclear. In this study, we found that nuclear factor (erythroid-derived 2)-like 2 (NRF2), an antioxidant transcription factor, regulates PINK1 expression under oxidative stress conditions. Damaged mitochondria arising from stress conditions induced NRF2-dependent transcription of the PINK1 gene through production of reactive oxygen species (ROS). Either an ROS scavenger or forced expression of KEAP1, a potent inhibitory partner to NRF2, restricted PINK1 expression induced by activated NRF2. Transcriptionally up-regulated PINK1 diminished oxidative stress-associated cell death. The results indicate that PINK1 expression is positively regulated by NRF2 and that the NRF2-PINK1 signaling axis is deeply involved in cell survival. PMID:26555609

  18. Inhibition of the tyrosine phosphatase STEP61 restores BDNF expression and reverses motor and cognitive deficits in phencyclidine-treated mice

    PubMed Central

    Xu, Jian; Kurup, Pradeep; Baguley, Tyler D.; Foscue, Ethan; Ellman, Jonathan A.; Nairn, Angus C.

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) and STriatal-Enriched protein tyrosine Phosphatase 61 (STEP61) have opposing functions in the brain, with BDNF supporting and STEP61 opposing synaptic strengthening. BDNF and STEP61 also exhibit an inverse pattern of expression in a number of brain disorders, including schizophrenia (SZ). NMDAR antagonists such as phencyclidine (PCP) elicit SZ-like symptoms in rodent models and unaffected individuals, and exacerbate psychotic episodes in SZ. Here we characterize the regulation of BDNF expression by STEP61, utilizing PCP-treated cortical culture and PCP-treated mice. PCP-treated cortical neurons showed both an increase in STEP61 levels and a decrease in BDNF expression. The reduction in BDNF expression was prevented by STEP61 knockdown or use of the STEP inhibitor, TC-2153. The PCP-induced increase in STEP61 expression was associated with the inhibition of CREB-dependent BDNF transcription. Similarly, both genetic and pharmacologic inhibition of STEP prevented the PCP-induced reduction in BDNF expression in vivo and normalized PCP-induced hyperlocomotion and cognitive deficits. These results suggest a mechanism by which STEP61 regulates BDNF expression, with implications for cognitive functioning in CNS disorders. PMID:26450419

  19. BDNF gene polymorphisms and haplotypes in relation to cognitive performance in Polish healthy subjects.

    PubMed

    Wiłkość, Monika; Szałkowska, Agnieszka; Skibińska, Maria; Zając-Lamparska, Ludmiła; Maciukiewicz, Małgorzata; Araszkiewicz, Aleksander

    2016-01-01

    The brain derived neurotrophic factor (BDNF) is a neurotrophin that plays an important role in the cell survival, axonal and dendritic growth, and synaptic plasticity. BDNF gene polymorphisms, 'functional Val66Met mainly, were shown to influence human brain structure and cognition. The aim of the study was to assess the relationship between twelve BDNF gene variants and their haplotypes and cognitive performance measured using the Wisconsin Card Sorting Test (WCST), the Trail Making Test (TMT), the Stroop Test which are to a large extent connected with prefrontal cortex activity. Our sample consisted of 460 healthy participants from Polish population. We detected possible association between five BDNF polymorphisms (rs11030101, rs10835210, rs2049046, rs2030324, rs2883187) and TMT_A. Additionally, one haplotype block made from eleven BDNF variants (rs2883187, rs1401635, rs2049046, rs2030324, rs11030101, rs10835210, rs1013402, rs1401635, rs1013402), as significant linkage disequilibrium appeared. We discovered possible relationships of CACCGCGTACG and CACCGCGTACG haplotypes with TMT_A and TMT_B performance respectively. Our results confirmed the involvement of BDNF in the regulation of psychomotor speed, working memory and executive function in healthy subjects measured by a task engaging visuoperceptual abilities. PMID:27102917

  20. Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males.

    PubMed

    Griffin, Éadaoin W; Mullally, Sinéad; Foley, Carole; Warmington, Stuart A; O'Mara, Shane M; Kelly, Aine M

    2011-10-24

    Physical activity has been reported to improve cognitive function in humans and rodents, possibly via a brain-derived neurotrophic factor (BDNF)-regulated mechanism. In this study of human subjects, we have assessed the effects of acute and chronic exercise on performance of a face-name matching task, which recruits the hippocampus and associated structures of the medial temporal lobe, and the Stroop word-colour task, which does not, and have assessed circulating concentrations of BDNF and IGF-1 in parallel. The results show that a short period of high-intensity cycling results in enhancements in performance of the face-name matching, but not the Stroop, task. These changes in cognitive function were paralleled by increased concentration of BDNF, but not IGF-1, in the serum of exercising subjects. 3 weeks of cycling training had no effect on cardiovascular fitness, as assessed by VO2 scores, cognitive function, or serum BDNF concentration. Increases in fitness, cognitive function and serum BDNF response to acute exercise were observed following 5 weeks of aerobic training. These data indicate that both acute and chronic exercise improve medial temporal lobe function concomitant with increased concentrations of BDNF in the serum, suggesting a possible functional role for this neurotrophic factor in exercise-induced cognitive enhancement in humans. PMID:21722657

  1. Computer Simulations Support a Morphological Contribution to BDNF Enhancement of Action Potential Generation

    PubMed Central

    Hiester, Brian G.; Jones, Kevin R.

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) regulates both action potential (AP) generation and neuron morphology. However, whether BDNF-induced changes in neuron morphology directly impact AP generation is unclear. We quantified BDNF’s effect on cultured cortical neuron morphological parameters and found that BDNF stimulates dendrite growth and addition of dendrites while increasing both excitatory and inhibitory presynaptic inputs in a spatially restricted manner. To gain insight into how these combined changes in neuron structure and synaptic input impact AP generation, we used the morphological parameters we gathered to generate computational models. Simulations suggest that BDNF-induced neuron morphologies generate more APs under a wide variety of conditions. Synapse and dendrite addition have the greatest impact on AP generation. However, subtle alterations in excitatory/inhibitory synapse ratio and strength have a significant impact on AP generation when synaptic activity is low. Consistent with these simulations, BDNF rapidly enhances spontaneous activity in cortical cultures. We propose that BDNF promotes neuron morphologies that are intrinsically more efficient at translating barrages of synaptic activity into APs, which is a previously unexplored aspect of BDNF’s function. PMID:27683544

  2. Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males.

    PubMed

    Griffin, Éadaoin W; Mullally, Sinéad; Foley, Carole; Warmington, Stuart A; O'Mara, Shane M; Kelly, Aine M

    2011-10-24

    Physical activity has been reported to improve cognitive function in humans and rodents, possibly via a brain-derived neurotrophic factor (BDNF)-regulated mechanism. In this study of human subjects, we have assessed the effects of acute and chronic exercise on performance of a face-name matching task, which recruits the hippocampus and associated structures of the medial temporal lobe, and the Stroop word-colour task, which does not, and have assessed circulating concentrations of BDNF and IGF-1 in parallel. The results show that a short period of high-intensity cycling results in enhancements in performance of the face-name matching, but not the Stroop, task. These changes in cognitive function were paralleled by increased concentration of BDNF, but not IGF-1, in the serum of exercising subjects. 3 weeks of cycling training had no effect on cardiovascular fitness, as assessed by VO2 scores, cognitive function, or serum BDNF concentration. Increases in fitness, cognitive function and serum BDNF response to acute exercise were observed following 5 weeks of aerobic training. These data indicate that both acute and chronic exercise improve medial temporal lobe function concomitant with increased concentrations of BDNF in the serum, suggesting a possible functional role for this neurotrophic factor in exercise-induced cognitive enhancement in humans.

  3. A significant association between BDNF promoter methylation and the risk of drug addiction.

    PubMed

    Xu, Xuting; Ji, Huihui; Liu, Guili; Wang, Qinwen; Liu, Huifen; Shen, Wenwen; Li, Longhui; Xie, Xiaohu; Zhou, Wenhua; Duan, Shiwei

    2016-06-10

    As a member of the neurotrophic factor family, brain derived neurotrophic factor (BDNF) plays an important role in the survival and differentiation of neurons. The aim of our work was to evaluate the role of BDNF promoter methylation in drug addiction. A total of 60 drug abusers (30 heroin and 30 methylamphetamine addicts) and 52 healthy age- and gender-matched controls were recruited for the current case control study. Bisulfite pyrosequencing technology was used to determine the methylation levels of five CpGs (CpG1-5) on the BDNF promoter. Among the five CpGs, CpG5 methylation was significantly lower in drug abusers than controls. Moreover, significant associations were found between CpG5 methylation and addictive phenotypes including tension-anxiety, anger-hostility, fatigue-inertia, and depression-dejection. In addition, luciferase assay showed that the DNA fragment of BDNF promoter played a key role in the regulation of gene expression. Our results suggest that BDNF promoter methylation is associated with drug addiction, although further studies are needed to understand the mechanisms by which BDNF promoter methylation contributes to the pathophysiology of drug addiction. PMID:26976342

  4. Computer Simulations Support a Morphological Contribution to BDNF Enhancement of Action Potential Generation

    PubMed Central

    Hiester, Brian G.; Jones, Kevin R.

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) regulates both action potential (AP) generation and neuron morphology. However, whether BDNF-induced changes in neuron morphology directly impact AP generation is unclear. We quantified BDNF’s effect on cultured cortical neuron morphological parameters and found that BDNF stimulates dendrite growth and addition of dendrites while increasing both excitatory and inhibitory presynaptic inputs in a spatially restricted manner. To gain insight into how these combined changes in neuron structure and synaptic input impact AP generation, we used the morphological parameters we gathered to generate computational models. Simulations suggest that BDNF-induced neuron morphologies generate more APs under a wide variety of conditions. Synapse and dendrite addition have the greatest impact on AP generation. However, subtle alterations in excitatory/inhibitory synapse ratio and strength have a significant impact on AP generation when synaptic activity is low. Consistent with these simulations, BDNF rapidly enhances spontaneous activity in cortical cultures. We propose that BDNF promotes neuron morphologies that are intrinsically more efficient at translating barrages of synaptic activity into APs, which is a previously unexplored aspect of BDNF’s function.

  5. Functional and structural specific roles of activity-driven BDNF within circuits formed by single spiny stellate neurons of the barrel cortex

    PubMed Central

    Sun, Qian-Quan; Zhang, Zhi; Sun, June; Nair, Anand S.; Petrus, Dan P.; Zhang, Chunzhao

    2014-01-01

    Brain derived neurotrophic factor (BDNF) plays key roles in several neurodevelopmental disorders and actions of pharmacological treatments. However, it is unclear how specific BDNF’s effects are on different circuit components. Current studies have largely focused on the role of BDNF in modification of synaptic development. The precise roles of BDNF in the refinement of a functional circuit in vivo remain unclear. Val66Met polymorphism of BDNF may be associated with increased risk for cognitive impairments and is mediated at least in part by activity-dependent trafficking and/or secretion of BDNF. Using mutant mice that lacked activity-driven BDNF expression (bdnf-KIV), we previously reported that experience regulation of the cortical GABAergic network is mediated by activity-driven BDNF expression. Here, we demonstrate that activity-driven BDNF’s effects on circuits formed by the layer IV spiny stellate cells are highly specific. Structurally, dendritic but not axonal morphology was altered in the mutant. Physiologically, GABAergic but not glutamatergic synapses were severely affected. The effects on GABA transmission occurs via presynaptic alteration of calcium-dependent release probability. These results suggest that neuronal activity through activity-driven BDNF expression, can selectively regulate specific features of layer IV circuits in vivo. We postulate that the role of activity-dependent BDNF is to modulate the computational ability of circuits that relate to the gain control (i.e., feed-forward inhibition); whereas the basic wiring of circuits relevant to the sensory pathway is spared. Gain control modulation within cortical circuits has broad impact on cognitive processing and brain state-transitions. Cognitive behavior and mode is determined by brain states, thus the studying of circuit alteration by endogenous BDNF provides insights into the cellular and molecular mechanisms of diseases mediated by BDNF. PMID:25414642

  6. Corticosterone effects on BDNF mRNA expression in the rat hippocampus during morris water maze training.

    PubMed

    Schaaf, M J; Sibug, R M; Duurland, R; Fluttert, M F; Oitzl, M S; De Kloet, E R; Vreugdenhil, E

    1999-12-01

    Corticosterone and Brain-Derived Neurotrophic Factor (BDNF) have both been shown to be involved in spatial memory formation in rats. In the present study we have investigated the effect of corticosterone on hippocampal BDNF mRNA expression after training in the Morris water maze in young adult Wistar rats. Therefore, we first studied BDNF mRNA levels in the hippocampus in relation to corticosterone levels at several time points after 4 training trials in the Morris water maze. Corticosterone levels were significantly increased after this procedure, and hippocampal BDNF mRNA levels only displayed a minor change: an increase in CA1 at 1 hr after training. However, in a previous study we observed dramatically decreased hippocampal BDNF mRNA levels in dentate gyrus and CA1 at 3 hr after injection of corticosterone. In order to analyze this discrepancy, we subsequently investigated if hippocampal BDNF mRNA expression is affected by corticosterone at 3 hr after water maze training. Therefore, we incorporated ADX animals and ADX animals which were injected with corticosterone in our study. ADX animals which were subjected to water maze training displayed similar hippocampal BDNF mRNA levels 3 hr after training compared to control ADX animals. Furthermore, ADX animals which were injected with corticosterone showed decreased BDNF mRNA levels in all hippocampal regions compared to control ADX animals. Water maze training did not alter this effect. Thus, the increased corticosterone levels during water maze training do not affect hippocampal BDNF mRNA expression, although exogenous corticosterone is effective under these conditions. Hence, our results suggest that in this situation BDNF is resistant to regulation by endogenous corticosterone, which may be important for learning and memory processes.

  7. Epigenetic Regulation of Oxidative Stress in Ischemic Stroke

    PubMed Central

    Zhao, Haiping; Han, Ziping; Ji, Xunming; Luo, Yumin

    2016-01-01

    The prevalence and incidence of stroke rises with life expectancy. However, except for the use of recombinant tissue-type plasminogen activator, the translation of new therapies for acute stroke from animal models into humans has been relatively unsuccessful. Oxidative DNA and protein damage following stroke is typically associated with cell death. Cause-effect relationships between reactive oxygen species and epigenetic modifications have been established in aging, cancer, acute pancreatitis, and fatty liver disease. In addition, epigenetic regulatory mechanisms during stroke recovery have been reviewed, with focuses mainly on neural apoptosis, necrosis, and neuroplasticity. However, oxidative stress-induced epigenetic regulation in vascular neural networks following stroke has not been sufficiently explored. Improved understanding of the epigenetic regulatory network upon oxidative stress may provide effective antioxidant approaches for treating stroke. In this review, we summarize the epigenetic events, including DNA methylation, histone modification, and microRNAs, that result from oxidative stress following experimental stroke in animal and cell models, and the ways in which epigenetic changes and their crosstalk influence the redox state in neurons, glia, and vascular endothelial cells, helping us to understand the foregone and vicious epigenetic regulation of oxidative stress in the vascular neural network following stroke. PMID:27330844

  8. H2S regulation of nitric oxide metabolism

    PubMed Central

    Kolluru, Gopi K.; Yuan, Shuai; Shen, Xinggui; Kevil, Christopher G.

    2015-01-01

    Nitric oxide (NO) and hydrogen sulfide (H2S) are two major gaseous signaling molecules that regulate diverse physiological functions. Recent publications indicate the regulatory role of H2S on NO metabolism. In this chapter, we discuss the latest findings on H2S-NO interactions through formation of novel chemical derivatives, and experimental approaches to study these adducts. This chapter also addresses potential H2S interference on various NO detection techniques, along with precautions for analyzing biological samples from various sources. This information will facilitate critical evaluation and clearer insight into H2S regulation of NO signaling and its influence on various physiological functions. PMID:25725527

  9. Impaired oxidative phosphorylation regulates necroptosis in human lung epithelial cells.

    PubMed

    Koo, Michael Jakun; Rooney, Kristen T; Choi, Mary E; Ryter, Stefan W; Choi, Augustine M K; Moon, Jong-Seok

    2015-08-28

    Cellular metabolism can impact cell life or death outcomes. While metabolic dysfunction has been linked to cell death, the mechanisms by which metabolic dysfunction regulates the cell death mode called necroptosis remain unclear. Our study demonstrates that mitochondrial oxidative phosphorylation (OXPHOS) activates programmed necrotic cell death (necroptosis) in human lung epithelial cells. Inhibition of mitochondrial respiration and ATP synthesis induced the phosphorylation of mixed lineage kinase domain-like protein (MLKL) and necroptotic cell death. Furthermore, we demonstrate that the activation of AMP-activated protein kinase (AMPK), resulting from impaired mitochondrial OXPHOS, regulates necroptotic cell death. These results suggest that impaired mitochondrial OXPHOS contributes to necroptosis in human lung epithelial cells.

  10. Nitrogen oxide cycle regulates nitric oxide levels and bacterial cell signaling

    PubMed Central

    Sasaki, Yasuyuki; Oguchi, Haruka; Kobayashi, Takuya; Kusama, Shinichiro; Sugiura, Ryo; Moriya, Kenta; Hirata, Takuya; Yukioka, Yuriya; Takaya, Naoki; Yajima, Shunsuke; Ito, Shinsaku; Okada, Kiyoshi; Ohsawa, Kanju; Ikeda, Haruo; Takano, Hideaki; Ueda, Kenji; Shoun, Hirofumi

    2016-01-01

    Nitric oxide (NO) signaling controls various metabolic pathways in bacteria and higher eukaryotes. Cellular enzymes synthesize and detoxify NO; however, a mechanism that controls its cellular homeostasis has not been identified. Here, we found a nitrogen oxide cycle involving nitrate reductase (Nar) and the NO dioxygenase flavohemoglobin (Fhb), that facilitate inter-conversion of nitrate, nitrite, and NO in the actinobacterium Streptomyces coelicolor. This cycle regulates cellular NO levels, bacterial antibiotic production, and morphological differentiation. NO down-regulates Nar and up-regulates Fhb gene expression via the NO-dependent transcriptional factors DevSR and NsrR, respectively, which are involved in the auto-regulation mechanism of intracellular NO levels. Nitrite generated by the NO cycles induces gene expression in neighboring cells, indicating an additional role of the cycle as a producer of a transmittable inter-cellular communication molecule. PMID:26912114

  11. Analyzing the influence of BDNF heterozygosity on spatial memory response to 17β-estradiol.

    PubMed

    Wu, Y W C; Du, X; van den Buuse, M; Hill, R A

    2015-01-20

    The recent use of estrogen-based therapies as adjunctive treatments for the cognitive impairments of schizophrenia has produced promising results; however the mechanism behind estrogen-based cognitive enhancement is relatively unknown. Brain-derived neurotrophic factor (BDNF) regulates learning and memory and its expression is highly responsive to estradiol. We recently found that estradiol modulates the expression of hippocampal parvalbumin-positive GABAergic interneurons, known to regulate neuronal synchrony and cognitive function. What is unknown is whether disruptions to the aforementioned estradiol-parvalbumin pathway alter learning and memory, and whether BDNF may mediate these events. Wild-type (WT) and BDNF heterozygous (+/-) mice were ovariectomized (OVX) at 5 weeks of age and simultaneously received empty, estradiol- or progesterone-filled implants for 7 weeks. At young adulthood, mice were tested for spatial and recognition memory in the Y-maze and novel-object recognition test, respectively. Hippocampal protein expression of BDNF and GABAergic interneuron markers, including parvalbumin, were assessed. WT OVX mice show impaired performance on Y-maze and novel-object recognition test. Estradiol replacement in OVX mice prevented the Y-maze impairment, a Behavioral abnormality of dorsal hippocampal origin. BDNF and parvalbumin protein expression in the dorsal hippocampus and parvalbumin-positive cell number in the dorsal CA1 were significantly reduced by OVX in WT mice, while E2 replacement prevented these deficits. In contrast, BDNF(+/-) mice showed either no response or an opposite response to hormone manipulation in both behavioral and molecular indices. Our data suggest that BDNF status is an important biomarker for predicting responsiveness to estrogenic compounds which have emerged as promising adjunctive therapeutics for schizophrenia patients.

  12. BDNF promoter methylation and genetic variation in late-life depression

    PubMed Central

    Januar, V; Ancelin, M-L; Ritchie, K; Saffery, R; Ryan, J

    2015-01-01

    The regulation of the brain-derived neurotrophic factor (BDNF) is important for depression pathophysiology and epigenetic regulation of the BDNF gene may be involved. This study investigated whether BDNF methylation is a marker of depression. One thousand and twenty-four participants were recruited as part of a longitudinal study of psychiatric disorders in general population elderly (age⩾65). Clinical levels of depression were assessed using the Mini International Neuropsychiatric Interview for the diagnosis of major depressive disorder according to the Diagnostic and Statistical Manual of Mental Disorder IV criteria, and the Centre for Epidemiologic Studies Depression Scale (CES-D) for assessment of moderate to severe depressive symptoms. Buccal DNA methylation at the two most widely studied BDNF promoters, I and IV, was investigated using the Sequenom MassARRAY platform that allows high-throughput investigation of methylation at individual CpG sites within defined genomic regions. In multivariate linear regression analyses adjusted for a range of participant characteristics including antidepressant use, depression at baseline, as well as chronic late-life depression over the 12-year follow-up, were associated with overall higher BDNF methylation levels, with two sites showing significant associations (promoter I, Δ mean=0.4%, P=0.0002; promoter IV, Δ mean=5.4%, P=0.021). Three single-nucleotide polymorphisms (rs6265, rs7103411 and rs908867) were also found to modify the association between depression and promoter I methylation. As one of the largest epigenetic studies of depression, and the first investigating BDNF methylation in buccal tissue, our findings highlight the potential for buccal BDNF methylation to be a biomarker of depression. PMID:26285129

  13. Nitric oxide: a regulator of eukaryotic initiation factor 2 kinases.

    PubMed

    Tong, Lingying; Heim, Rachel A; Wu, Shiyong

    2011-06-15

    Generation of nitric oxide (NO(•)) can upstream induce and downstream mediate the kinases that phosphorylate the α subunit of eukaryotic initiation factor 2 (eIF2α), which plays a critical role in regulating gene expression. There are four known eIF2α kinases (EIF2AKs), and NO(•) affects each one uniquely. Whereas NO(•) directly activates EIF2AK1 (HRI), it indirectly activates EIF2AK3 (PERK). EIF2AK4 (GCN2) is activated by depletion of l-arginine, which is used by nitric oxide synthase (NOS) during the production of NO(•). Finally EIF2AK2 (PKR), which can mediate inducible NOS expression and therefore NO(•) production, can also be activated by NO(•). The production of NO(•) and activation of EIF2AKs coordinately regulate physiological and pathological events such as innate immune response and cell apoptosis. PMID:21463677

  14. Prolonged abstinence from developmental cocaine exposure dysregulates BDNF and its signaling network in the medial prefrontal cortex of adult rats.

    PubMed

    Giannotti, Giuseppe; Caffino, Lucia; Calabrese, Francesca; Racagni, Giorgio; Riva, Marco A; Fumagalli, Fabio

    2014-04-01

    Although evidence exists that chronic cocaine exposure during adulthood is associated with changes in BDNF expression, whether and how cocaine exposure during adolescence modulates BDNF is still unknown. To address this issue, we exposed rats to repeated cocaine injections from post-natal day (PD) 28 to PD 42, a period that roughly approximates adolescence in humans, and we carried out a detailed analysis of the BDNF system in the medial prefrontal cortex (mPFC) of rats sacrificed 3 d (PD 45) and 48 d (PD 90) after the last cocaine treatment. We found that developmental exposure to cocaine altered transcriptional and translational mechanisms governing neurotrophin expression. Total BDNF mRNA levels, in fact, were enhanced in the mPFC of PD 90 rats exposed to cocaine in adolescence, an effect sustained by changes in BDNF exon IV through the transcription factors CaRF and NF-kB. While a profound reduction of specific BDNF-related miRNAs (let7d, miR124 and miR132) may contribute to explaining the increased proBDNF levels, the up-regulation of the extracellular proteases tPA is indicative of increased processing leading to higher levels of released mBDNF. These changes were associated with increased activation of the trkB-Akt pathway resulting in enhanced pmTOR and pS6 kinase, which ultimately produced an up-regulation of Arc and a consequent reduction of GluA1 expression in the mPFC of PD 90 cocaine-treated rats. These findings demonstrate that developmental exposure to cocaine dynamically dysregulates BDNF and its signaling network in the mPFC of adult rats, providing novel mechanisms that may contribute to cocaine-induced changes in synaptic plasticity. PMID:24345425

  15. Prolonged abstinence from developmental cocaine exposure dysregulates BDNF and its signaling network in the medial prefrontal cortex of adult rats.

    PubMed

    Giannotti, Giuseppe; Caffino, Lucia; Calabrese, Francesca; Racagni, Giorgio; Riva, Marco A; Fumagalli, Fabio

    2014-04-01

    Although evidence exists that chronic cocaine exposure during adulthood is associated with changes in BDNF expression, whether and how cocaine exposure during adolescence modulates BDNF is still unknown. To address this issue, we exposed rats to repeated cocaine injections from post-natal day (PD) 28 to PD 42, a period that roughly approximates adolescence in humans, and we carried out a detailed analysis of the BDNF system in the medial prefrontal cortex (mPFC) of rats sacrificed 3 d (PD 45) and 48 d (PD 90) after the last cocaine treatment. We found that developmental exposure to cocaine altered transcriptional and translational mechanisms governing neurotrophin expression. Total BDNF mRNA levels, in fact, were enhanced in the mPFC of PD 90 rats exposed to cocaine in adolescence, an effect sustained by changes in BDNF exon IV through the transcription factors CaRF and NF-kB. While a profound reduction of specific BDNF-related miRNAs (let7d, miR124 and miR132) may contribute to explaining the increased proBDNF levels, the up-regulation of the extracellular proteases tPA is indicative of increased processing leading to higher levels of released mBDNF. These changes were associated with increased activation of the trkB-Akt pathway resulting in enhanced pmTOR and pS6 kinase, which ultimately produced an up-regulation of Arc and a consequent reduction of GluA1 expression in the mPFC of PD 90 cocaine-treated rats. These findings demonstrate that developmental exposure to cocaine dynamically dysregulates BDNF and its signaling network in the mPFC of adult rats, providing novel mechanisms that may contribute to cocaine-induced changes in synaptic plasticity.

  16. The Oxidation Status of Mic19 Regulates MICOS Assembly

    PubMed Central

    Sakowska, Paulina; Jans, Daniel C.; Mohanraj, Karthik; Riedel, Dietmar; Jakobs, Stefan

    2015-01-01

    The function of mitochondria depends on the proper organization of mitochondrial membranes. The morphology of the inner membrane is regulated by the recently identified mitochondrial contact site and crista organizing system (MICOS) complex. MICOS mutants exhibit alterations in crista formation, leading to mitochondrial dysfunction. However, the mechanisms that underlie MICOS regulation remain poorly understood. MIC19, a peripheral protein of the inner membrane and component of the MICOS complex, was previously reported to be required for the proper function of MICOS in maintaining the architecture of the inner membrane. Here, we show that human and Saccharomyces cerevisiae MIC19 proteins undergo oxidation in mitochondria and require the mitochondrial intermembrane space assembly (MIA) pathway, which couples the oxidation and import of mitochondrial intermembrane space proteins for mitochondrial localization. Detailed analyses identified yeast Mic19 in two different redox forms. The form that contains an intramolecular disulfide bond is bound to Mic60 of the MICOS complex. Mic19 oxidation is not essential for its integration into the MICOS complex but plays a role in MICOS assembly and the maintenance of the proper inner membrane morphology. These findings suggest that Mic19 is a redox-dependent regulator of MICOS function. PMID:26416881

  17. Brain-derived neurotrophic factor (BDNF) and its precursor (proBDNF) in genetically defined fear-induced aggression.

    PubMed

    Ilchibaeva, Tatiana V; Kondaurova, Elena M; Tsybko, Anton S; Kozhemyakina, Rimma V; Popova, Nina K; Naumenko, Vladimir S

    2015-09-01

    The brain-derived neurotrophic factor (BDNF), its precursor (proBDNF) and BDNF mRNA levels were studied in the brain of wild rats selectively bred for more than 70 generations for either high level or for the lack of affective aggressiveness towards man. Significant increase of BDNF mRNA level in the frontal cortex and increase of BDNF level in the hippocampus of aggressive rats was revealed. In the midbrain and hippocampus of aggressive rats proBDNF level was increased, whereas BDNF/proBDNF ratio was reduced suggesting the prevalence and increased influence of proBDNF in highly aggressive rats. In the frontal cortex, proBDNF level in aggressive rats was decreased. Thus, considerable structure-specific differences in BDNF and proBDNF levels as well as in BDNF gene expression between highly aggressive and nonaggressive rats were shown. The data suggested the implication of BDNF and its precursor proBDNF in the mechanism of aggressiveness and in the creation of either aggressive or nonaggressive phenotype.

  18. Endothelial cell expression of haemoglobin α regulates nitric oxide signalling.

    PubMed

    Straub, Adam C; Lohman, Alexander W; Billaud, Marie; Johnstone, Scott R; Dwyer, Scott T; Lee, Monica Y; Bortz, Pamela Schoppee; Best, Angela K; Columbus, Linda; Gaston, Benjamin; Isakson, Brant E

    2012-11-15

    Models of unregulated nitric oxide (NO) diffusion do not consistently account for the biochemistry of NO synthase (NOS)-dependent signalling in many cell systems. For example, endothelial NOS controls blood pressure, blood flow and oxygen delivery through its effect on vascular smooth muscle tone, but the regulation of these processes is not adequately explained by simple NO diffusion from endothelium to smooth muscle. Here we report a new model for the regulation of NO signalling by demonstrating that haemoglobin (Hb) α (encoded by the HBA1 and HBA2 genes in humans) is expressed in human and mouse arterial endothelial cells and enriched at the myoendothelial junction, where it regulates the effects of NO on vascular reactivity. Notably, this function is unique to Hb α and is abrogated by its genetic depletion. Mechanistically, endothelial Hb α haem iron in the Fe(3+) state permits NO signalling, and this signalling is shut off when Hb α is reduced to the Fe(2+) state by endothelial cytochrome b5 reductase 3 (CYB5R3, also known as diaphorase 1). Genetic and pharmacological inhibition of CYB5R3 increases NO bioactivity in small arteries. These data reveal a new mechanism by which the regulation of the intracellular Hb α oxidation state controls NOS signalling in non-erythroid cells. This model may be relevant to haem-containing globins in a broad range of NOS-containing somatic cells. PMID:23123858

  19. Peripheral Brain Derived Neurotrophic Factor Precursor Regulates Pain as an Inflammatory Mediator

    PubMed Central

    Luo, Cong; Zhong, Xiao-Lin; Zhou, Fiona H.; Li, Jia-yi; Zhou, Pei; Xu, Jun-Mei; Song, Bo; Li, Chang-Qi; Zhou, Xin-Fu; Dai, Ru-Ping

    2016-01-01

    The precursor of brain derived neurotrophic factor (proBDNF), the unprocessed BDNF gene product, binds to its receptors and exerts the opposing biologic functions of mature BDNF. proBDNF is expressed in the peripheral tissues but the functions of peripheral proBDNF remain elusive. Here we showed that proBDNF and its predominant receptor, p75 pan-neurotrophin receptor were upregulated in the nerve fibers and inflammatory cells in the local tissue in inflammatory pain. Neutralization of proBDNF by polyclonal antibody attenuated pain in different models of inflammatory pain. Unilateral intra-plantar supplementation of proBDNF by injecting exogenous proBDNF or ectopic overexpression resulted in pain hypersensitivity and induced spinal phosphorylated extracellular signal-regulated kinase activation. Exogenous proBDNF injection induced the infiltration of inflammatory cells and the activation of proinflammatory cytokines, suggesting that inflammatory reaction contributed to the pro-algesic effect of proBDNF. Finally, we generated monoclonal anti-proBDNF antibody that could biologically block proBDNF. Administration of monoclonal Ab-proBDNF attenuated various types of inflammatory pain and surgical pain. Thus, peripheral proBDNF is a potential pain mediator and anti-proBDNF pretreatment may alleviate the development of inflammatory pain. PMID:27251195

  20. ENDOTHELIAL NITRIC OXIDE (NO) AND ITS PATHOPHYSIOLOGIC REGULATION

    PubMed Central

    Chatterjee, A.; Catravas, J.D.

    2008-01-01

    Nitric oxide (NO) is a gaseous lipophilic free radical generated by three distinct isoforms of nitric oxide synthases (NOS), type 1 or neuronal (nNOS), type 2 or inducible (iNOS) and type 3 or endothelial NOS (eNOS). Expression of eNOS is altered in many types of cardiovascular disease, such as atherosclerosis, diabetes and hypertension. The ubiquitous chaperone heat shock protein 90 (hsp90) associates with NOS and is important for its proper folding and function. Current studies point toward a therapeutic potential by modulating hsp90-NOS association in various vascular diseases. Here we review the transcriptional regulation of endothelial NOS and factors affecting eNOS activity and function, as well as the important vascular pathologies associated with altered NOS function, focusing on the regulatory role of hsp90 and other factors in NO-associated pathogenesis of these diseases. PMID:18692595

  1. Association of brain-derived neurotrophic factor (BDNF) haploinsufficiency with lower adaptive behaviour and reduced cognitive functioning in WAGR/11p13 deletion syndrome.

    PubMed

    Han, Joan C; Thurm, Audrey; Golden Williams, Christine; Joseph, Lisa A; Zein, Wadih M; Brooks, Brian P; Butman, John A; Brady, Sheila M; Fuhr, Shannon R; Hicks, Melanie D; Huey, Amanda E; Hanish, Alyson E; Danley, Kristen M; Raygada, Margarita J; Rennert, Owen M; Martinowich, Keri; Sharp, Stephen J; Tsao, Jack W; Swedo, Susan E

    2013-01-01

    In animal studies, brain-derived neurotrophic factor (BDNF) is an important regulator of central nervous system development and synaptic plasticity. WAGR (Wilms tumour, Aniridia, Genitourinary anomalies, and mental Retardation) syndrome is caused by 11p13 deletions of variable size near the BDNF locus and can serve as a model for studying human BDNF haploinsufficiency (+/-). We hypothesized that BDNF+/- would be associated with more severe cognitive impairment in subjects with WAGR syndrome. Twenty-eight subjects with WAGR syndrome (6-28 years), 12 subjects with isolated aniridia due to PAX6 mutations/microdeletions (7-54 years), and 20 healthy controls (4-32 years) received neurocognitive assessments. Deletion boundaries for the subjects in the WAGR group were determined by high-resolution oligonucleotide array comparative genomic hybridization. Within the WAGR group, BDNF+/- subjects (n = 15), compared with BDNF intact (+/+) subjects (n = 13), had lower adaptive behaviour (p = .02), reduced cognitive functioning (p = .04), higher levels of reported historical (p = .02) and current (p = .02) social impairment, and higher percentage meeting cut-off score for autism (p = .047) on Autism Diagnostic Interview-Revised. These differences remained nominally significant after adjusting for visual acuity. Using diagnostic measures and clinical judgement, 3 subjects (2 BDNF+/- and 1 BDNF+/+) in the WAGR group (10.7%) were classified with autism spectrum disorder. A comparison group of visually impaired subjects with isolated aniridia had cognitive functioning comparable to that of healthy controls. In summary, among subjects with WAGR syndrome, BDNF+/- subjects had a mean Vineland Adaptive Behaviour Compose score that was 14-points lower and a mean intelligence quotient (IQ) that was 20-points lower than BDNF+/+ subjects. Our findings support the hypothesis that BDNF plays an important role in human neurocognitive development.

  2. BDNF Val 66 Met and 5-HTTLPR genotype moderate the impact of early psychosocial adversity on plasma brain-derived neurotrophic factor and depressive symptoms: a prospective study.

    PubMed

    Buchmann, Arlette F; Hellweg, Rainer; Rietschel, Marcella; Treutlein, Jens; Witt, Stephanie H; Zimmermann, Ulrich S; Schmidt, Martin H; Esser, Günter; Banaschewski, Tobias; Laucht, Manfred; Deuschle, Michael

    2013-08-01

    Recent studies have emphasized an important role for neurotrophins, such as brain-derived neurotrophic factor (BDNF), in regulating the plasticity of neural circuits involved in the pathophysiology of stress-related diseases. The aim of the present study was to examine the interplay of the BDNF Val⁶⁶Met and the serotonin transporter promoter (5-HTTLPR) polymorphisms in moderating the impact of early-life adversity on BDNF plasma concentration and depressive symptoms. Participants were taken from an epidemiological cohort study following the long-term outcome of early risk factors from birth into young adulthood. In 259 individuals (119 males, 140 females), genotyped for the BDNF Val⁶⁶Met and the 5-HTTLPR polymorphisms, plasma BDNF was assessed at the age of 19 years. In addition, participants completed the Beck Depression Inventory (BDI). Early adversity was determined according to a family adversity index assessed at 3 months of age. Results indicated that individuals homozygous for both the BDNF Val and the 5-HTTLPR L allele showed significantly reduced BDNF levels following exposure to high adversity. In contrast, BDNF levels appeared to be unaffected by early psychosocial adversity in carriers of the BDNF Met or the 5-HTTLPR S allele. While the former group appeared to be most susceptible to depressive symptoms, the impact of early adversity was less pronounced in the latter group. This is the first preliminary evidence indicating that early-life adverse experiences may have lasting sequelae for plasma BDNF levels in humans, highlighting that the susceptibility to this effect is moderated by BDNF Val⁶⁶Met and 5-HTTLPR genotype.

  3. BDNF mediates neuroprotection against oxygen-glucose deprivation by the cardiac glycoside oleandrin.

    PubMed

    Van Kanegan, Michael J; He, Dong Ning; Dunn, Denise E; Yang, Peiying; Newman, Robert A; West, Anne E; Lo, Donald C

    2014-01-15

    We have previously shown that the botanical drug candidate PBI-05204, a supercritical CO2 extract of Nerium oleander, provides neuroprotection in both in vitro and in vivo brain slice-based models for focal ischemia (Dunn et al., 2011). Intriguingly, plasma levels of the neurotrophin BDNF were increased in patients treated with PBI-05204 in a phase I clinical trial (Bidyasar et al., 2009). We thus tested the hypothesis that neuroprotection provided by PBI-05204 to rat brain slices damaged by oxygen-glucose deprivation (OGD) is mediated by BDNF. We found, in fact, that exogenous BDNF protein itself is sufficient to protect brain slices against OGD, whereas downstream activation of TrkB receptors for BDNF is necessary for neuroprotection provided by PBI-05204, using three independent methods. Finally, we provide evidence that oleandrin, the principal cardiac glycoside component of PBI-05204, can quantitatively account for regulation of BDNF at both the protein and transcriptional levels. Together, these findings support further investigation of cardiac glycosides in providing neuroprotection in the context of ischemic stroke. PMID:24431454

  4. BDNF modulates heart contraction force and long-term homeostasis through truncated TrkB.T1 receptor activation

    PubMed Central

    Fulgenzi, Gianluca; Tomassoni-Ardori, Francesco; Babini, Lucia; Becker, Jodi; Barrick, Colleen; Puverel, Sandrine

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) is critical for mammalian development and plasticity of neuronal circuitries affecting memory, mood, anxiety, pain sensitivity, and energy homeostasis. Here we report a novel unexpected role of BDNF in regulating the cardiac contraction force independent of the nervous system innervation. This function is mediated by the truncated TrkB.T1 receptor expressed in cardiomyocytes. Loss of TrkB.T1 in these cells impairs calcium signaling and causes cardiomyopathy. TrkB.T1 is activated by BDNF produced by cardiomyocytes, suggesting an autocrine/paracrine loop. These findings unveil a novel signaling mechanism in the heart that is activated by BDNF and provide evidence for a global role of this neurotrophin in the homeostasis of the organism by signaling through different TrkB receptor isoforms. PMID:26347138

  5. Altering BDNF expression by genetics and/or environment: impact for emotional and depression-like behaviour in laboratory mice.

    PubMed

    Chourbaji, Sabine; Brandwein, Christiane; Gass, Peter

    2011-01-01

    According to the "neurotrophin hypothesis", brain-derived neurotrophic factor (BDNF) is an important candidate gene in depression. Moreover, environmental stress is known to represent a risk factor in the pathophysiology and treatment of this disease. To elucidate, whether changes of BDNF availability signify cause or consequence of depressive-like alterations, it is essential to look for endophenotypes under distinct genetic conditions (e.g. altered BDNF expression). Furthermore it is crucial to examine environment-driven BDNF regulation and its effect on depressive-linked features. Consequently, gene × environment studies investigating prospective genetic mouse models of depression in different environmental contexts become increasingly important. The present review summarizes recent findings in BDNF-mutant mice, which have been controversially discussed as models of depression and anxiety. It furthermore illustrates the potential of environment to serve as naturalistic stressor with the potential to modulate the phenotype in wildtype and mutant mice. Moreover, environment may exert protective effects by regulating BDNF levels as attributed to "environmental enrichment". The effect of this beneficial condition will also be discussed with regard to probable "curative/therapeutic" approaches.

  6. BDNF-induced LTP is associated with rapid Arc/Arg3.1-dependent enhancement in adult hippocampal neurogenesis

    PubMed Central

    Kuipers, Sjoukje D.; Trentani, Andrea; Tiron, Adrian; Mao, Xiaosong; Kuhl, Dietmar; Bramham, Clive R.

    2016-01-01

    Adult neurogenesis in the hippocampus is a remarkable phenomenon involved in various aspects of learning and memory as well as disease pathophysiology. Brain-derived neurotrophic factor (BDNF) represents a major player in the regulation of this unique form of neuroplasticity, yet the mechanisms underlying its pro-neurogenic actions remain unclear. Here, we examined the effects associated with brief (25 min), unilateral infusion of BDNF in the rat dentate gyrus. Acute BDNF infusion induced long-term potentiation (LTP) of medial perforant path-evoked synaptic transmission and, concomitantly, enhanced hippocampal neurogenesis bilaterally, reflected by increased dentate gyrus BrdU + cell numbers. Importantly, inhibition of activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) translation through local, unilateral infusion of anti-sense oligodeoxynucleotides (ArcAS) prior to BDNF infusion blocked both BDNF-LTP induction and the associated pro-neurogenic effects. Notably, basal rates of proliferation and newborn cell survival were unaltered in homozygous Arc/Arg3.1 knockout mice. Taken together these findings link the pro-neurogenic effects of acute BDNF infusion to induction of Arc/Arg3.1-dependent LTP in the adult rodent dentate gyrus. PMID:26888068

  7. REGULATION OF OBESITY AND INSULIN RESISTANCE BY NITRIC OXIDE

    PubMed Central

    Sansbury, Brian E.; Hill, Bradford G.

    2014-01-01

    Obesity is a risk factor for developing type 2 diabetes and cardiovascular disease and has quickly become a world-wide pandemic with few tangible and safe treatment options. While it is generally accepted that the primary cause of obesity is energy imbalance, i.e., the calories consumed are greater than are utilized, understanding how caloric balance is regulated has proven a challenge. Many “distal” causes of obesity, such as the structural environment, occupation, and social influences, are exceedingly difficult to change or manipulate. Hence, molecular processes and pathways more proximal to the origins of obesity—those that directly regulate energy metabolism or caloric intake—appear to be more feasible targets for therapy. In particular, nitric oxide (NO) is emerging as a central regulator of energy metabolism and body composition. NO bioavailability is decreased in animal models of diet-induced obesity and in obese and insulin resistant patients, and increasing NO output has remarkable effects on obesity and insulin resistance. This review discusses the role of NO in regulating adiposity and insulin sensitivity and places its modes of action into context with the known causes and consequences of metabolic disease. PMID:24878261

  8. Salmonella Rapidly Regulates Membrane Permeability To Survive Oxidative Stress

    PubMed Central

    van der Heijden, Joris; Reynolds, Lisa A.; Deng, Wanyin; Mills, Allan; Scholz, Roland; Imami, Koshi; Foster, Leonard J.; Duong, Franck

    2016-01-01

    ABSTRACT The outer membrane (OM) of Gram-negative bacteria provides protection against toxic molecules, including reactive oxygen species (ROS). Decreased OM permeability can promote bacterial survival under harsh circumstances and protects against antibiotics. To better understand the regulation of OM permeability, we studied the real-time influx of hydrogen peroxide in Salmonella bacteria and discovered two novel mechanisms by which they rapidly control OM permeability. We found that pores in two major OM proteins, OmpA and OmpC, could be rapidly opened or closed when oxidative stress is encountered and that the underlying mechanisms rely on the formation of disulfide bonds in the periplasmic domain of OmpA and TrxA, respectively. Additionally, we found that a Salmonella mutant showing increased OM permeability was killed more effectively by treatment with antibiotics. Together, these results demonstrate that Gram-negative bacteria regulate the influx of ROS for defense against oxidative stress and reveal novel targets that can be therapeutically targeted to increase bacterial killing by conventional antibiotics. PMID:27507830

  9. Spatiotemporal resolution of BDNF neuroprotection against glutamate excitotoxicity in cultured hippocampal neurons.

    PubMed

    Melo, C V; Okumoto, S; Gomes, J R; Baptista, M S; Bahr, B A; Frommer, W B; Duarte, C B

    2013-05-01

    Brain-derived neurotrophic factor (BDNF) protects hippocampal neurons from glutamate excitotoxicity as determined by analysis of chromatin condensation, through activation of extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinase (PI3-K) signaling pathways. However, it is still unknown whether BDNF also prevents the degeneration of axons and dendrites, and the functional demise of synapses, which would be required to preserve neuronal activity. Herein, we have studied the time-dependent changes in several neurobiological markers, and the regulation of proteolytic mechanisms in cultured rat hippocampal neurons, through quantitative western blot and immunocytochemistry. Calpain activation peaked immediately after the neurodegenerative input, followed by a transient increase in ubiquitin-conjugated proteins and increased abundance of cleaved-caspase-3. Proteasome and calpain inhibition did not reproduce the protective effect of BDNF and caspase inhibition in preventing chromatin condensation. However, proteasome and calpain inhibition did protect the neuronal markers for dendrites (MAP-2), axons (Neurofilament-H) and the vesicular glutamate transporters (VGLUT1-2), whereas caspase inhibition was unable to mimic the protective effect of BDNF on neurites and synaptic markers. BDNF partially prevented the downregulation of synaptic activity measured by the KCl-evoked glutamate release using a Förster (Fluorescence) resonance energy transfer (FRET) glutamate nanosensor. These results translate a time-dependent activation of proteases and spatial segregation of these mechanisms, where calpain activation is followed by proteasome deregulation, from neuronal processes to the soma, and finally by caspase activation in the cell body. Moreover, PI3-K and PLCγ small molecule inhibitors significantly blocked the protective action of BDNF, suggesting an activity-dependent mechanism of neuroprotection. Ultimately, we hypothesize that neuronal repair after a

  10. Regulation of the Arabidopsis Transcriptome by Oxidative Stress

    PubMed Central

    Desikan, Radhika; A.-H.-Mackerness, Soheila; Hancock, John T.; Neill, Steven J.

    2001-01-01

    Oxidative stress, resulting from an imbalance in the accumulation and removal of reactive oxygen species such as hydrogen peroxide (H2O2), is a challenge faced by all aerobic organisms. In plants, exposure to various abiotic and biotic stresses results in accumulation of H2O2 and oxidative stress. Increasing evidence indicates that H2O2 functions as a stress signal in plants, mediating adaptive responses to various stresses. To analyze cellular responses to H2O2, we have undertaken a large-scale analysis of the Arabidopsis transcriptome during oxidative stress. Using cDNA microarray technology, we identified 175 non-redundant expressed sequence tags that are regulated by H2O2. Of these, 113 are induced and 62 are repressed by H2O2. A substantial proportion of these expressed sequence tags have predicted functions in cell rescue and defense processes. RNA-blot analyses of selected genes were used to verify the microarray data and extend them to demonstrate that other stresses such as wilting, UV irradiation, and elicitor challenge also induce the expression of many of these genes, both independently of, and, in some cases, via H2O2. PMID:11553744

  11. Nitric oxide as a regulator of B. anthracis pathogenicity

    PubMed Central

    Popova, Taissia G.; Teunis, Allison; Vaseghi, Haley; Zhou, Weidong; Espina, Virginia; Liotta, Lance A.; Popov, Serguei G.

    2015-01-01

    Nitric oxide (NO) is a key physiological regulator in eukaryotic and prokaryotic organisms. It can cause a variety of biological effects by reacting with its targets or/and indirectly inducing oxidative stress. NO can also be produced by bacteria including the pathogenic Bacillus anthracis; however, its role in the infectious process only begins to emerge. NO incapacitates macrophages by S-nitrosylating the intracellular proteins and protects B. anthracis from oxidative stress. It is also implicated in the formation of toxic peroxynitrite. In this study we further assessed the effects of B. anthracis NO produced by the NO synthase (bNOS) on bacterial metabolism and host cells in experiments with the bNOS knockout Sterne strain. The mutation abrogated accumulation of nitrite and nitrate as tracer products of NO in the culture medium and markedly attenuated growth in both aerobic and microaerobic conditions. The regulatory role of NO was also suggested by the abnormally high rate of nitrate denitrification by the mutant in the presence of oxygen. Anaerobic regulation mediated by NO was reflected in reduced fermentation of glucose by the mutant correlating with the reduced toxicity of bacteria toward host cells in culture. The toxic effect of NO required permeabilization of the target cells as well as the activity of fermentation-derived metabolite in the conditions of reduced pH. The host cells demonstrated increased phosphorylation of major survivor protein kinase AKT correlating with reduced toxicity of the mutant in comparison with Sterne. Our global proteomic analysis of lymph from the lymph nodes of infected mice harboring bacteria revealed numerous changes in the pattern and levels of proteins associated with the activity of bNOS influencing key cell physiological processes relevant to energy metabolism, growth, signal transduction, stress response, septic shock, and homeostasis. This is the first in vivo observation of the bacterial NO effect on the lymphatic

  12. The Impact of Bdnf Gene Deficiency to the Memory Impairment and Brain Pathology of APPswe/PS1dE9 Mouse Model of Alzheimer’s Disease

    PubMed Central

    Rantamäki, Tomi; Kemppainen, Susanna; Autio, Henri; Stavén, Saara; Koivisto, Hennariikka; Kojima, Masami; Antila, Hanna; Miettinen, Pasi O.; Kärkkäinen, Elisa; Karpova, Nina; Vesa, Liisa; Lindemann, Lothar; Hoener, Marius C.; Tanila, Heikki; Castrén, Eero

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) importantly regulates learning and memory and supports the survival of injured neurons. Reduced BDNF levels have been detected in the brains of Alzheimer’s disease (AD) patients but the exact role of BDNF in the pathophysiology of the disorder remains obscure. We have recently shown that reduced signaling of BDNF receptor TrkB aggravates memory impairment in APPswe/PS1dE9 (APdE9) mice, a model of AD. The present study examined the influence of Bdnf gene deficiency (heterozygous knockout) on spatial learning, spontaneous exploratory activity and motor coordination/balance in middle-aged male and female APdE9 mice. We also studied brain BDNF protein levels in APdE9 mice in different ages showing progressive amyloid pathology. Both APdE9 and Bdnf mutations impaired spatial learning in males and showed a similar trend in females. Importantly, the effect was additive, so that double mutant mice performed the worst. However, APdE9 and Bdnf mutations influenced spontaneous locomotion in contrasting ways, such that locomotor hyperactivity observed in APdE9 mice was normalized by Bdnf deficiency. Obesity associated with Bdnf deficiency did not account for the reduced hyperactivity in double mutant mice. Bdnf deficiency did not alter amyloid plaque formation in APdE9 mice. Before plaque formation (3 months), BDNF protein levels where either reduced (female) or unaltered (male) in the APdE9 mouse cortex. Unexpectedly, this was followed by an age-dependent increase in mature BDNF protein. Bdnf mRNA and phospho-TrkB levels remained unaltered in the cortical tissue samples of middle-aged APdE9 mice. Immunohistological studies revealed increased BDNF immunoreactivity around amyloid plaques indicating that the plaques may sequester BDNF protein and prevent it from activating TrkB. If similar BDNF accumulation happens in human AD brains, it would suggest that functional BDNF levels in the AD brains are even lower than reported, which could

  13. NPY modulates miR-30a-5p and BDNF in opposite direction in an in vitro model of Alzheimer disease: a possible role in neuroprotection?

    PubMed

    Croce, Nicoletta; Gelfo, Francesca; Ciotti, Maria Teresa; Federici, Giorgio; Caltagirone, Carlo; Bernardini, Sergio; Angelucci, Francesco

    2013-04-01

    Using in vitro models of Alzheimer's disease (AD), we found that the toxic effects of amyloid beta 25-35 (Aβ(25-35)) on the neurotrophin brain-derived neurotrophic factor (BDNF) were counteracted by pre-incubation with neuropeptide Y (NPY), a neuropeptide expressed within the central nervous system. Nonetheless, the mechanism of action of NPY on BDNF neuronal production in the presence of Aβ is not known. BDNF expression might be directly regulated by microRNA (miRs), small non-coding DNA fragments that regulate the expression of target genes. Thus, there is the possibility that miRs alterations are present in AD-affected neurons and that NPY influences miR expression. To test this hypothesis, we exposed NPY-pretreated primary rat cortical neurons to Aβ(25-35) and measured miR-30a-5p (a member of the miR-30a family involved in BDNF tuning expression) and BDNF mRNA and protein expression after 24 and 48 h. Our results demonstrated that pre-treatment with NPY decreased miR-30a-5p expression and increased BDNF mRNA and protein expression at 24 and 48 h of incubation with Aβ. Therefore, this study demonstrates that NPY modulates BDNF and its regulating microRNA miR-30a-5p in opposite direction with a mechanism that possibly contributes to the neuroprotective effect of NPY in rat cortical neurons exposed to Aβ.

  14. Prenatal auditory stimulation alters the levels of CREB mRNA, p-CREB and BDNF expression in chick hippocampus.

    PubMed

    Chaudhury, Sraboni; Wadhwa, Shashi

    2009-10-01

    Prenatal auditory stimulation influences the development of the chick auditory pathway and the hippocampus showing an increase in various morphological parameters as well as expression of calcium-binding proteins. Calcium regulates the activity of cyclic adenosine monophosphate-response element binding (CREB) protein. CREB is known to play a role in development, undergo phosphorylation with neural activity as well as regulate transcription of BDNF. BDNF is important for the survival of neurons and regulates synaptic strength. Hence in the present study, we have evaluated the levels of CREB mRNA and protein along with p-CREB protein as well as BDNF mRNA and protein levels in the chick hippocampus at embryonic days (E) 12, E16, E20 and post-hatch day (PH) 1 following activation by prenatal auditory stimulation. Fertilized eggs were exposed to species-specific sound or sitar music (frequency range: 100-6300Hz) at 65dB levels for 15min/h over 24h from E10 till hatching. The control chick hippocampus showed higher CREB mRNA and p-CREB protein in the early embryonic stages, which later decline whereas BDNF mRNA and BDNF protein levels increase until PH1. The CREB mRNA and p-CREB protein were significantly increased at E12, E16 and PH1 in the auditory stimulated groups as compared to control group. A significant increase in the level of BDNF mRNA was observed from E12 and the protein expression from E16 onwards in both auditory stimulated groups. Therefore, enhanced phosphorylation of CREB during development following prenatal sound stimulation may be responsible for cell survival. Increased levels of p-CREB again at PH1 may trigger synthesis of proteins necessary for synaptic plasticity. Further, the increased levels of BDNF may also help in regulating synaptic plasticity. PMID:19559781

  15. Blocking GSK3β-mediated dynamin1 phosphorylation enhances BDNF-dependent TrkB endocytosis and the protective effects of BDNF in neuronal and mouse models of Alzheimer's disease.

    PubMed

    Liu, Xiang-Hua; Geng, Zhao; Yan, Jing; Li, Ting; Chen, Qun; Zhang, Qun-Ye; Chen, Zhe-Yu

    2015-02-01

    Endocytosis of tropomyosin related kinase B (TrkB) receptors has critical roles in brain-derived neurotrophic factor (BDNF) mediated signal transduction and biological function, however the mechanism that is governing TrkB endocytosis is still not completely understood. In this study, we showed that GSK3β, a key kinase in neuronal development and survival, could regulate TrkB endocytosis through phosphorylating dynamin1 (Dyn1) but not dynamin2 (Dyn2). Moreover, we found that beta-amyloid (Aβ) oligomer exposure could impair BDNF-dependent TrkB endocytosis and Akt activation through enhancing GSK3β activity in cultured hippocampal neurons, which suggested that BDNF-induced TrkB endocytosis and the subsequent signaling were impaired in neuronal model of Alzheimer's disease (AD). Notably, we found that inhibiting GSK3β phosphorylating Dyn1 by using TAT-Dyn1SpS could rescue the impaired TrkB endocytosis and Akt activation upon BDNF stimuli under Aβ exposure. Finally, TAT-Dyn1SpS could facilitate BDNF-mediated neuronal survival and cognitive enhancement in mouse models of AD. These results clarified a role of GSK3β in BDNF-dependent TrkB endocytosis and the subsequent signaling, and provided a potential new strategy by inhibiting GSK3β-induced Dyn1 phosphorylation for AD treatment.

  16. Inhibition of miR-15a Promotes BDNF Expression and Rescues Dendritic Maturation Deficits in MeCP2-Deficient Neurons.

    PubMed

    Gao, Yu; Su, Juan; Guo, Weixiang; Polich, Eric D; Magyar, Daniel P; Xing, Yina; Li, Hongda; Smrt, Richard D; Chang, Qiang; Zhao, Xinyu

    2015-05-01

    In both the embryonic and adult brain, a critical step in neurogenesis is neuronal maturation. Deficiency of MeCP2 leads to Rett syndrome, a severe neurodevelopmental disorder. We have previously shown that MeCP2 plays critical roles in the maturation step of new neurons during neurogenesis. MeCP2 is known to regulate the expression of brain-derived neurotrophic factor (BDNF), a potent neurotrophic factor for neuronal maturation. Nevertheless, how MeCP2 regulates BDNF expression and how MeCP2 deficiency leads to reduced BDNF expression remain unclear. Here, we show that MeCP2 regulates the expression of a microRNA, miR-15a. We find that miR-15a plays a significant role in the regulation of neuronal maturation. Overexpression of miR-15a inhibits dendritic morphogenesis in immature neurons. Conversely, a reduction in miR-15a has the opposite effect. We further show that miR-15a regulates expression levels of BDNF, and exogenous BDNF could partially rescue the neuronal maturation deficits resulting from miR-15a overexpression. Finally, inhibition of miR-15a could rescue neuronal maturation deficits in MeCP2-deficient adult-born new neurons. These results demonstrate a novel role for miR-15a in neuronal development and provide a missing link in the regulation of BDNF by MeCP2.

  17. Regulation of Injury-Induced Neurogenesis by Nitric Oxide

    PubMed Central

    Carreira, Bruno P.; Carvalho, Caetana M.; Araújo, Inês M.

    2012-01-01

    The finding that neural stem cells (NSCs) are able to divide, migrate, and differentiate into several cellular types in the adult brain raised a new hope for restorative neurology. Nitric oxide (NO), a pleiotropic signaling molecule in the central nervous system (CNS), has been described to be able to modulate neurogenesis, acting as a pro- or antineurogenic agent. Some authors suggest that NO is a physiological inhibitor of neurogenesis, while others described NO to favor neurogenesis, particularly under inflammatory conditions. Thus, targeting the NO system may be a powerful strategy to control the formation of new neurons. However, the exact mechanisms by which NO regulates neural proliferation and differentiation are not yet completely clarified. In this paper we will discuss the potential interest of the modulation of the NO system for the treatment of neurodegenerative diseases or other pathological conditions that may affect the CNS. PMID:22997523

  18. Nitric Oxide Regulates Neurogenesis in the Hippocampus following Seizures.

    PubMed

    Carreira, Bruno P; Santos, Daniela F; Santos, Ana I; Carvalho, Caetana M; Araújo, Inês M

    2015-01-01

    Hippocampal neurogenesis is changed by brain injury. When neuroinflammation accompanies injury, activation of resident microglial cells promotes the release of inflammatory cytokines and reactive oxygen/nitrogen species like nitric oxide (NO). In these conditions, NO promotes proliferation of neural stem cells (NSC) in the hippocampus. However, little is known about the role of NO in the survival and differentiation of newborn cells in the injured dentate gyrus. Here we investigated the role of NO following seizures in the regulation of proliferation, migration, differentiation, and survival of NSC in the hippocampus using the kainic acid (KA) induced seizure mouse model. We show that NO increased the proliferation of NSC and the number of neuroblasts following seizures but was detrimental to the survival of newborn neurons. NO was also required for the maintenance of long-term neuroinflammation. Taken together, our data show that NO positively contributes to the initial stages of neurogenesis following seizures but compromises survival of newborn neurons.

  19. Intensive Rehabilitation Enhances Lymphocyte BDNF-TrkB Signaling in Patients With Parkinson's Disease.

    PubMed

    Fontanesi, Cecilia; Kvint, Svetlana; Frazzitta, Giuseppe; Bera, Rossana; Ferrazzoli, Davide; Di Rocco, Alessandro; Rebholz, Heike; Friedman, Eitan; Pezzoli, Gianni; Quartarone, Angelo; Wang, Hoau-Yan; Ghilardi, M Felice

    2016-06-01

    Background In a combined animal and human study, we have previously found that a 5-day treatment that enhances cortical plasticity also facilitates brain-derived neurotrophic factor (BDNF)-tyrosine receptor kinase B (TrkB) signaling and increases activated TrkB and N-methyl-d-aspartate receptor (NMDAR) association in both the cortex and the peripheral lymphocytes. Patients with Parkinson's disease (PD), in general, show decreased cortical plasticity, as demonstrated by electrophysiological and behavioral studies. Here, we test the hypothesis that an exercise program that improves motor function and seems to slow down symptom progression can enhance BDNF-TrkB signaling in lymphocytes. Methods A total of 16 patients with PD underwent a 4-week multidisciplinary intensive rehabilitation treatment (MIRT), which included aerobic training and physical and occupational therapy. Blood was collected before and after 2 and 4 weeks of MIRT. Lymphocytes were isolated to examine BDNF-TrkB signaling induced by incubation with recombinant human BDNF. TrkB signaling complexes, extracellular-signal-regulated kinase-2 and protein-kinase-B were immunoprecipitated; the content of immunocomplexes was determined by Western blotting. Results After MIRT, all patients showed improvement in motor function. TrkB interaction with NMDAR and BDNF-TrkB signaling increased in peripheral lymphocytes at receptor, intracellular mediator, and downstream levels. The decrements in Unified Parkinson's Disease Rating Scale II (UPDRSII) and total scores were significantly correlated with the increases in TrkB signaling at receptor, intracellular mediator, and NMDAR interaction levels. Conclusions The significant correlation between reduced UPDRS scores and the changes in lymphocyte activity suggest that enhanced BDNF-TrkB signaling in lymphocyte and reduced severity of PD symptoms may be related. PMID:26253177

  20. Endothelial Caveolar Subcellular Domain Regulation of Endothelial Nitric Oxide Synthase

    PubMed Central

    Ramadoss, Jayanth; Pastore, Mayra B.; Magness, Ronald R.

    2015-01-01

    SUMMARY Complex regulatory processes alter the activity of endothelial nitric oxide synthase (eNOS) leading to nitric oxide (NO) production by endothelial cells under various physiological states. These complex processes require specific sub-cellular eNOS partitioning between plasma membrane caveolar domains and non-caveolar compartments.eNOS translocation from the plasma membrane to intracellular compartments is important for eNOS activation and subsequent NO biosynthesis. We present data reviewing and interpreting information: 1) the coupling of endothelial plasma membrane receptor systems in the caveolar structure relative to eNOS trafficking; 2) how eNOS trafficking relates to specific protein-protein interaction for inactivation and activation of eNOS; and 3) how these complex mechanisms confer specific subcellular location relative to eNOS multi-site phosphorylation and signaling.Dysfunction in regulation of eNOS activation may contribute to several disease states; in particular gestational endothelial abnormalities (preeclampsia, gestational diabetes, etc) that have life-long deleterious health consequences that predispose the offspring to develop hypertensive disease, type II diabetes and adiposity.1 PMID:23745825

  1. Neuromodulatory propensity of Bacopa monniera against scopolamine-induced cytotoxicity in PC12 cells via down-regulation of AChE and up-regulation of BDNF and muscarnic-1 receptor expression.

    PubMed

    Pandareesh, M D; Anand, T

    2013-10-01

    Scopolamine is a competitive antagonist of muscarinic acetylcholine receptors, and thus classified as an anti-muscarinic and anti-cholinergic drug. PC12 cell lines possess muscarinic receptors and mimic the neuronal cells. These cells were treated with different concentrations of scopolamine for 24 h and were protected from the cellular damage by pretreatment with Bacopa monniera extract (BME). In current study, we have explored the molecular mechanism of neuromodulatory and antioxidant propensity of (BME) to attenuate scopolamine-induced cytotoxicity using PC12 cells. Our results elucidate that pretreatment of PC12 cells with BME ameliorates the mitochondrial and plasma membrane damage induced by 3 μg/ml scopolamine to 54.83 and 30.30 % as evidenced by MTT and lactate dehydrogenase assays respectively. BME (100 μg/ml) ameliorated scopolamine effect by down-regulating acetylcholine esterase and up-regulating brain-derived neurotropic factor and muscarinic muscarinic-1 receptor expression. BME pretreated cells also showed significant protection against scopolamine-induced toxicity by restoring the levels of antioxidant enzymes and lipid peroxidation. This result indicates that the scopolamine-induced cytotoxicity and neuromodulatory changes were restored with the pretreatment of BME.

  2. SNAREs controlling vesicular release of BDNF and development of callosal axons

    PubMed Central

    Shimojo, Masafumi; Courchet, Julien; Pieraut, Simon; Torabi-Rander, Nina; Sando, Richard; Polleux, Franck; Maximov, Anton

    2015-01-01

    SUMMARY At presynaptic active zones, exocytosis of neurotransmitter vesicles (SVs) is driven by SNARE complexes that recruit Syb2 and SNAP25. However, it remains unknown which SNAREs promote the secretion of neuronal proteins, including those essential for circuit development and experience-dependent plasticity. Here, we demonstrate that Syb2 and SNAP25 mediate the vesicular release of BDNF in axons and dendrites of cortical neurons, suggesting these SNAREs act in multiple spatially-segregated secretory pathways. Remarkably, axonal secretion of BDNF is also strongly regulated by SNAP47 which interacts with SNAP25 but appears to be dispensable for exocytosis of SVs. Cell-autonomous ablation of SNAP47 disrupts the layer-specific branching of callosal axons of projection cortical neurons in vivo, and this phenotype is recapitulated by ablation of BDNF or its receptor, TrkB. Our results provide insights into the molecular mechanisms of protein secretion and define the functions of SNAREs in BDNF signaling and regulation of neuronal connectivity. PMID:25959820

  3. REGULATION OF NITRIC OXIDE PRODUCTION IN HEALTH AND DISEASE

    PubMed Central

    Luiking, Yvette C.; Engelen, Mariëlle P.K.J.; Deutz, Nicolaas E.P.

    2010-01-01

    Purpose of review The purpose of this review is to highlight recent publications examining Nitric Oxide (NO) production in health and disease and its association with clinical nutrition and alterations in metabolism. Recent findings The role of the cofactor tetrahydrobiopterin (BH4) in NO production and its relation with arginine availability is indicated as an important explanation for the arginine paradox. This offers potential for NO regulation by dietary factors like arginine or its precursors and vitamin C. Because diets with a high saturated fat content induce high plasma fatty acid levels, endothelial NO production is often impaired due to a reduction in NOS3 phosphorylation. Increasing the arginine availability by arginine therapy or arginase inhibition was therefore proposed as a potential therapy to treat hypertension. Recent studies in septic patients and transgenic mice models found that inadequate de novo arginine production from citrulline reduces NO production. Citrulline supplementation may therefore be a novel therapeutic approach in conditions of arginine deficiency. Summary Both lack and excess of NO production in diseases can have various important implications in which dietary factors can play a modulating role. Future research is needed to expand our understanding of the regulation and adequate measurement of NO production at the organ level and by the different NOS isoforms, also in relation to clinical nutrition. PMID:19841582

  4. Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes.

    PubMed

    Bossis, Guillaume; Melchior, Frauke

    2006-02-01

    Posttranslational modification with small ubiquitin-related modifier (SUMO) has emerged as a central regulatory mechanism of protein function. However, little is known about the regulation of sumoylation itself. It has been reported that it is increased after exposure to various stresses including strong oxidative stress. Conversely, we report that ROS (reactive oxygen species), at low concentrations, result in the rapid disappearance of most SUMO conjugates, including those of key transcription factors. This is due to direct and reversible inhibition of SUMO conjugating enzymes through the formation of (a) disulfide bond(s) involving the catalytic cysteines of the SUMO E1 subunit Uba2 and the E2-conjugating enzyme Ubc9. The same phenomenon is also observed in a physiological scenario of endogenous ROS production, the respiratory burst in macrophages. Thus, our findings add SUMO conjugating enzymes to the small list of specific direct effectors of H(2)O(2) and implicate ROS as key regulators of the sumoylation-desumoylation equilibrium.

  5. BDNF isoforms: a round trip ticket between neurogenesis and serotonin?

    PubMed

    Foltran, Rocío Beatriz; Diaz, Silvina Laura

    2016-07-01

    The brain-derived neurotrophic factor, BDNF, was discovered more than 30 years ago and, like other members of the neurotrophin family, this neuropeptide is synthetized as a proneurotrophin, the pro-BDNF, which is further cleaved to yield mature BDNF. The myriad of actions of these two BDNF isoforms in the central nervous system is constantly increasing and requires the development of sophisticated tools and animal models to refine our understanding. This review is focused on BDNF isoforms, their participation in the process of neurogenesis taking place in the hippocampus of adult mammals, and the modulation of their expression by serotonergic agents. Interestingly, around this triumvirate of BDNF, serotonin, and neurogenesis, a series of recent research has emerged with apparently counterintuitive results. This calls for an exhaustive analysis of the data published so far and encourages thorough work in the quest for new hypotheses in the field. BDNF is synthetized as a pre-proneurotrophin. After removal of the pre-region, proBDNF can be cleaved by intracellular or extracellular proteases. Mature BDNF can bind TrkB receptors, promoting their homodimerization and intracellular phosphorylation. Phosphorylated-TrkB can activate three different signaling pathways. Whereas G-protein-coupled receptors can transactivate TrkB receptors, truncated forms can inhibit mBDNF signaling. Pro-BDNF binds p75(NTR) by its mature domain, whereas the pro-region binds co-receptors.

  6. Progressive loss of BDNF in a mouse model of Huntington's disease and rescue by BDNF delivery.

    PubMed

    Zuccato, Chiara; Liber, Daniel; Ramos, Catarina; Tarditi, Alessia; Rigamonti, Dorotea; Tartari, Marzia; Valenza, Marta; Cattaneo, Elena

    2005-08-01

    Huntingtin is a protein of 348 kDa that is mutated in Huntington's disease (HD), a dominantly inherited neurodegenerative disorder. Previous data have led us to propose that aspects of the disease arise from both a loss of the neuroprotective function of the wild-type protein, and a toxic activity gained by the mutant protein. In particular, we have shown that wild-type huntingtin stimulates the production of brain-derived neurotrophic factor (BDNF), a pro-survival factor for the striatal neurons that die in the pathology. Wild-type huntingtin controls BDNF gene transcription in cerebral cortex, which is then delivered to its striatal targets. In the disease state, supply of cortical BDNF to the striatum is strongly reduced, possibly leading to striatal vulnerability. Here we show that a reduction in cortical BDNF messenger level correlates with the progression of the disease in a mouse model of HD. In particular, we show that the progressive loss of mRNAs transcribed from BDNF exon II, III and IV follows a different pattern that may reflect different upstream mechanisms impaired by mutation in huntingtin. On this basis, we also discuss the possibility that delivery of BDNF may represent an useful strategy for Huntington's disease treatment. PMID:15967378

  7. Nitric Oxide Regulates Neutrophil Migration through Microparticle Formation

    PubMed Central

    Nolan, Sarah; Dixon, Rachel; Norman, Keith; Hellewell, Paul; Ridger, Victoria

    2008-01-01

    The role of nitric oxide (NO) in regulating neutrophil migration has been investigated. Human neutrophil migration to interleukin (IL)-8 (1 nmol/L) was measured after a 1-hour incubation using a 96-well chemotaxis plate assay. The NO synthase inhibitor NG-nitro-l-arginine methyl ester (L-NAME) significantly (P < 0.001) enhanced IL-8-induced migration by up to 45%. Anti-CD18 significantly (P < 0.001) inhibited both IL-8-induced and L-NAME enhanced migration. Antibodies to L-selectin or PSGL-1 had no effect on IL-8-induced migration but prevented the increased migration to IL-8 induced by L-NAME. L-NAME induced generation of neutrophil-derived microparticles that was significantly (P < 0.01) greater than untreated neutrophils or D-NAME. This microparticle formation was dependent on calpain activity and superoxide production. Only microparticles from L-NAME and not untreated or D-NAME-treated neutrophils induced a significant (P < 0.01) increase in IL-8-induced migration and transendothelial migration. Pretreatment of microparticles with antibodies to L-selectin (DREG-200) or PSGL-1 (PL-1) significantly (P < 0.001) inhibited this effect. The ability of L-NAME-induced microparticles to enhance migration was found to be dependent on the number of microparticles produced and not an increase in microparticle surface L-selectin or PSGL-1 expression. These data show that NO can modulate neutrophil migration by regulating microparticle formation. PMID:18079439

  8. Impaired TrkB Signaling Underlies Reduced BDNF-Mediated Trophic Support of Striatal Neurons in the R6/2 Mouse Model of Huntington’s Disease

    PubMed Central

    Nguyen, Khanh Q.; Rymar, Vladimir V.; Sadikot, Abbas F.

    2016-01-01

    The principal projection neurons of the striatum are critically dependent on an afferent supply of brain derived neurotrophic factor (BDNF) for neurotrophic support. These neurons express TrkB, the cognate receptor for BDNF, which activates signaling pathways associated with neuronal survival and phenotypic maintenance. Impairment of the BDNF-TrkB pathway is suspected to underlie the early dysfunction and prominent degeneration of striatal neurons in Huntington disease (HD). Some studies in HD models indicate that BDNF supply is reduced, while others suggest that TrkB signaling is impaired earlier in disease progression. It remains important to determine whether a primary defect in TrkB signaling underlies reduced neurotrophic support and the early vulnerability of striatal neurons in HD. Using the transgenic R6/2 mouse model of HD we found that prior to striatal degeneration there are early deficits in striatal protein levels of activated phospho-TrkB and the downstream-regulated protein DARPP-32. In contrast, total-TrkB and BDNF protein levels remained normal. Primary neurons cultured from R6/2 striatum exhibited reduced survival in response to exogenous BDNF applications. Moreover, BDNF activation of phospho-TrkB and downstream signal transduction was attenuated in R6/2 striatal cultures. These results suggest that neurotrophic support of striatal neurons is attenuated early in disease progression due to defects in TrkB signal transduction in the R6/2 model of HD. PMID:27013968

  9. The brain-uterus connection: brain derived neurotrophic factor (BDNF) and its receptor (Ntrk2) are conserved in the mammalian uterus.

    PubMed

    Wessels, Jocelyn M; Wu, Liang; Leyland, Nicholas A; Wang, Hongmei; Foster, Warren G

    2014-01-01

    The neurotrophins are neuropeptides that are potent regulators of neurite growth and survival. Although mainly studied in the brain and nervous system, recent reports have shown that neurotrophins are expressed in multiple target tissues and cell types throughout the body. Additionally, dysregulation of neurotrophins has been linked to several disease conditions including Alzheimer's, Parkinson's, Huntington's, psychiatric disorders, and cancer. Brain derived neurotrophic factor (BDNF) is a member of the neurotrophin family that elicits its actions through the neurotrophic tyrosine receptor kinase type 2 (Ntrk2). Together BDNF and Ntrk2 are capable of activating the adhesion, angiogenesis, apoptosis, and proliferation pathways. These pathways are prominently involved in reproductive physiology, yet a cross-species examination of BDNF and Ntrk2 expression in the mammalian uterus is lacking. Herein we demonstrated the conserved nature of BDNF and Ntrk2 across several mammalian species by mRNA and protein sequence alignment, isolated BDNF and Ntrk2 transcripts in the uterus by Real-Time PCR, localized both proteins to the glandular and luminal epithelium, vascular smooth muscle, and myometrium of the uterus, determined that the major isoforms expressed in the human endometrium were pro-BDNF, and truncated Ntrk2, and finally demonstrated antibody specificity. Our findings suggest that BDNF and Ntrk2 are transcribed, translated, and conserved across mammalian species including human, mouse, rat, pig, horse, and the bat.

  10. PFOS Disturbs BDNF-ERK-CREB Signalling in Association with Increased MicroRNA-22 in SH-SY5Y Cells

    PubMed Central

    Li, Wu; He, Qing-zhi; Wu, Cheng-qiu; Pan, Xiao-yuan; Wang, Jing; Tan, Yan; Shan, Xiao-yun; Zeng, Huai-cai

    2015-01-01

    Perfluorooctane sulfonate (PFOS), a ubiquitous environmental pollutant, is neurotoxic to mammalian species. However, the underlying mechanism of its neurotoxicity was unclear. We hypothesized that PFOS suppresses BDNF expression to produce its neurotoxic effects by inhibiting the ERK-CREB pathway. SH-SY5Y human neuroblastoma cells were exposed to various concentrations of PFOS to examine the role of the BDNF-ERK-CREB signalling pathway in PFOS-induced apoptosis and cytotoxicity. Furthermore, to ascertain the mechanism by which PFOS reduces BDNF signalling, we examined the expression levels of miR-16 and miR-22, which potentially regulate BDNF mRNA translation at the posttranscriptional level. Results indicated that PFOS significantly decreased cell viability and induced apoptosis in SH-SY5Y cells. In addition, BDNF and pERK protein levels decreased after PFOS treatment; however, pCREB protein levels were significantly elevated in PFOS treated groups. TrkB protein expression increased in the 10 μM and 50 μM PFOS groups and significantly decreased in the 100 μM PFOS group. Our results demonstrated that PFOS exposure decreased miR-16 expression and increased miR-22 expression, which may represent a possible mechanism by which PFOS decreases BDNF protein levels. PFOS may inhibit BDNF-ERK-CREB signalling by increasing miR-22 levels, which may, in part, explain the mechanism of PFOS neurotoxicity. PMID:26649298

  11. The BDNF Val66Met Polymorphism Modulates Sleep Intensity: EEG Frequency- and State-Specificity

    PubMed Central

    Bachmann, Valérie; Klein, Carina; Bodenmann, Sereina; Schäfer, Nikolaus; Berger, Wolfgang; Brugger, Peter; Landolt, Hans-Peter

    2012-01-01

    Study Objectives: EEG slow waves are the hallmark of deep NREM sleep and may reflect the restorative functions of sleep. Evidence suggests that increased sleep slow waves after sleep deprivation reflect plastic synaptic processes, and that brain-derived neurotrophic factor (BDNF) is causally involved in their homeostatic regulation. The functional Val66Met polymorphism of the gene encoding pro-BDNF causes impaired activity-dependent secretion of mature BDNF protein. We investigated whether this polymorphism contributes to the pronounced inter-individual variation in sleep slow wave activity (SWA) in humans. Setting: Sleep laboratory in temporal isolation unit. Participants: Eleven heterozygous Met allele carriers and 11 individually sex- and age-matched Val/Val homozygotes. Interventions: Forty hours prolonged wakefulness. Measurements and Results: Cognitive performance, subjective state, and waking and sleep EEG in baseline and after sleep deprivation were studied. Val/Val homozygotes showed better response accuracy than Met allele carriers on a verbal 2-back working memory task. This difference did not reflect genotype-dependent differences in sleepiness, well-being, or sustained attention. In baseline and recovery nights, deep stage 4 sleep and NREM sleep intensity as quantified by EEG SWA (0.75-4.5 Hz) were higher in Val/Val compared to Val/Met genotype. Similar to sleep deprivation, the difference was most pronounced in the first NREM sleep episode. By contrast, increased activity in higher EEG frequencies (> 6 Hz) in wakefulness and REM sleep was distinct from the effects of prolonged wakefulness. Conclusion: BDNF contributes to the regulation of sleep slow wave oscillations, suggesting that genetically determined variation in neuronal plasticity modulates NREM sleep intensity in humans. Citation: Bachmann V; Klein C; Bodenmann S; Schäfer N; Berger W; Brugger P; Landolt HP. The BDNF Val66Met polymorphism modulates sleep intensity: EEG frequency- and state

  12. Hippocampal--prefrontal BDNF and memory for fear extinction.

    PubMed

    Rosas-Vidal, Luis E; Do-Monte, Fabricio H; Sotres-Bayon, Francisco; Quirk, Gregory J

    2014-08-01

    Infusing brain-derived neurotrophic factor (BDNF) into the infralimbic (IL) prefrontal cortex is capable of inducing extinction. Little is known, however, about the circuits mediating BDNF effects on extinction or the extent to which extinction requires BDNF in IL. Using local pharmacological infusion of BDNF protein, or an antibody against BDNF, we found that BDNF in the IL, but not prelimbic (PL) prefrontal cortex, is both necessary and sufficient for fear extinction. Furthermore, we report that BDNF in IL can induce extinction of older fear memories (14 days) as well as recent fear memories (1 day). Using immunocytochemistry, we show that BDNF is increased in the ventral hippocampus (vHPC), but not IL or PL, following extinction training. Finally, we observed that infusing BDNF into the vHPC increased the firing rate of IL, but not PL neurons in fear conditioned rats. These findings indicate that an extinction-induced increase in BDNF within the vHPC enhances excitability in IL targets, thereby supporting extinction memories.

  13. Essential Role for Vav GEFs in Brain-derived Neurotrophic Factor (BDNF)-induced Dendritic Spine Growth and Synapse Plasticity

    PubMed Central

    Hale, Carly F.; Dietz, Karen C.; Varela, Juan A.; Wood, Cody B.; Zirlin, Benjamin C.; Leverich, Leah S.; Greene, Robert W.; Cowan, Christopher W.

    2011-01-01

    Brain-derived neurotrophic factor (BDNF) and its cognate receptor, TrkB, regulate a wide range of cellular processes, including dendritic spine formation and functional synapse plasticity. However, the signaling mechanisms that link BDNF-activated TrkB to F-actin remodeling enzymes and dendritic spine morphological plasticity remain poorly understood. We report here that BDNF/TrkB signaling in neurons activates the Vav family of Rac/RhoA guanine nucleotide exchange factors (GEFs) through a novel TrkB kinase-dependent mechanism. We find that Vav is required for BDNF-stimulated Rac-GTP production in cortical and hippocampal neurons. Vav is partially enriched at excitatory synapses in the postnatal hippocampus, but does not appear to be required for normal dendritic spine density. Rather, we observe significant reductions in both BDNF-induced, rapid dendritic spine head growth and in CA3-CA1 theta burst stimulated (TBS) long-term potentiation (LTP) in Vav-deficient mouse hippocampal slices, suggesting that Vav-dependent regulation of dendritic spine morphological plasticity facilitates normal functional synapse plasticity. PMID:21880903

  14. Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment.

    PubMed

    Rossi, Chiara; Angelucci, Andrea; Costantin, Laura; Braschi, Chiara; Mazzantini, Mario; Babbini, Francesco; Fabbri, Maria Elena; Tessarollo, Lino; Maffei, Lamberto; Berardi, Nicoletta; Caleo, Matteo

    2006-10-01

    Neurogenesis continues to occur in the adult mammalian hippocampus and is regulated by both genetic and environmental factors. It is known that exposure to an enriched environment enhances the number of newly generated neurons in the dentate gyrus. However, the mechanisms by which enriched housing produces these effects are poorly understood. To test a role for neurotrophins, we used heterozygous knockout mice for brain-derived neurotrophic factor (BDNF+/-) and mice lacking neurotrophin-4 (NT-4-/-) together with their wild-type littermates. Mice were either reared in standard laboratory conditions or placed in an enriched environment for 8 weeks. Animals received injections of the mitotic marker bromodeoxyuridine (BrdU) to label newborn cells. Enriched wild-type and enriched NT-4-/- mice showed a two-fold increase in hippocampal neurogenesis as assessed by stereological counting of BrdU-positive cells in the dentate gyrus and double labelling for BrdU and the neuronal marker NeuN. Remarkably, this enhancement of hippocampal neurogenesis was not seen in enriched BDNF+/- mice. Failure to up-regulate BDNF accompanied the lack of a neurogenic response in enriched BDNF heterozygous mice. We conclude that BDNF but not NT-4 is required for the environmental induction of neurogenesis. PMID:17040481

  15. Nitric oxide and the autonomic regulation of cardiac excitability. The G.L. Brown Prize Lecture.

    PubMed

    Paterson, D

    2001-01-01

    Cardiac sympathetic imbalance and arrhythmia; Nitric oxide-cGMP pathway and the cholinergic modulation of cardiac excitability; Nitric oxide-cGMP pathway and the sympathetic modulation of cardiac excitability; Functional significance of nitric oxide in the autonomic regulation of cardiac excitability; Summary; References. Experimental Physiology (2001) 86.1, 1-12.

  16. 40 CFR 52.2731 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: Sulfur oxides. 52.2731 Section 52.2731 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Rico § 52.2731 Control strategy and regulations: Sulfur oxides. (a) The requirements of subpart G of... the national standards for sulfur oxides in the areas of Aguirre, Barceloneta, Trujillo...

  17. 40 CFR 52.1475 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: Sulfur oxides. 52.1475 Section 52.1475 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 52.1475 Control strategy and regulations: Sulfur oxides. (a) The requirements of subpart G of this... National Ambient Air Quality Standards for sulfur oxides in the Nevada Intrastate Region. (b) Article...

  18. 40 CFR 52.2731 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: Sulfur oxides. 52.2731 Section 52.2731 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Rico § 52.2731 Control strategy and regulations: Sulfur oxides. (a) The requirements of subpart G of... the national standards for sulfur oxides in the areas of Aguirre, Barceloneta, Trujillo...

  19. 40 CFR 52.2731 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: Sulfur oxides. 52.2731 Section 52.2731 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Rico § 52.2731 Control strategy and regulations: Sulfur oxides. (a) The requirements of subpart G of... the national standards for sulfur oxides in the areas of Aguirre, Barceloneta, Trujillo...

  20. 40 CFR 52.1475 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: Sulfur oxides. 52.1475 Section 52.1475 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 52.1475 Control strategy and regulations: Sulfur oxides. (a) The requirements of subpart G of this... National Ambient Air Quality Standards for sulfur oxides in the Nevada Intrastate Region. (b) Article...

  1. 40 CFR 52.1475 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: Sulfur oxides. 52.1475 Section 52.1475 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 52.1475 Control strategy and regulations: Sulfur oxides. (a) The requirements of subpart G of this... National Ambient Air Quality Standards for sulfur oxides in the Nevada Intrastate Region. (b) Article...

  2. 40 CFR 52.2731 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: Sulfur oxides. 52.2731 Section 52.2731 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Rico § 52.2731 Control strategy and regulations: Sulfur oxides. (a) The requirements of subpart G of... the national standards for sulfur oxides in the areas of Aguirre, Barceloneta, Trujillo...

  3. 40 CFR 52.1475 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: Sulfur oxides. 52.1475 Section 52.1475 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 52.1475 Control strategy and regulations: Sulfur oxides. (a) The requirements of subpart G of this... National Ambient Air Quality Standards for sulfur oxides in the Nevada Intrastate Region. (b) Article...

  4. 40 CFR 52.1475 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: Sulfur oxides. 52.1475 Section 52.1475 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 52.1475 Control strategy and regulations: Sulfur oxides. (a) The requirements of subpart G of this... National Ambient Air Quality Standards for sulfur oxides in the Nevada Intrastate Region. (b) Article...

  5. 40 CFR 52.2731 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: Sulfur oxides. 52.2731 Section 52.2731 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Rico § 52.2731 Control strategy and regulations: Sulfur oxides. (a) The requirements of subpart G of... the national standards for sulfur oxides in the areas of Aguirre, Barceloneta, Trujillo...

  6. Nitric oxide and the autonomic regulation of cardiac excitability. The G.L. Brown Prize Lecture.

    PubMed

    Paterson, D

    2001-01-01

    Cardiac sympathetic imbalance and arrhythmia; Nitric oxide-cGMP pathway and the cholinergic modulation of cardiac excitability; Nitric oxide-cGMP pathway and the sympathetic modulation of cardiac excitability; Functional significance of nitric oxide in the autonomic regulation of cardiac excitability; Summary; References. Experimental Physiology (2001) 86.1, 1-12. PMID:11429613

  7. Altered social cognition in male BDNF heterozygous mice and following chronic methamphetamine exposure.

    PubMed

    Manning, Elizabeth E; van den Buuse, Maarten

    2016-05-15

    Growing clinical evidence suggests that persistent psychosis which occurs in methamphetamine users is closely related to schizophrenia. However, preclinical studies in animal models have focussed on psychosis-related behaviours following methamphetamine, and less work has been done to assess endophenotypes relevant to other deficits observed in schizophrenia. Altered social behaviour is a feature of both the negative symptoms and cognitive deficits in schizophrenia, and significantly impacts patient functioning. We recently found that brain-derived neurotrophic factor (BDNF) heterozygous mice show disrupted sensitization to methamphetamine, supporting other work suggesting an important role of this neurotrophin in the pathophysiology of psychosis and the neuronal response to stimulant drugs. In the current study, we assessed social and cognitive behaviours in methamphetamine-treated BDNF heterozygous mice and wildtype littermate controls. Following chronic methamphetamine exposure male wildtype mice showed a 50% reduction in social novelty preference. Vehicle-treated male BDNF heterozygous mice showed a similar impairment in social novelty preference, with a trend for no further disruption by methamphetamine exposure. Female mice were unaffected in this task, and no groups showed any changes in sociability or short-term spatial memory. These findings suggest that chronic methamphetamine alters behaviour relevant to disruption of social cognition in schizophrenia, supporting other studies which demonstrate a close resemblance between persistent methamphetamine psychosis and schizophrenia. Together these findings suggest that dynamic regulation of BDNF signalling is necessary to mediate the effects of methamphetamine on behaviours relevant to schizophrenia.

  8. Altered social cognition in male BDNF heterozygous mice and following chronic methamphetamine exposure.

    PubMed

    Manning, Elizabeth E; van den Buuse, Maarten

    2016-05-15

    Growing clinical evidence suggests that persistent psychosis which occurs in methamphetamine users is closely related to schizophrenia. However, preclinical studies in animal models have focussed on psychosis-related behaviours following methamphetamine, and less work has been done to assess endophenotypes relevant to other deficits observed in schizophrenia. Altered social behaviour is a feature of both the negative symptoms and cognitive deficits in schizophrenia, and significantly impacts patient functioning. We recently found that brain-derived neurotrophic factor (BDNF) heterozygous mice show disrupted sensitization to methamphetamine, supporting other work suggesting an important role of this neurotrophin in the pathophysiology of psychosis and the neuronal response to stimulant drugs. In the current study, we assessed social and cognitive behaviours in methamphetamine-treated BDNF heterozygous mice and wildtype littermate controls. Following chronic methamphetamine exposure male wildtype mice showed a 50% reduction in social novelty preference. Vehicle-treated male BDNF heterozygous mice showed a similar impairment in social novelty preference, with a trend for no further disruption by methamphetamine exposure. Female mice were unaffected in this task, and no groups showed any changes in sociability or short-term spatial memory. These findings suggest that chronic methamphetamine alters behaviour relevant to disruption of social cognition in schizophrenia, supporting other studies which demonstrate a close resemblance between persistent methamphetamine psychosis and schizophrenia. Together these findings suggest that dynamic regulation of BDNF signalling is necessary to mediate the effects of methamphetamine on behaviours relevant to schizophrenia. PMID:26965573

  9. Hepatic oleate regulates adipose tissue lipogenesis and fatty acid oxidation.

    PubMed

    Burhans, Maggie S; Flowers, Matthew T; Harrington, Kristin R; Bond, Laura M; Guo, Chang-An; Anderson, Rozalyn M; Ntambi, James M

    2015-02-01

    Hepatic steatosis is associated with detrimental metabolic phenotypes including enhanced risk for diabetes. Stearoyl-CoA desaturases (SCDs) catalyze the synthesis of MUFAs. In mice, genetic ablation of SCDs reduces hepatic de novo lipogenesis (DNL) and protects against diet-induced hepatic steatosis and adiposity. To understand the mechanism by which hepatic MUFA production influences adipose tissue stores, we created two liver-specific transgenic mouse models in the SCD1 knockout that express either human SCD5 or mouse SCD3, that synthesize oleate and palmitoleate, respectively. We demonstrate that hepatic de novo synthesized oleate, but not palmitoleate, stimulate hepatic lipid accumulation and adiposity, reversing the protective effect of the global SCD1 knockout under lipogenic conditions. Unexpectedly, the accumulation of hepatic lipid occurred without induction of the hepatic DNL program. Changes in hepatic lipid composition were reflected in plasma and in adipose tissue. Importantly, endogenously synthesized hepatic oleate was associated with suppressed DNL and fatty acid oxidation in white adipose tissue. Regression analysis revealed a strong correlation between adipose tissue lipid fuel utilization and hepatic and adipose tissue lipid storage. These data suggest an extrahepatic mechanism where endogenous hepatic oleate regulates lipid homeostasis in adipose tissues.

  10. GAPDH regulates cellular heme insertion into inducible nitric oxide synthase

    PubMed Central

    Chakravarti, Ritu; Aulak, Kulwant S.; Fox, Paul L.; Stuehr, Dennis J.

    2010-01-01

    Heme proteins play essential roles in biology, but little is known about heme transport inside mammalian cells or how heme is inserted into soluble proteins. We recently found that nitric oxide (NO) blocks cells from inserting heme into several proteins, including cytochrome P450s, hemoglobin, NO synthases, and catalase. This finding led us to explore the basis for NO inhibition and to identify cytosolic proteins that may be involved, using inducible NO synthase (iNOS) as a model target. Surprisingly, we found that GAPDH plays a key role. GAPDH was associated with iNOS in cells. Pure GAPDH bound tightly to heme or to iNOS in an NO-sensitive manner. GAPDH knockdown inhibited heme insertion into iNOS and a GAPDH mutant with defective heme binding acted as a dominant negative inhibitor of iNOS heme insertion. Exposing cells to NO either from a chemical donor or by iNOS induction caused GAPDH to become S-nitrosylated at Cys152. Expressing a GAPDH C152S mutant in cells or providing a drug to selectively block GAPDH S-nitrosylation both made heme insertion into iNOS resistant to the NO inhibition. We propose that GAPDH delivers heme to iNOS through a process that is regulated by its S-nitrosylation. Our findings may uncover a fundamental step in intracellular heme trafficking, and reveal a mechanism whereby NO can govern the process. PMID:20921417

  11. Superparamagnetic iron oxide nanoparticles regulate smooth muscle cell phenotype

    PubMed Central

    Angelopoulos, Ioannis; Southern, Paul; Pankhurst, Quentin A.

    2016-01-01

    Abstract Superparamagnetic iron oxide nanoparticles (SPION) are used for an increasing range of biomedical applications, from imaging to mechanical actuation of cells and tissue. The aim of this study was to investigate the loading of smooth muscle cells (SMC) with SPION and to explore what effect this has on the phenotype of the cells. Adherent human SMC were loaded with ∼17 pg of unconjugated, negatively charged, 50 nm SPION. Clusters of the internalized SPION particles were held in discrete cytoplasmic vesicles. Internalized SPION did not cause any change in cell morphology, proliferation, metabolic activity, or staining pattern of actin and calponin, two of the muscle contractile proteins involved in force generation. However, internalized SPION inhibited the increased gene expression of actin and calponin normally observed when cells are incubated under differentiation conditions. The observed change in the control of gene expression of muscle contractile apparatus by SPION has not previously been described. This finding could offer novel approaches for regulating the phenotype of SMC and warrants further investigation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2412–2419, 2016. PMID:27176658

  12. Pharmacological characterization of BDNF promoters I, II and IV reveals that serotonin and norepinephrine input is sufficient for transcription activation.

    PubMed

    Musazzi, L; Rimland, J M; Ieraci, A; Racagni, G; Domenici, E; Popoli, M

    2014-05-01

    Compelling evidence has shown that the effects of antidepressants, increasing extracellular serotonin and noradrenaline as a primary mechanism of action, involve neuroplastic and neurotrophic mechanisms. Brain-derived neurotrophic factor (BDNF) has been shown to play a key role in neuroplasticity and synaptic function, as well as in the pathophysiology of neuropsychiatric disorders and the mechanism of action of antidepressants. The expression of BDNF is mediated by the transcription of different mRNAs derived by the splicing of one of the eight 5' non-coding exons with the 3' coding exon (in rats). The transcription of each non-coding exon is driven by unique and different promoters. We generated a gene reporter system based on hippocampal and cortical neuronal cultures, in which the transcription of luciferase is regulated by BDNF promoters I, II, IV or by cAMP response element (CRE), to investigate the activation of selected promoters induced by monoaminergic antidepressants and by serotonin or noradrenaline agonists. We found that incubation with fluoxetine or reboxetine failed to induce any activation of BDNF promoters or CRE. On the other hand, the incubation of cultures with selective agonists of serotonin or noradrenaline receptors induced a specific and distinct profile of activation of BDNF promoters I, II, IV and CRE, suggesting that the monoaminergic input, absent in dissociated cultures, is essential for the modulation of BDNF expression. In summary, we applied a rapidly detectable and highly sensitive reporter gene assay to characterize the selective activation profile of BDNF and CRE promoters, through specific and different pharmacological stimuli. PMID:24451568

  13. Pharmacological characterization of BDNF promoters I, II and IV reveals that serotonin and norepinephrine input is sufficient for transcription activation.

    PubMed

    Musazzi, L; Rimland, J M; Ieraci, A; Racagni, G; Domenici, E; Popoli, M

    2014-05-01

    Compelling evidence has shown that the effects of antidepressants, increasing extracellular serotonin and noradrenaline as a primary mechanism of action, involve neuroplastic and neurotrophic mechanisms. Brain-derived neurotrophic factor (BDNF) has been shown to play a key role in neuroplasticity and synaptic function, as well as in the pathophysiology of neuropsychiatric disorders and the mechanism of action of antidepressants. The expression of BDNF is mediated by the transcription of different mRNAs derived by the splicing of one of the eight 5' non-coding exons with the 3' coding exon (in rats). The transcription of each non-coding exon is driven by unique and different promoters. We generated a gene reporter system based on hippocampal and cortical neuronal cultures, in which the transcription of luciferase is regulated by BDNF promoters I, II, IV or by cAMP response element (CRE), to investigate the activation of selected promoters induced by monoaminergic antidepressants and by serotonin or noradrenaline agonists. We found that incubation with fluoxetine or reboxetine failed to induce any activation of BDNF promoters or CRE. On the other hand, the incubation of cultures with selective agonists of serotonin or noradrenaline receptors induced a specific and distinct profile of activation of BDNF promoters I, II, IV and CRE, suggesting that the monoaminergic input, absent in dissociated cultures, is essential for the modulation of BDNF expression. In summary, we applied a rapidly detectable and highly sensitive reporter gene assay to characterize the selective activation profile of BDNF and CRE promoters, through specific and different pharmacological stimuli.

  14. The Interplay of Stress and Sleep Impacts BDNF Level

    PubMed Central

    Brand, Serge; Calabrese, Pasquale; Holsboer-Trachsler, Edith; Eckert, Anne

    2013-01-01

    Background Sleep plays a pivotal role in normal biological functions. Sleep loss results in higher stress vulnerability and is often found in mental disorders. There is evidence that brain-derived neurotrophic factor (BDNF) could be a central player in this relationship. Recently, we could demonstrate that subjects suffering from current symptoms of insomnia exhibited significantly decreased serum BDNF levels compared with sleep-healthy controls. In accordance with the paradigm indicating a link between sleep and BDNF, we aimed to investigate if the stress system influences the association between sleep and BDNF. Methodology/Principal Findings Participants with current symptoms of insomnia plus a former diagnosis of Restless Legs Syndrome (RLS) and/or Periodic Limb Movement (PLM) and sleep healthy controls were included in the study. They completed questionnaires on sleep (ISI, Insomnia Severity Index) and stress (PSS, Perceived Stress Scale) and provided a blood sample for determination of serum BDNF. We found a significant interaction between stress and insomnia with an impact on serum BDNF levels. Moreover, insomnia severity groups and score on the PSS each revealed a significant main effect on serum BDNF levels. Insomnia severity was associated with increased stress experience affecting serum BDNF levels. Of note, the association between stress and BDNF was only observed in subjects without insomnia. Using a mediation model, sleep was revealed as a mediator of the association between stress experience and serum BDNF levels. Conclusions This is the first study to show that the interplay between stress and sleep impacts BDNF levels, suggesting an important role of this relationship in the pathogenesis of stress-associated mental disorders. Hence, we suggest sleep as a key mediator at the connection between stress and BDNF. Whether sleep is maintained or disturbed might explain why some individuals are able to handle a certain stress load while others develop a

  15. Daily intermittent hypoxia augments spinal BDNF levels, ERK phosphorylation and respiratory long-term facilitation

    PubMed Central

    Wilkerson, Julia E.R.; Mitchell, Gordon S.

    2009-01-01

    Acute intermittent hypoxia (AIH) elicits a form of respiratory plasticity known as long-term facilitation (LTF). We hypothesized that: 1) daily AIH (dAIH) preconditioning enhances phrenic and hypoglossal (XII) LTF in a rat strain with low constitutive LTF expression; 2) dAIH induces brain-derived neurotrophic factor (BDNF), a critical protein for phrenic LTF (pLTF) in the cervical spinal cord; and 3) dAIH increases post-AIH extracellular regulated kinase (ERK) activation. Phrenic and XII motor output were monitored in anesthetized dAIH- or sham-treated Brown Norway rats with and without acute AIH. pLTF was observed in both sham (18 ± 9% baseline; 60 min post-hypoxia; p < 0.05; n = 18) and dAIH treated rats (37 ± 8%; p < 0.05; n = 14), but these values were not significantly different (p = 0.13). XII LTF was not observed in sham-treated rats (4 ± 5%), but was revealed in dAIH pretreated rats (48 ± 18%; p < 0.05). dAIH preconditioning increased basal ventral cervical BDNF protein levels (24 ± 8%; p < 0.05), but had no significant effect on ERK phosphorylation. AIH increased BDNF in sham (25 ± 8%; p < 0.05), but not dAIH-pretreated rats (−7 ± 4%), and had complex effects on ERK phosphorylation (ERK2 increased in shams whereas ERK1 increased in dAIH-treated rats). Thus, dAIH elicits metaplasticity in LTF, revealing XII LTF in a rat strain with no constitutive XII LTF expression. Increased BDNF synthesis may no longer be necessary for phrenic LTF following dAIH preconditioning since BDNF concentration is already elevated. PMID:19416672

  16. Dysregulation of TrkB phosphorylation and proBDNF protein in adenylyl cyclase 1 and 8 knockout mice in a model of fetal alcohol spectrum disorder.

    PubMed

    Susick, Laura L; Chrumka, Alexandria C; Hool, Steven M; Conti, Alana C

    2016-03-01

    Brain-derived neurotrophic factor (BDNF) mediates neuron growth and is regulated by adenylyl cyclases (ACs). Mice lacking AC1/8 (DKO) have a basal reduction in the dendritic complexity of medium spiny neurons in the caudate putamen and demonstrate increased neurotoxicity in the striatum following acute neonatal ethanol exposure compared to wild type (WT) controls, suggesting a compromise in BDNF regulation under varying conditions. Although neonatal ethanol exposure can negatively impact BDNF expression, little is known about the effect on BDNF receptor activation and its downstream signaling, including Akt activation, an established neuroprotective pathway. Therefore, here we determined the effects of AC1/8 deletion and neonatal ethanol administration on BDNF and proBDNF protein expression, and activation of tropomyosin-related kinase B (TrkB), Akt, ERK1/2, and PLCγ. WT and DKO mice were treated with a single dose of 2.5 g/kg ethanol or saline at postnatal days 5-7 to model late-gestational alcohol exposure. Striatal and cortical tissues were analyzed using a BDNF enzyme-linked immunosorbent assay or immunoblotting for proBDNF, phosphorylated and total TrkB, Akt, ERK1/2, and PLCɣ1. Neither postnatal ethanol exposure nor AC1/8 deletion affected total BDNF protein expression at any time point in either region examined. Neonatal ethanol increased the expression of proBDNF protein in the striatum of WT mice 6, 24, and 48 h after exposure, with DKO mice demonstrating a reduction in proBDNF expression 6 h after exposure. Six and 24 h after ethanol administration, phosphorylation of full-length TrkB in the striatum was significantly reduced in WT mice, but was significantly increased in DKO mice only at 24 h. Interestingly, 48 h after ethanol, both WT and DKO mice demonstrated a reduction in phosphorylated full-length TrkB. In addition, Akt and PLCɣ1 phosphorylation was also decreased in ethanol-treated DKO mice 48 h after injection. These data demonstrate

  17. Stimulation of polyunsaturated fatty acid oxidation in myocytes by regulating its cellular uptake

    SciTech Connect

    Abdel-aleem, S.; Frangakis, C. ); Badr, M. )

    1991-01-01

    In order to investigate the regulation of polyunsaturated fatty acid oxidation in the heart, the effect of the phosphodiesterase inhibitor enoximone on the oxidation of (1-{sup 14}C) arachidonic acid, and (1-{sup 14}C) arachidonyl-CoA, were studied in adult rat myocytes, and isolated rat heart mitochondria. Enoximone stimulated arachidonate oxidation by 94%, at a concentration of 0.25 mM. The apparent Vmax value of archidonate oxidation in the presence of enoximone was approximately 75% higher than the value observed with the control in isolated myocytes. Also, enoximone stimulated arachidonate uptake by 27% at a concentration of 0.25 mM. On the other hand, enoximone had no effect on the oxidation of (1-{sup 14}C) arachidonyl-CoA in isolated rat heart mitochondria. These results suggest that the oxidation of polyunsaturated fatty acids in myocytes is regulated by the rate of uptake of these acids across sarcolemmal membranes.

  18. Identification of genes co-upregulated with Arc during BDNF-induced long-term potentiation in adult rat dentate gyrus in vivo.

    PubMed

    Wibrand, Karin; Messaoudi, Elhoucine; Håvik, Bjarte; Steenslid, Vibeke; Løvlie, Roger; Steen, Vidar M; Bramham, Clive R

    2006-03-01

    Brain-derived neurotrophic factor (BDNF) is a critical regulator of transcription-dependent adaptive neuronal responses, such as long-term potentiation (LTP). Brief infusion of BDNF into the dentate gyrus of adult anesthetized rats triggers stable LTP at medial perforant path-granule synapses that is transcription-dependent and requires induction of the immediate early gene Arc. Rather than acting alone, Arc is likely to be part of a larger BDNF-induced transcriptional program. Here, we used cDNA microarray expression profiling to search for genes co-upregulated with Arc 3 h after BDNF-LTP induction. Of nine cDNAs encoding for known genes and up-regulated more than four-fold, we selected five genes, Narp, neuritin, ADP-ribosylation factor-like protein-4 (ARL4L), TGF-beta-induced immediate early gene-1 (TIEG1) and CARP, for further validation. Real-time PCR confirmed robust up-regulation of these genes in an independent set of BDNF-LTP experiments, whereas infusion of the control protein cytochrome C had no effect. In situ hybridization histochemistry further revealed up-regulation of all five genes in somata of post-synaptic granule cells following both BDNF-LTP and high-frequency stimulation-induced LTP. While Arc synthesis is critical for local actin polymerization and stable LTP formation, several of the co-upregulated genes have known functions in excitatory synaptogenesis, axon guidance and glutamate receptor clustering. These results provide novel insight into gene expression responses underlying BDNF-induced synaptic consolidation in the adult brain in vivo. PMID:16553613

  19. 40 CFR 52.1675 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) of the Act, and 40 CFR part 51 (relating to approval of and revisions to State implementation plans...: Sulfur oxides. 52.1675 Section 52.1675 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 52.1675 Control strategy and regulations: Sulfur oxides. (a)-(c) (d) Section 225.3(e) of Subchapter...

  20. 40 CFR 52.1601 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: Sulfur oxides. 52.1601 Section 52.1601 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 52.1601 Control strategy and regulations: Sulfur oxides. (a) The applicable limitation on the sulfur... permit applied for that would authorize a relaxation in the sulfur-in-coal limitation at any...

  1. 40 CFR 52.1675 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) of the Act, and 40 CFR part 51 (relating to approval of and revisions to State implementation plans...: Sulfur oxides. 52.1675 Section 52.1675 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 52.1675 Control strategy and regulations: Sulfur oxides. (a)-(c) (d) Section 225.3(e) of Subchapter...

  2. 40 CFR 52.1601 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: Sulfur oxides. 52.1601 Section 52.1601 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 52.1601 Control strategy and regulations: Sulfur oxides. (a) The applicable limitation on the sulfur... permit applied for that would authorize a relaxation in the sulfur-in-coal limitation at any...

  3. 40 CFR 52.1601 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: Sulfur oxides. 52.1601 Section 52.1601 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 52.1601 Control strategy and regulations: Sulfur oxides. (a) The applicable limitation on the sulfur... permit applied for that would authorize a relaxation in the sulfur-in-coal limitation at any...

  4. 40 CFR 52.1675 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) of the Act, and 40 CFR part 51 (relating to approval of and revisions to State implementation plans...: Sulfur oxides. 52.1675 Section 52.1675 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 52.1675 Control strategy and regulations: Sulfur oxides. (a)-(c) (d) Section 225.3(e) of Subchapter...

  5. Soya phytoestrogens change cortical and hippocampal expression of BDNF mRNA in male rats.

    PubMed

    File, Sandra E; Hartley, David E; Alom, Nazmul; Rattray, Marcus

    2003-02-27

    Adult male hooded Lister rats were either fed a diet containing 150 microg/g soya phytoestrogens or a soya-free diet for 18 days. This concentration of phytoestrogens should have been sufficient to occupy the oestrogen-beta, but not the oestrogen-alpha, receptors. Using in situ hybridisation, significant reductions were found in brain-derived neurotrophic factor (BDNF) mRNA expression in the CA3 and CA4 region of the hippocampus and in the cerebral cortex in the rats fed the diet containing phytoestrogens, compared with those on the soya-free diet. No changes in glutamic acid decarboxylase-67 or glial fibrillary acidic protein mRNA were found. This suggests a role for oestrogen-beta receptors in regulating BDNF mRNA expression.

  6. Differential induction of Pax genes by NGF and BDNF in cerebellar primary cultures

    PubMed Central

    1994-01-01

    The Pax genes encode sequence-specific DNA binding transcription factors that are expressed in embryonic development of the nervous system. Primary neuronal cell cultures derived from the cerebellar cortex of embryonic day 14, newborn and 7-d old mice, were used to investigate the cell-type specific expression patterns of three members of the murine paired box containing gene family (Pax gene family), in vitro. Cell types which express Pax-2, Pax-3, and Pax-6 RNA in primary cultures correspond to those found in regions of the cerebellum which show RNA signals in sections of the developing mouse brain. To find mechanisms regulating Pax gene expression during cerebellar development, the differential regulation of Pax-2, Pax-3, and Pax-6 by NGF and BDNF, two structurally related neurotrophins, was studied in such primary cultures. Pax-2 and Pax-6 RNA increased slightly by 1 h and remained elevated throughout a 24-h treatment with BDNF and NGF. Pax-3 RNA was not detected in newborn cultures, but underwent a rapid (1 h) and transient (2 h) induction upon treatment with either BDNF or NGF. No response was seen with EGF or FGF. Cycloheximide treatment amplified Pax-3 induction and prolonged the signal. Thus, Pax-3 induction resembles that of the immediate-early gene c-fos, which transduces growth factor signals during the development of particular neuronal/glial cell types. The changes in Pax expression were inductive rather than trophic. PMID:8163557

  7. NMDA receptor NR2B subunits contribute to PTZ-kindling-induced hippocampal astrocytosis and oxidative stress.

    PubMed

    Zhu, Xinjian; Dong, Jingde; Shen, Kai; Bai, Ying; Zhang, Yuan; Lv, Xuan; Chao, Jie; Yao, Honghong

    2015-05-01

    The N-methyl-d-aspartate (NMDA) receptor plays an important role in the pathophysiology of several neurological diseases, including epilepsy. The present study investigated the effect of NMDA receptor NR2B subunits on pentylenetetrazole (PTZ)-kindling-induced pathological and biochemical events in mice. Our results showed that PTZ-kindling up-regulates the expression of NMDA receptor NR2B subunits in the hippocampus and that kindled mice were characterized by significant astrocytosis and neuron loss in the hippocampus. Oxidative stress, including excessive malondialdehyde (MDA) production and decreased enzymatic activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), were detected in the hippocampus after the mice were fully kindled. Additionally, expression of brain-derived neurotrophic factor (BDNF) in the hippocampus was found to be up-regulated in PTZ-kindled mice. However, selectively blocking NMDA receptor NR2B subunits by ifenprodil significantly suppressed PTZ-kindling-induced hippocampal astrocytosis, oxidative stress and neuron loss. Furthermore, blocking NMDA receptor NR2B subunits also abolished PTZ-kindling-induced BDNF expression. These results indicate that NMDA receptor NR2B subunits contribute to epilepsy-associated pathological and biochemical events, including hippocampal astrocytosis, oxidative stress and neuron loss, and these events might be correlated with up-regulation of BDNF expression.

  8. Morphological differences in adipose tissue and changes in BDNF/Trkb expression in brain and gut of a diet induced obese zebrafish model.

    PubMed

    Montalbano, Giuseppe; Mania, Manuela; Guerrera, Maria Cristina; Abbate, Francesco; Laurà, Rosaria; Navarra, Michele; Vega, Jose A; Ciriaco, Emilia; Germanà, Antonino

    2016-03-01

    Obesity is a multifactorial disease generated by an alteration in balance between energy intake and expenditure, also dependent on genetic and non-genetic factors. Moreover, various nuclei of the hypothalamus receive and process peripheral stimuli from the gastrointestinal tract, controlling food intake and therefore energy balance. Among anorexigenic molecules, brain-derived neurotrophic factor (BDNF) acts through the tyrosine-kinase receptor TrkB. Numerous data demonstrate that the BDNF/TrkB system has a fundamental role in the control of food intake and body weight. Quantitative PCR and immunohistochemistry for both BDNF and TrkB were used to determine changes in levels in the brain and gastro-intestinal tract of an experimental zebrafish model of diet-induced obesity. Overfed animals showed increased weight and body mass index as well as accumulation of adipose tissue in the visceral, subcutaneous and hepatic areas. These changes were concomitant with decreased levels of BDNF mRNA in the gastro-intestinal tract and increased expression of TrkB mRNA in the brain. Overfeeding did not change the density of cells displaying immunoreactivity for BDNF or TrkB in the brain although both were significantly diminished in the gastro-intestinal tract. These results suggest an involvement of the BDNF/TrkB system in the regulation of food intake and energy balance in zebrafish, as in mammals.

  9. Conjunctivally Applied BDNF Protects Photoreceptors from Light-Induced Damage

    PubMed Central

    Cerri, Elisa; Origlia, Nicola; Falsini, Benedetto; Barloscio, Davide; Fabiani, Carlotta; Sansò, Marco; Ottino, Sara; Giovannini, Luca; Domenici, Luciano

    2015-01-01

    Purpose To test whether the topical eye treatment with BDNF prevents the effects of continuous light exposure (LE) in the albino rat retina. Methods Two groups of albino rats were used. The first group of rats received an intraocular injection of BDNF (2 μL, 1 μg/μL) before LE, while the second group was treated with one single drop of BDNF (10 μL, 12 μg/μL) dissolved in different types of solutions (physiological solution, the polysaccharide fraction of Tamarind gum, TSP, and sodium carboxy methyl cellulose), at the level of conjunctival fornix before LE. The level of BDNF in the retina and optic nerve was determined by enzyme-linked immunosorbent assay. We recorded the flash electroretinogram (fERG) in dark adapted rats 1 week after LE. At the end of the recording session, the retinas were removed and labeled so that the number of photoreceptors nuclear rows and thickness of the outer nuclear layer was analyzed. Results Intravitreal injection of BDNF before LE prevented fERG impairment. Different ophthalmic preparations were used for topical eye application; the TSP resulted the most suitable vehicle to increase BDNF level in the retina and optic nerve. Topical eye application with BDNF/TSP before LE partially preserved both fERG response and photoreceptors. Conclusions Topical eye treatment with BDNF represents a suitable, noninvasive tool to increase the retinal content of BDNF up to a level capable of exerting neuroprotection toward photoreceptors injured by prolonged LE. Translational Relevance A collyrium containing BDNF may serve as an effective, clinically translational treatment against retinal degeneration. PMID:27190697

  10. Interleukin-12 gene-expression of macrophages is regulated by nitric oxide.

    PubMed

    Rothe, H; Hartmann, B; Geerlings, P; Kolb, H

    1996-07-01

    Interleukin-12 is a heterodimeric cytokine, mainly produced by macrophages. In our present study we demonstrate that interleukin-12 expression is regulated by nitric oxide. Incubation of the macrophage cell line IC 21 with interferon-gamma gave rise to both interleukin-12 p40 mRNA and nitric oxide production. The concurrent addition of the nitric oxide synthase inhibitor N(G)-monomethyl-L-arginine inhibited nitrite production and in parallel completely suppressed interleukin-12 p40 mRNA formation. This indicated that endogenous nitric oxide synthase activity was required for IL-12 p40 gene expression. Exposure of the cells towards the nitric oxide generating compounds nitroprusside or S-nitroso-N-acetyl-penicillamine induced interleukin-12 p40 mRNA. Maximal mRNA levels were induced with nitric oxide donors at 1 microM concentration. We conclude that nitric oxide may exert an autoregulatory and paracrine control of interleukin-12 gene expression. PMID:8694804

  11. Mood Disorders and BDNF Relationship with Alcohol Drinking Trajectories among PLWH Receiving Care

    PubMed Central

    Míguez-Burbano, María José; Espinoza, Luis; Vargas, Mayra; LaForest, Diana

    2015-01-01

    Background Despite the excessive rates of Hazardous Alcohol Use (HAU) among people living with HIV (PLWH), although largely speculated, psychological and physiological components associated with HAU, has not been actively measured. Therefore, the present study was geared toward determining: 1) the rates of mood disorders and its relationship with HAU, and 2) to assess the impact of Brain Derived Neurotrophic Factor (BDNF), a well-known regulator of alcohol and mood disorders. Methods For this study, participants of the longitudinal PADS Study n=400, were followed over time. Alcohol use (Alcohol Use Disorders Identification Test –AUDIT- and the Alcohol Dependence Scale –ADS) and moods (depression, anxiety, and stress) were assessed repeatedly. Results A cluster analyses shows three distinctive trajectories. The first one, revealed a group with increased drinking (Cluster 1: n=140), constant alcohol intake (Cluster 2: n = 60), and one with decreased consumption (Cluster 3: n =120). Analyses discovered higher AUDIT scores across the clusters with Cluster 1 being followed by Clusters 2 and 3 (1: 14.5 ± 8 vs. 2=8.7 ± 7.5 vs. 3= 6.6 ± 4.2, p = 0.001). Women in Clusters 1 and 2 had higher levels of stress (1:21 ± 7.5; 2:19.3 ± 7) and lower BDNF levels (7904 ± 1248 pg/ml and 10405 ± 909 pg/mL) than their counterparts in Cluster 3 (PSS: 3: 16.6 ±5, p = 0.02 BDNF: 10828 ± 1127 pg/mL, p = 0.08). Men in Cluster 1 differed in terms of stress (19.8 ± 7 vs. 21 ± 7.5 score) and BDNF levels (Cluster 1: 5204 ± 818 vs. Cluster 2: 7656 ± 843 pg/ml, p = 0.002) but not in the number of years living with HIV. The proportion of subjects with multiple mood comorbidities was disturbingly higher (26%), and all were members of Cluster 1. Multiple logistic regression analyses indicated that participants reporting high relative to low levels of perceived stress, dual mood comorbidity, altered BDNF levels and low income increased the likelihood of being a member of Cluster 1

  12. Iron oxides, dissolved silica, and regulation of marine phosphate concentration

    NASA Astrophysics Data System (ADS)

    Planavsky, N.; Reinhard, C.; Lyons, T.

    2008-12-01

    Phosphorous concentrations in iron oxide-rich sediments reflect orthophosphate levels in the water column from which iron oxides precipitated. Sediment P/Fe ratios are also strongly influenced by the concentrations of dissolved species that inhibit orthophosphate-to-ferrihydrite sorption, most notably silica. It may, therefore, be possible to use P/Fe ratios in iron oxide-rich sediments to estimate past dissolved P concentrations, if one considers the evolution of the silica cycle. A compilation of Fe and P data in iron oxide-rich sediments through time reveals an increase in P/Fe ratios after the Jurassic. We propose that this trend indicates evolution of the iron-oxide phosphate removal mechanism caused by decreasing levels of sorption inhibition by dissolved silica. The large difference in P/Fe ratios in Cenozoic versus older iron-oxide rich sediments can be linked with Si drawdown caused by the proliferation of siliceous plankton in the Cretaceous. There is also a late Mesozoic or Cenozoic increase in V/Fe ratios, which provides additional evidence for lower ferrihydrite anion sorption efficiency prior to diatom radiation. P/Fe ratios in iron oxide-rich sediments from the early and middle Phanerozoic are comparable to the ratios in iron formations previously presented as evidence for an early Precambrian phosphate crisis (Bjerrum and Canfield, 2002, Nature, 417:159-162). Given the compelling evidence for higher Si concentrations in the Precambrian compared to the Phanerozoic and dissolved P concentrations comparable to modern levels throughout the Phanerozoic, the presented trend of P/Fe ratios suggests dissolved P concentrations were higher in Precambrian than Phanerozoic oceans. High dissolved P levels in the Precambrian may have been linked to inhibited carbonate fluorapatite (CFA) formation as a result of persistently high levels of carbonate supersaturation. Carbonate ion substitution into CFA scales with the ambient carbonate ion activity and increases

  13. Acute Administration of Branched-Chain Amino Acids Increases the Pro-BDNF/Total-BDNF Ratio in the Rat Brain.

    PubMed

    Scaini, Giselli; Morais, Meline O S; Furlanetto, Camila B; Kist, Luiza W; Pereira, Talita C B; Schuck, Patrícia F; Ferreira, Gustavo C; Pasquali, Matheus A B; Gelain, Daniel P; Moreira, José Cláudio F; Bogo, Maurício R; Streck, Emilio L

    2015-05-01

    Maple syrup urine disease (MSUD) is caused by an inborn error in metabolism resulting from a deficiency in the branched-chain α-keto acid dehydrogenase complex activity. This blockage leads to accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine and valine, as well as their corresponding α-keto acids and α-hydroxy acids. High levels of BCAAs are associated with neurological dysfunction and the role of pro- and mature brain-derived neurotrophic factor (BDNF) in the neurological dysfunction of MSUD is still unclear. Thus, in the present study we investigated the effect of an acute BCAA pool administration on BDNF levels and on the pro-BDNF cleavage-related proteins S100A10 and tissue plasminogen activator (tPA) in rat brains. Our results demonstrated that acute Hyper-BCAA (H-BCAA) exposure during the early postnatal period increases pro-BDNF and total-BDNF levels in the hippocampus and striatum. Moreover, tPA levels were significantly decreased, without modifications in the tPA transcript levels in the hippocampus and striatum. On the other hand, the S100A10 mRNA and S100A10 protein levels were not changed in the hippocampus and striatum. In the 30-day-old rats, we observed increased pro-BDNF, total-BDNF and tPA levels only in the striatum, whereas the tPA and S100A10 mRNA expression and the immunocontent of S100A10 were not altered. In conclusion, we demonstrated that acute H-BCAA administration increases the pro-BDNF/total-BDNF ratio and decreases the tPA levels in animals, suggesting that the BCAA effect may depend, at least in part, on changes in BDNF post-translational processing. PMID:25681161

  14. BDNF serum levels, but not BDNF Val66Met genotype, are correlated with personality traits in healthy subjects.

    PubMed

    Minelli, Alessandra; Zanardini, Roberta; Bonvicini, Cristian; Sartori, Riccardo; Pedrini, Laura; Gennarelli, Massimo; Bocchio-Chiavetto, Luisella

    2011-08-01

    Consisting evidence in animal models has suggested that alterations in brain-derived neurotrophic factor (BDNF) brain expression and release are involved in the pathogenesis of mental illnesses, such as, mood, anxiety, and eating disorders. This hypothesis is supported by data emerging from biochemical studies on serum BDNF levels and genetic studies on the functional polymorphism Val66Met in the BDNF gene in patients and control subjects. Anxiety-related personality traits are associated with several mental disorders. However, they are also measurable in non-affected subjects and, so, may represent a useful "endophenotype" to study the biological correlation of the vulnerability factors in the general population. In this study, we analyzed putative correlations in subjects unaffected by mental disorders between personality traits, serum BDNF levels (N = 107), and the BDNF Val66Met genotype (N = 217). Furthermore, we tested the possible interactions between these variables. A significant correlation has been observed between high scores of harm avoidance (HA) measured by the temperament and character inventory (TCI), and low BDNF serum concentration (r = -0.253, P = 0.009). In addition, an association has been evidenced between low BDNF levels in serum and the BDNF Val/Val genotype (P = 0.021). By analyzing putative concomitant effects of different variables on HA scores in a regression model, we observed a significant correlation only with BDNF serum concentrations (P = 0.022). The study results suggest that a decrease in serum BDNF concentrations may represent a biochemical marker associated with anxiety personality traits also retrievable in the general population.

  15. Activation of the cAMP Pathway Induces RACK1-Dependent Binding of β-Actin to BDNF Promoter

    PubMed Central

    Neasta, Jeremie; Fiorenza, Anna; He, Dao-Yao; Phamluong, Khanhky; Kiely, Patrick A.; Ron, Dorit

    2016-01-01

    RACK1 is a scaffolding protein that contributes to the specificity and propagation of several signaling cascades including the cAMP pathway. As such, RACK1 participates in numerous cellular functions ranging from cell migration and morphology to gene transcription. To obtain further insights on the mechanisms whereby RACK1 regulates cAMP-dependent processes, we set out to identify new binding partners of RACK1 during activation of the cAMP signaling using a proteomics strategy. We identified β-actin as a direct RACK1 binding partner and found that the association between β-actin and RACK1 is increased in response to the activation of the cAMP pathway. Furthermore, we show that cAMP-dependent increase in BDNF expression requires filamentous actin. We further report that β-actin associates with the BDNF promoter IV upon the activation of the cAMP pathway and present data to suggest that the association of β-actin with BDNF promoter IV is RACK1-dependent. Taken together, our data suggest that β-actin is a new RACK1 binding partner and that the RACK1 and β-actin association participate in the cAMP-dependent regulation of BDNF transcription. PMID:27505161

  16. Protein oxidation mediated by heme-induced active site conversion specific for heme-regulated transcription factor, iron response regulator

    PubMed Central

    Kitatsuji, Chihiro; Izumi, Kozue; Nambu, Shusuke; Kurogochi, Masaki; Uchida, Takeshi; Nishimura, Shin-Ichiro; Iwai, Kazuhiro; O’Brian, Mark R.; Ikeda-Saito, Masao; Ishimori, Koichiro

    2016-01-01

    The Bradyrhizobium japonicum transcriptional regulator Irr (iron response regulator) is a key regulator of the iron homeostasis, which is degraded in response to heme binding via a mechanism that involves oxidative modification of the protein. Here, we show that heme-bound Irr activates O2 to form highly reactive oxygen species (ROS) with the “active site conversion” from heme iron to non-heme iron to degrade itself. In the presence of heme and reductant, the ROS scavenging experiments show that Irr generates H2O2 from O2 as found for other hemoproteins, but H2O2 is less effective in oxidizing the peptide, and further activation of H2O2 is suggested. Interestingly, we find a time-dependent decrease of the intensity of the Soret band and appearance of the characteristic EPR signal at g = 4.3 during the oxidation, showing the heme degradation and the successive formation of a non-heme iron site. Together with the mutational studies, we here propose a novel “two-step self-oxidative modification” mechanism, during which O2 is activated to form H2O2 at the heme regulatory motif (HRM) site and the generated H2O2 is further converted into more reactive species such as ·OH at the non-heme iron site in the His-cluster region formed by the active site conversion. PMID:26729068

  17. CaMKII-Mediated CREB Phosphorylation Is Involved in Ca2+-Induced BDNF mRNA Transcription and Neurite Outgrowth Promoted by Electrical Stimulation

    PubMed Central

    Ye, Zhengxu; Huang, Jinghui; He, Fei; Xiao, Wei; Hu, Xueyu; Luo, Zhuojing

    2016-01-01

    Electrical stimulation (ES)-triggered up-regulation of brain-derived neurotrophic factor (BDNF) and neurite outgrowth in cultured rat postnatal dorsal root ganglion neurons (DRGNs) is calcium (Ca2+)-dependent. The effects of increased Ca2+ on BDNF up-regulation and neurite outgrowth remain unclear. We showed here that ES increased phosphorylation of the cAMP-response element binding protein (CREB). Blockade of Ca2+ suppressed CREB phosphorylation and neurite outgrowth. Down-regulation of phosphorylated (p)-CREB reduced BDNF transcription and neurite outgrowth triggered by ES. Furthermore, blockade of calmodulin-dependent protein kinase II (CaMKII) using the inhibitors KN93 or KN62 reduced p-CREB, and specific knockdown of the CaMKIIα or CaMKIIβ subunit was sufficient to suppress p-CREB. Recombinant BDNF or hyperforin reversed the effects of Ca2+ blockade and CaMKII knockdown. Taken together, these data establish a potential signaling pathway of Ca2+-CaMKII-CREB in neuronal activation. To our knowledge, this is the first report of the mechanisms of Ca2+-dependent BDNF transcription and neurite outgrowth triggered by ES. These findings might help further investigation of complex molecular signaling networks in ES-triggered nerve regeneration in vivo. PMID:27611779

  18. CaMKII-Mediated CREB Phosphorylation Is Involved in Ca2+-Induced BDNF mRNA Transcription and Neurite Outgrowth Promoted by Electrical Stimulation.

    PubMed

    Yan, Xiaodong; Liu, Juanfang; Ye, Zhengxu; Huang, Jinghui; He, Fei; Xiao, Wei; Hu, Xueyu; Luo, Zhuojing

    2016-01-01

    Electrical stimulation (ES)-triggered up-regulation of brain-derived neurotrophic factor (BDNF) and neurite outgrowth in cultured rat postnatal dorsal root ganglion neurons (DRGNs) is calcium (Ca2+)-dependent. The effects of increased Ca2+ on BDNF up-regulation and neurite outgrowth remain unclear. We showed here that ES increased phosphorylation of the cAMP-response element binding protein (CREB). Blockade of Ca2+ suppressed CREB phosphorylation and neurite outgrowth. Down-regulation of phosphorylated (p)-CREB reduced BDNF transcription and neurite outgrowth triggered by ES. Furthermore, blockade of calmodulin-dependent protein kinase II (CaMKII) using the inhibitors KN93 or KN62 reduced p-CREB, and specific knockdown of the CaMKIIα or CaMKIIβ subunit was sufficient to suppress p-CREB. Recombinant BDNF or hyperforin reversed the effects of Ca2+ blockade and CaMKII knockdown. Taken together, these data establish a potential signaling pathway of Ca2+-CaMKII-CREB in neuronal activation. To our knowledge, this is the first report of the mechanisms of Ca2+-dependent BDNF transcription and neurite outgrowth triggered by ES. These findings might help further investigation of complex molecular signaling networks in ES-triggered nerve regeneration in vivo. PMID:27611779

  19. Role of Nitric Oxide in the Regulation of Renin and Vasopressin Secretion

    NASA Technical Reports Server (NTRS)

    Reid, Ian A.

    1994-01-01

    Research during recent years has established nitric oxide as a unique signaling molecule that plays important roles in the regulation of the cardiovascular, nervous, immune, and other systems. Nitric oxide has also been implicated in the control of the secretion of hormones by the pancreas, hypothalamus, and anterior pituitary gland, and evidence is accumulating that it contributes to the regulation of the secretion of renin and vasopressin, hormones that play key roles in the control of sodium and water balance. Several lines of evidence have implicated nitric oxide in the control of renin secretion. The enzyme nitric oxide synthase is present in vascular and tubular elements of the kidney, particularly in cells of the macula densa, a structure that plays an important role in the control of renin secretion. Guanylyl cyclase, a major target for nitric oxide, is also present in the kidney. Drugs that inhibit nitric oxide synthesis generally suppress renin release in vivo and in vitro, suggesting a stimulatory role for the L-arginine/nitric oxide pathway in the control of renin secretion. Under some conditions, however, blockade of nitric oxide synthesis increases renin secretion. Recent studies indicate that nitric oxide not only contributes to the regulation of basal renin secretion, but also participates in the renin secretory responses to activation of the renal baroreceptor, macula densa, and beta adrenoceptor mechanisms that regulate renin secretion. Histochemical and immunocytochemical studies have revealed the presence of nitric oxide synthase in the supraoptic and paraventricular nuclei of the hypothalamus and in the posterior pituitary gland. Colocalization of nitric oxide synthase and vasopressin has been demonstrated in some hypothalamic neurons. Nitric oxide synthase activity in the hypothalamus and pituitary is increased by maneuvers known to stimulate vasopressin secretion, including salt loading and dehydration, Administration of L-arginine and nitric

  20. Decreased Plasma BDNF Levels of Patients with Somatization Disorder

    PubMed Central

    Kang, Nam-In; Park, Jong-Il

    2016-01-01

    Objective Brain-derived neurotrophic factor (BDNF), one of the most abundant and important neurotrophins, is known to be involved in the development, survival, maintenance, and plasticity of neurons in the nervous system. Some studies have suggested that BDNF may play a role in the pathophysiology of several psychiatric illnesses such as depression and schizophrenia. Similarly, it is likely that the alteration of BDNF may be associated with the neuro-modulation that contributes to the development of somatization disorder. Methods The purpose of this study was to determine whether there is an abnormality of plasma BDNF levels in patients with somatization disorder, and to analyze the nature of the alteration after pharmacotherapy using an enzyme-linked immunosorbent assay (ELISA). Results The plasma BDNF levels of the patients with a somatization disorder were significantly lower compared with those of the control volunteers (83.61±89.97 pg/mL vs. 771.36±562.14 pg/mL); moreover, the plasma BDNF levels of those patients who received an antidepressant were significantly increased after the treatment (118.13±91.45 pg/mL vs. 72.92±88.21 pg/mL). Conclusion These results suggest that BDNF may play a role in the pathophysiology of somatization disorder. PMID:27757131

  1. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System

    PubMed Central

    Wang, Yu-Ren; Tsai, Hsin-I; Yu, Huang-Ping

    2015-01-01

    Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system. PMID:26637174

  2. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System.

    PubMed

    Liu, Fu-Wei; Liu, Fu-Chao; Wang, Yu-Ren; Tsai, Hsin-I; Yu, Huang-Ping

    2015-01-01

    Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system. PMID:26637174

  3. Mitochondrial oxidant stress in locus coeruleus is regulated by activity and nitric oxide synthase

    PubMed Central

    Sanchez–Padilla, J.; Guzman, J.N.; Ilijic, E.; Kondapalli, J.; Galtieri, D.J.; Yang, B.; Schieber, S.; Oertel, W.; Wokosin, D.; Schumacker, P. T.; Surmeier, D. J.

    2014-01-01

    Summary Loss of noradrenergic locus coeruleus (LC) neurons is a prominent feature of aging–related neurodegenerative diseases, like Parkinson’s disease (PD). The basis of this vulnerability is not understood. To explore possible physiological determinants, LC neurons were studied using electrophysiological and optical approaches in ex vivo mouse brain slices. These studies revealed that autonomous activity in LC neurons was accompanied by oscillations in dendritic Ca2+ concentration attributable to opening of L–type Ca2+ channels. This oscillation elevated mitochondrial oxidant stress and was attenuated by inhibition of nitric oxide synthase. The relationship between activity and stress was malleable, as arousal and carbon dioxide, each increased the spike rate, but differentially affected mitochondrial oxidant stress. Oxidant stress also was increased in an animal model of PD. Thus, our results point to activity–dependent Ca2+ entry and a resulting mitochondrial oxidant stress as factors contributing to the vulnerability of LC neurons. PMID:24816140

  4. Spirulina non-protein components induce BDNF gene transcription via HO-1 activity in C6 glioma cells.

    PubMed

    Morita, Kyoji; Itoh, Mari; Nishibori, Naoyoshi; Her, Song; Lee, Mi-Sook

    2015-01-01

    Blue-green algae are known to contain biologically active proteins and non-protein substances and considered as useful materials for manufacturing the nutritional supplements. Particularly, Spirulina has been reported to contain a variety of antioxidants, such as flavonoids, carotenoids, and vitamin C, thereby exerting their protective effects against the oxidative damage to the cells. In addition to their antioxidant actions, polyphenolic compounds have been speculated to cause the protection of neuronal cells and the recovery of neurologic function in the brain through the production of brain-derived neurotrophic factor (BDNF) in glial cells. Then, the protein-deprived extract was prepared by removing the most part of protein components from aqueous extract of Spirulina platensis, and the effect of this extract on BDNF gene transcription was examined in C6 glioma cells. Consequently, the protein-deprived extract was shown to cause the elevation of BDNF mRNA levels following the expression of heme oxygenase-1 (HO-1) in the glioma cells. Therefore, the non-protein components of S. platensis are considered to stimulate BDNF gene transcription through the HO-1 induction in glial cells, thus proposing a potential ability of the algae to indirectly modulate the brain function through the glial cell activity. PMID:25349086

  5. Phytoagents for Cancer Management: Regulation of Nucleic Acid Oxidation, ROS, and Related Mechanisms

    PubMed Central

    Shyur, Lie-Fen

    2013-01-01

    Accumulation of oxidized nucleic acids causes genomic instability leading to senescence, apoptosis, and tumorigenesis. Phytoagents are known to reduce the risk of cancer development; whether such effects are through regulating the extent of nucleic acid oxidation remains unclear. Here, we outlined the role of reactive oxygen species in nucleic acid oxidation as a driving force in cancer progression. The consequential relationship between genome instability and cancer progression highlights the importance of modulation of cellular redox level in cancer management. Current epidemiological and experimental evidence demonstrate the effects and modes of action of phytoagents in nucleic acid oxidation and provide rationales for the use of phytoagents as chemopreventive or therapeutic agents. Vitamins and various phytoagents antagonize carcinogen-triggered oxidative stress by scavenging free radicals and/or activating endogenous defence systems such as Nrf2-regulated antioxidant genes or pathways. Moreover, metal ion chelation by phytoagents helps to attenuate oxidative DNA damage caused by transition metal ions. Besides, the prooxidant effects of some phytoagents pose selective cytotoxicity on cancer cells and shed light on a new strategy of cancer therapy. The “double-edged sword” role of phytoagents as redox regulators in nucleic acid oxidation and their possible roles in cancer prevention or therapy are discussed in this review. PMID:24454991

  6. Infralimbic BDNF/TrkB enhancement of GluN2B currents facilitates extinction of a cocaine-conditioned place preference.

    PubMed

    Otis, James M; Fitzgerald, Michael K; Mueller, Devin

    2014-04-23

    Brain-derived neurotrophic factor (BDNF) regulates synaptic activity and behavioral flexibility, and reduction of BDNF strongly predicts psychiatric disorders and cognitive dysfunction. Restoration of BDNF-dependent activity could alleviate these impairments, but BDNF has limited clinical utility due to its pharmacokinetics. Here we demonstrate that activation of a primary BDNF target, the tropomyosin-related kinase B (TrkB) receptor, enhances the amplitude and prolongs the decay kinetics of N-methyl-d-aspartate receptor (NMDAR) currents in male rat infralimbic prefrontal pyramidal neurons. Moreover, these effects were prevented and reversed by blockade of NMDARs containing the GluN2B subunit. Our results show that this signaling cascade bidirectionally regulates extinction of a cocaine-induced conditioned place preference (CPP), a task that requires behavioral flexibility. Blockade of infralimbic TrkB receptors or GluN2B-containing NMDARs disrupted consolidation of extinction of the CPP. In contrast, extinction was strengthened by potentiation of TrkB receptor activity with infralimbic infusions of BDNF or systemic injections of 7,8 dihydroxyflavone (7,8DHF), the newly synthesized TrkB receptor agonist. The 7,8DHF-induced enhancement of extinction was prevented by infralimbic infusions of a GluN2B-specific receptor antagonist, demonstrating that TrkB receptor activation enhances extinction of cocaine-CPP via GluN2B-containing NMDARs. Together, infralimbic TrkB receptor activation strengthens GluN2B-containing NMDAR currents to support extinction learning. TrkB receptor agonists would therefore be useful as pharmacological adjuncts for extinction-based therapies for treatment of psychiatric disorders associated with reduced BDNF activity.

  7. Suppression of choriocarcinoma invasion and metastasis following blockade of BDNF/TrkB signaling.

    PubMed

    Kawamura, Kazuhiro; Kawamura, Nanami; Okamoto, Naoki; Manabe, Motomu

    2013-12-01

    Brain-derived neurotrophic factor (BDNF) acts through its cognate receptor tyrosine kinase-B (TrkB) to regulate diverse physiological functions in reproductive and other tissues. In normal and malignant trophoblastic cells, the BDNF/TrkB signaling promotes cell growth. Due to the highly malignant nature of choriocarcinoma, we investigated possible involvement of this system in choriocarcinoma cell invasion and metastasis. We demonstrated that treatment of cultured choriocarcinoma cells, known to express both BDNF and TrkB, with a soluble TrkB ectodomain or a Trk receptor inhibitor K252a suppressed cell invasion accompanied with decreased expression of matrix metalloproteinase-2, a cell invasion marker. In vivo studies using a tumor xenograft model in athymic nude mice further showed inhibition of cell invasion from tumors to surrounding tissues following the suppression of endogenous TrkB signaling. For an in vivo model of choriocarcinoma metastasis, we performed intravenous injections of JAR cells expressing firefly luciferase into severe combined immunodeficiency (SCID) mice. Treatment with K252a inhibited metastasis of tumors to distant organs. In vivo K252a treatment also suppressed metastatic tumor growth as reflected by decreased cell proliferation and increased apoptosis and caspases-3/7 activities, together with reduced tissue levels of a tumor marker, human chorionic gonadotropin-β. In vivo suppression of TrkB signaling also led to decreased expression of angiogenic markers in metastatic tumor, including cluster of differentiation 31 and vascular endothelial growth factor A. Our findings suggested essential autocrine/paracrine roles of the BDNF/TrkB signaling system in choriocarcinoma invasion and metastasis. Inhibition of this signaling could serve as the basis to develop a novel therapy for patients with choriocarcinoma.

  8. BDNF signaling contributes to oral cancer pain in a preclinical orthotopic rodent model

    PubMed Central

    Chodroff, Leah; Bendele, Michelle; Valenzuela, Vanessa; Henry, Michael

    2016-01-01

    The majority of patients with oral cancer report intense pain that is only partially managed by current analgesics. Thus, there is a strong need to study mechanisms as well as develop novel analgesics for oral cancer pain. Current study employed an orthotopic tongue cancer model with molecular and non-reflexive behavioral assays to determine possible mechanisms of oral cancer pain. Human oral squamous cell carcinoma cells line, HSC2, was injected into the tongue of male athymic mice and tumor growth was observed by day 6. Immunohistological analyses revealed a well-differentiated tumor with a localized immune response and pronounced sensory and sympathetic innervation and vascularization. The tumor expressed TMPRSS2, a protein previously reported with oral squamous cell carcinoma. ATF3 expression in trigeminal ganglia was not altered by tumor growth. Molecular characterization of the model demonstrated altered expression of several pain-related genes, out of which up-regulation of BDNF was most striking. Moreover, BDNF protein expression in trigeminal ganglia neurons was increased and inhibition of BDNF signaling with a tyrosine kinase B antagonist, ANA-12, reversed pain-like behaviors induced by the oral tumor. Oral squamous cell carcinoma tumor growth was also associated with a reduction in feeding, mechanical hypersensitivity in the face, as well as spontaneous pain behaviors as measured by the conditioned place preference test, all of which were reversed by analgesics. Interestingly, injection of HSC2 into the hindpaw did not reproduce this spectrum of pain behaviors; nor did injection of a colonic cancer cell line into the tongue. Taken together, this orthotopic oral cancer pain model reproduces the spectrum of pain reported by oral cancer patients, including higher order cognitive changes, and demonstrates that BDNF signaling constitutes a novel mechanism by which oral squamous cell carcinoma induces pain. Identification of the key role of tyrosine kinase B

  9. Elevation of BDNF exon I-specific transcripts in the frontal cortex and midbrain of rat during spontaneous morphine withdrawal is accompanied by enhanced pCreb1 occupancy at the corresponding promoter.

    PubMed

    Peregud, Danil I; Panchenko, Leonid F; Gulyaeva, Natalia V

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) is believed to play a crucial role in the mechanisms underlying opiate dependence; however, little is known about specific features and mechanisms regulating its expression in the brain under these conditions. The aim of this study was to investigate the effects of acute morphine intoxication and withdrawal from chronic intoxication on expression of BDNF exon I-, II-, IV-, VI- and IX-containing transcripts in the rat frontal cortex and midbrain. We also have studied whether alterations of BDNF exon-specific transcripts are accompanied by changes in association of well-known transcriptional regulators of BDNF gene-phosphorylated (active form) cAMP response element binding protein (pCreb1) and methyl-CpG binding protein 2 (MeCP2) with corresponding regulatory regions of the BDNF gene. Acute morphine intoxication did not affect levels of BDNF exons in brain regions, while spontaneous morphine withdrawal in dependent rats was accompanied by an elevation of the BDNF exon I-containing mRNAs both in the frontal cortex and midbrain. During spontaneous morphine withdrawal, increased associations of pCreb1 were found with promoter of exon I in the frontal cortex and promoters of exon I, IV and VI in the midbrain. The association of MeCP2 with BDNF promoters during spontaneous morphine withdrawal did not change. Thus, BDNF exon-specific transcripts are differentially expressed in brain regions during spontaneous morphine withdrawal in dependent rats and pCreb1 may be at least partially responsible for these alterations.

  10. Abnormalities in the zinc-metalloprotease-BDNF axis may contribute to megalencephaly and cortical hyperconnectivity in young autism spectrum disorder patients

    PubMed Central

    2014-01-01

    Whereas aberrant brain connectivity is likely the core pathology of autism-spectrum disorder (ASD), studies do not agree as to whether hypo- or hyper-connectivity is the main underlying problem. Recent functional imaging studies have shown that, in most young ASD patients, cerebral cortical regions appear hyperconnected, and cortical thickness/brain size is increased. Collectively, these findings indicate that developing ASD brains may exist in an altered neurotrophic milieu. Consistently, some ASD patients, as well as some animal models of ASD, show increased levels of brain-derived neurotrophic factor (BDNF). However, how BDNF is upregulated in ASD is unknown. To address this question, we propose the novel hypothesis that a putative zinc-metalloprotease-BDNF (ZMB) axis in the forebrain plays a pivotal role in the development of hyperconnectivity and megalencephaly in ASD. We have previously demonstrated that extracellular zinc at micromolar concentrations can rapidly increase BDNF levels and phosphorylate the receptor tyrosine kinase TrkB via the activation of metalloproteases. The role of metalloproteases in ASD is still uncertain, but in fragile X syndrome, a monogenic disease with an autistic phenotype, the levels of MMP are increased. Early exposure to lipopolysaccharides (LPS) and other MMP activators such as organic mercurials also have been implicated in ASD pathogenesis. The resultant increases in BDNF levels at synapses, especially those involved in the zinc-containing, associative glutamatergic system may produce abnormal brain circuit development. Various genetic mutations that lead to ASD are also known to affect BDNF signaling: some down-regulate, and others up-regulate it. We hypothesize that, although both up- and down-regulation of BDNF may induce autism symptoms, only BDNF up-regulation is associated with the hyperconnectivity and large brain size observed in most young idiopathic ASD patients. To test this hypothesis, we propose to examine the

  11. Regulation of substrate oxidation preferences in muscle by the peptide hormone adropin.

    PubMed

    Gao, Su; McMillan, Ryan P; Jacas, Jordi; Zhu, Qingzhang; Li, Xuesen; Kumar, Ganesh K; Casals, Núria; Hegardt, Fausto G; Robbins, Paul D; Lopaschuk, Gary D; Hulver, Matthew W; Butler, Andrew A

    2014-10-01

    Rigorous control of substrate oxidation by humoral factors is essential for maintaining metabolic homeostasis. During feeding and fasting cycles, carbohydrates and fatty acids are the two primary substrates in oxidative metabolism. Here, we report a novel role for the peptide hormone adropin in regulating substrate oxidation preferences. Plasma levels of adropin increase with feeding and decrease upon fasting. A comparison of whole-body substrate preference and skeletal muscle substrate oxidation in adropin knockout and transgenic mice suggests adropin promotes carbohydrate oxidation over fat oxidation. In muscle, adropin activates pyruvate dehydrogenase (PDH), which is rate limiting for glucose oxidation and suppresses carnitine palmitoyltransferase-1B (CPT-1B), a key enzyme in fatty acid oxidation. Adropin downregulates PDH kinase-4 (PDK4) that inhibits PDH, thereby increasing PDH activity. The molecular mechanisms of adropin's effects involve acetylation (suggesting inhibition) of the transcriptional coactivator PGC-1α, downregulating expression of Cpt1b and Pdk4. Increased PGC-1α acetylation by adropin may be mediated by inhibiting Sirtuin-1 (SIRT1), a PGC-1α deacetylase. Altered SIRT1 and PGC-1α activity appear to mediate aspects of adropin's metabolic actions in muscle. Similar outcomes were observed in fasted mice treated with synthetic adropin. Together, these results suggest a role for adropin in regulating muscle substrate preference under various nutritional states.

  12. Nitric oxide and thiol redox regulation of Janus kinase activity

    PubMed Central

    Duhé, Roy J.; Evans, Gerald A.; Erwin, Rebecca A.; Kirken, Robert A.; Cox, George W.; Farrar, William L.

    1998-01-01

    The activation of Janus kinases (JAKs) is crucial for propagation of the proliferative response initiated by many cytokines. The proliferation of various cell lines, particularly those of hematopoietic origin, is also modulated by mediators of oxidative stress such as nitric oxide and thiol redox reagents. Herein we demonstrate that nitric oxide and other thiol oxidants can inhibit the autokinase activity of rat JAK2 in vitro, presumably through oxidation of crucial dithiols to disulfides within JAK2. The reduced form of JAK2 is the most active form, and the oxidized JAK2 form is inactive. Nitric oxide pretreatment of quiescent Ba/F3 cells also inhibits the interleukin 3-triggered in vivo activation of JAK2, a phenomenon that correlates with inhibited proliferation. Furthermore, we observed that the autokinase activity of JAK3 responds in a similar fashion to thiol redox reagents in vitro and to nitric oxide donors in vivo. We suggest that the thiol redox regulation of JAKs may partially explain the generally immunosuppressive effects of nitric oxide and of other thiol oxidants. PMID:9419340

  13. Ncf1 polymorphism reveals oxidative regulation of autoimmune chronic inflammation.

    PubMed

    Holmdahl, Rikard; Sareila, Outi; Olsson, Lina M; Bäckdahl, Liselotte; Wing, Kajsa

    2016-01-01

    The current review on the function of neutrophil cytosolic factor 1 (NCF1) and induced reactive oxygen species (ROS) is based on a genetic search for the major genes controlling autoimmune inflammatory disorders. Surprisingly, the disease-promoting allele determined a lower ROS response and was therefore in complete contrast to the prevailing dogma. Once cloned, it opened the possibility to dissect this complex field from a new angle and with the possibilities to study the role of ROS in vivo. We found that NCF1 and NADPH oxidase 2 (NOX2) complex-derived ROS is an important regulator of several chronic inflammatory disorders by using models for rheumatoid arthritis, multiple sclerosis, psoriasis and psoriasis arthritis, gout, and lupus. ROS could therefore affect many different types of diseases and the common denominator seems to be that ROS regulate macrophages, which prevents inflammation from going chronic. The role of ROS is currently changing from being seen as toxic agents that will promote inflammation toward a more complex view with ROS as crucial regulators of immune and inflammatory pathways. PMID:26683156

  14. Role for Endogenous BDNF in Endocannabinoid-Mediated Long-Term Depression at Neocortical Inhibitory Synapses1,2,3

    PubMed Central

    Zhao, Liangfang; Li-Wen Yeh, Mason

    2015-01-01

    Abstract The endogenous cannabinoid (endocannabinoid) system is an important regulator of synaptic function. Endocannabinoids acutely modulate inhibitory and excitatory transmission, and also mediate long-term depression at GABAergic and glutamatergic synapses. Typically, endocannabinoid synthesis and release is stimulated by depolarization-induced calcium influx and/or activation of phospholipase-C (PLC) signaling triggered by mGluR activation. Recently it has been shown that brain-derived neurotrophic factor (BDNF) can also induce endocannabinoid release. Although there is growing evidence for cross-talk between BDNF and endocannabinoid signaling, little is known about the functional relevance of these interactions. In the present studies, we examined BDNF−endocannabinoid interactions in regulating activity-dependent long-term depression at inhibitory synapses (iLTD). We found that theta burst stimulation (TBS) in layer 2/3 of mouse somatosensory cortical slices can induce a form of endocannabinoid-mediated iLTD that is independent of metabotropic glutamate receptor (mGluR) activation. This endocannabinoid-dependent iLTD, however, requires endogenous BDNF-trkB signaling, as it is blocked by a trk tyrosine kinase inhibitor and by a trkB receptor antagonist, and also requires activation of diacylglycerol lipase (DAG-lipase, DGL). In addition, endocannabinoid-mediated iLTD can be induced by combining a subthreshold concentration of exogenous BDNF with weak TBS stimulation that by itself is insufficient to induce iLTD. Taken together, our results suggest that TBS can induce the release of endogenous BDNF, which triggers DGL-dependent endocannabinoid mobilization and cannabinoid receptor-dependent iLTD at layer 2/3 cortical synapses. PMID:25938134

  15. Glial β-Oxidation regulates Drosophila Energy Metabolism

    PubMed Central

    Schulz, Joachim G.; Laranjeira, Antonio; Van Huffel, Leen; Gärtner, Annette; Vilain, Sven; Bastianen, Jarl; Van Veldhoven, Paul P.; Dotti, Carlos G.

    2015-01-01

    The brain's impotence to utilize long-chain fatty acids as fuel, one of the dogmas in neuroscience, is surprising, since the nervous system is the tissue most energy consuming and most vulnerable to a lack of energy. Challenging this view, we here show in vivo that loss of the Drosophila carnitine palmitoyltransferase 2 (CPT2), an enzyme required for mitochondrial β-oxidation of long-chain fatty acids as substrates for energy production, results in the accumulation of triacylglyceride-filled lipid droplets in adult Drosophila brain but not in obesity. CPT2 rescue in glial cells alone is sufficient to restore triacylglyceride homeostasis, and we suggest that this is mediated by the release of ketone bodies from the rescued glial cells. These results demonstrate that the adult brain is able to catabolize fatty acids for cellular energy production. PMID:25588812

  16. Toward a unified biological hypothesis for the BDNF Val66Met-associated memory deficits in humans: a model of impaired dendritic mRNA trafficking

    PubMed Central

    Baj, Gabriele; Carlino, Davide; Gardossi, Lucia; Tongiorgi, Enrico

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) represents promotesa key molecule for the survival and differentiation of specific populations of neurons in the central nervous system. BDNF also regulates plasticity-related processes underlying memory and learning. A common single nucleotide polymorphism (SNP) rs6265 has been identified on the coding sequence of human BDNF located at 11p13. The SNP rs6265 is a single base mutation with an adenine instead of a guanine at position 196 (G196A), resulting in the amino acid substitution Val66Met. This polymorphism only exists in humans and has been associated with a plethora of effects ranging from molecular, cellular and brain structural modifications in association with deficits in social and cognitive functions. To date, the literature on Val66Met polymorphism describes a complex and often conflicting pattern of effects. In this review, we attempt to provide a unifying model of the Val66Met effects. We discuss the clinical evidence of the association between Val66Met and memory deficits, as well as the molecular mechanisms involved including the reduced transport of BDNF mRNA to the dendrites as well as the reduced processing and secretion of BDNF protein through the regulated secretory pathway. PMID:24198753

  17. Regulation of Methane Oxidation in a Freshwater Wetland by Water Table Changes and Anoxia

    NASA Technical Reports Server (NTRS)

    Roslev, Peter; King, Gary M.

    1996-01-01

    The effects of water table fluctuations and anoxia on methane emission and methane oxidation were studied in a freshwater marsh. Seasonal aerobic methane oxidation rates varied between 15% and 76% of the potential diffusive methane flux (diffusive flux in the absence of aerobic oxidation). On an annual basis, approximately 43% of the methane diffusing into the oxic zone was oxidized before reaching the atmosphere. The highest methane oxidation was observed when the water table was below the peat surface. This was confirmed in laboratory experiments where short-term decreases in water table levels increased methane oxidation but also net methane emission. Although methane emission was generally not observed during the winter, stems of soft rush (Juncus effusus) emitted methane when the marsh was ice covered. Indigenous methanotrophic bacteria from the wetiand studied were relatively anoxia tolerant. Surface peat incubated under anoxic conditions maintained 30% of the initial methane oxidation capacity after 32 days of anoxia. Methanotrophs from anoxic peat initiated aerobic methane oxidation relatively quickly after oxygen addition (1-7 hours). These results were supported by culture experiments with the methanotroph Methylosinus trichosporium OB3b. This organism maintained a greater capacity for aerobic methane oxidation when starved under anoxic compared to oxic conditions. Anoxic incubation of M. trichosporium OB3b in the presence of sulfide (2 mM) and a low redox potential (-110 mV) did not decrease the capacity for methane oxidation relative to anoxic cultures incubated without sulfide. The results suggest that aerobic methane oxidation was a major regulator of seasonal methane emission front the investigated wetland. The observed water table fluctuations affected net methane oxidation presumably due to associated changes in oxygen gradients. However, changes from oxic to anoxic conditions in situ had relatively little effect on survival of the methanotrophic

  18. A pilot study on the effect of cognitive training on BDNF serum levels in individuals with Parkinson’s disease

    PubMed Central

    Angelucci, Francesco; Peppe, Antonella; Carlesimo, Giovanni A.; Serafini, Francesca; Zabberoni, Silvia; Barban, Francesco; Shofany, Jacob; Caltagirone, Carlo; Costa, Alberto

    2015-01-01

    Parkinson’s disease (PD) patients, besides motor dysfunctions, may also display mild cognitive deficits (MCI) which increase with disease progression. The neurotrophin brain-derived neurotrophic factor (BDNF) plays a role in the survival of dopaminergic neurons and in the regulation of synaptic connectivity. Moreover, the brain and peripheral level of this protein may be significantly reduced in PD patients. These data suggest that a cognitive rehabilitation protocol aimed at restoring cognitive deficits in PD patients may also involve changes in this neurotrophin. Thus, in this pilot study we evaluated the effect of a cognitive rehabilitation protocol focused on the training of executive functioning and measured BDNF serum levels in a group of PD patients with mild cognitive impairment, as compared to the effect of a placebo treatment (n = 7/8 group). The results showed that PD patients undergoing the cognitive rehabilitation, besides improving their cognitive performance as measured with the Zoo Map Test, also displayed increased serum BDNF levels as compared to the placebo group. These findings suggest that BDNF serum levels may represent a biomarker of the effects of cognitive rehabilitation in PD patients affected by MCI. However, the functional significance of this increase in PD as well as other neuropathological conditions remains to be determined. PMID:25852518

  19. Enriched Environment Attenuates Surgery-Induced Impairment of Learning, Memory, and Neurogenesis Possibly by Preserving BDNF Expression.

    PubMed

    Fan, Dan; Li, Jun; Zheng, Bin; Hua, Lei; Zuo, Zhiyi

    2016-01-01

    Postoperative cognitive dysfunction (POCD) is a significant clinical syndrome. Neurogenesis contributes to cognition. It is known that enriched environment (EE) enhances neurogenesis. We determined whether EE attenuated surgery-induced cognitive impairment and whether growth factors and neurogenesis played a role in the EE effect. Eight-week-old C57BL/6J mice were subjected to carotid artery exposure. Their learning and memory were assessed by Barnes maze, and fear conditioning started 2 weeks after the surgery. Growth factor expression and cell genesis were determined at various times after the surgery. Surgery increased the time for the mice to identify the target hole in the Barnes maze and reduced context-related freezing behavior. Surgery also reduced the expression of brain-derived neurotrophic factor (BDNF) and neurogenesis in the hippocampus. These effects were attenuated by EE. EE also attenuated surgery-induced reduction of phosphorylated/activated tropomyosin-related kinase B (TrkB) and extracellular signal-regulated kinases (ERK), components of BDNF signaling pathway. ANA-12, a selective TrkB antagonist, blocked the effects of EE on cognition, phosphorylation of TrkB and ERK, and neurogenesis. These results provide initial evidence that surgery reduces BDNF expression and neurogenesis in the hippocampus. Our results suggest that EE reduces surgery-induced impairment of learning, memory, and neurogenesis by preserving BDNF expression.

  20. Increased expression of BDNF transcript with exon VI in hippocampi of patients with pharmaco-resistant temporal lobe epilepsy.

    PubMed

    Martínez-Levy, G A; Rocha, L; Lubin, F D; Alonso-Vanegas, M A; Nani, A; Buentello-García, R M; Pérez-Molina, R; Briones-Velasco, M; Recillas-Targa, F; Pérez-Molina, A; San-Juan, D; Cienfuegos, J; Cruz-Fuentes, C S

    2016-02-01

    A putative role of the brain-derived neurotrophic factor (BDNF) in epilepsy has emerged from in vitro and animal models, but few studies have analyzed human samples. We assessed the BDNF expression of transcripts with exons I (BDNFI), II (BDNFII), IV (BDNFIV) and VI (BDNFVI) and methylation levels of promoters 4 and 6 in the hippocampi of patients with pharmaco-resistant temporal lobe epilepsy (TLE) (n=24). Hippocampal sclerosis (HS) and pre-surgical pharmacological treatment were considered as clinical independent variables. A statistical significant increase for the BDNFVI (p<0.05) was observed in TLE patients compared to the autopsy control group (n=8). BDNFVI was also increased in anxiety/depression TLE (N=4) when compared to autopsies or to the remaining group of patients (p<0.05). In contrast, the use of the antiepileptic drug Topiramate (TPM) (N=3) was associated to a decrease in BDNFVI expression (p<0.05) when compared to the remaining group of patients. Methylation levels at the BDNF promoters 4 and 6 were similar between TLE and autopsies and in relation to the use of either Sertraline (SRT) or TPM. These results suggest an up-regulated expression of a specific BDNF transcript in patients with TLE, an effect that seems to be dependent on the use of specific drugs. PMID:26621122

  1. Increased expression of BDNF transcript with exon VI in hippocampi of patients with pharmaco-resistant temporal lobe epilepsy.

    PubMed

    Martínez-Levy, G A; Rocha, L; Lubin, F D; Alonso-Vanegas, M A; Nani, A; Buentello-García, R M; Pérez-Molina, R; Briones-Velasco, M; Recillas-Targa, F; Pérez-Molina, A; San-Juan, D; Cienfuegos, J; Cruz-Fuentes, C S

    2016-02-01

    A putative role of the brain-derived neurotrophic factor (BDNF) in epilepsy has emerged from in vitro and animal models, but few studies have analyzed human samples. We assessed the BDNF expression of transcripts with exons I (BDNFI), II (BDNFII), IV (BDNFIV) and VI (BDNFVI) and methylation levels of promoters 4 and 6 in the hippocampi of patients with pharmaco-resistant temporal lobe epilepsy (TLE) (n=24). Hippocampal sclerosis (HS) and pre-surgical pharmacological treatment were considered as clinical independent variables. A statistical significant increase for the BDNFVI (p<0.05) was observed in TLE patients compared to the autopsy control group (n=8). BDNFVI was also increased in anxiety/depression TLE (N=4) when compared to autopsies or to the remaining group of patients (p<0.05). In contrast, the use of the antiepileptic drug Topiramate (TPM) (N=3) was associated to a decrease in BDNFVI expression (p<0.05) when compared to the remaining group of patients. Methylation levels at the BDNF promoters 4 and 6 were similar between TLE and autopsies and in relation to the use of either Sertraline (SRT) or TPM. These results suggest an up-regulated expression of a specific BDNF transcript in patients with TLE, an effect that seems to be dependent on the use of specific drugs.

  2. Dopamine D1–D2 Receptor Heteromer in Dual Phenotype GABA/Glutamate-Coexpressing Striatal Medium Spiny Neurons: Regulation of BDNF, GAD67 and VGLUT1/2

    PubMed Central

    Perreault, Melissa L.; Fan, Theresa; Alijaniaram, Mohammed; O'Dowd, Brian F.; George, Susan R.

    2012-01-01

    In basal ganglia a significant subset of GABAergic medium spiny neurons (MSNs) coexpress D1 and D2 receptors (D1R and D2R) along with the neuropeptides dynorphin (DYN) and enkephalin (ENK). These coexpressing neurons have been recently shown to have a region-specific distribution throughout the mesolimbic and basal ganglia circuits. While the functional relevance of these MSNs remains relatively unexplored, they have been shown to exhibit the unique property of expressing the dopamine D1–D2 receptor heteromer, a novel receptor complex with distinct pharmacology and cell signaling properties. Here we showed that MSNs coexpressing the D1R and D2R also exhibited a dual GABA/glutamate phenotype. Activation of the D1R–D2R heteromer in these neurons resulted in the simultaneous, but differential regulation of proteins involved in GABA and glutamate production or vesicular uptake in the nucleus accumbens (NAc), ventral tegmental area (VTA), caudate putamen and substantia nigra (SN). Additionally, activation of the D1R–D2R heteromer in NAc shell, but not NAc core, differentially altered protein expression in VTA and SN, regions rich in dopamine cell bodies. The identification of a MSN with dual inhibitory and excitatory intrinsic functions provides new insights into the neuroanatomy of the basal ganglia and demonstrates a novel source of glutamate in this circuit. Furthermore, the demonstration of a dopamine receptor complex with the potential to differentially regulate the expression of proteins directly involved in GABAergic inhibitory or glutamatergic excitatory activation in VTA and SN may potentially provide new insights into the regulation of dopamine neuron activity. This could have broad implications in understanding how dysregulation of neurotransmission within basal ganglia contributes to dopamine neuronal dysfunction. PMID:22428025

  3. Oxidative Stress-Related Transcription Factors in the Regulation of Secondary Metabolism

    PubMed Central

    Hong, Sung-Yong; Roze, Ludmila V.; Linz, John E.

    2013-01-01

    There is extensive and unequivocal evidence that secondary metabolism in filamentous fungi and plants is associated with oxidative stress. In support of this idea, transcription factors related to oxidative stress response in yeast, plants, and fungi have been shown to participate in controlling secondary metabolism. Aflatoxin biosynthesis, one model of secondary metabolism, has been demonstrated to be triggered and intensified by reactive oxygen species buildup. An oxidative stress-related bZIP transcription factor AtfB is a key player in coordinate expression of antioxidant genes and genes involved in aflatoxin biosynthesis. Recent findings from our laboratory provide strong support for a regulatory network comprised of at least four transcription factors that bind in a highly coordinated and timely manner to promoters of the target genes and regulate their expression. In this review, we will focus on transcription factors involved in co-regulation of aflatoxin biosynthesis with oxidative stress response in aspergilli, and we will discuss the relationship of known oxidative stress-associated transcription factors and secondary metabolism in other organisms. We will also talk about transcription factors that are involved in oxidative stress response, but have not yet been demonstrated to be affiliated with secondary metabolism. The data support the notion that secondary metabolism provides a secondary line of defense in cellular response to oxidative stress. PMID:23598564

  4. ATM regulation of IL-8 links oxidative stress to cancer cell migration and invasion.

    PubMed

    Chen, Wei-Ta; Ebelt, Nancy D; Stracker, Travis H; Xhemalce, Blerta; Van Den Berg, Carla L; Miller, Kyle M

    2015-06-01

    Ataxia-telangiectasia mutated (ATM) protein kinase regulates the DNA damage response (DDR) and is associated with cancer suppression. Here we report a cancer-promoting role for ATM. ATM depletion in metastatic cancer cells reduced cell migration and invasion. Transcription analyses identified a gene network, including the chemokine IL-8, regulated by ATM. IL-8 expression required ATM and was regulated by oxidative stress. IL-8 was validated as an ATM target by its ability to rescue cell migration and invasion defects in ATM-depleted cells. Finally, ATM-depletion in human breast cancer cells reduced lung tumors in a mouse xenograft model and clinical data validated IL-8 in lung metastasis. These findings provide insights into how ATM activation by oxidative stress regulates IL-8 to sustain cell migration and invasion in cancer cells to promote metastatic potential. Thus, in addition to well-established roles in tumor suppression, these findings identify a role for ATM in tumor progression.

  5. Oxidative Stress, Redox Regulation and Diseases of Cellular Differentiation

    PubMed Central

    Ye, Zhi-Wei; Zhang, Jie; Townsend, Danyelle M.; Tew, Kenneth D.

    2015-01-01

    Background Within cells, there is a narrow concentration threshold that governs whether reactive oxygen species (ROS) induce toxicity or act as second messengers. Scope of review We discuss current understanding of how ROS arise, facilitate cell signaling, cause toxicities and disease related to abnormal cell differentiation and those (primarily) sulfur based pathways that provide nucleophilicity to offset these effects. Primary conclusions Cellular redox homeostasis mediates a plethora of cellular pathways that determine life and death events. For example, ROS intersect with GSH based enzyme pathways to influence cell differentiation, a process integral to normal hematopoiesis, but also affecting a number of diverse cell differentiation related human diseases. Recent attempts to manage such pathologies have focused on intervening in some of these pathways, with the consequence that differentiation therapy targeting redox homeostasis has provided a platform for drug discovery and development. General Significance The balance between electrophilic oxidative stress and protective biomolecular nucleophiles predisposes the evolution of modern life forms. Imbalances of the two can produce aberrant redox homeostasis with resultant pathologies. Understanding the pathways involved provides opportunities to consider interventional strategies. PMID:25445706

  6. Soil formate regulates the fungal nitrous oxide emission pathway.

    PubMed

    Ma, W K; Farrell, R E; Siciliano, S D

    2008-11-01

    Fungal activity is a major driver in the global nitrogen cycle, and mounting evidence suggests that fungal denitrification activity contributes significantly to soil emissions of the greenhouse gas nitrous oxide (N(2)O). The metabolic pathway and oxygen requirement for fungal denitrification are different from those for bacterial denitrification. We hypothesized that the soil N(2)O emission from fungi is formate and O(2) dependent and that land use and landforms could influence the proportion of N(2)O coming from fungi. Using substrate-induced respiration inhibition under anaerobic and aerobic conditions in combination with (15)N gas analysis, we found that formate and hypoxia (versus anaerobiosis) were essential for the fungal reduction of (15)N-labeled nitrate to (15)N(2)O. As much as 65% of soil-emitted N(2)O was attributable to fungi; however, this was found only in soils from water-accumulating landforms. From these results, we hypothesize that plant root exudates could affect N(2)O production from fungi via the proposed formate-dependent pathway. PMID:18791019

  7. Propofol exposure during late stages of pregnancy impairs learning and memory in rat offspring via the BDNF-TrkB signalling pathway.

    PubMed

    Zhong, Liang; Luo, Foquan; Zhao, Weilu; Feng, Yunlin; Wu, Liuqin; Lin, Jiamei; Liu, Tianyin; Wang, Shengqiang; You, Xuexue; Zhang, Wei

    2016-10-01

    The brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) (BDNF-TrkB) signalling pathway plays a crucial role in regulating learning and memory. Synaptophysin provides the structural basis for synaptic plasticity and depends on BDNF processing and subsequent TrkB signalling. Our previous studies demonstrated that maternal exposure to propofol during late stages of pregnancy impaired learning and memory in rat offspring. The purpose of this study is to investigate whether the BDNF-TrkB signalling pathway is involved in propofol-induced learning and memory impairments. Propofol was intravenously infused into pregnant rats for 4 hrs on gestational day 18 (E18). Thirty days after birth, learning and memory of offspring was assessed by the Morris water maze (MWM) test. After the MWM test, BDNF and TrkB transcript and protein levels were measured in rat offspring hippocampus tissues using real-time PCR (RT-PCR) and immunohistochemistry (IHC), respectively. The levels of phosphorylated-TrkB (phospho-TrkB) and synaptophysin were measured by western blot. It was discovered that maternal exposure to propofol on day E18 impaired spatial learning and memory of rat offspring, decreased mRNA and protein levels of BDNF and TrkB, and decreased the levels of both phospho-TrkB and synaptophysin in the hippocampus. Furthermore, the TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) reversed all of the observed changes. Treatment with 7,8-DHF had no significant effects on the offspring that were not exposed to propofol. The results herein indicate that maternal exposure to propofol during the late stages of pregnancy impairs spatial learning and memory of offspring by disturbing the BDNF-TrkB signalling pathway. The TrkB agonist 7,8-DHF might be a potential therapy for learning and memory impairments induced by maternal propofol exposure.

  8. The Physiology of BDNF and Its Relationship with ADHD.

    PubMed

    Liu, De-Yi; Shen, Xue-Mei; Yuan, Fang-Fen; Guo, Ou-Yang; Zhong, Yan; Chen, Jian-Guo; Zhu, Ling-Qiang; Wu, Jing

    2015-12-01

    Brain-derived neurotrophic factor (BDNF) is a major neurotrophin in the central nervous system that plays a critical role in the physiological brain functions via its two independent receptors: tropomyosin-related kinase B (TrkB) and p75, especially in the neurodevelopment. Disrupting of BDNF and its downstream signals has been found in many neuropsychological diseases, including attention-deficit hyperactivity disorder (ADHD), a common mental disorder which is prevalent in childhood. Understanding the physiological functions of BDNF during neural development and its potential relationship with ADHD will help us to elucidate the possible mechanisms of ADHD and to develop therapeutic approaches for this disease. In this review, we summarized the important literatures for the physiological functions of BDNF in the neurodevelopment. We also performed an association study on the functional genetic variation of BDNF and ADHD by a case-control study in the Chinese mainland population and revealed the potential correlation between BDNF and ADHD which needs further research to confirm.

  9. Requirement for BDNF in the reconsolidation of fear extinction.

    PubMed

    Radiske, Andressa; Rossato, Janine I; Köhler, Cristiano A; Gonzalez, Maria Carolina; Medina, Jorge H; Cammarota, Martín

    2015-04-22

    Therapies based on the impairment of reconsolidation or the enhancement of extinction offer the possibility of decreasing the persistent recollection of distressing memories. However, the direct interplay between reconsolidation and extinction has rarely been considered. Previously, we reported that reactivation induces reconsolidation of fear extinction memory. Here, using a step-down inhibitory avoidance learning paradigm in rats, we show that intrahippocampus infusion of function-blocking anti-BDNF antibody immediately or 6 h after extinction memory reactivation impairs the reconsolidation of extinction. Extinction memory reactivation increases proBDNF, BDNF, and tropomyosin receptor kinase B (TrkB) phosphorylation levels in dorsal CA1, while blocking BDNF maturation in the hippocampus with plasminogen activator inhibitor 1 hinders the persistence of extinction and induces the recurrence of fear. Moreover, coinfusion of recombinant BDNF (0.25 μg/side) after extinction memory reactivation impedes the recovery of the avoidance response induced by inhibiting gene expression and protein synthesis in the dorsal hippocampus. Our findings unravel a new role for BDNF, suggesting that this neurotrophin is necessary and sufficient to maintain the reactivated fear extinction engram.

  10. Nitric oxide regulates retinal vascular tone in humans.

    PubMed

    Dorner, Guido T; Garhofer, Gerhard; Kiss, Barbara; Polska, Elzbieta; Polak, Kaija; Riva, Charles E; Schmetterer, Leopold

    2003-08-01

    The purpose of the present study was to investigate the contribution of basal nitric oxide (NO) on retinal vascular tone in humans. In addition, we set out to elucidate the role of NO in flicker-induced retinal vasodilation in humans. Twelve healthy young subjects were studied in a three-way crossover design. Subjects received an intravenous infusion of either placebo or NG-monomethyl-L-arginine (L-NMMA; 3 or 6 mg/kg over 5 min), an inhibitor of NO synthase. Thereafter, diffuse luminance flicker was consecutively performed for 16, 32, and 64 s at a frequency of 8 Hz. The effect of L-NMMA on retinal arterial and venous diameter was assessed under resting conditions and during the hyperemic flicker response. Retinal vessel diameter was measured with a Zeiss retinal vessel analyzer. L-NMMA significantly reduced arterial diameter (3 mg/kg: -2%; 6 mg/kg: -4%, P < 0.001) and venous diameter (3 mg/kg: -5%; 6 mg/kg: -8%, P < 0.001). After placebo infusion, flicker induced a significant increase in retinal vessel diameter (P < 0.001). At a flicker duration of 64 s, arterial diameter increased by 4% and venous diameter increased by 3%. L-NMMA did not abolish these hyperemic responses but blunted venous vasodilation (P = 0.017) and arterial vasodilation (P = 0.02) in response to flicker stimulation. Our data indicate that NO contributes to basal retinal vascular tone in humans. In addition, NO appears to play a role in flicker-induced vasodilation of the human retinal vasculature.

  11. Overexpression of protochlorophyllide oxidoreductase C regulates oxidative stress in Arabidopsis.

    PubMed

    Pattanayak, Gopal K; Tripathy, Baishnab C

    2011-01-01

    Light absorbed by colored intermediates of chlorophyll biosynthesis is not utilized in photosynthesis; instead, it is transferred to molecular oxygen, generating singlet oxygen ((1)O(2)). As there is no enzymatic detoxification mechanism available in plants to destroy (1)O(2), its generation should be minimized. We manipulated the concentration of a major chlorophyll biosynthetic intermediate i.e., protochlorophyllide in Arabidopsis by overexpressing the light-inducible protochlorophyllide oxidoreductase C (PORC) that effectively phototransforms endogenous protochlorophyllide to chlorophyllide leading to minimal accumulation of the photosensitizer protochlorophyllide in light-grown plants. In PORC overexpressing (PORCx) plants exposed to high-light, the (1)O(2) generation and consequent malonedialdehyde production was minimal and the maximum quantum efficiency of photosystem II remained unaffected demonstrating that their photosynthetic apparatus and cellular organization were intact. Further, PORCx plants treated with 5-aminolevulinicacid when exposed to light, photo-converted over-accumulated protochlorophyllide to chlorophyllide, reduced the generation of (1)O(2) and malonedialdehyde production and reduced plasma membrane damage. So PORCx plants survived and bolted whereas, the 5-aminolevulinicacid-treated wild-type plants perished. Thus, overexpression of PORC could be biotechnologically exploited in crop plants for tolerance to (1)O(2)-induced oxidative stress, paving the use of 5-aminolevulinicacid as a selective commercial light-activated biodegradable herbicide. Reduced protochlorophyllide content in PORCx plants released the protochlorophyllide-mediated feed-back inhibition of 5-aminolevulinicacid biosynthesis that resulted in higher 5-aminolevulinicacid production. Increase of 5-aminolevulinicacid synthesis upregulated the gene and protein expression of several downstream chlorophyll biosynthetic enzymes elucidating a regulatory net work of expression of

  12. Bcl-2 family proteins as regulators of oxidative stress.

    PubMed

    Susnow, Nathan; Zeng, Liyun; Margineantu, Daciana; Hockenbery, David M

    2009-02-01

    The Bcl-2 family of proteins includes pro- and anti-apoptotic factors acting at mitochondrial and microsomal membranes. An impressive body of published studies, using genetic and physical reconstitution experiments in model organisms and cell lines, supports a view of Bcl-2 proteins as the critical arbiters of apoptotic cell death decisions in most circumstances (excepting CD95 death receptor signaling in Type I cells). Evasion of apoptosis is one of the hallmarks of cancer [Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57-70], relevant to tumorigenesis as well as resistance to cytotoxic drugs, and deregulation of Bcl-2 proteins is observed in many cancers [Manion MK, Hockenbery DM. Targeting BCL-2-related proteins in cancer therapy. Cancer Biol Ther. 2003;2:S105-14; Olejniczak ET, Van Sant C, Anderson MG, Wang G, Tahir SK, Sauter G, et al. Integrative genomic analysis of small-cell lung carcinoma reveals correlates of sensitivity to bcl-2 antagonists and uncovers novel chromosomal gains. Mol Cancer Res. 2007;5:331-9]. The rekindled interest in aerobic glycolysis as a cancer trait raises interesting questions as to how metabolic changes in cancer cells are integrated with other essential alterations in cancer, e.g. promotion of angiogenesis and unbridled growth signals. Apoptosis induced by multiple different signals involves loss of mitochondrial homeostasis, in particular, outer mitochondrial membrane integrity, releasing cytochrome c and other proteins from the intermembrane space. This integrative process, controlled by Bcl-2 family proteins, is also influenced by the metabolic state of the cell. In this review, we consider the role of reactive oxygen species, a metabolic by-product, in the mitochondrial pathway of apoptosis, and the relationships between Bcl-2 functions and oxidative stress. PMID:19138742

  13. Selective reduction of striatal mature BDNF without induction of proBDNF in the zQ175 mouse model of Huntington’s disease

    PubMed Central

    Ma, Qian; Yang, Jianmin; Li, Thomas; Milner, Teresa A.; Hempstead, Barbara L.

    2016-01-01

    Huntington’s disease (HD) is a neurodegenerative disorder characterized by massive loss of medium spiny neurons in the striatum. However, the mechanisms by which mutant huntingtin leads to this selective neuronal death remain incompletely understood. Brain-derived neurotrophic factor (BDNF) has been shown to be neuroprotective on HD striatal neurons both in vitro and in vivo. ProBDNF, the precursor of mature BDNF (mBDNF), also can be secreted but promotes apoptosis of neurons expressing p75NTR and sortilin receptors. Although a reduction of total striatal BDNF protein has been reported in HD patients and mouse models, it remains unclear whether conversion of proBDNF to mBDNF is altered in HD, and whether the proBDNF receptors, p75NTR and sortilin are dysregulated, leading to impaired striatal neuron survival. To test these hypotheses, we generated bdnf-HA knock-in (KI) mice on the zQ175 HD background to accurately quantitate the levels of both proBDNF and mBDNF in the HD striatum. In aged zQ175 HD mice, we observed a significant loss of mBDNF and decreased TrkB activation, but no increase of proBDNF or p75NTR levels either in the sensorimotor cortex or the striatum. However, immunoreactivities of p75NTR and sortilin receptor are both increased in immature striatal oligodendrocytes, which associate with significant myelin defects in the HD striatum. Taken together, the present study indicates that diminished mature BDNF trophic signaling through the TrkB receptor, rather than an induction in proBDNF, is a main contributing factor to the vulnerability of striatal neurons in the zQ175 HD mouse model. PMID:26282324

  14. Glucocorticoid regulation of brain-derived neurotrophic factor: relevance to hippocampal structural and functional plasticity.

    PubMed

    Suri, D; Vaidya, V A

    2013-06-01

    Glucocorticoids serve as key stress response hormones that facilitate stress coping. However, sustained glucocorticoid exposure is associated with adverse consequences on the brain, in particular within the hippocampus. Chronic glucocorticoid exposure evokes neuronal cell damage and dendritic atrophy, reduces hippocampal neurogenesis and impairs synaptic plasticity. Glucocorticoids also alter expression and signaling of the neurotrophin, brain-derived neurotrophic factor (BDNF). Since BDNF is known to promote neuroplasticity, enhance cell survival, increase hippocampal neurogenesis and cellular excitability, it has been hypothesized that specific adverse effects of glucocorticoids may be mediated by attenuating BDNF expression and signaling. The purpose of this review is to summarize the current state of literature examining the influence of glucocorticoids on BDNF, and to address whether specific effects of glucocorticoids arise through perturbation of BDNF signaling. We integrate evidence of glucocorticoid regulation of BDNF at multiple levels, spanning from the well-documented glucocorticoid-induced changes in BDNF mRNA to studies examining alterations in BDNF receptor-mediated signaling. Further, we delineate potential lines of future investigation to address hitherto unexplored aspects of the influence of glucocorticoids on BDNF. Finally, we discuss the current understanding of the contribution of BDNF to the modulation of structural and functional plasticity by glucocorticoids, in particular in the context of the hippocampus. Understanding the mechanistic crosstalk between glucocorticoids and BDNF holds promise for the identification of potential therapeutic targets for disorders associated with the dysfunction of stress hormone pathways.

  15. Methamphetamine differentially affects BDNF and cell death factors in anatomically defined regions of the hippocampus

    PubMed Central

    Galinato, Melissa H.; Orio, Laura; Mandyam, Chitra D.

    2014-01-01

    Methamphetamine exposure reduces hippocampal long-term potentiation (LTP) and neurogenesis and these alterations partially contribute to hippocampal maladaptive plasticity. The potential mechanisms underlying methamphetamine-induced maladaptive plasticity were identified in the present study. Expression of brain-derived neurotrophic factor (BDNF; a regulator of LTP and neurogenesis), and its receptor tropomyosin-related kinase B (TrkB) were studied in the dorsal and ventral hippocampal tissue lysates in rats that intravenously self-administered methamphetamine in a limited access (1 h/day) or extended access (6 h/day) paradigm for 17 days post baseline sessions. Extended access methamphetamine enhanced expression of BDNF with significant effects observed in the dorsal and ventral hippocampus. Methamphetamine-induced enhancements in BDNF expression were not associated with TrkB receptor activation as indicated by phospho (p)-TrkB-706 levels. Conversely, methamphetamine produced hypophosphorylation of NMDA receptor subunit 2B (GluN2B) at Tyr-1472 in the ventral hippocampus, indicating reduced receptor activation. In addition, methamphetamine enhanced expression of anti-apoptotic protein Bcl-2 and reduced pro-apoptotic protein Bax levels in the ventral hippocampus, suggesting a mechanism for reducing cell death. Analysis of Akt, a pro-survival kinase that suppresses apoptotic pathways and pAkt at Ser-473 demonstrated that extended access methamphetamine reduces Akt expression in the ventral hippocampus. These data reveal that alterations in Bcl-2 and Bax levels by methamphetamine were not associated with enhanced Akt expression. Given that hippocampal function and neurogenesis vary in a subregion-specific fashion, where dorsal hippocampus regulates spatial processing and has higher levels of neurogenesis, whereas ventral hippocampus regulates anxiety-related behaviors, these data suggest that methamphetamine self-administration initiates distinct allostatic changes in

  16. AMP-Activated Protein Kinase Regulates Oxidative Metabolism in Caenorhabditis elegans through the NHR-49 and MDT-15 Transcriptional Regulators.

    PubMed

    Moreno-Arriola, Elizabeth; El Hafidi, Mohammed; Ortega-Cuéllar, Daniel; Carvajal, Karla

    2016-01-01

    Cellular energy regulation relies on complex signaling pathways that respond to fuel availability and metabolic demands. Dysregulation of these networks is implicated in the development of human metabolic diseases such as obesity and metabolic syndrome. In Caenorhabditis elegans the AMP-activated protein kinase, AAK, has been associated with longevity and stress resistance; nevertheless its precise role in energy metabolism remains elusive. In the present study, we find an evolutionary conserved role of AAK in oxidative metabolism. Similar to mammals, AAK is activated by AICAR and metformin and leads to increased glycolytic and oxidative metabolic fluxes evidenced by an increase in lactate levels and mitochondrial oxygen consumption and a decrease in total fatty acids and lipid storage, whereas augmented glucose availability has the opposite effects. We found that these changes were largely dependent on the catalytic subunit AAK-2, since the aak-2 null strain lost the observed metabolic actions. Further results demonstrate that the effects due to AAK activation are associated to SBP-1 and NHR-49 transcriptional factors and MDT-15 transcriptional co-activator, suggesting a regulatory pathway that controls oxidative metabolism. Our findings establish C. elegans as a tractable model system to dissect the relationship between distinct molecules that play a critical role in the regulation of energy metabolism in human metabolic diseases.

  17. AMP-Activated Protein Kinase Regulates Oxidative Metabolism in Caenorhabditis elegans through the NHR-49 and MDT-15 Transcriptional Regulators

    PubMed Central

    Moreno-Arriola, Elizabeth; EL Hafidi, Mohammed; Ortega-Cuéllar, Daniel; Carvajal, Karla

    2016-01-01

    Cellular energy regulation relies on complex signaling pathways that respond to fuel availability and metabolic demands. Dysregulation of these networks is implicated in the development of human metabolic diseases such as obesity and metabolic syndrome. In Caenorhabditis elegans the AMP-activated protein kinase, AAK, has been associated with longevity and stress resistance; nevertheless its precise role in energy metabolism remains elusive. In the present study, we find an evolutionary conserved role of AAK in oxidative metabolism. Similar to mammals, AAK is activated by AICAR and metformin and leads to increased glycolytic and oxidative metabolic fluxes evidenced by an increase in lactate levels and mitochondrial oxygen consumption and a decrease in total fatty acids and lipid storage, whereas augmented glucose availability has the opposite effects. We found that these changes were largely dependent on the catalytic subunit AAK-2, since the aak-2 null strain lost the observed metabolic actions. Further results demonstrate that the effects due to AAK activation are associated to SBP-1 and NHR-49 transcriptional factors and MDT-15 transcriptional co-activator, suggesting a regulatory pathway that controls oxidative metabolism. Our findings establish C. elegans as a tractable model system to dissect the relationship between distinct molecules that play a critical role in the regulation of energy metabolism in human metabolic diseases. PMID:26824904

  18. AMP-Activated Protein Kinase Regulates Oxidative Metabolism in Caenorhabditis elegans through the NHR-49 and MDT-15 Transcriptional Regulators.

    PubMed

    Moreno-Arriola, Elizabeth; El Hafidi, Mohammed; Ortega-Cuéllar, Daniel; Carvajal, Karla

    2016-01-01

    Cellular energy regulation relies on complex signaling pathways that respond to fuel availability and metabolic demands. Dysregulation of these networks is implicated in the development of human metabolic diseases such as obesity and metabolic syndrome. In Caenorhabditis elegans the AMP-activated protein kinase, AAK, has been associated with longevity and stress resistance; nevertheless its precise role in energy metabolism remains elusive. In the present study, we find an evolutionary conserved role of AAK in oxidative metabolism. Similar to mammals, AAK is activated by AICAR and metformin and leads to increased glycolytic and oxidative metabolic fluxes evidenced by an increase in lactate levels and mitochondrial oxygen consumption and a decrease in total fatty acids and lipid storage, whereas augmented glucose availability has the opposite effects. We found that these changes were largely dependent on the catalytic subunit AAK-2, since the aak-2 null strain lost the observed metabolic actions. Further results demonstrate that the effects due to AAK activation are associated to SBP-1 and NHR-49 transcriptional factors and MDT-15 transcriptional co-activator, suggesting a regulatory pathway that controls oxidative metabolism. Our findings establish C. elegans as a tractable model system to dissect the relationship between distinct molecules that play a critical role in the regulation of energy metabolism in human metabolic diseases. PMID:26824904

  19. 40 CFR 52.125 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) of the Clean Air Act. (2) The approval of paragraphs A and F of regulation 7-1-4.2 as to coal fired...: Sulfur oxides. 52.125 Section 52.125 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... since the control strategy does not analyze the impact of smelter fugitive emissions on ambient...

  20. 40 CFR 52.125 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) of the Clean Air Act. (2) The approval of paragraphs A and F of regulation 7-1-4.2 as to coal fired...: Sulfur oxides. 52.125 Section 52.125 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... since the control strategy does not analyze the impact of smelter fugitive emissions on ambient...

  1. 40 CFR 52.125 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) of the Clean Air Act. (2) The approval of paragraphs A and F of regulation 7-1-4.2 as to coal fired...: Sulfur oxides. 52.125 Section 52.125 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... since the control strategy does not analyze the impact of smelter fugitive emissions on ambient...

  2. 40 CFR 52.125 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) of the Clean Air Act. (2) The approval of paragraphs A and F of regulation 7-1-4.2 as to coal fired...: Sulfur oxides. 52.125 Section 52.125 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... since the control strategy does not analyze the impact of smelter fugitive emissions on ambient...

  3. Chronic stress-induced memory deficits are reversed by regular exercise via AMPK-mediated BDNF induction.

    PubMed

    Kim, D-M; Leem, Y-H

    2016-06-01

    Chronic stress has a detrimental effect on neurological insults, psychiatric deficits, and cognitive impairment. In the current study, chronic stress was shown to impair learning and memory functions, in addition to reducing in hippocampal Adenosine monophosphate-activated protein kinase (AMPK) activity. Similar reductions were also observed for brain-derived neurotrophic factor (BDNF), synaptophysin, and post-synaptic density-95 (PSD-95) levels, all of which was counter-regulated by a regime of regular and prolonged exercise. A 21-day restraint stress regimen (6 h/day) produced learning and memory deficits, including reduced alternation in the Y-maze and decreased memory retention in the water maze test. These effects were reversed post-administration by a 3-week regime of treadmill running (19 m/min, 1 h/day, 6 days/week). In hippocampal primary culture, phosphorylated-AMPK (phospho-AMPK) and BDNF levels were enhanced in a dose-dependent manner by 5-amimoimidazole-4-carboxamide riboside (AICAR) treatment, and AICAR-treated increase was blocked by Compound C. A 7-day period of AICAR intraperitoneal injections enhanced alternation in the Y-maze test and reduced escape latency in water maze test, along with enhanced phospho-AMPK and BDNF levels in the hippocampus. The intraperitoneal injection of Compound C every 4 days during exercise intervention diminished exercise-induced enhancement of memory improvement during the water maze test in chronically stressed mice. Also, chronic stress reduced hippocampal neurogenesis (lower Ki-67- and doublecortin-positive cells) and mRNA levels of BDNF, synaptophysin, and PSD-95. Our results suggest that regular and prolonged exercise can alleviate chronic stress-induced hippocampal-dependent memory deficits. Hippocampal AMPK-engaged BDNF induction is at least in part required for exercise-induced protection against chronic stress. PMID:26975895

  4. Exposure to sub-chronic unpredictable stress accounts for antidepressant-like effects in hamsters treated with BDNF and CNQX.

    PubMed

    Alò, Raffaella; Mele, Maria; Fazzari, Gilda; Avolio, Ennio; Canonaco, Marcello

    2015-09-01

    Recent evidences indicate that cerebral neurotrophic factors like vascular endothelial growth factor plus signaling pathways of the glutamatergic neuroreceptor system (L-Glu) are determinant modulators of depression-like states. In the present study, the type of interaction(s) exerted by the AMPAergic antagonist, 6-cyano-7-nitroquinoxalin-2,3-dione (CNQX) and the brain derived neurotrophic factor (BDNF) on depression-like behaviors in hamsters (Mesocricetus auratus) were investigated. Sub-chronic administration of BDNF in the hippocampal dentate gyrus (DG) of stressed hamsters was responsible for very evident (p<0.001) sucrose consumption along with notably elevated swimming bouts and reduced immobility states in the forced swim test (FST). Meanwhile, CNQX displayed evident anxiolytic actions in the elevated plus maze (EPM) as shown by marked (p<0.01) increases of movements to and from both arms. Interestingly cerebral neurodegeneration events, which are viewed during depression states, were reduced following treatment with both compounds. Contextually, marked mRNA expression levels of the BDNF receptor (tropomyosin-related kinase B; TrkB) were detected in DG and the oriens-pyramidalis of HIP (Or-Py) while a moderate (p<0.05) up-regulation was registered in the amygdalar central nucleus (CeA) and the hypothalamic ventromedial nucleus (VMH) of hamsters treated with BDNF. Similarly, this treatment caused moderate increases of the major stress protein (Hsp70) in DG and Or-Py. Conversely, while CNQX induced similar TrkB expression levels, it instead accounted for a moderate reduction of Hsp70 mRNAs in the same brain areas. Overall these results support crucial roles played by BDNF and AMPAergic neurosignaling mechanisms during distinct adaptive responses of depression- and anxiety-like states in hamsters.

  5. Involuntary, Forced and Voluntary Exercises Equally Attenuate Neurocognitive Deficits in Vascular Dementia by the BDNF-pCREB Mediated Pathway.

    PubMed

    Lin, Yangyang; Lu, Xiao; Dong, Juntao; He, Xiaokuo; Yan, Tiebin; Liang, Huiying; Sui, Minghong; Zheng, Xiuyuan; Liu, Huihua; Zhao, Jingpu; Lu, Xinxin

    2015-09-01

    A rat model of vascular dementia was used to compare the effects of involuntary exercise induced by functional electrical stimulation (FES), forced exercise and voluntary exercise on the recovery of cognitive function recovery and its underlying mechanisms. In an involuntary exercise (I-EX) group, FES was used to induce involuntary gait-like running on ladder at 12 m/min. A forced exercise group (F-EX) and a voluntary exercise group (V-EX) exercised by wheel running. The Barnes maze was used for behavioral assessment. Brain-derived neurotrophic factor (BDNF), phosphorylated extracellular signal-regulated kinase 1 and 2 (ERK1/2) and cAMP response element binding protein (CREB) positive cells in hippocampal CA1, CA2/3 and dentate gyrus (DG) regions were evaluated using immunohistochemical methods. Western blotting was used to assess the levels of BDNF, phosphorylated protein kinase B (Akt), tropomyosin receptor kinase B (TrkB), mitogen-activated protein kinase 1 and 2 (MEK1/2), ERK1/2 and CREB in BDNF-pCREB signaling in the hippocampus and prefrontal cortex. Involuntary, forced and voluntary exercises were all found to reverse the cognitive deficits of vascular dementia with about equal effectiveness. The number of BDNF, pCREB and pERK1/2 immunopositive cells was significantly increased in the hippocampal CA1, CA2/3 and DG regions in all three exercise groups. In addition, involuntary exercise activated BDNF and the phosphorylation of Akt, TrkB, MEK1/2, ERK1/2 and CREB in the hippocampus and prefrontal cortex equally as well as voluntary or forced exercise. These results suggest that involuntary exercise induced by FES may be as beneficial for alleviating cognitive deficits after cerebral ischemia. PMID:26240057

  6. Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism affects sympathetic tone in a gender-specific way.

    PubMed

    Chang, Chuan-Chia; Chang, Hsin-An; Chen, Tien-Yu; Fang, Wen-Hui; Huang, San-Yuan

    2014-09-01

    The Val/Val genotype of the brain-derived neurotrophic factor (BDNF) polymorphism (Val66Met) has been reported to affect human anxiety-related phenotypes. Substantial research has demonstrated that anxiety is associated with sympathetic activation, while sex steroid hormones have been shown to exert differential actions in regulating BDNF expression. Thus, we examined whether the BDNF variant modulates autonomic function in a gender-dependent manner. From 708 adults initially screened for medical and psychiatric illnesses, a final cohort of 583 drug-free healthy Han Chinese (355 males, 228 females; age 34.43±8.42 years) was recruited for BDNF genotyping (Val/Val: 136, 23.3%, Val/Met: 294, 50.4%, and Met/Met: 153, 26.2%). Time- and frequency-domain analyses of heart rate variability (HRV) were used to assess autonomic outflow to the heart. Significant genotype-by-gender interaction effects were found on HRV indices. Even after adjusting for possible confounders, male participants bearing the Val/Val genotype had significant increases in low frequency (LF), LF% and LF/high frequency (HF) ratio, indicating altered sympathovagal balance with increased sympathetic modulation, compared to male Met/Met homozygotes. Females, however, showed an opposite but non-significant pattern. These results suggest that the studied BDNF polymorphism is associated with sympathetic control in a gender-specific way. The findings here support the view that male subjects with the Val/Val genotype have increased risk of anxiety by association with sympathetic activation.

  7. Chronic stress-induced memory deficits are reversed by regular exercise via AMPK-mediated BDNF induction.

    PubMed

    Kim, D-M; Leem, Y-H

    2016-06-01

    Chronic stress has a detrimental effect on neurological insults, psychiatric deficits, and cognitive impairment. In the current study, chronic stress was shown to impair learning and memory functions, in addition to reducing in hippocampal Adenosine monophosphate-activated protein kinase (AMPK) activity. Similar reductions were also observed for brain-derived neurotrophic factor (BDNF), synaptophysin, and post-synaptic density-95 (PSD-95) levels, all of which was counter-regulated by a regime of regular and prolonged exercise. A 21-day restraint stress regimen (6 h/day) produced learning and memory deficits, including reduced alternation in the Y-maze and decreased memory retention in the water maze test. These effects were reversed post-administration by a 3-week regime of treadmill running (19 m/min, 1 h/day, 6 days/week). In hippocampal primary culture, phosphorylated-AMPK (phospho-AMPK) and BDNF levels were enhanced in a dose-dependent manner by 5-amimoimidazole-4-carboxamide riboside (AICAR) treatment, and AICAR-treated increase was blocked by Compound C. A 7-day period of AICAR intraperitoneal injections enhanced alternation in the Y-maze test and reduced escape latency in water maze test, along with enhanced phospho-AMPK and BDNF levels in the hippocampus. The intraperitoneal injection of Compound C every 4 days during exercise intervention diminished exercise-induced enhancement of memory improvement during the water maze test in chronically stressed mice. Also, chronic stress reduced hippocampal neurogenesis (lower Ki-67- and doublecortin-positive cells) and mRNA levels of BDNF, synaptophysin, and PSD-95. Our results suggest that regular and prolonged exercise can alleviate chronic stress-induced hippocampal-dependent memory deficits. Hippocampal AMPK-engaged BDNF induction is at least in part required for exercise-induced protection against chronic stress.

  8. Apolipoprotein D is involved in the mechanisms regulating protection from oxidative stress.

    PubMed

    Ganfornina, Maria D; Do Carmo, Sonia; Lora, Jose M; Torres-Schumann, Sonia; Vogel, Marci; Allhorn, Maria; González, Constancio; Bastiani, Michael J; Rassart, Eric; Sanchez, Diego

    2008-08-01

    Many nervous system pathologies are associated with increased levels of apolipoprotein D (ApoD), a lipocalin also expressed during normal development and aging. An ApoD homologous gene in Drosophila, Glial Lazarillo, regulates resistance to stress, and neurodegeneration in the aging brain. Here we study for the first time the protective potential of ApoD in a vertebrate model organism. Loss of mouse ApoD function increases the sensitivity to oxidative stress and the levels of brain lipid peroxidation, and impairs locomotor and learning abilities. Human ApoD overexpression in the mouse brain produces opposite effects, increasing survival and preventing the raise of brain lipid peroxides after oxidant treatment. These observations, together with its transcriptional up-regulation in the brain upon oxidative insult, identify ApoD as an acute response protein with a protective and therefore beneficial function mediated by the control of peroxidated lipids.

  9. Apolipoprotein D is involved in the mechanisms regulating protection from oxidative stress

    PubMed Central

    Ganfornina, Maria D.; Do Carmo, Sonia; Lora, Jose M.; Torres-Schumann, Sonia; Vogel, Marci; Allhorn, Maria; González, Constancio; Bastiani, Michael J.; Rassart, Eric; Sanchez, Diego

    2008-01-01

    Summary Many nervous system pathologies are associated with increased levels of Apolipoprotein D (ApoD), a lipocalin also expressed during normal development and aging. An ApoD homologous gene in Drosophila, Glial Lazarillo, regulates resistance to stress, and neurodegeneration in the aging brain. Here we study for the first time the protecting potential of ApoD in a vertebrate model organism. Loss of mouse ApoD function increases the sensitivity to oxidative stress and the levels of brain lipid peroxidation, and impairs locomotor and learning abilities. Human ApoD over-expression in the mouse brain produces opposite effects, increasing survival and preventing the raise of brain lipid peroxides after oxidant treatment. These observations, together with its transcriptional up-regulation in the brain upon oxidative insult, identify ApoD as an acute response protein with a protective and therefore beneficial function mediated by the control of peroxidated lipids. PMID:18419796

  10. Regulation of skeletal muscle lipolysis and oxidative metabolism by the co-lipase CGI-58.

    PubMed

    Badin, Pierre-Marie; Loubière, Camille; Coonen, Maarten; Louche, Katie; Tavernier, Geneviève; Bourlier, Virginie; Mairal, Aline; Rustan, Arild C; Smith, Steven R; Langin, Dominique; Moro, Cedric

    2012-05-01

    We investigated here the specific role of CGI-58 in the regulation of energy metabolism in skeletal muscle. We first examined CGI-58 protein expression in various muscle types in mice, and next modulated CGI-58 expression during overexpression and knockdown studies in human primary myotubes and evaluated the consequences on oxidative metabolism. We observed a preferential expression of CGI-58 in oxidative muscles in mice consistent with triacylglycerol hydrolase activity. We next showed by pulse-chase that CGI-58 overexpression increased by more than 2-fold the rate of triacylglycerol (TAG) hydrolysis, as well as TAG-derived fatty acid (FA) release and oxidation. Oppositely, CGI-58 silencing reduced TAG hydrolysis and TAG-derived FA release and oxidation (-77%, P < 0.001), whereas it increased glucose oxidation and glycogen synthesis. Interestingly, modulations of CGI-58 expression and FA release are reflected by changes in pyruvate dehydrogenase kinase 4 gene expression. This regulation involves the activation of the peroxisome proliferator activating receptor-δ (PPARδ) by lipolysis products. Altogether, these data reveal that CGI-58 plays a limiting role in the control of oxidative metabolism by modulating FA availability and the expression of PPARδ-target genes, and highlight an important metabolic function of CGI-58 in skeletal muscle. PMID:22383684

  11. Regulation of skeletal muscle lipolysis and oxidative metabolism by the co-lipase CGI-58[S

    PubMed Central

    Badin, Pierre-Marie; Loubière, Camille; Coonen, Maarten; Louche, Katie; Tavernier, Geneviève; Bourlier, Virginie; Mairal, Aline; Rustan, Arild C.; Smith, Steven R.; Langin, Dominique; Moro, Cedric

    2012-01-01

    We investigated here the specific role of CGI-58 in the regulation of energy metabolism in skeletal muscle. We first examined CGI-58 protein expression in various muscle types in mice, and next modulated CGI-58 expression during overexpression and knockdown studies in human primary myotubes and evaluated the consequences on oxidative metabolism. We observed a preferential expression of CGI-58 in oxidative muscles in mice consistent with triacylglycerol hydrolase activity. We next showed by pulse-chase that CGI-58 overexpression increased by more than 2-fold the rate of triacylglycerol (TAG) hydrolysis, as well as TAG-derived fatty acid (FA) release and oxidation. Oppositely, CGI-58 silencing reduced TAG hydrolysis and TAG-derived FA release and oxidation (−77%, P < 0.001), whereas it increased glucose oxidation and glycogen synthesis. Interestingly, modulations of CGI-58 expression and FA release are reflected by changes in pyruvate dehydrogenase kinase 4 gene expression. This regulation involves the activation of the peroxisome proliferator activating receptor-δ (PPARδ) by lipolysis products. Altogether, these data reveal that CGI-58 plays a limiting role in the control of oxidative metabolism by modulating FA availability and the expression of PPARδ-target genes, and highlight an important metabolic function of CGI-58 in skeletal muscle. PMID:22383684

  12. A chloroplast light-regulated oxidative sensor for moderate light intensity in Arabidopsis.

    PubMed

    Dangoor, Inbal; Peled-Zehavi, Hadas; Wittenberg, Gal; Danon, Avihai

    2012-05-01

    The transition from dark to light involves marked changes in the redox reactions of photosynthetic electron transport and in chloroplast stromal enzyme activity even under mild light and growth conditions. Thus, it is not surprising that redox regulation is used to dynamically adjust and coordinate the stromal and thylakoid compartments. While oxidation of regulatory proteins is necessary for the regulation, the identity and the mechanism of action of the oxidizing pathway are still unresolved. Here, we studied the oxidation of a thylakoid-associated atypical thioredoxin-type protein, ACHT1, in the Arabidopsis thaliana chloroplast. We found that after a brief period of net reduction in plants illuminated with moderate light intensity, a significant oxidation reaction of ACHT1 arises and counterbalances its reduction. Interestingly, ACHT1 oxidation is driven by 2-Cys peroxiredoxin (Prx), which in turn eliminates peroxides. The ACHT1 and 2-Cys Prx reaction characteristics in plants further indicated that ACHT1 oxidation is linked with changes in the photosynthetic production of peroxides. Our findings that plants with altered redox poise of the ACHT1 and 2-Cys Prx pathway show higher nonphotochemical quenching and lower photosynthetic electron transport infer a feedback regulatory role for this pathway.

  13. A Chloroplast Light-Regulated Oxidative Sensor for Moderate Light Intensity in Arabidopsis[C][W

    PubMed Central

    Dangoor, Inbal; Peled-Zehavi, Hadas; Wittenberg, Gal; Danon, Avihai

    2012-01-01

    The transition from dark to light involves marked changes in the redox reactions of photosynthetic electron transport and in chloroplast stromal enzyme activity even under mild light and growth conditions. Thus, it is not surprising that redox regulation is used to dynamically adjust and coordinate the stromal and thylakoid compartments. While oxidation of regulatory proteins is necessary for the regulation, the identity and the mechanism of action of the oxidizing pathway are still unresolved. Here, we studied the oxidation of a thylakoid-associated atypical thioredoxin-type protein, ACHT1, in the Arabidopsis thaliana chloroplast. We found that after a brief period of net reduction in plants illuminated with moderate light intensity, a significant oxidation reaction of ACHT1 arises and counterbalances its reduction. Interestingly, ACHT1 oxidation is driven by 2-Cys peroxiredoxin (Prx), which in turn eliminates peroxides. The ACHT1 and 2-Cys Prx reaction characteristics in plants further indicated that ACHT1 oxidation is linked with changes in the photosynthetic production of peroxides. Our findings that plants with altered redox poise of the ACHT1 and 2-Cys Prx pathway show higher nonphotochemical quenching and lower photosynthetic electron transport infer a feedback regulatory role for this pathway. PMID:22570442

  14. Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism influences the association of the methylome with maternal anxiety and neonatal brain volumes.

    PubMed

    Chen, Li; Pan, Hong; Tuan, Ta Anh; Teh, Ai Ling; MacIsaac, Julia L; Mah, Sarah M; McEwen, Lisa M; Li, Yue; Chen, Helen; Broekman, Birit F P; Buschdorf, Jan Paul; Chong, Yap Seng; Kwek, Kenneth; Saw, Seang Mei; Gluckman, Peter D; Fortier, Marielle V; Rifkin-Graboi, Anne; Kobor, Michael S; Qiu, Anqi; Meaney, Michael J; Holbrook, Joanna D

    2015-02-01

    Early life environments interact with genotype to determine stable phenotypic outcomes. Here we examined the influence of a variant in the brain-derived neurotropic factor (BDNF) gene (Val66Met), which underlies synaptic plasticity throughout the central nervous system, on the degree to which antenatal maternal anxiety associated with neonatal DNA methylation. We also examined the association between neonatal DNA methylation and brain substructure volume, as a function of BDNF genotype. Infant, but not maternal, BDNF genotype dramatically influences the association of antenatal anxiety on the epigenome at birth as well as that between the epigenome and neonatal brain structure. There was a greater impact of antenatal maternal anxiety on the DNA methylation of infants with the methionine (Met)/Met compared to both Met/valine (Val) and Val/Val genotypes. There were significantly more cytosine-phosphate-guanine sites where methylation levels covaried with right amygdala volume among Met/Met compared with both Met/Val and Val/Val carriers. In contrast, more cytosine-phosphate-guanine sites covaried with left hippocampus volume in Val/Val infants compared with infants of the Met/Val or Met/Met genotype. Thus, antenatal Maternal Anxiety × BDNF Val66Met Polymorphism interactions at the level of the epigenome are reflected differently in the structure of the amygdala and the hippocampus. These findings suggest that BDNF genotype regulates the sensitivity of the methylome to early environment and that differential susceptibility to specific environmental conditions may be both tissue and function specific.

  15. Oxidative stress-responsive microRNA-320 regulates glycolysis in diverse biological systems

    PubMed Central

    Tang, Huibin; Lee, Myung; Sharpe, Orr; Salamone, Louis; Noonan, Emily J.; Hoang, Chuong D.; Levine, Sanford; Robinson, William H.; Shrager, Joseph B.

    2012-01-01

    Glycolysis is the initial step of glucose catabolism and is up-regulated in cancer cells (the Warburg Effect). Such shifts toward a glycolytic phenotype have not been explored widely in other biological systems, and the molecular mechanisms underlying the shifts remain unknown. With proteomics, we observed increased glycolysis in disused human diaphragm muscle. In disused muscle, lung cancer, and H2O2-treated myotubes, we show up-regulation of the rate-limiting glycolytic enzyme muscle-type phosphofructokinase (PFKm, >2 fold, P<0.05) and accumulation of lactate (>150%, P<0.05). Using microRNA profiling, we identify miR-320a as a regulator of PFKm expression. Reduced miR-320a levels (to ∼50% of control, P<0.05) are associated with the increased PFKm in each of these diverse systems. Manipulation of miR-320a levels both in vitro and in vivo alters PFKm and lactate levels in the expected directions. Further, miR-320a appears to regulate oxidative stress-induced PFKm expression, and reduced miR-320a allows greater induction of glycolysis in response to H2O2 treatment. We show that this microRNA-mediated regulation occurs through PFKm's 3′ untranslated region and that Ets proteins are involved in the regulation of PFKm via miR-320a. These findings suggest that oxidative stress-responsive microRNA-320a may regulate glycolysis broadly within nature.—Tang, H., Lee, M., Sharpe, O., Salamone, L., Noonan, E. J., Hoang, C. D., Levine, S., Robinson, W. H., Shrager, J. B. Oxidative stress-responsive microRNA-320 regulates glycolysis in diverse biological systems. PMID:22767230

  16. Dopamine Signaling Regulates Fat Content through β-Oxidation in Caenorhabditis elegans

    PubMed Central

    Barros, Alexandre Guimarães de Almeida; Bridi, Jessika Cristina; de Souza, Bruno Rezende; de Castro Júnior, Célio; de Lima Torres, Karen Cecília; Malard, Leandro; Jorio, Ado; de Miranda, Débora Marques; Ashrafi, Kaveh; Romano-Silva, Marco Aurélio

    2014-01-01

    The regulation of energy balance involves an intricate interplay between neural mechanisms that respond to internal and external cues of energy demand and food availability. Compelling data have implicated the neurotransmitter dopamine as an important part of body weight regulation. However, the precise mechanisms through which dopamine regulates energy homeostasis remain poorly understood. Here, we investigate mechanisms through which dopamine modulates energy storage. We showed that dopamine signaling regulates fat reservoirs in Caenorhabditis elegans. We found that the fat reducing effects of dopamine were dependent on dopaminergic receptors and a set of fat oxidation enzymes. Our findings reveal an ancient role for dopaminergic regulation of fat and suggest that dopamine signaling elicits this outcome through cascades that ultimately mobilize peripheral fat depots. PMID:24465759

  17. Serum pro-BDNF/BDNF as a treatment biomarker for response to docosahexaenoic acid in traumatized people vulnerable to developing psychological distress: a randomized controlled trial

    PubMed Central

    Matsuoka, Y; Nishi, D; Tanima, Y; Itakura, M; Kojima, M; Hamazaki, K; Noguchi, H; Hamazaki, T

    2015-01-01

    Our open-label pilot study showed that supplementation with docosahexaenoic acid (DHA) increased serum brain-derived neurotrophic factor (BDNF) levels and that there might be an association between changes in serum BDNF levels and reduced psychological distress. Animal research has indicated that a DHA-enriched diet increases BDNF in the brain. In this randomized double-blind controlled trial of severely injured patients vulnerable to posttraumatic stress disorder (PTSD) and depression, we examined whether DHA increases serum BDNF levels and whether changes in BDNF levels are associated with subsequent symptoms of PTSD and depression. Patients received 1470 mg per day of DHA plus 147 mg per day of eicosapentaenoic acid (EPA; n=53) or placebo (n=57) for 12 weeks. Serum levels of mature BDNF and precursor pro-BDNF at baseline and 12-week follow-up were measured using enzyme-linked immunosorbent assay kits. At 12 weeks, we used the Clinician-Administered PTSD Scale to assess PTSD symptoms and depressive symptoms by the Montgomery–Åsberg Depression Rating Scale. We found a significant increase in serum BDNF levels during the trial in the DHA and placebo groups with no interaction between time and group. Changes in BDNF levels were not associated with PTSD severity but negatively associated with depression severity (Spearman's ρ=−0.257, P=0.012). Changes in pro-BDNF were also negatively associated with depression severity (Spearman's ρ=−0.253, P=0.013). We found no specific effects of DHA on increased serum levels of BDNF and pro-BDNF; however, evidence in this study suggests that increased BDNF and pro-BDNF have a protective effect by minimizing depression severity. PMID:26151924

  18. Oxidative stress and redox regulation of phospholipase D in myocardial disease.

    PubMed

    Tappia, Paramjit S; Dent, Melissa R; Dhalla, Naranjan S

    2006-08-01

    Oxidative stress may be viewed as an imbalance between reactive oxygen species (ROS) and oxidant production and the state of glutathione redox buffer and antioxidant defense system. Recently, a new paradigm of redox signaling has emerged whereby ROS and oxidants can function as intracellular signaling molecules, where ROS- and oxidant-induced death signal is converted into a survival signal. It is now known that oxidative stress is involved in cardiac hypertrophy and in the pathogenesis of cardiomyopathies, ischemic heart disease and congestive heart failure. Phospholipase D (PLD) is an important signaling enzyme in mammalian cells, including cardiomyocytes. PLD catalyzes the hydrolysis of phosphatidylcholine to produce phosphatidic acid (PA). Two mammalian PLD isozymes, PLD1 and PLD2 have been identified, characterized and cloned. The importance of PA in heart function is evident from its ability to stimulate cardiac sarcolemmal membrane and sarcoplasmic reticular Ca2+-related transport systems and to increase the intracellular concentration of free Ca2+ in adult cardiomyocytes and augment cardiac contractile activity of the normal heart. In addition, PA is also considered an important signal transducer in cardiac hypertrophy. Accordingly, this review discusses a role for redox signaling mediated via PLD in ischemic preconditioning and examines how oxidative stress affects PLD in normal hearts and during different myocardial diseases. In addition, the review provides a comparative account on the regulation of PLD activities in vascular smooth muscle cells under conditions of oxidative stress. PMID:16843818

  19. Regulation of oxidative stress resistance in Campylobacter jejuni, a microaerophilic foodborne pathogen

    PubMed Central

    Kim, Jong-Chul; Oh, Euna; Kim, Jinyong; Jeon, Byeonghwa

    2015-01-01

    Campylobacter jejuni is one of the leading bacterial causes of human gastroenteritis. Due to the increasing rates of human campylobacteriosis, C. jejuni is considered as a serious public health concern worldwide. C. jejuni is a microaerophilic, fastidious bacterium. C. jejuni must overcome a wide range of stress conditions during foodborne transmission to humans, such as food preservation and processing conditions, and even in infection of the gastrointestinal tracts of humans. Particularly, this microaerophilic foodborne pathogen must survive in the atmospheric conditions prior to the initiation of infection. C. jejuni possesses unique regulatory mechanisms for oxidative stress resistance. Lacking OxyR and SoxRS that are highly conserved in other Gram-negative foodborne pathogens, C. jejuni modulates the expression of genes involved in oxidative stress resistance mainly via the peroxide resistance regulator and Campylobacter oxidative stress regulator. Based on recent findings of ours and others, in this review, we described how C. jejuni regulates the expression of oxidative stress defense. PMID:26284041

  20. Diacylglycerol kinase regulation of protein kinase D during oxidative stress-induced intestinal cell injury

    SciTech Connect

    Song Jun; Li Jing; Mourot, Joshua M.; Mark Evers, B.; Chung, Dai H.

    2008-10-17

    We recently demonstrated that protein kinase D (PKD) exerts a protective function during oxidative stress-induced intestinal epithelial cell injury; however, the exact role of DAG kinase (DGK){zeta}, an isoform expressed in intestine, during this process is unknown. We sought to determine the role of DGK during oxidative stress-induced intestinal cell injury and whether DGK acts as an upstream regulator of PKD. Inhibition of DGK with R59022 compound or DGK{zeta} siRNA transfection decreased H{sub 2}O{sub 2}-induced RIE-1 cell apoptosis as measured by DNA fragmentation and increased PKD phosphorylation. Overexpression of kinase-dead DGK{zeta} also significantly increased PKD phosphorylation. Additionally, endogenous nuclear DGK{zeta} rapidly translocated to the cytoplasm following H{sub 2}O{sub 2} treatment. Our findings demonstrate that DGK is involved in the regulation of oxidative stress-induced intestinal cell injury. PKD activation is induced by DGK{zeta}, suggesting DGK is an upstream regulator of oxidative stress-induced activation of the PKD signaling pathway in intestinal epithelial cells.

  1. A universally conserved ATPase regulates the oxidative stress response in Escherichia coli.

    PubMed

    Wenk, Meike; Ba, Qiaorui; Erichsen, Veronika; MacInnes, Katherine; Wiese, Heike; Warscheid, Bettina; Koch, Hans-Georg

    2012-12-21

    YchF is an evolutionarily conserved ATPase of unknown function. In humans, the YchF homologue hOla1 appears to influence cell proliferation and was found to be up-regulated in many tumors. A possible involvement in regulating the oxidative stress response was also suggested, but details on the underlying mechanism are lacking. For gaining insight into YchF function, we used Escherichia coli as a model organism and found that YchF overexpression resulted in H(2)O(2) hypersensitivity. This was not caused by transcriptional or translational down-regulation of H(2)O(2)-scavenging enzymes. Instead, we observed YchF-dependent inhibition of catalase activity and a direct interaction with the major E. coli catalase KatG. KatG inhibition was dependent on the ATPase activity of YchF and was regulated by post-translational modifications, most likely including an H(2)O(2)-dependent dephosphorylation. We furthermore showed that YchF expression is repressed by the transcription factor OxyR and further post-translationally modified in response to H(2)O(2). In summary, our data show that YchF functions as a novel negative regulator of the oxidative stress response in E. coli. Considering the available data on hOla1, YchF/Ola1 most likely execute similar functions in bacteria and humans, and their up-regulation inhibits the ability of the cells to scavenge damaging reactive oxygen species.

  2. Regulation of transcription factors by nitric oxide in neurons and in neural-derived tumor cells.

    PubMed

    Contestabile, Antonio

    2008-04-01

    Nitric oxide (NO), a diffusible molecule acting as an intercellular and intracellular messenger in many tissues, plays multiple roles in the nervous system. In addition to regulating proliferation, survival and differentiation of neurons, NO is also involved in synaptic activity, neural plasticity and memory formation. Long-lasting effects of NO, a simple and unstable molecule, occur through regulation of transcription factors and modulation of gene expression. cAMP-response-element-binding (CREB) protein is an important transcription factor that regulates the expression of several genes involved in survival and neuroprotection as well as in synaptic plasticity and memory formation. Nitric oxide promotes survival and differentiation of neural cells, both activating through cGMP signaling CREB phosphorylation-dependent transcriptional activity and promoting S-nitrosylation of nuclear proteins that favor CREB binding to its promoters on target genes. Among oncogenic transcription factors, N-Myc is important in neurogenesis and in regulating proliferation of neural-derived tumor cells, such as neuroblastomas and medulloblastomas. Nitric oxide negatively regulates the proliferation of neuronal precursors, as well as the proliferation of neuroblastoma cells, by downregulating N-Myc expression through cGMP signaling. Other oncogenic transcription factors, such as c-fos and c-jun, zinc-finger transcription factors, such as egr-1, and NF-kappaB are regulated by NO signaling in cGMP-dependent way or through nitrosative conformational changes. The present survey of how NO signaling influences neural cells through regulation of transcription factors allows us to predict that better knowledge of these interactions will provide a better understanding of the physiological role of NO in the nervous system in order to conceive novel therapies for neural-derived tumors.

  3. Regulation of transcription factors by nitric oxide in neurons and in neural-derived tumor cells.

    PubMed

    Contestabile, Antonio

    2008-04-01

    Nitric oxide (NO), a diffusible molecule acting as an intercellular and intracellular messenger in many tissues, plays multiple roles in the nervous system. In addition to regulating proliferation, survival and differentiation of neurons, NO is also involved in synaptic activity, neural plasticity and memory formation. Long-lasting effects of NO, a simple and unstable molecule, occur through regulation of transcription factors and modulation of gene expression. cAMP-response-element-binding (CREB) protein is an important transcription factor that regulates the expression of several genes involved in survival and neuroprotection as well as in synaptic plasticity and memory formation. Nitric oxide promotes survival and differentiation of neural cells, both activating through cGMP signaling CREB phosphorylation-dependent transcriptional activity and promoting S-nitrosylation of nuclear proteins that favor CREB binding to its promoters on target genes. Among oncogenic transcription factors, N-Myc is important in neurogenesis and in regulating proliferation of neural-derived tumor cells, such as neuroblastomas and medulloblastomas. Nitric oxide negatively regulates the proliferation of neuronal precursors, as well as the proliferation of neuroblastoma cells, by downregulating N-Myc expression through cGMP signaling. Other oncogenic transcription factors, such as c-fos and c-jun, zinc-finger transcription factors, such as egr-1, and NF-kappaB are regulated by NO signaling in cGMP-dependent way or through nitrosative conformational changes. The present survey of how NO signaling influences neural cells through regulation of transcription factors allows us to predict that better knowledge of these interactions will provide a better understanding of the physiological role of NO in the nervous system in order to conceive novel therapies for neural-derived tumors. PMID:18308460

  4. FABP4 reversed the regulation of leptin on mitochondrial fatty acid oxidation in mice adipocytes

    PubMed Central

    Gan, Lu; Liu, Zhenjiang; Cao, Weina; Zhang, Zhenzhen; Sun, Chao

    2015-01-01

    Fatty acid binding protein 4 (FABP4), plays key role in fatty acid transportation and oxidation, and increases with leptin synergistically during adipose inflammation process. However, the regulation mechanism between FABP4 and leptin on mitochondrial fatty acid oxidation remains unclear. In this study, we found that FABP4 reduced the expression of leptin, CPT-1 and AOX1 in mice adipocytes. Conversely, FABP4 was down-regulated in a time-dependent manner by leptin treatment. Additionally, forced expression of FABP4 attenuated the expression of PGC1-α, UCP2, CPT-1, AOX1 and COX2 compared with leptin incubation. Moreover, mitochondrial membrane potential, fatty acid oxidation enzyme medium-chain acyl-CoA dehydrogenase (MCAD), long-chain acyl-CoA dehydrogenase (LCAD) and Cyt C levels were reduced in response to the overexpression of FABP4. These reductions correspond well with the reduced release of free fatty acid and the inactivation of mitochondrial complexes I and III by FABP4 overexpression. Furthermore, addition of the Akt/mTOR pathway-specific inhibitor (MK2206) blocked the mitochondrial fatty acid oxidation and respiration factors, whereas interference of FABP4 overcame these effects. Taken together, FABP4 could reverse the activation of the leptin-induced mitochondrial fatty acid oxidation, and the inhibition of Akt/mTOR signal pathway played a key role in this process. PMID:26310911

  5. BDNF gene effects on brain circuitry replicated in 455 twins.

    PubMed

    Chiang, Ming-Chang; Barysheva, Marina; Toga, Arthur W; Medland, Sarah E; Hansell, Narelle K; James, Michael R; McMahon, Katie L; de Zubicaray, Greig I; Martin, Nicholas G; Wright, Margaret J; Thompson, Paul M

    2011-03-15

    Brain-derived neurotrophic factor (BDNF) plays a key role in learning and memory, but its effects on the fiber architecture of the living brain are unknown. We genotyped 455 healthy adult twins and their non-twin siblings (188 males/267 females; age: 23.7±2.1 years, mean±SD) and scanned them with high angular resolution diffusion tensor imaging (DTI), to assess how the BDNF Val66Met polymorphism affects white matter microstructure. By applying genetic association analysis to every 3D point in the brain images, we found that the Val-BDNF genetic variant was associated with lower white matter integrity in the splenium of the corpus callosum, left optic radiation, inferior fronto-occipital fasciculus, and superior corona radiata. Normal BDNF variation influenced the association between subjects' performance intellectual ability (as measured by Object Assembly subtest) and fiber integrity (as measured by fractional anisotropy; FA) in the callosal splenium, and pons. BDNF gene may affect the intellectual performance by modulating the white matter development. This combination of genetic association analysis and large-scale diffusion imaging directly relates a specific gene to the fiber microstructure of the living brain and to human intelligence. PMID:21195196

  6. BDNF GENE EFFECTS ON BRAIN CIRCUITRY REPLICATED IN 455 TWINS

    PubMed Central

    Chiang, Ming-Chang; Barysheva, Marina; Toga, Arthur W.; Medland, Sarah E.; Hansell, Narelle K.; James, Michael R.; McMahon, Katie L.; de Zubicaray, Greig I.; Martin, Nicholas G.; Wright, Margaret J.; Thompson, Paul M.

    2011-01-01

    Brain-derived neurotrophic factor (BDNF) plays a key role in learning and memory, but its effects on the fiber architecture of the living brain are unknown. We genotyped 455 healthy adult twins and their non-twin siblings (188 males/267 females; age: 23.7±2.1 years, mean±SD) and scanned them with high angular resolution diffusion tensor imaging (DTI), to assess how the BDNF Val66Met polymorphism affects white matter microstructure. By applying genetic association analysis to every 3D point in the brain images, we found that the Val-BDNF genetic variant was associated with lower white matter integrity in the splenium of the corpus callosum, left optic radiation, inferior fronto-occipital fasciculus, and superior corona radiata. Normal BDNF variation influenced the association between subjects’ performance intellectual ability (as measured by Object Assembly subtest) and fiber integrity (as measured by fractional anisotropy; FA) in the callosal splenium, and pons. The BDNF gene may affect intellectual performance by modulating white matter development. This combination of genetic association analysis and large-scale diffusion imaging directly relates a specific gene to the fiber microstructure of the living brain and to human intelligence. PMID:21195196

  7. BDNF polymorphisms are associated with schizophrenia onset and positive symptoms.

    PubMed

    Zhang, Xiang Yang; Chen, Da-Chun; Tan, Yun-Long; Tan, Shu-Ping; Luo, Xingguang; Zuo, Lingjun; Soares, Jair C

    2016-01-01

    Numerous studies have showed that brain-derived neurotrophic factor (BDNF) may be involved in the pathogenesis and pathophysiology of schizophrenia. The purposes of this study were to investigate the potential association of BDNF gene polymorphisms with susceptibility to schizophrenia and the psychopathological symptoms in patients with schizophrenia in a Han Chinese population. Four polymorphisms (rs6265, rs12273539, rs10835210 and rs2030324) of the BDNF gene were analyzed in a case-control study of 1887 Han Chinese individuals (844 patients and 1043 controls). We assessed 825 patients for psychopathology using the Positive and Negative Syndrome Scale. In single marker analyses the BDNF rs10835210 mutant A allele was significantly associated with schizophrenia. Haplotype analyses revealed higher frequencies of haplotypes containing the mutant A allele of the rs10835210 in schizophrenia than controls. We also found that this polymorphism rs10835210 was associated with positive symptoms, and the patients carrying the mutational allele A showed more positive symptoms. These findings suggest the role of these BDNF gene variants in both susceptibility to schizophrenia and in clinical symptom severity.

  8. Exploring the Association between Serum BDNF and Attempted Suicide

    PubMed Central

    Eisen, Rebecca B.; Perera, Stefan; Bawor, Monica; Dennis, Brittany B.; El-Sheikh, Wala; DeJesus, Jane; Rangarajan, Sumathy; Vair, Judith; Sholer, Heather; Hutchinson, Nicole; Iordan, Elizabeth; Mackie, Pam; Islam, Shofiqul; Dehghan, Mahshid; Brasch, Jennifer; Anglin, Rebecca; Minuzzi, Luciano; Thabane, Lehana; Samaan, Zainab

    2016-01-01

    Suicide is a leading cause of death and a significant public health concern. Brain-derived neurotrophic factor (BDNF), a protein important to nervous system function, has been implicated in psychiatric disorders and suicidal behaviour. We investigated the association between serum levels of BDNF and attempted suicide in a sample of 281 participants using a case-control study design. Participants were recruited from clinical and community settings between March 2011 and November 2014. Cases (individuals who had attempted suicide) (n = 84) were matched on sex and age (within five years) to both psychiatric controls (n = 104) and community controls (n = 93) with no history of suicide attempts. We collected fasting blood samples, socio-demographic information, physical measurements, and detailed descriptions of suicide attempts. We used linear regression analysis to determine the association between BDNF level (dependent variable) and attempted suicide (key exposure variable), adjusting for age, sex, body mass index, current smoking status, and antidepressant use. 250 participants were included in this analysis. In the linear regression model, attempted suicide was not significantly associated with BDNF level (β = 0.28, SE = 1.20, P = 0.82). Our findings suggest that no significant association exists between attempted suicide and BDNF level. However, the findings need to be replicated in a larger cohort study. PMID:27121496

  9. Redox-dependent regulation, redox control and oxidative damage in plant cells subjected to abiotic stress.

    PubMed

    Dietz, Karl-Josef

    2010-01-01

    Stress development intricately involves uncontrolled redox reactions and oxidative damage to functional macromolecules. Three phases characterize progressing abiotic stress and the stress strength; in the first phase redox-dependent deregulation in metabolism, in the second phase detectable development of oxidative damage and in the third phase cell death. Each phase is characterized by traceable biochemical features and specific molecular responses that reflect on the one hand cell damage but on the other hand indicate specific regulation and redox signalling aiming at compensation of stress impact. PMID:20387040

  10. Antidepressant Drugs Transactivate TrkB Neurotrophin Receptors in the Adult Rodent Brain Independently of BDNF and Monoamine Transporter Blockade

    PubMed Central

    Rantamäki, Tomi; Di Lieto, Antonio; Tammela, Päivi; Schmitt, Angelika; Lesch, Klaus-Peter; Rios, Maribel; Castrén, Eero

    2011-01-01

    Background Antidepressant drugs (ADs) have been shown to activate BDNF (brain-derived neurotrophic factor) receptor TrkB in the rodent brain but the mechanism underlying this phenomenon remains unclear. ADs act as monoamine reuptake inhibitors and after prolonged treatments regulate brain bdnf mRNA levels indicating that monoamine-BDNF signaling regulate AD-induced TrkB activation in vivo. However, recent findings demonstrate that Trk receptors can be transactivated independently of their neurotrophin ligands. Methodology In this study we examined the role of BDNF, TrkB kinase activity and monoamine reuptake in the AD-induced TrkB activation in vivo and in vitro by employing several transgenic mouse models, cultured neurons and TrkB-expressing cell lines. Principal Findings Using a chemical-genetic TrkBF616A mutant and TrkB overexpressing mice, we demonstrate that ADs specifically activate both the maturely and immaturely glycosylated forms of TrkB receptors in the brain in a TrkB kinase dependent manner. However, the tricyclic AD imipramine readily induced the phosphorylation of TrkB receptors in conditional bdnf−/− knock-out mice (132.4±8.5% of control; P = 0.01), indicating that BDNF is not required for the TrkB activation. Moreover, using serotonin transporter (SERT) deficient mice and chemical lesions of monoaminergic neurons we show that neither a functional SERT nor monoamines are required for the TrkB phosphorylation response induced by the serotonin selective reuptake inhibitors fluoxetine or citalopram, or norepinephrine selective reuptake inhibitor reboxetine. However, neither ADs nor monoamine transmitters activated TrkB in cultured neurons or cell lines expressing TrkB receptors, arguing that ADs do not directly bind to TrkB. Conclusions The present findings suggest that ADs transactivate brain TrkB receptors independently of BDNF and monoamine reuptake blockade and emphasize the need of an intact tissue context for the ability of ADs to

  11. Mechanism of H₂O₂-induced oxidative stress regulating viability and biocontrol ability of Rhodotorula glutinis.

    PubMed

    Chen, Jian; Li, Boqiang; Qin, Guozheng; Tian, Shiping

    2015-01-16

    The use of antagonistic yeasts to control postharvest pathogens is a promising alternative to fungicides. The effectiveness of the antagonists against fungal pathogens is greatly dependent on their viability, which is usually mediated by reactive oxygen species (ROS). Here, we investigated the effects of H₂O₂-induced oxidative stress on the viability and biocontrol efficacy of Rhodotorula glutinis and, using flow cytometric analysis, observed the changes of ROS accumulation and apoptosis in the yeast cells with or without H₂O₂ treatment. We found that the viability of R. glutinis decreased in a time- and dose-dependent manner under H₂O₂-induced oxidative stress. Compared to the control, yeast cells exposed to oxidative stress exhibited more accumulation of ROS and higher levels of protein oxidative damage, but showed lower efficacy for biocontrol of Penicillium expansum causing blue mold rot on peach fruit. The results indicate that apoptosis is a main cause of the cell viability loss in R. glutinis, which is attributed to ROS accumulation under oxidative stress. These findings offer a plausible explanation that oxidative stress affects biocontrol efficacy of R. glutinis via regulating its viability and cell apoptosis.

  12. YY162 prevents ADHD-like behavioral side effects and cytotoxicity induced by Aroclor1254 via interactive signaling between antioxidant potential, BDNF/TrkB, DAT and NET.

    PubMed

    Nam, Yunsung; Shin, Eun-Joo; Shin, Seung Woo; Lim, Yong Kwang; Jung, Jong Ho; Lee, Jeong Hyun; Ha, Jong Ryul; Chae, Jong Seok; Ko, Sung Kwon; Jeong, Ji Hoon; Jang, Choon-Gon; Kim, Hyoung-Chun

    2014-03-01

    Methylphenidate (MP) has become the primary drug of choice for treatment of attention-deficit/hyperactivity disorder (ADHD). However, its psychotropic effects severely hamper long-term clinical use. We evaluated the effects of YY162, which consists of terpenoid-strengthened Ginkgo biloba and ginsenoside Rg3, on the ADHD-like condition induced by Aroclor1254, because both components have been suggested to modulate oxidative stress, dopaminergic neurotransmission, and brain-derived neurotrophic factor (BDNF) signaling, which may be critical targets for understanding the pathogenesis of ADHD. YY162 attenuated the increase in reactive oxygen species (ROS) and decrease in BDNF levels induced by Aroclor1254 in SH-SY5Y neuroblastoma cells. YY162 significantly attenuated Aroclor1254-induced ADHD-like behavior and oxidative stress in ICR mice. Furthermore, YY162 attenuated reductions in p-TrkB, BDNF, dopamine transporter (DAT) and norepinephrine transporter (NET) expression. These attenuating effects of YY162 were comparable to those of MP. Importantly, K252a, a TrkB antagonist, counteracted the protective effects of YY162. Our results suggest that YY162 possesses significant protective activities against ADHD-like conditions with negligible behavioral side effects, and that interactive signaling between antioxidant potential and BDNF/TrkB receptor for the positive modulation of the DAT and NET is important for YY162-mediated neuroprotective activity. PMID:24394491

  13. Nitric Oxide Acts as a Positive Regulator to Induce Metamorphosis of the Ascidian Herdmania momus

    PubMed Central

    Ueda, Nobuo; Degnan, Sandie M.

    2013-01-01

    Marine invertebrates commonly have a biphasic life cycle in which the metamorphic transition from a pelagic larva to a benthic post-larva is mediated by the nitric oxide signalling pathway. Nitric oxide (NO) is synthesised by nitric oxide synthase (NOS), which is a client protein of the molecular chaperon heat shock protein 90 (HSP90). It is notable, then, that both NO and HSP90 have been implicated in regulating metamorphosis in marine invertebrates as diverse as urochordates, echinoderms, molluscs, annelids, and crustaceans. Specifically, the suppression of NOS activity by the application of either NOS- or HSP90-inhibiting pharmacological agents has been shown consistently to induce the initiation of metamorphosis, leading to the hypothesis that a negative regulatory role of NO is widely conserved in biphasic life cycles. Further, the induction of metamorphosis by heat-shock has been demonstrated for multiple species. Here, we investigate the regulatory role of NO in induction of metamorphosis of the solitary tropical ascidian, Herdmania momus. By coupling pharmacological treatments with analysis of HmNOS and HmHSP90 gene expression, we present compelling evidence of a positive regulatory role for NO in metamorphosis of this species, in contrast to all existing ascidian data that supports the hypothesis of NO as a conserved negative regulator of metamorphosis. The exposure of competent H. momus larvae to a NOS inhibitor or an NO donor results in an up-regulation of NOS and HSP90 genes. Heat shock of competent larvae induces metamorphosis in a temperature dependent manner, up to a thermal tolerance that approaches 35°C. Both larval/post-larval survival and the appearance of abnormal morphologies in H. momus post-larvae reflect the magnitude of up-regulation of the HSP90 gene in response to heat-shock. The demonstrated role of NO as a positive metamorphic regulator in H. momus suggests the existence of inter-specific adaptations of NO regulation in ascidian

  14. Nitric oxide acts as a positive regulator to induce metamorphosis of the ascidian Herdmania momus.

    PubMed

    Ueda, Nobuo; Degnan, Sandie M

    2013-01-01

    Marine invertebrates commonly have a biphasic life cycle in which the metamorphic transition from a pelagic larva to a benthic post-larva is mediated by the nitric oxide signalling pathway. Nitric oxide (NO) is synthesised by nitric oxide synthase (NOS), which is a client protein of the molecular chaperon heat shock protein 90 (HSP90). It is notable, then, that both NO and HSP90 have been implicated in regulating metamorphosis in marine invertebrates as diverse as urochordates, echinoderms, molluscs, annelids, and crustaceans. Specifically, the suppression of NOS activity by the application of either NOS- or HSP90-inhibiting pharmacological agents has been shown consistently to induce the initiation of metamorphosis, leading to the hypothesis that a negative regulatory role of NO is widely conserved in biphasic life cycles. Further, the induction of metamorphosis by heat-shock has been demonstrated for multiple species. Here, we investigate the regulatory role of NO in induction of metamorphosis of the solitary tropical ascidian, Herdmania momus. By coupling pharmacological treatments with analysis of HmNOS and HmHSP90 gene expression, we present compelling evidence of a positive regulatory role for NO in metamorphosis of this species, in contrast to all existing ascidian data that supports the hypothesis of NO as a conserved negative regulator of metamorphosis. The exposure of competent H. momus larvae to a NOS inhibitor or an NO donor results in an up-regulation of NOS and HSP90 genes. Heat shock of competent larvae induces metamorphosis in a temperature dependent manner, up to a thermal tolerance that approaches 35°C. Both larval/post-larval survival and the appearance of abnormal morphologies in H. momus post-larvae reflect the magnitude of up-regulation of the HSP90 gene in response to heat-shock. The demonstrated role of NO as a positive metamorphic regulator in H. momus suggests the existence of inter-specific adaptations of NO regulation in ascidian

  15. Staphylococcus aureus CymR Is a New Thiol-based Oxidation-sensing Regulator of Stress Resistance and Oxidative Response*

    PubMed Central

    Ji, Quanjiang; Zhang, Liang; Sun, Fei; Deng, Xin; Liang, Haihua; Bae, Taeok; He, Chuan

    2012-01-01

    As a human pathogen, Staphylococcus aureus must cope with oxidative stress generated by the human immune system. Here, we report that CymR utilizes its sole Cys-25 to sense oxidative stress. Oxidation followed by thiolation of this cysteine residue leads to dissociation of CymR from its cognate promoter DNA. In contrast, the DNA binding of the CymRC25S mutant was insensitive to oxidation and thiolation, suggesting that CymR senses oxidative stress through oxidation of its sole cysteine to form a mixed disulfide with low molecular weight thiols. The determined crystal structures of the reduced and oxidized forms of CymR revealed that Cys-25 is oxidized to Cys-25-SOH in the presence of H2O2. Deletion of cymR reduced the resistance of S. aureus to oxidative stresses, and the resistance was restored by expressing a C25S mutant copy of cymR. In a C25S substitution mutant, the expression of two genes, tcyP and mccB, was constitutively repressed and did not respond to hydrogen peroxide stress, whereas the expression of the genes were highly induced under oxidative stress in a wild-type strain, indicating the critical role of Cys-25 in redox signaling in vivo. Thus, CymR is another master regulator that senses oxidative stress and connects stress responses to virulence regulation in S. aureus. PMID:22553203

  16. Staphylococcus aureus CymR Is a New Thiol-based Oxidation-sensing Regulator of Stress Resistance and Oxidative Response

    SciTech Connect

    Ji, Quanjiang; Zhang, Liang; Sun, Fei; Deng, Xin; Liang, Haihua; Bae, Taeok; He, Chuan

    2014-10-02

    As a human pathogen, Staphylococcus aureus must cope with oxidative stress generated by the human immune system. Here, we report that CymR utilizes its sole Cys-25 to sense oxidative stress. Oxidation followed by thiolation of this cysteine residue leads to dissociation of CymR from its cognate promoter DNA. In contrast, the DNA binding of the CymRC25S mutant was insensitive to oxidation and thiolation, suggesting that CymR senses oxidative stress through oxidation of its sole cysteine to form a mixed disulfide with low molecular weight thiols. The determined crystal structures of the reduced and oxidized forms of CymR revealed that Cys-25 is oxidized to Cys-25-SOH in the presence of H{sub 2}O{sub 2}. Deletion of cymR reduced the resistance of S. aureus to oxidative stresses, and the resistance was restored by expressing a C25S mutant copy of cymR. In a C25S substitution mutant, the expression of two genes, tcyP and mccB, was constitutively repressed and did not respond to hydrogen peroxide stress, whereas the expression of the genes were highly induced under oxidative stress in a wild-type strain, indicating the critical role of Cys-25 in redox signaling in vivo. Thus, CymR is another master regulator that senses oxidative stress and connects stress responses to virulence regulation in S. aureus.

  17. Nitric Oxide Regulation of H-NOX Signaling Pathways in Bacteria.

    PubMed

    Nisbett, Lisa-Marie; Boon, Elizabeth M

    2016-09-01

    Nitric oxide (NO) is a freely diffusible, radical gas that has now been established as an integral signaling molecule in eukaryotes and bacteria. It has been demonstrated that NO signaling is initiated upon ligation to the heme iron of an H-NOX domain in mammals and in some bacteria. Bacterial H-NOX proteins have been found to interact with enzymes that participate in signaling pathways and regulate bacterial processes such as quorum sensing, biofilm formation, and symbiosis. Here, we review the biochemical characterization of these signaling pathways and, where available, describe how ligation of NO to H-NOX specifically regulates the activity of these pathways and their associated bacterial phenotypes.

  18. [The relationship between BDNF gene polymorphisms and alcoholics in Japan].

    PubMed

    Narita, Shin; Nagahori, Kenta; Yoshihara, Eiji; Nishizawa, Daisuke; Ikeda, Kazutaka; Kawai, Atsuko; Iwahashi, Kazuhiko

    2013-12-01

    As a help of the mechanism elucidation of alcoholism, we studied the relationship between brain-derived neurotrophic factor (BDNF) rs6265, 270 C/T (ID number has not yet been determined), and rs10835210 gene polymorphisms, which are reported to be related to bipolar disorder, and alcoholics. We genotyped the three polymorphisms in the BDNF gene using polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) in 65 alcoholics and 71 healthy controls. In this study, there was no significant difference in the frequency of rs6265 and 270 C/T polymorphisms between alcoholics and controls (P > 0.05). However, there was a significant difference in the genotype frequency of rs10835210 polymorphism between alcoholics and controls (P < 0.05), in which the CA heterozygote genotype and A allele frequency was higher in alcoholics than in the controls. It suggests the possibility that the BDNF rs10835210 gene polymorphism affects the etiology of alcoholism.

  19. Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance

    PubMed Central

    Tsang, Chi Kwan; Liu, Yuan; Thomas, Janice; Zhang, Yanjie; Zheng, X. F. Steven

    2015-01-01

    Summary Superoxide dismutase 1 (Sod1) has been known for nearly half a century for catalysis of superoxide to hydrogen peroxide. Here we report a new Sod1 function in oxidative signaling: in response to elevated endogenous and exogenous reactive oxygen species (ROS), Sod1 rapidly relocates into the nucleus, which is important for maintaining genomic stability. Interestingly, H2O2 is sufficient to promote Sod1 nuclear localization, indicating that it is responding to general ROS rather than Sod1 substrate superoxide. ROS signaling is mediated by Mec1/ATM and its effector Dun1/Cds1 kinase, through Dun1 interaction with Sod1 and regulation of Sod1 by phosphorylation at S60, 99. In the nucleus, Sod1 binds to the promoters and regulates the expression of oxidative resistance and repair genes. Altogether, our study unravels an unorthodox function of Sod1 as a transcription factor and elucidates the regulatory mechanism for its localization. PMID:24647101

  20. Thiol switches in redox regulation of chloroplasts: balancing redox state, metabolism and oxidative stress.

    PubMed

    Dietz, Karl-Josef; Hell, Rüdiger

    2015-05-01

    In photosynthesizing chloroplasts, rapidly changing energy input, intermediate generation of strong reductants as well as oxidants and multiple participating physicochemical processes and pathways, call for efficient regulation. Coupling redox information to protein function via thiol modifications offers a powerful mechanism to activate, down-regulate and coordinate interdependent processes. Efficient thiol switching of target proteins involves the thiol-disulfide redox regulatory network, which is highly elaborated in chloroplasts. This review addresses the features of this network. Its conditional function depends on specificity of reduction and oxidation reactions and pathways, thiol redox buffering, but also formation of heterogeneous milieus by microdomains, metabolite gradients and macromolecular assemblies. One major player is glutathione. Its synthesis and function is under feedback redox control. The number of thiol-controlled processes and involved thiol switched proteins is steadily increasing, e.g., in tetrapyrrole biosynthesis, plastid transcription and plastid translation. Thus chloroplasts utilize an intricate and versatile redox regulatory network for intraorganellar and retrograde communication.

  1. Effects of the neurotrophic factors BDNF, NT-3, and FGF2 on dissociated neurons of the cochlear nucleus.

    PubMed

    Rak, Kristen; Völker, Johannes; Frenz, Silke; Scherzad, Agmal; Schendzielorz, Philipp; Radeloff, Andreas; Jablonka, Sibylle; Hagen, Rudolf; Mlynski, Robert

    2014-08-20

    The cochlear nucleus is the first relay station for acoustic information in the auditory pathway and its cellular integrity is affected by hearing loss. Neurotrophic factors, which are known to regulate fundamental processes in the brain, are expressed in the cochlear nucleus and are regulated by the changes in the stimulation. The aim of this study was to evaluate the effect of the neurotrophins Brain derived neurotrophic factor (BDNF) and Neurotrophin 3 (NT-3) and the neurotrophic factor Fibroblast growth factor 2 (FGF2) on primary cultured cells of the mouse cochlear nucleus. No effect on overall cell growth was detected after 8 days in culture by the factors applied. NT-3 had a strong impact on enhancement of neuronal survival, whereas BDNF stimulated neuronal survival and axonal outgrowth. Axonal branching was negatively affected by the administration of BDNF. FGF2 did not show any effect. The results presented represent fundamental research on auditory neurons, but might be one step toward defining novel therapeutic strategies in the future to prevent cochlear nucleus degeneration induced by hearing loss. PMID:24978398

  2. Regulation of Nrf2-Mediated Phase II Detoxification and Anti-oxidant Genes

    PubMed Central

    Keum, Young-Sam

    2012-01-01

    The molecular mechanisms by which a variety of naturally-occurring dietary compounds exert chemopreventive effects have been a subject of intense scientific investigations. Induction of phase II detoxification and anti-oxidant enzymes through activation of Nrf2/ARE-dependent gene is recognized as one of the major cellular defense mechanisms against oxidative or xenobiotic stresses and currently represents a critical chemopreventive mechanism of action. In the present review, the functional significance of Keap1/Nrf2 protein module in regulating ARE-dependent phase II detoxification and anti-oxidant gene expression is discussed. The biochemical mechanisms underlying the phosphorylation and expression of Keap1/Nrf2 proteins that are controlled by the intracellular signaling kinases and ubiquitin-mediated E3 ligase system as well as control of nucleocytoplasmic translocation of Nrf2 by its innate nuclear export signal (NES) are described. PMID:24116287

  3. Erythropoietin-regulated oxidative stress negatively affects enucleation during terminal erythropoiesis.

    PubMed

    Zhao, Baobing; Mei, Yang; Yang, Jing; Ji, Peng

    2016-10-01

    Differentiating erythroblasts are exposed to an oxidative environment. The dynamics of oxidative status during terminal erythropoiesis and how they affect cell differentiation in response to erythropoietin (Epo) are unclear. Here, we show that Epo induces reactive oxygen species (ROS) production in the early stages of terminal erythropoiesis. The levels of ROS correlate with CD71 surface expression and the uptake of iron and transferrin. ROS decreases in the late stages of terminal erythropoiesis, when the cells are preparing for enucleation. Consistently, treatment of erythroblasts with a low dose (5 mM) of N-acetyl-cysteine (NAC), a ROS scavenger, promotes enucleation. However, a high dose (20 mM) of NAC leads to significant cell death. Our study reveals an important function of Epo in regulating the dynamics of oxidative status and enucleation. PMID:27364565

  4. microRNAs: Emerging Targets Regulating Oxidative Stress in the Models of Parkinson's Disease

    PubMed Central

    Xie, Yangmei; Chen, Yinghui

    2016-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder. This chronic, progressive disease is characterized by loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and the presence of cytoplasmic inclusions called Lewy bodies (LBs) in surviving neurons. PD is attributed to a combination of environment and genetic factors, but the precise underlying molecular mechanisms remain elusive. Oxidative stress is generally recognized as one of the main causes of PD, and excessive reactive oxygen species (ROS) can lead to DA neuron vulnerability and eventual death. Several studies have demonstrated that small non-coding RNAs termed microRNAs (miRNAs) can regulate oxidative stress in vitro and in vivo models of PD. Relevant miRNAs involved in oxidative stress can prevent ROS-mediated damage to DA neurons, suggesting that specific miRNAs may be putative targets for novel therapeutic targets in PD. PMID:27445669

  5. Erythropoietin-regulated oxidative stress negatively affects enucleation during terminal erythropoiesis.

    PubMed

    Zhao, Baobing; Mei, Yang; Yang, Jing; Ji, Peng

    2016-10-01

    Differentiating erythroblasts are exposed to an oxidative environment. The dynamics of oxidative status during terminal erythropoiesis and how they affect cell differentiation in response to erythropoietin (Epo) are unclear. Here, we show that Epo induces reactive oxygen species (ROS) production in the early stages of terminal erythropoiesis. The levels of ROS correlate with CD71 surface expression and the uptake of iron and transferrin. ROS decreases in the late stages of terminal erythropoiesis, when the cells are preparing for enucleation. Consistently, treatment of erythroblasts with a low dose (5 mM) of N-acetyl-cysteine (NAC), a ROS scavenger, promotes enucleation. However, a high dose (20 mM) of NAC leads to significant cell death. Our study reveals an important function of Epo in regulating the dynamics of oxidative status and enucleation.

  6. microRNAs: Emerging Targets Regulating Oxidative Stress in the Models of Parkinson's Disease.

    PubMed

    Xie, Yangmei; Chen, Yinghui

    2016-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder. This chronic, progressive disease is characterized by loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and the presence of cytoplasmic inclusions called Lewy bodies (LBs) in surviving neurons. PD is attributed to a combination of environment and genetic factors, but the precise underlying molecular mechanisms remain elusive. Oxidative stress is generally recognized as one of the main causes of PD, and excessive reactive oxygen species (ROS) can lead to DA neuron vulnerability and eventual death. Several studies have demonstrated that small non-coding RNAs termed microRNAs (miRNAs) can regulate oxidative stress in vitro and in vivo models of PD. Relevant miRNAs involved in oxidative stress can prevent ROS-mediated damage to DA neurons, suggesting that specific miRNAs may be putative targets for novel therapeutic targets in PD. PMID:27445669

  7. Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington's disease.

    PubMed

    Canals, Josep M; Pineda, José R; Torres-Peraza, Jesús F; Bosch, Miquel; Martín-Ibañez, Raquel; Muñoz, M Teresa; Mengod, Guadalupe; Ernfors, Patrik; Alberch, Jordi

    2004-09-01

    The mechanism that controls the selective vulnerability of striatal neurons in Huntington's disease is unclear. Brain-derived neurotrophic factor (BDNF) protects striatal neurons and is regulated by Huntingtin through the interaction with the neuron-restrictive silencer factor. Here, we demonstrate that the downregulation of BDNF by mutant Huntingtin depends on the length and levels of expression of the CAG repeats in cell cultures. To analyze the functional effects of these changes in BDNF in Huntington's disease, we disrupted the expression of bdnf in a transgenic mouse model by cross-mating bdnf(+/ -) mice with R6/1 mice. Thus, we compared transgenic mice for mutant Huntingtin with different levels of BDNF. Using this double mutant mouse line, we show that the deficit of endogenous BDNF modulates the pathology of Huntington's disease. The decreased levels of this neurotrophin advance the onset of motor dysfunctions and produce more severe uncoordinated movements. This behavioral pathology correlates with the loss of striatal dopamine and cAMP-regulated phosphoprotein-32-positive projection neurons. In particular, the insufficient levels of BDNF cause specific degeneration of the enkephalinergic striatal projection neurons, which are the most affected cells in Huntington's disease. This neuronal dysfunction can specifically be restored by administration of exogenous BDNF. Therefore, the decrease in BDNF levels plays a key role in the specific pathology observed in Huntington's disease by inducing dysfunction of striatal enkephalinergic neurons that produce severe motor dysfunctions. Hence, administration of exogenous BDNF may delay or stop illness progression.

  8. Functional Impact of Ryanodine Receptor Oxidation on Intracellular Calcium Regulation in the Heart

    PubMed Central

    Mazurek, Stefan R.

    2016-01-01

    Type 2 ryanodine receptor (RyR2) serves as the major intracellular Ca2+ release channel that drives heart contraction. RyR2 is activated by cytosolic Ca2+ via the process of Ca2+-induced Ca2+ release (CICR). To ensure stability of Ca2+ dynamics, the self-reinforcing CICR must be tightly controlled. Defects in this control cause sarcoplasmic reticulum (SR) Ca2+ mishandling, which manifests in a variety of cardiac pathologies that include myocardial infarction and heart failure. These pathologies are also associated with oxidative stress. Given that RyR2 contains a large number of cysteine residues, it is no surprise that RyR2 plays a key role in the cellular response to oxidative stress. RyR’s many cysteine residues pose an experimental limitation in defining a specific target or mechanism of action for oxidative stress. As a result, the current understanding of redox-mediated RyR2 dysfunction remains incomplete. Several oxidative modifications, including S-glutathionylation and S-nitrosylation, have been suggested playing an important role in the regulation of RyR2 activity. Moreover, oxidative stress can increase RyR2 activity by forming disulfide bonds between two neighboring subunits (intersubunit cross-linking). Since intersubunit interactions within the RyR2 homotetramer complex dictate the channel gating, such posttranslational modification of RyR2 would have a significant impact on RyR2 function and Ca2+ regulation. This review summarizes recent findings on oxidative modifications of RyR2 and discusses contributions of these RyR2 modifications to SR Ca2+ mishandling during cardiac pathologies. PMID:27251471

  9. Regulation of cytoskeletal dynamics by redox signaling and oxidative stress: implications for neuronal development and trafficking

    PubMed Central

    Wilson, Carlos; González-Billault, Christian

    2015-01-01

    A proper balance between chemical reduction and oxidation (known as redox balance) is essential for normal cellular physiology. Deregulation in the production of oxidative species leads to DNA damage, lipid peroxidation and aberrant post-translational modification of proteins, which in most cases induces injury, cell death and disease. However, physiological concentrations of oxidative species are necessary to support important cell functions, such as chemotaxis, hormone synthesis, immune response, cytoskeletal remodeling, Ca2+ homeostasis and others. Recent evidence suggests that redox balance regulates actin and microtubule dynamics in both physiological and pathological contexts. Microtubules and actin microfilaments contain certain amino acid residues that are susceptible to oxidation, which reduces the ability of microtubules to polymerize and causes severing of actin microfilaments in neuronal and non-neuronal cells. In contrast, inhibited production of reactive oxygen species (ROS; e.g., due to NOXs) leads to aberrant actin polymerization, decreases neurite outgrowth and affects the normal development and polarization of neurons. In this review, we summarize emerging evidence suggesting that both general and specific enzymatic sources of redox species exert diverse effects on cytoskeletal dynamics. Considering the intimate relationship between cytoskeletal dynamics and trafficking, we also discuss the potential effects of redox balance on intracellular transport via regulation of the components of the microtubule and actin cytoskeleton as well as cytoskeleton-associated proteins, which may directly impact localization of proteins and vesicles across the soma, dendrites and axon of neurons. PMID:26483635

  10. Effects of phenytoin and lamotrigine treatment on serum BDNF levels in offsprings of epileptic rats.

    PubMed

    Soysal, Handan; Doğan, Zümrüt; Kamışlı, Özden

    2016-04-01

    The role of brain-derived neurotrophic factor (BDNF) is to promote and modulate neuronal responses across neurotransmitter systems in the brain. Therefore, abnormal BDNF signaling may be associated with the pathophysiology of schizophrenia. Low BDNF levels have been reported in brains and serums of patients with psychotic disorders. In the present study, we investigated the effects of antiepileptic drugs on BDNF in developing rats. Pregnant rats were treated with phenytoin (PHT), lamotrigine (LTG) and folic acid for long-term, all through their gestational periods. Experimental epilepsy (EE) model was applied in pregnant rats. Epileptic seizures were determined with electroencephalography. After birth, serum BDNF levels were measured in 136 newborn rats on postnatal day (PND) 21 and postnatal day 38. In postnatal day 21, serum BDNF levels of experimental epilepsy group were significantly lower compared with PHT group. This decrease is statistically significant. Serum BDNF levels increased in the group LTG. This increase compared with LTG+EE group was statistically significant. In the folic acid (FA) group, levels of serum BDNF decreased statistically significantly compared to the PHT group. On postnatal day 38, no significant differences were found among the groups for serum BDNF levels. We concluded that, the passed seizures during pregnancy adversely affect fetal brain development, lowering of serum BDNF levels. PHT use during pregnancy prevents seizure-induced injury by increasing the levels of BDNF. About the increase level of BDNF, LTG is much less effective than PHT, the positive effect of folic acid on serum BDNF levels was not observed. LTG increase in BDNF is much less effective than PHT, folic acid did not show a positive effect on serum BDNF levels. Epilepsy affects fetal brain development during gestation in pregnant rats, therefore anti-epileptic therapy should be continued during pregnancy. PMID:26706181

  11. MicroRNA-107 inhibits tumor growth and metastasis by targeting the BDNF-mediated PI3K/AKT pathway in human non-small lung cancer

    PubMed Central

    Xia, Huan; Li, Yang; Lv, Xiaohong

    2016-01-01

    Abnormal expression of microRNA-107 (miR-107) was found in non-small cell lung cancer (NSCLC). However, little is known about its role and molecular mechanism in NSCLC progression and metastasis. Therefore, the aims of this study were to clarify the potential role of miR-107 and molecular mechanism in NSCLC progression and metastasis. Quantitative real-time polymerase chain reaction assay showed that miR-107 expression levels were significantly decreased in NSCLC tissue and cell lines. Low miR-107 levels in tumor tissue correlated with advanced TNM stage and lymph node metastasis. Function assays showed that overexpression of miR-107 suppressed cell proliferation, migration and invasion in A549 cells in vitro, and inhibited NSCLC tumor growth in vivo. Further mechanism assays suggested the brain-derived neurotrophic factor (BDNF) was identified as a target gene of miR-107 in NSCLC cells. In addition, BDNF expression was upregulated, and inversely correlated with miR-107 in NSCLC tissues. Enforced overexpression of BDNF effectively reversed the tumor suppressive functions of miR-107 on NSCLC proliferation, migration and invasion. miR-107 overexpression or downregulation of BDNF was able to inhibit activation of PI3K/AKT signaling pathway. Taken together, our findings present the first evidence that miR-107 could suppress NSCLC metastasis by targeting BDNF and indirectly regulating PI3K/AKT signaling pathway, which might lead to a potential therapeutic strategy focusing on miR-107 and BDNF for human NSCLC. PMID:27498977

  12. Keap1 redox-dependent regulation of doxorubicin-induced oxidative stress response in cardiac myoblasts

    SciTech Connect

    Nordgren, Kendra K.S. Wallace, Kendall B.

    2014-01-01

    Doxorubicin (DOX) is a widely prescribed treatment for a broad scope of cancers, but clinical utility is limited by the cumulative, dose-dependent cardiomyopathy that occurs with repeated administration. DOX-induced cardiotoxicity is associated with the production of reactive oxygen species (ROS) and oxidation of lipids, DNA and proteins. A major cellular defense mechanism against such oxidative stress is activation of the Keap1/Nrf2-antioxidant response element (ARE) signaling pathway, which transcriptionally regulates expression of antioxidant genes such as Nqo1 and Gstp1. In the present study, we address the hypothesis that an initial event associated with DOX-induced oxidative stress is activation of the Keap1/Nrf2-dependent expression of antioxidant genes and that this is regulated through drug-induced changes in redox status of the Keap1 protein. Incubation of H9c2 rat cardiac myoblasts with DOX resulted in a time- and dose-dependent decrease in non-protein sulfhydryl groups. Associated with this was a near 2-fold increase in Nrf2 protein content and enhanced transcription of several of the Nrf2-regulated down-stream genes, including Gstp1, Ugt1a1, and Nqo1; the expression of Nfe2l2 (Nrf2) itself was unaltered. Furthermore, both the redox status and the total amount of Keap1 protein were significantly decreased by DOX, with the loss of Keap1 being due to both inhibited gene expression and increased autophagic, but not proteasomal, degradation. These findings identify the Keap1/Nrf2 pathway as a potentially important initial response to acute DOX-induced oxidative injury, with the primary regulatory events being the oxidation and autophagic degradation of the redox sensor Keap1 protein. - Highlights: • DOX caused a ∼2-fold increase in Nrf2 protein content. • DOX enhanced transcription of several Nrf2-regulated down-stream genes. • Redox status and total amount of Keap1 protein were significantly decreased by DOX. • Loss of Keap1 protein was due to

  13. Influence of oxidized biodiesel blends on regulated and unregulated emissions from a diesel passenger car.

    PubMed

    Karavalakis, Georgios; Bakeas, Evangelos; Stournas, Stamos

    2010-07-01

    This paper investigates the effects of biodiesel blends on regulated and unregulated emissions from a Euro 4 diesel passenger car, fitted with a diesel oxidation catalyst and a diesel particle filter (DPF). Emission and fuel consumption measurements were conducted for the New European Driving Cycle (NEDC) and the Artemis driving cycles. Criteria pollutants, along with carbonyl, polycyclic aromatic hydrocarbon (PAH) and nitrate PAH and oxygenate PAH emissions, were measured and recorded. A soy-based biodiesel and an oxidized biodiesel, obtained from used frying oils, were blended with an ultra low sulfur diesel at proportions of 20, 30, and 50% by volume. The results showed that the DPF had the ability to significantly reduce particulate matter (PM) emissions over all driving conditions. Carbon monoxide (CO) and hydrocarbon (HC) emissions were also reduced with biodiesel; however, a notable increase in nitrogen oxide (NO(x)) emissions was observed with biodiesel blends. Carbon dioxide (CO(2)) emissions and fuel consumption followed similar patterns and increased with biodiesel. The influence of fuel type and properties was particularly noticeable on the unregulated pollutants. The use of the oxidized biodiesel blends led to significant increases in carbonyl emissions, especially in compounds which are associated with potential health risks such as formaldehyde, acetaldehyde, and acrolein. Sharp increases in most PAH compounds and especially those which are known for their toxic and carcinogenic potency were observed with the oxidized blends. The presence of polymerization products and cyclic acids were the main factors that influenced the PAH emissions profile.

  14. Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions.

    PubMed

    Mailloux, Ryan J; Jin, Xiaolei; Willmore, William G

    2014-01-01

    Mitochondria have a myriad of essential functions including metabolism and apoptosis. These chief functions are reliant on electron transfer reactions and the production of ATP and reactive oxygen species (ROS). The production of ATP and ROS are intimately linked to the electron transport chain (ETC). Electrons from nutrients are passed through the ETC via a series of acceptor and donor molecules to the terminal electron acceptor molecular oxygen (O2) which ultimately drives the synthesis of ATP. Electron transfer through the respiratory chain and nutrient oxidation also produces ROS. At high enough concentrations ROS can activate mitochondrial apoptotic machinery which ultimately leads to cell death. However, if maintained at low enough concentrations ROS can serve as important signaling molecules. Various regulatory mechanisms converge upon mitochondria to modulate ATP synthesis and ROS production. Given that mitochondrial function depends on redox reactions, it is important to consider how redox signals modulate mitochondrial processes. Here, we provide the first comprehensive review on how redox signals mediated through cysteine oxidation, namely S-oxidation (sulfenylation, sulfinylation), S-glutathionylation, and S-nitrosylation, regulate key mitochondrial functions including nutrient oxidation, oxidative phosphorylation, ROS production, mitochondrial permeability transition (MPT), apoptosis, and mitochondrial fission and fusion. We also consider the chemistry behind these reactions and how they are modulated in mitochondria. In addition, we also discuss emerging knowledge on disorders and disease states that are associated with deregulated redox signaling in mitochondria and how mitochondria-targeted medicines can be utilized to restore mitochondrial redox signaling.

  15. Charge Self-Regulation Upon Changing the Oxidation State of Transition Metals in Insulators

    SciTech Connect

    Raebiger, H.; Lany, S.; Zunger, A.

    2008-06-01

    Transition-metal atoms embedded in an ionic or semiconducting crystal can exist in various oxidation states that have distinct signatures in X-ray photoemission spectroscopy and 'ionic radii' which vary with the oxidation state of the atom. These oxidation states are often tacitly associated with a physical ionization of the transition-metal atoms--that is, a literal transfer of charge to or from the atoms. Physical models have been founded on this charge-transfer paradigm, but first-principles quantum mechanical calculations show only negligible changes in the local transition-metal charge as the oxidation state is altered. Here we explain this peculiar tendency of transition-metal atoms to maintain a constant local charge under external perturbations in terms of an inherent, homeostasis-like negative feedback. We show that signatures of oxidation states and multivalence--such as X-ray photoemission core-level shifts, ionic radii and variations in local magnetization--that have often been interpreted as literal charge transfer are instead a consequence of the negative-feedback charge regulation.

  16. Oleic acid-dependent modulation of Nitric oxide associated 1 protein levels regulates nitric oxide-mediated defense signaling in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The conserved cellular metabolites nitric oxide (NO) and oleic acid (18:1) are well-known regulators of disease physiologies in diverse organism. We show that NO production in plants is regulated via 18:1. Reduction in 18:1 levels, via a genetic mutation in the 18:1-synthesizing gene SUPPRESSOR OF S...

  17. KLF15 and PPARα Cooperate to Regulate Cardiomyocyte Lipid Gene Expression and Oxidation

    PubMed Central

    Prosdocimo, Domenick A.; John, Jenine E.; Zhang, Lilei; Efraim, Elizabeth S.; Zhang, Rongli; Liao, Xudong; Jain, Mukesh K.

    2015-01-01

    The metabolic myocardium is an omnivore and utilizes various carbon substrates to meet its energetic demand. While the adult heart preferentially consumes fatty acids (FAs) over carbohydrates, myocardial fuel plasticity is essential for organismal survival. This metabolic plasticity governing fuel utilization is under robust transcriptional control and studies over the past decade have illuminated members of the nuclear receptor family of factors (e.g., PPARα) as important regulators of myocardial lipid metabolism. However, given the complexity of myocardial metabolism in health and disease, it is likely that other molecular pathways are likely operative and elucidation of such pathways may provide the foundation for novel therapeutic approaches. We previously demonstrated that Kruppel-like factor 15 (KLF15) is an independent regulator of cardiac lipid metabolism thus raising the possibility that KLF15 and PPARα operate in a coordinated fashion to regulate myocardial gene expression requisite for lipid oxidation. In the current study, we show that KLF15 binds to, cooperates with, and is required for the induction of canonical PPARα-mediated gene expression and lipid oxidation in cardiomyocytes. As such, this study establishes a molecular module involving KLF15 and PPARα and provides fundamental insights into the molecular regulation of cardiac lipid metabolism. PMID:25815008

  18. ATM regulation of IL-8 links oxidative stress to cancer cell migration and invasion

    PubMed Central

    Chen, Wei-Ta; Ebelt, Nancy D; Stracker, Travis H; Xhemalce, Blerta; Van Den Berg, Carla L; Miller, Kyle M

    2015-01-01

    Ataxia-telangiectasia mutated (ATM) protein kinase regulates the DNA damage response (DDR) and is associated with cancer suppression. Here we report a cancer-promoting role for ATM. ATM depletion in metastatic cancer cells reduced cell migration and invasion. Transcription analyses identified a gene network, including the chemokine IL-8, regulated by ATM. IL-8 expression required ATM and was regulated by oxidative stress. IL-8 was validated as an ATM target by its ability to rescue cell migration and invasion defects in ATM-depleted cells. Finally, ATM-depletion in human breast cancer cells reduced lung tumors in a mouse xenograft model and clinical data validated IL-8 in lung metastasis. These findings provide insights into how ATM activation by oxidative stress regulates IL-8 to sustain cell migration and invasion in cancer cells to promote metastatic potential. Thus, in addition to well-established roles in tumor suppression, these findings identify a role for ATM in tumor progression. DOI: http://dx.doi.org/10.7554/eLife.07270.001 PMID:26030852

  19. FurA contributes to the oxidative stress response regulation of Mycobacterium avium ssp. paratuberculosis

    PubMed Central

    Eckelt, Elke; Meißner, Thorsten; Meens, Jochen; Laarmann, Kristin; Nerlich, Andreas; Jarek, Michael; Weiss, Siegfried; Gerlach, Gerald-F.; Goethe, Ralph

    2015-01-01

    The ferric uptake regulator A (FurA) is known to be involved in iron homeostasis and stress response in many bacteria. In mycobacteria the precise role of FurA is still unclear. In the presented study, we addressed the functional role of FurA in the ruminant pathogen Mycobacterium avium ssp. paratuberculosis (MAP) by construction of a furA deletion strain (MAPΔfurA). RNA deep sequencing revealed that the FurA regulon consists of repressed and activated genes associated to stress response or intracellular survival. Not a single gene related to metal homeostasis was affected by furA deletion. A decisive role of FurA during intracellular survival in macrophages was shown by significantly enhanced survival of MAPΔfurA compared to the wildtype, indicating that a principal task of mycobacterial FurA is oxidative stress response regulation in macrophages. This resistance was not associated with altered survival of mice after long term infection with MAP. Our results demonstrate for the first time, that mycobacterial FurA is not involved in the regulation of iron homeostasis. However, they provide strong evidence that FurA contributes to intracellular survival as an oxidative stress sensing regulator. PMID:25705205

  20. FurA contributes to the oxidative stress response regulation of Mycobacterium avium ssp. paratuberculosis.

    PubMed

    Eckelt, Elke; Meißner, Thorsten; Meens, Jochen; Laarmann, Kristin; Nerlich, Andreas; Jarek, Michael; Weiss, Siegfried; Gerlach, Gerald-F; Goethe, Ralph

    2015-01-01

    The ferric uptake regulator A (FurA) is known to be involved in iron homeostasis and stress response in many bacteria. In mycobacteria the precise role of FurA is still unclear. In the presented study, we addressed the functional role of FurA in the ruminant pathogen Mycobacterium avium ssp. paratuberculosis (MAP) by construction of a furA deletion strain (MAPΔfurA). RNA deep sequencing revealed that the FurA regulon consists of repressed and activated genes associated to stress response or intracellular survival. Not a single gene related to metal homeostasis was affected by furA deletion. A decisive role of FurA during intracellular survival in macrophages was shown by significantly enhanced survival of MAPΔfurA compared to the wildtype, indicating that a principal task of mycobacterial FurA is oxidative stress response regulation in macrophages. This resistance was not associated with altered survival of mice after long term infection with MAP. Our results demonstrate for the first time, that mycobacterial FurA is not involved in the regulation of iron homeostasis. However, they provide strong evidence that FurA contributes to intracellular survival as an oxidative stress sensing regulator.

  1. Physical exercise improves peripheral BDNF levels and cognitive functions in mild cognitive impairment elderly with different bdnf Val66Met genotypes.

    PubMed

    Nascimento, Carla Manuela Crispim; Pereira, Jessica Rodrigues; Pires de Andrade, Larissa; Garuffi, Marcelo; Ayan, Carlos; Kerr, Daniel Shikanai; Talib, Leda Leme; Cominetti, Márcia Regina; Stella, Florindo

    2015-01-01

    The benefits of physical exercise on improvements in brain-derived neurotrophic factor (BDNF) levels and cognitive functioning have been reported in the literature. However, the variability of individual responses may be linked to genetic differences. BDNF is considered one of the most plausible factors involved in the cognitive benefits associated with physical activity practice. A single nucleotide polymorphism localized in the gene that codes BDNF results in a missense mutation that promotes an amino acid substitution (Val66Met) in the protein. This process has been associated with decreased levels of BDNF secretion, with corresponding impairments in specific cognitive functions. Therefore, the objective of this study was to analyze the effects of a multimodal physical exercise program on peripheral BDNF levels and cognitive functions in elderly individuals with mild cognitive impairment (MCI). The participants were genotyped for the BDNF Val66Met polymorphism. Cognitive functions were assessed by the Montreal Cognitive Assessment (MoCA) prior to and after the intervention. Forty-five participants were assigned to the control and trained groups. The trained group participated in a multimodal physical training for a 16-week period. The results showed a significant between-subjects interaction (p < 0.05), which indicates the beneficial contribution of training on cognitive functions independent of the BDNF genotype. However, only participants with BDNF-Met genotypes exhibited significant improvements in peripheral BDNF levels. The BDNF genotype appears to modulate the effects of physical exercise on BDNF secretion, but it does not influence cognition. This is the first study that evaluated the influence of a BDNF polymorphism on physical activity and cognition performance in elderly MCI individuals.

  2. Physical exercise improves peripheral BDNF levels and cognitive functions in mild cognitive impairment elderly with different bdnf Val66Met genotypes.

    PubMed

    Nascimento, Carla Manuela Crispim; Pereira, Jessica Rodrigues; Pires de Andrade, Larissa; Garuffi, Marcelo; Ayan, Carlos; Kerr, Daniel Shikanai; Talib, Leda Leme; Cominetti, Márcia Regina; Stella, Florindo

    2015-01-01

    The benefits of physical exercise on improvements in brain-derived neurotrophic factor (BDNF) levels and cognitive functioning have been reported in the literature. However, the variability of individual responses may be linked to genetic differences. BDNF is considered one of the most plausible factors involved in the cognitive benefits associated with physical activity practice. A single nucleotide polymorphism localized in the gene that codes BDNF results in a missense mutation that promotes an amino acid substitution (Val66Met) in the protein. This process has been associated with decreased levels of BDNF secretion, with corresponding impairments in specific cognitive functions. Therefore, the objective of this study was to analyze the effects of a multimodal physical exercise program on peripheral BDNF levels and cognitive functions in elderly individuals with mild cognitive impairment (MCI). The participants were genotyped for the BDNF Val66Met polymorphism. Cognitive functions were assessed by the Montreal Cognitive Assessment (MoCA) prior to and after the intervention. Forty-five participants were assigned to the control and trained groups. The trained group participated in a multimodal physical training for a 16-week period. The results showed a significant between-subjects interaction (p < 0.05), which indicates the beneficial contribution of training on cognitive functions independent of the BDNF genotype. However, only participants with BDNF-Met genotypes exhibited significant improvements in peripheral BDNF levels. The BDNF genotype appears to modulate the effects of physical exercise on BDNF secretion, but it does not influence cognition. This is the first study that evaluated the influence of a BDNF polymorphism on physical activity and cognition performance in elderly MCI individuals. PMID:25062900

  3. Reduced brain-derived neurotrophic factor (BDNF) mRNA expression and presence of BDNF-immunoreactive granules in the spinocerebellar ataxia type 6 (SCA6) cerebellum.

    PubMed

    Takahashi, Makoto; Ishikawa, Kinya; Sato, Nozomu; Obayashi, Masato; Niimi, Yusuke; Ishiguro, Taro; Yamada, Mitsunori; Toyoshima, Yasuko; Takahashi, Hitoshi; Kato, Takeo; Takao, Masaki; Murayama, Shigeo; Mori, Osamu; Eishi, Yoshinobu; Mizusawa, Hidehiro

    2012-12-01

    Spinocerebellar ataxia type 6 (SCA6) is an autosomal-dominant neurodegenerative disorder caused by a small expansion of tri-nucleotide (CAG) repeat encoding polyglutamine (polyQ) in the gene for α(1A) voltage-dependent calcium channel (Ca(v) 2.1). Thus, this disease is one of the nine neurodegenerative disorders called polyQ diseases. The Purkinje cell predominant neuronal loss is the characteristic neuropathology of SCA6, and a 75-kDa carboxy-terminal fragment (CTF) of Ca(v) 2.1 containing polyQ, which remains soluble in normal brains, becomes insoluble in the cytoplasm of SCA6 Purkinje cells. Because the suppression of the brain-derived neurotrophic factor (BDNF) expression is a potentially momentous phenomenon in many other polyQ diseases, we implemented BDNF expression analysis in SCA6 human cerebellum using quantitative RT-PCR for the BDNF mRNA, and by immunohistochemistry for the BDNF protein. We observed significantly reduced BDNF mRNA levels in SCA6 cerebellum (n = 3) compared to controls (n = 6) (Mann-Whitney U-test, P = 0.0201). On immunohistochemistry, BDNF protein was only weakly stained in control cerebellum. On the other hand, we found numerous BDNF-immunoreactive granules in dendrites of SCA6 Purkinje cells. We did not observe similar BDNF-immunoreactive granules in other polyQ diseases, such as Huntington's disease or SCA2. As we often observed that the 1C2-positive Ca(v) 2.1 aggregates existed more proximally than the BDNF-positive granules in the dendrites, we speculated that the BDNF protein trafficking in dendrites may be disturbed by Ca(v) 2.1 aggregates in SCA6 Purkinje cells. We conclude that the SCA6 pathogenic mechanism associates with the BDNF mRNA expression reduction and abnormal localization of BDNF protein.

  4. The Effects of BDNF Val66Met Gene Polymorphism on Serum BDNF and Cognitive Function in Methamphetamine-Dependent Patients and Normal Controls: A Case-Control Study.

    PubMed

    Su, Hang; Tao, Jingyan; Zhang, Jie; Xie, Ying; Wang, Yue; Zhang, Yu; Han, Bin; Lu, Yuling; Sun, Haiwei; Wei, Youdan; Zou, Shengzhen; Wu, Wenxiu; Zhang, Jiajia; Xu, Ke; Zhang, Xiangyang; He, Jincai

    2015-10-01

    Studies suggest that a functional polymorphism of the brain-derived neurotrophic factor gene (BDNF Val66Met) may contribute to methamphetamine dependence. We hypothesized that this polymorphism had a role in cognitive deficits in methamphetamine-dependent patients and in the relationship of serum BDNF with cognitive impairments. We conducted a case-control study by assessing 194 methamphetamine-dependent patients and 378 healthy volunteers without history of drug use on the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and the presence of the BDNF Val66Met polymorphism and serum BDNF levels. We showed no significant differences in genotype and allele distributions between the methamphetamine-dependent patients and controls. Some aspects of cognitive function significantly differed in the 2 groups. The serum BDNF levels in methamphetamine-dependent patients were significantly higher than those of the healthy controls. In the patients, partial correlation analysis showed a significant positive correlation between serum BDNF and the delayed memory index score. The RBANS scores showed statistically significant BDNF level × genotype interaction. Further regression analyses showed a significant positive association between BDNF levels and the RBANS total score, immediate memory or attention index among Val homozygote patients, whereas a significant negative association of BDNF levels with the RBANS total score, visuospatial/constructional, or language index was found among Met/Val heterozygous patients. We demonstrated significant impairment on some aspects of cognitive function and increased BDNF levels in methamphetamine-dependent patients as well as genotypic differences in the relationships between BDNF levels and RBANS scores on the BDNF Val66Met polymorphism only in these patients.

  5. Brain-derived neurotrophic factor regulates cell motility in human colon cancer.

    PubMed

    Huang, Ssu-Ming; Lin, Chingju; Lin, Hsiao-Yun; Chiu, Chien-Ming; Fang, Chia-Wei; Liao, Kuan-Fu; Chen, Dar-Ren; Yeh, Wei-Lan

    2015-06-01

    Brain-derived neurotrophic factor (BDNF) is a potent neurotrophic factor that has been shown to affect cancer cell metastasis and migration. In the present study, we investigated the mechanisms of BDNF-induced cell migration in colon cancer cells. The migratory activities of two colon cancer cell lines, HCT116 and SW480, were found to be increased in the presence of human BDNF. Heme oxygenase-1 (HO)-1 is known to be involved in the development and progression of tumors. However, the molecular mechanisms that underlie HO-1 in the regulation of colon cancer cell migration remain unclear. Expression of HO-1 protein and mRNA increased in response to BDNF stimulation. The BDNF-induced increase in cell migration was antagonized by a HO-1 inhibitor and HO-1 siRNA. Furthermore, the expression of vascular endothelial growth factor (VEGF) also increased in response to BDNF stimulation, as did VEGF mRNA expression and transcriptional activity. The increase in BDNF-induced cancer cell migration was antagonized by a VEGF-neutralizing antibody. Moreover, transfection with HO-1 siRNA effectively reduced the increased VEGF expression induced by BDNF. The BDNF-induced cell migration was regulated by the ERK, p38, and Akt signaling pathways. Furthermore, BDNF-increased HO-1 and VEGF promoter transcriptional activity were inhibited by ERK, p38, and AKT pharmacological inhibitors and dominant-negative mutants in colon cancer cells. These results indicate that BDNF increases the migration of colon cancer cells by regulating VEGF/HO-1 activation through the ERK, p38, and PI3K/Akt signaling pathways. The results of this study may provide a relevant contribution to our understanding of the molecular mechanisms by which BDNF promotes colon cancer cell motility.

  6. Regulation of mitochondrial oxidative stress by β-arrestins in cultured human cardiac fibroblasts.

    PubMed

    Philip, Jennifer L; Razzaque, Md Abdur; Han, Mei; Li, Jinju; Theccanat, Tiju; Xu, Xianyao; Akhter, Shahab A

    2015-12-01

    Oxidative stress in cardiac fibroblasts (CFs) promotes transformation to myofibroblasts and collagen synthesis leading to myocardial fibrosis, a precursor to heart failure (HF). NADPH oxidase 4 (Nox4) is a major source of cardiac reactive oxygen species (ROS); however, mechanisms of Nox4 regulation are unclear. β-arrestins are scaffold proteins that signal in G-protein-dependent and -independent pathways; for example, in ERK activation. We hypothesize that β-arrestins regulate oxidative stress in a Nox4-dependent manner and increase fibrosis in HF. CFs were isolated from normal and failing adult human left ventricles. Mitochondrial ROS/superoxide production was quantitated using MitoSox. β-arrestin and Nox4 expressions were manipulated using adenoviral overexpression or short interfering RNA (siRNA)-mediated knockdown. Mitochondrial oxidative stress and Nox4 expression in CFs were significantly increased in HF. Nox4 knockdown resulted in inhibition of mitochondrial superoxide production and decreased basal and TGF-β-stimulated collagen and α-SMA expression. CF β-arrestin expression was upregulated fourfold in HF. β-arrestin knockdown in failing CFs decreased ROS and Nox4 expression by 50%. β-arrestin overexpression in normal CFs increased mitochondrial superoxide production twofold. These effects were prevented by inhibition of either Nox or ERK. Upregulation of Nox4 seemed to be a primary mechanism for increased ROS production in failing CFs, which stimulates collagen deposition. β-arrestin expression was upregulated in HF and plays an important and newly identified role in regulating mitochondrial superoxide production via Nox4. The mechanism for this effect seems to be ERK-mediated. Targeted inhibition of β-arrestins in CFs might decrease oxidative stress as well as pathological cardiac fibrosis.

  7. Regulation of mitochondrial oxidative stress by β-arrestins in cultured human cardiac fibroblasts

    PubMed Central

    Philip, Jennifer L.; Razzaque, Md. Abdur; Han, Mei; Li, Jinju; Theccanat, Tiju; Xu, Xianyao; Akhter, Shahab A.

    2015-01-01

    ABSTRACT Oxidative stress in cardiac fibroblasts (CFs) promotes transformation to myofibroblasts and collagen synthesis leading to myocardial fibrosis, a precursor to heart failure (HF). NADPH oxidase 4 (Nox4) is a major source of cardiac reactive oxygen species (ROS); however, mechanisms of Nox4 regulation are unclear. β-arrestins are scaffold proteins that signal in G-protein-dependent and -independent pathways; for example, in ERK activation. We hypothesize that β-arrestins regulate oxidative stress in a Nox4-dependent manner and increase fibrosis in HF. CFs were isolated from normal and failing adult human left ventricles. Mitochondrial ROS/superoxide production was quantitated using MitoSox. β-arrestin and Nox4 expressions were manipulated using adenoviral overexpression or short interfering RNA (siRNA)-mediated knockdown. Mitochondrial oxidative stress and Nox4 expression in CFs were significantly increased in HF. Nox4 knockdown resulted in inhibition of mitochondrial superoxide production and decreased basal and TGF-β-stimulated collagen and α-SMA expression. CF β-arrestin expression was upregulated fourfold in HF. β-arrestin knockdown in failing CFs decreased ROS and Nox4 expression by 50%. β-arrestin overexpression in normal CFs increased mitochondrial superoxide production twofold. These effects were prevented by inhibition of either Nox or ERK. Upregulation of Nox4 seemed to be a primary mechanism for increased ROS production in failing CFs, which stimulates collagen deposition. β-arrestin expression was upregulated in HF and plays an important and newly identified role in regulating mitochondrial superoxide production via Nox4. The mechanism for this effect seems to be ERK-mediated. Targeted inhibition of β-arrestins in CFs might decrease oxidative stress as well as pathological cardiac fibrosis. PMID:26449263

  8. TXNIP regulates myocardial fatty acid oxidation via miR-33a signaling.

    PubMed

    Chen, Junqin; Young, Martin E; Chatham, John C; Crossman, David K; Dell'Italia, Louis J; Shalev, Anath

    2016-07-01

    Myocardial fatty acid β-oxidation is critical for the maintenance of energy homeostasis and contractile function in the heart, but its regulation is still not fully understood. While thioredoxin-interacting protein (TXNIP) has recently been implicated in cardiac metabolism and mitochondrial function, its effects on β-oxidation have remained unexplored. Using a new cardiomyocyte-specific TXNIP knockout mouse and working heart perfusion studies, as well as loss- and gain-of-function experiments in rat H9C2 and human AC16 cardiomyocytes, we discovered that TXNIP deficiency promotes myocardial β-oxidation via signaling through a specific microRNA, miR-33a. TXNIP deficiency leads to increased binding of nuclear factor Y (NFYA) to the sterol regulatory element binding protein 2 (SREBP2) promoter, resulting in transcriptional inhibition of SREBP2 and its intronic miR-33a. This allows for increased translation of the miR-33a target genes and β-oxidation-promoting enzymes, carnitine octanoyl transferase (CROT), carnitine palmitoyl transferase 1 (CPT1), hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase-β (HADHB), and AMPKα and is associated with an increase in phospho-AMPKα and phosphorylation/inactivation of acetyl-CoA-carboxylase. Thus, we have identified a novel TXNIP-NFYA-SREBP2/miR-33a-AMPKα/CROT/CPT1/HADHB pathway that is conserved in mouse, rat, and human cardiomyocytes and regulates myocardial β-oxidation.

  9. Circulating brain derived neurotrophic factor (BDNF) and frequency of BDNF positive T cells in peripheral blood in human ischemic stroke: Effect on outcome.

    PubMed

    Chan, Adeline; Yan, Jun; Csurhes, Peter; Greer, Judith; McCombe, Pamela

    2015-09-15

    The aim of this study was to measure the levels of circulating BDNF and the frequency of BDNF-producing T cells after acute ischaemic stroke. Serum BDNF levels were measured by ELISA. Flow cytometry was used to enumerate peripheral blood leukocytes that were labelled with antibodies against markers of T cells, T regulatory cells (Tregs), and intracellular BDNF. There was a slight increase in serum BDNF levels after stroke. There was no overall difference between stroke patients and controls in the frequency of CD4(+) and CD8(+) BDNF(+) cells, although a subgroup of stroke patients showed high frequencies of these cells. However, there was an increase in the percentage of BDNF(+) Treg cells in the CD4(+) population in stroke patients compared to controls. Patients with high percentages of CD4(+) BDNF(+) Treg cells had a better outcome at 6months than those with lower levels. These groups did not differ in age, gender or initial stroke severity. Enhancement of BDNF production after stroke could be a useful means of improving neuroprotection and recovery after stroke.

  10. Epibranchial placode-derived neurons produce BDNF required for early sensory neuron development.

    PubMed

    Harlow, Danielle E; Yang, Hui; Williams, Trevor; Barlow, Linda A

    2011-02-01

    In mice, BDNF provided by the developing taste epithelium is required for gustatory neuron survival following target innervation. However, we find that expression of BDNF, as detected by BDNF-driven β-galactosidase, begins in the cranial ganglia before its expression in the central (hindbrain) or peripheral (taste papillae) targets of these sensory neurons, and before gustatory ganglion cells innervate either target. To test early BDNF function, we examined the ganglia of bdnf null mice before target innervation, and found that while initial neuron survival is unaltered, early neuron development is disrupted. In addition, fate mapping analysis in mice demonstrates that murine cranial ganglia arise from two embryonic populations, i.e., epibranchial placodes and neural crest, as has been described for these ganglia in non-mammalian vertebrates. Only placodal neurons produce BDNF, however, which indicates that prior to innervation, early ganglionic BDNF produced by placode-derived cells promotes gustatory neuron development.

  11. The oxidative molecular regulation mechanism of NOX in children with phenylketonuria.

    PubMed

    He, Ying-Zhong; Gu, Xue-Fan; Lu, Li-Hua; Liang, Li-Li

    2014-11-01

    Phenylketonuria (PKU) is the most frequent inherited disorder of amino acid metabolism. In our previous work, we investigated the role of NADPH oxidase (NOX) in a Pahenu2-BTBR PKU mouse model, and an in vitro cell culture model of PKU. In the current study, we evaluated various oxidative stress parameters, namely total antioxidant capacity (T-AOC), glutathione (GSH) and maleic dialdehyde (MDA) in the plasma of 40 PKU children, for further investigating the oxidative molecular regulation mechanism of NOX in PKU. It was observed that T-AOC and GSH markedly decreased in PKU as compared with the control group (P<0.01), and seemed to correlate negatively with Phe level. However, there was no statistical difference in MDA level among the three groups. And 8-isoprostane in the blood samples of PKU2 groups was slightly higher than control group (P<0.05). Additionally, mRNA levels of subunits of NOX included p47(phox) and p67(phox) significantly increased in PKU group (P<0.01). These results reflected that NOX is the important source of reactive oxygen species and is involved in the oxidative molecular regulation mechanism in PKU, which shows a new perspective toward understanding the biological underpinnings of PKU.

  12. Aberrant activation and regulation of the oxidative burst in neutrophils with Mo1 glycoprotein deficiency

    SciTech Connect

    Nauseef, W.M.; de Alarcon, P.; Bale, J.F.; Clark, R.A.

    1986-07-15

    Patients whose cells are deficient in the glycoproteins LFA-1, Mo1, and p150,95 have recurrent infections and pronounced abnormalities in neutrophil adherence, aggregation, chemotaxis, and phagocytosis. Activation and regulation of oxidative metabolism of Mo1-deficient neutrophils have been characterized. These cells failed to depolarize or to produce O/sub 2//sup -/ or H/sub 2/O/sub 2/ normally when stimulated by opsonized zymosan. The chemotactic peptide formyl methionyl-leucyl-phenylalanine depolarized Mo1-deficient neutrophils normally but caused supernormal production of O/sub 2//sup -/ and H/sub 2/O/sub 2/, a result of a prolonged burst in oxidative metabolism. Phorbol myristate acetate depolarized Mo1-deficient neutrophils at a nearly normal rate but evoked release of significantly less O/sub 2//sup -/ and H/sub 2/O/sub 2/ than from normal PMN. The aberrant activation and regulation of the oxidative burst in Mo1-deficient neutrohpils are considered in light of recently neutrophils are considered in light of recently emerging concepts in the cell biology of this process, and the possibility that these abnormalities reflect a defect in the cytoskeleton-membrane interaction is discussed.

  13. Juglans mandshurica leaf extract protects skin fibroblasts from damage by regulating the oxidative defense system.

    PubMed

    Park, Gunhyuk; Jang, Dae Sik; Oh, Myung Sook

    2012-05-01

    Skin is mainly damaged by genetic and environmental factors such as ultraviolet light, xenobiotics, hormonal changes, heat, and smoking. ROS production is commonly involved in the pathogenesis of skin damage induced by these factors, causing skin aging, including wrinkling, by activating the metalloproteinases (MMP-1) that break down type I collagen (COL1A1). The walnut tree Juglans mandshurica MAX. (JM) is found in China, Siberia and Korea. JM has been reported to have various pharmacological activities, such as anti-tumor, anti-oxidative, and anti-bacterial effects. In the present study, we investigated the protective effect of JM leaf extract (JME) against oxidative stress in HS68 human skin fibroblasts. JME significantly and dose-dependently protected HS68 cells against H₂O₂-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Other assays demonstrated that JME protected HS68 cells by regulating ROS production and increasing levels of glutathione, heme oxygenase-1, and activated NF-E2-related factor 2. JME additionally prevented the elevation of MMP-1 and reduction of COL1A1 induced by H₂O₂. It also inhibited H₂O₂-induced phosphorylation of ERK, p38, and JNK. These results indicate that JME protects human skin fibroblasts from H₂O₂-induced damage by regulating the oxidative defense system.

  14. Early Life Stress Effects on Glucocorticoid—BDNF Interplay in the Hippocampus

    PubMed Central

    Daskalakis, Nikolaos P.; De Kloet, Edo Ronald; Yehuda, Rachel; Malaspina, Dolores; Kranz, Thorsten M.

    2015-01-01

    Early life stress (ELS) is implicated in the etiology of multiple psychiatric disorders. Important biological effects of ELS are manifested in stress-susceptible regions of the hippocampus and are partially mediated by long-term effects on glucocorticoid (GC) and/or neurotrophin signaling pathways. GC-signaling mediates the regulation of stress response to maintain homeostasis, while neurotrophin signaling plays a key role in neuronal outgrowth and is crucial for axonal guidance and synaptic integrity. The neurotrophin and GC-signaling pathways co-exist throughout the central nervous system (CNS), particularly in the hippocampus, which has high expression levels of glucocorticoid-receptors (GR) and mineralocorticoid-receptors (MR) as well as brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase receptor B (TrkB). This review addresses the effects of ELS paradigms on GC- and BDNF-dependent mechanisms and their crosstalk in the hippocampus, including potential implications for the pathogenesis of common stress-related disorders. PMID:26635521

  15. Acute nicotine treatment attenuates lipopolysaccharide-induced cognitive dysfunction by increasing BDNF expression and inhibiting neuroinflammation in the rat hippocampus.

    PubMed

    Wei, Penghui; Liu, Qingshen; Li, Dong; Zheng, Qiang; Zhou, Jinfeng; Li, Jianjun

    2015-09-14

    Although nicotine has been shown to improve cognitive function in various studies, the mechanisms underlying acute nicotine treatment-induced neuroprotection remain incompletely understood. In this study, we evaluated the effect of acute nicotine treatment on the cognitive impairment induced by lipopolysaccharide (LPS) and explored the underlying mechanism. We found that acute nicotine injection markedly attenuated LPS-elicited cognitive deficits and suppressed the strong LPS-induced release of IL-1β, IL-6, and TNF-α into serum and the dorsal hippocampus at 4 and 24h after LPS injection. Western blot analysis indicated a clear increase in the levels of cleaved caspase-3 in LPS-treated animals but not in nicotine- or saline-treated animals. Furthermore, nicotine administration led to a significant increase in BDNF mRNA expression at 4 and 24h and in BDNF protein expression at 24h after LPS injection in the dorsal hippocampus. Taken together, acute nicotine administration attenuated LPS-induced cognitive dysfunction, and this neuroprotective effect may be related to the up-regulation of BDNF and the inhibition of neuroinflammation and apoptosis-related proteins in the dorsal hippocampus. PMID:26259694

  16. Acute nicotine treatment attenuates lipopolysaccharide-induced cognitive dysfunction by increasing BDNF expression and inhibiting neuroinflammation in the rat hippocampus.

    PubMed

    Wei, Penghui; Liu, Qingshen; Li, Dong; Zheng, Qiang; Zhou, Jinfeng; Li, Jianjun

    2015-09-14

    Although nicotine has been shown to improve cognitive function in various studies, the mechanisms underlying acute nicotine treatment-induced neuroprotection remain incompletely understood. In this study, we evaluated the effect of acute nicotine treatment on the cognitive impairment induced by lipopolysaccharide (LPS) and explored the underlying mechanism. We found that acute nicotine injection markedly attenuated LPS-elicited cognitive deficits and suppressed the strong LPS-induced release of IL-1β, IL-6, and TNF-α into serum and the dorsal hippocampus at 4 and 24h after LPS injection. Western blot analysis indicated a clear increase in the levels of cleaved caspase-3 in LPS-treated animals but not in nicotine- or saline-treated animals. Furthermore, nicotine administration led to a significant increase in BDNF mRNA expression at 4 and 24h and in BDNF protein expression at 24h after LPS injection in the dorsal hippocampus. Taken together, acute nicotine administration attenuated LPS-induced cognitive dysfunction, and this neuroprotective effect may be related to the up-regulation of BDNF and the inhibition of neuroinflammation and apoptosis-related proteins in the dorsal hippocampus.

  17. Regulation of inducible nitric oxide synthase expression in bovine ovarian granulosa cells.

    PubMed

    Zamberlam, Gustavo; Portela, Valério; de Oliveira, João Francisco C; Gonçalves, Paulo B D; Price, Christopher A

    2011-03-30

    Nitric oxide (NO) is a potential regulator of ovarian follicle growth, and ovarian granulosa cells reportedly generate NO in response to gonadotrophins, suggesting that the regulated form of nitric oxide synthase (iNOS) is present. The objectives of the present study were to gain insight into the expression and role of iNOS in the follicle. Messenger RNA encoding iNOS was detected in granulosa cells, and abundance was higher in growing dominant follicles compared to subordinate follicles (P<0.01). FSH (P<0.05) and IGF1 (P<0.01) stimulated oestradiol secretion and iNOS mRNA abundance in granulosa cells in vitro, whereas FGF2 (P<0.05) and EGF (P<0.01) decreased oestradiol secretion and iNOS expression. The addition of an anti-oestrogen prevented FSH-induced iNOS mRNA accumulation. Inhibition of endogenous NO production did not affect steroidogenesis in granulosa cells, but increased FasL mRNA abundance, caspase-3 activation and the incidence of apoptotic cell death (P<0.05). These results demonstrate that iNOS is expressed in ruminant granulosa cells and is regulated by gonadotrophins and oestradiol. Physiological levels of NO may contribute to the survival of granulosa cells. PMID:21256181

  18. Metabolic pathways regulated by TAp73 in response to oxidative stress

    PubMed Central

    Agostini, Massimiliano; Annicchiarico-Petruzzelli, Margherita; Melino, Gerry; Rufini, Alessandro

    2016-01-01

    Reactive oxygen species are involved in both physiological and pathological processes including neurodegeneration and cancer. Therefore, cells have developed scavenging mechanisms to maintain redox homeostasis under control. Tumor suppressor genes play a critical role in the regulation of antioxidant genes. Here, we investigated whether the tumor suppressor gene TAp73 is involved in the regulation of metabolic adaptations triggered in response to oxidative stress. H2O2 treatment resulted in numerous biochemical changes in both control and TAp73 knockout (TAp73−/−) mouse embryonic fibroblasts, however the extent of these changes was more pronounced in TAp73−/− cells when compared to control cells. In particular, loss of TAp73 led to alterations in glucose, nucleotide and amino acid metabolism. In addition, H2O2 treatment resulted in increased pentose phosphate pathway (PPP) activity in null mouse embryonic fibroblasts. Overall, our results suggest that in the absence of TAp73, H2O2 treatment results in an enhanced oxidative environment, and at the same time in an increased pro-anabolic phenotype. In conclusion, the metabolic profile observed reinforces the role of TAp73 as tumor suppressor and indicates that TAp73 exerts this function, at least partially, by regulation of cellular metabolism. PMID:27119504

  19. Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases

    NASA Technical Reports Server (NTRS)

    Boo, Yong Chool; Jo, Hanjoong

    2003-01-01

    Vascular endothelial cells are directly and continuously exposed to fluid shear stress generated by blood flow. Shear stress regulates endothelial structure and function by controlling expression of mechanosensitive genes and production of vasoactive factors such as nitric oxide (NO). Though it is well known that shear stress stimulates NO production from endothelial nitric oxide synthase (eNOS), the underlying molecular mechanisms remain unclear and controversial. Shear-induced production of NO involves Ca2+/calmodulin-independent mechanisms, including phosphorylation of eNOS at several sites and its interaction with other proteins, including caveolin and heat shock protein-90. There have been conflicting results as to which protein kinases-protein kinase A, protein kinase B (Akt), other Ser/Thr protein kinases, or tyrosine kinases-are responsible for shear-dependent eNOS regulation. The functional significance of each phosphorylation site is still unclear. We have attempted to summarize the current status of understanding in shear-dependent eNOS regulation.

  20. Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides.

    PubMed

    Lehninger, A L; Vercesi, A; Bababunmi, E A

    1978-04-01

    Mitochondria from normal rat liver and heart, and also Ehrlich tumor cells, respiring on succinate as energy source in the presence of rotenone (to prevent net electron flow to oxygen from the endogenous pyridine nucleotides), rapidly take up Ca(2+) and retain it so long as the pyridine nucleotides are kept in the reduced state. When acetoacetate is added to bring the pyridine nucleotides into a more oxidized state, Ca(2+) is released to the medium. A subsequent addition of a reductant of the pyridine nucleotides such as beta-hydroxybutyrate, glutamate, or isocitrate causes reuptake of the released Ca(2+). Successive cycles of Ca(2+) release and uptake can be induced by shifting the redox state of the pyridine nucleotides to more oxidized and more reduced states, respectively. Similar observations were made when succinate oxidation was replaced as energy source by ascorbate oxidation or by the hydrolysis of ATP. These and other observations form the basis of a hypothesis for feedback regulation of Ca(2+)-dependent substrate- or energy-mobilizing enzymatic reactions by the uptake or release of mitochondrial Ca(2+), mediated by the cytosolic phosphate potential and the ATP-dependent reduction of mitochondrial pyridine nucleotides by reversal of electron transport.

  1. Regulation of protein C inhibitor (PCI) activity by specific oxidized and negatively charged phospholipids.

    PubMed

    Malleier, Julia M; Oskolkova, Olga; Bochkov, Valery; Jerabek, Ingrid; Sokolikova, Barbora; Perkmann, Thomas; Breuss, Johannes; Binder, Bernd R; Geiger, Margarethe

    2007-06-01

    Protein C inhibitor (PCI) is a serpin with affinity for heparin and phosphatidylethanolamine (PE). We analyzed the interaction of PCI with different phospholipids and their oxidized forms. PCI bound to oxidized PE (OxPE), and oxidized and unoxidized phosphatidylserine (PS) immobilized on microtiter plates and in aqueous suspension. Binding to OxPE and PS was competed by heparin, but not by the aminophospholipid-binding protein annexin V or the PCI-binding lipid retinoic acid. PS and OxPE stimulated the inhibition of activated protein C (aPC) by PCI in a Ca(++)-dependent manner, indicating that binding of both, aPC (Ca(++) dependent) and PCI (Ca(++) independent), to phospholipids is necessary. A peptide corresponding to the heparin-binding site of PCI abolished the stimulatory effect of PS on aPC inhibition. No stimulatory effect of phospholipids on aPC inhibition was seen with a PCI mutant lacking the heparin-binding site. A heparin-like effect of phospholipids (OxPE) was not seen with antithrombin III, another heparin-binding serpin, suggesting that it is specific for PCI. PCI and annexin V were found to be endogenously colocalized in atherosclerotic plaques, supporting the hypothesis that exposure of oxidized PE and/or PS may be important for the local regulation of PCI activity in vivo.

  2. Rev-erb-α modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy

    PubMed Central

    Woldt, Estelle; Sebti, Yasmine; Solt, Laura A.; Duhem, Christian; Lancel, Steve; Eeckhoute, Jérôme; Hesselink, Matthijs K.C.; Paquet, Charlotte; Delhaye, Stéphane; Shin, Youseung; Kamenecka, Theodore M.; Schaart, Gert; Lefebvre, Philippe; Nevière, Rémi; Burris, Thomas P.; Schrauwen, Patrick; Staels, Bart; Duez, Hélène

    2013-01-01

    The nuclear receptor Rev-erb-α modulates hepatic lipid and glucose metabolism, adipogenesis and the inflammatory response in macrophages. We show here that Rev-erb-α is highly expressed in oxidative skeletal muscle and plays a role in mitochondrial biogenesis and oxidative function, in gain- and loss-of function studies. Rev-erb-α-deficiency in skeletal muscle leads to reduced mitochondrial content and oxidative function, resulting in compromised exercise capacity. This phenotype was recapitulated in isolated fibers and in muscle cells upon Rev-erbα knock-down, while Rev-erb-α over-expression increased the number of mitochondria with improved respiratory capacity. Rev-erb-α-deficiency resulted in deactivation of the Stk11–Ampk–Sirt1–Ppargc1-α signaling pathway, whereas autophagy was up-regulated, resulting in both impaired mitochondrial biogenesis and increased clearance. Muscle over-expression or pharmacological activation of Rev-erb-α increased respiration and exercise capacity. This study identifies Rev-erb-α as a pharmacological target which improves muscle oxidative function by modulating gene networks controlling mitochondrial number and function. PMID:23852339

  3. Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides

    PubMed Central

    Lehninger, Albert L.; Vercesi, Anibal; Bababunmi, Enitan A.

    1978-01-01

    Mitochondria from normal rat liver and heart, and also Ehrlich tumor cells, respiring on succinate as energy source in the presence of rotenone (to prevent net electron flow to oxygen from the endogenous pyridine nucleotides), rapidly take up Ca2+ and retain it so long as the pyridine nucleotides are kept in the reduced state. When acetoacetate is added to bring the pyridine nucleotides into a more oxidized state, Ca2+ is released to the medium. A subsequent addition of a reductant of the pyridine nucleotides such as β-hydroxybutyrate, glutamate, or isocitrate causes reuptake of the released Ca2+. Successive cycles of Ca2+ release and uptake can be induced by shifting the redox state of the pyridine nucleotides to more oxidized and more reduced states, respectively. Similar observations were made when succinate oxidation was replaced as energy source by ascorbate oxidation or by the hydrolysis of ATP. These and other observations form the basis of a hypothesis for feedback regulation of Ca2+-dependent substrate- or energy-mobilizing enzymatic reactions by the uptake or release of mitochondrial Ca2+, mediated by the cytosolic phosphate potential and the ATP-dependent reduction of mitochondrial pyridine nucleotides by reversal of electron transport. Images PMID:25436

  4. Mitochondrial ROS regulate oxidative damage and mitophagy but not age-related muscle fiber atrophy

    PubMed Central

    Sakellariou, Giorgos K.; Pearson, Timothy; Lightfoot, Adam P.; Nye, Gareth A.; Wells, Nicola; Giakoumaki, Ifigeneia I.; Vasilaki, Aphrodite; Griffiths, Richard D.; Jackson, Malcolm J.; McArdle, Anne

    2016-01-01

    Age-related loss of skeletal muscle mass and function is a major contributor to morbidity and has a profound effect on the quality of life of older people. The potential role of age-dependent mitochondrial dysfunction and cumulative oxidative stress as the underlying cause of muscle aging remains a controversial topic. Here we show that the pharmacological attenuation of age-related mitochondrial redox changes in muscle with SS31 is associated with some improvements in oxidative damage and mitophagy in muscles of old mice. However, this treatment failed to rescue the age-related muscle fiber atrophy associated with muscle atrophy and weakness. Collectively, these data imply that the muscle mitochondrial redox environment is not a key regulator of muscle fiber atrophy during sarcopenia but may play a key role in the decline of mitochondrial organelle integrity that occurs with muscle aging. PMID:27681159

  5. A Cytokine Signalling Network for the Regulation of Inducible Nitric Oxide Synthase Expression in Rheumatoid Arthritis.

    PubMed

    Dey, Poulami; Panga, Venugopal; Raghunathan, Srivatsan

    2016-01-01

    In rheumatoid arthritis (RA), nitric oxide (NO) is implicated in inflammation, angiogenesis and tissue destruction. The enzyme inducible nitric oxide synthase (iNOS) is responsible for the localised over-production of NO in the synovial joints affected by RA. The pro- and anti-inflammatory cytokines stimulate the synovial macrophages and the fibroblast-like synoviocytes to express iNOS. Therefore, the cytokine signalling network underlying the regulation of iNOS is essential to understand the pathophysiology of the disease. By using information from the literature, we have constructed, for the first time, the cytokine signalling network involved in the regulation of iNOS expression. Using the differential expression patterns obtained by re-analysing the microarray data on the RA synovium and the synovial macrophages available in the Gene Expression Omnibus (GEO) database, we aimed to establish the role played by the network genes towards iNOS regulation in the RA synovium. Our analysis reveals that the network genes belonging to interferon (IFN) and interleukin-10 (IL-10) pathways are always up-regulated in the RA synovium whereas the genes which are part of the anti-inflammatory transforming growth factor-beta (TGF-β) signalling pathway are mostly down-regulated. We observed a consistent up-regulation of the transcription factor signal transducers and activators of transcription 1 (STAT1) in the RA synovium and the macrophages. Interestingly, we found a consistent up-regulation of the iNOS interacting protein ras-related C3 botulinum toxin substrate 2 (RAC2) in the RA synovium as well as the macrophages. Importantly, we have constructed a model to explain the impact of IFN and IL-10 pathways on Rac2-iNOS interaction leading to over-production of NO and thereby causing chronic inflammation in the RA synovium. The interplay between STAT1 and RAC2 in the regulation of NO could have implications for the identification of therapeutic targets for RA. PMID:27626941

  6. A Cytokine Signalling Network for the Regulation of Inducible Nitric Oxide Synthase Expression in Rheumatoid Arthritis

    PubMed Central

    Dey, Poulami; Panga, Venugopal; Raghunathan, Srivatsan

    2016-01-01

    In rheumatoid arthritis (RA), nitric oxide (NO) is implicated in inflammation, angiogenesis and tissue destruction. The enzyme inducible nitric oxide synthase (iNOS) is responsible for the localised over-production of NO in the synovial joints affected by RA. The pro- and anti-inflammatory cytokines stimulate the synovial macrophages and the fibroblast-like synoviocytes to express iNOS. Therefore, the cytokine signalling network underlying the regulation of iNOS is essential to understand the pathophysiology of the disease. By using information from the literature, we have constructed, for the first time, the cytokine signalling network involved in the regulation of iNOS expression. Using the differential expression patterns obtained by re-analysing the microarray data on the RA synovium and the synovial macrophages available in the Gene Expression Omnibus (GEO) database, we aimed to establish the role played by the network genes towards iNOS regulation in the RA synovium. Our analysis reveals that the network genes belonging to interferon (IFN) and interleukin-10 (IL-10) pathways are always up-regulated in the RA synovium whereas the genes which are part of the anti-inflammatory transforming growth factor-beta (TGF-β) signalling pathway are mostly down-regulated. We observed a consistent up-regulation of the transcription factor signal transducers and activators of transcription 1 (STAT1) in the RA synovium and the macrophages. Interestingly, we found a consistent up-regulation of the iNOS interacting protein ras-related C3 botulinum toxin substrate 2 (RAC2) in the RA synovium as well as the macrophages. Importantly, we have constructed a model to explain the impact of IFN and IL-10 pathways on Rac2-iNOS interaction leading to over-production of NO and thereby causing chronic inflammation in the RA synovium. The interplay between STAT1 and RAC2 in the regulation of NO could have implications for the identification of therapeutic targets for RA. PMID:27626941

  7. Endogenous Brain Derived Neurotrophic Factor in the Nucleus Tractus Solitarius Tonically Regulates Synaptic and Autonomic Function

    PubMed Central

    Clark, Catharine G.; Hasser, Eileen M.; Kunze, Diana L.; Katz, David M.; Kline, David D.

    2012-01-01

    Brain derived neurotrophic factor (BDNF) and its receptor, TrkB, are highly expressed in the nucleus tractus solitarius (nTS), the principal target of cardiovascular primary afferent input to the brainstem. However, little is known about the role of BDNF signaling in nTS in cardiovascular homeostasis. We examined whether BDNF in nTS modulates cardiovascular function in vivo and regulates synaptic and/or neuronal activity in isolated brainstem slices. Microinjection of BDNF into the rat medial nTS (mnTS), a region critical for baroreflex control of sympathetic outflow, produced dose-dependent increases in mean arterial pressure (MAP), heart rate (HR) and lumbar sympathetic nerve activity (LSNA) that were blocked by the tyrosine kinase inhibitor K252a. In contrast, immunoneutralization of endogenous BDNF (antiBDNF), or microinjection of K252a alone, decreased MAP, HR and LSNA. The effects of antiBDNF were abolished by blockade of ionotropic glutamate receptors, indicating a role for glutamate signaling in the response to BDNF. In vitro, BDNF reduced the amplitude of miniature excitatory postsynaptic currents (mEPSCs) as well as solitary tract (TS)-evoked EPSC amplitude and action potential discharge (APD) in second-order nTS neurons. BDNF effects on EPSCs were independent of GABAergic signaling and ablated by AMPA receptor blockade. In contrast, K252a increased spontaneous EPSC frequency and TS-evoked EPSC amplitude. BDNF also attenuated APD evoked by injection of depolarizing current into second-order neurons, indicating reduced intrinsic neuronal excitability. Our data demonstrate that BDNF signaling in mnTS plays a tonic role in regulating cardiovascular function, likely via modulation of primary afferent glutamatergic excitatory transmission and neural activity. PMID:21865474

  8. ERK-mediated phosphorylation of BIS regulates nuclear translocation of HSF1 under oxidative stress

    PubMed Central

    Kim, Hye Yun; Kim, Yong-Sam; Yun, Hye Hyeon; Im, Chang-Nim; Ko, Jeong-Heon; Lee, Jeong-Hwa

    2016-01-01

    B-cell lymphoma (BCL)-2-interacting cell death suppressor (BIS) has diverse cellular functions depending on its binding partners. However, little is known about the effects of biochemical modification of BIS on its various activities under oxidative stress conditions. In this study, we showed that H2O2 reduced BIS mobility on SDS–polyacrylamide gels in a time-dependent manner via the activation of extracellular signaling-regulated kinase (ERK). The combined results of mass spectroscopy and computational prediction identified Thr285 and Ser289 in BIS as candidate residues for phosphorylation by ERK under oxidative stress conditions. Deletion of these sites resulted in a partial reduction in the H2O2-induced mobility shift relative to that of the wild-type BIS protein; overexpression of the deletion mutant sensitized A172 cells to H2O2-induced cell death without increasing the level of intracellular reactive oxygen species. Expression of the BIS deletion mutant decreased the level of heat shock protein (HSP) 70 mRNA following H2O2 treatment, which was accompanied by impaired nuclear translocation of heat shock transcription factor (HSF) 1. Co-immunoprecipitation assays revealed that the binding of wild-type BIS to HSF1 was decreased by oxidative stress, while the binding of the BIS deletion mutant to HSF1 was not affected. These results indicate that ERK-dependent phosphorylation of BIS has a role in the regulation of nuclear translocation of HSF1 likely through modulation of its interaction affinity with HSF1, which affects HSP70 expression and sensitivity to oxidative stress. PMID:27659916

  9. The Campylobacter jejuni Ferric Uptake Regulator Promotes Acid Survival and Cross-Protection against Oxidative Stress

    PubMed Central

    Askoura, Momen; Sarvan, Sabina; Couture, Jean-François

    2016-01-01

    Campylobacter jejuni is a prevalent cause of bacterial gastroenteritis in humans worldwide. The mechanisms by which C. jejuni survives stomach acidity remain undefined. In the present study, we demonstrated that the C. jejuni ferric uptake regulator (Fur) plays an important role in C. jejuni acid survival and acid-induced cross-protection against oxidative stress. A C. jejuni Δfur mutant was more sensitive to acid than the wild-type strain. Profiling of the acid stimulon of the C. jejuni Δfur mutant allowed us to uncover Fur-regulated genes under acidic conditions. In particular, Fur was found to upregulate genes involved in flagellar and cell envelope biogenesis upon acid stress, and mutants with deletions of these genes were found to be defective in surviving acid stress. Interestingly, prior acid exposure of C. jejuni cross-protected against oxidative stress in a catalase (KatA)- and Fur-dependent manner. Western blotting and reverse transcription-quantitative PCR revealed increased expression of KatA upon acid stress. Electrophoretic mobility shift assays (EMSAs) demonstrated that the binding affinity between Fur and the katA promoter is reduced in vitro under conditions of low pH, rationalizing the higher levels of expression of katA under acidic conditions. Strikingly, the Δfur mutant exhibited reduced virulence in both human epithelial cells and the Galleria mellonella infection model. Altogether, this is the first study showing that, in addition to its role in iron metabolism, Fur is an important regulator of C. jejuni acid responses and this function cross-protects against oxidative stress. Moreover, our results clearly demonstrate Fur's important role in C. jejuni pathogenesis. PMID:26883589

  10. Regulation of cardiac nitric oxide signaling by nuclear β-adrenergic and endothelin receptors.

    PubMed

    Vaniotis, George; Glazkova, Irina; Merlen, Clémence; Smith, Carter; Villeneuve, Louis R; Chatenet, David; Therien, Michel; Fournier, Alain; Tadevosyan, Artavazd; Trieu, Phan; Nattel, Stanley; Hébert, Terence E; Allen, Bruce G

    2013-09-01

    At the cell surface, βARs and endothelin receptors can regulate nitric oxide (NO) production. β-adrenergic receptors (βARs) and type B endothelin receptors (ETB) are present in cardiac nuclear membranes and regulate transcription. The present study investigated the role of the NO pathway in the regulation of gene transcription by these nuclear G protein-coupled receptors. Nitric oxide production and transcription initiation were measured in nuclei isolated from the adult rat heart. The cell-permeable fluorescent dye 4,5-diaminofluorescein diacetate (DAF2 DA) was used to provide a direct assessment of nitric oxide release. Both isoproterenol and endothelin increased NO production in isolated nuclei. Furthermore, a β3AR-selective agonist, BRL 37344, increased NO synthesis whereas the β1AR-selective agonist xamoterol did not. Isoproterenol increased, whereas ET-1 reduced, de novo transcription. The NO synthase inhibitor l-NAME prevented isoproterenol from increasing either NO production or de novo transcription. l-NAME also blocked ET-1-induced NO-production but did not alter the suppression of transcription initiation by ET-1. Inhibition of the cGMP-dependent protein kinase (PKG) using KT5823 also blocked the ability of isoproterenol to increase transcription initiation. Furthermore, immunoblotting revealed eNOS, but not nNOS, in isolated nuclei. Finally, caged, cell-permeable isoproterenol and endothelin-1 analogs were used to selectively activate intracellular β-adrenergic and endothelin receptors in intact adult cardiomyocytes. Intracellular release of caged ET-1 or isoproterenol analogs increased NO production in intact adult cardiomyocytes. Hence, activation of the NO synthase/guanylyl cyclase/PKG pathway is necessary for nuclear β3ARs to increase de novo transcription. Furthermore, we have demonstrated the potential utility of caged receptor ligands in selectively modulating signaling via endogenous intracellular G protein-coupled receptors.

  11. Oxidative folding in the mitochondrial intermembrane space: A regulated process important for cell physiology and disease.

    PubMed

    Chatzi, Afroditi; Manganas, Phanee; Tokatlidis, Kostas

    2016-06-01

    Mitochondria are fundamental organelles with a complex internal architecture that fulfill important diverse functions including iron-sulfur cluster assembly and cell respiration. Intense work for more than 30 years has identified the key protein import components and the pathways involved in protein targeting and assembly. More recently, oxidative folding has been discovered as one important mechanism for mitochondrial proteostasis whilst several human disorders have been linked to this pathway. We describe the molecular components of this pathway in view of their putative redox regulation and we summarize available evidence on the connections of these pathways to human disorders. PMID:27033519

  12. Regulation of Protein Function by Reversible Methionine Oxidation and the Role of Selenoprotein MsrB1

    PubMed Central

    Kaya, Alaattin

    2015-01-01

    Abstract Significance: Protein structure and function can be regulated via post-translational modifications by numerous enzymatic and nonenzymatic mechanisms. Regulation involving oxidation of sulfur-containing residues emerged as a key mechanism of redox control. Unraveling the participants and principles of such regulation is necessary for understanding the biological significance of redox control of cellular processes. Recent Advances: Reversible oxidation of methionine residues by monooxygenases of the Mical family and subsequent reduction of methionine sulfoxides by a selenocysteine-containing methionine sulfoxide reductase B1 (MsrB1) was found to control the assembly and disassembly of actin in mammals, and the Mical/MsrB pair similarly regulates actin in fruit flies. This finding has opened up new avenues for understanding the use of stereospecific methionine oxidation in regulating cellular processes and the roles of MsrB1 and Micals in regulation of actin dynamics. Critical Issues: So far, Micals have been the only known partners of MsrB1, and actin is the only target. It is important to identify additional substrates of Micals and characterize other Mical-like enzymes. Future Directions: Oxidation of methionine, reviewed here, is an emerging but not well-established mechanism. Studies suggest that methionine oxidation is a form of oxidative damage of proteins, a modification that alters protein structure or function, a tool in redox signaling, and a mechanism that controls protein function. Understanding the functional impact of reversible oxidation of methionine will require identification of targets, substrates, and regulators of Micals and Msrs. Linking the biological processes, in which these proteins participate, might also lead to insights into disease conditions, which involve regulation of actin by Micals and Msrs. Antioxid. Redox Signal. 23, 814–822. PMID:26181576

  13. Antidepressive and BDNF effects of enriched environment treatment across ages in mice lacking BDNF expression through promoter IV.

    PubMed

    Jha, S; Dong, B E; Xue, Y; Delotterie, D F; Vail, M G; Sakata, K

    2016-01-01

    Reduced promoter IV-driven expression of brain-derived neurotrophic factor (BDNF) is implicated in stress and major depression. We previously reported that defective promoter IV (KIV) caused depression-like behavior in young adult mice, which was reversed more effectively by enriched environment treatment (EET) than antidepressants. The effects of promoter IV-BDNF deficiency and EET over the life stages remain unknown. Since early-life development (ED) involves dynamic epigenetic processes, we hypothesized that EET during ED would provide maximum antidepressive effects that would persist later in life due to enhanced, long-lasting BDNF induction. We tested this hypothesis by determining EET effects across three life stages: ED (0-2 months), young adult (2-4 months), and old adult (12-14 months). KIV mice at all life stages showed depression-like behavior in the open-field and tail-suspension tests compared with wild-type mice. Two months of EET reduced depression-like behavior in ED and young adult, but not old adult mice, with the largest effect in ED KIV mice. This effect lasted for 1 month after discontinuance of EET only in ED mice. BDNF protein induction by EET in the hippocampus and frontal cortex was also the largest in ED mice and persisted only in the hippocampus of ED KIV mice after discontinuance of EET. No gender-specific effects were observed. The results suggest that defective promoter IV causes depression-like behavior, regardless of age and gender, and that EET during ED is particularly beneficial to individuals with promoter IV-BDNF deficiency, while additional treatment may be needed for older adults. PMID:27648918

  14. Antidepressive and BDNF effects of enriched environment treatment across ages in mice lacking BDNF expression through promoter IV.

    PubMed

    Jha, S; Dong, B E; Xue, Y; Delotterie, D F; Vail, M G; Sakata, K

    2016-09-20

    Reduced promoter IV-driven expression of brain-derived neurotrophic factor (BDNF) is implicated in stress and major depression. We previously reported that defective promoter IV (KIV) caused depression-like behavior in young adult mice, which was reversed more effectively by enriched environment treatment (EET) than antidepressants. The effects of promoter IV-BDNF deficiency and EET over the life stages remain unknown. Since early-life development (ED) involves dynamic epigenetic processes, we hypothesized that EET during ED would provide maximum antidepressive effects that would persist later in life due to enhanced, long-lasting BDNF induction. We tested this hypothesis by determining EET effects across three life stages: ED (0-2 months), young adult (2-4 months), and old adult (12-14 months). KIV mice at all life stages showed depression-like behavior in the open-field and tail-suspension tests compared with wild-type mice. Two months of EET reduced depression-like behavior in ED and young adult, but not old adult mice, with the largest effect in ED KIV mice. This effect lasted for 1 month after discontinuance of EET only in ED mice. BDNF protein induction by EET in the hippocampus and frontal cortex was also the largest in ED mice and persisted only in the hippocampus of ED KIV mice after discontinuance of EET. No gender-specific effects were observed. The results suggest that defective promoter IV causes depression-like behavior, regardless of age and gender, and that EET during ED is particularly beneficial to individuals with promoter IV-BDNF deficiency, while additional treatment may be needed for older adults.

  15. Antidepressive and BDNF effects of enriched environment treatment across ages in mice lacking BDNF expression through promoter IV

    PubMed Central

    Jha, S; Dong, B E; Xue, Y; Delotterie, D F; Vail, M G; Sakata, K

    2016-01-01

    Reduced promoter IV-driven expression of brain-derived neurotrophic factor (BDNF) is implicated in stress and major depression. We previously reported that defective promoter IV (KIV) caused depression-like behavior in young adult mice, which was reversed more effectively by enriched environment treatment (EET) than antidepressants. The effects of promoter IV-BDNF deficiency and EET over the life stages remain unknown. Since early-life development (ED) involves dynamic epigenetic processes, we hypothesized that EET during ED would provide maximum antidepressive effects that would persist later in life due to enhanced, long-lasting BDNF induction. We tested this hypothesis by determining EET effects across three life stages: ED (0–2 months), young adult (2–4 months), and old adult (12–14 months). KIV mice at all life stages showed depression-like behavior in the open-field and tail-suspension tests compared with wild-type mice. Two months of EET reduced depression-like behavior in ED and young adult, but not old adult mice, with the largest effect in ED KIV mice. This effect lasted for 1 month after discontinuance of EET only in ED mice. BDNF protein induction by EET in the hippocampus and frontal cortex was also the largest in ED mice and persisted only in the hippocampus of ED KIV mice after discontinuance of EET. No gender-specific effects were observed. The results suggest that defective promoter IV causes depression-like behavior, regardless of age and gender, and that EET during ED is particularly beneficial to individuals with promoter IV-BDNF deficiency, while additional treatment may be needed for older adults. PMID:27648918

  16. Regulation of retinal angiogenesis by endothelial nitric oxide synthase signaling pathway.

    PubMed

    Ha, Jung Min; Jin, Seo Yeon; Lee, Hye Sun; Shin, Hwa Kyoung; Lee, Dong Hyung; Song, Sang Heon; Kim, Chi Dae; Bae, Sun Sik

    2016-09-01

    Angiogenesis plays an essential role in embryo development, tissue repair, inflammatory diseases, and tumor growth. In the present study, we showed that endothelial nitric oxide synthase (eNOS) regulates retinal angiogenesis. Mice that lack eNOS showed growth retardation, and retinal vessel development was significantly delayed. In addition, the number of tip cells and filopodia length were significantly reduced in mice lacking eNOS. Retinal endothelial cell proliferation was significantly blocked in mice lacking eNOS, and EMG-2-induced endothelial cell sprouting was significantly reduced in aortic vessels isolated from eNOS-deficient mice. Finally, pericyte recruitment to endothelial cells and vascular smooth muscle cell coverage to blood vessels were attenuated in mice lacking eNOS. Taken together, we suggest that the endothelial cell function and blood vessel maturation are regulated by eNOS during retinal angiogenesis. PMID:27610040

  17. Regulation of retinal angiogenesis by endothelial nitric oxide synthase signaling pathway

    PubMed Central

    Ha, Jung Min; Jin, Seo Yeon; Lee, Hye Sun; Shin, Hwa Kyoung; Lee, Dong Hyung; Song, Sang Heon; Kim, Chi Dae

    2016-01-01

    Angiogenesis plays an essential role in embryo development, tissue repair, inflammatory diseases, and tumor growth. In the present study, we showed that endothelial nitric oxide synthase (eNOS) regulates retinal angiogenesis. Mice that lack eNOS showed growth retardation, and retinal vessel development was significantly delayed. In addition, the number of tip cells and filopodia length were significantly reduced in mice lacking eNOS. Retinal endothelial cell proliferation was significantly blocked in mice lacking eNOS, and EMG-2-induced endothelial cell sprouting was significantly reduced in aortic vessels isolated from eNOS-deficient mice. Finally, pericyte recruitment to endothelial cells and vascular smooth muscle cell coverage to blood vessels were attenuated in mice lacking eNOS. Taken together, we suggest that the endothelial cell function and blood vessel maturation are regulated by eNOS during retinal angiogenesis. PMID:27610040

  18. Regulation of retinal angiogenesis by endothelial nitric oxide synthase signaling pathway

    PubMed Central

    Ha, Jung Min; Jin, Seo Yeon; Lee, Hye Sun; Shin, Hwa Kyoung; Lee, Dong Hyung; Song, Sang Heon; Kim, Chi Dae

    2016-01-01

    Angiogenesis plays an essential role in embryo development, tissue repair, inflammatory diseases, and tumor growth. In the present study, we showed that endothelial nitric oxide synthase (eNOS) regulates retinal angiogenesis. Mice that lack eNOS showed growth retardation, and retinal vessel development was significantly delayed. In addition, the number of tip cells and filopodia length were significantly reduced in mice lacking eNOS. Retinal endothelial cell proliferation was significantly blocked in mice lacking eNOS, and EMG-2-induced endothelial cell sprouting was significantly reduced in aortic vessels isolated from eNOS-deficient mice. Finally, pericyte recruitment to endothelial cells and vascular smooth muscle cell coverage to blood vessels were attenuated in mice lacking eNOS. Taken together, we suggest that the endothelial cell function and blood vessel maturation are regulated by eNOS during retinal angiogenesis.

  19. Astrocyte-Derived BDNF Supports Myelin Protein Synthesis after Cuprizone-Induced Demyelination

    PubMed Central

    Fulmer, Clifton G.; VonDran, Melissa W.; Stillman, Althea A.; Huang, Yangyang; Hempstead, Barbara L.

    2014-01-01

    It is well established that BDNF may enhance oligodendrocyte differentiation following a demyelinating lesion, however, the endogenous sources of BDNF that may be harnessed to reverse deficits associated with such lesions are poorly defined. Here, we investigate roles of astrocytes in synthesizing and releasing BDNF. These cells are known to express BDNF following injury in vivo. In culture, they increase BDNF synthesis and release in response to glutamate metabotropic stimulation. Following cuprizone-elicited demyelination in mice, astrocytes contain BDNF and increase levels of metabotropic receptors. The metabotropic agonist, trans-(1S,3R)-1-amino-1,3-cyclopentanedicarboxylic acid (ACPD), was therefore injected into the demyelinating lesion. Increases in BDNF, as well as myelin proteins, were observed. Effects of ACPD were eliminated by coinjection of trkB-Fc to locally deplete BDNF and by deletion of astrocyte-derived BDNF. The data indicate that astrocyte-derived BDNF may be a source of trophic support that can be used to reverse deficits elicited following demyelination. PMID:24920623

  20. Real-time Imaging of Axonal Transport of Quantum Dot-labeled BDNF in Primary Neurons

    PubMed Central

    Zhao, Xiaobei; Zhou, Yue; Weissmiller, April M.; Pearn, Matthew L.; Mobley, William C.; Wu, Chengbiao

    2014-01-01

    BDNF plays an important role in several facets of neuronal survival, differentiation, and function. Structural and functional deficits in axons are increasingly viewed as an early feature of neurodegenerative diseases, including Alzheimer’s disease (AD) and Huntington’s disease (HD). As yet unclear is the mechanism(s) by which axonal injury is induced. We reported the development of a novel technique to produce biologically active, monobiotinylated BDNF (mBtBDNF) that can be used to trace axonal transport of BDNF. Quantum dot-labeled BDNF (QD-BDNF) was produced by conjugating quantum dot 655 to mBtBDNF. A microfluidic device was used to isolate axons from neuron cell bodies. Addition of QD-BDNF to the axonal compartment allowed live imaging of BDNF transport in axons. We demonstrated that QD-BDNF moved essentially exclusively retrogradely, with very few pauses, at a moving velocity of around 1.06 μm/sec. This system can be used to investigate mechanisms of disrupted axonal function in AD or HD, as well as other degenerative disorders. PMID:25286194

  1. Amyloid-Beta Induced Changes in Vesicular Transport of BDNF in Hippocampal Neurons

    PubMed Central

    Seifert, Bianca; Eckenstaler, Robert; Rönicke, Raik; Leschik, Julia; Lutz, Beat; Reymann, Klaus; Lessmann, Volkmar; Brigadski, Tanja

    2016-01-01

    The neurotrophin brain derived neurotrophic factor (BDNF) is an important growth factor in the CNS. Deficits in transport of this secretory protein could underlie neurodegenerative diseases. Investigation of disease-related changes in BDNF transport might provide insights into the cellular mechanism underlying, for example, Alzheimer's disease (AD). To analyze the role of BDNF transport in AD, live cell imaging of fluorescently labeled BDNF was performed in hippocampal neurons of different AD model systems. BDNF and APP colocalized with low incidence in vesicular structures. Anterograde as well as retrograde transport of BDNF vesicles was reduced and these effects were mediated by factors released from hippocampal neurons into the extracellular medium. Transport of BDNF was altered at a very early time point after onset of human APP expression or after acute amyloid-beta(1-42) treatment, while the activity-dependent release of BDNF remained unaffected. Taken together, extracellular cleavage products of APP induced rapid changes in anterograde and retrograde transport of BDNF-containing vesicles while release of BDNF was unaffected by transgenic expression of mutated APP. These early transport deficits might lead to permanently impaired brain functions in the adult brain. PMID:26881108

  2. The Ability of BDNF to Modify Neurogenesis and Depressive-Like Behaviors Is Dependent upon Phosphorylation of Tyrosine Residues 365/367 in the GABAA-Receptor γ2 Subunit

    PubMed Central

    Vithlani, Mansi; Hines, Rochelle M.; Zhong, Ping; Terunuma, Miho; Hines, Dustin J.; Revilla-Sanchez, Raquel; Jurd, Rachel; Haydon, Phillip; Rios, Maribel; Brandon, Nicholas; Yan, Zhen

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) is a potent regulator of neuronal activity, neurogenesis, and depressive-like behaviors; however, downstream effectors by which BDNF exerts these varying actions remain to be determined. Here we reveal that BDNF induces long-lasting enhancements in the efficacy of synaptic inhibition by stabilizing γ2 subunit-containing GABAA receptors (GABAARs) at the cell surface, leading to persistent reductions in neuronal excitability. This effect is dependent upon enhanced phosphorylation of tyrosines 365 and 367 (Y365/7) in the GABAAR γ2 subunit as revealed using mice in which these residues have been mutated to phenyalanines (Y365/7F). Heterozygotes for this mutation exhibit an antidepressant-like phenotype, as shown using behavioral-despair models of depression. In addition, heterozygous Y365/7F mice show increased levels of hippocampal neurogenesis, which has been strongly connected with antidepressant action. Both the antidepressant phenotype and the increased neurogenesis seen in these mice are insensitive to further modulation by BDNF, which produces robust antidepressant-like activity and neurogenesis in wild-type mice. Collectively, our results suggest a critical role for GABAAR γ2 subunit Y365/7 phosphorylation and function in regulating the effects of BDNF. PMID:24068823

  3. Regulation of brain glutamate metabolism by nitric oxide and S-nitrosylation

    PubMed Central

    Raju, Karthik; Doulias, Paschalis-Thomas; Evans, Perry; Krizman, Elizabeth N.; Jackson, Joshua G.; Horyn, Oksana; Daikhin, Yevgeny; Nissim, Ilana; Yudkoff, Marc; Nissim, Itzhak; Sharp, Kim A.; Robinson, Michael B.; Ischiropoulos, Harry

    2016-01-01

    Nitric oxide (NO) is a signaling intermediate during glutamatergic neurotransmission in the central nervous system (CNS). NO signaling is in part accomplished through cysteine S-nitrosylation, a posttranslational modification by which NO regulates protein function and signaling. In our investigation of the protein targets and functional impact of S-nitrosylation in the CNS under physiological conditions, we identified 269 S-nitrosocysteine residues in 136 proteins in the wild-type mouse brain. The number of sites was significantly reduced in the brains of mice lacking endothelial nitric oxide synthase (eNOS−/−) or neuronal nitric oxide synthase (nNOS−/−). In particular, nNOS−/− animals showed decreased S-nitrosylation of proteins that participate in the glutamate/glutamine cycle, a metabolic process by which synaptic glutamate is recycled or oxidized to provide energy. 15N-glutamine–based metabolomic profiling and enzymatic activity assays indicated that brain extracts from nNOS−/− mice converted less glutamate to glutamine and oxidized more glutamate than those from mice of the other genotypes. GLT1 [also known as EAAT2 (excitatory amino acid transporter 2)], a glutamate transporter in astrocytes, was S-nitrosylated at Cys373 and Cys561 in wild-type and eNOS−/− mice, but not in nNOS−/− mice. A form of rat GLT1 that could not be S-nitrosylated at the equivalent sites had increased glutamate uptake compared to wild-type GLT1 in cells exposed to an S-nitrosylating agent. Thus, NO modulates glutamatergic neurotransmission through the selective, nNOS-dependent S-nitrosylation of proteins that govern glutamate transport and metabolism. PMID:26152695

  4. Peripheral Blood Leukocyte Production of BDNF following Mitogen Stimulation in Early Onset and Regressive Autism

    PubMed Central

    Enstrom, Amanda; Onore, Charity; Tarver, Angela; Hertz-Picciotto, Irva; Hansen, Robin; Croen, Lisa; Van de Water, Judy; Ashwood, Paul

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is critical for neuronal differentiation and synaptic development. BDNF is also implicated in the development of psychological disorders including depression, bipolar disorder and schizophrenia. Previously, elevated BDNF levels were observed in neonatal blood samples from infants who were later diagnosed with autism when compared with children who developed normally, suggesting that BDNF may be involved in the development of autism. BDNF is produced by activated brain microglial cells, a cellular phenotype that shares several features with peripheral macrophages, suggesting an important role for the immune system in BDNF production. We hypothesized that under mitogenic stimulation, peripheral blood mononuclear cells obtained from children with autism may have altered BDNF production compared with age-matched typically developing control subjects. In addition, we examined the differences between the production of BDNF in classic/early-onset autism and children who had a regressive form of autism. We show here that plasma levels of BDNF levels are increased in children with autism, especially in early onset autism subjects. Furthermore, under mitogenic stimulation with PHA and LPS, BDNF production is significantly increased in children with autism compared with typically developing subjects. However, stimulation with tetanus toxoid results in a decreased response in children with autism. This data suggest that immune cell-derived production of BDNF could be an important source for the increased BDNF that is detected in some subjects with autism. As a neurotrophic factor produced by immune cells, BDNF could help elucidate the role of the immune system in neurodevelopment and neuronal maintenance, which may be dysregulated in autism.

  5. The dopamine D1 but not D3 receptor plays a fundamental role in spatial working memory and BDNF expression in prefrontal cortex of mice.

    PubMed

    Xing, Bo; Guo, Juan; Meng, Xia; Wei, Shu-guang; Li, Sheng-bin

    2012-11-01

    Although dopamine within the prefrontal cortex has been implicated in working memory, how different dopamine receptor subtypes contribute to this process need to be further characterized. Previous studies have suggest the importance of dopamine receptors signaling in regulating the brain-derived neurotrophic factor (BDNF) function that is associated with synaptic plasticity underlying normal memory formation. Changes in BDNF expression through the dopamine receptors within the prefrontal cortex may accompany and mediate the spatial working memory. To test the possibility, dopamine D1 and D3 receptor mutant mice were tested in Morris water maze for spatial working memory. We found that trial-dependent, matching-to-sample, learning of the platform location, an index of short-term spatial working memory in mice, was significantly impaired in D1 receptor knockout mice compared to wild-type mice, and regular performance of D3 receptor mutants was observed in the similar working memory task. BDNF protein was significantly decreased in prefrontal cortex, though not in hippocampus, of the D1 receptor knockout mice, whereas no changes were found in both prefrontal cortex and hippocampus of D3 receptor knockout mice. These data suggest that dopamine D1 but not D3 receptors are critical for prefrontal cortex BDNF expression which may be related to spatial working memory processes.

  6. Thioredoxin Binding Protein-2 Regulates Autophagy of Human Lens Epithelial Cells under Oxidative Stress via Inhibition of Akt Phosphorylation

    PubMed Central

    Yao, Ke; Zhang, Yidong; Chen, Guangdi; Lai, Kairan; Yin, Houfa

    2016-01-01

    Oxidative stress plays an essential role in the development of age-related cataract. Thioredoxin binding protein-2 (TBP-2) is a negative regulator of thioredoxin (Trx), which deteriorates cellular antioxidant system. Our study focused on the autophagy-regulating effect of TBP-2 under oxidative stress in human lens epithelial cells (LECs). Human lens epithelial cells were used for cell culture and treatment. Lentiviral-based transfection system was used for overexpression of TBP-2. Cytotoxicity assay, western blot analysis, GFP/mCherry-fused LC3 plasmid, immunofluorescence, and transmission electronic microscopy were performed. The results showed that autophagic response of LECs with increased LC3-II, p62, and GFP/mCherry-LC3 puncta (P < 0.01) was induced by oxidative stress. Overexpression of TBP-2 further strengthens this response and worsens the cell viability (P < 0.01). Knockdown of TBP-2 attenuates the autophagic response and cell viability loss induced by oxidative stress. TBP-2 mainly regulates autophagy in the initiation stage, which is mTOR-independent and probably caused by the dephosphorylation of Akt under oxidative stress. These findings suggest a novel role of TBP-2 in human LECs under oxidative stress. Oxidative stress can cause cell injury and autophagy in LECs, and TBP-2 regulates this response. Hence, this study provides evidence regarding the role of TBP-2 in lens and the possible mechanism of cataract development.

  7. Thioredoxin Binding Protein-2 Regulates Autophagy of Human Lens Epithelial Cells under Oxidative Stress via Inhibition of Akt Phosphorylation

    PubMed Central

    Yao, Ke; Zhang, Yidong; Chen, Guangdi; Lai, Kairan; Yin, Houfa

    2016-01-01

    Oxidative stress plays an essential role in the development of age-related cataract. Thioredoxin binding protein-2 (TBP-2) is a negative regulator of thioredoxin (Trx), which deteriorates cellular antioxidant system. Our study focused on the autophagy-regulating effect of TBP-2 under oxidative stress in human lens epithelial cells (LECs). Human lens epithelial cells were used for cell culture and treatment. Lentiviral-based transfection system was used for overexpression of TBP-2. Cytotoxicity assay, western blot analysis, GFP/mCherry-fused LC3 plasmid, immunofluorescence, and transmission electronic microscopy were performed. The results showed that autophagic response of LECs with increased LC3-II, p62, and GFP/mCherry-LC3 puncta (P < 0.01) was induced by oxidative stress. Overexpression of TBP-2 further strengthens this response and worsens the cell viability (P < 0.01). Knockdown of TBP-2 attenuates the autophagic response and cell viability loss induced by oxidative stress. TBP-2 mainly regulates autophagy in the initiation stage, which is mTOR-independent and probably caused by the dephosphorylation of Akt under oxidative stress. These findings suggest a novel role of TBP-2 in human LECs under oxidative stress. Oxidative stress can cause cell injury and autophagy in LECs, and TBP-2 regulates this response. Hence, this study provides evidence regarding the role of TBP-2 in lens and the possible mechanism of cataract development. PMID:27656263

  8. A mir-231-Regulated Protection Mechanism against the Toxicity of Graphene Oxide in Nematode Caenorhabditis elegans

    PubMed Central

    Yang, Ruilong; Ren, Mingxia; Rui, Qi; Wang, Dayong

    2016-01-01

    Recently, several dysregulated microRNAs (miRNAs) have been identified in organisms exposed to graphene oxide (GO). However, their biological functions and mechanisms of the action are still largely unknown. Here, we investigated the molecular mechanism of mir-231 in the regulation of GO toxicity using in vivo assay system of Caenorhabditis elegans. We found that GO exposure inhibited the expression of mir-231::GFP in multiple tissues, in particular in the intestine. mir-231 acted in intestine to regulate the GO toxicity, and overexpression of mir-231 in intestine caused a susceptible property of nematodes to GO toxicity. smk-1 encoding a homologue to mammalian SMEK functioned as a targeted gene for mir-231, and was also involved in the intestinal regulation of GO toxicity. Mutation of smk-1 gene induced a susceptible property to GO toxicity, whereas the intestinal overexpression of smk-1 resulted in a resistant property to GO toxicity. Moreover, mutation of smk-1 gene suppressed the resistant property of mir-231 mutant to GO toxicity. In nematodes, SMK-1 further acted upstream of the transcriptional factor DAF-16/FOXO in insulin signaling pathway to regulate GO toxicity. Therefore, mir-231 may encode a GO-responsive protection mechanism against the GO toxicity by suppressing the function of the SMK-1 - DAF-16 signaling cascade in nematodes. PMID:27558892

  9. A mir-231-Regulated Protection Mechanism against the Toxicity of Graphene Oxide in Nematode Caenorhabditis elegans.

    PubMed

    Yang, Ruilong; Ren, Mingxia; Rui, Qi; Wang, Dayong

    2016-01-01

    Recently, several dysregulated microRNAs (miRNAs) have been identified in organisms exposed to graphene oxide (GO). However, their biological functions and mechanisms of the action are still largely unknown. Here, we investigated the molecular mechanism of mir-231 in the regulation of GO toxicity using in vivo assay system of Caenorhabditis elegans. We found that GO exposure inhibited the expression of mir-231::GFP in multiple tissues, in particular in the intestine. mir-231 acted in intestine to regulate the GO toxicity, and overexpression of mir-231 in intestine caused a susceptible property of nematodes to GO toxicity. smk-1 encoding a homologue to mammalian SMEK functioned as a targeted gene for mir-231, and was also involved in the intestinal regulation of GO toxicity. Mutation of smk-1 gene induced a susceptible property to GO toxicity, whereas the intestinal overexpression of smk-1 resulted in a resistant property to GO toxicity. Moreover, mutation of smk-1 gene suppressed the resistant property of mir-231 mutant to GO toxicity. In nematodes, SMK-1 further acted upstream of the transcriptional factor DAF-16/FOXO in insulin signaling pathway to regulate GO toxicity. Therefore, mir-231 may encode a GO-responsive protection mechanism against the GO toxicity by suppressing the function of the SMK-1 - DAF-16 signaling cascade in nematodes. PMID:27558892

  10. A mir-231-Regulated Protection Mechanism against the Toxicity of Graphene Oxide in Nematode Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Yang, Ruilong; Ren, Mingxia; Rui, Qi; Wang, Dayong

    2016-08-01

    Recently, several dysregulated microRNAs (miRNAs) have been identified in organisms exposed to graphene oxide (GO). However, their biological functions and mechanisms of the action are still largely unknown. Here, we investigated the molecular mechanism of mir-231 in the regulation of GO toxicity using in vivo assay system of Caenorhabditis elegans. We found that GO exposure inhibited the expression of mir-231::GFP in multiple tissues, in particular in the intestine. mir-231 acted in intestine to regulate the GO toxicity, and overexpression of mir-231 in intestine caused a susceptible property of nematodes to GO toxicity. smk-1 encoding a homologue to mammalian SMEK functioned as a targeted gene for mir-231, and was also involved in the intestinal regulation of GO toxicity. Mutation of smk-1 gene induced a susceptible property to GO toxicity, whereas the intestinal overexpression of smk-1 resulted in a resistant property to GO toxicity. Moreover, mutation of smk-1 gene suppressed the resistant property of mir-231 mutant to GO toxicity. In nematodes, SMK-1 further acted upstream of the transcriptional factor DAF-16/FOXO in insulin signaling pathway to regulate GO toxicity. Therefore, mir-231 may encode a GO-responsive protection mechanism against the GO toxicity by suppressing the function of the SMK-1 - DAF-16 signaling cascade in nematodes.

  11. Differential Regulation of Brain-Derived Neurotrophic Factor Transcripts during the Consolidation of Fear Learning

    ERIC Educational Resources Information Center

    Ressler, Kerry J.; Rattiner, Lisa M.; Davis, Michael

    2004-01-01

    Brain-derived neurotrophic factor (BDNF) has been implicated as a molecular mediator of learning and memory. The BDNF gene contains four differentially regulated promoters that generate four distinct mRNA transcripts, each containing a unique noncoding 5[prime]-exon and a common 3[prime]-coding exon. This study describes novel evidence for the…

  12. SYK regulates macrophage MHC-II expression via activation of autophagy in response to oxidized LDL.

    PubMed

    Choi, Soo-Ho; Gonen, Ayelet; Diehl, Cody J; Kim, Jungsu; Almazan, Felicidad; Witztum, Joseph L; Miller, Yury I

    2015-01-01

    Adaptive immunity, which plays an important role in the development of atherosclerosis, is mediated by major histocompatibility complex (MHC)-dependent antigen presentation. In atherosclerotic lesions, macrophages constitute an important class of antigen-presenting cells that activate adaptive immune responses to oxidized low-density lipoprotein (OxLDL). It has been reported that autophagy regulates adaptive immune responses by enhancing antigen presentation to MHC class II (MHC-II). In a previous study, we have demonstrated that SYK (spleen tyrosine kinase) regulates generation of reactive oxygen species (ROS) and activation of MAPK8/JNK1 in macrophages. Because ROS and MAPK8 are known to regulate autophagy, in this study we investigated the role of SYK in autophagy, MHC-II expression and adaptive immune response to OxLDL. We demonstrate that OxLDL induces autophagosome formation, MHC-II expression, and phosphorylation of SYK in macrophages. Gene knockout and pharmacological inhibitors of NOX2 and MAPK8 reduced OxLDL-induced autophagy. Using bone marrow-derived macrophages isolated from wild-type and myeloid-specific SYK knockout mice, we demonstrate that SYK regulates OxLDL-induced ROS generation, MAPK8 activation, BECN1-BCL2 dissociation, autophagosome formation and presentation of OxLDL-derived antigens to CD4(+) T cells. ldlr(-/-) syk(-/-) mice fed a high-fat diet produced lower levels of IgG to malondialdehyde (MDA)-LDL, malondialdehyde-acetaldehyde (MAA)-LDL, and OxLDL compared to ldlr(-/-) mice. These results provide new insights into the mechanisms by which SYK regulates MHC-II expression via autophagy in macrophages and may contribute to regulation of adaptive immune responses in atherosclerosis.

  13. SYK regulates macrophage MHC-II expression via activation of autophagy in response to oxidized LDL

    PubMed Central

    Choi, Soo-Ho; Gonen, Ayelet; Diehl, Cody J; Kim, Jungsu; Almazan, Felicidad; Witztum, Joseph L; Miller, Yury I

    2015-01-01

    Adaptive immunity, which plays an important role in the development of atherosclerosis, is mediated by major histocompatibility complex (MHC)-dependent antigen presentation. In atherosclerotic lesions, macrophages constitute an important class of antigen-presenting cells that activate adaptive immune responses to oxidized low-density lipoprotein (OxLDL). It has been reported that autophagy regulates adaptive immune responses by enhancing antigen presentation to MHC class II (MHC-II). In a previous study, we have demonstrated that SYK (spleen tyrosine kinase) regulates generation of reactive oxygen species (ROS) and activation of MAPK8/JNK1 in macrophages. Because ROS and MAPK8 are known to regulate autophagy, in this study we investigated the role of SYK in autophagy, MHC-II expression and adaptive immune response to OxLDL. We demonstrate that OxLDL induces autophagosome formation, MHC-II expression, and phosphorylation of SYK in macrophages. Gene knockout and pharmacological inhibitors of NOX2 and MAPK8 reduced OxLDL-induced autophagy. Using bone marrow-derived macrophages isolated from wild-type and myeloid-specific SYK knockout mice, we demonstrate that SYK regulates OxLDL-induced ROS generation, MAPK8 activation, BECN1-BCL2 dissociation, autophagosome formation and presentation of OxLDL-derived antigens to CD4+ T cells. ldlr−/− syk−/− mice fed a high-fat diet produced lower levels of IgG to malondialdehyde (MDA)-LDL, malondialdehyde-acetaldehyde (MAA)-LDL, and OxLDL compared to ldlr−/− mice. These results provide new insights into the mechanisms by which SYK regulates MHC-II expression via autophagy in macrophages and may contribute to regulation of adaptive immune responses in atherosclerosis. PMID:25946330

  14. Structural insight into the oxidation-sensing mechanism of the antibiotic resistance of regulator MexR

    SciTech Connect

    Chen, Hao; Yi, Chengqi; Zhang, Jin; Zhang, Wenru; Ge, Zhiyun; Yang, Cai-Guang; He, Chuan

    2010-11-05

    MexR functions as the primary regulator of the mexAB-oprM multidrug efflux expression in Pseudomonas aeruginosa. It has been shown that MexR senses oxidative stress by interprotomer disulphide bond formation between redox-active cysteines. This oxidation induces MexR to dissociate from the promoter DNA, thus activating the transcriptional expression of efflux pump genes. In this study, we present the crystal structure of MexR in its oxidized form at a resolution of 2.1 {angstrom}. This crystal structure reveals the mechanism by which oxidative signal allosterically derepresses the MexR-controlled transcription activation.

  15. Mortalin and DJ-1 coordinately regulate hematopoietic stem cell function through the control of oxidative stress.

    PubMed

    Tai-Nagara, Ikue; Matsuoka, Sahoko; Ariga, Hiroyoshi; Suda, Toshio

    2014-01-01

    Hematopoietic stem cells (HSCs) maintain stemness through various mechanisms that protect against stressful conditions. Heat shock proteins (HSPs) preserve cell homeostasis during stress responses through protein quality control, suggesting that HSPs may safeguard HSCs against numerous traumas. Here, we show that mortalin, a mitochondrial HSP, plays an essential role in maintaining HSC properties by regulating oxidative stress. Mortalin is primarily localized in hematopoietic stem and progenitor cell (HSPC) compartments. In this study, the inhibition of mortalin function caused abnormal reactive oxygen species (ROS) elevation in HSCs and reduced HSC numbers. Knockdown (KD) of mortalin in HSPCs impaired their ability to repopulate and form colonies. Moreover, mortalin-KD HSCs could not maintain quiescence and showed severe downregulation of cyclin-dependent kinase inhibitor- and antioxidant-related genes. Conversely, HSCs that overexpressed mortalin maintained a high reconstitution capacity and low ROS levels. Furthermore, DJ-1, one of the genes responsible for Parkinson's disease, directly bound to mortalin and acted as a negative ROS regulator. Using DJ-1-deficient mice, we demonstrated that mortalin and DJ-1 coordinately maintain normal ROS levels and HSC numbers. Collectively, these results indicate that the mortalin/DJ-1 complex guards against mitochondrial oxidative stress and is indispensable for the maintenance of HSCs. PMID:24243970

  16. Localized LoxL3-Dependent Fibronectin Oxidation Regulates Myofiber Stretch and Integrin-Mediated Adhesion.

    PubMed

    Kraft-Sheleg, Ortal; Zaffryar-Eilot, Shelly; Genin, Olga; Yaseen, Wesal; Soueid-Baumgarten, Sharon; Kessler, Ofra; Smolkin, Tatyana; Akiri, Gal; Neufeld, Gera; Cinnamon, Yuval; Hasson, Peleg

    2016-03-01

    For muscles to function, myofibers have to stretch and anchor at the myotendinous junction (MTJ), a region rich in extracellular matrix (ECM). Integrin signaling is required for MTJ formation, and mutations affecting the cascade lead to muscular dystrophies in mice and humans. Underlying mechanisms for integrin activation at the MTJ and ECM modifications regulating its signaling are unclear. We show that lysyl oxidase-like 3 (LoxL3) is a key regulator of integrin signaling that ensures localized control of the cascade. In LoxL3 mutants, myofibers anchor prematurely or overshoot to adjacent somites, and are loose and lack tension. We find that LoxL3 complexes with and directly oxidizes Fibronectin (FN), an ECM scaffold protein and integrin ligand enriched at the MTJ. We identify a mechanism whereby localized LoxL3 secretion from myofiber termini oxidizes FN, enabling enhanced integrin activation at the tips of myofibers and ensuring correct positioning and anchoring of myofibers along the MTJ. PMID:26954549

  17. Regulation of myometrial circulation and uterine vascular tone by constitutive nitric oxide.

    PubMed

    Toda, Noboru; Toda, Hiroshi; Okamura, Tomio

    2013-08-15

    Pregnancy is a physiological state that involves an increase in uterine blood flow, which is mediated in part by nitric oxide (NO) liberated from the endothelium and nitrergic neurons. The main focus of this review article is to provide information about how endogenous NO regulates uterine and placental blood flow and vascular tone in experimental animals and humans in vivo or in vitro in non-pregnant and pregnant states as well as pregnancy with pre-eclampsia. Uterine arteries from non-pregnant women respond to NO liberated from the endothelium and nitrergic nerves with relaxations, and the release of endothelial NO is influenced by the phase of the estrous cycle, with its enhanced release at the follicular phase when the estrogen level is high. NO bioavailability in the uteroplacental circulatory system is gradually increased during pregnancy. Pre-eclamptic pregnancies with or without intrauterine growth restriction show impaired uteroplacental blood flow accompanied by reduced NO synthesis due to down-regulation of eNOS as well as asymmetric dimethylarginine accumulation and by augmented NO degradation by oxidative stress. Further studies are expected to provide new mechanistic insights into the fascinating process of maternal uterine adaptation in humans and novel prophylactic and therapeutic measures against pre-eclampsia.

  18. The expression mechanism of the residual LTP in the CA1 region of BDNF k.o. mice is insensitive to NO synthase inhibition.

    PubMed

    Lessmann, Volkmar; Stroh-Kaffei, Sigrid; Steinbrecher, Violetta; Edelmann, Elke; Brigadski, Tanja; Kilb, Werner; Luhmann, Heiko J

    2011-05-19

    BDNF and nitric oxide signaling both contribute to long-term potentiation (LTP) at glutamatergic synapses, but to date, few studies analyzed the interaction of both signaling cascades in the same synaptic pathway. Here we addressed the question whether the residual LTP in the CA1 region of hippocampal slices from heterozygous BDNF knockout mice (BDNF⁺/⁻) is dependent on nitric oxide (NO) signaling. Extracellular recording of synaptic field potentials elicited by presynaptic Schaffer collateral stimulation was performed in the CA1 region of hippocampal slices of 4- to 6-week-old mice, and LTP was induced by a theta burst stimulation protocol. Application of the nitric oxide inhibitor L-NAME (200 μM) strongly inhibited LTP by 70% in wildtype animals. This inhibition of LTP was not a consequence of altered basal synaptic properties. In CA1 of BDNF⁺/⁻ mice, stimulated with the same theta burst protocol, LTP was reduced by 50% as compared to wildtype animals. This impairment in the expression of LTP in BDNF⁺/⁻ mice did not result from an increased synaptic fatigue. The residual LTP in BDNF⁺/⁻ was not further reduced by preincubation of slices with L-NAME. These results suggest that BDNF and NO share overlapping intracellular signaling cascades to mediate LTP in CA1, and part of their signaling cascades are most likely arranged consecutively in the signaling pathway mediating LTP.

  19. Regulation of the sympathetic nervous system by nitric oxide and oxidative stress in the rostral ventrolateral medulla: 2012 Academic Conference Award from the Japanese Society of Hypertension.

    PubMed

    Kishi, Takuya

    2013-10-01

    Sympathoexcitation has an important role in the pathogenesis of hypertension. Previous studies have demonstrated that nitric oxide (NO) and/or oxidative stress in the brain are important for the regulation of the sympathetic nervous system. We have investigated the role of NO derived from an overexpression of endothelial NO synthase (eNOS) or oxidative stress in the rostral ventrolateral medulla (RVLM), which is known as a vasomotor center in the brainstem, on the regulation of the sympathetic nervous system. Our results indicated that NO derived from an overexpression of eNOS in the RVLM caused sympathoinhibition via an increase in γ-amino butyric acid and that angiotensin II type 1 receptor (AT1R)-induced oxidative stress in the RVLM caused sympathoexcitation. We also demonstrated that oxidative stress in the RVLM caused sympathoexcitation via interactions with NO, effects on the signal transduction or apoptosis of the astrocytes. Furthermore, several orally administered AT1R blockers have been found to cause sympathoinhibition via a reduction in oxidative stress through the blockade of AT1R in the RVLM of hypertensive rats. In conclusion, our studies suggest that the increase in AT1R-induced oxidative stress and/or the decrease in NO in the RVLM mainly cause sympathoexcitation in hypertension.

  20. Selective up-regulation of human selenoproteins in response to oxidative stress.

    PubMed

    Zahia, Touat-Hamici; Yona, Legrain; Anne-Laure, Bulteau; Laurent, Chavatte

    2014-10-01

    Selenocysteinse is inserted into selenoproteins via the translational recoding of a UGA codon, normally used as a stop signal. This process depends on the nature of the SECIS element located in the 3'UTR of selenoprotein mRNAs, selenium bioavailability, and possibly exogenous stimuli. To further understand the function and regulation of selenoproteins in antioxidant defense and redox homeostasis, we have investigated how oxidative stress influences selenoprotein expression as a function of different selenium concentrations. We found that selenium supplementation of the culture media, which resulted in a hierarchical upregulation of selenoproteins, protected HEK293 cells from ROS formation. Furthermore, in response to oxidative stress, we identified a selective upregulation of several selenoproteins involved in antioxidant defense (Gpx1, Gpx4, TR1, SelS, SelK and Sps2). Interestingly, the response was more efficient when selenium was limiting. While a modest change in mRNA levels was noted, we identified a novel translational control mechanism stimulated by oxidative stress that is characterized by upregulation of UGA-selenocysteine recoding efficiency and relocalization of SBP2, EFsec and L30 recoding factors from cytoplasm to nucleus. PMID:26461318

  1. Urm1: an essential regulator of JNK signaling and oxidative stress in Drosophila melanogaster.

    PubMed

    Khoshnood, B; Dacklin, I; Grabbe, C

    2016-05-01

    Ubiquitin-related modifier 1 (Urm1) is a ubiquitin-like molecule (UBL) with the dual capacity to act both as a sulphur carrier and posttranslational protein modifier. Here we characterize the Drosophila melanogaster homologues of Urm1 (CG33276) and its E1 activating enzyme Uba4 (CG13090), and show that they function together to induce protein urmylation in vivo. Urm1 conjugation to target proteins in general, and to the evolutionary conserved substrate Peroxiredoxin 5 (Prx5) specifically, is dependent on Uba4. A complete loss of Urm1 is lethal in flies, although a small number of adult zygotic Urm1 (n123) mutant escapers can be recovered. These escapers display a decreased general fitness and shortened lifespan, but in contrast to their S. cerevisiae counterparts, they are resistant to oxidative stress. Providing a molecular explanation, we demonstrate that cytoprotective JNK signaling is increased in Urm1 deficient animals. In agreement, molecular and genetic evidence suggest that elevated activity of the JNK downstream target genes Jafrac1 and gstD1 strongly contributes to the tolerance against oxidative stress displayed by Urm1 (n123) null mutants. In conclusion, Urm1 is a UBL that is involved in the regulation of JNK signaling and the response against oxidative stress in the fruit fly. PMID:26715182

  2. UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation.

    PubMed

    Vozza, Angelo; Parisi, Giovanni; De Leonardis, Francesco; Lasorsa, Francesco M; Castegna, Alessandra; Amorese, Daniela; Marmo, Raffaele; Calcagnile, Valeria M; Palmieri, Luigi; Ricquier, Daniel; Paradies, Eleonora; Scarcia, Pasquale; Palmieri, Ferdinando; Bouillaud, Frédéric; Fiermonte, Giuseppe

    2014-01-21

    Uncoupling protein 2 (UCP2) is involved in various physiological and pathological processes such as insulin secretion, stem cell differentiation, cancer, and aging. However, its biochemical and physiological function is still under debate. Here we show that UCP2 is a metabolite transporter that regulates substrate oxidation in mitochondria. To shed light on its biochemical role, we first studied the effects of its silencing on the mitochondrial oxidation of glucose and glutamine. Compared with wild-type, UCP2-silenced human hepatocellular carcinoma (HepG2) cells, grown in the presence of glucose, showed a higher inner mitochondrial membrane potential and ATP:ADP ratio associated with a lower lactate release. Opposite results were obtained in the presence of glutamine instead of glucose. UCP2 reconstituted in lipid vesicles catalyzed the exchange of malate, oxaloacetate, and aspartate for phosphate plus a proton from opposite sides of the membrane. The higher levels of citric acid cycle intermediates found in the mitochondria of siUCP2-HepG2 cells compared with those found in wild-type cells in addition to the transport data indicate that, by exporting C4 compounds out of mitochondria, UCP2 limits the oxidation of acetyl-CoA-producing substrates such as glucose and enhances glutaminolysis, preventing the mitochondrial accumulation of C4 metabolites derived from glutamine. Our work reveals a unique regulatory mechanism in cell bioenergetics and provokes a substantial reconsideration of the physiological and pathological functions ascribed to UCP2 based on its purported uncoupling properties.

  3. Estrogen down-regulates uncoupling proteins and increases oxidative stress in breast cancer.

    PubMed

    Sastre-Serra, Jorge; Valle, Adamo; Company, Maria Margarita; Garau, Isabel; Oliver, Jordi; Roca, Pilar

    2010-02-15

    Oxidative stress has been postulated as one of the mechanisms underlying the estrogen carcinogenic effect in breast cancer. Estrogens are known to increase mitochondrial-derived reactive oxygen species (ROS) by an unknown mechanism. Given that uncoupling proteins (UCPs) are key regulators of mitochondrial energy efficiency and ROS production, our aim was to check the presence and activity of UCPs in estrogen receptor (ER)-positive and ER-negative breast cancer cells and tumors, as well as their relation to oxidative stress. Estrogen (1 nM) induced higher oxidative stress in the ER-positive MCF-7 cell line, showing increased mitochondrial membrane potential, H(2)O(2) levels, and DNA and protein damage compared to ER-negative MDA-MB-231 cells. All isoforms of uncoupling proteins were highly expressed in ER-positive breast cancer cells and tumors compared to negative ones. ROS production in mitochondria isolated from MCF-7 was increased by inhibition of UCPs with GDP, but not in mitochondria from MDA-MB-231. Estrogen treatment decreased uncoupling protein and catalase levels in MCF-7 and decreased GDP-dependent ROS production in isolated mitochondria. On the whole, these results suggest that estrogens, through an ER-dependent mechanism, may increase mitochondrial ROS production by repressing uncoupling proteins, which offers a new perspective on the understanding of why estrogens are a risk factor for breast cancer.

  4. Effect of vitamin E on cerebral cortical oxidative stress and brain-derived neurotrophic factor gene expression induced by hypoxia and exercise in rats.

    PubMed

    Sakr, H F; Abbas, A M; El Samanoudy, A Z

    2015-04-01

    Brain-derived neurotrophic factor (BDNF) is involved in the proliferation of neurons, and its expression increases significantly with exercise. We aimed to investigate the effects of chronic exercise (swimming) and sustained hypoxia on cortical BDNF expression in both the presence and absence of vitamin E. Sixty four male Sprague-Dawley rats were divided into two equal groups; a normoxic group and a hypoxic group. Both groups were equally subdivided into four subgroups: sedentary, sedentary with vitamin E, chronic exercise either with or without vitamin E supplementation. Arterial PO(2), and the levels of cortical malondialdehyde (MDA), antioxidants (reduced glutathione GSH, superoxide dismutase (SOD), catalase (CAT) and vitamin E) and BDNF gene expression were investigated. Hypoxia significantly increased MDA production and BDNF gene expression and decreased the antioxidants compared to control rats. Chronic exercise in hypoxic and normoxic rats increased MDA level and BDNF gene expression and decreased the antioxidants. Providing vitamin E supplementation to the hypoxic and normoxic rats significantly reduced MDA and BDNF gene expression and increased antioxidants. We conclude that sustained hypoxia and chronic exercise increased BDNF gene expression and induced oxidative stress. Moreover, vitamin E attenuated the oxidative stress and decreased BDNF gene expression in sustained hypoxia and chronic exercise which confirms the oxidative stress-induced stimulation of BDNF gene expression.

  5. Robust changes in expression of brain-derived neurotrophic factor (BDNF) mRNA and protein across the brain do not translate to detectable changes in BDNF levels in CSF or plasma.

    PubMed

    Lanz, Thomas A; Bove, Susan E; Pilsmaker, Catherine D; Mariga, Abigail; Drummond, Elena M; Cadelina, Gregory W; Adamowicz, Wendy O; Swetter, Brentt J; Carmel, Sharon; Dumin, Jo Ann; Kleiman, Robin J

    2012-09-01

    Adult rats were treated acutely with peripheral kainic acid (KA), and changes in brain-derived neurotrophic factor (BDNF) mRNA and protein were tracked over time across multiple brain regions. Despite robust elevation in both mRNA and protein in multiple brain regions, plasma BDNF was unchanged and cerebrospinal fluid (CSF) BDNF levels remained undetectable. Primary neurons were then treated with KA. BDNF was similarly elevated within neurons, but was undetectable in neuronal media. Thus, while deficits in BDNF signaling have been implicated in a number of diseases, these data suggest that extracellular concentrations of BDNF may not be a facile biomarker for changes in neurons.

  6. REGULATION OF FMN SUBDOMAIN INTERACTIONS AND FUNCTION IN NEURONAL NITRIC OXIDE SYNTHASE‡

    PubMed Central

    Ilagan, Robielyn P.; Tejero, Jesús; Aulak, Kulwant S.; Sinha Ray, Sougata; Hemann, Craig; Wang, Zhi-Qiang; Gangoda, Mahinda; Zweier, Jay L.; Stuehr, Dennis J.

    2009-01-01

    Nitric oxide synthases (NOS) are modular, calmodulin (CaM)-dependent, flavo-heme enzymes that catalyze oxidation of L-arginine to generate nitric oxide (NO) and citrulline. During catalysis, the FMN subdomain cycles between interaction with an NADPH-FAD subdomain to receive electrons, and interaction with an oxygenase domain to deliver electrons to the NOS heme. This process can be described by a three-state, two equilibrium model for the conformation of the FMN subdomain, in which it exists in two distinct bound states (FMN-shielded), and one common unbound state (FMN-deshielded). We studied how each partner subdomain, the FMN redox state, and CaM binding may regulate the conformational equilibria of the FMN module in rat neuronal NOS (nNOS). We utilized four nNOS protein constructs of different subdomain composition, including the isolated FMN subdomain, and determined changes in the conformational state by measuring the degree of FMN shielding by fluorescence, electron paramagnetic resonance, or stopped-flow spectroscopic techniques. Our results suggest: (i) The NADPH-FAD subdomain has a far greater capacity to interact with the FMN subdomain than does the oxygenase domain. (ii) CaM binding has no direct effects on the FMN subdomain. (iii) CaM destabilizes interaction of the FMN subdomain with the NADPH-FAD subdomain but does not measurably increase its interaction with the oxygenase domain. Our results imply that a different set point and CaM regulation exists for either conformational equilibrium of the FMN subdomain. This helps to explain the unique electron transfer and catalytic behaviors of nNOS, relative to other dual-flavin enzymes. PMID:19290671

  7. Rapid Increases in proBDNF after Pilocarpine-Induced Status Epilepticus in Mice Are Associated with Reduced proBDNF Cleavage Machinery.

    PubMed

    Thomas, Ajay X; Cruz Del Angel, Yasmin; Gonzalez, Marco I; Carrel, Andrew J; Carlsen, Jessica; Lam, Philip M; Hempstead, Barbara L; Russek, Shelley J; Brooks-Kayal, Amy R

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) levels are elevated after status epilepticus (SE), leading to activation of multiple signaling pathways, including the janus kinase/signal transducer and activator of transcription pathway that mediates a decrease in GABAA receptor α1 subunits in the hippocampus (Lund et al., 2008). While BDNF can signal via its pro or mature form, the relative contribution of these forms to signaling after SE is not fully known. In the current study, we investigate changes in proBDNF levels acutely after SE in C57BL/6J mice. In contrast to previous reports (Unsain et al., 2008; Volosin et al., 2008; VonDran et al., 2014), our studies found that levels of proBDNF in the hippocampus are markedly elevated as early as 3 h after SE onset and remain elevated for 7 d. Immunohistochemistry studies indicate that seizure-induced BDNF localizes to all hippocampal subfields, predominantly in principal neurons and also in astrocytes. Analysis of the proteolytic machinery that cleaves proBDNF to produce mature BDNF demonstrates that acutely after SE there is a decrease in tissue plasminogen activator and an increase in plasminogen activator inhibitor-1 (PAI-1), an inhibitor of extracellular and intracellular cleavage, which normalizes over the first week after SE. In vitro treatment of hippocampal slices from animals 24 h after SE with a PAI-1 inhibitor reduces proBDNF levels. These findings suggest that rapid proBDNF increases following SE are due in part to reduced cleavage, and that proBDNF may be part of the initial neurotrophin response driving intracellular signaling during the acute phase of epileptogenesis.

  8. Rapid Increases in proBDNF after Pilocarpine-Induced Status Epilepticus in Mice Are Associated with Reduced proBDNF Cleavage Machinery123

    PubMed Central

    Cruz Del Angel, Yasmin; Gonzalez, Marco I.; Carrel, Andrew J.; Carlsen, Jessica; Lam, Philip M.; Hempstead, Barbara L.; Russek, Shelley. J.

    2016-01-01

    Abstract Brain-derived neurotrophic factor (BDNF) levels are elevated after status epilepticus (SE), leading to activation of multiple signaling pathways, including the janus kinase/signal transducer and activator of transcription pathway that mediates a decrease in GABAA receptor α1 subunits in the hippocampus (Lund et al., 2008). While BDNF can signal via its pro or mature form, the relative contribution of these forms to signaling after SE is not fully known. In the current study, we investigate changes in proBDNF levels acutely after SE in C57BL/6J mice. In contrast to previous reports (Unsain et al., 2008; Volosin et al., 2008; VonDran et al., 2014), our studies found that levels of proBDNF in the hippocampus are markedly elevated as early as 3 h after SE onset and remain elevated for 7 d. Immunohistochemistry studies indicate that seizure-induced BDNF localizes to all hippocampal subfields, predominantly in principal neurons and also in astrocytes. Analysis of the proteolytic machinery that cleaves proBDNF to produce mature BDNF demonstrates that acutely after SE there is a decrease in tissue plasminogen activator and an increase in plasminogen activator inhibitor-1 (PAI-1), an inhibitor of extracellular and intracellular cleavage, which normalizes over the first week after SE. In vitro treatment of hippocampal slices from animals 24 h after SE with a PAI-1 inhibitor reduces proBDNF levels. These findings suggest that rapid proBDNF increases following SE are due in part to reduced cleavage, and that proBDNF may be part of the initial neurotrophin response driving intracellular signaling during the acute phase of epileptogenesis. PMID:27057559

  9. Regulation of lipid peroxidation by nitric oxide and PGF2alpha during luteal regression in rats.

    PubMed

    Motta, A B; Estevez, A; Franchi, A; Perez-Martinez, S; Farina, M; Ribeiro, M L; Lasserre, A; Gimeno, M F

    2001-04-01

    Corpus luteum regression is related to an increased generation of reactive oxygen species. Although several studies indicate that PGF(2alpha) is involved in regression of the corpus luteum in mammalian species through an increase in reactive oxygen species, the exact mechanism remains unknown. In the present study, the relationship between nitric oxide and PGF(2alpha) in regulation of lipid peroxidation was studied. Ovarian tissue from pseudopregnant rats at mid- (day 5) or late phase or at the time of regression (day 9 of pseudopregnancy) of corpus luteum development was used. Thiobarbituric acid reactants, used as a lipid peroxidation index, were higher on day 9 of pseudopregnancy than on day 5. In contrast, glutathione content (an antioxidant metabolite) was lower on day 9 than on day 5 of pseudopregnancy. These results indicate that there was an enhanced oxidative status in ovarian tissue during luteolysis. Administration of N(omega)-nitro-L-arginine methyl ester (L-NAME: 600 micromol l(-1)), a competitive nitric oxide synthase (NOS) inhibitor, led to a decrease in basal thiobarbituric acid reactant content in ovarian tissue from rats on day 9 of pseudopregnancy only, indicating that during regression of the corpus luteum, NO could act as intermediary in ovarian lipid peroxidation. Administration of a luteolytic dose (3 microg kg(-1) body weight i.p.) of a synthetic PGF(2alpha) increased thiobarbituric acid reactant content in ovaries from rats on day 9 of pseudopregnancy. As this effect was reversed partially by L-NAME, it is proposed that during regression of corpora lutea, PGF(2alpha) and NO are involved in regulation of lipid peroxidation. As this effect was only reversed partially, it is possible that there is another mechanism involving PGF(2alpha) (but not the NO-NOS pathway) in regulation of ovarian lipid peroxidation. Furthermore, the administration of PGF(2alpha) enhanced ovarian NOS activity, whereas cyclooxygenase inhibition (by indomethacin

  10. [BRAIN-DERIVED NEUROTROPHIC FACTOR (BDNF): NEUROBIOLOGY AND MARKER VALUE IN NEUROPSYCHIATRY].

    PubMed

    Levada, O A; Cherednichenko, N V

    2015-01-01

    In this review current publications about neurobiology and marker value of brain derived neurotrophic factor (BDNF) in neuropsychiatry are analyzed. It is shown that BDNF is an important member of the family of neurotrophins which widely represented in various structures of the CNS. In prenatal period BDNF is involved in all stages of neuronal networks formation, and in the postnatal period its main role is maintaining the normal brain architectonics, involvement in the processes of neurogenesis and realization of neuroprotective functions. BDNF plays an important role in learning and memory organization, food and motor behavior. BDNF brain expression decreases with age, as well as in degenerative and vascular dementias, affective, anxiety, and behavioral disorders. The reducing of BDNF serum, level reflects the decreasing of its cerebral expression and could be used as a neurobiological marker of these pathological processes but the rising of its concentration could indicate the therapy effectiveness.

  11. Houttuynia cordata Extract Improves Physical Endurance Performance by Regulating Endothelial Production of Nitric Oxide.

    PubMed

    Yang, Ui-Jeong; Maeng, Hyojin; Park, Tae-Sik; Shim, Soon-Mi

    2015-09-01

    Vascular function is mediated by various regulatory molecules, including endothelial nitric oxide (NO), which regulates the vasodilation of smooth muscle cells. We investigated whether standardized Houttuynia cordata extract (SHCE) could improve physical endurance performance by regulating the endothelial production of NO. For the standardization of Houttuynia cordata (HC) extract, its bioactive components were identified and quantified using ultraperformance liquid chromatography-mass spectrometry. Bioaccessibility and biological activity were measured by the in vitro digestion model system and free radical scavenging capacity, respectively. The vascular function in the endothelium was assessed by the phosphorylation of endothelial nitric oxide synthase (eNOS). A preliminary clinical trial was carried out to assess the physical endurance performance. HC extract was standardized to bioactive components, including chlorogenic acid, rutin, and quercitrin, with the concentration of 5.53, 6.09, and 16.15 mg from 1 g of dry weight, respectively. Bioaccessibility was 33.17%, 31.67%, and 11.18% for chlorogenic acid, rutin, and quercitrin, respectively. Antioxidant activities of SHCE were expressed as vitamin C equivalent antioxidant capacity in 55.81 and 17.23 mg/g of HC extract using ABTS and DPPH scavenging assay, respectively. In human aortic endothelial cells, insulin-mediated phosphorylation of eNOS was increased by SHCE in the presence of palmitate. However, the expression of blood pressure-regulating genes was not altered. The level of blood lactate concentration and the heart rate of subjects who drank SHCE were lower than those of subjects who drank plain water. Oxygen uptake from subjects drinking SHCE was slightly higher than that from those who drank plain water. This study demonstrated that SHCE decreased heart rate and blood lactate, increased oxygen uptake, and improved physical performance, presumably due to the increased NO production. PMID:25923355

  12. C-myb Regulates Autophagy for Pulp Vitality in Glucose Oxidative Stress.

    PubMed

    Lee, Y H; Kim, H S; Kim, J S; Yu, M K; Cho, S D; Jeon, J G; Yi, H K

    2016-04-01

    Diabetes mellitus is closely related to oral-complicated diseases by oxidative stress. This study investigates whether cellular myeloblastosis (c-myb) could protect human dental pulp cells against glucose oxidative stress and regulate autophagy activity for pulp vitality. Diabetes mellitus was induced by streptozotocin in Sprague-Dawley rats, and their pulp tissue in teeth was analyzed in terms of pulp cavity and molecules by hematoxylin and eosin and immunohistochemistry staining. Human dental pulp cells were serially subcultured and treated with glucose oxidase in the presence of elevated glucose to generate glucose oxidative stress. The replication-deficient adenovirus c-myb and small interfering RNA c-myb were introduced for c-myb expression. The pulp tissue from the diabetic rats was structurally different from normal tissue in terms of narrow pulp capacity, reduced c-myb, and dentinogenesis molecules. Glucose oxidase treatment decreased c-myb and dentinogenesis molecules (bone morphogenetic protein 2 and 7, dentin matrix protein 1, and dentin sialophosphoprotein) in human dental pulp cells. However, overexpression of c-myb by adenovirus c-myb increased dentinogenesis, autophagy molecules (autophagy protein 5, microtubule-associated protein 1A/1B-light chain 3, and Beclin-1), and cell survival via p-AMPK/AKT signaling even with glucose oxidative stress. In contrast, the lack of c-myb decreased the above molecules and cell survival by downregulating p-AMPK/AKT signaling. The results indicate that diabetes leads to irreversible damage to dental pulp, which is related to downexpression of autophagy via the p-AMPK/AKT pathway by decline of c-myb. The findings of this study provide a new insight that c-myb could ameliorate autophagy activity and that it is applicable for monitoring complicated diseases of dental pulp. The involvement of c-myb in pulp pathology could serve a therapeutic target in oral-complicated diseases. PMID:26661713

  13. C-myb Regulates Autophagy for Pulp Vitality in Glucose Oxidative Stress.

    PubMed

    Lee, Y H; Kim, H S; Kim, J S; Yu, M K; Cho, S D; Jeon, J G; Yi, H K

    2016-04-01

    Diabetes mellitus is closely related to oral-complicated diseases by oxidative stress. This study investigates whether cellular myeloblastosis (c-myb) could protect human dental pulp cells against glucose oxidative stress and regulate autophagy activity for pulp vitality. Diabetes mellitus was induced by streptozotocin in Sprague-Dawley rats, and their pulp tissue in teeth was analyzed in terms of pulp cavity and molecules by hematoxylin and eosin and immunohistochemistry staining. Human dental pulp cells were serially subcultured and treated with glucose oxidase in the presence of elevated glucose to generate glucose oxidative stress. The replication-deficient adenovirus c-myb and small interfering RNA c-myb were introduced for c-myb expression. The pulp tissue from the diabetic rats was structurally different from normal tissue in terms of narrow pulp capacity, reduced c-myb, and dentinogenesis molecules. Glucose oxidase treatment decreased c-myb and dentinogenesis molecules (bone morphogenetic protein 2 and 7, dentin matrix protein 1, and dentin sialophosphoprotein) in human dental pulp cells. However, overexpression of c-myb by adenovirus c-myb increased dentinogenesis, autophagy molecules (autophagy protein 5, microtubule-associated protein 1A/1B-light chain 3, and Beclin-1), and cell survival via p-AMPK/AKT signaling even with glucose oxidative stress. In contrast, the lack of c-myb decreased the above molecules and cell survival by downregulating p-AMPK/AKT signaling. The results indicate that diabetes leads to irreversible damage to dental pulp, which is related to downexpression of autophagy via the p-AMPK/AKT pathway by decline of c-myb. The findings of this study provide a new insight that c-myb could ameliorate autophagy activity and that it is applicable for monitoring complicated diseases of dental pulp. The involvement of c-myb in pulp pathology could serve a therapeutic target in oral-complicated diseases.

  14. Nitric oxide up-regulates endothelial expression of angiotensin II type 2 receptors.

    PubMed

    Dao, Vu Thao-Vi; Medini, Sawsan; Bisha, Marion; Balz, Vera; Suvorava, Tatsiana; Bas, Murat; Kojda, Georg

    2016-07-15

    Increasing vascular NO levels following up-regulation of endothelial nitric oxide synthase (eNOS) is considered beneficial in cardiovascular disease. Whether such beneficial effects exerted by increased NO-levels include the vascular renin-angiotensin system remains elucidated. Exposure of endothelial cells originated from porcine aorta, mouse brain and human umbilical veins to different NO-donors showed that expression of the angiotensin-II-type-2-receptor (AT2) mRNA and protein is up-regulated by activation of soluble guanylyl cyclase, protein kinase G and p38 mitogen-activated protein kinase without changing AT2 mRNA stability. In mice, endothelial-specific overexpression of eNOS stimulated, while chronic treatment with the NOS-blocker l-nitroarginine inhibited AT2 expression. The NO-induced AT2 up-regulation was associated with a profound inhibition of angiotensin-converting enzyme (ACE)-activity. In endothelial cells this reduction of ACE-activity was reversed by either the AT2 antagonist PD 123119 or by inhibition of transcription with actinomycin D. Furthermore, in C57Bl/6 mice an acute i.v. bolus of l-nitroarginine did not change AT2-expression and ACE-activity suggesting that inhibition of ACE-activity by endogenous NO is crucially dependent on AT2 protein level. Likewise, three weeks of either voluntary or forced exercise training increased AT2 expression and reduced ACE-activity in C57Bl/6 but not in mice lacking eNOS suggesting significance of this signaling interaction for vascular physiology. Finally, aortic AT2 expression is about 5 times greater in female as compared to male C57Bl/6 and at the same time aortic ACE activity is reduced in females by more than 50%. Together these findings imply that endothelial NO regulates AT2 expression and that AT2 may regulate ACE-activity. PMID:27235748

  15. Nitric Oxide Regulates The Lymphatic Reactivity Following Hemorrhagic Shock Through Atp-Sensitive Potassium Channel.

    PubMed

    Zhang, Li-Min; Qin, Li-Peng; Zhang, Yu-Ping; Zhao, Zi-Gang; Niu, Chun-Yu

    2016-06-01

    Lymphatic reactivity has been shown to exhibit a biphasic change following hemorrhagic shock, and nitric oxide (NO) is involved in this process. However, the precise mechanism responsible for NO regulation of the lymphatic reactivity along with the progression of hemorrhagic shock is unclear. Therefore, the present study was to investigate how NO participates in regulating the shock-induced biphasic changes in lymphatic reactivity and its underlying mechanisms. First, the expressions or contents of inducible NO synthase, nitrite plus nitrate, and elements of cAMP-PKA-KATP and cGMP-PKG-KATP pathway in thoracic ducts tissue were assessed. The results revealed that levels of nitrite plus nitrate, cAMP, cyclic guanosine monophosphate (cGMP), p-PKA, and p-PKG were increased gradually along with the process of shock. Second, the roles of cAMP-PKA-KATP and cGMP-PKG-KATP in NO regulating lymphatic response to gradient substance P were evaluated with an isolated lymphatic perfusion system. The results showed that the NOS substrate (L-Arg), PKA donor (8-Br-cAMP) decreased the reactivity of shock 0.5 h-lymphatics, and that the PKA inhibitor (H-89) and KATP inhibitor (glibenclamide) restrained the effects of L-Arg while glibenclamide abolished the effects of 8-Br-cAMP. Meanwhile, NOS antagonist (L-NAME), protein kinase G (PKG) inhibitor (KT-5823), and soluble guanylate cyclase inhibitor (ODQ) increased the reactivity of shock 2 h-lymphatics, whereas KATP opener (pinacidil) inhibited these elevated effects induced by either L-NAME, ODQ, or KT-5823. Taken together, these results indicate that NO regulation of lymphatic reactivity during shock involves both cAMP-PKA-KATP and cGMP-PKG-KATP pathways. These findings have potential significance for the treatment of hemorrhagic shock through regulating lymphatic reactivity. PMID:26796572

  16. Stress and CRF gate neural activation of BDNF in the mesolimbic reward pathway.

    PubMed

    Walsh, Jessica J; Friedman, Allyson K; Sun, Haosheng; Heller, Elizabeth A; Ku, Stacy M; Juarez, Barbara; Burnham, Veronica L; Mazei-Robison, Michelle S; Ferguson, Deveroux; Golden, Sam A; Koo, Ja Wook; Chaudhury, Dipesh; Christoffel, Daniel J; Pomeranz, Lisa; Friedman, Jeffrey M; Russo, Scott J; Nestler, Eric J; Han, Ming-Hu

    2014-01-01

    Mechanisms controlling release of brain-derived neurotrophic factor (BDNF) in the mesolimbic dopamine reward pathway remain unknown. We report that phasic optogenetic activation of this pathway increases BDNF amounts in the nucleus accumbens (NAc) of socially stressed mice but not of stress-naive mice. This stress gating of BDNF signaling is mediated by corticotrophin-releasing factor (CRF) acting in the NAc. These results unravel a stress context-detecting function of the brain's mesolimbic circuit.

  17. The Mycobacterial LysR-Type Regulator OxyS Responds to Oxidative Stress and Negatively Regulates Expression of the Catalase-Peroxidase Gene

    PubMed Central

    Li, Yuqing; He, Zheng-Guo

    2012-01-01

    Protection against oxidative stress is one of the primary defense mechanisms contributing to the survival of Mycobacterium tuberculosis in the host. In this study, we provide evidence that OxyS, a LysR-type transcriptional regulator functions as an oxidative stress response regulator in mycobacteria. Overexpression of OxyS lowers expression of the catalase-peroxidase (KatG) gene in M. smegmatis. OxyS binds directly with the katG promoter region and a conserved, GC-rich T-N11-A motif for OxyS binding was successfully characterized in the core binding site. Interestingly, the DNA-binding activity of OxyS was inhibited by H2O2, but not by dithiothreitol. Cys25, which is situated at the DNA-binding domain of OxyS, was found to have a regulatory role for the DNA-binding ability of OxyS in response to oxidative stress. In contrast, the other three cysteine residues in OxyS do not appear to have this function. Furthermore, the mycobacterial strain over-expressing OxyS had a higher sensitivity to H2O2.Thus, OxyS responds to oxidative stress through a unique cysteine residue situated in its DNA-binding domain and negatively regulates expression of the katG gene. These findings uncover a specific regulatory mechanism for mycobacterial adaptation to oxidative stress. PMID:22272299

  18. Zinc regulates iNOS-derived nitric oxide formation in endothelial cells.

    PubMed

    Cortese-Krott, Miriam M; Kulakov, Larissa; Opländer, Christian; Kolb-Bachofen, Victoria; Kröncke, Klaus-D; Suschek, Christoph V

    2014-01-01

    Aberrant production of nitric oxide (NO) by inducible NO synthase (iNOS) has been implicated in the pathogenesis of endothelial dysfunction and vascular disease. Mechanisms responsible for the fine-tuning of iNOS activity in inflammation are still not fully understood. Zinc is an important structural element of NOS enzymes and is known to inhibit its catalytical activity. In this study we aimed to investigate the effects of zinc on iNOS activity and expression in endothelial cells. We found that zinc down-regulated the expression of iNOS (mRNA+protein) and decreased cytokine-mediated activation of the iNOS promoter. Zinc-mediated regulation of iNOS expression was due to inhibition of NF-κB transactivation activity, as determined by a decrease in both NF-κB-driven luciferase reporter activity and expression of NF-κB target genes, including cyclooxygenase 2 and IL-1β. However, zinc did not affect NF-κB translocation into the nucleus, as assessed by Western blot analysis of nuclear and cytoplasmic fractions. Taken together our results demonstrate that zinc limits iNOS-derived high output NO production in endothelial cells by inhibiting NF-κB-dependent iNOS expression, pointing to a role of zinc as a regulator of iNOS activity in inflammation.

  19. Regulation of oxidative phosphorylation: the flexible respiratory network of Paracoccus denitrificans.

    PubMed

    Van Spanning, R J; de Boer, A P; Reijnders, W N; De Gier, J W; Delorme, C O; Stouthamer, A H; Westerhoff, H V; Harms, N; van der Oost, J

    1995-10-01

    Paracoccus denitrificans is a facultative anaerobic bacterium that has the capacity to adjust its metabolic infrastructure, quantitatively and/or qualitatively, to the prevailing growth condition. In this bacterium the relative activity of distinct catabolic pathways is subject to a hierarchical control. In the presence of oxygen the aerobic respiration, the most efficient way of electron transfer-linked phosphorylation, has priority. At high oxygen tensions P. denitrificans synthesizes an oxidase with a relatively low affinity for oxygen, whereas under oxygen limitation a high-affinity oxidase appears specifically induced. During anaerobiosis, the pathways with lower free energy-transducing efficiency are induced. In the presence of nitrate, the expression of a number of dehydrogenases ensures the continuation of oxidative phosphorylation via denitrification. After identification of the structural components that are involved in both the aerobic and the anaerobic respiratory networks of P. denitrificans, the intriguing next challenge is to get insight in its regulation. Two transcription regulators have recently been demonstrated to be involved in the expression of a number of aerobic and/or anaerobic respiratory complexes in P. denitrificans. Understanding of the regulation machinery is beginning to emerge and promises much excitement in discovery. PMID:8718455

  20. BDNF restricted knockout mice as an animal model for aggression

    PubMed Central

    Ito, Wataru; Chehab, Mahmoud; Thakur, Siddarth; Li, Jiayang; Morozov, Alexei

    2011-01-01

    Mice with global deletion of one BDNF allele, or with forebrain-restricted deletion of both alleles show elevated aggression, but this phenotype is accompanied by other behavioral changes, including increases in anxiety and deficits in cognition. Here, we performed behavioral characterization of conditional BDNF knockout mice generated using a Cre recombinase driver line, KA1-Cre, which expresses Cre in few areas of brain: highly at hippocampal area CA3, moderately in dentate gyrus, cerebellum and facial nerve nucleus. The mutant animals exhibited elevated conspecific aggression and social dominance, but did not show changes in anxiety-like behaviors assessed using the elevated plus maze and open field test. There were no changes in depression like behaviors tested in the forced swim test, but small increase in immobility in the tail suspension test. In cognitive tasks, mutants showed normal social recognition and normal spatial and fear memory, but exhibited a deficit in object recognition. Thus, this knockout can serve as a robust model of BDNF-dependent aggression and object recognition deficiency. PMID:21255268

  1. Circadian variations in behaviors, BDNF and cell proliferation in depressive mice.

    PubMed

    Yi, Li-Tao; Luo, Liu; Wu, Yong-Jing; Liu, Bin-Bin; Liu, Xiao-Long; Geng, Di; Liu, Qing

    2015-12-01

    Neurotrophic factors are well-known to be involved in the pathophysiology of depression and treatment of antidepressants. Brain-derived neurotrophic factor (BDNF), one of the most widely distributed and the most highly studied neurotrophic factors, has been demonstrated to play an important role in the pathophysiology of depression and the mechanism of antidepressants. According to the previous studies, we found that animal tissues were dissected for BDNF measurement mainly in daytime. Considering the circadian rhythm of BDNF expression, our present study evaluated the circadian variations in behaviors, serum corticosterone concentrations, hippocampal BDNF expression and neuronal cell proliferation in mice exposed to chronic mild stress (CMS), one of the most widely used depression-like animal models. Our results provided the first evidence that the difference of BDNF expression and neuronal cell proliferation between CMS and control mice underwent an oscillation related to the circadian variations (maximum at 20:00 h, minimum at 12:00 h or 16:00 h), while the difference of sucrose preference and first feeding latency was not affected by circadian rhythm. This oscillation difference was attributed to the relative constant BDNF expression and cell proliferation in CMS mice and the fluctuating BDNF expression and cell proliferation in control mice. CMS exposure might destroy the circadian rhythm of BDNF expression and cell proliferation in hippocampus of normal individual. Our present study suggests that animal decapitation at 20:00 h is the best time for BDNF-related measurement in CMS experiment, since the difference reaches the maximum.

  2. BDNF heightens the sensitivity of motor neurons to excitotoxic insults through activation of TrkB

    NASA Technical Reports Server (NTRS)

    Hu, Peter; Kalb, Robert G.; Walton, K. D. (Principal Investigator)

    2003-01-01

    The survival promoting and neuroprotective actions of brain-derived neurotrophic factor (BDNF) are well known but under certain circumstances this growth factor can also exacerbate excitotoxic insults to neurons. Prior exploration of the receptor through which BDNF exerts this action on motor neurons deflects attention away from p75. Here we investigated the possibility that BDNF acts through the receptor tyrosine kinase, TrkB, to confer on motor neurons sensitivity to excitotoxic challenge. We blocked BDNF activation of TrkB using a dominant negative TrkB mutant or a TrkB function blocking antibody, and found that this protected motor neurons against excitotoxic insult in cultures of mixed spinal cord neurons. Addition of a function blocking antibody to BDNF to mixed spinal cord neuron cultures is also neuroprotective indicating that endogenously produced BDNF participates in vulnerability to excitotoxicity. We next examined the intracellular signaling cascades that are engaged upon TrkB activation. Previously we found that inhibition of the phosphatidylinositide-3'-kinase (PI3'K) pathway blocks BDNF-induced excitotoxic sensitivity. Here we show that expression of a constitutively active catalytic subunit of PI3'K, p110, confers excitotoxic sensitivity (ES) upon motor neurons not incubated with BDNF. Parallel studies with purified motor neurons confirm that these events are likely to be occuring specifically within motor neurons. The abrogation of BDNF's capacity to accentuate excitotoxic insults may make it a more attractive neuroprotective agent.

  3. Gain of BDNF Function in Engrafted Neural Stem Cells Promotes the Therapeutic Potential for Alzheimer's Disease.

    PubMed

    Wu, Cheng-Chun; Lien, Cheng-Chang; Hou, Wen-Hsien; Chiang, Po-Min; Tsai, Kuen-Jer

    2016-01-01

    Stem cell-based therapy is a potential treatment for neurodegenerative diseases, but its application to Alzheimer's disease (AD) remains limited. Brain-derived neurotrophic factor (BDNF) is critical in the pathogenesis and treatment of AD. Here, we present a novel therapeutic approach for AD treatment using BDNF-overexpressing neural stem cells (BDNF-NSCs). In vitro, BDNF overexpression was neuroprotective to beta-amyloid-treated NSCs. In vivo, engrafted BDNF-NSCs-derived neurons not only displayed the Ca(2+)-response fluctuations, exhibited electrophysiological properties of mature neurons and integrated into local brain circuits, but recovered the cognitive deficits. Furthermore, BDNF overexpression improved the engrafted cells' viability, neuronal fate, neurite complexity, maturation of electrical property and the synaptic density. In contrast, knockdown of the BDNF in BDNF-NSCs diminished stem cell-based therapeutic efficacy. Together, our findings indicate BDNF overexpression improves the therapeutic potential of engrafted NSCs for AD via neurogenic effects and neuronal replacement, and further support the feasibility of NSC-based ex vivo gene therapy for AD. PMID:27264956

  4. BDNF-secreting capsule exerts neuroprotective effects on epilepsy model of rats.

    PubMed

    Kuramoto, Satoshi; Yasuhara, Takao; Agari, Takashi; Kondo, Akihiko; Jing, Meng; Kikuchi, Yoichiro; Shinko, Aiko; Wakamori, Takaaki; Kameda, Masahiro; Wang, Feifei; Kin, Kyohei; Edahiro, Satoru; Miyoshi, Yasuyuki; Date, Isao

    2011-01-12

    Brain-derived neurotrophic factor (BDNF) is a well neurotrophic factor with neuroprotective potentials for various diseases in the central nervous system. However several previous studies demonstrated that BDNF might deteriorate symptoms for epilepsy model of animals by progression of abnormal neurogenesis. We hypothesized that continuous administration of BDNF at low dose might be more effective for epilepsy model of animals because high dose of BDNF was used in many studies. BDNF-secreting cells were genetically made and encapsulated for transplantation. Rats receiving BDNF capsule showed significant amelioration of seizure stage and reduction of the number of abnormal spikes at 7 days after kainic acid administration, compared to those of control group. The number of BrdU and BrdU/doublecortin positive cells in the hippocampus of BDNF group significantly increased, compared to that of control group. NeuN positive cells in the CA1 and CA3 of BDNF group were significantly preserved, compared to control group. In conclusion, low dose administration using encapsulated BDNF-secreting cells exerted neuroprotective effects with enhanced neurogenesis on epilepsy model of rats. These results might suggest the importance of the dose and administrative way of this neurotrophic factor to the epilepsy model of animals.

  5. BDNF and NT-3 Modulate Neurotransmitter Receptor Expressions on Developing Spiral Ganglion Neurons

    PubMed Central

    Sun, Wei; Salvi, Richard J.

    2009-01-01

    Cochlear spiral ganglion neurons (SGN) provide the only pathway for transmitting sound evoked activity from the hair cells to the central auditory system. Neurotrophic factor-3 (NT-3) and brain derived neurotrophic factor (BDNF) released from hair cells and supporting cells exert a profound effect on SGN survival and neural firing patterns; however, it is unclear what the effects NT-3 and BDNF have on the type of neurotransmitter receptors expressed on SGN. To address this question, the whole-cell patch clamp recording technique was used to determine what effect NT-3 and BDNF had on the function and expression of glutamate, GABA and glycine receptors on postnatal SGN. Receptor currents induced by the agonist of each receptor were recorded from SGN cultured with or without BDNF or NT-3. NT-3 and BDNF exerted different effects. NT-3, and to a lesser extent BDNF, enhanced the expression of GABA receptors and had comparatively little effect on glutamate receptors. Absence of BDNF and NT-3 resulted in the emergence of glycine-induced currents; however, glycine receptor currents were absent from the short term cultured SGN. In contrast, NT-3 and BDNF suppressed glycine receptor expression on SGN. These results indicate that NT-3 and BDNF exert a profound effect on the types of neurotransmitter receptors expressed on postnatal SGN, results that may have important implications for neural development and plasticity. PMID:19778585

  6. Chronic BDNF deficiency leads to an age-dependent impairment in spatial learning.

    PubMed

    Petzold, Anne; Psotta, Laura; Brigadski, Tanja; Endres, Thomas; Lessmann, Volkmar

    2015-04-01

    Brain-derived neurotrophic factor (BDNF) is a crucial mediator of neural plasticity and, consequently, of memory formation. In hippocampus-dependent learning tasks BDNF also seems to play an essential role. However, there are conflicting results concerning the spatial learning ability of aging BDNF(+/-) mice in the Morris water maze paradigm. To evaluate the effect of chronic BDNF deficiency in the hippocampus on spatial learning throughout life, we conducted a comprehensive study to test differently aged BDNF(+/-) mice and their wild type littermates in the Morris water maze and to subsequently quantify their hippocampal BDNF protein levels as well as expression levels of TrkB receptors. We observed an age-dependent learning deficit in BDNF(+/-) animals, starting at seven months of age, despite stable hippocampal BDNF protein expression and continual decline of TrkB receptor expression throughout aging. Furthermore, we detected a positive correlation between hippocampal BDNF protein levels and learning performance during the probe trial in animals that showed a good learning performance during the long-term memory test.

  7. BDNF/TrkB signaling protects HT-29 human colon cancer cells from EGFR inhibition

    SciTech Connect

    Brunetto de Farias, Caroline; Heinen, Tiago Elias; Pereira dos Santos, Rafael; Abujamra, Ana Lucia; Schwartsmann, Gilberto; and others

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer BDNF protected HT-29 colorectal cancer cells from the antitumor effect of cetuximab. Black-Right-Pointing-Pointer TrkB inhibition potentiated the antitumor effect of cetuximab. Black-Right-Pointing-Pointer BDNF/TrkB signaling might be involved in resistance to anti-EGFR therapy. -- Abstract: The clinical success of targeted treatment of colorectal cancer (CRC) is often limited by resistance to anti-epidermal growth factor receptor (EGFR) therapy. The neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor TrkB have recently emerged as anticancer targets, and we have previously shown increased BDNF levels in CRC tumor samples. Here we report the findings from in vitro experiments suggesting that BDNF/TrkB signaling can protect CRC cells from the antitumor effects of EGFR blockade. The anti-EGFR monoclonal antibody cetuximab reduced both cell proliferation and the mRNA expression of BDNF and TrkB in human HT-29 CRC cells. The inhibitory effect of cetuximab on cell proliferation and survival was counteracted by the addition of human recombinant BDNF. Finally, the Trk inhibitor K252a synergistically enhanced the effect of cetuximab on cell proliferation, and this effect was blocked by BDNF. These results provide the first evidence that increased BDNF/TrkB signaling might play a role in resistance to EGFR blockade. Moreover, it is possible that targeting TrkB could potentiate the anticancer effects of anti-EGFR therapy.

  8. Nickel-regulated heart rate variability: The roles of oxidative stress and inflammation

    SciTech Connect

    Chuang, Hsiao-Chi; Hsueh, Tzu-Wei; Chang, Chuen-Chau; Hwang, Jing-Shiang; Chuang, Kai-Jen; Yan, Yuan-Horng; Cheng, Tsun-Jen

    2013-01-15

    Heart rate variability (HRV) has been reported to be a putative marker of cardiac autonomic imbalance caused by exposure to ambient particulate matter (PM). Our objective in this study was to determine the effects on HRV from exposure to nickel, an important chemical component of ambient PM that results in oxidative stress and inflammation. HRV data were collected for 72 h before lung exposure (baseline) and 72 h after intratracheal exposure (response) to nickel sulphate (NiSO{sub 4}; 526 μg) in Wistar Kyoto (WKY) and spontaneously hypertensive (SH) rats. The antioxidant N-acetyl-L-cysteine (NAC) and the anti-inflammatory celecoxib were intraperitoneally injected to examine post-exposure oxidative and inflammatory responses. Self-controlled experiments examined the effects of NiSO{sub 4} exposure on average normal-to-normal intervals (ANN), natural logarithm-transformed standard deviation of the normal-to-normal intervals (LnSDNN) and root mean square of successive differences of adjacent normal-to-normal intervals (LnRMSSD); the resulting data were sequentially analysed using the generalised estimating equation model. HRV effects on NiSO{sub 4}-exposed SH rats were greater than those on NiSO{sub 4}-exposed WKY rats. After adjusted the HRV responses in the WKY rats as control, ANN and LnRMSSD were found to be quadratically increased over 72 h after exposure to NiSO{sub 4}. Both NAC and celecoxib mitigated the NiSO{sub 4}-induced alterations in HRV during the exposure period. The results suggest that concurrent Ni-induced oxidative stress and inflammatory responses play important roles in regulating HRV. These findings help bridge the gap between epidemiological and clinical studies on the plausible mechanisms of the cardiovascular consequences induced by chemical components in ambient PM. -- Highlights: ► To determine the effects on HRV from exposure to nickel. ► ANN and LnRMSSD were found to be quadratically increased after exposure to Ni. ► NAC and

  9. SIRT1 positively regulates autophagy and mitochondria function in embryonic stem cells under oxidative stress.

    PubMed

    Ou, Xuan; Lee, Man Ryul; Huang, Xinxin; Messina-Graham, Steven; Broxmeyer, Hal E

    2014-05-01

    SIRT1, an NAD-dependent deacetylase, plays a role in regulation of autophagy. SIRT1 increases mitochondrial function and reduces oxidative stress, and has been linked to age-related reactive oxygen species (ROS) generation, which is highly dependent on mitochondrial metabolism. H2O2 induces oxidative stress and autophagic cell death through interference with Beclin 1 and the mTOR signaling pathways. We evaluated connections between SIRT1 activity and induction of autophagy in murine (m) and human (h) embryonic stem cells (ESCs) upon ROS challenge. Exogenous H2 O2 (1 mM) induced apoptosis and autophagy in wild-type (WT) and Sirt1-/- mESCs. High concentrations of H2O2 (1 mM) induced more apoptosis in Sirt1-/-, than in WT mESCs. However, addition of 3-methyladenine, a widely used autophagy inhibitor, in combination with H2O2 induced more cell death in WT than in Sirt1-/- mESCs. Decreased induction of autophagy in Sirt1-/- mESCs was demonstrated by decreased conversion of LC3-I to LC3-II, lowered expression of Beclin-1, and decreased LC3 punctae and LysoTracker staining. H2O2 induced autophagy with loss of mitochondrial membrane potential and disruption of mitochondrial dynamics in Sirt1-/- mESCs. Increased phosphorylation of P70/85-S6 kinase and ribosomal S6 was noted in Sirt1-/- mESCs, suggesting that SIRT1 regulates the mTOR pathway. Consistent with effects in mESCs, inhibition of SIRT1 using Lentivirus-mediated SIRT1 shRNA in hESCs demonstrated that knockdown of SIRT1 decreased H2O2-induced autophagy. This suggests a role for SIRT1 in regulating autophagy and mitochondria function in ESCs upon oxidative stress, effects mediated at least in part by the class III PI3K/Beclin 1 and mTOR pathways.

  10. Transcriptional Regulation of Brain-Derived Neurotrophic Factor (BDNF) by Methyl CpG Binding Protein 2 (MeCP2): a Novel Mechanism for Re-Myelination and/or Myelin Repair Involved in the Treatment of Multiple Sclerosis (MS).

    PubMed

    KhorshidAhmad, Tina; Acosta, Crystal; Cortes, Claudia; Lakowski, Ted M; Gangadaran, Surendiran; Namaka, Michael

    2016-03-01

    Multiple sclerosis (MS) is a chronic progressive, neurological disease characterized by the targeted immune system-mediated destruction of central nervous system (CNS) myelin. Autoreactive CD4+ T helper cells have a key role in orchestrating MS-induced myelin damage. Once activated, circulating Th1-cells secrete a variety of inflammatory cytokines that foster the breakdown of blood-brain barrier (BBB) eventually infiltrating into the CNS. Inside the CNS, they become reactivated upon exposure to the myelin structural proteins and continue to produce inflammatory cytokines such as tumor necrosis factor α (TNFα) that leads to direct activation of antibodies and macrophages that are involved in the phagocytosis of myelin. Proliferating oligodendrocyte precursors (OPs) migrating to the lesion sites are capable of acute remyelination but unable to completely repair or restore the immune system-mediated myelin damage. This results in various permanent clinical neurological disabilities such as cognitive dysfunction, fatigue, bowel/bladder abnormalities, and neuropathic pain. At present, there is no cure for MS. Recent remyelination and/or myelin repair strategies have focused on the role of the neurotrophin brain-derived neurotrophic factor (BDNF) and its upstream transcriptional repressor methyl CpG binding protein (MeCP2). Research in the field of epigenetic therapeutics involving histone deacetylase (HDAC) inhibitors and lysine acetyl transferase (KAT) inhibitors is being explored to repress the detrimental effects of MeCP2. This review will address the role of MeCP2 and BDNF in remyelination and/or myelin repair and the potential of HDAC and KAT inhibitors as novel therapeutic interventions for MS. PMID:25579386

  11. [The role of endothelium and nitric oxide in the regulation of vascular tone].

    PubMed

    Púzserová, A; Kopincová, J; Bernátová, I

    2008-01-01

    Vascular system is a large complex of tubes with different diameters which are able to perceive changes of endogenous milieu, to integrate and modulate signals of intercellular communication and to respond and adapt by a local production of different kinds of mediators affecting vascular structure and function. For a long time, it has been assumed that the main determinant of vasomotor function was the nervous system and the monolayer of endothelial cells was only a physical barrier between the vessel wall and blood. However, the first publications in 1960s and 70s indicated that endothelium is not only a passive barrier. Endothelium features autocrine, paracrine and endocrine activities. Vascular endothelium plays an important role in the regulation of vascular tone, blood pressure and blood flow beside central regulation of nervous system. The existence of endothelium-derived relaxing factor (EDRF) was found out by Furchgott and Zawadzki (1980) who showed that acetylcholine induced relaxation of the rabbit aorta only in the presence of intact endothelium. Nowadays, nitric oxide (NO), previously known as EDRF, is considered one of the crucial endothelium-derived vasorelaxing substances participating in the regulation of basal vascular tone, vascular resistance and thus in the regulation of blood pressure. Arterial bed is dilated continuously as a consequence of constant production of NO. Any damage of endothelium modifies regulatory functions of endothelial cells. These conditions are characterised as endothelial dysfunction associated with imbalance between vasodilating and vasoconstricting factors, pro- and anticoagulation factors and factors stimulating and inhibiting growth and proliferation of cells. However, cellular mechanisms which are involved in the development of endothelial dysfunction, are still not well-known.

  12. Nitric oxide regulates DELLA content and PIF expression to promote photomorphogenesis in Arabidopsis.

    PubMed

    Lozano-Juste, Jorge; León, José

    2011-07-01

    The transition from etiolated to green seedlings involves a shift from hypocotyl growth-promoting conditions to growth restraint. These changes occur through a complex light-driven process involving multiple and tightly coordinated hormonal signaling pathways. Nitric oxide (NO) has been lately characterized as a regulator of plant development interacting with hormone signaling. Here, we show that Arabidopsis (Arabidops