CMOS Active-Pixel Image Sensor With Simple Floating Gates
NASA Technical Reports Server (NTRS)
Fossum, Eric R.; Nakamura, Junichi; Kemeny, Sabrina E.
1996-01-01
Experimental complementary metal-oxide/semiconductor (CMOS) active-pixel image sensor integrated circuit features simple floating-gate structure, with metal-oxide/semiconductor field-effect transistor (MOSFET) as active circuit element in each pixel. Provides flexibility of readout modes, no kTC noise, and relatively simple structure suitable for high-density arrays. Features desirable for "smart sensor" applications.
Ah Lee, Seung; Ou, Xiaoze; Lee, J Eugene; Yang, Changhuei
2013-06-01
We demonstrate a silo-filter (SF) complementary metal-oxide semiconductor (CMOS) image sensor for a chip-scale fluorescence microscope. The extruded pixel design with metal walls between neighboring pixels guides fluorescence emission through the thick absorptive filter to the photodiode of a pixel. Our prototype device achieves 13 μm resolution over a wide field of view (4.8 mm × 4.4 mm). We demonstrate bright-field and fluorescence longitudinal imaging of living cells in a compact, low-cost configuration.
Producing CCD imaging sensor with flashed backside metal film
NASA Technical Reports Server (NTRS)
Janesick, James R. (Inventor)
1988-01-01
A backside illuminated CCD imaging sensor for reading out image charges from wells of the array of pixels is significantly improved for blue, UV, far UV and low energy x-ray wavelengths (1-5000.ANG.) by so overthinning the backside as to place the depletion edge at the surface and depositing a thin transparent metal film of about 10.ANG. on a native-quality oxide film of less than about 30.ANG. grown on the thinned backside. The metal is selected to have a higher work function than that of the semiconductor to so bend the energy bands (at the interface of the semiconductor material and the oxide film) as to eliminate wells that would otherwise trap minority carriers. A bias voltage may be applied to extend the frontside depletion edge to the interface of the semiconductor material with the oxide film in the event there is not sufficient thinning. This metal film (flash gate), which improves and stabilizes the quantum efficiency of a CCD imaging sensor, will also improve the QE of any p-n junction photodetector.
CCD imaging sensor with flashed backside metal film
NASA Technical Reports Server (NTRS)
Janesick, James R. (Inventor)
1991-01-01
A backside illuminated CCD imaging sensor for reading out image charges from wells of the array of pixels is significantly improved for blue, UV, far UV and low energy x-ray wavelengths (1-5000.ANG.) by so overthinning the backside as to place the depletion edge at the surface and depositing a thin transparent metal film of about 10.ANG. on a native-quality oxide film of less than about 30.ANG. grown on the thinned backside. The metal is selected to have a higher work function than that of the semiconductor to so bend the energy bands (at the interface of the semiconductor material and the oxide film) as to eliminate wells that would otherwise trap minority carriers. A bias voltage may be applied to extend the frontside depletion edge to the interface of the semiconductor material with the oxide film in the event there is not sufficient thinning. This metal film (flash gate), which improves and stabilizes the quantum efficiency of a CCD imaging sensor, will also improve the QE of any p-n junction photodetector.
Organic-on-silicon complementary metal-oxide-semiconductor colour image sensors.
Lim, Seon-Jeong; Leem, Dong-Seok; Park, Kyung-Bae; Kim, Kyu-Sik; Sul, Sangchul; Na, Kyoungwon; Lee, Gae Hwang; Heo, Chul-Joon; Lee, Kwang-Hee; Bulliard, Xavier; Satoh, Ryu-Ichi; Yagi, Tadao; Ro, Takkyun; Im, Dongmo; Jung, Jungkyu; Lee, Myungwon; Lee, Tae-Yon; Han, Moon Gyu; Jin, Yong Wan; Lee, Sangyoon
2015-01-12
Complementary metal-oxide-semiconductor (CMOS) colour image sensors are representative examples of light-detection devices. To achieve extremely high resolutions, the pixel sizes of the CMOS image sensors must be reduced to less than a micron, which in turn significantly limits the number of photons that can be captured by each pixel using silicon (Si)-based technology (i.e., this reduction in pixel size results in a loss of sensitivity). Here, we demonstrate a novel and efficient method of increasing the sensitivity and resolution of the CMOS image sensors by superposing an organic photodiode (OPD) onto a CMOS circuit with Si photodiodes, which consequently doubles the light-input surface area of each pixel. To realise this concept, we developed organic semiconductor materials with absorption properties selective to green light and successfully fabricated highly efficient green-light-sensitive OPDs without colour filters. We found that such a top light-receiving OPD, which is selective to specific green wavelengths, demonstrates great potential when combined with a newly designed Si-based CMOS circuit containing only blue and red colour filters. To demonstrate the effectiveness of this state-of-the-art hybrid colour image sensor, we acquired a real full-colour image using a camera that contained the organic-on-Si hybrid CMOS colour image sensor.
Apparatus and method of manufacture for an imager equipped with a cross-talk barrier
NASA Technical Reports Server (NTRS)
Pain, Bedabrata (Inventor)
2012-01-01
An imager apparatus and associated starting material are provided. In one embodiment, an imager is provided including a silicon layer of a first conductivity type acting as a junction anode. Such silicon layer is adapted to convert light to photoelectrons. Also included is a semiconductor well of a second conductivity type formed in the silicon layer for acting as a junction cathode. Still yet, a barrier is formed adjacent to the semiconductor well. In another embodiment, a starting material is provided including a first silicon layer and an oxide layer disposed adjacent to the first silicon layer. Also included is a second silicon layer disposed adjacent to the oxide layer opposite the first silicon layer. Such second silicon layer is further equipped with an associated passivation layer and/or barrier.
CMOS Active-Pixel Image Sensor With Intensity-Driven Readout
NASA Technical Reports Server (NTRS)
Langenbacher, Harry T.; Fossum, Eric R.; Kemeny, Sabrina
1996-01-01
Proposed complementary metal oxide/semiconductor (CMOS) integrated-circuit image sensor automatically provides readouts from pixels in order of decreasing illumination intensity. Sensor operated in integration mode. Particularly useful in number of image-sensing tasks, including diffractive laser range-finding, three-dimensional imaging, event-driven readout of sparse sensor arrays, and star tracking.
NASA Technical Reports Server (NTRS)
Janesick, James R. (Inventor); Elliott, Stythe T. (Inventor)
1989-01-01
A method for promoting quantum efficiency (QE) of a CCD imaging sensor for UV, far UV and low energy x-ray wavelengths by overthinning the back side beyond the interface between the substrate and the photosensitive semiconductor material, and flooding the back side with UV prior to using the sensor for imaging. This UV flooding promotes an accumulation layer of positive states in the oxide film over the thinned sensor to greatly increase QE for either frontside or backside illumination. A permanent or semipermanent image (analog information) may be stored in a frontside SiO.sub.2 layer over the photosensitive semiconductor material using implanted ions for a permanent storage and intense photon radiation for a semipermanent storage. To read out this stored information, the gate potential of the CCD is biased more negative than that used for normal imaging, and excess charge current thus produced through the oxide is integrated in the pixel wells for subsequent readout by charge transfer from well to well in the usual manner.
Method of acquiring an image from an optical structure having pixels with dedicated readout circuits
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)
2006-01-01
An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.
NASA Astrophysics Data System (ADS)
Odaka, Akihiro; Satoh, Nobuo; Katori, Shigetaka
2017-08-01
We partially deposited fullerene (C60) and phenyl-C61-butyric acid methyl ester thin films that are typical n-type semiconductor materials on indium-tin oxide by mist deposition at various substrate temperatures. The topographic and surface potential images were observed via dynamic force microscopy/Kelvin probe force microscopy with the frequency modulation detection method. We proved that the area where a thin film is deposited depends on the substrate temperature during deposition from the topographic images. It was also found that the surface potential depends on the substrate temperature from the surface potential images.
Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang
2017-05-02
Image sensors are the core components of computer, communication, and consumer electronic products. Complementary metal oxide semiconductor (CMOS) image sensors have become the mainstay of image-sensing developments, but are prone to leakage current. In this study, we simulate the CMOS image sensor (CIS) film stacking process by finite element analysis. To elucidate the relationship between the leakage current and stack architecture, we compare the simulated and measured leakage currents in the elements. Based on the analysis results, we further improve the performance by optimizing the architecture of the film stacks or changing the thin-film material. The material parameters are then corrected to improve the accuracy of the simulation results. The simulated and experimental results confirm a positive correlation between measured leakage current and stress. This trend is attributed to the structural defects induced by high stress, which generate leakage. Using this relationship, we can change the structure of the thin-film stack to reduce the leakage current and thereby improve the component life and reliability of the CIS components.
Ng, David C; Tamura, Hideki; Tokuda, Takashi; Yamamoto, Akio; Matsuo, Masamichi; Nunoshita, Masahiro; Ishikawa, Yasuyuki; Shiosaka, Sadao; Ohta, Jun
2006-09-30
The aim of the present study is to demonstrate the application of complementary metal-oxide semiconductor (CMOS) imaging technology for studying the mouse brain. By using a dedicated CMOS image sensor, we have successfully imaged and measured brain serine protease activity in vivo, in real-time, and for an extended period of time. We have developed a biofluorescence imaging device by packaging the CMOS image sensor which enabled on-chip imaging configuration. In this configuration, no optics are required whereby an excitation filter is applied onto the sensor to replace the filter cube block found in conventional fluorescence microscopes. The fully packaged device measures 350 microm thick x 2.7 mm wide, consists of an array of 176 x 144 pixels, and is small enough for measurement inside a single hemisphere of the mouse brain, while still providing sufficient imaging resolution. In the experiment, intraperitoneally injected kainic acid induced upregulation of serine protease activity in the brain. These events were captured in real time by imaging and measuring the fluorescence from a fluorogenic substrate that detected this activity. The entire device, which weighs less than 1% of the body weight of the mouse, holds promise for studying freely moving animals.
Development of multi-pixel x-ray source using oxide-coated cathodes.
Kandlakunta, Praneeth; Pham, Richard; Khan, Rao; Zhang, Tiezhi
2017-07-07
Multiple pixel x-ray sources facilitate new designs of imaging modalities that may result in faster imaging speed, improved image quality, and more compact geometry. We are developing a high-brightness multiple-pixel thermionic emission x-ray (MPTEX) source based on oxide-coated cathodes. Oxide cathodes have high emission efficiency and, thereby, produce high emission current density at low temperature when compared to traditional tungsten filaments. Indirectly heated micro-rectangular oxide cathodes were developed using carbonates, which were converted to semiconductor oxides of barium, strontium, and calcium after activation. Each cathode produces a focal spot on an elongated fixed anode. The x-ray beam ON and OFF control is performed by source-switching electronics, which supplies bias voltage to the cathode emitters. In this paper, we report the initial performance of the oxide-coated cathodes and the MPTEX source.
Cho, Kyung-Sang; Heo, Keun; Baik, Chan-Wook; Choi, Jun Young; Jeong, Heejeong; Hwang, Sungwoo; Lee, Sang Yeol
2017-10-10
We report color-selective photodetection from intermediate, monolayered, quantum dots buried in between amorphous-oxide semiconductors. The proposed active channel in phototransistors is a hybrid configuration of oxide-quantum dot-oxide layers, where the gate-tunable electrical property of silicon-doped, indium-zinc-oxide layers is incorporated with the color-selective properties of quantum dots. A remarkably high detectivity (8.1 × 10 13 Jones) is obtained, along with three major findings: fast charge separation in monolayered quantum dots; efficient charge transport through high-mobility oxide layers (20 cm 2 V -1 s -1 ); and gate-tunable drain-current modulation. Particularly, the fast charge separation rate of 3.3 ns -1 measured with time-resolved photoluminescence is attributed to the intermediate quantum dots buried in oxide layers. These results facilitate the realization of efficient color-selective detection exhibiting a photoconductive gain of 10 7 , obtained using a room-temperature deposition of oxide layers and a solution process of quantum dots. This work offers promising opportunities in emerging applications for color detection with sensitivity, transparency, and flexibility.The development of highly sensitive photodetectors is important for image sensing and optical communication applications. Cho et al., report ultra-sensitive photodetectors based on monolayered quantum dots buried in between amorphous-oxide semiconductors and demonstrate color-detecting logic gates.
Active pixel sensor array with multiresolution readout
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Kemeny, Sabrina E. (Inventor); Pain, Bedabrata (Inventor)
1999-01-01
An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node. There is also a readout circuit, part of which can be disposed at the bottom of each column of cells and be common to all the cells in the column. The imaging device can also include an electronic shutter formed on the substrate adjacent the photogate, and/or a storage section to allow for simultaneous integration. In addition, the imaging device can include a multiresolution imaging circuit to provide images of varying resolution. The multiresolution circuit could also be employed in an array where the photosensitive portion of each pixel cell is a photodiode. This latter embodiment could further be modified to facilitate low light imaging.
Method of physical vapor deposition of metal oxides on semiconductors
Norton, David P.
2001-01-01
A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.
SOI CMOS Imager with Suppression of Cross-Talk
NASA Technical Reports Server (NTRS)
Pain, Bedabrata; Zheng, Xingyu; Cunningham, Thomas J.; Seshadri, Suresh; Sun, Chao
2009-01-01
A monolithic silicon-on-insulator (SOI) complementary metal oxide/semiconductor (CMOS) image-detecting integrated circuit of the active-pixel-sensor type, now undergoing development, is designed to operate at visible and near-infrared wavelengths and to offer a combination of high quantum efficiency and low diffusion and capacitive cross-talk among pixels. The imager is designed to be especially suitable for astronomical and astrophysical applications. The imager design could also readily be adapted to general scientific, biological, medical, and spectroscopic applications. One of the conditions needed to ensure both high quantum efficiency and low diffusion cross-talk is a relatively high reverse bias potential (between about 20 and about 50 V) on the photodiode in each pixel. Heretofore, a major obstacle to realization of this condition in a monolithic integrated circuit has been posed by the fact that the required high reverse bias on the photodiode is incompatible with metal oxide/semiconductor field-effect transistors (MOSFETs) in the CMOS pixel readout circuitry. In the imager now being developed, the SOI structure is utilized to overcome this obstacle: The handle wafer is retained and the photodiode is formed in the handle wafer. The MOSFETs are formed on the SOI layer, which is separated from the handle wafer by a buried oxide layer. The electrical isolation provided by the buried oxide layer makes it possible to bias the MOSFETs at CMOS-compatible potentials (between 0 and 3 V), while biasing the photodiode at the required higher potential, and enables independent optimization of the sensory and readout portions of the imager.
USDA-ARS?s Scientific Manuscript database
This paper describes the design and evaluation of an airborne multispectral imaging system based on two identical consumer-grade cameras for agricultural remote sensing. The cameras are equipped with a full-frame complementary metal oxide semiconductor (CMOS) sensor with 5616 × 3744 pixels. One came...
Single-photon imaging in complementary metal oxide semiconductor processes
Charbon, E.
2014-01-01
This paper describes the basics of single-photon counting in complementary metal oxide semiconductors, through single-photon avalanche diodes (SPADs), and the making of miniaturized pixels with photon-counting capability based on SPADs. Some applications, which may take advantage of SPAD image sensors, are outlined, such as fluorescence-based microscopy, three-dimensional time-of-flight imaging and biomedical imaging, to name just a few. The paper focuses on architectures that are best suited to those applications and the trade-offs they generate. In this context, architectures are described that efficiently collect the output of single pixels when designed in large arrays. Off-chip readout circuit requirements are described for a variety of applications in physics, medicine and the life sciences. Owing to the dynamic nature of SPADs, designs featuring a large number of SPADs require careful analysis of the target application for an optimal use of silicon real estate and of limited readout bandwidth. The paper also describes the main trade-offs involved in architecting such chips and the solutions adopted with focus on scalability and miniaturization. PMID:24567470
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Nakamura, Junichi (Inventor); Kemeny, Sabrina E. (Inventor)
2005-01-01
An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node. There is also a readout circuit, part of which can be disposed at the bottom of each column of cells and be common to all the cells in the column. A Simple Floating Gate (SFG) pixel structure could also be employed in the imager to provide a non-destructive readout and smaller pixel sizes.
A comparison of imaging methods for use in an array biosensor
NASA Technical Reports Server (NTRS)
Golden, Joel P.; Ligler, Frances S.
2002-01-01
An array biosensor has been developed which uses an actively-cooled, charge-coupled device (CCD) imager. In an effort to save money and space, a complementary metal-oxide semiconductor (CMOS) camera and photodiode were tested as replacements for the cooled CCD imager. Different concentrations of CY5 fluorescent dye in glycerol were imaged using the three different detection systems with the same imaging optics. Signal discrimination above noise was compared for each of the three systems.
Laser line scan underwater imaging by complementary metal-oxide-semiconductor camera
NASA Astrophysics Data System (ADS)
He, Zhiyi; Luo, Meixing; Song, Xiyu; Wang, Dundong; He, Ning
2017-12-01
This work employs the complementary metal-oxide-semiconductor (CMOS) camera to acquire images in a scanning manner for laser line scan (LLS) underwater imaging to alleviate backscatter impact of seawater. Two operating features of the CMOS camera, namely the region of interest (ROI) and rolling shutter, can be utilized to perform image scan without the difficulty of translating the receiver above the target as the traditional LLS imaging systems have. By the dynamically reconfigurable ROI of an industrial CMOS camera, we evenly divided the image into five subareas along the pixel rows and then scanned them by changing the ROI region automatically under the synchronous illumination by the fun beams of the lasers. Another scanning method was explored by the rolling shutter operation of the CMOS camera. The fun beam lasers were turned on/off to illuminate the narrow zones on the target in a good correspondence to the exposure lines during the rolling procedure of the camera's electronic shutter. The frame synchronization between the image scan and the laser beam sweep may be achieved by either the strobe lighting output pulse or the external triggering pulse of the industrial camera. Comparison between the scanning and nonscanning images shows that contrast of the underwater image can be improved by our LLS imaging techniques, with higher stability and feasibility than the mechanically controlled scanning method.
NASA Astrophysics Data System (ADS)
Chinone, N.; Yamasue, K.; Hiranaga, Y.; Honda, K.; Cho, Y.
2012-11-01
Scanning nonlinear dielectric microscopy (SNDM) can be used to visualize polarization distributions in ferroelectric materials and dopant profiles in semiconductor devices. Without using a special sharp tip, we achieved an improved lateral resolution in SNDM through the measurement of super-higher-order nonlinearity up to the fourth order. We observed a multidomain single crystal congruent LiTaO3 (CLT) sample, and a cross section of a metal-oxide-semiconductor (MOS) field-effect-transistor (FET). The imaged domain boundaries of the CLT were narrower in the super-higher-order images than in the conventional image. Compared to the conventional method, the super-higher-order method resolved the more detailed structure of the MOSFET.
Active pixel sensor with intra-pixel charge transfer
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)
1995-01-01
An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.
Active pixel sensor with intra-pixel charge transfer
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)
2003-01-01
An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.
Active pixel sensor with intra-pixel charge transfer
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)
2004-01-01
An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.
Hattori, Toshiaki; Masaki, Yoshitomo; Atsumi, Kazuya; Kato, Ryo; Sawada, Kazuaki
2010-01-01
Two-dimensional real-time observation of potassium ion distributions was achieved using an ion imaging device based on charge-coupled device (CCD) and metal-oxide semiconductor technologies, and an ion selective membrane. The CCD potassium ion image sensor was equipped with an array of 32 × 32 pixels (1024 pixels). It could record five frames per second with an area of 4.16 × 4.16 mm(2). Potassium ion images were produced instantly. The leaching of potassium ion from a 3.3 M KCl Ag/AgCl reference electrode was dynamically monitored in aqueous solution. The potassium ion selective membrane on the semiconductor consisted of plasticized poly(vinyl chloride) (PVC) with bis(benzo-15-crown-5). The addition of a polyhedral oligomeric silsesquioxane to the plasticized PVC membrane greatly improved adhesion of the membrane onto Si(3)N(4) of the semiconductor surface, and the potential response was stabilized. The potential response was linear from 10(-2) to 10(-5) M logarithmic concentration of potassium ion. The selectivity coefficients were K(K(+),Li(+))(pot) = 10(-2.85), K(K(+),Na(+))(pot) = 10(-2.30), K(K(+),Rb(+))(pot) =10(-1.16), and K(K(+),Cs(+))(pot) = 10(-2.05).
Generic process for preparing a crystalline oxide upon a group IV semiconductor substrate
McKee, Rodney A.; Walker, Frederick J.; Chisholm, Matthew F.
2000-01-01
A process for growing a crystalline oxide epitaxially upon the surface of a Group IV semiconductor, as well as a structure constructed by the process, is described. The semiconductor can be germanium or silicon, and the crystalline oxide can generally be represented by the formula (AO).sub.n (A'BO.sub.3).sub.m in which "n" and "m" are non-negative integer repeats of planes of the alkaline earth oxides or the alkaline earth-containing perovskite oxides. With atomic level control of interfacial thermodynamics in a multicomponent semiconductor/oxide system, a highly perfect interface between a semiconductor and a crystalline oxide can be obtained.
Jeon, Sanghun; Song, Ihun; Lee, Sungsik; Ryu, Byungki; Ahn, Seung-Eon; Lee, Eunha; Kim, Young; Nathan, Arokia; Robertson, John; Chung, U-In
2014-11-05
A technique for invisible image capture using a photosensor array based on transparent conducting oxide semiconductor thin-film transistors and transparent interconnection technologies is presented. A transparent conducting layer is employed for the sensor electrodes as well as interconnection in the array, providing about 80% transmittance at visible-light wavelengths. The phototransistor is a Hf-In-Zn-O/In-Zn-O heterostructure yielding a high quantum-efficiency in the visible range. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Broadband image sensor array based on graphene-CMOS integration
NASA Astrophysics Data System (ADS)
Goossens, Stijn; Navickaite, Gabriele; Monasterio, Carles; Gupta, Shuchi; Piqueras, Juan José; Pérez, Raúl; Burwell, Gregory; Nikitskiy, Ivan; Lasanta, Tania; Galán, Teresa; Puma, Eric; Centeno, Alba; Pesquera, Amaia; Zurutuza, Amaia; Konstantatos, Gerasimos; Koppens, Frank
2017-06-01
Integrated circuits based on complementary metal-oxide-semiconductors (CMOS) are at the heart of the technological revolution of the past 40 years, enabling compact and low-cost microelectronic circuits and imaging systems. However, the diversification of this platform into applications other than microcircuits and visible-light cameras has been impeded by the difficulty to combine semiconductors other than silicon with CMOS. Here, we report the monolithic integration of a CMOS integrated circuit with graphene, operating as a high-mobility phototransistor. We demonstrate a high-resolution, broadband image sensor and operate it as a digital camera that is sensitive to ultraviolet, visible and infrared light (300-2,000 nm). The demonstrated graphene-CMOS integration is pivotal for incorporating 2D materials into the next-generation microelectronics, sensor arrays, low-power integrated photonics and CMOS imaging systems covering visible, infrared and terahertz frequencies.
NASA Astrophysics Data System (ADS)
Kobayashi, Takuma; Tagawa, Ayato; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Hatanaka, Yumiko; Tamura, Hideki; Ishikawa, Yasuyuki; Shiosaka, Sadao; Ohta, Jun
2010-11-01
The combination of optical imaging with voltage-sensitive dyes is a powerful tool for studying the spatiotemporal patterns of neural activity and understanding the neural networks of the brain. To visualize the potential status of multiple neurons simultaneously using a compact instrument with high density and a wide range, we present a novel measurement system using an implantable biomedical photonic LSI device with a red absorptive light filter for voltage-sensitive dye imaging (BpLSI-red). The BpLSI-red was developed for sensing fluorescence by the on-chip LSI, which was designed by using complementary metal-oxide-semiconductor (CMOS) technology. A micro-electro-mechanical system (MEMS) microfabrication technique was used to postprocess the CMOS sensor chip; light-emitting diodes (LEDs) were integrated for illumination and to enable long-term cell culture. Using the device, we succeeded in visualizing the membrane potential of 2000-3000 cells and the process of depolarization of pheochromocytoma cells (PC12 cells) and mouse cerebral cortical neurons in a primary culture with cellular resolution. Therefore, our measurement application enables the detection of multiple neural activities simultaneously.
Surface property detection apparatus and method
Martens, J.S.; Ginley, D.S.; Hietala, V.M.; Sorensen, N.R.
1995-08-08
Apparatus and method for detecting, determining, and imaging surface resistance corrosion, thin film growth, and oxide formation on the surface of conductors or other electrical surface modification. The invention comprises a modified confocal resonator structure with the sample remote from the radiating mirror. Surface resistance is determined by analyzing and imaging reflected microwaves; imaging reveals anomalies due to surface impurities, non-stoichiometry, and the like, in the surface of the superconductor, conductor, dielectric, or semiconductor. 4 figs.
The Morphologies of the Semiconductor Oxides and Their Gas-Sensing Properties
Lv, Xin; Li, Shuang; Wang, Qingji
2017-01-01
Semiconductor oxide chemoresistive gas sensors are widely used for detecting deleterious gases due to low cost, simple preparation, rapid response and high sensitivity. The performance of gas sensor is greatly affected by the morphology of the semiconductor oxide. There are many semiconductor oxide morphologies, including zero-dimensional, one-dimensional, two-dimensional and three-dimensional ones. The semiconductor oxides with different morphologies significantly enhance the gas-sensing performance. Among the various morphologies, hollow nanostructures and core-shell nanostructures are always the focus of research in the field of gas sensors due to their distinctive structural characteristics and superior performance. Herein the morphologies of semiconductor oxides and their gas-sensing properties are reviewed. This review also proposes a potential strategy for the enhancement of gas-sensing performance in the future. PMID:29189714
Chen, Chia-Wei; Chow, Chi-Wai; Liu, Yang; Yeh, Chien-Hung
2017-10-02
Recently even the low-end mobile-phones are equipped with a high-resolution complementary-metal-oxide-semiconductor (CMOS) image sensor. This motivates using a CMOS image sensor for visible light communication (VLC). Here we propose and demonstrate an efficient demodulation scheme to synchronize and demodulate the rolling shutter pattern in image sensor based VLC. The implementation algorithm is discussed. The bit-error-rate (BER) performance and processing latency are evaluated and compared with other thresholding schemes.
Radiation hardening of metal-oxide semi-conductor (MOS) devices by boron
NASA Technical Reports Server (NTRS)
Danchenko, V.
1974-01-01
Technique using boron effectively protects metal-oxide semiconductor devices from ionizing radiation without using shielding materials. Boron is introduced into insulating gate oxide layer at semiconductor-insulator interface.
NASA Astrophysics Data System (ADS)
Retherford, Kurt D.; Bai, Yibin; Ryu, Kevin K.; Gregory, James A.; Welander, Paul B.; Davis, Michael W.; Greathouse, Thomas K.; Winters, Gregory S.; Suntharalingam, Vyshnavi; Beletic, James W.
2015-10-01
We report our progress toward optimizing backside-illuminated silicon P-type intrinsic N-type complementary metal oxide semiconductor devices developed by Teledyne Imaging Sensors (TIS) for far-ultraviolet (UV) planetary science applications. This project was motivated by initial measurements at Southwest Research Institute of the far-UV responsivity of backside-illuminated silicon PIN photodiode test structures, which revealed a promising QE in the 100 to 200 nm range. Our effort to advance the capabilities of thinned silicon wafers capitalizes on recent innovations in molecular beam epitaxy (MBE) doping processes. Key achievements to date include the following: (1) representative silicon test wafers were fabricated by TIS, and set up for MBE processing at MIT Lincoln Laboratory; (2) preliminary far-UV detector QE simulation runs were completed to aid MBE layer design; (3) detector fabrication was completed through the pre-MBE step; and (4) initial testing of the MBE doping process was performed on monitoring wafers, with detailed quality assessments.
NASA Astrophysics Data System (ADS)
Wu, Wei; Changzhong Jiang, Affc; Roy, Vellaisamy A. L.
2014-11-01
Photocatalytic degradation of toxic organic pollutants is a challenging tasks in ecological and environmental protection. Recent research shows that the magnetic iron oxide-semiconductor composite photocatalytic system can effectively break through the bottleneck of single-component semiconductor oxides with low activity under visible light and the challenging recycling of the photocatalyst from the final products. With high reactivity in visible light, magnetic iron oxide-semiconductors can be exploited as an important magnetic recovery photocatalyst (MRP) with a bright future. On this regard, various composite structures, the charge-transfer mechanism and outstanding properties of magnetic iron oxide-semiconductor composite nanomaterials are sketched. The latest synthesis methods and recent progress in the photocatalytic applications of magnetic iron oxide-semiconductor composite nanomaterials are reviewed. The problems and challenges still need to be resolved and development strategies are discussed.
Lee, Woobin; Choi, Seungbeom; Kim, Kyung Tae; Kang, Jingu; Park, Sung Kyu; Kim, Yong-Hoon
2015-12-23
We report a derivative spectroscopic method for determining insulator-to-semiconductor transition during sol-gel metal-oxide semiconductor formation. When an as-spun sol-gel precursor film is photochemically activated and changes to semiconducting state, the light absorption characteristics of the metal-oxide film is considerable changed particularly in the ultraviolet region. As a result, a peak is generated in the first-order derivatives of light absorption ( A' ) vs. wavelength (λ) plots, and by tracing the peak center shift and peak intensity, transition from insulating-to-semiconducting state of the film can be monitored. The peak generation and peak center shift are described based on photon-energy-dependent absorption coefficient of metal-oxide films. We discuss detailed analysis method for metal-oxide semiconductor films and its application in thin-film transistor fabrication. We believe this derivative spectroscopy based determination can be beneficial for a non-destructive and a rapid monitoring of the insulator-to-semiconductor transition in sol-gel oxide semiconductor formation.
Vertical Isolation for Photodiodes in CMOS Imagers
NASA Technical Reports Server (NTRS)
Pain, Bedabrata
2008-01-01
In a proposed improvement in complementary metal oxide/semi conduct - or (CMOS) image detectors, two additional implants in each pixel would effect vertical isolation between the metal oxide/semiconductor field-effect transistors (MOSFETs) and the photodiode of the pixel. This improvement is expected to enable separate optimization of the designs of the photodiode and the MOSFETs so as to optimize their performances independently of each other. The purpose to be served by enabling this separate optimization is to eliminate or vastly reduce diffusion cross-talk, thereby increasing sensitivity, effective spatial resolution, and color fidelity while reducing noise.
Binary CMOS image sensor with a gate/body-tied MOSFET-type photodetector for high-speed operation
NASA Astrophysics Data System (ADS)
Choi, Byoung-Soo; Jo, Sung-Hyun; Bae, Myunghan; Kim, Sang-Hwan; Shin, Jang-Kyoo
2016-05-01
In this paper, a binary complementary metal oxide semiconductor (CMOS) image sensor with a gate/body-tied (GBT) metal oxide semiconductor field effect transistor (MOSFET)-type photodetector is presented. The sensitivity of the GBT MOSFET-type photodetector, which was fabricated using the standard CMOS 0.35-μm process, is higher than the sensitivity of the p-n junction photodiode, because the output signal of the photodetector is amplified by the MOSFET. A binary image sensor becomes more efficient when using this photodetector. Lower power consumptions and higher speeds of operation are possible, compared to the conventional image sensors using multi-bit analog to digital converters (ADCs). The frame rate of the proposed image sensor is over 2000 frames per second, which is higher than those of the conventional CMOS image sensors. The output signal of an active pixel sensor is applied to a comparator and compared with a reference level. The 1-bit output data of the binary process is determined by this level. To obtain a video signal, the 1-bit output data is stored in the memory and is read out by horizontal scanning. The proposed chip is composed of a GBT pixel array (144 × 100), binary-process circuit, vertical scanner, horizontal scanner, and readout circuit. The operation mode can be selected from between binary mode and multi-bit mode.
Band-Gap Engineering at a Semiconductor-Crystalline Oxide Interface
Jahangir-Moghadam, Mohammadreza; Ahmadi-Majlan, Kamyar; Shen, Xuan; ...
2015-02-09
The epitaxial growth of crystalline oxides on semiconductors provides a pathway to introduce new functionalities to semiconductor devices. Key to integrating the functionalities of oxides onto semiconductors is controlling the band alignment at interfaces between the two materials. Here we apply principles of band gap engineering traditionally used at heterojunctions between conventional semiconductors to control the band offset between a single crystalline oxide and a semiconductor. Reactive molecular beam epitaxy is used to realize atomically abrupt and structurally coherent interfaces between SrZr xTi 1-xO₃ and Ge, in which the band gap of the former is enhanced with Zr content x.more » We present structural and electrical characterization of SrZr xTi 1-xO₃-Ge heterojunctions and demonstrate a type-I band offset can be achieved. These results demonstrate that band gap engineering can be exploited to realize functional semiconductor crystalline oxide heterojunctions.« less
NASA Technical Reports Server (NTRS)
Bouldin, D. L.; Eastes, R. W.; Feltner, W. R.; Hollis, B. R.; Routh, D. E.
1979-01-01
The fabrication techniques for creation of complementary metal oxide semiconductor integrated circuits at George C. Marshall Space Flight Center are described. Examples of C-MOS integrated circuits manufactured at MSFC are presented with functional descriptions of each. Typical electrical characteristics of both p-channel metal oxide semiconductor and n-channel metal oxide semiconductor discrete devices under given conditions are provided. Procedures design, mask making, packaging, and testing are included.
Jeon, Sanghun; Park, Sungho; Song, Ihun; Hur, Ji-Hyun; Park, Jaechul; Kim, Hojung; Kim, Sunil; Kim, Sangwook; Yin, Huaxiang; Chung, U-In; Lee, Eunha; Kim, Changjung
2011-01-01
The integration of electronically active oxide components onto silicon circuits represents an innovative approach to improving the functionality of novel devices. Like most semiconductor devices, complementary-metal-oxide-semiconductor image sensors (CISs) have physical limitations when progressively scaled down to extremely small dimensions. In this paper, we propose a novel hybrid CIS architecture that is based on the combination of nanometer-scale amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors (TFTs) and a conventional Si photo diode (PD). With this approach, we aim to overcome the loss of quantum efficiency and image quality due to the continuous miniaturization of PDs. Specifically, the a-IGZO TFT with 180 nm gate length is probed to exhibit remarkable performance including low 1/f noise and high output gain, despite fabrication temperatures as low as 200 °C. In particular, excellent device performance is achieved using a double-layer gate dielectric (Al₂O₃/SiO₂) combined with a trapezoidal active region formed by a tailored etching process. A self-aligned top gate structure is adopted to ensure low parasitic capacitance. Lastly, three-dimensional (3D) process simulation tools are employed to optimize the four-pixel CIS structure. The results demonstrate how our stacked hybrid device could be the starting point for new device strategies in image sensor architectures. Furthermore, we expect the proposed approach to be applicable to a wide range of micro- and nanoelectronic devices and systems.
Exploration of oxide-based diluted magnetic semiconductors toward transparent spintronics
NASA Astrophysics Data System (ADS)
Fukumura, T.; Yamada, Y.; Toyosaki, H.; Hasegawa, T.; Koinuma, H.; Kawasaki, M.
2004-02-01
A review is given for the recent progress of research in the field of oxide-based diluted magnetic semiconductor (DMS), which was triggered by combinatorial discovery of transparent ferromagnet. The possible advantages of oxide semiconductor as a host of DMS are described in comparison with conventional compound semiconductors. Limits and problems for identifying novel ferromagnetic DMS are described in view of recent reports in this field. Several characterization techniques are proposed in order to eliminate unidentified ferromagnetism of oxide-based DMS unidentified ferromagnetic oxide (UFO). Perspectives and possible devices are also given.
Buonsanti, Raffaella; Llordes, Anna; Aloni, Shaul; Helms, Brett A; Milliron, Delia J
2011-11-09
Plasmonic nanocrystals have been attracting a lot of attention both for fundamental studies and different applications, from sensing to imaging and optoelectronic devices. Transparent conductive oxides represent an interesting class of plasmonic materials in addition to metals and vacancy-doped semiconductor quantum dots. Herein, we report a rational synthetic strategy of high-quality colloidal aluminum-doped zinc oxide nanocrystals. The presence of substitutional aluminum in the zinc oxide lattice accompanied by the generation of free electrons is proved for the first time by tunable surface plasmon absorption in the infrared region both in solution and in thin films.
CMOS Active Pixel Sensors for Low Power, Highly Miniaturized Imaging Systems
NASA Technical Reports Server (NTRS)
Fossum, Eric R.
1996-01-01
The complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology has been developed over the past three years by NASA at the Jet Propulsion Laboratory, and has reached a level of performance comparable to CCDs with greatly increased functionality but at a very reduced power level.
NASA Astrophysics Data System (ADS)
Lu, Y.; Tang, H.; Fung, S.; Wang, Q.; Tsai, J. M.; Daneman, M.; Boser, B. E.; Horsley, D. A.
2015-06-01
This paper presents an ultrasonic fingerprint sensor based on a 24 × 8 array of 22 MHz piezoelectric micromachined ultrasonic transducers (PMUTs) with 100 μm pitch, fully integrated with 180 nm complementary metal oxide semiconductor (CMOS) circuitry through eutectic wafer bonding. Each PMUT is directly bonded to a dedicated CMOS receive amplifier, minimizing electrical parasitics and eliminating the need for through-silicon vias. The array frequency response and vibration mode-shape were characterized using laser Doppler vibrometry and verified via finite element method simulation. The array's acoustic output was measured using a hydrophone to be ˜14 kPa with a 28 V input, in reasonable agreement with predication from analytical calculation. Pulse-echo imaging of a 1D steel grating is demonstrated using electronic scanning of a 20 × 8 sub-array, resulting in 300 mV maximum received amplitude and 5:1 contrast ratio. Because the small size of this array limits the maximum image size, mechanical scanning was used to image a 2D polydimethylsiloxane fingerprint phantom (10 mm × 8 mm) at a 1.2 mm distance from the array.
Yusof, Mohd Yusmiaidil Putera Mohd; Rahman, Nur Liyana Abdul; Asri, Amiza Aqiela Ahmad; Othman, Noor Ilyani; Wan Mokhtar, Ilham
2017-12-01
This study was performed to quantify the repeat rate of imaging acquisitions based on different clinical examinations, and to assess the prevalence of error types in intraoral bitewing and periapical imaging using a digital complementary metal-oxide-semiconductor (CMOS) intraoral sensor. A total of 8,030 intraoral images were retrospectively collected from 3 groups of undergraduate clinical dental students. The type of examination, stage of the procedure, and reasons for repetition were analysed and recorded. The repeat rate was calculated as the total number of repeated images divided by the total number of examinations. The weighted Cohen's kappa for inter- and intra-observer agreement was used after calibration and prior to image analysis. The overall repeat rate on intraoral periapical images was 34.4%. A total of 1,978 repeated periapical images were from endodontic assessment, which included working length estimation (WLE), trial gutta-percha (tGP), obturation, and removal of gutta-percha (rGP). In the endodontic imaging, the highest repeat rate was from WLE (51.9%) followed by tGP (48.5%), obturation (42.2%), and rGP (35.6%). In bitewing images, the repeat rate was 15.1% and poor angulation was identified as the most common cause of error. A substantial level of intra- and interobserver agreement was achieved. The repeat rates in this study were relatively high, especially for certain clinical procedures, warranting training in optimization techniques and radiation protection. Repeat analysis should be performed from time to time to enhance quality assurance and hence deliver high-quality health services to patients.
CMOS image sensors as an efficient platform for glucose monitoring.
Devadhasan, Jasmine Pramila; Kim, Sanghyo; Choi, Cheol Soo
2013-10-07
Complementary metal oxide semiconductor (CMOS) image sensors have been used previously in the analysis of biological samples. In the present study, a CMOS image sensor was used to monitor the concentration of oxidized mouse plasma glucose (86-322 mg dL(-1)) based on photon count variation. Measurement of the concentration of oxidized glucose was dependent on changes in color intensity; color intensity increased with increasing glucose concentration. The high color density of glucose highly prevented photons from passing through the polydimethylsiloxane (PDMS) chip, which suggests that the photon count was altered by color intensity. Photons were detected by a photodiode in the CMOS image sensor and converted to digital numbers by an analog to digital converter (ADC). Additionally, UV-spectral analysis and time-dependent photon analysis proved the efficiency of the detection system. This simple, effective, and consistent method for glucose measurement shows that CMOS image sensors are efficient devices for monitoring glucose in point-of-care applications.
Optical and Electric Multifunctional CMOS Image Sensors for On-Chip Biosensing Applications.
Tokuda, Takashi; Noda, Toshihiko; Sasagawa, Kiyotaka; Ohta, Jun
2010-12-29
In this review, the concept, design, performance, and a functional demonstration of multifunctional complementary metal-oxide-semiconductor (CMOS) image sensors dedicated to on-chip biosensing applications are described. We developed a sensor architecture that allows flexible configuration of a sensing pixel array consisting of optical and electric sensing pixels, and designed multifunctional CMOS image sensors that can sense light intensity and electric potential or apply a voltage to an on-chip measurement target. We describe the sensors' architecture on the basis of the type of electric measurement or imaging functionalities.
High-Speed Binary-Output Image Sensor
NASA Technical Reports Server (NTRS)
Fossum, Eric; Panicacci, Roger A.; Kemeny, Sabrina E.; Jones, Peter D.
1996-01-01
Photodetector outputs digitized by circuitry on same integrated-circuit chip. Developmental special-purpose binary-output image sensor designed to capture up to 1,000 images per second, with resolution greater than 10 to the 6th power pixels per image. Lower-resolution but higher-frame-rate prototype of sensor contains 128 x 128 array of photodiodes on complementary metal oxide/semiconductor (CMOS) integrated-circuit chip. In application for which it is being developed, sensor used to examine helicopter oil to determine whether amount of metal and sand in oil sufficient to warrant replacement.
Facet-Selective Epitaxy of Compound Semiconductors on Faceted Silicon Nanowires.
Mankin, Max N; Day, Robert W; Gao, Ruixuan; No, You-Shin; Kim, Sun-Kyung; McClelland, Arthur A; Bell, David C; Park, Hong-Gyu; Lieber, Charles M
2015-07-08
Integration of compound semiconductors with silicon (Si) has been a long-standing goal for the semiconductor industry, as direct band gap compound semiconductors offer, for example, attractive photonic properties not possible with Si devices. However, mismatches in lattice constant, thermal expansion coefficient, and polarity between Si and compound semiconductors render growth of epitaxial heterostructures challenging. Nanowires (NWs) are a promising platform for the integration of Si and compound semiconductors since their limited surface area can alleviate such material mismatch issues. Here, we demonstrate facet-selective growth of cadmium sulfide (CdS) on Si NWs. Aberration-corrected transmission electron microscopy analysis shows that crystalline CdS is grown epitaxially on the {111} and {110} surface facets of the Si NWs but that the Si{113} facets remain bare. Further analysis of CdS on Si NWs grown at higher deposition rates to yield a conformal shell reveals a thin oxide layer on the Si{113} facet. This observation and control experiments suggest that facet-selective growth is enabled by the formation of an oxide, which prevents subsequent shell growth on the Si{113} NW facets. Further studies of facet-selective epitaxial growth of CdS shells on micro-to-mesoscale wires, which allows tuning of the lateral width of the compound semiconductor layer without lithographic patterning, and InP shell growth on Si NWs demonstrate the generality of our growth technique. In addition, photoluminescence imaging and spectroscopy show that the epitaxial shells display strong and clean band edge emission, confirming their high photonic quality, and thus suggesting that facet-selective epitaxy on NW substrates represents a promising route to integration of compound semiconductors on Si.
Kent, Tyler; Chagarov, Evgeniy; Edmonds, Mary; Droopad, Ravi; Kummel, Andrew C
2015-05-26
Studies have shown that metal oxide semiconductor field-effect transistors fabricated utilizing compound semiconductors as the channel are limited in their electrical performance. This is attributed to imperfections at the semiconductor/oxide interface which cause electronic trap states, resulting in inefficient modulation of the Fermi level. The physical origin of these states is still debated mainly because of the difficulty in assigning a particular electronic state to a specific physical defect. To gain insight into the exact source of the electronic trap states, density functional theory was employed to model the intrinsic physical defects on the InGaAs (2 × 4) surface and to model the effective passivation of these defects by utilizing both an oxidant and a reductant to eliminate metallic bonds and dangling-bond-induced strain at the interface. Scanning tunneling microscopy and spectroscopy were employed to experimentally determine the physical and electronic defects and to verify the effectiveness of dual passivation with an oxidant and a reductant. While subsurface chemisorption of oxidants on compound semiconductor substrates can be detrimental, it has been shown theoretically and experimentally that oxidants are critical to removing metallic defects at oxide/compound semiconductor interfaces present in nanoscale channels, oxides, and other nanostructures.
Synthesis of visible-light responsive graphene oxide/TiO(2) composites with p/n heterojunction.
Chen, Chao; Cai, Weimin; Long, Mingce; Zhou, Baoxue; Wu, Yahui; Wu, Deyong; Feng, Yujie
2010-11-23
Graphene oxide/TiO(2) composites were prepared by using TiCl(3) and graphene oxide as reactants. The concentration of graphene oxide in starting solution played an important role in photoelectronic and photocatalytic performance of graphene oxide/TiO(2) composites. Either a p-type or n-type semiconductor was formed by graphene oxide in graphene oxide/TiO(2) composites. These semiconductors could be excited by visible light with wavelengths longer than 510 nm and acted as sensitizer in graphene oxide/TiO(2) composites. Visible-light driven photocatalytic performance of graphene oxide/TiO(2) composites in degradation of methyl orange was also studied. Crystalline quality and chemical states of carbon elements from graphene oxide in graphene oxide/TiO(2) composites depended on the concentration of graphene oxide in the starting solution. This study shows a possible way to fabricate graphene oxide/semiconductor composites with different properties by using a tunable semiconductor conductivity type of graphene oxide.
Electro-mechanical coupling of semiconductor film grown on stainless steel by oxidation
NASA Astrophysics Data System (ADS)
Lin, M. C.; Wang, G.; Guo, L. Q.; Qiao, L. J.; Volinsky, Alex A.
2013-09-01
Electro-mechanical coupling phenomenon in oxidation film on stainless steel has been discovered by using current-sensing atomic force microscopy, along with the I-V curves measurements. The oxidation films exhibit either ohmic, n-type, or p-type semiconductor properties, according to the obtained I-V curves. This technique allows characterizing oxidation films with high spatial resolution. Semiconductor properties of oxidation films must be considered as additional stress corrosion cracking mechanisms.
Active pixel sensor having intra-pixel charge transfer with analog-to-digital converter
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Mendis, Sunetra K. (Inventor); Pain, Bedabrata (Inventor); Nixon, Robert H. (Inventor); Zhou, Zhimin (Inventor)
2003-01-01
An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node and an analog-to-digital converter formed in the substrate connected to the output of the readout circuit.
Active pixel sensor having intra-pixel charge transfer with analog-to-digital converter
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Mendis, Sunetra K. (Inventor); Pain, Bedabrata (Inventor); Nixon, Robert H. (Inventor); Zhou, Zhimin (Inventor)
2000-01-01
An imaging device formed as a monolithic complementary metal oxide semiconductor Integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node and an analog-to-digital converter formed in the substrate connected to the output of the readout circuit.
CMOS Image Sensor Using SOI-MOS/Photodiode Composite Photodetector Device
NASA Astrophysics Data System (ADS)
Uryu, Yuko; Asano, Tanemasa
2002-04-01
A new photodetector device composed of a lateral junction photodiode and a metal-oxide-semiconductor field-effect-transistor (MOSFET), in which the output of the diode is fed through the body of the MOSFET, has been investigated. It is shown that the silicon-on-insulator (SOI)-MOSFET amplifies the junction photodiode current due to the lateral bipolar action. It is also shown that the presence of the electrically floating gate enhances the current amplification factor of the SOI-MOSFET. The output current of this composite device linearly responds by four orders of illumination intensity. As an application of the composite device, a complementary-metal-oxide-semiconductor (CMOS) line sensor incorporating the composite device is fabricated and its operation is demonstrated. The output signal of the line sensor using the composite device was two times larger than that using the lateral photodiode.
Rahman, Nur Liyana Abdul; Asri, Amiza Aqiela Ahmad; Othman, Noor Ilyani; Wan Mokhtar, Ilham
2017-01-01
Purpose This study was performed to quantify the repeat rate of imaging acquisitions based on different clinical examinations, and to assess the prevalence of error types in intraoral bitewing and periapical imaging using a digital complementary metal-oxide-semiconductor (CMOS) intraoral sensor. Materials and Methods A total of 8,030 intraoral images were retrospectively collected from 3 groups of undergraduate clinical dental students. The type of examination, stage of the procedure, and reasons for repetition were analysed and recorded. The repeat rate was calculated as the total number of repeated images divided by the total number of examinations. The weighted Cohen's kappa for inter- and intra-observer agreement was used after calibration and prior to image analysis. Results The overall repeat rate on intraoral periapical images was 34.4%. A total of 1,978 repeated periapical images were from endodontic assessment, which included working length estimation (WLE), trial gutta-percha (tGP), obturation, and removal of gutta-percha (rGP). In the endodontic imaging, the highest repeat rate was from WLE (51.9%) followed by tGP (48.5%), obturation (42.2%), and rGP (35.6%). In bitewing images, the repeat rate was 15.1% and poor angulation was identified as the most common cause of error. A substantial level of intra- and interobserver agreement was achieved. Conclusion The repeat rates in this study were relatively high, especially for certain clinical procedures, warranting training in optimization techniques and radiation protection. Repeat analysis should be performed from time to time to enhance quality assurance and hence deliver high-quality health services to patients. PMID:29279822
Anisotropy-based crystalline oxide-on-semiconductor material
McKee, Rodney Allen; Walker, Frederick Joseph
2000-01-01
A semiconductor structure and device for use in a semiconductor application utilizes a substrate of semiconductor-based material, such as silicon, and a thin film of a crystalline oxide whose unit cells are capable of exhibiting anisotropic behavior overlying the substrate surface. Within the structure, the unit cells of the crystalline oxide are exposed to an in-plane stain which influences the geometric shape of the unit cells and thereby arranges a directional-dependent quality of the unit cells in a predisposed orientation relative to the substrate. This predisposition of the directional-dependent quality of the unit cells enables the device to take beneficial advantage of characteristics of the structure during operation. For example, in the instance in which the crystalline oxide of the structure is a perovskite, a spinel or an oxide of similarly-related cubic structure, the structure can, within an appropriate semiconductor device, exhibit ferroelectric, piezoelectric, pyroelectric, electro-optic, ferromagnetic, antiferromagnetic, magneto-optic or large dielectric properties that synergistically couple to the underlying semiconductor substrate.
Fabrication of eco-friendly PNP transistor using RF magnetron sputtering
NASA Astrophysics Data System (ADS)
Kumar, B. Santhosh; Harinee, N.; Purvaja, K.; Shanker, N. Praveen; Manikandan, M.; Aparnadevi, N.; Mukilraj, T.; Venkateswaran, C.
2018-05-01
An effort has been made to fabricate a thin film transistor using eco-friendly oxide semiconductor materials. Oxide semiconductor materials are cost - effective, thermally and chemically stable with high electron/hole mobility. Copper (II) oxide is a p-type semiconductor and zinc oxide is an n-type semiconductor. A pnp thin film transistor was fabricated using RF magnetron sputtering. The films deposited have been subjected to structural characterization using AFM. I-V characterization of the fabricated device, Ag/CuO/ZnO/CuO/Ag, confirms transistor behaviour. The mechanism of electron/hole transport of the device is discussed below.
Ma, R M; Peng, R M; Wen, X N; Dai, L; Liu, C; Sun, T; Xu, W J; Qin, G G
2010-10-01
We show that the threshold voltages of both n- and p-channel metal-oxide-semiconductor field-effect-transistors (MOSFETs) can be lowered to close to zero by adding extra Schottky contacts on top of nanowires (NWs). Novel complementary metal-oxide-semiconductor (CMOS) inverters are constructed on these Schottky barrier modified n- and p-channel NW MOSFETs. Based on the high performances of the modified n- and p-channel MOSFETs, especially the low threshold voltages, the as-fabricated CMOS inverters have low operating voltage, high voltage gain, and ultra-low static power dissipation.
Lower-Dark-Current, Higher-Blue-Response CMOS Imagers
NASA Technical Reports Server (NTRS)
Pain, Bedabrata; Cunningham, Thomas; Hancock, Bruce
2008-01-01
Several improved designs for complementary metal oxide/semiconductor (CMOS) integrated-circuit image detectors have been developed, primarily to reduce dark currents (leakage currents) and secondarily to increase responses to blue light and increase signal-handling capacities, relative to those of prior CMOS imagers. The main conclusion that can be drawn from a study of the causes of dark currents in prior CMOS imagers is that dark currents could be reduced by relocating p/n junctions away from Si/SiO2 interfaces. In addition to reflecting this conclusion, the improved designs include several other features to counteract dark-current mechanisms and enhance performance.
Optical and Electric Multifunctional CMOS Image Sensors for On-Chip Biosensing Applications
Tokuda, Takashi; Noda, Toshihiko; Sasagawa, Kiyotaka; Ohta, Jun
2010-01-01
In this review, the concept, design, performance, and a functional demonstration of multifunctional complementary metal-oxide-semiconductor (CMOS) image sensors dedicated to on-chip biosensing applications are described. We developed a sensor architecture that allows flexible configuration of a sensing pixel array consisting of optical and electric sensing pixels, and designed multifunctional CMOS image sensors that can sense light intensity and electric potential or apply a voltage to an on-chip measurement target. We describe the sensors’ architecture on the basis of the type of electric measurement or imaging functionalities. PMID:28879978
Image Sensors Enhance Camera Technologies
NASA Technical Reports Server (NTRS)
2010-01-01
In the 1990s, a Jet Propulsion Laboratory team led by Eric Fossum researched ways of improving complementary metal-oxide semiconductor (CMOS) image sensors in order to miniaturize cameras on spacecraft while maintaining scientific image quality. Fossum s team founded a company to commercialize the resulting CMOS active pixel sensor. Now called the Aptina Imaging Corporation, based in San Jose, California, the company has shipped over 1 billion sensors for use in applications such as digital cameras, camera phones, Web cameras, and automotive cameras. Today, one of every three cell phone cameras on the planet feature Aptina s sensor technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Y.; Fung, S.; Wang, Q.
2015-06-29
This paper presents an ultrasonic fingerprint sensor based on a 24 × 8 array of 22 MHz piezoelectric micromachined ultrasonic transducers (PMUTs) with 100 μm pitch, fully integrated with 180 nm complementary metal oxide semiconductor (CMOS) circuitry through eutectic wafer bonding. Each PMUT is directly bonded to a dedicated CMOS receive amplifier, minimizing electrical parasitics and eliminating the need for through-silicon vias. The array frequency response and vibration mode-shape were characterized using laser Doppler vibrometry and verified via finite element method simulation. The array's acoustic output was measured using a hydrophone to be ∼14 kPa with a 28 V input, in reasonable agreement with predication from analyticalmore » calculation. Pulse-echo imaging of a 1D steel grating is demonstrated using electronic scanning of a 20 × 8 sub-array, resulting in 300 mV maximum received amplitude and 5:1 contrast ratio. Because the small size of this array limits the maximum image size, mechanical scanning was used to image a 2D polydimethylsiloxane fingerprint phantom (10 mm × 8 mm) at a 1.2 mm distance from the array.« less
Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang
2017-01-01
Image sensors are the core components of computer, communication, and consumer electronic products. Complementary metal oxide semiconductor (CMOS) image sensors have become the mainstay of image-sensing developments, but are prone to leakage current. In this study, we simulate the CMOS image sensor (CIS) film stacking process by finite element analysis. To elucidate the relationship between the leakage current and stack architecture, we compare the simulated and measured leakage currents in the elements. Based on the analysis results, we further improve the performance by optimizing the architecture of the film stacks or changing the thin-film material. The material parameters are then corrected to improve the accuracy of the simulation results. The simulated and experimental results confirm a positive correlation between measured leakage current and stress. This trend is attributed to the structural defects induced by high stress, which generate leakage. Using this relationship, we can change the structure of the thin-film stack to reduce the leakage current and thereby improve the component life and reliability of the CIS components. PMID:28468324
Crystalline oxides on semiconductors: a future for the nanotransistor
NASA Astrophysics Data System (ADS)
Buongiorno Nardelli, M.; Walker, F. J.; McKee, R. A.
2004-08-01
This issue's Editor's Choice [1] is a brief review on promises and advantages of crystalline oxides on semiconductors, especially the role of interfaces, for semiconductor technology.The cover picture shows at the top a Z-contrast image of the Si:SrSi2:SrO interface, where on the left side the positions of the atoms are highlighted, and on the right side a theoretical simulation of the image is overlayed, using the theoretical equilibrium geometry of the interface as obtained from first principles (bottom, green: Si, blue: O, orange: Sr). Purple isosurfaces show the electron density of the Si-O bonding state, and the arrows give the direction of the microscopic dipoles at the interface.The first author Marco Buongiorno Nardelli is Professor at the Department of Physics of North Carolina State University, where he heads a research group focusing on the application of ab-initio electronic structure calculation techniques for the study of important aspects of the physics of materials (ERMES).This paper is a presentation from the 5th Motorola Workshop on Computational Materials and Electronics (MWCME 2003), held in Austin, Texas, 13-14 November 2003. The proceedings were guest-edited, for the fourth time in this journal, by Alex Demkov (now Freescale Semiconductor).
Ageing and proton irradiation damage of a low voltage EMCCD in a CMOS process
NASA Astrophysics Data System (ADS)
Dunford, A.; Stefanov, K.; Holland, A.
2018-02-01
Electron Multiplying Charge Coupled Devices (EMCCDs) have revolutionised low light level imaging, providing highly sensitive detection capabilities. Implementing Electron Multiplication (EM) in Charge Coupled Devices (CCDs) can increase the Signal to Noise Ratio (SNR) and lead to further developments in low light level applications such as improvements in image contrast and single photon imaging. Demand has grown for EMCCD devices with properties traditionally restricted to Complementary Metal-Oxide-Semiconductor (CMOS) image sensors, such as lower power consumption and higher radiation tolerance. However, EMCCDs are known to experience an ageing effect, such that the gain gradually decreases with time. This paper presents results detailing EM ageing in an Electron Multiplying Complementary Metal-Oxide-Semiconductor (EMCMOS) device and its effect on several device characteristics such as Charge Transfer Inefficiency (CTI) and thermal dark signal. When operated at room temperature an average decrease in gain of over 20% after an operational period of 175 hours was detected. With many image sensors deployed in harsh radiation environments, the radiation hardness of the device following proton irradiation was also tested. This paper presents the results of a proton irradiation completed at the Paul Scherrer Institut (PSI) at a 10 MeV equivalent fluence of 4.15× 1010 protons/cm2. The pre-irradiation characterisation, irradiation methodology and post-irradiation results are detailed, demonstrating an increase in dark current and a decrease in its activation energy. Finally, this paper presents a comparison of the damage caused by EM gain ageing and proton irradiation.
Microbially-mediated method for synthesis of non-oxide semiconductor nanoparticles
Phelps, Tommy J.; Lauf, Robert J.; Moon, Ji Won; Rondinone, Adam J.; Love, Lonnie J.; Duty, Chad Edward; Madden, Andrew Stephen; Li, Yiliang; Ivanov, Ilia N.; Rawn, Claudia Jeanette
2014-06-24
The invention is directed to a method for producing non-oxide semiconductor nanoparticles, the method comprising: (a) subjecting a combination of reaction components to conditions conducive to microbially-mediated formation of non-oxide semiconductor nanoparticles, wherein said combination of reaction components comprises i) anaerobic microbes, ii) a culture medium suitable for sustaining said anaerobic microbes, iii) a metal component comprising at least one type of metal ion, iv) a non-metal component containing at least one non-metal selected from the group consisting of S, Se, Te, and As, and v) one or more electron donors that provide donatable electrons to said anaerobic microbes during consumption of the electron donor by said anaerobic microbes; and (b) isolating said non-oxide semiconductor nanoparticles, which contain at least one of said metal ions and at least one of said non-metals. The invention is also directed to non-oxide semiconductor nanoparticle compositions produced as above and having distinctive properties.
Controlled growth of semiconductor crystals
Bourret-Courchesne, Edith D.
1992-01-01
A method for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B.sub.x O.sub.y are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T.sub.m1 of the oxide of boron (T.sub.m1 =723.degree. K. for boron oxide B.sub.2 O.sub.3), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T.sub.m2 of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm.sup.2. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 .mu.m.
Controlled growth of semiconductor crystals
Bourret-Courchesne, E.D.
1992-07-21
A method is disclosed for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B[sub x]O[sub y] are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T[sub m1] of the oxide of boron (T[sub m1]=723 K for boron oxide B[sub 2]O[sub 3]), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T[sub m2] of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm[sup 2]. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 [mu]m. 7 figs.
Toward CMOS image sensor based glucose monitoring.
Devadhasan, Jasmine Pramila; Kim, Sanghyo
2012-09-07
Complementary metal oxide semiconductor (CMOS) image sensor is a powerful tool for biosensing applications. In this present study, CMOS image sensor has been exploited for detecting glucose levels by simple photon count variation with high sensitivity. Various concentrations of glucose (100 mg dL(-1) to 1000 mg dL(-1)) were added onto a simple poly-dimethylsiloxane (PDMS) chip and the oxidation of glucose was catalyzed with the aid of an enzymatic reaction. Oxidized glucose produces a brown color with the help of chromogen during enzymatic reaction and the color density varies with the glucose concentration. Photons pass through the PDMS chip with varying color density and hit the sensor surface. Photon count was recognized by CMOS image sensor depending on the color density with respect to the glucose concentration and it was converted into digital form. By correlating the obtained digital results with glucose concentration it is possible to measure a wide range of blood glucose levels with great linearity based on CMOS image sensor and therefore this technique will promote a convenient point-of-care diagnosis.
Semiconductor assisted metal deposition for nanolithography applications
Rajh, Tijana; Meshkov, Natalia; Nedelijkovic, Jovan M.; Skubal, Laura R.; Tiede, David M.; Thurnauer, Marion
2001-01-01
An article of manufacture and method of forming nanoparticle sized material components. A semiconductor oxide substrate includes nanoparticles of semiconductor oxide. A modifier is deposited onto the nanoparticles, and a source of metal ions are deposited in association with the semiconductor and the modifier, the modifier enabling electronic hole scavenging and chelation of the metal ions. The metal ions and modifier are illuminated to cause reduction of the metal ions to metal onto the semiconductor nanoparticles.
Semiconductor assisted metal deposition for nanolithography applications
Rajh, Tijana; Meshkov, Natalia; Nedelijkovic, Jovan M.; Skubal, Laura R.; Tiede, David M.; Thurnauer, Marion
2002-01-01
An article of manufacture and method of forming nanoparticle sized material components. A semiconductor oxide substrate includes nanoparticles of semiconductor oxide. A modifier is deposited onto the nanoparticles, and a source of metal ions are deposited in association with the semiconductor and the modifier, the modifier enabling electronic hole scavenging and chelation of the metal ions. The metal ions and modifier are illuminated to cause reduction of the metal ions to metal onto the semiconductor nanoparticles.
Protection of inorganic semiconductors for sustained, efficient photoelectrochemical water oxidation
Lichterman, Michael F.; Sun, Ke; Hu, Shu; ...
2015-10-25
Small-band-gap (E g < 2 eV) semiconductors must be stabilized for use in integrated devices that convert solar energy into the bonding energy of a reduced fuel, specifically H 2 (g) or a reduced-carbon species such as CH 3 OH or CH 4 . To sustainably and scalably complete the fuel cycle, electrons must be liberated through the oxidation of water to O 2 (g). Strongly acidic or strongly alkaline electrolytes are needed to enable efficient and intrinsically safe operation of a full solar-driven water-splitting system. But, under water-oxidation conditions, the small-band-gap semiconductors required for efficient cell operation aremore » unstable, either dissolving or forming insulating surface oxides. Here, we describe herein recent progress in the protection of semiconductor photoanodes under such operational conditions. We specifically describe the properties of two protective overlayers, TiO 2 /Ni and NiO x , both of which have demonstrated the ability to protect otherwise unstable semiconductors for > 100 h of continuous solar-driven water oxidation when in contact with a highly alkaline aqueous electrolyte (1.0 M KOH(aq)). Furthermore, the stabilization of various semiconductor photoanodes is reviewed in the context of the electronic characteristics and a mechanistic analysis of the TiO 2 films, along with a discussion of the optical, catalytic, and electronic nature of NiO x films for stabilization of semiconductor photoanodes for water oxidation.« less
NASA Astrophysics Data System (ADS)
Nevin, A.; Cesaratto, A.; D'Andrea, C.; Valentini, Gianluca; Comelli, D.
2013-05-01
We present the non-invasive study of historical and modern Zn- and Cd-based pigments with time-resolved fluorescence spectroscopy, fluorescence multispectral imaging and fluorescence lifetime imaging (FLIM). Zinc oxide and Zinc sulphide are semiconductors which have been used as white pigments in paintings, and the luminescence of these pigments from trapped states is strongly dependent on the presence of impurities and crystal defects. Cadmium sulphoselenide pigments vary in hue from yellow to deep red based on their composition, and are another class of semiconductor pigments which emit both in the visible and the near infrared. The Fluorescence lifetime of historical and modern pigments has been measured using both an Optical Multichannel Analyser (OMA) coupled with a Nd:YAG nslaser, and a streak camera coupled with a ps-laser for spectrally-resolved fluorescence lifetime measurements. For Znbased pigments we have also employed Fluorescence Lifetime Imaging (FLIM) for the measurement of luminescence. A case study of FLIM applied to the analysis of the painting by Vincent Van Gogh on paper - "Les Bretonnes et le pardon de Pont-Aven" (1888) is presented. Through the integration of complementary, portable and non-invasive spectroscopic techniques, new insights into the optical properties of Zn- and Cd-based pigments have been gained which will inform future analysis of late 19th] and early 20th C. paintings.
Microbially-mediated method for synthesis of non-oxide semiconductor nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phelps, Tommy J.; Lauf, Robert J.; Moon, Ji-Won
The invention is directed to a method for producing non-oxide semiconductor nanoparticles, the method comprising: (a) subjecting a combination of reaction components to conditions conducive to microbially-mediated formation of non-oxide semiconductor nanoparticles, wherein said combination of reaction components comprises i) anaerobic microbes, ii) a culture medium suitable for sustaining said anaerobic microbes, iii) a metal component comprising at least one type of metal ion, iv) a non-metal component comprising at least one non-metal selected from the group consisting of S, Se, Te, and As, and v) one or more electron donors that provide donatable electrons to said anaerobic microbes duringmore » consumption of the electron donor by said anaerobic microbes; and (b) isolating said non-oxide semiconductor nanoparticles, which contain at least one of said metal ions and at least one of said non-metals. The invention is also directed to non-oxide semiconductor nanoparticle compositions produced as above and having distinctive properties.« less
Wang, Lei; Yan, Danhua; Shaffer, David W.; ...
2017-12-27
Solution-processable organic semiconductors have potentials as visible photoelectrochemical (PEC) water splitting photoelectrodes due to their tunable small band gap and electronic energy levels, but they are typically limited by poor stability and photocatalytic activity. In this study, we demonstrate the direct visible PEC water oxidation on solution-processed organic semiconductor thin films with improved stability and performance by ultrathin metal oxide passivation layers. N-type fullerene-derivative thin films passivated by sub-2 nm ZnO via atomic layer deposition enabled the visible PEC water oxidation at wavelengths longer than 600 nm in harsh alkaline electrolyte environments with up to 30 μA/cm 2 photocurrents atmore » the thermodynamic water-oxidation equilibrium potential and the photoanode half-lifetime extended to ~1000 s. The systematic investigation reveals the enhanced water oxidation catalytic activity afforded by ZnO passivation and the charge tunneling governing the hole transfer through passivation layers. Further enhanced PEC performances were realized by improving the bottom ohmic contact to the organic semiconductor, achieving ~60 μA/cm 2 water oxidation photocurrent at the equilibrium potential, the highest values reported for organic semiconductor thin films to our knowledge. The improved stability and performance of passivated organic photoelectrodes and discovered design rationales provide useful guidelines for realizing the stable visible solar PEC water splitting based on organic semiconductor thin films.« less
Electrically coupling complex oxides to semiconductors: A route to novel material functionalities
Ngai, J. H.; Ahmadi-Majlan, K.; Moghadam, J.; ...
2017-01-12
Complex oxides and semiconductors exhibit distinct yet complementary properties owing to their respective ionic and covalent natures. By electrically coupling complex oxides to traditional semiconductors within epitaxial heterostructures, enhanced or novel functionalities beyond those of the constituent materials can potentially be realized. Essential to electrically coupling complex oxides to semiconductors is control of the physical structure of the epitaxially grown oxide, as well as the electronic structure of the interface. In this paper, we discuss how composition of the perovskite A- and B-site cations can be manipulated to control the physical and electronic structure of semiconductor—complex oxide heterostructures. Two prototypicalmore » heterostructures, Ba 1-xSr xTiO 3/Ge and SrZr xTi 1-xO 3/Ge, will be discussed. In the case of Ba 1-xSr xTiO 3/Ge, we discuss how strain can be engineered through A-site composition to enable the re-orientable ferroelectric polarization of the former to be coupled to carriers in the semiconductor. In the case of SrZr xTi 1-xO 3/Ge we discuss how B-site composition can be exploited to control the band offset at the interface. Finally, analogous to heterojunctions between compound semiconducting materials, control of band offsets, i.e., band-gap engineering, provides a pathway to electrically couple complex oxides to semiconductors to realize a host of functionalities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lei; Yan, Danhua; Shaffer, David W.
Solution-processable organic semiconductors have potentials as visible photoelectrochemical (PEC) water splitting photoelectrodes due to their tunable small band gap and electronic energy levels, but they are typically limited by poor stability and photocatalytic activity. In this study, we demonstrate the direct visible PEC water oxidation on solution-processed organic semiconductor thin films with improved stability and performance by ultrathin metal oxide passivation layers. N-type fullerene-derivative thin films passivated by sub-2 nm ZnO via atomic layer deposition enabled the visible PEC water oxidation at wavelengths longer than 600 nm in harsh alkaline electrolyte environments with up to 30 μA/cm 2 photocurrents atmore » the thermodynamic water-oxidation equilibrium potential and the photoanode half-lifetime extended to ~1000 s. The systematic investigation reveals the enhanced water oxidation catalytic activity afforded by ZnO passivation and the charge tunneling governing the hole transfer through passivation layers. Further enhanced PEC performances were realized by improving the bottom ohmic contact to the organic semiconductor, achieving ~60 μA/cm 2 water oxidation photocurrent at the equilibrium potential, the highest values reported for organic semiconductor thin films to our knowledge. The improved stability and performance of passivated organic photoelectrodes and discovered design rationales provide useful guidelines for realizing the stable visible solar PEC water splitting based on organic semiconductor thin films.« less
Electrically coupling complex oxides to semiconductors: A route to novel material functionalities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ngai, J. H.; Ahmadi-Majlan, K.; Moghadam, J.
Complex oxides and semiconductors exhibit distinct yet complementary properties owing to their respective ionic and covalent natures. By electrically coupling complex oxides to traditional semiconductors within epitaxial heterostructures, enhanced or novel functionalities beyond those of the constituent materials can potentially be realized. Essential to electrically coupling complex oxides to semiconductors is control of the physical structure of the epitaxially grown oxide, as well as the electronic structure of the interface. In this paper, we discuss how composition of the perovskite A- and B-site cations can be manipulated to control the physical and electronic structure of semiconductor—complex oxide heterostructures. Two prototypicalmore » heterostructures, Ba 1-xSr xTiO 3/Ge and SrZr xTi 1-xO 3/Ge, will be discussed. In the case of Ba 1-xSr xTiO 3/Ge, we discuss how strain can be engineered through A-site composition to enable the re-orientable ferroelectric polarization of the former to be coupled to carriers in the semiconductor. In the case of SrZr xTi 1-xO 3/Ge we discuss how B-site composition can be exploited to control the band offset at the interface. Finally, analogous to heterojunctions between compound semiconducting materials, control of band offsets, i.e., band-gap engineering, provides a pathway to electrically couple complex oxides to semiconductors to realize a host of functionalities.« less
The First National Student Conference: NASA University Research Centers at Minority Institutions
NASA Technical Reports Server (NTRS)
Daso, Endwell O. (Editor); Mebane, Stacie (Editor)
1997-01-01
The conference includes contributions from 13 minority universities with NASA University Research Centers. Topics discussed include: leadership, survival strategies, life support systems, food systems, simulated hypergravity, chromium diffusion doping, radiation effects on dc-dc converters, metal oxide glasses, crystal growth of Bil3, science and communication on wheels, semiconductor thin films, numerical solution of random algebraic equations, fuzzy logic control, spatial resolution of satellite images, programming language development, nitric oxide in the thermosphere and mesosphere, high performance polyimides, crossover control in genetic algorithms, hyperthermal ion scattering, etc.
Sasagawa, Kiyotaka; Shishido, Sanshiro; Ando, Keisuke; Matsuoka, Hitoshi; Noda, Toshihiko; Tokuda, Takashi; Kakiuchi, Kiyomi; Ohta, Jun
2013-05-06
In this study, we demonstrate a polarization sensitive pixel for a complementary metal-oxide-semiconductor (CMOS) image sensor based on 65-nm standard CMOS technology. Using such a deep-submicron CMOS technology, it is possible to design fine metal patterns smaller than the wavelengths of visible light by using a metal wire layer. We designed and fabricated a metal wire grid polarizer on a 20 × 20 μm(2) pixel for image sensor. An extinction ratio of 19.7 dB was observed at a wavelength 750 nm.
Hexamethyldisilazane Removal with Mesoporous Materials Prepared from Calcium Fluoride Sludge.
Kao, Ching-Yang; Lin, Min-Fa; Nguyen, Nhat-Thien; Tsai, Hsiao-Hsin; Chang, Luh-Maan; Chen, Po-Han; Chang, Chang-Tang
2018-05-01
A large amount of calcium fluoride sludge is generated by the semiconductor industry every year. It also requires a high amount of fuel consumption using rotor concentrators and thermal oxidizers to treat VOCs. The mesoporous adsorbent prepared by calcium fluoride sludge was used for VOCs treatment. The semiconductor industry employs HMDS to promote the adhesion of photo-resistant material to oxide(s) due to the formation of silicon dioxide, which blocks porous adsorbents. The adsorption of HMDS (Hexamethyldisiloxane) was tested with mesoporous silica materials synthesized from calcium fluoride (CF-MCM). The resulting samples were characterized by XRD, XRF, FTIR, N2-adsorption-desorption techniques. The prepared samples possessed high specific surface area, large pore volume and large pore diameter. The crystal patterns of CF-MCM were similar with Mobil composite matter (MCM-41) from TEM image. The adsorption capacity of HMDS with CF-MCM was 40 and 80 mg g-1, respectively, under 100 and 500 ppm HMDS. The effects of operation parameters, such as contact time and mixture concentration, on the performance of CF-MCM were also discussed in this study.
NASA Astrophysics Data System (ADS)
Morimoto, Y.; Ueno, Y.; Takeuchi, W.; Kojima, S.; Matsuzaki, K.; Ishitsu, T.; Umegaki, K.; Kiyanagi, Y.; Kubo, N.; Katoh, C.; Shiga, T.; Shirato, H.; Tamaki, N.
2011-10-01
Targeting improved spatial resolution, a three-dimensional positron-emission-tomography (PET) scanner employing CdTe semiconductor detectors and using depth-of-interaction (DOI) information was developed, and its physical performance was evaluated. This PET scanner is the first to use semiconductor detectors dedicated to the human brain and head-and-neck region. Imaging performance of the scanner used for 18F -fluorodeoxy glucose (FDG) scans of phantoms and human brains was evaluated. The gantry of the scanner has a 35.0-cm-diameter patient port, the trans-axial field of view (FOV) is 31.0 cm, and the axial FOV is 24.6 cm. The energy resolution averaged over all detector channels and timing resolution were 4.1% and 6.8 ns (each in FWHM), respectively. Spatial resolution measured at the center of FOV was 2.3-mm FWHM-which is one of the best resolutions achieved by human PET scanners. Noise-equivalent count ratio (NEC2R) has a maximum in the energy window of 390 to 540 keV and is 36 kcps/Bq/cm3 at 3.7 kBq/cm3 . The sensitivity of the system according to NEMA 1994 was 25.9 cps/Bq/cm3. Scatter fraction of the scanner is 37% for the energy window of 390 to 540 keV and 23% for 450 to 540 keV. Images of a hot-rod phantom and images of brain glucose metabolism show that the structural accuracy of the images obtained with the semiconductor PET scanner is higher than that possible with a conventional Bismuth Germanium Oxide (BGO) PET scanner. In addition, the developed scanner permits better delineation of the head-and-neck cancer. These results show that the semiconductor PET scanner will play a major role in the upcoming era of personalized medicine.
Characteristics of Gadolinium Oxide Nanoparticles Using Terahertz Spectroscopy (abstract)
NASA Astrophysics Data System (ADS)
Lee, Dongkyu; Maeng, Inhee; Oh, Seung Jae; Kim, Taekhoon; Cho, Byung Kyu; Lee, Kwangyeol; Son, Joo-Hiuk
2009-04-01
The penetration property of the terahertz electromagnetic (THz) wave is relevant to its use. We used the THz wave spectroscopy system which easily penetrates some materials that do not contain water, e.g., plastic and ceramics. The system has been developed for several purposes, including measuring the properties of semiconductors and bio-materials, and detecting plastic bombs and ceramic knives at airports. It is also used for medical imaging systems, such as magnetic resonance imaging (MRI), at some research institutes. It can show not only the difference in amplitude, but also the difference of the phase of each point of sample. MRI technology usually uses contrast agents to enhance the quality of the image. Gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA), made with a heavy metal ion, is commonly used as a clinical MRI contrast agent. Gadolinium oxide (Gd2O3) nanoparticle is a new contrast agent. It serves to equip the core of each particle with antibodies or ligands. It can freely circulate in blood vessels without amassing in the liver or lungs. This study shows the characteristics of gadolinium oxide nanoparticles to further advance terahertz medical imaging.
Alternative Packaging for Back-Illuminated Imagers
NASA Technical Reports Server (NTRS)
Pain, Bedabrata
2009-01-01
An alternative scheme has been conceived for packaging of silicon-based back-illuminated, back-side-thinned complementary metal oxide/semiconductor (CMOS) and charge-coupled-device image-detector integrated circuits, including an associated fabrication process. This scheme and process are complementary to those described in "Making a Back-Illuminated Imager With Back-Side Connections" (NPO-42839), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), page 38. To avoid misunderstanding, it should be noted that in the terminology of imaging integrated circuits, "front side" or "back side" does not necessarily refer to the side that, during operation, faces toward or away from a source of light or other object to be imaged. Instead, "front side" signifies that side of a semiconductor substrate upon which the pixel pattern and the associated semiconductor devices and metal conductor lines are initially formed during fabrication, and "back side" signifies the opposite side. If the imager is of the type called "back-illuminated," then the back side is the one that faces an object to be imaged. Initially, a back-illuminated, back-side-thinned image-detector is fabricated with its back side bonded to a silicon handle wafer. At a subsequent stage of fabrication, the front side is bonded to a glass wafer (for mechanical support) and the silicon handle wafer is etched away to expose the back side. The frontside integrated circuitry includes metal input/output contact pads, which are rendered inaccessible by the bonding of the front side to the glass wafer. Hence, one of the main problems is to make the input/output contact pads accessible from the back side, which is ultimately to be the side accessible to the external world. The present combination of an alternative packaging scheme and associated fabrication process constitute a solution of the problem.
Metal oxides for optoelectronic applications.
Yu, Xinge; Marks, Tobin J; Facchetti, Antonio
2016-04-01
Metal oxides (MOs) are the most abundant materials in the Earth's crust and are ingredients in traditional ceramics. MO semiconductors are strikingly different from conventional inorganic semiconductors such as silicon and III-V compounds with respect to materials design concepts, electronic structure, charge transport mechanisms, defect states, thin-film processing and optoelectronic properties, thereby enabling both conventional and completely new functions. Recently, remarkable advances in MO semiconductors for electronics have been achieved, including the discovery and characterization of new transparent conducting oxides, realization of p-type along with traditional n-type MO semiconductors for transistors, p-n junctions and complementary circuits, formulations for printing MO electronics and, most importantly, commercialization of amorphous oxide semiconductors for flat panel displays. This Review surveys the uniqueness and universality of MOs versus other unconventional electronic materials in terms of materials chemistry and physics, electronic characteristics, thin-film fabrication strategies and selected applications in thin-film transistors, solar cells, diodes and memories.
Metal oxides for optoelectronic applications
NASA Astrophysics Data System (ADS)
Yu, Xinge; Marks, Tobin J.; Facchetti, Antonio
2016-04-01
Metal oxides (MOs) are the most abundant materials in the Earth's crust and are ingredients in traditional ceramics. MO semiconductors are strikingly different from conventional inorganic semiconductors such as silicon and III-V compounds with respect to materials design concepts, electronic structure, charge transport mechanisms, defect states, thin-film processing and optoelectronic properties, thereby enabling both conventional and completely new functions. Recently, remarkable advances in MO semiconductors for electronics have been achieved, including the discovery and characterization of new transparent conducting oxides, realization of p-type along with traditional n-type MO semiconductors for transistors, p-n junctions and complementary circuits, formulations for printing MO electronics and, most importantly, commercialization of amorphous oxide semiconductors for flat panel displays. This Review surveys the uniqueness and universality of MOs versus other unconventional electronic materials in terms of materials chemistry and physics, electronic characteristics, thin-film fabrication strategies and selected applications in thin-film transistors, solar cells, diodes and memories.
Postirradiation Effects In Integrated Circuits
NASA Technical Reports Server (NTRS)
Shaw, David C.; Barnes, Charles E.
1993-01-01
Two reports discuss postirradiation effects in integrated circuits. Presents examples of postirradiation measurements of performances of integrated circuits of five different types: dual complementary metal oxide/semiconductor (CMOS) flip-flop; CMOS analog multiplier; two CMOS multiplying digital-to-analog converters; electrically erasable programmable read-only memory; and semiconductor/oxide/semiconductor octal buffer driver.
Communication: Time- and space-sliced velocity map electron imaging
NASA Astrophysics Data System (ADS)
Lee, Suk Kyoung; Lin, Yun Fei; Lingenfelter, Steven; Fan, Lin; Winney, Alexander H.; Li, Wen
2014-12-01
We develop a new method to achieve slice electron imaging using a conventional velocity map imaging apparatus with two additional components: a fast frame complementary metal-oxide semiconductor camera and a high-speed digitizer. The setup was previously shown to be capable of 3D detection and coincidence measurements of ions. Here, we show that when this method is applied to electron imaging, a time slice of 32 ps and a spatial slice of less than 1 mm thick can be achieved. Each slice directly extracts 3D velocity distributions of electrons and provides electron velocity distributions that are impossible or difficult to obtain with a standard 2D imaging electron detector.
Shockwave generation by a semiconductor bridge operation in water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zvulun, E.; Toker, G.; Gurovich, V. Tz.
2014-05-28
A semiconductor bridge (SCB) is a silicon device, used in explosive systems as the electrical initiator element. In recent years, SCB plasma has been extensively studied, both electrically and using fast photography and spectroscopic imaging. However, the value of the pressure buildup at the bridge remains unknown. In this study, we operated SCB devices in water and, using shadow imaging and reference beam interferometry, obtained the velocity of the shock wave propagation and distribution of the density of water. These results, together with a self-similar hydrodynamic model, were used to calculate the pressure generated by the exploding SCB. In addition,more » the results obtained showed that the energy of the water flow exceeds significantly the energy deposited into the exploded SCB. The latter can be explained by the combustion of the aluminum and silicon atoms released in water, which acts as an oxidizing medium.« less
NASA Technical Reports Server (NTRS)
Stirn, R. J.; Yeh, Y.-C. M.
1975-01-01
A new fabrication process is being developed which significantly improves the efficiency of metal-semiconductor solar cells. The resultant effect, a marked increase in the open-circuit voltage, is produced by the addition of an interfacial layer oxide on the semiconductor. Cells using gold on n-type gallium arsenide have been made in small areas (0.17 sq cm) with conversion efficiencies of 15% in terrestrial sunlight.
NASA Astrophysics Data System (ADS)
Ke, Cangming; Xin, Zheng; Ling, Zhi Peng; Aberle, Armin G.; Stangl, Rolf
2017-08-01
Excellent c-Si tunnel layer surface passivation has been obtained recently in our lab, using atomic layer deposited aluminium oxide (ALD AlO x ) in the tunnel layer regime of 0.9 to 1.5 nm, investigated to be applied for contact passivation. Using the correspondingly measured interface properties, this paper compares the theoretical collection efficiency of a conventional metal-semiconductor (MS) contact on diffused p+ Si to a metal-semiconductor-insulator-semiconductor (MSIS) contact on diffused p+ Si or on undoped n-type c-Si. The influences of (1) the tunnel layer passivation quality at the tunnel oxide interface (Q f and D it), (2) the tunnel layer thickness and the electron and hole tunnelling mass, (3) the tunnel oxide material, and (4) the semiconductor capping layer material properties are investigated numerically by evaluation of solar cell efficiency, open-circuit voltage, and fill factor.
Long, Rathnait D.; McIntyre, Paul C.
2012-01-01
The literature on polar Gallium Nitride (GaN) surfaces, surface treatments and gate dielectrics relevant to metal oxide semiconductor devices is reviewed. The significance of the GaN growth technique and growth parameters on the properties of GaN epilayers, the ability to modify GaN surface properties using in situ and ex situ processes and progress on the understanding and performance of GaN metal oxide semiconductor (MOS) devices are presented and discussed. Although a reasonably consistent picture is emerging from focused studies on issues covered in each of these topics, future research can achieve a better understanding of the critical oxide-semiconductor interface by probing the connections between these topics. The challenges in analyzing defect concentrations and energies in GaN MOS gate stacks are discussed. Promising gate dielectric deposition techniques such as atomic layer deposition, which is already accepted by the semiconductor industry for silicon CMOS device fabrication, coupled with more advanced physical and electrical characterization methods will likely accelerate the pace of learning required to develop future GaN-based MOS technology.
Timm, Rainer; Head, Ashley R; Yngman, Sofie; Knutsson, Johan V; Hjort, Martin; McKibbin, Sarah R; Troian, Andrea; Persson, Olof; Urpelainen, Samuli; Knudsen, Jan; Schnadt, Joachim; Mikkelsen, Anders
2018-04-12
Atomic layer deposition (ALD) enables the ultrathin high-quality oxide layers that are central to all modern metal-oxide-semiconductor circuits. Crucial to achieving superior device performance are the chemical reactions during the first deposition cycle, which could ultimately result in atomic-scale perfection of the semiconductor-oxide interface. Here, we directly observe the chemical reactions at the surface during the first cycle of hafnium dioxide deposition on indium arsenide under realistic synthesis conditions using photoelectron spectroscopy. We find that the widely used ligand exchange model of the ALD process for the removal of native oxide on the semiconductor and the simultaneous formation of the first hafnium dioxide layer must be significantly revised. Our study provides substantial evidence that the efficiency of the self-cleaning process and the quality of the resulting semiconductor-oxide interface can be controlled by the molecular adsorption process of the ALD precursors, rather than the subsequent oxide formation.
NASA Astrophysics Data System (ADS)
Basile, A. F.; Cramer, T.; Kyndiah, A.; Biscarini, F.; Fraboni, B.
2014-06-01
Metal-oxide-semiconductor (MOS) transistors fabricated with pentacene thin films were characterized by temperature-dependent current-voltage (I-V) characteristics, time-dependent current measurements, and admittance spectroscopy. The channel mobility shows almost linear variation with temperature, suggesting that only shallow traps are present in the semiconductor and at the oxide/semiconductor interface. The admittance spectra feature a broad peak, which can be modeled as the sum of a continuous distribution of relaxation times. The activation energy of this peak is comparable to the polaron binding energy in pentacene. The absence of trap signals in the admittance spectra confirmed that both the semiconductor and the oxide/semiconductor interface have negligible density of deep traps, likely owing to the passivation of SiO2 before pentacene growth. Nevertheless, current instabilities were observed in time-dependent current measurements following the application of gate-voltage pulses. The corresponding activation energy matches the energy of a hole trap in SiO2. We show that hole trapping in the oxide can explain both the temperature and the time dependences of the current instabilities observed in pentacene MOS transistors. The combination of these experimental techniques allows us to derive a comprehensive model for charge transport in hybrid architectures where trapping processes occur at various time and length scales.
Lee, Eunha; Benayad, Anass; Shin, Taeho; Lee, HyungIk; Ko, Dong-Su; Kim, Tae Sang; Son, Kyoung Seok; Ryu, Myungkwan; Jeon, Sanghun; Park, Gyeong-Su
2014-01-01
Interest in oxide semiconductors stems from benefits, primarily their ease of process, relatively high mobility (0.3–10 cm2/vs), and wide-bandgap. However, for practical future electronic devices, the channel mobility should be further increased over 50 cm2/vs and wide-bandgap is not suitable for photo/image sensor applications. The incorporation of nitrogen into ZnO semiconductor can be tailored to increase channel mobility, enhance the optical absorption for whole visible light and form uniform micro-structure, satisfying the desirable attributes essential for high performance transistor and visible light photo-sensors on large area platform. Here, we present electronic, optical and microstructural properties of ZnON, a composite of Zn3N2 and ZnO. Well-optimized ZnON material presents high mobility exceeding 100 cm2V−1s−1, the band-gap of 1.3 eV and nanocrystalline structure with multiphase. We found that mobility, microstructure, electronic structure, band-gap and trap properties of ZnON are varied with nitrogen concentration in ZnO. Accordingly, the performance of ZnON-based device can be adjustable to meet the requisite of both switch device and image-sensor potentials. These results demonstrate how device and material attributes of ZnON can be optimized for new device strategies in display technology and we expect the ZnON will be applicable to a wide range of imaging/display devices. PMID:24824778
Recent Advances of Solution-Processed Metal Oxide Thin-Film Transistors.
Xu, Wangying; Li, Hao; Xu, Jian-Bin; Wang, Lei
2018-03-06
Solution-processed metal oxide thin-film transistors (TFTs) are considered as one of the most promising transistor technologies for future large-area flexible electronics. This review surveys the recent advances in solution-based oxide TFTs, including n-type oxide semiconductors, oxide dielectrics and p-type oxide semiconductors. Firstly, we provide an introduction on oxide TFTs and the TFT configurations and operating principles. Secondly, we present the recent progress in solution-processed n-type transistors, with a special focus on low-temperature and large-area solution processed approaches as well as novel non-display applications. Thirdly, we give a detailed analysis of the state-of-the-art solution-processed oxide dielectrics for low-voltage electronics. Fourthly, we discuss the recent progress in solution-based p-type oxide semiconductors, which will enable the highly desirable future low-cost large-area complementary circuits. Finally, we draw the conclusions and outline the perspectives over the research field.
Note: An improved 3D imaging system for electron-electron coincidence measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yun Fei; Lee, Suk Kyoung; Adhikari, Pradip
We demonstrate an improved imaging system that can achieve highly efficient 3D detection of two electrons in coincidence. The imaging system is based on a fast frame complementary metal-oxide semiconductor camera and a high-speed waveform digitizer. We have shown previously that this detection system is capable of 3D detection of ions and electrons with good temporal and spatial resolution. Here, we show that with a new timing analysis algorithm, this system can achieve an unprecedented dead-time (<0.7 ns) and dead-space (<1 mm) when detecting two electrons. A true zero dead-time detection is also demonstrated.
Note: An improved 3D imaging system for electron-electron coincidence measurements
NASA Astrophysics Data System (ADS)
Lin, Yun Fei; Lee, Suk Kyoung; Adhikari, Pradip; Herath, Thushani; Lingenfelter, Steven; Winney, Alexander H.; Li, Wen
2015-09-01
We demonstrate an improved imaging system that can achieve highly efficient 3D detection of two electrons in coincidence. The imaging system is based on a fast frame complementary metal-oxide semiconductor camera and a high-speed waveform digitizer. We have shown previously that this detection system is capable of 3D detection of ions and electrons with good temporal and spatial resolution. Here, we show that with a new timing analysis algorithm, this system can achieve an unprecedented dead-time (<0.7 ns) and dead-space (<1 mm) when detecting two electrons. A true zero dead-time detection is also demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoidn, Oliver R.; Seidler, Gerald T., E-mail: seidler@uw.edu
We have integrated mass-produced commercial complementary metal-oxide-semiconductor (CMOS) image sensors and off-the-shelf single-board computers into an x-ray camera platform optimized for acquisition of x-ray spectra and radiographs at energies of 2–6 keV. The CMOS sensor and single-board computer are complemented by custom mounting and interface hardware that can be easily acquired from rapid prototyping services. For single-pixel detection events, i.e., events where the deposited energy from one photon is substantially localized in a single pixel, we establish ∼20% quantum efficiency at 2.6 keV with ∼190 eV resolution and a 100 kHz maximum detection rate. The detector platform’s useful intrinsic energymore » resolution, 5-μm pixel size, ease of use, and obvious potential for parallelization make it a promising candidate for many applications at synchrotron facilities, in laser-heating plasma physics studies, and in laboratory-based x-ray spectrometry.« less
Effect of solvents on optical band gap of silicon-doped graphene oxide
NASA Astrophysics Data System (ADS)
Tul Ain, Qura; Al-Modlej, Abeer; Alshammari, Abeer; Naeem Anjum, Muhammad
2018-03-01
The objective of this study was to determine the influence on the optical band gap when the same amount of silicon-doped graphene oxide was dissolved in three different solvents namely, distilled water, benzene, and dichloroethane. Ultraviolet-visible spectroscopy was used to analyse the optical properties of the solutions. Among all these solutions distilled water containing silicon-doped graphene oxide has the smallest optical band gap of 2.9 eV and is considered a semiconductor. Other solutions are not considered as semiconductors as they have optical band gaps greater than 4 eV. It was observed that there is an increase in the value of optical band gap of distilled water, benzene, and dichloroethane solutions indicating a rise in the insulating behaviour. In this experiment, graphene oxide was synthesised from graphite powder by modified Hummer’s method and was then doped with silicon. Synthesis and doping of graphene oxide were confirmed by various characterization techniques. Fourier transmission infrared spectroscopy was used for identification of surface functional groups. X-ray diffraction was carried out to confirm the formation of crystalline graphene oxide and silicon doped graphene oxide. In x-ray diffraction pattern, shifting of intensity peak from a 2θ value of 26.5° to 10° confirmed the synthesis of graphene oxide and various intensity peaks at different values of 2θ confirmed doping of graphene oxide with silicon. Scanning electron microscopy images indicated that graphene oxide sheets were decorated with spherical silicon nanoparticles. Energy dispersive x-ray spectroscopy showed that silicon doped graphene oxide powder contained 63.36% carbon, 34.05% oxygen, and 2.6% silicon.
NASA Astrophysics Data System (ADS)
Gelinck, G. H.; van Breemen, A. J. J. M.; Cobb, B.
2015-03-01
Ferroelectric polarization switching of poly(vinylidene difluoride-trifluoroethylene) is investigated in different thin-film device structures, ranging from simple capacitors to dual-gate thin-film transistors (TFT). Indium gallium zinc oxide, a high mobility amorphous oxide material, is used as semiconductor. We find that the ferroelectric can be polarized in both directions in the metal-ferroelectric-semiconductor (MFS) structure and in the dual-gate TFT under certain biasing conditions, but not in the single-gate thin-film transistors. These results disprove the common belief that MFS structures serve as a good model system for ferroelectric polarization switching in thin-film transistors.
NASA Astrophysics Data System (ADS)
Kong, Jae-Sung; Hyun, Hyo-Young; Seo, Sang-Ho; Shin, Jang-Kyoo
2008-11-01
Complementary metal-oxide-semiconductor (CMOS) vision chips for edge detection based on a resistive circuit have recently been developed. These chips help in the creation of neuromorphic systems of a compact size, high speed of operation, and low power dissipation. The output of the vision chip depends predominantly upon the electrical characteristics of the resistive network which consists of a resistive circuit. In this paper, the body effect of the metal-oxide-semiconductor field-effect transistor for current distribution in a resistive circuit is discussed with a simple model. In order to evaluate the model, two 160 × 120 CMOS vision chips have been fabricated using a standard CMOS technology. The experimental results nicely match our prediction.
Georgieva, J; Valova, E; Armyanov, S; Philippidis, N; Poulios, I; Sotiropoulos, S
2012-04-15
The use of binary semiconductor oxide anodes for the photoelectrocatalytic oxidation of organic species (both in solution and gas phase) is reviewed. In the first part of the review, the principle of electrically assisted photocatalysis is presented, the preparation methods for the most common semiconductor oxide catalysts are briefly mentioned, while the advantages of appropriately chosen semiconductor combinations for efficient UV and visible (vis) light utilization are highlighted. The second part of the review focuses on the discussion of TiO(2)-WO(3) photoanodes (among the most studied bi-component semiconductor oxide systems) and in particular on coatings prepared by electrodeposition/electrosynthesis or powder mixtures (the focus of the authors' research during recent years). Studies concerning the microscopic, spectroscopic and photoelectrochemical characterization of the catalysts are presented and examples of photoanode activity towards typical dissolved organic contaminants as well as organic vapours are given. Particular emphasis is paid to: (a) The dependence of photoactivity on catalyst morphology and composition and (b) the possibility of carrying out photoelectrochemistry in all-solid cells, thus opening up the opportunity for photoelectrocatalytic air treatment. Copyright © 2011 Elsevier B.V. All rights reserved.
Ishida, Haruki; Kagawa, Keiichiro; Komuro, Takashi; Zhang, Bo; Seo, Min-Woong; Takasawa, Taishi; Yasutomi, Keita; Kawahito, Shoji
2018-01-01
A probabilistic method to remove the random telegraph signal (RTS) noise and to increase the signal level is proposed, and was verified by simulation based on measured real sensor noise. Although semi-photon-counting-level (SPCL) ultra-low noise complementary-metal-oxide-semiconductor (CMOS) image sensors (CISs) with high conversion gain pixels have emerged, they still suffer from huge RTS noise, which is inherent to the CISs. The proposed method utilizes a multi-aperture (MA) camera that is composed of multiple sets of an SPCL CIS and a moderately fast and compact imaging lens to emulate a very fast single lens. Due to the redundancy of the MA camera, the RTS noise is removed by the maximum likelihood estimation where noise characteristics are modeled by the probability density distribution. In the proposed method, the photon shot noise is also relatively reduced because of the averaging effect, where the pixel values of all the multiple apertures are considered. An extremely low-light condition that the maximum number of electrons per aperture was the only 2e− was simulated. PSNRs of a test image for simple averaging, selective averaging (our previous method), and the proposed method were 11.92 dB, 11.61 dB, and 13.14 dB, respectively. The selective averaging, which can remove RTS noise, was worse than the simple averaging because it ignores the pixels with RTS noise and photon shot noise was less improved. The simulation results showed that the proposed method provided the best noise reduction performance. PMID:29587424
Yu, Xujiang; Yang, Kai; Chen, Xiaoyuan; Li, Wanwan
2017-10-01
Semiconductor nanoparticles with localized surface plasmon resonance (LSPR) have gained increasing interest due to their potential for use in nanomedicine, particularly in the area of cancer photothermal therapy. In this study, we have synthesized non-stoichiometric hollow silicon oxide nanoparticles (H-SiO x NPs) using a magnesiothermic reduction process. The black NPs generated a desired LSPR in the second near-infrared (NIR-II) window, as was demonstrated by a photothermal conversion efficiency of up to 48.6% at 1064 nm. Such an efficiency is the highest reported among the noble metal and semiconductor-based NPs as NIR-II PTT photothermal agents. In addition, H-SiO x NPs exhibited excellent in vivo photoacoustic (PA) imaging properties, and thus can be used for highly efficient in vivo cancer treatment via irradiation with a 1064 nm laser, even at 0.6 W cm -2 . The findings described are the first to demonstrate the existence of LSPR in non-stoichiometric silicon-based nanoparticles with a low-toxicity degradation pathway for in vivo application, and provide new insights towards understanding the role of new semiconductor nanoparticles in nanomedicine. Copyright © 2017 Elsevier Ltd. All rights reserved.
Characteristics of Gadolinium Oxide Nanoparticles Using Terahertz Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Dongkyu; Maeng, Inhee; Son, Joo-Hiuk
2009-04-19
The penetration property of the terahertz electromagnetic (THz) wave is relevant to its use. We used the THz wave spectroscopy system which easily penetrates some materials that do not contain water, e.g., plastic and ceramics. The system has been developed for several purposes, including measuring the properties of semiconductors and bio-materials, and detecting plastic bombs and ceramic knives at airports. It is also used for medical imaging systems, such as magnetic resonance imaging (MRI), at some research institutes. It can show not only the difference in amplitude, but also the difference of the phase of each point of sample. MRImore » technology usually uses contrast agents to enhance the quality of the image. Gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA), made with a heavy metal ion, is commonly used as a clinical MRI contrast agent. Gadolinium oxide (Gd{sub 2}O{sub 3}) nanoparticle is a new contrast agent. It serves to equip the core of each particle with antibodies or ligands. It can freely circulate in blood vessels without amassing in the liver or lungs. This study shows the characteristics of gadolinium oxide nanoparticles to further advance terahertz medical imaging.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lichterman, Michael F.; Sun, Ke; Hu, Shu
Small-band-gap (E g < 2 eV) semiconductors must be stabilized for use in integrated devices that convert solar energy into the bonding energy of a reduced fuel, specifically H 2 (g) or a reduced-carbon species such as CH 3 OH or CH 4 . To sustainably and scalably complete the fuel cycle, electrons must be liberated through the oxidation of water to O 2 (g). Strongly acidic or strongly alkaline electrolytes are needed to enable efficient and intrinsically safe operation of a full solar-driven water-splitting system. But, under water-oxidation conditions, the small-band-gap semiconductors required for efficient cell operation aremore » unstable, either dissolving or forming insulating surface oxides. Here, we describe herein recent progress in the protection of semiconductor photoanodes under such operational conditions. We specifically describe the properties of two protective overlayers, TiO 2 /Ni and NiO x , both of which have demonstrated the ability to protect otherwise unstable semiconductors for > 100 h of continuous solar-driven water oxidation when in contact with a highly alkaline aqueous electrolyte (1.0 M KOH(aq)). Furthermore, the stabilization of various semiconductor photoanodes is reviewed in the context of the electronic characteristics and a mechanistic analysis of the TiO 2 films, along with a discussion of the optical, catalytic, and electronic nature of NiO x films for stabilization of semiconductor photoanodes for water oxidation.« less
CMOS Imager Has Better Cross-Talk and Full-Well Performance
NASA Technical Reports Server (NTRS)
Pain, Bedabrata; Cunningham, Thomas J.
2011-01-01
A complementary metal oxide/semiconductor (CMOS) image detector now undergoing development is designed to exhibit less cross-talk and greater full-well capacity than do prior CMOS image detectors of the same type. Imagers of the type in question are designed to operate from low-voltage power supplies and are fabricated by processes that yield device features having dimensions in the deep submicron range. Because of the use of low supply potentials, maximum internal electric fields and depletion widths are correspondingly limited. In turn, these limitations are responsible for increases in cross-talk and decreases in charge-handling capacities. Moreover, for small pixels, lateral depletion cannot be extended. These adverse effects are even more accentuated in a back-illuminated CMOS imager, in which photogenerated charge carriers must travel across the entire thickness of the device. The figure shows a partial cross section of the structure in the device layer of the present developmental CMOS imager. (In a practical imager, the device layer would sit atop either a heavily doped silicon substrate or a thin silicon oxide layer on a silicon substrate, not shown here.) The imager chip is divided into two areas: area C, which contains readout circuits and other electronic circuits; and area I, which contains the imaging (photodetector and photogenerated-charge-collecting) pixel structures. Areas C and I are electrically isolated from each other by means of a trench filled with silicon oxide. The electrical isolation between areas C and I makes it possible to apply different supply potentials to these areas, thereby enabling optimization of the supply potential and associated design features for each area. More specifically, metal oxide semiconductor field-effect transistors (MOSFETs) that are typically included in CMOS imagers now reside in area C and can remain unchanged from established designs and operated at supply potentials prescribed for those designs, while the dopings and the lower supply potentials in area I can be tailored to optimize imager performance. In area I, the device layer includes an n+ -doped silicon layer on which is grown an n-doped silicon layer. A p-doped silicon layer is grown on top of the n -doped layer. The total imaging device thickness is the sum of the thickness of the n+, n, and p layers. A pixel photodiode is formed between a surface n+ implant, a p implant underneath it, the aforementioned p layer, and the n and n+ layers. Adjacent to the diode is a gate for transferring photogenerated charges out of the photodiode and into a floating diffusion formed by an implanted p+ layer on an implanted n-doped region. Metal contact pads are added to the back-side for providing back-side bias.
NASA Astrophysics Data System (ADS)
Li, Gong Ping; Chen, Rui; Guo, Dong Lai; Wong, Lai Mun; Wang, Shi Jie; Sun, Han Dong; Wu, Tom
2011-08-01
Controllably constructing hierarchical nanostructures with distinct components and designed architectures is an important theme of research in nanoscience, entailing novel but reliable approaches of bottom-up synthesis. Here, we report a facile method to reproducibly create semiconductor-insulator-metal core/shell nanostructures, which involves first coating uniform MgO shells onto metal oxide nanostructures in solution and then decorating them with Au nanoparticles. The semiconductor nanowire core can be almost any material and, herein, ZnO, SnO2 and In2O3 are used as examples. We also show that linear chains of short ZnO nanorods embedded in MgO nanotubes and porous MgO nanotubes can be obtained by taking advantage of the reduced thermal stability of the ZnO core. Furthermore, after MgO shell-coating and the appropriate annealing treatment, the intensity of the ZnO near-band-edge UV emission becomes much stronger, showing a 25-fold enhancement. The intensity ratio of the UV/visible emission can be increased further by decorating the surface of the ZnO/MgO nanowires with high-density plasmonic Au nanoparticles. These heterostructured semiconductor-insulator-metal nanowires with tailored morphologies and enhanced functionalities have great potential for use as nanoscale building blocks in photonic and electronic applications.Controllably constructing hierarchical nanostructures with distinct components and designed architectures is an important theme of research in nanoscience, entailing novel but reliable approaches of bottom-up synthesis. Here, we report a facile method to reproducibly create semiconductor-insulator-metal core/shell nanostructures, which involves first coating uniform MgO shells onto metal oxide nanostructures in solution and then decorating them with Au nanoparticles. The semiconductor nanowire core can be almost any material and, herein, ZnO, SnO2 and In2O3 are used as examples. We also show that linear chains of short ZnO nanorods embedded in MgO nanotubes and porous MgO nanotubes can be obtained by taking advantage of the reduced thermal stability of the ZnO core. Furthermore, after MgO shell-coating and the appropriate annealing treatment, the intensity of the ZnO near-band-edge UV emission becomes much stronger, showing a 25-fold enhancement. The intensity ratio of the UV/visible emission can be increased further by decorating the surface of the ZnO/MgO nanowires with high-density plasmonic Au nanoparticles. These heterostructured semiconductor-insulator-metal nanowires with tailored morphologies and enhanced functionalities have great potential for use as nanoscale building blocks in photonic and electronic applications. Electronic supplementary information (ESI) available: Representative SEM and TEM images of 700 °C annealed ZnO/MgO core/shell NWs, a TEM image of an individual MgO nanocrystal inside the MgO NTs and SEM images of SnO2 NP chains embedded in MgO NTs and comb-shaped MgO hollow nanostructures. See DOI: 10.1039/c1nr10352k
Ovsyannikov, Sergey V; Karkin, Alexander E; Morozova, Natalia V; Shchennikov, Vladimir V; Bykova, Elena; Abakumov, Artem M; Tsirlin, Alexander A; Glazyrin, Konstantin V; Dubrovinsky, Leonid
2014-12-23
An oxide semiconductor (perovskite-type Mn2 O3 ) is reported which has a narrow and direct bandgap of 0.45 eV and a high Vickers hardness of 15 GPa. All the known materials with similar electronic band structures (e.g., InSb, PbTe, PbSe, PbS, and InAs) play crucial roles in the semiconductor industry. The perovskite-type Mn2 O3 described is much stronger than the above semiconductors and may find useful applications in different semiconductor devices, e.g., in IR detectors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Large Lateral Photovoltaic Effect in Metal-(Oxide-) Semiconductor Structures
Yu, Chongqi; Wang, Hui
2010-01-01
The lateral photovoltaic effect (LPE) can be used in position-sensitive detectors to detect very small displacements due to its output of lateral photovoltage changing linearly with light spot position. In this review, we will summarize some of our recent works regarding LPE in metal-semiconductor and metal-oxide-semiconductor structures, and give a theoretical model of LPE in these two structures. PMID:22163463
Boukhayma, Assim; Dupret, Antoine; Rostaing, Jean-Pierre; Enz, Christian
2016-03-03
This paper presents the first low noise complementary metal oxide semiconductor (CMOS) deletedCMOS terahertz (THz) imager based on source modulation and in-pixel high-Q filtering. The 31 × 31 focal plane array has been fully integrated in a 0 . 13 μ m standard CMOS process. The sensitivity has been improved significantly by modulating the active THz source that lights the scene and performing on-chip high-Q filtering. Each pixel encompass a broadband bow tie antenna coupled to an N-type metal-oxide-semiconductor (NMOS) detector that shifts the THz radiation, a low noise adjustable gain amplifier and a high-Q filter centered at the modulation frequency. The filter is based on a passive switched-capacitor (SC) N-path filter combined with a continuous-time broad-band Gm-C filter. A simplified analysis that helps in designing and tuning the passive SC N-path filter is provided. The characterization of the readout chain shows that a Q factor of 100 has been achieved for the filter with a good matching between the analytical calculation and the measurement results. An input-referred noise of 0 . 2 μ V RMS has been measured. Characterization of the chip with different THz wavelengths confirms the broadband feature of the antenna and shows that this THz imager reaches a total noise equivalent power of 0 . 6 nW at 270 GHz and 0 . 8 nW at 600 GHz.
Boukhayma, Assim; Dupret, Antoine; Rostaing, Jean-Pierre; Enz, Christian
2016-01-01
This paper presents the first low noise complementary metal oxide semiconductor (CMOS) terahertz (THz) imager based on source modulation and in-pixel high-Q filtering. The 31×31 focal plane array has been fully integrated in a 0.13μm standard CMOS process. The sensitivity has been improved significantly by modulating the active THz source that lights the scene and performing on-chip high-Q filtering. Each pixel encompass a broadband bow tie antenna coupled to an N-type metal-oxide-semiconductor (NMOS) detector that shifts the THz radiation, a low noise adjustable gain amplifier and a high-Q filter centered at the modulation frequency. The filter is based on a passive switched-capacitor (SC) N-path filter combined with a continuous-time broad-band Gm-C filter. A simplified analysis that helps in designing and tuning the passive SC N-path filter is provided. The characterization of the readout chain shows that a Q factor of 100 has been achieved for the filter with a good matching between the analytical calculation and the measurement results. An input-referred noise of 0.2μV RMS has been measured. Characterization of the chip with different THz wavelengths confirms the broadband feature of the antenna and shows that this THz imager reaches a total noise equivalent power of 0.6 nW at 270 GHz and 0.8 nW at 600 GHz. PMID:26950131
Electronic structure and relative stability of the coherent and semi-coherent HfO2/III-V interfaces
NASA Astrophysics Data System (ADS)
Lahti, A.; Levämäki, H.; Mäkelä, J.; Tuominen, M.; Yasir, M.; Dahl, J.; Kuzmin, M.; Laukkanen, P.; Kokko, K.; Punkkinen, M. P. J.
2018-01-01
III-V semiconductors are prominent alternatives to silicon in metal oxide semiconductor devices. Hafnium dioxide (HfO2) is a promising oxide with a high dielectric constant to replace silicon dioxide (SiO2). The potentiality of the oxide/III-V semiconductor interfaces is diminished due to high density of defects leading to the Fermi level pinning. The character of the harmful defects has been intensively debated. It is very important to understand thermodynamics and atomic structures of the interfaces to interpret experiments and design methods to reduce the defect density. Various realistic gap defect state free models for the HfO2/III-V(100) interfaces are presented. Relative energies of several coherent and semi-coherent oxide/III-V semiconductor interfaces are determined for the first time. The coherent and semi-coherent interfaces represent the main interface types, based on the Ga-O bridges and As (P) dimers, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benito, R.M.; Nozik, A.J.
1985-07-18
A kinetic model was developed to describe the effects of light intensity on the photocorrosion of n-type semiconductor electrodes. The model is an extension of previous work by Gomes and co-workers that includes the possibility of multiple steps for the oxidation reaction of the reducing agent in the electrolyte. Six cases are considered where the semiconductor decomposition reaction is multistep (each step involves a hole); the oxidation reaction of the reducing agent is multistep (each step after the first involves a hole or a chemical intermediate), and the first steps of the competing oxidation reactions are reversible or irreversible. Itmore » was found, contrary to previous results, that the photostability of semiconductor electrodes could increase with increased light intensity if the desired oxidation reaction of the reducing agent in the electrolyte was multistep with the first step being reversible. 14 references, 5 figures, 1 table.« less
Swiler, Thomas P.; Garcia, Ernest J.; Francis, Kathryn M.
2013-06-11
A method is disclosed for singulating die from a semiconductor substrate (e.g. a semiconductor-on-insulator substrate or a bulk silicon substrate) containing an oxide layer (e.g. silicon dioxide or a silicate glass) and one or more semiconductor layers (e.g. monocrystalline or polycrystalline silicon) located above the oxide layer. The method etches trenches through the substrate and through each semiconductor layer about the die being singulated, with the trenches being offset from each other around at least a part of the die so that the oxide layer between the trenches holds the substrate and die together. The trenches can be anisotropically etched using a Deep Reactive Ion Etching (DRIE) process. After the trenches are etched, the oxide layer between the trenches can be etched away with an HF etchant to singulate the die. A release fixture can be located near one side of the substrate to receive the singulated die.
Swiler, Thomas P [Albuquerque, NM; Garcia, Ernest J [Albuquerque, NM; Francis, Kathryn M [Rio Rancho, NM
2014-01-07
A method is disclosed for singulating die from a semiconductor substrate (e.g. a semiconductor-on-insulator substrate or a bulk silicon substrate) containing an oxide layer (e.g. silicon dioxide or a silicate glass) and one or more semiconductor layers (e.g. monocrystalline or polycrystalline silicon) located above the oxide layer. The method etches trenches through the substrate and through each semiconductor layer about the die being singulated, with the trenches being offset from each other around at least a part of the die so that the oxide layer between the trenches holds the substrate and die together. The trenches can be anisotropically etched using a Deep Reactive Ion Etching (DRIE) process. After the trenches are etched, the oxide layer between the trenches can be etched away with a HF etchant to singulate the die. A release fixture can be located near one side of the substrate to receive the singulated die.
Warren, William L.; Vanheusden, Karel J. R.; Schwank, James R.; Fleetwood, Daniel M.; Shaneyfelt, Marty R.; Winokur, Peter S.; Devine, Roderick A. B.
1998-01-01
A method for screening or qualifying semiconductor substrates for integrated circuit fabrication. The method comprises the steps of annealing at least one semiconductor substrate at a first temperature in a defect-activating ambient (e.g. hydrogen, forming gas, or ammonia) for sufficient time for activating any defects within on oxide layer of the substrate; measuring a defect-revealing electrical characteristic of at least a portion of the oxide layer for determining a quantity of activated defects therein; and selecting substrates for which the quantity of activated defects is below a predetermined level. The defect-revealing electrical characteristic may be a capacitance-versus-voltage (C-V) characteristic or a current-versus-voltage (I-V) characteristic that is dependent on an electrical charge in the oxide layer generated by the activated defects. Embodiments of the present invention may be applied for screening any type of semiconductor substrate or wafer having an oxide layer formed thereon or therein. This includes silicon-on-insulator substrates formed by a separation by the implantation of oxygen (SIMOX) process or the bond and etch back silicon-on-insulator (BESOI) process, as well as silicon substrates having a thermal oxide layer or a deposited oxide layer.
CMOS Time-Resolved, Contact, and Multispectral Fluorescence Imaging for DNA Molecular Diagnostics
Guo, Nan; Cheung, Ka Wai; Wong, Hiu Tung; Ho, Derek
2014-01-01
Instrumental limitations such as bulkiness and high cost prevent the fluorescence technique from becoming ubiquitous for point-of-care deoxyribonucleic acid (DNA) detection and other in-field molecular diagnostics applications. The complimentary metal-oxide-semiconductor (CMOS) technology, as benefited from process scaling, provides several advanced capabilities such as high integration density, high-resolution signal processing, and low power consumption, enabling sensitive, integrated, and low-cost fluorescence analytical platforms. In this paper, CMOS time-resolved, contact, and multispectral imaging are reviewed. Recently reported CMOS fluorescence analysis microsystem prototypes are surveyed to highlight the present state of the art. PMID:25365460
Inorganic Chemistry Solutions to Semiconductor Nanocrystal Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarado, Samuel R.; Guo, Yijun; Ruberu, T. Purnima A.
2014-03-15
The optoelectronic and chemical properties of semiconductor nanocrystals heavily depend on their composition, size, shape and internal structure, surface functionality, etc. Available strategies to alter these properties through traditional colloidal syntheses and ligand exchange methods place a premium on specific reaction conditions and surfactant combinations. In this invited review, we apply a molecular-level understanding of chemical precursor reactivity to reliably control the morphology, composition and intimate architecture (core/shell vs. alloyed) of semiconductor nanocrystals. We also describe our work aimed at achieving highly selective, low-temperature photochemical methods for the synthesis of semiconductor–metal and semiconductor–metal oxide photocatalytic nanocomposites. In addition, we describemore » our work on surface modification of semiconductor nanocrystal quantum dots using new approaches and methods that bypass ligand exchange, retaining the nanocrystal's native ligands and original optical properties, as well as on spectroscopic methods of characterization useful in determining surface ligand organization and chemistry. Using recent examples from our group and collaborators, we demonstrate how these efforts have lead to faster, wider and more systematic application of semiconductor nanocrystal-based materials to biological imaging and tracking, and to photocatalysis of unconventional substrates. We believe techniques and methods borrowed from inorganic chemistry (including coordination, organometallic and solid state chemistry) have much to offer in reaching a better understanding of the synthesis, functionalization and real-life application of such exciting materials as semiconductor nanocrystals (quantum dots, rods, tetrapods, etc.).« less
High-speed multi-exposure laser speckle contrast imaging with a single-photon counting camera
Dragojević, Tanja; Bronzi, Danilo; Varma, Hari M.; Valdes, Claudia P.; Castellvi, Clara; Villa, Federica; Tosi, Alberto; Justicia, Carles; Zappa, Franco; Durduran, Turgut
2015-01-01
Laser speckle contrast imaging (LSCI) has emerged as a valuable tool for cerebral blood flow (CBF) imaging. We present a multi-exposure laser speckle imaging (MESI) method which uses a high-frame rate acquisition with a negligible inter-frame dead time to mimic multiple exposures in a single-shot acquisition series. Our approach takes advantage of the noise-free readout and high-sensitivity of a complementary metal-oxide-semiconductor (CMOS) single-photon avalanche diode (SPAD) array to provide real-time speckle contrast measurement with high temporal resolution and accuracy. To demonstrate its feasibility, we provide comparisons between in vivo measurements with both the standard and the new approach performed on a mouse brain, in identical conditions. PMID:26309751
Emerging technologies for high performance infrared detectors
NASA Astrophysics Data System (ADS)
Tan, Chee Leong; Mohseni, Hooman
2018-01-01
Infrared photodetectors (IRPDs) have become important devices in various applications such as night vision, military missile tracking, medical imaging, industry defect imaging, environmental sensing, and exoplanet exploration. Mature semiconductor technologies such as mercury cadmium telluride and III-V material-based photodetectors have been dominating the industry. However, in the last few decades, significant funding and research has been focused to improve the performance of IRPDs such as lowering the fabrication cost, simplifying the fabrication processes, increasing the production yield, and increasing the operating temperature by making use of advances in nanofabrication and nanotechnology. We will first review the nanomaterial with suitable electronic and mechanical properties, such as two-dimensional material, graphene, transition metal dichalcogenides, and metal oxides. We compare these with more traditional low-dimensional material such as quantum well, quantum dot, quantum dot in well, semiconductor superlattice, nanowires, nanotube, and colloid quantum dot. We will also review the nanostructures used for enhanced light-matter interaction to boost the IRPD sensitivity. These include nanostructured antireflection coatings, optical antennas, plasmonic, and metamaterials.
Metal oxide semiconductor thin-film transistors for flexible electronics
NASA Astrophysics Data System (ADS)
Petti, Luisa; Münzenrieder, Niko; Vogt, Christian; Faber, Hendrik; Büthe, Lars; Cantarella, Giuseppe; Bottacchi, Francesca; Anthopoulos, Thomas D.; Tröster, Gerhard
2016-06-01
The field of flexible electronics has rapidly expanded over the last decades, pioneering novel applications, such as wearable and textile integrated devices, seamless and embedded patch-like systems, soft electronic skins, as well as imperceptible and transient implants. The possibility to revolutionize our daily life with such disruptive appliances has fueled the quest for electronic devices which yield good electrical and mechanical performance and are at the same time light-weight, transparent, conformable, stretchable, and even biodegradable. Flexible metal oxide semiconductor thin-film transistors (TFTs) can fulfill all these requirements and are therefore considered the most promising technology for tomorrow's electronics. This review reflects the establishment of flexible metal oxide semiconductor TFTs, from the development of single devices, large-area circuits, up to entirely integrated systems. First, an introduction on metal oxide semiconductor TFTs is given, where the history of the field is revisited, the TFT configurations and operating principles are presented, and the main issues and technological challenges faced in the area are analyzed. Then, the recent advances achieved for flexible n-type metal oxide semiconductor TFTs manufactured by physical vapor deposition methods and solution-processing techniques are summarized. In particular, the ability of flexible metal oxide semiconductor TFTs to combine low temperature fabrication, high carrier mobility, large frequency operation, extreme mechanical bendability, together with transparency, conformability, stretchability, and water dissolubility is shown. Afterward, a detailed analysis of the most promising metal oxide semiconducting materials developed to realize the state-of-the-art flexible p-type TFTs is given. Next, the recent progresses obtained for flexible metal oxide semiconductor-based electronic circuits, realized with both unipolar and complementary technology, are reported. In particular, the realization of large-area digital circuitry like flexible near field communication tags and analog integrated circuits such as bendable operational amplifiers is presented. The last topic of this review is devoted for emerging flexible electronic systems, from foldable displays, power transmission elements to integrated systems for large-area sensing and data storage and transmission. Finally, the conclusions are drawn and an outlook over the field with a prediction for the future is provided.
Metal oxide semiconductor thin-film transistors for flexible electronics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petti, Luisa; Vogt, Christian; Büthe, Lars
The field of flexible electronics has rapidly expanded over the last decades, pioneering novel applications, such as wearable and textile integrated devices, seamless and embedded patch-like systems, soft electronic skins, as well as imperceptible and transient implants. The possibility to revolutionize our daily life with such disruptive appliances has fueled the quest for electronic devices which yield good electrical and mechanical performance and are at the same time light-weight, transparent, conformable, stretchable, and even biodegradable. Flexible metal oxide semiconductor thin-film transistors (TFTs) can fulfill all these requirements and are therefore considered the most promising technology for tomorrow's electronics. This reviewmore » reflects the establishment of flexible metal oxide semiconductor TFTs, from the development of single devices, large-area circuits, up to entirely integrated systems. First, an introduction on metal oxide semiconductor TFTs is given, where the history of the field is revisited, the TFT configurations and operating principles are presented, and the main issues and technological challenges faced in the area are analyzed. Then, the recent advances achieved for flexible n-type metal oxide semiconductor TFTs manufactured by physical vapor deposition methods and solution-processing techniques are summarized. In particular, the ability of flexible metal oxide semiconductor TFTs to combine low temperature fabrication, high carrier mobility, large frequency operation, extreme mechanical bendability, together with transparency, conformability, stretchability, and water dissolubility is shown. Afterward, a detailed analysis of the most promising metal oxide semiconducting materials developed to realize the state-of-the-art flexible p-type TFTs is given. Next, the recent progresses obtained for flexible metal oxide semiconductor-based electronic circuits, realized with both unipolar and complementary technology, are reported. In particular, the realization of large-area digital circuitry like flexible near field communication tags and analog integrated circuits such as bendable operational amplifiers is presented. The last topic of this review is devoted for emerging flexible electronic systems, from foldable displays, power transmission elements to integrated systems for large-area sensing and data storage and transmission. Finally, the conclusions are drawn and an outlook over the field with a prediction for the future is provided.« less
A Real-Time Ultraviolet Radiation Imaging System Using an Organic Photoconductive Image Sensor†
Okino, Toru; Yamahira, Seiji; Yamada, Shota; Hirose, Yutaka; Odagawa, Akihiro; Kato, Yoshihisa; Tanaka, Tsuyoshi
2018-01-01
We have developed a real time ultraviolet (UV) imaging system that can visualize both invisible UV light and a visible (VIS) background scene in an outdoor environment. As a UV/VIS image sensor, an organic photoconductive film (OPF) imager is employed. The OPF has an intrinsically higher sensitivity in the UV wavelength region than those of conventional consumer Complementary Metal Oxide Semiconductor (CMOS) image sensors (CIS) or Charge Coupled Devices (CCD). As particular examples, imaging of hydrogen flame and of corona discharge is demonstrated. UV images overlapped on background scenes are simply made by on-board background subtraction. The system is capable of imaging weaker UV signals by four orders of magnitude than that of VIS background. It is applicable not only to future hydrogen supply stations but also to other UV/VIS monitor systems requiring UV sensitivity under strong visible radiation environment such as power supply substations. PMID:29361742
Real-time biochemical sensor based on Raman scattering with CMOS contact imaging.
Muyun Cao; Yuhua Li; Yadid-Pecht, Orly
2015-08-01
This work presents a biochemical sensor based on Raman scattering with Complementary metal-oxide-semiconductor (CMOS) contact imaging. This biochemical optical sensor is designed for detecting the concentration of solutions. The system is built with a laser diode, an optical filter, a sample holder and a commercial CMOS sensor. The output of the system is analyzed by an image processing program. The system provides instant measurements with a resolution of 0.2 to 0.4 Mol. This low cost and easy-operated small scale system is useful in chemical, biomedical and environmental labs for quantitative bio-chemical concentration detection with results reported comparable to a highly cost commercial spectrometer.
Charge pump-based MOSFET-only 1.5-bit pipelined ADC stage in digital CMOS technology
NASA Astrophysics Data System (ADS)
Singh, Anil; Agarwal, Alpana
2016-10-01
A simple low-power and low-area metal-oxide-semiconductor field-effect transistor-only fully differential 1.5-bit pipelined analog-to-digital converter stage is proposed and designed in Taiwan Semiconductor Manufacturing Company 0.18 μm-technology using BSIM3v3 parameters with supply voltage of 1.8 V in inexpensive digital complementary metal-oxide semiconductor (CMOS) technology. It is based on charge pump technique to achieve the desired voltage gain of 2, independent of capacitor mismatch and avoiding the need of power hungry operational amplifier-based architecture to reduce the power, Si area and cost. Various capacitances are implemented by metal-oxide semiconductor capacitors, offering compatibility with cheaper digital CMOS process in order to reduce the much required manufacturing cost.
Oxide semiconductor thin-film transistors: a review of recent advances.
Fortunato, E; Barquinha, P; Martins, R
2012-06-12
Transparent electronics is today one of the most advanced topics for a wide range of device applications. The key components are wide bandgap semiconductors, where oxides of different origins play an important role, not only as passive component but also as active component, similar to what is observed in conventional semiconductors like silicon. Transparent electronics has gained special attention during the last few years and is today established as one of the most promising technologies for leading the next generation of flat panel display due to its excellent electronic performance. In this paper the recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed and p-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed. After a short introduction where the main advantages of these semiconductors are presented, as well as the industry expectations, the beautiful history of TFTs is revisited, including the main landmarks in the last 80 years, finishing by referring to some papers that have played an important role in shaping transparent electronics. Then, an overview is presented of state of the art n-type TFTs processed by physical vapour deposition methods, and finally one of the most exciting, promising, and low cost but powerful technologies is discussed: solution-processed oxide TFTs. Moreover, a more detailed focus analysis will be given concerning p-type oxide TFTs, mainly centred on two of the most promising semiconductor candidates: copper oxide and tin oxide. The most recent data related to the production of complementary metal oxide semiconductor (CMOS) devices based on n- and p-type oxide TFT is also be presented. The last topic of this review is devoted to some emerging applications, finalizing with the main conclusions. Related work that originated at CENIMAT|I3N during the last six years is included in more detail, which has led to the fabrication of high performance n- and p-type oxide transistors as well as the fabrication of CMOS devices with and on paper. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Context-based automated defect classification system using multiple morphological masks
Gleason, Shaun S.; Hunt, Martin A.; Sari-Sarraf, Hamed
2002-01-01
Automatic detection of defects during the fabrication of semiconductor wafers is largely automated, but the classification of those defects is still performed manually by technicians. This invention includes novel digital image analysis techniques that generate unique feature vector descriptions of semiconductor defects as well as classifiers that use these descriptions to automatically categorize the defects into one of a set of pre-defined classes. Feature extraction techniques based on multiple-focus images, multiple-defect mask images, and segmented semiconductor wafer images are used to create unique feature-based descriptions of the semiconductor defects. These feature-based defect descriptions are subsequently classified by a defect classifier into categories that depend on defect characteristics and defect contextual information, that is, the semiconductor process layer(s) with which the defect comes in contact. At the heart of the system is a knowledge database that stores and distributes historical semiconductor wafer and defect data to guide the feature extraction and classification processes. In summary, this invention takes as its input a set of images containing semiconductor defect information, and generates as its output a classification for the defect that describes not only the defect itself, but also the location of that defect with respect to the semiconductor process layers.
Warren, W.L.; Vanheusden, K.J.R.; Schwank, J.R.; Fleetwood, D.M.; Shaneyfelt, M.R.; Winokur, P.S.; Devine, R.A.B.
1998-07-28
A method is disclosed for screening or qualifying semiconductor substrates for integrated circuit fabrication. The method comprises the steps of annealing at least one semiconductor substrate at a first temperature in a defect-activating ambient (e.g. hydrogen, forming gas, or ammonia) for sufficient time for activating any defects within on oxide layer of the substrate; measuring a defect-revealing electrical characteristic of at least a portion of the oxide layer for determining a quantity of activated defects therein; and selecting substrates for which the quantity of activated defects is below a predetermined level. The defect-revealing electrical characteristic may be a capacitance-versus voltage (C-V) characteristic or a current-versus-voltage (I-V) characteristic that is dependent on an electrical charge in the oxide layer generated by the activated defects. Embodiments of the present invention may be applied for screening any type of semiconductor substrate or wafer having an oxide layer formed thereon or therein. This includes silicon-on-insulator substrates formed by a separation by the implantation of oxygen (SIMOX) process or the bond and etch back silicon-on-insulator (BESOI) process, as well as silicon substrates having a thermal oxide layer or a deposited oxide layer. 5 figs.
NASA Astrophysics Data System (ADS)
Wang, Ming-Tsong; Hsu, De-Cheng; Juan, Pi-Chun; Wang, Y. L.; Lee, Joseph Ya-min
2010-09-01
Metal-oxide-semiconductor capacitors and n-channel metal-oxide-semiconductor field-effect transistors with La2O3 gate dielectric were fabricated. The positive bias temperature instability was studied. The degradation of threshold voltage (ΔVT) showed an exponential dependence on the stress time in the temperature range from 25 to 75 °C. The degradation of subthreshold slope (ΔS) and gate leakage (IG) with stress voltage was also measured. The degradation of VT is attributed to the oxide trap charges Qot. The extracted activation energy of 0.2 eV is related to a degradation dominated by the release of atomic hydrogen in La2O3 thin films.
An Ultrathin Single Crystalline Relaxor Ferroelectric Integrated on a High Mobility Semiconductor.
Moghadam, Reza M; Xiao, Zhiyong; Ahmadi-Majlan, Kamyar; Grimley, Everett D; Bowden, Mark; Ong, Phuong-Vu; Chambers, Scott A; Lebeau, James M; Hong, Xia; Sushko, Peter V; Ngai, Joseph H
2017-10-11
The epitaxial growth of multifunctional oxides on semiconductors has opened a pathway to introduce new functionalities to semiconductor device technologies. In particular, the integration of gate materials that enable nonvolatile or hysteretic functionality in field-effect transistors could lead to device technologies that consume less power or allow for novel modalities in computing. Here we present electrical characterization of ultrathin single crystalline SrZr x Ti 1-x O 3 (x = 0.7) films epitaxially grown on a high mobility semiconductor, Ge. Epitaxial films of SrZr x Ti 1-x O 3 exhibit relaxor behavior, characterized by a hysteretic polarization that can modulate the surface potential of Ge. We find that gate layers as thin as 5 nm corresponding to an equivalent-oxide thickness of just 1.0 nm exhibit a ∼2 V hysteretic window in the capacitance-voltage characteristics. The development of hysteretic metal-oxide-semiconductor capacitors with nanoscale gate thicknesses opens new vistas for nanoelectronic devices.
Zhou, Xu; Li, Fei; Li, Xiaona; Li, Hua; Wang, Yong; Sun, Licheng
2015-01-14
Photocatalytic oxidation of organic compounds proceeded efficiently in a hybrid system with ruthenium aqua complexes as catalysts, BiVO4 as a light absorber, [Co(NH3)5Cl](2+) as a sacrificial electron acceptor and water as an oxygen source. The photogenerated holes in the semiconductor are used to oxidize molecular catalysts into the high-valent Ru(IV)=O intermediates for 2e(-) oxidation.
Electrical properties of metal/Al2O3/In0.53Ga0.47As capacitors grown on InP
NASA Astrophysics Data System (ADS)
Ferrandis, Philippe; Billaud, Mathilde; Duvernay, Julien; Martin, Mickael; Arnoult, Alexandre; Grampeix, Helen; Cassé, Mikael; Boutry, Hervé; Baron, Thierry; Vinet, Maud; Reimbold, Gilles
2018-04-01
To overcome the Fermi-level pinning in III-V metal-oxide-semiconductor capacitors, attention is usually focused on the choice of dielectric and surface chemical treatments prior to oxide deposition. In this work, we examined the influence of the III-V material surface cleaning and the semiconductor growth technique on the electrical properties of metal/Al2O3/In0.53Ga0.47As capacitors grown on InP(100) substrates. By means of the capacitance-voltage measurements, we demonstrated that samples do not have the same total oxide charge density depending on the cleaning solution used [(NH4)2S or NH4OH] prior to oxide deposition. The determination of the interface trap density revealed that a Fermi-level pinning occurs for samples grown by metalorganic chemical vapor deposition but not for similar samples grown by molecular beam epitaxy. Deep level transient spectroscopy analysis explained the Fermi-level pinning by an additional signal for samples grown by metalorganic chemical vapor deposition, attributed to the tunneling effect of carriers trapped in oxide toward interface states. This work emphasizes that the choice of appropriate oxide and cleaning treatment is not enough to prevent a Fermi-level pinning in III-V metal-oxide-semiconductor capacitors. The semiconductor growth technique needs to be taken into account because it impacts the trapping properties of the oxide.
1982-05-01
semiconductor Schottky-barrier contacts are used in many semiconductor devices, including switches, rectifiers, varactors , IMPATTs, mixer and detector...ionic materials such as most of the II-VI compound semiconductors (e.g. ZnS and ZnO) and the transition-metal oxides , the barrier height is strongly...the alloying process described above is nonuniformity, due to the incomplete removal of residual surface oxides prior to the evaporation of the metal
Spahn, Olga B.; Lear, Kevin L.
1998-01-01
A semiconductor structure. The semiconductor structure comprises a plurality of semiconductor layers formed on a substrate including at least one layer of a III-V compound semiconductor alloy comprising aluminum (Al) and antimony (Sb), with at least a part of the AlSb-alloy layer being chemically converted by an oxidation process to form superposed electrically insulating and electrically conducting portions. The electrically insulating portion formed from the AlSb-alloy layer comprises an oxide of aluminum (e.g. Al.sub.2 O.sub.3), while the electrically conducting portion comprises Sb. A lateral oxidation process allows formation of the superposed insulating and conducting portions below monocrystalline semiconductor layers for forming many different types of semiconductor structures having particular utility for optoelectronic devices such as light-emitting diodes, edge-emitting lasers, vertical-cavity surface-emitting lasers, photodetectors and optical modulators (waveguide and surface normal), and for electronic devices such as heterojunction bipolar transistors, field-effect transistors and quantum-effect devices. The invention is expected to be particularly useful for forming light-emitting devices for use in the 1.3-1.6 .mu.m wavelength range, with the AlSb-alloy layer acting to define an active region of the device and to effectively channel an electrical current therein for efficient light generation.
Zhan, Hong-Ju; Zhou, Pei-Jiang; Ma, Rong; Liu, Xi-Jing; He, Yu-Ning; Zhou, Chuan-Yun
2014-01-01
Quasi core shell alloyed CdSeS quantum dots (QDs) have been prepared through a facile aqueous-phase route employing microwave irradiation technique. The optical spectroscopy and structure characterization evidenced the quasi core shell alloyed structures of CdSeS QDs. The X-ray diffraction patterns of the obtained CdSeS QDs displayed peak positions very close to those of bulk cubic CdS crystal structures and the result of X-ray photoelectron spectroscopy data re-confirmed the thick CdS shell on the CdSe core. The TEM images and HRTEM images of the CdSeS QDs ascertained the well-defined spherical particles and a relatively narrow size distribution. On the basis, the stability of the obtained QDs in an oxidative environment was also discussed using etching reaction by H2O2. The experiments result showed the as-prepared QDs present high tolerance towards H2O2, obviously superior to the commonly used CdTe QDs and core-shell CdTe/CdS QDs, which was attributed to the unique quasi core-shell CdSeS crystal structure and the small lattice mismatch between CdSe and CdS semiconductor materials. This assay provided insight to obtain high stable crystal structured semiconductor nanocrystals in the design and synthesis process.
Memory effects in a Al/Ti:HfO2/CuPc metal-oxide-semiconductor device
NASA Astrophysics Data System (ADS)
Tripathi, Udbhav; Kaur, Ramneek
2016-05-01
Metal oxide semiconductor structured organic memory device has been successfully fabricated. Ti doped hafnium oxide (Ti:HfO2) nanoparticles has been fabricated by precipitation method and further calcinated at 800 °C. Copper phthalocyanine, a hole transporting material has been utilized as an organic semiconductor. The electrical properties of the fabricated device have been studied by measuring the current-voltage and capacitance-voltage characteristics. The amount of charge stored in the nanoparticles has been calculated by using flat band condition. This simple approach for fabricating MOS memory device has opens up opportunities for the development of next generation memory devices.
Evolution of corundum-structured III-oxide semiconductors: Growth, properties, and devices
NASA Astrophysics Data System (ADS)
Fujita, Shizuo; Oda, Masaya; Kaneko, Kentaro; Hitora, Toshimi
2016-12-01
The recent progress and development of corundum-structured III-oxide semiconductors are reviewed. They allow bandgap engineering from 3.7 to ∼9 eV and function engineering, leading to highly durable electronic devices and deep ultraviolet optical devices as well as multifunctional devices. Mist chemical vapor deposition can be a simple and safe growth technology and is advantageous for reducing energy and cost for the growth. This is favorable for the wide commercial use of devices at low cost. The III-oxide semiconductors are promising candidates for new devices contributing to sustainable social, economic, and technological development for the future.
NASA Astrophysics Data System (ADS)
Xu, Cheng; Liu, Bo; Chen, Yi-Feng; Liang, Shuang; Song, Zhi-Tang; Feng, Song-Lin; Wan, Xu-Dong; Yang, Zuo-Ya; Xie, Joseph; Chen, Bomy
2008-05-01
A Ge2Sb2Te5 based phase change memory device cell integrated with metal-oxide semiconductor field effect transistor (MOSFET) is fabricated using standard 0. 18 μm complementary metal-oxide semiconductor process technology. It shows steady switching characteristics in the dc current-voltage measurement. The phase changing phenomenon from crystalline state to amorphous state with a voltage pulse altitude of 2.0 V and pulse width of 50 ns is also obtained. These results show the feasibility of integrating phase change memory cell with MOSFET.
Jungmann, Julia H; Heeren, Ron M A
2013-01-15
Instrumental developments for imaging and individual particle detection for biomolecular mass spectrometry (imaging) and fundamental atomic and molecular physics studies are reviewed. Ion-counting detectors, array detection systems and high mass detectors for mass spectrometry (imaging) are treated. State-of-the-art detection systems for multi-dimensional ion, electron and photon detection are highlighted. Their application and performance in three different imaging modes--integrated, selected and spectral image detection--are described. Electro-optical and microchannel-plate-based systems are contrasted. The analytical capabilities of solid-state pixel detectors--both charge coupled device (CCD) and complementary metal oxide semiconductor (CMOS) chips--are introduced. The Medipix/Timepix detector family is described as an example of a CMOS hybrid active pixel sensor. Alternative imaging methods for particle detection and their potential for future applications are investigated. Copyright © 2012 John Wiley & Sons, Ltd.
Single-silicon CCD-CMOS platform for multi-spectral detection from terahertz to x-rays.
Shalaby, Mostafa; Vicario, Carlo; Hauri, Christoph P
2017-11-15
Charge-coupled devices (CCDs) are a well-established imaging technology in the visible and x-ray frequency ranges. However, the small quantum photon energies of terahertz radiation have hindered the use of this mature semiconductor technological platform in this frequency range, leaving terahertz imaging totally dependent on low-resolution bolometer technologies. Recently, it has been shown that silicon CCDs can detect terahertz photons at a high field, but the detection sensitivity is limited. Here we show that silicon, complementary metal-oxide-semiconductor (CMOS) technology offers enhanced detection sensitivity of almost two orders of magnitude, compared to CCDs. Our findings allow us to extend the low-frequency terahertz cutoff to less than 2 THz, nearly closing the technological gap with electronic imagers operating up to 1 THz. Furthermore, with the silicon CCD/CMOS technology being sensitive to mid-infrared (mid-IR) and the x-ray ranges, we introduce silicon as a single detector platform from 1 EHz to 2 THz. This overcomes the present challenge in spatially overlapping a terahertz/mid-IR pump and x-ray probe radiation at facilities such as free electron lasers, synchrotron, and laser-based x-ray sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang-Liao, K.S.; Hwu, J.G.
The hardnesses of hot-carrier and radiation of metal-oxide nitride-oxide semiconductor (MONOS) devices can be improved by the irradiation-then-anneal (ITA) treatments. Each treatment includes an irradiation of Co-60 with a total dose of 1M rads(SiO[sub 2]) and an anneal in N[sub 2] at 400 C for 10 min successively. This improvement can be explained by the release of SiO[sub 2]/Si interfacial strain.
NASA Astrophysics Data System (ADS)
Almuslem, A. S.; Hanna, A. N.; Yapici, T.; Wehbe, N.; Diallo, E. M.; Kutbee, A. T.; Bahabry, R. R.; Hussain, M. M.
2017-02-01
In the recent past, with the advent of transient electronics for mostly implantable and secured electronic applications, the whole field effect transistor structure has been dissolved in a variety of chemicals. Here, we show simple water soluble nano-scale (sub-10 nm) germanium oxide (GeO2) as the dissolvable component to remove the functional structures of metal oxide semiconductor devices and then reuse the expensive germanium substrate again for functional device fabrication. This way, in addition to transiency, we also show an environmentally friendly manufacturing process for a complementary metal oxide semiconductor (CMOS) technology. Every year, trillions of complementary metal oxide semiconductor (CMOS) electronics are manufactured and billions are disposed, which extend the harmful impact to our environment. Therefore, this is a key study to show a pragmatic approach for water soluble high performance electronics for environmentally friendly manufacturing and bioresorbable electronic applications.
NASA Astrophysics Data System (ADS)
Wu, Shao-Hang; Zhang, Nan; Hu, Yong-Sheng; Chen, Hong; Jiang, Da-Peng; Liu, Xing-Yuan
2015-10-01
Strontium-zinc-oxide (SrZnO) films forming the semiconductor layers of thin-film transistors (TFTs) are deposited by using ion-assisted electron beam evaporation. Using strontium-oxide-doped semiconductors, the off-state current can be dramatically reduced by three orders of magnitude. This dramatic improvement is attributed to the incorporation of strontium, which suppresses carrier generation, thereby improving the TFT. Additionally, the presence of strontium inhibits the formation of zinc oxide (ZnO) with the hexagonal wurtzite phase and permits the formation of an unusual phase of ZnO, thus significantly changing the surface morphology of ZnO and effectively reducing the trap density of the channel. Project supported by the National Natural Science Foundation of China (Grant No. 6140031454) and the Innovation Program of Chinese Academy of Sciences and State Key Laboratory of Luminescence and Applications.
Comprehensive electrical analysis of metal/Al2O3/O-terminated diamond capacitance
NASA Astrophysics Data System (ADS)
Pham, T. T.; Maréchal, A.; Muret, P.; Eon, D.; Gheeraert, E.; Rouger, N.; Pernot, J.
2018-04-01
Metal oxide semiconductor capacitors were fabricated using p - type oxygen-terminated (001) diamond and Al2O3 deposited by atomic layer deposition at two different temperatures 250 °C and 380 °C. Current voltage I(V), capacitance voltage C(V), and capacitance frequency C(f) measurements were performed and analyzed for frequencies ranging from 1 Hz to 1 MHz and temperatures from 160 K to 360 K. A complete model for the Metal-Oxide-Semiconductor Capacitors electrostatics, leakage current mechanisms through the oxide into the semiconductor and small a.c. signal equivalent circuit of the device is proposed and discussed. Interface states densities are then evaluated in the range of 1012eV-1cm-2 . The strong Fermi level pinning is demonstrated to be induced by the combined effects of the leakage current through the oxide and the presence of diamond/oxide interface states.
Tu, Ying; Ahmad, Norlaily; Briscoe, Joe; Zhang, De-Wen; Krause, Steffi
2018-06-22
Light-addressable potentiometric sensors (LAPS) are of great interest in bioimaging applications such as the monitoring of concentrations in microfluidic channels or the investigation of metabolic and signaling events in living cells. By measuring the photocurrents at electrolyte-insulator-semiconductor (EIS) and electrolyte-semiconductor structures, LAPS can produce spatiotemporal images of chemical or biological analytes, electrical potentials and impedance. However, its commercial applications are often restricted by their limited AC photocurrents and resolution of LAPS images. Herein, for the first time, the use of 1D semiconducting oxides in the form of ZnO nanorods for LAPS imaging is explored to solve this issue. A significantly increased AC photocurrent with enhanced image resolution has been achieved based on ZnO nanorods, with a photocurrent of 45.7 ± 0.1 nA at a light intensity of 0.05 mW, a lateral resolution as low as 3.0 μm as demonstrated by images of a PMMA dot on ZnO nanorods and a pH sensitivity of 53 mV/pH. The suitability of the device for bioanalysis and bioimaging was demonstrated by monitoring the degradation of a thin poly(ester amide) film with the enzyme α-chymotrypsin using LAPS. This simple and robust route to fabricate LAPS substrates with excellent performance would provide tremendous opportunities for bioimaging.
Low temperature production of large-grain polycrystalline semiconductors
Naseem, Hameed A [Fayetteville, AR; Albarghouti, Marwan [Loudonville, NY
2007-04-10
An oxide or nitride layer is provided on an amorphous semiconductor layer prior to performing metal-induced crystallization of the semiconductor layer. The oxide or nitride layer facilitates conversion of the amorphous material into large grain polycrystalline material. Hence, a native silicon dioxide layer provided on hydrogenated amorphous silicon (a-Si:H), followed by deposited Al permits induced crystallization at temperatures far below the solid phase crystallization temperature of a-Si. Solar cells and thin film transistors can be prepared using this method.
Wide Bandgap Semiconductor Nanowires for Electronic, Photonic and Sensing Devices
2012-01-05
oxide -based thin film transistors ( TFTs ) have attracted much attention for applications like flexible electronic devices. The...crystals, and ~ 1.5 cm2.V-1.s-1 for pentacene thin films ). A number of groups have demonstrated TFTs based on α- oxide semiconductors such as zinc oxide ...show excellent long-term stability at room temperature. Results: High-performance amorphous (α-) InGaZnO-based thin film transistors ( TFTs )
NASA Technical Reports Server (NTRS)
1999-01-01
Jet Propulsion Laboratory's research on a second generation, solid-state image sensor technology has resulted in the Complementary Metal- Oxide Semiconductor Active Pixel Sensor (CMOS), establishing an alternative to the Charged Coupled Device (CCD). Photobit Corporation, the leading supplier of CMOS image sensors, has commercialized two products of their own based on this technology: the PB-100 and PB-300. These devices are cameras on a chip, combining all camera functions. CMOS "active-pixel" digital image sensors offer several advantages over CCDs, a technology used in video and still-camera applications for 30 years. The CMOS sensors draw less energy, they use the same manufacturing platform as most microprocessors and memory chips, and they allow on-chip programming of frame size, exposure, and other parameters.
Multi-layer MOS capacitor based polarization insensitive electro-optic intensity modulator.
Qiu, Xiaoming; Ruan, Xiaoke; Li, Yanping; Zhang, Fan
2018-05-28
In this study, a multi-layer metal-oxide-semiconductor capacitor (MLMOSC) polarization insensitive modulator is proposed. The design is validated by numerical simulation with commercial software LUMERICAL SOLUTION. Based on the epsilon-near-zero (ENZ) effect of indium tin oxide (ITO), the device manages to uniformly modulate both the transverse electric (TE) and the transverse magnetic (TM) modes. With a 20μm-long double-layer metal-oxide-semiconductor capacitor (DLMOSC) polarization insensitive modulator, in which two metal-oxide-semiconductor (MOS) structures are formed by the n-doped Si/HfO 2 /ITO/HfO 2 / n-doped Si stack, the extinction ratios (ERs) of both the TE and the TM modes can be over 20dB. The polarization dependent losses of the device can be as low as 0.05dB for the "OFF" state and 0.004dB for the "ON" state. Within 1dB polarization dependent loss, the device can operate with over 20dB ERs at the S, C, and L bands. The polarization insensitive modulator offers various merits including ultra-compact size, broadband spectrum, and complementary metal oxide semiconductor (CMOS) compatibility.
Semiconductor films on flexible iridium substrates
Goyal, Amit
2005-03-29
A laminate semiconductor article includes a flexible substrate, an optional biaxially textured oxide buffer system on the flexible substrate, a biaxially textured Ir-based buffer layer on the substrate or the buffer system, and an epitaxial layer of a semiconductor. Ir can serve as a substrate with an epitaxial layer of a semiconductor thereon.
NASA Astrophysics Data System (ADS)
Moghadam, Reza; Ahmadi, Kamyar; Xiao, Z.-Y.; Hong, Xia; Ngai, Joseph
The epitaxial growth of crystalline oxides on semiconductors enables new functionalities to be introduced to semiconductor devices. In particular, dielectric and ferroelectric oxides grown epitaxially on semiconductors provide a pathway to realize ultra-low power logic and memory devices. Here we present electrical characterization of solid-solution SrZrxTi1-xO3 grown epitaxially on Ge through oxide molecular beam epitaxy. SrZrxTi1-xO3 is of particular interest since the band offset with respect to the semiconductor can be tuned through Zr content x. We will present current-voltage, capacitance-voltage and piezoforce microscopy characterization of SrZrxTi1-xO3 -Ge heterojunctions. In particular, we will discuss how the electrical characteristics of SrZrxTi1-xO3 -Ge heterojunctions evolve with respect to composition, annealing and film thickness.
NASA Astrophysics Data System (ADS)
Sayama, K.; Arai, T.
2008-02-01
Efficient solar energy conversion system for hydrogen production from water, solar-hydrogen system, is one of most important technologies for genuinely sustainable development of the society in the world wide scale. However, there are many problems to breakthrough such as low solar-to-H2 efficiency (STH), high cost, low stability, etc in order to realize the system practically and economically. The solar-hydrogen systems using semiconductors are mainly classified as follows; solar cell-electrolysis system, semiconductor photoelectrode system, and photocatalyst system. There are various merits and demerits in each system. The solar cell-electrolysis system is very efficient but is very high cost. The photocatalyst system is very simple and relatively low cost, but the efficiency is still very low. On the other hand, various semiconductor systems with high efficiency have been investigated. A high STH more than 10% was reported using non-oxide semiconductor photoelectrodes such as InGaP, while the preparation methods were costly. In a European project, some simple oxide semiconductor photoelectrodes such as Fe2O3 and WO3 are mainly studied. Here, we investigated various photoelectrodes using mixed metal oxide especially on BiVO4 semiconductor, and a high throughput screening system of new visible light responsible semiconductors for photoelectrode and photocatalyst. Moreover, photocatalysis-electrolysis hybrid system for economical H2 production is studied to overcome the demerit of photocatalyst system on the gas separation and low efficiency.
Non-flickering 100 m RGB visible light communication transmission based on a CMOS image sensor.
Chow, Chi-Wai; Shiu, Ruei-Jie; Liu, Yen-Chun; Liu, Yang; Yeh, Chien-Hung
2018-03-19
We demonstrate a non-flickering 100 m long-distance RGB visible light communication (VLC) transmission based on a complementary-metal-oxide-semiconductor (CMOS) camera. Experimental bit-error rate (BER) measurements under different camera ISO values and different transmission distances are evaluated. Here, we also experimentally reveal that the rolling shutter effect- (RSE) based VLC system cannot work at long distance transmission, and the under-sampled modulation- (USM) based VLC system is a good choice.
NASA Astrophysics Data System (ADS)
Wu, Wei; Zhang, Shaofeng; Ren, Feng; Xiao, Xiangheng; Zhou, Juan; Jiang, Changzhong
2011-11-01
Iron oxide/SnO2 magnetic semiconductor core-shell heterostructures with high purity were synthesized by a low-cost, surfactant-free and environmentally friendly hydrothermal strategy via a seed-mediated method. The morphology and structure of the hybrid nanostructures were characterized by means of high-resolution transmission electron microscopy and X-ray diffraction. The morphology evolution investigations reveal that the Kirkendall effect directs the diffusion and causes the formation of iron oxide/SnO2 quasi-hollow particles. Significantly, the as-obtained iron oxides/SnO2 core-shell heterostructures exhibited enhanced visible light or UV photocatalytic abilities, remarkably superior to as-used α-Fe2O3 seeds and commercial SnO2 products, mainly owing to the effective electron hole separation at the iron oxides/SnO2 interfaces.Iron oxide/SnO2 magnetic semiconductor core-shell heterostructures with high purity were synthesized by a low-cost, surfactant-free and environmentally friendly hydrothermal strategy via a seed-mediated method. The morphology and structure of the hybrid nanostructures were characterized by means of high-resolution transmission electron microscopy and X-ray diffraction. The morphology evolution investigations reveal that the Kirkendall effect directs the diffusion and causes the formation of iron oxide/SnO2 quasi-hollow particles. Significantly, the as-obtained iron oxides/SnO2 core-shell heterostructures exhibited enhanced visible light or UV photocatalytic abilities, remarkably superior to as-used α-Fe2O3 seeds and commercial SnO2 products, mainly owing to the effective electron hole separation at the iron oxides/SnO2 interfaces. Electronic supplementary information (ESI) available: TEM and HRTEM images of hematite seeds and iron oxide/SnO2 (12 h and 36 h). See DOI: 10.1039/c1nr10728c
Kwon, Guhyun; Kim, Keetae; Choi, Byung Doo; Roh, Jeongkyun; Lee, Changhee; Noh, Yong-Young; Seo, SungYong; Kim, Myung-Gil; Kim, Choongik
2017-06-01
The stabilization and control of the electrical properties in solution-processed amorphous-oxide semiconductors (AOSs) is crucial for the realization of cost-effective, high-performance, large-area electronics. In particular, impurity diffusion, electrical instability, and the lack of a general substitutional doping strategy for the active layer hinder the industrial implementation of copper electrodes and the fine tuning of the electrical parameters of AOS-based thin-film transistors (TFTs). In this study, the authors employ a multifunctional organic-semiconductor (OSC) interlayer as a solution-processed thin-film passivation layer and a charge-transfer dopant. As an electrically active impurity blocking layer, the OSC interlayer enhances the electrical stability of AOS TFTs by suppressing the adsorption of environmental gas species and copper-ion diffusion. Moreover, charge transfer between the organic interlayer and the AOS allows the fine tuning of the electrical properties and the passivation of the electrical defects in the AOS TFTs. The development of a multifunctional solution-processed organic interlayer enables the production of low-cost, high-performance oxide semiconductor-based circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
CMOS array design automation techniques. [metal oxide semiconductors
NASA Technical Reports Server (NTRS)
Ramondetta, P.; Feller, A.; Noto, R.; Lombardi, T.
1975-01-01
A low cost, quick turnaround technique for generating custom metal oxide semiconductor arrays using the standard cell approach was developed, implemented, tested and validated. Basic cell design topology and guidelines are defined based on an extensive analysis that includes circuit, layout, process, array topology and required performance considerations particularly high circuit speed.
Positron studies of metal-oxide-semiconductor structures
NASA Astrophysics Data System (ADS)
Au, H. L.; Asoka-Kumar, P.; Nielsen, B.; Lynn, K. G.
1993-03-01
Positron annihilation spectroscopy provides a new probe to study the properties of interface traps in metal-oxide semiconductors (MOS). Using positrons, we have examined the behavior of the interface traps as a function of gate bias. We propose a simple model to explain the positron annihilation spectra from the interface region of a MOS capacitor.
Metal/oxide/semiconductor interface investigated by monoenergetic positrons
NASA Astrophysics Data System (ADS)
Uedono, A.; Tanigawa, S.; Ohji, Y.
1988-10-01
Variable-energy positron-beam studies have been carried out for the first time on a metal/oxide/semiconductor (MOS) structure of polycrystalline Si/SiO 2/Si-substrate. We were successful in collecting injected positrons at the SiO 2/Si interface by the application of an electric field between the MOS electrodes.
Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring
Fine, George F.; Cavanagh, Leon M.; Afonja, Ayo; Binions, Russell
2010-01-01
Metal oxide semiconductor gas sensors are utilised in a variety of different roles and industries. They are relatively inexpensive compared to other sensing technologies, robust, lightweight, long lasting and benefit from high material sensitivity and quick response times. They have been used extensively to measure and monitor trace amounts of environmentally important gases such as carbon monoxide and nitrogen dioxide. In this review the nature of the gas response and how it is fundamentally linked to surface structure is explored. Synthetic routes to metal oxide semiconductor gas sensors are also discussed and related to their affect on surface structure. An overview of important contributions and recent advances are discussed for the use of metal oxide semiconductor sensors for the detection of a variety of gases—CO, NOx, NH3 and the particularly challenging case of CO2. Finally a description of recent advances in work completed at University College London is presented including the use of selective zeolites layers, new perovskite type materials and an innovative chemical vapour deposition approach to film deposition. PMID:22219672
Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony T.; ...
2016-02-09
To begin this abstract, amorphous metal-oxide semiconductors offer the high carrier mobilities and excellent large-area uniformity required for high performance, transparent, flexible electronic devices; however, a critical bottleneck to their widespread implementation is the need to activate these materials at high temperatures which are not compatible with flexible polymer substrates. The highly controllable activation of amorphous indium gallium zinc oxide semiconductor channels using ionic liquid gating at room temperature is reported. Activation is controlled by electric field-induced oxygen migration across the ionic liquid-semiconductor interface. In addition to activation of unannealed devices, it is shown that threshold voltages of a transistormore » can be linearly tuned between the enhancement and depletion modes. Finally, the first ever example of transparent flexible thin film metal oxide transistor on a polyamide substrate created using this simple technique is demonstrated. Finally, this study demonstrates the potential of field-induced activation as a promising alternative to traditional postdeposition thermal annealing which opens the door to wide scale implementation into flexible electronic applications.« less
Semiconductor Laser Multi-Spectral Sensing and Imaging
Le, Han Q.; Wang, Yang
2010-01-01
Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO). These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers. PMID:22315555
Semiconductor laser multi-spectral sensing and imaging.
Le, Han Q; Wang, Yang
2010-01-01
Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO). These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers.
Hikita, Yasuyuki; Nishio, Kazunori; Seitz, Linsey C.; ...
2016-01-22
One of the crucial parameters dictating the efficiency of photoelectrochemical water-splitting is the semiconductor band edge alignment with respect to hydrogen and oxygen redox potentials. Despite the importance of metal oxides in their use as photoelectrodes, studies to control the band edge alignment in aqueous solution have been limited predominantly to compound semiconductors with modulation ranges limited to a few hundred mV. The ability to modulate the flat band potential of oxide photoanodes by as much as 1.3 V, using the insertion of subsurface electrostatic dipoles near a Nb-doped SrTiO 3/aqueous electrolyte interface is reported. Lastly, the tunable range achievedmore » far exceeds previous reports in any semiconductor/aqueous electrolyte system and suggests a general design strategy for highly efficient oxide photoelectrodes.« less
Metal-oxide-semiconductor devices using Ga2O3 dielectrics on n-type GaN
NASA Astrophysics Data System (ADS)
Lee, Ching-Ting; Chen, Hong-Wei; Lee, Hsin-Ying
2003-06-01
Using a photoelectrochemical method involving a He-Cd laser, Ga2O3 oxide layers were directly grown on n-type GaN. We demonstrated the performance of the resultant metal-oxide-semiconductor devices based on the grown Ga2O3 layer. An extremely low reverse leakage current of 200 pA was achieved when devices operated at -20 V. Furthermore, high forward and reverse breakdown electric fields of 2.80 MV/cm and 5.70 MV/cm, respectively, were obtained. Using a photoassisted current-voltage method, a low interface state density of 2.53×1011 cm-2 eV-1 was estimated. The varactor devices permit formation of inversion layers, so that they may be applied for the fabrication of metal-oxide-semiconductor field-effect transistors.
Selective etchant for oxide sacrificial material in semiconductor device fabrication
Clews, Peggy J.; Mani, Seethambal S.
2005-05-17
An etching composition and method is disclosed for removing an oxide sacrificial material during manufacture of semiconductor devices including micromechanical, microelectromechanical or microfluidic devices. The etching composition and method are based on the combination of hydrofluoric acid (HF) and sulfuric acid (H.sub.2 SO.sub.4). These acids can be used in the ratio of 1:3 to 3:1 HF:H.sub.2 SO.sub.4 to remove all or part of the oxide sacrificial material while providing a high etch selectivity for non-oxide materials including polysilicon, silicon nitride and metals comprising aluminum. Both the HF and H.sub.2 SO.sub.4 can be provided as "semiconductor grade" acids in concentrations of generally 40-50% by weight HF, and at least 90% by weight H.sub.2 SO.sub.4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahal, Rajendra P.; Bhat, Ishwara B.; Chow, Tat-Sing
Methods for facilitating fabricating semiconductor structures are provided which include: providing a multilayer structure including a semiconductor layer, the semiconductor layer including a dopant and having an increased conductivity; selectively increasing, using electrochemical processing, porosity of the semiconductor layer, at least in part, the selectively increasing porosity utilizing the increased conductivity of the semiconductor layer; and removing, at least in part, the semiconductor layer with the selectively increased porosity from the multilayer structure. By way of example, the selectively increasing porosity may include selectively, anodically oxidizing, at least in part, the semiconductor layer of the multilayer structure.
NASA Astrophysics Data System (ADS)
Zinchenko, V. F.; Lavrent'ev, K. V.; Emel'yanov, V. V.; Vatuev, A. S.
2016-02-01
Regularities in the breakdown of thin SiO2 oxide films in metal-oxide-semiconductors structures of power field-effect transistors under the action of single heavy charged particles and a pulsed voltage are studied experimentally. Using a phenomenological approach, we carry out comparative analysis of physical mechanisms and energy criteria of the SiO2 breakdown in extreme conditions of excitation of the electron subsystem in the subpicosecond time range.
Teich, Sorin; Al-Rawi, Wisam; Heima, Masahiro; Faddoul, Fady F; Goldzweig, Gil; Gutmacher, Zvi; Aizenbud, Dror
2016-10-01
To evaluate the image quality generated by eight commercially available intraoral sensors. Eighteen clinicians ranked the quality of a bitewing acquired from one subject using eight different intraoral sensors. Analytical methods used to evaluate clinical image quality included the Visual Grading Characteristics method, which helps to quantify subjective opinions to make them suitable for analysis. The Dexis sensor was ranked significantly better than Sirona and Carestream-Kodak sensors; and the image captured using the Carestream-Kodak sensor was ranked significantly worse than those captured using Dexis, Schick and Cyber Medical Imaging sensors. The Image Works sensor image was rated the lowest by all clinicians. Other comparisons resulted in non-significant results. None of the sensors was considered to generate images of significantly better quality than the other sensors tested. Further research should be directed towards determining the clinical significance of the differences in image quality reported in this study. © 2016 FDI World Dental Federation.
NASA Astrophysics Data System (ADS)
Devadhasan, Jasmine P.; Kim, Sanghyo
2015-07-01
Complementary metal oxide semiconductor (CMOS) image sensors are received great attention for their high efficiency in biological applications. The present work describes a CMOS image sensor-based whole blood glucose monitoring system through a point-of-care (POC) approach. A simple poly-ethylene terephthalate (PET) film chip was developed to carry out the enzyme kinetic reaction at various concentrations of blood glucose. In this technique, assay reagent was adsorbed onto amine functionalized silica (AFSiO2) nanoparticles in order to achieve glucose oxidation on the PET film chip. The AFSiO2 nanoparticles can immobilize the assay reagent with an electrostatic attraction and eased to develop the opaque platform which was technically suitable chip to analyze by the camera module. The oxidized glucose then produces a green color according to the glucose concentration and is analyzed by the camera module as a photon detection technique. The photon number decreases with increasing glucose concentration. The simple sensing approach, utilizing enzyme immobilized AFSiO2 nanoparticle chip and assay detection method was developed for quantitative glucose measurement.
Spahn, O.B.; Lear, K.L.
1998-03-10
The semiconductor structure comprises a plurality of semiconductor layers formed on a substrate including at least one layer of a III-V compound semiconductor alloy comprising aluminum (Al) and antimony (Sb), with at least a part of the AlSb-alloy layer being chemically converted by an oxidation process to form superposed electrically insulating and electrically conducting portions. The electrically insulating portion formed from the AlSb-alloy layer comprises an oxide of aluminum (e.g., Al{sub 2}O{sub 3}), while the electrically conducting portion comprises Sb. A lateral oxidation process allows formation of the superposed insulating and conducting portions below monocrystalline semiconductor layers for forming many different types of semiconductor structures having particular utility for optoelectronic devices such as light-emitting diodes, edge-emitting lasers, vertical-cavity surface-emitting lasers, photodetectors and optical modulators (waveguide and surface normal), and for electronic devices such as heterojunction bipolar transistors, field-effect transistors and quantum-effect devices. The invention is expected to be particularly useful for forming light-emitting devices for use in the 1.3--1.6 {mu}m wavelength range, with the AlSb-alloy layer acting to define an active region of the device and to effectively channel an electrical current therein for efficient light generation. 10 figs.
The Multidimensional Integrated Intelligent Imaging project (MI-3)
NASA Astrophysics Data System (ADS)
Allinson, N.; Anaxagoras, T.; Aveyard, J.; Arvanitis, C.; Bates, R.; Blue, A.; Bohndiek, S.; Cabello, J.; Chen, L.; Chen, S.; Clark, A.; Clayton, C.; Cook, E.; Cossins, A.; Crooks, J.; El-Gomati, M.; Evans, P. M.; Faruqi, W.; French, M.; Gow, J.; Greenshaw, T.; Greig, T.; Guerrini, N.; Harris, E. J.; Henderson, R.; Holland, A.; Jeyasundra, G.; Karadaglic, D.; Konstantinidis, A.; Liang, H. X.; Maini, K. M. S.; McMullen, G.; Olivo, A.; O'Shea, V.; Osmond, J.; Ott, R. J.; Prydderch, M.; Qiang, L.; Riley, G.; Royle, G.; Segneri, G.; Speller, R.; Symonds-Tayler, J. R. N.; Triger, S.; Turchetta, R.; Venanzi, C.; Wells, K.; Zha, X.; Zin, H.
2009-06-01
MI-3 is a consortium of 11 universities and research laboratories whose mission is to develop complementary metal-oxide semiconductor (CMOS) active pixel sensors (APS) and to apply these sensors to a range of imaging challenges. A range of sensors has been developed: On-Pixel Intelligent CMOS (OPIC)—designed for in-pixel intelligence; FPN—designed to develop novel techniques for reducing fixed pattern noise; HDR—designed to develop novel techniques for increasing dynamic range; Vanilla/PEAPS—with digital and analogue modes and regions of interest, which has also been back-thinned; Large Area Sensor (LAS)—a novel, stitched LAS; and eLeNA—which develops a range of low noise pixels. Applications being developed include autoradiography, a gamma camera system, radiotherapy verification, tissue diffraction imaging, X-ray phase-contrast imaging, DNA sequencing and electron microscopy.
Narrow-Band Organic Photodiodes for High-Resolution Imaging.
Han, Moon Gyu; Park, Kyung-Bae; Bulliard, Xavier; Lee, Gae Hwang; Yun, Sungyoung; Leem, Dong-Seok; Heo, Chul-Joon; Yagi, Tadao; Sakurai, Rie; Ro, Takkyun; Lim, Seon-Jeong; Sul, Sangchul; Na, Kyoungwon; Ahn, Jungchak; Jin, Yong Wan; Lee, Sangyoon
2016-10-05
There are growing opportunities and demands for image sensors that produce higher-resolution images, even in low-light conditions. Increasing the light input areas through 3D architecture within the same pixel size can be an effective solution to address this issue. Organic photodiodes (OPDs) that possess wavelength selectivity can allow for advancements in this regard. Here, we report on novel push-pull D-π-A dyes specially designed for Gaussian-shaped, narrow-band absorption and the high photoelectric conversion. These p-type organic dyes work both as a color filter and as a source of photocurrents with linear and fast light responses, high sensitivity, and excellent stability, when combined with C60 to form bulk heterojunctions (BHJs). The effectiveness of the OPD composed of the active color filter was demonstrated by obtaining a full-color image using a camera that contained an organic/Si hybrid complementary metal-oxide-semiconductor (CMOS) color image sensor.
Morphology and Gas-Sensing Properties of Tin Oxide Foams with Dual Pore Structure
NASA Astrophysics Data System (ADS)
Nam, Kyungju; Kim, Hyeong-Gwan; Choi, Hyelim; Park, Hyeji; Kang, Jin Soo; Sung, Yung-Eun; Lee, Hee Chul; Choe, Heeman
2017-06-01
Tin oxide is a commonly used gas-sensing material, which can be applied as an n- or p-type gas sensor. To improve the gas-sensing performance of tin oxide, we successfully synthesized tin oxide foam via an ice-templating or freeze-casting method. The tin oxide foam samples showed different morphological features depending on the major processing parameters, which include sintering temperature, sintering time, and the amount of added powder. Based on scanning electron microscopy images, we could identify dual pore structure of tin oxide foam containing `wall' pores ranging from 5.3 μm to 10.7 μm, as well as smaller secondary pores (a few micrometers in size) on the wall surfaces. Gas-sensing performance tests for the synthesized tin oxide foams reveal a sensitivity of 13.1, a response time of 192 s, and a recovery time of 160 s at an ethanol gas concentration of 60 ppm at 300°C. This is a remarkable result given that it showed p-type semiconductor behavior and was used without the addition of any catalyst.
NASA Astrophysics Data System (ADS)
Barros, Ana Raquel Xarouco de
In spite of the recent p-type oxide TFTs developments based on SnOx and CuxO, the results achieved so far refer to devices processed at high temperatures and are limited by a low hole mobility and a low On-Off ratio and still there is no report on p-type oxide TFTs with performance similar to n-type, especially when comparing their field-effect mobility values, which are at least one order of magnitude higher on n-type oxide TFTs. Achieving high performance p-type oxide TFTs will definitely promote a new era for electronics in rigid and flexible substrates, away from silicon. None of the few reported p-channel oxide TFTs is suitable for practical applications, which demand significant improvements in the device engineering to meet the real-world electronic requirements, where low processing temperatures together with high mobility and high On-Off ratio are required for TFT and CMOS applications. The present thesis focuses on the study and optimization of p-type thin film transistors based on oxide semiconductors deposited by r.f. magnetron sputtering without intentional substrate heating. In this work several p-type oxide semiconductors were studied and optimized based on undoped tin oxide, Cu-doped SnOx and In-doped SnO2.
NASA Astrophysics Data System (ADS)
Al-Tabich, A.; Inami, W.; Kawata, Y.; Jablonski, R.; Worasawat, S.; Mimura, H.
2017-05-01
We present a method for three-dimensional intrinsic defect imaging in zinc oxide (ZnO) by spectrally resolved two-photon fluorescence microscopy, based on the previously presented method of observing a photoluminescence distribution in wide-gap semiconductor crystals [Noor et al., Appl. Phys. Lett. 92(16), 161106 (2008)]. A tightly focused light beam radiated by a titanium-sapphire laser is used to obtain a two-photon excitation of selected area of the ZnO sample. Photoluminescence intensity of a specific spectral range is then selected by optical band pass filters and measured by a photomultiplier tube. Reconstruction of the specimen image is done by scanning the volume of interest by a piezoelectric positioning stage and measuring the spectrally resolved photoluminescence intensity at each point. The method has been proved to be effective at locating intrinsic defects of the ZnO crystalline structure in the volume of the crystal. The method was compared with other defect imaging and 3D imaging techniques like scanning tunneling microscopy and confocal microscopy. In both cases, our method shows superior penetration abilities and, as the only method, allows location of the defects of the chosen type in 3D. In this paper, we present the results of oxygen vacancies and zinc antisites imaging in ZnO nanorods.
NASA Astrophysics Data System (ADS)
Gerosa, M.; E Bottani, C.; Di Valentin, C.; Onida, G.; Pacchioni, G.
2018-01-01
Understanding the electronic structure of metal oxide semiconductors is crucial to their numerous technological applications, such as photoelectrochemical water splitting and solar cells. The needed experimental and theoretical knowledge goes beyond that of pristine bulk crystals, and must include the effects of surfaces and interfaces, as well as those due to the presence of intrinsic defects (e.g. oxygen vacancies), or dopants for band engineering. In this review, we present an account of the recent efforts in predicting and understanding the optoelectronic properties of oxides using ab initio theoretical methods. In particular, we discuss the performance of recently developed dielectric-dependent hybrid functionals, providing a comparison against the results of many-body GW calculations, including G 0 W 0 as well as more refined approaches, such as quasiparticle self-consistent GW. We summarize results in the recent literature for the band gap, the band level alignment at surfaces, and optical transition energies in defective oxides, including wide gap oxide semiconductors and transition metal oxides. Correlated transition metal oxides are also discussed. For each method, we describe successes and drawbacks, emphasizing the challenges faced by the development of improved theoretical approaches. The theoretical section is preceded by a critical overview of the main experimental techniques needed to characterize the optoelectronic properties of semiconductors, including absorption and reflection spectroscopy, photoemission, and scanning tunneling spectroscopy (STS).
Multilevel metallization method for fabricating a metal oxide semiconductor device
NASA Technical Reports Server (NTRS)
Hollis, B. R., Jr.; Feltner, W. R.; Bouldin, D. L.; Routh, D. E. (Inventor)
1978-01-01
An improved method is described of constructing a metal oxide semiconductor device having multiple layers of metal deposited by dc magnetron sputtering at low dc voltages and low substrate temperatures. The method provides multilevel interconnections and cross over between individual circuit elements in integrated circuits without significantly reducing the reliability or seriously affecting the yield.
NASA Technical Reports Server (NTRS)
Rippel, Wally E.
1990-01-01
Metal-oxide/semiconductor-controlled thyristor (MCT) and metal-oxide/semiconductor field-effect transistor (MOSFET) connected in switching circuit to obtain better performance. Offers high utilization of silicon, low forward voltage drop during "on" period of operating cycle, fast turnon and turnoff, and large turnoff safe operating area. Includes ability to operate at high temperatures, high static blocking voltage, and ease of drive.
Gryszel, Maciej; Sytnyk, Mykhailo; Jakešová, Marie; Romanazzi, Giuseppe; Gabrielsson, Roger; Heiss, Wolfgang; Głowacki, Eric Daniel
2018-04-25
Low-cost semiconductor photocatalysts offer unique possibilities for industrial chemical transformations and energy conversion applications. We report that a range of organic semiconductors are capable of efficient photocatalytic oxygen reduction to H 2 O 2 in aqueous conditions. These semiconductors, in the form of thin films, support a 2-electron/2-proton redox cycle involving photoreduction of dissolved O 2 to H 2 O 2 , with the concurrent photooxidation of organic substrates: formate, oxalate, and phenol. Photochemical oxygen reduction is observed in a pH range from 2 to 12. In cases where valence band energy of the semiconductor is energetically high, autoxidation competes with oxidation of the donors, and thus turnover numbers are low. Materials with deeper valence band energies afford higher stability and also oxidation of H 2 O to O 2 . We found increased H 2 O 2 evolution rate for surfactant-stabilized nanoparticles versus planar thin films. These results evidence that photochemical O 2 reduction may be a widespread feature of organic semiconductors, and open potential avenues for organic semiconductors for catalytic applications.
A research on radiation calibration of high dynamic range based on the dual channel CMOS
NASA Astrophysics Data System (ADS)
Ma, Kai; Shi, Zhan; Pan, Xiaodong; Wang, Yongsheng; Wang, Jianghua
2017-10-01
The dual channel complementary metal-oxide semiconductor (CMOS) can get high dynamic range (HDR) image through extending the gray level of the image by using image fusion with high gain channel image and low gain channel image in a same frame. In the process of image fusion with dual channel, it adopts the coefficients of radiation response of a pixel from dual channel in a same frame, and then calculates the gray level of the pixel in the HDR image. For the coefficients of radiation response play a crucial role in image fusion, it has to find an effective method to acquire these parameters. In this article, it makes a research on radiation calibration of high dynamic range based on the dual channel CMOS, and designs an experiment to calibrate the coefficients of radiation response for the sensor it used. In the end, it applies these response parameters in the dual channel CMOS which calibrates, and verifies the correctness and feasibility of the method mentioned in this paper.
NASA Astrophysics Data System (ADS)
Jackson, Michael J.; Jackson, Biyun L.; Goorsky, Mark S.
2011-11-01
Sulfur passivation and subsequent wafer-bonding treatments are demonstrated for III-V semiconductor applications using GaAs-GaAs direct wafer-bonded structures. Two different sulfur passivation processes are addressed. A dry sulfur passivation method that utilizes elemental sulfur vapor activated by ultraviolet light in vacuum is compared with aqueous sulfide and native-oxide-etch treatments. The electrical conductivity across a sulfur-treated 400 - °C-bonded n-GaAs/n-GaAs interface significantly increased with a short anneal (1-2 min) at elevated temperatures (500-600 °C). Interfaces treated with the NH4OH oxide etch, on the other hand, exhibited only mild improvement in accordance with previously published studies in this area. TEM and STEM images revealed similar interfacial microstructure changes with annealing for both sulfur-treated and NH4OH interfaces, whereby some areas have direct semiconductor-semiconductor contact without any interfacial layer. Fitting the observed temperature dependence of zero-bias conductance using a model for tunneling through a grain boundary reveals that the addition of sulfur at the interface lowered the interfacial energy barrier by 0.2 eV. The interface resistance for these sulfur-treated structures is 0.03 Ω.cm at room temperature. These results emphasize that sulfur-passivation techniques reduce interface states that otherwise limit the implementation of wafer bonding for high-efficiency solar cells and other devices.
Zinc oxide and related compounds: order within the disorder
NASA Astrophysics Data System (ADS)
Martins, R.; Pereira, Luisa; Barquinha, P.; Ferreira, I.; Prabakaran, R.; Goncalves, G.; Goncalves, A.; Fortunato, E.
2009-02-01
This paper discusses the effect of order and disorder on the electrical and optical performance of ionic oxide semiconductors based on zinc oxide. These materials are used as active thin films in electronic devices such as pn heterojunction solar cells and thin-film transistors. Considering the expected conduction mechanism in ordered and disordered semiconductors the role of the spherical symmetry of the s electron conduction bands will be analyzed and compared to covalent semiconductors. The obtained results show p-type c-Si/a-IZO/poly-ZGO solar cells exhibiting efficiencies above 14%, in device areas of about 2.34 cm2. Amorphous oxide TFTs based on the Ga-Zn-Sn-O system demonstrate superior performance than the polycrystalline TFTs based on ZnO, translated by ION/IOFF ratio exceeding 107, turn-on voltage below 1-2 V and saturation mobility above 25 cm2/Vs. Apart from that, preliminary data on p-type oxide TFT based on the Zn-Cu-O system will also be presented.
Image sensor with motion artifact supression and anti-blooming
NASA Technical Reports Server (NTRS)
Pain, Bedabrata (Inventor); Wrigley, Chris (Inventor); Yang, Guang (Inventor); Yadid-Pecht, Orly (Inventor)
2006-01-01
An image sensor includes pixels formed on a semiconductor substrate. Each pixel includes a photoactive region in the semiconductor substrate, a sense node, and a power supply node. A first electrode is disposed near a surface of the semiconductor substrate. A bias signal on the first electrode sets a potential in a region of the semiconductor substrate between the photoactive region and the sense node. A second electrode is disposed near the surface of the semiconductor substrate. A bias signal on the second electrode sets a potential in a region of the semiconductor substrate between the photoactive region and the power supply node. The image sensor includes a controller that causes bias signals to be provided to the electrodes so that photocharges generated in the photoactive region are accumulated in the photoactive region during a pixel integration period, the accumulated photocharges are transferred to the sense node during a charge transfer period, and photocharges generated in the photoactive region are transferred to the power supply node during a third period without passing through the sense node. The imager can operate at high shutter speeds with simultaneous integration of pixels in the array. High quality images can be produced free from motion artifacts. High quantum efficiency, good blooming control, low dark current, low noise and low image lag can be obtained.
High speed CMOS imager with motion artifact supression and anti-blooming
NASA Technical Reports Server (NTRS)
Pain, Bedabrata (Inventor); Wrigley, Chris (Inventor); Yang, Guang (Inventor); Yadid-Pecht, Orly (Inventor)
2001-01-01
An image sensor includes pixels formed on a semiconductor substrate. Each pixel includes a photoactive region in the semiconductor substrate, a sense node, and a power supply node. A first electrode is disposed near a surface of the semiconductor substrate. A bias signal on the first electrode sets a potential in a region of the semiconductor substrate between the photoactive region and the sense node. A second electrode is disposed near the surface of the semiconductor substrate. A bias signal on the second electrode sets a potential in a region of the semiconductor substrate between the photoactive region and the power supply node. The image sensor includes a controller that causes bias signals to be provided to the electrodes so that photocharges generated in the photoactive region are accumulated in the photoactive region during a pixel integration period, the accumulated photocharges are transferred to the sense node during a charge transfer period, and photocharges generated in the photoactive region are transferred to the power supply node during a third period without passing through the sense node. The imager can operate at high shutter speeds with simultaneous integration of pixels in the array. High quality images can be produced free from motion artifacts. High quantum efficiency, good blooming control, low dark current, low noise and low image lag can be obtained.
Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes
Toma, Francesca M.; Cooper, Jason K.; Kunzelmann, Viktoria; McDowell, Matthew T.; Yu, Jie; Larson, David M.; Borys, Nicholas J.; Abelyan, Christine; Beeman, Jeffrey W.; Yu, Kin Man; Yang, Jinhui; Chen, Le; Shaner, Matthew R.; Spurgeon, Joshua; Houle, Frances A.; Persson, Kristin A.; Sharp, Ian D.
2016-01-01
Artificial photosynthesis relies on the availability of semiconductors that are chemically stable and can efficiently capture solar energy. Although metal oxide semiconductors have been investigated for their promise to resist oxidative attack, materials in this class can suffer from chemical and photochemical instability. Here we present a methodology for evaluating corrosion mechanisms and apply it to bismuth vanadate, a state-of-the-art photoanode. Analysis of changing morphology and composition under solar water splitting conditions reveals chemical instabilities that are not predicted from thermodynamic considerations of stable solid oxide phases, as represented by the Pourbaix diagram for the system. Computational modelling indicates that photoexcited charge carriers accumulated at the surface destabilize the lattice, and that self-passivation by formation of a chemically stable surface phase is kinetically hindered. Although chemical stability of metal oxides cannot be assumed, insight into corrosion mechanisms aids development of protection strategies and discovery of semiconductors with improved stability. PMID:27377305
Gao, Pu-Xian; Shimpi, Paresh; Gao, Haiyong; Liu, Caihong; Guo, Yanbing; Cai, Wenjie; Liao, Kuo-Ting; Wrobel, Gregory; Zhang, Zhonghua; Ren, Zheng; Lin, Hui-Jan
2012-01-01
Composite nanoarchitectures represent a class of nanostructured entities that integrates various dissimilar nanoscale building blocks including nanoparticles, nanowires, and nanofilms toward realizing multifunctional characteristics. A broad array of composite nanoarchitectures can be designed and fabricated, involving generic materials such as metal, ceramics, and polymers in nanoscale form. In this review, we will highlight the latest progress on composite nanostructures in our research group, particularly on various metal oxides including binary semiconductors, ABO3-type perovskites, A2BO4 spinels and quaternary dielectric hydroxyl metal oxides (AB(OH)6) with diverse application potential. Through a generic template strategy in conjunction with various synthetic approaches— such as hydrothermal decomposition, colloidal deposition, physical sputtering, thermal decomposition and thermal oxidation, semiconductor oxide alloy nanowires, metal oxide/perovskite (spinel) composite nanowires, stannate based nanocompostes, as well as semiconductor heterojunction—arrays and networks have been self-assembled in large scale and are being developed as promising classes of composite nanoarchitectures, which may open a new array of advanced nanotechnologies in solid state lighting, solar absorption, photocatalysis and battery, auto-emission control, and chemical sensing. PMID:22837702
Radiation imaging with a new scintillator and a CMOS camera
NASA Astrophysics Data System (ADS)
Kurosawa, S.; Shoji, Y.; Pejchal, J.; Yokota, Y.; Yoshikawa, A.
2014-07-01
A new imaging system consisting of a high-sensitivity complementary metal-oxide semiconductor (CMOS) sensor, a microscope and a new scintillator, Ce-doped Gd3(Al,Ga)5O12 (Ce:GAGG) grown by the Czochralski process, has been developed. The noise, the dark current and the sensitivity of the CMOS camera (ORCA-Flash4.0, Hamamatsu) was revised and compared to a conventional CMOS, whose sensitivity is at the same level as that of a charge coupled device (CCD) camera. Without the scintillator, this system had a good position resolution of 2.1 ± 0.4 μm and we succeeded in obtaining the alpha-ray images using 1-mm thick Ce:GAGG crystal. This system can be applied for example to high energy X-ray beam profile monitor, etc.
Selective photon counter for digital x-ray mammography tomosynthesis
NASA Astrophysics Data System (ADS)
Goldan, Amir H.; Karim, Karim S.; Rowlands, J. A.
2006-03-01
Photon counting is an emerging detection technique that is promising for mammography tomosynthesis imagers. In photon counting systems, the value of each image pixel is equal to the number of photons that interact with the detector. In this research, we introduce the design and implementation of a low noise, novel selective photon counting pixel for digital mammography tomosynthesis in crystalline silicon CMOS (complementary metal oxide semiconductor) 0.18 micron technology. The design comprises of a low noise charge amplifier (CA), two low offset voltage comparators, a decision-making unit (DMU), a mode selector, and a pseudo-random counter. Theoretical calculations and simulation results of linearity, gain, and noise of the photon counting pixel are presented.
Crosstalk quantification, analysis, and trends in CMOS image sensors.
Blockstein, Lior; Yadid-Pecht, Orly
2010-08-20
Pixel crosstalk (CTK) consists of three components, optical CTK (OCTK), electrical CTK (ECTK), and spectral CTK (SCTK). The CTK has been classified into two groups: pixel-architecture dependent and pixel-architecture independent. The pixel-architecture-dependent CTK (PADC) consists of the sum of two CTK components, i.e., the OCTK and the ECTK. This work presents a short summary of a large variety of methods for PADC reduction. Following that, this work suggests a clear quantifiable definition of PADC. Three complementary metal-oxide-semiconductor (CMOS) image sensors based on different technologies were empirically measured, using a unique scanning technology, the S-cube. The PADC is analyzed, and technology trends are shown.
Real time quantitative imaging for semiconductor crystal growth, control and characterization
NASA Technical Reports Server (NTRS)
Wargo, Michael J.
1991-01-01
A quantitative real time image processing system has been developed which can be software-reconfigured for semiconductor processing and characterization tasks. In thermal imager mode, 2D temperature distributions of semiconductor melt surfaces (900-1600 C) can be obtained with temperature and spatial resolutions better than 0.5 C and 0.5 mm, respectively, as demonstrated by analysis of melt surface thermal distributions. Temporal and spatial image processing techniques and multitasking computational capabilities convert such thermal imaging into a multimode sensor for crystal growth control. A second configuration of the image processing engine in conjunction with bright and dark field transmission optics is used to nonintrusively determine the microdistribution of free charge carriers and submicron sized crystalline defects in semiconductors. The IR absorption characteristics of wafers are determined with 10-micron spatial resolution and, after calibration, are converted into charge carrier density.
Technology of GaAs metal-oxide-semiconductor solar cells
NASA Technical Reports Server (NTRS)
Stirn, R. J.; Yeh, Y. C. M.
1977-01-01
The growth of an oxide interfacial layer was recently found to increase the open-circuit voltage (OCV) and efficiency by up to 60 per cent in GaAs metal-semiconductor solar cells. Details of oxidation techniques to provide the necessary oxide thickness and chemical structure and using ozone, water-vapor-saturated oxygen, or oxygen gas discharges are described, as well as apparent crystallographic orientation effects. Preliminary results of the oxide chemistry obtained from X-ray, photoelectron spectroscopy are given. Ratios of arsenic oxide to gallium oxide of unity or less seem to be preferable. Samples with the highest OVC predominantly have As(+3) in the arsenic oxide rather than As(+5). A major difficulty at this time is a reduction in OCV by 100-200 mV when the antireflection coating is vacuum deposited.
Transparent Oxide Thin-Film Transistors: Production, Characterization and Integration
NASA Astrophysics Data System (ADS)
Barquinha, Pedro Miguel Candido
This dissertation is devoted to the study of the emerging area of transparent electronics, summarizing research work regarding the development of n-type thin-film transistors (TFTs) based on sputtered oxide semiconductors. All the materials are produced without intentional substrate heating, with annealing temperatures of only 150-200 °C being used to optimize transistor performance. The work is based on the study and optimization of active semiconductors from the gallium-indium-zinc oxide system, including both the binary compounds Ga2O3, In2O3 and ZnO, as well as ternary and quaternary oxides based on mixtures of those, such as IZO and GIZO with different atomic ratios. Several topics are explored, including the study and optimization of the oxide semiconductor thin films, their application as channel layers on TFTs and finally the implementation of the optimized processes to fabricate active matrix backplanes to be integrated in liquid crystal display (LCD) prototypes. Sputtered amorphous dielectrics with high dielectric constant (high-kappa) based on mixtures of tantalum-silicon or tantalum-aluminum oxides are also studied and used as the dielectric layers on fully transparent TFTs. These devices also include transparent and highly conducting IZO thin films as source, drain and gate electrodes. Given the flexibility of the sputtering technique, oxide semiconductors are analyzed regarding several deposition parameters, such as oxygen partial pressure and deposition pressure, as well as target composition. One of the most interesting features of multicomponent oxides such as IZO and GIZO is that, due to their unique electronic configuration and carrier transport mechanism, they allow to obtain amorphous structures with remarkable electrical properties, such as high hall-effect mobility that exceeds 60 cm2 V -1 s-1 for IZO. These properties can be easily tuned by changing the processing conditions and the atomic ratios of the multicomponent oxides, allowing to have amorphous oxides suitable to be used either as transparent semiconductors or as highly conducting electrodes. The amorphous structure, which is maintained even if the thin films are annealed at 500 °C, brings great advantages concerning interface quality and uniformity in large areas. A complete study comprising different deposition conditions of the semiconductor layer is also made regarding TFT electrical performance. Optimized devices present outstanding electrical performance, such as field-effect mobility (muFE) exceeding 20 cm2 V -1 s-1, turn-on voltage (Von) between -1 and 1 V, subthreshold slope (S) lower than 0.25 V dec-1 and On-Off ratio above 107 . Devices employing amorphous multicomponent oxides present largely improved properties when compared with the ones based on polycrystalline ZnO, mostly in terms of muFE. Within the compositional range where IZO and GIZO films are amorphous, TFT performance can be largely adjusted: for instance, high indium contents favor large mu FE but also highly negative Von, which can be compensated by proper amounts of zinc and gallium. Large oxygen concentrations during oxide semiconductor sputtering are found to be deleterious, decreasing muFE, shifting Von towards high values and turning the devices electrically unstable. It is also shown that semiconductor thickness (ds) has a very important role: for instance, by reducing ds to 10 nm it is possible to produce TFTs with Von≈0 V even using deposition conditions and/or target compositions that normally yield highly conducting films. Given the low ds of the films, this behavior is mostly related with surface states existent at the oxide semiconductor air-exposed back-surface, where depletion layers that can extend towards the dielectric/semiconductor interface are created due to the interaction with atmospheric oxygen. Different passivation layers on top of this air-exposed surface are studied, with SU-8 revealing to be to most effective one. Other important topics are source-drain contact resistance assessment and the effect of different annealing temperatures ( TA), being the properties of the TFTs dominated by TA rather than by the deposition conditions as TA increases. Fully transparent TFTs employing sputtered amorphous multicomponent dielectrics produced without intentional substrate heating present excellent electrical properties, that approach those exhibited by devices using PECVD SiO2 produced at 400 °C. Gate leakage current can be greatly reduced by using tantalum-silicon or tantalum-aluminum oxides rather than Ta2O5. A section of this dissertation is also devoted to the analysis of current stress stability and aging effects of the TFTs, being found that optimal devices exhibit recoverable threshold voltage shifts lower than 0.50 V after 24 h stress with constant drain current of 10 muA, as well as negligible aging effects during 18 months. The research work of this dissertation culminates in the fabrication of a backplane employing transparent TFTs and subsequent integration with a LCD frontplane by Hewlett-Packard. The successful operation of this initial 2.8h prototype with 128x128 pixels provides a solid demonstration that oxide semiconductor-based TFTs have the potential to largely contribute to a novel electronics era, where semiconductor materials away from conventional silicon are used to create fascinating applications, such as transparent electronic products.
NASA Astrophysics Data System (ADS)
Kumar, M.; Yang, Sung-Hyun; Janardhan Reddy, K.; JagadeeshChandra, S. V.
2017-04-01
Hafnium oxide (HfO2) thin films were grown on cleaned P-type <1 0 0> Ge and Si substrates by using atomic layer deposition technique (ALD) with thickness of 8 nm. The composition analysis of as-deposited and annealed HfO2 films was characterized by XPS, further electrical measurements; we fabricated the metal-oxide-semiconductor (MOS) devices with Pt electrode. Post deposition annealing in O2 ambient at 500 °C for 30 min was carried out on both Ge and Si devices. Capacitance-voltage (C-V) and conductance-voltage (G-V) curves measured at 1 MHz. The Ge MOS devices showed improved interfacial and electrical properties, high dielectric constant (~19), smaller EOT value (0.7 nm), and smaller D it value as Si MOS devices. The C-V curves shown significantly high accumulation capacitance values from Ge devices, relatively when compare with the Si MOS devices before and after annealing. It could be due to the presence of very thin interfacial layer at HfO2/Ge stacks than HfO2/Si stacks conformed by the HRTEM images. Besides, from current-voltage (I-V) curves of the Ge devices exhibited similar leakage current as Si devices. Therefore, Ge might be a reliable substrate material for structural, electrical and high frequency applications.
An Ultrasensitive Organic Semiconductor NO2 Sensor Based on Crystalline TIPS-Pentacene Films.
Wang, Zi; Huang, Lizhen; Zhu, Xiaofei; Zhou, Xu; Chi, Lifeng
2017-10-01
Organic semiconductor gas sensor is one of the promising candidates of room temperature operated gas sensors with high selectivity. However, for a long time the performance of organic semiconductor sensors, especially for the detection of oxidizing gases, is far behind that of the traditional metal oxide gas sensors. Although intensive attempts have been made to address the problem, the performance and the understanding of the sensing mechanism are still far from sufficient. Herein, an ultrasensitive organic semiconductor NO 2 sensor based on 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-petacene) is reported. The device achieves a sensitivity over 1000%/ppm and fast response/recovery, together with a low limit of detection (LOD) of 20 ppb, all of which reach the level of metal oxide sensors. After a comprehensive analysis on the morphology and electrical properties of the organic films, it is revealed that the ultrahigh performance is largely related to the film charge transport ability, which was less concerned in the studies previously. And the combination of efficient charge transport and low original charge carrier concentration is demonstrated to be an effective access to obtain high performance organic semiconductor gas sensors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lahuerta-Zamora, Luis; Mellado-Romero, Ana M
2017-06-01
A new system for continuous flow chemiluminescence detection, based on the use of a simple and low-priced lens-free digital camera (with complementary metal oxide semiconductor technology) as a detector, is proposed for the quantitative determination of paracetamol in commercial pharmaceutical formulations. Through the camera software, AVI video files of the chemiluminescence emission are captured and then, using friendly ImageJ public domain software (from National Institutes for Health), properly processed in order to extract the analytical information. The calibration graph was found to be linear over the range 0.01-0.10 mg L -1 and over the range 1.0-100.0 mg L -1 of paracetamol, the limit of detection being 10 μg L -1 . No significative interferences were found. Paracetamol was determined in three different pharmaceutical formulations: Termalgin®, Efferalgan® and Gelocatil®. The obtained results compared well with those declared on the formulation label and with those obtained through the official analytical method of British Pharmacopoeia. Graphical abstract Abbreviated scheme of the new chemiluminescence detection system proposed in this paper.
Semiconductor crystal high resolution imager
NASA Technical Reports Server (NTRS)
Matteson, James (Inventor); Levin, Craig S. (Inventor)
2011-01-01
A radiation imaging device (10). The radiation image device (10) comprises a subject radiation station (12) producing photon emissions (14), and at least one semiconductor crystal detector (16) arranged in an edge-on orientation with respect to the emitted photons (14) to directly receive the emitted photons (14) and produce a signal. The semiconductor crystal detector (16) comprises at least one anode and at least one cathode that produces the signal in response to the emitted photons (14).
Method of photocatalytic conversion of C-H organics
Camaioni, Donald M.; Lilga, Michael A.
1998-01-01
The present invention is the addition of a semiconductor material and energy to the reaction mixture of organic, acid (for example, trifluoroacetate), and oxygen. A transition metal ion may be added to the reaction mixture. The semiconductor material converts energy to oxidants thereby promoting oxidation of the organic. Alternatively, using metal in combination with exposure to light may be used.
Method of photocatalytic conversion of C-H organics
Camaioni, D.M.; Lilga, M.A.
1998-01-13
The present invention is the addition of a semiconductor material and energy to the reaction mixture of organic, acid (for example, trifluoroacetate), and oxygen. A transition metal ion may be added to the reaction mixture. The semiconductor material converts energy to oxidants thereby promoting oxidation of the organic. Alternatively, using metal in combination with exposure to light may be used.
NASA Astrophysics Data System (ADS)
Samanta, Piyas
2017-09-01
We present a detailed investigation on temperature-dependent current conduction through thin tunnel oxides grown on degenerately doped n-type silicon (n+-Si) under positive bias ( VG ) on heavily doped n-type polycrystalline silicon (n+-polySi) gate in metal-oxide-semiconductor devices. The leakage current measured between 298 and 573 K and at oxide fields ranging from 6 to 10 MV/cm is primarily attributed to Poole-Frenkel (PF) emission of trapped electrons from the neutral electron traps located in the silicon dioxide (SiO2) band gap in addition to Fowler-Nordheim (FN) tunneling of electrons from n+-Si acting as the drain node in FLOating gate Tunnel OXide Electrically Erasable Programmable Read-Only Memory devices. Process-induced neutral electron traps are located at 0.18 eV and 0.9 eV below the SiO2 conduction band. Throughout the temperature range studied here, PF emission current IPF dominates FN electron tunneling current IFN at oxide electric fields Eox between 6 and 10 MV/cm. A physics based new analytical formula has been developed for FN tunneling of electrons from the accumulation layer of degenerate semiconductors at a wide range of temperatures incorporating the image force barrier rounding effect. FN tunneling has been formulated in the framework of Wentzel-Kramers-Brilloiun taking into account the correction factor due to abrupt variation of the energy barrier at the cathode/oxide interface. The effect of interfacial and near-interfacial trapped-oxide charges on FN tunneling has also been investigated in detail at positive VG . The mechanism of leakage current conduction through SiO2 films plays a crucial role in simulation of time-dependent dielectric breakdown of the memory devices and to precisely predict the normal operating field or applied floating gate (FG) voltage for lifetime projection of the devices. In addition, we present theoretical results showing the effect of drain doping concentration on the FG leakage current.
Super-resolution for scanning light stimulation systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bitzer, L. A.; Neumann, K.; Benson, N., E-mail: niels.benson@uni-due.de
Super-resolution (SR) is a technique used in digital image processing to overcome the resolution limitation of imaging systems. In this process, a single high resolution image is reconstructed from multiple low resolution images. SR is commonly used for CCD and CMOS (Complementary Metal-Oxide-Semiconductor) sensor images, as well as for medical applications, e.g., magnetic resonance imaging. Here, we demonstrate that super-resolution can be applied with scanning light stimulation (LS) systems, which are common to obtain space-resolved electro-optical parameters of a sample. For our purposes, the Projection Onto Convex Sets (POCS) was chosen and modified to suit the needs of LS systems.more » To demonstrate the SR adaption, an Optical Beam Induced Current (OBIC) LS system was used. The POCS algorithm was optimized by means of OBIC short circuit current measurements on a multicrystalline solar cell, resulting in a mean square error reduction of up to 61% and improved image quality.« less
High performance printed oxide field-effect transistors processed using photonic curing.
Garlapati, Suresh Kumar; Marques, Gabriel Cadilha; Gebauer, Julia Susanne; Dehm, Simone; Bruns, Michael; Winterer, Markus; Tahoori, Mehdi Baradaran; Aghassi-Hagmann, Jasmin; Hahn, Horst; Dasgupta, Subho
2018-06-08
Oxide semiconductors are highly promising candidates for the most awaited, next-generation electronics, namely, printed electronics. As a fabrication route for the solution-processed/printed oxide semiconductors, photonic curing is becoming increasingly popular, as compared to the conventional thermal curing method; the former offers numerous advantages over the latter, such as low process temperatures and short exposure time and thereby, high throughput compatibility. Here, using dissimilar photonic curing concepts (UV-visible light and UV-laser), we demonstrate facile fabrication of high performance In 2 O 3 field-effect transistors (FETs). Beside the processing related issues (temperature, time etc.), the other known limitation of oxide electronics is the lack of high performance p-type semiconductors, which can be bypassed using unipolar logics from high mobility n-type semiconductors alone. Interestingly, here we have found that our chosen distinct photonic curing methods can offer a large variation in threshold voltage, when they are fabricated from the same precursor ink. Consequently, both depletion and enhancement-mode devices have been achieved which can be used as the pull-up and pull-down transistors in unipolar inverters. The present device fabrication recipe demonstrates fast processing of low operation voltage, high performance FETs with large threshold voltage tunability.
Schäfer, Susanne; Wyrzgol, Sonja A; Caterino, Roberta; Jentys, Andreas; Schoell, Sebastian J; Hävecker, Michael; Knop-Gericke, Axel; Lercher, Johannes A; Sharp, Ian D; Stutzmann, Martin
2012-08-01
Platinum nanoparticles supported on n- and p-type gallium nitride (GaN) are investigated as novel hybrid systems for the electronic control of catalytic activity via electronic interactions with the semiconductor support. In situ oxidation and reduction were studied with high pressure photoemission spectroscopy. The experiments revealed that the underlying wide-band-gap semiconductor has a large influence on the chemical composition and oxygen affinity of supported nanoparticles under X-ray irradiation. For as-deposited Pt cuboctahedra supported on n-type GaN, a higher fraction of oxidized surface atoms was observed compared to cuboctahedral particles supported on p-type GaN. Under an oxygen atmosphere, immediate oxidation was recorded for nanoparticles on n-type GaN, whereas little oxidation was observed for nanoparticles on p-type GaN. Together, these results indicate that changes in the Pt chemical state under X-ray irradiation depend on the type of GaN doping. The strong interaction between the nanoparticles and the support is consistent with charge transfer of X-ray photogenerated free carriers at the semiconductor-nanoparticle interface and suggests that GaN is a promising wide-band-gap support material for photocatalysis and electronic control of catalysis.
High performance printed oxide field-effect transistors processed using photonic curing
NASA Astrophysics Data System (ADS)
Garlapati, Suresh Kumar; Cadilha Marques, Gabriel; Gebauer, Julia Susanne; Dehm, Simone; Bruns, Michael; Winterer, Markus; Baradaran Tahoori, Mehdi; Aghassi-Hagmann, Jasmin; Hahn, Horst; Dasgupta, Subho
2018-06-01
Oxide semiconductors are highly promising candidates for the most awaited, next-generation electronics, namely, printed electronics. As a fabrication route for the solution-processed/printed oxide semiconductors, photonic curing is becoming increasingly popular, as compared to the conventional thermal curing method; the former offers numerous advantages over the latter, such as low process temperatures and short exposure time and thereby, high throughput compatibility. Here, using dissimilar photonic curing concepts (UV–visible light and UV-laser), we demonstrate facile fabrication of high performance In2O3 field-effect transistors (FETs). Beside the processing related issues (temperature, time etc.), the other known limitation of oxide electronics is the lack of high performance p-type semiconductors, which can be bypassed using unipolar logics from high mobility n-type semiconductors alone. Interestingly, here we have found that our chosen distinct photonic curing methods can offer a large variation in threshold voltage, when they are fabricated from the same precursor ink. Consequently, both depletion and enhancement-mode devices have been achieved which can be used as the pull-up and pull-down transistors in unipolar inverters. The present device fabrication recipe demonstrates fast processing of low operation voltage, high performance FETs with large threshold voltage tunability.
TiOx-based thin-film transistors prepared by femtosecond laser pre-annealing
NASA Astrophysics Data System (ADS)
Shan, Fei; Kim, Sung-Jin
2018-02-01
We report on thin-film transistors (TFTs) based on titanium oxide (TiOx) prepared using femtosecond laser pre-annealing for electrical application of n-type channel oxide transparent TFTs. Amorphous TFTs using TiOx semiconductors as an active layer have a low-temperature process and show remarkable electrical performance. And the femtosecond laser pre-annealing process has greater flexibility and development space for semiconductor production activity, with a fast preparation method. TFTs with a TiOx semiconductor pre-annealed via femtosecond laser at 3 W have a pinhole-free and smooth surface without crystal grains.
Eisler, Hans J [Stoneham, MA; Sundar, Vikram C [Stoneham, MA; Walsh, Michael E [Everett, MA; Klimov, Victor I [Los Alamos, NM; Bawendi, Moungi G [Cambridge, MA; Smith, Henry I [Sudbury, MA
2008-12-30
A structure including a grating and a semiconductor nanocrystal layer on the grating, can be a laser. The semiconductor nanocrystal layer can include a plurality of semiconductor nanocrystals including a Group II-VI compound, the nanocrystals being distributed in a metal oxide matrix. The grating can have a periodicity from 200 nm to 500 nm.
Eisler, Hans J.; Sundar, Vikram C.; Walsh, Michael E.; Klimov, Victor I.; Bawendi, Moungi G.; Smith, Henry I.
2006-12-19
A structure including a grating and a semiconductor nanocrystal layer on the grating, can be a laser. The semiconductor nanocrystal layer can include a plurality of semiconductor nanocrystals including a Group II–VI compound, the nanocrystals being distributed in a metal oxide matrix. The grating can have a periodicity from 200 nm to 500 nm.
Reliability Prediction Models for Discrete Semiconductor Devices
1988-07-01
influence failure rate were device construction, semiconductor material, junction temperature, electrical stress, circuit application., a plication...found to influence failure rate were device construction, semiconductor material, junction temperature, electrical stress, circuit application...MFA Airbreathlng 14issile, Flight MFF Missile, Free Flight ML Missile, Launch MMIC Monolithic Microwave Integrated Circuits MOS Metal-Oxide
ROLE OF THE NETWORK FORMER IN SEMICONDUCTING OXIDE GLASSES.
SEMICONDUCTOR DEVICES, * GLASS ), (*ELECTRICAL NETWORKS, GLASS ), ELECTRICAL PROPERTIES, SEEBECK EFFECT, BORATES, PHOSPHATES, ELECTRICAL RESISTANCE, X RAY DIFFRACTION, ANNEALING, OXIDATION, OXIDES, ELECTRODES, VANADIUM
Coaxial metal-oxide-semiconductor (MOS) Au/Ga2O3/GaN nanowires.
Hsieh, Chin-Hua; Chang, Mu-Tung; Chien, Yu-Jen; Chou, Li-Jen; Chen, Lih-Juann; Chen, Chii-Dong
2008-10-01
Coaxial metal-oxide-semiconductor (MOS) Au-Ga2O3-GaN heterostructure nanowires were successfully fabricated by an in situ two-step process. The Au-Ga2O3 core-shell nanowires were first synthesized by the reaction of Ga powder, a mediated Au thin layer, and a SiO2 substrate at 800 degrees C. Subsequently, these core-shell nanowires were nitridized in ambient ammonia to form a GaN coating layer at 600 degrees C. The GaN shell is a single crystal, an atomic flat interface between the oxide and semiconductor that ensures that the high quality of the MOS device is achieved. These novel 1D nitride-based MOS nanowires may have promise as building blocks to the future nitride-based vertical nanodevices.
Picosecond UV single photon detectors with lateral drift field: Concept and technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yakimov, M.; Oktyabrsky, S.; Murat, P.
2015-09-01
Group III–V semiconductor materials are being considered as a Si replacement for advanced logic devices for quite some time. Advances in III–V processing technologies, such as interface and surface passivation, large area deep submicron lithography with high-aspect ratio etching primarily driven by the metal-oxide-semiconductor field-effect transistor development can also be used for other applications. In this paper we will focus on photodetectors with the drift field parallel to the surface. We compare the proposed concept to the state-of-the-art Si-based technology and discuss requirements which need to be satisfied for such detectors to be used in a single photon counting modemore » in blue and ultraviolet spectral region with about 10 ps photon timing resolution essential for numerous applications ranging from high-energy physics to medical imaging.« less
Direct conversion semiconductor detectors in positron emission tomography
NASA Astrophysics Data System (ADS)
Cates, Joshua W.; Gu, Yi; Levin, Craig S.
2015-05-01
Semiconductor detectors are playing an increasing role in ongoing research to improve image resolution, contrast, and quantitative accuracy in preclinical applications of positron emission tomography (PET). These detectors serve as a medium for direct detection of annihilation photons. Early clinical translation of this technology has shown improvements in image quality and tumor delineation for head and neck cancers, relative to conventional scintillator-based systems. After a brief outline of the basics of PET imaging and the physical detection mechanisms for semiconductor detectors, an overview of ongoing detector development work is presented. The capabilities of semiconductor-based PET systems and the current state of these devices are discussed.
NASA Astrophysics Data System (ADS)
An, Yanbin; Shekhawat, Aniruddh; Behnam, Ashkan; Pop, Eric; Ural, Ant
2016-11-01
Metal-oxide-semiconductor (MOS) devices with graphene as the metal gate electrode, silicon dioxide with thicknesses ranging from 5 to 20 nm as the dielectric, and p-type silicon as the semiconductor are fabricated and characterized. It is found that Fowler-Nordheim (F-N) tunneling dominates the gate tunneling current in these devices for oxide thicknesses of 10 nm and larger, whereas for devices with 5 nm oxide, direct tunneling starts to play a role in determining the total gate current. Furthermore, the temperature dependences of the F-N tunneling current for the 10 nm devices are characterized in the temperature range 77-300 K. The F-N coefficients and the effective tunneling barrier height are extracted as a function of temperature. It is found that the effective barrier height decreases with increasing temperature, which is in agreement with the results previously reported for conventional MOS devices with polysilicon or metal gate electrodes. In addition, high frequency capacitance-voltage measurements of these MOS devices are performed, which depict a local capacitance minimum under accumulation for thin oxides. By analyzing the data using numerical calculations based on the modified density of states of graphene in the presence of charged impurities, it is shown that this local minimum is due to the contribution of the quantum capacitance of graphene. Finally, the workfunction of the graphene gate electrode is extracted by determining the flat-band voltage as a function of oxide thickness. These results show that graphene is a promising candidate as the gate electrode in metal-oxide-semiconductor devices.
Wang, Zhenwei; Al-Jawhari, Hala A; Nayak, Pradipta K; Caraveo-Frescas, J A; Wei, Nini; Hedhili, M N; Alshareef, H N
2015-04-20
In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190 °C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field.
Wang, Zhenwei; Al-Jawhari, Hala A.; Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Wei, Nini; Hedhili, M. N.; Alshareef, H. N.
2015-01-01
In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190°C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field. PMID:25892711
Hysteresis in Lanthanide Aluminum Oxides Observed by Fast Pulse CV Measurement
Zhao, Chun; Zhao, Ce Zhou; Lu, Qifeng; Yan, Xiaoyi; Taylor, Stephen; Chalker, Paul R.
2014-01-01
Oxide materials with large dielectric constants (so-called high-k dielectrics) have attracted much attention due to their potential use as gate dielectrics in Metal Oxide Semiconductor Field Effect Transistors (MOSFETs). A novel characterization (pulse capacitance-voltage) method was proposed in detail. The pulse capacitance-voltage technique was employed to characterize oxide traps of high-k dielectrics based on the Metal Oxide Semiconductor (MOS) capacitor structure. The variation of flat-band voltages of the MOS structure was observed and discussed accordingly. Some interesting trapping/detrapping results related to the lanthanide aluminum oxide traps were identified for possible application in Flash memory technology. After understanding the trapping/detrapping mechanism of the high-k oxides, a solid foundation was prepared for further exploration into charge-trapping non-volatile memory in the future. PMID:28788225
Comprehensive review on the development of high mobility in oxide thin film transistors
NASA Astrophysics Data System (ADS)
Choi, Jun Young; Lee, Sang Yeol
2017-11-01
Oxide materials are one of the most advanced key technology in the thin film transistors (TFTs) for the high-end of device applications. Amorphous oxide semiconductors (AOSs) have leading technique for flat panel display (FPD), active matrix organic light emitting display (AMOLED) and active matrix liquid crystal display (AMLCD) due to their excellent electrical characteristics, such as field effect mobility ( μ FE ), subthreshold swing (S.S) and threshold voltage ( V th ). Covalent semiconductor like amorphous silicon (a-Si) is attributed to the anti-bonding and bonding states of Si hybridized orbitals. However, AOSs have not grain boundary and excellent performances originated from the unique characteristics of AOS which is the direct orbital overlap between s orbitals of neighboring metal cations. High mobility oxide TFTs have gained attractive attention during the last few years and today in display industries. It is progressively developed to increase the mobility either by exploring various oxide semiconductors or by adopting new TFT structures. Mobility of oxide thin film transistor has been rapidly increased from single digit to higher than 100 cm2/V·s in a decade. In this review, we discuss on the comprehensive review on the mobility of oxide TFTs in a decade and propose bandgap engineering and novel structure to enhance the electrical characteristics of oxide TFTs.
An HDR imaging method with DTDI technology for push-broom cameras
NASA Astrophysics Data System (ADS)
Sun, Wu; Han, Chengshan; Xue, Xucheng; Lv, Hengyi; Shi, Junxia; Hu, Changhong; Li, Xiangzhi; Fu, Yao; Jiang, Xiaonan; Huang, Liang; Han, Hongyin
2018-03-01
Conventionally, high dynamic-range (HDR) imaging is based on taking two or more pictures of the same scene with different exposure. However, due to a high-speed relative motion between the camera and the scene, it is hard for this technique to be applied to push-broom remote sensing cameras. For the sake of HDR imaging in push-broom remote sensing applications, the present paper proposes an innovative method which can generate HDR images without redundant image sensors or optical components. Specifically, this paper adopts an area array CMOS (complementary metal oxide semiconductor) with the digital domain time-delay-integration (DTDI) technology for imaging, instead of adopting more than one row of image sensors, thereby taking more than one picture with different exposure. And then a new HDR image by fusing two original images with a simple algorithm can be achieved. By conducting the experiment, the dynamic range (DR) of the image increases by 26.02 dB. The proposed method is proved to be effective and has potential in other imaging applications where there is a relative motion between the cameras and scenes.
Visible light water splitting using dye-sensitized oxide semiconductors.
Youngblood, W Justin; Lee, Seung-Hyun Anna; Maeda, Kazuhiko; Mallouk, Thomas E
2009-12-21
Researchers are intensively investigating photochemical water splitting as a means of converting solar to chemical energy in the form of fuels. Hydrogen is a key solar fuel because it can be used directly in combustion engines or fuel cells, or combined catalytically with CO(2) to make carbon containing fuels. Different approaches to solar water splitting include semiconductor particles as photocatalysts and photoelectrodes, molecular donor-acceptor systems linked to catalysts for hydrogen and oxygen evolution, and photovoltaic cells coupled directly or indirectly to electrocatalysts. Despite several decades of research, solar hydrogen generation is efficient only in systems that use expensive photovoltaic cells to power water electrolysis. Direct photocatalytic water splitting is a challenging problem because the reaction is thermodynamically uphill. Light absorption results in the formation of energetic charge-separated states in both molecular donor-acceptor systems and semiconductor particles. Unfortunately, energetically favorable charge recombination reactions tend to be much faster than the slow multielectron processes of water oxidation and reduction. Consequently, visible light water splitting has only recently been achieved in semiconductor-based photocatalytic systems and remains an inefficient process. This Account describes our approach to two problems in solar water splitting: the organization of molecules into assemblies that promote long-lived charge separation, and catalysis of the electrolysis reactions, in particular the four-electron oxidation of water. The building blocks of our artificial photosynthetic systems are wide band gap semiconductor particles, photosensitizer and electron relay molecules, and nanoparticle catalysts. We intercalate layered metal oxide semiconductors with metal nanoparticles. These intercalation compounds, when sensitized with [Ru(bpy)(3)](2+) derivatives, catalyze the photoproduction of hydrogen from sacrificial electron donors (EDTA(2-)) or non-sacrificial donors (I(-)). Through exfoliation of layered metal oxide semiconductors, we construct multilayer electron donor-acceptor thin films or sensitized colloids in which individual nanosheets mediate light-driven electron transfer reactions. When sensitizer molecules are "wired" to IrO(2).nH(2)O nanoparticles, a dye-sensitized TiO(2) electrode becomes the photoanode of a water-splitting photoelectrochemical cell. Although this system is an interesting proof-of-concept, the performance of these cells is still poor (approximately 1% quantum yield) and the dye photodegrades rapidly. We can understand the quantum efficiency and degradation in terms of competing kinetic pathways for water oxidation, back electron transfer, and decomposition of the oxidized dye molecules. Laser flash photolysis experiments allow us to measure these competing rates and, in principle, to improve the performance of the cell by changing the architecture of the electron transfer chain.
Plasmonic doped semiconductor nanocrystals: Properties, fabrication, applications and perspectives
NASA Astrophysics Data System (ADS)
Kriegel, Ilka; Scotognella, Francesco; Manna, Liberato
2017-02-01
Degenerately doped semiconductor nanocrystals (NCs) are of recent interest to the NC community due to their tunable localized surface plasmon resonances (LSPRs) in the near infrared (NIR). The high level of doping in such materials with carrier densities in the range of 1021cm-3 leads to degeneracy of the doping levels and intense plasmonic absorption in the NIR. The lower carrier density in degenerately doped semiconductor NCs compared to noble metals enables LSPR tuning over a wide spectral range, since even a minor change of the carrier density strongly affects the spectral position of the LSPR. Two classes of degenerate semiconductors are most relevant in this respect: impurity doped semiconductors, such as metal oxides, and vacancy doped semiconductors, such as copper chalcogenides. In the latter it is the density of copper vacancies that controls the carrier concentration, while in the former the introduction of impurity atoms adds carriers to the system. LSPR tuning in vacancy doped semiconductor NCs such as copper chalcogenides occurs by chemically controlling the copper vacancy density. This goes in hand with complex structural modifications of the copper chalcogenide crystal lattice. In contrast the LSPR of degenerately doped metal oxide NCs is modified by varying the doping concentration or by the choice of host and dopant atoms, but also through the addition of capacitive charge carriers to the conduction band of the metal oxide upon post-synthetic treatments, such as by electrochemical- or photodoping. The NIR LSPRs and the option of their spectral fine-tuning make accessible important new features, such as the controlled coupling of the LSPR to other physical signatures or the enhancement of optical signals in the NIR, sensing application by LSPR tracking, energy production from the NIR plasmon resonance or bio-medical applications in the biological window. In this review we highlight the recent advances in the synthesis of various different plasmonic semiconductor NCs with LSPRs covering the entire spectral range, from the mid- to the NIR. We focus on copper chalcogenide NCs and impurity doped metal oxide NCs as the most investigated alternatives to noble metals. We shed light on the structural changes upon LSPR tuning in vacancy doped copper chalcogenide NCs and deliver a picture for the fundamentally different mechanism of LSPR modification of impurity doped metal oxide NCs. We review on the peculiar optical properties of plasmonic degenerately doped NCs by highlighting the variety of different optical measurements and optical modeling approaches. These findings are merged in an exhaustive section on new and exciting applications based on the special characteristics that plasmonic semiconductor NCs bring along.
Thermally grown oxide and diffusions for automatic processing of integrated circuits
NASA Technical Reports Server (NTRS)
Kennedy, B. W.
1979-01-01
A totally automated facility for semiconductor oxidation and diffusion was developed using a state-of-the-art diffusion furnace and high temperature grown oxides. Major innovations include: (1) a process controller specifically for semiconductor processing; (2) an automatic loading system to accept wafers from an air track, insert them into a quartz carrier and then place the carrier on a paddle for insertion into the furnace; (3) automatic unloading of the wafers back onto the air track, and (4) boron diffusion using diborane with plus or minus 5 percent uniformity. Processes demonstrated include Wet and dry oxidation for general use and for gate oxide, boron diffusion, phosphorous diffusion, and sintering.
Protection performance evaluation regarding imaging sensors hardened against laser dazzling
NASA Astrophysics Data System (ADS)
Ritt, Gunnar; Koerber, Michael; Forster, Daniel; Eberle, Bernd
2015-05-01
Electro-optical imaging sensors are widely distributed and used for many different purposes, including civil security and military operations. However, laser irradiation can easily disturb their operational capability. Thus, an adequate protection mechanism for electro-optical sensors against dazzling and damaging is highly desirable. Different protection technologies exist now, but none of them satisfies the operational requirements without any constraints. In order to evaluate the performance of various laser protection measures, we present two different approaches based on triangle orientation discrimination on the one hand and structural similarity on the other hand. For both approaches, image analysis algorithms are applied to images taken of a standard test scene with triangular test patterns which is superimposed by dazzling laser light of various irradiance levels. The evaluation methods are applied to three different sensors: a standard complementary metal oxide semiconductor camera, a high dynamic range camera with a nonlinear response curve, and a sensor hardened against laser dazzling.
Recent Progress in Optical Biosensors Based on Smartphone Platforms
Geng, Zhaoxin; Zhang, Xiong; Fan, Zhiyuan; Lv, Xiaoqing; Su, Yue; Chen, Hongda
2017-01-01
With a rapid improvement of smartphone hardware and software, especially complementary metal oxide semiconductor (CMOS) cameras, many optical biosensors based on smartphone platforms have been presented, which have pushed the development of the point-of-care testing (POCT). Imaging-based and spectrometry-based detection techniques have been widely explored via different approaches. Combined with the smartphone, imaging-based and spectrometry-based methods are currently used to investigate a wide range of molecular properties in chemical and biological science for biosensing and diagnostics. Imaging techniques based on smartphone-based microscopes are utilized to capture microscale analysts, while spectrometry-based techniques are used to probe reactions or changes of molecules. Here, we critically review the most recent progress in imaging-based and spectrometry-based smartphone-integrated platforms that have been developed for chemical experiments and biological diagnosis. We focus on the analytical performance and the complexity for implementation of the platforms. PMID:29068375
3-D System-on-System (SoS) Biomedical-Imaging Architecture for Health-Care Applications.
Sang-Jin Lee; Kavehei, O; Yoon-Ki Hong; Tae Won Cho; Younggap You; Kyoungrok Cho; Eshraghian, K
2010-12-01
This paper presents the implementation of a 3-D architecture for a biomedical-imaging system based on a multilayered system-on-system structure. The architecture consists of a complementary metal-oxide semiconductor image sensor layer, memory, 3-D discrete wavelet transform (3D-DWT), 3-D Advanced Encryption Standard (3D-AES), and an RF transmitter as an add-on layer. Multilayer silicon (Si) stacking permits fabrication and optimization of individual layers by different processing technology to achieve optimal performance. Utilization of through silicon via scheme can address required low-power operation as well as high-speed performance. Potential benefits of 3-D vertical integration include an improved form factor as well as a reduction in the total wiring length, multifunctionality, power efficiency, and flexible heterogeneous integration. The proposed imaging architecture was simulated by using Cadence Spectre and Synopsys HSPICE while implementation was carried out by Cadence Virtuoso and Mentor Graphic Calibre.
Decoding mobile-phone image sensor rolling shutter effect for visible light communications
NASA Astrophysics Data System (ADS)
Liu, Yang
2016-01-01
Optical wireless communication (OWC) using visible lights, also known as visible light communication (VLC), has attracted significant attention recently. As the traditional OWC and VLC receivers (Rxs) are based on PIN photo-diode or avalanche photo-diode, deploying the complementary metal-oxide-semiconductor (CMOS) image sensor as the VLC Rx is attractive since nowadays nearly every person has a smart phone with embedded CMOS image sensor. However, deploying the CMOS image sensor as the VLC Rx is challenging. In this work, we propose and demonstrate two simple contrast ratio (CR) enhancement schemes to improve the contrast of the rolling shutter pattern. Then we describe their processing algorithms one by one. The experimental results show that both the proposed CR enhancement schemes can significantly mitigate the high-intensity fluctuations of the rolling shutter pattern and improve the bit-error-rate performance.
Recent Progress in Optical Biosensors Based on Smartphone Platforms.
Geng, Zhaoxin; Zhang, Xiong; Fan, Zhiyuan; Lv, Xiaoqing; Su, Yue; Chen, Hongda
2017-10-25
With a rapid improvement of smartphone hardware and software, especially complementary metal oxide semiconductor (CMOS) cameras, many optical biosensors based on smartphone platforms have been presented, which have pushed the development of the point-of-care testing (POCT). Imaging-based and spectrometry-based detection techniques have been widely explored via different approaches. Combined with the smartphone, imaging-based and spectrometry-based methods are currently used to investigate a wide range of molecular properties in chemical and biological science for biosensing and diagnostics. Imaging techniques based on smartphone-based microscopes are utilized to capture microscale analysts, while spectrometry-based techniques are used to probe reactions or changes of molecules. Here, we critically review the most recent progress in imaging-based and spectrometry-based smartphone-integrated platforms that have been developed for chemical experiments and biological diagnosis. We focus on the analytical performance and the complexity for implementation of the platforms.
Novel Iron-oxide Catalyzed CNT Formation on Semiconductor Silicon Nanowire
Adam, Tijjani; U, Hashim
2014-01-01
An aqueous ferric nitrate nonahydrate (Fe(NO3)3.9H2O) and magnesium oxide (MgO) were mixed and deposited on silicon nanowires (SiNWs), the carbon nanotubes (CNTs) formed by the concentration of Fe3O4/MgO catalysts with the mole ratio set at 0.15:9.85 and 600°C had diameter between 15.23 to 90nm with high-density distribution of CNT while those with the mole ratio set at 0.45:9.55 and 730°C had diameter of 100 to 230nm. The UV/Vis/NIR and FT-IR spectroscopes clearly confirmed the presence of the silicon-CNTs hybrid structure. UV/Vis/NIR, FT-IR spectra and FESEM images confirmed the silicon-CNT structure exists with diameters ranging between 15-230nm. Thus, the study demonstrated cost effective method of silicon-CNT composite nanowire formation via Iron-oxide Catalyze synthesis. PMID:25237290
NASA Astrophysics Data System (ADS)
Bell, Steven J.; Baker, Mark A.; Duarte, Diana D.; Schneider, Andreas; Seller, Paul; Sellin, Paul J.; Veale, Matthew C.; Wilson, Matthew D.
2018-01-01
Cadmium zinc telluride (CdZnTe) is a leading sensor material for spectroscopic X/γ-ray imaging in the fields of homeland security, medical imaging, industrial analysis and astrophysics. The metal-semiconductor interface formed during contact deposition is of fundamental importance to the spectroscopic performance of the detector and is primarily determined by the deposition method. A multi-technique analysis of the metal-semiconductor interface formed by sputter and electroless deposition of gold onto (111) aligned CdZnTe is presented. Focused ion beam (FIB) cross section imaging, X-ray photoelectron spectroscopy (XPS) depth profiling and current-voltage (IV) analysis have been applied to determine the structural, chemical and electronic properties of the gold contacts. In a novel approach, principal component analysis has been employed on the XPS depth profiles to extract detailed chemical state information from different depths within the profile. It was found that electroless deposition forms a complicated, graded interface comprised of tellurium oxide, gold/gold telluride particulates, and cadmium chloride. This compared with a sharp transition from surface gold to bulk CdZnTe observed for the interface formed by sputter deposition. The electronic (IV) response for the detector with electroless deposited contacts was symmetric, but was asymmetric for the detector with sputtered gold contacts. This is due to the electroless deposition degrading the difference between the Cd- and Te-faces of the CdZnTe (111) crystal, whilst these differences are maintained for the sputter deposited gold contacts. This work represents an important step in the optimisation of the metal-semiconductor interface which currently is a limiting factor in the development of high resolution CdZnTe detectors.
Investigation of Optical Properties of Zinc Oxide Photodetector
NASA Astrophysics Data System (ADS)
Chism, Tyler
UV photodetection devices have many important applications for uses in biological detection, gas sensing, weaponry detection, fire detection, chemical analysis, and many others. Today's photodetectors often utilize semiconductors such as GaAs to achieve high responsivity and sensitivity. Zinc oxide, unlike many other semiconductors, is cheap, abundant, non-toxic, and easy to grow different morphologies at the micro and nano scale. With the proliferation of these devices also comes the impending need to further study optics and photonics in relation to phononics and plasmonics, and the general principles underlying the interaction of photons with solid state matter and, specifically, semiconductors. For this research a metal-semiconductor-metal UV photodetector has been fabricated by using a quartz substrate on top of which was deposited micropatterned gold in an interdigitated electrode design. On this, sparsely coated zinc oxide nano trees were hydrothermally grown. The UV photodetection device showed promise for detection applications, especially because zinc oxide is also very thermally stable, a quality which is highly sought after in today's UV photodetectors. Furthermore, the newly synthesized photodetector was used to investigate optical properties and how they respond to different stimuli. It was discovered that the photons transmitted through the sparsely coated zinc oxide nano trees decreased as the voltage across the device increased. This research is aimed at better understanding photons interaction with matter and also to open the door for new devices with tunable optical properties such as transmission.
Integrated semiconductor optical sensors for chronic, minimally-invasive imaging of brain function.
Lee, Thomas T; Levi, Ofer; Cang, Jianhua; Kaneko, Megumi; Stryker, Michael P; Smith, Stephen J; Shenoy, Krishna V; Harris, James S
2006-01-01
Intrinsic optical signal (IOS) imaging is a widely accepted technique for imaging brain activity. We propose an integrated device consisting of interleaved arrays of gallium arsenide (GaAs) based semiconductor light sources and detectors operating at telecommunications wavelengths in the near-infrared. Such a device will allow for long-term, minimally invasive monitoring of neural activity in freely behaving subjects, and will enable the use of structured illumination patterns to improve system performance. In this work we describe the proposed system and show that near-infrared IOS imaging at wavelengths compatible with semiconductor devices can produce physiologically significant images in mice, even through skull.
High-content analysis of single cells directly assembled on CMOS sensor based on color imaging.
Tanaka, Tsuyoshi; Saeki, Tatsuya; Sunaga, Yoshihiko; Matsunaga, Tadashi
2010-12-15
A complementary metal oxide semiconductor (CMOS) image sensor was applied to high-content analysis of single cells which were assembled closely or directly onto the CMOS sensor surface. The direct assembling of cell groups on CMOS sensor surface allows large-field (6.66 mm×5.32 mm in entire active area of CMOS sensor) imaging within a second. Trypan blue-stained and non-stained cells in the same field area on the CMOS sensor were successfully distinguished as white- and blue-colored images under white LED light irradiation. Furthermore, the chemiluminescent signals of each cell were successfully visualized as blue-colored images on CMOS sensor only when HeLa cells were placed directly on the micro-lens array of the CMOS sensor. Our proposed approach will be a promising technique for real-time and high-content analysis of single cells in a large-field area based on color imaging. Copyright © 2010 Elsevier B.V. All rights reserved.
Jungmann, J H; Gijsbertsen, A; Visser, J; Visschers, J; Heeren, R M A; Vrakking, M J J
2010-10-01
The implementation of the Timepix complementary metal oxide semiconductor pixel detector in velocity map slice imaging is presented. This new detector approach eliminates the need for gating the imaging detector. In time-of-flight mode, the detector returns the impact position and the time-of-flight of charged particles with 12.5 ns resolution and a dynamic range of about 100 μs. The implementation of the Timepix detector in combination with a microchannel plate additionally allows for high spatial resolution information via center-of-mass centroiding. Here, the detector was applied to study the photodissociation of NO(2) at 452 nm. The energy resolution observed in the experiment was ΔE/E=0.05 and is limited by the experimental setup rather than by the detector assembly. All together, this new compact detector assembly is well-suited for slice imaging and is a promising tool for imaging studies in atomic and molecular physics research.
Training and operation of an integrated neuromorphic network based on metal-oxide memristors.
Prezioso, M; Merrikh-Bayat, F; Hoskins, B D; Adam, G C; Likharev, K K; Strukov, D B
2015-05-07
Despite much progress in semiconductor integrated circuit technology, the extreme complexity of the human cerebral cortex, with its approximately 10(14) synapses, makes the hardware implementation of neuromorphic networks with a comparable number of devices exceptionally challenging. To provide comparable complexity while operating much faster and with manageable power dissipation, networks based on circuits combining complementary metal-oxide-semiconductors (CMOSs) and adjustable two-terminal resistive devices (memristors) have been developed. In such circuits, the usual CMOS stack is augmented with one or several crossbar layers, with memristors at each crosspoint. There have recently been notable improvements in the fabrication of such memristive crossbars and their integration with CMOS circuits, including first demonstrations of their vertical integration. Separately, discrete memristors have been used as artificial synapses in neuromorphic networks. Very recently, such experiments have been extended to crossbar arrays of phase-change memristive devices. The adjustment of such devices, however, requires an additional transistor at each crosspoint, and hence these devices are much harder to scale than metal-oxide memristors, whose nonlinear current-voltage curves enable transistor-free operation. Here we report the experimental implementation of transistor-free metal-oxide memristor crossbars, with device variability sufficiently low to allow operation of integrated neural networks, in a simple network: a single-layer perceptron (an algorithm for linear classification). The network can be taught in situ using a coarse-grain variety of the delta rule algorithm to perform the perfect classification of 3 × 3-pixel black/white images into three classes (representing letters). This demonstration is an important step towards much larger and more complex memristive neuromorphic networks.
A study to investigate the chemical stability of gallium phosphate oxide/gallium arsenide phosphide
NASA Technical Reports Server (NTRS)
Kuhlman, G. J.
1979-01-01
The elemental composition with depth into the oxide films was examined using secondary ion mass spectrometry. Results indicate that the layers are arsenic-deficient through the bulk of the oxide and arsenic-rich near both the oxide surface and the oxide-semiconductor interface region. Phosphorus is incorporated into the oxide in an approximately uniform manner. The MIS capacitor structures exhibited deep-depletion characteristics and hysteresis indicative of electron trapping at the oxide-semiconductor interface. Post-oxidation annealing of the films in argon or nitrogen generally results in slightly increased dielectric leakage currents and decreased C-V hysteresis effects, and is associated with arsenic loss at the oxide surface. The results of bias-temperature stress experiments indicate that the major instability effects are due to changes in the electron trapping behavior. No changes were observed in the elemental profiles following electrical stressing, indicating that the grown films are chemically stable under device operating conditions.
Bae, Yoon Cheol; Lee, Ah Rahm; Baek, Gwang Ho; Chung, Je Bock; Kim, Tae Yoon; Park, Jea Gun; Hong, Jin Pyo
2015-01-01
Three-dimensional (3D) stackable memory devices including nano-scaled crossbar array are central for the realization of high-density non-volatile memory electronics. However, an essential sneak path issue affecting device performance in crossbar array remains a bottleneck and a grand challenge. Therefore, a suitable bidirectional selector as a two-way switch is required to facilitate a major breakthrough in the 3D crossbar array memory devices. Here, we show the excellent selectivity of all oxide p-/n-type semiconductor-based p-n-p open-based bipolar junction transistors as selectors in crossbar memory array. We report that bidirectional nonlinear characteristics of oxide p-n-p junctions can be highly enhanced by manipulating p-/n-type oxide semiconductor characteristics. We also propose an associated Zener tunneling mechanism that explains the unique features of our p-n-p selector. Our experimental findings are further extended to confirm the profound functionality of oxide p-n-p selectors integrated with several bipolar resistive switching memory elements working as storage nodes. PMID:26289565
Imaging the motion of electrons in 2D semiconductor heterostructures
NASA Astrophysics Data System (ADS)
Dani, Keshav
Technological progress since the late 20th century has centered on semiconductor devices, such as transistors, diodes, and solar cells. At the heart of these devices, is the internal motion of electrons through semiconductor materials due to applied electric fields or by the excitation of photocarriers. Imaging the motion of these electrons would provide unprecedented insight into this important phenomenon, but requires high spatial and temporal resolution. Current studies of electron dynamics in semiconductors are generally limited by the spatial resolution of optical probes, or by the temporal resolution of electronic probes. In this talk, we combine femtosecond pump-probe techniques with spectroscopic photoemission electron microscopy to image the motion of photoexcited electrons from high-energy to low-energy states in a 2D InSe/GaAs heterostructure exhibiting a type-II band alignment. At the instant of photoexcitation, energy-resolved photoelectron images reveal a highly non-equilibrium distribution of photocarriers in space and energy. Thereafter, in response to the out-of-equilibrium photocarriers, we observe the spatial redistribution of charges, thus forming internal electric fields, bending the semiconductor bands, and finally impeding further charge transfer. By assembling images taken at different time-delays, we make a movie lasting a few tens of picoseconds of the electron transfer process in the photoexcited type-II heterostructure - a fundamental phenomenon in semiconductor devices like solar cells. Quantitative analysis and theoretical modeling of spatial variations in the video provide insight into future solar cells, electron dynamics in 2D materials, and other semiconductor devices.
Imaging the motion of electrons across semiconductor heterojunctions.
Man, Michael K L; Margiolakis, Athanasios; Deckoff-Jones, Skylar; Harada, Takaaki; Wong, E Laine; Krishna, M Bala Murali; Madéo, Julien; Winchester, Andrew; Lei, Sidong; Vajtai, Robert; Ajayan, Pulickel M; Dani, Keshav M
2017-01-01
Technological progress since the late twentieth century has centred on semiconductor devices, such as transistors, diodes and solar cells. At the heart of these devices is the internal motion of electrons through semiconductor materials due to applied electric fields or by the excitation of photocarriers. Imaging the motion of these electrons would provide unprecedented insight into this important phenomenon, but requires high spatial and temporal resolution. Current studies of electron dynamics in semiconductors are generally limited by the spatial resolution of optical probes, or by the temporal resolution of electronic probes. Here, by combining femtosecond pump-probe techniques with spectroscopic photoemission electron microscopy, we imaged the motion of photoexcited electrons from high-energy to low-energy states in a type-II 2D InSe/GaAs heterostructure. At the instant of photoexcitation, energy-resolved photoelectron images revealed a highly non-equilibrium distribution of photocarriers in space and energy. Thereafter, in response to the out-of-equilibrium photocarriers, we observed the spatial redistribution of charges, thus forming internal electric fields, bending the semiconductor bands, and finally impeding further charge transfer. By assembling images taken at different time-delays, we produced a movie lasting a few trillionths of a second of the electron-transfer process in the photoexcited type-II heterostructure-a fundamental phenomenon in semiconductor devices such as solar cells. Quantitative analysis and theoretical modelling of spatial variations in the movie provide insight into future solar cells, 2D materials and other semiconductor devices.
Imaging the motion of electrons across semiconductor heterojunctions
NASA Astrophysics Data System (ADS)
Man, Michael K. L.; Margiolakis, Athanasios; Deckoff-Jones, Skylar; Harada, Takaaki; Wong, E. Laine; Krishna, M. Bala Murali; Madéo, Julien; Winchester, Andrew; Lei, Sidong; Vajtai, Robert; Ajayan, Pulickel M.; Dani, Keshav M.
2017-01-01
Technological progress since the late twentieth century has centred on semiconductor devices, such as transistors, diodes and solar cells. At the heart of these devices is the internal motion of electrons through semiconductor materials due to applied electric fields or by the excitation of photocarriers. Imaging the motion of these electrons would provide unprecedented insight into this important phenomenon, but requires high spatial and temporal resolution. Current studies of electron dynamics in semiconductors are generally limited by the spatial resolution of optical probes, or by the temporal resolution of electronic probes. Here, by combining femtosecond pump-probe techniques with spectroscopic photoemission electron microscopy, we imaged the motion of photoexcited electrons from high-energy to low-energy states in a type-II 2D InSe/GaAs heterostructure. At the instant of photoexcitation, energy-resolved photoelectron images revealed a highly non-equilibrium distribution of photocarriers in space and energy. Thereafter, in response to the out-of-equilibrium photocarriers, we observed the spatial redistribution of charges, thus forming internal electric fields, bending the semiconductor bands, and finally impeding further charge transfer. By assembling images taken at different time-delays, we produced a movie lasting a few trillionths of a second of the electron-transfer process in the photoexcited type-II heterostructure—a fundamental phenomenon in semiconductor devices such as solar cells. Quantitative analysis and theoretical modelling of spatial variations in the movie provide insight into future solar cells, 2D materials and other semiconductor devices.
Goh, Youngin; Ahn, Jaehan; Lee, Jeong Rak; Park, Wan Woo; Ko Park, Sang-Hee; Jeon, Sanghun
2017-10-25
Amorphous oxide semiconductor-based thin film transistors (TFTs) have been considered as excellent switching elements for driving active-matrix organic light-emitting diodes (AMOLED) owing to their high mobility and process compatibility. However, oxide semiconductors have inherent defects, causing fast transient charge trapping and device instability. For the next-generation displays such as flexible, wearable, or transparent displays, an active semiconductor layer with ultrahigh mobility and high reliability at low deposition temperature is required. Therefore, we introduced high density plasma microwave-assisted (MWA) sputtering method as a promising deposition tool for the formation of high density and high-performance oxide semiconductor films. In this paper, we present the effect of the MWA sputtering method on the defects and fast charge trapping in In-Sn-Zn-O (ITZO) TFTs using various AC device characterization methodologies including fast I-V, pulsed I-V, transient current, low frequency noise, and discharge current analysis. Using these methods, we were able to analyze the charge trapping mechanism and intrinsic electrical characteristics, and extract the subgap density of the states of oxide TFTs quantitatively. In comparison to conventional sputtered ITZO, high density plasma MWA-sputtered ITZO exhibits outstanding electrical performance, negligible charge trapping characteristics and low subgap density of states. High-density plasma MWA sputtering method has high deposition rate even at low working pressure and control the ion bombardment energy, resulting in forming low defect generation in ITZO and presenting high performance ITZO TFT. We expect the proposed high density plasma sputtering method to be applicable to a wide range of oxide semiconductor device applications.
Electrolytic photodissociation of chemical compounds by iron oxide electrodes
Somorjai, Gabor A.; Leygraf, Christofer H.
1984-01-01
Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor diode having visible light as its sole source of energy. The diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.
Electrolytic photodissociation of chemical compounds by iron oxide photochemical diodes
Somorjai, Gabor A.; Leygraf, Christofer H.
1985-01-01
Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor photochemical diode having visible light as its sole source of energy. The photochemical diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.
Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor.
Nomura, Kenji; Ohta, Hiromichi; Ueda, Kazushige; Kamiya, Toshio; Hirano, Masahiro; Hosono, Hideo
2003-05-23
We report the fabrication of transparent field-effect transistors using a single-crystalline thin-film transparent oxide semiconductor, InGaO3(ZnO)5, as an electron channel and amorphous hafnium oxide as a gate insulator. The device exhibits an on-to-off current ratio of approximately 106 and a field-effect mobility of approximately 80 square centimeters per volt per second at room temperature, with operation insensitive to visible light irradiation. The result provides a step toward the realization of transparent electronics for next-generation optoelectronics.
Seager, C.H.; Evans, J.T. Jr.
1998-11-24
A method is described for counteracting increases in resistivity encountered when Indium Oxide resistive layers are subjected to high temperature annealing steps during semiconductor device fabrication. The method utilizes a recovery annealing step which returns the Indium Oxide layer to its original resistivity after a high temperature annealing step has caused the resistivity to increase. The recovery anneal comprises heating the resistive layer to a temperature between 100 C and 300 C for a period of time that depends on the annealing temperature. The recovery is observed even when the Indium Oxide layer is sealed under a dielectric layer. 1 fig.
Seager, Carleton H.; Evans, Jr., Joseph Tate
1998-01-01
A method for counteracting increases in resistivity encountered when Indium Oxide resistive layers are subjected to high temperature annealing steps during semiconductor device fabrication. The method utilizes a recovery annealing step which returns the Indium Oxide layer to its original resistivity after a high temperature annealing step has caused the resistivity to increase. The recovery anneal comprises heating the resistive layer to a temperature between 100.degree. C. and 300.degree. C. for a period of time that depends on the annealing temperature. The recovery is observed even when the Indium Oxide layer is sealed under a dielectric layer.
NASA Astrophysics Data System (ADS)
Lechaux, Y.; Fadjie-Djomkam, A. B.; Bollaert, S.; Wichmann, N.
2016-09-01
Capacitance-voltage (C-V) measurements and x-ray photoelectron spectroscopy (XPS) analysis were performed in order to investigate the effect of a oxygen (O2) plasma after oxide deposition on the Al2O3/n-In0.53Ga0.47As metal-oxide-semiconductor structure passivated with ammonia NH4OH solution. From C-V measurements, an improvement of charge control is observed using the O2 plasma postoxidation process on In0.53Ga0.47As, while the minimum of interface trap density remains at a good value lower than 1 × 1012 cm-2 eV-1. From XPS measurements, we found that NH4OH passivation removes drastically the Ga and As native oxides on the In0.53Ga0.47As surface and the O2 plasma postoxidation process enables the reduction of interface re-oxidation after post deposition annealing (PDA) of the oxide. The advanced hypothesis is the formation of interfacial barrier between Al2O3 and In0.53Ga0.47As which prevents the diffusion of oxygen species into the semiconductor surface during PDA.
NASA Astrophysics Data System (ADS)
Martins, R.; Barquinha, P.; Ferreira, I.; Pereira, L.; Gonçalves, G.; Fortunato, E.
2007-02-01
The role of order and disorder on the electronic performances of n-type ionic oxides such as zinc oxide, gallium zinc oxide, and indium zinc oxide used as active (channel) or passive (drain/source) layers in thin film transistors (TFTs) processed at room temperature are discussed, taking as reference the known behavior observed in conventional covalent semiconductors such as silicon. The work performed shows that while in the oxide semiconductors the Fermi level can be pinned up within the conduction band, independent of the state of order, the same does not happen with silicon. Besides, in the oxide semiconductors the carrier mobility is not bandtail limited and so disorder does not affect so strongly the mobility as it happens in covalent semiconductors. The electrical properties of the oxide films (resistivity, carrier concentration, and mobility) are highly dependent on the oxygen vacancies (source of free carriers), which can be controlled by changing the oxygen partial pressure during the deposition process and/or by adding other metal ions to the matrix. In this case, we make the oxide matrix less sensitive to the presence of oxygen, widening the range of oxygen partial pressures that can be used and thus improving the process control of the film resistivity. The results obtained in fully transparent TFT using polycrystalline ZnO or amorphous indium zinc oxide (IZO) as channel layers and highly conductive poly/nanocrystalline ZGO films or amorphous IZO as drain/source layers show that both devices work in the enhancement mode, but the TFT with the highest electronic saturation mobility and on/off ratio 49.9cm2/Vs and 4.3×108, respectively, are the ones in which the active and passive layers are amorphous. The ZnO TFT whose channel is based on polycrystalline ZnO, the mobility and on/off ratio are, respectively, 26cm2/Vs and 3×106. This behavior is attributed to the fact that the electronic transport is governed by the s-like metal cation conduction bands, not significantly affected by any type of angular disorder promoted by the 2p O states related to the valence band, or small amounts of incorporated metal impurities that lead to a better control of vacancies and of the TFT off current.
An analog gamma correction scheme for high dynamic range CMOS logarithmic image sensors.
Cao, Yuan; Pan, Xiaofang; Zhao, Xiaojin; Wu, Huisi
2014-12-15
In this paper, a novel analog gamma correction scheme with a logarithmic image sensor dedicated to minimize the quantization noise of the high dynamic applications is presented. The proposed implementation exploits a non-linear voltage-controlled-oscillator (VCO) based analog-to-digital converter (ADC) to perform the gamma correction during the analog-to-digital conversion. As a result, the quantization noise does not increase while the same high dynamic range of logarithmic image sensor is preserved. Moreover, by combining the gamma correction with the analog-to-digital conversion, the silicon area and overall power consumption can be greatly reduced. The proposed gamma correction scheme is validated by the reported simulation results and the experimental results measured for our designed test structure, which is fabricated with 0.35 μm standard complementary-metal-oxide-semiconductor (CMOS) process.
O’Sullivan, Thomas D.; Heitz, Roxana T.; Parashurama, Natesh; Barkin, David B.; Wooley, Bruce A.; Gambhir, Sanjiv S.; Harris, James S.; Levi, Ofer
2013-01-01
Performance improvements in instrumentation for optical imaging have contributed greatly to molecular imaging in living subjects. In order to advance molecular imaging in freely moving, untethered subjects, we designed a miniature vertical-cavity surface-emitting laser (VCSEL)-based biosensor measuring 1cm3 and weighing 0.7g that accurately detects both fluorophore and tumor-targeted molecular probes in small animals. We integrated a critical enabling component, a complementary metal-oxide semiconductor (CMOS) read-out integrated circuit, which digitized the fluorescence signal to achieve autofluorescence-limited sensitivity. After surgical implantation of the lightweight sensor for two weeks, we obtained continuous and dynamic fluorophore measurements while the subject was un-anesthetized and mobile. The technology demonstrated here represents a critical step in the path toward untethered optical sensing using an integrated optoelectronic implant. PMID:24009996
An Analog Gamma Correction Scheme for High Dynamic Range CMOS Logarithmic Image Sensors
Cao, Yuan; Pan, Xiaofang; Zhao, Xiaojin; Wu, Huisi
2014-01-01
In this paper, a novel analog gamma correction scheme with a logarithmic image sensor dedicated to minimize the quantization noise of the high dynamic applications is presented. The proposed implementation exploits a non-linear voltage-controlled-oscillator (VCO) based analog-to-digital converter (ADC) to perform the gamma correction during the analog-to-digital conversion. As a result, the quantization noise does not increase while the same high dynamic range of logarithmic image sensor is preserved. Moreover, by combining the gamma correction with the analog-to-digital conversion, the silicon area and overall power consumption can be greatly reduced. The proposed gamma correction scheme is validated by the reported simulation results and the experimental results measured for our designed test structure, which is fabricated with 0.35 μm standard complementary-metal-oxide-semiconductor (CMOS) process. PMID:25517692
NASA Astrophysics Data System (ADS)
Shoute, Gem; Afshar, Amir; Muneshwar, Triratna; Cadien, Kenneth; Barlage, Douglas
2016-02-01
Wide-bandgap, metal-oxide thin-film transistors have been limited to low-power, n-type electronic applications because of the unipolar nature of these devices. Variations from the n-type field-effect transistor architecture have not been widely investigated as a result of the lack of available p-type wide-bandgap inorganic semiconductors. Here, we present a wide-bandgap metal-oxide n-type semiconductor that is able to sustain a strong p-type inversion layer using a high-dielectric-constant barrier dielectric when sourced with a heterogeneous p-type material. A demonstration of the utility of the inversion layer was also investigated and utilized as the controlling element in a unique tunnelling junction transistor. The resulting electrical performance of this prototype device exhibited among the highest reported current, power and transconductance densities. Further utilization of the p-type inversion layer is critical to unlocking the previously unexplored capability of metal-oxide thin-film transistors, such applications with next-generation display switches, sensors, radio frequency circuits and power converters.
Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes
Toma, Francesca M.; Cooper, Jason K.; Kunzelmann, Viktoria; ...
2016-07-05
Artificial photosynthesis relies on the availability of semiconductors that are chemically stable and can efficiently capture solar energy. Although metal oxide semiconductors have been investigated for their promise to resist oxidative attack, materials in this class can suffer from chemical and photochemical instability. Here we present a methodology for evaluating corrosion mechanisms and apply it to bismuth vanadate, a state-of-the-art photoanode. Analysis of changing morphology and composition under solar water splitting conditions reveals chemical instabilities that are not predicted from thermodynamic considerations of stable solid oxide phases, as represented by the Pourbaix diagram for the system. Computational modelling indicates thatmore » photoexcited charge carriers accumulated at the surface destabilize the lattice, and that self-passivation by formation of a chemically stable surface phase is kinetically hindered. Although chemical stability of metal oxides cannot be assumed, insight into corrosion mechanisms aids development of protection strategies and discovery of semiconductors with improved stability.« less
NASA Astrophysics Data System (ADS)
Pérez-Tomás, Amador; Chikoidze, Ekaterine; Jennings, Michael R.; Russell, Stephen A. O.; Teherani, Ferechteh H.; Bove, Philippe; Sandana, Eric V.; Rogers, David J.
2018-03-01
Oxides represent the largest family of wide bandgap (WBG) semiconductors and also offer a huge potential range of complementary magnetic and electronic properties, such as ferromagnetism, ferroelectricity, antiferroelectricity and high-temperature superconductivity. Here, we review our integration of WBG and ultra WBG semiconductor oxides into different solar cells architectures where they have the role of transparent conductive electrodes and/or barriers bringing unique functionalities into the structure such above bandgap voltages or switchable interfaces. We also give an overview of the state-of-the-art and perspectives for the emerging semiconductor β- Ga2O3, which is widely forecast to herald the next generation of power electronic converters because of the combination of an UWBG with the capacity to conduct electricity. This opens unprecedented possibilities for the monolithic integration in solar cells of both self-powered logic and power electronics functionalities. Therefore, WBG and UWBG oxides have enormous promise to become key enabling technologies for the zero emissions smart integration of the internet of things.
Electrical Characterization of Semiconductor Materials and Devices
NASA Astrophysics Data System (ADS)
Deen, M.; Pascal, Fabien
Semiconductor materials and devices continue to occupy a preeminent technological position due to their importance when building integrated electronic systems used in a wide range of applications from computers, cell-phones, personal digital assistants, digital cameras and electronic entertainment systems, to electronic instrumentation for medical diagnositics and environmental monitoring. Key ingredients of this technological dominance have been the rapid advances made in the quality and processing of materials - semiconductors, conductors and dielectrics - which have given metal oxide semiconductor device technology its important characteristics of negligible standby power dissipation, good input-output isolation, surface potential control and reliable operation. However, when assessing material quality and device reliability, it is important to have fast, nondestructive, accurate and easy-to-use electrical characterization techniques available, so that important parameters such as carrier doping density, type and mobility of carriers, interface quality, oxide trap density, semiconductor bulk defect density, contact and other parasitic resistances and oxide electrical integrity can be determined. This chapter describes some of the more widely employed and popular techniques that are used to determine these important parameters. The techniques presented in this chapter range in both complexity and test structure requirements from simple current-voltage measurements to more sophisticated low-frequency noise, charge pumping and deep-level transient spectroscopy techniques.
NASA Astrophysics Data System (ADS)
Held, Martin; Schießl, Stefan P.; Miehler, Dominik; Gannott, Florentina; Zaumseil, Jana
2015-08-01
Transistors for future flexible organic light-emitting diode (OLED) display backplanes should operate at low voltages and be able to sustain high currents over long times without degradation. Hence, high capacitance dielectrics with low surface trap densities are required that are compatible with solution-processable high-mobility semiconductors. Here, we combine poly(methyl methacrylate) (PMMA) and atomic layer deposition hafnium oxide (HfOx) into a bilayer hybrid dielectric for field-effect transistors with a donor-acceptor polymer (DPPT-TT) or single-walled carbon nanotubes (SWNTs) as the semiconductor and demonstrate substantially improved device performances for both. The ultra-thin PMMA layer ensures a low density of trap states at the semiconductor-dielectric interface while the metal oxide layer provides high capacitance, low gate leakage and superior barrier properties. Transistors with these thin (≤70 nm), high capacitance (100-300 nF/cm2) hybrid dielectrics enable low operating voltages (<5 V), balanced charge carrier mobilities and low threshold voltages. Moreover, the hybrid layers substantially improve the bias stress stability of the transistors compared to those with pure PMMA and HfOx dielectrics.
NASA Astrophysics Data System (ADS)
Sugahara, Tohru; Ohtaki, Michitaka
2011-08-01
The thermoelectric properties of double-perovskite oxide Sr2-xLaxCoTiO6-δ were revealed to vary anomalously with the La concentration, plausibly due to a structural transition found in this study. Although the temperature dependence of the resistivity and thermopower of the present oxide showed a semiconductor-to-metal transition similar to those observed for other perovskite-related Co oxides such as Sr1-xYxCoO3-δ, the transition temperature was more than 350 K higher, implying considerable stabilization of the low-spin state of Co ions in the double-perovskite oxide. Consequently, the operating temperature range of the oxide for potential thermoelectric applications was significantly expanded toward higher temperatures.
Active-Pixel Image Sensor With Analog-To-Digital Converters
NASA Technical Reports Server (NTRS)
Fossum, Eric R.; Mendis, Sunetra K.; Pain, Bedabrata; Nixon, Robert H.
1995-01-01
Proposed single-chip integrated-circuit image sensor contains 128 x 128 array of active pixel sensors at 50-micrometer pitch. Output terminals of all pixels in each given column connected to analog-to-digital (A/D) converter located at bottom of column. Pixels scanned in semiparallel fashion, one row at time; during time allocated to scanning row, outputs of all active pixel sensors in row fed to respective A/D converters. Design of chip based on complementary metal oxide semiconductor (CMOS) technology, and individual circuit elements fabricated according to 2-micrometer CMOS design rules. Active pixel sensors designed to operate at video rate of 30 frames/second, even at low light levels. A/D scheme based on first-order Sigma-Delta modulation.
Wilkes, Thomas C; McGonigle, Andrew J S; Pering, Tom D; Taggart, Angus J; White, Benjamin S; Bryant, Robert G; Willmott, Jon R
2016-10-06
Here, we report, for what we believe to be the first time, on the modification of a low cost sensor, designed for the smartphone camera market, to develop an ultraviolet (UV) camera system. This was achieved via adaptation of Raspberry Pi cameras, which are based on back-illuminated complementary metal-oxide semiconductor (CMOS) sensors, and we demonstrated the utility of these devices for applications at wavelengths as low as 310 nm, by remotely sensing power station smokestack emissions in this spectral region. Given the very low cost of these units, ≈ USD 25, they are suitable for widespread proliferation in a variety of UV imaging applications, e.g., in atmospheric science, volcanology, forensics and surface smoothness measurements.
NASA Astrophysics Data System (ADS)
He, Jiangang; Franchini, Cesare
2017-11-01
In this paper we assess the predictive power of the self-consistent hybrid functional scPBE0 in calculating the band gap of oxide semiconductors. The computational procedure is based on the self-consistent evaluation of the mixing parameter α by means of an iterative calculation of the static dielectric constant using the perturbation expansion after discretization method and making use of the relation \
Characterization of Interface State in Silicon Carbide Metal Oxide Semiconductor Capacitors
NASA Astrophysics Data System (ADS)
Kao, Wei-Chieh
Silicon carbide (SiC) has always been considered as an excellent material for high temperature and high power devices. Since SiC is the only compound semiconductor whose native oxide is silicon dioxide (SiO2), it puts SiC in a unique position. Although SiC metal oxide semiconductor (MOS) technology has made significant progress in recent years, there are still a number of issues to be overcome before more commercial SiC devices can enter the market. The prevailing issues surrounding SiC MOSFET devices are the low channel mobility, the low quality of the oxide layer and the high interface state density at the SiC/SiO2 interface. Consequently, there is a need for research to be performed in order to have a better understanding of the factors causing the poor SiC/SiO2 interface properties. In this work, we investigated the generation lifetime in SiC materials by using the pulsed metal oxide semiconductor (MOS) capacitor method and measured the interface state density distribution at the SiC/SiO2 interface by using the conductance measurement and the high-low frequency capacitance technique. These measurement techniques have been performed on n-type and p-type SiC MOS capacitors. In the course of our investigation, we observed fast interface states at semiconductor-dielectric interfaces in SiC MOS capacitors that underwent three different interface passivation processes, such states were detected in the nitrided samples but not observed in PSG-passivated samples. This result indicate that the lack of fast states at PSG-passivated interface is one of the main reasons for higher channel mobility in PSG MOSFETs. In addition, the effect of mobile ions in the oxide on the response time of interface states has been investigated. In the last chapter we propose additional methods of investigation that can help elucidate the origin of the particular interface states, enabling a more complete understanding of the SiC/SiO2 material system.
NASA Astrophysics Data System (ADS)
Hirae, Sadao; Kohno, Motohiro; Okada, Hiroshi; Matsubara, Hideaki; Nakatani, Ikuyoshi; Kusuda, Tatsufumi; Sakai, Takamasa
1994-04-01
This paper describes a novel approach to the quantitative characterization of semiconductor surface charging caused by plasma exposures and ion implantations. The problems in conventional evaluation of charging are also discussed. Following the discussions above, the necessity of unified criteria is suggested for efficient development of systems or processes without charging damage. Hence, the charging saturation voltage between a top oxide surface and substrate, V s, and the charging density per unit area per second, ρ0, should be taken as criteria of charging behavior, which effectively represent the charging characteristics of both processes. The unified criteria can be obtained from the exposure time dependence of a net charging density on the thick field oxide. In order to determine V s and ρ0, the analysis using the C-V curve measured in a noncontact method with the metal-air-insulator-semiconductor (MAIS) technique is employed. The total space-charge density in oxide and its centroid can be determined at the same time by analyzing the flat-band voltage (V fb) of the MAIS capacitor as a function of the air gap. The net charge density can be obtained by analyzing the difference between the total space-charge density in oxide before and after charging. Finally, it is shown that charge damage of the large area metal-oxide-semiconductor (MOS) capacitor can be estimated from both V s and ρ0 which are obtained from results for a thick field oxide implanted with As+ and exposed to oxygen plasma.
Pronounced photogating effect in atomically thin WSe2 with a self-limiting surface oxide layer
NASA Astrophysics Data System (ADS)
Yamamoto, Mahito; Ueno, Keiji; Tsukagoshi, Kazuhito
2018-04-01
The photogating effect is a photocurrent generation mechanism that leads to marked responsivity in two-dimensional (2D) semiconductor-based devices. A key step to promote the photogating effect in a 2D semiconductor is to integrate it with a high density of charge traps. Here, we show that self-limiting surface oxides on atomically thin WSe2 can serve as effective electron traps to facilitate p-type photogating. By examining the gate-bias-induced threshold voltage shift of a p-type transistor based on single-layer WSe2 with surface oxide, the electron trap density and the trap rate of the oxide are determined to be >1012 cm-2 and >1010 cm-2 s-1, respectively. White-light illumination on an oxide-covered 4-layer WSe2 transistor leads to the generation of photocurrent, the magnitude of which increases with the hole mobility. During illumination, the photocurrent evolves on a timescale of seconds, and a portion of the current persists even after illumination. These observations indicate that the photogenerated electrons are trapped deeply in the surface oxide and effectively gate the underlying WSe2. Owing to the pronounced photogating effect, the responsivity of the oxide-covered WSe2 transistor is observed to exceed 3000 A/W at an incident optical power of 1.1 nW, suggesting the effectiveness of surface oxidation in facilitating the photogating effect in 2D semiconductors.
The Dynamic Photometric Stereo Method Using a Multi-Tap CMOS Image Sensor.
Yoda, Takuya; Nagahara, Hajime; Taniguchi, Rin-Ichiro; Kagawa, Keiichiro; Yasutomi, Keita; Kawahito, Shoji
2018-03-05
The photometric stereo method enables estimation of surface normals from images that have been captured using different but known lighting directions. The classical photometric stereo method requires at least three images to determine the normals in a given scene. However, this method cannot be applied to dynamic scenes because it is assumed that the scene remains static while the required images are captured. In this work, we present a dynamic photometric stereo method for estimation of the surface normals in a dynamic scene. We use a multi-tap complementary metal-oxide-semiconductor (CMOS) image sensor to capture the input images required for the proposed photometric stereo method. This image sensor can divide the electrons from the photodiode from a single pixel into the different taps of the exposures and can thus capture multiple images under different lighting conditions with almost identical timing. We implemented a camera lighting system and created a software application to enable estimation of the normal map in real time. We also evaluated the accuracy of the estimated surface normals and demonstrated that our proposed method can estimate the surface normals of dynamic scenes.
Modern Micro and Nanoparticle-Based Imaging Techniques
Ryvolova, Marketa; Chomoucka, Jana; Drbohlavova, Jana; Kopel, Pavel; Babula, Petr; Hynek, David; Adam, Vojtech; Eckschlager, Tomas; Hubalek, Jaromir; Stiborova, Marie; Kaiser, Jozef; Kizek, Rene
2012-01-01
The requirements for early diagnostics as well as effective treatment of insidious diseases such as cancer constantly increase the pressure on development of efficient and reliable methods for targeted drug/gene delivery as well as imaging of the treatment success/failure. One of the most recent approaches covering both the drug delivery as well as the imaging aspects is benefitting from the unique properties of nanomaterials. Therefore a new field called nanomedicine is attracting continuously growing attention. Nanoparticles, including fluorescent semiconductor nanocrystals (quantum dots) and magnetic nanoparticles, have proven their excellent properties for in vivo imaging techniques in a number of modalities such as magnetic resonance and fluorescence imaging, respectively. In this article, we review the main properties and applications of nanoparticles in various in vitro imaging techniques, including microscopy and/or laser breakdown spectroscopy and in vivo methods such as magnetic resonance imaging and/or fluorescence-based imaging. Moreover the advantages of the drug delivery performed by nanocarriers such as iron oxides, gold, biodegradable polymers, dendrimers, lipid based carriers such as liposomes or micelles are also highlighted. PMID:23202187
NASA Astrophysics Data System (ADS)
Lin, Ming-Tzer
The Semiconductor Industry has grown rapidly in the last twenty years. The national technology roadmap for semiconductors plans for developing the complexity and packing density of semiconductor devices into the next decade, allowing ever smaller and more densely packed structures to be fabricated. Recently, MEMS (Micro-Electro-Mechanical Systems) have become important in modern technology. The goal of MEMs is to integrate many types of miniature devices on a single chip, creating a new micro-world. The oxidation of silicon is one of the most important processes in semiconductor technology. Producing high-quality IC's and MEMS devices requires an understanding of the basic oxidation mechanism. In addition, for the reliability of IC's and MEMS devices, the mechanical properties of the oxide play a critical role. There has been an apparent convergence of opinion on the relevant mechanism leading to the "standard computational model" for stress effects on silicon oxidation. This model has recently become suspect. Most of the reasonably direct experimental data on the flow properties of SiO 2 thin film do not support a stress-dependent viscosity of the sort envisioned by the model. Gold and gold vanadium alloys are used in electrical interconnections and in radio frequency switch contacts for the semiconductor industry, MEMs sensors for the aerospace industry and also in brain probes by the bioelectronics mechanical industry. Despite the strong potential usage of gold and gold vanadium thin films at the small scale, very little is known about their mechanical properties. Our goal was to experimentally investigate stress and its influence on SiO2 thin films and the mechanical properties of gold and gold vanadium thin films at room temperature and at elevated temperature of different vanadium concentration. We found that the application of relatively small amounts of bending to an oxidizing silicon substrate leads to significant decreases in oxide thickness in the ultrathin oxide regime. Both tensile and compressive bending retard oxide growth, although compressive bending results in somewhat thinner oxides than does tensile bending. We also determined the modulus of gold and gold vanadium, and discovered that there is some evidence for a vanadium concentration dependence of the mechanical properties.
Intra-cavity upconversion to 631 nm of images illuminated by an eye-safe ASE source at 1550 nm.
Torregrosa, A J; Maestre, H; Capmany, J
2015-11-15
We report an image wavelength upconversion system. The system mixes an incoming image at around 1550 nm (eye-safe region) illuminated by an amplified spontaneous emission (ASE) fiber source with a Gaussian beam at 1064 nm generated in a continuous-wave diode-pumped Nd(3+):GdVO(4) laser. Mixing takes place in a periodically poled lithium niobate (PPLN) crystal placed intra-cavity. The upconverted image obtained by sum-frequency mixing falls around the 631 nm red spectral region, well within the spectral response of standard silicon focal plane array bi-dimensional sensors, commonly used in charge-coupled device (CCD) or complementary metal-oxide-semiconductor (CMOS) video cameras, and of most image intensifiers. The use of ASE illumination benefits from a noticeable increase in the field of view (FOV) that can be upconverted with regard to using coherent laser illumination. The upconverted power allows us to capture real-time video in a standard nonintensified CCD camera.
CMOS image sensor-based immunodetection by refractive-index change.
Devadhasan, Jasmine P; Kim, Sanghyo
2012-01-01
A complementary metal oxide semiconductor (CMOS) image sensor is an intriguing technology for the development of a novel biosensor. Indeed, the CMOS image sensor mechanism concerning the detection of the antigen-antibody (Ag-Ab) interaction at the nanoscale has been ambiguous so far. To understand the mechanism, more extensive research has been necessary to achieve point-of-care diagnostic devices. This research has demonstrated a CMOS image sensor-based analysis of cardiovascular disease markers, such as C-reactive protein (CRP) and troponin I, Ag-Ab interactions on indium nanoparticle (InNP) substrates by simple photon count variation. The developed sensor is feasible to detect proteins even at a fg/mL concentration under ordinary room light. Possible mechanisms, such as dielectric constant and refractive-index changes, have been studied and proposed. A dramatic change in the refractive index after protein adsorption on an InNP substrate was observed to be a predominant factor involved in CMOS image sensor-based immunoassay.
Hybrid UV Imager Containing Face-Up AlGaN/GaN Photodiodes
NASA Technical Reports Server (NTRS)
Zheng, Xinyu; Pain, Bedabrata
2005-01-01
A proposed hybrid ultraviolet (UV) image sensor would comprise a planar membrane array of face-up AlGaN/GaN photodiodes integrated with a complementary metal oxide/semiconductor (CMOS) readout-circuit chip. Each pixel in the hybrid image sensor would contain a UV photodiode on the AlGaN/GaN membrane, metal oxide/semiconductor field-effect transistor (MOSFET) readout circuitry on the CMOS chip underneath the photodiode, and a metal via connection between the photodiode and the readout circuitry (see figure). The proposed sensor design would offer all the advantages of comparable prior CMOS active-pixel sensors and AlGaN UV detectors while overcoming some of the limitations of prior (AlGaN/sapphire)/CMOS hybrid image sensors that have been designed and fabricated according to the methodology of flip-chip integration. AlGaN is a nearly ideal UV-detector material because its bandgap is wide and adjustable and it offers the potential to attain extremely low dark current. Integration of AlGaN with CMOS is necessary because at present there are no practical means of realizing readout circuitry in the AlGaN/GaN material system, whereas the means of realizing readout circuitry in CMOS are well established. In one variant of the flip-chip approach to integration, an AlGaN chip on a sapphire substrate is inverted (flipped) and then bump-bonded to a CMOS readout circuit chip; this variant results in poor quantum efficiency. In another variant of the flip-chip approach, an AlGaN chip on a crystalline AlN substrate would be bonded to a CMOS readout circuit chip; this variant is expected to result in narrow spectral response, which would be undesirable in many applications. Two other major disadvantages of flip-chip integration are large pixel size (a consequence of the need to devote sufficient area to each bump bond) and severe restriction on the photodetector structure. The membrane array of AlGaN/GaN photodiodes and the CMOS readout circuit for the proposed image sensor would be fabricated separately.
Semiconductor technology program. Progress briefs
NASA Technical Reports Server (NTRS)
Bullis, W. M.
1980-01-01
Measurement technology for semiconductor materials, process control, and devices is reviewed. Activities include: optical linewidth and thermal resistance measurements; device modeling; dopant density profiles; resonance ionization spectroscopy; and deep level measurements. Standardized oxide charge terminology is also described.
Ultrafast transient grating radiation to optical image converter
Stewart, Richard E; Vernon, Stephen P; Steel, Paul T; Lowry, Mark E
2014-11-04
A high sensitivity transient grating ultrafast radiation to optical image converter is based on a fixed transmission grating adjacent to a semiconductor substrate. X-rays or optical radiation passing through the fixed transmission grating is thereby modulated and produces a small periodic variation of refractive index or transient grating in the semiconductor through carrier induced refractive index shifts. An optical or infrared probe beam tuned just below the semiconductor band gap is reflected off a high reflectivity mirror on the semiconductor so that it double passes therethrough and interacts with the radiation induced phase grating therein. A small portion of the optical beam is diffracted out of the probe beam by the radiation induced transient grating to become the converted signal that is imaged onto a detector.
Methods for manufacturing geometric multi-crystalline cast materials
Stoddard, Nathan G
2013-11-26
Methods are provided for casting one or more of a semi-conductor, an oxide, and an intermetallic material. With such methods, a cast body of a geometrically ordered multi-crystalline form of the one or more of a semiconductor, an oxide, and an intermetallic material may be formed that is free or substantially free of radially-distributed impurities and defects and having at least two dimensions that are each at least about 10 cm.
Methods for manufacturing monocrystalline or near-monocrystalline cast materials
Stoddard, Nathan G
2014-04-29
Methods are provided for casting one or more of a semiconductor, an oxide, and an intermetallic material. With such methods, a cast body of a monocrystalline form of the one or more of a semiconductor, an oxide, and an intermetallic material may be formed that is free of, or substantially free of, radially-distributed impurities and defects and having at least two dimensions that are each at least about 35 cm.
2014-01-01
ring oscillator based temperature sensor will be designed to compensate for gain variations over temperature. For comparison to a competing solution...Simulated (Green) Capacitance of the GSG Pads ........................ 9 Figure 6: Die Picture and Schematic of the L-2L Coplanar Waveguides...complementary metal-oxide-semiconductor (CMOS) technology. A ring oscillator based temperature sensor was designed to compensate for gain variations
NASA Astrophysics Data System (ADS)
Seo, Sang-Ho; Seo, Min-Woong; Kong, Jae-Sung; Shin, Jang-Kyoo; Choi, Pyung
2008-11-01
In this paper, a pseudo 2-transistor active pixel sensor (APS) has been designed and fabricated by using an n-well/gate-tied p-channel metal oxide semiconductor field effect transistor (PMOSFET)-type photodetector with built-in transfer gate. The proposed sensor has been fabricated using a 0.35 μm 2-poly 4-metal standard complementary metal oxide semiconductor (CMOS) logic process. The pseudo 2-transistor APS consists of two NMOSFETs and one photodetector which can amplify the generated photocurrent. The area of the pseudo 2-transistor APS is 7.1 × 6.2 μm2. The sensitivity of the proposed pixel is 49 lux/(V·s). By using this pixel, a smaller pixel area and a higher level of sensitivity can be realized when compared with a conventional 3-transistor APS which uses a pn junction photodiode.
NASA Astrophysics Data System (ADS)
Lin, Jyh‑Ling; Lin, Ming‑Jang; Lin, Li‑Jheng
2006-04-01
The superjunction lateral double diffusion metal oxide semiconductor field effect has recently received considerable attention. Introducing heavily doped p-type strips to the n-type drift region increases the horizontal depletion capability. Consequently, the doping concentration of the drift region is higher and the conduction resistance is lower than those of conventional lateral-double-diffusion metal oxide semiconductor field effect transistors (LDMOSFETs). These characteristics may increase breakdown voltage (\\mathit{BV}) and reduce specific on-resistance (Ron,sp). In this study, we focus on the electrical characteristics of conventional LDMOSFETs on silicon bulk, silicon-on-insulator (SOI) LDMOSFETs and superjunction LDMOSFETs after bias stress. Additionally, the \\mathit{BV} and Ron,sp of superjunction LDMOSFETs with different N/P drift region widths and different dosages are discussed. Simulation tools, including two-dimensional (2-D) TSPREM-4/MEDICI and three-dimensional (3-D) DAVINCI, were employed to determine the device characteristics.
NASA Astrophysics Data System (ADS)
Hu, Ai-Bin; Xu, Qiu-Xia
2010-05-01
Ge and Si p-channel metal-oxide-semiconductor field-effect-transistors (p-MOSFETs) with hafnium silicon oxynitride (HfSiON) gate dielectric and tantalum nitride (TaN) metal gate are fabricated. Self-isolated ring-type transistor structures with two masks are employed. W/TaN metal stacks are used as gate electrode and shadow masks of source/drain implantation separately. Capacitance-voltage curve hysteresis of Ge metal-oxide-semiconductor (MOS) capacitors may be caused by charge trapping centres in GeO2 (1 < x < 2). Effective hole mobilities of Ge and Si transistors are extracted by using a channel conductance method. The peak hole mobilities of Si and Ge transistors are 33.4 cm2/(V · s) and 81.0 cm2/(V · s), respectively. Ge transistor has a hole mobility 2.4 times higher than that of Si control sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewin, A.A.; Serago, C.F.; Schwade, J.G.
1984-10-01
New multi-programmable pacemakers frequently employ complementary metal oxide semiconductors (CMOS). This circuitry appears more sensitive to the effects of ionizing radiation when compared to the semiconductor circuits used in older pacemakers. A case of radiation induced runaway pacemaker in a CMOS device is described. Because of this and other recent reports of radiation therapy-induced CMOS type pacemaker failure, these pacemakers should not be irradiated. If necessary, the pacemaker can be shielded or moved to a site which can be shielded before institution of radiation therapy. This is done to prevent damage to the CMOS circuit and the life threatening arrythmiasmore » which may result from such damage.« less
Semiconductor composition containing iron, dysprosium, and terbium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pooser, Raphael C.; Lawrie, Benjamin J.; Baddorf, Arthur P.
An amorphous semiconductor composition includes 1 to 70 atomic percent iron, 15 to 65 atomic percent dysprosium, 15 to 35 atomic percent terbium, balance X, wherein X is at least one of an oxidizing element and a reducing element. The composition has an essentially amorphous microstructure, an optical transmittance of at least 50% in at least the visible spectrum and semiconductor electrical properties.
Koivisto, J; Kiljunen, T; Tapiovaara, M; Wolff, J; Kortesniemi, M
2012-09-01
The aims of this study were to assess the organ and effective dose (International Commission on Radiological Protection (ICRP) 103) resulting from dental cone-beam computerized tomography (CBCT) imaging using a novel metal-oxide semiconductor field-effect transistor (MOSFET) dosimeter device, and to assess the reliability of the MOSFET measurements by comparing the results with Monte Carlo PCXMC simulations. Organ dose measurements were performed using 20 MOSFET dosimeters that were embedded in the 8 most radiosensitive organs in the maxillofacial and neck area. The dose-area product (DAP) values attained from CBCT scans were used for PCXMC simulations. The acquired MOSFET doses were then compared with the Monte Carlo simulations. The effective dose measurements using MOSFET dosimeters yielded, using 0.5-cm steps, a value of 153 μSv and the PCXMC simulations resulted in a value of 136 μSv. The MOSFET dosimeters placed in a head phantom gave results similar to Monte Carlo simulations. Minor vertical changes in the positioning of the phantom had a substantial affect on the overall effective dose. Therefore, the MOSFET dosimeters constitute a feasible method for dose assessment of CBCT units in the maxillofacial region. Copyright © 2012 Elsevier Inc. All rights reserved.
Interface Structure of MoO3 on Organic Semiconductors
White, Robin T.; Thibau, Emmanuel S.; Lu, Zheng-Hong
2016-01-01
We have systematically studied interface structure formed by vapor-phase deposition of typical transition metal oxide MoO3 on organic semiconductors. Eight organic hole transport materials have been used in this study. Ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy are used to measure the evolution of the physical, chemical and electronic structure of the interfaces at various stages of MoO3 deposition on these organic semiconductor surfaces. For the interface physical structure, it is found that MoO3 diffuses into the underlying organic layer, exhibiting a trend of increasing diffusion with decreasing molecular molar mass. For the interface chemical structure, new carbon and molybdenum core-level states are observed, as a result of interfacial electron transfer from organic semiconductor to MoO3. For the interface electronic structure, energy level alignment is observed in agreement with the universal energy level alignment rule of molecules on metal oxides, despite deposition order inversion. PMID:26880185
Chitin Liquid-Crystal-Templated Oxide Semiconductor Aerogels.
Chau, Trang The Lieu; Le, Dung Quang Tien; Le, Hoa Thi; Nguyen, Cuong Duc; Nguyen, Long Viet; Nguyen, Thanh-Dinh
2017-09-13
Chitin nanocrystals have been used as a liquid crystalline template to fabricate layered oxide semiconductor aerogels. Anisotropic chitin liquid crystals are transformed to sponge-like aerogels by hydrothermally cross-linked gelation and lyophilization-induced solidification. The hydrothermal gelation of chitin aqueous suspensions then proceeds with peroxotitanate to form hydrogel composites that recover to form aerogels after freeze-drying. The homogeneous peroxotitanate/chitin composites are calcined to generate freestanding titania aerogels that exhibit the nanostructural integrity of layered chitin template. Our extended investigations show that coassembling chitin nanocrystals with other metal-based precursors also yielded semiconductor aerogels of perovskite BaTiO 3 and CuO x nanocrystals. The potential of these materials is great to investigate these chitin sponges for biomedicine and these semiconductor aerogels for photocatalysis, gas sensing, and other applications. Our results present a new aerogel templating method of highly porous, ultralight materials with chitin liquid crystals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koh, Donghyi; Shin, Seung Heon; Ahn, Jaehyun
2015-11-02
In this paper, we investigated the effect of in-situ Ar ion plasma surface pre-treatment in order to improve the interface properties of In{sub 0.53}Ga{sub 0.47}As for high-κ top-gate oxide deposition. X-ray photoelectron spectroscopy (XPS) and metal-oxide-semiconductor capacitors (MOSCAPs) demonstrate that Ar ion treatment removes the native oxide on In{sub 0.53}Ga{sub 0.47}As. The XPS spectra of Ar treated In{sub 0.53}Ga{sub 0.47}As show a decrease in the AsO{sub x} and GaO{sub x} signal intensities, and the MOSCAPs show higher accumulation capacitance (C{sub acc}), along with reduced frequency dispersion. In addition, Ar treatment is found to suppress the interface trap density (D{sub it}),more » which thereby led to a reduction in the threshold voltage (V{sub th}) degradation during constant voltage stress and relaxation. These results outline the potential of surface treatment for III-V channel metal-oxide-semiconductor devices and application to non-planar device process.« less
Effects of ultrathin oxides in conducting MIS structures on GaAs
NASA Technical Reports Server (NTRS)
Childs, R. B.; Ruths, J. M.; Sullivan, T. E.; Fonash, S. J.
1978-01-01
Schottky barrier-type GaAs baseline devices (semiconductor surface etched and then immediately metalized) and GaAs conducting metal oxide-semiconductor devices are fabricated and characterized. The baseline surfaces (no purposeful oxide) are prepared by a basic or an acidic etch, while the surface for the MIS devices are prepared by oxidizing after the etch step. The metallizations used are thin-film Au, Ag, Pd, and Al. It is shown that the introduction of purposeful oxide into these Schottky barrier-type structures examined on n-type GaAs modifies the barrier formation, and that thin interfacial layers can modify barrier formation through trapping and perhaps chemical reactions. For Au- and Pd-devices, enhanced photovoltaic performance of the MIS configuration is due to increased barrier height.
Radiation evaluation study of LSI RAM technologies
NASA Astrophysics Data System (ADS)
Dinger, G. L.; Knoll, M. G.
1980-01-01
Five commercial LSI static random access memory technologies having a 1 kilobit capacity were radiation characterized. Arrays from the transistor-transistor-logic (TTL), Schottky TTL, n-channel metal oxide semiconductor, complementary metal oxide semiconductor (CMOS), and CMOS/silicon on sapphire families were evaluated. Radiation failure thresholds for gamma doserate logic upset, total gamma dose survivability, and neutron fluence survivability were determined. A brief analysis of the radiation failure mechanism for each of the logic families tested is included.
In Situ Chemical Modification of Schottky Barrier in Solution-Processed Zinc Tin Oxide Diode.
Son, Youngbae; Li, Jiabo; Peterson, Rebecca L
2016-09-14
Here we present a novel in situ chemical modification process to form vertical Schottky diodes using palladium (Pd) rectifying bottom contacts, amorphous zinc tin oxide (Zn-Sn-O) semiconductor made via acetate-based solution process, and molybdenum top ohmic contacts. Using X-ray photoelectron spectroscopy depth profiling, we show that oxygen plasma treatment of Pd creates a PdOx interface layer, which is then reduced back to metallic Pd by in situ reactions during Zn-Sn-O film annealing. The plasma treatment ensures an oxygen-rich environment in the semiconductor near the Schottky barrier, reducing the level of oxygen-deficiency-related defects and improving the rectifying contact. Using this process, we achieve diodes with high forward current density exceeding 10(3)A cm(-2) at 1 V, rectification ratios of >10(2), and ideality factors of around 1.9. The measured diode current-voltage characteristics are compared to numerical simulations of thermionic field emission with sub-bandgap states in the semiconductor, which we attribute to spatial variations in metal stoichiometry of amorphous Zn-Sn-O. To the best of our knowledge, this is the first demonstration of vertical Schottky diodes using solution-processed amorphous metal oxide semiconductor. Furthermore, the in situ chemical modification method developed here can be adapted to tune interface properties in many other oxide devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasherininov, P. G., E-mail: peter.kasherininov@mail.ioffe.ru; Tomasov, A. A.; Beregulin, E. V.
2011-01-15
Available published data on the properties of optical recording media based on semiconductor structures are reviewed. The principles of operation, structure, parameters, and the range of application for optical recording media based on MIS structures formed of photorefractive crystals with a thick layer of insulator and MIS structures with a liquid crystal as the insulator (the MIS LC modulators), as well as the effect of optical bistability in semiconductor structures (semiconductor MIS structures with nanodimensionally thin insulator (TI) layer, M(TI)S nanostructures). Special attention is paid to recording media based on the M(TI)S nanostructures promising for fast processing of highly informativemore » images and to fabrication of optoelectronic correlators of images for noncoherent light.« less
NASA Astrophysics Data System (ADS)
Li, L. H.; Deng, Z. X.; Xiao, J. X.; Yang, G. W.
2015-06-01
Coupling titanium dioxide (TiO2) with other semiconductors is a popular method to extend the optical response range of TiO2 and improve its photon quantum efficiency, as coupled semiconductors can increase the separation rate of photoinduced charge carriers in photocatalysts. Differing from normal semiconductors, metallic oxides have no energy gap separating occupied and unoccupied levels, but they can excite electrons between bands to create a high carrier mobility to facilitate kinetic charge separation. Here, we propose the first metallic metal oxide-metal oxide (Ti5O9-TiO2) nanocomposite as a heterojunction for enhancing the visible-light photocatalytic activity of TiO2 nanoparticles and we demonstrate that this hybridized TiO2-Ti5O9 nanostructure possesses an excellent visible-light photocatalytic performance in the process of photodegrading dyes. The TiO2-Ti5O9 nanocomposites are synthesized in one step using laser ablation in liquid under ambient conditions. The as-synthesized nanocomposites show strong visible-light absorption in the range of 300-800 nm and high visible-light photocatalytic activity in the oxidation of rhodamine B. They also exhibit excellent cycling stability in the photodegrading process. A working mechanism for the metallic metal oxide-metal oxide nanocomposite in the visible-light photocatalytic process is proposed based on first-principle calculations of Ti5O9. This study suggests that metallic metal oxides can be regarded as partners for metal oxide photocatalysts in the construction of heterojunctions to improve photocatalytic activity.
Li, L H; Deng, Z X; Xiao, J X; Yang, G W
2015-01-26
Coupling titanium dioxide (TiO2) with other semiconductors is a popular method to extend the optical response range of TiO2 and improve its photon quantum efficiency, as coupled semiconductors can increase the separation rate of photoinduced charge carriers in photocatalysts. Differing from normal semiconductors, metallic oxides have no energy gap separating occupied and unoccupied levels, but they can excite electrons between bands to create a high carrier mobility to facilitate kinetic charge separation. Here, we propose the first metallic metal oxide-metal oxide (Ti5O9-TiO2) nanocomposite as a heterojunction for enhancing the visible-light photocatalytic activity of TiO2 nanoparticles and we demonstrate that this hybridized TiO2-Ti5O9 nanostructure possesses an excellent visible-light photocatalytic performance in the process of photodegrading dyes. The TiO2-Ti5O9 nanocomposites are synthesized in one step using laser ablation in liquid under ambient conditions. The as-synthesized nanocomposites show strong visible-light absorption in the range of 300-800 nm and high visible-light photocatalytic activity in the oxidation of rhodamine B. They also exhibit excellent cycling stability in the photodegrading process. A working mechanism for the metallic metal oxide-metal oxide nanocomposite in the visible-light photocatalytic process is proposed based on first-principle calculations of Ti5O9. This study suggests that metallic metal oxides can be regarded as partners for metal oxide photocatalysts in the construction of heterojunctions to improve photocatalytic activity.
NASA Astrophysics Data System (ADS)
Kim, Hunho; Kwack, Young-Jin; Yun, Eui-Jung; Choi, Woon-Seop
2016-09-01
Solution-processed gate dielectrics were fabricated with the combined ZrO2 and Al2O3 (ZAO) in the form of mixed and stacked types for oxide thin film transistors (TFTs). ZAO thin films prepared with double coatings for solid gate dielectrics were characterized by analytical tools. For the first time, the capacitance of the oxide semiconductor was extracted from the capacitance-voltage properties of the zinc-tin oxide (ZTO) TFTs with the combined ZAO dielectrics by using the proposed metal-insulator-semiconductor (MIS) structure model. The capacitance evolution of the semiconductor from the TFT model structure described well the threshold voltage shift observed in the ZTO TFT with the ZAO (1:2) gate dielectric. The electrical properties of the ZTO TFT with a ZAO (1:2) gate dielectric showed low voltage driving with a field effect mobility of 37.01 cm2/Vs, a threshold voltage of 2.00 V, an on-to-off current ratio of 1.46 × 105, and a subthreshold slope of 0.10 V/dec.
Kim, Hunho; Kwack, Young-Jin; Yun, Eui-Jung; Choi, Woon-Seop
2016-01-01
Solution-processed gate dielectrics were fabricated with the combined ZrO2 and Al2O3 (ZAO) in the form of mixed and stacked types for oxide thin film transistors (TFTs). ZAO thin films prepared with double coatings for solid gate dielectrics were characterized by analytical tools. For the first time, the capacitance of the oxide semiconductor was extracted from the capacitance-voltage properties of the zinc-tin oxide (ZTO) TFTs with the combined ZAO dielectrics by using the proposed metal-insulator-semiconductor (MIS) structure model. The capacitance evolution of the semiconductor from the TFT model structure described well the threshold voltage shift observed in the ZTO TFT with the ZAO (1:2) gate dielectric. The electrical properties of the ZTO TFT with a ZAO (1:2) gate dielectric showed low voltage driving with a field effect mobility of 37.01 cm2/Vs, a threshold voltage of 2.00 V, an on-to-off current ratio of 1.46 × 105, and a subthreshold slope of 0.10 V/dec. PMID:27641430
Silver decorated polymer supported semiconductor thin films by UV aided metalized laser printing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halbur, Jonathan C.; Padbury, Richard P.; Jur, Jesse S., E-mail: jsjur@ncsu.edu
2016-05-15
A facile ultraviolet assisted metalized laser printing technique is demonstrated through the ability to control selective photodeposition of silver on flexible substrates after atomic layer deposition pretreatment with zinc oxide and titania. The photodeposition of noble metals such as silver onto high surface area, polymer supported semiconductor metal oxides exhibits a new route for nanoparticle surface modification of photoactive enhanced substrates. Photodeposited silver is subsequently characterized using low voltage secondary electron microscopy, x-ray diffraction, and time of flight secondary ion mass spectroscopy. At the nanoscale, the formation of specific morphologies, flake and particle, is highlighted after silver is photodeposited onmore » zinc oxide and titania coated substrates, respectively. The results indicate that the morphology and composition of the silver after photodeposition has a strong dependency on the morphology, crystallinity, and impurity content of the underlying semiconductor oxide. At the macroscale, this work demonstrates how the nanoscale features rapidly coalesce into a printed pattern through the use of masks or an X-Y gantry stage with virtually unlimited design control.« less
Cadmium-free junction fabrication process for CuInSe.sub.2 thin film solar cells
Ramanathan, Kannan V.; Contreras, Miguel A.; Bhattacharya, Raghu N.; Keane, James; Noufi, Rommel
1999-01-01
The present invention provides an economical, simple, dry and controllable semiconductor layer junction forming process to make cadmium free high efficiency photovoltaic cells having a first layer comprised primarily of copper indium diselenide having a thin doped copper indium diselenide n-type region, generated by thermal diffusion with a group II(b) element such as zinc, and a halide, such as chlorine, and a second layer comprised of a conventional zinc oxide bilayer. A photovoltaic device according the present invention includes a first thin film layer of semiconductor material formed primarily from copper indium diselenide. Doping of the copper indium diselenide with zinc chloride is accomplished using either a zinc chloride solution or a solid zinc chloride material. Thermal diffusion of zinc chloride into the copper indium diselenide upper region creates the thin n-type copper indium diselenide surface. A second thin film layer of semiconductor material comprising zinc oxide is then applied in two layers. The first layer comprises a thin layer of high resistivity zinc oxide. The second relatively thick layer of zinc oxide is doped to exhibit low resistivity.
Shoute, Gem; Afshar, Amir; Muneshwar, Triratna; Cadien, Kenneth; Barlage, Douglas
2016-01-01
Wide-bandgap, metal-oxide thin-film transistors have been limited to low-power, n-type electronic applications because of the unipolar nature of these devices. Variations from the n-type field-effect transistor architecture have not been widely investigated as a result of the lack of available p-type wide-bandgap inorganic semiconductors. Here, we present a wide-bandgap metal-oxide n-type semiconductor that is able to sustain a strong p-type inversion layer using a high-dielectric-constant barrier dielectric when sourced with a heterogeneous p-type material. A demonstration of the utility of the inversion layer was also investigated and utilized as the controlling element in a unique tunnelling junction transistor. The resulting electrical performance of this prototype device exhibited among the highest reported current, power and transconductance densities. Further utilization of the p-type inversion layer is critical to unlocking the previously unexplored capability of metal-oxide thin-film transistors, such applications with next-generation display switches, sensors, radio frequency circuits and power converters. PMID:26842997
2014-09-01
electrocardiography (ECG), electromyography (EMG), and electroencephalography (EEG) applications that operate using thermoelectrically generated energy...semiconductor ECG electrocardiography EEG electroencephalography EMG electromyography FY15 fiscal year 2015 IC integrated circuit MOSFETs
Review of current neutron detection systems for emergency response
Mukhopadhyay, Sanjoy; Maurer, Richard; Guss, Paul; ...
2014-09-05
Neutron detectors are utilized in a myriad of applications—from safeguarding special nuclear materials (SNM) to determining lattice spacing in soft materials. The transformational changes taking place in neutron detection and imaging techniques in the last few years are largely being driven by the global shortage of helium-3 ( 3He). This article reviews the status of neutron sensors used specifically for SNM detection in radiological emergency response. These neutron detectors must be highly efficient, be rugged, have fast electronics to measure neutron multiplicity, and be capable of measuring direction of the neutron sources and possibly image them with high spatial resolution.more » Neutron detection is an indirect physical process: neutrons react with nuclei in materials to initiate the release of one or more charged particles that produce electric signals that can be processed by the detection system. Therefore, neutron detection requires conversion materials as active elements of the detection system; these materials may include boron-10 ( 10B), lithium-6 ( 6Li), and gadollinium-157 ( 157Gd), to name a few, but the number of materials available for neutron detection is limited. However, in recent years, pulse-shape-discriminating plastic scintillators, scintillators made of helium-4 ( 4He) under high pressure, pillar and trench semiconductor diodes, and exotic semiconductor neutron detectors made from uranium oxide and other materials have widely expanded the parameter space in neutron detection methodology. In this article we will pay special attention to semiconductor-based neutron sensors. Finally, modern microfabricated nanotubes covered inside with neutron converter materials and with very high aspect ratios for better charge transport will be discussed.« less
Review of current neutron detection systems for emergency response
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Sanjoy; Maurer, Richard; Guss, Paul; Kruschwitz, Craig
2014-09-01
Neutron detectors are used in a myriad of applications—from safeguarding special nuclear materials (SNM) to determining lattice spacing in soft materials. The transformational changes taking place in neutron detection and imaging techniques in the last few years are largely being driven by the global shortage of helium-3 (3He). This article reviews the status of neutron sensors used specifically for SNM detection in radiological emergency response. These neutron detectors must be highly efficient, be rugged, have fast electronics to measure neutron multiplicity, and be capable of measuring direction of the neutron sources and possibly image them with high spatial resolution. Neutron detection is an indirect physical process: neutrons react with nuclei in materials to initiate the release of one or more charged particles that produce electric signals that can be processed by the detection system. Therefore, neutron detection requires conversion materials as active elements of the detection system; these materials may include boron-10 (10B), lithium-6 (6Li), and gadollinium-157 (157Gd), to name a few, but the number of materials available for neutron detection is limited. However, in recent years, pulse-shape-discriminating plastic scintillators, scintillators made of helium-4 (4He) under high pressure, pillar and trench semiconductor diodes, and exotic semiconductor neutron detectors made from uranium oxide and other materials have widely expanded the parameter space in neutron detection methodology. In this article we will pay special attention to semiconductor-based neutron sensors. Modern microfabricated nanotubes covered inside with neutron converter materials and with very high aspect ratios for better charge transport will be discussed.
Abbaspour, Samira; Mahmoudian, Babak; Islamian, Jalil Pirayesh
2017-01-01
The detector in single-photon emission computed tomography has played a key role in the quality of the images. Over the past few decades, developments in semiconductor detector technology provided an appropriate substitution for scintillation detectors in terms of high sensitivity, better energy resolution, and also high spatial resolution. One of the considered detectors is cadmium telluride (CdTe). The purpose of this paper is to review the CdTe semiconductor detector used in preclinical studies, small organ and small animal imaging, also research in nuclear medicine and other medical imaging modalities by a complete inspect on the material characteristics, irradiation principles, applications, and epitaxial growth method. PMID:28553175
NASA Astrophysics Data System (ADS)
Choi, Jinhyeon; Lee, Hee Ho; Ahn, Jungil; Seo, Sang-Ho; Shin, Jang-Kyoo
2012-06-01
In this paper, we present a differential-mode biosensor using dual extended-gate metal-oxide-semiconductor field-effect transistors (MOSFETs), which possesses the advantages of both the extended-gate structure and the differential-mode operation. The extended-gate MOSFET was fabricated using a 0.6 µm standard complementary metal oxide semiconductor (CMOS) process. The Au extended gate is the sensing gate on which biomolecules are immobilized, while the Pt extended gate is the dummy gate for use in the differential-mode detection circuit. The differential-mode operation offers many advantages such as insensitivity to the variation of temperature and light, as well as low noise. The outputs were measured using a semiconductor parameter analyzer in a phosphate buffered saline (PBS; pH 7.4) solution. A standard Ag/AgCl reference electrode was used to apply the gate bias. We measured the variation of output voltage with time, temperature, and light intensity. The bindings of self-assembled monolayer (SAM), streptavidin, and biotin caused a variation in the output voltage of the differential-mode detection circuit and this was confirmed by surface plasmon resonance (SPR) experiment. Biotin molecules could be detected up to a concentration of as low as 0.001 µg/ml.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Held, Martin; Schießl, Stefan P.; Gannott, Florentina
Transistors for future flexible organic light-emitting diode (OLED) display backplanes should operate at low voltages and be able to sustain high currents over long times without degradation. Hence, high capacitance dielectrics with low surface trap densities are required that are compatible with solution-processable high-mobility semiconductors. Here, we combine poly(methyl methacrylate) (PMMA) and atomic layer deposition hafnium oxide (HfO{sub x}) into a bilayer hybrid dielectric for field-effect transistors with a donor-acceptor polymer (DPPT-TT) or single-walled carbon nanotubes (SWNTs) as the semiconductor and demonstrate substantially improved device performances for both. The ultra-thin PMMA layer ensures a low density of trap states atmore » the semiconductor-dielectric interface while the metal oxide layer provides high capacitance, low gate leakage and superior barrier properties. Transistors with these thin (≤70 nm), high capacitance (100–300 nF/cm{sup 2}) hybrid dielectrics enable low operating voltages (<5 V), balanced charge carrier mobilities and low threshold voltages. Moreover, the hybrid layers substantially improve the bias stress stability of the transistors compared to those with pure PMMA and HfO{sub x} dielectrics.« less
HfSe2 and ZrSe2: Two-dimensional semiconductors with native high-κ oxides
Mleczko, Michal J.; Zhang, Chaofan; Lee, Hye Ryoung; Kuo, Hsueh-Hui; Magyari-Köpe, Blanka; Moore, Robert G.; Shen, Zhi-Xun; Fisher, Ian R.; Nishi, Yoshio; Pop, Eric
2017-01-01
The success of silicon as a dominant semiconductor technology has been enabled by its moderate band gap (1.1 eV), permitting low-voltage operation at reduced leakage current, and the existence of SiO2 as a high-quality “native” insulator. In contrast, other mainstream semiconductors lack stable oxides and must rely on deposited insulators, presenting numerous compatibility challenges. We demonstrate that layered two-dimensional (2D) semiconductors HfSe2 and ZrSe2 have band gaps of 0.9 to 1.2 eV (bulk to monolayer) and technologically desirable “high-κ” native dielectrics HfO2 and ZrO2, respectively. We use spectroscopic and computational studies to elucidate their electronic band structure and then fabricate air-stable transistors down to three-layer thickness with careful processing and dielectric encapsulation. Electronic measurements reveal promising performance (on/off ratio > 106; on current, ~30 μA/μm), with native oxides reducing the effects of interfacial traps. These are the first 2D materials to demonstrate technologically relevant properties of silicon, in addition to unique compatibility with high-κ dielectrics, and scaling benefits from their atomically thin nature. PMID:28819644
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Kevin L.
The purpose of this LDRD project was to demonstrate high spatial and temporal resolution x-ray imaging using optical detectors, and in particular the VISAR and OHRV diagnostics on the OMEGA laser. The x-ray source being imaged was a backlighter capsule being imploded by 39 beams of the OMEGA laser. In particular this approach utilized a semiconductor with the side facing the backlighter capsule coated with a thin aluminum layer to allow x rays to pass through the metal layer and then get absorbed in the semiconductor. The other side of the semiconductor was AR coated to allow the VISAR ormore » OHRV probe beam to sample the phase change of the semiconductor as the x rays were absorbed in the semiconductor. This technique is capable of acquiring sub-picosecond 2-D or 1-D x-ray images, detector spatial resolution of better than 10 um and the ability to operate in a high neutron flux environment expected on ignition shots with burning plasmas. In addition to demonstrating this technique on the OMEGA laser, several designs were made to improve the phase sensitivity, temporal resolution and number of frames over the existing diagnostics currently implemented on the OMEGA laser. These designs included both 2-d imaging diagnostics as well as improved 1-D imaging diagnostics which were streaked in time.« less
A Novel Defect Inspection Method for Semiconductor Wafer Based on Magneto-Optic Imaging
NASA Astrophysics Data System (ADS)
Pan, Z.; Chen, L.; Li, W.; Zhang, G.; Wu, P.
2013-03-01
The defects of semiconductor wafer may be generated from the manufacturing processes. A novel defect inspection method of semiconductor wafer is presented in this paper. The method is based on magneto-optic imaging, which involves inducing eddy current into the wafer under test, and detecting the magnetic flux associated with eddy current distribution in the wafer by exploiting the Faraday rotation effect. The magneto-optic image being generated may contain some noises that degrade the overall image quality, therefore, in this paper, in order to remove the unwanted noise present in the magneto-optic image, the image enhancement approach using multi-scale wavelet is presented, and the image segmentation approach based on the integration of watershed algorithm and clustering strategy is given. The experimental results show that many types of defects in wafer such as hole and scratch etc. can be detected by the method proposed in this paper.
Stable surface passivation process for compound semiconductors
Ashby, Carol I. H.
2001-01-01
A passivation process for a previously sulfided, selenided or tellurated III-V compound semiconductor surface. The concentration of undesired mid-gap surface states on a compound semiconductor surface is reduced by the formation of a near-monolayer of metal-(sulfur and/or selenium and/or tellurium)-semiconductor that is effective for long term passivation of the underlying semiconductor surface. Starting with the III-V compound semiconductor surface, any oxidation present thereon is substantially removed and the surface is then treated with sulfur, selenium or tellurium to form a near-monolayer of chalcogen-semiconductor of the surface in an oxygen-free atmosphere. This chalcogenated surface is then contacted with a solution of a metal that will form a low solubility chalcogenide to form a near-monolayer of metal-chalcogen-semiconductor. The resulting passivating layer provides long term protection for the underlying surface at or above the level achieved by a freshly chalcogenated compound semiconductor surface in an oxygen free atmosphere.
Photovoltaic devices comprising zinc stannate buffer layer and method for making
Wu, Xuanzhi; Sheldon, Peter; Coutts, Timothy J.
2001-01-01
A photovoltaic device has a buffer layer zinc stannate Zn.sub.2 SnO.sub.4 disposed between the semiconductor junction structure and the transparent conducting oxide (TCO) layer to prevent formation of localized junctions with the TCO through a thin window semiconductor layer, to prevent shunting through etched grain boundaries of semiconductors, and to relieve stresses and improve adhesion between these layers.
A 72 × 60 Angle-Sensitive SPAD Imaging Array for Lens-less FLIM.
Lee, Changhyuk; Johnson, Ben; Jung, TaeSung; Molnar, Alyosha
2016-09-02
We present a 72 × 60, angle-sensitive single photon avalanche diode (A-SPAD) array for lens-less 3D fluorescence lifetime imaging. An A-SPAD pixel consists of (1) a SPAD to provide precise photon arrival time where a time-resolved operation is utilized to avoid stimulus-induced saturation, and (2) integrated diffraction gratings on top of the SPAD to extract incident angles of the incoming light. The combination enables mapping of fluorescent sources with different lifetimes in 3D space down to micrometer scale. Futhermore, the chip presented herein integrates pixel-level counters to reduce output data-rate and to enable a precise timing control. The array is implemented in standard 180 nm complementary metal-oxide-semiconductor (CMOS) technology and characterized without any post-processing.
Wilkes, Thomas C.; McGonigle, Andrew J. S.; Pering, Tom D.; Taggart, Angus J.; White, Benjamin S.; Bryant, Robert G.; Willmott, Jon R.
2016-01-01
Here, we report, for what we believe to be the first time, on the modification of a low cost sensor, designed for the smartphone camera market, to develop an ultraviolet (UV) camera system. This was achieved via adaptation of Raspberry Pi cameras, which are based on back-illuminated complementary metal-oxide semiconductor (CMOS) sensors, and we demonstrated the utility of these devices for applications at wavelengths as low as 310 nm, by remotely sensing power station smokestack emissions in this spectral region. Given the very low cost of these units, ≈ USD 25, they are suitable for widespread proliferation in a variety of UV imaging applications, e.g., in atmospheric science, volcanology, forensics and surface smoothness measurements. PMID:27782054
A 72 × 60 Angle-Sensitive SPAD Imaging Array for Lens-less FLIM
Lee, Changhyuk; Johnson, Ben; Jung, TaeSung; Molnar, Alyosha
2016-01-01
We present a 72 × 60, angle-sensitive single photon avalanche diode (A-SPAD) array for lens-less 3D fluorescence lifetime imaging. An A-SPAD pixel consists of (1) a SPAD to provide precise photon arrival time where a time-resolved operation is utilized to avoid stimulus-induced saturation, and (2) integrated diffraction gratings on top of the SPAD to extract incident angles of the incoming light. The combination enables mapping of fluorescent sources with different lifetimes in 3D space down to micrometer scale. Futhermore, the chip presented herein integrates pixel-level counters to reduce output data-rate and to enable a precise timing control. The array is implemented in standard 180 nm complementary metal-oxide-semiconductor (CMOS) technology and characterized without any post-processing. PMID:27598170
Novel photoinduced phase transitions in transition metal oxides and diluted magnetic semiconductors.
Mizokawa, Takashi
2012-10-23
Some transition metal oxides have frustrated electronic states under multiphase competition due to strongly correlated d electrons with spin, charge, and orbital degrees of freedom and exhibit drastic responses to external stimuli such as optical excitation. Here, we present photoemission studies on Pr0.55(Ca1 - ySry)0.45MnO3 (y = 0.25), SrTiO3, and Ti1 - xCoxO2 (x = 0.05, 0.10) under laser illumination and discuss electronic structural changes induced by optical excitation in these strongly correlated oxides. We discuss the novel photoinduced phase transitions in these transition metal oxides and diluted magnetic semiconductors on the basis of polaronic pictures such as orbital, ferromagnetic, and ferroelectric polarons.
Interface states and internal photoemission in p-type GaAs metal-oxide-semiconductor surfaces
NASA Technical Reports Server (NTRS)
Kashkarov, P. K.; Kazior, T. E.; Lagowski, J.; Gatos, H. C.
1983-01-01
An interface photodischarge study of p-type GaAs metal-oxide-semiconductor (MOS) structures revealed the presence of deep interface states and shallow donors and acceptors which were previously observed in n-type GaAs MOS through sub-band-gap photoionization transitions. For higher photon energies, internal photoemission was observed, i.e., injection of electrons to the conduction band of the oxide from either the metal (Au) or from the GaAs valence band; the threshold energies were found to be 3.25 and 3.7 + or - 0.1 eV, respectively. The measured photoemission current exhibited a thermal activation energy of about 0.06 eV, which is consistent with a hopping mechanism of electron transport in the oxide.
Rahman, Md Anisur; Rout, S; Thomas, Joseph P; McGillivray, Donald; Leung, Kam Tong
2016-09-14
Control of the spin degree of freedom of an electron has brought about a new era in spin-based applications, particularly spin-based electronics, with the potential to outperform the traditional charge-based semiconductor technology for data storage and information processing. However, the realization of functional spin-based devices for information processing remains elusive due to several fundamental challenges such as the low Curie temperature of group III-V and II-VI semiconductors (<200 K), and the low spin-injection efficiencies of existing III-V, II-VI, and transparent conductive oxide semiconductors in a multilayer device structure, which are caused by precipitation and migration of dopants from the host layer to the adjacent layers. Here, we use catalyst-assisted pulsed laser deposition to grow, for the first time, oxygen vacancy defect-rich, dopant-free ZrO2 nanostructures with high TC (700 K) and high magnetization (5.9 emu/g). The observed magnetization is significantly greater than both doped and defect-rich transparent conductive oxide nanomaterials reported to date. We also provide the first experimental evidence that it is the amounts and types of oxygen vacancy defects in, and not the phase of ZrO2 that control the ferromagnetic order in undoped ZrO2 nanostructures. To explain the origin of ferromagnetism in these ZrO2 nanostructures, we hypothesize a new defect-induced bound polaron model, which is generally applicable to other defect-rich, dopant-free transparent conductive oxide nanostructures. These results provide new insights into magnetic ordering in undoped dilute ferromagnetic semiconductor oxides and contribute to the design of exotic magnetic and novel multifunctional materials.
Hinken, David; Schinke, Carsten; Herlufsen, Sandra; Schmidt, Arne; Bothe, Karsten; Brendel, Rolf
2011-03-01
We report in detail on the luminescence imaging setup developed within the last years in our laboratory. In this setup, the luminescence emission of silicon solar cells or silicon wafers is analyzed quantitatively. Charge carriers are excited electrically (electroluminescence) using a power supply for carrier injection or optically (photoluminescence) using a laser as illumination source. The luminescence emission arising from the radiative recombination of the stimulated charge carriers is measured spatially resolved using a camera. We give details of the various components including cameras, optical filters for electro- and photo-luminescence, the semiconductor laser and the four-quadrant power supply. We compare a silicon charged-coupled device (CCD) camera with a back-illuminated silicon CCD camera comprising an electron multiplier gain and a complementary metal oxide semiconductor indium gallium arsenide camera. For the detection of the luminescence emission of silicon we analyze the dominant noise sources along with the signal-to-noise ratio of all three cameras at different operation conditions.
NASA Astrophysics Data System (ADS)
Beer, Chris; Whall, Terry; Parker, Evan; Leadley, David; De Jaeger, Brice; Nicholas, Gareth; Zimmerman, Paul; Meuris, Marc; Szostak, Slawomir; Gluszko, Grzegorz; Lukasiak, Lidia
2007-12-01
Effective mobility measurements have been made at 4.2K on high performance high-k gated germanium p-type metal-oxide-semiconductor field effect transistors with a range of Ge/gate dielectric interface state densities. The mobility is successfully modelled by assuming surface roughness and interface charge scattering at the SiO2 interlayer/Ge interface. The deduced interface charge density is approximately equal to the values obtained from the threshold voltage and subthreshold slope measurements on each device. A hydrogen anneal reduces both the interface state density and the surface root mean square roughness by 20%.
Light-Immune pH Sensor with SiC-Based Electrolyte-Insulator-Semiconductor Structure
NASA Astrophysics Data System (ADS)
Lin, Yi-Ting; Huang, Chien-Shiang; Chow, Lee; Lan, Jyun-Ming; Yang, Chia-Ming; Chang, Liann-Be; Lai, Chao-Sung
2013-12-01
An electrolyte-insulator-semiconductor (EIS) structure with high-band-gap semiconductor of silicon carbide is demonstrated as a pH sensor in this report. Two different sensing membranes, i.e., gadolinium oxide (Gd2O3) and hafnium oxide (HfO2), were investigated. The HfO2 film deposited by atomic layer deposition (ALD) at low temperature shows high pH sensing properties with a sensitivity of 52.35 mV/pH and a low signal of 4.95 mV due to light interference. The EIS structures with silicon carbide can provide better visible light immunity due to its high band gap that allows pH detection in an outdoor environment without degradation of pH sensitivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szyszka, A., E-mail: szyszka@ihp-microelectronics.com, E-mail: adam.szyszka@pwr.wroc.pl; Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wroclaw; Lupina, L.
2014-08-28
Based on a novel double step oxide buffer heterostructure approach for GaN integration on Si, we present an optimized Metal-Semiconductor-Metal (MSM)-based Ultraviolet (UV) GaN photodetector system with integrated short-period (oxide/Si) Distributed Bragg Reflector (DBR) and leakage suppressing Metal-Oxide-Semiconductor (MOS) electrode contacts. In terms of structural properties, it is demonstrated by in-situ reflection high energy electron diffraction and transmission electron microscopy-energy dispersive x-ray studies that the DBR heterostructure layers grow with high thickness homogeneity and sharp interface structures sufficient for UV applications; only minor Si diffusion into the Y{sub 2}O{sub 3} films is detected under the applied thermal growth budget. Asmore » revealed by comparative high resolution x-ray diffraction studies on GaN/oxide buffer/Si systems with and without DBR systems, the final GaN layer structure quality is not significantly influenced by the growth of the integrated DBR heterostructure. In terms of optoelectronic properties, it is demonstrated that—with respect to the basic GaN/oxide/Si system without DBR—the insertion of (a) the DBR heterostructures and (b) dark current suppressing MOS contacts enhances the photoresponsivity below the GaN band-gap related UV cut-off energy by almost up to two orders of magnitude. Given the in-situ oxide passivation capability of grown GaN surfaces and the one order of magnitude lower number of superlattice layers in case of higher refractive index contrast (oxide/Si) systems with respect to classical III-N DBR superlattices, virtual GaN substrates on Si via functional oxide buffer systems are thus a promising robust approach for future GaN-based UV detector technologies.« less
CMOS image sensor for detection of interferon gamma protein interaction as a point-of-care approach.
Marimuthu, Mohana; Kandasamy, Karthikeyan; Ahn, Chang Geun; Sung, Gun Yong; Kim, Min-Gon; Kim, Sanghyo
2011-09-01
Complementary metal oxide semiconductor (CMOS)-based image sensors have received increased attention owing to the possibility of incorporating them into portable diagnostic devices. The present research examined the efficiency and sensitivity of a CMOS image sensor for the detection of antigen-antibody interactions involving interferon gamma protein without the aid of expensive instruments. The highest detection sensitivity of about 1 fg/ml primary antibody was achieved simply by a transmission mechanism. When photons are prevented from hitting the sensor surface, a reduction in digital output occurs in which the number of photons hitting the sensor surface is approximately proportional to the digital number. Nanoscale variation in substrate thickness after protein binding can be detected with high sensitivity by the CMOS image sensor. Therefore, this technique can be easily applied to smartphones or any clinical diagnostic devices for the detection of several biological entities, with high impact on the development of point-of-care applications.
Novel approach to improve the attitude update rate of a star tracker.
Zhang, Shuo; Xing, Fei; Sun, Ting; You, Zheng; Wei, Minsong
2018-03-05
The star tracker is widely used in attitude control systems of spacecraft for attitude measurement. The attitude update rate of a star tracker is important to guarantee the attitude control performance. In this paper, we propose a novel approach to improve the attitude update rate of a star tracker. The electronic Rolling Shutter (RS) imaging mode of the complementary metal-oxide semiconductor (CMOS) image sensor in the star tracker is applied to acquire star images in which the star spots are exposed with row-to-row time offsets, thereby reflecting the rotation of star tracker at different times. The attitude estimation method with a single star spot is developed to realize the multiple attitude updates by a star image, so as to reach a high update rate. The simulation and experiment are performed to verify the proposed approaches. The test results demonstrate that the proposed approach is effective and the attitude update rate of a star tracker is increased significantly.
Single-shot velocity-map imaging of attosecond light-field control at kilohertz rate.
Süssmann, F; Zherebtsov, S; Plenge, J; Johnson, Nora G; Kübel, M; Sayler, A M; Mondes, V; Graf, C; Rühl, E; Paulus, G G; Schmischke, D; Swrschek, P; Kling, M F
2011-09-01
High-speed, single-shot velocity-map imaging (VMI) is combined with carrier-envelope phase (CEP) tagging by a single-shot stereographic above-threshold ionization (ATI) phase-meter. The experimental setup provides a versatile tool for angle-resolved studies of the attosecond control of electrons in atoms, molecules, and nanostructures. Single-shot VMI at kHz repetition rate is realized with a highly sensitive megapixel complementary metal-oxide semiconductor camera omitting the need for additional image intensifiers. The developed camera software allows for efficient background suppression and the storage of up to 1024 events for each image in real time. The approach is demonstrated by measuring the CEP-dependence of the electron emission from ATI of Xe in strong (≈10(13) W/cm(2)) near single-cycle (4 fs) laser fields. Efficient background signal suppression with the system is illustrated for the electron emission from SiO(2) nanospheres. © 2011 American Institute of Physics
3D-printed eagle eye: Compound microlens system for foveated imaging
Thiele, Simon; Arzenbacher, Kathrin; Gissibl, Timo; Giessen, Harald; Herkommer, Alois M.
2017-01-01
We present a highly miniaturized camera, mimicking the natural vision of predators, by 3D-printing different multilens objectives directly onto a complementary metal-oxide semiconductor (CMOS) image sensor. Our system combines four printed doublet lenses with different focal lengths (equivalent to f = 31 to 123 mm for a 35-mm film) in a 2 × 2 arrangement to achieve a full field of view of 70° with an increasing angular resolution of up to 2 cycles/deg field of view in the center of the image. The footprint of the optics on the chip is below 300 μm × 300 μm, whereas their height is <200 μm. Because the four lenses are printed in one single step without the necessity for any further assembling or alignment, this approach allows for fast design iterations and can lead to a plethora of different miniaturized multiaperture imaging systems with applications in fields such as endoscopy, optical metrology, optical sensing, surveillance drones, or security. PMID:28246646
BRIEF COMMUNICATIONS: Q switching of a resonator by the metal-semiconductor phase transition
NASA Astrophysics Data System (ADS)
Bugaev, A. A.; Zakharchenya, Boris P.; Chudnovskiĭ, F. A.
1981-12-01
An experimental study was made of Q switching in a resonator by a mirror with a nonlinear reflection coefficient. This mirror was an interference reflecting structure containing a vanadium oxide film capable of undergoing a metal-semiconductor transition. The nonlinearity of the reflection coefficient was due to initiation of this phase transition by laser radiation. A determination was made of the parameters of a giant radiation pulse obtained using such a passive switch with a vanadium oxide film.
NASA Astrophysics Data System (ADS)
Jia, Yifan; Lv, Hongliang; Niu, Yingxi; Li, Ling; Song, Qingwen; Tang, Xiaoyan; Li, Chengzhan; Zhao, Yanli; Xiao, Li; Wang, Liangyong; Tang, Guangming; Zhang, Yimen; Zhang, Yuming
2016-09-01
The effect of nitric oxide (NO) annealing on charge traps in the oxide insulator and transition layer in n-type 4H-SiC metal-oxide-semiconductor (MOS) devices has been investigated using the time-dependent bias stress (TDBS), capacitance-voltage (C-V), and secondary ion mass spectroscopy (SIMS). It is revealed that two main categories of charge traps, near interface oxide traps (Nniot) and oxide traps (Not), have different responses to the TDBS and C-V characteristics in NO-annealed and Ar-annealed samples. The Nniot are mainly responsible for the hysteresis occurring in the bidirectional C-V characteristics, which are very close to the semiconductor interface and can readily exchange charges with the inner semiconductor. However, Not is mainly responsible for the TDBS induced C-V shifts. Electrons tunneling into the Not are hardly released quickly when suffering TDBS, resulting in the problem of the threshold voltage stability. Compared with the Ar-annealed sample, Nniot can be significantly suppressed by the NO annealing, but there is little improvement of Not. SIMS results demonstrate that the Nniot are distributed within the transition layer, which correlated with the existence of the excess silicon. During the NO annealing process, the excess Si atoms incorporate into nitrogen in the transition layer, allowing better relaxation of the interface strain and effectively reducing the width of the transition layer and the density of Nniot. Project supported by the National Natural Science Foundation of China (Grant Nos. 61404098 and 61274079), the Doctoral Fund of Ministry of Education of China (Grant No. 20130203120017), the National Key Basic Research Program of China (Grant No. 2015CB759600), the National Grid Science & Technology Project, China (Grant No. SGRI-WD-71-14-018), and the Key Specific Project in the National Science & Technology Program, China (Grant Nos. 2013ZX02305002-002 and 2015CB759600).
Optical temperature sensor using thermochromic semiconductors
Kronberg, James W.
1996-01-01
An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually or by utilizing an optical fiber and an electrical sensing circuit.
Optical temperature sensor using thermochromic semiconductors
Kronberg, James W.
1998-01-01
An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually using a sensor chip and an accompanying color card.
Metal-Semiconductor Nanocomposites for High Efficiency Thermoelectric Power Generation
2013-12-07
standard III–V compound semiconductor processing techniques with terbium- doped InGaAs of high terbium concentration, Journal of Vacuum Science...even lower the required temperature for strong covalent bonding. We performed the oxide bonding for this substrate transfer task (see Figure 16 for...appropriate controls for assessing ErSb:InGaSb and other nanocomposites of p-type III-V compound semiconductors and their alloys. UCSC group calculated
Optical temperature sensor using thermochromic semiconductors
Kronberg, J.W.
1998-06-30
An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually using a sensor chip and an accompanying color card. 8 figs.
Chemically Derivatized Semiconductor Photoelectrodes.
ERIC Educational Resources Information Center
Wrighton, Mark S.
1983-01-01
Deliberate modification of semiconductor photoelectrodes to improve durability and enhance rate of desirable interfacial redox processes is discussed for a variety of systems. Modification with molecular-based systems or with metals/metal oxides yields results indicating an important role for surface modification in devices for fundamental study…
Additional compound semiconductor nanowires for photonics
NASA Astrophysics Data System (ADS)
Ishikawa, F.
2016-02-01
GaAs related compound semiconductor heterostructures are one of the most developed materials for photonics. Those have realized various photonic devices with high efficiency, e. g., lasers, electro-optical modulators, and solar cells. To extend the functions of the materials system, diluted nitride and bismide has been paid attention over the past decade. They can largely decrease the band gap of the alloys, providing the greater tunability of band gap and strain status, eventually suppressing the non-radiative Auger recombinations. On the other hand, selective oxidation for AlGaAs is a vital technique for vertical surface emitting lasers. That enables precisely controlled oxides in the system, enabling the optical and electrical confinement, heat transfer, and mechanical robustness. We introduce the above functions into GaAs nanowires. GaAs/GaAsN core-shell nanowires showed clear redshift of the emitting wavelength toward infrared regime. Further, the introduction of N elongated the carrier lifetime at room temperature indicating the passivation of non-radiative surface recombinations. GaAs/GaAsBi nanowire shows the redshift with metamorphic surface morphology. Selective and whole oxidations of GaAs/AlGaAs core-shell nanowires produce semiconductor/oxide composite GaAs/AlGaOx and oxide GaOx/AlGaOx core-shell nanowires, respectively. Possibly sourced from nano-particle species, the oxide shell shows white luminescence. Those property should extend the functions of the nanowires for their application to photonics.
Digdaya, Ibadillah A.; Adhyaksa, Gede W. P.; Trześniewski, Bartek J.; Garnett, Erik C.; Smith, Wilson A.
2017-01-01
Solar-assisted water splitting can potentially provide an efficient route for large-scale renewable energy conversion and storage. It is essential for such a system to provide a sufficiently high photocurrent and photovoltage to drive the water oxidation reaction. Here we demonstrate a photoanode that is capable of achieving a high photovoltage by engineering the interfacial energetics of metal–insulator–semiconductor junctions. We evaluate the importance of using two metals to decouple the functionalities for a Schottky contact and a highly efficient catalyst. We also illustrate the improvement of the photovoltage upon incidental oxidation of the metallic surface layer in KOH solution. Additionally, we analyse the role of the thin insulating layer to the pinning and depinning of Fermi level that is responsible to the resulting photovoltage. Finally, we report the advantage of using dual metal overlayers as a simple protection route for highly efficient metal–insulator–semiconductor photoanodes by showing over 200 h of operational stability. PMID:28660883
Tantalum-based semiconductors for solar water splitting.
Zhang, Peng; Zhang, Jijie; Gong, Jinlong
2014-07-07
Solar energy utilization is one of the most promising solutions for the energy crises. Among all the possible means to make use of solar energy, solar water splitting is remarkable since it can accomplish the conversion of solar energy into chemical energy. The produced hydrogen is clean and sustainable which could be used in various areas. For the past decades, numerous efforts have been put into this research area with many important achievements. Improving the overall efficiency and stability of semiconductor photocatalysts are the research focuses for the solar water splitting. Tantalum-based semiconductors, including tantalum oxide, tantalate and tantalum (oxy)nitride, are among the most important photocatalysts. Tantalum oxide has the band gap energy that is suitable for the overall solar water splitting. The more negative conduction band minimum of tantalum oxide provides photogenerated electrons with higher potential for the hydrogen generation reaction. Tantalates, with tunable compositions, show high activities owning to their layered perovskite structure. (Oxy)nitrides, especially TaON and Ta3N5, have small band gaps to respond to visible-light, whereas they can still realize overall solar water splitting with the proper positions of conduction band minimum and valence band maximum. This review describes recent progress regarding the improvement of photocatalytic activities of tantalum-based semiconductors. Basic concepts and principles of solar water splitting will be discussed in the introduction section, followed by the three main categories regarding to the different types of tantalum-based semiconductors. In each category, synthetic methodologies, influencing factors on the photocatalytic activities, strategies to enhance the efficiencies of photocatalysts and morphology control of tantalum-based materials will be discussed in detail. Future directions to further explore the research area of tantalum-based semiconductors for solar water splitting are also discussed.
Lee, Mi Gyoung; Moon, Cheon Woo; Park, Hoonkee; Sohn, Woonbae; Kang, Sung Bum; Lee, Sanghan; Choi, Kyoung Jin; Jang, Ho Won
2017-10-01
The performance of plasmonic Au nanostructure/metal oxide heterointerface shows great promise in enhancing photoactivity, due to its ability to confine light to the small volume inside the semiconductor and modify the interfacial electronic band structure. While the shape control of Au nanoparticles (NPs) is crucial for moderate bandgap semiconductors, because plasmonic resonance by interband excitations overlaps above the absorption edge of semiconductors, its critical role in water splitting is still not fully understood. Here, first, the plasmonic effects of shape-controlled Au NPs on bismuth vanadate (BiVO 4 ) are studied, and a largely enhanced photoactivity of BiVO 4 is reported by introducing the octahedral Au NPs. The octahedral Au NP/BiVO 4 achieves 2.4 mA cm -2 at the 1.23 V versus reversible hydrogen electrode, which is the threefold enhancement compared to BiVO 4 . It is the highest value among the previously reported plasmonic Au NPs/BiVO 4 . Improved photoactivity is attributed to the localized surface plasmon resonance; direct electron transfer (DET), plasmonic resonant energy transfer (PRET). The PRET can be stressed over DET when considering the moderate bandgap semiconductor. Enhanced water oxidation induced by the shape-controlled Au NPs is applicable to moderate semiconductors, and shows a systematic study to explore new efficient plasmonic solar water splitting cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Quantifying charge carrier concentration in ZnO thin films by Scanning Kelvin Probe Microscopy
Maragliano, C.; Lilliu, S.; Dahlem, M. S.; Chiesa, M.; Souier, T.; Stefancich, M.
2014-01-01
In the last years there has been a renewed interest for zinc oxide semiconductor, mainly triggered by its prospects in optoelectronic applications. In particular, zinc oxide thin films are being widely used for photovoltaic applications, in which the determination of the electrical conductivity is of great importance. Being an intrinsically doped material, the quantification of its doping concentration has always been challenging. Here we show how to probe the charge carrier density of zinc oxide thin films by Scanning Kelvin Probe Microscopy, a technique that allows measuring the contact potential difference between the tip and the sample surface with high spatial resolution. A simple electronic energy model is used for correlating the contact potential difference with the doping concentration in the material. Limitations of this technique are discussed in details and some experimental solutions are proposed. Two-dimensional doping concentration images acquired on radio frequency-sputtered intrinsic zinc oxide thin films with different thickness and deposited under different conditions are reported. We show that results inferred with this technique are in accordance with carrier concentration expected for zinc oxide thin films deposited under different conditions and obtained from resistivity and mobility measurements. PMID:24569599
Swain, Basudev; Mishra, Chinmayee; Lee, Chan Gi; Park, Kyung-Soo; Lee, Kun-Jae
2015-07-01
Dust generated during metal organic vapor deposition (MOCVD) process of GaN based semiconductor power device industry contains significant amounts of gallium and indium. These semiconductor power device industry wastes contain gallium as GaN and Ga0.97N0.9O0.09 is a concern for the environment which can add value through recycling. In the present study, this waste is recycled through mechanochemical oxidation and leaching. For quantitative recovery of gallium, two different mechanochemical oxidation leaching process flow sheets are proposed. In one process, first the Ga0.97N0.9O0.09 of the MOCVD dust is leached at the optimum condition. Subsequently, the leach residue is mechanochemically treated, followed by oxidative annealing and finally re-leached. In the second process, the MOCVD waste dust is mechanochemically treated, followed by oxidative annealing and finally leached. Both of these treatment processes are competitive with each other, appropriate for gallium leaching and treatment of the waste MOCVD dust. Without mechanochemical oxidation, 40.11 and 1.86 w/w% of gallium and Indium are leached using 4M HCl, 100°C and pulp density of 100 kg/m(3,) respectively. After mechanochemical oxidation, both these processes achieved 90 w/w% of gallium and 1.86 w/w% of indium leaching at their optimum condition. Copyright © 2015 Elsevier Inc. All rights reserved.
The Basis for Photocatalytic Writing
ERIC Educational Resources Information Center
Ibanez, Jorge G.; Tausch, Michael W.; Bohrmann-Linde, Claudia; Fernandez-Gallardo, Isabel; Robles-Leyzaola, Ainoha; Krees, Simone; Meuter, Nico; Tennior, Mathias
2011-01-01
We present a demonstration involving the oxidative photobleaching of a raspberry juice dye under visible laser light irradiation using the semiconductor titanium dioxide. A plausible interpretation of the phenomenon is discussed that aids in the understanding of semiconductor energetics and the nature of light. (Contains 2 figures.)
Lu, Hao; Zhao, Kaichun; Wang, Xiaochu; You, Zheng; Huang, Kaoli
2016-01-01
Bio-inspired imaging polarization navigation which can provide navigation information and is capable of sensing polarization information has advantages of high-precision and anti-interference over polarization navigation sensors that use photodiodes. Although all types of imaging polarimeters exist, they may not qualify for the research on the imaging polarization navigation algorithm. To verify the algorithm, a real-time imaging orientation determination system was designed and implemented. Essential calibration procedures for the type of system that contained camera parameter calibration and the inconsistency of complementary metal oxide semiconductor calibration were discussed, designed, and implemented. Calibration results were used to undistort and rectify the multi-camera system. An orientation determination experiment was conducted. The results indicated that the system could acquire and compute the polarized skylight images throughout the calibrations and resolve orientation by the algorithm to verify in real-time. An orientation determination algorithm based on image processing was tested on the system. The performance and properties of the algorithm were evaluated. The rate of the algorithm was over 1 Hz, the error was over 0.313°, and the population standard deviation was 0.148° without any data filter. PMID:26805851
Robust Dehaze Algorithm for Degraded Image of CMOS Image Sensors.
Qu, Chen; Bi, Du-Yan; Sui, Ping; Chao, Ai-Nong; Wang, Yun-Fei
2017-09-22
The CMOS (Complementary Metal-Oxide-Semiconductor) is a new type of solid image sensor device widely used in object tracking, object recognition, intelligent navigation fields, and so on. However, images captured by outdoor CMOS sensor devices are usually affected by suspended atmospheric particles (such as haze), causing a reduction in image contrast, color distortion problems, and so on. In view of this, we propose a novel dehazing approach based on a local consistent Markov random field (MRF) framework. The neighboring clique in traditional MRF is extended to the non-neighboring clique, which is defined on local consistent blocks based on two clues, where both the atmospheric light and transmission map satisfy the character of local consistency. In this framework, our model can strengthen the restriction of the whole image while incorporating more sophisticated statistical priors, resulting in more expressive power of modeling, thus, solving inadequate detail recovery effectively and alleviating color distortion. Moreover, the local consistent MRF framework can obtain details while maintaining better results for dehazing, which effectively improves the image quality captured by the CMOS image sensor. Experimental results verified that the method proposed has the combined advantages of detail recovery and color preservation.
The Dynamic Photometric Stereo Method Using a Multi-Tap CMOS Image Sensor †
Yoda, Takuya; Nagahara, Hajime; Taniguchi, Rin-ichiro; Kagawa, Keiichiro; Yasutomi, Keita; Kawahito, Shoji
2018-01-01
The photometric stereo method enables estimation of surface normals from images that have been captured using different but known lighting directions. The classical photometric stereo method requires at least three images to determine the normals in a given scene. However, this method cannot be applied to dynamic scenes because it is assumed that the scene remains static while the required images are captured. In this work, we present a dynamic photometric stereo method for estimation of the surface normals in a dynamic scene. We use a multi-tap complementary metal-oxide-semiconductor (CMOS) image sensor to capture the input images required for the proposed photometric stereo method. This image sensor can divide the electrons from the photodiode from a single pixel into the different taps of the exposures and can thus capture multiple images under different lighting conditions with almost identical timing. We implemented a camera lighting system and created a software application to enable estimation of the normal map in real time. We also evaluated the accuracy of the estimated surface normals and demonstrated that our proposed method can estimate the surface normals of dynamic scenes. PMID:29510599
Lee, Chulsung; Lee, Dustin; Darling, Cynthia L; Fried, Daniel
2010-01-01
The high transparency of dental enamel in the near-infrared (NIR) at 1310 nm can be exploited for imaging dental caries without the use of ionizing radiation. The objective of this study is to determine whether the lesion contrast derived from NIR imaging in both transmission and reflectance can be used to estimate lesion severity. Two NIR imaging detector technologies are investigated: a new Ge-enhanced complementary metal-oxide-semiconductor (CMOS)-based NIR imaging camera, and an InGaAs focal plane array (FPA). Natural occlusal caries lesions are imaged with both cameras at 1310 nm, and the image contrast between sound and carious regions is calculated. After NIR imaging, teeth are sectioned and examined using polarized light microscopy (PLM) and transverse microradiography (TMR) to determine lesion severity. Lesions are then classified into four categories according to lesion severity. Lesion contrast increases significantly with lesion severity for both cameras (p<0.05). The Ge-enhanced CMOS camera equipped with the larger array and smaller pixels yields higher contrast values compared with the smaller InGaAs FPA (p<0.01). Results demonstrate that NIR lesion contrast can be used to estimate lesion severity.
Lee, Chulsung; Lee, Dustin; Darling, Cynthia L.; Fried, Daniel
2010-01-01
The high transparency of dental enamel in the near-infrared (NIR) at 1310 nm can be exploited for imaging dental caries without the use of ionizing radiation. The objective of this study is to determine whether the lesion contrast derived from NIR imaging in both transmission and reflectance can be used to estimate lesion severity. Two NIR imaging detector technologies are investigated: a new Ge-enhanced complementary metal-oxide-semiconductor (CMOS)-based NIR imaging camera, and an InGaAs focal plane array (FPA). Natural occlusal caries lesions are imaged with both cameras at 1310 nm, and the image contrast between sound and carious regions is calculated. After NIR imaging, teeth are sectioned and examined using polarized light microscopy (PLM) and transverse microradiography (TMR) to determine lesion severity. Lesions are then classified into four categories according to lesion severity. Lesion contrast increases significantly with lesion severity for both cameras (p<0.05). The Ge-enhanced CMOS camera equipped with the larger array and smaller pixels yields higher contrast values compared with the smaller InGaAs FPA (p<0.01). Results demonstrate that NIR lesion contrast can be used to estimate lesion severity. PMID:20799842
NASA Astrophysics Data System (ADS)
Lee, Chulsung; Lee, Dustin; Darling, Cynthia L.; Fried, Daniel
2010-07-01
The high transparency of dental enamel in the near-infrared (NIR) at 1310 nm can be exploited for imaging dental caries without the use of ionizing radiation. The objective of this study is to determine whether the lesion contrast derived from NIR imaging in both transmission and reflectance can be used to estimate lesion severity. Two NIR imaging detector technologies are investigated: a new Ge-enhanced complementary metal-oxide-semiconductor (CMOS)-based NIR imaging camera, and an InGaAs focal plane array (FPA). Natural occlusal caries lesions are imaged with both cameras at 1310 nm, and the image contrast between sound and carious regions is calculated. After NIR imaging, teeth are sectioned and examined using polarized light microscopy (PLM) and transverse microradiography (TMR) to determine lesion severity. Lesions are then classified into four categories according to lesion severity. Lesion contrast increases significantly with lesion severity for both cameras (p<0.05). The Ge-enhanced CMOS camera equipped with the larger array and smaller pixels yields higher contrast values compared with the smaller InGaAs FPA (p<0.01). Results demonstrate that NIR lesion contrast can be used to estimate lesion severity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moghadam, Reza M.; Xiao, Zhiyong; Ahmadi-Majlan, Kamyar
The epitaxial growth of multifunctional oxides on semiconductors has opened a pathway to introduce new functionalities to semiconductor device technologies. In particular, ferroelectric materials integrated on semiconductors could lead to low-power field-effect devices that can be used for logic or memory. Essential to realizing such field-effect devices is the development of ferroelectric metal-oxide-semiconductor (MOS) capacitors, in which the polarization of a ferroelectric gate is coupled to the surface potential of a semiconducting channel. Here we demonstrate that ferroelectric MOS capacitors can be realized using single crystalline SrZrxTi1-xO3 (x= 0.7) that has been epitaxially grown on Ge. We find that themore » ferroelectric properties of SrZrxTi1-xO3 are exceptionally robust, as gate layers as thin as 5 nm give rise to hysteretic capacitance-voltage characteristics that are 2 V in width. The development of ferroelectric MOS capacitors with gate thicknesses that are technologically relevant opens a pathway to realize scalable ferroelectric field-effect devices.« less
NASA Astrophysics Data System (ADS)
Entani, S.; Kiguchi, M.; Saiki, K.; Koma, A.
2003-01-01
Epitaxial growth of CoO films was studied using reflection high-energy electron diffraction (RHEED), electron energy loss spectroscopy (EELS), ultraviolet photoelectron spectroscopy (UPS) and Auger electron spectroscopy (AES). The RHEED results indicated that an epitaxial CoO film grew on semiconductor and metal substrates (CoO (0 0 1)∥GaAs (0 0 1), Cu (0 0 1), Ag (0 0 1) and [1 0 0]CoO∥[1 0 0] substrates) by constructing a complex heterostructure with two alkali halide buffer layers. The AES, EELS and UPS results showed that the grown CoO film had almost the same electronic structure as bulk CoO. We could show that use of alkali halide buffer layers was a good way to grow metal oxide films on semiconductor and metal substrates in an O 2 atmosphere. The alkali halide layers not only works as glue to connect very dissimilar materials but also prevents oxidation of metal and semiconductor substrates.
A p-Type Zinc-Based Metal-Organic Framework.
Shang, Congcong; Gautier, Romain; Jiang, Tengfei; Faulques, Eric; Latouche, Camille; Paris, Michael; Cario, Laurent; Bujoli-Doeuff, Martine; Jobic, Stéphane
2017-06-05
An original concept for the property tuning of semiconductors is demonstrated by the synthesis of a p-type zinc oxide (ZnO)-like metal-organic framework (MOF), (ZnC 2 O 3 H 2 ) n , which can be regarded as a possible alternative for ZnO, a natural n-type semiconductor. When small oxygen-rich organic linkers are introduced to the Zn-O system, oxygen vacancies and a deep valence-band maximum, the two obstacles for generating p-type behavior in ZnO, are restrained and raised, respectively. Further studies of this material on the doping and photoluminescence behaviors confirm its resemblance to metal oxides (MOs). This result answers the challenges of generating p-type behavior in an n-type-like system. This concept reveals that a new category of hybrid materials, with an embedded continuous metal-oxygen network, lies between the MOs and MOFs. It provides concrete support for the development of p-type hybrid semiconductors in the near future and, more importantly, the enrichment of tuning possibilities in inorganic semiconductors.
Bachmeier, Andreas; Wang, Vincent C C; Woolerton, Thomas W; Bell, Sophie; Fontecilla-Camps, Juan C; Can, Mehmet; Ragsdale, Stephen W; Chaudhary, Yatendra S; Armstrong, Fraser A
2013-10-09
The most efficient catalysts for solar fuel production should operate close to reversible potentials, yet possess a bias for the fuel-forming direction. Protein film electrochemical studies of Ni-containing carbon monoxide dehydrogenase and [NiFeSe]-hydrogenase, each a reversible electrocatalyst, show that the electronic state of the electrode strongly biases the direction of electrocatalysis of CO2/CO and H(+)/H2 interconversions. Attached to graphite electrodes, these enzymes show high activities for both oxidation and reduction, but there is a marked shift in bias, in favor of CO2 or H(+) reduction, when the respective enzymes are attached instead to n-type semiconductor electrodes constructed from CdS and TiO2 nanoparticles. This catalytic rectification effect can arise for a reversible electrocatalyst attached to a semiconductor electrode if the electrode transforms between semiconductor- and metallic-like behavior across the same narrow potential range (<0.25 V) that the electrocatalytic current switches between oxidation and reduction.
NASA Astrophysics Data System (ADS)
Sasaki, Atsuya; Sasaki, Akito; Hirabayashi, Hideaki; Saito, Shuichi; Aoki, Katsuaki; Kataoka, Yoshinori; Suzuki, Koji; Yabuhara, Hidehiko; Ito, Takahiro; Takagi, Shigeyuki
2018-04-01
Li-ion batteries have attracted interest for use as storage batteries. However, the risk of fire has not yet been resolved. Although solid Li-ion batteries are possible alternatives, their performance characteristics are unsatisfactory. Recently, research on utilizing the accumulation of carriers at the trap levels of semiconductors has been performed. However, the detailed charge/discharge characteristics and principles have not been reported. In this report, we attempted to form new n-type oxide semiconductor/insulator/p-type oxide semiconductor structures. The battery characteristics of these structures were evaluated by charge/discharge measurements. The obtained results clearly indicated the characteristics of rechargeable batteries. Furthermore, the fabricated structure accumulated an approximately 5000 times larger number of carriers than a parallel plate capacitor. Additionally, by constructing circuit models based on the experimental results, the charge/discharge mechanisms were considered. This is the first detailed experimental report on a rechargeable battery that operates without the double injection of ions and electrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravotti, F.; Glaser, M.; Saigne, F.
Radiation-sensing metal-oxide-semiconductor field-effect transistors produced by the laboratory LAAS-CNRS were exposed to a harsh hadron field that represents the real radiation environment expected at the CERN Large Hadron Collider experiments. The long-term stability of the transistor's I{sub ds}-V{sub gs} characteristic was investigated using the isochronal annealing technique. In this work, devices exposed to high intensity hadron levels ({phi}{>=}10{sup 12} neutrons/cm{sup 2}) show evidences of displacement damages in the I{sub ds}-V{sub gs} annealing behavior. By comparing experimental and simulated results over 14 months, the isochronal annealing method, originally devoted to oxide trapped charge, is shown to enable prediction of the recoverymore » of silicon bulk defects.« less
Na, Jae Won; Rim, You Seung; Kim, Hee Jun; Lee, Jin Hyeok; Hong, Seonghwan; Kim, Hyun Jae
2017-09-06
Solution-processed amorphous metal-oxide thin-film transistors (TFTs) utilizing an intermixed interface between a metal-oxide semiconductor and a dielectric layer are proposed. In-depth physical characterizations are carried out to verify the existence of the intermixed interface that is inevitably formed by interdiffusion of cations originated from a thermal process. In particular, when indium zinc oxide (IZO) semiconductor and silicon dioxide (SiO 2 ) dielectric layer are in contact and thermally processed, a Si 4+ intermixed IZO (Si/IZO) interface is created. On the basis of this concept, a high-performance Si/IZO TFT having both a field-effect mobility exceeding 10 cm 2 V -1 s -1 and a on/off current ratio over 10 7 is successfully demonstrated.
Solution combustion synthesis of oxide semiconductors
NASA Astrophysics Data System (ADS)
Thomas, Abegayl Lorenda Shara-Lynn
The quest for stable and efficient photocatalytic materials beyond TiO2 and WO3 has over the years led to the development of new materials that possess varied interfacial energetics. This dissertation study focused on using for the first time a novel method, solution combustion synthesis (SCS), to prepare two distinct families of binary metal-based oxide semiconductor materials. Detailed studies on material characteristics and applications were carried out on tungsten- and niobium-based oxide semiconductors with varying principal metals. Initial emphasis was placed on the SCS of tungsten-based oxide semiconductors (ZnWO4, CuWO4, and Ag2WO4). The influence of different tungsten precursor's on the resultant product was of particular relevance to this study, with the most significant effects highlighted. Upon characterization, each sample's photocatalytic activity towards methyl orange dye degradation was studied, and benchmarked against their respective commercial oxide sample, obtained by solid-state ceramic synthesis. Detailed analysis highlighted the importance of the SCS process as a time- and energy-efficient method to produce crystalline nano-sized materials even without additional or excessive heat treatment. It was observed that using different tungstate precursors does influence the structural and morphological make-up of the resulting materials. The as-synthesized tungstate materials showed good photocatalytic performance for the degradation of methyl orange dye, while taking into account specific surface area and adsorbed dye amount on the surface of the material. Like the tungstate's, niobium-based oxide semiconductors CuNb 2O6 and ZnNb2O6 were the first to be synthesized via solution combustion synthesis. Particular attention was placed on the crystal structures formed while using an oxalate niobium precursor during the reaction process. X-ray patterns yielded a multiphase structure for the ZnNb2O6 and a single phase structure for CuNb 2O6. Photoelectrochemical (PEC) measurements were used both as a characterization tool as well as an application for CO2 reduction. The PEC data was consistent with an n-type and p-type semiconductor for ZnNb 2O6 and CuNb2O6 respectively. Good phototelectrochemical behavior was observed for CuNb2O6 with stable, high photocurrents suggesting a suitable material for CO 2 reduction while in a 0.1 M NaHCO3 + CO2 medium. All in all, this dissertation study expounds on metal ion insertion into various structural frameworks (e.g. WO3) which may open sustainable materials chemistry avenues to solar energy conversion and environmental remediation.
Zhang, Yanhui; Zhang, Nan; Tang, Zi-Rong; Xu, Yi-Jun
2012-11-27
We report the assembly of nanosized ZnS particles on the 2D platform of a graphene oxide (GO) sheet by a facile two-step wet chemistry process, during which the reduced graphene oxide (RGO, also called GR) and the intimate interfacial contact between ZnS nanoparticles and the GR sheet are achieved simultaneously. The ZnS-GR nanocomposites exhibit visible light photoactivity toward aerobic selective oxidation of alcohols and epoxidation of alkenes under ambient conditions. In terms of structure-photoactivity correlation analysis, we for the first time propose a new photocatalytic mechanism where the role of GR in the ZnS-GR nanocomposites acts as an organic dye-like macromolecular "photosensitizer" for ZnS instead of an electron reservoir. This novel photocatalytic mechanism is distinctly different from all previous research on GR-semiconductor photocatalysts, for which GR is claimed to behave as an electron reservoir to capture/shuttle the electrons photogenerated from the semiconductor. This new concept of the reaction mechanism in graphene-semiconductor photocatalysts could provide a new train of thought on designing GR-based composite photocatalysts for targeting applications in solar energy conversion, promoting our in-depth thinking on the microscopic charge carrier transfer pathway connected to the interface between the GR and the semiconductor.
Alternative photocatalysts to TiO2 for the photocatalytic reduction of CO2
NASA Astrophysics Data System (ADS)
Nikokavoura, Aspasia; Trapalis, Christos
2017-01-01
The increased concentration of CO2 in the atmosphere, originating from the burning of fossil fuels in stationary and mobile sources, is referred as the "Anthropogenic Greenhouse Effect" and constitutes a major environmental concern. The scientific community is highly concerned about the resulting enhancement of the mean atmospheric temperature, so a vast diversity of methods has been applied. Thermochemical, electrochemical, photocatalytic, photoelectrochemical processes, as well as combination of solar electricity generation and water splitting processes have been performed in order to lower the CO2 atmospheric levels. Photocatalytic methods are environmental friendly and succeed in reducing the atmospheric CO2 concentration and producing fuels or/and useful organic compounds at the same time. The most common photocatalysts for the CO2 reduction are the inorganic, the carbon based semiconductors and the hybrids based on semiconductors, which combine stability, low cost and appropriate structure in order to accomplish redox reactions. In this review, inorganic semiconductors such as single-metal oxide, mixed-metal oxides, metal oxide composites, layered double hydroxides (LDHs), salt composites, carbon based semiconductors such as graphene based composites, CNT composites, g-C3N4 composites and hybrid organic-inorganic materials (ZIFs) were studied. TiO2 and Ti based photocatalysts are extensively studied and therefore in this review they are not mentioned.
Porous Diblock Copolymer Thin Films in High-Performance Semiconductor Microelectronics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, C.T.
2011-02-01
The engine fueling more than 40 years of performance improvements in semiconductor integrated circuits (ICs) has been industry's ability to pattern circuit elements at ever-higher resolution and with ever-greater precision. Steady advances in photolithography - the process wherein ultraviolet light chemically changes a photosensitive polymer resist material in order to create a latent image - have resulted in scaling of minimum printed feature sizes from tens of microns during the 1980s to sub-50 nanometer transistor gate lengths in today's state-of-the-art ICs. The history of semiconductor technology scaling as well as future technology requirements is documented in the International Technology Roadmapmore » for Semiconductors (ITRS). The progression of the semiconductor industry to the realm of nanometer-scale sizes has brought enormous challenges to device and circuit fabrication, rendering performance improvements by conventional scaling alone increasingly difficult. Most often this discussion is couched in terms of field effect transistor (FET) feature sizes such as the gate length or gate oxide thickness, however these challenges extend to many other aspects of the IC, including interconnect dimensions and pitch, device packing density, power consumption, and heat dissipation. The ITRS Technology Roadmap forecasts a difficult set of scientific and engineering challenges with no presently-known solutions. The primary focus of this chapter is the research performed at IBM on diblock copolymer films composed of polystyrene (PS) and poly(methyl-methacrylate) (PMMA) (PS-b-PMMA) with total molecular weights M{sub n} in the range of {approx}60K (g/mol) and polydispersities (PD) of {approx}1.1. These materials self assemble to form patterns having feature sizes in the range of 15-20nm. PS-b-PMMA was selected as a self-assembling patterning material due to its compatibility with the semiconductor microelectronics manufacturing infrastructure, as well as the significant body of existing research on understanding its material properties.« less
Semiconductor/High-Tc-Superconductor Hybrid ICs
NASA Technical Reports Server (NTRS)
Burns, Michael J.
1995-01-01
Hybrid integrated circuits (ICs) containing both Si-based semiconducting and YBa(2)Cu(3)O(7-x) superconducting circuit elements on sapphire substrates developed. Help to prevent diffusion of Cu from superconductors into semiconductors. These hybrid ICs combine superconducting and semiconducting features unavailable in superconducting or semiconducting circuitry alone. For example, complementary metal oxide/semiconductor (CMOS) readout and memory devices integrated with fast-switching Josephson-junction super-conducting logic devices and zero-resistance interconnections.
Optical temperature sensor using thermochromic semiconductors
Kronberg, J.W.
1996-08-20
An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually or by utilizing an optical fiber and an electrical sensing circuit. 7 figs.
Lack of enhanced photocatalytic formation of iodine on particulate semiconductor mixtures.
Karunakaran, C; Anilkumar, P; Vinayagamoorthy, P
2012-12-01
Under UV-A light illumination, formation of iodine from iodide ion on the surfaces of anatase TiO(2), ZnO, Fe(2)O(3), CeO(2), MoO(3), Bi(2)O(3), and Nb(2)O(5) increases with the concentration of iodide ion, airflow rate and light intensity and conform to the Langmuir-Hinshelwood kinetic model. Measurement of the particle size of the semiconductor oxides by light scattering method and deduction of the same from the determined specific surface area show that the oxide particles agglomerate in suspension. However, mixtures of any two listed particulate semiconductors do not show enhanced photocatalytic formation of iodine indicating absence of interparticle charge transfer. The results are rationalized. Copyright © 2012 Elsevier B.V. All rights reserved.
Choi, Jun Young; Heo, Keun; Cho, Kyung-Sang; Hwang, Sung Woo; Kim, Sangsig; Lee, Sang Yeol
2016-11-04
We investigated the band gap of SiZnSnO (SZTO) with different Si contents. Band gap engineering of SZTO is explained by the evolution of the electronic structure, such as changes in the band edge states and band gap. Using ultraviolet photoelectron spectroscopy (UPS), it was verified that Si atoms can modify the band gap of SZTO thin films. Carrier generation originating from oxygen vacancies can modify the band-gap states of oxide films with the addition of Si. Since it is not easy to directly derive changes in the band gap states of amorphous oxide semiconductors, no reports of the relationship between the Fermi energy level of oxide semiconductor and the device stability of oxide thin film transistors (TFTs) have been presented. The addition of Si can reduce the total density of trap states and change the band-gap properties. When 0.5 wt% Si was used to fabricate SZTO TFTs, they showed superior stability under negative bias temperature stress. We derived the band gap and Fermi energy level directly using data from UPS, Kelvin probe, and high-resolution electron energy loss spectroscopy analyses.
Choi, Jun Young; Heo, Keun; Cho, Kyung-Sang; Hwang, Sung Woo; Kim, Sangsig; Lee, Sang Yeol
2016-01-01
We investigated the band gap of SiZnSnO (SZTO) with different Si contents. Band gap engineering of SZTO is explained by the evolution of the electronic structure, such as changes in the band edge states and band gap. Using ultraviolet photoelectron spectroscopy (UPS), it was verified that Si atoms can modify the band gap of SZTO thin films. Carrier generation originating from oxygen vacancies can modify the band-gap states of oxide films with the addition of Si. Since it is not easy to directly derive changes in the band gap states of amorphous oxide semiconductors, no reports of the relationship between the Fermi energy level of oxide semiconductor and the device stability of oxide thin film transistors (TFTs) have been presented. The addition of Si can reduce the total density of trap states and change the band-gap properties. When 0.5 wt% Si was used to fabricate SZTO TFTs, they showed superior stability under negative bias temperature stress. We derived the band gap and Fermi energy level directly using data from UPS, Kelvin probe, and high-resolution electron energy loss spectroscopy analyses. PMID:27812035
X-ray Characterization of Oxide-based Magnetic Semiconductors
NASA Astrophysics Data System (ADS)
Idzerda, Yves
2008-05-01
Although the evidence for magnetic semiconductors (not simply semiconductors which are ferromagnetic) is compelling, there is much uncertainty in the mechanism for the polarization of the carriers, suggesting that it must be quite novel. Recent experimental evidence suggests that this mechanism is similar to the polaron percolation theory proposed by Kaminski and Das Sarma,ootnotetextKaminski and S. Das Sarma, Physical Review Letters 88, 247202 (2002). which was recently applied specifically to doped oxides by Coey et al.ootnotetextJ. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nature Materials 4, 173 (2005). where the ferromagnetism is driven by the percolation of polarons generated by defects or dopants. We have used X-ray absorption spectroscopy at the L-edges and K-edges for low concentrations transition metal (TM) doped magnetic oxides (including TiO2, La1-xSrxO3, HfO2, and In2O3). We have found that in most cases, the transition metal assumes a valence consistent with being at a substitutional, and not interstitial site. We have also measured the X-ray Magnetic Circular Dichroism spectra. Although these materials show strong bulk magnetization, we are unable to detect a robust dichroism feature associated with magnetic elements in the host semiconductor. In the cases where a dichroism signal was observed, it was very weak and could be ascribed to a distinct ferromagnetic phase (TM metal cluster, TM oxide particulate, etc.) separate from the host material. This fascinating absence of a dichroic signal and its significant substantiation of important features of the polaron percolation model may help to finally resolve the issue of ferromagnetism in magnetically doped oxides.
Analysis of fluctuations in semiconductor devices
NASA Astrophysics Data System (ADS)
Andrei, Petru
The random nature of ion implantation and diffusion processes as well as inevitable tolerances in fabrication result in random fluctuations of doping concentrations and oxide thickness in semiconductor devices. These fluctuations are especially pronounced in ultrasmall (nanoscale) semiconductor devices when the spatial scale of doping and oxide thickness variations become comparable with the geometric dimensions of devices. In the dissertation, the effects of these fluctuations on device characteristics are analyzed by using a new technique for the analysis of random doping and oxide thickness induced fluctuations. This technique is universal in nature in the sense that it is applicable to any transport model (drift-diffusion, semiclassical transport, quantum transport etc.) and it can be naturally extended to take into account random fluctuations of the oxide (trapped) charges and channel length. The technique is based on linearization of the transport equations with respect to the fluctuating quantities. It is computationally much (a few orders of magnitude) more efficient than the traditional Monte-Carlo approach and it yields information on the sensitivity of fluctuations of parameters of interest (e.g. threshold voltage, small-signal parameters, cut-off frequencies, etc.) to the locations of doping and oxide thickness fluctuations. For this reason, it can be very instrumental in the design of fluctuation-resistant structures of semiconductor devices. Quantum mechanical effects are taken into account by using the density-gradient model as well as through self-consistent Poisson-Schrodinger computations. Special attention is paid to the presenting of the technique in a form that is suitable for implementation on commercial device simulators. The numerical implementation of the technique is discussed in detail and numerous computational results are presented and compared with those previously published in literature.
Variable temperature semiconductor film deposition
Li, X.; Sheldon, P.
1998-01-27
A method of depositing a semiconductor material on a substrate is disclosed. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.
Variable temperature semiconductor film deposition
Li, Xiaonan; Sheldon, Peter
1998-01-01
A method of depositing a semiconductor material on a substrate. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.
A room-temperature magnetic semiconductor from a ferromagnetic metallic glass
NASA Astrophysics Data System (ADS)
Liu, Wenjian; Zhang, Hongxia; Shi, Jin-An; Wang, Zhongchang; Song, Cheng; Wang, Xiangrong; Lu, Siyuan; Zhou, Xiangjun; Gu, Lin; Louzguine-Luzgin, Dmitri V.; Chen, Mingwei; Yao, Kefu; Chen, Na
2016-12-01
Emerging for future spintronic/electronic applications, magnetic semiconductors have stimulated intense interest due to their promises for new functionalities and device concepts. So far, the so-called diluted magnetic semiconductors attract many attentions, yet it remains challenging to increase their Curie temperatures above room temperature, particularly those based on III-V semiconductors. In contrast to the concept of doping magnetic elements into conventional semiconductors to make diluted magnetic semiconductors, here we propose to oxidize originally ferromagnetic metals/alloys to form new species of magnetic semiconductors. We introduce oxygen into a ferromagnetic metallic glass to form a Co28.6Fe12.4Ta4.3B8.7O46 magnetic semiconductor with a Curie temperature above 600 K. The demonstration of p-n heterojunctions and electric field control of the room-temperature ferromagnetism in this material reflects its p-type semiconducting character, with a mobility of 0.1 cm2 V-1 s-1. Our findings may pave a new way to realize high Curie temperature magnetic semiconductors with unusual multifunctionalities.
Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Wang, Zhenwei; Hedhili, M. N.; Wang, Q. X.; Alshareef, H. N.
2014-01-01
We report, for the first time, the use of a single step deposition of semiconductor channel layer to simultaneously achieve both n- and p-type transport in transparent oxide thin film transistors (TFTs). This effect is achieved by controlling the concentration of hydroxyl groups (OH-groups) in the underlying gate dielectrics. The semiconducting tin oxide layer was deposited at room temperature, and the maximum device fabrication temperature was 350°C. Both n and p-type TFTs showed fairly comparable performance. A functional CMOS inverter was fabricated using this novel scheme, indicating the potential use of our approach for various practical applications. PMID:24728223
NASA Technical Reports Server (NTRS)
Danchenko, V. (Inventor)
1974-01-01
A technique is described for radiation hardening of MOS devices and specifically for stabilizing the gate threshold potential at room temperature of a radiation subjected MOS field-effect device with a semiconductor substrate, an insulating layer of oxide on the substrate, and a gate electrode disposed on the insulating layer. The boron is introduced within a layer of the oxide of about 100 A-300 A thickness immediately adjacent the semiconductor-insulator interface. The concentration of boron in the oxide layer is preferably maintained on the order of 10 to the 18th power atoms/cu cm. The technique serves to reduce and substantially annihilate radiation induced positive gate charge accumulations.
Automatic crack detection and classification method for subway tunnel safety monitoring.
Zhang, Wenyu; Zhang, Zhenjiang; Qi, Dapeng; Liu, Yun
2014-10-16
Cracks are an important indicator reflecting the safety status of infrastructures. This paper presents an automatic crack detection and classification methodology for subway tunnel safety monitoring. With the application of high-speed complementary metal-oxide-semiconductor (CMOS) industrial cameras, the tunnel surface can be captured and stored in digital images. In a next step, the local dark regions with potential crack defects are segmented from the original gray-scale images by utilizing morphological image processing techniques and thresholding operations. In the feature extraction process, we present a distance histogram based shape descriptor that effectively describes the spatial shape difference between cracks and other irrelevant objects. Along with other features, the classification results successfully remove over 90% misidentified objects. Also, compared with the original gray-scale images, over 90% of the crack length is preserved in the last output binary images. The proposed approach was tested on the safety monitoring for Beijing Subway Line 1. The experimental results revealed the rules of parameter settings and also proved that the proposed approach is effective and efficient for automatic crack detection and classification.
New generation of magnetic and luminescent nanoparticles for in vivo real-time imaging
Lacroix, Lise-Marie; Delpech, Fabien; Nayral, Céline; Lachaize, Sébastien; Chaudret, Bruno
2013-01-01
A new generation of optimized contrast agents is emerging, based on metallic nanoparticles (NPs) and semiconductor nanocrystals for, respectively, magnetic resonance imaging (MRI) and near-infrared (NIR) fluorescent imaging techniques. Compared with established contrast agents, such as iron oxide NPs or organic dyes, these NPs benefit from several advantages: their magnetic and optical properties can be tuned through size, shape and composition engineering, their efficiency can exceed by several orders of magnitude that of contrast agents clinically used, their surface can be modified to incorporate specific targeting agents and antifolding polymers to increase blood circulation time and tumour recognition, and they can possibly be integrated in complex architecture to yield multi-modal imaging agents. In this review, we will report the materials of choice based on the understanding of the basic physics of NIR and MRI techniques and their corresponding syntheses as NPs. Surface engineering, water transfer and specific targeting will be highlighted prior to their first use for in vivo real-time imaging. Highly efficient NPs that are safer and target specific are likely to enter clinical application in a near future. PMID:24427542
Automatic Crack Detection and Classification Method for Subway Tunnel Safety Monitoring
Zhang, Wenyu; Zhang, Zhenjiang; Qi, Dapeng; Liu, Yun
2014-01-01
Cracks are an important indicator reflecting the safety status of infrastructures. This paper presents an automatic crack detection and classification methodology for subway tunnel safety monitoring. With the application of high-speed complementary metal-oxide-semiconductor (CMOS) industrial cameras, the tunnel surface can be captured and stored in digital images. In a next step, the local dark regions with potential crack defects are segmented from the original gray-scale images by utilizing morphological image processing techniques and thresholding operations. In the feature extraction process, we present a distance histogram based shape descriptor that effectively describes the spatial shape difference between cracks and other irrelevant objects. Along with other features, the classification results successfully remove over 90% misidentified objects. Also, compared with the original gray-scale images, over 90% of the crack length is preserved in the last output binary images. The proposed approach was tested on the safety monitoring for Beijing Subway Line 1. The experimental results revealed the rules of parameter settings and also proved that the proposed approach is effective and efficient for automatic crack detection and classification. PMID:25325337
Improving the uniformity of luminous system in radial imaging capsule endoscope system
NASA Astrophysics Data System (ADS)
Ou-Yang, Mang; Jeng, Wei-De
2013-02-01
This study concerns the illumination system in a radial imaging capsule endoscope (RICE). Uniformly illuminating the object is difficult because the intensity of the light from the light emitting diodes (LEDs) varies with angular displacement. When light is emitted from the surface of the LED, it first encounters the cone mirror, from which it is reflected, before directly passing through the lenses and complementary metal oxide semiconductor (CMOS) sensor. The light that is strongly reflected from the transparent view window (TVW) propagates again to the cone mirror, to be reflected and to pass through the lenses and CMOS sensor. The above two phenomena cause overblooming on the image plane. Overblooming causes nonuniform illumination on the image plane and consequently reduced image quality. In this work, optical design software was utilized to construct a photometric model for the optimal design of the LED illumination system. Based on the original RICE model, this paper proposes an optimal design to improve the uniformity of the illumination. The illumination uniformity in the RICE is increased from its original value of 0.128 to 0.69, greatly improving light uniformity.
Apparatus for photocatalytic treatment of liquids
NASA Technical Reports Server (NTRS)
Cooper, Gerald (Inventor); Ratcliff, Matthew A. (Inventor)
1992-01-01
Apparatus for decontaminating a contaminated fluid by using photocatalytic particles. The apparatus includes a reactor tank for holding a slurry of the contaminated fluid and the photocatalytic particles ultraviolet light irradiates the surface of the slurry, thereby activating the photocatalytic properties of the particles. Stirring blades for continuously agitate the irradiated fluid surface maintaining the particles in a suspended state within the fluid. A cross flow filter is used for separating the fluid from the semiconductor powder after the decomposition reaction is ended. The cross flow filter is occasionally back flushed to remove any caked semiconductor powder. The semiconductor powder may be recirculated back to the tank for reuse, or may be stored for future use. A series of reactor tanks may be used to gradually decompose a chemical in the fluid. The fluid may be pretreated to remove certain metal ions which interfere with the photocatalytic process. Such pretreatment may be accomplished by dispersing semiconductor particles within the fluid, which particles adsorb ions or photodeposit the metal as the free metal or its insoluble oxide or hydroxide, and then removing the semiconductor particles together with the adsorbed metal ions/oxides/hydroxide/free metal from the fluid.
Toumazou, Christofer; Thay, Tan Sri Lim Kok; Georgiou, Pantelis
2014-03-28
Semiconductor genetics is now disrupting the field of healthcare owing to the rapid parallelization and scaling of DNA sensing using ion-sensitive field-effect transistors (ISFETs) fabricated using commercial complementary metal -oxide semiconductor technology. The enabling concept of DNA reaction monitoring introduced by Toumazou has made this a reality and we are now seeing relentless scaling with Moore's law ultimately achieving the $100 genome. In this paper, we present the next evolution of this technology through the creation of the gene-sensitive integrated cell (GSIC) for label-free real-time analysis based on ISFETs. This device is derived from the traditional metal-oxide semiconductor field-effect transistor (MOSFET) and has electrical performance identical to that of a MOSFET in a standard semiconductor process, yet is capable of incorporating DNA reaction chemistries for applications in single nucleotide polymorphism microarrays and DNA sequencing. Just as application-specific integrated circuits, which are developed in much the same way, have shaped our consumer electronics industry and modern communications and memory technology, so, too, do GSICs based on a single underlying technology principle have the capacity to transform the life science and healthcare industries.
NASA Astrophysics Data System (ADS)
Chosei, Naoya; Itoh, Eiji
2018-02-01
We have comparatively studied the charge behaviors of organic semiconductor films based on charge extraction by linearly increasing voltage in a metal-insulator-semiconductor (MIS) diode structure (MIS-CELIV) and by classical capacitance-voltage measurement. The MIS-CELIV technique allows the selective measurement of electron and hole mobilities of n- and p-type organic films with thicknesses representative of those of actual devices. We used an anodic oxidized sputtered Ta or Hf electrode as a high-k layer, and it effectively blocked holes at the insulator/semiconductor interface. We estimated the hole mobilities of the polythiophene derivatives regioregular poly(3-hexylthiophene) (P3HT) and poly(3,3‧‧‧-didodecylquarterthiophene) (PQT-12) before and after heat treatment in the ITO/high-k/(thin polymer insulator)/semiconductor/MoO3/Ag device structure. The hole mobility of PQT-12 was improved from 1.1 × 10-5 to 2.1 × 10-5 cm2 V-1 s-1 by the heat treatment of the device at 100 °C for 30 min. An almost two orders of magnitude higher mobility was obtained in MIS diodes with P3HT as the p-type layer. We also determined the capacitance from the displacement current in MIS diodes at a relatively low-voltage sweep, and it corresponded well to the classical capacitance-voltage and frequency measurement results.
NASA Astrophysics Data System (ADS)
Shramenko, Mikhail V.; Chamorovskiy, Alexander; Lyu, Hong-Chou; Lobintsov, Andrei A.; Karnowski, Karol; Yakubovich, Sergei D.; Wojtkowski, Maciej
2015-03-01
Tunable semiconductor laser for 1025-1095 nm spectral range is developed based on the InGaAs semiconductor optical amplifier and a narrow band-pass acousto-optic tunable filter in a fiber ring cavity. Mode-hop-free sweeping with tuning speeds of up to 104 nm/s was demonstrated. Instantaneous linewidth is in the range of 0.06-0.15 nm, side-mode suppression is up to 50 dB and polarization extinction ratio exceeds 18 dB. Optical power in output single mode fiber reaches 20 mW. The laser was used in OCT system for imaging a contact lens immersed in a 0.5% intra-lipid solution. The cross-section image provided the imaging depth of more than 5mm.
Low-Temperature UV-Assisted Fabrication of Metal Oxide Thin Film Transistor
NASA Astrophysics Data System (ADS)
Zhu, Shuanglin
Solution processed metal oxide semiconductors have attracted intensive attention in the last several decades and have emerged as a promising candidate for the application of thin film transistor (TFT) due to their nature of transparency, flexibility, high mobility, simple processing technique and potential low manufacturing cost. However, metal oxide thin film fabricated by solution process usually requires a high temperature (over 300 °C), which is above the glass transition temperature of some conventional polymer substrates. In order to fabricate the flexible electronic device on polymer substrates, it is necessary to find a facile approach to lower the fabrication temperature and minimize defects in metal oxide thin film. In this thesis, the electrical properties dependency on temperature is discussed and an UV-assisted annealing method incorporating Deep ultraviolet (DUV)-decomposable additives is demonstrated, which can effectively improve electrical properties solution processed metal oxide semiconductors processed at temperature as low as 220 °C. By studying a widely used indium oxide (In2O3) TFT as a model system, it is worth noted that compared with the sample without UV treatment, the linear mobility and saturation mobility of UV-annealing sample are improved by 56% and 40% respectively. Meanwhile, the subthreshold swing is decreased by 32%, indicating UV-treated device could turn on and off more efficiently. In addition to pure In2O3 film, the similar phenomena have also been observed in indium oxide based Indium-Gallium-Zinc Oxide (IGZO) system. These finding presented in this thesis suggest that the UV assisted annealing process open a new route to fabricate high performance metal oxide semiconductors under low temperatures.
ZnO Nanostructures for Drug Delivery and Theranostic Applications.
Martínez-Carmona, Marina; Gun'ko, Yurii; Vallet-Regí, María
2018-04-23
In the last two decades, zinc oxide (ZnO) semiconductor Quantum dots (QDs) have been shown to have fantastic luminescent properties, which together with their low-cost, low-toxicity and biocompatibility have turned these nanomaterials into one of the main candidates for bio-imaging. The discovery of other desirable traits such as their ability to produce destructive reactive oxygen species (ROS), high catalytic efficiency, strong adsorption capability and high isoelectric point, also make them promising nanomaterials for therapeutic and diagnostic functions. Herein, we review the recent progress on the use of ZnO based nanoplatforms in drug delivery and theranostic in several diseases such as bacterial infection and cancer.
Associative Pattern Recognition In Analog VLSI Circuits
NASA Technical Reports Server (NTRS)
Tawel, Raoul
1995-01-01
Winner-take-all circuit selects best-match stored pattern. Prototype cascadable very-large-scale integrated (VLSI) circuit chips built and tested to demonstrate concept of electronic associative pattern recognition. Based on low-power, sub-threshold analog complementary oxide/semiconductor (CMOS) VLSI circuitry, each chip can store 128 sets (vectors) of 16 analog values (vector components), vectors representing known patterns as diverse as spectra, histograms, graphs, or brightnesses of pixels in images. Chips exploit parallel nature of vector quantization architecture to implement highly parallel processing in relatively simple computational cells. Through collective action, cells classify input pattern in fraction of microsecond while consuming power of few microwatts.
Noh, Joo Hyon; Noh, Jiyong; Kreit, Eric; Heikenfeld, Jason; Rack, Philip D
2012-01-21
Agile micro- and nano-fluidic control is critical to numerous life science and chemical science synthesis as well as kinetic and thermodynamic studies. To this end, we have demonstrated the use of thin film transistor arrays as an active matrix addressing method to control an electrofluidic array. Because the active matrix method minimizes the number of control lines necessary (m + n lines for the m×n element array), the active matrix addressing method integrated with an electrofluidic platform can be a significant breakthrough for complex electrofluidic arrays (increased size or resolution) with enhanced function, agility and programmability. An amorphous indium gallium zinc oxide (a-IGZO) semiconductor active layer is used because of its high mobility of 1-15 cm(2) V(-1) s(-1), low-temperature processing and transparency for potential spectroscopy and imaging. Several electrofluidic functionalities are demonstrated using a simple 2 × 5 electrode array connected to a 2 × 5 IGZO thin film transistor array with the semiconductor channel width of 50 μm and mobility of 6.3 cm(2) V(-1) s(-1). Additionally, using the TFT device characteristics, active matrix addressing schemes are discussed as the geometry of the electrode array can be tailored to act as a storage capacitor element. Finally, requisite material and device parameters are discussed in context with a VGA scale active matrix addressed electrofluidic platform.
Solid state potentiometric gaseous oxide sensor
NASA Technical Reports Server (NTRS)
Wachsman, Eric D. (Inventor); Azad, Abdul Majeed (Inventor)
2003-01-01
A solid state electrochemical cell (10a) for measuring the concentration of a component of a gas mixture (12) includes first semiconductor electrode (14) and second semiconductor electrode (16) formed from first and second semiconductor materials, respectively. The materials are selected so as to undergo a change in resistivity upon contacting a gas component, such as CO or NO. An electrolyte (18) is provided in contact with the first and second semiconductor electrodes. A reference cell can be included in contact with the electrolyte. Preferably, a voltage response of the first semiconductor electrode is opposite in slope direction to that of the second semiconductor electrode to produce a voltage response equal to the sum of the absolute values of the control system uses measured pollutant concentrations to direct adjustment of engine combustion conditions.
Rapid Waterborne Pathogen Detection with Mobile Electronics.
Wu, Tsung-Feng; Chen, Yu-Chen; Wang, Wei-Chung; Kucknoor, Ashwini S; Lin, Che-Jen; Lo, Yu-Hwa; Yao, Chun-Wei; Lian, Ian
2017-06-09
Pathogen detection in water samples, without complex and time consuming procedures such as fluorescent-labeling or culture-based incubation, is essential to public safety. We propose an immunoagglutination-based protocol together with the microfluidic device to quantify pathogen levels directly from water samples. Utilizing ubiquitous complementary metal-oxide-semiconductor (CMOS) imagers from mobile electronics, a low-cost and one-step reaction detection protocol is developed to enable field detection for waterborne pathogens. 10 mL of pathogen-containing water samples was processed using the developed protocol including filtration enrichment, immune-reaction detection and imaging processing. The limit of detection of 10 E. coli O157:H7 cells/10 mL has been demonstrated within 10 min of turnaround time. The protocol can readily be integrated into a mobile electronics such as smartphones for rapid and reproducible field detection of waterborne pathogens.
CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging
NASA Astrophysics Data System (ADS)
Abbott, Jeffrey; Ye, Tianyang; Qin, Ling; Jorgolli, Marsela; Gertner, Rona S.; Ham, Donhee; Park, Hongkun
2017-05-01
Developing a new tool capable of high-precision electrophysiological recording of a large network of electrogenic cells has long been an outstanding challenge in neurobiology and cardiology. Here, we combine nanoscale intracellular electrodes with complementary metal-oxide-semiconductor (CMOS) integrated circuits to realize a high-fidelity all-electrical electrophysiological imager for parallel intracellular recording at the network level. Our CMOS nanoelectrode array has 1,024 recording/stimulation 'pixels' equipped with vertical nanoelectrodes, and can simultaneously record intracellular membrane potentials from hundreds of connected in vitro neonatal rat ventricular cardiomyocytes. We demonstrate that this network-level intracellular recording capability can be used to examine the effect of pharmaceuticals on the delicate dynamics of a cardiomyocyte network, thus opening up new opportunities in tissue-based pharmacological screening for cardiac and neuronal diseases as well as fundamental studies of electrogenic cells and their networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelinck, G. H., E-mail: Gerwin.Gelinck@tno.nl; Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven; Breemen, A. J. J. M. van
Ferroelectric polarization switching of poly(vinylidene difluoride-trifluoroethylene) is investigated in different thin-film device structures, ranging from simple capacitors to dual-gate thin-film transistors (TFT). Indium gallium zinc oxide, a high mobility amorphous oxide material, is used as semiconductor. We find that the ferroelectric can be polarized in both directions in the metal-ferroelectric-semiconductor (MFS) structure and in the dual-gate TFT under certain biasing conditions, but not in the single-gate thin-film transistors. These results disprove the common belief that MFS structures serve as a good model system for ferroelectric polarization switching in thin-film transistors.
Wang, Ping; Zhai, Yueming; Wang, Dejun; Dong, Shaojun
2011-04-01
The construction of reduced graphene oxide or graphene oxide with semiconductor has gained more and more attention due to its unexpected optoelectronic and electronic properties. The synthesis of reduced graphene oxide (RGO) or graphene oxide-semiconductor nanocomposite with well-dispersed decorated particles is still a challenge now. Herein, we demonstrate a facile method for the synthesis of graphene oxide-amorphous TiO(2) and reduced graphene oxide-anatase TiO(2) nanocomposites with well-dispersed particles. The as-synthesized samples were characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, UV-Vis absorption spectroscopy, Fourier transform infrared spectrometry, and thermogravimetric analysis. The photovoltaic properties of RGO-anatase TiO(2) were also compared with that of similar sized anatase TiO(2) by transient photovoltage technique, and it was interesting to find that the combination of reduced graphene oxide with anatase TiO(2) will significantly increase the photovoltaic response and retard the recombination of electron-hole pairs in the excited anatase TiO(2).
NASA Astrophysics Data System (ADS)
Yang, Deren; Xu, Ke
2016-11-01
The 16th International conference on Defects-Recognition, Imaging and Physics in Semiconductors (DRIP-XVI) was held at the Worldhotel Grand Dushulake in Suzhou, China from 6th to 10th September 2015, around the 30th anniversary of the first DRIP conference. It was hosted by the Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Sciences. On this occasion, about one hundred participants from nineteen countries attended the event. And a wide range of subjects were addressed during the conference: physics of point and extended defects in semiconductors: origin, electrical, optical and magnetic properties of defects; diagnostics techniques of crystal growth and processing of semiconductor materials (in-situ and process control); device imaging and mapping to evaluate performance and reliability; defect analysis in degraded optoelectronic and electronic devices; imaging techniques and instruments (proximity probe, x-ray, electron beam, non-contact electrical, optical and thermal imaging techniques, etc.); new frontiers of atomic-scale-defect assessment (STM, AFM, SNOM, ballistic electron energy microscopy, TEM, etc.); new approaches for multi-physic-parameter characterization with Nano-scale space resolution. Within these subjects, there were 58 talks, of which 18 invited, and 50 posters.
Smart Camera Technology Increases Quality
NASA Technical Reports Server (NTRS)
2004-01-01
When it comes to real-time image processing, everyone is an expert. People begin processing images at birth and rapidly learn to control their responses through the real-time processing of the human visual system. The human eye captures an enormous amount of information in the form of light images. In order to keep the brain from becoming overloaded with all the data, portions of an image are processed at a higher resolution than others, such as a traffic light changing colors. changing colors. In the same manner, image processing products strive to extract the information stored in light in the most efficient way possible. Digital cameras available today capture millions of pixels worth of information from incident light. However, at frame rates more than a few per second, existing digital interfaces are overwhelmed. All the user can do is store several frames to memory until that memory is full and then subsequent information is lost. New technology pairs existing digital interface technology with an off-the-shelf complementary metal oxide semiconductor (CMOS) imager to provide more than 500 frames per second of specialty image processing. The result is a cost-effective detection system unlike any other.
Measuring the circular motion of small objects using laser stroboscopic images.
Wang, Hairong; Fu, Y; Du, R
2008-01-01
Measuring the circular motion of a small object, including its displacement, speed, and acceleration, is a challenging task. This paper presents a new method for measuring repetitive and/or nonrepetitive, constant speed and/or variable speed circular motion using laser stroboscopic images. Under stroboscopic illumination, each image taken by an ordinary camera records multioutlines of an object in motion; hence, processing the stroboscopic image will be able to extract the motion information. We built an experiment apparatus consisting of a laser as the light source, a stereomicroscope to magnify the image, and a normal complementary metal oxide semiconductor camera to record the image. As the object is in motion, the stroboscopic illumination generates a speckle pattern on the object that can be recorded by the camera and analyzed by a computer. Experimental results indicate that the stroboscopic imaging is stable under various conditions. Moreover, the characteristics of the motion, including the displacement, the velocity, and the acceleration can be calculated based on the width of speckle marks, the illumination intensity, the duty cycle, and the sampling frequency. Compared with the popular high-speed camera method, the presented method may achieve the same measuring accuracy, but with much reduced cost and complexity.
Efficient Smart CMOS Camera Based on FPGAs Oriented to Embedded Image Processing
Bravo, Ignacio; Baliñas, Javier; Gardel, Alfredo; Lázaro, José L.; Espinosa, Felipe; García, Jorge
2011-01-01
This article describes an image processing system based on an intelligent ad-hoc camera, whose two principle elements are a high speed 1.2 megapixel Complementary Metal Oxide Semiconductor (CMOS) sensor and a Field Programmable Gate Array (FPGA). The latter is used to control the various sensor parameter configurations and, where desired, to receive and process the images captured by the CMOS sensor. The flexibility and versatility offered by the new FPGA families makes it possible to incorporate microprocessors into these reconfigurable devices, and these are normally used for highly sequential tasks unsuitable for parallelization in hardware. For the present study, we used a Xilinx XC4VFX12 FPGA, which contains an internal Power PC (PPC) microprocessor. In turn, this contains a standalone system which manages the FPGA image processing hardware and endows the system with multiple software options for processing the images captured by the CMOS sensor. The system also incorporates an Ethernet channel for sending processed and unprocessed images from the FPGA to a remote node. Consequently, it is possible to visualize and configure system operation and captured and/or processed images remotely. PMID:22163739
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, L. N.; Choi, H. W.; Lai, P. T., E-mail: laip@eee.hku.hk
2015-11-23
GaAs metal-oxide-semiconductor capacitor with TaYON/LaTaON gate-oxide stack and fluorine-plasma treatment is fabricated and compared with its counterparts without the LaTaON passivation interlayer or the fluorine treatment. Experimental results show that the sample exhibits better characteristics: low interface-state density (8 × 10{sup 11 }cm{sup −2}/eV), small flatband voltage (0.69 V), good capacitance-voltage behavior, small frequency dispersion, and small gate leakage current (6.35 × 10{sup −6} A/cm{sup 2} at V{sub fb} + 1 V). These should be attributed to the suppressed growth of unstable Ga and As oxides on the GaAs surface during gate-oxide annealing by the LaTaON interlayer and fluorine incorporation, and the passivating effects of fluorine atoms on the acceptor-likemore » interface and near-interface traps.« less
Metal-insulator-semiconductor capacitors with bismuth oxide as insulator
NASA Astrophysics Data System (ADS)
Raju, T. A.; Talwai, A. S.
1981-07-01
Metal-insulator-semiconductor capacitors using aluminum Bi2O3 and silicon have been studied for varactor applications. Reactively sputtered Bi2O3 films which under suitable proportions of oxygen and argon and had high resistivity suitable for device applications showed a dielectric constant of 25.
Nucleation and growth of dielectric films on III-V semiconductors during atomic layer deposition
NASA Astrophysics Data System (ADS)
Granados Alpizar, Bernal
In order to continue with metal-oxide-semiconductors (CMOS) transistor scaling and to reduce the power density, the channel should be replaced with a material having a higher electron mobility, such as a III-V semiconductor. However, the integration of III-V's is a challenge because these materials oxidize rapidly when exposed to air and the native oxide produced is characterized by a high density of defects. Deposition of high-k materials on III-V semiconductors using Atomic Layer Deposition (ALD) reduces the thickness of these oxides, improving the semiconductor/oxide interface quality and the transistor electrical characteristics. In this work, ALD is used to deposit two dielectrics, Al 2O3 and TiO2, on two III-V materials, GaAs and InGaAs, and in-situ X-ray photoelectron spectroscopy (XPS) and in-situ thermal programmed desorption (TPD) are used for interface characterization. Hydrofluoric acid (HF) etching of GaAs(100) and brief reoxidation in air produces a 9.0 ±1.6 Å-thick oxide overlayer containing 86% As oxides. The oxides are removed by 1 s pulses of trimethylaluminum (TMA) or TiCl4. TMA removes the oxide overlayer while depositing a 7.5 ± 1.6 Å thick aluminum oxide. The reaction follows a ligand exchange mechanism producing nonvolatile Al-O species that remain on the surface. TiCl4 exposure removes the oxide overlayer in the temperature range 89°C to 300°C, depositing approximately 0.04 monolayer of titanium oxide for deposition temperatures from 89°C to 135°C, but no titanium oxide is present from 170 °C to 230 °C. TiCl4 forms a volatile oxychloride product and removes O from the surface while leaving Cl atoms adsorbed to an elemental As layer, chemically passivating the surface. The native oxide of In0.53Ga0.47As(100) is removed using liquid HF and gas phase HF before deposition of Al2O3 using TMA and H2O at 170 °C. An aluminium oxide film with a thickness of 7.2 ± 1.2 Å and 7.3 ± 1.2 Å is deposited during the first pulse of TMA on liquid and gas phase HF treated samples, respectively. After three complete ALD cycles the thickness of the aluminum oxide film is 10.0 ± 1.2 Å on liquid HF treated and 6.6 ± 1.2 Å on gas phase HF treated surfaces. Samples treated with gas phase HF inhibit growth. Inhibition is caused by residual F atoms that passivate the surface and by surface poisoning due to the thicker carbon film deposited during the first pulse of TMA. On InGaAs covered by native oxide, the first TMA pulse deposits 9 Å of aluminum oxide, and reaches saturation at 13 Å after 15 pulses of TMA. The film grows by scavenging oxygen from the substrate oxides. Substrate oxides are reduced by the first pulse of TMA even at 0°C. At 0°C, on a 9 Å thick Ga-rich oxide surface, 1 pulse of TMA mainly physisorbs and a limited amount of aluminum oxide is deposited. At 0°C, 110°C, and 170°C, more aluminum oxide is deposited on surfaces initially containing As oxide, and larger binding energy (BE) shifts of the O 1s peak are observed compared to surfaces that contain Ga oxides only, showing that As oxides improve the nucleation of Al2O 3.
A study of the semiconductor compound СuAlO2 by the method of nuclear quadrupole resonance of Cu
NASA Astrophysics Data System (ADS)
Matukhin, V. L.; Khabibulin, I. Kh.; Shul'gin, D. A.; Smidt, S. V.
2012-07-01
The method of nuclear quadrupole resonance of Cu (NQR Cu) is used to study the samples of a semiconductor compound CuAlO2. The crystal structure of CuAlO2 belongs to the family of delafossite - the mineral of a basic CuFeO2 structure. Transparent semiconductor oxides, such as CuAlO2, have attracted recent attention as promising thermoelectric materials.
Sharma, Bhupendra Kumar; Stoesser, Anna; Mondal, Sandeep Kumar; Garlapati, Suresh K; Fawey, Mohammed H; Chakravadhanula, Venkata Sai Kiran; Kruk, Robert; Hahn, Horst; Dasgupta, Subho
2018-06-12
Oxide semiconductors typically show superior device performance compared to amorphous silicon or organic counterparts, especially, when they are physical vapor deposited. However, it is not easy to reproduce identical device characteristics when the oxide field-effect transistors (FETs) are solution-processed/ printed; the level of complexity further intensifies with the need to print the passive elements as well. Here, we developed a protocol for designing the most electronically compatible electrode/ channel interface based on the judicious material selection. Exploiting this newly developed fabrication schemes, we are now able to demonstrate high-performance all-printed FETs and logic circuits using amorphous indium-gallium-zinc oxide (a-IGZO) semiconductor, indium tin oxide (ITO) as electrodes and composite solid polymer electrolyte as the gate insulator. Interestingly, all-printed FETs demonstrate an optimal electrical performance in terms of threshold voltages and device mobility and may very well be compared with devices fabricated using sputtered ITO electrodes. This observation originates from the selection of electrode/ channel materials from the same transparent semiconductor oxide family, resulting in the formation of In-Sn-Zn-O (ITZO) based diffused a-IGZO/ ITO interface that controls doping density while ensuring high electrical performance. Compressive spectroscopic studies reveal that Sn doping mediated excellent band alignment of IGZO with ITO electrodes is responsible for the excellent device performance observed. All-printed n-MOS based logic circuits have also been demonstrated towards new-generation portable electronics.
Electrodes for Semiconductor Gas Sensors
Lee, Sung Pil
2017-01-01
The electrodes of semiconductor gas sensors are important in characterizing sensors based on their sensitivity, selectivity, reversibility, response time, and long-term stability. The types and materials of electrodes used for semiconductor gas sensors are analyzed. In addition, the effect of interfacial zones and surface states of electrode–semiconductor interfaces on their characteristics is studied. This study describes that the gas interaction mechanism of the electrode–semiconductor interfaces should take into account the interfacial zone, surface states, image force, and tunneling effect. PMID:28346349
Vapor-Liquid-Solid Etch of Semiconductor Surface Channels by Running Gold Nanodroplets.
Nikoobakht, Babak; Herzing, Andrew; Muramoto, Shin; Tersoff, Jerry
2015-12-09
We show that Au nanoparticles spontaneously move across the (001) surface of InP, InAs, and GaP when heated in the presence of water vapor. As they move, the particles etch crystallographically aligned grooves into the surface. We show that this process is a negative analogue of the vapor-liquid-solid (VLS) growth of semiconductor nanowires: the semiconductor dissolves into the catalyst and reacts with water vapor at the catalyst surface to create volatile oxides, depleting the dissolved cations and anions and thus sustaining the dissolution process. This VLS etching process provides a new tool for directed assembly of structures with sublithographic dimensions, as small as a few nanometers in diameter. Au particles above 100 nm in size do not exhibit this process but remain stationary, with oxide accumulating around the particles.
Frequency jumps in single chip microwave LC oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gualco, Gabriele; Grisi, Marco; Boero, Giovanni, E-mail: giovanni.boero@epfl.ch
2014-12-15
We report on the experimental observation of oscillation frequency jumps in microwave LC oscillators fabricated using standard complementary metal-oxide-semiconductor technologies. The LC oscillators, operating at a frequency of about 20 GHz, consist of a single turn planar coil, a metal-oxide-metal capacitor, and two cross-coupled metal-oxide-semiconductor field effect transistors used as negative resistance network. At 300 K as well as at 77 K, the oscillation frequency is a continuous function of the oscillator bias voltage. At 4 K, frequency jumps as large as 30 MHz are experimentally observed. This behavior is tentatively attributed to the emission and capture of single electrons from defects andmore » dopant atoms.« less
Real-time DNA Amplification and Detection System Based on a CMOS Image Sensor.
Wang, Tiantian; Devadhasan, Jasmine Pramila; Lee, Do Young; Kim, Sanghyo
2016-01-01
In the present study, we developed a polypropylene well-integrated complementary metal oxide semiconductor (CMOS) platform to perform the loop mediated isothermal amplification (LAMP) technique for real-time DNA amplification and detection simultaneously. An amplification-coupled detection system directly measures the photon number changes based on the generation of magnesium pyrophosphate and color changes. The photon number decreases during the amplification process. The CMOS image sensor observes the photons and converts into digital units with the aid of an analog-to-digital converter (ADC). In addition, UV-spectral studies, optical color intensity detection, pH analysis, and electrophoresis detection were carried out to prove the efficiency of the CMOS sensor based the LAMP system. Moreover, Clostridium perfringens was utilized as proof-of-concept detection for the new system. We anticipate that this CMOS image sensor-based LAMP method will enable the creation of cost-effective, label-free, optical, real-time and portable molecular diagnostic devices.
Thoury, M.; Mille, B.; Séverin-Fabiani, T.; Robbiola, L.; Réfrégiers, M.; Jarrige, J-F; Bertrand, L.
2016-01-01
Photoluminescence spectroscopy is a key method to monitor defects in semiconductors from nanophotonics to solar cell systems. Paradoxically, its great sensitivity to small variations of local environment becomes a handicap for heterogeneous systems, such as are encountered in environmental, medical, ancient materials sciences and engineering. Here we demonstrate that a novel full-field photoluminescence imaging approach allows accessing the spatial distribution of crystal defect fluctuations at the crystallite level across centimetre-wide fields of view. This capacity is illustrated in archaeology and material sciences. The coexistence of two hitherto indistinguishable non-stoichiometric cuprous oxide phases is revealed in a 6,000-year-old amulet from Mehrgarh (Baluchistan, Pakistan), identified as the oldest known artefact made by lost-wax casting and providing a better understanding of this fundamental invention. Low-concentration crystal defect fluctuations are readily mapped within ZnO nanowires. High spatial dynamics-photoluminescence imaging holds great promise for the characterization of bulk heterogeneous systems across multiple disciplines. PMID:27843139
Detection of quantum well induced single degenerate-transition-dipoles in ZnO nanorods.
Ghosh, Siddharth; Ghosh, Moumita; Seibt, Michael; Rao, G Mohan
2016-02-07
Quantifying and characterising atomic defects in nanocrystals is difficult and low-throughput using the existing methods such as high resolution transmission electron microscopy (HRTEM). In this article, using a defocused wide-field optical imaging technique, we demonstrate that a single ultrahigh-piezoelectric ZnO nanorod contains a single defect site. We model the observed dipole-emission patterns from optical imaging with a multi-dimensional dipole and find that the experimentally observed dipole pattern and model-calculated patterns are in excellent agreement. This agreement suggests the presence of vertically oriented degenerate-transition-dipoles in vertically aligned ZnO nanorods. The HRTEM of the ZnO nanorod shows the presence of a stacking fault, which generates a localised quantum well induced degenerate-transition-dipole. Finally, we elucidate that defocused wide-field imaging can be widely used to characterise defects in nanomaterials to answer many difficult questions concerning the performance of low-dimensional devices, such as in energy harvesting, advanced metal-oxide-semiconductor storage, and nanoelectromechanical and nanophotonic devices.
NASA Astrophysics Data System (ADS)
Thoury, M.; Mille, B.; Séverin-Fabiani, T.; Robbiola, L.; Réfrégiers, M.; Jarrige, J.-F.; Bertrand, L.
2016-11-01
Photoluminescence spectroscopy is a key method to monitor defects in semiconductors from nanophotonics to solar cell systems. Paradoxically, its great sensitivity to small variations of local environment becomes a handicap for heterogeneous systems, such as are encountered in environmental, medical, ancient materials sciences and engineering. Here we demonstrate that a novel full-field photoluminescence imaging approach allows accessing the spatial distribution of crystal defect fluctuations at the crystallite level across centimetre-wide fields of view. This capacity is illustrated in archaeology and material sciences. The coexistence of two hitherto indistinguishable non-stoichiometric cuprous oxide phases is revealed in a 6,000-year-old amulet from Mehrgarh (Baluchistan, Pakistan), identified as the oldest known artefact made by lost-wax casting and providing a better understanding of this fundamental invention. Low-concentration crystal defect fluctuations are readily mapped within ZnO nanowires. High spatial dynamics-photoluminescence imaging holds great promise for the characterization of bulk heterogeneous systems across multiple disciplines.
Spatial optical crosstalk in CMOS image sensors integrated with plasmonic color filters.
Yu, Yan; Chen, Qin; Wen, Long; Hu, Xin; Zhang, Hui-Fang
2015-08-24
Imaging resolution of complementary metal oxide semiconductor (CMOS) image sensor (CIS) keeps increasing to approximately 7k × 4k. As a result, the pixel size shrinks down to sub-2μm, which greatly increases the spatial optical crosstalk. Recently, plasmonic color filter was proposed as an alternative to conventional colorant pigmented ones. However, there is little work on its size effect and the spatial optical crosstalk in a model of CIS. By numerical simulation, we investigate the size effect of nanocross array plasmonic color filters and analyze the spatial optical crosstalk of each pixel in a Bayer array of a CIS with a pixel size of 1μm. It is found that the small pixel size deteriorates the filtering performance of nanocross color filters and induces substantial spatial color crosstalk. By integrating the plasmonic filters in the low Metal layer in standard CMOS process, the crosstalk reduces significantly, which is compatible to pigmented filters in a state-of-the-art backside illumination CIS.
Coincidence ion imaging with a fast frame camera
NASA Astrophysics Data System (ADS)
Lee, Suk Kyoung; Cudry, Fadia; Lin, Yun Fei; Lingenfelter, Steven; Winney, Alexander H.; Fan, Lin; Li, Wen
2014-12-01
A new time- and position-sensitive particle detection system based on a fast frame CMOS (complementary metal-oxide semiconductors) camera is developed for coincidence ion imaging. The system is composed of four major components: a conventional microchannel plate/phosphor screen ion imager, a fast frame CMOS camera, a single anode photomultiplier tube (PMT), and a high-speed digitizer. The system collects the positional information of ions from a fast frame camera through real-time centroiding while the arrival times are obtained from the timing signal of a PMT processed by a high-speed digitizer. Multi-hit capability is achieved by correlating the intensity of ion spots on each camera frame with the peak heights on the corresponding time-of-flight spectrum of a PMT. Efficient computer algorithms are developed to process camera frames and digitizer traces in real-time at 1 kHz laser repetition rate. We demonstrate the capability of this system by detecting a momentum-matched co-fragments pair (methyl and iodine cations) produced from strong field dissociative double ionization of methyl iodide.
Feng, Wei; Zhang, Fumin; Qu, Xinghua; Zheng, Shiwei
2016-01-01
High-speed photography is an important tool for studying rapid physical phenomena. However, low-frame-rate CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) camera cannot effectively capture the rapid phenomena with high-speed and high-resolution. In this paper, we incorporate the hardware restrictions of existing image sensors, design the sampling functions, and implement a hardware prototype with a digital micromirror device (DMD) camera in which spatial and temporal information can be flexibly modulated. Combined with the optical model of DMD camera, we theoretically analyze the per-pixel coded exposure and propose a three-element median quicksort method to increase the temporal resolution of the imaging system. Theoretically, this approach can rapidly increase the temporal resolution several, or even hundreds, of times without increasing bandwidth requirements of the camera. We demonstrate the effectiveness of our method via extensive examples and achieve 100 fps (frames per second) gain in temporal resolution by using a 25 fps camera. PMID:26959023
Feng, Wei; Zhang, Fumin; Qu, Xinghua; Zheng, Shiwei
2016-03-04
High-speed photography is an important tool for studying rapid physical phenomena. However, low-frame-rate CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) camera cannot effectively capture the rapid phenomena with high-speed and high-resolution. In this paper, we incorporate the hardware restrictions of existing image sensors, design the sampling functions, and implement a hardware prototype with a digital micromirror device (DMD) camera in which spatial and temporal information can be flexibly modulated. Combined with the optical model of DMD camera, we theoretically analyze the per-pixel coded exposure and propose a three-element median quicksort method to increase the temporal resolution of the imaging system. Theoretically, this approach can rapidly increase the temporal resolution several, or even hundreds, of times without increasing bandwidth requirements of the camera. We demonstrate the effectiveness of our method via extensive examples and achieve 100 fps (frames per second) gain in temporal resolution by using a 25 fps camera.
Thoury, M; Mille, B; Séverin-Fabiani, T; Robbiola, L; Réfrégiers, M; Jarrige, J-F; Bertrand, L
2016-11-15
Photoluminescence spectroscopy is a key method to monitor defects in semiconductors from nanophotonics to solar cell systems. Paradoxically, its great sensitivity to small variations of local environment becomes a handicap for heterogeneous systems, such as are encountered in environmental, medical, ancient materials sciences and engineering. Here we demonstrate that a novel full-field photoluminescence imaging approach allows accessing the spatial distribution of crystal defect fluctuations at the crystallite level across centimetre-wide fields of view. This capacity is illustrated in archaeology and material sciences. The coexistence of two hitherto indistinguishable non-stoichiometric cuprous oxide phases is revealed in a 6,000-year-old amulet from Mehrgarh (Baluchistan, Pakistan), identified as the oldest known artefact made by lost-wax casting and providing a better understanding of this fundamental invention. Low-concentration crystal defect fluctuations are readily mapped within ZnO nanowires. High spatial dynamics-photoluminescence imaging holds great promise for the characterization of bulk heterogeneous systems across multiple disciplines.
Li, Jing; Mahmoodi, Alireza; Joseph, Dileepan
2015-10-16
An important class of complementary metal-oxide-semiconductor (CMOS) image sensors are those where pixel responses are monotonic nonlinear functions of light stimuli. This class includes various logarithmic architectures, which are easily capable of wide dynamic range imaging, at video rates, but which are vulnerable to image quality issues. To minimize fixed pattern noise (FPN) and maximize photometric accuracy, pixel responses must be calibrated and corrected due to mismatch and process variation during fabrication. Unlike literature approaches, which employ circuit-based models of varying complexity, this paper introduces a novel approach based on low-degree polynomials. Although each pixel may have a highly nonlinear response, an approximately-linear FPN calibration is possible by exploiting the monotonic nature of imaging. Moreover, FPN correction requires only arithmetic, and an optimal fixed-point implementation is readily derived, subject to a user-specified number of bits per pixel. Using a monotonic spline, involving cubic polynomials, photometric calibration is also possible without a circuit-based model, and fixed-point photometric correction requires only a look-up table. The approach is experimentally validated with a logarithmic CMOS image sensor and is compared to a leading approach from the literature. The novel approach proves effective and efficient.
NASA Astrophysics Data System (ADS)
Schelkanova, Irina; Pandya, Aditya; Saiko, Guennadi; Nacy, Lidia; Babar, Hannan; Shah, Duoaud; Lilge, Lothar; Douplik, Alexandre
2016-01-01
A portable, spatially resolved, diffuse reflectance lensless imaging technique based on the charge-coupled device or complementary metal-oxide semiconductor sensor directly coupled to the fiber optic bundle is proposed for visualization of subsurface structures such as superficial microvasculature in the epithelium. We discuss an experimental method for emulating a lensless imaging setup via raster scanning a single fiber-optic cable over a microfluidic phantom containing periodic hemoglobin absorption contrast. To evaluate the ability of the technique to recover information about the subsurface linear structures, scattering layers formed of the Sylgard® 184 Silicone Elastomer and titanium dioxide were placed atop the microfluidic phantom. Thickness of the layers ranged from 0.2 to 0.7 mm, and the values of the reduced scattering coefficient (μs‧) were between 0.85 and 4.25 mm-1. The results demonstrate that fiber-optic, lensless platform can be used for two-dimensional imaging of absorbing inclusions in diffuse reflectance mode. In these experiments, it was shown that diffuse reflectance imaging can provide sufficient spatial sampling of the phantom for differentiation of 30 μm structural features of the embedded absorbing pattern inside the scattering media.
CMOS detector arrays in a virtual 10-kilopixel camera for coherent terahertz real-time imaging.
Boppel, Sebastian; Lisauskas, Alvydas; Max, Alexander; Krozer, Viktor; Roskos, Hartmut G
2012-02-15
We demonstrate the principle applicability of antenna-coupled complementary metal oxide semiconductor (CMOS) field-effect transistor arrays as cameras for real-time coherent imaging at 591.4 GHz. By scanning a few detectors across the image plane, we synthesize a focal-plane array of 100×100 pixels with an active area of 20×20 mm2, which is applied to imaging in transmission and reflection geometries. Individual detector pixels exhibit a voltage conversion loss of 24 dB and a noise figure of 41 dB for 16 μW of the local oscillator (LO) drive. For object illumination, we use a radio-frequency (RF) source with 432 μW at 590 GHz. Coherent detection is realized by quasioptical superposition of the image and the LO beam with 247 μW. At an effective frame rate of 17 Hz, we achieve a maximum dynamic range of 30 dB in the center of the image and more than 20 dB within a disk of 18 mm diameter. The system has been used for surface reconstruction resolving a height difference in the μm range.
In vitro near-infrared imaging of occlusal dental caries using a germanium-enhanced CMOS camera
NASA Astrophysics Data System (ADS)
Lee, Chulsung; Darling, Cynthia L.; Fried, Daniel
2010-02-01
The high transparency of dental enamel in the near-infrared (NIR) at 1310-nm can be exploited for imaging dental caries without the use of ionizing radiation. The objective of this study was to determine whether the lesion contrast derived from NIR transillumination can be used to estimate lesion severity. Another aim was to compare the performance of a new Ge enhanced complementary metal-oxide-semiconductor (CMOS) based NIR imaging camera with the InGaAs focal plane array (FPA). Extracted human teeth (n=52) with natural occlusal caries were imaged with both cameras at 1310-nm and the image contrast between sound and carious regions was calculated. After NIR imaging, teeth were sectioned and examined using more established methods, namely polarized light microscopy (PLM) and transverse microradiography (TMR) to calculate lesion severity. Lesions were then classified into 4 categories according to the lesion severity. Lesion contrast increased significantly with lesion severity for both cameras (p<0.05). The Ge enhanced CMOS camera equipped with the larger array and smaller pixels yielded higher contrast values compared with the smaller InGaAs FPA (p<0.01). Results demonstrate that NIR lesion contrast can be used to estimate lesion severity.
In vitro near-infrared imaging of occlusal dental caries using germanium enhanced CMOS camera.
Lee, Chulsung; Darling, Cynthia L; Fried, Daniel
2010-03-01
The high transparency of dental enamel in the near-infrared (NIR) at 1310-nm can be exploited for imaging dental caries without the use of ionizing radiation. The objective of this study was to determine whether the lesion contrast derived from NIR transillumination can be used to estimate lesion severity. Another aim was to compare the performance of a new Ge enhanced complementary metal-oxide-semiconductor (CMOS) based NIR imaging camera with the InGaAs focal plane array (FPA). Extracted human teeth (n=52) with natural occlusal caries were imaged with both cameras at 1310-nm and the image contrast between sound and carious regions was calculated. After NIR imaging, teeth were sectioned and examined using more established methods, namely polarized light microscopy (PLM) and transverse microradiography (TMR) to calculate lesion severity. Lesions were then classified into 4 categories according to the lesion severity. Lesion contrast increased significantly with lesion severity for both cameras (p<0.05). The Ge enhanced CMOS camera equipped with the larger array and smaller pixels yielded higher contrast values compared with the smaller InGaAs FPA (p<0.01). Results demonstrate that NIR lesion contrast can be used to estimate lesion severity.
NASA Astrophysics Data System (ADS)
Cha, B. K.; Kim, J. Y.; Kim, Y. J.; Yun, S.; Cho, G.; Kim, H. K.; Seo, C.-W.; Jeon, S.; Huh, Y.
2012-04-01
In digital X-ray imaging systems, X-ray imaging detectors based on scintillating screens with electronic devices such as charge-coupled devices (CCDs), thin-film transistors (TFT), complementary metal oxide semiconductor (CMOS) flat panel imagers have been introduced for general radiography, dental, mammography and non-destructive testing (NDT) applications. Recently, a large-area CMOS active-pixel sensor (APS) in combination with scintillation films has been widely used in a variety of digital X-ray imaging applications. We employed a scintillator-based CMOS APS image sensor for high-resolution mammography. In this work, both powder-type Gd2O2S:Tb and a columnar structured CsI:Tl scintillation screens with various thicknesses were fabricated and used as materials to convert X-ray into visible light. These scintillating screens were directly coupled to a CMOS flat panel imager with a 25 × 50 mm2 active area and a 48 μm pixel pitch for high spatial resolution acquisition. We used a W/Al mammographic X-ray source with a 30 kVp energy condition. The imaging characterization of the X-ray detector was measured and analyzed in terms of linearity in incident X-ray dose, modulation transfer function (MTF), noise-power spectrum (NPS) and detective quantum efficiency (DQE).
New Material Transistor with Record-High Field-Effect Mobility among Wide-Band-Gap Semiconductors.
Shih, Cheng Wei; Chin, Albert
2016-08-03
At an ultrathin 5 nm, we report a new high-mobility tin oxide (SnO2) metal-oxide-semiconductor field-effect transistor (MOSFET) exhibiting extremely high field-effect mobility values of 279 and 255 cm(2)/V-s at 145 and 205 °C, respectively. These values are the highest reported mobility values among all wide-band-gap semiconductors of GaN, SiC, and metal-oxide MOSFETs, and they also exceed those of silicon devices at the aforementioned elevated temperatures. For the first time among existing semiconductor transistors, a new device physical phenomenon of a higher mobility value was measured at 45-205 °C than at 25 °C, which is due to the lower optical phonon scattering by the large SnO2 phonon energy. Moreover, the high on-current/off-current of 4 × 10(6) and the positive threshold voltage of 0.14 V at 25 °C are significantly better than those of a graphene transistor. This wide-band-gap SnO2 MOSFET exhibits high mobility in a 25-205 °C temperature range, a wide operating voltage of 1.5-20 V, and the ability to form on an amorphous substrate, rendering it an ideal candidate for multifunctional low-power integrated circuit (IC), display, and brain-mimicking three-dimensional IC applications.
NASA Astrophysics Data System (ADS)
Chidambaram, Thenappan
III-V semiconductors are potential candidates to replace Si as a channel material in next generation CMOS integrated circuits owing to their superior carrier mobilities. Low density of states (DOS) and typically high interface and border trap densities (Dit) in high mobility group III-V semiconductors provide difficulties in quantification of Dit near the conduction band edge. The trap response above the threshold voltage of a MOSFET can be very fast, and conventional Dit extraction methods, based on capacitance/conductance response (CV methods) of MOS capacitors at frequencies <1MHz, cannot distinguish conducting and trapped carriers. In addition, the CV methods have to deal with high dispersion in the accumulation region that makes it a difficult task to measure the true oxide capacitance, Cox value. Another implication of these properties of III-V interfaces is an ambiguity of determination of electron density in the MOSFET channel. Traditional evaluation of carrier density by integration of the C-V curve, gives incorrect values for D it and mobility. Here we employ gated Hall method to quantify the D it spectrum at the high-K oxide/III-V semiconductor interface for buried and surface channel devices using Hall measurement and capacitance-voltage data. Determination of electron density directly from Hall measurements allows for obtaining true mobility values.
A room-temperature magnetic semiconductor from a ferromagnetic metallic glass.
Liu, Wenjian; Zhang, Hongxia; Shi, Jin-An; Wang, Zhongchang; Song, Cheng; Wang, Xiangrong; Lu, Siyuan; Zhou, Xiangjun; Gu, Lin; Louzguine-Luzgin, Dmitri V; Chen, Mingwei; Yao, Kefu; Chen, Na
2016-12-08
Emerging for future spintronic/electronic applications, magnetic semiconductors have stimulated intense interest due to their promises for new functionalities and device concepts. So far, the so-called diluted magnetic semiconductors attract many attentions, yet it remains challenging to increase their Curie temperatures above room temperature, particularly those based on III-V semiconductors. In contrast to the concept of doping magnetic elements into conventional semiconductors to make diluted magnetic semiconductors, here we propose to oxidize originally ferromagnetic metals/alloys to form new species of magnetic semiconductors. We introduce oxygen into a ferromagnetic metallic glass to form a Co 28.6 Fe 12.4 Ta 4.3 B 8.7 O 46 magnetic semiconductor with a Curie temperature above 600 K. The demonstration of p-n heterojunctions and electric field control of the room-temperature ferromagnetism in this material reflects its p-type semiconducting character, with a mobility of 0.1 cm 2 V -1 s -1 . Our findings may pave a new way to realize high Curie temperature magnetic semiconductors with unusual multifunctionalities.
A room-temperature magnetic semiconductor from a ferromagnetic metallic glass
Liu, Wenjian; Zhang, Hongxia; Shi, Jin-an; Wang, Zhongchang; Song, Cheng; Wang, Xiangrong; Lu, Siyuan; Zhou, Xiangjun; Gu, Lin; Louzguine-Luzgin, Dmitri V.; Chen, Mingwei; Yao, Kefu; Chen, Na
2016-01-01
Emerging for future spintronic/electronic applications, magnetic semiconductors have stimulated intense interest due to their promises for new functionalities and device concepts. So far, the so-called diluted magnetic semiconductors attract many attentions, yet it remains challenging to increase their Curie temperatures above room temperature, particularly those based on III–V semiconductors. In contrast to the concept of doping magnetic elements into conventional semiconductors to make diluted magnetic semiconductors, here we propose to oxidize originally ferromagnetic metals/alloys to form new species of magnetic semiconductors. We introduce oxygen into a ferromagnetic metallic glass to form a Co28.6Fe12.4Ta4.3B8.7O46 magnetic semiconductor with a Curie temperature above 600 K. The demonstration of p–n heterojunctions and electric field control of the room-temperature ferromagnetism in this material reflects its p-type semiconducting character, with a mobility of 0.1 cm2 V−1 s−1. Our findings may pave a new way to realize high Curie temperature magnetic semiconductors with unusual multifunctionalities. PMID:27929059
Methods to Account for Accelerated Semi-Conductor Device Wearout in Longlife Aerospace Applications
2003-01-01
Vasi, “Device scalling effects on hot-carrier induced interface and oxide-trappoing charge distributions in MOSFETs,” IEEE Transactions on Electron...Symposium Proceedings, pp. 248–254, 2002. [104] S. I. A. ( SIA ), “International technology roadmap for semiconductors.” <www.semichips.org>, 1999. 113
In situ growth of metal particles on 3D urchin-like WO3 nanostructures.
Xi, Guangcheng; Ye, Jinhua; Ma, Qiang; Su, Ning; Bai, Hua; Wang, Chao
2012-04-18
Metal/semiconductor hybrid materials of various sizes and morphologies have many applications in areas such as catalysis and sensing. Various organic agents are necessary to stabilize metal nanoparticles during synthesis, which leads to a layer of organic compounds present at the interfaces between the metal particles and the semiconductor supports. Generally, high-temperature oxidative treatment is used to remove the organics, which can extensively change the size and morphology of the particles, in turn altering their activity. Here we report a facile method for direct growth of noble-metal particles on WO(3) through an in situ redox reaction between weakly reductive WO(2.72) and oxidative metal salts in aqueous solution. This synthetic strategy has the advantages that it takes place in one step and requires no foreign reducing agents, stabilizing agents, or pretreatment of the precursors, making it a practical method for the controlled synthesis of metal/semiconductor hybrid nanomaterials. This synthetic method may open up a new way to develop metal-nanoparticle-loaded semiconductor composites. © 2012 American Chemical Society
Microradiography with Semiconductor Pixel Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakubek, Jan; Cejnarova, Andrea; Dammer, Jiri
High resolution radiography (with X-rays, neutrons, heavy charged particles, ...) often exploited also in tomographic mode to provide 3D images stands as a powerful imaging technique for instant and nondestructive visualization of fine internal structure of objects. Novel types of semiconductor single particle counting pixel detectors offer many advantages for radiation imaging: high detection efficiency, energy discrimination or direct energy measurement, noiseless digital integration (counting), high frame rate and virtually unlimited dynamic range. This article shows the application and potential of pixel detectors (such as Medipix2 or TimePix) in different fields of radiation imaging.
Coherent diffractive imaging methods for semiconductor manufacturing
NASA Astrophysics Data System (ADS)
Helfenstein, Patrick; Mochi, Iacopo; Rajeev, Rajendran; Fernandez, Sara; Ekinci, Yasin
2017-12-01
The paradigm shift of the semiconductor industry moving from deep ultraviolet to extreme ultraviolet lithography (EUVL) brought about new challenges in the fabrication of illumination and projection optics, which constitute one of the core sources of cost of ownership for many of the metrology tools needed in the lithography process. For this reason, lensless imaging techniques based on coherent diffractive imaging started to raise interest in the EUVL community. This paper presents an overview of currently on-going research endeavors that use a number of methods based on lensless imaging with coherent light.
NASA Astrophysics Data System (ADS)
Pitthan, E.; dos Reis, R.; Corrêa, S. A.; Schmeisser, D.; Boudinov, H. I.; Stedile, F. C.
2016-01-01
Understanding the influence of SiC reaction with CO, a by-product of SiC thermal oxidation, is a key point to elucidate the origin of electrical defects in SiC metal-oxide-semiconductor (MOS) devices. In this work, the effects on electrical, structural, and chemical properties of SiO2/Si and SiO2/SiC structures submitted to CO annealing were investigated. It was observed that long annealing times resulted in the incorporation of carbon from CO in the Si substrate, followed by deterioration of the SiO2/Si interface, and its crystallization as SiC. Besides, this incorporated carbon remained in the Si surface (previous SiO2/Si region) after removal of the silicon dioxide film by HF etching. In the SiC case, an even more defective surface region was observed due to the CO interaction. All MOS capacitors formed using both semiconductor materials presented higher leakage current and generation of positive effective charge after CO annealings. Such results suggest that the negative fixed charge, typically observed in SiO2/SiC structures, is not originated from the interaction of the CO by-product, formed during SiC oxidation, with the SiO2/SiC interfacial region.
NASA Astrophysics Data System (ADS)
Kobayashi, Shigeki; Saitoh, Masumi; Nakabayashi, Yukio; Uchida, Ken
2007-11-01
Uniaxial stress effects on Coulomb-limited mobility (μCoulomb) in Si metal-oxide-semiconductor field-effect transistors (MOSFETs) are investigated experimentally. By using the four-point bending method, uniaxial stress corresponding to 0.1% strain is applied to MOSFETs along the channel direction. It is found that μCoulomb in p-type MOSFETs is enhanced greatly by uniaxial stress; μCoulomb is as sensitive as phonon-limited mobility. The high sensitivity of μCoulomb in p-type MOSFETs to stress arises from the stress-induced change of hole effective mass.
NASA Astrophysics Data System (ADS)
Lu, Nianduan; Li, Ling; Sun, Pengxiao; Banerjee, Writam; Liu, Ming
2014-09-01
A unified physical model for Seebeck coefficient was presented based on the multiple-trapping and release theory for amorphous oxide semiconductor thin-film transistors. According to the proposed model, the Seebeck coefficient is attributed to the Fermi-Dirac statistics combined with the energy dependent trap density of states and the gate-voltage dependence of the quasi-Fermi level. The simulation results show that the gate voltage, energy disorder, and temperature dependent Seebeck coefficient can be well described. The calculation also shows a good agreement with the experimental data in amorphous In-Ga-Zn-O thin-film transistor.
CMOS Image Sensor with a Built-in Lane Detector.
Hsiao, Pei-Yung; Cheng, Hsien-Chein; Huang, Shih-Shinh; Fu, Li-Chen
2009-01-01
This work develops a new current-mode mixed signal Complementary Metal-Oxide-Semiconductor (CMOS) imager, which can capture images and simultaneously produce vehicle lane maps. The adopted lane detection algorithm, which was modified to be compatible with hardware requirements, can achieve a high recognition rate of up to approximately 96% under various weather conditions. Instead of a Personal Computer (PC) based system or embedded platform system equipped with expensive high performance chip of Reduced Instruction Set Computer (RISC) or Digital Signal Processor (DSP), the proposed imager, without extra Analog to Digital Converter (ADC) circuits to transform signals, is a compact, lower cost key-component chip. It is also an innovative component device that can be integrated into intelligent automotive lane departure systems. The chip size is 2,191.4 × 2,389.8 μm, and the package uses 40 pin Dual-In-Package (DIP). The pixel cell size is 18.45 × 21.8 μm and the core size of photodiode is 12.45 × 9.6 μm; the resulting fill factor is 29.7%.
Fast regional readout CMOS Image Sensor for dynamic MLC tracking
NASA Astrophysics Data System (ADS)
Zin, H.; Harris, E.; Osmond, J.; Evans, P.
2014-03-01
Advanced radiotherapy techniques such as volumetric modulated arc therapy (VMAT) require verification of the complex beam delivery including tracking of multileaf collimators (MLC) and monitoring the dose rate. This work explores the feasibility of a prototype Complementary metal-oxide semiconductor Image Sensor (CIS) for tracking these complex treatments by utilising fast, region of interest (ROI) read out functionality. An automatic edge tracking algorithm was used to locate the MLC leaves edges moving at various speeds (from a moving triangle field shape) and imaged with various sensor frame rates. The CIS demonstrates successful edge detection of the dynamic MLC motion within accuracy of 1.0 mm. This demonstrates the feasibility of the sensor to verify treatment delivery involving dynamic MLC up to ~400 frames per second (equivalent to the linac pulse rate), which is superior to any current techniques such as using electronic portal imaging devices (EPID). CIS provides the basis to an essential real-time verification tool, useful in accessing accurate delivery of complex high energy radiation to the tumour and ultimately to achieve better cure rates for cancer patients.
Assessment of female breast dose for thoracic cone-beam CT using MOSFET dosimeters.
Sun, Wenzhao; Wang, Bin; Qiu, Bo; Liang, Jian; Xie, Weihao; Deng, Xiaowu; Qi, Zhenyu
2017-03-21
To assess the breast dose during a routine thoracic cone-beam CT (CBCT) check with the efforts to explore the possible dose reduction strategy. Metal oxide semiconductor field-effect transistor (MOSFET) dosimeters were used to measure breast surface doses during a thorax kV CBCT scan in an anthropomorphic phantom. Breast doses for different scanning protocols and breast sizes were compared. Dose reduction was attempted by using partial arc CBCT scan with bowtie filter. The impact of this dose reduction strategy on image registration accuracy was investigated. The average breast surface doses were 20.02 mGy and 11.65 mGy for thoracic CBCT without filtration and with filtration, respectively. This indicates a dose reduction of 41.8% by use of bowtie filter. It was found 220° partial arc scanning significantly reduced the dose to contralateral breast (44.4% lower than ipsilateral breast), while the image registration accuracy was not compromised. Breast dose reduction can be achieved by using ipsilateral 220° partial arc scan with bowtie filter. This strategy also provides sufficient image quality for thorax image registration in daily patient positioning verification.
NASA Astrophysics Data System (ADS)
Biazar, Nooshin; Poursalehi, Reza; Delavari, Hamid
2018-01-01
Synthesis and development of visible active catalysts is an important issue in photocatalytic applications of nanomaterials. TiO2 nanostructures coupled with carbon dots demonstrate a considerable photocatalytic activity in visible wavelengths. Extending optical absorption of a wide band gap semiconductor such as TiO2 with carbon dots is the origin of the visible activity of carbon dots modified semiconductor nanostructures. In addition, carbon dots exhibit high photostability, appropriate electron transport and chemical stability without considerable toxicity or environmental footprints. In this study, optical and structural properties of carbon dots/TiO2 nanostructures prepared via (direct current) DC arc discharge in liquid were investigated. Crystal structure, morphology and optical properties of the samples were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-visible spectroscopy respectively. SEM images show formation of spherical nanoparticles with an average size of 27 nm. In comparison with pristine TiO2, optical transmission spectrum of carbon dots/TiO2 nanostructures demonstrates an absorption edge at longer wavelengths as well a high optical absorption in visible wavelengths which is significant for visible activity of nanostructures as a photocatalyst. Finally, these results can provide a flexible and versatile pathway for synthesis of carbon dots/oxide semiconductor nanostructures with an appropriate activity under visible light.
Strategies for interfacing inorganic nanocrystals with biological systems based on polymer-coating.
Palui, Goutam; Aldeek, Fadi; Wang, Wentao; Mattoussi, Hedi
2015-01-07
Interfacing inorganic nanoparticles and biological systems with the aim of developing novel imaging and sensing platforms has generated great interest and much activity. However, the effectiveness of this approach hinges on the ability of the surface ligands to promote water-dispersion of the nanoparticles with long term colloidal stability in buffer media. These surface ligands protect the nanostructures from the harsh biological environment, while allowing coupling to target molecules, which can be biological in nature (e.g., proteins and peptides) or exhibit specific photo-physical characteristics (e.g., a dye or a redox-active molecule). Amphiphilic block polymers have provided researchers with versatile molecular platforms with tunable size, composition and chemical properties. Hence, several groups have developed a wide range of polymers as ligands or micelle capsules to promote the transfer of a variety of inorganic nanomaterials to buffer media (including magnetic nanoparticles and semiconductor nanocrystals) and render them biocompatible. In this review, we first summarize the established synthetic routes to grow high quality nanocrystals of semiconductors, metals and metal oxides. We then provide a critical evaluation of the recent developments in the design, optimization and use of various amphiphilic copolymers to surface functionalize the above nanocrystals, along with the strategies used to conjugate them to target biomolecules. We finally conclude by providing a summary of the most promising applications of these polymer-coated inorganic platforms in sensor design, and imaging of cells and tissues.
Nano-Multiplication-Region Avalanche Photodiodes and Arrays
NASA Technical Reports Server (NTRS)
Zheng, Xinyu; Pain, Bedabrata; Cunningham, Thomas
2008-01-01
Nano-multiplication-region avalanche photodiodes (NAPDs), and imaging arrays of NAPDs integrated with complementary metal oxide/semiconductor (CMOS) active-pixel-sensor integrated circuitry, are being developed for applications in which there are requirements for high-sensitivity (including photoncounting) detection and imaging at wavelengths from about 250 to 950 nm. With respect to sensitivity and to such other characteristics as speed, geometric array format, radiation hardness, power demand of associated circuitry, size, weight, and robustness, NAPDs and arrays thereof are expected to be superior to prior photodetectors and arrays including CMOS active-pixel sensors (APSs), charge-coupled devices (CCDs), traditional APDs, and microchannelplate/ CCD combinations. Figure 1 depicts a conceptual NAPD array, integrated with APS circuitry, fabricated on a thick silicon-on-insulator wafer (SOI). Figure 2 presents selected aspects of the structure of a typical single pixel, which would include a metal oxide/semiconductor field-effect transistor (MOSFET) integrated with the NAPD. The NAPDs would reside in silicon islands formed on the buried oxide (BOX) layer of the SOI wafer. The silicon islands would be surrounded by oxide-filled insulation trenches, which, together with the BOX layer, would constitute an oxide embedding structure. There would be two kinds of silicon islands: NAPD islands for the NAPDs and MOSFET islands for in-pixel and global CMOS circuits. Typically, the silicon islands would be made between 5 and 10 m thick, but, if necessary, the thickness could be chosen outside this range. The side walls of the silicon islands would be heavily doped with electron-acceptor impurities (p+-doped) to form anodes for the photodiodes and guard layers for the MOSFETs. A nanoscale reach-through structure at the front (top in the figures) central position of each NAPD island would contain the APD multiplication region. Typically, the reach-through structure would be about 0.1 microns in diameter and between 0.3 and 0.4 nm high. The top layer in the reach-through structure would be heavily doped with electron-donor impurities (n+-doped) to make it act as a cathode. A layer beneath the cathode, between 0.1 and 0.2 nm thick, would be p-doped to a concentration .10(exp 17)cu cm. A thin n+-doped polysilicon pad would be formed on the top of the cathode to protect the cathode against erosion during a metal-silicon alloying step that would be part of the process of fabricating the array.
Plasmon-induced artificial photosynthesis
Ueno, Kosei; Oshikiri, Tomoya; Shi, Xu; Zhong, Yuqing; Misawa, Hiroaki
2015-01-01
We have successfully developed a plasmon-induced artificial photosynthesis system that uses a gold nanoparticle-loaded oxide semiconductor electrode to produce useful chemical energy as hydrogen and ammonia. The most important feature of this system is that both sides of a strontium titanate single-crystal substrate are used without an electrochemical apparatus. Plasmon-induced water splitting occurred even with a minimum chemical bias of 0.23 V owing to the plasmonic effects based on the efficient oxidation of water and the use of platinum as a co-catalyst for reduction. Photocurrent measurements were performed to determine the electron transfer between the gold nanoparticles and the oxide semiconductor. The efficiency of water oxidation was determined through spectroelectrochemical experiments aimed at elucidating the electron density in the gold nanoparticles. A set-up similar to the water-splitting system was used to synthesize ammonia via nitrogen fixation using ruthenium instead of platinum as a co-catalyst. PMID:26052419
NASA Astrophysics Data System (ADS)
Yamada, Takahiro; Watanabe, Kenta; Nozaki, Mikito; Yamada, Hisashi; Takahashi, Tokio; Shimizu, Mitsuaki; Yoshigoe, Akitaka; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji
2018-01-01
A simple and feasible method for fabricating high-quality and highly reliable GaN-based metal-oxide-semiconductor (MOS) devices was developed. The direct chemical vapor deposition of SiO2 films on GaN substrates forming Ga-oxide interlayers was carried out to fabricate SiO2/GaO x /GaN stacked structures. Although well-behaved hysteresis-free GaN-MOS capacitors with extremely low interface state densities below 1010 cm-2 eV-1 were obtained by postdeposition annealing, Ga diffusion into overlying SiO2 layers severely degraded the dielectric breakdown characteristics. However, this problem was found to be solved by rapid thermal processing, leading to the superior performance of the GaN-MOS devices in terms of interface quality, insulating property, and gate dielectric reliability.
Model for determination of mid-gap states in amorphous metal oxides from thin film transistors
NASA Astrophysics Data System (ADS)
Bubel, S.; Chabinyc, M. L.
2013-06-01
The electronic density of states in metal oxide semiconductors like amorphous zinc oxide (a-ZnO) and its ternary and quaternary oxide alloys with indium, gallium, tin, or aluminum are different from amorphous silicon, or disordered materials such as pentacene, or P3HT. Many ZnO based semiconductors exhibit a steep decaying density of acceptor tail states (trap DOS) and a Fermi level (EF) close to the conduction band energy (EC). Considering thin film transistor (TFT) operation in accumulation mode, the quasi Fermi level for electrons (Eq) moves even closer to EC. Classic analytic TFT simulations use the simplification EC-EF> `several'kT and cannot reproduce exponential tail states with a characteristic energy smaller than 1/2 kT. We demonstrate an analytic model for tail and deep acceptor states, valid for all amorphous metal oxides and include the effect of trap assisted hopping instead of simpler percolation or mobility edge models, to account for the observed field dependent mobility.
NASA Astrophysics Data System (ADS)
Ani, M. H.; Helmi, F.; Herman, S. H.; Noh, S.
2018-01-01
Recently, extensive researches have been done on memristor to replace current memory storage technologies. Study on active layer of memristor mostly involving n-type semiconductor oxide such as TiO2 and ZnO. This paper highlight a simple water vapour oxidation method at 423 K to form Cu/Cu2O electronic junction as a new type of memristor. Cu2O is a p-type semiconductor oxide, was used as the active layer of memristor. Cu/Cu2O/Au memristor was fabricated by thermal oxidation of copper foil, followed by sputtering of gold. Structural, morphological and memristive properties were characterized using XRD, FESEM, and current-voltage, I-V measurement respectively. Its memristivity was indentified by pinch hysteresis loop and measurement of high resistance state (HRS) and low resistance state (LRS) of the sample. The Cu/Cu2O/Au memristor demonstrates comparable performances to previous studies using other methods.
NASA Astrophysics Data System (ADS)
Luo, Lin-Bo; An, Sang-Woo; Wang, Chang-Shuai; Li, Ying-Chun; Chong, Jong-Wha
2012-09-01
Digital cameras usually decrease exposure time to capture motion-blur-free images. However, this operation will generate an under-exposed image with a low-budget complementary metal-oxide semiconductor image sensor (CIS). Conventional color correction algorithms can efficiently correct under-exposed images; however, they are generally not performed in real time and need at least one frame memory if they are implemented by hardware. The authors propose a real-time look-up table-based color correction method that corrects under-exposed images with hardware without using frame memory. The method utilizes histogram matching of two preview images, which are exposed for a long and short time, respectively, to construct an improved look-up table (ILUT) and then corrects the captured under-exposed image in real time. Because the ILUT is calculated in real time before processing the captured image, this method does not require frame memory to buffer image data, and therefore can greatly save the cost of CIS. This method not only supports single image capture, but also bracketing to capture three images at a time. The proposed method was implemented by hardware description language and verified by a field-programmable gate array with a 5 M CIS. Simulations show that the system can perform in real time with a low cost and can correct the color of under-exposed images well.
Reflection technique for thermal mapping of semiconductors
Walter, Martin J.
1989-06-20
Semiconductors may be optically tested for their temperatures by illuminating them with tunable monochromatic electromagnetic radiation and observing the light reflected off of them. A transition point will occur when the wavelength of the light corresponds with the actual band gap energy of the semiconductor. At the transition point, the image of the semiconductor will appreciably darken as the light is transmitted through it, rather than being reflected off of it. The wavelength of the light at the transition point corresponds to the actual band gap energy and the actual temperature of the semiconductor.
1991-10-01
classical image potential in an ideal creasing gap separation, that is specific to the form of the metal- insulator -semiconductor (MIS) junction...with which one can precisely adjust s, and hence continuously vary the vacvuum barrier, is a potentially valuable tool for investigating this effect- By... insulator -semiconductor (MIS) junction similar to that shown in Fig. I diverge at the semiconductor-vacuum and vacuum-metal interfaces [7,81. These
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Kuangcai; Lin, Chia -Cheng; Vela, Javier
In this study, three-layer core–shell plasmonic nanorods (Au/Ag/SiO 2–NRs), consisting of a gold nanorod core, a thin silver shell, and a thin silica layer, were synthesized and used as optical imaging probes under a differential interference contrast microscope for single particle orientation and rotational tracking. The localized surface plasmon resonance modes were enhanced upon the addition of the silver shell, and the anisotropic optical properties of gold nanorods were maintained. The silica coating enables surface functionalization with silane coupling agents and provides enhanced stability and biocompatibility. Taking advantage of the longitudinal LSPR enhancement, the orientation and rotational information of themore » hybrid nanorods on synthetic lipid bilayers and on live cell membranes were obtained with millisecond temporal resolution using a scientific complementary metal-oxide-semiconductor camera. The results demonstrate that the as-synthesized hybrid nanorods are promising imaging probes with improved sensitivity and good biocompatibility for single plasmonic particle tracking experiments in biological systems.« less
NASA Astrophysics Data System (ADS)
Simoens, François; Meilhan, Jérôme; Nicolas, Jean-Alain
2015-10-01
Sensitive and large-format terahertz focal plane arrays (FPAs) integrated in compact and hand-held cameras that deliver real-time terahertz (THz) imaging are required for many application fields, such as non-destructive testing (NDT), security, quality control of food, and agricultural products industry. Two technologies of uncooled THz arrays that are being studied at CEA-Leti, i.e., bolometer and complementary metal oxide semiconductor (CMOS) field effect transistors (FET), are able to meet these requirements. This paper reminds the followed technological approaches and focuses on the latest modeling and performance analysis. The capabilities of application of these arrays to NDT and security are then demonstrated with experimental tests. In particular, high technological maturity of the THz bolometer camera is illustrated with fast scanning of large field of view of opaque scenes achieved in a complete body scanner prototype.
NASA Technical Reports Server (NTRS)
Ohara, Tetsuo
2012-01-01
A sub-aperture stitching optical interferometer can provide a cost-effective solution for an in situ metrology tool for large optics; however, the currently available technologies are not suitable for high-speed and real-time continuous scan. NanoWave s SPPE (Scanning Probe Position Encoder) has been proven to exhibit excellent stability and sub-nanometer precision with a large dynamic range. This same technology can transform many optical interferometers into real-time subnanometer precision tools with only minor modification. The proposed field-programmable gate array (FPGA) signal processing concept, coupled with a new-generation, high-speed, mega-pixel CMOS (complementary metal-oxide semiconductor) image sensor, enables high speed (>1 m/s) and real-time continuous surface profiling that is insensitive to variation of pixel sensitivity and/or optical transmission/reflection. This is especially useful for large optics surface profiling.
Ambipolar SnOx thin-film transistors achieved at high sputtering power
NASA Astrophysics Data System (ADS)
Li, Yunpeng; Yang, Jia; Qu, Yunxiu; Zhang, Jiawei; Zhou, Li; Yang, Zaixing; Lin, Zhaojun; Wang, Qingpu; Song, Aimin; Xin, Qian
2018-04-01
SnO is the only oxide semiconductor to date that has exhibited ambipolar behavior in thin-film transistors (TFTs). In this work, ambipolar behavior was observed in SnOx TFTs fabricated at a high sputtering power of 200 W and post-annealed at 150-250 °C in ambient air. X-ray-diffraction patterns showed polycrystallisation of SnO and Sn in the annealed SnOx films. Scanning-electron-microscopy images revealed that microgrooves appeared after the films were annealed. Clusters subsequently segregated along the microgrooves, and our experiments suggest that they were most likely Sn clusters. Atomic force microscopy images indicate an abrupt increase in film roughness due to the cluster segregations. An important implication of this work is that excess Sn in the film, which has generally been thought to be detrimental to the film quality, may promote the ambipolar conduction when it is segregated from the film to enhance the stoichiometric balance.
Onboard Image Processing System for Hyperspectral Sensor
Hihara, Hiroki; Moritani, Kotaro; Inoue, Masao; Hoshi, Yoshihiro; Iwasaki, Akira; Takada, Jun; Inada, Hitomi; Suzuki, Makoto; Seki, Taeko; Ichikawa, Satoshi; Tanii, Jun
2015-01-01
Onboard image processing systems for a hyperspectral sensor have been developed in order to maximize image data transmission efficiency for large volume and high speed data downlink capacity. Since more than 100 channels are required for hyperspectral sensors on Earth observation satellites, fast and small-footprint lossless image compression capability is essential for reducing the size and weight of a sensor system. A fast lossless image compression algorithm has been developed, and is implemented in the onboard correction circuitry of sensitivity and linearity of Complementary Metal Oxide Semiconductor (CMOS) sensors in order to maximize the compression ratio. The employed image compression method is based on Fast, Efficient, Lossless Image compression System (FELICS), which is a hierarchical predictive coding method with resolution scaling. To improve FELICS’s performance of image decorrelation and entropy coding, we apply a two-dimensional interpolation prediction and adaptive Golomb-Rice coding. It supports progressive decompression using resolution scaling while still maintaining superior performance measured as speed and complexity. Coding efficiency and compression speed enlarge the effective capacity of signal transmission channels, which lead to reducing onboard hardware by multiplexing sensor signals into a reduced number of compression circuits. The circuitry is embedded into the data formatter of the sensor system without adding size, weight, power consumption, and fabrication cost. PMID:26404281
Costi, Ronny; Young, Elizabeth R; Bulović, Vladimir; Nocera, Daniel G
2013-04-10
Integration of water splitting catalysts with visible-light-absorbing semiconductors would enable direct solar-energy-to-fuel conversion schemes such as those based on water splitting. A disadvantage of some common semiconductors that possess desirable optical bandgaps is their chemical instability under the conditions needed for oxygen evolution reaction (OER). In this study, we demonstrate the dual benefits gained from using a cobalt metal thin-film as the precursor for the preparation of cobalt-phosphate (CoPi) OER catalyst on cadmium chalcogenide photoanodes. The cobalt layer protects the underlying semiconductor from oxidation and degradation while forming the catalyst and simultaneously facilitates the advantageous incorporation of the cadmium chalcogenide layer into the CoPi layer during continued processing of the electrode. The resulting hybrid material forms a stable photoactive anode for light-assisted water splitting.
Lee, Ya-Ju; Yang, Zu-Po; Chen, Pin-Guang; Hsieh, Yung-An; Yao, Yung-Chi; Liao, Ming-Han; Lee, Min-Hung; Wang, Mei-Tan; Hwang, Jung-Min
2014-10-20
In this study, we report a novel monolithically integrated GaN-based light-emitting diode (LED) with metal-oxide-semiconductor field-effect transistor (MOSFET). Without additionally introducing complicated epitaxial structures for transistors, the MOSFET is directly fabricated on the exposed n-type GaN layer of the LED after dry etching, and serially connected to the LED through standard semiconductor-manufacturing technologies. Such monolithically integrated LED/MOSFET device is able to circumvent undesirable issues that might be faced by other kinds of integration schemes by growing a transistor on an LED or vice versa. For the performances of resulting device, our monolithically integrated LED/MOSFET device exhibits good characteristics in the modulation of gate voltage and good capability of driving injected current, which are essential for the important applications such as smart lighting, interconnection, and optical communication.
NASA Astrophysics Data System (ADS)
Piyadasa, Adimali; Wang, Sibo; Gao, Pu-Xian
2017-07-01
The electronic band structure of a solid state semiconductor determines many of its physical and chemical characteristics such as electrical, optical, physicochemical, and catalytic activity. Alteration or modification of the band structure could lead to significant changes in these physical and chemical characteristics, therefore we introduce new mechanisms of creating novel solid state materials with interesting properties. Over the past three decades, research on band structure engineering has allowed development of various methods to modify the band structure of engineered materials. Compared to bulk counterparts, nanostructures generally exhibit higher band structure modulation capabilities due to the quantum confinement effect, prominent surface effect, and higher strain limit. In this review we will discuss various band structure engineering strategies in semiconductor nanowires and other related nanostructures, mostly focusing on metal oxide systems. Several important strategies of band structure modulation are discussed in detail, such as doping, alloying, straining, interface and core-shell nanostructuring.
NASA Astrophysics Data System (ADS)
Gerasimov, G. N.; Gromov, V. F.; Trakhtenberg, L. I.
2018-06-01
The properties of nanostructured composites based on metal oxides and metal-polymer materials are analyzed, along with ways of preparing them. The effect the interaction between metal and semiconductor nanoparticles has on the conductivity, photoconductivity, catalytic activity, and magnetic, dielectric, and sensor properties of nanocomposites is discussed. It is shown that as a result of this interaction, a material can acquire properties that do not exist in systems of isolated particles. The transfer of electrons between metal particles of different sizes in polymeric matrices leads to specific dielectric losses, and to an increase in the rate and a change in the direction of chemical reactions catalyzed by these particles. The interaction between metal-oxide semiconductor particles results in the electronic and chemical sensitization of sensor effects in nanostructured composite materials. Studies on creating molecular machines (Brownian motors), devices for magnetic recording of information, and high-temperature superconductors based on nanostructured systems are reviewed.
NASA Astrophysics Data System (ADS)
Kotadiya, Naresh B.; Lu, Hao; Mondal, Anirban; Ie, Yutaka; Andrienko, Denis; Blom, Paul W. M.; Wetzelaer, Gert-Jan A. H.
2018-02-01
Barrier-free (Ohmic) contacts are a key requirement for efficient organic optoelectronic devices, such as organic light-emitting diodes, solar cells, and field-effect transistors. Here, we propose a simple and robust way of forming an Ohmic hole contact on organic semiconductors with a high ionization energy (IE). The injected hole current from high-work-function metal-oxide electrodes is improved by more than an order of magnitude by using an interlayer for which the sole requirement is that it has a higher IE than the organic semiconductor. Insertion of the interlayer results in electrostatic decoupling of the electrode from the semiconductor and realignment of the Fermi level with the IE of the organic semiconductor. The Ohmic-contact formation is illustrated for a number of material combinations and solves the problem of hole injection into organic semiconductors with a high IE of up to 6 eV.
Kotadiya, Naresh B; Lu, Hao; Mondal, Anirban; Ie, Yutaka; Andrienko, Denis; Blom, Paul W M; Wetzelaer, Gert-Jan A H
2018-04-01
Barrier-free (Ohmic) contacts are a key requirement for efficient organic optoelectronic devices, such as organic light-emitting diodes, solar cells, and field-effect transistors. Here, we propose a simple and robust way of forming an Ohmic hole contact on organic semiconductors with a high ionization energy (IE). The injected hole current from high-work-function metal-oxide electrodes is improved by more than an order of magnitude by using an interlayer for which the sole requirement is that it has a higher IE than the organic semiconductor. Insertion of the interlayer results in electrostatic decoupling of the electrode from the semiconductor and realignment of the Fermi level with the IE of the organic semiconductor. The Ohmic-contact formation is illustrated for a number of material combinations and solves the problem of hole injection into organic semiconductors with a high IE of up to 6 eV.
Campos, Antonio; Riera-Galindo, Sergi; Puigdollers, Joaquim; Mas-Torrent, Marta
2018-05-09
Solution-processed n-type organic field-effect transistors (OFETs) are essential elements for developing large-area, low-cost, and all organic logic/complementary circuits. Nonetheless, the development of air-stable n-type organic semiconductors (OSCs) lags behind their p-type counterparts. The trapping of electrons at the semiconductor-dielectric interface leads to a lower performance and operational stability. Herein, we report printed small-molecule n-type OFETs based on a blend with a binder polymer, which enhances the device stability due to the improvement of the semiconductor-dielectric interface quality and a self-encapsulation. Both combined effects prevent the fast deterioration of the OSC. Additionally, a complementary metal-oxide semiconductor-like inverter is fabricated depositing p-type and n-type OSCs simultaneously.
NASA Astrophysics Data System (ADS)
Adelyn, P. Y. P.; Hashim, U.; Arshad, M. K. Md; Voon, C. H.; Liu, Wei-Wen; Kahar, S. M.; Huda, A. R. N.; Lee, H. Cheun
2017-03-01
This work introduces the non-invasive glucose monitoring technique by using the Complementary Metal Oxide Semiconductor (CMOS) technologically fabricated spiral Interdigitated Electrodes (IDE) based biosensor. Scanning Electron Microscopy (SEM) image explores the morphology of spiral IDE while Energy Dispersive X-Ray (EDX) determines the elements induced in spiral IDE. Oral saliva of two patients are collected and tested on the spiral IDE sensor with electrical characterization as glucose detection results. However, both patients exhibit their glucose level characteristics inconsistently. Therefore, this work could be extended and enhanced by adding Glutaraldehyde in between 3-Aminoproply)triethoxysilane (APTES) modified and glucose oxidase (GOD) enzyme immobilized layer with FTIR validation for bonding attachment.
ZnO Nanostructures for Drug Delivery and Theranostic Applications
Martínez-Carmona, Marina
2018-01-01
In the last two decades, zinc oxide (ZnO) semiconductor Quantum dots (QDs) have been shown to have fantastic luminescent properties, which together with their low-cost, low-toxicity and biocompatibility have turned these nanomaterials into one of the main candidates for bio-imaging. The discovery of other desirable traits such as their ability to produce destructive reactive oxygen species (ROS), high catalytic efficiency, strong adsorption capability and high isoelectric point, also make them promising nanomaterials for therapeutic and diagnostic functions. Herein, we review the recent progress on the use of ZnO based nanoplatforms in drug delivery and theranostic in several diseases such as bacterial infection and cancer. PMID:29690644
Design and Simulations of an Energy Harvesting Capable CMOS Pixel for Implantable Retinal Prosthesis
NASA Astrophysics Data System (ADS)
Ansaripour, Iman; Karami, Mohammad Azim
2017-12-01
A new pixel is designed with the capability of imaging and energy harvesting for the retinal prosthesis implant in 0.18 µm standard Complementary Metal Oxide Semiconductor technology. The pixel conversion gain and dynamic range, are 2.05 \\upmu{{V}}/{{e}}^{ - } and 63.2 dB. The power consumption 53.12 pW per pixel while energy harvesting performance is 3.87 nW in 60 klx of illuminance per pixel. These results have been obtained using post layout simulation. In the proposed pixel structure, the high power production capability in energy harvesting mode covers the demanded energy by using all available p-n junction photo generated currents.
NASA Astrophysics Data System (ADS)
Kawashima, Hayato; Yamaji, Masahiro; Suzuki, Jun'ichi; Tanaka, Shuhei
2011-03-01
We report an invisible two-dimensional (2D) barcode embedded into a synthetic fused silica by femtosecond laser processing using a computer-generated hologram (CGH) that generates a spatially extended femtosecond pulse beam in the depth direction. When we illuminate the irradiated 2D barcode pattern with a 254 nm ultraviolet (UV) light, a strong red photoluminescence (PL) is observed, and we can read it by using a complementary metal oxide semiconductor (CMOS) camera and image processing technology. This work provides a novel barcode fabrication method by femtosecond laser processing using a CGH and a barcode reading method by a red PL.
NASA Technical Reports Server (NTRS)
1979-01-01
Detectors of various types are discussed, taking into account drift chambers, calorimetry, multiwire proportional chambers, signal processing, the use of semiconductors, and photo/optical applications. Circuits are considered along with instrumentation for space, nuclear medicine instrumentation, data acquisition and systems, environmental instrumentation, reactor instrumentation, and nuclear power systems. Attention is given to a new approach to high accuracy gaseous detectors, the current status of electron mobility and free-ion yield in high mobility liquids, a digital drift chamber digitizer system, the stability of oxides in high purity germanium, the quadrant photomultiplier, and the theory of imaging with a very limited number of projections.
Single Event Effects (SEE) for Power Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs)
NASA Technical Reports Server (NTRS)
Lauenstein, Jean-Marie
2011-01-01
Single-event gate rupture (SEGR) continues to be a key failure mode in power MOSFETs. (1) SEGR is complex, making rate prediction difficult SEGR mechanism has two main components: (1) Oxide damage-- Reduces field required for rupture (2) Epilayer response -- Creates transient high field across the oxide.
McKee, Rodney A.; Walker, Frederick J.
2003-11-25
A crystalline oxide-on-semiconductor structure and a process for constructing the structure involves a substrate of silicon, germanium or a silicon-germanium alloy and an epitaxial thin film overlying the surface of the substrate wherein the thin film consists of a first epitaxial stratum of single atomic plane layers of an alkaline earth oxide designated generally as (AO).sub.n and a second stratum of single unit cell layers of an oxide material designated as (A'BO.sub.3).sub.m so that the multilayer film arranged upon the substrate surface is designated (AO).sub.n (A'BO.sub.3).sub.m wherein n is an integer repeat of single atomic plane layers of the alkaline earth oxide AO and m is an integer repeat of single unit cell layers of the A'BO.sub.3 oxide material. Within the multilayer film, the values of n and m have been selected to provide the structure with a desired electrical structure at the substrate/thin film interface that can be optimized to control band offset and alignment.
NASA Astrophysics Data System (ADS)
Kim, Taeho; Hur, Jihyun; Jeon, Sanghun
2016-05-01
Defects in oxide semiconductors not only influence the initial device performance but also affect device reliability. The front channel is the major carrier transport region during the transistor turn-on stage, therefore an understanding of defects located in the vicinity of the interface is very important. In this study, we investigated the dynamics of charge transport in a nanocrystalline hafnium-indium-zinc-oxide thin-film transistor (TFT) by short pulse I-V, transient current and 1/f noise measurement methods. We found that the fast charging behavior of the tested device stems from defects located in both the front channel and the interface, following a multi-trapping mechanism. We found that a silicon-nitride stacked hafnium-indium-zinc-oxide TFT is vulnerable to interfacial charge trapping compared with silicon-oxide counterpart, causing significant mobility degradation and threshold voltage instability. The 1/f noise measurement data indicate that the carrier transport in a silicon-nitride stacked TFT device is governed by trapping/de-trapping processes via defects in the interface, while the silicon-oxide device follows the mobility fluctuation model.
Light-driven water oxidation for solar fuels
Young, Karin J.; Martini, Lauren A.; Milot, Rebecca L.; III, Robert C. Snoeberger; Batista, Victor S.; Schmuttenmaer, Charles A.; Crabtree, Robert H.; Brudvig, Gary W.
2014-01-01
Light-driven water oxidation is an essential step for conversion of sunlight into storable chemical fuels. Fujishima and Honda reported the first example of photoelectrochemical water oxidation in 1972. In their system, TiO2 was irradiated with ultraviolet light, producing oxygen at the anode and hydrogen at a platinum cathode. Inspired by this system, more recent work has focused on functionalizing nanoporous TiO2 or other semiconductor surfaces with molecular adsorbates, including chromophores and catalysts that absorb visible light and generate electricity (i.e., dye-sensitized solar cells) or trigger water oxidation at low overpotentials (i.e., photocatalytic cells). The physics involved in harnessing multiple photochemical events for multielectron reactions, as required in the four-electron water oxidation process, has been the subject of much experimental and computational study. In spite of significant advances with regard to individual components, the development of highly efficient photocatalytic cells for solar water splitting remains an outstanding challenge. This article reviews recent progress in the field with emphasis on water-oxidation photoanodes inspired by the design of functionalized thin film semiconductors of typical dye-sensitized solar cells. PMID:25364029
NASA Astrophysics Data System (ADS)
Zainul, R.; Oktavia, B.; Dewata, I.; Efendi, J.
2018-04-01
This research aims to investigate the process of forming a multi-scale copper oxide semiconductor (CuO/Cu2O) through a process of calcining a copper plate. The changes that occur during the formation of the oxide are thermally and surface evaluated. Evaluation using Differential Thermal Analysis (DTA) obtained by surface change of copper plate happened at temperature 380°C. Calcination of oxide formation was carried out at temperature 380°C for 1 hour. Surface evaluation process by using Scanning Electron Microscope (SEM) surface and cross-section, to determine diffusion of oxide formation on copper plate. The material composition is monitored by XRF and XRD to explain the process of structural and physical changes of the copper oxide plate formed during the heating process. The thickness of Cu plates used is 200-250 μm. SEM analysis results, the oxygen atom interruption region is in the range of 20-30 μm, and diffuses deeper during thermal oxidation process. The maximum diffusion depth of oxygen atoms reaches 129 μm.
NASA Technical Reports Server (NTRS)
Rafferty, Connor S.; Biegel, Bryan A.; Yu, Zhi-Ping; Ancona, Mario G.; Bude, J.; Dutton, Robert W.; Saini, Subhash (Technical Monitor)
1998-01-01
A density-gradient (DG) model is used to calculate quantum-mechanical corrections to classical carrier transport in MOS (Metal Oxide Semiconductor) inversion/accumulation layers. The model is compared to measured data and to a fully self-consistent coupled Schrodinger and Poisson equation (SCSP) solver. Good agreement is demonstrated for MOS capacitors with gate oxide as thin as 21 A. It is then applied to study carrier distribution in ultra short MOSFETs (Metal Oxide Semiconductor Field Effect Transistor) with surface roughness. This work represents the first implementation of the DG formulation on multidimensional unstructured meshes. It was enabled by a powerful scripting approach which provides an easy-to-use and flexible framework for solving the fourth-order PDEs (Partial Differential Equation) of the DG model.
Peralta-Hernández, J M; Meas-Vong, Yunny; Rodríguez, Francisco J; Chapman, Thomas W; Maldonado, Manuel I; Godínez, Luis A
2006-05-01
In this work, the design and construction of an annular tube reactor for the electrochemical and photo-electrochemical in situ generation of H2O2 are described. By cathodic reduction of dissolved oxygen and the coupled oxidation of water at a UV-illuminated nanocrystalline-TiO2 semiconductor anode, it was found that the electrochemically generated H2O2 can be employed to readily oxidize the model compound Direct Yellow-52 in dilute acidic solution at high rates in the presence of small quantities of dissolved iron(II). Although, the model organic compound is chemically stable under UV radiation, its electrochemical oxidation rate increases substantially when the semiconductor anode is illuminated as compared to the same processes carried out in the dark.
Bipolar doping and band-gap anomalies in delafossite transparent conductive oxides.
Nie, Xiliang; Wei, Su-Huai; Zhang, S B
2002-02-11
Doping wide-gap materials p type is highly desirable but often difficult. This makes the recent discovery of p-type delafossite oxides, CuM(III)O2, very attractive. The CuM(III)O2 also show unique and unexplained physical properties: Increasing band gap from M(III) = Al,Ga, to In, not seen in conventional semiconductors. The largest gap CuInO2 can be mysteriously doped both n and p type but not the smaller gaps CuAlO2 and CuGaO2. Here, we show that both properties are results of a large disparity between the fundamental gap and the apparent optical gap, a finding that could lead to a breakthrough in the study of bipolarly dopable wide-gap semiconductor oxides.
NASA Astrophysics Data System (ADS)
Arakawa, H.; Shiraishi, C.; Tatemoto, M.; Kishida, H.; Usui, D.; Suma, A.; Takamisawa, A.; Yamaguchi, T.
2007-09-01
Photocatalytic and photoelectrochemical approaches to solar hydrogen production in our group were introduced. In photocatalytic water splitting system using NiO x/ TiO II powder photocatalyst with concentrated Na IICO 3 aqueous solution, solar energy conversion efficiency to H II and O II production (STH efficiency) was 0.016%. In addition, STH efficiency of visible light responding photocatalyst, NiOx/ promoted In 0.9Ni 0.1TaO 4, was estimated at 0.03%. In photoelectrochemical system using an oxide semiconductor film phptoelectrode, STH efficiencies of meosporous TiO II (Anatase) , mesoporous visible light responding S-doped TiO II (Anatase) and WO 3 film were 0.32-0.44% at applied potential of 0.35 V vs NHE, 0.14% at 0.55 V and 0.44% at 0.9 V, respectively. Finally, solar hydrogen production by tandem cell system composed of an oxide semiconductor photoelectrode, a Pt wire counter electrode and a dye-sensitized solar cell (DSC) was investigated. As photoelectrodes, meosporous TiO II (Anatase), mesoporous S-doped TiO II (Anatase), WO 3, BiVO 4 and Fe IIO 3 film were tested. STH efficiency of tandem cell system composed of a WO 3 film photoelectrode, and a two-series-connected DSC (Voc = 1.4 V) was 2.5-2.8%. In conclusion, it is speculated that more than 5% STH efficiency will be obtained by tandem cell system composed of an oxide semiconductor photoelectrode and a two-series-connected DSC in near future. This suggests a cost-effective and practical application of this system for solar hydrogen production.
Hiramatsu, Hidenori; Yusa, Hitoshi; Igarashi, Ryo; Ohishi, Yasuo; Kamiya, Toshio; Hosono, Hideo
2017-09-05
The electronic structures of 35 A 2+ B 4+ O 3 ternary cubic perovskite oxides, including their hypothetical chemical compositions, were calculated by a hybrid functional method with the expectation that peculiar electronic structures and unique carrier transport properties suitable for semiconductor applications would be hidden in high-symmetry cubic perovskite oxides. We found unique electronic structures of Si-based oxides (A = Mg, Ca, Sr, and Ba, and B = Si). In particular, the unreported cubic BaSiO 3 has a very narrow band gap (4.1 eV) compared with conventional nontransition-metal silicates (e.g., ∼9 eV for SiO 2 and the calculated value of 7.3 eV for orthorhombic BaSiO 3 ) and a small electron effective mass (0.3m 0 , where m 0 is the free electron rest mass). The narrow band gap is ascribed to the nonbonding state of Si 3s and the weakened Madelung potential. The existence of the predicted cubic perovskite structure of BaSiO 3 was experimentally verified by applying a high pressure of 141 GPa. The present finding indicates that it could be possible to develop a new transparent oxide semiconductor of earth abundant silicates if the symmetry of its crystal structure is appropriately chosen. Cubic BaSiO 3 is a candidate for high-performance oxide semiconductors if this phase can be stabilized at room temperature and ambient pressure.
Design and exploration of semiconductors from first principles: A review of recent advances
NASA Astrophysics Data System (ADS)
Oba, Fumiyasu; Kumagai, Yu
2018-06-01
Recent first-principles approaches to semiconductors are reviewed, with an emphasis on theoretical insight into emerging materials and in silico exploration of as-yet-unreported materials. As relevant theory and methodologies have developed, along with computer performance, it is now feasible to predict a variety of material properties ab initio at the practical level of accuracy required for detailed understanding and elaborate design of semiconductors; these material properties include (i) fundamental bulk properties such as band gaps, effective masses, dielectric constants, and optical absorption coefficients; (ii) the properties of point defects, including native defects, residual impurities, and dopants, such as donor, acceptor, and deep-trap levels, and formation energies, which determine the carrier type and density; and (iii) absolute and relative band positions, including ionization potentials and electron affinities at semiconductor surfaces, band offsets at heterointerfaces between dissimilar semiconductors, and Schottky barrier heights at metal–semiconductor interfaces, which are often discussed systematically using band alignment or lineup diagrams. These predictions from first principles have made it possible to elucidate the characteristics of semiconductors used in industry, including group III–V compounds such as GaN, GaP, and GaAs and their alloys with related Al and In compounds; amorphous oxides, represented by In–Ga–Zn–O transparent conductive oxides (TCOs), represented by In2O3, SnO2, and ZnO; and photovoltaic absorber and buffer layer materials such as CdTe and CdS among group II–VI compounds and chalcopyrite CuInSe2, CuGaSe2, and CuIn1‑ x Ga x Se2 (CIGS) alloys, in addition to the prototypical elemental semiconductors Si and Ge. Semiconductors attracting renewed or emerging interest have also been investigated, for instance, divalent tin compounds, including SnO and SnS; wurtzite-derived ternary compounds such as ZnSnN2 and CuGaO2; perovskite oxides such as SrTiO3 and BaSnO3; and organic–inorganic hybrid perovskites, represented by CH3NH3PbI3. Moreover, the deployment of first-principles calculations allows us to predict the crystal structure, stability, and properties of as-yet-unreported materials. Promising materials have been explored via high-throughput screening within either publicly available computational databases or unexplored composition and structure space. Reported examples include the identification of nitride semiconductors, TCOs, solar cell photoabsorber materials, and photocatalysts, some of which have been experimentally verified. Machine learning in combination with first-principles calculations has emerged recently as a technique to accelerate and enhance in silico screening. A blend of computation and experimentation with data science toward the development of materials is often referred to as materials informatics and is currently attracting growing interest.
A Control System and Streaming DAQ Platform with Image-Based Trigger for X-ray Imaging
NASA Astrophysics Data System (ADS)
Stevanovic, Uros; Caselle, Michele; Cecilia, Angelica; Chilingaryan, Suren; Farago, Tomas; Gasilov, Sergey; Herth, Armin; Kopmann, Andreas; Vogelgesang, Matthias; Balzer, Matthias; Baumbach, Tilo; Weber, Marc
2015-06-01
High-speed X-ray imaging applications play a crucial role for non-destructive investigations of the dynamics in material science and biology. On-line data analysis is necessary for quality assurance and data-driven feedback, leading to a more efficient use of a beam time and increased data quality. In this article we present a smart camera platform with embedded Field Programmable Gate Array (FPGA) processing that is able to stream and process data continuously in real-time. The setup consists of a Complementary Metal-Oxide-Semiconductor (CMOS) sensor, an FPGA readout card, and a readout computer. It is seamlessly integrated in a new custom experiment control system called Concert that provides a more efficient way of operating a beamline by integrating device control, experiment process control, and data analysis. The potential of the embedded processing is demonstrated by implementing an image-based trigger. It records the temporal evolution of physical events with increased speed while maintaining the full field of view. The complete data acquisition system, with Concert and the smart camera platform was successfully integrated and used for fast X-ray imaging experiments at KIT's synchrotron radiation facility ANKA.
Szafraniec, Magdalena B; Konstantinidis, Anastasios C; Tromba, Giuliana; Dreossi, Diego; Vecchio, Sara; Rigon, Luigi; Sodini, Nicola; Naday, Steve; Gunn, Spencer; McArthur, Alan; Olivo, Alessandro
2015-03-01
The SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline at Elettra is performing the first mammography study on human patients using free-space propagation phase contrast imaging. The stricter spatial resolution requirements of this method currently force the use of conventional films or specialized computed radiography (CR) systems. This also prevents the implementation of three-dimensional (3D) approaches. This paper explores the use of an X-ray detector based on complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology as a possible alternative, for acquisitions both in planar and tomosynthesis geometry. Results indicate higher quality of the images acquired with the synchrotron set-up in both geometries. This improvement can be partly ascribed to the use of parallel, collimated and monochromatic synchrotron radiation (resulting in scatter rejection, no penumbra-induced blurring and optimized X-ray energy), and partly to phase contrast effects. Even though the pixel size of the used detector is still too large - and thus suboptimal - for free-space propagation phase contrast imaging, a degree of phase-induced edge enhancement can clearly be observed in the images. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
High-speed imaging using CMOS image sensor with quasi pixel-wise exposure
NASA Astrophysics Data System (ADS)
Sonoda, T.; Nagahara, H.; Endo, K.; Sugiyama, Y.; Taniguchi, R.
2017-02-01
Several recent studies in compressive video sensing have realized scene capture beyond the fundamental trade-off limit between spatial resolution and temporal resolution using random space-time sampling. However, most of these studies showed results for higher frame rate video that were produced by simulation experiments or using an optically simulated random sampling camera, because there are currently no commercially available image sensors with random exposure or sampling capabilities. We fabricated a prototype complementary metal oxide semiconductor (CMOS) image sensor with quasi pixel-wise exposure timing that can realize nonuniform space-time sampling. The prototype sensor can reset exposures independently by columns and fix these amount of exposure by rows for each 8x8 pixel block. This CMOS sensor is not fully controllable via the pixels, and has line-dependent controls, but it offers flexibility when compared with regular CMOS or charge-coupled device sensors with global or rolling shutters. We propose a method to realize pseudo-random sampling for high-speed video acquisition that uses the flexibility of the CMOS sensor. We reconstruct the high-speed video sequence from the images produced by pseudo-random sampling using an over-complete dictionary.
Sobieranski, Antonio C; Inci, Fatih; Tekin, H Cumhur; Yuksekkaya, Mehmet; Comunello, Eros; Cobra, Daniel; von Wangenheim, Aldo; Demirci, Utkan
2017-01-01
In this paper, an irregular displacement-based lensless wide-field microscopy imaging platform is presented by combining digital in-line holography and computational pixel super-resolution using multi-frame processing. The samples are illuminated by a nearly coherent illumination system, where the hologram shadows are projected into a complementary metal-oxide semiconductor-based imaging sensor. To increase the resolution, a multi-frame pixel resolution approach is employed to produce a single holographic image from multiple frame observations of the scene, with small planar displacements. Displacements are resolved by a hybrid approach: (i) alignment of the LR images by a fast feature-based registration method, and (ii) fine adjustment of the sub-pixel information using a continuous optimization approach designed to find the global optimum solution. Numerical method for phase-retrieval is applied to decode the signal and reconstruct the morphological details of the analyzed sample. The presented approach was evaluated with various biological samples including sperm and platelets, whose dimensions are in the order of a few microns. The obtained results demonstrate a spatial resolution of 1.55 µm on a field-of-view of ≈30 mm2. PMID:29657866
Efficient semiconductor light-emitting device and method
Choquette, Kent D.; Lear, Kevin L.; Schneider, Jr., Richard P.
1996-01-01
A semiconductor light-emitting device and method. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL).
Efficient semiconductor light-emitting device and method
Choquette, K.D.; Lear, K.L.; Schneider, R.P. Jr.
1996-02-20
A semiconductor light-emitting device and method are disclosed. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL). 12 figs.
NASA Astrophysics Data System (ADS)
Koryazhkina, M. N.; Tikhov, S. V.; Mikhaylov, A. N.; Belov, A. I.; Korolev, D. S.; Antonov, I. N.; Karzanov, V. V.; Gorshkov, O. N.; Tetelbaum, D. I.; Karakolis, P.; Dimitrakis, P.
2018-03-01
Bipolar resistive switching in metal-insulator-semiconductor (MIS) capacitor-like structures with an inert Au top electrode and a Si3N4 insulator nanolayer (6 nm thick) has been observed. The effect of a highly doped n +-Si substrate and a SiO2 interlayer (2 nm) is revealed in the changes in the semiconductor space charge region and small-signal parameters of parallel and serial equivalent circuit models measured in the high- and low-resistive capacitor states, as well as under laser illumination. The increase in conductivity of the semiconductor capacitor plate significantly reduces the charging and discharging times of capacitor-like structures.
Demonstration of in-vivo Multi-Probe Tracker Based on a Si/CdTe Semiconductor Compton Camera
NASA Astrophysics Data System (ADS)
Takeda, Shin'ichiro; Odaka, Hirokazu; Ishikawa, Shin-nosuke; Watanabe, Shin; Aono, Hiroyuki; Takahashi, Tadayuki; Kanayama, Yousuke; Hiromura, Makoto; Enomoto, Shuichi
2012-02-01
By using a prototype Compton camera consisting of silicon (Si) and cadmium telluride (CdTe) semiconductor detectors, originally developed for the ASTRO-H satellite mission, an experiment involving imaging multiple radiopharmaceuticals injected into a living mouse was conducted to study its feasibility for medical imaging. The accumulation of both iodinated (131I) methylnorcholestenol and 85Sr into the mouse's organs was simultaneously imaged by the prototype. This result implies that the Compton camera is expected to become a multi-probe tracker available in nuclear medicine and small animal imaging.
Imaging detectors and electronics—a view of the future
NASA Astrophysics Data System (ADS)
Spieler, Helmuth
2004-09-01
Imaging sensors and readout electronics have made tremendous strides in the past two decades. The application of modern semiconductor fabrication techniques and the introduction of customized monolithic integrated circuits have made large-scale imaging systems routine in high-energy physics. This technology is now finding its way into other areas, such as space missions, synchrotron light sources, and medical imaging. I review current developments and discuss the promise and limits of new technologies. Several detector systems are described as examples of future trends. The discussion emphasizes semiconductor detector systems, but I also include recent developments for large-scale superconducting detector arrays.
Catalano, Anthony W.; Bhushan, Manjul
1982-01-01
A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.
Scanning electron microscope observation of dislocations in semiconductor and metal materials.
Kuwano, Noriyuki; Itakura, Masaru; Nagatomo, Yoshiyuki; Tachibana, Shigeaki
2010-08-01
Scanning electron microscope (SEM) image contrasts have been investigated for dislocations in semiconductor and metal materials. It is revealed that single dislocations can be observed in a high contrast in SEM images formed by backscattered electrons (BSE) under the condition of a normal configuration of SEM. The BSE images of dislocations were compared with those of the transmission electron microscope and scanning transmission electron microscope (STEM) and the dependence of BSE image contrast on the tilting of specimen was examined to discuss the origin of image contrast. From the experimental results, it is concluded that the BSE images of single dislocations are attributed to the diffraction effect and related with high-angle dark-field images of STEM.
Copper oxide thin films anchored on glass substrate by sol gel spin coating technique
NASA Astrophysics Data System (ADS)
Krishnaprabha, M.; Venu, M. Parvathy; Pattabi, Manjunatha
2018-05-01
Owing to the excellent optical, thermal, electrical and photocatalytic properties, copper oxide nanoparticles/films have found applications in optoelectronic devices like solar/photovoltaic cells, lithium ion batteries, gas sensors, catalysts, magnetic storage media etc. Copper oxide is a p-type semiconductor material having a band gap energy varying from 1.2 eV-2.1 eV. Syzygium Samarangense fruit extract was used as reducing agent to synthesize copper oxide nanostructures at room temperature from 10 mM copper sulphate pentahydrate solution. The synthesized nanostructures are deposited onto glass substrate by spin coating followed by annealing the film at 200 °C. Both the copper oxide colloid and films are characterized using UV-Vis spectroscopy, field emission scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDS) techniques. Presence of 2 peaks at 500 nm and a broad peak centered around 800 nm in the UV-Vis absorbance spectra of copper oxide colloid/films is indicative of the formation of anisotropic copper oxide nanostructures is confirmed by the FESEM images which showed the presence of triangular shaped and rod shaped particles. The rod shaped particles inside island like structures were found in unannealed films whereas the annealed films contained different shaped particles with reduced sizes. The elemental analysis using EDS spectra of copper oxide nanoparticles/films showed the presence of both copper and oxygen. Electrical properties of copper oxide nanoparticles are affected due to quantum size effect. The electrical studies carried out on both unannealed and annealed copper oxide films revealed an increase in resistivity with annealing of the films.
A wireless narrowband imaging chip for capsule endoscope.
Lan-Rong Dung; Yin-Yi Wu
2010-12-01
This paper presents a dual-mode capsule gastrointestinal endoscope device. An endoscope combined with a narrowband image (NBI), has been shown to be a superior diagnostic tool for early stage tissue neoplasms detection. Nevertheless, a wireless capsule endoscope with the narrowband imaging technology has not been presented in the market up to now. The narrowband image acquisition and power dissipation reduction are the main challenges of NBI capsule endoscope. In this paper, we present the first narrowband imaging capsule endoscope that can assist clinical doctors to effectively diagnose early gastrointestinal cancers, profited from our dedicated dual-mode complementary metal-oxide semiconductor (CMOS) sensor. The dedicated dual-mode CMOS sensor can offer white-light and narrowband images. Implementation results show that the proposed 512 × 512 CMOS sensor consumes only 2 mA at a 3-V power supply. The average current of the NBI capsule with an 8-Mb/s RF transmitter is nearly 7 ~ 8 mA that can continuously work for 6 ~ 8 h with two 1.5-V 80-mAh button batteries while the frame rate is 2 fps. Experimental results on backside mucosa of a human tongue and pig's small intestine showed that the wireless NBI capsule endoscope can significantly improve the image quality, compared with a commercial-of-the-shelf capsule endoscope for gastrointestinal tract diagnosis.
Charge transfer excitons and image potential states on organic semiconductor surfaces
NASA Astrophysics Data System (ADS)
Yang, Qingxin; Muntwiler, Matthias; Zhu, X.-Y.
2009-09-01
We report two types of excited electronic states on organic semiconductor surfaces: image potential states (IPS) and charge transfer excitons (CTE). In the former, an excited electron is localized in the surface-normal direction by the image potential and delocalized in the surface plane. In the latter, the electron is localized in all directions by both the image potential and the Coulomb potential from a photogenerated hole on an organic molecule. We use crystalline pentacene and tetracene surfaces as model systems, and time- and angle-resolved two-photon photoemission spectroscopy to probe the energetics and dynamics of both the IPS and the CTE states. On either pentacene or tetracene surfaces, we observe delocalized image bands and a series of CT excitons with binding energies <0.5eV below the image-band minimum. The binding energies of these CT excitons agree well with solutions to the atomic-H-like Schrödinger equation based on the image potential and the electron-hole Coulomb potential. We hypothesize that the formation of CT excitons should be general to the surfaces of organic semiconductors where the relatively narrow valance-band width facilitates the localization of the hole and the low dielectric constant ensures strong electron-hole attraction.
Work function characterization of solution-processed cobalt silicide
Ullah, Syed Shihab; Robinson, Matt; Hoey, Justin; ...
2012-05-08
Cobalt silicide thin films were prepared by spin-coating Si6H12-based inks onto various substrates followed by a thermal treatment. The work function of the solution processed Co-Si was determined by both capacitance-voltage (C-V) measurements of metal-oxide-semiconductor (MOS) structures as well as by ultraviolet photoelectron spectroscopy (UPS). The UPS-derived work function was 4.80 eV for a Co-Si film on Si (100) while C-V of MOS structures yielded a work function of 4.36 eV where the metal was solution-processed Co-Si, the oxide was SiO2 and the semiconductor was a B-doped Si wafer.
NASA Astrophysics Data System (ADS)
Asoka-Kumar, P.; Leung, T. C.; Lynn, K. G.; Nielsen, B.; Forcier, M. P.; Weinberg, Z. A.; Rubloff, G. W.
1992-06-01
The centroid shifts of positron annihilation spectra are reported from the depletion regions of metal-oxide-semiconductor (MOS) capacitors at room temperature and at 35 K. The centroid shift measurement can be explained using the variation of the electric field strength and depletion layer thickness as a function of the applied gate bias. An estimate for the relevant MOS quantities is obtained by fitting the centroid shift versus beam energy data with a steady-state diffusion-annihilation equation and a derivative-gaussian positron implantation profile. Inadequacy of the present analysis scheme is evident from the derived quantities and alternate methods are required for better predictions.
Wide-band-gap, alkaline-earth-oxide semiconductor and devices utilizing same
Abraham, Marvin M.; Chen, Yok; Kernohan, Robert H.
1981-01-01
This invention relates to novel and comparatively inexpensive semiconductor devices utilizing semiconducting alkaline-earth-oxide crystals doped with alkali metal. The semiconducting crystals are produced by a simple and relatively inexpensive process. As a specific example, a high-purity lithium-doped MgO crystal is grown by conventional techniques. The crystal then is heated in an oxygen-containing atmosphere to form many [Li].degree. defects therein, and the resulting defect-rich hot crystal is promptly quenched to render the defects stable at room temperature and temperatures well above the same. Quenching can be effected conveniently by contacting the hot crystal with room-temperature air.
Kao, Chyuan-Haur; Chang, Chia Lung; Su, Wei Ming; Chen, Yu Tzu; Lu, Chien Cheng; Lee, Yu Shan; Hong, Chen Hao; Lin, Chan-Yu; Chen, Hsiang
2017-08-03
Magnesium oxide (MgO) sensing membranes in pH-sensitive electrolyte-insulator-semiconductor structures were fabricated on silicon substrate. To optimize the sensing capability of the membrane, CF 4 plasma was incorporated to improve the material quality of MgO films. Multiple material analyses including FESEM, XRD, AFM, and SIMS indicate that plasma treatment might enhance the crystallization and increase the grain size. Therefore, the sensing behaviors in terms of sensitivity, linearity, hysteresis effects, and drift rates might be improved. MgO-based EIS membranes with CF 4 plasma treatment show promise for future industrial biosensing applications.
NASA Technical Reports Server (NTRS)
Benumof, Reuben; Zoutendyk, John; Coss, James
1988-01-01
Second-order effects in metal-oxide-semiconductor field-effect transistors (MOSFETs) are important for devices with dimensions of 2 microns or less. The short and narrow channel effects and drain-induced barrier lowering primarily affect threshold voltage, but formulas for drain current must also take these effects into account. In addition, the drain current is sensitive to channel length modulation due to pinch-off or velocity saturation and is diminished by electron mobility degradation due to normal and lateral electric fields in the channel. A model of a MOSFET including these considerations and emphasizing charge conservation is discussed.
Yoshikawa, Masanobu; Kosaka, Kenichi; Seki, Hirohumi; Kimoto, Tsunenobu
2016-07-01
We measured the depolarized and polarized Raman spectra of a 4H-SiC metal-oxide-semiconductor field-effect transistor (MOSFET) and found that compressive stress of approximately 20 MPa occurs under the source and gate electrodes and tensile stress of approximately 10 MPa occurs between the source and gate electrodes. The experimental result was in close agreement with the result obtained by calculation using the finite element method (FEM). A combination of Raman spectroscopy and FEM provides much data on the stresses in 4H-SiC MOSFET. © The Author(s) 2016.
Method of decontaminating a contaminated fluid by using photocatalytic particles
NASA Technical Reports Server (NTRS)
Cooper, Gerald (Inventor); Ratcliff, Matthew A. (Inventor)
1994-01-01
A system for decontaminating the contaminated fluid by using photocatalytic particles. The system includes a reactor tank for holding the contaminated fluid and the photocatalytic particles suspended in the contaminated fluid to form a slurry. Light irradiates the surface of the slurry, thereby activating the photocatalytic properties of the particles. The system also includes stirring blades for continuously agitating the irradiated fluid surface and for maintaining the particles in a suspended state within the fluid. The system also includes a cross flow filter for segregating the fluid (after decomposition) from the semiconductor powder. The cross flow filter is occasionally back flushed to remove any semiconductor powder that might have caked on the filter. The semiconductor powder may be recirculated back to the tank for reuse, or may be stored for future use. A series of such systems may be used to gradually decompose a chemical in the fluid. Preferably, the fluid is pretreated to remove certain metal ions which interfere with the photocatalytic process. Such pretreatment may be accomplished by dispersing semiconductor particles within the fluid, which adsorb ions or photodeposit the metal as the free metal or its insoluble oxide or hydroxide, and then removing the semiconductor particles together with the adsorbed metal ions/oxides/hydroxide/free metal from the fluid. A method of decontaminating a contaminated fluid is also disclosed.
NASA Astrophysics Data System (ADS)
Morikawa, T.; Sato, S.; Arai, T.; Uemura, K.; Yamanaka, K. I.; Suzuki, T. M.; Kajino, T.; Motohiro, T.
2013-12-01
We developed a new hybrid photocatalyst for CO2 reduction, which is composed of a semiconductor and a metal complex. In the hybrid photocatalyst, ΔG between the position of conduction band minimum (ECBM) of the semiconductor and the CO2 reduction potential of the complex is an essential factor for realizing fast electron transfer from the conduction band of semiconductor to metal complex leading to high photocatalytic activity. On the basis of this concept, the hybrid photocatalyst InP/Ru-complex, which functions in aqueous media, was developed. The photoreduction of CO2 to formate using water as an electron donor and a proton source was successfully achieved as a Z-scheme system by functionally conjugating the InP/Ru-complex photocatalyst for CO2 reduction with a TiO2 photocatalyst for water oxidation. The conversion efficiency from solar energy to chemical energy was ca. 0.04%, which approaches that for photosynthesis in a plant. Because this system can be applied to many other inorganic semiconductors and metal-complex catalysts, the efficiency and reaction selectivity can be enhanced by optimization of the electron transfer process including the energy-band configurations, conjugation conformations, and catalyst structures. This electrical-bias-free reaction is a huge leap forward for future practical applications of artificial photosynthesis under solar irradiation to produce organic species.
Magneto-Optical Thin Films for On-Chip Monolithic Integration of Non-Reciprocal Photonic Devices
Bi, Lei; Hu, Juejun; Jiang, Peng; Kim, Hyun Suk; Kim, Dong Hun; Onbasli, Mehmet Cengiz; Dionne, Gerald F.; Ross, Caroline A.
2013-01-01
Achieving monolithic integration of nonreciprocal photonic devices on semiconductor substrates has been long sought by the photonics research society. One way to achieve this goal is to deposit high quality magneto-optical oxide thin films on a semiconductor substrate. In this paper, we review our recent research activity on magneto-optical oxide thin films toward the goal of monolithic integration of nonreciprocal photonic devices on silicon. We demonstrate high Faraday rotation at telecommunication wavelengths in several novel magnetooptical oxide thin films including Co substituted CeO2−δ, Co- or Fe-substituted SrTiO3−δ, as well as polycrystalline garnets on silicon. Figures of merit of 3~4 deg/dB and 21 deg/dB are achieved in epitaxial Sr(Ti0.2Ga0.4Fe0.4)O3−δ and polycrystalline (CeY2)Fe5O12 films, respectively. We also demonstrate an optical isolator on silicon, based on a racetrack resonator using polycrystalline (CeY2)Fe5O12/silicon strip-loaded waveguides. Our work demonstrates that physical vapor deposited magneto-optical oxide thin films on silicon can achieve high Faraday rotation, low optical loss and high magneto-optical figure of merit, therefore enabling novel high-performance non-reciprocal photonic devices monolithically integrated on semiconductor substrates. PMID:28788379
NASA Astrophysics Data System (ADS)
Basile, A. F.; Kyndiah, A.; Biscarini, F.; Fraboni, B.
2014-06-01
A numerical procedure to calculate the drain-current (ID) vs. gate-voltage (VG) characteristics from numerical solutions of the Poisson equation for organic Thin-Film Transistors (TFTs) is presented. Polaron transport is modeled as two-dimensional charge transport in a semiconductor having free-carrier density of states proportional to the density of molecules and traps with energy equal to the polaron-hopping barrier. The simulated ID-VG curves are proportional to the product of the density of free carriers, calculated as a function of VG, and the intrinsic mobility, assumed to be a constant independent of temperature. The presence of traps in the oxide was also taken into account in the model, which was applied to a TFT made with six monolayers of pentacene grown on an oxide substrate. The polaron-hopping barrier determines the temperature dependence of the simulated ID-VG curves, trapping in the oxide is responsible for current reduction at high bias and the slope of the characteristics near threshold is related to the metal-semiconductor work-function difference. The values of the model parameters yielding the best match between calculations and experiments are consistent with previous experimental results and theoretical predictions. Therefore, this model enables to extract both physical and technological properties of thin-film devices from the temperature-dependent dc characteristics.
Detection of Iberian ham aroma by a semiconductor multisensorial system.
Otero, Laura; Horrillo, M A Carmen; García, María; Sayago, Isabel; Aleixandre, Manuel; Fernández, M A Jesús; Arés, Luis; Gutiérrez, Javier
2003-11-01
A semiconductor multisensorial system, based on tin oxide, to control the quality of dry-cured Iberian hams is described. Two types of ham (submitted to different drying temperatures) were selected. Good responses were obtained from the 12 elements forming the multisensor for different operating temperatures. Discrimination between the two types of ham was successfully realised through principal component analysis (PCA).
ERIC Educational Resources Information Center
Koenig, Emma; Jacobs, Ari; Lisensky, George
2017-01-01
Semiconductors are an important class of materials; preparing ZnO nanorods allows semiconducting properties to be easily observed. The week before lab, groups of four students take 15 min to setup two fluorine-doped tin oxide glass (FTO) slides in a zinc nitrate and hexamethylenetetramine solution stored at 90°C until the next lab. Hexagonal ZnO…
NASA Astrophysics Data System (ADS)
Gao, Guilong; Tian, Jinshou; Wang, Tao; He, Kai; Zhang, Chunmin; Zhang, Jun; Chen, Shaorong; Jia, Hui; Yuan, Fenfang; Liang, Lingliang; Yan, Xin; Li, Shaohui; Wang, Chao; Yin, Fei
2017-11-01
We report and experimentally demonstrate an ultrafast all-optical imaging technique capable of single-shot ultrafast recording with a picosecond-scale temporal resolution and a micron-order two-dimensional spatial resolution. A GaAs/AlxGa1 - xAs multiple-quantum-well (MQW) semiconductor with a picosecond response time, grown using molecular beam epitaxy (MBE) at a low temperature (LT), is used for the first time in ultrafast imaging technology. The semiconductor transforms the signal beam information to the probe beam, the birefringent delay crystal time-serializes the input probe beam, and the beam displacer maps different polarization probe beams onto different detector locations, resulting in two frames with an approximately 9 ps temporal separation and approximately 25 lp/mm spatial resolution in the visible range.
NASA Astrophysics Data System (ADS)
Choi, Donghun
Integration of III-V compound semiconductors on silicon substrates has recently received much attention for the development of optoelectronic and high speed electronic devices. However, it is well known that there are some key challenges for the realization of III-V device fabrication on Si substrates: (i) the large lattice mismatch (in case of GaAs: 4.1%), and (ii) the formation of antiphase domain (APD) due to the polar compound semiconductor growth on non-polar elemental structure. Besides these growth issues, the lack of a useful surface passivation technology for compound semiconductors has precluded development of metal-oxide-semiconductor (MOS) devices and causes high surface recombination parasitics in scaled devices. This work demonstrates the growth of high quality III-V materials on Si via an intermediate Ge buffer layer and some surface passivation methods to reduce interface defect density for the fabrication of MOS devices. The initial goal was to achieve both low threading dislocation density (TDD) and low surface roughness on Ge-on-Si heterostructure growth. This was achieved by repeating a deposition-annealing cycle consisting of low temperature deposition + high temperature-high rate deposition + high temperature hydrogen annealing, using reduced-pressure chemical-vapor deposition (CVD). We then grew III-V materials on the Ge/Si virtual substrates using molecular-beam epitaxy (MBE). The relationship between initial Ge surface configuration and antiphase boundary formation was investigated using surface reflection high-energy electron diffraction (RHEED) patterns and atomic force microscopy (AFM) image analysis. In addition, some MBE growth techniques, such as migration enhanced epitaxy (MEE) and low temperature GaAs growth, were adopted to improve surface roughness and solve the Ge self-doping problem. Finally, an Al2O3 gate oxide layer was deposited using atomic-layer-deposition (ALD) system after HCl native oxide etching and ALD in-situ pre-annealing at 400 °C. A 100 nm thick aluminum layer was deposited to form the gate contact for a MOS device fabrication. C-V measurement results show very small frequency dispersion and 200-300 mV hysteresis, comparable to our best results for InGaAs/GaAs MOS structures on GaAs substrate. Most notably, the quasi-static C-V curve demonstrates clear inversion layer formation. I-V curves show a reasonable leakage current level. The inferred midgap interface state density, Dit, of 2.4 x 1012 eV-1cm-2 was calculated by combined high-low frequency capacitance method. In addition, we investigated the interface properties of amorphous LaAlO 3/GaAs MOS capacitors fabricated on GaAs substrate. The surface was protected during sample transfer between III-V and oxide molecular beam deposition (MBD) chambers by a thick arsenic-capping layer. An annealing method, a low temperature-short time RTA followed by a high temperature RTA, was developed, yielding extremely small hysteresis (˜ 30 mV), frequency dispersion (˜ 60 mV), and interface trap density (mid 1010 eV-1cm -2). We used capacitance-voltage (C-V) and current-voltage (I-V) measurements for electrical characterization of MOS devices, tapping-mode AFM for surface morphology analysis, X-ray photoelectron spectroscopy (XPS) for chemical elements analysis of interface, cross section transmission-electron microscopy (TEM), X-ray diffraction (XRD), secondary ion mass spectrometry (SIMS), and photoluminescence (PL) measurement for film quality characterization. This successful growth and appropriate surface treatments of III-V materials provides a first step for the fabrication of III-V optical and electrical devices on the same Si-based electronic circuits.
NASA Astrophysics Data System (ADS)
Xu, Runshen
Atomic layer deposition (ALD) utilizes sequential precursor gas pulses to deposit one monolayer or sub-monolayer of material per cycle based on its self-limiting surface reaction, which offers advantages, such as precise thickness control, thickness uniformity, and conformality. ALD is a powerful means of fabricating nanoscale features in future nanoelectronics, such as contemporary sub-45 nm metal-oxide-semiconductor field effect transistors, photovoltaic cells, near- and far-infrared detectors, and intermediate temperature solid oxide fuel cells. High dielectric constant, kappa, materials have been recognized to be promising candidates to replace traditional SiO2 and SiON, because they enable good scalability of sub-45 nm MOSFET (metal-oxide-semiconductor field-effect transistor) without inducing additional power consumption and heat dissipation. In addition to high dielectric constant, high-kappa materials must meet a number of other requirements, such as low leakage current, high mobility, good thermal and structure stability with Si to withstand high-temperature source-drain activation annealing. In this thesis, atomic layer deposited Er2O3 doped TiO2 is studied and proposed as a thermally stable amorphous high-kappa dielectric on Si substrate. The stabilization of TiO2 in its amorphous state is found to achieve a high permittivity of 36, a hysteresis voltage of less than 10 mV, and a low leakage current density of 10-8 A/cm-2 at -1 MV/cm. In III-V semiconductors, issues including unsatisfied dangling bonds and native oxides often result in inferior surface quality that yields non-negligible leakage currents and degrades the long-term performance of devices. The traditional means for passivating the surface of III-V semiconductors are based on the use of sulfide solutions; however, that only offers good protection against oxidation for a short-term (i.e., one day). In this work, in order to improve the chemical passivation efficacy of III-V semiconductors, ultra-thin layer of encapsulating ZnS is coated on the surface of GaSb and GaSb/InAs substrates. The 2 nm-thick ZnS film is found to provide a long-term protection against reoxidation for one order and a half longer times than prior reported passivation likely due to its amorphous structure without pinholes. Finally, a combination of binary ALD processes is developed and demonstrated for the growth of yttria-stabilized zirconia films using alkylamido-cyclopentadiengyls zirconium and tris(isopropyl-cyclopentadienyl)yttrium, as zirconium and yttrium precursors, respectively, with ozone being the oxidant. The desired cubic structure of YSZ films is apparently achieved after post-deposition annealing. Further, platinum is atomic layer deposited as electrode on YSZ (8 mol% of Yttria) within the same system. In order to control the morphology of as-deposited Pt thin structure, the nucleation behavior of Pt on amorphous and cubic YSZ is investigated. Three different morphologies of Pt are observed, including nanoparticle, porous and dense films, which are found to depend on the ALD cycle number and the structure and morphology of they underlying ALD YSZ films.
NASA Astrophysics Data System (ADS)
Zoellner, Brandon
Mixed-metal oxides containing Mn(II), Cu(I), Ta(V), Nb(V), and V(V) were investigated for their structures and properties as new p-type semiconductors and in the potential applications involving the photocatalytic conversion of water into hydrogen and oxygen. Engineering of the bandgaps was achieved by combining metal cations that have halffilled (Mn 3d5) or filled (Cu 3d10) d-orbitals together with metal cations that have empty (V/Nb/Ta 3/4/5 d0) d-orbitals. The research described herein focuses on the synthesis, optical, electronic, and photocatalytic properties of the metal-oxide semiconductors MnV2O6, Cu3VO 4, CuNb1-xTaxO3, and Cu5(Ta1-xNbx)11O30. Powder X-ray diffraction was used to probe their phase purity as well as atomic-level crystallographic details, i.e. shifts of lattice parameters, chemical compositions, and changes in local bonding environments. Optical measurements revealed visible-light bandgap sizes of ˜1.17 eV (Cu3VO4), ˜1.45 eV (MnV2O6), ˜1.89-1.97 eV (CuNb1-xTa xO3), and ˜1.97-2.50 eV (Cu5(Ta1-xNb x)11O30). The latter two were found to systematically vary as a function of composition. Electrochemical impedance spectroscopy measurements of MnV2O6 and Cu3VO 4 provided the first experimental characterization of the energetic positions of the valence and conduction bands with respect to the water oxidation and reduction potentials, as well as confirmed the p-type nature of each semiconductor. The valence and conduction band energies were found to be suitable for driving either one or both of the water-splitting half reaction (i.e. 2H+ → H2 and 2H2O → O2 + 4H+). Photoelectrochemical measurements on polycrystalline films of the Cu(I)-based semiconductors under visible-light irradiation produced cathodic currents indicative of p-type semiconductor character and chemical reduction at their surfaces in the electrolyte solution. The stability of the photocurrents was increased by the addition of CuO oxide particles either externally deposited or extruded under heating from the surfaces of the starting oxides. Atomic layer deposition of 5 nm of aluminum-doped zinc oxide (AZO) and 5 nm of TiO2 further enhanced the overall stability of the photocurrents produced by Cu5(Ta1-xNb x)11O30 to over 1,000 seconds of irradiation. Finally, photocatalytic activities of the suspended particles were measured under UV-visible light irradiation and found to exhibit hydrogen and/or oxygen generation in aqueous solutions. Thus, these research results have revealed new chemical strategies and potentially ideal materials for the conversion of solar energy to chemical fuels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inaba, Masafumi, E-mail: inaba-ma@ruri.waseda.jp; Muta, Tsubasa; Kobayashi, Mikinori
2016-07-18
The hydrogen-terminated diamond surface (C-H diamond) has a two-dimensional hole gas (2DHG) layer independent of the crystal orientation. A 2DHG layer is ubiquitously formed on the C-H diamond surface covered by atomic-layer-deposited-Al{sub 2}O{sub 3}. Using Al{sub 2}O{sub 3} as a gate oxide, C-H diamond metal oxide semiconductor field-effect transistors (MOSFETs) operate in a trench gate structure where the diamond side-wall acts as a channel. MOSFETs with a side-wall channel exhibit equivalent performance to the lateral C-H diamond MOSFET without a side-wall channel. Here, a vertical-type MOSFET with a drain on the bottom is demonstrated in diamond with channel current modulationmore » by the gate and pinch off.« less
Single photon sources in 4H-SiC metal-oxide-semiconductor field-effect transistors
NASA Astrophysics Data System (ADS)
Abe, Y.; Umeda, T.; Okamoto, M.; Kosugi, R.; Harada, S.; Haruyama, M.; Kada, W.; Hanaizumi, O.; Onoda, S.; Ohshima, T.
2018-01-01
We present single photon sources (SPSs) embedded in 4H-SiC metal-oxide-semiconductor field-effect transistors (MOSFETs). They are formed in the SiC/SiO2 interface regions of wet-oxidation C-face 4H-SiC MOSFETs and were not found in other C-face and Si-face MOSFETs. Their bright room-temperature photoluminescence (PL) was observed in the range from 550 to 750 nm and revealed variable multi-peak structures as well as variable peak shifts. We characterized a wide variety of their PL spectra as the inevitable variation of local atomic structures at the interface. Their polarization dependence indicates that they are formed at the SiC side of the interface. We also demonstrate that it is possible to switch on/off the SPSs by a bias voltage of the MOSFET.
Probing the Relative Photoinjection Yields of Monomer and Aggregated Dyes into ZnO Crystals.
King, Laurie A; Parkinson, B A
2017-01-17
Cyanine dyes, often used in dye-sensitized solar cells (DSSCs), form a range of molecular species from monomers to large H and J aggregates in both solution and when adsorbed at a photoelectrode surface. To determine the relative capability of the different dye species to inject photoexcited electrons into a wideband gap oxide semiconductor, sensitization at a single-crystal zinc oxide surface was studied by simultaneous attenuated reflection (ATR) ultraviolet-visible (UV-vis) absorption and photocurrent spectroscopy measurements. ATR measurements enable identification of the dye species populating the surface with simultaneous photocurrent spectroscopy to identify the contribution of the various dye forms to photocurrent signal. We study the dye 2,2'-carboxymethylthiodicarbocyanine bromide that is particularly prone to aggregation both in solution and at the surface of sensitized oxide semiconductors.
NASA Astrophysics Data System (ADS)
Hu, Guang-Xi; Wang, Ling-Li; Liu, Ran; Tang, Ting-Ao; Qiu, Zhi-Jun
2010-10-01
As the channel length of metal-oxide-semiconductor field-effect transistors (MOSFETs) scales into the nanometer regime, quantum mechanical effects are becoming more and more significant. In this work, a model for the surrounding-gate (SG) nMOSFET is developed. The Schrödinger equation is solved analytically. Some of the solutions are verified via results obtained from simulations. It is found that the percentage of the electrons with lighter conductivity mass increases as the silicon body radius decreases, or as the gate voltage reduces, or as the temperature decreases. The centroid of inversion-layer is driven away from the silicon-oxide interface towards the silicon body, therefore the carriers will suffer less scattering from the interface and the electrons effective mobility of the SG nMOSFETs will be enhanced.
Methods and apparatuses for detection of radiation with semiconductor image sensors
Cogliati, Joshua Joseph
2018-04-10
A semiconductor image sensor is repeatedly exposed to high-energy photons while a visible light obstructer is in place to block visible light from impinging on the sensor to generate a set of images from the exposures. A composite image is generated from the set of images with common noise substantially removed so the composite image includes image information corresponding to radiated pixels that absorbed at least some energy from the high-energy photons. The composite image is processed to determine a set of bright points in the composite image, each bright point being above a first threshold. The set of bright points is processed to identify lines with two or more bright points that include pixels therebetween that are above a second threshold and identify a presence of the high-energy particles responsive to a number of lines.
Sulfur passivation techniques for III-V wafer bonding
NASA Astrophysics Data System (ADS)
Jackson, Michael James
The use of direct wafer bonding in a multijunction III-V solar cell structure requires the formation of a low resistance bonded interface with minimal thermal treatment. A wafer bonded interface behaves as two independent surfaces in close proximity, hence a major source of resistance is Fermi level pinning common in III-V surfaces. This study demonstrates the use of sulfur passivation in III-V wafer bonding to reduce the energy barrier at the interface. Two different sulfur passivation processes are addressed. A dry sulfur passivation method that utilizes elemental sulfur vapor activated by ultraviolet light in vacuum is compared with aqueous sulfide and native oxide etch treatments. Through the addition of a sulfur desorption step in vacuum, the UV-S treatment achieves bondable surfaces free of particles contamination or surface roughening. X-ray photoelectron spectroscopy measurements of the sulfur treated GaAs surfaces find lower levels of oxide and the appearance of sulfide species. After 4 hrs of air exposure, the UV-S treated GaAs actually showed an increase in the amount of sulfide bonded to the semiconductor, resulting in less oxidation compared to the aqueous sulfide treatment. Large area bonding is achieved for sulfur treated GaAs / GaAs and InP / InP with bulk fracture strength achieved after annealing at 400 °C and 300 °C respectively, without large compressive forces. The electrical conductivity across a sulfur treated 400 °C bonded n-GaAs/n-GaAs interface significantly increased with a short anneal (1-2 minutes) at elevated temperatures (50--600 °C). Interfaces treated with the NH4OH oxide etch, on the other hand, exhibited only mild improvement in accordance with previously published studies in this area. TEM and STEM images revealed similar interfacial microstructure changes with annealing for both sulfur treated and NH4OH interfaces, whereby some areas have direct semiconductor-semiconductor contact without any interfacial layer. Fitting the observed temperature dependence of zero bias conductance using a model for tunneling through a grain boundary reveals that the addition of sulfur at the interface lowered the interfacial energy barrier by 0.2 eV. The interface resistance for these sulfur-treated structures is less than 0.03 O·cm 2 at room temperature. These results emphasize that sulfur passivation techniques reduce interface states that otherwise limit the implementation of wafer bonding for high efficiency solar cells and other devices.
Hajizadeh-Safar, M; Ghorbani, M; Khoshkharam, S; Ashrafi, Z
2014-07-01
Gamma camera is an important apparatus in nuclear medicine imaging. Its detection part is consists of a scintillation detector with a heavy collimator. Substitution of semiconductor detectors instead of scintillator in these cameras has been effectively studied. In this study, it is aimed to introduce a new design of P-N semiconductor detector array for nuclear medicine imaging. A P-N semiconductor detector composed of N-SnO2 :F, and P-NiO:Li, has been introduced through simulating with MCNPX monte carlo codes. Its sensitivity with different factors such as thickness, dimension, and direction of emission photons were investigated. It is then used to configure a new design of an array in one-dimension and study its spatial resolution for nuclear medicine imaging. One-dimension array with 39 detectors was simulated to measure a predefined linear distribution of Tc(99_m) activity and its spatial resolution. The activity distribution was calculated from detector responses through mathematical linear optimization using LINPROG code on MATLAB software. Three different configurations of one-dimension detector array, horizontal, vertical one sided, and vertical double-sided were simulated. In all of these configurations, the energy windows of the photopeak were ± 1%. The results show that the detector response increases with an increase of dimension and thickness of the detector with the highest sensitivity for emission photons 15-30° above the surface. Horizontal configuration array of detectors is not suitable for imaging of line activity sources. The measured activity distribution with vertical configuration array, double-side detectors, has no similarity with emission sources and hence is not suitable for imaging purposes. Measured activity distribution using vertical configuration array, single side detectors has a good similarity with sources. Therefore, it could be introduced as a suitable configuration for nuclear medicine imaging. It has been shown that using semiconductor P-N detectors such as P-NiO:Li, N-SnO2 :F for gamma detection could be possibly applicable for design of a one dimension array configuration with suitable spatial resolution of 2.7 mm for nuclear medicine imaging.
P-channel thin film transistors using reduced graphene oxide
NASA Astrophysics Data System (ADS)
Chakraborty, S.; Resmi, A. N.; Renuka Devi, P.; Jinesh, K. B.
2017-04-01
Chemically reduced graphene oxide (rGO) samples with various degrees of reduction were prepared using hydrazine hydrate as the reducing agent. Scanning tunnelling microscope imaging shows that rGO contains rows of randomly distributed patches of epoxy groups. The local density of states of the rGO samples were mapped with scanning tunnelling spectroscopy, which shows that the bandgap in rGO originates from the epoxide regions itself. The Fermi level of the epoxide regions is shifted towards the valence band, making rGO locally p-type and a range of bandgaps from 0-2.2 eV was observed in these regions. Thin film transistors were fabricated using rGO as the channel layer. The devices show excellent output characteristics with clear saturation and gate dependence. The transfer characteristics show that rGO behaves as a p-type semiconductor; the devices exhibit an on/off ratio of 104, with a low-bias hole mobility of 3.9 cm2 V-1 s-1.
NASA Astrophysics Data System (ADS)
Sadeghi, Seyed M.; Wing, Waylin J.; Gutha, Rithvik R.; Sharp, Christina
2018-01-01
We demonstrate that a metal-oxide plasmonic metafilm consisting of a Si/Al oxide junction in the vicinity of a thin gold layer can quarantine excitons in colloidal semiconductor quantum dots against their defect environments. This process happens while the plasmon fields of the gold layer enhance spontaneous emission decay rates of the quantum dots. We study the emission dynamics of such quantum dots when the distance between the Si/Al oxide junction and the gold thin layer is varied. The results show that for distances less than a critical value the lifetime of the quantum dots can be elongated while they experience intense plasmon fields. This suggests that the metal-oxide metafilm can keep photo-excited electrons in the cores of the quantum dots, suppressing their migration to the surface defect sites. This leads to suppression of Auger recombination, offering quantum dot super-emitters with emission that is enhanced not only by the plasmon fields (Purcell effect), but also by strong suppression of the non-radiative decay caused by the defect sites.