Science.gov

Sample records for oxide substrates struktura

  1. High quality oxide films on substrates

    DOEpatents

    Ruckman, Mark W.; Strongin, Myron; Gao, Yong L.

    1994-01-01

    A method for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material.

  2. High quality oxide films on substrates

    DOEpatents

    Ruckman, M.W.; Strongin, M.; Gao, Y.L.

    1994-02-01

    A method is described for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material. 4 figures.

  3. Silica substrate or portion formed from oxidation of monocrystalline silicon

    DOEpatents

    Matzke, Carolyn M.; Rieger, Dennis J.; Ellis, Robert V.

    2003-07-15

    A method is disclosed for forming an inclusion-free silica substrate using a monocrystalline silicon substrate as the starting material and oxidizing the silicon substrate to convert it entirely to silica. The oxidation process is performed from both major surfaces of the silicon substrate using a conventional high-pressure oxidation system. The resulting product is an amorphous silica substrate which is expected to have superior etching characteristics for microfabrication than conventional fused silica substrates. The present invention can also be used to convert only a portion of a monocrystalline silicon substrate to silica by masking the silicon substrate and locally thinning a portion the silicon substrate prior to converting the silicon portion entirely to silica. In this case, the silica formed by oxidizing the thinned portion of the silicon substrate can be used, for example, as a window to provide optical access through the silicon substrate.

  4. Method for producing high quality oxide films on substrates

    DOEpatents

    Ruckman, M.W.; Strongin, M.; Gao, Y.L.

    1993-11-23

    A method is described for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material. 4 figures.

  5. Method for producing high quality oxide films on substrates

    DOEpatents

    Ruckman, Mark W.; Strongin, Myron; Gao, Yong L.

    1993-01-01

    A method for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material.

  6. Single crystal complex oxide on flexible substrate

    NASA Astrophysics Data System (ADS)

    Bakaul, Saidur; Serrao, Claudy; Lee, Oukjae; Salahuddin, Sayeef

    Flexible ferroelectrics are needed for various applications such as biocompatible energy harvesting and flexible memory. In this sector, most of the current research is focused on organic piezoelectric materials which have advantage of flexibility but suffers severely from poor energy conversion and generation efficiency. On the contrary, owing to very high electromechanical coupling factor (representing energy conversion efficiency) complex oxides are the best choices as energy harvesting and transduction elements, especially for transforming mechanical energies into electronic energy. Still their usage in energy harvesting is very limited mainly due to the stringent growth conditions of single crystals, high temperature needed for crystallization and lack of flexibility and stretchability. We have shown that single crystal Pb0.8Zr0.2TiO3 can be epitaxially transferred on flexible plastic substrate. The transferred PZT shows 70 uC/cm2 remnant polarization and dielectric constant over 100 even when it is bent. These results suggest the possibility of single crystal complex oxide devices on flexible platform.

  7. Monolayer Contact Doping from a Silicon Oxide Source Substrate.

    PubMed

    Ye, Liang; González-Campo, Arántzazu; Kudernac, Tibor; Núñez, Rosario; de Jong, Michel; van der Wiel, Wilfred G; Huskens, Jurriaan

    2017-04-03

    Monolayer contact doping (MLCD) is a modification of the monolayer doping (MLD) technique that involves monolayer formation of a dopant-containing adsorbate on a source substrate. This source substrate is subsequently brought into contact with the target substrate, upon which the dopant is driven into the target substrate by thermal annealing. Here, we report a modified MLCD process, in which we replace the commonly used Si source substrate by a thermally oxidized substrate with a 100 nm thick silicon oxide layer, functionalized with a monolayer of a dopant-containing silane. The thermal oxide potentially provides a better capping effect and effectively prevents the dopants from diffusing back into the source substrate. The use of easily accessible and processable silane monolayers provides access to a general and modifiable process for the introduction of dopants on the source substrate. As a proof of concept, a boron-rich carboranyl-alkoxysilane was used here to construct the monolayer that delivers the dopant, to boost the doping level in the target substrate. X-ray photoelectron spectroscopy (XPS) showed a successful grafting of the dopant adsorbate onto the SiO2 surface. The achieved doping levels after thermal annealing were similar to the doping levels acessible by MLD as demonstrated by secondary ion mass spectrometry measurements. The method shows good prospects, e.g. for use in the doping of Si nanostructures.

  8. Alkoxysilane adsorption on metal oxide substrates

    NASA Technical Reports Server (NTRS)

    Ramsier, R. D.; Zhuang, G. R.; Henriksen, P. N.

    1989-01-01

    Reflection-absorption infrared and inelastic electron tunneling spectroscopies have been used to study adsorption of liquid phase mono-, di-, and trialkoxysilanes on evaporated Al and Cu substrates. Spectral evidence shows that substrate properties influence the chemical and physical nature of trialkoxysilane films and that silane functionality plays a role in molecular orientation. Results show that dialkoxysilane films contain structural gradients, with adsorption at the monomolecular level influenced by surface morphology, and with organofunctionality and dosing procedure affecting the formation of thicker films. Evidence is presented that monoalkoxysilanes react with alumina surfaces, and a broad, multipeaked band from 1600 to 1900/cm has been interpreted as characteristic of the silylated AlO(x)Pb interface.

  9. Passivation oxide controlled selective carbon nanotube growth on metal substrates.

    PubMed

    Bult, J B; Sawyer, W G; Ajayan, P M; Schadler, L S

    2009-02-25

    Vertically aligned arrays of multi-wall carbon nanotubes (MWNT) are grown on Inconel 600, a nickel-based super-alloy. Using x-ray photoelectron spectroscopy (XPS) and chemical vapor deposition (CVD) growth of the MWNTs it is shown that a stable oxidation barrier is required for the stabilization of iron on the substrate and subsequent nanotube growth. This evidence for passivation oxide supported growth of MWNTs was then used to grow MWNTs on patterned oxidized substrates in a selective growth furnace. The unique advantage of this patterned growth on Inconel 600 is found to be the chromia passivation layer's electrical conductivity (measured value of 1.08 micro Omega m), creating the opportunity for low resistivity electrodes made from nanotubes. Inconel substrates with 100 microm long aligned MWNTs are demonstrated to exhibit an average resistance value of 2 Omega.

  10. Interfacial Shear Strength of Oxide Scale and SS 441 Substrate

    SciTech Connect

    Liu, Wenning N.; Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2011-05-01

    Recent developments on decreasing the operating temperature for Solid Oxide Fuel Cells (SOFCs) have enabled the use of high temperature ferritic alloys as interconnect materials. Oxide scale will inevitably grow on the ferritic interconnects in a high temperature oxidation environment of SOFCs. The growth of the oxide scale induces growth stresses in the scale layer and on the scale/substrate interface. These growth stresses combined with the thermal stresses induced upon stacking cooling by the thermal expansion coefficient mismatch between the oxide scale and the substrate may lead to scale delamination/buckling and eventual spallation, which may lead to serious cell performance degradation. Hence the interfacial adhesion strength between the oxide scale and the substrate is crucial to the reliability and durability of the metallic interconnect in SOFC operating environments. In this paper, we applied an integrated experimental/modeling methodology to quantify the interfacial adhesion strength between the oxide scale and the SS 441 metallic interconnect. The predicted interfacial strength is discussed in details.

  11. Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases.

    PubMed

    Ruiz-Dueñas, Francisco J; Morales, María; García, Eva; Miki, Yuta; Martínez, María Jesús; Martínez, Angel T

    2009-01-01

    Versatile peroxidase (VP) is defined by its capabilities to oxidize the typical substrates of other basidiomycete peroxidases: (i) Mn(2+), the manganese peroxidase (MnP) substrate (Mn(3+) being able to oxidize phenols and initiate lipid peroxidation reactions); (ii) veratryl alcohol (VA), the typical lignin peroxidase (LiP) substrate; and (iii) simple phenols, which are the substrates of Coprinopsis cinerea peroxidase (CIP). Crystallographic, spectroscopic, directed mutagenesis, and kinetic studies showed that these 'hybrid' properties are due to the coexistence in a single protein of different catalytic sites reminiscent of those present in the other basidiomycete peroxidase families. Crystal structures of wild and recombinant VP, and kinetics of mutated variants, revealed certain differences in its Mn-oxidation site compared with MnP. These result in efficient Mn(2+) oxidation in the presence of only two of the three acidic residues forming its binding site. On the other hand, a solvent-exposed tryptophan is the catalytically-active residue in VA oxidation, initiating an electron transfer pathway to haem (two other putative pathways were discarded by mutagenesis). Formation of a tryptophanyl radical after VP activation by peroxide was detected using electron paramagnetic resonance. This was the first time that a protein radical was directly demonstrated in a ligninolytic peroxidase. In contrast with LiP, the VP catalytic tryptophan is not beta-hydroxylated under hydrogen peroxide excess. It was also shown that the tryptophan environment affected catalysis, its modification introducing some LiP properties in VP. Moreover, some phenols and dyes are oxidized by VP at the edge of the main haem access channel, as found in CIP. Finally, the biotechnological interest of VP is discussed.

  12. Lateral solid-phase epitaxy of oxide thin films on glass substrate seeded with oxide nanosheets.

    PubMed

    Taira, Kenji; Hirose, Yasushi; Nakao, Shoichiro; Yamada, Naoomi; Kogure, Toshihiro; Shibata, Tatsuo; Sasaki, Takayoshi; Hasegawa, Tetsuya

    2014-06-24

    We developed a technique to fabricate oxide thin films with uniaxially controlled crystallographic orientation and lateral size of more than micrometers on amorphous substrates. This technique is lateral solid-phase epitaxy, where epitaxial crystallization of amorphous precursor is seeded with ultrathin oxide nanosheets sparsely (≈10% coverage) deposited on the substrate. Transparent conducting Nb-doped anatase TiO2 thin films were fabricated on glass substrates by this technique. Perfect (001) orientation and large grains with lateral sizes up to 10 μm were confirmed by X-ray diffraction, atomic force microscopy, and electron beam backscattering diffraction measurements. As a consequence of these features, the obtained film exhibited excellent electrical transport properties comparable to those of epitaxial thin films on single-crystalline substrates. This technique is a versatile method for fabricating high-quality oxide thin films other than anatase TiO2 and would increase the possible applications of oxide-based thin film devices.

  13. Methods for both coating a substrate with aluminum oxide and infusing the substrate with elemental aluminum

    SciTech Connect

    Choi, Jung-Pyung; Weil, Kenneth Scott

    2016-11-01

    Methods of aluminizing the surface of a metal substrate. The methods of the present invention do not require establishment of a vacuum or a reducing atmosphere, as is typically necessary. Accordingly, aluminization can occur in the presence of oxygen, which greatly simplifies and reduces processing costs by allowing deposition of the aluminum coating to be performed, for example, in air. Embodiments of the present invention can be characterized by applying a slurry that includes a binder and powder granules containing aluminum to the metal substrate surface. Then, in a combined step, a portion of the aluminum is diffused into the substrate and a portion of the aluminum is oxidized by heating the slurry to a temperature greater than the melting point of the aluminum in an oxygen-containing atmosphere.

  14. Gold coated zinc oxide nanonecklaces as a SERS substrate.

    PubMed

    He, Lili; Shi, Jian; Sun, Xin; Lin, Mengshi; Yu, Ping; Li, Hao

    2011-04-01

    Faceted zinc oxide nanonecklace (ZnO NN) arrays were grown on r-plane sapphires along one direction (ZnO [0001] II sapphire [10-11] and ZnO (-12-10) II sapphire (01-12)) using chemical vapor deposition. After coated with 45 nm gold films and annealed at 250 degrees C for 30 seconds, the coated ZnO NNs exhibit satisfactory and stable surface enhanced Raman scattering (SERS) effects when tested with melamine and other chemicals. The limit of detection of melamine is 10(-5) mol/L and the analytical enhancement factor is 10(4), which is competitive to a commercial substrate. This study indicates that gold coated ZnO NN substrates have a great potential as SERS-active substrates in rapid detection of trace amount food contaminants such as melamine and other chemicals.

  15. Substrate Oxidation by Indoleamine 2,3-Dioxygenase

    PubMed Central

    Booth, Elizabeth S.; Basran, Jaswir; Lee, Michael; Handa, Sandeep; Raven, Emma L.

    2015-01-01

    The kynurenine pathway is the major route of l-tryptophan (l-Trp) catabolism in biology, leading ultimately to the formation of NAD+. The initial and rate-limiting step of the kynurenine pathway involves oxidation of l-Trp to N-formylkynurenine. This is an O2-dependent process and catalyzed by indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase. More than 60 years after these dioxygenase enzymes were first isolated (Kotake, Y., and Masayama, I. (1936) Z. Physiol. Chem. 243, 237–244), the mechanism of the reaction is not established. We examined the mechanism of substrate oxidation for a series of substituted tryptophan analogues by indoleamine 2,3-dioxygenase. We observed formation of a transient intermediate, assigned as a Compound II (ferryl) species, during oxidation of l-Trp, 1-methyl-l-Trp, and a number of other substrate analogues. The data are consistent with a common reaction mechanism for indoleamine 2,3-dioxygenase-catalyzed oxidation of tryptophan and other tryptophan analogues. PMID:26511316

  16. Structural requirements for human inducible nitric oxide synthase substrates and substrate analogue inhibitors.

    PubMed

    Grant, S K; Green, B G; Stiffey-Wilusz, J; Durette, P L; Shah, S K; Kozarich, J W

    1998-03-24

    Inducible nitric oxide synthase (iNOS; EC 1.14.13.39) catalyzes the NADPH-dependent oxidation of one of the free guanidino nitrogens of L-Arg to form nitric oxide and L-citrulline. Analogues of L-Arg and the inhibitor, L-N6-(1-iminoethyl)lysine, were used to define structural elements required for the binding and catalysis of compounds. L-Arg analogues with sequentially shorter methylene spacing between the guanidino group and the amino acid portion of the molecule were not iNOS substrates but were reversible inhibitors. L-Arg analogues such as agmatine with a hydroxyl substitution at the 2-amino position were substrates. Desaminoarginine was not a substrate but a reversible inhibitor. Desaminoarginine, agmatine, and argininic acid bound to the enzyme to give type I difference spectra similar to that of L-Arg. The amidino compounds L-N6-(1-iminoethyl)lysine, L-N5-(1-iminoethyl)ornithine, and N5-(1-iminoethyl)cadaverdine, but not N6-(1-iminoethyl)-6-aminocaproic acid, were NADPH-dependent, irreversible inactivators of iNOS. For both the L-Arg and L-N6-(1-iminoethyl)lysine analogues, the 2-amino group appeared to play an important role in catalytic events leading to either substrate turnover or mechanism-based inactivation. Inactivation of iNOS by L-N6-(1-iminoethyl)lysine was NADPH- and dioxygen-dependent, but low incorporation of radiolabel with DL--4, 5-3H]-N6-(1-iminoethyl)lysine indicates that the mechanism of enzyme inactivation is not covalent modification of the protein.

  17. Oxide perovskite crystals for HTSC film substrates microwave applications

    NASA Technical Reports Server (NTRS)

    Bhalla, A. S.; Guo, Ruyan

    1995-01-01

    The research focused upon generating new substrate materials for the deposition of superconducting yttrium barium cuprate (YBCO) has yielded several new hosts in complex perovskites, modified perovskites, and other structure families. New substrate candidates such as Sr(Al(1/2)Ta(1/2))O3 and Sr(Al(1/2)Nb(1/2))O3, Ba(Mg(1/3)Ta(2/3))O3 in complex oxide perovskite structure family and their solid solutions with ternary perovskite LaAlO3 and NdGaO3 are reported. Conventional ceramic processing techniques were used to fabricate dense ceramic samples. A laser heated molten zone growth system was utilized for the test-growth of these candidate materials in single crystal fiber form to determine crystallographic structure, melting point, thermal, and dielectric properties as well as to make positive identification of twin free systems. Some of those candidate materials present an excellent combination of properties suitable for microwave HTSC substrate applications.

  18. The effect of substrate texture and oxidation temperature on oxide texture development in zirconium alloys

    NASA Astrophysics Data System (ADS)

    Garner, A.; Frankel, P.; Partezana, J.; Preuss, M.

    2017-02-01

    During corrosion of zirconium alloys a highly textured oxide is formed, the degree of this preferred orientation has previously been shown to be an important factor in determining the corrosion behaviour of these alloys. Two distinct experiments were designed in order to investigate the origin of this oxide texture development on two commercial alloys. Firstly, sheet samples of Zircaloy-4 were oxidised between 500 and 800 °C in air. The resulting monoclinic oxide texture strength was observed to decrease with increasing oxidation temperature. In a second experiment, orthogonal faces of Low Tin ZIRLO™ were oxidised in 360 °C water, providing different substrate textures but identical microstructures. The substrate texture was observed to have a negligible effect on the corrosion performance whilst the major orientation of both oxide phases was found to be independent of substrate orientation. It is concluded that the main driving force for oxide texture development in single-phase zirconium alloys is the compressive stress caused by the Zrsbnd ZrO2 transformation.

  19. Polycrystalline ferroelectric or multiferroic oxide articles on biaxially textured substrates and methods for making same

    DOEpatents

    Goyal, Amit; Shin, Junsoo

    2015-03-31

    A polycrystalline ferroelectric and/or multiferroic oxide article includes a substrate having a biaxially textured surface; at least one biaxially textured buffer layer supported by the substrate; and a biaxially textured ferroelectric or multiferroic oxide layer supported by the buffer layer. Methods for making polycrystalline ferroelectric and/or multiferroic oxide articles are also disclosed.

  20. Substrate-Ligand Interactions in Geobacillus Stearothermophilus Nitric Oxide Synthase†

    PubMed Central

    Kabir, Mariam; Sudhamsu, Jawahar; Crane, Brian R.; Yeh, Syun-Ru; Rousseau, Denis L.

    2012-01-01

    Ntric oxide synthase (NOS) generates NO via a sequential two-step reaction, L-arginine (L-Arg) → N-hydroxy-L-arginine (NOHA) → L-citrulline + NO. Each step of the reaction follows a distinct mechanism defined by the chemical environment introduced by each substrate bound to the heme active site. The dioxygen complex of the NOS enzyme from a thermophilic bacterium, Geobacillus stearothermophilus (gsNOS), is unusually stable; hence it provides a unique model for the studies of the mechanistic differences between the two steps of the NOS reaction. By using CO as a structural probe, it was found that gsNOS exhibits two conformations in the absence of substrate, as indicated by the presence of two sets of the νFe-CO/νC-O modes in the resonance Raman spectra. In the νFe-CO versus νC-O inverse correlation plot, one set of the data falls on the correlation line characterized by mammalian NOSs (mNOS), whereas the other set of the data lies on a new correlation line defined by a bacterial NOS from Bacillus subtilis (bsNOS), reflecting a difference in the proximal Fe-Cys bond strength in the two conformers of gsNOS. The addition of L-Arg stabilizes the conformer associated with the mNOS correlation line, whereas NOHA stabilizes the conformer associated with the bsNOS correlation line, although both substrates introduce a positive electrostatic potential to the distal heme pocket. To assess how substrate-binding affects the Fe-Cys bond strength, the frequency of the Fe-Cys stretching mode of gsNOS was monitored by resonance Raman spectroscopy with 363.8 nm excitation. In the substrate-free form, the Fe-Cys stretching mode was detected at 342.5 cm−1 similar to that of bsNOS. The binding of L-Arg and NOHA brings about a small decrease and increase in the Fe-Cys stretching frequency, respectively. The implication of these unique structural features on the oxygen chemistry of NOS is discussed. PMID:18956884

  1. Substrate-ligand interactions in Geobacillus stearothermophilus nitric oxide synthase.

    PubMed

    Kabir, Mariam; Sudhamsu, Jawahar; Crane, Brian R; Yeh, Syun-Ru; Rousseau, Denis L

    2008-11-25

    Nitric oxide synthase (NOS) generates NO via a sequential two-step reaction [l-arginine (l-Arg) --> N-hydroxy-l-arginine (NOHA) --> l-citrulline + NO]. Each step of the reaction follows a distinct mechanism defined by the chemical environment introduced by each substrate bound to the heme active site. The dioxygen complex of the NOS enzyme from a thermophilic bacterium, Geobacillus stearothermophilus (gsNOS), is unusually stable; hence, it provides a unique model for the studies of the mechanistic differences between the two steps of the NOS reaction. By using CO as a structural probe, we found that gsNOS exhibits two conformations in the absence of substrate, as indicated by the presence of two sets of nu(Fe-CO)/nu(C-O) modes in the resonance Raman spectra. In the nu(Fe-CO) versus nu(C-O) inverse correlation plot, one set of data falls on the correlation line characterized by mammalian NOSs (mNOS), whereas the other set of data lies on a new correlation line defined by a bacterial NOS from Bacillus subtilis (bsNOS), reflecting a difference in the proximal Fe-Cys bond strength in the two conformers of gsNOS. The addition of l-Arg stabilizes the conformer associated with the mNOS correlation line, whereas NOHA stabilizes the conformer associated with the bsNOS correlation line, although both substrates introduce a positive electrostatic potential into the distal heme pocket. To assess how substrate binding affects Fe-Cys bond strength, the frequency of the Fe-Cys stretching mode of gsNOS was monitored by resonance Raman spectroscopy with 363.8 nm excitation. In the substrate-free form, the Fe-Cys stretching mode was detected at 342.5 cm(-1), similar to that of bsNOS. The binding of l-Arg and NOHA brings about a small decrease and increase in the Fe-Cys stretching frequency, respectively. The implication of these unique structural features with respect to the oxygen chemistry of NOS is discussed.

  2. Fabrication and characterization of conductive anodic aluminum oxide substrates

    NASA Astrophysics Data System (ADS)

    Altuntas, Sevde; Buyukserin, Fatih

    2014-11-01

    Biomaterials that allow the utilization of electrical, chemical and topographic cues for improved neuron-material interaction and neural regeneration hold great promise for nerve tissue engineering applications. The nature of anodic aluminum oxide (AAO) membranes intrinsically provides delicate control over topographic and chemical cues for enhanced cell interaction; however their use in nerve regeneration is still very limited. Herein, we report the fabrication and characterization of conductive AAO (CAAO) surfaces for the ultimate goal of integrating electrical cues for improved nerve tissue behavior on the nanoporous substrate material. Parafilm was used as a protecting polymer film, for the first time, in order to obtain large area (50 cm2) free-standing AAO membranes. Carbon (C) was then deposited on the AAO surface via sputtering. Morphological characterization of the CAAO surfaces revealed that the pores remain open after the deposition process. The presence of C on the material surface and inside the nanopores was confirmed by XPS and EDX studies. Furthermore, I-V curves of the surface were used to extract surface resistance values and conductive AFM demonstrated that current signals can only be achieved where conductive C layer is present. Finally, novel nanoporous C films with controllable pore diameters and one dimensional (1-D) C nanostructures were obtained by the dissolution of the template AAO substrate.

  3. Efficient Direct Reduction of Graphene Oxide by Silicon Substrate

    PubMed Central

    Chan Lee, Su; Some, Surajit; Wook Kim, Sung; Jun Kim, Sun; Seo, Jungmok; Lee, Jooho; Lee, Taeyoon; Ahn, Jong-Hyun; Choi, Heon-Jin; Chan Jun, Seong

    2015-01-01

    Graphene has been studied for various applications due to its excellent properties. Graphene film fabrication from solutions of graphene oxide (GO) have attracted considerable attention because these procedures are suitable for mass production. GO, however, is an insulator, and therefore a reduction process is required to make the GO film conductive. These reduction procedures require chemical reducing agents or high temperature annealing. Herein, we report a novel direct and simple reduction procedure of GO by silicon, which is the most widely used material in the electronics industry. In this study, we also used silicon nanosheets (SiNSs) as reducing agents for GO. The reducing effect of silicon was confirmed by various characterization methods. Furthermore, the silicon wafer was also used as a reducing template to create a reduced GO (rGO) film on a silicon substrate. By this process, a pure rGO film can be formed without the impurities that normally come from chemical reducing agents. This is an easy and environmentally friendly method to prepare large scale graphene films on Si substrates. PMID:26194107

  4. Quantifying the Interfacial Strength of Oxide Scale and SS 441 Substrate Used in SOFC

    SciTech Connect

    Liu, Wenning N.; Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2009-08-15

    Under a typical SOFC working environment, oxide scale will grow on the metallic interconnects in oxidant environment. The growth of the oxide scale induces the growth stresses in the oxide scale and on the scale/substrate interface combined with the thermal stresses induced by thermal expansion coefficient mismatch between the oxide scale and the substrate, which may lead to scale delamination/buckling and eventual spallation during stack cooling, even leading to serious cell performance degradation. Therefore, the interfacial adhesion strength between the oxide scale and substrate is crucial to the reliability and durability of the metallic interconnect in SOFC operating environments. As a powerful contender of ferritic interconnects used in SOFC, its interfacial strength between the oxide scale and SS 441 substrate is very important for its application. In this paper, we applied an integrated experimental/analytical methodology to quantify the interfacial adhesion strength between oxide scale and metallic interconnect. The predicted interfacial strength is discussed in detailed

  5. Enhanced transparent conducting networks on plastic substrates modified with highly oxidized graphene oxide nanosheets

    NASA Astrophysics Data System (ADS)

    Woo, Jong Seok; Sin, Dong Hun; Kim, Haena; Jang, Jeong In; Kim, Ho Young; Lee, Geon-Woong; Cho, Kilwon; Park, Soo-Young; Han, Joong Tark

    2016-03-01

    Atomically thin and two-dimensional graphene oxide (GO) is a very fascinating material because of its functional groups, high transparency, and solution processability. Here we show that highly oxidized GO (HOGO) nanosheets serve as an effective interfacial modifier of transparent conducting films with one-dimensional (1D) silver nanowires (AgNWs) and single-walled carbon nanotubes (SWCNTs). Optically transparent and small-sized GO nanosheets, with minimal sp2 domains, were successfully fabricated by step-wise oxidation and exfoliation of graphite. We demonstrated that under-coated HOGO further decreases the sheet resistance of the SWCNT film top-coated with HOGO by increasing the contact area between the SWCNTs and HOGO nanosheets by generating hole carriers in the SWCNT as a result of charge transfer. Moreover, HOGO nanosheets with AgNWs contribute to the efficient thermal joining of AgNW networks on plastic substrates by limiting the thermal embedding of AgNWs into the plastic surface, resulting in efficient decrease of the sheet resistance. Furthermore, flexible organic photovoltaic cells with GO-modified AgNW anodes on a flexible substrate were successfully demonstrated.Atomically thin and two-dimensional graphene oxide (GO) is a very fascinating material because of its functional groups, high transparency, and solution processability. Here we show that highly oxidized GO (HOGO) nanosheets serve as an effective interfacial modifier of transparent conducting films with one-dimensional (1D) silver nanowires (AgNWs) and single-walled carbon nanotubes (SWCNTs). Optically transparent and small-sized GO nanosheets, with minimal sp2 domains, were successfully fabricated by step-wise oxidation and exfoliation of graphite. We demonstrated that under-coated HOGO further decreases the sheet resistance of the SWCNT film top-coated with HOGO by increasing the contact area between the SWCNTs and HOGO nanosheets by generating hole carriers in the SWCNT as a result of charge

  6. Investigation of optical properties of nickel oxide thin films deposited on different substrates

    NASA Astrophysics Data System (ADS)

    Nama Manjunatha, Krishna; Paul, Shashi

    2015-10-01

    Nickel oxide has been investigated for several potential applications, namely, ultraviolet detectors, electro chromic devices, displays, diodes for light emitting, transparent conductive electrode, and optoelectronic devices. These applications require an in depth analysis of nickel oxide prior to its exploration in aforementioned devices. Optical properties of materials were investigated by depositing thin film of nickel oxide on different substrates in order to understand if the choice of substrate can have effect on deducing various optical parameters and can lead to wrong conclusions. In view of this, we have investigated optical properties of nickel oxide deposited on different substrates (glass, transparent plastic, sapphire, potassium bromide, and calcium fluoride).

  7. Enhanced transparent conducting networks on plastic substrates modified with highly oxidized graphene oxide nanosheets.

    PubMed

    Woo, Jong Seok; Sin, Dong Hun; Kim, Haena; Jang, Jeong In; Kim, Ho Young; Lee, Geon-Woong; Cho, Kilwon; Park, Soo-Young; Han, Joong Tark

    2016-03-28

    Atomically thin and two-dimensional graphene oxide (GO) is a very fascinating material because of its functional groups, high transparency, and solution processability. Here we show that highly oxidized GO (HOGO) nanosheets serve as an effective interfacial modifier of transparent conducting films with one-dimensional (1D) silver nanowires (AgNWs) and single-walled carbon nanotubes (SWCNTs). Optically transparent and small-sized GO nanosheets, with minimal sp(2) domains, were successfully fabricated by step-wise oxidation and exfoliation of graphite. We demonstrated that under-coated HOGO further decreases the sheet resistance of the SWCNT film top-coated with HOGO by increasing the contact area between the SWCNTs and HOGO nanosheets by generating hole carriers in the SWCNT as a result of charge transfer. Moreover, HOGO nanosheets with AgNWs contribute to the efficient thermal joining of AgNW networks on plastic substrates by limiting the thermal embedding of AgNWs into the plastic surface, resulting in efficient decrease of the sheet resistance. Furthermore, flexible organic photovoltaic cells with GO-modified AgNW anodes on a flexible substrate were successfully demonstrated.

  8. Stress generation in thermally grown oxide films. [oxide scale spalling from superalloy substrates

    NASA Technical Reports Server (NTRS)

    Kumnick, A. J.; Ebert, L. J.

    1981-01-01

    A three dimensional finite element analysis was conducted, using the ANSYS computer program, of the stress state in a thin oxide film thermally formed on a rectangular piece of NiCrAl alloy. The analytical results indicate a very high compressive stress in the lateral directions of the film (approximately 6200 MPa), and tensile stresses in the metal substrate that ranged from essentially zero to about 55 MPa. It was found further that the intensity of the analytically determined average stresses could be approximated reasonably well by the modification of an equation developed previously by Oxx for stresses induced into bodies by thermal gradients.

  9. Novel synthetic methodology for controlling the orientation of zinc oxide nanowires grown on silicon oxide substrates

    NASA Astrophysics Data System (ADS)

    Cho, Jinhyun; Salleh, Najah; Blanco, Carlos; Yang, Sungwoo; Lee, Chul-Jin; Kim, Young-Woo; Kim, Jungsang; Liu, Jie

    2014-03-01

    This study presents a simple method to reproducibly obtain well-aligned vertical ZnO nanowire arrays on silicon oxide (SiOx) substrates using seed crystals made from a mixture of ammonium hydroxide (NH4OH) and zinc acetate (Zn(O2CCH3)2) solution. In comparison, high levels of OH- concentration obtained using NaOH or KOH solutions lead to incorporation of Na or K atoms into the seed crystals, destroying the c-axis alignment of the seeds and resulting in the growth of misaligned nanowires. The use of NH4OH eliminates the metallic impurities and ensures aligned nanowire growth in a wide range of OH- concentrations in the seed solution. The difference of crystalline orientations between NH4OH- and NaOH-based seeds is directly observed by lattice-resolved images and electron diffraction patterns using a transmission electron microscope (TEM). This study obviously suggests that metallic impurities incorporated into the ZnO nanocrystal seeds are one of the factors that generates the misaligned ZnO nanowires. This method also enables the use of silicon oxide substrates for the growth of vertically aligned nanowires, making ZnO nanostructures compatible with widely used silicon fabrication technology.This study presents a simple method to reproducibly obtain well-aligned vertical ZnO nanowire arrays on silicon oxide (SiOx) substrates using seed crystals made from a mixture of ammonium hydroxide (NH4OH) and zinc acetate (Zn(O2CCH3)2) solution. In comparison, high levels of OH- concentration obtained using NaOH or KOH solutions lead to incorporation of Na or K atoms into the seed crystals, destroying the c-axis alignment of the seeds and resulting in the growth of misaligned nanowires. The use of NH4OH eliminates the metallic impurities and ensures aligned nanowire growth in a wide range of OH- concentrations in the seed solution. The difference of crystalline orientations between NH4OH- and NaOH-based seeds is directly observed by lattice-resolved images and electron

  10. Effect of substrate temperature on structural and electrical properties of RF sputtered hafnium oxide thin films

    SciTech Connect

    Das, K. C.; Ghosh, S. P.; Tripathy, N.; Kar, J. P.; Bose, G.; Lee, T.; Myoung, J. M.

    2015-06-24

    In this work hafnium oxide thin films were deposited on p-type silicon substrate by Radio frequency magnetron sputtering at different substrate temperature ranging from room temperature to 300 °C. The structural and electrical properties of the sputtered films were investigated by x-ray diffraction, capacitance-voltage and current-voltage measurements. The XRD results show the formation monoclinic structure of the hafnium oxide thin films. The shifting of C-V curves towards negative voltage side depicts the increase in positive oxide charges with the rise of substrate temperature. Leakage current was found increased, when temperature enhanced from room temperature to 300 °C.

  11. Screening method for selecting semiconductor substrates having defects below a predetermined level in an oxide layer

    DOEpatents

    Warren, William L.; Vanheusden, Karel J. R.; Schwank, James R.; Fleetwood, Daniel M.; Shaneyfelt, Marty R.; Winokur, Peter S.; Devine, Roderick A. B.

    1998-01-01

    A method for screening or qualifying semiconductor substrates for integrated circuit fabrication. The method comprises the steps of annealing at least one semiconductor substrate at a first temperature in a defect-activating ambient (e.g. hydrogen, forming gas, or ammonia) for sufficient time for activating any defects within on oxide layer of the substrate; measuring a defect-revealing electrical characteristic of at least a portion of the oxide layer for determining a quantity of activated defects therein; and selecting substrates for which the quantity of activated defects is below a predetermined level. The defect-revealing electrical characteristic may be a capacitance-versus-voltage (C-V) characteristic or a current-versus-voltage (I-V) characteristic that is dependent on an electrical charge in the oxide layer generated by the activated defects. Embodiments of the present invention may be applied for screening any type of semiconductor substrate or wafer having an oxide layer formed thereon or therein. This includes silicon-on-insulator substrates formed by a separation by the implantation of oxygen (SIMOX) process or the bond and etch back silicon-on-insulator (BESOI) process, as well as silicon substrates having a thermal oxide layer or a deposited oxide layer.

  12. Overlay coating degradation by simultaneous oxidation and coating/substrate interdiffusion. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.

    1983-01-01

    Degradation of NiCrAlZr overlay coatings on various NiCrAl substrates was examined after cyclic oxidation. Concentration/distance profiles were measured in the coating and substrate after various oxidation exposures at 1150 C. For each stubstrate, the Al content in the coating decreased rapidly. The concentration/distance profiles, and particularly that for Al, reflected the oxide spalling resistance of each coated substrate. A numerical model was developed to simulate diffusion associated with overlay-coating degradation by oxidation and coating/substrate interdiffusion. Input to the numerical model consisted of the Cr and Al content of the coating and substrate, ternary diffusivities, and various oxide spalling parameters. The model predicts the Cr and Al concentrations in the coating and substrate after any number of oxidation/thermal cycles. The numerical model also predicts coating failure based on the ability of the coating to supply sufficient Al to the oxide scale. The validity of the model was confirmed by comparison of the predicted and measured concentration/distance profiles. The model was subsequently used to identify the most critical system parameters affecting coating life.

  13. Application of a mixed metal oxide catalyst to a metallic substrate

    NASA Technical Reports Server (NTRS)

    Sevener, Kathleen M. (Inventor); Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Wisner, Daniel L. (Inventor)

    2009-01-01

    A method for applying a mixed metal oxide catalyst to a metallic substrate for the creation of a robust, high temperature catalyst system for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in propulsion systems. The method begins by forming a prepared substrate material consisting of a metallic inner substrate and a bound layer of a noble metal intermediate. Alternatively, a bound ceramic coating, or frit, may be introduced between the metallic inner substrate and noble metal intermediate when the metallic substrate is oxidation resistant. A high-activity catalyst slurry is applied to the surface of the prepared substrate and dried to remove the organic solvent. The catalyst layer is then heat treated to bind the catalyst layer to the surface. The bound catalyst layer is then activated using an activation treatment and calcinations to form the high-activity catalyst system.

  14. Nitrosyl-Heme Structures of Bacillus subtilis Nitric Oxide Synthase Have Implications for Understanding Substrate Oxidation

    SciTech Connect

    Pant,K.; Crane, B.

    2006-01-01

    The crystal structures of nitrosyl-heme complexes of a prokaryotic nitric oxide synthase (NOS) from Bacillus subtilis (bsNOS) reveal changes in active-site hydrogen bonding in the presence of the intermediate N{sup {omega}}-hydroxy-L-arginine (NOHA) compared to the substrate L-arginine (L-Arg). Correlating with a Val-to-Ile residue substitution in the bsNOS heme pocket, the Fe(II)-NO complex with both L-Arg and NOHA is more bent than the Fe(II)-NO, L-Arg complex of mammalian eNOS. Structures of the Fe(III)-NO complex with NOHA show a nearly linear nitrosyl group, and in one subunit, partial nitrosation of bound NOHA. In the Fe(II)-NO complexes, the protonated NOHA N{sup {omega}} atom forms a short hydrogen bond with the heme-coordinated NO nitrogen, but active-site water molecules are out of hydrogen bonding range with the distal NO oxygen. In contrast, the L-Arg guanidinium interacts more weakly and equally with both NO atoms, and an active-site water molecule hydrogen bonds to the distal NO oxygen. This difference in hydrogen bonding to the nitrosyl group by the two substrates indicates that interactions provided by NOHA may preferentially stabilize an electrophilic peroxo-heme intermediate in the second step of NOS catalysis.

  15. Process for depositing an oxide epitaxially onto a silicon substrate and structures prepared with the process

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    1993-01-01

    A process and structure involving a silicon substrate utilizes an ultra high vacuum and molecular beam epitaxy (MBE) methods to grow an epitaxial oxide film upon a surface of the substrate. As the film is grown, the lattice of the compound formed at the silicon interface becomes stabilized, and a base layer comprised of an oxide having a sodium chloride-type lattice structure grows epitaxially upon the compound so as to cover the substrate surface. A perovskite may then be grown epitaxially upon the base layer to render a product which incorporates silicon, with its electronic capabilities, with a perovskite having technologically-significant properties of its own.

  16. Substrate Effects on the High Temperature Oxidation Behavior of a Gold-Based Braze Filler Metal

    SciTech Connect

    Weil, K. Scott; Rice, Joseph P.

    2005-06-01

    Oxidation testing was conducted on a commercial gold-based braze alloy, Gold ABA®, and on zirconia/stainless steel couples joined using this filler metal. Preliminary results reveal that both substrates play a significant role in determining the overall oxidation behavior of the brazed joint.

  17. Substrate Effects on the High Temperature Oxidation Behavior of a Gold-Based Braze Filler Metal

    SciTech Connect

    Weil, K. Scott; Rice, Joseph P.

    2005-06-30

    Oxidation testing was conducted on a commercial gold-based braze alloy, Gold ABA, and on zirconia and stainless steel joining couples prepared using this braze filler metal. Preliminary results reveal that both substrates play a significant role in determining the overall oxidation resistance of the brazed joint.

  18. Iron Complex Catalyzed Selective C-H Bond Oxidation with Broad Substrate Scope.

    PubMed

    Jana, Sandipan; Ghosh, Munmun; Ambule, Mayur; Sen Gupta, Sayam

    2017-02-17

    The use of a peroxidase-mimicking Fe complex has been reported on the basis of the biuret-modified TAML macrocyclic ligand framework (Fe-bTAML) as a catalyst to perform selective oxidation of unactivated 3° C-H bonds and activated 2° C-H bonds with low catalyst loading (1 mol %) and high product yield (excellent mass balance) under near-neutral conditions and broad substrate scope (18 substrates which includes arenes, heteroaromatics, and polar functional groups). Aliphatic C-H oxidation of 3° and 2° sites of complex substrates was achieved with predictable selectivity using steric, electronic, and stereoelectronic rules that govern site selectivity, which included oxidation of (+)-artemisinin to (+)-10β-hydroxyartemisinin. Mechanistic studies indicate Fe(V)(O) to be the active oxidant during these reactions.

  19. Laser surface treatment of porous ceramic substrate for application in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Mahmod, D. S. A.; Khan, A. A.; Munot, M. A.; Glandut, N.; Labbe, J. C.

    2016-08-01

    Laser has offered a large number of benefits for surface treatment of ceramics due to possibility of localized heating, very high heating/cooling rates and possibility of growth of structural configurations only produced under non-equilibrium high temperature conditions. The present work investigates oxidation of porous ZrB2-SiC sintered ceramic substrates through treatment by a 1072 ± 10 nm ytterbium fiber laser. A multi-layer structure is hence produced showing successively oxygen rich distinct layers. The porous bulk beneath these layers remained unaffected as this laser-formed oxide scale and protected the substrate from oxidation. A glassy SiO2 structure thus obtained on the surface of the substrate becomes subject of interest for further research, specifically for its utilization as solid protonic conductor in Solid Oxide Fuel Cells (SOFCs).

  20. Overlay coating degradation by simultaneous oxidation and coating/substrate interdiffusion

    SciTech Connect

    Nesbitt, J.A.

    1984-08-01

    This paper describes a numerical model which simulates diffusion, associated with overlay-coating degradation by oxidation and coating/substrate interdiffusion. Such nickel-chromium-aluminum overlays are used in high temperature turbine applications. Inputs to the model were the chromium and aluminum content of coating and substrate, ternary diffusivities, and various oxide spalling parameters. The model predicts the chromium and aluminum concentrations in the coating and substrate after any number of oxidation/thermal cycles. The model also predicts coating failure based on the ability of the coating to supply sufficient aluminum to the oxide scale. The validity of the model was confirmed by comparison of the predicted and measured concentration/distance profiles.

  1. Determination of Interfacial Adhesion Strength between Oxide Scale and Substrate for Metallic SOFC Interconnects

    SciTech Connect

    Sun, Xin; Liu, Wenning N.; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2008-01-21

    The interfacial adhesion strength between the oxide scale and the substrate is crucial to the reliability and durability of metallic interconnects in SOFC operating environments. It is necessary, therefore, to establish a methodology to quantify the interfacial adhesion strength between the oxide scale and the metallic interconnect substrate, and furthermore to design and optimize the interconnect material as well as the coating materials to meet the design life of an SOFC system. In this paper, we present an integrated experimental/analytical methodology for quantifying the interfacial adhesion strength between oxide scale and a ferritic stainless steel interconnect. Stair-stepping indentation tests are used in conjunction with subsequent finite element analyses to predict the interfacial strength between the oxide scale and Crofer 22 APU substrate.

  2. Rare earth zirconium oxide buffer layers on metal substrates

    DOEpatents

    Williams, Robert K.; Paranthaman, Mariappan; Chirayil, Thomas G.; Lee, Dominic F.; Goyal, Amit; Feenstra, Roeland

    2001-01-01

    A laminate article comprises a substrate and a biaxially textured (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer over the substrate, wherein 0substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.

  3. Integrated Fresnel lens on thermally oxidized silicon substrate.

    PubMed

    Mottier, P; Valette, S

    1981-05-01

    Thin film Fresnel lenses have been achieved on SiO(2)/Si substrates covered with a waveguide layer of Si(3)N(4) grown by low pressure chemical vapor deposition (LPCVD). The phase shift between the different zones is induced by a SiO(2) top layer chemically etched. The use of this additional layer having a smaller refractive index than the waveguide results in a saturation of the lens characteristics vs the thickness of the SiO(2) layer; this feature associated with the good reproducibility of the LPCVD technology allows good control of the lens characteristics.

  4. Stopped-flow analysis of substrate binding to neuronal nitric oxide synthase.

    PubMed

    Abu-Soud, H M; Wang, J; Rousseau, D L; Stuehr, D J

    1999-09-21

    The kinetics of binding L-arginine and three alternative substrates (homoarginine, N-methylarginine, and N-hydroxyarginine) to neuronal nitric oxide synthase (nNOS) were characterized by conventional and stopped-flow spectroscopy. Because binding these substrates has only a small effect on the light absorbance spectrum of tetrahydrobiopterin-saturated nNOS, their binding was monitored by following displacement of imidazole, which displays a significant change in Soret absorbance from 427 to 398 nm. Rates of spectral change upon mixing Im-nNOS with increasing amounts of substrates were obtained and found to be monophasic in all cases. For each substrate, a plot of the apparent rate versus substrate concentration showed saturation at the higher concentrations. K(-)(1), k(2), k(-)(2), and the apparent dissociation constant were derived for each substrate from the kinetic data. The dissociation constants mostly agreed with those calculated from equilibrium spectral data obtained by titrating Im-nNOS with each substrate. We conclude that nNOS follows a two-step, reversible mechanism of substrate binding in which there is a rapid equilibrium between Im-nNOS and the substrate S followed by a slower isomerization process to generate nNOS'-S: Im-nNOS + S if Im-nNOS-S if nNOS'-S + Im. All four substrates followed this general mechanism, but differences in their kinetic values were significant and may contribute to their varying capacities to support NO synthesis.

  5. Process for depositing epitaxial alkaline earth oxide onto a substrate and structures prepared with the process

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    1996-01-01

    A process and structure involving a silicon substrate utilize molecular beam epitaxy (MBE) and/or electron beam evaporation methods and an ultra-high vacuum facility to grow a layup of epitaxial alkaline earth oxide films upon the substrate surface. By selecting metal constituents for the oxides and in the appropriate proportions so that the lattice parameter of each oxide grown closely approximates that of the substrate or base layer upon which oxide is grown, lattice strain at the film/film or film/substrate interface of adjacent films is appreciably reduced or relieved. Moreover, by selecting constituents for the oxides so that the lattice parameters of the materials of adjacent oxide films either increase or decrease in size from one parameter to another parameter, a graded layup of films can be grown (with reduced strain levels therebetween) so that the outer film has a lattice parameter which closely approximates that of, and thus accomodates the epitaxial growth of, a pervoskite chosen to be grown upon the outer film.

  6. Deposition of an Ultraflat Graphene Oxide Nanosheet on Atomically Flat Substrates

    NASA Astrophysics Data System (ADS)

    Khan, M. Z. H.; Shahed, S. M. F.; Yuta, N.; Komeda, T.

    2017-02-01

    In this study, graphene oxide (GO) sheets produced in the form of stable aqueous dispersions were deposited on Au (111), freshly cleaved mica, and highly oriented pyrolytic graphite (HOPG) substrates. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to study the presence and distinct contact of GO sheets on the substrates. It was revealed from the topography images that high-quality ultraflat GO monolayer sheets formed on the substrates without distinct cracking/wrinkling or folding. GO sheets with apparent height variation observed by microscopy also indicate ultraflat deposition with clear underlying steps. It was observed that ultrasonication and centrifuge steps prior to deposition were very effective for getting oxidation debris (OD)-free ultraflat single monolayer GO nanosheets onto substrates and that the process depends on the concentration of supplied GO solutions.

  7. Metal-oxide complementary inverters with a vertical geometry fabricated on flexible substrates

    NASA Astrophysics Data System (ADS)

    Dindar, A.; Kim, J. B.; Fuentes-Hernandez, C.; Kippelen, B.

    2011-10-01

    We report on the fabrication of p-channel thin film transistors (TFTs) and vertically stacked complementary inverters comprised of a p-channel copper oxide TFT on top of an n-channel indium gallium zinc oxide TFT fabricated on a flexible polyethersulfone substrate. The p- and n-channel TFTs showed saturation mobility values of 0.0022 and 1.58 cm2/Vs, respectively, yielding inverters with a gain of 120 V/V. This level of performance was achieved by reducing the copper oxide channel thickness, allowing oxygen diffusion into the copper oxide layer at medium processing temperature (150 °C).

  8. Tensile strain effect in ferroelectric perovskite oxide thin films on spinel magnesium aluminum oxide substrate

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaolan

    Ferroelectrics are used in FeRAM (Ferroelectric random-access memory). Currently (Pb,Zr)TiO3 is the most common ferroelectric material. To get lead-free and high performance ferroelectric material, we investigated perovskite ferroelectric oxides (Ba,Sr)TiO3 and BiFeO3 films with strain. Compressive strain has been investigated intensively, but the effects of tensile strain on the perovskite films have yet to be explored. We have deposited (Ba,Sr)TiO3, BiFeO3 and related films by pulsed laser deposition (PLD) and analyzed the films by X-ray diffractometry (XRD), atomic force microscopy (AFM), etc. To obtain inherently fully strained films, the selection of the appropriate substrates is crucial. MgAl2O4 matches best with good quality and size, yet the spinel structure has an intrinsic incompatibility to that of perovskite. We introduced a rock-salt structure material (Ni 1-xAlxO1+delta) as a buffer layer to mediate the structural mismatch for (Ba,Sr)TiO3 films. With buffer layer Ni1-xAlxO1+delta, we show that the BST films have high quality crystallization and are coherently epitaxial. AFM images show that the films have smoother surfaces when including the buffer layer, indicating an inherent compatibility between BST-NAO and NAO-MAO. In-plane Ferroelectricity measurement shows double hysteresis loops, indicating an antiferroelectric-like behavior: pinned ferroelectric domains with antiparallel alignments of polarization. The Curie temperatures of the coherent fully strained BST films are also measured. It is higher than 900°C, at least 800°C higher than that of bulk. The improved Curie temperature makes the use of BST as FeRAM feasible. We found that the special behaviors of ferroelectricity including hysteresis loop and Curie temperature are due to inherent fully tensile strain. This might be a clue of physics inside ferroelectric stain engineering. An out-of-plane ferroelectricity measurement would provide a full whole story of the tensile strain. However, a

  9. Method for computing the oxidation of two 13C-substrates ingested simultaneously during exercise.

    PubMed

    Péronnet, F; Adopo, E; Massicotte, D; Brisson, G R; Hillaire-Marcel, C

    1993-09-01

    This study presents a method for computing the respective amounts of two simultaneously ingested exogenous substrates (A and B) that are oxidized during a period of prolonged exercise by use of 13C labeling. This method is based on the observation that the total volume of 13CO2 produced (V13CO2tot) is the sum of 1) V13CO2 arising from the oxidation of endogenous substrates (V13CO2endo), 2) V13CO2 arising from the oxidation of substrate A (V13CO2A), and 3) V13CO2 arising from the oxidation of substrate B (V13CO2B). The equation, V13CO2tot = V13CO2endo+V13CO2A+V13CO2B, with three unknowns, can be solved from the results of three experiments conducted under the same conditions but with at least two values for the isotopic composition of A and B. This method has been used on five healthy male subjects to compute the amounts of glucose and fructose oxidized when a mixture of 15 g of glucose and 15 g of fructose is ingested (in 300 ml of water) over 60 min of cycle ergometer exercise at 65% of maximal O2 uptake. Results from three experiments indicated that 9.8 +/- 3.1 and 5.7 +/- 2.1 g of glucose and fructose, respectively, were oxidized. The total amount of exogenous carbohydrates oxidized (15.5 +/- 4.3 g) is in agreement with the oxidation rates of exogenous glucose computed in similar conditions when 30 g of glucose were ingested (13 g; Péronnet et al. Med. Sci. Sports Exercise 25: 297-302, 1993). The difference between the oxidation rates of exogenous glucose and fructose is also in line with data from the literature.

  10. Electrochemical oxidation of imazapyr with BDD electrode in titanium substrate.

    PubMed

    Souza, F L; Teodoro, T Q; Vasconcelos, V M; Migliorini, F L; Lima Gomes, P C F; Ferreira, N G; Baldan, M R; Haiduke, R L A; Lanza, M R V

    2014-12-01

    In this work we have studied the treatment of imazapyr by electrochemical oxidation with boron-doped diamond anode. Electrochemical degradation experiments were performed in a one-compartment cell containing 0.45 L of commercial formulations of herbicide in the pH range 3.0-10.0 by applying a density current between 10 and 150 mA cm(-2) and in the temperature range 25-45 °C. The maximum current efficiencies were obtained at lower current densities since the electrochemical system is under mass transfer control. The mineralization rate increased in acid medium and at higher temperatures. The treatment was able to completely degrade imazapyr in the range 4.6-100.0 mg L(-1), although the current charge required rises along with the increasing initial concentration of the herbicide. Toxicity analysis with the bioluminescent bacterium Vibrio fischeri showed that at higher pollutant concentrations the toxicity was reduced after the electrochemical treatment. To clarify the reaction pathway for imazapyr mineralization by OH radicals, LC-MS/MS analyses we performed together with a theoretical study. Ions analysis showed the formation of high levels of ammonium in the cathode. The main final products of the electrochemical oxidation of imazapyr with diamond thin film electrodes are formic, acetic and butyric acids.

  11. Laser patterning of very thin indium tin oxide thin films on PET substrates

    NASA Astrophysics Data System (ADS)

    McDonnell, C.; Milne, D.; Prieto, C.; Chan, H.; Rostohar, D.; O'Connor, G. M.

    2015-12-01

    This work investigates the film removal properties of 30 nm thick Indium Tin Oxide (ITO) thin films, on flexible polyethylene terephthalate (PET) substrates, using 355, 532 and 1064 nm nanosecond pulses (ns), and 343 and 1064 nm femtosecond pulses. The ablation threshold was found to be dependent on the applied wavelength and pulse duration. The surface topography of the laser induced features were examined using atomic force microscopy across the range of wavelengths and pulse durations. The peak temperature, strain and stress tensors were examined in the film and substrate during laser heating, using finite element computational methods. Selective removal of the thin ITO film from the polymer substrate is possible at all wavelengths except at 266 nm, were damage to substrate is observed. The damage to the substrate results in periodic surface structures (LIPPS) on the exposed PET, with a period of twice the incident wavelength. Fragmented crater edges are observed at all nanosecond pulse durations. Film removal using 1030 nm femtosecond pulses results in clean crater edges, however, minor 5 nm damage to the substrate is also observed. The key results show that film removal for ITO on PET, is through film de-lamination across all wavelengths and pulse durations. Film de-lamination occurs due to thermo-elastic stress at the film substrate interface region, as the polymer substrate expands under heating from direct laser absorption and heat conduction across the film substrate interface.

  12. H2O2-dependent substrate oxidation by an engineered diiron site in a bacterial hemerythrin.

    PubMed

    Okamoto, Yasunori; Onoda, Akira; Sugimoto, Hiroshi; Takano, Yu; Hirota, Shun; Kurtz, Donald M; Shiro, Yoshitsugu; Hayashi, Takashi

    2014-04-04

    The O2-binding carboxylate-bridged diiron site in DcrH-Hr was engineered in an effort to perform the H2O2-dependent oxidation of external substrates. A His residue was introduced near the diiron site in place of a conserved residue, Ile119. The I119H variant promotes the oxidation of guaiacol and 1,4-cyclohexadiene upon addition of H2O2.

  13. Pt3Zr(0001): A substrate for growing well-ordered ultrathin zirconia films by oxidation

    NASA Astrophysics Data System (ADS)

    Antlanger, Moritz; Mayr-Schmölzer, Wernfried; Pavelec, Jiří; Mittendorfer, Florian; Redinger, Josef; Varga, Peter; Diebold, Ulrike; Schmid, Michael

    2012-07-01

    We have studied the surface of pure and oxidized Pt3Zr(0001) by scanning tunneling microscopy (STM), Auger electron microscopy, and density functional theory (DFT). The well-annealed alloy surface shows perfect long-range chemical order. Occasional domain boundaries are probably caused by nonstoichiometry. Pt3Zr exhibits ABAC stacking along [0001]; only the A-terminated surfaces are seen by STM, in agreement with DFT results showing a lower surface energy for the A termination. DFT further predicts a stronger inward relaxation of the surface Zr than for Pt, in spite of the larger atomic size of Zr. A closed ZrO2 film is obtained by oxidation in 10-7 mbar O2 at 400 ∘C and post-annealing at ≈800∘C. The oxide consists of an O-Zr-O trilayer, equivalent to a (111) trilayer of the fluorite structure of cubic ZrO2, but contracted laterally. The oxide forms a (19×19)R23∘ superstructure. The first monolayer of the substrate consists of Pt and contracts, similar to the metastable reconstruction of pure Pt(111). DFT calculations show that the oxide trilayer binds rather weakly to the substrate. In spite of the O-terminated oxide, bonding to the substrate mainly occurs via the Zr atoms in the oxide, which strongly buckle down toward the Pt substrate atoms if near a Pt position. According to DFT, the oxide has a band gap; STM indicates that the conduction band minimum lies ≈2.3 eV above EF.

  14. Sex difference in substrate oxidation during low-intensity isometric exercise in young adults.

    PubMed

    Sarafian, Delphine; Schutz, Yves; Montani, Jean-Pierre; Dulloo, Abdul G; Miles-Chan, Jennifer L

    2016-09-01

    Low-intensity physical activity is increasingly promoted as an alternative to sedentary behavior. However, much research to date has focused on moderate- to vigorous-intensity physical activity, and in particular dynamic work, with the effect of low-intensity isometric exercise (<4 METs) on substrate utilization yet to be explored. Here we investigate the effects of such exercise on respiratory quotient (RQ) and determine the extent of intra- and inter-individual variability in response. Energy expenditure, RQ, and substrate oxidation were measured by ventilated-hood indirect calorimetry at rest and in response to standardized, intermittent, low-level isometric leg-press exercises at 5 loads (+5, +10, +15, +20, +25 kg) in 26 healthy, young adults. Nine participants repeated the experiment on 3 separate days to assess within-subject, between-day variability. There was no significant difference in energy cost and heart rate responses to low-intensity isometric exercise (<2 METs) between men and women. However, a sex difference was apparent in terms of substrate oxidation - with men increasing both fat and carbohydrate oxidation, and women only increasing fat oxidation while maintaining carbohydrate oxidation at baseline, resting levels. This sex difference was repeatable and persisted when substrate oxidation was adjusted for differences in body weight or body composition. Individual variability in RQ was relatively low, with both intra- and inter-individual coefficients of variation in the range of 3%-6% in both sexes. These results suggest that women preferentially increase fat oxidation during low-level isometric exercise. Whether such physical activity could be incorporated into treatment/prevention strategies aimed at optimizing fat oxidation in women warrants further investigation.

  15. Activation energy of thermal desorption of silicon oxide layers on silicon substrates

    NASA Astrophysics Data System (ADS)

    Enta, Yoshiharu; Osanai, Shodai; Ogasawara, Takahito

    2017-02-01

    Thermal desorption rates of silicon oxide layers, from 20 to 120 nm in thickness, on silicon substrates in vacuum have been accurately obtained from intervals between ring structures formed inside voids on the oxide layers. From the temperature dependence of the desorption rate, the activation energy and frequency factor of the desorption reaction have been derived as a function of the oxide thickness. The obtained values are compared with the previous studies, and as a result, the activation energy is found to be almost constant ( 4 eV) in a wide range of the oxide thickness. The frequency factor decreases as the inverse square of the oxide thickness. The decomposition kinetics of the oxide layer is also discussed from the obtained results.

  16. Oxidation of ultrafast radical clock substrate probes by the soluble methane monooxygenase from Methylococcus capsulatus (Bath).

    PubMed

    Valentine, A M; LeTadic-Biadatti, M H; Toy, P H; Newcomb, M; Lippard, S J

    1999-04-16

    Radical clock substrate probes were used to assess the viability of a discrete substrate radical species in the mechanism of hydrocarbon oxidation by the soluble methane monooxygenase (sMMO) from Methylococcus capsulatus (Bath). New substituted cyclopropane probes were used with very fast ring-opening rate constants and other desirable attributes, such as the ability to discriminate between radical and cationic intermediates. Oxidation of these substrates by a reconstituted sMMO system resulted in no rearranged products, allowing an upper limit of 150 fs to be placed on the lifetime of a putative radical species. This limit strongly suggests that there is no such substrate radical intermediate. The two enantiomers of trans-1-methyl-2-phenyl-cyclopropane were prepared, and the regioselectivity of their oxidation to the corresponding cyclopropylmethanol and cyclopropylphenol products was determined. The results are consistent with selective orientation of the two enantiomeric substrates in the hydrophobic cavity at the active site of sMMO, specific models for which were examined by molecular modeling.

  17. Metal oxide-based silver substrates for surface-enhanced Raman scattering

    SciTech Connect

    Li, Y.S.; Lin, X.

    1995-12-01

    New substrates were prepared by using sol-gel process for metal oxide (MgO and TiO{sub 2}) undercoating and by using chemical reduction method for silver coating. The substrates were found to exhibit strong Surface-Enhanced Raman Scattering (SERS) signals for benzoic acid (BA), terephthalic acid (TPA), p-nitrobenzoic acid (PNBA), p-aminobenzoic acid (PABA), p-nitrophenol (PNP), and p-nitroanaline. Optimization of metal oxide undercoating and silver deposition was conducted to obtain intense SER band of BA. It was shown that the substrates could be reused for the SER investigation of different samples. A study of the solvent effect on the SERS intensity of BA was conducted; an explanation to the result was suggested.

  18. Synthesis and electrochemical capacitance of long tungsten oxide nanorod arrays grown vertically on substrate

    SciTech Connect

    Park, Sun Hwa; Kim, Young Heon; Lee, Tae Geol; Shon, Hyun Kyong; Park, Hyun Min; Song, Jae Yong

    2012-11-15

    Highlights: ► Growth of long amorphous tungsten oxide nanorods on a substrate. ► Formation of single-crystalline tungsten oxide nanorods by a heat-treatment. ► High electrochemical pseudocapacitance of 2.8 mF cm{sup −2}. ► Excellent cyclability of psuedocapacitance up to 1000 cycles. -- Abstract: Long tungsten oxide nanorods are vertically grown on Al/W/Ti coated silicon substrates using a two-step anodization process. The first anodization of the Al film forms a mesh-like mask of anodic aluminum oxide, and the second anodization of the W film results in the formation of a buffer layer, a bottom nanorod, and a top nanorod of amorphous tungsten oxide. A pore-widening process prior to the second anodization leads to the enhancement of nanorod length above approximately 500 nm. After a heat-treatment, the tungsten oxide nanorods are crystallized to form a single crystalline structure while the buffer layer forms a polycrystalline structure. The crystalline tungsten oxide nanorods show a cyclic voltammogram retaining the quasi-rectangular shape of an electrochemically reversible faradaic redox reaction, i.e., a typical pseudocapacitive behavior. The maximum electrochemical capacitance per apparent surface area reaches approximately 2.8 mF cm{sup −2} at the voltage scan rate of 20 mV s{sup −1}, and the excellent cyclability of charge–discharge process is maintained up to 1000 cycles.

  19. Copper substrate as a catalyst for the oxidation of chemical vapor deposition-grown graphene

    SciTech Connect

    Li, Zhiting; Zhou, Feng; Parobek, David; Shenoy, Ganesh J.; Muldoon, Patrick; Liu, Haitao

    2015-04-15

    We report the catalytic effect of copper substrate on graphene–oxygen reaction at high temperature. Previous studies showed that graphene grown on copper are mostly defect-free with strong oxidation resistance. We found that a freshly prepared copper-supported graphene sample can be completely oxidized in trace amount of oxygen (<3 ppm) at 600 °C within 2 h. Both X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) suggest that upon ambient air exposure, oxygen molecules diffuse into the space between graphene and copper, resulting in the formation of copper oxide which acts as catalytic sites for the graphene-oxygen reaction. This result has important implications for the characterization, processing, and storage of copper-supported graphene samples. - Graphical abstract: The copper substrate enhances the thermel oxidation of single-layer graphene. - Highlights: • A copper-supported graphene can be oxidized in Ar (O{sub 2}<3 ppm, 600 °C, 2 h). • O{sub 2} intercalates between graphene and copper upon exposure to air. • The copper foil should not be considered as an inert substrate.

  20. Laser Direct Ablation of Indium Tin Oxide Films on Both Sides of Various Substrates.

    PubMed

    Oh, Gi Taek; Kwon, Sang Jik; Han, Jae-Hee; Cho, Eou Sik

    2015-03-01

    We demonstrate ablation of indium tin oxide (ITO) films onto both glass and polyethylene terephthalate (PET) substrates, using a Q-switched diode-pumped neodymium-doped yttrium vanadate laser (Nd:YVO4, λ = 1064 nm) incident on both the front and back sides of the substrate. From scanning electron microscope (SEM) images and depth profile data, ITO patterns that were laser-ablated onto glass from the back side showed a larger abrupt change in the ablated line width than those ablated from the front. However, there were only slight differences in ablated line widths due to the direction of the incident laser beam. We provide a possible explanation in terms of several factors: dispersion of laser beam energy through the substrate, overlapping of each laser beam spot due to scanning speed, and the thickness of glass and PET substrates.

  1. Protein oxidation in the intermembrane space of mitochondria is substrate-specific rather than general

    PubMed Central

    Peleh, Valentina; Riemer, Jan; Dancis, Andrew; Herrmann, Johannes M.

    2014-01-01

    In most cellular compartments cysteine residues are predominantly reduced. However, in the bacterial periplasm, the ER and the mitochondrial intermembrane space (IMS), sulfhydryl oxidases catalyze the formation of disulfide bonds. Nevertheless, many IMS proteins contain reduced cysteines that participate in binding metal- or heme-cofactors. In this study, we addressed the substrate specificity of the mitochondrial protein oxidation machinery. Dre2 is a cysteine-rich protein that is located in the cytosol. A large fraction of Dre2 bound to the cytosolic side of the outer membrane of mitochondria. Even when Dre2 is artificially targeted to the IMS, its cysteine residues remain in the reduced state. This indicates that protein oxidation in the IMS of mitochondria is not a consequence of the apparent oxidizing environment in this compartment but rather is substrate-specific and determined by the presence of Mia40-binding sites. PMID:28357226

  2. Oral contraception and energy intake in women: impact on substrate oxidation during exercise.

    PubMed

    Isacco, Laurie; Thivel, David; Pelle, Anne Meddahi; Zouhal, Hassane; Duclos, Martine; Duche, Pascale; Boisseau, Nathalie

    2012-08-01

    Oral contraception (OC) and energy intake may play a role in fuel selection during exercise. The aim of this study was to investigate the effect of OCs (OC+ vs. OC-) in fed and fasting conditions on substrate oxidation and metabolic and hormonal responses in women during exercise. Substrate oxidation (respiratory exchange ratio and lipid and carbohydrates oxidation rates), metabolic (glycerol, free fatty acids (FFA), and glucose), and hormonal (insulin, adrenaline, and noradrenaline) responses were determined in 21 women: 10 regularly menstruating women (OC-) and 11 women using OCs (OC+: low-dose monophasic pill; ethinyl estradiol ≤ 30 µg) during 45 min at 65% of maximal oxygen consumption in fasting and postprandial states. At rest, OC+ presented higher low-density lipoprotein cholesterol, total cholesterol, and triglyceride plasma concentrations as compared with OC-. OC status had no influence on substrate oxidation and metabolic and hormonal responses during exercise. In the fasting state, whatever the OC status, women exhibited greater reliance on fat than in postprandial condition. This occurred in the presence of lower plasma insulin concentrations and higher plasma FFA and glycerol levels. The results indicated that the use of low-dose monophasic combined with OCs did not modify fuel selection and metabolic and hormonal responses during exercise in women. The fasting condition, compared with the fed condition, decreased carbohydrate oxidation during exercise, leading to a greater lipid mobilization and utilization whatever the OC status. Thus, in women, the realization of an exercise in either the fed or fasting conditions had a greater impact on substrate oxidation than OC status.

  3. Effect of Oxidation on the Bonding Formation of Plasma-Sprayed Stainless Steel Splats onto Stainless Steel Substrate

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Li, Chang-Jiu; Yang, Guan-Jun; Li, Cheng-Xin

    2017-01-01

    Stainless steel splats were deposited on 304 stainless substrates with different thicknesses of oxide layer to examine the effect of substrate oxidation on splat morphology and splat-substrate interface bonding by inert low-pressure plasma spraying. The cross sections of splats showing the splat-substrate interface were prepared by focus ion beam (FIB). The splat morphology and splat-substrate interface bonding state were characterized by scanning electron microscopy. The interface bonding was also examined by an electrolytic etching process. Results showed that with increasing oxide layer thickness and surface roughness, the morphology of splat changed from disk shape to splashed finger-like shape. The examination into the interface bonding by using FIB-prepared cross-sectional samples revealed that the splat interface bonding depended on the oxide roughness and composition. The interface bonding with a ratio of 44% was formed at the inner part of a splat on the pre-oxidized substrate when iron oxide presented on the surface, and the roughness of oxide scale was <5 nm. When the pre-oxidizing temperature exceeded 800 °C, the surface roughness increased to 14 nm and chromium oxide covered the pre-oxidized surface, resulting in no effective bonding forming at the whole interface. Thus, surface roughness and oxide composition have a significant influence on the splat interface bonding formation.

  4. Substrate inhibition: Oxidation of D-sorbitol and D-mannitol by potassium periodate in alkaline medium

    NASA Astrophysics Data System (ADS)

    Lakshman Kumar, Y.; Venkata Nadh, R.; Radhakrishnamurti, P. S.

    2014-05-01

    In the oxidation of D-sorbitol and D-mannitol by potassium periodate in alkaline media, substrate inhibition was observed with both substrates, i.e., a decrease in the rate of the reaction was observed with an increase in the concentration of substrate. The substrate inhibition was attributed to the formation of stable complex between the substrate and periodate. The reactions were found to be first order in case of periodate and a positive fractional order with hydroxide ions. Arrhenius parameters were calculated for the oxidation of sorbitol and mannitol by potassium periodate in alkali media.

  5. In-situ Reflectance Monitoring of GaSb Substrate Oxide Desorption

    SciTech Connect

    C.J. Vineis; C.A. Wang; K.F. Jensen

    2000-08-21

    The use of specular reflectance to monitor GaSb substrate oxide desorption in-situ is reported. Substrates were loaded into the organometallic vapor phase epitaxy reactor either as-received (epi-ready) or after receiving a solvent degrease, acid etch and rinse. A variety of surface preparations and anneal conditions were investigated. HCL was used as the etchant, and in certain cases was followed by an additional etch in Br{sub 2}-HCl-HNO{sub 3}-CH{sub 3}COOH for comparison. Rinse comparisons included 2-propanol, methanol, and deionized water. Substrates were heated to either 525, 550, or 575 C. Features observed in the in-situ reflectance associated with the oxide desorption process were interpreted based on the starting oxide chemistry and thickness. Based on in-situ reflectance and ex-situ atomic force microscopy data, a recommendation on a reproducible GaSb substrate preparation technique suitable for high-quality epitaxial growth is suggested.

  6. Structure, stability and electrochromic properties of polyaniline film covalently bonded to indium tin oxide substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Wenzhi; Ju, Wenxing; Wu, Xinming; Wang, Yan; Wang, Qiguan; Zhou, Hongwei; Wang, Sumin; Hu, Chenglong

    2016-03-01

    Indium tin oxide (ITO) substrate was modified with 4-aminobenzylphosphonic acid (ABPA), and then the polyaniline (PANI) film covalently bonded to ITO substrate was prepared by the chemical oxidation polymerization. X-ray photoelectron spectroscopy (XPS), attenuated total reflection infrared (ATR-IR) spectroscopy, and atomic force microscopy (AFM) measurements demonstrated that chemical binding was formed between PANI and ABPA-modified ITO surface, and the maximum thickness of PANI layer is about 30 nm. The adhesive strength of PANI film on ITO substrate was tested by sonication. It was found that the film formed on the modified ITO exhibited a much better stability than that on bare one. Cyclic voltammetry (CV) and UV-vis spectroscopy measurements indicated that the oxidative potentials of PANI film on ABPA-modified ITO substrate were decreased and the film exhibited high electrochemical activities. Moreover, the optical contrast increased from 0.58 for PANI film (without ultrasound) to 1.06 for PANI film (after ultrasound for 60 min), which had an over 83% enhancement. The coloration time was 20.8 s, while the bleaching time was 19.5 s. The increase of electrochromic switching time was due to the lower ion diffusion coefficient of the large cation of (C4H9)4N+ under the positive and negative potentials as comparison with the small Li+ ion.

  7. Thermic effect and substrate oxidation in response to intravenous nutrition in cancer patients who lose weight.

    PubMed Central

    Lindmark, L; Bennegård, K; Edén, E; Svaninger, G; Ternell, M; Lundholm, K

    1986-01-01

    This study examined oxidative metabolism and thermogenesis in the acute response to controlled intravenous nutrition in seven cancer patients who lost weight. Six weight-losing and malnourished patients without cancer served as controls. Indirect calorimetry was used and measurements of arterial concentrations of various substrates, metabolic end products, and insulin were performed. Resting energy expenditure (REE) was measured after an overnight fast. The resting energy need was calculated for each patient according to REE. The nutrition program consisted of glucose and lipids (Intralipid KabiVitrum AB, Stockholm, Sweden) each as 50% of nonprotein calories and amino acids (6.9 mg N/kcal). These substrates were infused simultaneously at rates equivalent to one, two, and three times REE, over periods of 6.5 hours on 3 consecutive days after a 12-hour fast. Arterial substrate levels and energy expenditure were measured between 6 and 6.5 hours after the start of the infusion. The cancer patients had well-recognized metabolic changes in the fasted state, such as elevated plasma levels of glycerol, triglycerides, free fatty acids, and lactate, and higher energy expenditure than predicted. The cancer patients responded to strictly defined substrate challenge in a similar way as the malnourished patients without cancer. Whole body oxidative capacity and the proportion of infused glucose and lipids that were oxidized at different levels of infusion rates were not decreased in cancer patients compared with control patients. Similar arterial substrate concentrations among the groups during infusions argues for a maintained plasma clearance of the substrate in the cancer patients. This study supports the suggestion that cachectic cancer patients can generate and conserve energy normally in response to intravenous nutrition. This refers to cancer patients with a history of weight loss up to 15% of their normal body weight. Therefore, weight loss due to altered tumor

  8. Control of photophysical and photochemistry of colloidal quantum dots via metal and metal-oxide coated substrates

    NASA Astrophysics Data System (ADS)

    Sadeghi, S. M.; Nejat, A.

    2013-03-01

    We studied how deposition of a very thin layer of gold or chromium oxide on glass substrates can modify the way irradiation changes the fluorescence of CdSe/ZnS quantum dots. We found that the gold layer tends to shield the quantum dots from the substrate, preventing photoinduced fluorescence enhancement caused by the Coulomb blockage. In this case the emission of the quantum dots did not show also any broadening but rather a slight red shift, independent of the irradiation time. In the case of the chromium-oxide coated substrates we observed significant broadening and blue shift, indicating such oxide could enhance photo-oxidation of colloidal quantum dots significantly.

  9. EXAMINATION OF THE OXIDATION PROTECTION OF ZINC COATINGS FORMED ON COPPER ALLOYS AND STEEL SUBSTRATES

    SciTech Connect

    Papazoglou, M.; Chaliampalias, D.; Vourlias, G.; Pavlidou, E.; Stergioudis, G.; Skolianos, S.

    2010-01-21

    The exposure of metallic components at aggressive high temperature environments, usually limit their usage at similar application because they suffer from severe oxidation attack. Copper alloys are used in a wide range of high-quality indoor and outdoor applications, statue parts, art hardware, high strength and high thermal conductivity applications. On the other hand, steel is commonly used as mechanical part of industrial set outs or in the construction sector due to its high mechanical properties. The aim of the present work is the examination of the oxidation resistance of pack cementation zinc coatings deposited on copper, leaded brass and steel substrates at elevated temperature conditions. Furthermore, an effort made to make a long-term evaluation of the coated samples durability. The oxidation results showed that bare substrates appear to have undergone severe damage comparing with the coated ones. Furthermore, the mass gain of the uncoated samples was higher than this of the zinc covered ones. Particularly zinc coated brass was found to be more resistant to oxidation conditions in which it was exposed as it has the lower mass gain as compared to the bare substrates and zinc coated copper. Zinc coated steel was also proved to be more resistive than the uncoated steel.

  10. Metal Oxide Thin Film Transistors on Paper Substrate: Fabrication, Characterization, and Printing Process

    NASA Astrophysics Data System (ADS)

    Choi, Nack-Bong

    Flexible electronics is an emerging next-generation technology that offers many advantages such as light weight, durability, comfort, and flexibility. These unique features enable many new applications such as flexible display, flexible sensors, conformable electronics, and so forth. For decades, a variety of flexible substrates have been demonstrated for the application of flexible electronics. Most of them are plastic films and metal foils so far. For the fundamental device of flexible circuits, thin film transistors (TFTs) using poly silicon, amorphous silicon, metal oxide and organic semiconductor have been successfully demonstrated. Depending on application, low-cost and disposable flexible electronics will be required for convenience. Therefore it is important to study inexpensive substrates and to explore simple processes such as printing technology. In this thesis, paper is introduced as a new possible substrate for flexible electronics due to its low-cost and renewable property, and amorphous indium gallium zinc oxide (a-IGZO) TFTs are realized as the promising device on the paper substrate. The fabrication process and characterization of a-IGZO TFT on the paper substrate are discussed. a-IGZO TFTs using a polymer gate dielectric on the paper substrate demonstrate excellent performances with field effect mobility of ˜20 cm2 V-1 s-1, on/off current ratio of ˜106, and low leakage current, which show the enormous potential for flexible electronics application. In order to complement the n-channel a-IGZO TFTs and then enable complementary metal-oxide semiconductor (CMOS) circuit architectures, cuprous oxide is studied as a candidate material of p-channel oxide TFTs. In this thesis, a printing process is investigated as an alternative method for the fabrication of low-cost and disposable electronics. Among several printing methods, a modified offset roll printing that prints high resolution patterns is presented. A new method to fabricate a high resolution

  11. Substrate control of anisotropic resistivity in heteroepitaxial nanostructured arrays of cryptomelane manganese oxide on strontium titanate.

    PubMed

    Espinal, Anais E; Yan, Yonggao; Zhang, Lichun; Espinal, Laura; Morey, Aimee; Wells, Barrett O; Aindow, Mark; Suib, Steven L

    2014-01-15

    Resistivity and resistance measurements have been carried out for thin films of cryptomelane-type manganese oxide (OMS-2) grown onto (001), (110), and (111)STO single crystals substrates via pulsed laser deposition. While the symmetries of the (001) and (111)STO substrate surfaces give deposits consisting of multiple nanofiber arrays with isotropic in-plane resistivities, only a single nanofiber array is formed on (110)STO giving highly anisotropic electrical properties with very low resistivity values measured parallel to the fibers and similar to the lowest value ever reported.

  12. Highly flexible, hybrid-structured indium tin oxides for transparent electrodes on polymer substrates

    SciTech Connect

    Triambulo, Ross E.; Kim, Jung-Hoon; Park, Jin-Woo; Na, Min-Young; Chang, Hye-Jung

    2013-06-17

    We developed highly flexible, hybrid-structured crystalline indium tin oxide (ITO) for use as transparent electrodes on polymer substrates by embedding Ag nanoparticles (AgNPs) into the substrate. The hybrid ITO consists of domains in one orientation grown on the AgNPs and a matrix of the other orientation. The domains are stronger than the matrix and function as barriers to crack propagation. As a result, both the critical bending radius (r{sub c}) (under which the resistivity change ({Delta}{rho}) is less than a given value) and the change in {Delta}{rho} with decreasing r significantly decreased in the hybrid ITO compared with homogenous ITO.

  13. Anti-reflection coating of Cerium oxide on a plastic substrate

    NASA Astrophysics Data System (ADS)

    Kang, Hyunil; Choi, Wonseok; Kim, Doyoung

    2015-01-01

    Cerium oxide (CeO2) films are suitable for use as anti-reflective coatings for display panels, touch screens, and silicon solar cells. The CeO2 films grown by using a reactive radio frequency sputtering method under various deposition conditions was investigated. The CeO2 films were deposited at room temperature because the plastic substrate was too weak for use at higher temperatures. The films exhibited a strong (111) preferred orientation with properties varying as a function of the process conditions. We present the properties of CeO2 anti-reflective coatings on plastic substrates.

  14. X-ray Characterisation of Zinc Oxide (ZnO) Single Crystal Substrates

    SciTech Connect

    Dhanaraj, G.; Raghothamachar, B; Dudley, M

    2010-01-01

    Single crystal substrates of low defect density are paramount for fully realizing the numerous applications of zinc oxide (ZnO) wide bandgap semiconductors. While ZnO substrates are commercially available from various vendors, very little information is available on the structural properties of these substrates. Therefore, an extensive evaluation of available substrates would serve as a basis for the development of ZnO based devices and technologies. In this study, bulk ZnO single crystal substrates grown by different growth techniques have been characterised using synchrotron white beam X-ray topography and high resolution X-ray diffraction. The substrates exhibit a wide range of dislocation densities from as high as 10{sup 6} cm{sup -2} down to less than 1000 cm{sup -2} depending on the growth technique employed. The authors evaluation reveals that ZnO crystals grown by the hydrothermal technique possess the best structural quality with dislocation densities of 800-1000 cm{sup -2} and rocking curves with a full width half maximum of less than 12 arc seconds.

  15. Effect of graphene oxide ratio on the cell adhesion and growth behavior on a graphene oxide-coated silicon substrate

    NASA Astrophysics Data System (ADS)

    Jeong, Jin-Tak; Choi, Mun-Ki; Sim, Yumin; Lim, Jung-Taek; Kim, Gil-Sung; Seong, Maeng-Je; Hyung, Jung-Hwan; Kim, Keun Soo; Umar, Ahmad; Lee, Sang-Kwon

    2016-09-01

    Control of living cells on biocompatible materials or on modified substrates is important for the development of bio-applications, including biosensors and implant biomaterials. The topography and hydrophobicity of substrates highly affect cell adhesion, growth, and cell growth kinetics, which is of great importance in bio-applications. Herein, we investigate the adhesion, growth, and morphology of cultured breast cancer cells on a silicon substrate, on which graphene oxides (GO) was partially formed. By minimizing the size and amount of the GO-containing solution and the further annealing process, GO-coated Si samples were prepared which partially covered the Si substrates. The coverage of GO on Si samples decreases upon annealing. The behaviors of cells cultured on two samples have been observed, i.e. partially GO-coated Si (P-GO) and annealed partially GO-coated Si (Annealed p-GO), with a different coverage of GO. Indeed, the spreading area covered by the cells and the number of cells for a given culture period in the incubator were highly dependent on the hydrophobicity and the presence of oxygenated groups on GO and Si substrates, suggesting hydrophobicity-driven cell growth. Thus, the presented method can be used to control the cell growth via an appropriate surface modification.

  16. Effect of graphene oxide ratio on the cell adhesion and growth behavior on a graphene oxide-coated silicon substrate

    PubMed Central

    Jeong, Jin-Tak; Choi, Mun-Ki; Sim, Yumin; Lim, Jung-Taek; Kim, Gil-Sung; Seong, Maeng-Je; Hyung, Jung-Hwan; Kim, Keun Soo; Umar, Ahmad; Lee, Sang-Kwon

    2016-01-01

    Control of living cells on biocompatible materials or on modified substrates is important for the development of bio-applications, including biosensors and implant biomaterials. The topography and hydrophobicity of substrates highly affect cell adhesion, growth, and cell growth kinetics, which is of great importance in bio-applications. Herein, we investigate the adhesion, growth, and morphology of cultured breast cancer cells on a silicon substrate, on which graphene oxides (GO) was partially formed. By minimizing the size and amount of the GO-containing solution and the further annealing process, GO-coated Si samples were prepared which partially covered the Si substrates. The coverage of GO on Si samples decreases upon annealing. The behaviors of cells cultured on two samples have been observed, i.e. partially GO-coated Si (P-GO) and annealed partially GO-coated Si (Annealed p-GO), with a different coverage of GO. Indeed, the spreading area covered by the cells and the number of cells for a given culture period in the incubator were highly dependent on the hydrophobicity and the presence of oxygenated groups on GO and Si substrates, suggesting hydrophobicity-driven cell growth. Thus, the presented method can be used to control the cell growth via an appropriate surface modification. PMID:27652886

  17. Solution processable broadband transparent mixed metal oxide nanofilm optical coatings via substrate diffusion doping

    NASA Astrophysics Data System (ADS)

    Glynn, Colm; Aureau, Damien; Collins, Gillian; O'Hanlon, Sally; Etcheberry, Arnaud; O'Dwyer, Colm

    2015-11-01

    Devices composed of transparent materials, particularly those utilizing metal oxides, are of significant interest due to increased demand from industry for higher fidelity transparent thin film transistors, photovoltaics and a myriad of other optoelectronic devices and optics that require more cost-effective and simplified processing techniques for functional oxides and coatings. Here, we report a facile solution processed technique for the formation of a transparent thin film through an inter-diffusion process involving substrate dopant species at a range of low annealing temperatures compatible with processing conditions required by many state-of-the-art devices. The inter-diffusion process facilitates the movement of Si, Na and O species from the substrate into the as-deposited vanadium oxide thin film forming a composite fully transparent V0.0352O0.547Si0.4078Na0.01. Thin film X-ray diffraction and Raman scattering spectroscopy show the crystalline component of the structure to be α-NaVO3 within a glassy matrix. This optical coating exhibits high broadband transparency, exceeding 90-97% absolute transmission across the UV-to-NIR spectral range, while having low roughness and free of surface defects and pinholes. The production of transparent films for advanced optoelectronic devices, optical coatings, and low- or high-k oxides is important for planar or complex shaped optics or surfaces. It provides opportunities for doping metal oxides to ternary, quaternary or other mixed metal oxides on glass, encapsulants or other substrates that facilitate diffusional movement of dopant species.Devices composed of transparent materials, particularly those utilizing metal oxides, are of significant interest due to increased demand from industry for higher fidelity transparent thin film transistors, photovoltaics and a myriad of other optoelectronic devices and optics that require more cost-effective and simplified processing techniques for functional oxides and coatings

  18. Solution processable broadband transparent mixed metal oxide nanofilm optical coatings via substrate diffusion doping.

    PubMed

    Glynn, Colm; Aureau, Damien; Collins, Gillian; O'Hanlon, Sally; Etcheberry, Arnaud; O'Dwyer, Colm

    2015-12-21

    Devices composed of transparent materials, particularly those utilizing metal oxides, are of significant interest due to increased demand from industry for higher fidelity transparent thin film transistors, photovoltaics and a myriad of other optoelectronic devices and optics that require more cost-effective and simplified processing techniques for functional oxides and coatings. Here, we report a facile solution processed technique for the formation of a transparent thin film through an inter-diffusion process involving substrate dopant species at a range of low annealing temperatures compatible with processing conditions required by many state-of-the-art devices. The inter-diffusion process facilitates the movement of Si, Na and O species from the substrate into the as-deposited vanadium oxide thin film forming a composite fully transparent V0.0352O0.547Si0.4078Na0.01. Thin film X-ray diffraction and Raman scattering spectroscopy show the crystalline component of the structure to be α-NaVO3 within a glassy matrix. This optical coating exhibits high broadband transparency, exceeding 90-97% absolute transmission across the UV-to-NIR spectral range, while having low roughness and free of surface defects and pinholes. The production of transparent films for advanced optoelectronic devices, optical coatings, and low- or high-k oxides is important for planar or complex shaped optics or surfaces. It provides opportunities for doping metal oxides to ternary, quaternary or other mixed metal oxides on glass, encapsulants or other substrates that facilitate diffusional movement of dopant species.

  19. Local anodic oxidation on hydrogen-intercalated graphene layers: oxide composition analysis and role of the silicon carbide substrate

    NASA Astrophysics Data System (ADS)

    Colangelo, Francesco; Piazza, Vincenzo; Coletti, Camilla; Roddaro, Stefano; Beltram, Fabio; Pingue, Pasqualantonio

    2017-03-01

    We investigate nanoscale local anodic oxidation (LAO) on hydrogen-intercalated graphene grown by controlled sublimation of silicon carbide (SiC). Scanning probe microscopy was used as a lithographic and characterization tool in order to investigate the local properties of the nanofabricated structures. The anomalous thickness observed after the graphene oxidation process is linked to the impact of LAO on the substrate. Micro-Raman (μ-Raman) spectroscopy was employed to demonstrate the presence of two oxidation regimes depending on the applied bias. We show that partial and total etching of monolayer graphene can be achieved by tuning the bias voltage during LAO. Finally, a complete compositional characterization was achieved by scanning electron microscopy and energy dispersive spectroscopy.

  20. Local anodic oxidation on hydrogen-intercalated graphene layers: oxide composition analysis and role of the silicon carbide substrate.

    PubMed

    Colangelo, Francesco; Piazza, Vincenzo; Coletti, Camilla; Roddaro, Stefano; Beltram, Fabio; Pingue, Pasqualantonio

    2017-03-10

    We investigate nanoscale local anodic oxidation (LAO) on hydrogen-intercalated graphene grown by controlled sublimation of silicon carbide (SiC). Scanning probe microscopy was used as a lithographic and characterization tool in order to investigate the local properties of the nanofabricated structures. The anomalous thickness observed after the graphene oxidation process is linked to the impact of LAO on the substrate. Micro-Raman (μ-Raman) spectroscopy was employed to demonstrate the presence of two oxidation regimes depending on the applied bias. We show that partial and total etching of monolayer graphene can be achieved by tuning the bias voltage during LAO. Finally, a complete compositional characterization was achieved by scanning electron microscopy and energy dispersive spectroscopy.

  1. Preparation of hydroxyapatite-containing titania coating on titanium substrate by micro-arc oxidation

    SciTech Connect

    Ni Jiahua; Shi Yulong Yan Fengying; Chen Jianzhi; Wang Lei

    2008-01-08

    Hydroxyapatite-containing titania coatings on titanium substrates were formed by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH{sub 3}COO){sub 2}Ca.H{sub 2}O) and sodium phosphate monobasic dihydrate (NaH{sub 2}PO{sub 4}.2H{sub 2}O) using a pulse power supply. Scanning electron microscopy (SEM) with Energy dispersive X-ray spectrometer (EDX) and X-ray diffraction (XRD) were employed to characterize the microstructure, elemental composition and phase components of the coatings. The coatings were rough and porous, without apparent interface to the titanium substrates. All the oxidized coatings contained Ca and P as well as Ti and O, and the porous coatings were made up of anatase, rutile and hydroxyapatite. Such MAO films are expected to have significant applications as artificial bone joints and dental implants.

  2. Dye-sensitized solar cells based on different nano-oxides on plastic PET substrate

    NASA Astrophysics Data System (ADS)

    Mikula, Milan; Gemeiner, Pavol; Beková, Zuzana; Dvonka, Vladimír; Búc, Dalibor

    2015-01-01

    Polyethylene-terephthalate (PET) foils and glass slides coated with thin conductive layers were used as substrates for TiO2 or ZnO based photoactive electrodes of dye-sensitized solar cells (DSSC) with organo-metallic Ru-dye, standard iodine electrolyte and Pt coated FTO/glass counterelectrode (CE). Different compositions of nanoparticle oxides in forms of alcohol pastes as well as the CE paste were applied onto the substrates by screen printing or by doctor blade techniques. Photocurrents and I-V loading characteristics were measured depending on the solar cell structure and preparation, including the oxide composition, electrode conductivity and the dye type. The influence of thin TiO2 blocking layer prepared by sol-gel technique is also discussed.

  3. F2-laser patterning of indium tin oxide (ITO) thin film on glass substrate

    NASA Astrophysics Data System (ADS)

    Xu, M. Y.; Li, J.; Lilge, L. D.; Herman, P. R.

    2006-10-01

    This paper reports the controlled micromachining of 100 nm thick indium tin oxide (ITO) thin films on glass substrates with a vacuum-ultraviolet 157 nm F2 laser. Partial to complete film removal was observed over a wide fluence window from 0.49 J/cm2 to an optimized single pulse fluence of 4.5 J/cm2 for complete film removal. Optical microscopy, atomic force microscopy, and energy dispersive X-ray analysis show little substrate or collateral damage by the laser pulse which conserved the stoichiometry, optical transparency and electrical conductivity of ITO coating adjacent to the trenches. At higher fluence, a parallel micron sized channel can be etched in the glass substrate. The high photon energy and top-hat beam homogenized optical system of the F2 laser opens new means for direct structuring of electrodes and microchannels in biological microfluidic systems or in optoelectronics.

  4. Electrodeposition of Sb2Se3 on indium-doped tin oxides substrate: Nucleation and growth

    NASA Astrophysics Data System (ADS)

    Shi, Xuezhao; zhang, Xin; Tian, Yuan; Shen, Chengmin; Wang, Chunming; Gao, Hong-Jun

    2012-01-01

    The mechanisms related to the initial stages of the nucleation and growth of antimony selenide (Sb2Se3) semiconductor compounds onto the indium-doped tin oxides (ITO) coated glass surface have been investigated using chronoamperometry (CA) technique. The fabrication was conducted from nitric acid bath containing both Sb3+ and SeO2 species at ambient conditions. No underpotential deposition (UPD) of antimony and selenium onto ITO substrate was observed in the investigated systems indicating a weak precursor-substrate interaction. Deposition of antimony and selenium onto ITO substrate occurred with large overvoltage through 3D nucleation and growth mechanism followed by diffusion limited growth. FE-SEM and XRD results show that orthorhombic phase Sb2Se3 particles with their size between 90 and 125 nm were obtained and the atomic ratio for antimony and selenium was 2:2.63 according to the EDX results.

  5. Unlocking the binding and reaction mechanism of hydroxyurea substrates as biological nitric oxide donors

    PubMed Central

    Vankayala, Sai Lakshmana; Hargis, Jacqueline C.; Woodcock, H. Lee

    2012-01-01

    Hydroxyurea is the only FDA approved treatment of sickle cell disease. It is believed the primary mechanism of action is associated with the pharmacological elevation of nitric oxide in the blood; however, the exact details of this are still unclear. In the current work, we investigate the atomic level details of this process using a combination of flexible-ligand / flexible-receptor virtual screening coupled with energetic analysis that decomposes interaction energies. Utilizing these methods we were able to elucidate the previously unknown substrate binding modes of a series of hydroxyurea analogs to hemoglobin and the concomitant structural changes of the enzyme. We identify a backbone carbonyl that forms a hydrogen bond with bound substrates. Our results are consistent with kinetic and EPR measurements of hydroxyurea-hemoglobin reactions and a full mechanism is proposed that offers new insights into possibly improving substrate binding and/or reactivity. PMID:22519847

  6. ZnO Nanowires Synthesized by Vapor Phase Transport Deposition on Transparent Oxide Substrates

    PubMed Central

    2010-01-01

    Zinc oxide nanowires have been synthesized without using metal catalyst seed layers on fluorine-doped tin oxide (FTO) substrates by a modified vapor phase transport deposition process using a double-tube reactor. The unique reactor configuration creates a Zn-rich vapor environment that facilitates formation and growth of zinc oxide nanoparticles and wires (20–80 nm in diameter, up to 6 μm in length, density <40 nm apart) at substrate temperatures down to 300°C. Electron microscopy and other characterization techniques show nanowires with distinct morphologies when grown under different conditions. The effect of reaction parameters including reaction time, temperature, and carrier gas flow rate on the size, morphology, crystalline structure, and density of ZnO nanowires has been investigated. The nanowires grown by this method have a diameter, length, and density appropriate for use in fabricating hybrid polymer/metal oxide nanostructure solar cells. For example, it is preferable to have nanowires no more than 40 nm apart to minimize exciton recombination in polymer solar cells. PMID:20676196

  7. Substrate Oxidation by Indoleamine 2,3-Dioxygenase: EVIDENCE FOR A COMMON REACTION MECHANISM.

    PubMed

    Booth, Elizabeth S; Basran, Jaswir; Lee, Michael; Handa, Sandeep; Raven, Emma L

    2015-12-25

    The kynurenine pathway is the major route of L-tryptophan (L-Trp) catabolism in biology, leading ultimately to the formation of NAD(+). The initial and rate-limiting step of the kynurenine pathway involves oxidation of L-Trp to N-formylkynurenine. This is an O2-dependent process and catalyzed by indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase. More than 60 years after these dioxygenase enzymes were first isolated (Kotake, Y., and Masayama, I. (1936) Z. Physiol. Chem. 243, 237-244), the mechanism of the reaction is not established. We examined the mechanism of substrate oxidation for a series of substituted tryptophan analogues by indoleamine 2,3-dioxygenase. We observed formation of a transient intermediate, assigned as a Compound II (ferryl) species, during oxidation of L-Trp, 1-methyl-L-Trp, and a number of other substrate analogues. The data are consistent with a common reaction mechanism for indoleamine 2,3-dioxygenase-catalyzed oxidation of tryptophan and other tryptophan analogues.

  8. Prevention of electron field emission from molybdenum substrates for photocathodes by the native oxide layer

    NASA Astrophysics Data System (ADS)

    Lagotzky, Stefan; Barday, Roman; Jankowiak, Andreas; Kamps, Thorsten; Klimm, Carola; Knobloch, Jens; Müller, Günter; Senkovskiy, Boris; Siewert, Frank

    2015-05-01

    Comprehensive investigations of the electron field emission (FE) properties of annealed single crystal and polycrystalline molybdenum plugs, which are used as substrates for actual alkali-based photocathodes were performed with a FE scanning microscope. Well-polished and dry-ice cleaned Mo samples with native oxide did not show parasitic FE up to a field level of 50 MV/m required for photoinjector cavities. In situ heat treatments (HT) above 400 °C, which are usual before photocathode deposition, activated field emission at lower field strength. Oxygen loading into the Mo surface, however, partially weakened these emitters. X-ray photoelectron spectroscopy of comparable Mo samples showed the dissolution of the native oxide during such heat treatments. These results reveal the suppression of field emission by native Mo oxides. Possible improvements for the photocathode preparation will be discussed.

  9. Metal catalyst for low-temperature growth of controlled zinc oxide nanowires on arbitrary substrates.

    PubMed

    Kim, Baek Hyun; Kwon, Jae W

    2014-03-14

    Zinc oxide nanowires generated by hydrothermal method present superior physical and chemical characteristics. Quality control of the growth has been very challenging and controlled growth is only achievable under very limited conditions using homogeneous seed layers with high temperature processes. Here we show the controlled ZnO nanowire growth on various organic and inorganic materials without the requirement of a homogeneous seed layer and a high temperature process. We also report the discovery of an important role of the electronegativity in the nanowire growth on arbitrary substrates. Using heterogeneous metal oxide interlayers with low-temperature hydrothermal methods, we demonstrate well-controlled ZnO nanowire arrays and single nanowires on flat or curved surfaces. A metal catalyst and heterogeneous metal oxide interlayers are found to determine lattice-match with ZnO and to largely influence the controlled alignment. These findings will contribute to the development of novel nanodevices using controlled nanowires.

  10. Metal Catalyst for Low-Temperature Growth of Controlled Zinc Oxide Nanowires on Arbitrary Substrates

    PubMed Central

    Kim, Baek Hyun; Kwon, Jae W.

    2014-01-01

    Zinc oxide nanowires generated by hydrothermal method present superior physical and chemical characteristics. Quality control of the growth has been very challenging and controlled growth is only achievable under very limited conditions using homogeneous seed layers with high temperature processes. Here we show the controlled ZnO nanowire growth on various organic and inorganic materials without the requirement of a homogeneous seed layer and a high temperature process. We also report the discovery of an important role of the electronegativity in the nanowire growth on arbitrary substrates. Using heterogeneous metal oxide interlayers with low-temperature hydrothermal methods, we demonstrate well-controlled ZnO nanowire arrays and single nanowires on flat or curved surfaces. A metal catalyst and heterogeneous metal oxide interlayers are found to determine lattice-match with ZnO and to largely influence the controlled alignment. These findings will contribute to the development of novel nanodevices using controlled nanowires. PMID:24625584

  11. Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof

    DOEpatents

    Sarin, V.K.

    1990-08-21

    An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications is disclosed. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al[sub x]N[sub y]O[sub z] layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al[sub x]N[sub y]O[sub z] layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

  12. Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof

    DOEpatents

    Sarin, Vinod K.

    1990-01-01

    An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al.sub.x N.sub.y O.sub.z layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al.sub.x N.sub.y O.sub.z layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

  13. Enriched Iron(III)-Reducing Bacterial Communities are Shaped by Carbon Substrate and Iron Oxide Mineralogy.

    PubMed

    Lentini, Christopher J; Wankel, Scott D; Hansel, Colleen M

    2012-01-01

    Iron (Fe) oxides exist in a spectrum of structures in the environment, with ferrihydrite widely considered the most bioavailable phase. Yet, ferrihydrite is unstable and rapidly transforms to more crystalline Fe(III) oxides (e.g., goethite, hematite), which are poorly reduced by model dissimilatory Fe(III)-reducing microorganisms. This begs the question, what processes and microbial groups are responsible for reduction of crystalline Fe(III) oxides within sedimentary environments? Further, how do changes in Fe mineralogy shape oxide-hosted microbial populations? To address these questions, we conducted a large-scale cultivation effort using various Fe(III) oxides (ferrihydrite, goethite, hematite) and carbon substrates (glucose, lactate, acetate) along a dilution gradient to enrich for microbial populations capable of reducing Fe oxides spanning a wide range of crystallinities and reduction potentials. While carbon source was the most important variable shaping community composition within Fe(III)-reducing enrichments, both Fe oxide type and sediment dilution also had a substantial influence. For instance, with acetate as the carbon source, only ferrihydrite enrichments displayed a significant amount of Fe(III) reduction and the well-known dissimilatory metal reducer Geobacter sp. was the dominant organism enriched. In contrast, when glucose and lactate were provided, all three Fe oxides were reduced and reduction coincided with the presence of fermentative (e.g., Enterobacter spp.) and sulfate-reducing bacteria (e.g., Desulfovibrio spp.). Thus, changes in Fe oxide structure and resource availability may shift Fe(III)-reducing communities between dominantly metal-respiring to fermenting and/or sulfate-reducing organisms which are capable of reducing more recalcitrant Fe phases. These findings highlight the need for further targeted investigations into the composition and activity of speciation-directed metal-reducing populations within natural environments.

  14. Characterization of Thermal Oxides on 4H-SiC Epitaxial Substrates Using Fourier-Transform Infrared Spectroscopy.

    PubMed

    Seki, Hirofumi; Yoshikawa, Masanobu; Kobayashi, Takuma; Kimoto, Tsunenobu; Ozaki, Yukihiro

    2016-07-12

    Fourier transform infrared (FT-IR) spectra were measured for thermal oxides with different electrical properties grown on 4H-SiC substrates. The peak frequency of the transverse optical (TO) phonon mode was blue-shifted by 5 cm(-1) as the oxide-layer thickness decreased to 3 nm. The blue shift of the TO mode indicates interfacial compressive stress in the oxide. Comparison of data for the oxide on a SiC substrate with that for similar oxides on a Si substrate implies that the peak shift of the TO mode at the SiO2/SiC interface is larger than that of SiO2/Si, which suggests that the interfacial stress for the oxide on the SiC substrate is larger than that on the Si substrate. For the SiO2/SiC interfacial region (<3 nm oxide thickness), despite the fact that the blue shift of the TO modes becomes larger while approaching the oxide/SiC interface, the peak frequency of the TO modes red-shifts at the oxide/SiC interface. The peak-frequency shift of the TO mode for the sample without post-oxidation annealing was larger than that for the samples post-annealed in a nitric oxide atmosphere. The channel mobilities are correlated with the degree of shift of the TO mode when the oxide thickness is <3 nm. It appears that the compressive stress at the SiO2/SiC interface generates silicon suboxide components and weakens the Si-O bonds. As the result, the TO mode was red-shifted and the oxygen deficiency increased to relax the compressive stress in the oxide with <3 nm thickness. Fourier transform infrared spectroscopy measurements provide unique and useful information about stress and inhomogeneity at the oxide/SiC interface.

  15. Use of chemical auxiliaries to control p450 enzymes for predictable oxidations at unactivated C-h bonds of substrates.

    PubMed

    Auclair, Karine; Polic, Vanja

    2015-01-01

    Cytochrome P450 enzymes (P450s) have the ability to oxidize unactivated C-H bonds of substrates with remarkable regio- and stereoselectivity. Comparable selectivity for chemical oxidizing agents is typically difficult to achieve. Hence, there is an interest in exploiting P450s as potential biocatalysts. Despite their impressive attributes, the current use of P450s as biocatalysts is limited. While bacterial P450 enzymes typically show higher activity, they tend to be highly selective for one or a few substrates. On the other hand, mammalian P450s, especially the drug-metabolizing enzymes, display astonishing substrate promiscuity. However, product prediction continues to be challenging. This review discusses the use of small molecules for controlling P450 substrate specificity and product selectivity. The focus will be on two approaches in the area: (1) the use of decoy molecules, and (2) the application of substrate engineering to control oxidation by the enzyme.

  16. Influence of substrate preparation on the shaping of the topography of the surface of nanoceramic oxide layers

    NASA Astrophysics Data System (ADS)

    Bara, Marek; Kubica, Marek

    2014-02-01

    The paper discusses the shaping mechanism and changes occurring in the structure and topography of the surface of nanoceramic oxide layers during their formation. The paper presents the influence of substrate preparation on the surface topography of oxide layers. The layers were produced via hard anodizing on the EN AW-5251 aluminum alloy. The layers obtained were subjected to microscope examinations, image and chemical composition analyses, and stereometric examinations. Heredity of substrate properties in the topography of the surface of nanoceramic oxide layers formed as a result of electrochemical oxidation has been shown.

  17. Gaseous Oxidized Mercury Flux from Substrates Associated with Industrial Scale Gold Mining in Nevada, USA

    NASA Astrophysics Data System (ADS)

    Miller, M. B.

    2015-12-01

    Gaseous elemental and oxidized mercury (Hg) fluxes were measured in a laboratory setting from substrate materials derived from industrial-scale open pit gold mining operations in Nevada, USA. Mercury is present in these substrates at a range of concentrations (10 - 40000 ng g-1), predominantly of local geogenic origin in association with the mineralized gold ores, but altered and redistributed to a varying degree by subsequent ore extraction and processing operations, including deposition of Hg recently emitted to the atmosphere from large point sources on the mines. Waste rock, heap leach, and tailings material usually comprise the most extensive and Hg emission relevant substrate surfaces. All three of these material types were collected from active Nevada mine sites in 2010 for previous research, and have since been stored undisturbed at the University of Nevada, Reno. Gaseous elemental Hg (GEM) flux was previously measured from these materials under a variety of conditions, and was re-measured in this study, using Teflon® flux chambers and Tekran® 2537A automated ambient air analyzers. GEM flux from dry undisturbed materials was comparable between the two measurement periods. Gaseous oxidized Hg (GOM) flux from these materials was quantified using an active filter sampling method that consisted of polysulfone cation-exchange membranes deployed in conjunction with the GEM flux apparatus. Initial measurements conducted within greenhouse laboratory space indicate that in dry conditions GOM is deposited to relatively low Hg cap and leach materials, but may be emitted from the much higher Hg concentration tailings material.

  18. Spinel-structured metal oxide on a substrate and method of making same by molecular beam epitaxy

    DOEpatents

    Chambers, Scott A.

    2006-02-21

    A method of making a spinel-structured metal oxide on a substrate by molecular beam epitaxy, comprising the step of supplying activated oxygen, a first metal atom flux, and at least one other metal atom flux to the surface of the substrate, wherein the metal atom fluxes are individually controlled at the substrate so as to grow the spinel-structured metal oxide on the substrate and the metal oxide is substantially in a thermodynamically stable state during the growth of the metal oxide. A particular embodiment of the present invention encompasses a method of making a spinel-structured binary ferrite, including Co ferrite, without the need of a post-growth anneal to obtain the desired equilibrium state.

  19. (110)-oriented indium tin oxide films grown on m- and r-plane sapphire substrates

    NASA Astrophysics Data System (ADS)

    Chern, Ming-Yau; Lu, Tso-Wen; Xu, Wei-Lun

    2015-04-01

    Indium tin oxide (ITO) thin films have been deposited by pulsed laser deposition on m-plane (100) and r-plane (012) sapphire substrates. For both substrates, the films were grown with their [110] direction perpendicular to the substrate planes under the conditions of high growth temperature and high oxygen pressure. Their in-plane epitaxial relations with the substrates were identified to be ITO[001] ∥ Al2O3[020] and \\text{ITO}[1\\bar{1}0]\\parallel \\text{Al}2\\text{O}3[001] for the m-plane substrate. For the r-plane substrate, two types of lattice matching were observed: one being \\text{ITO}[001]\\parallel \\text{Al}2\\text{O}3[2,1, - 1/2] and \\text{ITO}[1\\bar{1}0]\\parallel \\text{Al}2\\text{O}3[4/3, - 4/3,2/3], the other being \\text{ITO}[001]\\parallel \\text{Al}2\\text{O}3[1, - 1,1/2] and \\text{ITO}[1\\bar{1}0]/\\text{Al}2\\text{O}3[8/3,4/3, - 2/3]. The electrical properties were measured by the Hall effect and van der Pauw methods at room temperature. All of the samples have low electrical resistivity on the order of 3.0 × 10-4 Ω cm, high carrier concentration of about 2.5 × 1020 cm-3, and mobility ranging from 70 to 90 cm2 V-1 s-1.

  20. Electrocatalytic Oxidation of Alcohols on Cu2O/Cu Thin Film Electrodeposited on Titanium Substrate

    NASA Astrophysics Data System (ADS)

    Bezghiche-Imloul, T.; Hammache-Makhloufi, H.; Ait Ahmed, N.

    2016-05-01

    A novel class of nanomaterials consisting of a composite thin film of cooper metal nanoparticles and cuprous oxide (Cu2O/Cu) for the catalytic electrooxidation of methanol, ethanol and ethylene glycol is considered here. The material was prepared by electrochemical deposition under a potentiostatic condition of -250mV vs saturated calomel electrode (SCE) from acetate bath at titanium substrate. The effect of electrodeposition time on the structure, composition and morphology of the deposit was investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results indicated the formation of pure cuprous oxide Cu2O thin film at low electrodeposition time (5 min) and Cu2O oxide thin film decorated with Cu nanoparticles (Cu2O/Cu) at high electrodeposition time. The obtained Cu2O and Cu2O/Cu thin films were explored for the electrochemical oxidation of alcohols in 1 M NaOH alkaline medium using cyclic voltammetry (CV) method. The Cu2O/Cu thin film grown at electrodeposition time of 15 min shows the best electrocatalytic performance toward ethanol oxidation. The effect of concentration of alcohols on the oxidation reaction was studied by CV and chronoamperometry. It was found that the reaction is governed by an irreversible diffusion process. The promising electrocatalytic activity of the Cu2O/Cu electrode provides a new platform for the fabrication of high-performance thin films for alcohols oxidation in alkaline medium. Therefore, the Cu2O/Cu electrode is a suitable as a less expensive electrocatalyst for alcohols oxidation.

  1. Substrate activation for O2 reactions by oxidized metal centers in biology.

    PubMed

    Pau, Monita Y M; Lipscomb, John D; Solomon, Edward I

    2007-11-20

    The uncatalyzed reactions of O(2) (S = 1) with organic substrates (S = 0) are thermodynamically favorable but kinetically slow because they are spin-forbidden and the one-electron reduction potential of O(2) is unfavorable. In nature, many of these important O(2) reactions are catalyzed by metalloenzymes. In the case of mononuclear non-heme iron enzymes, either Fe(II) or Fe(III) can play the catalytic role in these spin-forbidden reactions. Whereas the ferrous enzymes activate O(2) directly for reaction, the ferric enzymes activate the substrate for O(2) attack. The enzyme-substrate complex of the ferric intradiol dioxygenases exhibits a low-energy catecholate to Fe(III) charge transfer transition that provides a mechanism by which both the Fe center and the catecholic substrate are activated for the reaction with O(2). In this Perspective, we evaluate how the coupling between this experimentally observed charge transfer and the change in geometry and ligand field of the oxidized metal center along the reaction coordinate can overcome the spin-forbidden nature of the O(2) reaction.

  2. The crystallinity and mechanical properties of indium tin oxide coatings on polymer substrates

    SciTech Connect

    Kim, Eun-Hye; Yang, Chan-Woo; Park, Jin-Woo

    2011-02-15

    We present the relationship between the microstructure and mechanical strength of indium tin oxide (ITO) on flexible substrates. With varying thickness (h{sub f}), ITO is deposited on polyethylene terephthalate (PET) by dc magnetron sputtering. The microstructure of ITO is controlled by substrate surface conditions and sputtering parameters. The maximum substrate temperature during deposition is limited to 80 deg. C due to the low glass transition temperature (T{sub g}) of PET. The crystallinity and surface roughness (R{sub rms}) are analyzed by high resolution x-ray diffraction, high resolution transmission electron microscopy, and AFM. The crack resistance of ITO is evaluated by uniaxial tension test. The experimental results reveal that, at a fixed h{sub f}, the degree and quality of crystallinity of ITO are highly improved by increasing sputtering power and the substrate temperature. As the crystallinity is improved, the ratio of preferred growth orientations of (222) to (400) is increased and the degree of peak shifts to lower 2{theta} is decreased. They indicate that the crystallinity is improved as the lattice damage is reduced and film density is increased. The tension test results confirm that, up to a certain h{sub f}, the strength of ITO can be significantly enhanced by improving the microstructures.

  3. Density profile in thin films of polybutadiene on silicon oxide substrates: a TOF-NR study.

    PubMed

    Hoppe, E Tilo; Sepe, Alessandro; Haese-Seiller, Martin; Moulin, Jean-François; Papadakis, Christine M

    2013-08-27

    We have investigated thin films from fully deuterated polybutadiene (PB-d6) on silicon substrates with the aim of detecting and characterizing a possible interphase in the polymer film near the substrate using time-of-flight neutron reflectometry (TOF-NR). As substrates, thermally oxidized silicon wafers were either used as such or they were coated with triethylethoxysilyl modified 1,2-PB prior to deposition of the PB-d6 film. TOF-NR reveals that, for both substrates, the scattering length density (SLD) of the PB films decreases near the solid interface. The reduction of SLD is converted to an excess fraction of free volume. To further verify the existence of the interphase in PB-d6, we attempt to model the TOF-NR curves with density profiles which do not feature an interphase. These density profiles do not describe the TOF-NR curves adequately. We conclude that, near the solid interface, an interphase having an SLD lower than the bulk of the film is present.

  4. Influence of organic substrates on the kinetics of bacterial As(III) oxidation

    NASA Astrophysics Data System (ADS)

    Lescure, T.; Joulian, C.; Bauda, P.; Hénault, C.; Battaglia-Brunet, F.

    2012-04-01

    Soil microflora plays a major role on the behavior of metals and metalloids. Arsenic speciation, in particular, is related to the activity of bacteria able to oxidize, reduce or methylate this element, and determines mobility, bioavailability and toxicity of As. Arsenite (AsIII) is more toxic and more mobile than arsenate (AsV). Bacterial As(III)-oxidation tends to reduce the toxicity of arsenic in soils and the risk of transfer toward underlying aquifers, that would affect the quality of water resources. Previous results suggest that organic matter may affect kinetics or efficiency of bacterial As(III)-oxidation in presence of oxygen, thus in conventional physico-chemical conditions of a surface soil. Different hypothesis can be proposed to explain the influence of organic matter on As(III) oxidation. Arsenic is a potential energy source for bacteria. The presence of easily biodegradable organic matter may inhibit the As(III) oxidation process because bacteria would first metabolize these more energetic substrates. A second hypothesis would be that, in presence of organic matter, the Ars system involved in bacterial resistance to arsenic would be more active and would compete with the Aio system of arsenite oxidation, decreasing the global As(III) oxidation rate. In addition, organic matter influences the solubility of iron oxides which often act as the main pitfalls of arsenic in soils. The concentration and nature of organic matter could therefore have a significant influence on the bioavailability of arsenic and hence on its environmental impact. The influence of organic matter on biological As(III) oxidation has not yet been determined in natural soils. In this context, soil amendment with organic matter during operations of phytostabilization or, considering diffuse pollutions, through agricultural practices, may affect the mobility and bio-availability of the toxic metalloid. The objective of the present project is to quantify the influence of organic matter

  5. Polypyrrole Coated Cellulosic Substrate Modified by Copper Oxide as Electrode for Nitrate Electroreduction

    NASA Astrophysics Data System (ADS)

    Hamam, A.; Oukil, D.; Dib, A.; Hammache, H.; Makhloufi, L.; Saidani, B.

    2015-08-01

    The aim of this work is to synthesize polypyrrole (PPy) films on nonconducting cellulosic substrate and modified by copper oxide particles for use in the nitrate electroreduction process. Firstly, the chemical polymerization of polypyrrole onto cellulosic substrate is conducted by using FeCl3 as an oxidant and pyrrole as monomer. The thickness and topography of the different PPy films obtained were estimated using a profilometer apparatus. The electrochemical reactivity of the obtained electrodes was tested by voltamperometry technique and electrochemical impedance spectroscopy. Secondly, the modification of the PPy film surface by incorporation of copper oxide particles is conducted by applying a galvanostatic procedure from a CuCl2 solution. The SEM, EDX and XRD analysis showed the presence of CuO particles in the polymer films with dimensions less than 50 nm. From cyclic voltamperometry experiments, the composite activity for the nitrate electroreduction reaction was evaluated and the peak of nitrate reduction is found to vary linearly with initial nitrate concentration.

  6. Electrophoretic deposition of graphene oxide reinforced chitosan-hydroxyapatite nanocomposite coatings on Ti substrate.

    PubMed

    Shi, Y Y; Li, M; Liu, Q; Jia, Z J; Xu, X C; Cheng, Y; Zheng, Y F

    2016-03-01

    Electrophoretic deposition (EPD) is a facile and feasible technique to prepare functional nanocomposite coatings for application in orthopedic-related implants. In this work, a ternary graphene oxide-chitosan-hydroxyapatite (GO-CS-HA) composite coating on Ti substrate was successfully fabricated by EPD. Coating microstructure and morphologies were investigated by scanning electron microscopy, contact angle test, Raman spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. It was found GO-CS surface were uniformly decorated by HA nanoparticles. The potentiodynamic polarization test in simulated body fluid indicated that the GO-CS-HA coatings could provide effective protection of Ti substrate from corrosion. This ternary composite coating also exhibited good biocompatibility during incubation with MG63 cells. In addition, the nanocomposite coatings could decrease the attachment of Staphylococcus aureus.

  7. EFFECT OF SURFACE CONDITION ON SPALLATION BEHAVIOR OF OXIDE SCALE ON SS 441 SUBSTRATE USED IN SOFC

    SciTech Connect

    Liu, Wenning N.; Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2011-03-01

    As operating temperature of SOFC decreases, ferritic stainless steel has attracted a great deal of attention for its use as an interconnect in SOFCs because of its gas-tightness, low electrical resistivity, ease of fabrication, and cost-effectiveness. However, oxidation reaction of the metallic interconnects in a typical SOFC working environment is unavoidable. The growth stresses in the oxide scale and on the scale/substrate interface combined with the thermal stresses induced by thermal expansion coefficient mismatch between the oxide scale and the substrate may lead to scale delamination/buckling and eventual spallation during stack cooling, which can lead to serious cell performance degradation. Therefore, the interfacial adhesion strength between the oxide scale and substrate is crucial to the reliability and durability of the metallic interconnect in SOFC operating environments. In this paper, we investigated the effect of the surface conditions on the interfacial strength of oxide scale and SS441 substrate experimentally. Contrary to the conventional sense, it was found that rough surface of SS441 substrate will decrease the interfacial adhesive strength of the oxide scale and SS441 substrate

  8. Substrate oxidation capacity in rodent skeletal muscle: effects of exposure to zero gravity

    NASA Technical Reports Server (NTRS)

    Baldwin, K. M.; Herrick, R. E.; McCue, S. A.

    1993-01-01

    A study was conducted, as part of the integrated National Aeronautics and Space Administration Space Life Sciences 1 mission flown in June of 1991, to ascertain the effects of 9 days of exposure to zero gravity on the capacity of rodent skeletal muscle fiber types to oxidize either [14C]pyruvate or [14C]palmitate under state 3 metabolic conditions, i.e., nonlimiting amounts of substrate and cofactors. In addition, activity levels of marker enzymes of the tricarboxylic acid cycle, malate shuttle, and beta-oxidation were measured. Results showed that significant differences in muscle weight occurred in both the predominantly slow vastus intermedius and predominantly fast vastus lateralis of flight vs. control groups (P < 0.05). Total protein content of the muscle samples was similar between groups. Both pyruvate oxidation capacity and the marker oxidative enzymes were not altered in the flight relative to control animals. However, the capacity to oxidize long-chain fatty acids was significantly reduced by 37% in both the high- and low-oxidative regions of the vastus muscle (P < 0.05). Although these findings of a selective reduction in fatty acid oxidation capacity in response to spaceflight are surprising, they are consistent with previous findings showing 1) an increased capacity to take up glucose and upregulate glucose transporter proteins and 2) a marked accumulation of triglycerides in the skeletal muscles of rats subjected to states of unloading. Thus, skeletal muscle of animals exposed to non-weight-bearing environments undergo subcellular transformations that may preferentially bias energy utilization to carbohydrates.

  9. Thermal oxidation of amorphous germanium thin films on SiO2 substrates

    NASA Astrophysics Data System (ADS)

    de los Santos Valladares, L.; Bustamante Dominguez, A.; Ionescu, A.; Brown, A.; Sepe, A.; Steiner, U.; Avalos Quispe, O.; Holmes, S.; Majima, Y.; Langford, R.; Barnes, C. H. W.

    2016-12-01

    In this work we report the thermal oxidation of amorphous germanium (a-Ge) thin films (140 nm thickness) in air. Following fabrication by conventional thermal evaporation on SiO2 substrates, the samples were annealed in air at different temperatures ranging from 300 to 1000 °C. By means of x-ray diffraction, x-ray reflectivity, synchrotron grazing-incidence wide-angle x-ray scattering and cross-sectional transmission electron microscopy analysis it is found that the a-Ge films abruptly crystallize at 475 °C, while simultaneously increasing the thickness of the oxide (GeO2) in a layer by layer fashion. X-ray photoemission spectroscopy reveals that the oxidation state of the Ge atoms in the GeO2 layer is 4+. However, a reaction at the GeO2/Ge interface occurs between 500 and 550 °C reducing the oxide layer to GeO x (x < 2) and containing Ge2+ and Ge+. The thickness of the oxide layer grows with the annealing temperature following an Arrhenius behavior with an activation energy of 0.82 ± 0.09 eV up to 500 °C. Remarkably, we observed simultaneous enhancement of the oxidation and crystallization of the a-Ge in the temperature interval 450 °C-500 °C, in which the oxidation rate reaches a maximum of around 0.8 nm °C-1 at around 500 °C.

  10. Elemental Metals or Oxides Distributed on a Carbon Substrate or Self-Supported and the Manufacturing Process Using Graphite Oxide as Template

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    1999-01-01

    A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon, metal, chloride, and oxygen. This intermediary product can be further processed by direct exposure to carbonate-solutions to form a second intermediary product comprising carbon, metal carbonate, and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide; b) in an inert environment to produce metal oxide on carbon substrate; c) in a reducing environment to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.

  11. Elemental Metals or Oxides Distributed on a Carbon Substrate or Self-Supported and the Manufacturing Process Using Graphite Oxide as Template

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Chen (Inventor)

    1999-01-01

    A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a percursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon, metal, chloride, and oxygen. This intermediary product can be further processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon, metal carbonate, and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide; b) in an inert environment to produce metal oxide on carbon substrate; c) in a reducing environment to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.

  12. Crystal Structure of Oxidative Stress Sensor Keap1 in Complex with Selective Autophagy Substrate p62

    NASA Astrophysics Data System (ADS)

    Kurokawa, Hirofumi

    Keap1, an adaptor protein of cullin-RING ubiquitin ligase complex, represses cytoprotective transcription factor Nrf2 in an oxidative stress-dependent manner. The accumulation of selective autophagy substrate p62 also activates Nrf2 target genes, but the detailed mechanism has not been elucidated. Crystal structure of Keap1-p62 complex revealed the structural basis for the Nrf2 activation in which Keap1 is inactivated by p62. The accumulation of p62 is observed in hepatocellular carcinoma. The activation of Nrf2 target genes, including detoxifying enzymes and efflux transporters, by p62 may protect the cancer cells from anti-cancer drugs.

  13. Aligned carbon nanotube, graphene and graphite oxide thin films via substrate-directed rapid interfacial deposition.

    PubMed

    D'Arcy, Julio M; Tran, Henry D; Stieg, Adam Z; Gimzewski, James K; Kaner, Richard B

    2012-05-21

    A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated.

  14. The oxidative DNA glycosylases of Mycobacterium tuberculosis exhibit different substrate preferences from their Escherichia coli counterparts

    PubMed Central

    Guo, Yin; Bandaru, Viswanath; Jaruga, Pawel; Zhao, Xiaobei; Burrows, Cynthia J.; Iwai, Shigenori; Dizdaroglu, Miral; Bond, Jeffrey P.; Wallace, Susan S.

    2010-01-01

    The DNA glycosylases that remove oxidized DNA bases fall into two general families: the Fpg/Nei family and the Nth superfamily. Based on protein sequence alignments, we identified four putative Fpg/Nei family members, as well as a putative Nth protein in Mycobacterium tuberculosis H37Rv. All four Fpg/Nei proteins were successfully overexpressed using a bicistronic vector created in our laboratory. The MtuNth protein was also overexpressed in soluble form. The substrate specificities of the purified enzymes were characterized in vitro with oligodeoxynucleotide substrates containing single lesions. Some were further characterized by gas chromatography/mass spectrometry (GC/MS) analysis of products released from γ-irradiated DNA. MtuFpg1 has a substrate specificity similar to that of EcoFpg. Both EcoFpg and MtuFpg1 are more efficient at removing spiroiminodihydantoin (Sp) than 7,8-dihydro-8-oxoguanine (8-oxoG). However, MtuFpg1 shows a substantially increased opposite base discrimination compared to EcoFpg. MtuFpg2 contains only the C-terminal domain of an Fpg protein and has no detectable DNA binding activity or DNA glycosylase/lyase activity and thus appears to be a pseudogene. MtuNei1 recognizes oxidized pyrimidines on both double-stranded and single-stranded DNA and exhibits uracil DNA glycosylase activity. MtuNth recognizes a variety of oxidized bases, including urea, 5,6-dihydrouracil (DHU), 5-hydroxyuracil (5-OHU), 5-hydroxycytosine (5-OHC) and methylhydantoin (MeHyd). Both MtuNei1 and MtuNth excise thymine glycol (Tg); however, MtuNei1 strongly prefers the (5R) isomers, whereas MtuNth recognizes only the (5S) isomers. MtuNei2 did not demonstrate activity in vitro as a recombinant protein, but like MtuNei1 when expressed in Escherichia coli, it decreased the spontaneous mutation frequency of both the fpg mutY nei triple and nei nth double mutants, suggesting that MtuNei2 is functionally active in vivo recognizing both guanine and cytosine oxidation products

  15. Electrochemical analysis of transparent oxide-less photovoltaic cell with perforation patterned metal substrate

    NASA Astrophysics Data System (ADS)

    Kim, Myoung; You, In-Kyu; Lee, Kyoung-Won; Lee, In-Hwan; Yun, Ho-Gyeong

    2013-05-01

    In terms of electrochemical behaviour, a transparent conductive oxide (TCO)-less dye-sensitized solar cell (DSSC) with two metal foils was compared with those of a metal foil-based DSSC with a TCO-coated substrate. By virtue of electrochemical impedance spectroscopy, intensity modulated photocurrent spectroscopy, intensity modulated photovoltage spectroscopy, open-circuit voltage decay, and photocurrent transient measurements, it was clearly confirmed that the limited performance of the TCO-less DSSC was caused by the restricted transport of ion species in the electrolyte due to the perforation patterned metal foil.

  16. Fabrication of Direct Silicon Bonded Hybrid Orientation Substrate by Separation by Implanted Oxygen Layer Transfer and Oxide Dissolution Annealing

    NASA Astrophysics Data System (ADS)

    Wei, Xing; Xue, Zhongying; Wu, Aimin; Cao, Gongbai; Zhang, Bo; Lin, Chenglu; Zhang, Miao; Wang, Xi

    2011-03-01

    The quasi direct Si bonded (DSB) hybrid orientation substrate with a 3 nm interfacial oxide layer between the (100) superficial Si and the (110) handle wafer is fabricated by the separation by implanted oxygen layer transfer (SLT) process. The quasi DSB hybrid orientation substrates are annealed in oxygen-containing and oxygen-free ambient. The cross-sectional transmission electron microscopy (XTEM) results show the oxide-free (100) Si/(110) Si bonding interface, indicating that the direct Si-Si bonded structure is realized by these two processes. The anisotropic bonding interface morphology of the DSB hybrid orientation substrates is observed, and the formation mechanism is discussed in detail.

  17. Silver Nanoparticle-Embedded Thin Silica-Coated Graphene Oxide as an SERS Substrate

    PubMed Central

    Pham, Xuan-Hung; Hahm, Eunil; Kim, Hyung-Mo; Shim, Seongbo; Kim, Tae Han; Jeong, Dae Hong; Lee, Yoon-Sik; Jun, Bong-Hyun

    2016-01-01

    A hybrid of Ag nanoparticle (NP)-embedded thin silica-coated graphene oxide (GO@SiO2@Ag NPs) was prepared as a surface-enhanced Raman scattering (SERS) substrate. A 6 nm layer of silica was successfully coated on the surface of GO by the physical adsorption of sodium silicate, followed by the hydrolysis of 3-mercaptopropyl trimethoxysilane. Ag NPs were introduced onto the thin silica-coated graphene oxide by the reduction of Ag+ to prepare GO@SiO2@Ag NPs. The GO@SiO2@Ag NPs exhibited a 1.8-fold enhanced Raman signal compared to GO without a silica coating. The GO@SiO2@Ag NPs showed a detection limit of 4-mercaptobenzoic acid (4-MBA) at 0.74 μM. PMID:28335304

  18. Tin Oxide Films On Glass Substrates By A SOL-GEL Technique

    NASA Astrophysics Data System (ADS)

    Puyane, R.; Kato, I.

    1983-11-01

    The novel sol-gel technique has been implemented to deposit electroconductive tin oxide films to be used as transparent electrodes, mainly for display applications. Thin films of antimony-doped tin oxide were deposited on several types of glass substrates (soda-lime-silica, borosilicate and fused silica) using a dip-coating procedure. Alcoholic solutions of tin and antimony organometallic compounds were prepared under controlled conditions. The dipcoating procedure is described° in detail as well as subsequent thermal treatments under controlled atmosphere and temperatures up to 630 C. The optical and electrical characteristics of the films were studied as a function of the process parameters, firing conditions and number of coatings. After the subsequent thermal treatments, 2film resistances of about 200 ohms square could be measured corresponding to resistivities of about 10 ohm cm. The films optical transmission was above 80 percent.

  19. Effects of substrates on N2O emissions in an anaerobic ammonium oxidation (anammox) reactor.

    PubMed

    Jin, Yue; Wang, Dunqiu; Zhang, Wenjie

    2016-01-01

    N2O emission in the anaerobic ammonium oxidation (anammox) process is of growing concern. In this study, effects of substrate concentrations on N2O emissions were investigated in an anammox reactor. Extremely high N2O emissions of 1.67 % were led by high NH4-N concentrations. Results showed that N2O emissions have a positive correlation with NH4-N concentrations in the anammox reactor. Reducing NH4-N concentrations by recycling pump resulted in decreasing N2O emissions. In addition, further studies were performed to identify a key biological process that is contributed to N2O emissions from the anammox reactor. Based on the results obtained, Nitrosomonas, which can oxidize ammonia to nitrite, was deemed as the main sources of N2O emissions.

  20. Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity.

    PubMed

    Qi, Hetong; Yu, Ping; Wang, Yuexiang; Han, Guangchao; Liu, Huibiao; Yi, Yuanping; Li, Yuliang; Mao, Lanqun

    2015-04-29

    Graphdiyne (GDY), a novel kind of two-dimensional carbon allotrope consisting of sp- and sp(2)-hybridized carbon atoms, is found to be able to serve as the reducing agent and stabilizer for electroless deposition of highly dispersed Pd nanoparticles owing to its low reduction potential and highly conjugated electronic structure. Furthermore, we observe that graphdiyne oxide (GDYO), the oxidation form of GDY, can be used as an even excellent substrate for electroless deposition of ultrafine Pd clusters to form Pd/GDYO nanocomposite that exhibits a high catalytic performance toward the reduction of 4-nitrophenol. The high catalytic performance is considered to benefit from the rational design and electroless deposition of active metal catalysts with GDYO as the support.

  1. Tribology study of reduced graphene oxide sheets on silicon substrate synthesized via covalent assembly.

    PubMed

    Ou, Junfei; Wang, Jinqing; Liu, Sheng; Mu, Bo; Ren, Junfang; Wang, Honggang; Yang, Shengrong

    2010-10-19

    Reduced graphene oxide (RGO) sheets were covalently assembled onto silicon wafers via a multistep route based on the chemical adsorption and thermal reduction of graphene oxide (GO). The formation and microstructure of RGO were analyzed by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Raman spectroscopy, and water contact angle (WCA) measurements. Characterization by atomic force microscopy (AFM) was performed to evaluate the morphology and microtribological behaviors of the samples. Macrotribological performance was tested on a ball-on-plate tribometer. Results show that the assembled RGO possesses good friction reduction and antiwear ability, properties ascribed to its intrinsic structure, that is, the covalent bonding to the substrate and self-lubricating property of RGO.

  2. Substrate specificity and copper loading of the manganese-oxidizing multicopper oxidase Mnx from Bacillus sp. PL-12.

    PubMed

    Butterfield, Cristina N; Tebo, Bradley M

    2017-02-22

    Manganese(ii) oxidation in the environment is thought to be driven by bacteria because enzymatic catalysis is many orders of magnitude faster than the abiotic processes. The heterologously purified Mn oxidase (Mnx) from marine Bacillus sp. PL-12 is made up of the multicopper oxidase (MCO) MnxG and two small Cu and heme-binding proteins of unknown function, MnxE and MnxF. Mnx binds Cu and oxidizes both Mn(ii) and Mn(iii), generating Mn(iv) oxide minerals that resemble those found on the Bacillus spore surface. Spectroscopic techniques have illuminated details about the metallo-cofactors of Mnx, but very little is known about their requirement for catalytic activity, and even less is known about the substrate specificity of Mnx. Here we quantify the canonical MCO Cu and persistent peripheral Cu bound to Mnx, and test Mnx oxidizing ability toward different substrates at varying pH. Mn(ii) appears to be the best substrate in terms of kcat, but its oxidation does not follow Michaelis-Menten kinetics, instead showing a sigmoidal cooperative behavior. Mnx also oxidizes Fe(ii) substrate, but in a Michaelis-Menten manner and with a decreased activity, as well as organic substrates. The reduced metals are more rapidly consumed than the larger organic substrates, suggesting the hypothesis that the Mnx substrate site is small and tuned for metal oxidation. Of biological relevance is the result that Mnx has the highest catalytic efficiency for Mn(ii) at the pH of sea water, especially when the protein is loaded with greater than the requisite four MCO copper atoms, suggesting that the protein has evolved specifically for Mn oxidation.

  3. Reduced Graphene Oxide Thin Film on Conductive Substrates by Bipolar Electrochemistry

    PubMed Central

    Anis, Allagui; Mohammad, Ali Abdelkareem; Hussain, Alawadhi; Ahmed, S. Elwakil

    2016-01-01

    Recent years have shown an increased interest in developing manufacturing processes for graphene and its derivatives that consider the environmental impact and large scale cost-effectiveness. However, today’s most commonly used synthesis routes still suffer from their excessive use of harsh chemicals and/or the complexity and financial cost of the process. Furthermore, the subsequent transfer of the material onto a substrate makes the overall process even more intricate and time-consuming. Here we describe a single-step, single-cell preparation procedure of metal-supported reduced graphene oxide (rGO) using the principle of bipolar electrochemistry of graphite in deionized water. Under the effect of an electric field between two stainless steel feeder electrodes, grapheme layers at the anodic pole of the wireless graphite were oxidized into colloidal dispersion of GO, which migrated electrophoretically towards the anodic side of the cell, and deposited in the form of rGO (d(002) = 0.395 nm) by van der Waals forces. For substrates chemically more susceptible to the high anodic voltage, we show that the electrochemical setup can be adapted by placing the latter between the wireless graphite and the stainless steel feeder anode. This method is straightforward, inexpensive, environmentally-friendly, and could be easily scaled up for high yield and large area production of rGO thin films. PMID:26883173

  4. Morphological and substrate effects on the electrochemical behaviour of doped tin oxide anodes

    NASA Astrophysics Data System (ADS)

    Miljkovic, Bojan

    Films of Sb-doped SnO2 were successfully fabricated on a Ti substrate through precursor application by spin coating followed by a thermal decomposition process. The dependence of film characteristics on fabrication temperature was studied in the range of 500 to 800°C. An optimum electrocatalytic response was found for a firing temperature of 600°C. This was attributed to a balance between Sb-doping effects, titanium substrate oxidation, and film morphological development. This was determined through observation of the morphology, crystallographic texture, and electrochemical characteristics, such as the oxygen evolution potential (OEP), ferri/ferrocyanide electron transfer reaction, and phenol oxidation. Polymerization of phenol and the subsequent deactivation of the anode surface was related to the active surface area of the SnO2 film. Preliminary studies on the effect of Ni-Sb and Zn-Sb co-doping of SnO2 were conducted. The addition of Ni was shown to decrease the film conductivity while maintaining the OEP. Inclusion of Zn resulted in the formation of a second phase, Zn2SnO4 , which effectively inhibited oxygen evolution causing an increase in the OEP.

  5. Designing interlayers to improve the mechanical reliability of transparent conductive oxide coatings on flexible substrates

    SciTech Connect

    Kim, Eun-Hye; Yang, Chan-Woo; Park, Jin-Woo

    2012-05-01

    In this study, we investigate the effect of interlayers on the mechanical properties of transparent conductive oxide (TCO) on flexible polymer substrates. Indium tin oxide (ITO), which is the most widely used TCO film, and Ti, which is the most widely used adhesive interlayer, are selected as the coating and the interlayer, respectively. These films are deposited on the polymer substrates using dc-magnetron sputtering to achieve varying thicknesses. The changes in the following critical factors for film cracking and delamination are analyzed: the internal stress ({sigma}{sup i}) induced in the coatings during deposition using a white light interferometer, the crystallinity using a transmission electron microscope, and the surface roughness of ITO caused by the interlayer using an atomic force microscope. The resistances to the cracking and delamination of ITO are evaluated using a fragmentation test. Our tests and analyses reveal the important role of the interlayers, which significantly reduce the compressive {sigma}{sup i} that is induced in the ITO and increase the resistance to the buckling delamination of the ITO. However, the relaxation of {sigma}{sup i} is not beneficial to cracking because there is less compensation for the external tension as {sigma}{sup i} further decreases. Based on these results, the microstructural control is revealed as a more influential factor than {sigma}{sup i} for improving crack resistance.

  6. Synthesis of reduced graphene oxide/ZnO nanorods composites on graphene coated PET flexible substrates

    SciTech Connect

    Huang, Lei Guo, Guilue; Liu, Yang; Chang, Quanhong; Shi, Wangzhou

    2013-10-15

    Graphical abstract: - Highlights: • ZnO nanorods synthesized on CVD-graphene and rGO surfaces, respectively. • ZnO/CVD-graphene and ZnO/rGO form a distinctive porous 3D structure. • rGO/ZnO nanostructures possibility in energy storage devices. - Abstract: In this work, reduced graphene oxide (rGO)/ZnO nanorods composites were synthesized on graphene coated PET flexible substrates. Both chemical vapor deposition (CVD) graphene and reduced graphene oxide (rGO) films were prepared following by hydrothermal growth of vertical aligned ZnO nanorods. Reduced graphene sheets were then spun coated on the ZnO materials to form a three dimensional (3D) porous nanostructure. The morphologies of the ZnO/CVD graphene and ZnO/rGO were investigated by SEM, which shows that the ZnO nanorods grown on rGO are larger in diameters and have lower density compared with those grown on CVD graphene substrate. As a result of fact, the rough surface of nano-scale ZnO on rGO film allows rGO droplets to seep into the large voids of ZnO nanorods, then to form the rGO/ZnO hierarchical structure. By comparison of the different results, we conclude that rGO/ZnO 3D nanostructure is more desirable for the application of energy storage devices.

  7. Microstructural characteristics of tin oxide-based thin films on (0001) Al2O3 substrates: effects of substrate temperature and RF power during co-sputtering.

    PubMed

    Hwang, Sooyeon; Lee, Ju Ho; Kim, Young Yi; Yun, Myeong Goo; Lee, Kwan-Hun; Lee, Jeong Yong; Cho, Hyung Koun

    2014-12-01

    While tin oxides such as SnO and SnO2 are widely used in various applications, surprisingly, only a limited number of reports have been presented on the microstructural characteristics of tin oxide thin films grown under various growth conditions. In this paper, the effects of the substrate temperature and content of foreign Zn ion on the microstructural characteristics of tin oxide thin films grown by radio-frequency magnetron sputtering were investigated. The increase in substrate temperature induced change in the stoichiometry of the thin films from SnO(1+x) to SnO(2-x). Additionally, the phase contrast in the transmission electron microscopy image revealed that SnO(1+x) and SnO(2-x) phases were alternating in thin films and the width of each phase became narrower at high substrate temperature. The ternary zinc tin oxide thin films were deposited using the co-sputtering method. As the ZnO target power increased, the crystallinity of the thin films became poly-crystalline, and then showed improved crystallinity again with two types of phases.

  8. Compact laser molecular beam epitaxy system using laser heating of substrate for oxide film growth

    NASA Astrophysics Data System (ADS)

    Ohashi, S.; Lippmaa, M.; Nakagawa, N.; Nagasawa, H.; Koinuma, H.; Kawasaki, M.

    1999-01-01

    A high-temperature, oxygen compatible, and compact laser molecular beam epitaxy (laser MBE) system has been developed. The 1.06 μm infrared light from a continuous wave neodymium-doped yttrium aluminum garnet (Nd:YAG) laser was used to achieve a wide range and rapid control of substrate temperature in ultrahigh vacuum and at up to 1 atm oxygen pressure. The maximum usable temperature was limited to 1453 °C by the melting point of the nickel sample holder. To our knowledge, this is the highest temperature reported for pulsed laser deposition of oxide films. The efficient laser heating combined with temperature monitoring by a pyrometer and feedback control of the Nd:YAG laser power by a personal computer made it possible to regulate the substrate temperature accurately and to achieve high sample heating and cooling rates. The oxygen pressure and ablation laser triggering were also controlled by the computer. The accurate growth parameter control was combined with real-time in situ surface structure monitoring by reflection high energy electron diffraction to investigate oxide thin film growth in detail over a wide range of temperatures, oxygen partial pressures, and deposition rates. We have demonstrated the performance of this system by the fabrication of homoepitaxial SrTiO3 films as well as heteroepitaxial Sr2RuO4, and SrRuO3 films on SrTiO3 substrates at temperatures of up to 1300 °C. This temperature was high enough to change the film growth mode from layer by layer to step flow.

  9. Electrophoretic deposition on non-conducting substrates: The case of YSZ film on NiO-YSZ composite substrates for solid oxide fuel cell application

    NASA Astrophysics Data System (ADS)

    Besra, Laxmidhar; Compson, Charles; Liu, Meilin

    This paper report the results of our investigation on electrophoretic deposition (EPD) of YSZ particles from its suspension in acetylacetone onto a non-conducting NiO-YSZ substrate. In principle, it is not possible to carry out electrophoretic deposition on non-conducting substrates. In this case, the EPD of YSZ particles on a NiO-YSZ substrate was made possible through the use of an adequately porous substrate. The continuous pores in the substrates, when saturated with the solvent, helped in establishing a "conductive path" between the electrode and the particles in suspension. Deposition rate was found to increase with increasing substrate porosity up to a certain value. The higher the applied voltage, the faster the deposition. For a given applied voltage, there exists a threshold porosity value below which EPD becomes practically impossible. An SOFC constructed on bi-layers of NiO-YSZ/YSZ with YSZ layer thickness of 40 μm exhibited an open circuit voltage (OCV) of 0.97 V at 650 °C and peak power density of 263.8 mW cm -2 at 850 °C when tested with H 2 as fuel and ambient air as oxidant.

  10. Organic molecules on metal and oxide semiconductor substrates: Adsorption behavior and electronic energy level alignment

    NASA Astrophysics Data System (ADS)

    Ruggieri, Charles M.

    Modern devices such as organic light emitting diodes use organic/oxide and organic/metal interfaces for crucial processes such as charge injection and charge transfer. Understanding fundamental physical processes occurring at these interfaces is essential to improving device performance. The ultimate goal of studying such interfaces is to form a predictive model of interfacial interactions, which has not yet been established. To this end, this thesis focuses on obtaining a better understanding of fundamental physical interactions governing molecular self-assembly and electronic energy level alignment at organic/metal and organic/oxide interfaces. This is accomplished by investigating both the molecular adsorption geometry using scanning tunneling microscopy, as well as the electronic structure at the interface using direct and inverse photoemission spectroscopy, and analyzing the results in the context of first principles electronic structure calculations. First, we study the adsorption geometry of zinc tetraphenylporphyrin (ZnTPP) molecules on three noble metal surfaces: Au(111), Ag(111), and Ag(100). These surfaces were chosen to systematically compare the molecular self-assembly and adsorption behavior on two metals of the same surface symmetry and two surface symmetries of one metal. From this investigation, we improve the understanding of self-assembly at organic/metal interfaces and the relative strengths of competing intermolecular and molecule-substrate interactions that influence molecular adsorption geometry. We then investigate the electronic structure of the ZnTPP/Au(111), Ag(111), and Ag(100) interfaces as examples of weakly-interacting systems. We compare these cases to ZnTPP on TiO2(110), a wide-bandgap oxide semiconductor, and explain the intermolecular and molecule-substrate interactions that determine the electronic energy level alignment at the interface. Finally we study tetracyanoquinodimethane (TCNQ), a strong electron acceptor, on TiO2

  11. Effect of substrate availability on nitrous oxide production by deammonification processes under anoxic conditions.

    PubMed

    Schneider, Yvonne; Beier, Maike; Rosenwinkel, Karl-Heinz

    2012-05-01

    Due to its high global warming potential, nitrous oxide (N(2)O) emissions from wastewater treatment processes have recently received a high degree of attention. Nevertheless, there is still a lack of information regarding the microbiological processes leading to N(2)O production. In this study, two lab-scale sequencing batch reactors were operated with deammonification biomass to investigate the role of denitrification and the influence of substrate availability regarding N(2)O formation during the anoxic phase of deammonification. Three different operational phases were established: within the first phase conversion by anammox was favoured and after a transition phase, denitrification activity was promoted. Low nitrous oxide production was observed during stable operation aiming for anammox conversion. Pulsed inflow of the wastewater containing ammonium (NH(4)(+)) and nitrite (NO(2)(-)) led to increased N(2)O production rates. Within the period of denitrification as dominating nitrogen conversion process, the nitrous oxide concentration level was higher during continuous inflow conditions, but the reaction to pulsed inflow was less pronounced. The results indicated that denitrification was responsible for N(2)O formation from the deammonification biomass. Operational settings to achieve suppression of denitrification processes to a large extend were deducted from the results of the experiments.

  12. Lipid oxidation in minced beef meat with added Krebs cycle substrates to stabilise colour.

    PubMed

    Yi, G; Grabež, V; Bjelanovic, M; Slinde, E; Olsen, K; Langsrud, O; Phung, V T; Haug, A; Oostindjer, M; Egelandsdal, B

    2015-11-15

    Krebs cycle substrates (KCS) can stabilise the colour of packaged meat by oxygen reduction. This study tested whether this reduction releases reactive oxygen species that may lead to lipid oxidation in minced meat under two different storage conditions. KCS combinations of succinate and glutamate increased peroxide forming potential (PFP, 1.18-1.32 mmol peroxides/kg mince) and thiobarbituric acid reactive substances (TBARS, 0.30-0.38 mg malondialdehyde (MDA) equivalents/kg mince) under low oxygen storage conditions. Both succinate and glutamate were metabolised. Moreover, under high oxygen (75%) storage conditions, KCS combinations of glutamate, citrate and malate increased PFP (from 1.22 to 1.29 mmol peroxides/kg) and TBARS (from 0.37 to 0.40 mg MDA equivalents/kg mince). Only glutamate was metabolised. The KCS combinations that were added to stabilise colour were metabolised during storage, and acted as pro-oxidants that promoted lipid oxidation in both high and low oxygen conditions.

  13. Effect of substrate availability on nitrous oxide production by deammonification processes under anoxic conditions

    PubMed Central

    Schneider, Yvonne; Beier, Maike; Rosenwinkel, Karl‐Heinz

    2012-01-01

    Summary Due to its high global warming potential, nitrous oxide (N2O) emissions from wastewater treatment processes have recently received a high degree of attention. Nevertheless, there is still a lack of information regarding the microbiological processes leading to N2O production. In this study, two lab‐scale sequencing batch reactors were operated with deammonification biomass to investigate the role of denitrification and the influence of substrate availability regarding N2O formation during the anoxic phase of deammonification. Three different operational phases were established: within the first phase conversion by anammox was favoured and after a transition phase, denitrification activity was promoted. Low nitrous oxide production was observed during stable operation aiming for anammox conversion. Pulsed inflow of the wastewater containing ammonium (NH4+) and nitrite (NO2‐) led to increased N2O production rates. Within the period of denitrification as dominating nitrogen conversion process, the nitrous oxide concentration level was higher during continuous inflow conditions, but the reaction to pulsed inflow was less pronounced. The results indicated that denitrification was responsible for N2O formation from the deammonification biomass. Operational settings to achieve suppression of denitrification processes to a large extend were deducted from the results of the experiments. PMID:22296600

  14. Iron(II) Complexes Supported by Sulfonamido Tripodal Ligands: Endogenous versus Exogenous Substrate Oxidation

    PubMed Central

    2015-01-01

    High-valent iron species are known to act as powerful oxidants in both natural and synthetic systems. While biological enzymes have evolved to prevent self-oxidation by these highly reactive species, development of organic ligand frameworks that are capable of supporting a high-valent iron center remains a challenge in synthetic chemistry. We describe here the reactivity of an Fe(II) complex that is supported by a tripodal sulfonamide ligand with both dioxygen and an oxygen-atom transfer reagent, 4-methylmorpholine-N-oxide (NMO). An Fe(III)–hydroxide complex is obtained from reaction with dioxygen, while NMO gives an Fe(III)–alkoxide product resulting from activation of a C–H bond of the ligand. Inclusion of Ca2+ ions in the reaction with NMO prevented this ligand activation and resulted in isolation of an Fe(III)–hydroxide complex in which the Ca2+ ion is coordinated to the tripodal sulfonamide ligand and the hydroxo ligand. Modification of the ligand allowed the Fe(III)–hydroxide complex to be isolated from NMO in the absence of Ca2+ ions, and a C–H bond of an external substrate could be activated during the reaction. This study highlights the importance of robust ligand design in the development of synthetic catalysts that utilize a high-valent iron center. PMID:25264932

  15. Thiamine biosensor based on oxidative trapping of enzyme-substrate intermediate.

    PubMed

    Halma, Matilte; Doumèche, Bastien; Hecquet, Laurence; Prévot, Vanessa; Mousty, Christine; Charmantray, Franck

    2017-01-15

    In the present work, we describe a new thiamine amperometric biosensor based on thiamine pyrophosphate (ThDP)-dependent transketolase (TK)-catalyzed reaction, followed by the oxidative trapping of TK intermediate α,β-dihydroxyethylthiamine diphosphate (DHEThDP) within the enzymatic active site. For the biosensor design purpose, TK from Escherichia coli (TKec) was immobilized in Mg2Al-NO3 Layered Double Hydroxides (LDH) and the electrochemical detection was achieved with the TKec/LDH modified glassy carbon electrode (GCE). The transduction process was based on the ability of Fe(CN)6(3-) to oxidize DHEThDP to glycolic acid along with ThDP regeneration. The released Fe(CN)6(4-) was re-oxidized at +0.5V vs Ag-AgCl and the reaction was followed by chronoamperometry. The TKec/LDH/GCE biosensor was optimized using the best TK donor substrates, namely l-erythrulose and d-fructose-6-phosphate. ThDP was assayed with great sensitivity (3831mAM(-1)cm(-2)) over 20-400nM linear range.

  16. Human plasma platelet-activating factor acetylhydrolase. Oxidatively fragmented phospholipids as substrates.

    PubMed

    Stremler, K E; Stafforini, D M; Prescott, S M; McIntyre, T M

    1991-06-15

    Human plasma platelet-activating factor (PAF) acetylhydrolase hydrolyzes the sn-2 acetyl residue of PAF, but not phospholipids with long chain sn-2 residues. It is associated with low density lipoprotein (LDL) particles, and is the LDL-associated phospholipase A2 activity that specifically degrades oxidatively damaged phospholipids (Stremler, K. E., Stafforini, D. M., Prescott, S. M., Zimmerman, G. A., and McIntyre, T. M. (1989) J. Biol. Chem. 264, 5331-5334). To identify potential substrates, we synthesized phosphatidylcholines with sn-2 residues from two to nine carbon atoms long, and found the V/k ratio decreased as the sn-2 residue was lengthened: the C5 homolog was 50%, the C6 20%, while the C9 homolog was only 2% as efficient as PAF. However, the presence of an omega-oxo function radically affected hydrolysis: the half-life of the sn-2 9-aldehydic homolog was identical to that of PAF. We oxidized [2-arachidonoyl]phosphatidylcholine and isolated a number of more polar phosphatidylcholines. We treated these with phospholipase C, derivatized the resulting diglycerides for gas chromatographic/mass spectroscopic analysis, and found a number of diglycerides where the m/z ratio was consistent with a series of short to medium length sn-2 residues. We treated the polar phosphatidylcholines with acetylhydrolase and derivatized the products for analysis by gas chromatography/mass spectroscopy. The liberated residues were more polar than straight chain standards and had m/z ratios from 129 to 296, consistent with short to medium chain residues. Therefore, oxidation fragments the sn-2 residue of phospholipids, and the acetylhydrolase specifically degrades such oxidatively fragmented phospholipids.

  17. Micropatterning of mammalian cells on indium tin oxide substrates using ion implantation.

    PubMed

    Hwang, In-Tae; Ahn, Mi-Young; Jung, Chan-Hee; Choi, Jae-Hak; Shin, Kwanwoo

    2013-05-01

    In this study, a simple surface patterning method to create micropatterns of mammalian cells on indium tin oxide (ITO) substrates was developed using ion implantation. Thin polystyrene (PS) films spin-coated on an ITO glass was selectively implanted with accelerated proton ions through a pattern mask and then developed to generate PS micropatterns. Well-organized negative PS patterns were generated on the ITO glass. The results of the in vitro cell culture on the PS-patterned ITO glass with two types of cancer cell lines revealed the formation of well-defined cell patterns through a selective cell adhesion and proliferation only onto the ITO regions separated by PS regions. This facile method for cell patterning may be used to create a desired platform for cellular device applications, such as biosensors and cell microarrays.

  18. Click chemistry-based functionalization on non-oxidized silicon substrates.

    PubMed

    Li, Yan; Cai, Chengzhi

    2011-10-04

    Copper-catalyzed azide-alkyne cycloaddition (CuAAC), combined with the chemical stability of the Si-C-bound organic layer, serves as an efficient tool for the modification of silicon substrates, particularly for the immobilization of complex biomolecules. This review covers recent advances in the preparation of alkynyl- or azido-terminated "clickable" platforms on non-oxidized silicon and their further derivatization by means of the CuAAC reaction. The exploitation of these "click"-functionalized organic thin films as model surfaces to study many biological events was also addressed, as they are directly relevant to the on-going effort of creating silicon-based molecular electronics and chemical/biomolecular sensors.

  19. Oxidative potential of some endophytic fungi using 1-indanone as a substrate.

    PubMed

    Fill, Taicia Pacheco; da Silva, Jose Vinicius; de Oliveira, Kleber Thiago; da Silva, Bianca Ferreira; Rodrigues-Fo, Edson

    2012-06-01

    The oxidative potential of the fungus Penicillium brasilianum, a strain isolated as an endophyte from a Meliaceae plant (Melia azedarach), was investigated using 1-indanone as a substrate to track the production of monooxygenases. The fungus produced the dihydrocoumarin from 1-indanone with the classical Baeyer-Villiger reaction regiochemistry, and (-)-(R)-3-hydroxy-1-indanone with 78% ee. Minor compounds resulting from lipase and SAM activities were also detected. The biotransformation procedures were also applied to a collection of Penicillium and Aspergillus fungi obtained from M. azedarach and Murraya paniculata. The results showed that Baeyer-Villiger were mostly active in fungi isolated from M. azedarach. Almost all of the fungi tested produced 3-hydroxy-1-indanone..

  20. The piezoelectric effect on zinc oxide nano on polyimide substrate by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Idris, A. A. M.; Arsat, R.; Ahmad, M. K.

    2017-03-01

    This paper reports the effect of the deposition conditions crystal quality and film thickness of the Zinc Oxide (ZnO) film on the polyimide substrate. The ZnO film has been deposited by using the spray pyrolysis technique. This technique needs Zinc Nitrate Hexahydrate with the mixture of deionized water. At 350 °C, a higher c-axis preferred orientation at peak 0002 crystal orientation, which is critical for piezoelectric applications in ZnO thin films are obtained with the thickness of thin film is 300ηm. It also produces the 204.8 Hz of frequency which is higher than other frequency obtained by lower growth temperature.

  1. Effects of dietary fat on postprandial substrate oxidation and on carbohydrate and fat balances.

    PubMed Central

    Flatt, J P; Ravussin, E; Acheson, K J; Jéquier, E

    1985-01-01

    To study the effect of dietary fat on postprandial substrate utilization and nutrient balance, respiratory exchange was determined in seven young men for 1 h before and 9 h after the ingestion of one of three different breakfasts: i.e., bread, jam, and dried meat (482 kcal: 27% protein, 62% carbohydrate, and 11% fat); bread, jam, and dried meat plus 50 g of margarine containing long-chain triglycerides (LCT); or bread, jam, and dried meat plus 40 g medium-chain triglycerides (MCT) and 10 g LCT margarine (858 kcal: 15% protein, 35% carbohydrate, and 50% fat). Plasma glucose concentrations peaked 45 min after the start of the meals. When compared with the low fat meal, the LCT margarine supplement had no effect at any time on circulating glucose and insulin concentrations, nor on the respiratory quotient. When MCTs were consumed, plasma glucose and insulin concentrations remained lower and plasma FFA concentrations higher during the first 2 h. 9 h after the breakfasts, the amounts of substrates oxidized were similar in each case, i.e., approximately 320, 355, and 125 kcal for carbohydrate, fat, and protein, respectively. This resulted in comparable carbohydrate (mean +/- SD = -22 +/- 32, -22 +/- 37, and -24 +/- 22 kcal) and protein balances (-7 +/- 9, +7 +/- 7, and -8 +/- 11 kcal) after the low fat, LCT- and MCT-supplemented test meals, respectively. However, after the low fat meal, the lipid balance was negative (-287 +/- 60 kcal), which differed significantly (P less than 0.001) from the fat balances after the LCT- and MCT-supplemented meals, i.e., +60 +/- 33 and +57 +/- 25 kcal, respectively. The results demonstrate that the rates of fat and of carbohydrate oxidation are not influenced by the fat content of a meal. PMID:3900133

  2. Fully transparent flexible tin-doped zinc oxide thin film transistors fabricated on plastic substrate

    PubMed Central

    Han, Dedong; Zhang, Yi; Cong, Yingying; Yu, Wen; Zhang, Xing; Wang, Yi

    2016-01-01

    In this work, we have successfully fabricated bottom gate fully transparent tin-doped zinc oxide thin film transistors (TZO TFTs) fabricated on flexible plastic substrate at low temperature by RF magnetron sputtering. The effect of O2/Ar gas flow ratio during channel deposition on the electrical properties of TZO TFTs was investigated, and we found that the O2/Ar gas flow ratio have a great influence on the electrical properties. TZO TFTs on flexible substrate has very nice electrical characteristics with a low off-state current (Ioff) of 3 pA, a high on/off current ratio of 2 × 107, a high saturation mobility (μsat) of 66.7 cm2/V•s, a steep subthreshold slope (SS) of 333 mV/decade and a threshold voltage (Vth) of 1.2 V. Root-Mean-Square (RMS) roughness of TZO thin film is about 0.52 nm. The transmittance of TZO thin film is about 98%. These results highlight that the excellent device performance can be realized in TZO film and TZO TFT can be a promising candidate for flexible displays. PMID:27941915

  3. THz behavior of indium-tin-oxide films on p-Si substrates

    SciTech Connect

    Brown, E. R. Zhang, W-D.; Chen, H.; Mearini, G. T.

    2015-08-31

    This paper reports broadband THz free-space transmission measurements and modeling of indium-tin-oxide (ITO) thin films on p-doped Si substrates. Two such samples having ITO thickness of 50 and 100 nm, and DC sheet conductance 260 and 56 Ω/sq, respectively, were characterized between 0.2 and 1.2 THz using a frequency-domain spectrometer. The 50-nm-film sample displayed very flat transmittance over the 1-THz bandwidth, suggesting it is close to the critical THz sheet conductance that suppresses multi-pass interference in the substrate. An accurate transmission-line-based equivalent circuit is developed to explain the effect, and then used to show that the net reflectivity and absorptivity necessarily oscillate with frequency. This has important implications for the use of thin-film metallic coupling layers on THz components and devices, such as detectors and sources. Consistent with previous reported results, the sheet conductance that best fits the THz transmittance data is roughly 50% higher than the DC values for both samples.

  4. Localized Plasmon-Stimulated Nanochemistry of Graphene Oxide on a SERS Substrate.

    PubMed

    Ramanauskaite, Lina; Xu, Huizhong; Snitka, Valentinas

    2016-03-16

    In recent years, there has been remarkable progress in the reduction and functionalization of graphene oxide (GO) using nanoparticles and high-energy optical photons. Most of these reactions are carried out in solutions, whereas the local modification of GO on solid substrates still remains a challenge. In this work, we demonstrate the local reduction of GO and its further destruction, leading to the synthesis of polyaromatic hydrocarbons (PAHs) stimulated by localized surface plasmons (LSPs). The reduction of GO and the synthesis of PAHs have been carried out on a substrate designed for surface-enhanced Raman spectroscopy (SERS). We found that LSPs initiate the destruction of water molecules entrapped in the nanogaps between silver nanoparticles after the deposition of GO from the aqueous suspension. It was demonstrated that OH radicals, as a result of water decomposition, initiate the reduction of GO, leading to the synthesis of PAHs. The reactions have been observed in real time by using SERS. The measurement of current-voltage (I-V) characteristics through conductive atomic force microscopy (AFM), recorded in an LSP-stimulated area, have shown the increased electrical conductivity (more than ten times) compared with the conductivity of GO. The synthesis of new compounds in the LSP-stimulated area has been confirmed by the appearance of new peaks in the Raman spectra and nonlinear I-V characteristics typical for PAHs. We show that the used method allows the local modification of electrical properties of GO and controlled nanopattering of organic compounds on the surface.

  5. Laser scribing of indium tin oxide (ITO) thin films deposited on various substrates for touch panels

    NASA Astrophysics Data System (ADS)

    Tseng, Shih-Feng; Hsiao, Wen-Tse; Huang, Kuo-Cheng; Chiang, Donyau; Chen, Ming-Fei; Chou, Chang-Pin

    2010-12-01

    In this study, a Nd:YAG laser with wavelength of 1064 nm is used to scribe the indium tin oxide (ITO) thin films coated on three types of substrate materials, i.e. soda-lime glass, polycarbonate (PC), and cyclic-olefin-copolymer (COC) materials with thickness of 20 nm, 30 nm, and 20 nm, respectively. The effect of exposure time adjusted from 10 μs to 100 μs on the ablated mark width, depth, and electrical properties of the scribed film was investigated. The maximum laser power of 2.2 W was used to scribe these thin films. In addition, the surface morphology, surface reaction, surface roughness, optical properties, and electrical conductivity properties were measured by a scanning electron microscope, a three-dimensional confocal laser scanning microscope, an atomic force microscope, and a four-point probe. The measured results of surface morphology show that the residual ITO layer was produced on the scribed path with the laser exposure time at 10 μs and 20 μs. The better edge qualities of the scribed lines can be obtained when the exposure time extends from 30 μs to 60 μs. When the laser exposure time is longer than 60 μs, the partially burned areas of the scribed thin films on PC and COC substrates are observed. Moreover, the isolated line width and resistivity values increase when the laser exposure time increases.

  6. Intracellular reactive oxidative stress, cell proliferation and apoptosis of Schwann cells on carbon nanofibrous substrates.

    PubMed

    Jain, Shilpee; Webster, Thomas J; Sharma, Ashutosh; Basu, Bikramjit

    2013-07-01

    Despite considerable research to develop carbon based materials for biomedical applications, the toxicity of carbon remains a major concern. In order to address this issue as well as to investigate the cell fate processes of neural cells from the perspective of neural tissue engineering applications, the in vitro cytocompatibility of polyacrylonitrile (PAN) derived continuous carbon nanofibers and PAN derived carbon thin films were investigated both quantitatively and qualitatively using in vitro biochemical assays followed by extensive flow cytometry analysis. The experimental results of Schwann cell fate, i.e. cell proliferation, cell metabolic activity and cell apoptosis on amorphous carbon substrates are discussed in reference to the time dependent evolution of intracellular oxidative stress. Apart from providing evidence that an electrospun carbon nanofibrous substrate can physically guide the cultured Schwann cells, this study suggested that continuous carbon nanofibers and amorphous carbon films are not cytotoxic in vitro and do not significantly induce apoptosis of Schwann cells, but in fact even facilitate their proliferation and growth.

  7. Fully transparent flexible tin-doped zinc oxide thin film transistors fabricated on plastic substrate

    NASA Astrophysics Data System (ADS)

    Han, Dedong; Zhang, Yi; Cong, Yingying; Yu, Wen; Zhang, Xing; Wang, Yi

    2016-12-01

    In this work, we have successfully fabricated bottom gate fully transparent tin-doped zinc oxide thin film transistors (TZO TFTs) fabricated on flexible plastic substrate at low temperature by RF magnetron sputtering. The effect of O2/Ar gas flow ratio during channel deposition on the electrical properties of TZO TFTs was investigated, and we found that the O2/Ar gas flow ratio have a great influence on the electrical properties. TZO TFTs on flexible substrate has very nice electrical characteristics with a low off-state current (Ioff) of 3 pA, a high on/off current ratio of 2 × 107, a high saturation mobility (μsat) of 66.7 cm2/V•s, a steep subthreshold slope (SS) of 333 mV/decade and a threshold voltage (Vth) of 1.2 V. Root-Mean-Square (RMS) roughness of TZO thin film is about 0.52 nm. The transmittance of TZO thin film is about 98%. These results highlight that the excellent device performance can be realized in TZO film and TZO TFT can be a promising candidate for flexible displays.

  8. Effect of pH, substrate and free nitrous acid concentrations on ammonium oxidation rate.

    PubMed

    Jiménez, E; Giménez, J B; Seco, A; Ferrer, J; Serralta, J

    2012-11-01

    Respirometric techniques have been used to determine the effect of pH, free nitrous acid (FNA) and substrate concentration on the activity of the ammonium oxidizing bacteria (AOB) present in an activated sludge reactor. With this aim, bacterial activity has been measured at different pH values (ranging from 6.2 to 9.7), total ammonium nitrogen concentrations (ranging from 0.1 to 10 mg TAN L(-1)) and total nitrite concentrations (ranging from 3 to 43 mg NO(2)-NL(-1)). According to the results obtained, the most appropriate kinetic expression for the growth of AOB in activated sludge reactors has been established. Substrate half saturation constant and FNA and pH inhibition constants have been obtained by adjusting model predictions to experimental results. Different kinetic parameter values and different Monod terms should be used to model the growth of AOB in activated sludge processes and SHARON reactors due to the different AOB species that predominate in both systems.

  9. Flexible electrochromics: magnetron sputtered tungsten oxide (WO3-x) thin films on Lexan (optically transparent polycarbonate) substrates

    NASA Astrophysics Data System (ADS)

    Uday Kumar, K.; Murali, Dhanya S.; Subrahmanyam, A.

    2015-06-01

    Tungsten oxide (WO3-x) based electrochromics on flexible substrates is a topic of recent interest. The present communication reports the electrochromic properties of WO3-x thin films grown on lexan, an optically transparent polycarbonate thermoplastic substrate. The WO3-x films are prepared at room temperature (300 K) by the reactive DC magnetron sputtering technique. The physical properties of metal oxide thin films are known to be controlled by the oxygen stoichiometry of the film. In the present work, the WO3-x thin films are prepared by varying the oxygen flow rates. All the WO3-x thin films are amorphous in nature. The electrochromic performance of the WO3-x thin films is evaluated by cyclic voltammetry measurements on tin doped indium oxide (ITO) coated lexan and glass substrates. The optical band gap of WO3-x thin films grown on lexan substrates (at any given oxygen flow rate) is significantly higher than those grown on glass substrates. The coloration efficiency of WO3-x thin films (at an oxygen flow rate of 10 sccm) on lexan substrates is: 143.9 cm2 C-1 which is higher compared to that grown on glass: 90.4 cm2 C-1.

  10. Parametric investigation of substrate temperatures on the properties of Zinc oxide deposited over a flexible polymeric substrate via spray technique

    NASA Astrophysics Data System (ADS)

    Rajagopalan, P.; Gagrani, Rohit; Nakamura, Daisuke; Okada, Tatsuo; Singh, Vipul; Palani, I. A.

    2016-09-01

    Here we report the influence of substrate temperature (300-500 °C) on the deposition and growth of ZnO over a Flexible polyimide film. Owing to its simplicity, large area deposition capability and Cost effectivity Spray Pyrolysis technique was used. We have modified the conventional process of Spray pyrolysis by spraying for shorter durations and repeating the process which in turn reduced the Island formation of ZnO. Moreover, this technique helped in maintaining the constant temperature and uniformity during the deposition as prolonged spraying reduces the temperature of the heating plate drastically. Photoluminescence (PL) reveals that at 350 and 400° C the defect have reduced. XRD reveals the crystallinity and Impurities present. FE-SEM reveals the structure morphology changes with the change in the substrate temperature. TGA was done to ensure that substrate does not undergoes dissociation at high temperature. It was observed at the film deposited at 400 °C was found to be more uniform, defect free and crystalline. Hence, IV characterization of the film deposited at 400 °C was done which showed good rectification behaviour of the Schottky diodes.

  11. Nanoclusters and Nanolines: the Effect of Molybdenum Oxide Substrate Stoichiometry on Iron Self-assembly.

    PubMed

    Lübben, Olaf; Krasnikov, Sergey; Walls, Brian; Sergeeva, Natalia; Murphy, Barry; Chaika, Alexander; Bozhko, Sergei; Shvets, Igor

    2017-04-04

    The growth of Fe nanostructures on the stoichiometric MoO2/Mo(110) and oxygen-rich MoO2+x/Mo(110) surfaces has been studied using low temperature scanning tunneling microscopy (STM) and density functional theory calculations. STM results indicate that at low coverage Fe nucleates on the MoO2/Mo(110) surface, forming small, well-ordered nanoclusters of uniform size, each consisting of 5 Fe atoms. These 5-atom clusters can agglomerate into larger nanostructures reflecting the substrate geometry but retain their individual character within the structure. Linear Fe nanocluster arrays are formed on the MoO2/Mo(110) surface at room temperature when the surface coverage is greater than 0.6 monolayers. These nanocluster arrays follow the direction of the oxide rows of the strained MoO2/Mo(110) surface. Slightly altering the preparation procedure of MoO2/Mo(110) leads to the presence of oxygen adatoms on this surface. Fe deposition onto the oxygen-rich MoO2+x/Mo(110) surface results in elongated nanostructures that reach up to 24 nm in length. These nanolines have a zigzag shape and are likely composed of an iron oxide formed upon reaction with the oxygen-rich surface.

  12. Low-cost flexible supercapacitors based on laser reduced graphene oxide supported on polyethylene terephthalate substrate

    NASA Astrophysics Data System (ADS)

    Ghoniem, Engy; Mori, Shinsuke; Abdel-Moniem, Ahmed

    2016-08-01

    A controlled high powered CO2 laser system is used to reduce and pattern graphene oxide (GO) film supported onto a flexible polyethylene terephthalate (PET) substrate. The laser reduced graphene oxide (rGO) film is characterized and evaluated electrochemically in the absence and presence of an overlying anodicaly deposited thin film of pseuodcapactive MnO2 as electrodes for supercapacitor applications using aqueous electrolyte. The laser treatment of the GO film leads to an overlapped structure of defective multi-layer rGO sheets with an electrical conductivity of 273 S m-1. The rGO and MnO2/rGO electrodes exhibit specific capacitance in the range of 82-107 and 172-368 Fg-1 at applied current range of 0.1-1.0 mA cm-2 and retain 98 and 95% of their initial capacitances after 2000 cycles at a current density of 1.0 mA cm-2, respectively. Also, the rGO is assigned as an electrode material for flexible conventionally stacked and interdigitated in-plane supercapacitor structures using gel electrolyte. Three electrode architectures of 2, 4, and 6 sub-electrodes are studied for the interdigital in-plane design. The device with interdigital 6 sub-electrodes architecture I-PS(6) delivers power density of 537.1 Wcm-3 and an energy density of 0.45 mWh cm-3.

  13. Transparent bipolar resistive switching memory on a flexible substrate with indium-zinc-oxide electrodes

    NASA Astrophysics Data System (ADS)

    Yeom, Seung-Won; Ha, Hyeon Jun; Park, Junsu; Shim, Jae Won; Ju, Byeong-Kwon

    2016-12-01

    We fabricated transparent indium zinc oxide (IZO)/TiO2/IZO devices on flexible polyethylene phthalate (PET) substrates. These devices demonstrate bipolar resistive switching behavior, exhibit a transmittance greater than 80 % for visible light, and have stable resistive switching properties, including long retention and good endurance. In addition, the devices were investigated based on their temperature dependence; the results show metallic properties in the low-resistance state (LRS) and semiconducting properties in the high-resistance state (HRS). The conduction mechanism for resistive switching in our device was well-fitted with Ohmic conduction in the LRS and Poole-Frenkel emission in the HRS. The mechanism could be explained by the formation and the rupture of the conduction paths formed by the movement of oxygen ions and vacancies. Moreover, acute bending of the devices did not affect the memory characteristics because of the pliability of both the IZO electrodes and the thin oxide layer. These results indicate potential applications as resistive random access memories in future flexible, transparent electronic devices.

  14. Cyclic Oxidation Behavior of Cold Sprayed CuCrAl-Coated and Uncoated GRCop-84 Substrates for Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Barrett, C.; Karthikeyan, J.; Garlick, R.

    2006-01-01

    A newly developed Cu-23 (wt %) Cr-5%Al (CuCrAl) alloy shown to resist hydridation and oxidation in an as-cast form is currently being considered as a protective coating for GRCop-84, which is an advanced copper alloy containing 8 (at.%) Cr and 4 (at.%) Nb. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique. Cyclic oxidation tests conducted in air on both coated and uncoated substrates between 773 and 1073 K revealed that the coating remained intact and protected the substrate up to 1073 K. No significant weight loss of the coated specimens were observed at 773 and 873 K even after a cumulative cyclic time of 500 h. About a 10 percent weight loss observed at 973 and 1073 K was attributed to the excessive oxidation of the uncoated sides. In contrast, the uncoated substrate lost as much as 80 percent of its original weight under similar test conditions. It is concluded that the cold sprayed CuCrAl coating is suitable for protecting GRCop-84 substrates.

  15. Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom

    DOEpatents

    Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.

    2003-09-09

    An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  16. Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom

    DOEpatents

    Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.

    2005-10-18

    An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  17. A method for on-line measurement of wastewater organic substrate oxidation level during aerobic heterotrophic respiration.

    PubMed

    Rudelle, E A; Vollertsen, J; Hvitved-Jacobsen, T; Nielsen, A H

    2013-01-01

    A method for on-line measurement of the organic carbon oxidation level (OXC) during aerobic heterotrophic respiration in domestic wastewater was developed and tested. The method is based on batch incubation of sewer wastewater in an intermittently aerated respirometric reactor. Between aeration cycles, measured pH, dissolved oxygen (DO) and dissolved carbon dioxide (CO2) were used to calculate electron flow accepted by DO and the resulting production of dissolved inorganic carbon (DIC). The CO2 production was measured using a novel fiber-optic sensor based on luminescence quenching. The method was tested on domestic wastewater with a relatively high pH and alkalinity. From the DO and DIC measurements, it was possible to evaluate substrate oxidation levels with a temporal resolution of less than an hour. Addition of organic substrates during the experiments confirmed the method's applicability. The substrates tested included ethanol (OXC = -2), glucose (OXC = 0) and oxalic acid (OXC = 3).

  18. High transconductance zinc oxide thin-film transistors on flexible plastic substrates

    NASA Astrophysics Data System (ADS)

    Kimura, Yuta; Higaki, Tomohiro; Maemoto, Toshihiko; Sasa, Shigehiko; Inoue, Masataka

    2012-02-01

    We report the fabrication and characterization on high-performance ZnO based TFTs on unheated plastic substrate. ZnO films were grown by pulsed laser deposition (PLD) on polyethylene napthalate (PEN) substrates. Top-gate ZnO-TFTs were fabricated by photolithography and wet chemical etching. The source and drain contacts were formed by lift-off of e-beam deposited Ti(20 nm)/Au(200 nm). An HfO2 with thickness 100 nm was selected as the gate insulator, and top gate electrode Ti(20 nm)/Au(200 nm) was deposited by e-beam evaporation. We prepared a set of the structure with SiO2/TiO2 to investigate the characteristic changes that appear in the film characteristics in response to bending. From the ID-VDS and the transfer characteristics which are affected by bending and return for the ZnO-TFT with SiO2/TiO2 buffers, the TFTs were bent to a curvature radius of 8.5 mm. The transconductance, gm is obtained 1.7 mS/mm on flat, 1.4 mS/mm on bending and 1.3 mS/mm on returning the film, respectively. The ID-VDS characteristics were therefore not changed by bending. All of the devices exhibited a clear pinch-off behavior and a high on/off current ratio of ˜10^6. The threshold voltages, Vth were not changed drastically. Furthermore, TFT structures were changed from a conventional top-gate type to a bottom-gate type. A high transconductance of 95.8 mS/mm was achieved in the bottom-gate type TFT by using Al2O3 oxide buffer.

  19. Method of depositing an electrically conductive oxide film on a textured metallic substrate and articles formed therefrom

    DOEpatents

    Christen, David K.; He, Qing

    2001-01-01

    The present invention provides a biaxially textured laminate article having a polycrystalline biaxially textured metallic substrate with an electrically conductive oxide layer epitaxially deposited thereon and methods for producing same. In one embodiment a biaxially texture Ni substrate has a layer of LaNiO.sub.3 deposited thereon. An initial layer of electrically conductive oxide buffer is epitaxially deposited using a sputtering technique using a sputtering gas which is an inert or forming gas. A subsequent layer of an electrically conductive oxide layer is then epitaxially deposited onto the initial layer using a sputtering gas comprising oxygen. The present invention will enable the formation of biaxially textured devices which include HTS wires and interconnects, large area or long length ferromagnetic and/or ferroelectric memory devices, large area or long length, flexible light emitting semiconductors, ferroelectric tapes, and electrodes.

  20. Method of depositing an electrically conductive oxide film on a textured metallic substrate and articles formed therefrom

    DOEpatents

    Christen, David K.; He, Qing

    2003-04-29

    The present invention provides a biaxially textured laminate article having a polycrystalline biaxially textured metallic substrate with an electrically conductive oxide layer epitaxially deposited thereon and methods for producing same. In one embodiment a biaxially texture Ni substrate has a layer of LaNiO.sub.3 deposited thereon. An initial layer of electrically conductive oxide buffer is epitaxially deposited using a sputtering technique using a sputtering gas which is an inert or forming gas. A subsequent layer of an electrically conductive oxide layer is then epitaxially deposited onto the initial layer using a sputtering gas comprising oxygen. The present invention will enable the formation of biaxially textured devices which include HTS wires and interconnects, large area or long length ferromagnetic and/or ferroelectric memory devices, large area or long length, flexible light emitting semiconductors, ferroelectric tapes, and electrodes.

  1. Rate-determining Attack on Substrate Precedes Rieske Cluster Oxidation during cis-Dihydroxylation by Benzoate Dioxygenase

    PubMed Central

    Rivard, Brent S.; Rogers, Melanie S.; Marell, Daniel J.; Neibergall, Matthew B.; Chakrabarty, Sarmistha; Cramer, Christopher J.; Lipscomb, John D.

    2015-01-01

    Rieske dearomatizing dioxygenases utilize a Rieske iron-sulfur cluster and a mononuclear Fe(II) located 15 Å across a subunit boundary to catalyze O2-dependent formation of cis-dihydrodiol products from aromatic substrates. During catalysis, O2 binds to the Fe(II) while the substrate bind nearby. Single turnover reactions have shown that one electron from each metal center is required for catalysis. This finding suggested that the reactive intermediate is Fe(III)-(H)peroxo or HO-Fe(V)=O formed by O-O bond scission. Surprisingly, several kinetic phases were observed during the single turnover Rieske cluster oxidation. Here, the Rieske cluster oxidation and product formation steps of a single turnover of benzoate 1,2-dioxygenase are investigated using benzoate and three fluorinated analogs. It is shown that the rate constant for product formation correlates with the reciprocal relaxation time of only the fastest kinetic phase (RRT-1) for each substrate, suggesting that the slower phases are not mechanistically relevant. RRT-1 is strongly dependent on substrate type, suggesting a role for substrate in electron transfer from the Rieske cluster to the mononuclear iron site. This insight, together with the substrate and O2 concentration dependencies of RRT-1, indicates that a reactive species is formed after substrate and O2 binding, but before electron transfer from the Rieske cluster. Computational studies show that RRT-1 is correlated with the electron density at the substrate carbon closest to the Fe(II), consistent with initial electrophilic attack by an Fe(III)-superoxo intermediate. The resulting Fe(III)-peroxo-aryl radical species would then readily accept an electron from the Rieske cluster to complete the cis-dihydroxylation reaction. PMID:26154836

  2. Correlating the chemical composition and size of various metal oxide substrates with the catalytic activity and stability of as-deposited Pt nanoparticles for the methanol oxidation reaction

    DOE PAGES

    Megan E. Scofield; Wong, Stanislaus S.; Koenigsmann, Christopher; ...

    2015-12-09

    The performance of electrode materials in conventional direct alcohol fuel cells (DAFC) is constrained by (i) the low activity of the catalyst materials relative to their overall cost, (ii) the poisoning of the active sites due to the presence of partially oxidized carbon species (such as but not limited to CO, formate, and acetate) produced during small molecule oxidation, and (iii) the lack of catalytic stability and durability on the underlying commercial carbon support. Therefore, as a viable alternative, we have synthesized various metal oxide and perovskite materials of different sizes and chemical compositions as supports for Pt nanoparticles (NPs).more » Our results including unique mechanistic studies demonstrate that the SrRuO3 substrate with immobilized Pt NPs at its surface evinces the best methanol oxidation performance as compared with all of the other substrate materials tested herein, including commercial carbon itself. In addition, data from electron energy loss spectroscopy (EELS) and X-ray photoelectron spectroscopy (XPS) confirmed the presence of electron transfer from bound Pt NPs to surface Ru species within the SrRuO3 substrate itself, thereby suggesting that favorable metal support interactions are responsible for the increased methanol oxidation reaction (MOR) activity of Pt species with respect to the underlying SrRuO3 composite catalyst material.« less

  3. Correlating the chemical composition and size of various metal oxide substrates with the catalytic activity and stability of as-deposited Pt nanoparticles for the methanol oxidation reaction

    SciTech Connect

    Megan E. Scofield; Wong, Stanislaus S.; Koenigsmann, Christopher; Bobb-Semple, Dara; Tao, Jing; Tong, Xiao; Wang, Lei; Lewis, Crystal S.; Vuklmirovic, Miomir; Zhu, Yimei; Adzic, Radoslav R.

    2015-12-09

    The performance of electrode materials in conventional direct alcohol fuel cells (DAFC) is constrained by (i) the low activity of the catalyst materials relative to their overall cost, (ii) the poisoning of the active sites due to the presence of partially oxidized carbon species (such as but not limited to CO, formate, and acetate) produced during small molecule oxidation, and (iii) the lack of catalytic stability and durability on the underlying commercial carbon support. Therefore, as a viable alternative, we have synthesized various metal oxide and perovskite materials of different sizes and chemical compositions as supports for Pt nanoparticles (NPs). Our results including unique mechanistic studies demonstrate that the SrRuO3 substrate with immobilized Pt NPs at its surface evinces the best methanol oxidation performance as compared with all of the other substrate materials tested herein, including commercial carbon itself. In addition, data from electron energy loss spectroscopy (EELS) and X-ray photoelectron spectroscopy (XPS) confirmed the presence of electron transfer from bound Pt NPs to surface Ru species within the SrRuO3 substrate itself, thereby suggesting that favorable metal support interactions are responsible for the increased methanol oxidation reaction (MOR) activity of Pt species with respect to the underlying SrRuO3 composite catalyst material.

  4. Xylo- and cello-oligosaccharide oxidation by gluco-oligosaccharide oxidase from Sarocladium strictum and variants with reduced substrate inhibition

    PubMed Central

    2013-01-01

    Background The oxidation of carbohydrates from lignocellulose can facilitate the synthesis of new biopolymers and biochemicals, and also reduce sugar metabolism by lignocellulolytic microorganisms, reserving aldonates for fermentation to biofuels. Although oxidoreductases that oxidize cellulosic hydrolysates have been well characterized, none have been reported to oxidize substituted or branched xylo-oligosaccharides. Moreover, this is the first report that identifies amino acid substitutions leading to GOOX variants with reduced substrate inhibition. Results The recombinant wild type gluco-oligosaccharide oxidase (GOOX) from the fungus Sarocladium strictum, along with variants that were generated by site-directed mutagenesis, retained the FAD cofactor, and showed high activity on cello-oligosaccharide and xylo-oligosaccharides, including substituted and branched xylo-oligosaccharides. Mass spectrometric analyses confirmed that GOOX introduces one oxygen atom to oxidized products, and 1H NMR and tandem mass spectrometry analysis confirmed that oxidation was restricted to the anomeric carbon. The A38V mutation, which is close to a predicted divalent ion-binding site in the FAD-binding domain of GOOX but 30 Å away from the active site, significantly increased the kcat and catalytic efficiency of the enzyme on all oligosaccharides. Eight amino acid substitutions were separately introduced to the substrate-binding domain of GOOX-VN (at positions Y72, E247, W351, Q353 and Q384). In all cases, the Km of the enzyme variant was higher than that of GOOX, supporting the role of corresponding residues in substrate binding. Most notably, W351A increased Km values by up to two orders of magnitude while also increasing kcat up to 3-fold on cello- and xylo-oligosaccharides and showing no substrate inhibition. Conclusions This study provides further evidence that S. strictum GOOX has broader substrate specificity than the enzyme name implies, and that substrate inhibition can be

  5. Pressure-induced evaporation dynamics of gold nanoparticles on oxide substrate.

    PubMed

    Meng, Gang; Yanagida, Takeshi; Kanai, Masaki; Suzuki, Masaru; Nagashima, Kazuki; Xu, Bo; Zhuge, Fuwei; Klamchuen, Annop; He, Yong; Rahong, Sakon; Kai, Shoichi; Kawai, Tomoji

    2013-01-01

    Here we report thermal evaporation dynamics of Au nanoparticles on single crystal oxide substrates, including MgO, SrTiO(3), and Al(2)O(3). The size reduction rate of Au nanoparticles via thermal treatments is strongly dependent on not only temperature but also pressure. Lowering the pressure of inert Ar gas from 10(5) to 10 Pa increases the size reduction rate over 30 times in the temperature range 800 °C-950 °C. The temperature dependence is solely due to the variation of saturated vapor pressure of Au, whereas the pressure dependence of the surrounding inert gas can be interpreted in terms of a pressure dependence on a gas-phase diffusion of evaporated Au atoms into the surroundings. We present a simplified model to explain an evaporation dynamics, which well describes the pressure dependence on a size reduction rate of Au nanoparticles. By utilizing this useful pressure-induced evaporation dynamics, we succeeded in manipulating a size reduction of Au nanoparticle arrays down to -10 nm diameter range from -300 nm initial size by programming sequentially a surrounding pressure.

  6. Uniting Superhydrophobic, Superoleophobic and Lubricant Infused Slippery Behavior on Copper Oxide Nano-structured Substrates

    PubMed Central

    Ujjain, Sanjeev Kumar; Roy, Pritam Kumar; Kumar, Sumana; Singha, Subhash; Khare, Krishnacharya

    2016-01-01

    Alloys, specifically steel, are considered as the workhorse of our society and are inimitable engineering materials in the field of infrastructure, industry and possesses significant applications in our daily life. However, creating a robust synthetic metallic surface that repels various liquids has remained extremely challenging. The wettability of a solid surface is known to be governed by its geometric nano-/micro structure and the chemical composition. Here, we are demonstrating a facile and economical way to generate copper oxide micro-nano structures with spherical (0D), needle (1D) and hierarchical cauliflower (3D) morphologies on galvanized steel substrates using a simple chemical bath deposition method. These nano/micro textured steel surfaces, on subsequent coating of a low surface energy material display excellent superhydrophobic, superoleophobic and slippery behavior. Polydimethylsiloxane coated textured surfaces illustrate superhydrophobicity with water contact angle about 160°(2) and critical sliding angle ~2°. When functionalized with low-surface energy perfluoroalkylsilane, these surfaces display high repellency for low surface tension oils as well as hydrocarbons. Among them, the hierarchical cauliflower morphology exhibits re-entrant structure thereby showing the best superoleophobicity with contact angle 149° for dodecane. Once infused with a lubricant like silicone oil, they show excellent slippery behavior with low contact angle hysteresis (~ 2°) for water drops. PMID:27752098

  7. Optoelectrochemical biorecognition by optically transparent highly conductive graphene-modified fluorine-doped tin oxide substrates.

    PubMed

    Lamberti, F; Brigo, L; Favaro, M; Luni, C; Zoso, A; Cattelan, M; Agnoli, S; Brusatin, G; Granozzi, G; Giomo, M; Elvassore, N

    2014-12-24

    Both optical and electrochemical graphene-based sensors have gone through rapid development, reaching high sensitivity at low cost and with fast response time. However, the complex validating biochemical operations, needed for their consistent use, currently limits their effective application. We propose an integration strategy for optoelectrochemical detection that overcomes previous limitations of these sensors used separately. We develop an optoelectrochemical sensor for aptamer-mediated protein detection based on few-layer graphene immobilization on selectively modified fluorine-doped tin oxide (FTO) substrates. Our results show that the electrochemical properties of graphene-modified FTO samples are suitable for complex biological detection due to the stability and inertness of the engineered electrodic interface. In addition, few-layer immobilization of graphene sheets through electrostatic linkage with an electrochemically grafted FTO surface allows obtaining an optically accessible and highly conductive platform. As a proof of concept, we used insulin as the target molecule to reveal in solution. Because of its transparency and low sampling volume (a few microliters), our sensing unit can be easily integrated in lab-on-a-chip cell culture systems for effectively monitoring subnanomolar concentrations of proteins relevant for biomedical applications.

  8. Uniting Superhydrophobic, Superoleophobic and Lubricant Infused Slippery Behavior on Copper Oxide Nano-structured Substrates

    NASA Astrophysics Data System (ADS)

    Ujjain, Sanjeev Kumar; Roy, Pritam Kumar; Kumar, Sumana; Singha, Subhash; Khare, Krishnacharya

    2016-10-01

    Alloys, specifically steel, are considered as the workhorse of our society and are inimitable engineering materials in the field of infrastructure, industry and possesses significant applications in our daily life. However, creating a robust synthetic metallic surface that repels various liquids has remained extremely challenging. The wettability of a solid surface is known to be governed by its geometric nano-/micro structure and the chemical composition. Here, we are demonstrating a facile and economical way to generate copper oxide micro-nano structures with spherical (0D), needle (1D) and hierarchical cauliflower (3D) morphologies on galvanized steel substrates using a simple chemical bath deposition method. These nano/micro textured steel surfaces, on subsequent coating of a low surface energy material display excellent superhydrophobic, superoleophobic and slippery behavior. Polydimethylsiloxane coated textured surfaces illustrate superhydrophobicity with water contact angle about 160°(2) and critical sliding angle ~2°. When functionalized with low-surface energy perfluoroalkylsilane, these surfaces display high repellency for low surface tension oils as well as hydrocarbons. Among them, the hierarchical cauliflower morphology exhibits re-entrant structure thereby showing the best superoleophobicity with contact angle 149° for dodecane. Once infused with a lubricant like silicone oil, they show excellent slippery behavior with low contact angle hysteresis (~ 2°) for water drops.

  9. Transparent resistive switching memory using aluminum oxide on a flexible substrate.

    PubMed

    Yeom, Seung-Won; Shin, Sang-Chul; Kim, Tan-Young; Ha, Hyeon Jun; Lee, Yun-Hi; Shim, Jae Won; Ju, Byeong-Kwon

    2016-02-19

    Resistive switching memory (ReRAM) has attracted much attention in recent times owing to its fast switching, simple structure, and non-volatility. Flexible and transparent electronic devices have also attracted considerable attention. We therefore fabricated an Al2O3-based ReRAM with transparent indium-zinc-oxide (IZO) electrodes on a flexible substrate. The device transmittance was found to be higher than 80% in the visible region (400-800 nm). Bended states (radius = 10 mm) of the device also did not affect the memory performance because of the flexibility of the two transparent IZO electrodes and the thin Al2O3 layer. The conduction mechanism of the resistive switching of our device was explained by ohmic conduction and a Poole-Frenkel emission model. The conduction mechanism was proved by oxygen vacancies in the Al2O3 layer, as analyzed by x-ray photoelectron spectroscopy analysis. These results encourage the application of ReRAM in flexible and transparent electronic devices.

  10. Influence of substrate particle size and wet oxidation on physical surface structures and enzymatic hydrolysis of wheat straw.

    PubMed

    Pedersen, Mads; Meyer, Anne S

    2009-01-01

    In the worldwide quest for producing biofuels from lignocellulosic biomass, the importance of the substrate pretreatment is becoming increasingly apparent. This work examined the effects of reducing the substrate particle sizes of wheat straw by grinding prior to wet oxidation and enzymatic hydrolysis. The yields of glucose and xylose were assessed after treatments with a benchmark cellulase system consisting of Celluclast 1.5 L (Trichoderma reesei) and Novozym 188 beta-glucosidase (Aspergillus niger). Both wet oxidized and not wet oxidized wheat straw particles gave increased glucose release with reduced particle size. After wet oxidation, the glucose release from the smallest particles (53-149 mum) reached 90% of the theoretical maximum after 24 h of enzyme treatment. The corresponding glucose release from the wet oxidized reference samples (2-4 cm) was approximately 65% of the theoretical maximum. The xylose release only increased (by up to 39%) with particle size decrease for the straw particles that had not been wet oxidized. Wet oxidation pretreatment increased the enzymatic xylose release by 5.4 times and the glucose release by 1.8 times across all particle sizes. Comparison of scanning electron microscopy images of the straw particles revealed edged, nonspherical, porous particles with variable surface structures as a result of the grinding. Wet oxidation pretreatment tore up the surface structures of the particles to retain vascular bundles of xylem and phloem. The enzymatic hydrolysis left behind a significant amount of solid, apparently porous structures within all particles size groups of both the not wet oxidized and wet oxidized particles.

  11. Effects of UV Aging on the Cracking of Titanium Oxide Layer on Poly(ethylene terephthalate) Substrate: Preprint

    SciTech Connect

    Zhang, Chao; Gray, Matthew H.; Tirawat, Robert; Larsen, Ross E.; Chen, Fangliang

    2016-04-18

    Thin oxide and metal films deposited on polymer substrates is an emerging technology for advanced reflectors for concentrated solar power applications, due to their unique combination of light weight, flexibility and inexpensive manufacture. Thus far, there is little knowledge on the mechanical integrity or structural persistence of such multi-layer thin film systems under long-term environmental aging. In this paper, the cracking of a brittle titanium dioxide layer deposited onto elasto-plastic poly(ethylene terephthalate) (PET) substrate is studied through a combination of experiment and modeling. In-situ fragmentation tests have been conducted to monitor the onset and evolution of cracks both on pristine and on samples aged with ultraviolet (UV) light. An analytical model is presented to simulate the cracking behavior and to predict the effects of UV aging. Based on preliminary experimental observation, the effect of aging is divided into three aspects and analyzed independently: mechanical property degradation of the polymer substrate; degradation of the interlayer between substrate and oxide coating; and internal stress-induced cracks on the oxide coating.

  12. Oxidation and interdiffusion behavior of Niobium substrate coated MoSi2 coating prepared by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Yan, JianHui; Wang, Yi; Liu, LongFei; Wang, Yueming

    2014-11-01

    In order to protect Niobium material from oxidation, MoSi2 coating was prepared on the Niobium substrate by spark plasma sintering. Oxidation behavior of MoSi2 coating was investigated in air over the temperature range of 1200-1500 °C. The interfacial diffusion between MoSi2 coating and Niobium substrate was also examined. Dense MoSi2 coating was successfully prepared using spark plasma sintering. The porosities of top and side coatings are about 5.5% and 6.4%, respectively. No cracks were present in the MoSi2 coating. Cracking and spallation of the SiO2 scale did not occur at test temperatures. Two intermediate phases-(Nb,Mo)5Si3 and Nb5Si3 phases, were detected in the boundary of MoSi2 coating and Nb substrate. The growth of the reaction layer was dominated by the diffusion of Si toward the Nb substrate and obeyed a parabolic rate law. A multi-layered structural coating formed on Nb substrate, which consisted of MoSi2, (Mo,Nb)5Si3 and Nb5Si3 in turn.

  13. Probing the structural dependency of photoinduced properties of colloidal quantum dots using metal-oxide photo-active substrates

    SciTech Connect

    Patty, Kira; Campbell, Quinn; Hamilton, Nathan; West, Robert G.; Sadeghi, Seyed M.; Mao, Chuanbin

    2014-09-21

    We used photoactive substrates consisting of about 1 nm coating of a metal oxide on glass substrates to investigate the impact of the structures of colloidal quantum dots on their photophysical and photochemical properties. We showed during irradiation these substrates can interact uniquely with such quantum dots, inducing distinct forms of photo-induced processes when they have different cores, shells, or ligands. In particular, our results showed that for certain types of core-shell quantum dot structures an ultrathin layer of a metal oxide can reduce suppression of quantum efficiency of the quantum dots happening when they undergo extensive photo-oxidation. This suggests the possibility of shrinking the sizes of quantum dots without significant enhancement of their non-radiative decay rates. We show that such quantum dots are not influenced significantly by Coulomb blockade or photoionization, while those without a shell can undergo a large amount of photo-induced fluorescence enhancement via such blockade when they are in touch with the metal oxide.

  14. Probing the structural dependency of photoinduced properties of colloidal quantum dots using metal-oxide photo-active substrates

    NASA Astrophysics Data System (ADS)

    Patty, Kira; Sadeghi, Seyed M.; Campbell, Quinn; Hamilton, Nathan; West, Robert G.; Mao, Chuanbin

    2014-09-01

    We used photoactive substrates consisting of about 1 nm coating of a metal oxide on glass substrates to investigate the impact of the structures of colloidal quantum dots on their photophysical and photochemical properties. We showed during irradiation these substrates can interact uniquely with such quantum dots, inducing distinct forms of photo-induced processes when they have different cores, shells, or ligands. In particular, our results showed that for certain types of core-shell quantum dot structures an ultrathin layer of a metal oxide can reduce suppression of quantum efficiency of the quantum dots happening when they undergo extensive photo-oxidation. This suggests the possibility of shrinking the sizes of quantum dots without significant enhancement of their non-radiative decay rates. We show that such quantum dots are not influenced significantly by Coulomb blockade or photoionization, while those without a shell can undergo a large amount of photo-induced fluorescence enhancement via such blockade when they are in touch with the metal oxide.

  15. Influence of Mo Back-Contact Oxidation on Properties of CIGSe2 Thin Film Solar Cells on Glass Substrates

    NASA Astrophysics Data System (ADS)

    Rissom, Thorsten; Kaufmann, Christian A.; Caballero, Raquel; Schniebs, Jan; Schock, Hans-Werner; Wiedenbeck, Michael

    2012-10-01

    Copper indium gallium diselenide (CIGSe) solar cells grown on glass substrates have reached an efficiency of 20.3%. Their industrial production is becoming increasingly relevant. While various deposition techniques for the fabrication of the absorber are used by different groups and corporations, molybdenum (Mo) has become the back contact material of choice. Oxidation of the bare Mo layer prior to absorber deposition is a phenomenon that is generally hard to control or to avoid. Since the incorporation of sodium (Na) into the absorber layer is commonly achieved by diffusion from a glass substrate through the Mo layer, oxidation of the back contact will influence the diffusion, and thus the availability of Na during the CIGSe growth process. In order to investigate this effect, Na containing glass substrates with Mo layers in different stages of oxidation have been prepared using a damp heat treatment. The samples were coated with CIGSe by physical vapor deposition in a multistage co-evaporation process. The CIGSe/Mo-interface is investigated by Raman spectroscopy and secondary ion mass spectroscopy, using a lift-off technique. The damp heat treatment led to the formation of an oxide layer (presumably MoO2) and an increase of the sodium content in the grown absorber layers.

  16. Effects of subthalamic nucleus deep brain stimulation and levodopa on energy production rate and substrate oxidation in Parkinson's disease.

    PubMed

    Perlemoine, Caroline; Macia, Frédéric; Tison, François; Coman, Isabelle; Guehl, Dominique; Burbaud, Pierre; Cuny, Emmanuel; Baillet, Laurence; Gin, Henri; Rigalleau, Vincent

    2005-02-01

    Patients with Parkinson's disease (PD) often lose weight, but after subthalamic nucleus deep brain stimulation (STN-DBS), they gain weight. We compared daily energy intake (DEI), resting energy expenditure (REE) and substrate oxidation rates (measured by indirect calorimetry) in nineteen STN-DBS-treated patients (Group S), thirteen others on pharmacologic treatment by levodopa (Group L) and eight control subjects. We also determined the acute effects of STN-DBS and levodopa on REE and substrate oxidation rates. STN-DBS treated patients gained 9.7 (SEM 7.1) kg after surgery, whereas patients on pharmacologic treatment lost 3.8 (SEM 10.0) kg since diagnosis. In STN-DBS-treated patients, REE (-16.5 %; P<0.001), lipid oxidation (-27 %; P<0.05) and protein oxidation (-46 %; P<0.05) were decreased, whereas glucose oxidation was elevated (+81 %; P<0.05) as compared to patients on pharmacologic treatment. Levodopa acutely reduced REE (-8.3 %; P<0.05) and glucose oxidation (-37 %; P<0.01) with a slight hyperglycaemic effect (after levodopa challenge: 5.6 (SEM 0.8) v. before levodopa challenge: 5.3 (SEM 0.6) mmol/l; P<0.01). Switching 'on' STN-DBS acutely reduced REE (-17.5 %; P<0.01) and lipid oxidation (-24 %; P<0.001) 30 min after starting stimulation. Fasting glycaemia was slightly but significantly reduced (5.4 (SEM 1.4) v. 5.5 (SEM 1.3) mmol/l; P<0.01). After STN-DBS, the normalization of REE and the reduction in lipid and protein oxidation contribute to the restoration of weight. As levodopa decreases glucose oxidation, the reduction in daily dose of levodopa in STN-DBS-treated patients helps prevent the effect of weight gain on glycaemia.

  17. Nd:YVO4 laser direct ablation of indium tin oxide films deposited on glass and polyethylene terephthalate substrates.

    PubMed

    Wang, Jian-Xun; Kwon, Sang Jik; Han, Jae-Hee; Cho, Eou Sik

    2013-09-01

    A Q-switched diode-pumped neodymium-doped yttrium vanadate (Nd:YVO4, lambda = 1064 nm) laser was applied to obtain the indium tin oxide (ITO) patterns on flexible polyethylene terephthalate (PET) substrate by a direct etching method. After the ITO films were deposited on a soda-lime glass and PET substrate, laser ablations were carried out on the ITO films for various conditions and the laser ablated results on the ITO films were investigated and analyzed considering the effects of substrates on the laser etching. The laser ablated widths on ITO deposited on glass were found to be much narrower than those on ITO deposited on PET substrate, especially, at a higher scanning speed of laser beam such as 1000 mm/s and 2000 mm/s. As the thermal conductivity of glass substrate is about 7.5 times higher than that of PET, more thermal energy would be spread and transferred to lateral direction in the ITO film in case of PET substrate.

  18. Composite plasma electrolytic oxidation to improve the thermal radiation performance and corrosion resistance on an Al substrate

    NASA Astrophysics Data System (ADS)

    Kim, Donghyun; Sung, Dahye; Lee, Junghoon; Kim, Yonghwan; Chung, Wonsub

    2015-12-01

    A composite plasma electrolytic oxidation (PEO) was performed for enhancing the thermal radiation performance and corrosion resistance on an Al alloy by dispersing cupric oxide (CuO) particles in a conventional PEO electrolyte. Cu-based oxides (CuO and Cu2O) formed by composite PEO increased the emissivity of the substrate to 0.892, and made the surface being dark color, similar to a black body, i.e., an ideal radiator. In addition, the corrosion resistance was analyzed using potentio-dynamic polarization and electrochemical impedance spectroscopy tests in 3.5 wt.% NaCl aqueous solution. An optimum condition of 10 ampere per square decimeter (ASD) current density and 30 min processing time produced appropriate surface morphologies and coating thicknesses, as well as dense Cu- and Al-based oxides that constituted the coating layers.

  19. Indium tin oxide films deposited by thermionic-enhanced DC magnetron sputtering on unheated polyethylene terephthalate polymer substrate

    SciTech Connect

    Lan, Y.F.; Peng, W.C.; Lo, Y.H.; He, J.L.

    2009-08-05

    Indium tin oxide thin films were deposited onto polyethylene terephthalate substrates via thermionic enhanced DC magnetron sputtering at low substrate temperatures. The structural, optical and electrical properties of these films are methodically investigated. The results show that compared with traditional sputtering, the films deposited with thermionic emission exhibit higher crystallinity, and their optical and electrical properties are also improved. Indium tin oxide films deposited by utilizing thermionic emission exhibit an average visible transmittance of 80% and an electrical resistivity of 4.5 x 10{sup -4} {Omega} cm, while films made without thermionic emission present an average visible transmittance of 74% and an electrical resistivity of 1.7 x 10{sup -3} {Omega} cm.

  20. Method for improving the oxidation-resistance of metal substrates coated with thermal barrier coatings

    DOEpatents

    Thompson, Anthony Mark; Gray, Dennis Michael; Jackson, Melvin Robert

    2002-01-01

    A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described.

  1. Growth of light-emitting SiGe heterostructures on strained silicon-on-insulator substrates with a thin oxide layer

    SciTech Connect

    Baidakova, N. A.; Bobrov, A. I.; Drozdov, M. N.; Novikov, A. V.; Pavlov, D. A.; Shaleev, M. V.; Yunin, P. A.; Yurasov, D. V.; Krasilnik, Z. F.

    2015-08-15

    The possibility of using substrates based on “strained silicon on insulator” structures with a thin (25 nm) buried oxide layer for the growth of light-emitting SiGe structures is studied. It is shown that, in contrast to “strained silicon on insulator” substrates with a thick (hundreds of nanometers) oxide layer, the temperature stability of substrates with a thin oxide is much lower. Methods for the chemical and thermal cleaning of the surface of such substrates, which make it possible to both retain the elastic stresses in the thin Si layer on the oxide and provide cleaning of the surface from contaminating impurities, are perfecte. It is demonstrated that it is possible to use the method of molecular-beam epitaxy to grow light-emitting SiGe structures of high crystalline quality on such substrates.

  2. Ex Vivo Antioxidant Activity of Selected Medicinal Plants against Fenton Reaction-Mediated Oxidation of Biological Lipid Substrates

    PubMed Central

    Pai Kotebagilu, Namratha; Reddy Palvai, Vanitha; Urooj, Asna

    2015-01-01

    Free radical-mediated oxidation is often linked to various degenerative diseases. Biological substrates with lipids as major components are susceptible to oxygen-derived lipid peroxidation due to their composition. Lipid peroxide products act as biomarkers in evaluating the antioxidant potential of various plants and functional foods. The study focused on evaluation of the antioxidant potential of two extracts (methanol and 80% methanol) of four medicinal plants, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, against Fenton reaction-mediated oxidation of three biological lipid substrates; cholesterol, low-density lipoprotein, and brain homogenate. The antioxidant activity of the extracts was measured by thiobarbituric acid reactive substances method. Also, the correlation between the polyphenol, flavonoid content, and the antioxidant activity in biological substrates was analyzed. Results indicated highest antioxidant potential by 80% methanol extract of Canthium parviflorum (97.55%), methanol extract of Andrographis paniculata (72.15%), and methanol extract of Canthium parviflorum (49.55%) in cholesterol, low-density lipoprotein, and brain, respectively. The polyphenol and flavonoid contents of methanol extract of Andrographis paniculata in cholesterol (r = 0.816) and low-density lipoprotein (r = 0.948) and Costus speciosus in brain (r = 0.977, polyphenols, and r = 0.949, flavonoids) correlated well with the antioxidant activity. The findings prove the antioxidant potential of the selected medicinal plants against Fenton reaction in biological lipid substrates. PMID:26933511

  3. Multi-laminated copper nanoparticles deposited on conductive substrates for electrocatalytic oxidation of methanol in alkaline electrolytes

    NASA Astrophysics Data System (ADS)

    Xia, Lun-Peng; Guo, Peng; Wang, Yan; Ding, Shi-Qi; He, Jian-Bo

    2014-09-01

    A simple electrodeposition approach to grow multi-laminated copper particles on two conductive substrates is presented. Morphological and structural characterization was performed using SEM and XRD. The copper crystallites are preferentially oriented with {111} planes parallel to the substrate surfaces, providing an optimum interface for methanol oxidation. There are a large number of edges, corners, and atomic steps around individual multi-laminated nanostructured particles. The excellent electrocatalytic activity of the particles to methanol oxidation in alkaline solutions is demonstrated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. The presence of the conductive poly(2-amino-5-mercapto-1,3,4-thiadiazole) interlayer between the Cu particles and the carbon paste substrate results in larger specific surface areas of the particles and smaller charge-transfer resistances of methanol oxidation reaction in the lower potential range. Such an anisotropic laminated structure of non-noble metal nanomaterials deserves further investigation for finding a suitable alternative to noble metal-based anodic catalysts in fuel cells.

  4. Generic process for preparing a crystalline oxide upon a group IV semiconductor substrate

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.; Chisholm, Matthew F.

    2000-01-01

    A process for growing a crystalline oxide epitaxially upon the surface of a Group IV semiconductor, as well as a structure constructed by the process, is described. The semiconductor can be germanium or silicon, and the crystalline oxide can generally be represented by the formula (AO).sub.n (A'BO.sub.3).sub.m in which "n" and "m" are non-negative integer repeats of planes of the alkaline earth oxides or the alkaline earth-containing perovskite oxides. With atomic level control of interfacial thermodynamics in a multicomponent semiconductor/oxide system, a highly perfect interface between a semiconductor and a crystalline oxide can be obtained.

  5. Low- and high-resistivity silicon substrate characterization using the Al/silicon-rich oxide/Si structure with comparison to the metal oxide semiconductor technique

    NASA Astrophysics Data System (ADS)

    Luna-López, A.; Aceves-Mijares, M.; Malik, O.; Glaenzer, R.

    2005-05-01

    High-resistivity silicon substrates (HRS, NB<1014 cm-3) are commonly used, especially in optoelectronic integrated circuits. However, standard metal oxide semiconductor (MOS) characterization methods fail to predict correctly the dopant concentration and lifetime. This is due to the high resistance in series with the MOS capacitor, which causes an erroneous capacitance measurement at high frequency. To overcome this restriction, a different characterization method is proposed, using the electronic transport property of silicon-rich oxide (SRO) films, with aluminum/silicon-rich oxide (Al/SRO/Si) devices and using capacitance-voltage (C-V) and current-voltage (I-V) characteristics, the dopant concentration and lifetime can be estimated with these method. In addition, using low/high-frequency C-V measurements in MOS structure on HRS can be used to determine the dopant concentration. In this work, low-resistivity silicon and HRS substrates are characterized. The results for both type of substrates and for the different methods are compared. It is shown that the results are similar and any of these methods produce reliable results, but the Al/SRO/Si structure has the advantage that the generation lifetime is easily obtained.

  6. Growth of tin oxide thin films composed of nanoparticles on hydrophilic and hydrophobic glass substrates by spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Paloly, Abdul Rasheed; Satheesh, M.; Martínez-Tomás, M. Carmen; Muñoz-Sanjosé, Vicente; Rajappan Achary, Sreekumar; Bushiri, M. Junaid

    2015-12-01

    In this paper, we have demonstrated the growth of tin oxide (SnO2) thin films composed of nanoparticles on hydrophobic (siliconized) and hydrophilic (non-siliconized) glass substrates by using the spray pyrolysis technique. X-ray diffraction (XRD) analysis confirmed the formation of SnO2 thin films with tetragonal rutile-phase structure. Average particle size of nanoparticles was determined to be in the range of 3-4 nm measured from the front view images obtained by a field emission gun scanning electron microscope (FESEM), while the size of nanoparticle clusters, when present, were in the range of 11-20 nm. Surface morphology of SnO2 films grown over hydrophobic substrates revealed larger isolated particles which are less crowded compared to the highly crowded and agglomerated smaller particles in films on hydrophilic substrates. Blue shift in the band gap is observed in samples in which the average particle size is slightly larger than the exciton Bohr radius. Photoluminescence (PL) analysis of samples grown over hydrophobic substrates exhibited an intense defect level emission and a weak near band edge emission. The enhanced visible emission from these SnO2 thin films is attributed to lattice defects formed during the film growth due to the mismatch between the film and the hydrophobic substrate surface.

  7. Repair of oxidatively induced DNA damage by DNA glycosylases: Mechanisms of action, substrate specificities and excision kinetics.

    PubMed

    Dizdaroglu, Miral; Coskun, Erdem; Jaruga, Pawel

    Endogenous and exogenous reactive species cause oxidatively induced DNA damage in living organisms by a variety of mechanisms. As a result, a plethora of mutagenic and/or cytotoxic products are formed in cellular DNA. This type of DNA damage is repaired by base excision repair, although nucleotide excision repair also plays a limited role. DNA glycosylases remove modified DNA bases from DNA by hydrolyzing the glycosidic bond leaving behind an apurinic/apyrimidinic (AP) site. Some of them also possess an accompanying AP-lyase activity that cleaves the sugar-phosphate chain of DNA. Since the first discovery of a DNA glycosylase, many studies have elucidated the mechanisms of action, substrate specificities and excision kinetics of these enzymes present in all living organisms. For this purpose, most studies used single- or double-stranded oligodeoxynucleotides with a single DNA lesion embedded at a defined position. High-molecular weight DNA with multiple base lesions has been used in other studies with the advantage of the simultaneous investigation of many DNA base lesions as substrates. Differences between the substrate specificities and excision kinetics of DNA glycosylases have been found when these two different substrates were used. Some DNA glycosylases possess varying substrate specificities for either purine-derived lesions or pyrimidine-derived lesions, whereas others exhibit cross-activity for both types of lesions. Laboratory animals with knockouts of the genes of DNA glycosylases have also been used to provide unequivocal evidence for the substrates, which had previously been found in in vitro studies, to be the actual substrates in vivo as well. On the basis of the knowledge gained from the past studies, efforts are being made to discover small molecule inhibitors of DNA glycosylases that may be used as potential drugs in cancer therapy.

  8. A colorimetric sensor based on anodized aluminum oxide (AAO) substrate for the detection of nitroaromatics.

    SciTech Connect

    Liu, Y.; Wang, H. H.; Indacochea, J. E.; Wang, M. L.

    2011-12-15

    Simple and low cost colorimetric sensors for explosives detection were explored and developed. Anodized aluminum oxide (AAO) with large surface area through its porous structure and light background color was utilized as the substrate for colorimetric sensors. Fabricated thin AAO films with thickness less than {approx} 500 nm allowed us to observe interference colors which were used as the background color for colorimetric detection. AAO thin films with various thickness and pore-to-pore distance were prepared through anodizing aluminum foils at different voltages and times in dilute sulfuric acid. Various interference colors were observed on these samples due to their difference in structures. Accordingly, suitable anodization conditions that produce AAO samples with desired light background colors for optical applications were obtained. Thin film interference model was applied to analyze the UV-vis reflectance spectra and to estimate the thickness of the AAO membranes. We found that the thickness of produced AAO films increased linearly with anodization time in sulfuric acid. In addition, the growth rate was higher for AAO anodized using higher voltages. The thin film interference formulism was further validated with a well established layer by layer deposition technique. Coating poly(styrene sulfonate) sodium salt (PSS) and poly(allylamine hydrochloride) (PAH) layer by layer on AAO thin film consistently shifted its surface color toward red due to the increase in thickness. The red shift of UV-vis reflectance was correlated quantitatively to the number of layers been assembled. This sensitive red shift due to molecular attachment (increase in thickness) on AAO substrate was applied toward nitroaromatics detection. Aminopropyltrimethoxysilane (APTS) which can be attached onto AAO nanowells covalently through silanization and attract TNT molecules was coated and applied for TNT detection. UV-vis spectra of AAO with APTS shifted to the longer wavelength side due to

  9. Synthesis of gallium nitride nanostructures by nitridation of electrochemically deposited gallium oxide on silicon substrate

    PubMed Central

    2014-01-01

    Gallium nitride (GaN) nanostructures were successfully synthesized by the nitridation of the electrochemically deposited gallium oxide (Ga2O3) through the utilization of a so-called ammoniating process. Ga2O3 nanostructures were firstly deposited on Si substrate by a simple two-terminal electrochemical technique at a constant current density of 0.15 A/cm2 using a mixture of Ga2O3, HCl, NH4OH and H2O for 2 h. Then, the deposited Ga2O3 sample was ammoniated in a horizontal quartz tube single zone furnace at various ammoniating times and temperatures. The complete nitridation of Ga2O3 nanostructures at temperatures of 850°C and below was not observed even the ammoniating time was kept up to 45 min. After the ammoniating process at temperature of 900°C for 15 min, several prominent diffraction peaks correspond to hexagonal GaN (h-GaN) planes were detected, while no diffraction peak of Ga2O3 structure was detected, suggesting a complete transformation of Ga2O3 to GaN. Thus, temperature seems to be a key parameter in a nitridation process where the deoxidization rate of Ga2O3 to generate gaseous Ga2O increase with temperature. The growth mechanism for the transformation of Ga2O3 to GaN was proposed and discussed. It was found that a complete transformation can not be realized without a complete deoxidization of Ga2O3. A significant change of morphological structures takes place after a complete transformation of Ga2O3 to GaN where the original nanorod structures of Ga2O3 diminish, and a new nanowire-like GaN structures appear. These results show that the presented method seems to be promising in producing high-quality h-GaN nanostructures on Si. PMID:25593562

  10. Catalytic transformations of biomass substrates using mixed metal oxides derived from substituted hydrotalcites

    NASA Astrophysics Data System (ADS)

    Macala, Gerald Stephen, II

    Fueled by seemingly endless reserves of cheap and easily accessible fossil energy, the industrial age has brought to the developed world tremendous advances in human health and well being. Unfortunately the burning of fossil fuels has also been implicated in increasing atmospheric CO2 concentrations and global climate change. Concerns about short-term and long-term supply further build a case for the need for alternative energy sources. Biomass derived materials are a tantalizing source of fuels and fine chemicals. Unlike petroleum derived hydrocarbons, biomass can be both renewable and carbon neutral. Crops can be regenerated annually or even more often in tropical climates, and since the captured carbon originates as atmospheric CO2, the overall cycle has the potential to be nearly carbon neutral regardless of the final fate of the carbon. In contrast to petroleum derived hydrocarbons, which can often be made more valuable by adding functionality, biomass derived materials are already highly functionalized and can usually be made more valuable by selective removal of functionality. The development of robust catalysts capable of selective defuntionalization of biomass derived substrates remains an important challenge with potentially enormous economic and societal impact. In addition to being robust and selective, catalysts should preferably be heterogeneous to allow for easier removal and regeneration after the reaction is complete. New materials consisting of Mg-Al hydrotalcite-like structures, with a limiting percentage of Mg or Al substituted with other M2+ or M3+ cations, were synthesized by a co-precipitation process in basic aqueous solution with carbonate as counterion. Calcination of these materials at 460 °C resulted in evolution of CO2 and water and yielded high surface area mixed metal oxides with enhanced reactivity. Materials were characterized by ICP for elemental analysis, XRD for structural information, XPS for surface elemental analysis and TEM

  11. Synthesis of gallium nitride nanostructures by nitridation of electrochemically deposited gallium oxide on silicon substrate.

    PubMed

    Ghazali, Norizzawati Mohd; Yasui, Kanji; Hashim, Abdul Manaf

    2014-01-01

    Gallium nitride (GaN) nanostructures were successfully synthesized by the nitridation of the electrochemically deposited gallium oxide (Ga2O3) through the utilization of a so-called ammoniating process. Ga2O3 nanostructures were firstly deposited on Si substrate by a simple two-terminal electrochemical technique at a constant current density of 0.15 A/cm(2) using a mixture of Ga2O3, HCl, NH4OH and H2O for 2 h. Then, the deposited Ga2O3 sample was ammoniated in a horizontal quartz tube single zone furnace at various ammoniating times and temperatures. The complete nitridation of Ga2O3 nanostructures at temperatures of 850°C and below was not observed even the ammoniating time was kept up to 45 min. After the ammoniating process at temperature of 900°C for 15 min, several prominent diffraction peaks correspond to hexagonal GaN (h-GaN) planes were detected, while no diffraction peak of Ga2O3 structure was detected, suggesting a complete transformation of Ga2O3 to GaN. Thus, temperature seems to be a key parameter in a nitridation process where the deoxidization rate of Ga2O3 to generate gaseous Ga2O increase with temperature. The growth mechanism for the transformation of Ga2O3 to GaN was proposed and discussed. It was found that a complete transformation can not be realized without a complete deoxidization of Ga2O3. A significant change of morphological structures takes place after a complete transformation of Ga2O3 to GaN where the original nanorod structures of Ga2O3 diminish, and a new nanowire-like GaN structures appear. These results show that the presented method seems to be promising in producing high-quality h-GaN nanostructures on Si.

  12. Method For Improving The Oxidation Resistance Of Metal Substrates Coated With Thermal Barrier Coatings

    DOEpatents

    Thompson, Anthony Mark; Gray, Dennis Michael; Jackson, Melvin Robert

    2003-05-13

    A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described. A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described.

  13. Process for the deposition of high temperature stress and oxidation resistant coatings on silicon-based substrates

    DOEpatents

    Sarin, V.K.

    1991-07-30

    A process is disclosed for depositing a high temperature stress and oxidation resistant coating on a silicon nitride- or silicon carbide-based substrate body. A gas mixture is passed over the substrate at about 900--1500 C and about 1 torr to about ambient pressure. The gas mixture includes one or more halide vapors with other suitable reactant gases. The partial pressure ratios, flow rates, and process times are sufficient to deposit a continuous, fully dense, adherent coating. The halide and other reactant gases are gradually varied during deposition so that the coating is a graded coating of at least two layers. Each layer is a graded layer changing in composition from the material over which it is deposited to the material of the layer and further to the material, if any, deposited thereon, so that no clearly defined compositional interfaces exist. The gases and their partial pressures are varied according to a predetermined time schedule and the halide and other reactant gases are selected so that the layers include (a) an adherent, continuous intermediate layer about 0.5-20 microns thick of an aluminum nitride or an aluminum oxynitride material, over and chemically bonded to the substrate body, and (b) an adherent, continuous first outer layer about 0.5-900 microns thick including an oxide of aluminum or zirconium over and chemically bonded to the intermediate layer.

  14. Process for the deposition of high temperature stress and oxidation resistant coatings on silicon-based substrates

    DOEpatents

    Sarin, Vinod K.

    1991-01-01

    A process for depositing a high temperature stress and oxidation resistant coating on a silicon nitride- or silicon carbide-based substrate body. A gas mixture is passed over the substrate at about 900.degree.-1500.degree. C. and about 1 torr to about ambient pressure. The gas mixture includes one or more halide vapors with other suitable reactant gases. The partial pressure ratios, flow rates, and process times are sufficient to deposit a continuous, fully dense, adherent coating. The halide and other reactant gases are gradually varied during deposition so that the coating is a graded coating of at least two layers. Each layer is a graded layer changing in composition from the material over which it is deposited to the material of the layer and further to the material, if any, deposited thereon, so that no clearly defined compositional interfaces exist. The gases and their partial pressures are varied according to a predetermined time schedule and the halide and other reactant gases are selected so that the layers include (a) an adherent, continuous intermediate layer about 0.5-20 microns thick of an aluminum nitride or an aluminum oxynitride material, over and chemically bonded to the substrate body, and (b) an adherent, continuous first outer layer about 0.5-900 microns thick including an oxide of aluminum or zirconium over and chemically bonded to the intermediate layer.

  15. Laser-induced dehydration of graphite oxide coatings on polymer substrates

    SciTech Connect

    Longo, Angela Palomba, Mariano; Carotenuto, Gianfranco; Nicolais, Luigi; Orabona, Emanuele; Maddalena, Pasqualino; Ambrosio, Antonio

    2014-05-15

    Nanosized graphite has been oxidized by the Hummers method to give high quality graphite oxide. This reaction is characterized by a very fast kinetic behavior and a high yield. The produced graphite oxide has been conveniently used to pattern graphene by using a standard photolithographic method, and the resulting systems have been characterized by optical microscopy (OM), scanning electron microscopy (SEM) and by Fourier transform infrared spectroscopy (FT-IR) and Visible-Near Infrared spectroscopy (Vis-NIR)

  16. Parametrization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity

    NASA Astrophysics Data System (ADS)

    Losurdo, M.; Giangregorio, M.; Capezzuto, P.; Bruno, G.; de Rosa, R.; Roca, F.; Summonte, C.; Plá, J.; Rizzoli, R.

    2002-01-01

    Indium-tin-oxide (ITO) films deposited by sputtering and e-gun evaporation on both transparent (Corning glass) and opaque (c-Si, c-Si/SiO2) substrates and in c-Si/a-Si:H/ITO heterostructures have been analyzed by spectroscopic ellipsometry (SE) in the range 1.5-5.0 eV. Taking the SE advantage of being applicable to absorbent substrate, ellipsometry is used to determine the spectra of the refractive index and extinction coefficient of the ITO films. The effect of the substrate surface on the ITO optical properties is focused and discussed. To this aim, a parametrized equation combining the Drude model, which considers the free-carrier response at the infrared end, and a double Lorentzian oscillator, which takes into account the interband transition contribution at the UV end, is used to model the ITO optical properties in the useful UV-visible range, whatever the substrate and deposition technique. Ellipsometric analysis is corroborated by sheet resistance measurements.

  17. Morphology and Optical Properties of Zinc Oxide Films Grown on Metal Coated Glass Substrates by Aqueous Chemical Growth

    NASA Astrophysics Data System (ADS)

    Bakar, M. A.; Hamid, M. A. A.; Jalar, A.; Shamsudin, R.

    2013-04-01

    Zinc oxide films were deposited on three different metal coated substrates (gold, nickel and platinum) by aqueous chemical growth method. This paper discusses the effect of metal coated substrates on the morphology and optical properties of grown ZnO films. X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM) and UV-visible spectroscopy (UV-vis) were employed to characterize the samples. All the as-deposited ZnO films exhibit crystalline hexagonal wurzite structure. The crystallite size of the ZnO films were in the range of 29 to 32 nm. FESEM micrographs revealed hexagonal rod, oval-like and flower-like ZnO structures formed on all metal coated substrates. The Pt coated film contains higher density hexagonal rod as compared to others metal coated substrate. Most probably the Pt lattice parameter is the nearest to ZnO compared to nickel and gold. The optical band gap energy, Eg of ZnO films were estimated to be 3.30 eV which is near to bulk Eg, 3.37 eV. This indicates that the ZnO grown by aqueous chemical growth is able to produce similar quality properties to other conventional method either films or bulk size.

  18. Room temperature crystallization of indium tin oxide films on glass and polyethylene terephthalate substrates using rf plasma

    SciTech Connect

    Ohsaki, H.; Suzuki, M.; Shibayama, Y.; Kinbara, A.; Watanabe, T.

    2007-07-15

    The crystallization of amorphous indium tin oxide (ITO) films was achieved by rf (13.56 MHz) plasma treatment. Although the films were crystallized after 2 min, the sample temperature was lower than 90 deg. C without compulsory cooling even after 10 min of treatment and polyethylene terephthalate (PET) substrates had no damage. Plasma-crystallized sputtered ITO films have a bixbite structure and the resistivity reached to 1.6x10{sup -4} {omega}{center_dot}cm. ITO thin films have almost the same resistivity in both cases of PET and glass substrates used and plasma-treated PET ITO films have a bit higher resistivity than that of glass ITO films, while mass spectroscopy measurements indicated that ITO films deposited on PET substrates are expected to include no apparent gas species ejected from PET substrate. It was found that the plasma gas pressure is the key parameter for the effective crystallization and the appropriate gas pressure depends on the plasma gas species.

  19. Facile fabrication of Ag dendrite-integrated anodic aluminum oxide membrane as effective three-dimensional SERS substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Cong-yun; Lu, Ya; Zhao, Bin; Hao, Yao-wu; Liu, Ya-qing

    2016-07-01

    A novel surface enhanced Raman scattering (SERS)-active substrate has been successfully developed, where Ag-dendrites are assembled on the surface and embedded in the channels of anodic aluminum oxide (AAO) membrane, via electrodeposition in AgNO3/PVP aqueous system. Reaction conditions were systematically investigated to attain the best Raman enhancement. The growth mechanism of Ag dendritic nanostructures has been proposed. The Ag dendrite-integrated AAO membrane with unique hierarchical structures exhibits high SERS activity for detecting rhodamine 6G with a detection limit as low as 1 × 10-11 M. Furthermore, the three-dimensional (3D) substrates display a good reproducibility with the average intensity variations at the major Raman peak less than 12%. Most importantly, the 3D SERS substrates without any surface modification show an outstanding SERS response for the molecules with weak affinity for noble metal surfaces. The potential application for the detection of polycyclic aromatic hydrocarbons (PAHs) was evaluated with fluoranthene as Raman target molecule and a sensitive SERS detection with a limit down to 10-8 M was reached. The 3D SERS-active substrate shows promising potential for rapid detection of trace organic pollutants even weak affinity molecules in the environment.

  20. Completely transparent conducting oxide-free and flexible dye-sensitized solar cells fabricated on plastic substrates.

    PubMed

    Yoo, Kicheon; Kim, Jae-Yup; Lee, Jin Ah; Kim, Jin Soo; Lee, Doh-Kwon; Kim, Kyungkon; Kim, Jin Young; Kim, BongSoo; Kim, Honggon; Kim, Won Mok; Kim, Jong Hak; Ko, Min Jae

    2015-04-28

    To achieve commercialization and widespread application of next-generation photovoltaics, it is important to develop flexible and cost-effective devices. Given this, the elimination of expensive transparent conducting oxides (TCO) and replacement of conventional glass substrates with flexible plastic substrates presents a viable strategy to realize extremely low-cost photovoltaics with a potentially wide applicability. To this end, we report a completely TCO-free and flexible dye-sensitized solar cell (DSSC) fabricated on a plastic substrate using a unique transfer method and back-contact architecture. By adopting unique transfer techniques, the working and counter electrodes were fabricated by transferring high-temperature-annealed TiO2 and Pt/carbon films, respectively, onto flexible plastic substrates without any exfoliation. The fabricated working electrode with the conventional counter electrode exhibited a record efficiency for flexible DSSCs of 8.10%, despite its TCO-free structure. In addition, the completely TCO-free and flexible DSSC exhibited a remarkable efficiency of 7.27%. Furthermore, by using an organic hole-transporting material (spiro-MeOTAD) with the same transfer method, solid-state flexible TCO-free DSSCs were also successfully fabricated, yielding a promising efficiency of 3.36%.

  1. Role of surfactant-mediated electrodeposited titanium oxide substrate in improving electrocatalytic features of supported platinum particles

    NASA Astrophysics Data System (ADS)

    Spătaru, Tanţa; Preda, Loredana; Osiceanu, Petre; Munteanu, Cornel; Anastasescu, Mihai; Marcu, Maria; Spătaru, Nicolae

    2014-01-01

    A new hybrid system with improved photocatalytic and electrocatalytic performances was obtained by two-step potentiostatic deposition on highly boron-doped diamond (BDD) substrate. First, hydrated TiO2 was anodically deposited from a TiCl3 aqueous solution, both in the presence and in the absence of sodium dodecyl sulfate (SDS). The study of the UV irradiation effect evidenced that titanium oxide coatings obtained by surfactant-assisted electrodeposition (TiO2:SDS) exhibit enhanced photocurrent, due to its very rough texture and presumably to better efficiency of charge carrier separation. Electrochemical deposition of platinum on the oxide-coated BDD was carried out in a second step and AFM, SEM and XPS measurements have shown that, on the TiO2:SDS substrate, Pt particles are smaller, more uniformly distributed, and tend to form clusters, leading to a specific surface area of the electrocatalyst of ca. 6.55 m2 g-1. Carbon monoxide stripping experiments demonstrated that, when deposited on TiO2:SDS, Pt particles are also less sensitive to CO-poisoning during methanol anodic oxidation.

  2. Combining solvent isotope effects with substrate isotope effects in mechanistic studies of alcohol and amine oxidation by enzymes.

    PubMed

    Fitzpatrick, Paul F

    2015-11-01

    Oxidation of alcohols and amines is catalyzed by multiple families of flavin- and pyridine nucleotide-dependent enzymes. Measurement of solvent isotope effects provides a unique mechanistic probe of the timing of the cleavage of the OH and NH bonds, necessary information for a complete description of the catalytic mechanism. The inherent ambiguities in interpretation of solvent isotope effects can be significantly decreased if isotope effects arising from isotopically labeled substrates are measured in combination with solvent isotope effects. The application of combined solvent and substrate (mainly deuterium) isotope effects to multiple enzymes is described here to illustrate the range of mechanistic insights that such an approach can provide. This article is part of a Special Issue entitled: Enzyme Transition States from Theory and Experiment.

  3. Effects of MAR-M247 substrate (modified) composition on coating oxidation coating/substrate interdiffusion. M.S. Thesis. Final Report; [protective coatings for hot section components of gas turbine engines

    NASA Technical Reports Server (NTRS)

    Pilsner, B. H.

    1985-01-01

    The effects of gamma+gamma' Mar-M247 substrate composition on gamma+beta Ni-Cr-Al-Zr coating oxidation and coating/substrate interdiffusion were evaluated. These results were also compared to a prior study for a Ni-Cr-Al-Zr coated gamma Ni-Cr-Al substrate with equivalent Al and Cr atomic percentages. Cyclic oxidation behavior at 1130 C was investigated using change in weight curves. Concentration/distance profiles were measured for Al, Cr, Co, W, and Ta. The surface oxides were examined by X-ray diffraction and scanning electron microscopy. The results indicate that variations of Ta and C concentrations in the substrate do not affect oxidation resistance, while additions of grain boundary strengthening elements (Zr, Hf, B) increase oxidation resistance. In addition, the results indicate that oxidation phenomena in gamma+beta/gamma+gamma' Mar-M247 systems have similar characteristics to the l gamma+beta/gamma Ni-Cr-Al system.

  4. Copper-Aβ Peptides and Oxidation of Catecholic Substrates: Reactivity and Endogenous Peptide Damage.

    PubMed

    Pirota, Valentina; Dell'Acqua, Simone; Monzani, Enrico; Nicolis, Stefania; Casella, Luigi

    2016-11-14

    The oxidative reactivity of copper complexes with Aβ peptides 1-16 and 1-28 (Aβ16 and Aβ28) against dopamine and related catechols under physiological conditions has been investigated in parallel with the competitive oxidative modification undergone by the peptides. It was found that both Aβ16 and Aβ28 markedly increase the oxidative reactivity of copper(II) towards the catechol compounds, up to a molar ratio of about 4:1 of peptide/copper(II). Copper redox cycling during the catalytic activity induces the competitive modification of the peptide at selected amino acid residues. The main modifications consist of oxidation of His13/14 to 2-oxohistidine and Phe19/20 to ortho-tyrosine, and the formation of a covalent His6-catechol adduct. Competition by the endogenous peptide is rather efficient, as approximately one peptide molecule is oxidized every 10 molecules of 4-methylcatechol.

  5. Fabrication of p-type porous silicon nanowire with oxidized silicon substrate through one-step MACE

    SciTech Connect

    Li, Shaoyuan; Ma, Wenhui; Zhou, Yang; Chen, Xiuhua; Xiao, Yongyin; Ma, Mingyu; Wei, Feng; Yang, Xi

    2014-05-01

    In this paper, the simple pre-oxidization process is firstly used to treat the starting silicon wafer, and then MPSiNWs are successfully fabricated from the moderately doped wafer by one-step MACE technology in HF/AgNO{sub 3} system. The PL spectrum of MPSiNWs obtained from the oxidized silicon wafers show a large blue-shift, which can be attributed to the deep Q. C. effect induced by numerous mesoporous structures. The effects of HF and AgNO{sub 3} concentration on formation of SiNWs were carefully investigated. The results indicate that the higher HF concentration is favorable to the growth of SiNWs, and the density of SiNWs is significantly reduced when Ag{sup +} ions concentrations are too high. The deposition behaviors of Ag{sup +} ions on oxidized and unoxidized silicon surface were studied. According to the experimental results, a model was proposed to explain the formation mechanism of porous SiNWs by etching the oxidized starting silicon. - Graphical abstract: Schematic cross-sectional views of PSiNWs array formation by etching oxidized silicon wafer in HF/AgNO{sub 3} solution. (A) At the starting point; (B) during the etching process; and (C) after Ag dendrites remove. - Highlights: • Prior to etching, a simple pre-oxidation is firstly used to treat silicon substrate. • The medially doped p-type MPSiNWs are prepared by one-step MACE. • Deposition behaviors of Ag{sup +} ions on oxidized and unoxidized silicon are studied. • A model is finally proposed to explain the formation mechanism of PSiNWs.

  6. Electrochemical investigation of chromium oxide-coated Ti-6Al-4V and Co-Cr-Mo alloy substrates.

    PubMed

    Swaminathan, Viswanathan; Zeng, Haitong; Lawrynowicz, Daniel; Zhang, Zongtao; Gilbert, Jeremy L

    2011-08-01

    Hard coatings for articulating surfaces of total joint replacements may improve the overall wear resistance. However, any coating approach must take account of changes in corrosion behavior. This preliminary assessment analyzes the corrosion kinetics, impedance and mechanical-electrochemical stability of 100 μm thick plasma sprayed chromium oxide (Cr₂O₃) coatings on bearing surfaces in comparison to the native alloy oxide films on Co-Cr-Mo and Ti-6Al-6V. Cyclic potentiodynamic polarization, electrochemical impedance spectroscopy, and mechanical abrasion under potentiostatic conditions were performed on coated and substrate surfaces in physiological saline. SEM analysis characterized the coating morphology. The results showed that the corrosion current density values of chromium oxide coatings (0.4-1.2 μA/cm²) were of the same order of magnitude as Ti-6Al-4V alloy. Mechanical abrasion did not increase corrosion rates of chromium oxide coatings but did for uncoated Co-Cr-Mo and Ti-6Al-4V. The impedance response of chromium oxide coatings was very different than Co-Cr-Mo and Ti-6Al-4V native oxides characterized by a defected coating model. More of a frequency-independent purely resistive response was seen in mid-frequency range for the coatings (CPE(coat) : 40-280 nF/cm² (rad/s)(1-α) , α: 0.67-0.83) whereas a more capacitive character is seen for Co-Cr-Mo and Ti-6Al-4V (CPE(ox) around 20 μF/cm² (rad/s)(1-α) , α around 0.9). Pores, interparticle gaps and incomplete fusion typical for thermal spray coatings were present in these oxides which could have influenced corrosion resistance. The coating microstructure could have allowed some fluid penetration. Overall, these coatings appear to have suitable corrosion properties for wear surfaces.

  7. Zinc oxide films chemically grown onto rigid and flexible substrates for TFT applications

    NASA Astrophysics Data System (ADS)

    Suchea, M.; Kornilios, N.; Koudoumas, E.

    2010-10-01

    This contribution presents some preliminary results regarding the use of a chemical route for the growth of good quality ZnO thin films that can be used for the fabrication of thin film transistors (TFTs). The films were grown at rather low temperature (60 °C) on glass and PET substrates using non-aqueous (zinc acetate dihydrate in methanol) precursor solution and their surface morphology, crystalline structure, optical transmittance and electrical characteristics were studied. The study indicated that good quality films with desirable ZnO structure onto rigid and flexible substrates can be obtained, using a simple, cheap, low temperature chemical growth method.

  8. Samarium electrodeposited acetate and oxide thin films on stainless steel substrate characterized by XPS

    DOE PAGES

    Myhre, Kristian; Burns, Jonathan; Meyer, Harry; ...

    2016-06-01

    Characterization of a samarium thin film deposited on a stainless steel substrate using molecular electrodeposition was carried out using a Thermo Scientific K-Alpha X-ray photoelectron spectrometer. We studied two types of samarium electrodeposition samples, one as-deposited and one heated to 700 °C in an air flow. Survey scans include peaks coming from the stainless steel substrate, such as Fe and Cr. An X-ray photoelectron spectroscopy (XPS) survey spectrum, Sm 3d, C 1s, and O 1s narrow scans are shown. It was determined that the heating process decomposed the deposited Sm acetate to Sm2O3 using XPS.

  9. Versatile Oxidation Methods for Organic and Inorganic Substrates Catalyzed by Platinum-Group Metals on Carbons.

    PubMed

    Sawama, Yoshinari; Asai, Shota; Monguchi, Yasunari; Sajiki, Hironao

    2016-02-01

    Platinum-group metals on activated carbon catalysts, represented by Pd/C, Ru/C, Rh/C, etc., are widely utilized to accomplish green and sustainable organic reactions due to their favorable features, such as easy handling, recoverability, and reusability. The efficient oxidation methods of various organic compounds using heterogeneous platinum-group metals on carbons with or without added oxidants are summarized in this Personal Account. The oxidation of internal alkynes into diketones was effectively catalyzed by Pd/C in the presence of dimethyl sulfoxide and molecular oxygen or pyridine N-oxide. The Pd/C-catalyzed mild combustion of gaseous hydrogen with molecular oxygen provided hydrogen peroxide, which could be directly utilized for the oxidation of sulfide derivatives into sulfoxides. Furthermore, the Ru/C-catalyzed aerobic oxidation of primary and secondary alcohols gave the corresponding aldehydes and ketones, respectively. On the other hand, the dehydrogenative oxidation of secondary alcohols into ketones was achieved using Rh/C in water, and primary alcohols were effectively dehydrogenated by Pd/C in water under mildly reduced pressure to produce carboxylic acids.

  10. Effect of organic solar cells using various power O2 plasma treatments on the indium tin oxide substrate.

    PubMed

    Ke, Jhong-Ciao; Wang, Yeong-Her; Chen, Kan-Lin; Huang, Chien-Jung

    2016-03-01

    The effect of organic solar cells (OSCs) by using different power O2 plasma treatments on indium tin oxide (ITO) substrate was studied. The power of O2 plasma treatment on ITO substrate was varied from 20W to 80W, and the power conversion efficiency of device was improved from 1.18% to 1.93% at 20W O2 plasma treatment. The function of O2 plasma treatment on ITO substrate was to remove the surface impurity and to improve the work function of ITO, which can reduce the energy offset between the ITO and SubPc layer and depress the leakage current of device, leading to the shunt resistance increased from 897 to 1100Ωcm(2). The surface roughness of ITO decreased from 3.81 to 3.33nm and the work function of ITO increased from 4.75 to 5.2eV after 20W O2 plasma treatment on ITO substrate. As a result, the open circuit voltage and the fill factor were improved from 0.46 to 0.70V and from 0.56 to 0.61, respectively. However, the series resistance of device was dramatically increased as the power of O2 plasma treatment exceeds 40W, leading to the efficiency reduction. The result is attributed to the variation of oxygen vacancies in ITO film after the 60, 80W O2 plasma treatment. As a consequence, the power of O2 plasma treatment on ITO substrate for the OSCs application should be controlled below 40W to avoid affecting the electricity of ITO film.

  11. Sn and Cu oxide nanoparticles deposited on TiO2 nanoflower 3D substrates by Inert Gas Condensation technique

    NASA Astrophysics Data System (ADS)

    Kusior, A.; Kollbek, K.; Kowalski, K.; Borysiewicz, M.; Wojciechowski, T.; Adamczyk, A.; Trenczek-Zajac, A.; Radecka, M.; Zakrzewska, K.

    2016-09-01

    Sn and Cu oxide nanoparticles were deposited by Inert Gas Condensation (IGC) technique combined with dc magnetron sputtering onto nanoflower TiO2 3D substrates obtained in the oxidation process of Ti-foil in 30% H2O2. Sputtering parameters such as insertion length and Ar/He flow rates were optimized taking into account the nanostructure morphology. Comparative studies with hydrothermal method were carried out. Surface properties of the synthesized nanomaterials were studied by Scanning Electron Microscopy, SEM, Atomic Force Microscopy, AFM, and X-ray Photoelectron Spectroscopy, XPS. X-ray diffraction, XRD and Raman spectroscopy were performed in order to determine phase composition. Impedance spectroscopy demonstrated the influence of nanoparticles on the electrical conductivity.

  12. Atomic layer deposition of ultrathin blocking layer for low-temperature solid oxide fuel cell on nanoporous substrate

    SciTech Connect

    Yu, Wonjong; Cho, Gu Young; Noh, Seungtak; Tanveer, Waqas Hassan; Cha, Suk Won; Ji, Sanghoon; An, Jihwan

    2015-01-15

    An ultrathin yttria-stabilized zirconia (YSZ) blocking layer deposited by atomic layer deposition (ALD) was utilized for improving the performance and reliability of low-temperature solid oxide fuel cells (SOFCs) supported by an anodic aluminum oxide substrate. Physical vapor-deposited YSZ and gadolinia-doped ceria (GDC) electrolyte layers were deposited by a sputtering method. The ultrathin ALD YSZ blocking layer was inserted between the YSZ and GDC sputtered layers. To investigate the effects of an inserted ultrathin ALD blocking layer, SOFCs with and without an ultrathin ALD blocking layer were electrochemically characterized. The open circuit voltage (1.14 V) of the ALD blocking-layered SOFC was visibly higher than that (1.05 V) of the other cell. Furthermore, the ALD blocking layer augmented the power density and improved the reproducibility.

  13. Effect of substrate crystalline morphology on the adhesion of plasma enhanced chemical vapor deposited thin silicon oxide coatings on polyamide

    NASA Astrophysics Data System (ADS)

    Rochat, G.; Leterrier, Y.; Plummer, C. J. G.; Mânson, J.-A. E.; Szoszkiewicz, R.; Kulik, A. J.; Fayet, P.

    2004-05-01

    The influence of the surface morphology of semicrystalline polyamide 12 (PA12) on the adhesion of thin silicon oxide coatings is analyzed by means of uniaxial fragmentation tests and scanning local-acceleration microscopy (SLAM). Two types of PA12 substrates are investigated, namely, as-received PA12, which contains large spherulites, and quenched PA12, which has a relatively smooth, homogeneous surface structure. The adhesion of the coating is found to be identical for the two types of PA12. This indicates that plasma deposition of the oxide leads to an equivalent functionalization of the two types of surfaces. Nonetheless, localized delamination is observed at spherulite boundaries, and is argued to result from strain concentrations in the corresponding soft zones, revealed by SLAM measurements.

  14. An oxidized derivative of phosphatidylcholine is a substrate for the platelet-activating factor acetylhydrolase from human plasma.

    PubMed

    Stremler, K E; Stafforini, D M; Prescott, S M; Zimmerman, G A; McIntyre, T M

    1989-04-05

    Platelet-activating factor (PAF) is a glycerophospholipid that has diverse potent biological actions. A plasma enzyme catalyzes the hydrolysis of the sn-2 acetoyl group of PAF and thereby abolishes its bioactivity. This PAF acetylhydrolase is specific for phospholipids, such as PAF, with a short acyl group at the sn-2 position. The majority of it (60-70%) is associated with low density lipoprotein (LDL), and the remainder is with high density lipoprotein (HDL). LDL also has a phospholipase A2 activity that is specific for oxidized polyunsaturated fatty acids, which may be important in determining how LDL is recognized by cellular receptors. We previously have purified and characterized the PAF acetylhydrolase from human plasma. We now have found that the purified PAF acetylhydrolase catalyzes the hydrolysis of the oxidized fragments of arachidonic acid from the sn-2 position of phosphatidylcholine. One of the preferred substrates appeared by mass spectrometry to have 5-oxovalerate at the sn-2 position. We synthesized 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine and found that the PAF acetylhydrolase had the same apparent Km for it (11.3 microM) as for PAF (12.5 microM), with Vmax values of 100 and 167 mumol/h/mg of protein, respectively. We also conclude that the PAF acetylhydrolase is the sole activity in LDL that degrades oxidized phospholipids since we found co-localization of the activity against both substrates to LDL and HDL, and precipitation of enzyme activity with an antibody to the PAF acetylhydrolase. Thus, the PAF acetylhydrolase in human plasma degrades oxidized phospholipids, which may be involved in the modification of apolipoprotein B100 and other pathological processes.

  15. Multifunctional porous titanium oxide coating with apatite forming ability and photocatalytic activity on a titanium substrate formed by plasma electrolytic oxidation.

    PubMed

    Akatsu, T; Yamada, Y; Hoshikawa, Y; Onoki, T; Shinoda, Y; Wakai, F

    2013-12-01

    Plasma electrolytic oxidation (PEO) was used to make a multifunctional porous titanium oxide (TiO2) coating on a titanium substrate. The key finding of this study is that a highly crystalline TiO2 coating can be made by performing the PEO in an ammonium acetate (CH3COONH4) solution; the PEO coating was formed by alternating between rapid heating by spark discharges and quenching in the solution. The high crystallinity of the TiO2 led to the surface having multiple functions, including apatite forming ability and photocatalytic activity. Hydroxyapatite formed on the PEO coating when it was soaked in simulated body fluid. The good apatite forming ability can be attributed to the high density of hydroxyl groups on the anatase and rutile phases in the coating. The degradation of methylene blue under ultraviolet radiation indicated that the coating had high photocatalytic activity.

  16. Oxidation of Phe454 in the Gating Segment Inactivates Trametes multicolor Pyranose Oxidase during Substrate Turnover

    PubMed Central

    Volc, Jindrich; Peterbauer, Clemens K.; Leitner, Christian; Haltrich, Dietmar

    2016-01-01

    The flavin-dependent enzyme pyranose oxidase catalyses the oxidation of several pyranose sugars at position C-2. In a second reaction step, oxygen is reduced to hydrogen peroxide. POx is of interest for biocatalytic carbohydrate oxidations, yet it was found that the enzyme is rapidly inactivated under turnover conditions. We studied pyranose oxidase from Trametes multicolor (TmPOx) inactivated either during glucose oxidation or by exogenous hydrogen peroxide using mass spectrometry. MALDI-MS experiments of proteolytic fragments of inactivated TmPOx showed several peptides with a mass increase of 16 or 32 Da indicating oxidation of certain amino acids. Most of these fragments contain at least one methionine residue, which most likely is oxidised by hydrogen peroxide. One peptide fragment that did not contain any amino acid residue that is likely to be oxidised by hydrogen peroxide (DAFSYGAVQQSIDSR) was studied in detail by LC-ESI-MS/MS, which showed a +16 Da mass increase for Phe454. We propose that oxidation of Phe454, which is located at the flexible active-site loop of TmPOx, is the first and main step in the inactivation of TmPOx by hydrogen peroxide. Oxidation of methionine residues might then further contribute to the complete inactivation of the enzyme. PMID:26828796

  17. Oxidations of Organic and Inorganic Substrates by Superoxo-, hydroperoxo-, and oxo-compounds of the transition metals.

    SciTech Connect

    Vasbinder, Michael John

    2006-01-01

    fitting the observed rate constants to the Hammett correlation. It was found that the values of the Hammett reaction constant PN were -1.0(1) for 4-nitro-2-methylpyridine-N-oxide and -2.6(4) for 4-methylpyridine-N-oxide as substrates. The negative value confirms pyridine is acting as a nucleophile. Nucleophiles other than pyridine derivatives were also tested. In the end, it was found that the most effective nucleophiles were the pyridine-N-oxides themselves, meaning that a second equivalent of substrate serves as the most efficient promoter of this oxygen-atom transfer reaction. This relative nucleophilicity of pyridines and pyridine-N-oxides is similar to what is observed in other OAT reactions generating high-valent metal-oxo species.

  18. Catalyst-Free Synthesis of ZnO Nanowires on Oxidized Silicon Substrate for Gas Sensing Applications.

    PubMed

    Behera, B; Chandra, S

    2015-06-01

    In the present work, we report the synthesis of nanostructured ZnO by oxidation of zinc film without using a seed or catalyst layer. The zinc films were deposited on oxidized Si substrates by RF magnetron sputtering process. These were oxidized in dry and wet air/oxygen ambient. The optimized process yielded long nanowires of ZnO having diameter of around 60-70 nm and spread uniformly over the surface. The effect of oxidation temperature, time, Zn film thickness and the ambient has strong influence on the morphology of resulting nanostruxctured ZnO film. The films were characterized by scanning electron microscopy for morphological studies and X-ray diffraction (XRD) analysis to study the phase of the nanostructured ZnO. Room temperature photoluminescence (PL) measurements of the nanowires show UV and green emission. A sensor was designed and fabricated using nanostructured ZnO film, incorporating inter-digital-electrode (IDE) for the measurement of resistance of the sensing layer. The gas sensing properties were investigated from the measurement of change in resistance when exposed to vapours of different volatile organic compound (VOC) such as acetone, ethanol, methanol and 2-propanol. The results suggest that ZnO nanowires fabricated by this method have potential application in gas sensors.

  19. Preparation SnO₂ nanolayer on flexible polyimide substrates via direct ion-exchange and in situ oxidation process.

    PubMed

    Cui, Guanghui; Wu, Dezhen; Qi, Shengli; Jin, Shao; Wu, Zhanpeng; Jin, Riguang

    2011-03-01

    Tin oxide (SnO(2)) nanolayers were formed on flexible polyimide (PI) substrate via direct ion-exchange and in situ oxidation process utilizing pyromellitic dianhydride/4,4'-oxidianiline-based poly(amic acid) films as polyimide precursor. During an ion-exchange process, stannous ions were doped into the precursor by immersion in ethanolic solution of stannous chloride. Subsequent thermal treatment of the tin(II)-containing precursor at a constant heating rate not only imidized poly(amic acid) to PI but also converted stannous ions into SnO(2) clusters, which diffused and aggregated onto the surface of polymer matrix, forming continuous tin oxide layers. Inductively coupled plasma (ICP) was used to investigate the ion-exchange process. Changes in chemical structure of the poly(amic acid) film and the crystal structure of tin oxides were analyzed by attenuated total reflection-Fourier transform infrared (ATR-FTIR) and X-ray diffraction (XRD). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to study the microstructure of the PI/SnO(2) nanocomposite films. The nanocomposite film maintained essential mechanical property and thermal stability of pristine PI films.

  20. COSIM: A Finite-Difference Computer Model to Predict Ternary Concentration Profiles Associated with Oxidation and Interdiffusion of Overlay-Coated Substrates

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.

    2000-01-01

    A finite-difference computer program (COSIM) has been written which models the one-dimensional, diffusional transport associated with high-temperature oxidation and interdiffusion of overlay-coated substrates. The program predicts concentration profiles for up to three elements in the coating and substrate after various oxidation exposures. Surface recession due to solute loss is also predicted. Ternary cross terms and concentration-dependent diffusion coefficients are taken into account. The program also incorporates a previously-developed oxide growth and spalling model to simulate either isothermal or cyclic oxidation exposures. In addition to predicting concentration profiles after various oxidation exposures, the program can also be used to predict coating fife based on a concentration dependent failure criterion (e.g., surface solute content drops to two percent). The computer code, written in an extension of FORTRAN 77, employs numerous subroutines to make the program flexible and easily modifiable to other coating oxidation problems.

  1. COSIM: A Finite-Difference Computer Model to Predict Ternary Concentration Profiles Associated With Oxidation and Interdiffusion of Overlay-Coated Substrates

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.

    2001-01-01

    A finite-difference computer program (COSIM) has been written which models the one-dimensional, diffusional transport associated with high-temperature oxidation and interdiffusion of overlay-coated substrates. The program predicts concentration profiles for up to three elements in the coating and substrate after various oxidation exposures. Surface recession due to solute loss is also predicted. Ternary cross terms and concentration-dependent diffusion coefficients are taken into account. The program also incorporates a previously-developed oxide growth and spalling model to simulate either isothermal or cyclic oxidation exposures. In addition to predicting concentration profiles after various oxidation exposures, the program can also be used to predict coating life based on a concentration dependent failure criterion (e.g., surface solute content drops to 2%). The computer code is written in FORTRAN and employs numerous subroutines to make the program flexible and easily modifiable to other coating oxidation problems.

  2. Spontaneous Reduction and Assembly of Graphene oxide into Three-Dimensional Graphene Network on Arbitrary Conductive Substrates

    PubMed Central

    Hu, Chuangang; Zhai, Xiangquan; Liu, Lili; Zhao, Yang; Jiang, Lan; Qu, Liangti

    2013-01-01

    Chemical reduction of graphene oxide (GO) is the main route to produce the mass graphene-based materials with tailored surface chemistry and functions. However, the toxic reducing circumstances, multiple steps, and even incomplete removal of the oxygen-containing groups were involved, and the produced graphenes existed usually as the assembly-absent precipitates. Herein, a substrate-assisted reduction and assembly of GO (SARA-GO) method was developed for spontaneous formation of 3D graphene network on arbitrary conductive substrates including active and inert metals, semiconducting Si, nonmetallic carbon, and even indium-tin oxide glass without any additional reducing agents. The SARA-GO process offers a facile, efficient approach for constructing unique graphene assemblies such as microtubes, multi-channel networks, micropatterns, and allows the fabrication of high-performance binder-free rechargeable lithium-ion batteries. The versatile SARD-GO method significantly improves the processablity of graphenes, which could thus benefit many important applications in sensors and energy-related devices. PMID:23799368

  3. Structural, optical, and electrical properties of epitaxial titanium oxide thin films on LaAlO3 substrate

    NASA Astrophysics Data System (ADS)

    Sbaï, N.; Perrière, J.; Gallas, B.; Millon, E.; Seiler, W.; Bernard, M. C.

    2008-08-01

    Titanium oxide thin films were prepared by pulsed-laser deposition on LaAlO3 single crystal substrate at 700 °C. Pure anatase films are obtained at high oxygen pressure (10-1 mbar), while the rutile phase is evidenced at low oxygen pressure (10-5 mbar) despite a large oxygen deficiency (O/Ti=1.75). From asymmetric x-ray diffraction measurements, the in-plane epitaxial relationships be0tween the substrate and the titanium oxide phases are highlighted. Optical constants (refractive index n and extinction coefficient k) were deduced from ellipsometric measurements. The optical band gap energies of the anatase and rutile films are found to be 3.4 and 3.3 eV, respectively. Since the nearly stoichiometric anatase films are resistive (>103 Ω cm), the large oxygen deficiency in rutile films leads to noticeable increase in the conductivity due to the Ti3+ species, which supply electrons in the conduction band. At low temperature (T <200 K) the resistivity of rutile films versus temperature may be explained by a variable range hopping mechanism based on both two or three dimensional electron transfer between the Ti3+ and Ti4+ species.

  4. High-performance SERS substrate based on hybrid structure of graphene oxide/AgNPs/Cu film@pyramid Si

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Xu, Shi Cai; Zhang, Chao; Liu, Xiao Yun; Gao, Sai Sai; Hu, Li Tao; Guo, Jia; Ma, Yong; Jiang, Shou Zhen; Si, Hai Peng

    2016-12-01

    We present a novel surface-enhanced Raman scattering (SERS) substrate based on graphene oxide/silver nanoparticles/copper film covered silicon pyramid arrays (GO/AgNPs/PCu@Si) by a low-cost and simple method. The GO/AgNPs/PCu@Si substrate presents high sensitivity, good homogeneity and well stability with R6G molecules as a probe. The detected concentration of Rhodamine 6 G (R6G) is as low as 10‑15 M. These sensitive SERS behaviors are also confirmed in theory via a commercial COMSOL software, the electric field enhancement is not only formed between the AgNPs, but also formed between the AgNPs and Cu film. And the GO/AgNPs/PCu@Si substrates also present good property on practical application for the detection of methylene blue (MB) and crystal violet (CV). This work may offer a novel and practical method to facilitate the SERS applications in areas of medicine, food safety and biotechnology.

  5. Graphene oxide-silver nanocomposite as SERS substrate for dye detection: Effects of silver loading amount and composite dosage

    NASA Astrophysics Data System (ADS)

    Ding, Guihong; Xie, Shi; Liu, Ying; Wang, Li; Xu, Fugang

    2015-08-01

    Hybrid of graphene or graphene oxide (GO) with gold or silver nanoparticles (AgNPs) as substrate for SERS detection often brings large background and low signal to noise ratio, which leads to poor sensitivity. In this study, it is proposed that the silver loading amount on GO and dosage of GO-Ag composite have significant influence on its SERS activity (SERS signal intensity and signal to noise ratio). The adsorption ability and SERS activity of GO-Ag composite for several dye molecules were investigated in detail. It was found increasing the dosage of GO-Ag or AgNPs loading on GO always enhances its absorption to dye molecules, while in both cases the SERS signal first increase and then decrease. The reason for this fluctuation of SERS signal was investigated and discussed, which indicate high silver loading amount leads to enhanced background response, while high composite dosage could decrease the signal of target molecule. Finally, an optimized GO-Ag substrate providing strong SERS signal and high signal to noise ratio was used for the detection of several dye molecules by SERS with the lowest detectable concentration down to 1 μM. Our results indicated that great caution should be paid on the silver loading amount and dosage of GO-Au/Ag when using GO-Au/Ag as SERS substrate for molecule sensing or comparing different results reported in reference.

  6. Osteogenic potential of in situ TiO2 nanowire surfaces formed by thermal oxidation of titanium alloy substrate

    NASA Astrophysics Data System (ADS)

    Tan, A. W.; Ismail, R.; Chua, K. H.; Ahmad, R.; Akbar, S. A.; Pingguan-Murphy, B.

    2014-11-01

    Titanium dioxide (TiO2) nanowire surface structures were fabricated in situ by a thermal oxidation process, and their ability to enhance the osteogenic potential of primary osteoblasts was investigated. Human osteoblasts were isolated from nasal bone and cultured on a TiO2 nanowires coated substrate to assess its in vitro cellular interaction. Bare featureless Ti-6Al-4V substrate was used as a control surface. Initial cell adhesion, cell proliferation, cell differentiation, cell mineralization, and osteogenic related gene expression were examined on the TiO2 nanowire surfaces as compared to the control surfaces after 2 weeks of culturing. Cell adhesion and cell proliferation were assayed by field emission scanning electron microscope (FESEM) and Alamar Blue reduction assay, respectively. The nanowire surfaces promoted better cell adhesion and spreading than the control surface, as well as leading to higher cell proliferation. Our results showed that osteoblasts grown onto the TiO2 nanowire surfaces displayed significantly higher production levels of alkaline phosphatase (ALP), extracellular (ECM) mineralization and genes expression of runt-related transcription factor (Runx2), bone sialoprotein (BSP), ostoepontin (OPN) and osteocalcin (OCN) compared to the control surfaces. This suggests the potential use of such surface modification on Ti-6Al-4V substrates as a promising means to improve the osteointegration of titanium based implants.

  7. High-performance SERS substrate based on hybrid structure of graphene oxide/AgNPs/Cu film@pyramid Si

    PubMed Central

    Li, Zhe; Xu, Shi Cai; Zhang, Chao; Liu, Xiao Yun; Gao, Sai Sai; Hu, Li Tao; Guo, Jia; Ma, Yong; Jiang, Shou Zhen; Si, Hai Peng

    2016-01-01

    We present a novel surface-enhanced Raman scattering (SERS) substrate based on graphene oxide/silver nanoparticles/copper film covered silicon pyramid arrays (GO/AgNPs/PCu@Si) by a low-cost and simple method. The GO/AgNPs/PCu@Si substrate presents high sensitivity, good homogeneity and well stability with R6G molecules as a probe. The detected concentration of Rhodamine 6 G (R6G) is as low as 10−15 M. These sensitive SERS behaviors are also confirmed in theory via a commercial COMSOL software, the electric field enhancement is not only formed between the AgNPs, but also formed between the AgNPs and Cu film. And the GO/AgNPs/PCu@Si substrates also present good property on practical application for the detection of methylene blue (MB) and crystal violet (CV). This work may offer a novel and practical method to facilitate the SERS applications in areas of medicine, food safety and biotechnology. PMID:27924863

  8. High-performance SERS substrate based on hybrid structure of graphene oxide/AgNPs/Cu film@pyramid Si.

    PubMed

    Li, Zhe; Xu, Shi Cai; Zhang, Chao; Liu, Xiao Yun; Gao, Sai Sai; Hu, Li Tao; Guo, Jia; Ma, Yong; Jiang, Shou Zhen; Si, Hai Peng

    2016-12-07

    We present a novel surface-enhanced Raman scattering (SERS) substrate based on graphene oxide/silver nanoparticles/copper film covered silicon pyramid arrays (GO/AgNPs/PCu@Si) by a low-cost and simple method. The GO/AgNPs/PCu@Si substrate presents high sensitivity, good homogeneity and well stability with R6G molecules as a probe. The detected concentration of Rhodamine 6 G (R6G) is as low as 10(-15) M. These sensitive SERS behaviors are also confirmed in theory via a commercial COMSOL software, the electric field enhancement is not only formed between the AgNPs, but also formed between the AgNPs and Cu film. And the GO/AgNPs/PCu@Si substrates also present good property on practical application for the detection of methylene blue (MB) and crystal violet (CV). This work may offer a novel and practical method to facilitate the SERS applications in areas of medicine, food safety and biotechnology.

  9. Fabrication of SERS-active substrates using silver nanofilm-coated porous anodic aluminum oxide for detection of antibiotics.

    PubMed

    Chen, Jing; Feng, Shaolong; Gao, Fang; Grant, Edward; Xu, Jie; Wang, Shuo; Huang, Qian; Lu, Xiaonan

    2015-04-01

    We have developed a silver nanofilm-coated porous anodic aluminum oxide (AAO) as a surface-enhanced Raman scattering (SERS)-active substrate for the detection of trace level of chloramphenicol, a representative antibiotic in food systems. The ordered aluminum template generated during the synthesis of AAO serves as a patterned matrix on which a coated silver film replicates the patterned AAO matrix to form a 2-dimensional ordered nanostructure. We used atomic force microscopy and scanning electron microscopy images to determine the morphology of this nanosubstrate, and characterized its localized surface plasmon resonance by ultraviolet-visible reflection. We gauged the SERS effect of this nanosubstrate by confocal micro-Raman spectroscopy (782-nm laser), finding a satisfactory and consistent performance with enhancement factors of approximately 2 × 10(4) and a limit of detection for chloramphenicol of 7.5 ppb. We applied principal component analysis to determine the limit of quantification for chloramphenicol of 10 ppb. Using electromagnetic field theory, we developed a detailed mathematical model to explain the mechanism of Raman signal enhancement of this nanosubstrate. With simple sample pretreatment and separation steps, this silver nanofilm-coated AAO substrate could detect 50 ppb chloramphenicol in milk, indicating good potential as a reliable SERS-active substrate for rapid detection of chemical contaminants in agricultural and food products.

  10. Samarium electrodeposited acetate and oxide thin films on stainless steel substrate characterized by XPS

    SciTech Connect

    Myhre, Kristian; Burns, Jonathan; Meyer, Harry; Sims, Nathan; Boll, Rose

    2016-06-01

    Characterization of a samarium thin film deposited on a stainless steel substrate using molecular electrodeposition was carried out using a Thermo Scientific K-Alpha X-ray photoelectron spectrometer. We studied two types of samarium electrodeposition samples, one as-deposited and one heated to 700 °C in an air flow. Survey scans include peaks coming from the stainless steel substrate, such as Fe and Cr. An X-ray photoelectron spectroscopy (XPS) survey spectrum, Sm 3d, C 1s, and O 1s narrow scans are shown. It was determined that the heating process decomposed the deposited Sm acetate to Sm2O3 using XPS.

  11. (-201) β-Gallium oxide substrate for high quality GaN materials

    NASA Astrophysics Data System (ADS)

    Roqan, I. S.; Muhammed, M. M.

    2014-03-01

    (-201) oriented β-Ga2O3 has the potential to be used as a transparent and conductive substrate for GaN-growth. The key advantages of Ga2O3 are its small lattice mismatches (4.7%), appropriate structural, thermal and electrical properties and a competitive price compared to other substrates. Optical characterization show that GaN layers grown on (-201) oriented β-Ga2O3 are dominated by intense bandedge emission with a high luminescence efficiency. Atomic force microscopy studies show a modest threading dislocation density of ~108 cm-2, while complementary Raman spectroscopy indicates that the GaN epilayer is of high quality with slight compressive strain. Room temperature time-findings suggest that the limitation of the photoluminescence lifetime (~500 ps) is due to nonradiative recombination arising from threading dislocation. Therefore, by optimizing the growth conditions, high quality material with significant optical efficiency can be obtained.

  12. Ultrafast dynamics of ligand and substrate interaction in endothelial nitric oxide synthase under Soret excitation.

    PubMed

    Hung, Chih-Chang; Yabushita, Atsushi; Kobayashi, Takayoshi; Chen, Pei-Feng; Liang, Keng S

    2016-01-01

    Ultrafast transient absorption spectroscopy of endothelial NOS oxygenase domain (eNOS-oxy) was performed to study dynamics of ligand or substrate interaction under Soret band excitation. Photo-excitation dissociates imidazole ligand in <300fs, then followed by vibrational cooling and recombination within 2ps. Such impulsive bond breaking and late rebinding generate proteinquakes, which relaxes in several tens of picoseconds. The photo excited dynamics of eNOS-oxy with L-arginine substrate mainly occurs at the local site of heme, including ultrafast internal conversion within 400fs, vibrational cooling, charge transfer, and complete ground-state recovery within 1.4ps. The eNOS-oxy without additive is partially bound with water molecule, thus its photoexcited dynamics also shows ligand dissociation in <800fs. Then it followed by vibrational cooling coupled with charge transfer in 4.8ps, and recombination of ligand to distal side of heme in 12ps.

  13. Polyunsaturated-fatty-acid oxidation in Hydra: regioselectivity, substrate-dependent enantioselectivity and possible biological role.

    PubMed Central

    Di Marzo, V; Gianfrani, C; De Petrocellis, L; Milone, A; Cimino, G

    1994-01-01

    A novel and abundant lipoxygenase-like activity converting cis-eicosa-5,8,11,14-tetraenoic acid (arachidonic acid) into (11R)-hydroxyeicosatetraenoic acid has been recently described in homogenates of the freshwater hydrozoan Hydra vulgaris. In this study, other substrates for this enzyme were selected from the polyunsaturated fatty acids (PUFAs) present in H. vulgaris, and the chemical natures of the hydroperoxy and hydroxy derivatives produced, as well as the activity of some of the latter on hydroid tentacle regeneration, were investigated. The highest conversion among C20 fatty acids was observed for arachidonic acid, and among C18 fatty acids for cis-octadeca-9,12,15- and cis-octadeca-6,9,12-trienoic (alpha- and gamma-linolenic) acids. Cis double bonds on the 10th carbon atom from the aliphatic end of the substrate (e.g. C-9, C-11 and C-13 respectively in C18, C20 and C22 PUFAs) were regiospecifically peroxidized. Conversely, trans-octadeca-9,12-dienoic (linoelaidic) acid was not a substrate for lipoxygenase activity. Enantioselectivity of lipoxygenation depended on the degree of unsaturation of the substrate, with the amount of the R enantiomer increasing when passing, for example, from cis-eicosa-11,14-dienoic to cis-eicosa-5,8,11,14,17-pentaenoic acid. Regiospecific formation of keto acids was observed only when incubating C18 PUFAs. Commercially available hydroxyacids corresponding to the reaction products of some of the most abundant H. vulgaris PUFAs were tested for effects on Hydra tentacle regeneration. An enhancement of average tentacle number, in a fashion depending on the stereochemistry and on the number of double bonds, was found for two compounds, thus suggesting for the 11-lipoxygenase-like enzyme a role in the production of metabolites potentially active in the control of hydroid regenerative processes. PMID:8002956

  14. Growth and properties of crystalline barium oxide on the GaAs(100) substrate

    SciTech Connect

    Yasir, M.; Dahl, J.; Lång, J.; Tuominen, M.; Punkkinen, M. P. J.; Laukkanen, P. Kokko, K.; Kuzmin, M.; Korpijärvi, V.-M.; Polojärvi, V.; Guina, M.

    2013-11-04

    Growing a crystalline oxide film on III-V semiconductor renders possible approaches to improve operation of electronics and optoelectronics heterostructures such as oxide/semiconductor junctions for transistors and window layers for solar cells. We demonstrate the growth of crystalline barium oxide (BaO) on GaAs(100) at low temperatures, even down to room temperature. Photoluminescence (PL) measurements reveal that the amount of interface defects is reduced for BaO/GaAs, compared to Al{sub 2}O{sub 3}/GaAs, suggesting that BaO is a useful buffer layer to passivate the surface of the III-V device material. PL and photoemission data show that the produced junction tolerates the post heating around 600 °C.

  15. Surface engineering of nanoporous substrate for solid oxide fuel cells with atomic layer-deposited electrolyte

    PubMed Central

    Ji, Sanghoon; Tanveer, Waqas Hassan; Yu, Wonjong; Kang, Sungmin; Cho, Gu Young; Kim, Sung Han

    2015-01-01

    Summary Solid oxide fuel cells with atomic layer-deposited thin film electrolytes supported on anodic aluminum oxide (AAO) are electrochemically characterized with varying thickness of bottom electrode catalyst (BEC); BECs which are 0.5 and 4 times thicker than the size of AAO pores are tested. The thicker BEC ensures far more active mass transport on the BEC side and resultantly the thicker BEC cell generates ≈11 times higher peak power density than the thinner BEC cell at 500 °C. PMID:26425432

  16. Photochemical activation of ruthenium(II)-pyridylamine complexes having a pyridine-N-oxide pendant toward oxygenation of organic substrates.

    PubMed

    Kojima, Takahiko; Nakayama, Kazuya; Sakaguchi, Miyuki; Ogura, Takashi; Ohkubo, Kei; Fukuzumi, Shunichi

    2011-11-09

    Ruthenium(II)-acetonitrile complexes having η(3)-tris(2-pyridylmethyl)amine (TPA) with an uncoordinated pyridine ring and diimine such as 2,2'-bipyridine (bpy) and 2,2'-bipyrimidine (bpm), [Ru(II)(η(3)-TPA)(diimine)(CH(3)CN)](2+), reacted with m-chloroperbenzoic acid to afford corresponding Ru(II)-acetonitrile complexes having an uncoordinated pyridine-N-oxide arm, [Ru(II)(η(3)-TPA-O)(diimine)(CH(3)CN)](2+), with retention of the coordination environment. Photoirradiation of the acetonitrile complexes having diimine and the η(3)-TPA with the uncoordinated pyridine-N-oxide arm afforded a mixture of [Ru(II)(TPA)(diimine)](2+), intermediate-spin (S = 1) Ru(IV)-oxo complex with uncoordinated pyridine arm, and intermediate-spin Ru(IV)-oxo complex with uncoordinated pyridine-N-oxide arm. A Ru(II) complex bearing an oxygen-bound pyridine-N-oxide as a ligand and bpm as a diimine ligand was also obtained, and its crystal structure was determined by X-ray crystallography. Femtosecond laser flash photolysis of the isolated O-coordinated Ru(II)-pyridine-N-oxide complex has been investigated to reveal the photodynamics. The Ru(IV)-oxo complex with an uncoordinated pyridine moiety was alternatively prepared by reaction of the corresponding acetonitrile complex with 2,6-dichloropyridine-N-oxide (Cl(2)py-O) to identify the Ru(IV)-oxo species. The formation of Ru(IV)-oxo complexes was concluded to proceed via intermolecular oxygen atom transfer from the uncoordinated pyridine-N-oxide to a Ru(II) center on the basis of the results of the reaction with Cl(2)py-O and the concentration dependence of the consumption of the starting Ru(II) complexes having the uncoordinated pyridine-N-oxide moiety. Oxygenation reactions of organic substrates by [Ru(II)(η(3)-TPA-O)(diimine)(CH(3)CN)](2+) were examined under irradiation (at 420 ± 5 nm) and showed selective allylic oxygenation of cyclohexene to give cyclohexen-1-ol and cyclohexen-1-one and cumene oxygenation to afford cumyl alcohol

  17. Effects of sputtering power on properties of copper oxides thin films deposited on glass substrates

    SciTech Connect

    Ooi, P. K.; Ng, S. S.; Abdullah, M. J.

    2015-04-24

    Copper oxides are deposited by radio frequency sputtering using copper target in the mixture of argon and oxygen gasses. The structural and optical properties of the copper oxides deposited at different sputtering powers have been investigated. All the films are single phase polycrystalline. At low RF power (100 W), the film is monoclinic structure of cupric oxide (CuO). Meanwhile, the films are cubic structure of cuprous oxide (Cu2O) at higher RF power. Field emission scanning electron microscopy images show the films have different morphologies with small grain size and consist of a lot of voids. The analysis of energy dispersive X-ray spectroscopy shows that the ratio of Cu to O is increased as the RF power increased. From the ultraviolet–visible spectroscopy, the films have a broad absorption edge in the range of 300–500 nm. The band gap of the films grown at RF power of 100 W, and 120 W and above, were 1.18 eV and 2.16 eV, respectively.

  18. Glass-(nAg, nCu) Biocide Coatings on Ceramic Oxide Substrates

    PubMed Central

    Esteban-Tejeda, Leticia; Malpartida, Francisco; Díaz, Luis Antonio; Torrecillas, Ramón; Rojo, Fernando; Moya, José Serafín

    2012-01-01

    The present work was focused on obtaining biocide coatings constituted by a glassy soda-lime matrix containing silver or copper nanoparticles on ceramic (alumina and zirconia based) substrates. Both glassy coatings showed a high biocide activity against Gram−, Gram+ bacteria and yeast, reducing cell numbers more than three logarithms. Silver nanoparticles had a significantly higher biocide activity than copper nanoparticles, since the lixiviation levels required to reduce cell numbers more than 3 logarithms was of almost 1–2 µg/cm2 in the case of silver nanoparticles, and 10–15 µg/cm2 for the copper nanoparticles. PMID:22427967

  19. A study on structural, optical, electrical and microstructural properties of thin TiO x films upon thermal oxidation: Effect of substrate temperature and oxidation temperature

    NASA Astrophysics Data System (ADS)

    Sreemany, Monjoy; Bose, Ankita; Sen, Suchitra

    2010-01-01

    Influences of both substrate temperature, Ts (∼305, 473 K) and oxidation temperature, Ta (∼623-973 K) on the structural, optical, electrical and microstructural properties of thin TiO x ( x≤2) films obtained by thermal oxidation of sputtered titanium thin films have been investigated. Ts is found to be an important parameter that affects both the as deposited film morphology and phase evolution of TiO x films during oxidation. As deposited and oxidized films processed at Ta∼623 K exist in TiO form. Formation of anatase (TiO 2) phase takes place at Ta∼723 K. As the Ta increases above 723 K, degree of crystallinity of the film improves and rutile (TiO 2) phase appears along with anatase phase at Ta∼873 K. Further increase in the Ta enhances the contribution of rutile phase at the expense of anatase contribution. Apparent crystallite size, L, and refractive index of the TiO x ( x≈2) films increase with Ta but band gap energy, Eg decreases from ∼3.4 to 3.35 eV. Scanning electron microscopic study reveals that both film densification and grain size improve with Ta. As the Ta increases above 873 K, rutile phase contribution as well as grains of the oxidized films deposited at a lower Ts grow at a faster rate than that of the TiO x films prepared at a higher Ts. Room temperature resistivity of the as deposited films is found to be dependent on Ts. Film-resistivity increases with oxidation temperature and at Ta∼723 K, resistivity of the film increases drastically. Temperature coefficient of resistivity (TCR) for all the as deposited and oxidized films processed at Ta∼623 K is found to be negative and lie between ∼1.2×10 -3-2.1×10 -3 K -1. Thermal activation energy, Ea, of the as deposited and oxidized ( Ta∼623 K) TiO x ( x≈1) films is estimated to vary over the range ∼0.015-0.027 eV. Observed change in the film electrical properties with Ta is discussed in the light of oxygen incorporation in the TiO x structure.

  20. Stability Comparison of Perovskite Solar Cells Based on Zinc Oxide and Titania on Polymer Substrates.

    PubMed

    Dkhissi, Yasmina; Meyer, Steffen; Chen, Dehong; Weerasinghe, Hasitha C; Spiccia, Leone; Cheng, Yi-Bing; Caruso, Rachel A

    2016-04-07

    Device scale-up and long-term stability constitute two major hurdles that the emerging perovskite solar technology will have to overcome before commercialization. Here, a comparative study was performed between ZnO and TiO2 electron-selective layers, two materials that allow the low-temperature processing of perovskite solar cells on polymer substrates. Although the use of TiO2 is well established on glass substrates, ZnO was chosen because it can be readily printed at low temperature and offers the potential for the large-scale roll-to-roll manufacturing of flexible photovoltaics at a low cost. However, a rapid degradation of CH3 NH3 PbI3 was observed if it was deposited on ZnO, therefore, the influence of the perovskite film preparation conditions on its morphology and degradation kinetics was investigated. This study showed that CH3 NH3 PbI3 could withstand a higher temperature on TiO2 than ZnO and that TiO2-based perovskite devices were more stable than their ZnO analogues.

  1. [The modification of nitric oxide production by exogenous substrates of Krebs cycle during acute hypoxia].

    PubMed

    Kurhaliuk, N M; Kotsiuruba, A V; Sahach, V F

    2005-01-01

    Hypoxia causes the disruption of mitochondria electron respiratory chain, production of active oxygen forms and the unoxidative protection. In experiments on Wistar rats the influence of sodium succinate (50 mg/kg) and 6-ketoglutarate (200 mg/kg) on NO2-, NO3-, urea and polyamines contents in blood and liver under acute hypoxia (7% O2 in N2, 30 min) was investigated. Nitrite and nitrate content decreased in erythrocytes and liver but not in plasma under acute hypoxia. The exogenous succinate (SK) stimulated production of nitric oxide in erythrocytes and liver while 6-ketoglutarate (KG) only in liver. The switch from more intensive SK oxidation that reveals adrenomimetic influence and causes the synthesis and release of NO from erythrocyte, to less intensive KG correlates with well-known decrease of tissue respiration under the activation of the cholinergic system due to urea cycle activation particularly in liver. The activation of the SK oxidation takes place mainly under the different stress conditions and causes NO production in the blood cells. These conditions of the intensive and fast action under acute hypoxia are accompanied on the one hand by the increase of oxygen input ratio and on the other hand by activation of the free radical oxidation. The protective effect of the natural Krebs cycle intermediates--SK and KG in particular, is related to the regulation of NO synthesis and its metabolism in the main organs. These results proved the existence not only metabolite control of NO system by Krebs cycle intermediates, but the existence of the systemic mechanism for the support of the functional state of mitochondria under hypoxia.

  2. Development of Oxidation Resistant Coatings on GRCop-84 Substrates by Cold Spray Process

    NASA Technical Reports Server (NTRS)

    Karthikeyan, J.

    2007-01-01

    GRCop-84, a Cu-CR-Nb alloy, has been developed for rocket engine liner applications. For maximum life additional oxidation protection is required to prevent blanching. NiCrAlY was identified as a suitable coating, and efforts were initiated to develop suitable coating techniques. Cold spray is one technique under consideration. Efforts at ASB Industries to produce dense, adherent coatings are detailed. The work culminated in the production of samples for testing at NASA Glenn Research Center.

  3. Marine sediments microbes capable of electrode oxidation as a surrogate for lithotrophic insoluble substrate metabolism

    PubMed Central

    Rowe, Annette R.; Chellamuthu, Prithiviraj; Lam, Bonita; Okamoto, Akihiro; Nealson, Kenneth H.

    2015-01-01

    Little is known about the importance and/or mechanisms of biological mineral oxidation in sediments, partially due to the difficulties associated with culturing mineral-oxidizing microbes. We demonstrate that electrochemical enrichment is a feasible approach for isolation of microbes capable of gaining electrons from insoluble minerals. To this end we constructed sediment microcosms and incubated electrodes at various controlled redox potentials. Negative current production was observed in incubations and increased as redox potential decreased (tested −50 to −400 mV vs. Ag/AgCl). Electrode-associated biomass responded to the addition of nitrate and ferric iron as terminal electron acceptors in secondary sediment-free enrichments. Elemental sulfur, elemental iron and amorphous iron sulfide enrichments derived from electrode biomass demonstrated products indicative of sulfur or iron oxidation. The microbes isolated from these enrichments belong to the genera Halomonas, Idiomarina, Marinobacter, and Pseudomonas of the Gammaproteobacteria, and Thalassospira and Thioclava from the Alphaproteobacteria. Chronoamperometry data demonstrates sustained electrode oxidation from these isolates in the absence of alternate electron sources. Cyclic voltammetry demonstrated the variability in dominant electron transfer modes or interactions with electrodes (i.e., biofilm, planktonic or mediator facilitated) and the wide range of midpoint potentials observed for each microbe (from 8 to −295 mV vs. Ag/AgCl). The diversity of extracellular electron transfer mechanisms observed in one sediment and one redox condition, illustrates the potential importance and abundance of these interactions. This approach has promise for increasing our understanding the extent and diversity of microbe mineral interactions, as well as increasing the repository of microbes available for electrochemical applications. PMID:25642220

  4. Marine sediments microbes capable of electrode oxidation as a surrogate for lithotrophic insoluble substrate metabolism.

    PubMed

    Rowe, Annette R; Chellamuthu, Prithiviraj; Lam, Bonita; Okamoto, Akihiro; Nealson, Kenneth H

    2014-01-01

    Little is known about the importance and/or mechanisms of biological mineral oxidation in sediments, partially due to the difficulties associated with culturing mineral-oxidizing microbes. We demonstrate that electrochemical enrichment is a feasible approach for isolation of microbes capable of gaining electrons from insoluble minerals. To this end we constructed sediment microcosms and incubated electrodes at various controlled redox potentials. Negative current production was observed in incubations and increased as redox potential decreased (tested -50 to -400 mV vs. Ag/AgCl). Electrode-associated biomass responded to the addition of nitrate and ferric iron as terminal electron acceptors in secondary sediment-free enrichments. Elemental sulfur, elemental iron and amorphous iron sulfide enrichments derived from electrode biomass demonstrated products indicative of sulfur or iron oxidation. The microbes isolated from these enrichments belong to the genera Halomonas, Idiomarina, Marinobacter, and Pseudomonas of the Gammaproteobacteria, and Thalassospira and Thioclava from the Alphaproteobacteria. Chronoamperometry data demonstrates sustained electrode oxidation from these isolates in the absence of alternate electron sources. Cyclic voltammetry demonstrated the variability in dominant electron transfer modes or interactions with electrodes (i.e., biofilm, planktonic or mediator facilitated) and the wide range of midpoint potentials observed for each microbe (from 8 to -295 mV vs. Ag/AgCl). The diversity of extracellular electron transfer mechanisms observed in one sediment and one redox condition, illustrates the potential importance and abundance of these interactions. This approach has promise for increasing our understanding the extent and diversity of microbe mineral interactions, as well as increasing the repository of microbes available for electrochemical applications.

  5. Effect of Oxidation Temperature on Physical and Electrical Properties of Sm2O3 Thin-Film Gate Oxide on Si Substrate

    NASA Astrophysics Data System (ADS)

    Goh, Kian Heng; Haseeb, A. S. M. A.; Wong, Yew Hoong

    2016-10-01

    Thermal oxidation of 150-nm sputtered pure samarium metal film on silicon substrate has been carried out in oxygen ambient at various temperatures (600°C to 900°C) for 15 min and the effect of the oxidation temperature on the structural, chemical, and electrical properties of the resulting Sm2O3 layers investigated. The crystallinity of the Sm2O3 films and the existence of an interfacial layer were evaluated by x-ray diffraction (XRD) analysis, Fourier-transform infrared (FTIR) spectroscopy, and Raman analysis. The crystallite size and microstrain of Sm2O3 were estimated by Williamson-Hall (W-H) plot analysis, with comparison of the former with the crystallite size of Sm2O3 as calculated using the Scherrer equation. High-resolution transmission electron microscopy (HRTEM) with energy-dispersive x-ray (EDX) spectroscopy analysis was carried out to investigate the cross-sectional morphology and chemical distribution of selected regions. The activation energy or growth rate of each stacked layer was calculated from Arrhenius plots. The surface roughness and topography of the Sm2O3 layers were examined by atomic force microscopy (AFM) analysis. A physical model based on semipolycrystalline nature of the interfacial layer is suggested and explained. Results supporting such a model were obtained by FTIR, XRD, Raman, EDX, and HRTEM analyses. Electrical characterization revealed that oxidation temperature at 700°C yielded the highest breakdown voltage, lowest leakage current density, and highest barrier height value.

  6. Topological Insulators as Substrates for CO Oxidation Catalysis by Ultrathin Au Films

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Zhu, Wenguang; Xiao, Di; Zhang, Zhenyu

    2011-03-01

    We propose a novel application of three dimensional topological insulators (3DTIs) in heterogeneous catalysis based on first- principles calculations within density functional theory. We use a Bi 2 Se 3 substrate as the support of an ultrathin Au film, and show that the Au adatoms are strongly bound to and able to wet the surface of Bi 2 Se 3 . More importantly, we find the topological surface states of Bi 2 Se 3 are robust against Au deposition, and it can enhance the interaction between Au and CO, O2 molecules by acting as an electron bath . The present study may broaden the potential technological applications of 3DTIs, and shine some new light on the understanding of the role of surface states in heterogeneous catalysis. Supported by DMSE/BES of USDOE, USNSF, and NNSFC.

  7. Epitaxial iron oxide nanocrystals with memory function grown on Si substrates

    NASA Astrophysics Data System (ADS)

    Ishibe, Takafumi; Matsui, Hideki; Watanabe, Kentaro; Takeuchi, Shotaro; Sakai, Akira; Nakamura, Yoshiaki

    2016-05-01

    High-density Fe3O4-δ nanocrystals (NCs) were epitaxially grown on Si substrates by molecular beam epitaxy with epitaxial Ge NCs being used as nucleation sites. Scanning tunneling spectroscopy measurements showed that the surface bandgap of the as-grown Fe3O4-δ NCs was ˜0.2 eV, consistent with that reported for Fe3O4-δ films. Conductive atomic force microscopy measurements of the NCs revealed hysteresis in the voltage-current curves, indicating bipolar resistive switching behavior. The measurement results established the superiority of the NCs to thin conventional polycrystalline Fe3O4-δ films/Si in terms of resistive switching characteristics. This demonstrated the possibility of developing resistance random access memory devices composed of ubiquitous Fe3O4-δ NC materials.

  8. Ceria catalyst for inert-substrate-supported tubular solid oxide fuel cells running on methane fuel

    NASA Astrophysics Data System (ADS)

    Zhao, Kai; Kim, Bok-Hee; Du, Yanhai; Xu, Qing; Ahn, Byung-Guk

    2016-05-01

    A ceria catalyst is applied to an inert-substrate supported tubular single cell for direct operation on methane fuel. The tubular single cell comprises a porous yttria-stabilized zirconia (YSZ) supporter, a Ni-Ce0.8Sm0.2O1.9 anode, a YSZ/Ce0.8Sm0.2O1.9 bi-layer electrolyte, and a La0.6Sr0.4Co0.2Fe0.8O3-δ cathode. The ceria catalyst is incorporated into the porous YSZ supporter layer by a cerium nitrate impregnation. The effects of ceria on the microstructure and electrochemical performance of the tubular single cell are investigated with respect to the number of impregnations. The optimum number of impregnations is determined to be four based on the maximum power density and polarization property of the tubular single cell in hydrogen and methane fuels. At 700 °C, the tubular single cell shows similar maximum power densities of ˜260 mW cm-2 in hydrogen and methane fuels, respectively. Moreover, the ceria catalyst significantly improves the performance stability of the cell running on methane fuel. At a current density of 350 mA cm-2, the single cell shows a low degradation rate of 2.5 mV h-1 during the 13 h test in methane fuel. These results suggest the feasibility of applying the ceria catalyst to the inert-substrate supported tubular single cell for direct operation on methane fuel.

  9. Tungsten coatings electro-deposited on CFC substrates from oxide molten salt

    NASA Astrophysics Data System (ADS)

    Sun, Ningbo; Zhang, Yingchun; Lang, Shaoting; Jiang, Fan; Wang, Lili

    2014-12-01

    Tungsten is considered as plasma facing material in fusion devices because of its high melting point, its good thermal conductivity, its low erosion rate and its benign neutron activation properties. On the other hand, carbon based materials like C/C fiber composites (CFC) have been used for plasma facing materials (PFMs) due to their high thermal shock resistance, light weight and high strength. Tungsten coatings on CFC substrates are used in the JET divertor in the frame of the JET ITER-like wall project, and have been prepared by plasma spray (PS) and other techniques. In this study, tungsten coatings were electro-deposited on CFC from Na2WO4-WO3 molten salt under various deposition parameters at 900 °C in air. In order to obtain tungsten coatings with excellent performance, the effects of pulse duration ratio and pulse current density on microstructures and crystal structures of tungsten coatings were investigated by X-ray diffraction (XRD, Rigaku Industrial Co., Ltd., D/MAX-RB) and a scanning electron microscope (SEM, JSM 6480LV). It is found that the pulsed duration ratio and pulse current density had a significant influence on tungsten nucleation and electro-crystallization phenomena. SEM observation revealed that intact, uniform and dense tungsten coatings formed on the CFC substrates. Both the average grain size and thickness of the coating increased with the pulsed current density. The XRD results showed that the coatings consisted of a single phase of tungsten with the body centered cubic (BCC) structure. The oxygen content of electro-deposited tungsten coatings was lower than 0.05%, and the micro-hardness was about 400 HV.

  10. Surface studies on aluminized and thermally oxidized superalloy 690 substrates interacted with simulated nuclear waste and sodium borosilicate melt

    SciTech Connect

    Yusufali, C. Sengupta, P.; Dutta, R. S.; Dey, G. K.; Kshirsagar, R. J.; Mishra, R. K.; Kaushik, C. P.

    2014-04-24

    Aluminized and thermally oxidized Ni-Cr-Fe based superalloy 690 substrates with Al{sub 2}O{sub 3} layer on top have been exposed in nitrate based environment (simulated high level nuclear liquid waste) at 373 K for 216 hours and sodium borosilicate melt at 1248 K for 192 hours. The surfaces of exposed samples have been characterized by using Electron probe micro-analyzer (EPMA). Elemental X-ray mapping on coated specimen that exposed in simulated nuclear waste solution revealed that the surface is enriched with Ni, Cr and Al. X-ray mapping on surface of the specimen that interacted with sodium borosilicate melt indicated that the surface is composed of Al, Fe, Ni and Cr.

  11. Magneto-transport properties of oriented Mn{sub 2}CoAl films sputtered on thermally oxidized Si substrates

    SciTech Connect

    Xu, G. Z.; Du, Y.; Zhang, X. M.; Liu, E. K.; Wang, W. H. Wu, G. H.; Zhang, H. G.

    2014-06-16

    Spin gapless semiconductors are interesting family of materials by embracing both magnetism and semiconducting due to their unique band structure. Its potential application in future spintronics requires realization in thin film form. In this Letter, we report fabrication and transport properties of spin gapless Mn{sub 2}CoAl films prepared on thermally oxidized Si substrates by magnetron sputtering deposition. The films deposited at 673 K are well oriented to (001) direction and display a uniform-crystalline surface. Magnetotransport measurements on the oriented films reveal a semiconducting-like resistivity, small anomalous Hall conductivity, and linear magnetoresistance representative of the transport signatures of spin gapless semiconductors. The magnetic properties of the films have also been investigated and compared to that of bulk Mn{sub 2}CoAl, showing small discrepancy induced by the composition deviation.

  12. Substrate Fermi level effects in photocatalysis on oxides: Properties of ultrathin TiO2/Si films

    NASA Astrophysics Data System (ADS)

    Kazazis, D.; Guha, S.; Bojarczuk, N. A.; Zaslavsky, A.; Kim, H.-C.

    2009-08-01

    Photocatalysis has widespread applications from solar cells to photolithography. We studied the photocatalytic properties of TiO2 films of thicknesses down to 2 nm, grown on n-type and p-type silicon wafers, using the oxidation of isopropanol as a model system. Direct in vacuo mass spectrometry measurements were performed under irradiation above the TiO2 bandgap. We present a model consistent with our experimental results, which indicate that only near-surface electron-hole pair generation is relevant and that the reaction rate can be controlled by varying the substrate Fermi level in going from n-type to p-type silicon, by approximately a factor of 2.

  13. Enhanced field emission properties from well-aligned zinc oxide nanoneedles grown on the Au/Ti/n-Si substrate

    SciTech Connect

    Park, Chan Jun; Choi, Duck-Kyun; Yoo, Jinkyoung; Yi, Gyu-Chul; Lee, Cheol Jin

    2007-02-19

    The authors investigated the field emission from vertically well-aligned zinc oxide (ZnO) nanoneedles grown on the Au/Ti/n-Si (100) substrate using metal organic chemical vapor deposition. The turn-on field of ZnO nanoneedles was about 0.85 V/{mu}m at the current density of 0.1 {mu}A/cm{sup 2}, and the emission current density of 1 mA/cm{sup 2} was achieved at the applied electric field of 5.0 V/{mu}m. The low turn-on field of the ZnO nanoneedles was attributed to very sharp tip morphology, and the high emission current density was mainly caused by the formation of the stable Ohmic contact between the ZnO nanoneedles and Au film.

  14. Effect of time and of precursor molecule on the deposition of hydrophobic nanolayers on ethyelene tetrafluoroethylene-silicon oxide substrates

    NASA Astrophysics Data System (ADS)

    Rossi, Gabriella; Castellano, Piera; Incarnato, Loredana

    2016-10-01

    A method was developed for generating transparent and hydrophobic nanolayers chemisorbed onto flexible substrates of ethylene tetrafluoroethylene-silicon oxide (ETFE-SiOx). In particular, the effect of the deposition time and of the precursor molecule on the nanocoating process was analyzed with the aim of pursuing an optimization of the above method in an industrial application perspective. It was found that precursor molecule of triethoxysilane allowed to obtain better hydrophobic properties on the SiOx surface in shorter times compared to trichlorosilane, reaching the 92 % of final contact angle (CA) value of 106° after only 1 h of deposition. The optical properties and surface morphology were also assessed in function of time, revealing that an initial transparency reduction is followed by a subsequent transmittance increase during the self assembly of fluoroalkylsilanes on the SiOx surface, coherently with the surface roughness analysis data. Encouraging results were also obtained in terms of oleophobic properties improvement of the nanocoated surfaces.

  15. Flexible transparent memory cell: bipolar resistive switching via indium-tin oxide nanowire networks on a poly(dimethylsiloxane) substrate

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Tian, Zhenhuan; Shang, Geng; Wang, Jiangteng; Li, Yufeng; Yun, Feng

    2016-11-01

    This report describes the fabrication and resistive switching (RS) characteristics of a novel flexible transparent (FT) resistive random access memory (ReRAM) device with a Ag/indium-tin oxide (ITO) nanowire network/ITO capacitor deposited on a PDMS substrate. The transmittance of the device is ˜70% in the visible region, and it exhibits a stable high-resistance state (HRS) to low-resistance state (LRS) ratio (HRS/LRS ratio) in different bending states. The RS characteristics are attributed to the congregate state of oxygen vacancies at different voltages, and the difference between positive and negative bending is mainly contributed by the effect of stress on the conductive layer. The FT-ReRAM can be used as nonvolatile memory element in future flexible transparent devices.

  16. Effect of Fe coating of nucleation sites on epitaxial growth of Fe oxide nanocrystals on Si substrates

    NASA Astrophysics Data System (ADS)

    Ishibe, Takafumi; Watanabe, Kentaro; Nakamura, Yoshiaki

    2016-08-01

    We studied the effect of Fe coating on the epitaxial growth of Fe3O4 nanocrystals (NCs) over Fe-coated Ge epitaxial nuclei on Si(111). To completely cover Ge nuclei with Fe, some amount of Fe (>8 monolayers) must be deposited. Such covering is a key to epitaxial growth because an Fe coating layer prevents the oxidation of Ge surfaces during Fe3O4 formation, resulting in the epitaxial growth of Fe3O4 on them. This study demonstrates that an appropriate Fe coating of nucleation sites leads to the epitaxial growth of Fe3O4 NCs on Si substrates, indicating the realization of environmentally friendly and low-cost Fe3O4 NCs as the resistance random access memory material.

  17. Effect of pH on sulfite oxidation by Thiobacillus thiooxidans cells with sulfurous acid or sulfur dioxide as a possible substrate.

    PubMed Central

    Takeuchi, T L; Suzuki, I

    1994-01-01

    The oxidation of sulfite by Thiobacillus thiooxidans was studied at various pH values with changing concentrations of potassium sulfite. The optimal pH for sulfite oxidation by cells was a function of sulfite concentrations, rising with increasing substrate concentrations, while that by the cell extracts was unaffected. The sulfite oxidation by cells was inhibited at high sulfite concentrations, particularly at low pH values. The results from kinetic studies show that the fully protonated form of sulfite, sulfurous acid or sulfur dioxide, is the form which penetrates the cells for the oxidation. PMID:8300544

  18. Synthesis of epitaxial Si(100) nanowires on Si(100) substrate using vapor liquid solid growth in anodic aluminum oxide nanopore arrays

    NASA Astrophysics Data System (ADS)

    Shimizu, T.; Senz, S.; Shingubara, S.; Gösele, U.

    2007-06-01

    The synthesis of epitaxial Si nanowires with growth direction parallel to Si [100] on Si(100) substrate was demonstrated using a combination of anodic aluminum oxide (AAO) template, catalytic gold film sandwiched between the template and the Si(100) substrate and vapor-liquid-solid growth using SiH4 as the Si source. After growing out from the AAO nanopores, most Si nanowires changed their diameter and growth direction into larger diameter and <111> direction.

  19. Impaired coordination of nutrient intake and substrate oxidation in melanocortin-4 receptor knockout mice.

    PubMed

    Albarado, Diana C; McClaine, Jennifer; Stephens, Jacqueline M; Mynatt, Randall L; Ye, Jianping; Bannon, Anthony W; Richards, William G; Butler, Andrew A

    2004-01-01

    Mutations in the melanocortin-4 receptor (MC4R) are associated with obesity. The obesity syndrome observed in humans with MC4R haploinsufficiency is similar to that observed in MC4R knockout mice, including increased longitudinal growth, hyperphagia, and fasting hyperinsulinemia. For comparison with other commonly investigated models of obesity and insulin resistance, we have backcrossed Mc4r-/- mice into the C57BL/6J (B6) background. Female obese Mc4r-/- mice exhibit reduced energy expenditure and an attenuated increase in fatty acid (FA) oxidation after exposure to high-fat diets compared with obese Lepob/Lepob mice. The reduced energy expenditure and FA oxidation correlates with changes in hepatic gene expression. The expression of genes involved in FA oxidation increased in obese Lepob/Lepob mice compared with wild-type and obese Mc4r-/- mice. In contrast, a key lipogenic enzyme, FA synthase (FAS), is increased in obese Mc4r-/- mice compared with obese Lepob/Lepob mice. Hyperinsulinemia, increased FAS mRNA expression and hepatic steatosis appear to be secondary to obesity in B6 Mc4r-/- mice. However, Mc4r-/- mice in a mixed genetic background develop severe hepatic steatosis at an early age. This might suggest an important role of the MC4R in regulating liver FA metabolism that is masked on the B6 background. Interestingly, the 10- to 20-fold increase in liver triglyceride in the outbred strain of Mc4r-/- mice is not always associated with fasting hyperinsulinemia or increased FAS mRNA expression. This observation suggests that changes in liver secondary to triglyceride accumulation lead to hyperinsulinemia and increased hepatic FAS expression in Mc4r-/- mice.

  20. Silencing of hydroperoxide lyase and allene oxide synthase reveals substrate and defense signaling crosstalk in Nicotiana attenuata.

    PubMed

    Halitschke, Rayko; Ziegler, Jörg; Keinänen, Markku; Baldwin, Ian T

    2004-10-01

    The fatty acid hydroperoxide (HP) substrates required for the biosynthesis of jasmonic acid (JA) and green leaf volatiles (GLVs) are supplied by separate lipoxygenases (LOX). We silenced the expression of two genes downstream of the LOX: allene oxide synthase (AOS) and HP lyase (HPL) by antisense expression of endogenous genes (NaAOS, NaHPL) in Nicotiana attenuata, in which the biosynthesis of JA is amplified by herbivore-specific elicitors. We report that these elicitors also amplify wound-induced GLV releases, but suppress the wound-induced increase of NaHPL transcripts, suggesting that substrate flux controls GLV biosynthesis. As expected, silencing of NaHPL and NaAOS reduced GLV release and JA accumulation, respectively. Surprisingly, HPL- and AOS-silenced plants had enhanced JA and GLV responses, suggesting substrate 'crosstalk' between these two oxylipin cascades. Plants with depleted GLVs (as-hpl) were less attractive than wild type (WT) or empty vector control plants in choice-tests with native lepidopteran herbivores. In feeding trials, Manduca sexta larvae developed slower on as-hpl plants. The reduced larval consumption and performance, which was not caused by increases in defense responses in as-hpl plants, could be restored to WT levels by the addition of synthetic GLVs, demonstrating that GLVs function as feeding stimulants. Gene expression profiling by cDNA microarray analysis and characterization of several induced defenses in herbivore-elicited as-hpl and as-aos plants revealed differential involvement of JA and GLVs in defense signaling. Elicitation of volatile terpenoids (an indirect defense) requires JA signaling, where as trypsin protease inhibitor elicitation (a direct defense) requires both functional JA and GLV cascades.

  1. Toward Plastic Smart Windows: Optimization of Indium Tin Oxide Electrodes for the Synthesis of Electrochromic Devices on Polycarbonate Substrates.

    PubMed

    Laurenti, Marco; Bianco, Stefano; Castellino, Micaela; Garino, Nadia; Virga, Alessandro; Pirri, Candido F; Mandracci, Pietro

    2016-03-01

    Plastic smart windows are becoming one of the key elements in view of the fabrication of inexpensive, lightweight electrochromic (EC) devices to be integrated in the new generation of high-energy-efficiency buildings and automotive applications. However, fabricating electrochromic devices on polymer substrates requires a reduction of process temperature, so in this work we focus on the development of a completely room-temperature deposition process aimed at the preparation of ITO-coated polycarbonate (PC) structures acting as transparent and conductive plastic supports. Without providing any substrate heating or surface activation pretreatments of the polymer, different deposition conditions are used for growing indium tin oxide (ITO) thin films by the radiofrequency magnetron sputtering technique. According to the characterization results, the set of optimal deposition parameters is selected to deposit ITO electrodes having high optical transmittance in the visible range (∼90%) together with low sheet resistance (∼8 ohm/sq). The as-prepared ITO/PC structures are then successfully tested as conductive supports for the fabrication of plastic smart windows. To this purpose, tungsten trioxide thin films are deposited by the reactive sputtering technique on the ITO/PC structures, and the resulting single electrode EC devices are characterized by chronoamperometric experiments and cyclic voltammetry. The fast switching response between colored and bleached states, together with the stability and reversibility of their electrochromic behavior after several cycling tests, are considered to be representative of the high quality of the EC film but especially of the ITO electrode. Indeed, even if no adhesion promoters, additional surface activation pretreatments, or substrate heating were used to promote the mechanical adhesion among the electrode and the PC surface, the observed EC response confirmed that the developed materials can be successfully employed for the

  2. Part 2: Ultra-short pulse laser patterning of very thin indium tin oxide on glass substrates

    NASA Astrophysics Data System (ADS)

    McDonnell, C.; Milne, D.; Chan, H.; Rostohar, D.; O'Connor, G. M.

    2016-06-01

    We investigate selective patterning of ultra-thin 20 nm Indium Tin Oxide (ITO) thin films on glass substrates, using 343, 515, and 1030 nm femtosecond (fs), and 1030 nm picoseconds (ps) laser pulses. An ablative removal mechanism is observed for all wavelengths at both femtosecond and picoseconds time-scales. The absorbed threshold fluence values were determined to be 12.5 mJ cm-2 at 343 nm, 9.68 mJ cm-2 at 515 nm, and 7.50 mJ cm-2 at 1030 nm for femtosecond and 9.14 mJ cm-2 at 1030 nm for picosecond laser exposure. Surface analysis of ablated craters using atomic force microscopy confirms that the selective removal of the film from the glass substrate is dependent on the applied fluence. Film removal is shown to be primarily through ultrafast lattice deformation generated by an electron blast force. The laser absorption and heating process was simulated using a two temperature model (TTM). The predicted surface temperatures confirm that film removal below 1 J cm-2 to be predominately by a non-thermal mechanism.

  3. The effects of precursor concentration and thermal annealing on the growth of zinc oxide nanostructures grown on silicon substrate

    NASA Astrophysics Data System (ADS)

    Paculba, H. M. D.; Alguno, A. C.; Vequizo, R. M.

    2015-06-01

    This study focuses on the growth of Zinc Oxide (ZnO) nanostructures on SiO2/Si(100) substrate via chemical bath deposition (CBD) with varying NH4OH concentration and annealing temperature. The grown ZnOnanostructures were characterized via SEM-EDS for the surface morphology and elemental composition and UV-Vis spectroscopy for the reflectance measurement. Increasing the concentration of NH4OH produced denser ZnOnanostructures composed of rods having smaller diameter. It is believed that at higher concentration of NH4OH, more Zn(OH)2 seed will act as nucleation site for ZnOformation which suggests higher probability of ZnOgrowth. Thermal annealing increased the average diameter of ZnOnanorods. Annealing provided enough energy for unstable atoms to rearrange into a more suitable position. This would result to larger rods that have been formed in expense of the smaller rods. Furthermore, it is confirmed in the UV-Vis spectroscopy results that ZnOnanostructures were successfully grown on SiO2/Si(100) substrate. This successful growth of ZnOnanostructures is a promising material for solar cell technology.

  4. Thermal Catalytic Oxidation of Airborne Contaminants by a Reactor Using Ultra-Short Channel Length, Monolithic Catalyst Substrates

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Tomes, K. M.; Tatara, J. D.

    2005-01-01

    Contaminated air, whether in a crewed spacecraft cabin or terrestrial work and living spaces, is a pervasive problem affecting human health, performance, and well being. The need for highly effective, economical air quality processes spans a wide range of terrestrial and space flight applications. Typically, air quality control processes rely on absorption-based processes. Most industrial packed-bed adsorption processes use activated carbon. Once saturated, the carbon is either dumped or regenerated. In either case, the dumped carbon and concentrated waste streams constitute a hazardous waste that must be handled safely while minimizing environmental impact. Thermal catalytic oxidation processes designed to address waste handling issues are moving to the forefront of cleaner air quality control and process gas decontamination processes. Careful consideration in designing the catalyst substrate and reactor can lead to more complete contaminant destruction and poisoning resistance. Maintenance improvements leading to reduced waste handling and process downtime can also be realized. Performance of a prototype thermal catalytic reaction based on ultra-short waste channel, monolith catalyst substrate design, under a variety of process flow and contaminant loading conditions, is discussed.

  5. Optical and electrical properties of lithium doped nickel oxide films deposited by spray pyrolysis onto alumina substrates

    NASA Astrophysics Data System (ADS)

    Garduño, I. A.; Alonso, J. C.; Bizarro, M.; Ortega, R.; Rodríguez-Fernández, L.; Ortiz, A.

    2010-11-01

    Non-doped and lithium doped nickel oxide crystalline films have been prepared onto quartz and crystalline alumina substrates at high substrate temperature (600 °C) by the pneumatic spray pyrolysis process using nickel and lithium acetates as source materials. The structure of all the deposited films was the crystalline cubic phase related to NiO, although this crystalline structure was a little bit stressed for the films with higher lithium concentration. The grain size had values between 60 and 70 nm, almost independently of doping concentration. The non-doped and lithium doped films have an energy band gap of the order of 3.6 eV. Hot point probe results show that all deposited films have a p-type semiconductor behavior. From current-voltage measurements it was observed that the electrical resistivity decreases as the lithium concentration increases, indicating that the doping action of lithium is carried out. The electrical resistivity changed from 10 6 Ω cm for the non-doped films up to 10 2 Ω cm for the films prepared with the highest doping concentration.

  6. Nanotribological properties of alkanephosphonic acid self-assembled monolayers on aluminum oxide: effects of fluorination and substrate crystallinity.

    PubMed

    Brukman, Matthew J; Oncins Marco, Gerard; Dunbar, Timothy D; Boardman, Larry D; Carpick, Robert W

    2006-04-25

    Two phosphonic acid (PA) self-assembled monolayers (SAMs) are studied on three aluminum oxide surfaces: the C and R crystallographic planes of single crystal alpha-alumina (sapphire) and an amorphous vapor-deposited alumina thin film. SAMs are either fully hydrogenated CH3(CH2)17PO3H2 or semifluorinated CF3(CF2)7(CH2)11PO3H2. Atomic force microscope (AFM) topographic imaging reveals that the deposited films are homogeneous, atomically smooth, and stable for months in the laboratory environment. Static and advancing contact angle measurements agree with previous work on identical or similar films, but receding measurements suggest reduced coverage here. To enable reproducible nanotribology measurements with the AFM, a scanning protocol is developed that leads to a stable configuration of the silicon tip. Adhesion for the semifluorinated films is either comparable to or lower than that for the hydrogenated films, with a dependence on contact history observed. Friction between each film and the tips depends strongly upon the type of molecule, with the fluorinated species exhibiting substantially higher friction. Subtle but reproducible differences in friction are observed for a given SAM depending on the substrate, revealing differences in packing density for the SAMs on the different substrates. Friction is seen to increase linearly with load, a consequence of the tip's penetration into the monolayer.

  7. Steady-state kinetics with nitric oxide reductase (NOR): new considerations on substrate inhibition profile and catalytic mechanism.

    PubMed

    Duarte, Américo G; Cordas, Cristina M; Moura, José J G; Moura, Isabel

    2014-03-01

    Nitric oxide reductase (NOR) from denitrifying bacteria is an integral membrane protein that catalyses the two electron reduction of NO to N2O, as part of the denitrification process, being responsible for an exclusive reaction, the NN bond formation, the key step of this metabolic pathway. Additionally, this class of enzymes also presents residual oxidoreductase activity, reducing O2 to H2O in a four electron/proton reaction. In this work we report, for the first time, steady-state kinetics with the Pseudomonas nautica NOR, either in the presence of its physiological electron donor (cyt. c552) or immobilised on a graphite electrode surface, in the presence of its known substrates, namely NO or O2. The obtained results show that the enzyme has high affinity for its natural substrate, NO, and different kinetic profiles according to the electron donor used. The kinetic data, as shown by the pH dependence, is modelled by ionisable amino acid residues nearby the di-nuclear catalytic site. The catalytic mechanism is revised and a mononitrosyl-non-heme Fe complex (FeB(II)-NO) species is favoured as the first catalytic intermediate involved on the NO reduction.

  8. Structural and Magnetoresistive Properties of Nanometric Films Based on Iron and Chromium Oxides on the Si Substrate

    NASA Astrophysics Data System (ADS)

    Smirnov, Aleksey B.; Kryvyi, Serhii B.; Mulenko, Sergii A.; Sadovnikova, Maria L.; Savkina, Rada K.; Stefan, Nicolaie

    2016-10-01

    Ultraviolet photons of KrF laser (248 nm) was used for the synthesis of nanometric films based on iron and chromium oxides (Fe2O3 - X (0 ≤ x ≤ 1) and Cr3 - X O3 - Y (0 ≤ x ≤ 2; 0 ≤ y ≤ 2)) with variable thickness, stoichiometry, and electrical properties. Film deposition was carried out on the silicon substrate Si < 100 > at the substrate's temperature T S = 293 K. X-ray diffraction and X-ray reflectometry analysis were used for the obtained structure characterization. Such a combined investigation reveals the composition and texture for samples investigated and provides useful information about layer thickness and roughness. Fe2O3 - X (0 ≤ x ≤ 1) nanometric films demonstrate the negative magnetoresistance in magnetic fields up 7 kOe. At the same time, for hybrid systems of the alternate layers Fe2O3 - X (0 ≤ x ≤ 1)/Cr3 - X O3 - Y (0 ≤ x ≤ 2; 0 ≤ y ≤ 2), the positive magnetoresistance as well as the magnetic hysteresis and magnetoresistivity switching effect in the low magnetic fields were observed.

  9. Instantaneous and continuous measurement of /sup 14/C-labeled substrate oxidation to /sup 14/CO2 by minute tissue specimens: an ionization chamber method

    SciTech Connect

    Davidson, W.D.; Klein, K.L.; Kurokawa, K.; Soll, A.H.

    1981-06-01

    The vibrating reed electrometer and ionization chamber have been adapted for the instantaneous and continuous measurement of /sup 14/C-labeled substrate oxidation to /sup 14/CO2 by minute quantities of isolated tissues. This modified technique, utilizing a ''closed'' circulation incubation system, is 10-50 times as sensitive as the previously described ''open'' circulation techniques. Substrate oxidation curves are described for human erythrocytes and polymorphonuclear leucocytes, canine parietal cells and isolated segments of the rat nephron. This apparatus should prove to be a useful tool for metabolic studies of small quantities of isolated tissue.

  10. Nanostructural surface engineering of grafted polymers on inorganic oxide substrates for membrane separations

    NASA Astrophysics Data System (ADS)

    Yoshida, Wayne Hiroshi

    Nanostructural engineering of inorganic substrates by free radical graft polymerization was studied with the goal of developing new membrane materials for pervaporation. Graft polymerization consisted of modification of surface hydroxyls with vinyl trimethoxysilane, followed by solution graft polymerization reaction using either vinyl acetate (VAc) or vinyl pyrrolidone (VP). The topology of the modified surfaces was studied by atomic force microscopy (AFM) on both atomically smooth silicon wafer substrates and microporous inorganic membrane supports in order to deduce the effects of modification on the nanostructural properties of the membrane. While unmodified wafers showed a root-mean-square (RMS) surface roughness of 0.21 +/- 0.03 nm, roughness increased to 3.15 +/- 0.23 nm upon silylation. Under poor solvent conditions (i.e., air), surfaces modified with higher poly(vinyl acetate) (PVAc) or poly(vinyl pyrrolidone) (PVP) polymer graft yields displayed lateral inhomogeneities in the polymer layer. Although RMS surface roughness was nearly identical (0.81--0.85 nm) for PVAc-modified surfaces grafted at different monomer concentrations, the skewness of the height distribution decreased from 2.22 to 0.78 as polymer graft yield increased from 0.8 to 3.5 mg/m2. The polymer-modified surfaces were used to create inorganic pervaporation membranes consisting of a single macromolecular separation layer formed by graft polymerization. PVAc grafted silica membranes (500A native pore size) were found selective for MTBE in the separation of 0.1--1% (v/v) MTBE from water, achieving MTBE enrichment factors as high as 371 at a permeate flux of 0.38 l/m2 hr and a Reynolds number of 6390; however, these membranes could not separate anhydrous organic mixtures. Pervaporative separation of methanol/MTBE mixtures was possible with PVAc and PVP-modified alumina supports of 50A native pore size, where the separation layer consisted of grafted polymer chains with estimated radius of

  11. Effect of Pore Size and Film Thickness on Gold-Coated Nanoporous Anodic Aluminum Oxide Substrates for Surface-Enhanced Raman Scattering Sensor

    PubMed Central

    Kassu, Aschalew; Farley, Carlton; Sharma, Anup; Kim, Wonkyu; Guo, Junpeng

    2015-01-01

    A sensitive surface enhanced Raman scattering chemical sensor is demonstrated by using inexpensive gold-coated nanoporous anodic aluminum oxide substrates. To optimize the performance of the substrates for sensing by the Surface-enhanced Raman scattering (SERS) technique, the size of the nanopores is varied from 18 nm to 150 nm and the gold film thickness is varied from 30 nm to 120 nm. The sensitivity of gold-coated nanoporous surface enhanced Raman scattering sensor is characterized by detecting low concentrations of Rhodamine 6G laser dye molecules. The morphology of the SERS substrates is characterized by atomic force microscopy. Optical properties of the nanoporous SERS substrates including transmittance, reflectance, and absorbance are also investigated. Relative signal enhancement is plotted for a range of substrate parameters and a detection limit of 10−6 M is established. PMID:26633402

  12. Substrate-tuning of correlated spin-orbit oxides revealed by optical conductivity calculations

    PubMed Central

    Kim, Bongjae; Kim, Beom Hyun; Kim, Kyoo; Min, B. I.

    2016-01-01

    We have systematically investigated substrate-strain effects on the electronic structures of two representative Sr-iridates, a correlated-insulator Sr2IrO4 and a metal SrIrO3. Optical conductivities obtained by the ab initio electronic structure calculations reveal that the tensile strain shifts the optical peak positions to higher energy side with altered intensities, suggesting the enhancement of the electronic correlation and spin-orbit coupling (SOC) strength in Sr-iridates. The response of the electronic structure upon tensile strain is found to be highly correlated with the direction of magnetic moment, the octahedral connectivity, and the SOC strength, which cooperatively determine the robustness of Jeff = 1/2 ground states. Optical responses are analyzed also with microscopic model calculation and compared with corresponding experiments. In the case of SrIrO3, the evolution of the electronic structure near the Fermi level shows high tunability of hole bands, as suggested by previous experiments. PMID:27256281

  13. Caffeine Affects Time to Exhaustion and Substrate Oxidation during Cycling at Maximal Lactate Steady State.

    PubMed

    Cruz, Rogério Santos de Oliveira; de Aguiar, Rafael Alves; Turnes, Tiago; Guglielmo, Luiz Guilherme Antonacci; Beneke, Ralph; Caputo, Fabrizio

    2015-06-30

    This study analyzed the effects of caffeine intake on whole-body substrate metabolism and exercise tolerance during cycling by using a more individualized intensity for merging the subjects into homogeneous metabolic responses (the workload associated with the maximal lactate steady state-MLSS). MLSS was firstly determined in eight active males (25 ± 4 years, 176 ± 7 cm, 77 ± 11 kg) using from two to four constant-load tests of 30 min. On two following occasions, participants performed a test until exhaustion at the MLSS workload 1 h after taking either 6 mg/kg of body mass of caffeine or placebo (dextrose), in a randomized, double-blinded manner. Respiratory exchange ratio was calculated from gas exchange measurements. There was an improvement of 22.7% in time to exhaustion at MLSS workload following caffeine ingestion (95% confidence limits of ±10.3%, p = 0.002), which was accompanied by decrease in respiratory exchange ratio (p = 0.001). These results reinforce findings indicating that sparing of the endogenous carbohydrate stores could be one of the several physiological effects of caffeine during submaximal performance around 1 h.

  14. Graphene oxide single sheets as substrates for high resolution cryoTEM.

    PubMed

    van de Put, Marcel W P; Patterson, Joseph P; Bomans, Paul H H; Wilson, Neil R; Friedrich, Heiner; van Benthem, Rolf A T M; de With, Gijsbertus; O'Reilly, Rachel K; Sommerdijk, Nico A J M

    2015-02-04

    CryoTEM is an important tool in the analysis of soft matter, where generally defocus conditions are used to enhance the contrast in the images, but this is at the expense of the maximum resolution that can be obtained. Here, we demonstrate the use of graphene oxide single sheets as support for the formation of 10 nm thin films for high resolution cryoTEM imaging, using DNA as an example. With this procedure, the overlap of objects in the vitrified film is avoided. Moreover, in these thin films less background scattering occurs and as a direct result, an increased contrast can be observed in the images. Hence, imaging closer to focus as compared with conventional cryoTEM procedures is achieved, without losing contrast. In addition, we demonstrate an ~1.8 fold increase in resolution, which is crucial for accurate size analysis of nanostructures.

  15. N-sulfotestosteronan, a novel substrate for heparan sulfate 6-O-sulfotransferases and its analysis by oxidative degradation

    PubMed Central

    Li, Guoyun; Masuko, Sayaka; Green, Dixy E.; Xu, Yongmei; Li, Lingyun; Zhang, Fuming; Xue, Changhu; Liu, Jian; DeAngelis, Paul. L.; Linhardt, Robert J.

    2013-01-01

    Testosteronan, an unusual glycosaminoglycan first isolated from the microbe Comamonas testosteroni, was enzymatically synthesized in vitro by transferring uridine diphosphate sugars on β-p-nitrophenyl glucuronide acceptor. After chemically converting testosteronan to N-sulfotestosteronan it was tested as a substrate for sulfotransferases involved in the biosynthesis of the glycosaminoglycan, heparan sulfate. Studies using 35S-labeled 3′-phosphodenosine-5′-phosphosulfate (PAPS) showed that only 6-O-sulfotransferases acted on N-sulfotestosteronan. An oxidative depolymerization reaction was explored to generate oligosaccharides from 34S-labeled 6-O-sulfo-N-sulfotestosteroran using 34S-labeled PAPS because testosteronan was resistant to all of the tested glycosaminoglycan-degrading enzymes. Liquid chromotography-mass spectrometric analysis of the oxidatively depolymerized polysaccharides confirmed the incorporation of 34S into ~14% of the glucosamine residues. Nuclear magnetic resonance spectroscopy also showed that the sulfo groups were transferred to ~20% of the 6-hydroxyl groups in the glucosamine residue of N-sulfotestosteronan. The bioactivity of 6-O–sulfo-N-sulfotestosteronan was examined by performing protein-binding studies with fibroblast growth factors and antithrombin III using a surface plasmon resonance competition assay. The introduction of 6-O-sulfo groups enhanced N-sulfotestosteronan binding to the fibroblast growth factors, but not to antithrombin III. PMID:23606289

  16. Pre-steady-state Kinetics Reveal the Substrate Specificity and Mechanism of Halide Oxidation of Truncated Human Peroxidasin 1*

    PubMed Central

    Paumann-Page, Martina; Katz, Romy-Sophie; Bellei, Marzia; Schwartz, Irene; Edenhofer, Eva; Sevcnikar, Benjamin; Soudi, Monika

    2017-01-01

    Human peroxidasin 1 is a homotrimeric multidomain peroxidase that is secreted to the extracellular matrix. The heme enzyme was shown to release hypobromous acid that mediates the formation of specific covalent sulfilimine bonds to reinforce collagen IV in basement membranes. Maturation by proteolytic cleavage is known to activate the enzyme. Here, we present the first multimixing stopped-flow study on a fully functional truncated variant of human peroxidasin 1 comprising four immunoglobulin-like domains and the catalytically active peroxidase domain. The kinetic data unravel the so far unknown substrate specificity and mechanism of halide oxidation of human peroxidasin 1. The heme enzyme is shown to follow the halogenation cycle that is induced by the rapid H2O2-mediated oxidation of the ferric enzyme to the redox intermediate compound I. We demonstrate that chloride cannot act as a two-electron donor of compound I, whereas thiocyanate, iodide, and bromide efficiently restore the ferric resting state. We present all relevant apparent bimolecular rate constants, the spectral signatures of the redox intermediates, and the standard reduction potential of the Fe(III)/Fe(II) couple, and we demonstrate that the prosthetic heme group is post-translationally modified and cross-linked with the protein. These structural features provide the basis of human peroxidasin 1 to act as an effective generator of hypobromous acid, which mediates the formation of covalent cross-links in collagen IV. PMID:28154175

  17. Spectroscopic Studies of Band Edge Electronic States in Elemental High-k Oxide Dielectrics on Si and Ge Substrates

    SciTech Connect

    Lucovsky, G.; Seo, H.; Fleming, L. B.; Ulrich, M. D.; Luening, J.

    2007-09-26

    This paper uses X-ray absorption spectroscopy, and vacuum ultra-violet spectroscopic ellipsometry to distinguish between i) non-crystallinity, and ii) nano-crystallinity in transition metal (TM) elemental oxides. Near edge X-ray absorption spectroscopy is used to distinguish between two different scales of nano-crystalline order. The observation of band edge Jahn-Teller splittings in anti-bonding states with TM p-character correlate with the observation of nano-crystalline-order that can be detected by X-ray diffraction, and establish a length scale for order, {lambda}{sub s}>3 to 4 nm, The suppression of J-T splittings, and a spectral broadening is associated with reduced nano-crystalline order that can be detected by atomic-scale imaging and/or extended X-ray absorption spectroscopy for {lambda}{sub s}<{approx}2.5 nm. These different states of nano-crystalline grain-size order for addressed in elemental transition metal oxides on both Si and Ge substrates.

  18. Acute changes in substrate oxidation do not affect short-term food intake in healthy boys and men.

    PubMed

    Hunschede, Sascha; El Khoury, Dalia; Antoine-Jonville, Sophie; Smith, Christopher; Thomas, Scott; Anderson, G Harvey

    2015-02-01

    The acute relationship between substrate oxidation as measured by respiratory exchange ratio (RER) and food intake (FI) has not been defined. The purpose of the study was to determine acute relationships between RER, modified by exercise and a glucose load, and FI and net energy balance (NEB) in physically active normal-weight boys and men. In a crossover design, 15 boys (aged 9-12 years) and 15 men (aged 20-30 years) were randomly assigned to 4 conditions: (i) water and rest, (ii) glucose-drink and rest, (iii) water and exercise, and (iv) glucose-drink and exercise. Indirect calorimetry was used to determine RER, energy expenditure, and carbohydrate and fat oxidation. Subjective appetite and blood glucose were also measured. RER was higher after glucose (0.91 ± 0.01) compared with water (0.87 ± 0.01) (p < 0.0001), and after exercise (0.91 ± 0.01) compared with rest (0.88 ± 0.01) (p = 0.0043) in men (0.91 ± 0.01) compared with boys (0.88 ± 0.01) (p = 0.0002). FI (kcal·m(-2)) did not differ between boys and men. Glucose (582 ± 24 kcal·m(-2)) reduced FI compared with water (689 ± 25 kcal·m(-2)) (p < 0.0001), and further decreased FI when combined with exercise (554 ± 34 kcal·m(-2)) (p = 0.0303). NEB was reduced with exercise (573 ± 25 kcal·m(-2)) compared with the sedentary condition (686 ± 24 kcal·m(-2)) (p < 0.0001), but was higher after the glucose drink (654 ± 27 kcal·m(-2)) compared with water (605 ± 25 kcal·m(-2)) (p = 0.0267). No correlations were found between RER and FI or NEB in boys and men, except in the control condition of resting with water. In conclusion, the short-term modification of substrate oxidation by glucose and/or exercise in normal weight and active boys and men did not affect FI and NEB.

  19. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model

    PubMed Central

    Canelles, Sandra; Argente, Jesús; Barrios, Vicente

    2016-01-01

    ABSTRACT Insulin receptor substrate-2-deficient (IRS2−/−) mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I) and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2−/− mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2−/− mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2−/− mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2−/− mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus. PMID:27013528

  20. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model.

    PubMed

    Baquedano, Eva; Burgos-Ramos, Emma; Canelles, Sandra; González-Rodríguez, Agueda; Chowen, Julie A; Argente, Jesús; Barrios, Vicente; Valverde, Angela M; Frago, Laura M

    2016-05-01

    Insulin receptor substrate-2-deficient (IRS2(-/-)) mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I) and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2(-/-) mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2(-/-) mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2(-/-) mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2(-/-) mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus.

  1. Evidence for two growth modes during tungsten oxide vapor deposition on mica substrates

    NASA Astrophysics Data System (ADS)

    Mašek, Karel; Gillet, Marcel; Matolín, Vladimír

    2014-05-01

    The morphology, the structure and the orientation of tungsten oxide nanorods grown on mica are investigated as a function of the deposition time. The previous results are recalled to point out the changes with the nanorod thickness. The investigations were conducted by Atomic Force Microscopy (AFM) and Reflection High Energy Electron Diffraction (RHEED). The results evidence two successive growth modes. In the first stage thin and long nanorods were formed. They grew layer by layer with a hexagonal tungsten bronze structure and two different (1-10) and (2-10) planes parallel to the mica surface. In the second stage, as the deposition time increased thin nanorods with the (1-10) orientation grew in thickness when the others preserve their morphology and structure. In the discussion the difference between the two growth modes is emphasized. In the first stage the nanorod growth proceeds mainly by the surface diffusion of KxWO3 species. In the second stage the growth is due to the by direct impinging of WO3 molecules on some thin nanorods having already the (1-10) orientation, leading to growth of thick nanorods with a monoclinic structure.

  2. Room temperature reduction of multilayer graphene oxide film on a copper substrate: Penetration and participation of coper phase in redox reactions.

    SciTech Connect

    Voylov, Dmitry N; Agapov, Alexander L; Sokolov, Alexei P; Shulga, Y.M.; Arbuzov, Artem

    2014-01-01

    A self-reduction of graphene oxide (GO) at room temperature after prolonged storage on a copper substrate is evidenced by decrease of oxygen content and a dramatic, 6 orders in magnitude, increase in dc conductivity. Experiments revealed that the stored GO film contains copper hydroxide phase embedded in the reduced GO structure.

  3. Structural and optical properties of Ag-doped copper oxide thin films on polyethylene napthalate substrate prepared by low temperature microwave annealing

    SciTech Connect

    Das, Sayantan; Alford, T. L.

    2013-06-28

    Silver doped cupric oxide thin films are prepared on polyethylene naphthalate (flexible polymer) substrates. Thin films Ag-doped CuO are deposited on the substrate by co-sputtering followed by microwave assisted oxidation of the metal films. The low temperature tolerance of the polymer substrates led to the search for innovative low temperature processing techniques. Cupric oxide is a p-type semiconductor with an indirect band gap and is used as selective absorption layer solar cells. X-ray diffraction identifies the CuO phases. Rutherford backscattering spectrometry measurements confirm the stoichiometry of each copper oxide formed. The surface morphology is determined by atomic force microscopy. The microstructural properties such as crystallite size and the microstrain for (-111) and (111) planes are calculated and discussed. Incorporation of Ag led to the lowering of band gap in CuO. Consequently, it is determined that Ag addition has a strong effect on the structural, morphological, surface, and optical properties of CuO grown on flexible substrates by microwave annealing. Tauc's plot is used to determine the optical band gap of CuO and Ag doped CuO films. The values of the indirect and direct band gap for CuO are found to be 2.02 eV and 3.19 eV, respectively.

  4. Raman spectroscopy and electrical properties of InAs nanowires with local oxidation enabled by substrate micro-trenches and laser irradiation

    NASA Astrophysics Data System (ADS)

    Tanta, R.; Madsen, M. H.; Liao, Z.; Krogstrup, P.; Vosch, T.; Nygârd, J.; Jespersen, T. S.

    2015-12-01

    The thermal gradients along indium arsenide nanowires were engineered by a combination of fabricated micro-trenches in the supporting substrate and focused laser irradiation. This allowed local spatial control of thermally activated oxidation reactions of the nanowire on the scale of the diffraction limit. The locality of the oxidation was detected by micro-Raman mapping, and the results were found to be consistent with numerical simulations of the temperature profile. Applying the technique to nanowires in electrical devices the locally oxidized nanowires remained conducting with a lower conductance as expected for an effectively thinner conducting core.

  5. Raman spectroscopy and electrical properties of InAs nanowires with local oxidation enabled by substrate micro-trenches and laser irradiation

    SciTech Connect

    Tanta, R.; Krogstrup, P.; Nygård, J.; Jespersen, T. S.; Madsen, M. H.; Liao, Z.; Vosch, T.

    2015-12-14

    The thermal gradients along indium arsenide nanowires were engineered by a combination of fabricated micro-trenches in the supporting substrate and focused laser irradiation. This allowed local spatial control of thermally activated oxidation reactions of the nanowire on the scale of the diffraction limit. The locality of the oxidation was detected by micro-Raman mapping, and the results were found to be consistent with numerical simulations of the temperature profile. Applying the technique to nanowires in electrical devices the locally oxidized nanowires remained conducting with a lower conductance as expected for an effectively thinner conducting core.

  6. Lack of effects of fish oil supplementation for 12 weeks on resting metabolic rate and substrate oxidation in healthy young men: A randomized controlled trial

    PubMed Central

    Jannas-Vela, Sebastian; Roke, Kaitlin; Boville, Stephanie; Mutch, David M.; Spriet, Lawrence L.

    2017-01-01

    Fish oil (FO) has been shown to have beneficial effects in the body via incorporation into the membranes of many tissues. It has been proposed that omega-3 fatty acids in FO may increase whole body resting metabolic rate (RMR) and fatty acid (FA) oxidation in human subjects, but the results to date are equivocal. The purpose of this study was to investigate the effects of a 12 week FO supplementation period on RMR and substrate oxidation, in comparison to an olive oil (OO) control group, in young healthy males (n = 26; 22.8 ± 2.6 yr). Subjects were matched for age, RMR, physical activity, VO2max and body mass, and were randomly separated into a group supplemented with either OO (3 g/d) or FO containing 2 g/d eicosapentaenoic acid (EPA) and 1 g/d docosahexaenoic acid (DHA). Participants visited the lab for RMR and substrate oxidation measurements after an overnight fast (10–12 hr) at weeks 0, 6 and 12. Fasted blood samples were taken at baseline and after 12 weeks of supplementation. There were significant increases in the EPA (413%) and DHA (59%) levels in red blood cells after FO supplementation, with no change of these fatty acids in the OO group. RMR and substrate oxidation did not change after supplementation with OO or FO after 6 and 12 weeks. Since there was no effect of supplementation on metabolic measures, we pooled the two treatment groups to determine whether there was a seasonal effect on RMR and substrate oxidation. During the winter season, there was an increase in FA oxidation (36%) with a concomitant decrease (34%) in carbohydrate (CHO) oxidation (p < 0.01), with no change in RMR. These measures were unaffected during the summer season. In conclusion, FO supplementation had no effect on RMR and substrate oxidation in healthy young males. Resting FA oxidation was increased and CHO oxidation reduced over a 12 week period in the winter, with no change in RMR. Trial Registration: ClinicalTrials.gov NCT02092649 PMID:28212390

  7. Lack of effects of fish oil supplementation for 12 weeks on resting metabolic rate and substrate oxidation in healthy young men: A randomized controlled trial.

    PubMed

    Jannas-Vela, Sebastian; Roke, Kaitlin; Boville, Stephanie; Mutch, David M; Spriet, Lawrence L

    2017-01-01

    Fish oil (FO) has been shown to have beneficial effects in the body via incorporation into the membranes of many tissues. It has been proposed that omega-3 fatty acids in FO may increase whole body resting metabolic rate (RMR) and fatty acid (FA) oxidation in human subjects, but the results to date are equivocal. The purpose of this study was to investigate the effects of a 12 week FO supplementation period on RMR and substrate oxidation, in comparison to an olive oil (OO) control group, in young healthy males (n = 26; 22.8 ± 2.6 yr). Subjects were matched for age, RMR, physical activity, VO2max and body mass, and were randomly separated into a group supplemented with either OO (3 g/d) or FO containing 2 g/d eicosapentaenoic acid (EPA) and 1 g/d docosahexaenoic acid (DHA). Participants visited the lab for RMR and substrate oxidation measurements after an overnight fast (10-12 hr) at weeks 0, 6 and 12. Fasted blood samples were taken at baseline and after 12 weeks of supplementation. There were significant increases in the EPA (413%) and DHA (59%) levels in red blood cells after FO supplementation, with no change of these fatty acids in the OO group. RMR and substrate oxidation did not change after supplementation with OO or FO after 6 and 12 weeks. Since there was no effect of supplementation on metabolic measures, we pooled the two treatment groups to determine whether there was a seasonal effect on RMR and substrate oxidation. During the winter season, there was an increase in FA oxidation (36%) with a concomitant decrease (34%) in carbohydrate (CHO) oxidation (p < 0.01), with no change in RMR. These measures were unaffected during the summer season. In conclusion, FO supplementation had no effect on RMR and substrate oxidation in healthy young males. Resting FA oxidation was increased and CHO oxidation reduced over a 12 week period in the winter, with no change in RMR.

  8. Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Park, Jin-Seong; Kim, Tae-Woong; Stryakhilev, Denis; Lee, Jae-Sup; An, Sung-Guk; Pyo, Yong-Shin; Lee, Dong-Bum; Mo, Yeon Gon; Jin, Dong-Un; Chung, Ho Kyoon

    2009-07-01

    We have fabricated 6.5 in. flexible full-color top-emission active matrix organic light-emitting diode display on a polyimide (PI) substrate driven amorphous indium gallium zinc oxide thin-film transistors (a-IGZO TFTs). The a-IGZO TFTs exhibited field-effect mobility (μFE) of 15.1 cm2/V s, subthreshold slope of 0.25 V/dec, threshold voltage (VTH) of 0.9 V. The electrical characteristics of TFTs on PI substrate, including a bias-stress instability after 1 h long gate bias at 15 V, were indistinguishable from those on glass substrate and showed high degree of spatial uniformity. TFT samples on 10 μm thick PI substrate withstood bending down to R =3 mm under tension and compression without any performance degradation.

  9. Electrophoretic-deposited novel ternary silk fibroin/graphene oxide/hydroxyapatite nanocomposite coatings on titanium substrate for orthopedic applications

    NASA Astrophysics Data System (ADS)

    Li, Ming; Xiong, Pan; Mo, Maosong; Cheng, Yan; Zheng, Yufeng

    2016-09-01

    The combination of graphene oxide (GO) with robust mechanical property, silk fibroin (SF) with fascinating biological effects and hydroxyapatite (HA) with superior osteogenic activity is a competitive approach to make novel coatings for orthopedic applications. Herein, the feasibility of depositing ternary SF/GO/HA nanocomposite coatings on Ti substrate was firstly verified by exploiting electrophoretic nanotechnology, with SF being used as both a charging additive and a dispersion agent. The surface morphology, microstructure and composition, in vitro hemocompatibility and in vitro cytocompatibility of the resulting coatings were investigated by SEM, Raman, FTIR spectra and biocompatibility tests. Results demonstrated that GO, HA and SF could be co-deposited with a uniform, smooth thin-film morphology. The hemolysis rate analysis and the platelet adhesion test indicated good blood compatibility of the coatings. The human osteosarcoma MG63 cells displayed well adhesion and proliferation behaviors on the prepared coatings, with enhanced ALP activities. The present study suggested that SF/GO/HA nanocomposite coatings could be a promising candidate for the surface functionalization of biomaterials, especially as orthopedic implant coating.

  10. Epitaxial growth of highly-crystalline spinel ferrite thin films on perovskite substrates for all-oxide devices

    PubMed Central

    Moyer, Jarrett A.; Gao, Ran; Schiffer, Peter; Martin, Lane W.

    2015-01-01

    The potential growth modes for epitaxial growth of Fe3O4 on SrTiO3 (001) are investigated through control of the energetics of the pulsed-laser deposition growth process (via substrate temperature and laser fluence). We find that Fe3O4 grows epitaxially in three distinct growth modes: 2D-like, island, and 3D-to-2D, the last of which is characterized by films that begin growth in an island growth mode before progressing to a 2D growth mode. Films grown in the 2D-like and 3D-to-2D growth modes are atomically flat and partially strained, while films grown in the island growth mode are terminated in islands and fully relaxed. We find that the optimal structural, transport, and magnetic properties are obtained for films grown on the 2D-like/3D-to-2D growth regime boundary. The viability for including such thin films in perovskite-based all-oxide devices is demonstrated by growing a Fe3O4/La0.7Sr0.3MnO3 spin valve epitaxially on SrTiO3. PMID:26030835

  11. Structure-Based Alteration of Substrate Specificity and Catalytic Activity of Sulfite Oxidase from Sulfite Oxidation to Nitrate Reduction

    SciTech Connect

    Qiu, James A.; Wilson, Heather L.; Rajagopalan, K.V.

    2012-04-18

    Eukaryotic sulfite oxidase is a dimeric protein that contains the molybdenum cofactor and catalyzes the metabolically essential conversion of sulfite to sulfate as the terminal step in the metabolism of cysteine and methionine. Nitrate reductase is an evolutionarily related molybdoprotein in lower organisms that is essential for growth on nitrate. In this study, we describe human and chicken sulfite oxidase variants in which the active site has been modified to alter substrate specificity and activity from sulfite oxidation to nitrate reduction. On the basis of sequence alignments and the known crystal structure of chicken sulfite oxidase, two residues are conserved in nitrate reductases that align with residues in the active site of sulfite oxidase. On the basis of the crystal structure of yeast nitrate reductase, both positions were mutated in human sulfite oxidase and chicken sulfite oxidase. The resulting double-mutant variants demonstrated a marked decrease in sulfite oxidase activity but gained nitrate reductase activity. An additional methionine residue in the active site was proposed to be important in nitrate catalysis, and therefore, the triple variant was also produced. The nitrate reducing ability of the human sulfite oxidase triple mutant was nearly 3-fold greater than that of the double mutant. To obtain detailed structural data for the active site of these variants, we introduced the analogous mutations into chicken sulfite oxidase to perform crystallographic analysis. The crystal structures of the Mo domains of the double and triple mutants were determined to 2.4 and 2.1 {angstrom} resolution, respectively.

  12. The effect of laser patterning parameters on fluorine-doped tin oxide films deposited on glass substrates

    NASA Astrophysics Data System (ADS)

    Tseng, Shih-Feng; Hsiao, Wen-Tse; Huang, Kuo-Cheng; Chiang, Donyau

    2011-08-01

    The purpose of this study is to pattern the fluorine-doped tin oxide thin film deposited on the soda-lime glass substrates for touch screen applications by ultraviolet laser. The patterned film structures provide the electrical isolation and prevent the electrical contact from each region for various touch screens. The surface morphology, edge quality, three-dimensional topography, and profile of isolated lines and electrode structures after laser patterning were measured by a confocal laser scanning microscope. Moreover, a four-point probe instrument was used to measure the sheet resistance before and after laser patterning on film surfaces and also to discuss the electrical property at different laser spot overlaps. After laser patterning, a high overlapping area of laser spot was used to pattern the electrode layer on film surfaces that could obtain an excellent machined quality of edge profile. All sheet resistance values of film surfaces near the isolated line edge were larger than the original ones. Moreover, the sheet resistance values increased with increasing laser spot overlapping area.

  13. Reversal of cyanide inhibition of cytochrome c oxidase by the auxiliary substrate nitric oxide: an endogenous antidote to cyanide poisoning?

    PubMed

    Pearce, Linda L; Bominaar, Emile L; Hill, Bruce C; Peterson, Jim

    2003-12-26

    Nitric oxide (NO) is shown to overcome the cyanide inhibition of cytochrome c oxidase in the presence of excess ferrocytochrome c and oxygen. Addition of NO to the partially reduced cyanide-inhibited form of the bovine enzyme is shown by electron paramagnetic resonance spectroscopy to result in substitution of cyanide at ferriheme a3 by NO with reduction of the heme. The resulting nitrosylferroheme a3 is a 5-coordinate structure, the proximal bond to histidine having been broken. NO does not simply act as a reversibly bound competitive inhibitor but is an auxiliary substrate consumed in a catalytic cycle along with ferrocytochrome c and oxygen. The implications of this observation with regard to estimates of steady-state NO levels in vivo is discussed. Given the multiple sources of NO available to mitochondria, the present results appear to explain in part some of the curious biomedical observations reported by other laboratories; for example, the kidneys of cyanide poisoning victims surprisingly exhibit no significant irreversible damage, and lethal doses of potassium cyanide are able to inhibit cytochrome c oxidase activity by only approximately 50% in brain mitochondria.

  14. One-pot green synthesis of graphene oxide/gold nanocomposites as SERS substrates for malachite green detection.

    PubMed

    Fu, Wen Liang; Zhen, Shu Jun; Huang, Cheng Zhi

    2013-05-21

    In this contribution, graphene oxide/gold nanoparticle (GO/AuNPs) hybrids were in situ fabricated through a green one-pot procedure by using tyrosine as an environment friendly and biocompatible reducing agent, which can be used as highly efficient surface enhanced Raman scattering (SERS) substrates with the enhancement factor at 3.8 × 10(3). The as-prepared GO/AuNPs hybrids have good biocompatibility, providing the prospect of applications for biomedicine determinations. In addition, taking the advantages of the electromagnetic and chemical enhancement mechanism and the high affinity of GO and AuNPs towards positive dyes, a sensitive, selective and label-free malachite green (MG) detection method was demonstrated. The SERS measurement showed that the minimum detection concentration of MG in water was as low as 2.5 μmol L(-1) with a linear response range from 2.5 to 100 μmol L(-1) (R(2) = 0.996). Moreover, this method can be applied to detect MG in a fishery water sample with satisfactory results.

  15. Vascular and hormonal responses to arginine: provision of substrate for nitric oxide or non-specific effect?

    PubMed

    MacAllister, R J; Calver, A L; Collier, J; Edwards, C M; Herreros, B; Nussey, S S; Vallance, P

    1995-08-01

    1. The vascular and hormonal effects of L- and D-arginine were compared in healthy subjects and in patients with insulin-dependent diabetes mellitus or untreated essential hypertension. 2. Infusion of L- or D-arginine (40 mumol/l) in the forearm vascular bed, sufficient to increase the local concentration approximately 20-fold, had no effect on blood flow or the vasodilator response to acetylcholine (30 and 100 nmol/min) in patients with insulin-dependent diabetes (n = 7) or essential hypertension (n = 7), or in age- and sex-matched control subjects (n = 7 in both groups). 3. Systemic infusion of 10 g of L-arginine (n = 5) or D-arginine (n = 3) increased plasma concentration of arginine approximately 20-fold without altering supine or erect haemodynamics. Increases in plasma insulin, prolactin and glucagon were seen with both enantiomers. The stereopurity of arginine was confirmed in a cell-culture assay system. 4. We conclude that, in healthy subjects and patients with essential hypertension or insulin-dependent diabetes, synthesis of nitric oxide within the vasculature is not limited by substrate availability. At high concentrations of arginine, non-stereospecific effects, including alterations in hormone concentration, occur. It remains to be determined whether these non-stereospecific hormonal changes might contribute to certain haemodynamic effects of arginine.

  16. Use of human wastes oxidized to different degrees in cultivation of higher plants on the soil-like substrate intended for closed ecosystems

    NASA Astrophysics Data System (ADS)

    Tikhomirov, A. A.; Kudenko, Yu. A.; Ushakova, S. A.; Tirranen, L. S.; Gribovskaya, I. A.; Gros, J.-B.; Lasseur, Ch.

    2010-09-01

    To close mass exchange loops in bioregenerative life support systems more efficiently, researchers of the Institute of Biophysics SB RAS (Krasnoyarsk, Russia) have developed a procedure of wet combustion of human wastes and inedible parts of plants using H 2O 2 in alternating electromagnetic field. Human wastes pretreated in this way can be used as nutrient solutions to grow plants in the phototrophic unit of the LSS. The purpose of this study was to explore the possibilities of using human wastes oxidized to different degrees to grow plants cultivated on the soil-like substrate (SLS). The treated human wastes were analyzed to test their sterility. Then we investigated the effects produced by human wastes oxidized to different degrees on growth and development of wheat plants and on the composition of microflora in the SLS. The irrigation solution contained water, substances extracted from the substrate, and certain amounts of the mineralized human wastes. The experiments showed that the human wastes oxidized using reduced amounts of 30% H 2O 2: 1 ml/g of feces and 0.25 ml/ml of urine were still sterile. The experiments with wheat plants grown on the SLS and irrigated by the solution containing treated human wastes in the amount simulating 1/6 of the daily diet of a human showed that the degree of oxidation of human wastes did not significantly affect plant productivity. On the other hand, the composition of the microbiota of irrigation solutions was affected by the oxidation level of the added metabolites. In the solutions supplemented with partially oxidized metabolites yeast-like microscopic fungi were 20 times more abundant than in the solutions containing fully oxidized metabolites. Moreover, in the solutions containing incompletely oxidized human wastes the amounts of phytopathogenic bacteria and denitrifying microorganisms were larger. Thus, insufficiently oxidized sterile human wastes added to the irrigation solutions significantly affect the composition of

  17. Highly efficient aerobic oxidation of alcohols by using less-hindered nitroxyl-radical/copper catalysis: optimum catalyst combinations and their substrate scope.

    PubMed

    Sasano, Yusuke; Kogure, Naoki; Nishiyama, Tomohiro; Nagasawa, Shota; Iwabuchi, Yoshiharu

    2015-04-01

    The oxidation of alcohols into their corresponding carbonyl compounds is one of the most fundamental transformations in organic chemistry. In our recent report, 2-azaadamantane N-oxyl (AZADO)/copper catalysis promoted the highly chemoselective aerobic oxidation of unprotected amino alcohols into amino carbonyl compounds. Herein, we investigated the extension of the promising AZADO/copper-catalyzed aerobic oxidation of alcohols to other types of alcohol. During close optimization of the reaction conditions by using various alcohols, we found that the optimum combination of nitroxyl radical, copper salt, and solution concentration was dependent on the type of substrate. Various alcohols, including highly hindered and heteroatom-rich ones, were efficiently oxidized into their corresponding carbonyl compounds under mild conditions with lower amounts of the catalysts.

  18. Effects of carbohydrate ingestion during exercise on substrate oxidation in physically active women with different body compositions.

    PubMed

    Mitchell, Nicole M; Potteiger, Jeffery A; Bernardoni, Brittney; Claytor, Randal P

    2013-03-01

    We examined the effects of consuming a 6% carbohydrate (CHO) beverage during exercise on substrate oxidation in active, young Caucasian women with higher body fat (HF) (>25%) and lower body fat (LF) (<25%). The HF group (n = 9) had 32.4% ± 5.6% fat and the LF group (n = 8) had 20.0% ± 3.0% fat. Subjects completed 2 sessions of 45 min of treadmill exercise at 55% of maximal oxygen consumption. Immediately prior to and at 15-min intervals during exercise, subjects consumed 25% of a total volume of a CHO beverage (1 g CHO·kg(-1)) or a placebo (PLC). During exercise and for 2 h after exercise, expired gases were analyzed to determine oxidation rates for CHO (CHO-OX) and fat (FAT-OX). During exercise, significant differences (p < 0.05) in CHO-OX (mg·kg fat-free mass(-1)·min(-1)) were found between groups for the CHO trial (LF, 35.4 ± 4.7 vs. HF, 29.8 ± 3.6) and the PLC trial (LF, 33.7 ± 6.4 vs. HF, 26.3 ± 4.3). CHO-OX was significantly higher during the first hour of recovery in both the LF group (CHO, 9.3 ± 2.1 vs. PLC, 5.3 ± 2.4) and the HF group (CHO, 8.7 ± 2.0 vs. PLC, 4.2 ± 1.0), but during the second hour of recovery, only the HF group had a higher CHO-OX (CHO, 5.3 ± 1.8 vs. PLC, 3.9 ± 1.1). FAT-OX was significantly lower during the first hour of recovery in both the LF group (CHO, 0.6 ± 0.4 vs. PLC, 1.0 ± 0.4) and the HF group (CHO, 0.4 ± 0.4 vs. PLC, 1.4 ± 0.4), as well as during the second hour of recovery in both the LF group (CHO, 0.8 ± 0.4 vs. PLC, 1.3 ± 0.5) and the HF group (CHO, 0.9 ± 0.6 vs. PLC, 1.6 ± 0). CHO ingestion promotes CHO-OX and suppresses FAT-OX during and following exercise in physically active women with low and high levels of body fat.

  19. Utilization of Anodized Aluminum Oxide Substrate for the Growth of ZnO Microcrystals on Polygonized Spirals

    NASA Astrophysics Data System (ADS)

    Deulkar, Sundeep H.; Bhosale, C. H.; Huang, Jow-Lay

    2015-04-01

    Anodized Aluminum Oxide (AAO) has been utilized as a substrate for the screw dislocation assisted growth of polygonize spirals (PS) of ZnO with diameter of the order of 230 μm by Chemical Vapour Deposition (CVD) process. Stoichiometric ZnO microcrystals nucleated on the terraces and tops of these polygonized spirals. Stress inherent in the ZnO polygonized spiral morphology ( 3.57 GPa) was deciphered from the values of the magnitude of shift in observed 2θ values of Glancing Incidence angle XRD (GIXRD) peaks from the standard values (JCPDS 36-1451) for hexagonal Zincite. The growth mechanism of these PS was explained albeit to a limited extent on the basis of the Burton, Cabrera and Frank (BCF) theory and its later modification, wherein data obtained from exsitu SEM measurements concomitant with numerical analysis was utilized to decipher values of the critical radius and supersaturation ratios. Nucleation of ZnO microcrystals on the PS was explained on the basis of the supersaturation ratio and the plausible values of diffusion lengths, existent on the summits of these PS. Retardation of the step rotation of the PS, due to elastic stress around the dislocation source and the Gibbs-Thomson effect, was explained on the basis of numerical coefficient ω0, the dimensionless frequency of spiral rotation. Role of stress in inhibition of ZnO nucleation on PS of smaller heights and with larger supersaturation ratio, has been discussed albeit qualitatively. The optical characteristics of a single ZnO microcrystal has been analyzed by room temperature CL measurements in the wavelength range 350 nm to 650 nm, revealing a single high intensity peak at 382 nm corresponding to a excitonic bandgap of 3.25 eV.

  20. Thickness Effect of Nb-Doped TiO2 Transparent Conductive Oxide Grown on Glass Substrates Fabricated by RF Sputtering

    NASA Astrophysics Data System (ADS)

    Tseng, Zong-Liang; Chen, Lung-Chien; Tang, Jian-Fu; Shih, Meng-Fu; Chu, Sheng-Yuan

    2017-03-01

    Transparent conducting Nb-doped titanium oxide (NTO) films were deposited on a non-alkali glass substrate using an RF magnetron sputtering method with post-annealing. Structural, electrical and optical properties of the NTO films were found to be strongly dependent on film thickness. A resistivity of 4.2 × 10-3 Ω cm and an average visible transmittance of ˜70% were obtained at the film thickness of 360 nm, indicating that the polycrystalline NTO fabricated by the sputtering method has sufficient potential as a transparent conducting oxide (TCO) candidate for practical applications.

  1. Study of preferred orientation of zinc oxide films on the 64 deg. LiNbO{sub 3} substrates and their applications as liquid sensors

    SciTech Connect

    Jian, S.-J.; Chu, S.-Y.; Huang, T.-Y.; Water, Walter

    2004-11-01

    The preferred (002) orientation of zinc oxide (ZnO) films has been grown and demonstrated on 64 deg. LiNbO{sub 3} substrates using a rf magnetron sputtering system. The film orientations and crystallinity are strongly dependent on the rf power, total chamber pressure, ratio of argon to oxygen, and substrate temperature. We investigated the crystalline structure of the films by x-ray diffraction and scanning electron microscopy. Highly oriented (002) films were obtained under a total chamber pressure of 1.33 Pa, containing 40% oxygen and 60% argon, and a substrate temperature around 120 deg. C. Love-wave devices based on this structure (ZnO/IDTs/64 deg. LiNbO{sub 3}) are presented.

  2. The effect of substrate temperature on the microstructural, electrical and optical properties of Sn-doped indium oxide thin films

    NASA Astrophysics Data System (ADS)

    Raoufi, Davood; Taherniya, Atefeh

    2015-06-01

    In this work, Sn doping In2O3 (ITO) thin films with a thickness of 200 nm were deposited on glass substrates by electron beam evaporation (EBE) method at different substrate temperatures. The crystal structure of these films was studied by X-ray diffraction technique. The sheet resistance was measured by a four-point probe. Van der Pauw method was used to measure carrier density and mobility of ITO films. The optical transmittance spectra were recorded in the wavelength region of 300-800 nm. Scanning electron microscope (SEM) has been used for the surface morphology analysis. The prepared ITO films exhibited body-centered cubic (BCC) structure with preferred orientation of growth along the (2 2 2) crystalline plane. The grain size of the films increases by rising the substrate temperature. Transparency of the films, over the visible light region, is increased with increasing the substrate temperature. It is found that the electrical properties of ITO films are significantly affected by substrate temperature. The electrical resistivity decreases with increasing substrate temperature, whereas the carrier density and mobility are enhanced with an increase in substrate temperature. The evaluated values of energy band gap Eg for ITO films were increase from 3.84 eV to 3.91 eV with increasing the substrate temperatures from 200 °C to 500 °C. The SEM micrographs of the films revealed a homogeneous growth without perceptible cracks with particles which are well covered on the substrate.

  3. Charge transfer from an adsorbed ruthenium-based photosensitizer through an ultra-thin aluminium oxide layer and into a metallic substrate

    SciTech Connect

    Gibson, Andrew J.; Temperton, Robert H.; Handrup, Karsten; Weston, Matthew; Mayor, Louise C.; O’Shea, James N.

    2014-06-21

    The interaction of the dye molecule N3 (cis-bis(isothiocyanato)bis(2,2-bipyridyl-4,4′-dicarbo-xylato) -ruthenium(II)) with the ultra-thin oxide layer on a AlNi(110) substrate, has been studied using synchrotron radiation based photoelectron spectroscopy, resonant photoemission spectroscopy, and near edge X-ray absorption fine structure spectroscopy. Calibrated X-ray absorption and valence band spectra of the monolayer and multilayer coverages reveal that charge transfer is possible from the molecule to the AlNi(110) substrate via tunnelling through the ultra-thin oxide layer and into the conduction band edge of the substrate. This charge transfer mechanism is possible from the LUMO+2 and 3 in the excited state but not from the LUMO, therefore enabling core-hole clock analysis, which gives an upper limit of 6.0 ± 2.5 fs for the transfer time. This indicates that ultra-thin oxide layers are a viable material for use in dye-sensitized solar cells, which may lead to reduced recombination effects and improved efficiencies of future devices.

  4. Effects of substrate voltage on noise characteristics and hole lifetime in SOI metal-oxide-semiconductor field-effect transistor photon detector.

    PubMed

    Putranto, Dedy Septono Catur; Priambodo, Purnomo Sidi; Hartanto, Djoko; Du, Wei; Satoh, Hiroaki; Ono, Atsushi; Inokawa, Hiroshi

    2014-09-08

    Low-frequency noise and hole lifetime in silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect transistors (MOSFETs) are analyzed, considering their use in photon detection based on single-hole counting. The noise becomes minimum at around the transition point between front- and back-channel operations when the substrate voltage is varied, and increases largely on both negative and positive sides of the substrate voltage showing peculiar Lorentzian (generation-recombination) noise spectra. Hole lifetime is evaluated by the analysis of drain current histogram at different substrate voltages. It is found that the peaks in the histogram corresponding to the larger number of stored holes become higher as the substrate bias becomes larger. This can be attributed to the prolonged lifetime caused by the higher electric field inside the body of SOI MOSFET. It can be concluded that, once the inversion channel is induced for detection of the photo-generated holes, the small absolute substrate bias is favorable for short lifetime and low noise, leading to high-speed operation.

  5. Fabrication and characterization of nano-HA-45S5 bioglass composite coatings on calcium-phosphate containing micro-arc oxidized CP-Ti substrates

    NASA Astrophysics Data System (ADS)

    Farnoush, Hamidreza; Muhaffel, Faiz; Cimenoglu, Huseyin

    2015-01-01

    In the present study, micro-arc oxidation (MAO) was carried out on commercially pure titanium (CP-Ti) to fabricate porous titanium oxide coatings containing calcium phosphates (CaP) at different applied voltages of 300, 330 and 360 V for 5 min. Subsequently, nano-hydroxyapatite (HA) and HA-45S5 bioglass (BG) composite were effectively coated on micro-arc oxidized substrate by electrophoretic deposition (EPD) at a constant voltage of 30 V for 120 s. The phase, structural agents, microstructure and composition of MAO interlayer and subsequent EPD coatings were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy, respectively. Thermal stability of the as-deposited coatings was analyzed by simultaneous differential scanning calorimetry and thermal gravimetery. The pull-off adhesion tests showed the highest bonding strength was obtained for HA-BG coating on micro-oxidized sample at 360 V. The results of potentiodynamic polarization and impedance spectroscopic measurements in simulated body fluid solution depicted that the combination of MAO treatment at 360 V and EPD of HA-BG composite could effectively increase the corrosion resistance of CP-Ti substrates.

  6. High efficiency bifacial Cu2ZnSnSe4 thin-film solar cells on transparent conducting oxide glass substrates

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Sik; Kang, Jin-Kyu; Hwang, Dae-Kue

    2016-09-01

    In this work, transparent conducting oxides (TCOs) have been employed as a back contact instead of Mo on Cu2ZnSnSe4 (CZTSe) thin-film solar cells in order to examine the feasibility of bifacial Cu2ZnSn(S,Se)4 (CZTSSe) solar cells based on a vacuum process. It is found that the interfacial reaction between flourine doped tin oxide (FTO) or indium tin oxide (ITO) and the CZTSe precursor is at odds with the conventional CZTSe/Mo reaction. While there is no interfacial reaction on CZTSe/FTO, indium in CZTSe/ITO was significantly diffused into the CZTSe layers; consequently, a SnO2 layer was formed on the ITO substrate. Under bifacial illumination, we achieved a power efficiency of 6.05% and 4.31% for CZTSe/FTO and CZTSe/ITO, respectively.

  7. Investigation into the role of sodium chloride deposited on oxide and metal substrates in the initiation of hot corrosion

    NASA Technical Reports Server (NTRS)

    Birks, N.

    1983-01-01

    Sodium chloride is deposited on the surface of alumina substrates and exposed to air containing 1% SO2 at temperatures between 500 C and 700 C. In all cases the sodium chloride was converted to sodium sulfate. The volatilization of sodium chloride from the original salt particles was responsible for the development of a uniform coating of sodium sulfate on the alumina substrate. At temperatures above 625 C, a liquid NaCl-Na2SO4 autectic was formed on the substrate. The mechanisms for these reactions are given. One of the main roles of NaCl in low temperature hot corrosion lies in enabling a corrosive liquid to form.

  8. Factors influencing palmitoyl-CoA oxidation by rat liver peroxisomal fractions. Substrate concentration, organelle integrity and ATP.

    PubMed Central

    Thomas, J; Debeer, L J; De Schepper, P J; Mannaerts, G P

    1980-01-01

    1. The first dehydrogenation step of peroxisomal beta-oxidation involves the reduction of O2 to H2O2. Production rates of H2O2 and acetyl units by purified rat liver peroxisomes oxidizing palmitoyl-CoA were equal, indicating that H2O2 production is a reliable index for the release of acetyl units during peroxisomal fatty-acid oxidation. 2. Measurements of H2O2 and acid-soluble oxidation products during [1-14C]palmitoyl-CoA oxidation by purified peroxisomes revealed that the number of acetyl units released per molecule of palmitoyl-CoA oxidized rapidly decreased with increasing unbound palmitoyl-CoA concentrations. Structural damage to the peroxisomes caused by detergents or other treatments also decreased the number of acetyl units released. Under conditions where oxidation proceeded linearly with time the theoretical maximum of 5 acetyl units released per molecule of palmitoyl-CoA oxidized [Lazarow (1978) J. Biol. Chem. 253, 1522--1528] was never reached. 3. Expressed in terms of acetyl units produced and measured at low unbound-palmitoyl-CoA concentrations, mitochondrial oxidation was 10--20-fold higher than peroxisomal oxidation. 4. ATP stimulated peroxisomal palmitoyl-CoA oxidation approx. 2-fold. The ATP effect required the presence of Mg2+ and was lost when peroxisomal membranes were disrupted by Triton X-100 or high concentrations of unbound palmitoyl-CoA. 5. Disruption of peroxisomes by detergents, freeze--thawing, osmotic or mechanical treatment did not stimulate palmitoyl-CoA oxidation in the presence of ATP, indicating that peroxisomal fatty-acid-CoA oxidation was not latent. In the absence of ATP, Triton X-100 stimulated peroxisomal palmitoyl-CoA oxidation approx. 2-fold. PMID:7470063

  9. Identification of Surface-Exposed Protein Radicals and A Substrate Oxidation Site in A-Class Dye-Decolorizing Peroxidase from Thermomonospora curvata

    SciTech Connect

    Shrestha, Ruben; Chen, Xuejie; Ramyar, Kasra X.; Hayati, Zahra; Carlson, Eric A.; Bossmann, Stefan H.; Song, Likai; Geisbrecht, Brian V.; Li, Ping

    2016-12-12

    Dye-decolorizing peroxidases (DyPs) are a family of heme peroxidases in which a catalytic distal aspartate is involved in H2O2 activation to catalyze oxidations under acidic conditions. They have received much attention due to their potential applications in lignin compound degradation and biofuel production from biomass. However, the mode of oxidation in bacterial DyPs remains unknown. We have recently reported that the bacterial TcDyP from Thermomonospora curvata is among the most active DyPs and shows activity toward phenolic lignin model compounds. On the basis of the X-ray crystal structure solved at 1.75 Å, sigmoidal steady-state kinetics with Reactive Blue 19 (RB19), and formation of compound II like product in the absence of reducing substrates observed with stopped-flow spectroscopy and electron paramagnetic resonance (EPR), we hypothesized that the TcDyP catalyzes oxidation of large-size substrates via multiple surface-exposed protein radicals. Among 7 tryptophans and 3 tyrosines in TcDyP consisting of 376 residues for the matured protein, W263, W376, and Y332 were identified as surface-exposed protein radicals. Only the W263 was also characterized as one of the surface-exposed oxidation sites. SDS-PAGE and size-exclusion chromatography demonstrated that W376 represents an off-pathway destination for electron transfer, resulting in the cross-linking of proteins in the absence of substrates. Mutation of W376 improved compound I stability and overall catalytic efficiency toward RB19. While Y332 is highly conserved across all four classes of DyPs, its catalytic function in A-class TcDyP is minimal, possibly due to its extremely small solvent-accessible areas. Identification of surface-exposed protein radicals and substrate oxidation sites is important for understanding the DyP mechanism and modulating its catalytic functions for improved activity on phenolic lignin.

  10. Validity of estimates of myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography despite altered patterns of substrate utilization

    SciTech Connect

    Brown, M.A.; Myears, D.W.; Bergmann, S.R.

    1989-02-01

    We recently demonstrated that the myocardial turnover rate constant (k) measured noninvasively with positron emission tomography (PET) after intravenous administration of (/sup 11/C)acetate provides a reliable index of myocardial oxidative metabolism (MVO/sub 2/) theoretically independent of the pattern of myocardial substrate use. However, because estimates of metabolism with other metabolic tracers are sensitive to substrate use, we measured k in 12 dogs during baseline conditions and again after infusion of either glucose (n = 8) or Intralipid (n = 4), interventions that raised arterial glucose or fatty acids by more than fivefold with concomitant changes in myocardial substrate use. Following glucose administration k increased, but no difference was detected after compensation for changes in hemodynamics and myocardial work induced by the infusion (0.18 +/- 0.03 min-1) (t1/2 = 3.9 min) at baseline compared with 0.22 +/- 0.06 min-1 (t1/2 = 3.2 min, p = N.S.). k was not affected by Intralipid infusion (k = 0.15 +/- 0.06 min-1 at baseline and 0.14 +/- 0.04 min-1 during infusion), and correlated closely with MVO/sub 2/ measured directly (n = 19 comparisons, r = 0.89). The results indicate that estimates of MVO/sub 2/ using (/sup 11/C)acetate and PET are valid despite changes in the pattern of myocardial substrate utilization.

  11. Ag-nanoparticle-decorated Ge nanocap arrays protruding from porous anodic aluminum oxide as sensitive and reproducible surface-enhanced Raman scattering substrates.

    PubMed

    Liu, Jing; Meng, Guowen; Li, Xiangdong; Huang, Zhulin

    2014-11-25

    We report on the fabrication of Ag nanoparticle (Ag NP) decorated germanium (Ge) nanocap (Ag-NPs@Ge-nanocap) arrays protruding from highly ordered porous anodic aluminum oxide (AAO) template as highly sensitive and uniform surface-enhanced Raman scattering (SERS) substrates. The hybrid SERS substrates are fabricated via a combinatorial process of AAO template-assisted growth of Ge nanotubes with each tube having a hemispherical nanocap on the AAO pore bottom, wet chemical etching of the remaining aluminum and the AAO barrier layer to expose the Ge nanocaps, and sputtering Ag NPs on the Ge nanocap arrays. Because sufficient SERS "hot spots" are created from the electromagnetic coupling among the Ag NPs on the Ge nanocap and the highly ordered Ge nanocap arrays also have semiconducting chemical supporting enhancement, the hybrid SERS substrates have high SERS sensitivity and good signal reproducibility. Using the hybrid SERS substrates, Rhodamine 6G with a concentration down to 10(-11) M is identified, and one congener of highly toxic polychlorinated biphenyls with a concentration as low as 10(-6) M is also recognized, showing great potential for SERS-based rapid detection of organic pollutants in the environment.

  12. Integrated biological and advanced oxidation based treatment of hexamine bearing wastewater: Effect of cow-dung as a co-substrate.

    PubMed

    Gupta, Mandeep Kumar; Mittal, Atul K

    2016-05-05

    This work examines the treatment of hexamethylenetetramine (HMT) bearing effluent from N, N-dinitroso pentamethylene tetra-mine producing industrial plants in India. Chemical treatment using Fenton's reagent and aerobic treatment using batch reactors with co-substrate were investigated. Aerobic batch reactors integrated with advanced oxidation process of Fenton's reagent provides effective treatment of HMT effluents. Influence of Fenton's reagent dose reaction/contact and effect of varying co-substrate with effluent initial concentration was observed. Higher dose 100 mL of Fenton's reagent with higher reaction time 20 h resulted better degradation (34.88%) of wastewater. HMT hydrolyzes in acidic environment to ammonia and formaldehyde. Formaldehyde under normal conditions is toxic for biological treatment processes. When hydrolysis and acidification in the reactors are accompanied by low pH, aerobic batch reactors with use of co-substrates glucose, sucrose, and cow-dung extract separately in different proportion to wastewater ranging from 0.67 to 4.00, degraded wastewater effectively. Higher proportion of co-substrate to wastewater resulted better degradation. The relationships between nitrate, pH, turbidity and COD are discussed.

  13. Enzymological and structural studies of the mechanism of promiscuous substrate recognition by the oxidative DNA repair enzyme AlkB

    PubMed Central

    Yu, Bomina; Hunt, John F.

    2009-01-01

    Promiscuous substrate recognition, the ability to catalyze transformations of chemically diverse compounds, is an evolutionarily advantageous, but poorly understood phenomenon. The promiscuity of DNA repair enzymes is particularly important, because it enables diverse kinds of damage to different nucleotide bases to be repaired in a metabolically parsimonious manner. We present enzymological and crystallographic studies of the mechanisms underlying promiscuous substrate recognition by Escherichia coli AlkB, a DNA repair enzyme that removes methyl adducts and some larger alkylation lesions from endocyclic positions on purine and pyrimidine bases. In vitro Michaelis–Menten analyses on a series of alkylated bases show high activity in repairing N1-methyladenine (m1A) and N3-methylcytosine (m3C), comparatively low activity in repairing 1,N6-ethenoadenine, and no detectable activity in repairing N1-methylguanine or N3-methylthymine. AlkB has a substantially higher kcat and Km for m3C compared with m1A. Therefore, the enzyme maintains similar net activity on the chemically distinct substrates by increasing the turnover rate of the substrate with nominally lower affinity. Cocrystal structures provide insight into the structural basis of this “kcat/Km compensation,” which makes a significant contribution to promiscuous substrate recognition by AlkB. In analyzing a large ensemble of crystal structures solved in the course of these studies, we observed 2 discrete global conformations of AlkB differing in the accessibility of a tunnel hypothesized to control diffusion of the O2 substrate into the active site. Steric interactions between a series of protein loops control this conformational transition and present a plausible mechanism for preventing O2 binding before nucleotide substrate binding. PMID:19706517

  14. Enzymological and Structural Studies of the Mechanism of Promiscuous Substrate Recognition by the Oxidative DNA Repair Enzyme AlkB

    SciTech Connect

    Yu, B.; Hunt, J

    2009-01-01

    Promiscuous substrate recognition, the ability to catalyze transformations of chemically diverse compounds, is an evolutionarily advantageous, but poorly understood phenomenon. The promiscuity of DNA repair enzymes is particularly important, because it enables diverse kinds of damage to different nucleotide bases to be repaired in a metabolically parsimonious manner. We present enzymological and crystallographic studies of the mechanisms underlying promiscuous substrate recognition by Escherichia coli AlkB, a DNA repair enzyme that removes methyl adducts and some larger alkylation lesions from endocyclic positions on purine and pyrimidine bases. In vitro Michaelis-Menten analyses on a series of alkylated bases show high activity in repairing N1-methyladenine (m1A) and N3-methylcytosine (m3C), comparatively low activity in repairing 1,N6-ethenoadenine, and no detectable activity in repairing N1-methylguanine or N3-methylthymine. AlkB has a substantially higher kcat and Km for m3C compared with m1A. Therefore, the enzyme maintains similar net activity on the chemically distinct substrates by increasing the turnover rate of the substrate with nominally lower affinity. Cocrystal structures provide insight into the structural basis of this 'kcat/Km compensation,' which makes a significant contribution to promiscuous substrate recognition by AlkB. In analyzing a large ensemble of crystal structures solved in the course of these studies, we observed 2 discrete global conformations of AlkB differing in the accessibility of a tunnel hypothesized to control diffusion of the O2 substrate into the active site. Steric interactions between a series of protein loops control this conformational transition and present a plausible mechanism for preventing O2 binding before nucleotide substrate binding.

  15. Alumina nanoparticle/polymer nanocomposite dielectric for flexible amorphous indium-gallium-zinc oxide thin film transistors on plastic substrate with superior stability

    SciTech Connect

    Lai, Hsin-Cheng; Pei, Zingway; Jian, Jyun-Ruri; Tzeng, Bo-Jie

    2014-07-21

    In this study, the Al{sub 2}O{sub 3} nanoparticles were incorporated into polymer as a nono-composite dielectric for used in a flexible amorphous Indium-Gallium-Zinc Oxide (a-IGZO) thin-film transistor (TFT) on a polyethylene naphthalate substrate by solution process. The process temperature was well below 100 °C. The a-IGZO TFT exhibit a mobility of 5.13 cm{sup 2}/V s on the flexible substrate. After bending at a radius of 4 mm (strain = 1.56%) for more than 100 times, the performance of this a-IGZO TFT was nearly unchanged. In addition, the electrical characteristics are less altered after positive gate bias stress at 10 V for 1500 s. Thus, this technology is suitable for use in flexible displays.

  16. Alumina nanoparticle/polymer nanocomposite dielectric for flexible amorphous indium-gallium-zinc oxide thin film transistors on plastic substrate with superior stability

    NASA Astrophysics Data System (ADS)

    Lai, Hsin-Cheng; Pei, Zingway; Jian, Jyun-Ruri; Tzeng, Bo-Jie

    2014-07-01

    In this study, the Al2O3 nanoparticles were incorporated into polymer as a nono-composite dielectric for used in a flexible amorphous Indium-Gallium-Zinc Oxide (a-IGZO) thin-film transistor (TFT) on a polyethylene naphthalate substrate by solution process. The process temperature was well below 100 °C. The a-IGZO TFT exhibit a mobility of 5.13 cm2/V s on the flexible substrate. After bending at a radius of 4 mm (strain = 1.56%) for more than 100 times, the performance of this a-IGZO TFT was nearly unchanged. In addition, the electrical characteristics are less altered after positive gate bias stress at 10 V for 1500 s. Thus, this technology is suitable for use in flexible displays.

  17. Single-step immobilization of cell adhesive peptides on a variety of biomaterial substrates via tyrosine oxidation with copper catalyst and hydrogen peroxide.

    PubMed

    Kakinoki, Sachiro; Yamaoka, Tetsuji

    2015-04-15

    Immobilization of biologically active peptides which were isolated from extracellular matrix proteins is a powerful strategy for the design and functionalization of biomaterial substrates. However, the method of peptide immobilization was restricted, that is, peptide is often immobilized through the reactive groups inherent in substrates with multistep reactions. Here, we report a single-step immobilization of fibronectin-derived cell adhesive peptide (Arg-Glu-Asp-Val; REDV) onto polymer materials by use of tyrosine oxidation with copper catalyst and hydrogen peroxide. REDV peptide was successfully immobilized on tissue culture polystyrene, poly(ethylene terephthalate), poly(vinyl chloride), expanded-poly(tetrafluoroethylene), and poly(l-lactic acid), resulting in enhanced adhesion of human umbilical vein endothelial cells. This method is a single-step reaction under very mild conditions and is available for the biological functionalization of various medical devices.

  18. Evidence of native oxides on the capping and substrate of Permalloy gratings by magneto-optical spectroscopy in the zeroth- and first-diffraction orders

    NASA Astrophysics Data System (ADS)

    Antos, Roman; Mistrik, Jan; Yamaguchi, Tomuo; Visnovsky, Stefan; Demokritov, Sergej O.; Hillebrands, Burkard

    2005-06-01

    Magneto-optical Kerr effect (MOKE) spectroscopy in the zeroth- and first-diffraction orders at polar magnetization is applied to Permalloy wire gratings deposited on Si substrates and protected by Cr capping. The experimental MOKE data are compared with data simulated using the local modes method. The extensive simulations of the MOKE spectroscopic parameters exhibit significant sensitivity to t(Cr2O3) and t(SiO2), the thicknesses of native oxide layers developed on the capping and the substrate, respectively. The approach may be useful for monitoring the basic micromagnetic properties of small elements with nanometer-scale resolution, as well as for monitoring the deposition processes and aging of magnetic nanostructures in magnetic recording and magnetic random access memory technologies.

  19. Evidence of native oxides on the capping and substrate of Permalloy gratings by magneto-optical spectroscopy in the zeroth- and first-diffraction orders

    SciTech Connect

    Antos, Roman; Mistrik, Jan; Yamaguchi, Tomuo; Visnovsky, Stefan; Demokritov, Sergej O.; Hillebrands, Burkard

    2005-06-06

    Magneto-optical Kerr effect (MOKE) spectroscopy in the zeroth- and first-diffraction orders at polar magnetization is applied to Permalloy wire gratings deposited on Si substrates and protected by Cr capping. The experimental MOKE data are compared with data simulated using the local modes method. The extensive simulations of the MOKE spectroscopic parameters exhibit significant sensitivity to t(Cr{sub 2}O{sub 3}) and t(SiO{sub 2}), the thicknesses of native oxide layers developed on the capping and the substrate, respectively. The approach may be useful for monitoring the basic micromagnetic properties of small elements with nanometer-scale resolution, as well as for monitoring the deposition processes and aging of magnetic nanostructures in magnetic recording and magnetic random access memory technologies.

  20. Fabrication of silver decorated anodic aluminum oxide substrate and its optical properties on surface-enhanced Raman scattering and thin film interference.

    PubMed

    Ji, Nan; Ruan, Weidong; Wang, Chunxu; Lu, Zhicheng; Zhao, Bing

    2009-10-06

    In this paper, a simple method to fabricate a three-dimensional (3D) nanostructure decorated with Ag nanoparticles for surface-enhanced Raman scattering (SERS) is demonstrated. Highly ordered porous anodic aluminum oxide (AAO) templates were employed to construct these compound nanostructures. First, the AAO templates were fabricated using a two-step anodization approach. Second, an alternating current (AC) electrochemical deposition was used to fill AAO templates with Ag nanoparticles. Taking 4-mercaptopyridine (4-MPy) as the probing molecule, high-quality SERS spectra were observed. The UV-vis mirror reflection spectra were measured to investigate the surface plasma resonance (SPR) absorbance. An interesting phenomenon of SPR-affected thin film interference was observed. SERS mapping was performed to characterize the homogeneity of as-prepared substrates. Good homogeneity and stability make these substrates good candidates for SERS spectroscopy.

  1. In situ electro-mechanical experiments and mechanics modeling of tensile cracking in indium tin oxide thin films on polyimide substrates

    NASA Astrophysics Data System (ADS)

    Peng, Cheng; Jia, Zheng; Bianculli, Dan; Li, Teng; Lou, Jun

    2011-05-01

    Indium tin oxide (ITO) thin films supported by polymer substrates have been widely used as transparent electrodes/interconnects in flexible electronics. Understanding the electro-mechanical behaviors of such material system is crucial for reliable operation of flexible devices under large deformation. In this paper, we performed in situ mechanical and electrical tests of ITO thin films with two different thicknesses (200 and 80 nm) deposited on polyimide substrates inside a scanning electron microscope. The crack initiation and propagation, crack density evolution and the corresponding electrical resistance variation were systematically investigated. It was found that cracks initiated at a higher tensile strain level and saturated with a higher density in thinner ITO films. Integrated with a coherently formulated mechanics model, the cohesive toughness and fracture strength of ITO thin films and the ITO/polyimide interfacial toughness were quantitatively determined. The experimentally observed thickness dependence of the saturated crack density in ITO thin films was also quantitatively verified by the model.

  2. Integration of crystalline orientated γ-Al2O3 films and complementary metal-oxide-semiconductor circuits on Si(1 0 0) substrate

    NASA Astrophysics Data System (ADS)

    Oishi, Koji; Akai, Daisuke; Ishida, Makoto

    2015-01-01

    In this paper, integration of crystalline orientated γ-Al2O3 films and complementary metal-oxide-semiconductor (CMOS) circuits on Si(1 0 0) substrate was reported. In this integration processes, crystalline γ-Al2O3 films need to be preserved their crystallinity during high temperature annealing processes of CMOS fabrication in order to prevent surface condition changes. The γ-Al2O3 films grown on Si substrates are annealed in the CMOS fabrication process conditions, drive-in annealing at 1150 °C in O2 atmosphere and wet annealing 1000 °C in H2O vapor atmosphere. Reflection high energy electron diffraction (RHEED) and x-ray diffraction (XRD) were used to characterize the crystallinity of γ-Al2O3 films after the annealing processes. Surface conditions of the films are analyzed and observed with X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM). As a result, RHEED patterns of the γ-Al2O3 films indicated that wet oxidation annealing was a critical process severally inferior surface condition of crystalline γ-Al2O3 films. XRD, XPS, and SEM investigation unveiled further details of the crystallinity changes on γ-Al2O3 films for each process. These results indicated passivation films were required to integrate γ-Al2O3 films with CMOS fabrication process. Therefore we proposed and introduced Si3N4/TEOS passivation films on γ-Al2O3 films in CMOS fabrication processes. At last, MOSFETs on γ-Al2O3 integrated Si(1 0 0) substrate were fabricated and characterized. The designed characteristics of MOSFETs were obtained on γ-Al2O3 integrated Si substrate.

  3. Modeling Geometric Arrangements of TiO2-Based Catalyst Substrates and Isotropic Light Sources to Enhance the Efficiency of a Photocatalystic Oxidation (PCO) Reactor

    NASA Technical Reports Server (NTRS)

    Richards, Jeffrey T.; Levine, Lanfang H.; Husk, Geoffrey K.

    2011-01-01

    The closed confined environments of the ISS, as well as in future spacecraft for exploration beyond LEO, provide many challenges to crew health. One such challenge is the availability of a robust, energy efficient, and re-generable air revitalization system that controls trace volatile organic contaminants (VOCs) to levels below a specified spacecraft maximum allowable concentration (SMAC). Photocatalytic oxidation (PCO), which is capable of mineralizing VOCs at room temperature and of accommodating a high volumetric flow, is being evaluated as an alternative trace contaminant control technology. In an architecture of a combined air and water management system, placing a PCO unit before a condensing heat exchanger for humidity control will greatly reduce the organic load into the humidity condensate loop ofthe water processing assembly (WPA) thereby enhancing the life cycle economics ofthe WPA. This targeted application dictates a single pass efficiency of greater than 90% for polar VOCs. Although this target was met in laboratory bench-scaled reactors, no commercial or SBIR-developed prototype PCO units examined to date have achieved this goal. Furthermore, the formation of partial oxidation products (e.g., acetaldehyde) was not eliminated. It is known that single pass efficiency and partial oxidation are strongly dependent upon the contact time and catalyst illumination, hence the requirement for an efficient reactor design. The objective of this study is to maximize the apparent contact time and illuminated catalyst surface area at a given reactor volume and volumetric flow. In this study, a Ti02-based photocatalyst is assumed to be immobilized on porous substrate panels and illumination derived from linear isotropic light sources. Mathematical modeling using computational fluid dynamics (CFD) analyses were performed to investigate the effect of: 1) the geometry and configuration of catalyst-coated substrate panels, 2) porosity of the supporting substrate, and 3

  4. Investigation on the Evolution of Structural, Electrical and Transmitting Properties of Aluminium Doped Zinc Oxide Thin Film as a function of substrate temperature

    NASA Astrophysics Data System (ADS)

    Devasia, Sebin; Athma, P. V.; Jose, Anumol; Anila, E. I.

    2016-09-01

    Improved electrical conductivity of aluminium doped zinc oxide (AZO) thin films deposited by chemical spray pyrolysis method at various substrate temperatures is reported. Detailed investigation on the structural, electrical and optical properties were carried out using XRD, four point probe and UV-Vis-NIR measurements. The films deposited at 450 °C shows better conductivity and transparency as compared to the films grown at lower temperatures. Electrical conductivity, determined using four point probe measurements, is 6.271 × 102 μcm with an average transmittance of 70 % in the visible and IR region.

  5. Preparation of Ultrahigh-Density Magnetic Nanowire Arrays beyond 1 Terabit/Inch2 on Si Substrate Using Anodic Aluminum Oxide Template

    NASA Astrophysics Data System (ADS)

    Shimizu, Tomohiro; Aoki, Kazumo; Tanaka, Yoshinori; Terui, Toshifumi; Shingubara, Shoso

    2011-06-01

    Ultrahigh-density Co nanowire arrays were fabricated by the combined use of the anodic aluminum oxide (AAO) template formed on a Si substrate and pulse DC electrodeposition. The AAO templates were prepared with the anodic voltages from 3 to 40 V, whose diameters were from 15 to 40 nm. Using the AAO template with an anodic voltage less than 3 V, the wire density exceeded 2.88 Tbit/in.2. The magnetic property of the nanowire arrays indicated a strong perpendicular magnetic anisotropy, and we observed the tendency of increase in coercivity with decreasing nanowire diameter.

  6. Oxidation Temperature Effects on ZnO Thin Films Prepared from Zn Thin Films on Quartz Substrates.

    PubMed

    Park, Seonhee; Kim, Younggyu; Leem, Jae-Young

    2015-11-01

    We investigated the structural and optical properties of the ZnO thin films formed by oxidation of Zn thin films. Zn thin films were deposited by thermal evaporation and were then annealed from 300 to 800 degrees C to prepare ZnO thin films. We found that ZnO thin films were formed by thermal oxidation of Zn thin films at oxidation temperatures over 400 degrees C. The grain size of ZnO thin films increased with the oxidation temperature and the highest ZnO (002) intensity was obtained at 600 degrees C. In the PL spectra, the intensity of the near-band-edge peak increased with the oxidation temperatures until 400 degrees C. However, these values gradually decreased with a further increase in the oxidation temperatures over 400 degrees C. The transmittance of the ZnO thin films was more than 90% for the visible wavelength region, and the optical band gap was red-shifted with increase in the oxidation temperature.

  7. Osteoconductivity and Hydrophilicity of TiO(2) Coatings on Ti Substrates Prepared by Different Oxidizing Processes.

    PubMed

    Yamamoto, Dai; Kawai, Ikki; Kuroda, Kensuke; Ichino, Ryoichi; Okido, Masazumi; Seki, Azusa

    2012-01-01

    Various techniques for forming TiO(2) coatings on Ti have been investigated for the improvement of the osteoconductivity of Ti implants. However, it is not clear how the oxidizing process affects this osteoconductivity. In this study, TiO(2) coatings were prepared using the following three processes: anodizing in 0.1 M H(3)PO(4) or 0.1 M NaOH aqueous solution; thermal oxidation at 673 K for 2 h in air; and a two-step process of anodizing followed by thermal oxidation. The oxide coatings were evaluated using SEM, XRD, and XPS. The water contact angle on the TiO(2) coatings was measured as a surface property. The osteoconductivity of these samples was evaluated by measuring the contact ratio of formed hard tissue on the implanted samples (defined as the R(B-I) value) after 14 d implantation in rats' tibias. Anatase was formed by anodizing and rutile by thermal oxidation, but the difference in the TiO(2) crystal structure did not influence the osteoconductivity. Anodized TiO(2) coatings were hydrophilic, but thermally oxidized TiO(2) coatings were less hydrophilic than anodized TiO(2) coatings because they lacked in surface OH groups. The TiO(2) coating process using anodizing without thermal oxidation gave effective improvement of the osteoconductivity of Ti samples.

  8. Osteoconductivity and Hydrophilicity of TiO2 Coatings on Ti Substrates Prepared by Different Oxidizing Processes

    PubMed Central

    Yamamoto, Dai; Kawai, Ikki; Kuroda, Kensuke; Ichino, Ryoichi; Okido, Masazumi; Seki, Azusa

    2012-01-01

    Various techniques for forming TiO2 coatings on Ti have been investigated for the improvement of the osteoconductivity of Ti implants. However, it is not clear how the oxidizing process affects this osteoconductivity. In this study, TiO2 coatings were prepared using the following three processes: anodizing in 0.1 M H3PO4 or 0.1 M NaOH aqueous solution; thermal oxidation at 673 K for 2 h in air; and a two-step process of anodizing followed by thermal oxidation. The oxide coatings were evaluated using SEM, XRD, and XPS. The water contact angle on the TiO2 coatings was measured as a surface property. The osteoconductivity of these samples was evaluated by measuring the contact ratio of formed hard tissue on the implanted samples (defined as the RB-I value) after 14 d implantation in rats' tibias. Anatase was formed by anodizing and rutile by thermal oxidation, but the difference in the TiO2 crystal structure did not influence the osteoconductivity. Anodized TiO2 coatings were hydrophilic, but thermally oxidized TiO2 coatings were less hydrophilic than anodized TiO2 coatings because they lacked in surface OH groups. The TiO2 coating process using anodizing without thermal oxidation gave effective improvement of the osteoconductivity of Ti samples. PMID:23316128

  9. The influence of substrate temperature on the electrical and optical properties of titanium oxide thin films prepared by d.c. reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ju, Yongfeng; Wu, Zhiming; Qiu, Yonglong; Li, Lin; Jiang, Yadong

    2010-10-01

    In this investigation, a novel heat-sensitive material titanium oxide (TiOx) thin film was deposited on well cleaned K9 glass substrates by d.c. reactive magnetron sputtering from a metallic titanium target in an Ar + O2 gas mixture. In order to obtain proper TiOx thin films, deposition parameters should be properly controlled. In our system, TiOx thin films were obtained at different substrate temperature while total pressure and oxygen partial pressure were kept at 1 Pa and 0.6 Pa, d.c. power of 100 W, and the deposition time was adjusted in order to deposit thin films with a constant thickness close to 200 nm. The crystalline structure was characterized by X-ray diffraction (XRD) analysis and the results show that all the deposited films have an amorphous structure. In this paper, we have mainly investigated the dependence of electrical and optical properties of the reactively sputtered TiOx thin films on the different substrate temperature during the sputtering process, i.e., as the K9 glass substrate temperature increases from 100 °C to 250°C, the sheet resistance Rs of TiOx thin films is ranged from 305 kΩ/square to 36 kΩ/square, temperature coefficient of resistance (TCR) value up to -2.12 %/K is obtained, optical band gap decreases from 3.34 eV to 3.28 eV. Through the analysis and discussion of the above experimental data, we could obtain the conclusion that the variation in substrate temperature during the sputtering deposition plays a considerable important role in the electrical and optical properties of all the deposited films.

  10. Attachable and flexible aluminum oxide resistive non-volatile memory arrays fabricated on tape as the substrate

    NASA Astrophysics Data System (ADS)

    Lee, Woocheol; Jang, Jingon; Song, Younggul; Cho, Kyungjune; Yoo, Daekyoung; Kim, Youngrok; Chung, Seungjun; Lee, Takhee

    2017-03-01

    We fabricated 8 × 8 arrays of non-volatile resistive memory devices on commercially available Scotch® Magic™ tape as a flexible substrate. The memory devices consist of double active layers of Al2O3 with a structure of Au/Al2O3/Au/Al2O3/Al (50 nm/20 nm/20 nm/20 nm/50 nm) on attachable tape substrates. Because the memory devices were fabricated using only dry and low temperature processes, the tape substrate did not suffer from any physical or chemical damage during the fabrication. The fabricated memory devices were turned to the low resistance state at ∼3.5 V and turned to the high resistance state at ∼10 V with a negative differential resistance region after ∼5 V, showing typical unipolar non-volatile resistive memory behavior. The memory devices on the tape substrates exhibited reasonable electrical performances including a high ON/OFF ratio of 104, endurance over 200 cycles of reading/writing processes, and retention times of over 104 s in both the flat and bent configurations.

  11. Unified trend of superconducting transition temperature versus Hall coefficient for ultrathin FeSe films prepared on different oxide substrates

    NASA Astrophysics Data System (ADS)

    Shiogai, Junichi; Miyakawa, Tomoki; Ito, Yukihiro; Nojima, Tsutomu; Tsukazaki, Atsushi

    2017-03-01

    High transition temperature (Tc) superconductivity in FeSe/SrTi O3 has been widely discussed on the possible mechanisms in conjunction with the various effects of interface between FeSe and SrTi O3 substrate. By employing an electric-double-layer transistor configuration, which enables both the electrostatic carrier doping and electrochemical thickness tuning, we investigated the interfacial effect on the high-Tc phase at around 40 K in FeSe films deposited on SrTi O3 , MgO, and KTa O3 substrates. The systematic study on thickness dependence of transport properties under a certain gate voltage reveals the universal trend of the onset Tc against the Hall coefficient in all the FeSe films, irrespective of the substrate materials in which the different contribution of interfacial effect is expected. The independence of the highest Tc on substrate materials evidences that the high-Tc superconductivity at around 40 K does not primarily originate from a specific interface combination but from a charge carrier filling at specific electronic band structure.

  12. Drawing circuits with carbon nanotubes: scratch-induced graphoepitaxial growth of carbon nanotubes on amorphous silicon oxide substrates.

    PubMed

    Choi, Won Jin; Chung, Yoon Jang; Kim, Yun Ho; Han, Jeongho; Lee, Young-Kook; Kong, Ki-Jeong; Chang, Hyunju; Lee, Young Kuk; Kim, Byoung Gak; Lee, Jeong-O

    2014-06-13

    Controlling the orientations of nanomaterials on arbitrary substrates is crucial for the development of practical applications based on such materials. The aligned epitaxial growth of single-walled carbon nanotubes (SWNTs) on specific crystallographic planes in single crystalline sapphire or quartz has been demonstrated; however, these substrates are unsuitable for large scale electronic device applications and tend to be quite expensive. Here, we report a scalable method based on graphoepitaxy for the aligned growth of SWNTs on conventional SiO₂/Si substrates. The "scratches" generated by polishing were found to feature altered atomic organizations that are similar to the atomic alignments found in vicinal crystalline substrates. The linear and circular scratch lines could promote the oriented growth of SWNTs through the chemical interactions between the C atoms in SWNT and the Si adatoms in the scratches. The method presented has the potential to be used to prepare complex geometrical patterns of SWNTs by 'drawing' circuits using SWNTs without the need for state-of-the-art equipment or complicated lithographic processes.

  13. An unusual zinc substrate-induced self-construction route to various hierarchical architectures of hydrated tungsten oxide.

    PubMed

    Ma, De-Kun; Jiang, Jing-Lu; Huang, Jia-Rui; Yang, Dong-Peng; Cai, Ping; Zhang, Li-Jie; Huang, Shao-Ming

    2010-07-07

    A novel active zinc substrate-induced sequential self-construction method is presented for the fabrication of hydrated WO(3) hierarchical octahedrons, flakes, lanterns, and arresting sandwiched double-layer nanorods arrays architectures for the first time. Photocatalytic activity and gas sensing properties of the as-obtained various WO(3).0.33H(2)O architectures were studied as well.

  14. Attachable and flexible aluminum oxide resistive non-volatile memory arrays fabricated on tape as the substrate.

    PubMed

    Lee, Woocheol; Jang, Jingon; Song, Younggul; Cho, Kyungjune; Yoo, Daekyoung; Kim, Youngrok; Chung, Seungjun; Lee, Takhee

    2017-03-01

    We fabricated 8 × 8 arrays of non-volatile resistive memory devices on commercially available Scotch(®) Magic(™) tape as a flexible substrate. The memory devices consist of double active layers of Al2O3 with a structure of Au/Al2O3/Au/Al2O3/Al (50 nm/20 nm/20 nm/20 nm/50 nm) on attachable tape substrates. Because the memory devices were fabricated using only dry and low temperature processes, the tape substrate did not suffer from any physical or chemical damage during the fabrication. The fabricated memory devices were turned to the low resistance state at ∼3.5 V and turned to the high resistance state at ∼10 V with a negative differential resistance region after ∼5 V, showing typical unipolar non-volatile resistive memory behavior. The memory devices on the tape substrates exhibited reasonable electrical performances including a high ON/OFF ratio of 10(4), endurance over 200 cycles of reading/writing processes, and retention times of over 10(4) s in both the flat and bent configurations.

  15. A comparison of substrate oxidation during prolonged exercise in men at terrestrial altitude and normobaric normoxia following the coingestion of 13C glucose and 13C fructose.

    PubMed

    O'Hara, John P; Woods, David R; Mellor, Adrian; Boos, Christopher; Gallagher, Liam; Tsakirides, Costas; Arjomandkhah, Nicola C; Holdsworth, David A; Cooke, Carlton B; Morrison, Douglas J; Preston, Thomas; King, Roderick Fgj

    2017-01-01

    This study compared the effects of coingesting glucose and fructose on exogenous and endogenous substrate oxidation during prolonged exercise at altitude and sea level, in men. Seven male British military personnel completed two bouts of cycling at the same relative workload (55% Wmax) for 120 min on acute exposure to altitude (3375 m) and at sea level (~113 m). In each trial, participants ingested 1.2 g·min(-1) of glucose (enriched with (13)C glucose) and 0.6 g·min(-1) of fructose (enriched with (13)C fructose) directly before and every 15 min during exercise. Indirect calorimetry and isotope ratio mass spectrometry were used to calculate fat oxidation, total and exogenous carbohydrate oxidation, plasma glucose oxidation, and endogenous glucose oxidation derived from liver and muscle glycogen. Total carbohydrate oxidation during the exercise period was lower at altitude (157.7 ± 56.3 g) than sea level (286.5 ± 56.2 g, P = 0.006, ES = 2.28), whereas fat oxidation was higher at altitude (75.5 ± 26.8 g) than sea level (42.5 ± 21.3 g, P = 0.024, ES = 1.23). Peak exogenous carbohydrate oxidation was lower at altitude (1.13 ± 0.2 g·min(-1)) than sea level (1.42 ± 0.16 g·min(-1), P = 0.034, ES = 1.33). There were no differences in rates, or absolute and relative contributions of plasma or liver glucose oxidation between conditions during the second hour of exercise. However, absolute and relative contributions of muscle glycogen during the second hour were lower at altitude (29.3 ± 28.9 g, 16.6 ± 15.2%) than sea level (78.7 ± 5.2 g (P = 0.008, ES = 1.71), 37.7 ± 13.0% (P = 0.016, ES = 1.45). Acute exposure to altitude reduces the reliance on muscle glycogen and increases fat oxidation during prolonged cycling in men compared with sea level.

  16. A novel electrode surface fabricated by directly attaching gold nanoparticles onto NH2+ ions implanted-indium tin oxide substrate

    NASA Astrophysics Data System (ADS)

    Liu, Chenyao; Jiao, Jiao; Chen, Qunxia; Xia, Ji; Li, Shuoqi; Hu, Jingbo; Li, Qilong

    2010-12-01

    A new type of gold nanoparticle attached to a NH2+ ion implanted-indium tin oxide surface was fabricated without using peculiar binder molecules, such as 3-(aminopropyl)-trimethoxysilane. A NH 2/indium tin oxide film was obtained by implantation at an energy of 80 keV with a fluence of 5 × 10 15 ions/cm 2. The gold nanoparticle-modified film was characterized by X-ray photoelectron spectroscopy, scanning electron microscopy and electrochemical techniques and compared with a modified bare indium tin oxide surface and 3-(aminopropyl)-trimethoxysilane linked surface, which exhibited a relatively low electron transfer resistance and high electrocatalytic activity. The results demonstrate that NH2+ ion implanted-indium tin oxide films can provide an important route to immobilize nanoparticles, which is attractive in developing new biomaterials.

  17. Diversity in mechanisms of substrate oxidation by cytochrome P450 2D6. Lack of an allosteric role of NADPH-cytochrome P450 reductase in catalytic regioselectivity.

    PubMed

    Hanna, I H; Krauser, J A; Cai, H; Kim, M S; Guengerich, F P

    2001-10-26

    Cytochrome P450 (P450) 2D6 was first identified as the polymorphic human debrisoquine hydroxylase and subsequently shown to catalyze the oxidation of a variety of drugs containing a basic nitrogen. Differences in the regioselectivity of oxidation products formed in systems containing NADPH-P450 reductase/NADPH and the model oxidant cumene hydroperoxide have been proposed by others to be due to an allosteric influence of the reductase on P450 2D6 (Modi, S., Gilham, D. E., Sutcliffe, M. J., Lian, L.-Y., Primrose, W. U., Wolf, C. R., and Roberts, G. C. K. (1997) Biochemistry 36, 4461-4470). We examined the differences in the formation of oxidation products of N-methyl-4-phenyl-1,2,5,6-tetrahydropyridine, metoprolol, and bufuralol between reductase-, cumene hydroperoxide-, and iodosylbenzene-supported systems. Catalytic regioselectivity was not influenced by the presence of the reductase in any of the systems supported by model oxidants, ruling out allosteric influences. The presence of the reductase had little effect on the affinity of P450 2D6 for any of these three substrates. The addition of the reaction remnants of the model oxidants (cumyl alcohol and iodobenzene) to the reductase-supported system did not affect reaction patterns, arguing against steric influences of these products on catalytic regioselectivity. Label from H(2)18O was quantitatively incorporated into 1'-hydroxybufuralol in the iodosylbenzene- but not in the reductase- or cumene hydroperoxide-supported reactions. We conclude that the P450 systems utilizing NADPH-P450 reductase, cumene hydroperoxide, and iodosylbenzene use similar but distinct chemical mechanisms. These differences are the basis for the variable product distributions, not an allosteric influence of the reductase.

  18. Direct growth of NiCo2O4 nanostructures on conductive substrates with enhanced electrocatalytic activity and stability for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Qian, Lei; Gu, Li; Yang, Li; Yuan, Hongyan; Xiao, Dan

    2013-07-01

    In this report, NiCo2O4 nanostructures with different morphologies were directly grown on conductive substrates (stainless steel and ITO) by a facile electrodeposition method in addition to a post-annealing process. The morphology changes on different conductive substrates are discussed in detail. The NiCo2O4 on stainless steel (SS) had a high surface area (119 m2 g-1) and was successfully used in the electrocatalytic oxidation of methanol. The electrocatalytic performance was investigated by cyclic voltammetry (CV), chronoamperometry and electrochemical impedance spectroscopy (EIS) measurements. Impressively, the NiCo2O4 showed much higher electrocatalytic activity, lower overpotential and greater stability compared to that of only NiO or Co3O4 synthesized by the same method. The higher electrocatalytic activity is due to the high electron conductivity, large surface area of NiCo2O4 and the fast ion/electron transport in the electrode and at the electrolyte-electrode interface. This is important for further development of high performance non-platinum electrocatalysts for application in direct methanol fuel cells.In this report, NiCo2O4 nanostructures with different morphologies were directly grown on conductive substrates (stainless steel and ITO) by a facile electrodeposition method in addition to a post-annealing process. The morphology changes on different conductive substrates are discussed in detail. The NiCo2O4 on stainless steel (SS) had a high surface area (119 m2 g-1) and was successfully used in the electrocatalytic oxidation of methanol. The electrocatalytic performance was investigated by cyclic voltammetry (CV), chronoamperometry and electrochemical impedance spectroscopy (EIS) measurements. Impressively, the NiCo2O4 showed much higher electrocatalytic activity, lower overpotential and greater stability compared to that of only NiO or Co3O4 synthesized by the same method. The higher electrocatalytic activity is due to the high electron conductivity

  19. Structure and corrosion behavior of sputter deposited cerium oxide based coatings with various thickness on Al 2024-T3 alloy substrates

    NASA Astrophysics Data System (ADS)

    Liu, Yuanyuan; Huang, Jiamu; Claypool, James B.; Castano, Carlos E.; O'Keefe, Matthew J.

    2015-11-01

    Cerium oxide based coatings from ∼100 to ∼1400 nm in thickness were deposited onto Al 2024-T3 alloy substrates by magnetron sputtering of a 99.99% pure CeO2 target. The crystallite size of CeO2 coatings increased from 15 nm to 46 nm as the coating thickness increased from ∼100 nm to ∼1400 nm. The inhomogeneous lattice strain increased from 0.36% to 0.91% for the ∼100 nm to ∼900 nm thick coatings and slightly decreased to 0.89% for the ∼1400 nm thick coating. The highest adhesion strength to Al alloy substrates was for the ∼210 nm thick coating, due to a continuous film coverage and low internal stress. Electrochemical measurements indicated that sputter deposited crystalline CeO2 coatings acted as physical barriers that provide good cathodic inhibition for Al alloys in saline solution. The ∼900 nm thick CeO2 coated sample had the best corrosion performance that increased the corrosion resistance by two orders magnitude and lowered the cathodic current density 30 times compared to bare Al 2024-T3 substrates. The reduced defects and exposed surface, along with suppressed charge mobility, likely accounts for the improved corrosion performance as coating thickness increased from ∼100 nm to ∼900 nm. The corrosion performance decreased for ∼1400 nm thick coatings due in part to an increase in coating defects and porosity along with a decrease in adhesion strength.

  20. Thermal and irradiation induced interdiffusion in magnetite thin films grown on magnesium oxide (0 0 1) substrates

    NASA Astrophysics Data System (ADS)

    Kim-Ngan, N.-T. H.; Balogh, A. G.; Meyer, J. D.; Brötz, J.; Zając, M.; Ślęzak, T.; Korecki, J.

    2009-05-01

    Epitaxial Fe 3O 4(0 0 1) thin films (with a thickness in the range of 10-20 nm) grown on MgO substrates were characterized using low-energy electron diffraction (LEED), conversion electron Mössbauer spectroscopy (CEMS) and investigated using Rutherford backscattering spectrometry (RBS), channeling (RBS-C) experiments and X-ray reflectometry (XRR). The Mg out-diffusion from the MgO substrate into the film was observed for the directly-deposited Fe 3O 4/MgO(0 0 1) films. For the Fe 3O 4/Fe/MgO(0 0 1) films, the Mg diffusion was prevented by the Fe layer and the surface layer is always a pure Fe 3O 4 layer. Annealing and ion beam mixing induced a very large interface zone having a spinel and/or wustite formula in the Fe 3O 4-on-Fe film system.

  1. Process modeling and analysis of structure and stoichiometry of magnesium oxide nano thin films grown by molecular beam epitaxy on 6 hydrogen-silicon carbide substrates

    NASA Astrophysics Data System (ADS)

    Uddin, Ghulam Moeen

    In recent years there has been an increasing interest in effective integration of nano scale functional oxides with semiconductors for third and fourth generation nano devices including high-K dielectrics based electronic devices and paradigm-shifting spintronics-based circuits. In this research we investigate the growth of MgO nano thin films on 6H-SiC substrate in a molecular beam epitaxy process. Here MgO serves as a template layer to minimize the mismatch with both substrate and a functional oxide films such as BTO and BaM. In this research we constructed neural network based process models using historical experimental data. Based on these process models we performed structural and stoichiometric analyses through both design of experiments and Monte Carlo simulation. We found that the percentage starting oxygen on the substrate is the most critical variable that promotes the undesired bonding states, i.e., Mg-OH and excessive strain in film crystalline structure. In addition the impact of percentage of starting oxygen on structure and stoichiometry is affected by the film thickness. The interaction between substrate temperature and oxygen on the starting substrate surface is the critical pair that affects the dynamics of Mg-OH bonding state. This study helped us analyze the process behavior and gain process knowledge to conduct systematic experimentation. After conducting the systematic experiments we quantitatively studied the causal relationship the undesired bonding states and the percentage starting oxygen at 3 levels of film thickness. Moreover, the cleaning of silicon carbide (6H-SiC) substrate surface is an essential and important step to grow MgO films with minimum undesired bonding states. We investigated high temperature hydrogen etching process to clean the substrate surface. In this research we studied the impact of cleaning time and cleaning temperature by analyzing the reflection high energy electron diffraction (RHEED) structural performance

  2. Understanding inherent substrate selectivity during atomic layer deposition: Effect of surface preparation, hydroxyl density, and metal oxide composition on nucleation mechanisms during tungsten ALD.

    PubMed

    Lemaire, Paul C; King, Mariah; Parsons, Gregory N

    2017-02-07

    Area-selective thin film deposition is expected to be important for advanced sub-10 nanometer semiconductor devices, enabling feature patterning, alignment to underlying structures, and edge definition. Several atomic layer deposition (ALD) processes show inherent propensity for substrate-dependent nucleation. This includes tungsten ALD (W-ALD) which is more energetically favorable on Si than on SiO2. However, the selectivity is often lost after several ALD cycles. We investigated the causes of tungsten nucleation on SiO2 and other "non-growth" surfaces during the WF6/SiH4 W-ALD process to determine how to expand the "selectivity window." We propose that hydroxyls, generated during the piranha clean, act as nucleation sites for non-selective deposition and show that by excluding the piranha clean or heating the samples, following the piranha clean, extends the tungsten selectivity window. We also assessed how the W-ALD precursors interact with different oxide substrates though individual WF6 and SiH4 pre-exposures prior to W-ALD deposition. We conclude that repeated SiH4 pre-exposures reduce the tungsten nucleation delay, which is attributed to SiH4 adsorption on hydroxyl sites. In addition, oxide surfaces were repeatedly exposed to WF6, which appears to form metal fluoride species. We attribute the different tungsten nucleation delay on Al2O3 and TiO2 to the formation of nonvolatile and volatile metal fluoride species, respectively. Through this study, we have increased the understanding of ALD nucleation and substrate selectivity, which are pivotal to improving the selectivity window for W-ALD and other ALD processes.

  3. Microwave-assisted green synthesis of Ag/reduced graphene oxide nanocomposite as a surface-enhanced Raman scattering substrate with high uniformity

    NASA Astrophysics Data System (ADS)

    Hsu, Kai-Chih; Chen, Dong-Hwang

    2014-04-01

    A nanocomposite of silver nanoparticles/reduced graphene oxide (Ag/rGO) has been fabricated as a surface-enhanced Raman scattering (SERS) substrate owing to the large surface area and two-dimensional nanosheet structure of rGO. A facile and rapid microwave-assisted green route has been used for the formation of Ag nanoparticles and the reduction of graphene oxide simultaneously with L-arginine as the reducing agent. By increasing the cycle number of microwave irradiation from 1 and 4 to 8, the mean diameters of Ag nanoparticles deposited on the surface of rGO increased from 10.3 ± 4.6 and 21.4 ± 10.5 to 41.1 ± 12.6 nm. The SERS performance of Ag/rGO nanocomposite was examined using the common Raman reporter molecule 4-aminothiophenol (4-ATP). It was found that the Raman intensity of 4-ATP could be significantly enhanced by increasing the size and content of silver nanoparticles deposited on rGO. Although the Raman intensities of D-band and G-band of rGO were also enhanced simultaneously by the deposited Ag nanoparticles which limited the further improvement of SERS detection sensitivity, the detectable concentration of 4-ATP with Ag/rGO nanocomposite as the SERS substrate still could be lowered to be 10-10 M and the enhancement factor could be increased to 1.27 × 1010. Furthermore, it was also achievable to lower the relative standard deviation (RSD) values of the Raman intensities to below 5%. This revealed that the Ag/rGO nanocomposite obtained in this work could be used as a SERS substrate with high sensitivity and homogeneity.

  4. Understanding inherent substrate selectivity during atomic layer deposition: Effect of surface preparation, hydroxyl density, and metal oxide composition on nucleation mechanisms during tungsten ALD

    NASA Astrophysics Data System (ADS)

    Lemaire, Paul C.; King, Mariah; Parsons, Gregory N.

    2017-02-01

    Area-selective thin film deposition is expected to be important for advanced sub-10 nanometer semiconductor devices, enabling feature patterning, alignment to underlying structures, and edge definition. Several atomic layer deposition (ALD) processes show inherent propensity for substrate-dependent nucleation. This includes tungsten ALD (W-ALD) which is more energetically favorable on Si than on SiO2. However, the selectivity is often lost after several ALD cycles. We investigated the causes of tungsten nucleation on SiO2 and other "non-growth" surfaces during the WF6/SiH4 W-ALD process to determine how to expand the "selectivity window." We propose that hydroxyls, generated during the piranha clean, act as nucleation sites for non-selective deposition and show that by excluding the piranha clean or heating the samples, following the piranha clean, extends the tungsten selectivity window. We also assessed how the W-ALD precursors interact with different oxide substrates though individual WF6 and SiH4 pre-exposures prior to W-ALD deposition. We conclude that repeated SiH4 pre-exposures reduce the tungsten nucleation delay, which is attributed to SiH4 adsorption on hydroxyl sites. In addition, oxide surfaces were repeatedly exposed to WF6, which appears to form metal fluoride species. We attribute the different tungsten nucleation delay on Al2O3 and TiO2 to the formation of nonvolatile and volatile metal fluoride species, respectively. Through this study, we have increased the understanding of ALD nucleation and substrate selectivity, which are pivotal to improving the selectivity window for W-ALD and other ALD processes.

  5. Effect of the substrate temperature on the physical properties of molybdenum tri-oxide thin films obtained through the spray pyrolysis technique

    SciTech Connect

    Martinez, H.M.; Torres, J.; Lopez Carreno, L.D.; Rodriguez-Garcia, M.E.

    2013-01-15

    Polycrystalline molybdenum tri-oxide thin films were prepared using the spray pyrolysis technique; a 0.1 M solution of ammonium molybdate tetra-hydrated was used as a precursor. The samples were prepared on Corning glass substrates maintained at temperatures ranging between 423 and 673 K. The samples were characterized through micro Raman, X-ray diffraction, optical transmittance and DC electrical conductivity. The species MoO{sub 3} (H{sub 2}O){sub 2} was found in the sample prepared at a substrate temperature of 423 K. As the substrate temperature rises, the water disappears and the samples crystallize into {alpha}-MoO{sub 3}. The optical gap diminishes as the substrate temperature rises. Two electrical transport mechanisms were found: hopping under 200 K and intrinsic conduction over 200 K. The MoO{sub 3} films' sensitivity was analyzed for CO and H{sub 2}O in the temperature range 160 to 360 K; the results indicate that CO and H{sub 2}O have a reduction character. In all cases, it was found that the sensitivity to CO is lower than that to H{sub 2}O. - Highlights: Black-Right-Pointing-Pointer A low cost technique is used which produces good material. Black-Right-Pointing-Pointer Thin films are prepared using ammonium molybdate tetra hydrated. Black-Right-Pointing-Pointer The control of the physical properties of the samples could be done. Black-Right-Pointing-Pointer A calculation method is proposed to determine the material optical properties. Black-Right-Pointing-Pointer The MoO{sub 3} thin films prepared by spray pyrolysis could be used as gas sensor.

  6. Energetics of beta-oxidation. Reduction potentials of general fatty acyl-CoA dehydrogenase, electron transfer flavoprotein, and fatty acyl-CoA substrates.

    PubMed

    Gustafson, W G; Feinberg, B A; McFarland, J T

    1986-06-15

    We have determined reduction potentials for porcine mitochondrial general fatty acyl-CoA dehydrogenase (GAD) and electron transfer flavoprotein (ETF) using an anaerobic spectroelectrochemical titration method. Computer simulation techniques were used to analyze the absorbance data. Nernst plots of the simulated data gave E'0, 7.1, quinone/semiquinone = -0.014 V and E'0, 7.1, semiquinone/hydroquinone = -0.036 V for ETF and E'0, 7.1, quinone/semiquinone = -0.155 V and E'0, 7.1, semiquinone/hydroquinone = -0.122 V for GAD. Using these techniques we have also determined a conditional reduction potential of -0.156 V for the chromophore producing fatty acyl-CoA substrate beta-2-furylpropionyl-CoA. From this value and our previous determination of the equilibrium constant for the transhydrogenation reaction between beta-2-furylpropionyl-CoA and the oxidized substrate crotonyl-CoA (Keq = 10.4), we have determined a reduction potential of -0.126 V for the butyryl-CoA/crotonyl-CoA couple. In light of the structural similarity between butyryl-CoA and octanoyl-CoA, the optimal substrate for GAD, the reduction potential for octanoyl-CoA should be similar to that for butyryl-CoA; i.e. fatty acyl-CoA substrates and GAD are essentially isopotential. The ability of octanoyl-CoA to reduce GAD quantitatively (Keq = 9.0) poses a dilemma in light of the nearly equal reduction potentials. We postulate that the stable charge-transfer complex formed between enzyme and optimal product is significantly lower in energy than enzyme and product and thus is responsible for pulling the reaction toward completion.

  7. Substrate oxidation by dye-decolorizing peroxidases (DyPs) from wood- and litter-degrading agaricomycetes compared to other fungal and plant heme-peroxidases.

    PubMed

    Liers, Christiane; Pecyna, Marek J; Kellner, Harald; Worrich, Anja; Zorn, Holger; Steffen, Kari T; Hofrichter, Martin; Ullrich, René

    2013-07-01

    Catalytic and physicochemical properties of representative fungal dye-decolorizing peroxidases (DyPs) of wood- (WRF) and litter-decomposing white-rot fungi (LDF) are summarized and compared, including one recombinant Mycetinis scorodonius DyP (rMscDyP; LDF), the wild-type Auricularia auricula-judae DyP (AauDyP; WRF), and two new DyPs secreted by the jelly fungi Exidia glandulosa (EglDyP; WRF) and Mycena epipterygia (MepDyP; LDF). Homogeneous preparations of these DyPs were obtained after different steps of fast protein liquid chromatography, and they increase the total number of characterized fungal DyP proteins to eight. The peptide sequences of AauDyP, MepDyP, and EglDyP showed highest homologies (52-56%) to the DyPs of M. scorodonius. Five out of the eight characterized fungal DyPs were used to evaluate their catalytic properties compared to classic fungal and plant heme peroxidases, namely lignin peroxidase of Phanerochaete chrysosporium (PchLiP; WRF), versatile peroxidase of Bjerkandera adusta (BadVP; WRF), and generic peroxidases of Coprinopsis cinerea (CiP) and Glycine max (soybean peroxidase=SBP). All DyPs tested possess unique properties regarding the stability at low pH values: 50-90% enzymatic activity remained after 4-h exposition at pH 2.5, and the oxidation of nonphenolic aromatic substrates (lignin model compounds) was optimal below pH 3. Furthermore, all DyPs efficiently oxidized recalcitrant dyes (e.g., Azure B) as well as the phenolic substrate 2,6-dimethoxyphenol. Thus, DyPs combine features of different peroxidases on the functional level and may be part of the biocatalytic system secreted by fungi for the oxidation of lignin and/or toxic aromatic compounds.

  8. Solid substrate-room temperature phosphorimetry for the determination of trace terbutaline sulfate based on its inhibition oxidation of rhodamine 6G by sodium periodate.

    PubMed

    Liu, Jia-Ming; Gao, Fei; Gao, Wen-Yan; Zeng, Li-Qing; Huang, Xiao-Mei; Li, Zhi-Ming; Huang, Xiu-Chai; Lin, Wei-Nv; Wang, Fang-Mei; Nie, Chang-Ling

    2008-03-01

    When 1.00 mol l(-1) I(-) is used as ion perturber, rhodamine 6G (Rh 6G) can emit strong and stable room temperature phosphorescence (RTP) on filter paper substrate in KHC(8)H(4)O(4)-HCl buffer solution (pH = 3.50), heated at 70 degrees C for 10 min. NaIO(4) can oxidize Rh 6G, which makes the RTP signal quench. Terbutaline sulfate (TBS) can inhibit NaIO(4) from oxidizing Rh 6G, which makes the RTP signal of Rh 6G enhance sharply. The content of TBS is linear correlation to DeltaIp of the system. Based on the facts above, a new inhibition solid substrate-room temperature phosphorimetry (SS-RTP) for the determination of trace TBS has been established. The linear range of this method is 0.0104-2.08 pg spot(-1) (corresponding concentration: 0.026-5.2 ng ml(-1), with a sample volume of 0.4 microl) with a detection limit (L.D.) of 2.6 fg spot(-1) (corresponding concentration: 6.5 x 10(-12) g ml(-1)), and the regression equation of working curve is DeltaIp = 2.040 + 54.54 m(TBS) (pg spot(-1)), n = 6, correlation coefficient is 0.9994. For the samples containing 0.0104 pg spot(-1) and 2.08 pg spot(-1) TBS, the relative standard deviation (RSD) are 3.8% and 2.3% (n = 8), respectively, indicating good precision. This method has been applied to determination of trace TBS in the practical samples with satisfactory results. The reaction mechanism of NaIO(4) oxidizing Rh 6G to inhibit SS-RTP for the determination of trace TBS is also discussed.

  9. Rethinking the role of fat oxidation: substrate utilisation during high-intensity interval training in well-trained and recreationally trained runners

    PubMed Central

    Hetlelid, Ken J; Plews, Daniel J; Herold, Eva; Laursen, Paul B; Seiler, Stephen

    2015-01-01

    Background Although carbohydrate is the predominant fuel source supporting high-intensity exercise workloads, the role of fat oxidation, and the degree to which it may be altered by training status, is less certain. Methods We compared substrate oxidation rates, using indirect calorimetry, during a high-intensity interval training (HIT) session in well-trained (WT) and recreationally trained (RT) runners. Following preliminary testing, 9 WT (VO2max 71±5 mL/min/kg) and 9 RT (VO2max 55±5 mL/min/kg) male runners performed a self-paced HIT sequence consisting of six, 4 min work bouts separated by 2 min recovery periods on a motorised treadmill set at a 5% gradient. Results WT and RT runners performed the HIT session with the same perceived effort (rating of perceived exertion (RPE) =18.3±0.7 vs 18.2±1.1, respectively), blood lactate (6.4±2.1 vs 6.2±2.5 mmol/L) and estimated carbohydrate oxidation rates (4.2±0.29 vs 4.4±0.45 g/min; effect size (ES) 90% confidence limits (CL)=−0.19±0.85). Fat oxidation (0.64±0.13 vs 0.22±0.16 g/min for WT and RT, respectively) accounted for 33±6% of the total energy expenditure in WT vs 16±6% in RT most likely very large difference in fat oxidation (ES 90% CL=1.74±0.83) runners. Higher rates of fat oxidation had a very large correlation with VO2max (r=0.86; 90% CI (0.7 to 0.94). Conclusions Despite similar RPE, blood lactate and carbohydrate oxidation rates, the better performance by the WT group was explained by their nearly threefold higher rates of fat oxidation at high intensity. PMID:27900134

  10. Use resources of human exometabolites of different oxidation levels for higher plants cultivation on the soil-like substrate as applied to closed ecosystems

    NASA Astrophysics Data System (ADS)

    Tikhomirov, Alexander A.; Kudenko, Yurii; Ushakova, Sofya; Tirranen, Lyalya; Gribovskaya, Illiada; Gros, Jean-Bernard; Lasseur, Christophe

    The technology of ‘wet incineration' of human exometabolites and inedible plants biomass by means of H2 O2 in alternating electromagnetic field to increase a closure of mass exchange processes in bioregenerative life support systems (BLSS) was developed at the Institute of Biophysics of the Siberian Branch of Russian Academy of Sciences (Krasnoyarsk, Russia). Human exometabolites mineralized can be used in a nutrient solution for plants cultivation in the BLSS phototrophic link. The objective of the given work appears to be the study of use resources of human exometabolites of different oxidation levels processed by the abovementioned method for higher plants cultivation on the soil-like substrate (SLS). The mineralized human wastes were tested for the purpose of their sterility. Then the effect of human exometabolites of different oxidation levels both on wheat productivity and on the SLS microflora composition was examined. The SLS extract with a definite amount of human mineralized wastes was used as an irrigation solution. The conducted experiments demonstrated that the H2 O2 decreasing to 1 ml on 1 g of feces and to 0.25 ml on 1 ml of urine had not affected the sterility of mineralized human wastes. Wheat cultivation on the SLS with the addition in an irrigation solution of mineralized human wastes in the amount simulating 1/6 of a daily human diet showed the absence of basic dependence of plants productivity on oxidation level of human exometabolites. Yet the analysis of the microflora composition of the irrigation solutions demonstrated its dependence on the oxidation level of the exometabolites introduced. The amount of yeast-like fungi increased in 20 times in the solutions containing less oxidized exometabolites in comparison with the variant in which the human wastes were subjected to a full-scale oxidation. Besides, the solutions with less oxidized exometabolites displayed a bigger content of plant pathogenic bacteria and denitrifies. Consequently the

  11. Investigation of nano-structured Zirconium oxide film on Ti6Al4V substrate to improve tribological properties prepared by PIII&D

    NASA Astrophysics Data System (ADS)

    Saleem, Sehrish; Ahmad, R.; Ayub, R.; Ikhlaq, Uzma; Jin, Weihong; Chu, Paul K.

    2017-02-01

    Plasma immersion ion implantation and deposition (PIII&D) is the most attractive and efficient technique used in the medical field to tailor materials for biomedical applications. In the present study zirconium oxide nano-structured thin films were deposited on surface of Ti6Al4V alloy for bias voltages of 15, 20 and 25 kV. The chemical composition, surface roughness and thickness of deposited films were characterized by the x-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM) and ellipsometry respectively. The XPS results confirm the formation of a dense zirconium oxide film of the treated specimens. AFM results exhibit a smooth film with maximum roughness of about 8.4 nm is formed. The thickness of the film is increased with the increase in bias voltages and is maximum at 25 kV. The effect of bias voltages on wear characteristics was further investigated by pin-on-disk test. It is observed that the friction coefficient is reduced, whereas wear resistance is enhanced and it is found to be maximum at 25 kV compared to the other bias voltages. Nanohardness is improved up to twice compared to untreated specimen at the maximum bias voltage. Therefore, it is concluded that deposition of zirconium oxide using the PIII&D is produced a dense layer on the substrate surface, which can be used as a promising candidate for the improved tribological properties of Ti6Al4V.

  12. Seed/catalyst-free growth of zinc oxide on graphene by thermal evaporation: effects of substrate inclination angles and graphene thicknesses

    NASA Astrophysics Data System (ADS)

    Ahmad, Nurul Fariha; Yasui, Kanji; Hashim, Abdul Manaf

    2015-01-01

    A seed/catalyst-free growth of ZnO on graphene by thermal evaporation of Zn in the presence of O2 gas was further studied. The effects of substrate positions and graphene thicknesses on the morphological, structural, and optical properties were found to be very pronounced. By setting the substrate to be inclined at 90°, the growth of ZnO nanostructures, namely, nanoclusters and nanorods, on single-layer (SL) graphene was successfully realized at temperatures of 600°C and 800°C, respectively. For the growth on multilayer (ML) graphene at 600°C with an inclination angle of 90°, the grown structures show extremely thick and continuous cluster structures as compared to the growth with substrate's inclination angle of 45°. Moreover, the base of nanorod structures grown at 800°C with an inclination angle of 90° also become thicker as compared to 45°, even though their densities and aspect ratios were almost unchanged. Photoluminescence (PL) spectra of the grown ZnO structures were composed of the UV emission (378-386 nm) and the visible emission (517-550 nm), and the intensity ratio of the former emission ( I UV) to the latter emission ( I VIS) changed, depending on the temperature. The structures grown at a low temperature of 600°C show the highest value of I UV/ I VIS of 16.2, which is almost two times higher than the structures grown on SL graphene, indicating fewer structural defects. The possible growth mechanism was proposed and described which considered both the nucleation and oxidation processes. From the results obtained, it can be concluded that temperature below 800°C, substrate position inclined at 90° towards the gas flow, and ML graphene seems to be preferable parameters for the growth of ZnO structures by thermal evaporation because these factors can be used to overcome the problem of graphene's oxidation that takes place during the growth.

  13. Laser-Induced Hydrothermal Growth of Heterogeneous Metal-Oxide Nanowire on Flexible Substrate by Laser Absorption Layer Design.

    PubMed

    Yeo, Junyeob; Hong, Sukjoon; Kim, Gunho; Lee, Habeom; Suh, Young Duk; Park, Inkyu; Grigoropoulos, Costas P; Ko, Seung Hwan

    2015-06-23

    Recent development of laser-induced hydrothermal growth enabled direct digital growth of ZnO nanowire array at an arbitrary position even on 3D structures by creating a localized temperature field through a photothermal reaction in liquid environment. However, its spatial size was generally limited by the size of the focused laser spot and the thermal diffusion, and the target material has been limited to ZnO. In this paper, we demonstrated a next generation laser-induced hydrothermal growth method to grow nanowire on a selected area that is even smaller than the laser focus size by designing laser absorption layer. The control of laser-induced temperature field was achieved through adjusting the physical properties of the substrate (dimension and thermal conductivity), and it enabled a successful synthesis of smaller nanowire array without changing any complex optics. Through precise localized temperature control with laser, this approach could be extended to various nanowires including ZnO and TiO2 nanowires even on heat sensitive polymer substrate.

  14. Optical investigation of the effects of substrate orientation on oxidation of single crystal {beta}-NiAl.

    SciTech Connect

    Uran, S.; Grimsditch, M.; Veal, B. W.; Paulikas, A. P.; Materials Science Division

    2001-12-01

    Nondestructive optical techniques have been used to study the oxidation of low-index crystal faces of single-crystal {beta}-NiAl as a function of temperature. Using these techniques, residual stress, phase composition, and thickness of the scales were determined at various temperatures. The oxidation of the three low-index surfaces, (001), (110), and (111) exhibit discernible differences. Consistently lower stress values are observed on (001) surfaces. Fluorescence and Raman results indicate a higher concentration of {theta}-Al{sub 2}O{sub 3} on (001) faces and lower concentrations on (111) faces at all temperatures between 800 and 1200{sup o}C. Although the residual stresses are higher on (110) faces, these are the only surfaces which maintain adherence up to 1450{sup o}C. All surfaces exhibit a stress anomaly between 1200 and 1250{sup o}C.

  15. Bottom-up synthesis of ordered metal/oxide/metal nanodots on substrates for nanoscale resistive switching memory

    PubMed Central

    Han, Un-Bin; Lee, Jang-Sik

    2016-01-01

    The bottom-up approach using self-assembled materials/processes is thought to be a promising solution for next-generation device fabrication, but it is often found to be not feasible for use in real device fabrication. Here, we report a feasible and versatile way to fabricate high-density, nanoscale memory devices by direct bottom-up filling of memory elements. An ordered array of metal/oxide/metal (copper/copper oxide/copper) nanodots was synthesized with a uniform size and thickness defined by self-organized nanotemplate mask by sequential electrochemical deposition (ECD) of each layer. The fabricated memory devices showed bipolar resistive switching behaviors confirmed by conductive atomic force microscopy. This study demonstrates that ECD with bottom-up growth has great potential to fabricate high-density nanoelectronic devices beyond the scaling limit of top-down device fabrication processes. PMID:27157385

  16. Crystal Structure and Substrate Recognition of Cellobionic Acid Phosphorylase, Which Plays a Key Role in Oxidative Cellulose Degradation by Microbes.

    PubMed

    Nam, Young-Woo; Nihira, Takanori; Arakawa, Takatoshi; Saito, Yuka; Kitaoka, Motomitsu; Nakai, Hiroyuki; Fushinobu, Shinya

    2015-07-24

    The microbial oxidative cellulose degradation system is attracting significant research attention after the recent discovery of lytic polysaccharide mono-oxygenases. A primary product of the oxidative and hydrolytic cellulose degradation system is cellobionic acid (CbA), the aldonic acid form of cellobiose. We previously demonstrated that the intracellular enzyme belonging to glycoside hydrolase family 94 from cellulolytic fungus and bacterium is cellobionic acid phosphorylase (CBAP), which catalyzes reversible phosphorolysis of CbA into glucose 1-phosphate and gluconic acid (GlcA). In this report, we describe the biochemical characterization and the three-dimensional structure of CBAP from the marine cellulolytic bacterium Saccharophagus degradans. Structures of ligand-free and complex forms with CbA, GlcA, and a synthetic disaccharide product from glucuronic acid were determined at resolutions of up to 1.6 Å. The active site is located near the dimer interface. At subsite +1, the carboxylate group of GlcA and CbA is recognized by Arg-609 and Lys-613. Additionally, one residue from the neighboring protomer (Gln-190) is involved in the carboxylate recognition of GlcA. A mutational analysis indicated that these residues are critical for the binding and catalysis of the aldonic and uronic acid acceptors GlcA and glucuronic acid. Structural and sequence comparisons with other glycoside hydrolase family 94 phosphorylases revealed that CBAPs have a unique subsite +1 with a distinct amino acid residue conservation pattern at this site. This study provides molecular insight into the energetically efficient metabolic pathway of oxidized sugars that links the oxidative cellulolytic pathway to the glycolytic and pentose phosphate pathways in cellulolytic microbes.

  17. Crystal Structure and Substrate Recognition of Cellobionic Acid Phosphorylase, Which Plays a Key Role in Oxidative Cellulose Degradation by Microbes*

    PubMed Central

    Nam, Young-Woo; Nihira, Takanori; Arakawa, Takatoshi; Saito, Yuka; Kitaoka, Motomitsu; Nakai, Hiroyuki; Fushinobu, Shinya

    2015-01-01

    The microbial oxidative cellulose degradation system is attracting significant research attention after the recent discovery of lytic polysaccharide mono-oxygenases. A primary product of the oxidative and hydrolytic cellulose degradation system is cellobionic acid (CbA), the aldonic acid form of cellobiose. We previously demonstrated that the intracellular enzyme belonging to glycoside hydrolase family 94 from cellulolytic fungus and bacterium is cellobionic acid phosphorylase (CBAP), which catalyzes reversible phosphorolysis of CbA into glucose 1-phosphate and gluconic acid (GlcA). In this report, we describe the biochemical characterization and the three-dimensional structure of CBAP from the marine cellulolytic bacterium Saccharophagus degradans. Structures of ligand-free and complex forms with CbA, GlcA, and a synthetic disaccharide product from glucuronic acid were determined at resolutions of up to 1.6 Å. The active site is located near the dimer interface. At subsite +1, the carboxylate group of GlcA and CbA is recognized by Arg-609 and Lys-613. Additionally, one residue from the neighboring protomer (Gln-190) is involved in the carboxylate recognition of GlcA. A mutational analysis indicated that these residues are critical for the binding and catalysis of the aldonic and uronic acid acceptors GlcA and glucuronic acid. Structural and sequence comparisons with other glycoside hydrolase family 94 phosphorylases revealed that CBAPs have a unique subsite +1 with a distinct amino acid residue conservation pattern at this site. This study provides molecular insight into the energetically efficient metabolic pathway of oxidized sugars that links the oxidative cellulolytic pathway to the glycolytic and pentose phosphate pathways in cellulolytic microbes. PMID:26041776

  18. Combined in situ PM-IRRAS/QCM studies of water adsorption on plasma modified aluminum oxide/aluminum substrates

    NASA Astrophysics Data System (ADS)

    Giner, Ignacio; Maxisch, Michael; Kunze, Christian; Grundmeier, Guido

    2013-10-01

    Water adsorption on plasma modified oxyhydroxide covered aluminum surfaces was analyzed by means of a set-up combining in situ photoelastic modulated infrared reflection absorption spectroscopy (PM-IRRAS) and quartz crystal microbalance (QCM) in a low-temperature plasma cell. The chemical structure of the surface before and after the plasma treatment was moreover characterized by means of X-ray photoelectron spectroscopy (XPS) analysis. The surface chemistry of oxide covered aluminum was modified by oxidative and reductive low-temperature plasma pre-treatments. The Ar-plasma treatment reduced the surface hydroxyl density and effectively removed adsorbed organic contaminations. Surface modification by means of a water plasma treatment led to an increased surface hydroxyl density as well as an increase of the thickness of the native oxide film. The adsorption of water at atmospheric pressures on plasma modified aluminum surfaces led to a superimposition of reversible water layer adsorption and a simultaneous increase of the oxyhydroxide film thickness as a result of a chemisorption process. The amount of physisorbed water increased with the surface hydroxyl density whereas the chemisorption process was most significant for the surface after Ar-plasma treatment and almost negligible for the already water plasma treated surface.

  19. Effect of mesoporous g-C3N4 substrate on catalytic oxidation of CO over Co3O4

    NASA Astrophysics Data System (ADS)

    Yang, Heng; Lv, Kangle; Zhu, Junjiang; Li, Qin; Tang, Dingguo; Ho, Wingkei; Li, Mei; Carabineiro, Sónia A. C.

    2017-04-01

    Mesoporous graphitic carbon nitride (mpg-CN) was synthesized using Triton X-100, a surfactant containing a hydrophilic polyethylene oxide group and a tert-octyl-phenyl hydrophobic moiety, as a soft template. The obtained mpg-CN was used as a support for Co3O4, and this supported catalyst was used for CO oxidation. The effects of the amount of Triton X-100, weight ratio of Co3O4 to mpg-CN and calcination temperature on the catalytic performances for CO oxidation of Co3O4/mpg-CN composites were systematically studied. It was found that the presence of Triton X-100 not only retarded the polymerization of dicyandiamide, but also affected the microstructure of Co3O4. Bubbles formed because of the hydrophobic group of the surfactant Triton X-100 can be act as a soft template for the synthesis of mesoporous g-C3N4. The enhanced catalytic activity of Co3O4/mpg-CN was attributed to a synergistic effect, enlarged BET surface areas, increased Co3+ and lattice oxygen contents, and the porous structure of mpg-CN support. The high stability of 12.5% Co3O4/mpg-CN(1.0) makes it a promising catalyst for practical applications.

  20. Evidence for separate substrate binding sites for hydrogen peroxide and cumene hydroperoxide (CHP) in the oxidation of ethanol by catalase

    SciTech Connect

    DeMaster, E.G.; Nagasawa,ss H.T.

    1986-03-01

    The oxidation of ethanol by purified bovine liver catalase (Sigma, C-40) can be supported by H/sub 2/O/sub 2/ or by CHP. The time course of the H/sub 2/O/sub 2/ supported reaction (using glucose/glucose oxidase as the H/sub 2/O/sub 2/ source) was linear for at least one hr, whereas the rate of acetaldehyde formation in the CHP (4.2 mM) supported reaction decreased with time. When catalase was exposed o CHP for 5 min before the addition of ethanol, the rate of CHP supported ethanol oxidation was reduced by more than 90% compared to incubations where the addition of ethanol preceded that of CHP. In the CHP inhibited state, the peroxidative activity of catalase was not restored by further addition of CHP or ethanol; however, addition of fresh catalase yielded its expected activity. Significantly, the CHP inhibited enzyme was equally effective as the untreated enzyme in catalyzing (a) the oxidation of ethanol in the presence H/sub 2/O/sub 2/ supported peroxidative activity as well as catalytic activity by CHP inhibited catalase points to separate binding sites for H/sub 2/O/sub 2/ and CHP in this reaction. Alternatively, CHP may bind adjacent to a common peroxide active site, thereby sterically impeding the binding of CHP - but not of H/sub 2/O/sub 2/ - to this active site.

  1. Effects of Environmental Temperature and Dietary Fat Content on The Performance and Heat Production and Substrate Oxidation in Growing Pigs.

    PubMed

    Han, Rui; Jiang, Hailong; Che, Dongsheng; Bao, Nan; Xiang, Dong; Liu, Feifei; Yang, Huaming; Ban, Zhibin; Qin, Guixin

    2017-02-22

    This study aimed to evaluate the effect of temperature and dietary fat level on growth performance, heat production, nutrient oxidation and nitrogen balance in growing pigs. Thirty-two pigs (Duroc × Landrace × Large White) with initial weight of 25±1.91 kg were assigned to treatments in 2×4 factorial design. All pigs fed with two isoenergetic and isoproteic diets of different fat levels (low fat level: 3.68% fat of dry matter (DM) and high fat level: 8.39% fat of DM) under four environmental temperatures (23, 18, 13 and 8 ºC). Heat production (HP) and nutrient oxidation were calculated from gas exchange via measurement with respiration chambers. The results showed that there was no interaction effect on growth performance by the temperature and dietary fat level. The average daily feed intake (ADFI) was lower (P < 0.001), the average daily gain (ADG) was higher (P < 0.001) and feed utilization was more efficient at 23 ºC than 13 and 8 ºC (P < 0.001). Dietary fat had no effect on growth performance and feed utilization at the four different temperatures. A significant interaction (P < 0.001) between temperature and dietary fat level on oxidation of carbohydrate (OXCHO) and fat (OXF) was observed. HP, OXF and OXCHO were significantly increased (P < 0.001) as environment temperatures decreased. Increasing dietary fat generated an increase in the OXF and decrease in the OXCHO (P < 0.001). No significant difference was observed in protein oxidation (OXP) of two factors. The intakes of nitrogen, nitrogen excretion in feces (FN) and urine (UN) by the pigs kept in 8 ºC environment were highest. Nitrogen digestibility decreased as environmental temperature decreases, with the most efficient gains obtained at 23 ºC. However, nitrogen retention was not influenced by environmental temperature. Dietary fat level did not affect nitrogen balance. No significant interaction between temperature and dietary fat level was observed for nitrogen balance. These results

  2. High performance multilayered nano-crystalline silicon/silicon-oxide light-emitting diodes on glass substrates

    NASA Astrophysics Data System (ADS)

    Darbari, S.; Shahmohammadi, M.; Mortazavi, M.; Mohajerzadeh, S.; Abdi, Y.; Robertson, M.; Morrison, T.

    2011-09-01

    A low-temperature hydrogenation-assisted sequential deposition and crystallization technique is reported for the preparation of nano-scale silicon quantum dots suitable for light-emitting applications. Radio-frequency plasma-enhanced deposition was used to realize multiple layers of nano-crystalline silicon while reactive ion etching was employed to create nano-scale features. The physical characteristics of the films prepared using different plasma conditions were investigated using scanning electron microscopy, transmission electron microscopy, room temperature photoluminescence and infrared spectroscopy. The formation of multilayered structures improved the photon-emission properties as observed by photoluminescence and a thin layer of silicon oxy-nitride was then used for electrical isolation between adjacent silicon layers. The preparation of light-emitting diodes directly on glass substrates has been demonstrated and the electroluminescence spectrum has been measured.

  3. Nitrification in a zeoponic substrate.

    PubMed

    McGilloway, R L; Weaver, R W; Ming, D W; Gruener, J E

    2003-10-01

    Clinoptilolite is a zeolite mineral with high cation exchange capacity used in zeoponic substrates that have been proposed as a solid medium for growing plants or as a fertilizer material. The kinetics of nitrification has not been measured for NH4+ saturated zeoponic substrate. Experiments were conducted to evaluate the production of NO2- and NO3-, and nitrifier populations in zeoponic substrates. Small columns were filled with zeoponic substrate inoculated with a commercial inoculum or soil enrichment culture of nitrifying bacteria. In addition to column studies, a growth chamber study was conducted to evaluate the kinetics of nitrification in zeoponic substrates used to grow radishes (Raphanus sativus L.). The zeoponic substrate provided a readily available source of NH4+, and nitrifying bacteria were active in the substrate. Ammonium oxidation rates in column studies ranged from 5 to 10 micrograms N g-1 substrate h-1, and NO2- oxidation rates were 2 to 9.5 micrograms N g-1 substrate h-1. Rates determined from the growth chamber study were approximately 1.2 micrograms N g-1 substrate h-1. Quantities of NH4+ oxidized to NO2- and NO3- in inoculated zeoponic substrate were in excess of plant up-take. Acidification as a result of NH4+ oxidation resulted in a pH decline, and the zeoponic substrate showed limited buffering capacity.

  4. Nitrification in a zeoponic substrate

    NASA Technical Reports Server (NTRS)

    McGilloway, R. L.; Weaver, R. W.; Ming, D. W.; Gruener, J. E.

    2003-01-01

    Clinoptilolite is a zeolite mineral with high cation exchange capacity used in zeoponic substrates that have been proposed as a solid medium for growing plants or as a fertilizer material. The kinetics of nitrification has not been measured for NH4+ saturated zeoponic substrate. Experiments were conducted to evaluate the production of NO2- and NO3-, and nitrifier populations in zeoponic substrates. Small columns were filled with zeoponic substrate inoculated with a commercial inoculum or soil enrichment culture of nitrifying bacteria. In addition to column studies, a growth chamber study was conducted to evaluate the kinetics of nitrification in zeoponic substrates used to grow radishes (Raphanus sativus L.). The zeoponic substrate provided a readily available source of NH4+, and nitrifying bacteria were active in the substrate. Ammonium oxidation rates in column studies ranged from 5 to 10 micrograms N g-1 substrate h-1, and NO2- oxidation rates were 2 to 9.5 micrograms N g-1 substrate h-1. Rates determined from the growth chamber study were approximately 1.2 micrograms N g-1 substrate h-1. Quantities of NH4+ oxidized to NO2- and NO3- in inoculated zeoponic substrate were in excess of plant up-take. Acidification as a result of NH4+ oxidation resulted in a pH decline, and the zeoponic substrate showed limited buffering capacity.

  5. Anodization control for barrier-oxide thinning and 3D interconnected pores and direct electrodeposition of nanowire networks on native aluminium substrates.

    PubMed

    Gillette, Eleanor; Wittenberg, Stefanie; Graham, Lauren; Lee, Kwijong; Rubloff, Gary; Banerjee, Parag; Lee, Sang Bok

    2015-02-07

    Here we report a strategy for combining techniques for pore branching and barrier layer thinning to produce 3D porous anodized aluminum oxide films with direct ohmic contact to the native aluminum. This method provides an example of a rationally designed template which need not be removed from the aluminum, but which is also not constrained to traditional 2D pore geometry. We first demonstrate the barrier layer removal and pore branching techniques independently, and then combine them to produce free standing arrays of interconnected Ni nanostructures. Nickel nanostructures are deposited directly onto the aluminum to demonstrate the success of the structural modification, and showcase the potential for these films to be used as templates. This approach is the first to demonstrate the design and execution of multiple pore modification techniques in the same membrane, and demonstrates the first directly deposited 3D structures on aluminum substrates.

  6. High-power blue laser diodes with indium tin oxide cladding on semipolar (202{sup ¯}1{sup ¯}) GaN substrates

    SciTech Connect

    Pourhashemi, A. Farrell, R. M.; Cohen, D. A.; Speck, J. S.; DenBaars, S. P.; Nakamura, S.

    2015-03-16

    We demonstrate a high power blue laser diode (LD) using indium tin oxide as a cladding layer on semipolar oriented GaN. These devices show peak output powers and external quantum efficiencies comparable to state-of-the-art commercial c-plane devices. Ridge waveguide LDs were fabricated on (202{sup ¯}1{sup ¯}) oriented GaN substrates using InGaN waveguiding layers and GaN cladding layers. At a lasing wavelength of 451 nm at room temperature, an output power of 2.52 W and an external quantum efficiency of 39% were measured from a single facet under a pulsed injection current of 2.34 A. The measured differential quantum efficiency was 50%.

  7. Chemical bath deposition growth and characterization of zinc oxide nanostructures on plain and platinum-coated glass substrates for hydrogen peroxide gas sensor application

    NASA Astrophysics Data System (ADS)

    Jamasali, Y. D. J.; Alguno, A. C.

    2015-06-01

    Growth of zinc oxide on plain and Pt-coated glass substrate via chemical bath deposition technique (CBD) were studied. Aqueous solutions of ammonium hydroxide (NH4OH) and zinc sulfate (ZnSO4) were used as the precursor substances in the synthesis. Ultraviolet-visible spectroscopy (UV-Vis) was performed to determine the energy band gap and X-ray diffraction (XRD) to examine crystallinity. Sensitivity measurements were carried out in order to examine its potential to be fabricated as hydrogen peroxide (H2O2) gas sensor. Experimental results in the sensitivity experiment show that in the presence of H2O2 gas, the resistance of ZnOincrease which can be used as the basis for H2O-2 detection. UV-Vis showed variation of energy band gap values but were all near the generally accepted value. XRD spectra further verify that ZnOwere indeed synthesized.

  8. Continuous-flow Mass Production of Silicon Nanowires via Substrate-Enhanced Metal-Catalyzed Electroless Etching of Silicon with Dissolved Oxygen as an Oxidant

    NASA Astrophysics Data System (ADS)

    Hu, Ya; Peng, Kui-Qing; Liu, Lin; Qiao, Zhen; Huang, Xing; Wu, Xiao-Ling; Meng, Xiang-Min; Lee, Shuit-Tong

    2014-01-01

    Silicon nanowires (SiNWs) are attracting growing interest due to their unique properties and promising applications in photovoltaic devices, thermoelectric devices, lithium-ion batteries, and biotechnology. Low-cost mass production of SiNWs is essential for SiNWs-based nanotechnology commercialization. However, economic, controlled large-scale production of SiNWs remains challenging and rarely attainable. Here, we demonstrate a facile strategy capable of low-cost, continuous-flow mass production of SiNWs on an industrial scale. The strategy relies on substrate-enhanced metal-catalyzed electroless etching (MCEE) of silicon using dissolved oxygen in aqueous hydrofluoric acid (HF) solution as an oxidant. The distinct advantages of this novel MCEE approach, such as simplicity, scalability and flexibility, make it an attractive alternative to conventional MCEE methods.

  9. Continuous-flow mass production of silicon nanowires via substrate-enhanced metal-catalyzed electroless etching of silicon with dissolved oxygen as an oxidant.

    PubMed

    Hu, Ya; Peng, Kui-Qing; Liu, Lin; Qiao, Zhen; Huang, Xing; Wu, Xiao-Ling; Meng, Xiang-Min; Lee, Shuit-Tong

    2014-01-13

    Silicon nanowires (SiNWs) are attracting growing interest due to their unique properties and promising applications in photovoltaic devices, thermoelectric devices, lithium-ion batteries, and biotechnology. Low-cost mass production of SiNWs is essential for SiNWs-based nanotechnology commercialization. However, economic, controlled large-scale production of SiNWs remains challenging and rarely attainable. Here, we demonstrate a facile strategy capable of low-cost, continuous-flow mass production of SiNWs on an industrial scale. The strategy relies on substrate-enhanced metal-catalyzed electroless etching (MCEE) of silicon using dissolved oxygen in aqueous hydrofluoric acid (HF) solution as an oxidant. The distinct advantages of this novel MCEE approach, such as simplicity, scalability and flexibility, make it an attractive alternative to conventional MCEE methods.

  10. Photoelectrochemical characteristics of TiO2 nanorod arrays grown on fluorine doped tin oxide substrates by the facile seeding layer assisted hydrothermal method

    NASA Astrophysics Data System (ADS)

    Sui, Mei-rong; Han, Cui-ping; Gu, Xiu-quan; Wang, Yong; Tang, Lu; Tang, Hui

    2016-05-01

    TiO2 nanorod arrays (NRAs) were prepared on fluorine doped tin oxide (FTO) substrates by a facile two-step hydrothermal method. The nanorods were selectively grown on the FTO regions which were covered with TiO2 seeding layer. It took 5 h to obtain the compact arrays with the nanorod length of ~2 μm and diameter of ~50 nm. The photoelectrochemical (PEC) properties of TiO2 NRAs are also investigated. It is demonstrated that the TiO2 NRAs indicate the good photoelectric conversion ability with an efficiency of 0.22% at a full-wavelength irradiation. A photocurrent density of 0.21 mA/cm2 is observed at 0.7 V versus the saturated calomel electrode (SCE). More evidences suggest that the charge transferring resistance is lowered at an irradiation, while the flat-band potential ( V fb) is shifted towards the positive side.

  11. A New Family of Membrane Electron Transporters and Its Substrates, Including a New Cell Envelope Peroxiredoxin, Reveal a Broadened Reductive Capacity of the Oxidative Bacterial Cell Envelope

    PubMed Central

    Cho, Seung-Hyun; Parsonage, Derek; Thurston, Casey; Dutton, Rachel J.; Poole, Leslie B.; Collet, Jean-Francois; Beckwith, Jon

    2012-01-01

    ABSTRACT The Escherichia coli membrane protein DsbD functions as an electron hub that dispatches electrons received from the cytoplasmic thioredoxin system to periplasmic oxidoreductases involved in protein disulfide isomerization, cytochrome c biogenesis, and sulfenic acid reduction. Here, we describe a new class of DsbD proteins, named ScsB, whose members are found in proteobacteria and Chlamydia. ScsB has a domain organization similar to that of DsbD, but its amino-terminal domain differs significantly. In DsbD, this domain directly interacts with substrates to reduce them, which suggests that ScsB acts on a different array of substrates. Using Caulobacter crescentus as a model organism, we searched for the substrates of ScsB. We discovered that ScsB provides electrons to the first peroxide reduction pathway identified in the bacterial cell envelope. The reduction pathway comprises a thioredoxin-like protein, TlpA, and a peroxiredoxin, PprX. We show that PprX is a thiol-dependent peroxidase that efficiently reduces both hydrogen peroxide and organic peroxides. Moreover, we identified two additional proteins that depend on ScsB for reduction, a peroxiredoxin-like protein, PrxL, and a novel protein disulfide isomerase, ScsC. Altogether, our results reveal that the array of proteins involved in reductive pathways in the oxidative cell envelope is significantly broader than was previously thought. Moreover, the identification of a new periplasmic peroxiredoxin indicates that in some bacteria, it is important to directly scavenge peroxides in the cell envelope even before they reach the cytoplasm. PMID:22493033

  12. Direct growth of NiCo2O4 nanostructures on conductive substrates with enhanced electrocatalytic activity and stability for methanol oxidation.

    PubMed

    Qian, Lei; Gu, Li; Yang, Li; Yuan, Hongyan; Xiao, Dan

    2013-08-21

    In this report, NiCo2O4 nanostructures with different morphologies were directly grown on conductive substrates (stainless steel and ITO) by a facile electrodeposition method in addition to a post-annealing process. The morphology changes on different conductive substrates are discussed in detail. The NiCo2O4 on stainless steel (SS) had a high surface area (119 m(2) g(-1)) and was successfully used in the electrocatalytic oxidation of methanol. The electrocatalytic performance was investigated by cyclic voltammetry (CV), chronoamperometry and electrochemical impedance spectroscopy (EIS) measurements. Impressively, the NiCo2O4 showed much higher electrocatalytic activity, lower overpotential and greater stability compared to that of only NiO or Co3O4 synthesized by the same method. The higher electrocatalytic activity is due to the high electron conductivity, large surface area of NiCo2O4 and the fast ion/electron transport in the electrode and at the electrolyte-electrode interface. This is important for further development of high performance non-platinum electrocatalysts for application in direct methanol fuel cells.

  13. Chemical synthesis, characterisation, and biocompatibility of nanometre scale porous anodic aluminium oxide membranes for use as a cell culture substrate for the vero cell line: a preliminary study.

    PubMed

    Poinern, Gérrard Eddy Jai; Le, Xuan Thi; O'Dea, Mark; Becker, Thomas; Fawcett, Derek

    2014-01-01

    In this preliminary study we investigate for the first time the biomedical potential of using porous anodic aluminium oxide (AAO) membranes as a cell substrate for culturing the Cercopithecus aethiops (African green monkey) Kidney (Vero) epithelial cell line. One advantage of using the inorganic AAO membrane is the presence of nanometre scale pore channels that allow the exchange of molecules and nutrients across the membrane. The size of the pore channels can be preselected by adjusting the controlling parameters of a temperature controlled two-step anodization process. The cellular interaction and response of the Vero cell line with an in-house synthesised AAO membrane, a commercially available membrane, and a glass control were assessed by investigating cell adhesion, morphology, and proliferation over a 72 h period. The number of viable cells proliferating over the respective membrane surfaces revealed that the locally produced in-house AAO membrane had cells numbers similar to the glass control. The study revealed evidence of focal adhesion sites over the surface of the nanoporous membranes and the penetration of cellular extensions into the pore structure as well. The outcome of the study has revealed that nanometre scale porous AAO membranes have the potential to become practical cell culture scaffold substrates with the capability to enhance adhesion and proliferation of Vero cells.

  14. The role of the substrate on the dispersion in accumulation in III-V compound semiconductor based metal-oxide-semiconductor gate stacks

    SciTech Connect

    Krylov, Igor; Ritter, Dan; Eizenberg, Moshe

    2015-09-07

    Dispersion in accumulation is a widely observed phenomenon in metal-oxide-semiconductor gate stacks based on III-V compound semiconductors. The physical origin of this phenomenon is attributed to border traps located in the dielectric material adjacent to the semiconductor. Here, we study the role of the semiconductor substrate on the electrical quality of the first layers at atomic layer deposited (ALD) dielectrics. For this purpose, either Al{sub 2}O{sub 3} or HfO{sub 2} dielectrics with variable thicknesses were deposited simultaneously on two technology important semiconductors—InGaAs and InP. Significantly larger dispersion was observed in InP based gate stacks compared to those based on InGaAs. The observed difference is attributed to a higher border trap density in dielectrics deposited on InP compared to those deposited on InGaAs. We therefore conclude that the substrate plays an important role in the determination of the electrical quality of the first dielectric monolayers deposited by ALD. An additional observation is that larger dispersion was obtained in HfO{sub 2} based capacitors compared to Al{sub 2}O{sub 3} based capacitors, deposited on the same semiconductor. This phenomenon is attributed to the lower conduction band offset rather than to a higher border trap density.

  15. Engineering of cytochrome P450 3A4 for enhanced peroxide-mediated substrate oxidation using directed evolution and site-directed mutagenesis.

    PubMed

    Kumar, Santosh; Liu, Hong; Halpert, James R

    2006-12-01

    CYP3A4 has been subjected to random and site-directed mutagenesis to enhance peroxide-supported metabolism of several substrates. Initially, a high-throughput screening method using whole cell suspensions was developed for H2O2-supported oxidation of 7-benzyloxyquinoline. Random mutagenesis by error-prone polymerase chain reaction and activity screening yielded several CYP3A4 mutants with enhanced activity. L216W and F228I showed a 3-fold decrease in Km, HOOH and a 2.5-fold increase in kcat/Km, HOOH compared with CYP3A4. Subsequently, T309V and T309A were created based on the observation that T309V in CYP2D6 has enhanced cumene hydroperoxide (CuOOH)-supported activity. T309V and T309A showed a > 6- and 5-fold higher kcat/Km, CuOOH than CYP3A4, respectively. Interestingly, L216W and F228I also exhibited, respectively, a > 4- and a > 3-fold higher kcat/Km, CuOOH than CYP3A4. Therefore, several multiple mutants were constructed from rationally designed and randomly isolated mutants; among them, F228I/T309A showed an 11-fold higher kcat/Km, CuOOH than CYP3A4. Addition of cytochrome b5, which is known to stimulate peroxide-supported activity, enhanced the kcat/Km, CuOOH of CYP3A4 by 4- to 7-fold. When the mutants were tested with other substrates, T309V and T433S showed enhanced kcat/Km, CuOOH with 7-benzyloxy-4-(trifluoromethyl)coumarin and testosterone, respectively, compared with CYP3A4. In addition, in the presence of cytochrome b5, T433S has the potential to produce milligram quantities of 6beta-hydroxytestosterone through peroxide-supported oxidation. In conclusion, a combination of random and site-directed mutagenesis approaches yielded CYP3A4 enzymes with enhanced peroxide-supported metabolism of several substrates.

  16. Metal oxide nanostructures synthesized on flexible and solid substrates and used for catalysts, UV detectors, and chemical sensors

    NASA Astrophysics Data System (ADS)

    Willander, Magnus; Sadollahkhani, Azar; Echresh, Ahmad; Nur, Omer

    2014-03-01

    In this paper we demonstrate the visibility of the low temperature chemical synthesis for developing device quality material grown on flexible and solid substrates. Both colorimetric sensors and UV photodetectors will be presented. The colorimetric sensors developed on paper were demonstrated for heavy metal detection, in particular for detecting copper ions in aqueous solutions. The demonstrated colorimetric copper ion sensors developed here are based on ZnO@ZnS core-shell nanoparticles (CSNPs). These sensors demonstrated an excellent low detection limit of less than 1 ppm of copper ions. Further the colorimetric sensors operate efficiently in a wide pH range between 4 and 11, and even in turbulent water. The CSNPs were additionally used as efficient photocatalytic degradation element and were found to be more efficient than pure ZnO nanoparticles (NPs). Also p-NiO/n-ZnO thin film/nanorods pn junctions were synthesized by a two-step synthesis process and were found to act as efficient UV photodetectors. Additionally we show the effect of the morphology of different CuO nanostructures on the efficiency of photo catalytic degradation of Congo red organic dye.

  17. Wrinkled substrate and Indium Tin Oxide-free transparent electrode making organic solar cells thinner in active layer

    NASA Astrophysics Data System (ADS)

    Liu, Kong; Lu, Shudi; Yue, Shizhong; Ren, Kuankuan; Azam, Muhammad; Tan, Furui; Wang, Zhijie; Qu, Shengchun; Wang, Zhanguo

    2016-11-01

    To enable organic solar cells with a competent charge transport efficiency, reducing the thickness of active layer without sacrificing light absorption efficiency turns out to be of high feasibility. Herein, organic solar cells on wrinkled metal surface are designed. The purposely wrinkled Al/Au film with a smooth surface provides a unique scaffold for constructing thin organic photovoltaic devices by avoiding pinholes and defects around sharp edges in conventional nanostructures. The corresponding surface light trapping effect enables the thin active layer (PTB7-Th:PC71BM) with a high absorption efficiency. With the innovative MoO3/Ag/ZnS film as the top transparent electrode, the resulting Indium Tin Oxide-free wrinkled devices show a power conversion efficiency as 7.57% (50 nm active layer), higher than the planner counterparts. Thus, this paper provides a new methodology to improve the performance of organic solar cells by balancing the mutual restraint factors to a high level.

  18. Preparation of SERS-active substrates based on graphene oxide/silver nanocomposites for rapid zdetection of l-Theanine.

    PubMed

    Zheng, Huajun; Ni, Dejiang; Yu, Zhi; Liang, Pei

    2017-02-15

    A kind of graphene oxide/silver (GO/Ag) nanocomposites with high Surface enhanced Raman scattering (SERS) activity were fabricated via a facile and green liquid phase reduction method. The synthesized materials were characterized in detail using various microscopic and spectroscopic techniques. In this method, the GO sheets worked as a holder which makes silver nanoparticles (AgNPs) aggregate to a particular morphology, and under a suitable dosage of silver ions, well-dispersed AgNPs on the surface of GO were obtained, which could generate more "hot spots" of SERS. Moreover, SERS technique based on the obtained GO/Ag nanocomposites was used as an effective way to detect l-Theanine. The detection limit was estimated to be as low as 10(-7)M, and a multivariate linear regression model for the concentration of l-Theanine was established. The optimal fitting equation is Y=5.6765+0.0307X1458-0.0267X1251.

  19. Cu patterning on Si substrate using solution-processed Ti-Cu oxide films and electroless plating

    NASA Astrophysics Data System (ADS)

    Miyazeki, Yusuke; Horiuchi, Yoshio; Noh, Joo-Hyong; Cordonier, Christopher E. J.; Honma, Hideo; Arakawa, Taro

    2016-09-01

    We demonstrated for the first time the Cu patterning on Si using Ti and Cu oxide (TiCu-ox) films patterned by photolithography and electroless plating without etching or surface modification. The TiCu-ox films had a porous structure and acted as adhesion layers. The TiCu-ox films were patterned by photolithography on Si and glass for comparison, followed by Cu deposition by electroless plating. Fine Cu patterns on the patterned TiCu-ox films were formed. The smallest line/space widths on glass and Si were 3.2/0.8 and 3.6/4.4 µm, respectively. The deposited Cu layers had high adhesion strength and low sheet resistance.

  20. 24-hour energy expenditure and substrate oxidation rates are unaffected by body fat distribution in obese women.

    PubMed

    Buemann, B; Astrup, A; Quaade, F; Madsen, J

    1994-01-01

    Twenty-four-hour energy expenditure (EE) and nonprotein respiratory quotient (RQnp) were measured by indirect calorimetry in 19 upper-body-obese (UBO) and 15 lower-body-obese (LBO) women with similar body mass index (BMI) and body fat percent. The measurements were performed in a respiration chamber on a predetermined physical activity program and a controlled diet. No differences between the UBO and LBO groups were found in 24-hour, daytime, and sleeping EE after adjustment for differences in fat-free mass (FFM). Furthermore, no group effect was observed in RQnp, but a positive correlation was found between RQnp and age. Despite the fact that an increased free fatty acid (FFA) turnover has been found in UBO subjects, the present study does not support the contention that upper-body obesity is accompanied by an increased lipid oxidation.

  1. Guanine oxidation product 5-carboxamido-5-formamido-2-iminohydantoin induces mutations when bypassed by DNA polymerases and is a substrate for base excision repair.

    PubMed

    Alshykhly, Omar R; Fleming, Aaron M; Burrows, Cynthia J

    2015-09-21

    Guanine (G) is a target for oxidation by reactive oxygen species in DNA, RNA, and the nucleotide pool. Damage to DNA yields products with alternative properties toward DNA processing enzymes compared to those of the parent nucleotide. A new lesion, 5-carboxamido-5-formamido-2-iminohydantoin (2Ih), bearing a stereocenter in the base was recently identified from the oxidation of G. DNA polymerase and base excision repair processing of this new lesion has now been evaluated. Single nucleotide insertion opposite (S)-2Ih and (R)-2Ih in the template strand catalyzed by the DNA polymerases Klenow fragment exo(-), DPO4, and Hemo KlenTaq demonstrates these lesions to cause point mutations. Specifically, they promote 3-fold more G·C → C·G transversion mutations than G·C → T·A, and (S)-2Ih was 2-fold more blocking for polymerase bypass than (R)-2Ih. Both diastereomer lesions were found to be substrates for the DNA glycosylases NEIL1 and Fpg, and poorly excised by endonuclease III (Nth). The activity was independent of the base pair partner. Thermal melting, CD spectroscopy, and density functional theory geometric optimization calculations were conducted to provide insight into these polymerase and DNA glycosylase studies. These results identify that formation of the 2Ih lesions in a cell would be mutagenic in the event that they were not properly repaired.

  2. 2-nitrobenzoate 2-nitroreductase (NbaA) switches its substrate specificity from 2-nitrobenzoic acid to 2,4-dinitrobenzoic acid under oxidizing conditions.

    PubMed

    Kim, Yong-Hak; Song, Woo-Seok; Go, Hayoung; Cha, Chang-Jun; Lee, Cheolju; Yu, Myeong-Hee; Lau, Peter C K; Lee, Kangseok

    2013-01-01

    2-Nitrobenzoate 2-nitroreductase (NbaA) of Pseudomonas fluorescens strain KU-7 is a unique enzyme, transforming 2-nitrobenzoic acid (2-NBA) and 2,4-dinitrobenzoic acid (2,4-DNBA) to the 2-hydroxylamine compounds. Sequence comparison reveals that NbaA contains a conserved cysteine residue at position 141 and two variable regions at amino acids 65 to 74 and 193 to 216. The truncated mutant Δ65-74 exhibited markedly reduced activity toward 2,4-DNBA, but its 2-NBA reduction activity was unaffected; however, both activities were abolished in the Δ193-216 mutant, suggesting that these regions are necessary for the catalysis and specificity of NbaA. NbaA showed different lag times for the reduction of 2-NBA and 2,4-DNBA with NADPH, and the reduction of 2,4-DNBA, but not 2-NBA, failed in the presence of 1 mM dithiothreitol or under anaerobic conditions, indicating oxidative modification of the enzyme for 2,4-DNBA. The enzyme was irreversibly inhibited by 5,5'-dithio-bis-(2-nitrobenzoic acid) and ZnCl(2), which bind to reactive thiol/thiolate groups, and was eventually inactivated during the formation of higher-order oligomers at high pH, high temperature, or in the presence of H(2)O(2). SDS-PAGE and mass spectrometry revealed the formation of intermolecular disulfide bonds by involvement of the two cysteines at positions 141 and 194. Site-directed mutagenesis indicated that the cysteines at positions 39, 103, 141, and 194 played a role in changing the enzyme activity and specificity toward 2-NBA and 2,4-DNBA. This study suggests that oxidative modifications of NbaA are responsible for the differential specificity for the two substrates and further enzyme inactivation through the formation of disulfide bonds under oxidizing conditions.

  3. Dielectric, electro-optical, and photoluminescence characteristics of ferroelectric liquid crystals on a graphene-coated indium tin oxide substrate.

    PubMed

    Singh, Dharmendra Pratap; Gupta, Swadesh Kumar; Vimal, Tripti; Manohar, Rajiv

    2014-08-01

    Multilayer graphene was deposited on indium tin oxide (ITO) -coated glass plates and characterized by suitable techniques. A liquid crystal sample cell was designed using graphene deposited ITO glass plates without any additional treatment for alignment. Ferroelectric liquid crystal (FLC) material was filled in the sample cell. The effect of multilayer graphene on the characteristics of FLC material was investigated. The extremely high relative permittivity of pristine graphene and charge transfer between graphene and FLC material were consequences of the enormous increase in relative permittivity for the graphene-FLC (GFLC) system as compared to pure FLC. The presence of multilayer graphene suppresses the ionic impurities, comprised in the FLC material at lower frequencies. The ionic charge annihilation mechanism might be responsible for the reduction of ionic impurities. The presence of graphene reduces the net ferroelectricity and results in a change in the spontaneous polarization of pure FLC. Rotational viscosity of the GFLC system also decreases due to the strong π-π interaction between the FLC molecule and multilayer graphene. The photoluminescence of the GFLC system is blueshifted as compared to pure FLC, which is due to the coupling of energy released in the process of charge annihilation and photon emission.

  4. Growth mechanism and optical properties of Ti thin films deposited onto fluorine-doped tin oxide glass substrate

    SciTech Connect

    Einollahzadeh-Samadi, Motahareh; Dariani, Reza S.

    2015-03-15

    In this work, a detailed study of the influence of the thickness on the morphological and optical properties of titanium (Ti) thin films deposited onto rough fluorine-doped tin oxide glass by d.c. magnetron sputtering is carried out. The films were characterized by several methods for composition, crystallinity, morphology, and optical properties. Regardless of the deposition time, all the studied Ti films of 400, 1500, 2000, and 2500 nm in thickness were single crystalline in the α-Ti phase and also very similar to each other with respect to composition. Using the atomic force microscopy (AFM) technique, the authors analyzed the roughness evolution of the Ti films characteristics as a function of the film thickness. By applying the dynamic scaling theory to the AFM images, a steady growth roughness exponent α = 0.72 ± 0.02 and a dynamic growth roughness exponent β = 0.22 ± 0.02 were determined. The value of α and β are consistent with nonlinear growth model incorporating random deposition with surface diffusion. Finally, measuring the reflection spectra of the samples by a spectrophotometer in the spectral range of 300–1100 nm allowed us to investigate the optical properties. The authors observed the increments of the reflection of Ti films with thickness, which by employing the effective medium approximation theory showed an increase in thickness followed by an increase in the volume fraction of metal.

  5. Role of the oxidizing agent in the etching of 4H-SiC substrates with molten KOH

    NASA Astrophysics Data System (ADS)

    Na, Moonkyong; Kang, In Ho; Moon, Jeong Hyun; Bahng, Wook

    2016-12-01

    A novel etching solution using molten potassium hydroxide (KOH) for the identification of dislocation types in a silicon-carbide (SiC) epilayer is identified. Threading screw dislocations (TSDs) and threading edge dislocations (TEDs) are rarely useful for size-based differentiation of etch pits in highly nitrogen (N)-doped SiC through conventional KOH etching. In this study, we report the role of sodium peroxide (Na2O2) and potassium dioxide (KO2) as oxidizing agent additives to the etchant for identifying the dislocation types in highly N-doped 4H-SiC. A Na2O2-KOH phase diagram was calculated to predict the chemical composition of the etchant. Solid-phase Na2O2 remained in the system when added to the etchant at concentrations greater than 13-wt% Na2O2, and it provided excess oxygen to the etchant. We experimentally confirmed that etch pit shapes became more hexagonal and that the etch pit sizes of TSDs and TEDs differed more greatly when more than 20-wt% Na2O2 was added to the etchant. We also found that the size distribution of TEDs was much smaller than that of TSDs after etching using Na2O2-KOH. Dissolved oxygen played an essential role in enhancing the anisotropic etching of highly N-doped SiC and allowed the dislocation types to be identified.

  6. Timing of fat and liquid sugar intake alters substrate oxidation and food efficiency in male Wistar rats.

    PubMed

    Oosterman, Johanneke E; Foppen, Ewout; van der Spek, Rianne; Fliers, Eric; Kalsbeek, Andries; la Fleur, Susanne E

    2015-03-01

    In addition to the amount of ingested calories, both timing of food intake and meal composition are determinants of body weight gain. However, at present, it is unknown if the inappropriate timing of diet components is responsible for body weight gain. In the present study, we therefore studied a time-dependent effect of the diet composition on energy homeostasis. Male Wistar rats were subjected to chow ad libitum (chow group) or a choice diet with saturated fat, a 30% sugar solution, chow and tap water. The choice diet was provided either with all components ad libitum (AL), with ad libitum access to chow, tap water and a 30% sugar solution, but with access to saturated fat only during the light period (LF), or with ad libitum access to chow, tap water and saturated fat, but access to a 30% sugar solution only during the light period (LS). Caloric intake and body weight gain were monitored during 31 days. Energy expenditure was measured in the third week in calorimetric cages. All rats on a choice diet showed hyperphagia and gained more body weight compared to the chow group. Within the choice diet groups, rats on the LS diet were most food efficient (i.e. gained most body weight per ingested calorie) and showed a lower respiratory exchange ratio (RER) with an anti-phasic pattern, whereas no differences in locomotor activity or heat production were found. Collectively these data indicate that the timing of the diet composition affects food efficiency, most likely due to a shifted oxidation pattern, which can predispose for obesity. Further studies are underway to assess putative mechanisms involved in this dysregulation.

  7. Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335.

    PubMed

    Arias, M Enriqueta; Arenas, María; Rodríguez, Juana; Soliveri, Juan; Ball, Andrew S; Hernández, Manuel

    2003-04-01

    A new laccase (EC 1.10.3.2) produced by Streptomyces cyaneus CECT 3335 in liquid media containing soya flour (20 g per liter) was purified to homogeneity. The physicochemical, catalytic, and spectral characteristics of this enzyme, as well as its suitability for biobleaching of eucalyptus kraft pulps, were assessed. The purified laccase had a molecular mass of 75 kDa and an isoelectric point of 5.6, and its optimal pH and temperature were 4.5 and 70 degrees C, respectively. The activity was strongly enhanced in the presence of Cu(2+), Mn(2+), and Mg(2+) and was completely inhibited by EDTA and sodium azide. The purified laccase exhibited high levels of activity against 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) and 2,6-dimethoxyphenol and no activity against tyrosine. The UV-visible spectrum of the purified laccase was the typical spectrum of the blue laccases, with an absorption peak at 600 nm and a shoulder around 330 to 340 nm. The ability of the purified laccase to oxidize a nonphenolic compound, such as veratryl alcohol, in the presence of ABTS opens up new possibilities for the use of bacterial laccases in the pulp and paper industry. We demonstrated that application of the laccase from S. cyaneus in the presence of ABTS to biobleaching of eucalyptus kraft pulps resulted in a significant decrease in the kappa number (2.3 U) and an important increase in the brightness (2.2%, as determined by the International Standard Organization test) of pulps, showing the suitability of laccases produced by streptomycetes for industrial purposes.

  8. A hot-spot-active magnetic graphene oxide substrate for microRNA detection based on cascaded chemiluminescence resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Bi, Sai; Chen, Min; Jia, Xiaoqiang; Dong, Ying

    2015-02-01

    Herein, a cascaded chemiluminescence resonance energy transfer (C-CRET) process was demonstrated from horseradish peroxidase (HRP)-mimicking DNAzyme-catalyzed luminol-H2O2 to fluorescein and further to graphene oxide (GO) when HRP-mimicking DNAzyme/fluorescein was in close proximity to the GO surface. The proposed C-CRET system was successfully implemented to construct three modes of C-CRET hot-spot-active substrates (modes I, II and III) by covalently immobilizing HRP-mimicking DNAzyme/fluorescein-labeled hairpin DNAs (hot-spot-generation probes) on magnetic GO (MGO), resulting in a signal ``off'' state due to the quenching of the luminol/H2O2/HRP-mimicking DNAzyme/fluorescein CRET system by GO. Upon the introduction of microRNA-122 (miRNA-122), the targets (mode I) or the new triggers that were generated through a strand displacement reaction (SDR) initiated by miRNA-122 (modes II and III) hybridized with the loop domains of hairpin probes on MGO to form double-stranded (modes I and II) or triplex-stem structures (mode III), causing an ``open'' configuration of the hairpin probe and a CRET signal ``on'' state, thus achieving sensitive and selective detection of miRNA-122. More importantly, the substrate exhibited excellent controllability, reversibility and reproducibility through SDR and magnetic separation (modes II and III), especially sequence-independence for hairpin probes in mode III, holding great potential for the development of a versatile platform for optical biosensing.Herein, a cascaded chemiluminescence resonance energy transfer (C-CRET) process was demonstrated from horseradish peroxidase (HRP)-mimicking DNAzyme-catalyzed luminol-H2O2 to fluorescein and further to graphene oxide (GO) when HRP-mimicking DNAzyme/fluorescein was in close proximity to the GO surface. The proposed C-CRET system was successfully implemented to construct three modes of C-CRET hot-spot-active substrates (modes I, II and III) by covalently immobilizing HRP-mimicking DNAzyme

  9. Identifying the Elusive Sites of Tyrosyl Radicals in Cytochrome c Peroxidase: Implications for Oxidation of Substrates Bound at a Site Remote from the Heme

    PubMed Central

    2015-01-01

    The location of the Trp radical and the catalytic function of the [Fe(IV)=O Trp191•+] intermediate in cytochrome c peroxidase (CcP) are well-established; however, the unambiguous identification of the site(s) for the formation of tyrosyl radical(s) and their possible biological roles remain elusive. We have now performed a systematic investigation of the location and reactivity of the Tyr radical(s) using multifrequency Electron Paramagnetic Resonance (EPR) spectroscopy combined with multiple-site Trp/Tyr mutations in CcP. Two tyrosines, Tyr71 and Tyr236, were identified as those contributing primarily to the EPR spectrum of the tyrosyl radical, recorded at 9 and 285 GHz. The EPR characterization also showed that the heme distal-side Trp51 is involved in the intramolecular electron transfer between Tyr71 and the heme and that formation of Tyr71• and Tyr236• is independent of the [Fe(IV)=O Trp191•+] intermediate. Tyr71 is located in an optimal position to mediate the oxidation of substrates binding at a site, more than 20 Å from the heme, which has been reported recently in the crystal structures of CcP with bound guaicol and phenol [Murphy, E. J., et al. (2012) FEBS J. 279, 1632–1639]. The possibility of discriminating the radical intermediates by their EPR spectra allowed us to identify Tyr71• as the reactive species with the guaiacol substrate. Our assignment of the surface-exposed Tyr236 as the other radical site agrees well with previous studies based on MNP labeling and protein cross-linking [Tsaprailis, G., and English, A. M. (2003) JBIC, J. Biol. Inorg. Chem. 8, 248–255] and on its covalent modification upon reaction of W191G CcP with 2-aminotriazole [Musah, R. A., and Goodin, D. B. (1997) Biochemistry 36, 11665–11674]. Accordingly, while Tyr71 acts as a true reactive intermediate for the oxidation of certain small substrates that bind at a site remote from the heme, the surface-exposed Tyr236 would be more likely related to oxidative stress

  10. Methods of repairing a substrate

    NASA Technical Reports Server (NTRS)

    Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)

    2011-01-01

    A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium boride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.

  11. Energy Expenditure and Substrate Oxidation in Response to Side-Alternating Whole Body Vibration across Three Commonly-Used Vibration Frequencies

    PubMed Central

    Fares, Elie-Jacques; Charrière, Nathalie; Montani, Jean-Pierre; Schutz, Yves; Dulloo, Abdul G.; Miles-Chan, Jennifer L.

    2016-01-01

    Background and Aim There is increasing recognition about the importance of enhancing energy expenditure (EE) for weight control through increases in low-intensity physical activities comparable with daily life (1.5–4 METS). Whole-body vibration (WBV) increases EE modestly and could present both a useful adjuvant for obesity management and tool for metabolic phenotyping. However, it is unclear whether a “dose-response” exists between commonly-used vibration frequencies (VF) and EE, nor if WBV influences respiratory quotient (RQ), and hence substrate oxidation. We aimed to investigate the EE-VF and RQ-VF relationships across three different frequencies (30, 40, and 50Hz). Methods EE and RQ were measured in 8 healthy young adults by indirect calorimetry at rest, and subsequently during side-alternating WBV at one of 3 VFs (30, 40, and 50 Hz). Each frequency was assessed over 5 cycles of intermittent WBV (30s vibration/30s rest), separated by 5 min seated rest. During the WBV participants stood on the platform with knees flexed sufficiently to maintain comfort, prevent transmission of vibration to the upper body, and minimise voluntary physical exertion. Repeatability was assessed across 3 separate days in a subset of 4 individuals. In order to assess any sequence/habituation effect, an additional group of 6 men underwent 5 cycles of intermittent WBV (30s vibration/30s rest) at 40 Hz, separated by 5 min seated rest. Results Side-alternating WBV increased EE relative to standing, non-vibration levels (+36%, p<0.001). However, no differences in EE were observed across VFs. Similarly, no effect of VF on RQ was found, nor did WBV alter RQ relative to standing without vibration. Conclusion No relationship could be demonstrated between EE and VF in the range of 30-50Hz, and substrate oxidation did not change in response to WBV. Furthermore, the thermogenic effect of intermittent WBV, whilst robust, was quantitatively small (<2 METS). PMID:26974147

  12. In-situ growth of ultrathin cobalt monoxide nanocrystals on reduced graphene oxide substrates: an efficient electrocatalyst for aprotic Li-O2 batteries.

    PubMed

    Yuan, Mengwei; Lin, Liu; Yang, Yan; Nan, Caiyun; Ma, Shulan; Sun, Genban; Li, Huifeng

    2017-05-05

    Large over-potentials during battery operation remain a big obstacle for aprotic Li-O2 batteries. Herein, a nanocomposite of about 4 nm cobalt monoxide nanocrystals grown in situ on reduced graphene oxide substrates (CoO/RGO) has been synthesized via a thermal decomposition method. The CoO/RGO cathode delivers a high initial capacity of 14 450 mAh g(-1) at a current density of 200 mA g(-1). Simultaneously it displays little capacity fading after 32 cycles with a capacity restriction of 1000 mAh g(-1). Additionally, compared with Ketjenblack and general CoO nanoparticles, ultrathin CoO nanoparticle-decorated RGO electrode materials with a delaminated structure display an observable reduction of over-potential in Li-O2 batteries. These results demonstrate that the introduction of RGO improves the performance of CoO, which is a promising strategy for optimizing the design of electrocatalysts for aprotic rechargeable Li-O2 batteries.

  13. Structural characterization of niobium oxide thin films grown on SrTiO3 (111) and (La,Sr)(Al,Ta)O3 (111) substrates

    NASA Astrophysics Data System (ADS)

    Dhamdhere, Ajit R.; Hadamek, Tobias; Posadas, Agham B.; Demkov, Alexander A.; Smith, David J.

    2016-12-01

    Niobium oxide thin films have been grown by molecular beam epitaxy on SrTiO3 (STO) (111) and (La0.18Sr0.82)(Al0.59Ta0.41)O3 (LSAT) (111) substrates. Transmission electron microscopy (TEM) confirmed the formation of high quality films with coherent interfaces. Films grown with higher oxygen pressure on STO (111) resulted in a (110)-oriented NbO2 phase with a distorted rutile structure, which can be described as body-centered tetragonal. The a lattice parameter of NbO2 was determined to be ˜13.8 Å in good agreement with neutron diffraction results published in the literature. Films grown on LSAT (111) at lower oxygen pressure produced the NbO phase with a defective rock salt cubic structure. The NbO lattice parameter was determined to be a ≈ 4.26 Å. The film phase/structure identification from TEM was in good agreement with in situ x-ray photoelectron spectroscopy measurements that confirmed the dioxide and monoxide phases, respectively. The atomic structure of the NbO2/STO and NbO/LSAT interfaces was determined based on comparisons between high-resolution electron micrographs and image simulations.

  14. Demethylmenaquinol is a substrate of Escherichia coli nitrate reductase A (NarGHI) and forms a stable semiquinone intermediate at the NarGHI quinol oxidation site.

    PubMed

    Rendon, Julia; Pilet, Eric; Fahs, Zeinab; Seduk, Farida; Sylvi, Léa; Hajj Chehade, Mahmoud; Pierrel, Fabien; Guigliarelli, Bruno; Magalon, Axel; Grimaldi, Stephane

    2015-08-01

    Quinones are essential building blocks of respiration, a universal process dedicated to efficient harvesting of environmental energy and its conversion into a transmembrane chemiosmotic potential. Quinones differentiate mostly by their midpoint redox potential. As such, γ-proteobacteria such as Escherichia coli are characterized by the presence of demethylmenaquinone (DMK) with an intermediate redox potential between low-potential (menaquinone) and high-potential (ubiquinone) quinones. In this study, we show that demethylmenaquinol (DMKH2) is a good substrate for nitrate reductase A (NarGHI) in nitrate respiration in E. coli. Kinetic studies performed with quinol analogs on NarGHI show that removal of the methyl group on the naphthoquinol ring impacts modestly the catalytic constant but not the KM. EPR-monitored redox titrations of NarGHI-enriched membrane vesicles reveal that endogeneous demethylmenasemiquinone (DMSK) intermediates are stabilized in the enzyme. The measured midpoint potential of the DMK/DMKH2 redox couple in NarGHI (E'm,7.5 (DMK/DMKH2) ~-70mV) is significantly lower than that previously measured for unbound species. High resolution pulsed EPR experiments demonstrate that DMSK are formed within the NarGHI quinol oxidation site. Overall, our results provide the first characterization of a protein-bound DMSK and allows for comparison for distinct use of three quinones at a single Q-site in NarGHI.

  15. A thermostat chip of indium tin oxide glass substrate for static polymerase chain reaction and in situ real time fluorescence monitoring.

    PubMed

    Wu, Zhi-Yong; Chen, Kun; Qu, Bai-Yan; Tian, Xiao-Xi; Wang, Xiao-Jie; Fang, Fang

    2008-03-03

    A thermostat chip of indium-tin oxide glass substrate for static chip polymerase chain reaction (PCR) is, for the first time, introduced in this paper. The transparent conductive layer was used as an electro-heating element. Pulse width modulation and fuzzy proportional integration-differentiation algorithm were adopted in the temperature programming of the chip. The temperature distribution was investigated, and a dynamic control precision within +/-2 degrees C was achieved. The highest ramping rates were 37 degrees Cs(-1) for heating and 8 degrees Cs(-1) for cooling with an electric fan. The PCR reaction vials were constructed with polyethylene tubes or poly(dimethylsiloxane) directly on the thermostat chip; the chip had a typical size of 25 mm x 25 mm and a thickness of 1.1mm. Static chip PCR was successfully demonstrated either in a single vial or in an up to 8-parallel array vials. In situ real time fluorescence monitoring during PCR of a lambda DNA fragments (236bp) with SYBR Green I was demonstrated using a blue light emission diode as a light source and a photomultiplier as a detector. The method proposed here is characterized by open access, easy fabrication and low cost. This work could be the basis for developing a portable real time PCR system with disposable chips for point of care tests.

  16. Surface Decoration of Amino-Functionalized Metal-Organic Framework/Graphene Oxide Composite onto Polydopamine-Coated Membrane Substrate for Highly Efficient Heavy Metal Removal.

    PubMed

    Rao, Zhuang; Feng, Kai; Tang, Beibei; Wu, Peiyi

    2017-01-25

    A new metal-organic framework/graphene oxide composite (IRMOF-3/GO) with high adsorption capacity of copper(II) (maximal adsorption amount = 254.14 mg/g at pH 5.0 and 25 °C) was prepared. Novel and highly efficient nanofiltration (NF) membrane can be facilely fabricated via surface decoration of IRMOF-3/GO onto polydopamine (PDA)-coated polysulfone (PSF) substrate. After decoration of IRMOF-3/GO, membrane surface potential increased from 6.7 to 13.1 mV at pH 5.0 and 25 °C. Due to the adsorption effect of IRMOF-3/GO and the enhancement of membrane surface potential, the prepared NF membrane (the loading amount of IRMOF-3/GO is ca. 13.6 g/m(2)) exhibits a highly efficient rejection of copper(II). The copper(II) rejection reaches up to ∼90%, while maintaining a relatively high flux of ∼31 L/m(2)/h at the pressure of 0.7 MPa and pH 5.0. Moreover, the membrane also presents an outstanding stability throughout the 2000 min NF testing period. Thus, the newly developed NF membrane shows a promising potential for water cleaning. This work provides a worthy reference for designing highly efficient NF membranes modified by metal-organic framework (MOF) relevant materials.

  17. Coherent Fe-rich nano-scale perovskite oxide phase in epitaxial Sr2FeMoO6 films grown on cubic and scandate substrates

    NASA Astrophysics Data System (ADS)

    Deniz, Hakan; Preziosi, Daniele; Alexe, Marin; Hesse, Dietrich

    2017-01-01

    We report the growth of high-quality epitaxial Sr2FeMoO6 (SFMO) thin films on various unconventional oxide substrates, such as TbScO3, DyScO3, and Sr2Al0.3Ga0.7TaO6 (SAGT) as well as on the most commonly used one, SrTiO3 (STO), by pulsed laser deposition. The films were found to contain a foreign nano-scale phase coherently embedded inside the SFMO film matrix. Through energy dispersive X-ray spectroscopy and scanning transmission electron microscopy, we identified the foreign phase to be Sr2-xFe1+yMo1-yO6, an off-stoichiometric derivative of the SFMO compound with Fe rich content (y ≈ 0.6) and a fairly identical crystal structure to SFMO. The films on STO and SAGT exhibited very good magnetic properties with high Curie temperature values. All the samples have fairly good conducting behavior albeit the presence of a foreign phase. Despite the relatively large number of items of the foreign phase, there is no significant deterioration in the properties of the SFMO films. We discuss in detail how magneto-transport properties are affected by the foreign phase.

  18. Characteristics of low-resistivity aluminum-doped zinc oxide films deposited at room temperature by off-axis radio-frequency sputtering on flexible plastic substrates

    NASA Astrophysics Data System (ADS)

    Wang, Li-Min; Wang, Chih-Yi; Jheng, Ciao-Ren; Wu, Syu-Jhan; Sai, Chen-Kai; Lee, Ya-Ju; Chiang, Ching-Yu; Shew, Bor-Yuan

    2016-08-01

    The crystalline structure, morphology, composition, electrical transport, and optical properties of aluminum-doped zinc oxide (AZO) films are studied for applications in transparent electronics and optoelectronic devices. AZO thin films of c-axis-oriented growth and with different thickness were deposited on PET flexible plastic substrates at room temperature by rf magnetron sputtering. A larger grain size with a decreased strain ɛ value is observed in a thicker film, while changes in composition for films with different thicknesses are insignificant. Moreover, the resistivity of film decreases with increasing thickness, and the low-temperature electrical transport properties can be described by the scenario of quantum corrections to conductivity. With the room-temperature growth conditions, the resistivity of 4.5 × 10-4 Ω cm, carrier concentration of 6.4 × 1020 cm-3, and transmittance of 80 % for the 1100-nm-thick film are obtained. In addition, the optical bandgap energy decreases with increasing film thickness, which can be attributed to the bandgap renormalization and crystallite size effects.

  19. Semiconductor films on flexible iridium substrates

    DOEpatents

    Goyal, Amit

    2005-03-29

    A laminate semiconductor article includes a flexible substrate, an optional biaxially textured oxide buffer system on the flexible substrate, a biaxially textured Ir-based buffer layer on the substrate or the buffer system, and an epitaxial layer of a semiconductor. Ir can serve as a substrate with an epitaxial layer of a semiconductor thereon.

  20. Energy partitioning and substrate oxidation by Murciano-Granadina goats during mid lactation fed soy hulls and corn gluten feed blend as a replacement for corn grain.

    PubMed

    López, M C; Fernández, C

    2013-07-01

    The aim of this experiment was to study the effect of substituting corn grain by soy hulls and corn gluten feed blend on energy partitioning, substrate oxidation, and milk performance in dairy goats during mid lactation. Ten multiparous Murciano-Granadina goats in mid lactation were fed 2 isoenergetic and isoproteic diets [19.08MJ/kg of dry matter (DM) and 18.7% of CP, DM basis] in a crossover design. One group of 5 goats was fed a mixed ration with 373g of corn grain/kg of DM (CRN diet) and the other diet replaced corn grain with 373g/kg DM of fibrous by-products [soy hulls and gluten feed (SHGF) diet]: 227g of soy hulls/kg of DM and 146g of gluten feed blend/kg DM. Fat was added to the SHGF diet to make it isoenergetic. After 10d of adaptation, the feed intake, refusal, total fecal and urine output, and milk yield were recorded daily over a 5-d period. Then, gas exchange measurements were recorded by a mobile open-circuit respirometry system using a head box for 10d. Dry matter intake was similar for both diets (2.07kg/d, on average). Greater and significant values were found in the SHGF diet for ammonia N, energy in urine, and oxidation of protein. Values were significantly lower for heat production of fermentation, indicating a decrease in rumen fermentation with this diet, probably due to an excess of crude protein in the diet and lack of synchronization of the nonfiber carbohydrates with rumen-degraded protein. The metabolizable energy intake was no different between CRN and SHGF treatments, with an average value of 1,444kJ/kg of BW(0.75). Due to the positive energy balance during mid lactation in this trial, most of the heat production from oxidation of nutrients derived from carbohydrate oxidation (55%, on average), followed by oxidation of fat (29%, on average). No significant differences were observed for milk production, although milk fat was significantly greater for the SHGF diet than the CRN diet (7.0 vs. 5.4%, respectively). Despite the different

  1. Fabricating metal-oxide-semiconductor field-effect transistors on a polyethylene terephthalate substrate by applying low-temperature layer transfer of a single-crystalline silicon layer by meniscus force

    SciTech Connect

    Sakaike, Kohei; Akazawa, Muneki; Nakamura, Shogo; Higashi, Seiichiro

    2013-12-02

    A low-temperature local-layer technique for transferring a single-crystalline silicon (c-Si) film by using a meniscus force was proposed, and an n-channel metal-oxide-semiconductor field-effect transistor (MOSFET) was fabricated on polyethylene terephthalate (PET) substrate. It was demonstrated that it is possible to transfer and form c-Si films in the required shape at the required position on PET substrates at extremely low temperatures by utilizing a meniscus force. The proposed technique for layer transfer was applied for fabricating high-performance c-Si MOSFETs on a PET substrate. The fabricated MOSFET showed a high on/off ratio of more than 10{sup 8} and a high field-effect mobility of 609 cm{sup 2} V{sup −1} s{sup −1}.

  2. Age-associated mitochondrial oxidative decay: Improvement of carnitine acetyltransferase substrate-binding affinity and activity in brain by feeding old rats acetyl-l- carnitine and/or R-α-lipoic acid

    PubMed Central

    Liu, Jiankang; Killilea, David W.; Ames, Bruce N.

    2002-01-01

    We test whether the dysfunction with age of carnitine acetyltransferase (CAT), a key mitochondrial enzyme for fuel utilization, is due to decreased binding affinity for substrate and whether this substrate, fed to old rats, restores CAT activity. The kinetics of CAT were analyzed by using the brains of young and old rats and of old rats supplemented for 7 weeks with the CAT substrate acetyl-l-carnitine (ALCAR) and/or the mitochondrial antioxidant precursor R-α-lipoic acid (LA). Old rats, compared with young rats, showed a decrease in CAT activity and in CAT-binding affinity for both substrates, ALCAR and CoA. Feeding ALCAR or ALCAR plus LA to old rats significantly restored CAT-binding affinity for ALCAR and CoA, and CAT activity. To explore the underlying mechanism, lipid peroxidation and total iron and copper levels were assayed; all increased in old rats. Feeding old rats LA or LA plus ALCAR inhibited lipid peroxidation but did not decrease iron and copper levels. Ex vivo oxidation of young-rat brain with Fe(II) caused loss of CAT activity and binding affinity. In vitro oxidation of purified CAT with Fe(II) inactivated the enzyme but did not alter binding affinity. However, in vitro treatment of CAT with the lipid peroxidation products malondialdehyde or 4-hydroxy-nonenal caused a decrease in CAT-binding affinity and activity, thus mimicking age-related change. Preincubation of CAT with ALCAR or CoA prevented malondialdehyde-induced dysfunction. Thus, feeding old rats high levels of key mitochondrial metabolites can ameliorate oxidative damage, enzyme activity, substrate-binding affinity, and mitochondrial dysfunction. PMID:11854488

  3. Biaxially textured composite substrates

    DOEpatents

    Groves, James R.; Foltyn, Stephen R.; Arendt, Paul N.

    2005-04-26

    An article including a substrate, a layer of a metal phosphate material such as an aluminum phosphate material upon the surface of the substrate, and a layer of an oriented cubic oxide material having a rock-salt-like structure upon the metal phosphate material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon a layer of a buffer material such as a SrTi.sub.x Ru.sub.1-x O.sub.3 layer.

  4. Graphene: Substrate preparation and introduction.

    PubMed

    Pantelic, Radosav S; Suk, Ji Won; Magnuson, Carl W; Meyer, Jannik C; Wachsmuth, Philipp; Kaiser, Ute; Ruoff, Rodney S; Stahlberg, Henning

    2011-04-01

    This technical note describes the transfer of continuous, single-layer, pristine graphene to standard Quantifoil TEM grids. We compare the transmission properties of pristine graphene substrates to those of graphene oxide and thin amorphous carbon substrates. Positively stained DNA imaged across amorphous carbon is typically indiscernible and requires metal shadowing for sufficient contrast. However, in a practical illustration of the new substrates properties, positively stained DNA is imaged across pristine graphene in striking contrast without the need of metal shadowing. We go onto discuss technical considerations and the potential applications of pristine graphene substrates as well as their ongoing development.

  5. [Effect of substrates of glycolysis and tricarboxylic acid cycle on the level of oxidative processes in spermatozoa of grass carp and carp].

    PubMed

    Gosh, R I

    1983-01-01

    Endogenic respiration of grass carp and carp spermatozoids is rather low. Oxidation rate of metabolites is different--malate is oxidized more intensively, it is followed by lactate, pyruvate, succinate. Sperm storage lowers the respiration level and oxidation rate of metabolites.

  6. Cuprate superconductors on titanium substrates

    NASA Astrophysics Data System (ADS)

    Mitterbauer, Christina; Gritzner, Gerhard

    2007-09-01

    The applicability of titanium as substrate material for coated conductors was investigated. Titanium metal was rolled to a thickness of 1 mm and mechanically polished. The titanium sheets were oxidized in air at 1000 °C for 1 h. A dense oxide layer was formed. YBCO superconducting layers were applied to the oxidized titanium surface via screen printing from a suspension in acetone-terpineol. The YBCO layers were characterized by X-ray diffraction and by scanning electron microscopy.

  7. Synthetic surfaces as models for biomineralization substrates

    SciTech Connect

    Rieke, P.C.; Tarasevich, B.J.; Bentjen, S.B.; Autrey, T.S.; Nelson, D.A.

    1990-01-01

    Polyethylene and oxide substrates were derivatized with functional groups commonly associated with biomineralization substrates. These groups include carboxylate, phosphate, hydroxy, sulfonate, thiol, and amine. Fourier transform infrared spectroscopy and contact angle wetting were used to identify and characterize the products at each step. The efficacy of these groups toward inducing mineralization will be compared with naturally occurring substrates. 10 refs., 5 figs.

  8. The influence of the substrate on the adhesive strength of the micro-arc oxidation coating developed on TiNi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Hsieh, Shy-Feng; Ou, Shih-Fu; Chou, Chia-Kai

    2017-01-01

    TiNi shape memory alloys (SMAs), used as long-term implant materials, have a disadvantage. Ni-ion release from the alloys may trigger allergies in the human body. Micro-arc oxidation has been utilized to modify the surface of the TiNi SMA for improving its corrosion resistance and biocompatibility. However, there are very few reports investigating the essential adhesive strength between the micro-arc oxidized film and TiNi SMA. Two primary goals were attained by this study. First, Ti50Ni48.5Mo1.5 SMA having a phase transformation temperature (Af) less than body temperature and good shape recovery were prepared. Next, the Ti50Ni50 and Ti50Ni48.5Mo1.5 SMA surfaces were modified by micro-arc oxidation in phosphoric acid by applying relatively low voltages to maintain the adhesive strength. The results indicated that the pore size, film thickness, and P content increased with applied voltage. The micro-arc oxidized film, comprising Ti oxides, Ni oxide, and phosphate compounds, exhibited a glassy amorphous structure. The outmost surface of the micro-arc oxidized film contained a large amount of P (>12 at%) but only a trace of Ni (<5 at%). The adhesive strengths of all the micro-arc oxidized films exceeded the requirements of ISO 13779. Furthermore, Mo addition into TiNi SMAs was found to be favorable for improving the adhesive strength of the micro-arc oxidized film.

  9. Perpendicularly magnetized (001)-textured D0{sub 22} MnGa films grown on an (Mg{sub 0.2}Ti{sub 0.8})O buffer with thermally oxidized Si substrates

    SciTech Connect

    Lee, Hwachol; Sukegawa, Hiroaki; Liu, Jun; Mitani, Seiji; Hono, Kazuhiro

    2015-10-28

    We report the growth of (001)-textured polycrystalline D0{sub 22} MnGa films with perpendicular magnetic anisotropy (PMA) on thermally oxidized Si substrates using an (Mg{sub 0.2}Ti{sub 0.8})O (MTO) buffer layer. The ordered D0{sub 22} MnGa film grown at the optimum substrate temperature of 530 °C on the MTO buffer layer shows PMA with magnetization of 80 kA/m, PMA energy density of 0.28 MJ/m{sup 3}, and coercivity of 2.3 T. The scanning transmission electron microscope analysis confirms the formation of a highly (001)-textured structure and the elementally sharp interfaces between the MTO layer and the MnGa layer. The achieved D0{sub 22} MnGa PMA films on an amorphous substrate will provide the possible pathway of integration of a Mn-based PMA film into Si-based substrates.

  10. Cancer Stem Cells in Small Cell Lung Cancer Cell Line H446: Higher Dependency on Oxidative Phosphorylation and Mitochondrial Substrate-Level Phosphorylation than Non-Stem Cancer Cells

    PubMed Central

    Jin, Fang; Miao, Yajing; Qiu, Xiaofei

    2016-01-01

    Recently, targeting cancer stem cells (CSCs) metabolism is becoming a promising therapeutic approach to improve cancer treatment outcomes. However, knowledge of the metabolic state of CSCs in small cell lung cancer is still lacking. In this study, we found that CSCs had significantly lower oxygen consumption rate and extracellular acidification rate than non-stem cancer cells. Meanwhile, this subpopulation of cells consumed less glucose, produced less lactate and maintained lower ATP levels. We also revealed that CSCs could produce more ATP through mitochondrial substrate-level phosphorylation during respiratory inhibition compared with non-stem cancer cells. Furthermore, they were more sensitive to suppression of oxidative phosphorylation. Therefore, oligomycin (inhibitor of oxidative phosphorylation) could severely impair sphere-forming and tumor-initiating abilities of CSCs. Our work suggests that CSCs represent metabolically inactive tumor subpopulations which sustain in a state showing low metabolic activity. However, mitochondrial substrate-level phosphorylation of CSCs may be more active than that of non-stem cancer cells. Moreover, CSCs showed preferential use of oxidative phosphorylation over glycolysis to meet their energy demand. These results extend our understanding of CSCs metabolism, potentially providing novel treatment strategies targeting metabolic pathways in small cell lung cancer. PMID:27167619

  11. In-situ fabrication of MoSi2/SiC-Mo2C gradient anti-oxidation coating on Mo substrate and the crucial effect of Mo2C barrier layer at high temperature

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Gong, Qianming; Shao, Yang; Zhuang, Daming; Liang, Ji

    2014-07-01

    MoSi2/SiC-Mo2C gradient coating on molybdenum was in situ prepared with pack cementation process by two steps: (1) carburizing with graphite powder to obtain a Mo2C layer on Mo substrate, and (2) siliconizing with Si powder to get a composite MoSi2/SiC layer on the upper part of Mo2C layer. The microstructure and elemental distribution in the coating were investigated with scanning electron microscopy (SEM), back scattered electron (BSE), energy dispersive spectroscopy (EDS), electron probe microanalysis (EPMA) and X-ray diffraction (XRD). Cyclic oxidation tests (at 500 °C, 1200 °C, 1400 °C and 1600 °C) demonstrated excellent oxidation resistance for the gradient composite coating and the mass loss was only 0.23% in 60 min at 1600 °C. XRD, EPMA, thermal dynamic and phase diagram analyses indicated that the Mo2C barrier layer played the key role in slowing down the diffusion of C and Si toward inner Mo substrate at high temperature and principally this contributed to the excellent anti-oxidation for Mo besides the outer MoSi2/SiC composite layer.

  12. Direct transparent electrode patterning on layered GaN substrate by screen printing of indium tin oxide nanoparticle ink for Eu-doped GaN red light-emitting diode

    SciTech Connect

    Kashiwagi, Y. Yamamoto, M.; Saitoh, M.; Takahashi, M.; Ohno, T.; Nakamoto, M.; Koizumi, A.; Fujiwara, Y.; Takemura, Y.; Murahashi, K.; Ohtsuka, K.; Furuta, S.

    2014-12-01

    Transparent electrodes were formed on Eu-doped GaN-based red-light-emitting diode (GaN:Eu LED) substrates by the screen printing of indium tin oxide nanoparticle (ITO np) inks as a wet process. The ITO nps with a mean diameter of 25 nm were synthesized by the controlled thermolysis of a mixture of indium complexes and tin complexes. After the direct screen printing of ITO np inks on GaN:Eu LED substrates and sintering at 850 °C for 10 min under atmospheric conditions, the resistivity of the ITO film was 5.2 mΩ cm. The fabricated LED up to 3 mm square surface emitted red light when the on-voltage was exceeded.

  13. Optimization of growth conditions for (La1-yPry)1-x CaxMnO3 thin films on annealed oxide substrates

    NASA Astrophysics Data System (ADS)

    Schaefer, Brian; Grant, Daniel; Biswas, Amlan

    2014-03-01

    Consistent growth of flat, epitaxial thin films is essential for uncovering the unique transport characteristics of rare-earth manganite systems. We have developed pulsed laser deposition growth conditions for (La1-yPry)1-x CaxMnO3 (LPCMO, y = 0.4, 0.5, 0.6) thin films on annealed NdGaO3 (NGO) and SrTiO3 (STO) substrates. The extra annealing step for NGO and STO produces atomically flat substrates with well-defined terraces of unit cell step height. Films grown on these annealed substrates demonstrate better lattice matching compared to films grown on as-received substrates. Consequently, annealing substrates before film growth leads to higher quality thin films with a more controllable thickness. We demonstrate that these optimized growth parameters yield LPCMO thin films that are also atomically flat, as confirmed by atomic force microscopy. We are using these thin films to restrict phase growth to reduced dimensions and to study the origin of thermodynamic phase competition due to first order transitions in manganites. NSF DMR-0804452

  14. Demonstration of Y1Ba2Cu3O(7-delta) and complementary metal-oxide-semiconductor device fabrication on the same sapphire substrate

    NASA Technical Reports Server (NTRS)

    Burns, M. J.; De La Houssaye, P. R.; Russell, S. D.; Garcia, G. A.; Clayton, S. R.; Ruby, W. S.; Lee, L. P.

    1993-01-01

    We report the first fabrication of active semiconductor and high-temperature superconducting devices on the same substrate. Test structures of complementary MOS transistors were fabricated on the same sapphire substrate as test structures of Y1Ba2Cu3O(7-delta) flux-flow transistors, and separately, Y1Ba2Cu3O(7-delta) superconducting quantum interference devices utilizing both biepitaxial and step-edge Josephson junctions. Both semiconductor and superconductor devices were operated at 77 K. The cofabrication of devices using these disparate yet complementary electronic technologies on the same substrate opens the door for the fabrication of true semiconductive/superconductive hybrid integrated circuits capable of exploiting the best features of each of these technologies.

  15. Substrate and Lewis Acid Coordination Promote O-O Bond Cleavage of an Unreactive L2Cu(II)2(O2(2-)) Species to Form L2Cu(III)2(O)2 Cores with Enhanced Oxidative Reactivity.

    PubMed

    Garcia-Bosch, Isaac; Cowley, Ryan E; Díaz, Daniel E; Peterson, Ryan L; Solomon, Edward I; Karlin, Kenneth D

    2017-03-01

    Copper-dependent metalloenzymes are widespread throughout metabolic pathways, coupling the reduction of O2 with the oxidation of organic substrates. Small-molecule synthetic analogs are useful platforms to generate L/Cu/O2 species that reproduce the structural, spectroscopic, and reactive properties of some copper-/O2-dependent enzymes. Landmark studies have shown that the conversion between dicopper(II)-peroxo species (L2Cu(II)2(O2(2-)) either side-on peroxo, (S)P, or end-on trans-peroxo, (T)P) and dicopper(III)-bis(μ-oxo) (L2Cu(III)2(O(2-))2: O) can be controlled through ligand design, reaction conditions (temperature, solvent, and counteranion), or substrate coordination. We recently published ( J. Am. Chem. Soc. 2012 , 134 , 8513 , DOI: 10.1021/ja300674m ) the crystal structure of an unusual (S)P species [(MeAN)2Cu(II)2(O2(2-))](2+) ((S)P(MeAN), MeAN: N-methyl-N,N-bis[3-(dimethylamino)propyl]amine) that featured an elongated O-O bond but did not lead to O-O cleavage or reactivity toward external substrates. Herein, we report that (S)P(MeAN) can be activated to generate O(MeAN) and perform the oxidation of external substrates by two complementary strategies: (i) coordination of substituted sodium phenolates to form the substrate-bound O(MeAN)-RPhO(-) species that leads to ortho-hydroxylation in a tyrosinase-like fashion and (ii) addition of stoichiometric amounts (1 or 2 equiv) of Lewis acids (LA's) to form an unprecedented series of O-type species (O(MeAN)-LA) able to oxidize C-H and O-H bonds. Spectroscopic, computational, and mechanistic studies emphasize the unique plasticity of the (S)P(MeAN) core, which combines the assembly of exogenous reagents in the primary (phenolates) and secondary (Lewis acids association to the MeAN ligand) coordination spheres with O-O cleavage. These findings are reminiscent of the strategy followed by several metalloproteins and highlight the possible implication of O-type species in copper-/dioxygen-dependent enzymes such as

  16. The substrate binding cavity of particulate methane monooxygenase from Methylosinus trichosporium OB3b expresses high enantioselectivity for n-butane and n-pentane oxidation to 2-alcohol.

    PubMed

    Miyaji, Akimitsu; Miyoshi, Teppei; Motokura, Ken; Baba, Toshihide

    2011-11-01

    The particulate methane monooxygenase (pMMO) of Methylosinus trichosporium OB3b oxidized n-butane and n-pentane and mainly produced (R)-2-butanol and (R)-2-pentanol that comprised 78 and 89% of the product, respectively, indicating that the pro-R hydrogen of the 2-position carbon of n-butane and n-pentane is oriented toward a catalytic site within the substrate binding site of pMMO. The protein cavity adjacent to the catalytic center for pMMO has optimum volume for recognizing n-butane and n-pentane for enantioselective hydroxylation.

  17. Pulsed EPR study of amino acid and tetrahydropterin binding in a tyrosine hydroxylase nitric oxide complex: evidence for substrate rearrangements in the formation of the oxygen-reactive complex.

    PubMed

    Krzyaniak, Matthew D; Eser, Bekir E; Ellis, Holly R; Fitzpatrick, Paul F; McCracken, John

    2013-11-26

    Tyrosine hydroxylase is a nonheme iron enzyme found in the nervous system that catalyzes the hydroxylation of tyrosine to form l-3,4-dihydroxyphenylalanine, the rate-limiting step in the biosynthesis of the catecholamine neurotransmitters. Catalysis requires the binding of three substrates: tyrosine, tetrahydrobiopterin, and molecular oxygen. We have used nitric oxide as an O₂ surrogate to poise Fe(II) at the catalytic site in an S = 3/2, {FeNO}⁷ form amenable to EPR spectroscopy. ²H-electron spin echo envelope modulation was then used to measure the distance and orientation of specifically deuterated substrate tyrosine and cofactor 6-methyltetrahydropterin with respect to the magnetic axes of the {FeNO}⁷ paramagnetic center. Our results show that the addition of tyrosine triggers a conformational change in the enzyme that reduces the distance from the {FeNO}⁷ center to the closest deuteron on 6,7-²H-6-methyltetrahydropterin from >5.9 Å to 4.4 ± 0.2 Å. Conversely, the addition of 6-methyltetrahydropterin to enzyme samples treated with 3,5-²H-tyrosine resulted in reorientation of the magnetic axes of the S = 3/2, {FeNO}⁷ center with respect to the deuterated substrate. Taken together, these results show that the coordination of both substrate and cofactor direct the coordination of NO to Fe(II) at the active site. Parallel studies of a quaternary complex of an uncoupled tyrosine hydroxylase variant, E332A, show no change in the hyperfine coupling to substrate tyrosine and cofactor 6-methyltetrahydropterin. Our results are discussed in the context of previous spectroscopic and X-ray crystallographic studies done on tyrosine hydroxylase and phenylalanine hydroxylase.

  18. Auto-Oxidation of Ortho-Diphenolic Substrate and Deactivation of Polyphenol Oxidases (Catecholase) During Wilting and Post Harvest Damage in Red Clover

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyphenol oxidases (PPO) in red clover convert diphenolic substrate to highly reactive quinones which, through their reaction with proteins, increase the efficiency of N utilization and increase the proportion of beneficial polyunsaturated fatty acids in bovine products (meat and milk). Auto-oxidat...

  19. Boron doped Si rich oxide/SiO{sub 2} and silicon rich nitride/SiN{sub x} bilayers on molybdenum-fused silica substrates for vertically structured Si quantum dot solar cells

    SciTech Connect

    Lin, Ziyun Wu, Lingfeng; Jia, Xuguang; Zhang, Tian; Puthen-Veettil, Binesh; Yang, Terry Chien-Jen; Conibeer, Gavin; Perez-Wurfl, Ivan

    2015-07-28

    Vertically structured Si quantum dots (QDs) solar cells with molybdenum (Mo) interlayer on quartz substrates would overcome current crowding effects found in mesa-structured cells. This study investigates the compatibility between boron (B) doped Si QDs bilayers and Mo-fused silica substrate. Both Si/SiO{sub 2} and Si/SiN{sub x} based QDs bilayers were studied. The material compatibility under high temperature treatment was assessed by examining Si crystallinity, microstress, thin film adhesion, and Mo oxidation. It was observed that the presence of Mo interlayer enhanced the Si QDs size confinement, crystalline fraction, and QDs size uniformity. The use of B doping was preferred compared to phosphine (PH{sub 3}) doping studied previously in terms of better surface and interface properties by reducing oxidized spots on the film. Though crack formation due to thermal mismatch after annealing remained, methods to overcome this problem were proposed in this paper. Schematic diagram to fabricate full vertical structured Si QDs solar cells was also suggested.

  20. Microstructure/electrical Property Correlations for Yttrium BARIUM(2) COPPER(3) OXYGEN(7-X)/BARRIER Layer Films Deposited on Aluminum Oxide, Silicon, and Yttria - Zirconia Substrates

    NASA Astrophysics Data System (ADS)

    Mueller, Carl Henry

    YBa_2Cu_3O_ {7-x} and barrier layer films were deposited on single-crystal silicon (Si), Al_2O _3, yittria-stabilized zirconia (Y-ZrO _2), SrTiO_3, and LaAlO_3 substrates. A pulsed laser deposition process was used to deposit the films at a substrate temperature of 730-750^circC, and the films were cooled in an oxygen ambient. The films were characterized using resistance versus temperature, critical current density (J_{c}), x-ray diffraction (XRD), scanning electron microscopy (SEM), Auger electron spectroscopy (AES), and Raman spectroscopy. Growth of barrier layers on Si and Al_2O_3 substrates prior to the superconductor suppressed chemical interdiffusion between the superconductor and substrate. For (1102) Al_2O _3, the best barrier layer was a SrTiO _3 film deposited at 200 mTorr of oxygen. The YBa_2Cu_3O_{7 -x} film had a zero resistance temperature of 83^circK, and the J _{c} was 2.5 times 10^6 amps/cm ^2 at 4.5^circ K. The surface resistance was 10^ {-2} ohms at 36 gigahertz. On silicon substrates, YBa_2Cu _3O_{7-x} degradation is aggrevated by thermal stresses created by the difference in thermal expansion coefficients between YBa_2Cu_3O_{7-x} and Si (13.2 versus 3.8 times 10 ^{-6}/^ circC, respectively), which causes microcracking in the YBa_2Cu_3O_ {7-x} films. Cracking and interdiffusion were minimized by depositing a YAlO_3 barrier layer prior to YBa_2Cu _3O_{7-x}. The thermal stresses were relieved by viscoelastic relaxation in the YBa_2Cu_3O_{7-x} film, and the T_0 was 78 ^circK. The J_{c} values of YBa_2Cu_3O_ {7-x} films on Y-ZrO_2 substrates were increased by depositing Y-ZrO _2 or Y_2O_3 barrier layers. YBa_2Cu _3O_{7-x}/Y_2O_3 films on Y-ZrO_2 substrates had J_{c} values of 9 times 10^5 and 1 times 10^7 amps/cm^2 at 77 and 4.5 ^circK. The J_{ c} of YBa_2Cu _3O_{7-x} films deposited on a Y-ZrO_2 substrate without a barrier layer was 6.8 times 10 ^3 amps/cm^2 at 4.5 ^circK. The higher J _{c} values were attributed to pinning of the magnetic flux by

  1. A comparison of the substrate and electron-donor specificities of the methane mono-oxygenases from three strains of methane-oxidizing bacteria.

    PubMed Central

    Stirling, D I; Colby, J; Dalton, H

    1979-01-01

    1. Methane mono-oxygenase from Methylosinus trichosporium has the same broad substrate specificity as the analogous enzyme from Methylococcus capsulatus (Bath); the enzyme from Methylomonas methanica is more specific. 2. Contrary to previous reports, NAD(P)H and not ascorbate is the required electron donor for the enzyme from Methylosinus trichosporium. 3. It is concluded that these three bacteria contain similar methane mono-oxygenases. PMID:106847

  2. Desulfovibrio vulgaris bacterioferritin uses H(2)O(2) as a co-substrate for iron oxidation and reveals DPS-like DNA protection and binding activities.

    PubMed

    Timóteo, Cristina G; Guilherme, Márcia; Penas, Daniela; Folgosa, Filipe; Tavares, Pedro; Pereira, Alice S

    2012-08-15

    A gene encoding Bfr (bacterioferritin) was identified and isolated from the genome of Desulfovibrio vulgaris cells, and overexpressed in Escherichia coli. In vitro, H(2)O(2) oxidizes Fe(2+) ions at much higher reaction rates than O(2). The H(2)O(2) oxidation of two Fe(2+) ions was proven by Mössbauer spectroscopy of rapid freeze-quenched samples. On the basis of the Mössbauer parameters of the intermediate species we propose that D. vulgaris Bfr follows a mineralization mechanism similar to the one reported for vertebrate H-type ferritins subunits, in which a diferrous centre at the ferroxidase site is oxidized to diferric intermediate species, that are subsequently translocated into the inner nanocavity. D. vulgaris recombinant Bfr oxidizes and stores up to 600 iron atoms per protein. This Bfr is able to bind DNA and protect it against hydroxyl radical and DNase deleterious effects. The use of H(2)O(2) as an oxidant, combined with the DNA binding and protection activities, seems to indicate a DPS (DNA-binding protein from starved cells)-like role for D. vulgaris Bfr.

  3. Tuning of structural, light emission and wetting properties of nanostructured copper oxide-porous silicon matrix formed on electrochemically etched copper-coated silicon substrates

    NASA Astrophysics Data System (ADS)

    Naddaf, M.

    2017-01-01

    Matrices of copper oxide-porous silicon nanostructures have been formed by electrochemical etching of copper-coated silicon surfaces in HF-based solution at different etching times (5-15 min). Micro-Raman, X-ray diffraction and X-ray photoelectron spectroscopy results show that the nature of copper oxide in the matrix changes from single-phase copper (I) oxide (Cu2O) to single-phase copper (II) oxide (CuO) on increasing the etching time. This is accompanied with important variation in the content of carbon, carbon hydrides, carbonyl compounds and silicon oxide in the matrix. The matrix formed at the low etching time (5 min) exhibits a single broad "blue" room-temperature photoluminescence (PL) band. On increasing the etching time, the intensity of this band decreases and a much stronger "red" PL band emerges in the PL spectra. The relative intensity of this band with respect to the "blue" band significantly increases on increasing the etching time. The "blue" and "red" PL bands are attributed to Cu2O and porous silicon of the matrix, respectively. In addition, the water contact angle measurements reveal that the hydrophobicity of the matrix surface can be tuned from hydrophobic to superhydrophobic state by controlling the etching time.

  4. Novel ferroferric oxide/polystyrene/silver core-shell magnetic nanocomposite microspheres as regenerable substrates for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Bai, Chong; Zhao, Dan; Liu, Wei-Liang; Ren, Man-Man; Liu, Qin-Ze; Yang, Zhi-Zhou; Wang, Xin-Qiang; Duan, Xiu-Lan

    2016-02-01

    A novel Ag-coated Fe3O4@Polystyrene core-shell microsphere has been designed via fabrication of Fe3O4@Polystyrene core-shell magnetic microsphere through a seed emulsion polymerization, followed by deposition of Ag nanoparticles using in-situ reduction method. Such magnetic microspheres can be utilized as sensitive surface-enhanced Raman scattering (SERS) substrates, using Rhodamine 6G (R6G) as a probe molecule, with both stable and reproducible performances. The SERS detection limit of R6G decreased to 1 × 10-10 M and the enhancement factor of this substrate on the order of 106 was obtained. In addition, owing to possessing excellent magnetic properties, the resultant microspheres could be separated rapidly by an external magnetic field and utilized repeatedly for three times at least. Therefore, the unique renewable property suggests a new route to eliminate the single-use problem of traditional SERS substrates and will be promising for the practical application.

  5. Spatial atomic layer deposition on flexible porous substrates: ZnO on anodic aluminum oxide films and Al{sub 2}O{sub 3} on Li ion battery electrodes

    SciTech Connect

    Sharma, Kashish; Routkevitch, Dmitri; Varaksa, Natalia; George, Steven M.

    2016-01-15

    Spatial atomic layer deposition (S-ALD) was examined on flexible porous substrates utilizing a rotating cylinder reactor to perform the S-ALD. S-ALD was first explored on flexible polyethylene terephthalate polymer substrates to obtain S-ALD growth rates on flat surfaces. ZnO ALD with diethylzinc and ozone as the reactants at 50 °C was the model S-ALD system. ZnO S-ALD was then performed on nanoporous flexible anodic aluminum oxide (AAO) films. ZnO S-ALD in porous substrates depends on the pore diameter, pore aspect ratio, and reactant exposure time that define the gas transport. To evaluate these parameters, the Zn coverage profiles in the pores of the AAO films were measured using energy dispersive spectroscopy (EDS). EDS measurements were conducted for different reaction conditions and AAO pore geometries. Substrate speeds and reactant pulse durations were defined by rotating cylinder rates of 10, 100, and 200 revolutions per minute (RPM). AAO pore diameters of 10, 25, 50, and 100 nm were utilized with a pore length of 25 μm. Uniform Zn coverage profiles were obtained at 10 RPM and pore diameters of 100 nm. The Zn coverage was less uniform at higher RPM values and smaller pore diameters. These results indicate that S-ALD into porous substrates is feasible under certain reaction conditions. S-ALD was then performed on porous Li ion battery electrodes to test S-ALD on a technologically important porous substrate. Li{sub 0.20}Mn{sub 0.54}Ni{sub 0.13}Co{sub 0.13}O{sub 2} electrodes on flexible metal foil were coated with Al{sub 2}O{sub 3} using 2–5 Al{sub 2}O{sub 3} ALD cycles. The Al{sub 2}O{sub 3} ALD was performed in the S-ALD reactor at a rotating cylinder rate of 10 RPM using trimethylaluminum and ozone as the reactants at 50 °C. The capacity of the electrodes was then tested versus number of charge–discharge cycles. These measurements revealed that the Al{sub 2}O{sub 3} S-ALD coating on the electrodes enhanced the capacity stability. This S

  6. Modes of Heme-Binding and Substrate Access for Cytochrome P450 CYP74A Revealed by Crystal Structures of Allene Oxide Synthase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cytochrome P450s exist ubiquitously in all organisms and are involved in many biological processes. Allene oxide synthase (AOS) is a P450 enzyme that plays a key role in the biosynthesis of oxylipin jasmonates which are involved in signal and defense reactions in higher plants. The crystal structure...

  7. Improved continuity of reduced graphene oxide on polyester fabric by use of polypyrrole to achieve a highly electro-conductive and flexible substrate

    NASA Astrophysics Data System (ADS)

    Berendjchi, Amirhosein; Khajavi, Ramin; Yousefi, Ali Akbar; Yazdanshenas, Mohammad Esmail

    2016-02-01

    A flexible and highly conductive fabric can be applied for wearable electronics and as a pliable counter electrode for photovoltaics. Methods such as surface coating of fabrics with conductive polymers and materials have been developed, but the roughness of fabric is a challenge because it creates discontinuity in the coated layer. The present study first coated polyethylene terephthalate (PET) fabric with reduced graphene oxide sheets; RGO and then filled the gaps with polypyrrole (PPy). The samples were first dipped in graphene oxide (GO) and then reduced to RGO. They were next coated with PPy by in situ polymerization. The results showed that the presence of oxidative agent during synthesis of PPy oxidized the RGO to some extent on the previously RGO-coated samples. PPy was more uniform on samples pre-coated with RGO in comparison those coated with raw PET. The RGO-PPy coated samples exhibited 53% and 263% lower surface resistivity values than samples coated only with PPy and RGO, respectively. There was no significant difference between the tenacity of samples but the bending rigidity of samples increased. The RGO-PPy coated fabric displayed properties, such as excellent UV blocking (UPF = 73), antibacterial activity, improved electrochemical behavior and thermal stability which make it a multifunctional fabric.

  8. Effects of 2-(3-methyl-cinnamyl-hydrazono)-propionate on fatty acid and glucose oxidation in the isolated rat diaphragm using 14C-labelled substrates. Hydrazonopropionic acids, a new class of hypoglycaemic substances, VIII.

    PubMed

    Binder, L; Oellerich, M; Haeckel, R; Beneking, M

    1988-12-01

    The influence of 2-(3-methyl-cinnamyl-hydrazono)-propionate on the utilization of various substrates in isolated rat hemidiaphragms was investigated in comparison with other hypoglycaemic compounds. The effect of 2-(3-methyl-cinnamyl-hydrazono)-propionate was concentration-dependent. At a concentration of 0.5 mmol/l 2-(3-methyl-cinnamyl-hydrazono)-propionate, glucose utilization increased from 0.276 +/- 0.043 mumol.g-1.l-1 to 0.894 +/- 0.303 mumol.g-1.l-1 (p less than 0.05). Pyruvate and lactate utilization were stimulated to a lesser extent, while acetate utilization remained nearly constant. At a concentration of 2 mmol/l 2-(3-methyl-cinnamyl-hydrazono)-propionate, the oxidation of palmitate decreased from 0.214 +/- 0.017 mumol.g-1.l-1 to 0.060 +/- 0.005 mumol.g-1.l-1, while the oxidation of octanoate was not decreased. These findings point to a stimulation of the glycolytic flux by inhibition of long-chain fatty acid oxidation.

  9. Advanced Photon Source Activity Report 2002 at Argonne National Laboratory, Argonne, IL, December 2003 - contribution title:"Microdiffraction Study of Epitaxial Growth and Lattice Tilts in Oxide Films on Polycrystalline Metal Substrates"

    SciTech Connect

    Budai, J.D.

    2004-03-18

    Texture, the preference for a particular crystallographic orientation in polycrystalline materials, plays an important role in controlling such diverse materials properties as corrosion resistance, recording density in magnetic media and electrical transport in superconductors [1]. Without texture, polycrystalline oxide superconductors contain many high-angle, weak-linked grain boundaries which reduce critical current densities by several orders of magnitude [2]. One approach for inducing texture in oxide superconductors has been the epitaxial growth of films on rolling-assisted biaxially-textured substrates (RABiTS) [3]. In this approach, rolled Ni foils are recrystallized under conditions that lead to a high degree of biaxial {l_brace}001{r_brace}<100> cube texture. Subsequent deposition of epitaxial oxide buffer layers (typically CeO{sub 2} and YSZ as chemical barriers) and superconducting YBCO preserves the lattice alignment, eliminating high-angle boundaries and enabling high critical current densities, J{sub c} > 10{sup 6}/cm{sup 2}. Conventional x-ray diffraction using {omega}- and {phi}-scans typically shows macroscopic biaxial texture to within {approx}5{sup o}-10{sup o} FWHM for all layers, but does not describe the local microstructural features that control the materials properties. Understanding and controlling the local texture and microstructural evolution of processes associated with heteroepitaxial growth, differential thermal contraction and cracking remain significant challenges in this complex system [4], as well as in many other technologically important thin-film applications.

  10. Surface control alloy substrates and methods of manufacture therefor

    DOEpatents

    Fritzemeier, Leslie G.; Li, Qi; Rupich, Martin W.; Thompson, Elliott D.; Siegal, Edward J.; Thieme, Cornelis Leo Hans; Annavarapu, Suresh; Arendt, Paul N.; Foltyn, Stephen R.

    2004-05-04

    Methods and articles for controlling the surface of an alloy substrate for deposition of an epitaxial layer. The invention includes the use of an intermediate layer to stabilize the substrate surface against oxidation for subsequent deposition of an epitaxial layer.

  11. Continuous lengths of oxide superconductors

    DOEpatents

    Kroeger, Donald M.; List, III, Frederick A.

    2000-01-01

    A layered oxide superconductor prepared by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon. A continuous length of a second substrate ribbon is overlaid on the first substrate ribbon. Sufficient pressure is applied to form a bound layered superconductor precursor powder between the first substrate ribbon and the second substrate ribbon. The layered superconductor precursor is then heat treated to establish the oxide superconducting phase. The layered oxide superconductor has a smooth interface between the substrate and the oxide superconductor.

  12. Optical properties of double layer thin films zinc oxide doping aluminum (ZnO/Al) were deposited on glass substrates by sol gel method spray coating technique

    NASA Astrophysics Data System (ADS)

    Permatasari, Anes; Sutanto, Heri; Marito Siagian, Sinta

    2017-01-01

    Thin films of double layer of ZnO/Al has succeeded in deposition on a glass substrate using sol-gel method and spray coating techniques. Variations of doping Al as much as 2%, 4%, 6% and 8%. ZnO precursor synthesized using zinc acetate dehydrate (Zn(COOCH3)2.2H2O), isopropanol ((CH3)2CHOH) and monoethanolamine (MEA) were stirred using a magnetic stirrer for 45 minutes. ZnO precursor get homogeneous and then added of aluminum nitrate nonahydrate predetermined doping concentration and stirred again for 15 minutes. Deposition solution is done by the spray on a glass substrate and then heated at a temperature of 450°C. A layer of ZnO/Al deposited over the ZnO to produce a thin layer of a double layer. Optical properties layer of ZnO/Al characterized using UV-Vis spectrophotometer. Based on data from UV-Vis absorbance was determined the value of the energy band gap. Pure and dopped layers has different energy due the Al dopping. For pure ZnO layer has energy band gap of 3.347 eV and decreased to 3.09 eV for ZnO layer with Al dopant.

  13. Nonvolatile memory thin-film transistors using biodegradable chicken albumen gate insulator and oxide semiconductor channel on eco-friendly paper substrate.

    PubMed

    Kim, So-Jung; Jeon, Da-Bin; Park, Jung-Ho; Ryu, Min-Ki; Yang, Jong-Heon; Hwang, Chi-Sun; Kim, Gi-Heon; Yoon, Sung-Min

    2015-03-04

    Nonvolatile memory thin-film transistors (TFTs) fabricated on paper substrates were proposed as one of the eco-friendly electronic devices. The gate stack was composed of chicken albumen gate insulator and In-Ga-Zn-O semiconducting channel layers. All the fabrication processes were performed below 120 °C. To improve the process compatibility of the synthethic paper substrate, an Al2O3 thin film was introduced as adhesion and barrier layers by atomic layer deposition. The dielectric properties of biomaterial albumen gate insulator were also enhanced by the preparation of Al2O3 capping layer. The nonvolatile bistabilities were realized by the switching phenomena of residual polarization within the albumen thin film. The fabricated device exhibited a counterclockwise hysteresis with a memory window of 11.8 V, high on/off ratio of approximately 1.1 × 10(6), and high saturation mobility (μsat) of 11.5 cm(2)/(V s). Furthermore, these device characteristics were not markedly degraded even after the delamination and under the bending situration. When the curvature radius was set as 5.3 cm, the ION/IOFF ratio and μsat were obtained to be 5.9 × 10(6) and 7.9 cm(2)/(V s), respectively.

  14. High-yield aqueous synthesis of multi-branched iron oxide core-gold shell nanoparticles: SERS substrate for immobilization and magnetic separation of bacteria

    NASA Astrophysics Data System (ADS)

    Tamer, Ugur; Onay, Aykut; Ciftci, Hakan; Bozkurt, Akif Göktuğ; Cetin, Demet; Suludere, Zekiye; Hakkı Boyacı, İsmail; Daniel, Philippe; Lagarde, Fabienne; Yaacoub, Nader; Greneche, Jean-Marc

    2014-10-01

    The high product yield of multi-branched core-shell Fe3- x O4@Au magnetic nanoparticles was synthesized used as magnetic separation platform and surface-enhanced Raman scattering (SERS) substrates. The multi-branched magnetic nanoparticles were prepared by a seed-mediated growth approach using magnetic gold nanospheres as the seeds and subsequent reduction of metal salt with ascorbic acid in the presence of a stabilizing agent chitosan biopolymer and silver ions. The anisotropic growth of nanoparticles was observed in the presence of chitosan polymer matrix resulting in multi-branched nanoparticles with a diameter over 100 nm, and silver ions also play a crucial role on the growth of multi-branched nanoparticles. We propose the mechanism of the formation of multi-branched nanoparticles while the properties of nanoparticles embedded in chitosan matrix are discussed. The surface morphology of nanoparticles was characterized with transmission electron microscopy, scanning electron microscopy, ultraviolet visible spectroscopy (UV-Vis), X-ray diffraction, and fourier transform infrared spectroscopy and 57Fe Mössbauer spectrometry. Additionally, the magnetic properties of the nanoparticles were also examined. We also demonstrated that the synthesized Fe3- x O4@Au multi-branched nanoparticle is capable of targeted separation of pathogens from matrix and sensing as SERS substrates.

  15. Film Growth on Nanoporous Substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Xue; Joy, James; Zhao, Chenwei; Xu, J. M.; Valles, James

    Self-ordered nanoporous anodic aluminum oxide (AAO) provides an easy way to fabricate nano structured material, such as nano wires and nano particles. We employ AAO as substrates and focus on the thermally evaporated film growth on the surface of the substrate. With various materials deposited onto the substrate, we find the films show different structures, e,g. ordered array of nano particles for Lead and nanohoneycomb structure for Silver. We relate the differing behaviors to the difference of surface energy and diffusion constant. To verify this, the effect of substrate temperature on the film growth has been explored and the structure of the film has been successfully changed through the process. We are grateful for the support of NSF Grants No. DMR-1307290.

  16. Elementary steps of the catalytic NO{sub x} reduction with NH{sub 3}: Cluster studies on reaction paths and energetics at vanadium oxide substrate

    SciTech Connect

    Gruber, M.; Hermann, K.

    2013-12-28

    We consider different reaction scenarios of the selective catalytic reduction (SCR) of NO in the presence of ammonia at perfect as well as reduced vanadium oxide surfaces modeled by V{sub 2}O{sub 5}(010) without and with oxygen vacancies. Geometric and energetic details as well as reaction paths are evaluated using extended cluster models together with density-functional theory. Based on earlier work of adsorption, diffusion, and reaction of the different surface species participating in the SCR we confirm that at Brønsted acid sites (i.e., OH groups) of the perfect oxide surface nitrosamide, NH{sub 2}NO, forms a stable intermediate. Here adsorption of NH{sub 3} results in NH{sub 4} surface species which reacts with gas phase NO to produce the intermediate. Nitrosamide is also found as intermediate of the SCR near Lewis acid sites of the reduced oxide surface (i.e., near oxygen vacancies). However, here the adsorbed NH{sub 3} species is dehydrogenated to surface NH{sub 2} before it reacts with gas phase NO to produce the intermediate. The calculations suggest that reaction barriers for the SCR are overall higher near Brønsted acid sites of the perfect surface compared with Lewis acid sites of the reduced surface, examined for the first time in this work. The theoretical results are consistent with experimental findings and confirm the importance of surface reduction for the SCR process.

  17. Elementary steps of the catalytic NOx reduction with NH3: Cluster studies on reaction paths and energetics at vanadium oxide substrate

    NASA Astrophysics Data System (ADS)

    Gruber, M.; Hermann, K.

    2013-12-01

    We consider different reaction scenarios of the selective catalytic reduction (SCR) of NO in the presence of ammonia at perfect as well as reduced vanadium oxide surfaces modeled by V2O5(010) without and with oxygen vacancies. Geometric and energetic details as well as reaction paths are evaluated using extended cluster models together with density-functional theory. Based on earlier work of adsorption, diffusion, and reaction of the different surface species participating in the SCR we confirm that at Brønsted acid sites (i.e., OH groups) of the perfect oxide surface nitrosamide, NH2NO, forms a stable intermediate. Here adsorption of NH3 results in NH4 surface species which reacts with gas phase NO to produce the intermediate. Nitrosamide is also found as intermediate of the SCR near Lewis acid sites of the reduced oxide surface (i.e., near oxygen vacancies). However, here the adsorbed NH3 species is dehydrogenated to surface NH2 before it reacts with gas phase NO to produce the intermediate. The calculations suggest that reaction barriers for the SCR are overall higher near Brønsted acid sites of the perfect surface compared with Lewis acid sites of the reduced surface, examined for the first time in this work. The theoretical results are consistent with experimental findings and confirm the importance of surface reduction for the SCR process.

  18. Low substrate temperature fabrication of high-performance metal oxide thin-film by magnetron sputtering with target self-heating

    SciTech Connect

    Yang, W. F.; Liu, Z. G.; Wu, Z. Y.; Hong, M. H.; Wang, C. F.; Lee, Alex Y. S.; Gong, H.

    2013-03-18

    Al-doped ZnO (AZO) films with high transmittance and low resistivity were achieved on low temperature substrates by radio frequency magnetron sputtering using a high temperature target. By investigating the effect of target temperature (T{sub G}) on electrical and optical properties, the origin of electrical conduction is verified as the effect of the high T{sub G}, which enhances crystal quality that provides higher mobility of electrons as well as more effective activation for the Al dopants. The optical bandgap increases from 3.30 eV for insulating ZnO to 3.77 eV for conducting AZO grown at high T{sub G}, and is associated with conduction-band filling up to 1.13 eV due to the Burstein-Moss effect.

  19. Second and third order nonlinear optical properties of microrod ZnO films deposited on sapphire substrates by thermal oxidation of metallic zinc

    NASA Astrophysics Data System (ADS)

    Kulyk, B.; Essaidi, Z.; Luc, J.; Sofiani, Z.; Boudebs, G.; Sahraoui, B.; Kapustianyk, V.; Turko, B.

    2007-12-01

    We report the preparation of microcrystalline ZnO thin films on sapphire substrates using a simple method based on the thermal evaporation of metallic Zn in vacuum with further annealing process. The aim of annealing in the oxygen atmosphere in the range of 800-850°C was to obtain the high quality ZnO films. The surface morphology was studied by scanning electron microscopy and atomic force microscopy. The polycrystalline films with ZnO microrods at different stages of their growth were investigated. Second and third harmonic generation measurements were performed by means of the rotational Maker fringe technique using Nd:YAG laser at 1064nm in picosecond regime. The obtained values of second and third order nonlinear susceptibilities were found to be high enough for the potential applications of the investigated materials in the optical switching devices based on refractive index changes.

  20. Direct Low-Temperature Growth of Single-Crystalline Anatase TiO2 Nanorod Arrays on Transparent Conducting Oxide Substrates for Use in PbS Quantum-Dot Solar Cells.

    PubMed

    Chung, Hyun Suk; Han, Gill Sang; Park, So Yeon; Shin, Hee-Won; Ahn, Tae Kyu; Jeong, Sohee; Cho, In Sun; Jung, Hyun Suk

    2015-05-20

    We report on the direct growth of anatase TiO2 nanorod arrays (A-NRs) on transparent conducting oxide (TCO) substrates that can be directly applied to various photovoltaic devices via a seed layer mediated epitaxial growth using a facile low-temperature hydrothermal method. We found that the crystallinity of the seed layer and the addition of an amine functional group play crucial roles in the A-NR growth process. The A-NRs exhibit a pure anatase phase with a high crystallinity and preferred growth orientation in the [001] direction. Importantly, for depleted heterojunction solar cells (TiO2/PbS), the A-NRs improve both electron transport and injection properties, thereby largely increasing the short-circuit current density and doubling their efficiency compared to TiO2 nanoparticle-based solar cells.

  1. Nanoporous anodic aluminum oxide with a long-range order and tunable cell sizes by phosphoric acid anodization on pre-patterned substrates.

    PubMed

    Surawathanawises, Krissada; Cheng, Xuanhong

    2014-01-20

    Nanoporous anodic aluminum oxide (AAO) has been explored for various applications due to its regular cell arrangement and relatively easy fabrication processes. However, conventional two-step anodization based on self-organization only allows the fabrication of a few discrete cell sizes and formation of small domains of hexagonally packed pores. Recent efforts to pre-pattern aluminum followed with anodization significantly improve the regularity and available pore geometries in AAO, while systematic study of the anodization condition, especially the impact of acid composition on pore formation guided by nanoindentation is still lacking. In this work, we pre-patterned aluminium thin films using ordered monolayers of silica beads and formed porous AAO in a single-step anodization in phosphoric acid. Controllable cell sizes ranging from 280 nm to 760 nm were obtained, matching the diameters of the silica nanobead molds used. This range of cell size is significantly greater than what has been reported for AAO formed in phosphoric acid in the literature. In addition, the relationships between the acid concentration, cell size, pore size, anodization voltage and film growth rate were studied quantitatively. The results are consistent with the theory of oxide formation through an electrochemical reaction. Not only does this study provide useful operational conditions of nanoindentation induced anodization in phosphoric acid, it also generates significant information for fundamental understanding of AAO formation.

  2. The effect of the coupled oxidation of substrate on the permeability of blowfly flight-muscle mitochondria to potassium and other cations.

    PubMed

    Hansford, R G; Lehninger, A L

    1972-02-01

    1. Blowfly flight-muscle mitochondria respiring in the absence of phosphate acceptor (i.e. in state 4) take up greater amounts of K(+), Na(+), choline, phosphate and Cl(-) (but less NH(4) (+)) than non-respiring control mitochondria. 2. Uptake of cations is accompanied by an increase in the volume of the mitochondrial matrix, determined with the use of [(14)C]-sucrose and (3)H(2)O. The osmolarity of the salt solution taken up was approximately that of the suspending medium. 3. The [(14)C]sucrose-inaccessible space decreased with increasing osmolarity of potassium chloride in the suspending medium, confirming that the blowfly mitochondrion behaves as an osmometer. 4. Light-scattering studies showed that both respiratory substrate and a permeant anion such as phosphate or acetate are required for rapid and massive entry of K(+), which occurs in an electrophoretic process rather than in exchange for H(+). The increase in permeability to K(+) and other cations is probably the result of a large increase in the exposed area of inner membrane surface in these mitochondria, with no intrinsic increase in the permeability per unit area. 5. No increase in permeability to K(+) and other cations occurs during phosphorylation of ADP in state 3 respiration.

  3. Substrate heater for thin film deposition

    DOEpatents

    Foltyn, Steve R.

    1996-01-01

    A substrate heater for thin film deposition of metallic oxides upon a target substrate configured as a disk including means for supporting in a predetermined location a target substrate configured as a disk, means for rotating the target substrate within the support means, means for heating the target substrate within the support means, the heating means about the support means and including a pair of heating elements with one heater element situated on each side of the predetermined location for the target substrate, with one heater element defining an opening through which desired coating material can enter for thin film deposition and with the heating means including an opening slot through which the target substrate can be entered into the support means, and, optionally a means for thermal shielding of the heating means from surrounding environment is disclosed.

  4. Improvement in electrical properties of high-κ film on Ge substrate by an improved stress relieved pre-oxide method

    NASA Astrophysics Data System (ADS)

    Ji-Bin, Fan; Xiao-Fu, Ding; Hong-Xia, Liu; Peng-Fei, Xie; Yuan-Tao, Zhang; Qing-Liang, Liao

    2016-02-01

    High-κ/Ge gate stack has recently attracted a great deal of attention as a potential candidate to replace planar silicon transistors for sub-22 generation. However, the desorption and volatilization of GeO hamper the development of Ge-based devices. To cope with this challenge, various techniques have been proposed to improve the high-κ/Ge interface. However, these techniques have not been developed perfectly yet to control the interface. Therefore, in this paper, we propose an improved stress relieved pre-oxide (SRPO) method to improve the thermodynamic stability of the high-κ/Ge interface. The x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) results indicate that the GeO volatilization of the high-κ/Ge gate stack is efficiently suppressed after 500 °C annealing, and the electrical characteristics are greatly improved.

  5. Oxidation of Organic Substrates in Aqueous Micellar Media Synthesis, Characterization and Application of N-alkyliminodiacetato Compounds for the Oxidation of Phenol and Carbon-Carbon Coupling of 2,6-di-tert-butylphenol in Aqueous Micellar Solutions

    NASA Astrophysics Data System (ADS)

    Cull, John Eli William

    Oxidation of phenol derivatives is of industrial and synthetic importance; however, with increased concern for environmental protection, traditional methods using organic solvents are undesirable. Novel complexes combining N-alkyliminodiacetates (CaIDA) as ligands and various transition metals have been isolated and characterized, including M(OOCH2) 2NCH3(H2O)3·H2O (M = MnII CoII) and (Cu4[(OOCH 2)2NCH3]4)infinity, the latter of which possesses interesting magnetic properties. These are in addition to various MC1IDA, MC10IDA, MC12IDA, MC14IDA and MC16IDA coordination complexes. The ability of these molecules to be incorporated into commercial surfactants has been tested and their subsequent critical micelle concentrations elucidated. Finally, these systems were tested for their ability to catalyze the oxidation of phenol with hydrogen peroxide and the oxidative carbon--carbon coupling of 2,6-di-tert-butylphenol with either hydrogen peroxide or atmospheric oxygen. Oxidation of phenol was observed qualitatively by High Performance Liquid Chromatography -- Ultraviolet Visible Spectrometry. Dimerized 2,6-di-tert-butylphenol was observed quantitatively by Ultraviolet - Visible Spectrometry in moderate to high yields. The results of these preparations and trials are presented herein.

  6. Power electronics substrate for direct substrate cooling

    DOEpatents

    Le, Khiet [Mission Viejo, CA; Ward, Terence G [Redondo Beach, CA; Mann, Brooks S [Redondo Beach, CA; Yankoski, Edward P [Corona, CA; Smith, Gregory S [Woodland Hills, CA

    2012-05-01

    Systems and apparatus are provided for power electronics substrates adapted for direct substrate cooling. A power electronics substrate comprises a first surface configured to have electrical circuitry disposed thereon, a second surface, and a plurality of physical features on the second surface. The physical features are configured to promote a turbulent boundary layer in a coolant impinged upon the second surface.

  7. Al{sub 2}O{sub 3}/GeO{sub x} gate stack on germanium substrate fabricated by in situ cycling ozone oxidation method

    SciTech Connect

    Yang, Xu; Zeng, Zhen-Hua; Wang, Sheng-Kai E-mail: xzhang62@aliyun.com Sun, Bing; Zhao, Wei; Chang, Hu-Dong; Liu, Honggang E-mail: xzhang62@aliyun.com; Zhang, Xiong E-mail: xzhang62@aliyun.com

    2014-09-01

    Al{sub 2}O{sub 3}/GeO{sub x}/Ge gate stack fabricated by an in situ cycling ozone oxidation (COO) method in the atomic layer deposition (ALD) system at low temperature is systematically investigated. Excellent electrical characteristics such as minimum interface trap density as low as 1.9 × 10{sup 11 }cm{sup −2 }eV{sup −1} have been obtained by COO treatment. The impact of COO treatment against the band alignment of Al{sub 2}O{sub 3} with respect to Ge is studied by x-ray photoelectron spectroscopy (XPS) and spectroscopic ellipsometry (SE). Based on both XPS and SE studies, the origin of gate leakage in the ALD-Al{sub 2}O{sub 3} is attributed to the sub-gap states, which may be correlated to the OH-related groups in Al{sub 2}O{sub 3} network. It is demonstrated that the COO method is effective in repairing the OH-related defects in high-k dielectrics as well as forming superior high-k/Ge interface for high performance Ge MOS devices.

  8. Complex oxides useful for thermoelectric energy conversion

    DOEpatents

    Majumdar, Arunava [Orinda, CA; Ramesh, Ramamoorthy [Moraga, CA; Yu, Choongho [College Station, TX; Scullin, Matthew L [Berkeley, CA; Huijben, Mark [Enschede, NL

    2012-07-17

    The invention provides for a thermoelectric system comprising a substrate comprising a first complex oxide, wherein the substrate is optionally embedded with a second complex oxide. The thermoelectric system can be used for thermoelectric power generation or thermoelectric cooling.

  9. Understanding the molecular-level chemistry of water plasmas and the effects of surface modification and deposition on a selection of oxide substrates

    NASA Astrophysics Data System (ADS)

    Trevino, Kristina J.

    2011-12-01

    This dissertation first examines electrical discharges used to study wastewater samples for contaminant detection and abatement. Two different water samples contaminated with differing concentrations of either methanol (MeOH) or methyl tert-butyl ether (MTBE) were used to follow breakdown mechanisms. Emission from CO* was used to monitor the contaminant and for molecular breakdown confirmation through actinometric OES as it can only arise from the carbon-based contaminant in either system. Detection was achieved at concentrations as low as 0.01 ppm, and molecular decomposition was seen at a variety of plasma parameters. This dissertation also explores the vibrational (thetaV), rotational (thetaR) and translational (thetaT) temperatures for a range of diatomic species in different plasma systems. For the majority of the plasma species studied, thetaV are much higher than thetaR and thetaT. This suggests that more energy is partitioned into the vibrational degrees of freedom in our plasmas. The thetaR reported are significantly lower in all the plasma systems studied and this is a result of radical equilibration to the plasma gas temperature. thetaT values show two characteristics; (1) they are less than the thetaV and higher than the theta R and (2) show varying trends with plasma parameters. Radical energetics were examined through comparison of thetaR, thetaT, and thetaV, yielding significant insight on the partitioning of internal and kinetic energies in plasmas. Correlations between energy partitioning results and corresponding radical surface scattering coefficients obtained using our imaging of radicals interacting with surfaces (IRIS) technique are also presented. Another aspect of plasma process chemistry, namely surface modification via plasma treatment, was investigated through characterization of metal oxides (SiOxNy, nat-SiO2, and dep-SiO2) following their exposure to a range of plasma discharges. Here, emphasis was placed on the surface wettability

  10. Determination of trace selenium by solid substrate-room temperature phosphorescence enhancing method based on potassium chlorate oxidizing phenyl hydrazine-1,2-dihydroxynaphthalene-3,6-disulfonic acid system

    NASA Astrophysics Data System (ADS)

    Liu, Jia-Ming; Cui, Xiao-Jie; Li, Lai-Ming; Fu, Geng-Min; Lin, Shao-Xian; Yang, Min-Lan; Xu, Mei-Ying; Wu, Zhi-Qun

    2007-04-01

    A new method for the determination of trace selenium based on solid substrate-room temperature phosphorimetry (SS-RTP) has been established. This method was based on the fact that in HCl-KCl buffer solution, potassium chlorate could oxidize phenyl hydrazine to form chloridize diazo-ion after being heated at 100 °C for 20 min, and then the diazo-ion reacted with 1,2-dihydroxynaphthalene-3,6-disulfonic acid to form red azo-compound which could emit strong room temperature phosphorescence (RTP) signal on filter paper. Selenium could catalyze potassium chlorate oxidizing the reaction between phenyl hydrazine and 1,2-dihydroxynaphthalene-3,6-disulfonic acid, which caused the sharp enhancement of SS-RTP. Under the optimum condition, the relationship between the phosphorescence emission intensity (Δ Ip) and the content of selenium obeyed Beer's law when the concentration of selenium is within the range of 1.60-320 fg spot -1 (or 0.0040-0.80 ng ml -1 with a sample volume of 0.4 μl). The regression equation of working curve can be expressed as Δ Ip = 13.12 + 0.4839 CSe(IV) (fg spot -1) ( n = 6), with correlation coefficient r = 0.9991 and a detection limit of 0.28 fg spot -1 (corresponding to a concentration range of 7.0 × 10 -13 g ml -1 Se(IV), n = 11). After 11-fold measurement, R.S.D. were 2.8 and 3.5% for the samples containing 0.0040 and 0.80 ng ml -1 of Se(IV), respectively. This accurate and sensitive method with good repeatability has been successfully applied to the determination of trace selenium in Chinese wolfberry and egg yolk with satisfactory results. The mechanism of the enhancement of phosphorescence was also discussed.

  11. Influences of residual oxygen impurities, cubic indium oxide grains and indium oxy-nitride alloy grains in hexagonal InN crystalline films grown on Si(111) substrates by electron cyclotron resonance plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Yodo, T.; Nakamura, T.; Kouyama, T.; Harada, Y.

    2005-05-01

    We investigated the influences of residual oxygen (O) impurities, cubic indium oxide (-In2O3) grains and indium oxy-nitride (InON) alloy grains in 200 nm-thick hexagonal ()-InN crystalline films grown on Si(111) substrates by electron cyclotron resonance plasma-assisted molecular beam epitaxy. Although -In2O3 grains with wide band-gap energy were formed in In film by N2 annealing, they were not easily formed in N2-annealed InN films. Even if they were not detected in N2-annealed InN films, the as-grown films still contained residual O impurities with concentrations of less than 0.5% ([O]0.5%). Although [O]1% could be estimated by investigating In2O3 grains formed in N2-annealed InN films, [O]0.5% could not be measured by it. However, we found that they can be qualitatively measured by investigating In2O3 grains formed by H2 annealing with higher reactivity with InN and O2, using X-ray diffraction and PL spectroscopy. In this paper, we discuss the formation mechanism of InON alloy grains in InN films.

  12. Method for plating with metal oxides

    SciTech Connect

    Silver, Gary L.; Martin, Frank S.

    1994-08-23

    A method of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate.

  13. Method for plating with metal oxides

    SciTech Connect

    Silver, G.L.; Martin, F.S.

    1994-08-23

    A method is disclosed of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate. 1 fig.

  14. Methods of selectively incorporating metals onto substrates

    DOEpatents

    Ernst; Richard D. , Eyring; Edward M. , Turpin; Gregory C. , Dunn; Brian C.

    2008-09-30

    A method for forming multi-metallic sites on a substrate is disclosed and described. A substrate including active groups such as hydroxyl can be reacted with a pretarget metal complex. The target metal attached to the active group can then be reacted with a secondary metal complex such that an oxidation-reduction (redox) reaction occurs to form a multi-metallic species. The substrate can be a highly porous material such as aerogels, xerogels, zeolites, and similar materials. Additional metal complexes can be reacted to increase catalyst loading or control co-catalyst content. The resulting compounds can be oxidized to form oxides or reduced to form metals in the ground state which are suitable for practical use.

  15. Thin Film Transistors On Plastic Substrates

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.; Sigmon, Thomas W.; Aceves, Randy C.

    2004-01-20

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.

  16. Ribbed electrode substrates

    DOEpatents

    Breault, Richard D.; Goller, Glen J.

    1983-01-01

    A ribbed substrate for an electrochemical cell electrode is made from a mixture of carbon fibers and carbonizable resin and has a mean pore size in the ribs which is 60-75% of the mean pore size of the web portions of the substrate which interconnect the ribs. Preferably the mean pore size of the web portion is 25-45 microns; and, if the substrate includes edge seals parallel to the ribs, the edge seals preferably have a mean pore size no greater than about ten microns. Most preferably the substrate has the same ratio of carbon fibers to polymeric carbon in all areas, including the ribs, webs, and edge seals. A substrate according to the present invention will have better overall performance than prior art substrates and minimizes the substrate thickness required for the substrate to perform all its functions well.

  17. Coated substrates and process

    DOEpatents

    Chu, Wei-kan; Childs, Charles B.

    1991-01-01

    Disclosed herein is a coated substrate and a process for forming films on substrates and for providing a particularly smooth film on a substrate. The method of this invention involves subjecting a surface of a substrate to contact with a stream of ions of an inert gas having sufficient force and energy to substantially change the surface characteristics of said substrate, and then exposing a film-forming material to a stream of ions of an inert gas having sufficient energy to vaporize the atoms of said film-forming material and to transmit the vaporized atoms to the substrate surface with sufficient force to form a film bonded to the substrate. This process is particularly useful commercially because it forms strong bonds at room temperature. This invention is particularly useful for adhering a gold film to diamond and forming ohmic electrodes on diamond, but also can be used to bond other films to substrates.

  18. Dioxygen activation of a trinuclear Cu(I)Cu(I)Cu(I) cluster capable of mediating facile oxidation of organic substrates: competition between O-atom transfer and abortive intercomplex reduction.

    PubMed

    Maji, Suman; Lee, Jason C-M; Lu, Yu-Jhang; Chen, Chang-Li; Hung, Mu-Cheng; Chen, Peter P-Y; Yu, Steve S-F; Chan, Sunney I

    2012-03-26

    The dioxygen activation of a series of Cu(I)Cu(I)Cu(I) complexes based on the ligands (L) 3,3'-(1,4-diazepane- 1,4-diyl)bis(1-{[2-(dimethylamino)ethyl](methyl)amino}propan-2-ol)(7-Me) or 3,3'-(1,4-diazepane-1,4-diyl)bis(1-{[2-(diethylamino)ethyl](ethyl)amino}propan-2-ol)(7-Et) forms an intermediate capable of mediating facile O-atom transfer to simple organic substrates at room temperature. To elucidate the dioxygen chemistry, we have examined the reactions of 7-Me, 7-Et, and 3,3'-(1,4-diazepane-1,4-diyl)bis[1-(4-methylpiperazin-1-yl)propan-2-ol] (7-N-Meppz) with dioxygen at -80, -55, and -35 °C in propionitrile (EtCN) by UV-visible, 77 K EPR, and X-ray absorption spectroscopy, and 7-N-Meppz and 7-Me with dioxygen at room temperature in acetonitrile (MeCN) by diode array spectrophotometry. At both -80 and -55 °C, the mixing of the starting [Cu(I)Cu(I)Cu(I)(L)](1+) complex (1) with O(2)-saturated propionitrile (EtCN) led to a bright green solution consisting of two paramagnetic species: the green dioxygen adduct [Cu(II)Cu(II)(μ-η(2):η(2)-peroxo)Cu(II)(L)](2+) (2) and the blue [Cu(II)Cu(II)(μ-O)Cu(II)(L)](2+) species (3). These observations are consistent with the initial formation of [Cu(II)Cu(II)(μ-O)(2)Cu(III)(L)](1+)(4), followed by rapid abortion of this highly reactive species by intercluster electron transfer from a second molecule of complex 1 to give the blue species 3 and subsequent oxygenation of the partially oxidized [Cu(II)Cu(I)Cu(I)(L)](2+)(5) to form the green dioxygen adduct 2. Assignment of 2 to [Cu(II)Cu(II)(μ-η(2):η(2)-peroxo)Cu(II)(L)](2+) is consistent with its reactivity with water to give H(2)O(2) and the blue species 3, as well as its propensity to be photoreduced in the X-ray beam during X-ray absorption experiments at room temperature. In light of these observations, the development of an oxidation catalyst based on the tricopper system requires consideration of the following design criteria: 1) rapid dioxygen chemistry; 2

  19. Polished polymide substrate

    DOEpatents

    Farah, John; Sudarshanam, Venkatapuram S.

    2003-05-13

    Polymer substrates, in particular polyimide substrates, and polymer laminates for optical applications are described. Polyimide substrates are polished on one or both sides depending on their thickness, and single-layer or multi-layer waveguide structures are deposited on the polished polyimide substrates. Optical waveguide devices are machined by laser ablation using a combination of IR and UV lasers. A waveguide-fiber coupler with a laser-machined groove for retaining the fiber is also disclosed.

  20. Influence of wide band gap oxide substrates on the photoelectrochemical properties and structural disorder of CdS nanoparticles grown by the successive ionic layer adsorption and reaction (SILAR) method.

    PubMed

    Malashchonak, Mikalai V; Mazanik, Alexander V; Korolik, Olga V; Streltsov, Еugene А; Kulak, Anatoly I

    2015-01-01

    The photoelectrochemical properties of nanoheterostructures based on the wide band gap oxide substrates (ZnO, TiO2, In2O3) and CdS nanoparticles deposited by the successive ionic layer adsorption and reaction (SILAR) method have been studied as a function of the CdS deposition cycle number (N). The incident photon-to-current conversion efficiency (IPCE) passes through a maximum with the increase of N, which is ascribed to the competition between the increase in optical absorption and photocarrier recombination. The maximal IPCE values for the In2O3/CdS and ZnO/CdS heterostructures are attained at N ≈ 20, whereas for TiO2/CdS, the appropriate N value is an order of magnitude higher. The photocurrent and Raman spectroscopy studies of CdS nanoparticles revealed the occurrence of the quantum confinement effect, demonstrating the most rapid weakening with the increase of N in ZnO/CdS heterostructures. The structural disorder of CdS nanoparticles was characterized by the Urbach energy (E U), spectral width of the CdS longitudinal optical (LO) phonon band and the relative intensity of the surface optical (SO) phonon band in the Raman spectra. Maximal values of E U (100-120 meV) correspond to СdS nanoparticles on a In2O3 surface, correlating with the fact that the CdS LO band spectral width and intensity ratio for the CdS SO and LO bands are maximal for In2O3/CdS films. A notable variation in the degree of disorder of CdS nanoparticles is observed only in the initial stages of CdS growth (several tens of deposition cycles), indicating the preservation of the nanocrystalline state of CdS over a wide range of SILAR cycles.

  1. Method for making an aluminum or copper substrate panel for selective absorption of solar energy

    NASA Technical Reports Server (NTRS)

    Roberts, M. L.; Sharpe, M. H.; Krupnick, A. C. (Inventor)

    1978-01-01

    A panel is described for selectively absorbing solar energy comprising an aluminum substrate. A zinc layer was covered by a layer of nickel and an outer layer of solar energy absorbing nickel oxide or a copper substrate with a nickel layer. A layer of solar energy absorbing nickel oxide distal from the copper substrate was included. A method for making these panels is disclosed.

  2. Superconductive articles including cerium oxide layer

    DOEpatents

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.

  3. Substrate radical intermediates in soluble methane monooxygenase.

    PubMed

    Liu, Aimin; Jin, Yi; Zhang, Jingyan; Brazeau, Brian J; Lipscomb, John D

    2005-12-09

    EPR spin-trapping experiments were carried out using the three-component soluble methane monooxygenase (MMO). Spin-traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO), alpha-4-pyridyl-1-oxide N-tert-butylnitrone (POBN), and nitrosobenzene (NOB) were used to investigate the possible formation of substrate radical intermediates during catalysis. In contrast to a previous report, the NADH-coupled oxidations of various substrates did not produce any trapped radical species when DMPO or POBN was present. However, radicals were detected by these traps when only the MMO reductase component and NADH were present. DMPO and POBN were found to be weak inhibitors of the MMO reaction. In contrast, NOB is a strong inhibitor for the MMO-catalyzed nitrobenzene oxidation reaction. When NOB was used as a spin-trap in the complete MMO system with or without substrate, EPR signals from an NOB radical were detected. We propose that a molecule of NOB acts simultaneously as a substrate and a spin-trap for MMO, yielding the long-lived radical and supporting a stepwise mechanism for MMO.

  4. Ammonia release method for depositing metal oxides

    DOEpatents

    Silver, G.L.; Martin, F.S.

    1994-12-13

    A method is described for depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates. 1 figure.

  5. Ammonia release method for depositing metal oxides

    DOEpatents

    Silver, Gary L.; Martin, Frank S.

    1994-12-13

    A method of depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates.

  6. A double signal electrochemical human immunoglobulin G immunosensor based on gold nanoparticles-polydopamine functionalized reduced graphene oxide as a sensor platform and AgNPs/carbon nanocomposite as signal probe and catalytic substrate.

    PubMed

    Zhang, Si; Huang, Na; Lu, Qiujun; Liu, Meiling; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2016-03-15

    In this paper, a double signal electrochemical Human immunoglobulin G (HIgG) immunosensor based on AgNPs/carbon nanocomposite (Ag/C NC) as the signal probe and catalytic substrate was developed for fast and sensitive detection of HIgG. The as-prepared AuNPs-PDA-rGO nanocomposite and Ag/C NC were confirmed by UV-vis, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. Electrochemical impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical properties of the proposed immunosensor. The AuNPs-PDA-rGO nanocomposite can improve the electron transfer rate and capture more Ab1. In the sandwich-type immunoassay process, the Ag/C NC functionalized bioconjugates were captured on HIgG/Ab1/AuNPs-PDA-rGO surface and the electrochemical double-signal strategy was employed. These double electrochemical detection signals were directly monitored the oxidation current originated from Ag/C NC and indirectly detected the reduction current of benzoquinone which was produced from the reaction of H2O2 and HQ by catalysis of Ag/C NC in electrochemical detection of HIgG. Under the optimized conditions, the current responses were changed with the concentrations of HIgG for the proposed immunosensor with wide linear ranges of 0.1 to 100 ngmL(-1) and 0.01-100 ngmL(-1) with the lowest detection concentration of 0.001 ng mL(-1) in the absence and presence of H2O2 and HQ. The double-signal strategy is used for detection of HIgG, and the results came from the two signals were well consistent with each other. The proposed immunosensor was successfully applied in analysis of human IgG in real samples and this strategy may provide a relative simple and effective method for construction of other immunsensors in detection of other biomarkers in clinical medicine.

  7. Iron films deposited on porous alumina substrates

    NASA Astrophysics Data System (ADS)

    Yamada, Yasuhiro; Tanabe, Kenichi; Nishida, Naoki; Kobayashi, Yoshio

    2016-12-01

    Iron films were deposited on porous alumina substrates using an arc plasma gun. The pore sizes (120 - 250 nm) of the substrates were controlled by changing the temperature during the anodic oxidation of aluminum plates. Iron atoms penetrated into pores with diameters of less than 160 nm, and were stabilized by forming γ-Fe, whereas α-Fe was produced as a flat plane covering the pores. For porous alumina substrates with pore sizes larger than 200 nm, the deposited iron films contained many defects and the resulting α-Fe had smaller hyperfine magnetic fields. In addition, only a very small amount of γ-Fe was obtained. It was demonstrated that the composition and structure of an iron film can be affected by the surface morphology of the porous alumina substrate on which the film is grown.

  8. Substrate-supported lipid nanotube arrays.

    SciTech Connect

    Smirnov, A. I.; Poluektov, O. G.; Chemistry; North Carolina State

    2003-07-16

    This Communication describes the self-assembly of phospholipids into lipid nanotubes inside nanoporous anodic aluminum oxide substrate. Orientations of the lipid molecules in such lipid nanoscale structures were verified by high-resolution spin labeling EPR at 95 GHz. The static order parameter of lipids in such nanotube arrays was determined from low-temperature EPR spectra and was found to be exceptionally high, S{sub static} {approx} 0.9. We propose that substrate-supported lipid nanotube arrays have potential for building robust biochips and biosensors in which rigid nanoporous substrates protect the bilayer surface from contamination. The total bilayer surface in the lipid nanotube arrays is much greater than that in the planar substrate-supported membranes. The lipid nanotube arrays seem to be suitable for developing patterned lipid deposition and could be potentially used for patterning of membrane-associated molecules.

  9. Process for Coating Substrates with Catalytic Materials

    NASA Technical Reports Server (NTRS)

    Klelin, Ric J. (Inventor); Upchurch, Billy T. (Inventor); Schryer, David R. (Inventor)

    2004-01-01

    A process for forming catalysts by coating substrates with two or more catalytic components, which comprises the following sequence of steps. First, the substrate is infused with an adequate amount of solution having a starting material comprising a catalytic component precursor, wherein the thermal decomposition product of the catalytic component precursor is a catalytic component. Second, the excess of the solution is removed from the substrate. thereby leaving a coating of the catalytic component precursor on the surface of the substrate. Third, the coating of the catalytic component precursor is converted to the catalytic component by thermal decomposition. Finally, the coated substance is etched to increase the surface area. The list three steps are then repeated for at least a second catalytic component. This process is ideally suited for application in producing efficient low temperature oxidation catalysts.

  10. Substrate Activation by Iron Superoxo Intermediates

    PubMed Central

    van der Donk, Wilfred A.; Krebs, Carsten; Bollinger, J. Martin

    2010-01-01

    A growing number of non-heme-iron oxygenases and oxidases catalyze reactions for which the well-established mechanistic paradigm involving a single C-H-bond cleaving intermediate of the Fe(IV)-oxo (ferryl) type [1] is insufficient to explain the chemistry. It is becoming clear that, in several of these cases, Fe(III)-superoxide complexes formed by simple addition of O2 to the reduced [Fe(II)] cofactor initiate substrate oxidation by abstracting hydrogen [2]. This substrate-oxidizing entry route into high-valent-iron intermediates makes possible an array of complex and elegant oxidation reactions without consumption of valuable reducing equivalents. Examples of this novel mechanistic strategy are discussed with the goal of bringing forth unifying principles. PMID:20951572

  11. Substrates and products of eosinophil peroxidase.

    PubMed Central

    van Dalen, C J; Kettle, A J

    2001-01-01

    Eosinophil peroxidase has been implicated in promoting oxidative tissue damage in a variety of inflammatory conditions, including asthma. It uses H(2)O(2) to oxidize chloride, bromide and thiocyanate to their respective hypohalous acids. The aim of this study was to establish which oxidants eosinophil peroxidase produces under physiological conditions. By measuring rates of H(2)O(2) utilization by the enzyme at neutral pH, we determined the catalytic rate constants for bromide and thiocyanate as 248 and 223 s(-1) and the Michaelis constants as 0.5 and 0.15 mM respectively. On the basis of these values thiocyanate is preferred 2.8-fold over bromide as a substrate for eosinophil peroxidase. Eosinophil peroxidase catalysed substantive oxidation of chloride only below pH 6.5. We found that when eosinophil peroxidase or myeloperoxidase oxidized thiocyanate, another product besides hypothiocyanite was formed; it also converted methionine into methionine sulphoxide. During the oxidation of thiocyanate, the peroxidases were present as their compound II forms. Compound II did not form when GSH was included to scavenge hypothiocyanite. We propose that the unidentified oxidant was derived from a radical species produced by the one-electron oxidation of hypothiocyanite. We conclude that at plasma concentrations of bromide (20-120 microM) and thiocyanate (20-100 microM), hypobromous acid and oxidation products of thiocyanate are produced by eosinophil peroxidase. Hypochlorous acid is likely to be produced only when substrates preferred over chloride are depleted. Thiocyanate should be considered to augment peroxidase-mediated toxicity because these enzymes can convert relatively benign hypothiocyanite into a stronger oxidant. PMID:11485572

  12. H2O2-dependent substrate oxidation by an engineered diiron site in a bacterial hemerythrin† †Electronic supplementary information (ESI) available: Information on materials, instrumentation, experimental details and additional data on preparation of proteins, crystal structure analysis, resonance Raman and FTIR spectroscopy, reaction of reduced I119H with O2, consumption of H2O2, and oxidation reactions of guaiacol and 1,4-cyclohexadiene. The atomic coordinates and structure factors (PDB code 3WHN) have been deposited into the Protein Data Bank, http://www.rcsb.org/. See DOI: 10.1039/c3cc48108e Click here for additional data file.

    PubMed Central

    Okamoto, Yasunori; Sugimoto, Hiroshi; Takano, Yu; Hirota, Shun; Kurtz, Donald M.; Shiro, Yoshitsugu

    2014-01-01

    The O2-binding carboxylate-bridged diiron site in DcrH-Hr was engineered in an effort to perform the H2O2-dependent oxidation of external substrates. A His residue was introduced near the diiron site in place of a conserved residue, Ile119. The I119H variant promotes the oxidation of guaiacol and 1,4-cyclohexadiene upon addition of H2O2. PMID:24400317

  13. Oxidation-Resistant Coating For Bipolar Lead/Acid Battery

    NASA Technical Reports Server (NTRS)

    Bolstad, James J.

    1993-01-01

    Cathode side of bipolar substrate coated with nonoxidizable conductive layer. Coating prepared as water slurry of aqueous dispersion of polyethylene copolymer plus such conductive fillers as tin oxide, titanium, tantalum, or tungsten oxide. Applied easily to substrate of polyethylene carbon plastic. As slurry dries, conductive, oxidation-resistant coating forms on positive side of substrate.

  14. High temperature oxidation resistant cermet compositions

    NASA Technical Reports Server (NTRS)

    Phillips, W. M. (Inventor)

    1976-01-01

    Cermet compositions are designed to provide high temperature resistant refractory coatings on stainless steel or molybdenum substrates. A ceramic mixture of chromium oxide and aluminum oxide form a coating of chromium oxide as an oxidation barrier around the metal particles, to provide oxidation resistance for the metal particles.

  15. Stabilized chromium oxide film

    DOEpatents

    Nyaiesh, A.R.; Garwin, E.L.

    1986-08-04

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150A are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  16. Stabilized chromium oxide film

    DOEpatents

    Garwin, Edward L.; Nyaiesh, Ali R.

    1988-01-01

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150.ANG. are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  17. A Microscale Oxidation Puzzle

    NASA Astrophysics Data System (ADS)

    Pelter, Michael W.; Macudzinski, Rebecca M.; Passarelli, Mary Ellen

    2000-11-01

    We have adapted oxidation of an alcohol with sodium hypochlorite solution to a "puzzle" approach by using a diol as the substrate for oxidation. The diols under investigation have both a primary and a secondary hydroxyl group. There are three possible outcomes to the reaction: (i) only the primary alcohol is oxidized to the aldehyde (or carboxylic acid); (ii) only the secondary alcohol is oxidized to the ketone; or (iii) both alcohols are oxidized. The assignment is to perform the reaction and determine the structure of the product through interpretation of the IR spectrum. Examples using two commercially available diols are shown.

  18. Metal ion substrate inhibition of ferrochelatase.

    PubMed

    Hunter, Gregory A; Sampson, Matthew P; Ferreira, Gloria C

    2008-08-29

    Ferrochelatase catalyzes the insertion of ferrous iron into protoporphyrin IX to form heme. Robust kinetic analyses of the reaction mechanism are complicated by the instability of ferrous iron in aqueous solution, particularly at alkaline pH values. At pH 7.00 the half-life for spontaneous oxidation of ferrous ion is approximately 2 min in the absence of metal complexing additives, which is sufficient for direct comparisons of alternative metal ion substrates with iron. These analyses reveal that purified recombinant ferrochelatase from both murine and yeast sources inserts not only ferrous iron but also divalent cobalt, zinc, nickel, and copper into protoporphyrin IX to form the corresponding metalloporphyrins but with considerable mechanistic variability. Ferrous iron is the preferred metal ion substrate in terms of apparent k(cat) and is also the only metal ion substrate not subject to severe substrate inhibition. Substrate inhibition occurs in the order Cu(2+) > Zn(2+) > Co(2+) > Ni(2+) and can be alleviated by the addition of metal complexing agents such as beta-mercaptoethanol or imidazole to the reaction buffer. These data indicate the presence of two catalytically significant metal ion binding sites that may coordinately regulate a selective processivity for the various potential metal ion substrates.

  19. Lightweight Substrates For Mirrors

    NASA Technical Reports Server (NTRS)

    Brown, D. Kyle

    1991-01-01

    New substrate uses conventional quasi-isotropic fabric laminate with surfacing layer of carbon-fiber paper consisting of randomly oriented chopped carbon fibers. Layered structure of fabric and paper relatively easy to manufacture. When impregnated with carbon, structure rigid and stable. Substrates of this type made quite thin, thus keeping areal weights to minimum. Mirrors of this type made faster, and cost less, than predecessors.

  20. Method of making an apparatus for transpiration cooling of substrates such as turbine airfoils

    DOEpatents

    Alvin, Mary Anne; Anderson, Iver; Heidlof, Andy; White, Emma; McMordie, Bruce

    2017-02-28

    A method and apparatus for generating transpiration cooling using an oxidized porous HTA layer metallurgically bonded to a substrate having micro-channel architectures. The method and apparatus generates a porous HTA layer by spreading generally spherical HTA powder particles on a substrate, partially sintering under O.sub.2 vacuum until the porous HTA layer exhibits a porosity between 20% and 50% and a neck size ratio between 0.1 and 0.5, followed by a controlled oxidation generating an oxidation layer of alumina, chromia, or silica at a thickness of about 20 to about 500 nm. In particular embodiments, the oxidized porous HTA layer and the substrate comprise Ni as a majority element. In other embodiments, the oxidized porous HTA layer and the substrate further comprise Al, and in additional embodiments, the oxidized porous HTA layer and the substrate comprise .gamma.-Ni+.gamma.'-Ni.sub.3Al.

  1. Order on disorder: Copper phthalocyanine thin films on technical substrates

    SciTech Connect

    Peisert, H.; Schwieger, T.; Auerhammer, J. M.; Knupfer, M.; Golden, M. S.; Fink, J.; Bressler, P. R.; Mast, M.

    2001-07-01

    We have studied the molecular orientation of the commonly used organic semiconductor copper phthalocyanine (CuPC) grown as thin films on the technically relevant substrates indium tin oxide, oxidized Si, and polycrystalline gold using polarization-dependent x-ray absorption spectroscopy, and compare the results with those obtained from single crystalline substrates [Au(110) and GeS(001)]. Surprisingly, the 20{endash}50 nm thick CuPC films on the technical substrates are as highly ordered as on the single crystals. Importantly, however, the molecular orientation in the two cases is radically different: the CuPC molecules stand on the technical substrates and lie on the single crystalline substrates. The reasons for this and its consequences for our understanding of the behavior of CuPC films in devices are discussed. {copyright} 2001 American Institute of Physics.

  2. The status and promise of compliant substrate technology

    NASA Astrophysics Data System (ADS)

    Brown, April S.; Doolittle, W. Alan

    2000-10-01

    Compliant substrates offer significant promise as a new approach for strain management in semiconductors. The primary application is to produce device-quality highly mismatched materials on dissimilar substrates. Various implementations and processes for achieving substrate compliancy have been proposed and demonstrated. These include the use of twist-, glass-, and metal-bonds, and the use of engineered templates realized with laterally oxidized Al-containing alloys. A recent focus in our work has been on the growth of GaN on a novel and easily removable substrate — lithium gallate — for regrowth on a bonded GaN template.

  3. SURFACE MODIFICATION OF ZIRCALOY-4 SUBSTRATES WITH NICKEL ZIRCONIUM INTERMETALLICS

    SciTech Connect

    Luscher, Walter G.; Gilbert, Edgar R.; Pitman, Stan G.; Love, Edward F.

    2013-02-01

    Surfaces of Zircaloy-4 (Zr-4) substrates were modified with nickel-zirconium (NiZr) intermetallics to tailor oxidation performance for specialized applications. Surface modification was achieved by electroplating Zr-4 substrates with nickel (Ni) and then performing thermal treatments to fully react the Ni plating with the substrates, which resulted in a coating of NiZr intermetallics on the substrate surfaces. Both plating thickness and thermal treatment were evaluated to determine the effects of these fabrication parameters on oxidation performance and to identify an optimal surface modification process. Isothermal oxidation tests were performed on surface-modified materials at 290°, 330°, and 370°C under a constant partial pressure of oxidant (i.e., 1 kPa D2O in dry Ar at 101 kPa) for 64 days. Test results revealed an enhanced, transient oxidation rate that decreased asymptotically toward the rate of the Zr-4 substrate. Oxidation kinetics were analyzed from isothermal weight gain data, which were correlated with microstructure, hydrogen pickup, strength, and hardness.

  4. Electrophoretic and Electrolytic Deposition of Ceramic Particles on Porous Substrates

    DTIC Science & Technology

    1992-09-30

    mixtures of the tetragonal and monoclirac ZrO: polymorphs having nanosize crys- tallites. Oxidation of the Ti substrate and reaction with zircoria during...layer being R), ZrG, (teiragonai-t and manoclieic-m) and varous zirconium ti. filled by the growing titaniumr oxide (Fig. 6). Microcnem- tonotes (ZT...atmosmnere and their phase composition, and Inorphology studied. Oxidation resistance of coated specirvens was studied at 83U0C in continuous and

  5. Bonded semiconductor substrate

    DOEpatents

    Atwater, Jr.; Harry A. , Zahler; James M.

    2010-07-13

    Ge/Si and other nonsilicon film heterostructures are formed by hydrogen-induced exfoliation of the Ge film which is wafer bonded to a cheaper substrate, such as Si. A thin, single-crystal layer of Ge is transferred to Si substrate. The bond at the interface of the Ge/Si heterostructures is covalent to ensure good thermal contact, mechanical strength, and to enable the formation of an ohmic contact between the Si substrate and Ge layers. To accomplish this type of bond, hydrophobic wafer bonding is used, because as the invention demonstrates the hydrogen-surface-terminating species that facilitate van der Waals bonding evolves at temperatures above 600.degree. C. into covalent bonding in hydrophobically bound Ge/Si layer transferred systems.

  6. Colloidal Drop Deposition on Porous Substrates

    NASA Astrophysics Data System (ADS)

    Sun, Ying; Pack, Min; Hu, Han; Kim, Dong-Ook; Yang, Xin

    2015-11-01

    Printable electronics and in particular paper and textile-based electronics have fueled research in inkjet printing on porous substrates. On nonporous substrates, the particle motion of the particles and evaporation of the solvent are the two main mechanisms that drive the final deposition morphology. For porous substrates another factor, mainly infiltration, adds a layer of complexity to the deposition patterns that has not yet been elucidated in literature. In this study, a high-speed camera was used to capture the imbibition of picoliter-sized polystyrene nanoparticles in water droplets into nano-porous anodic aluminum oxide substrates of various porosities and wettabilities. For water, the infiltration rate is much faster than both evaporation and particle motion and thus when the substrate fully imbibes the droplet, the well-known ``coffee ring'' is suppressed. However, when a residual droplet forms upon the termination of the infiltration regime, the competing particle motion and evaporation regimes, tP and tEI respectively, define the critical time scales for which the coffee ring will be formed (tP /tEI <1) or suppressed (tP /tEI >1). National Science Foundation under Grant No. CMMI-1401438.

  7. Multifunctional epitaxial systems on silicon substrates

    NASA Astrophysics Data System (ADS)

    Singamaneni, Srinivasa Rao; Prater, John Thomas; Narayan, Jagdish

    2016-09-01

    Multifunctional heterostructures can exhibit a wide range of functional properties, including colossal magneto-resistance, magnetocaloric, and multiferroic behavior, and can display interesting physical phenomena including spin and charge ordering and strong spin-orbit coupling. However, putting this functionality to work remains a challenge. To date, most of the work reported in the literature has dealt with heterostructures deposited onto closely lattice matched insulating substrates such as DyScO3, SrTiO3 (STO), or STO buffered Si(100) using concepts of lattice matching epitaxy (LME). However, strain in heterostructures grown by LME is typically not fully relaxed and the layers contain detrimental defects such as threading dislocations that can significantly degrade the physical properties of the films and adversely affect the device characteristics. In addition, most of the substrates are incompatible with existing CMOS-based technology, where Si (100) substrates dominate. This review discusses recent advances in the integration of multifunctional oxide and non-oxide materials onto silicon substrates. An alternative thin film growth approach, called "domain matching epitaxy," is presented which identifies approaches for minimizing lattice strain and unwanted defects in large misfit systems (7%-25% and higher). This approach broadly allows for the integration of multifunctional materials onto silicon substrates, such that sensing, computation, and response functions can be combined to produce next generation "smart" devices. In general, pulsed laser deposition has been used to epitaxially grow these materials, although the concepts developed here can be extended to other deposition techniques, as well. It will be shown that TiN and yttria-stabilized zirconia template layers provide promising platforms for the integration of new functionality into silicon-based computer chips. This review paper reports on a number of thin-film heterostructure systems that span a

  8. Environmentally-assisted technique for transferring devices onto non-conventional substrates

    DOEpatents

    Lee, Chi-Hwan; Kim, Dong Rip; Zheng, Xiaolin

    2014-08-26

    A device fabrication method includes: (1) providing a growth substrate including a base and an oxide layer disposed over the base; (2) forming a metal layer over the oxide layer; (3) forming a stack of device layers over the metal layer; (4) performing interfacial debonding of the metal layer to separate the stack of device layers and the metal layer from the growth substrate; and (5) affixing the stack of device layers to a target substrate.

  9. Aluminium or copper substrate panel for selective absorption of solar energy

    NASA Technical Reports Server (NTRS)

    Roberts, M. L.; Sharpe, M. H.; Krupnick, A. C. (Inventor)

    1979-01-01

    A method for making panels which selectively absorb solar energy is disclosed. The panels are comprised of an aluminum substrate, a layer of zinc thereon, a layer of nickel over the zinc layer and an outer layer of solar energy absorbing nickel oxide or a copper substrate with a layer of nickel thereon and a layer of solar energy absorbing nickel oxide distal from the copper substrate.

  10. Multiple alternative substrate kinetics.

    PubMed

    Anderson, Vernon E

    2015-11-01

    The specificity of enzymes for their respective substrates has been a focal point of enzyme kinetics since the initial characterization of metabolic chemistry. Various processes to quantify an enzyme's specificity using kinetics have been utilized over the decades. Fersht's definition of the ratio kcat/Km for two different substrates as the "specificity constant" (ref [7]), based on the premise that the important specificity existed when the substrates were competing in the same reaction, has become a consensus standard for enzymes obeying Michaelis-Menten kinetics. The expansion of the theory for the determination of the relative specificity constants for a very large number of competing substrates, e.g. those present in a combinatorial library, in a single reaction mixture has been developed in this contribution. The ratio of kcat/Km for isotopologs has also become a standard in mechanistic enzymology where kinetic isotope effects have been measured by the development of internal competition experiments with extreme precision. This contribution extends the theory of kinetic isotope effects to internal competition between three isotopologs present at non-tracer concentrations in the same reaction mix. This article is part of a special issue titled: Enzyme Transition States from Theory and Experiment.

  11. Enamides: valuable organic substrates.

    PubMed

    Carbery, David R

    2008-10-07

    Enamides display a fine balance of stability and reactivity, which is now leading to their increasing use in organic synthesis. Enamides offer multiple opportunities for the inclusion of nitrogen based functionality into organic systems. Recent examples of these compounds as substrates are discussed in this article.

  12. Substrate system for spray forming

    DOEpatents

    Chu, Men G.; Chernicoff, William P.

    2002-01-01

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  13. Substrate system for spray forming

    DOEpatents

    Chu, Men G.; Chernicoff, William P.

    2000-01-01

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  14. Buried oxide layer in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  15. Literature survey on oxidations and fatigue lives at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Liu, H. W.; Oshida, Y.

    1984-01-01

    Nickel-base superalloys are the most complex and the most widely used for high temperature applications such as aircraft engine components. The desirable properties of nickel-base superalloys at high temperatures are tensile strength, thermomechanical fatigue resistance, low thermal expansion, as well as oxidation resistance. At elevated temperature, fatigue cracks are often initiated by grain boundary oxidation, and fatigue cracks often propagate along grain boundaries, where the oxidation rate is higher. Oxidation takes place at the interface between metal and gas. Properties of the metal substrate, the gaseous environment, as well as the oxides formed all interact to make the oxidation behavior of nickel-base superalloys extremely complicated. The important topics include general oxidation, selective oxidation, internal oxidation, grain boundary oxidation, multilayer oxide structure, accelerated oxidation under stress, stress-generation during oxidation, composition and substrate microstructural changes due to prolonged oxidation, fatigue crack initiation at oxidized grain boundaries and the oxidation accelerated fatigue crack propagation along grain boundaries.

  16. Electrocatalyst for alcohol oxidation in fuel cells

    DOEpatents

    Adzic, Radoslav R.; Marinkovic, Nebojsa S.

    2001-01-01

    Binary and ternary electrocatalysts are provided for oxidizing alcohol in a fuel cell. The binary electrocatalyst includes 1) a substrate selected from the group consisting of NiWO.sub.4 or CoWO.sub.4 or a combination thereof, and 2) Group VIII noble metal catalyst supported on the substrate. The ternary electrocatalyst includes 1) a substrate as described above, and 2) a catalyst comprising Group VIII noble metal, and ruthenium oxide or molybdenum oxide or a combination thereof, said catalyst being supported on said substrate.

  17. Superconductive articles including cerium oxide layer

    DOEpatents

    Wu, X.D.; Muenchausen, R.E.

    1993-11-16

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure. 7 figures.

  18. Porous silicon as a substrate material for potentiometric biosensors

    NASA Astrophysics Data System (ADS)

    Thust, Marion; Schöning, M. J.; Frohnhoff, S.; Arens-Fischer, R.; Kordos, P.; Lüth, H.

    1996-01-01

    For the first time porous silicon has been investigated for the purpose of application as a substrate material for potentiometric biosensors operating in aqueous solutions. Porous silicon was prepared from differently doped silicon substrates by a standard anodic etching process. After oxidation, penicillinase, an enzyme sensitive to penicillin, was bound to the porous structure by physical adsorption. To characterize the electrochemical properties of the so build up penicillin biosensor, capacitance - voltage (C - V) measurements were performed on these field-effect structures.

  19. CeO2 and CuOx Interactions and the Controlled Assembly of CeO2(111) and CeO2(100) Nanoparticles on an Oxidized Cu(111)Substrate

    SciTech Connect

    Rodriguez J. A.; Yang F.; Choi Y.M.; Agnoli S.; Liu P.; Stacchiola D.; Hrbek J.

    2011-11-24

    The catalytic performance of ceria-based heterogeneous catalysts in many chemical transformations (water-gas shift reaction, CO oxidation, alcohol synthesis from CO/CO{sub 2} hydrogenation, etc.) is affected by the surface structure of the ceria. To control the performance of ceria-containing inverse catalysts, we devised a method to grow ceria nanoparticles (NPs) exposing exclusively either (111) or (100) surfaces and characterized their surface structures by scanning tunneling microscopy. When cerium is vapor-deposited on Cu(111) in a background of molecular O{sub 2}, only CeO{sub 2}(111) NPs grow. However, if the surface of Cu(111) is preoxidized with O{sub 2} or NO{sub 2} to form a rectangular copper oxide phase, probably Cu{sub 4}O{sub 3}(001), CeO{sub 2}(100) NPs grow on the oxide template instead. These experimental findings are interpreted using results of density functional calculations. The (100) surface of bulk ceria reconstructs to preserve charge neutrality. This is not necessary for CeO{sub 2}(100) NPs grown on Cu{sub 4}O{sub 3}(001), where the topmost oxygen layer of Cu{sub 4}O{sub 3} is shared with the interfacial layer of cerium. After the CeO{sub 2}(100)/CuO{sub x}/Cu(111) surfaces were exposed to CO, the copper oxide was reduced but the shape of the CeO{sub 2}(100) NPs remained intact. This opens the door for diverse applications in catalysis.

  20. Creatine supplementation influences substrate utilization at rest.

    PubMed

    Huso, M Erik; Hampl, Jeffrey S; Johnston, Carol S; Swan, Pamela D

    2002-12-01

    The influence of creatine supplementation on substrate utilization during rest was investigated using a double-blind crossover design. Ten active men participated in 12 wk of weight training and were given creatine and placebo (20 g/day for 4 days, then 2 g/day for 17 days) in two trials separated by a 4-wk washout. Body composition, substrate utilization, and strength were assessed after weeks 2, 5, 9, and 12. Maximal isometric contraction [1 repetition maximum (RM)] leg press increased significantly (P < 0.05) after both treatments, but 1-RM bench press was increased (33 +/- 8 kg, P < 0.05) only after creatine. Total body mass increased (1.6 +/- 0.5 kg, P < 0.05) after creatine but not after placebo. Significant (P < 0.05) increases in fat-free mass were found after creatine and placebo supplementation (1.9 +/- 0.8 and 2.2 +/- 0.7 kg, respectively). Fat mass did not change significantly with creatine but decreased after the placebo trial (-2.4 +/- 0.8 kg, P < 0.05). Carbohydrate oxidation was increased by creatine (8.9 +/- 4.0%, P < 0.05), whereas there was a trend for increased respiratory exchange ratio after creatine supplementation (0.03 +/- 0.01, P = 0.07). Changes in substrate oxidation may influence the inhibition of fat mass loss associated with creatine after weight training.