Sample records for oxide substrates struktura

  1. Metal oxide nanorod arrays on monolithic substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Pu-Xian; Guo, Yanbing; Ren, Zheng

    A metal oxide nanorod array structure according to embodiments disclosed herein includes a monolithic substrate having a surface and multiple channels, an interface layer bonded to the surface of the substrate, and a metal oxide nanorod array coupled to the substrate surface via the interface layer. The metal oxide can include ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide. The substrate can include a glass substrate, a plastic substrate, a silicon substrate, a ceramic monolith, and a stainless steel monolith. The ceramic can include cordierite, alumina, tin oxide, and titania. The nanorod array structure can includemore » a perovskite shell, such as a lanthanum-based transition metal oxide, or a metal oxide shell, such as ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide, or a coating of metal particles, such as platinum, gold, palladium, rhodium, and ruthenium, over each metal oxide nanorod. Structures can be bonded to the surface of a substrate and resist erosion if exposed to high velocity flow rates.« less

  2. High quality oxide films on substrates

    DOEpatents

    Ruckman, Mark W.; Strongin, Myron; Gao, Yong L.

    1994-01-01

    A method for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material.

  3. High quality oxide films on substrates

    DOEpatents

    Ruckman, M.W.; Strongin, M.; Gao, Y.L.

    1994-02-01

    A method is described for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material. 4 figures.

  4. Method for producing high quality oxide films on substrates

    DOEpatents

    Ruckman, Mark W.; Strongin, Myron; Gao, Yong L.

    1993-01-01

    A method for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material.

  5. Silica substrate or portion formed from oxidation of monocrystalline silicon

    DOEpatents

    Matzke, Carolyn M.; Rieger, Dennis J.; Ellis, Robert V.

    2003-07-15

    A method is disclosed for forming an inclusion-free silica substrate using a monocrystalline silicon substrate as the starting material and oxidizing the silicon substrate to convert it entirely to silica. The oxidation process is performed from both major surfaces of the silicon substrate using a conventional high-pressure oxidation system. The resulting product is an amorphous silica substrate which is expected to have superior etching characteristics for microfabrication than conventional fused silica substrates. The present invention can also be used to convert only a portion of a monocrystalline silicon substrate to silica by masking the silicon substrate and locally thinning a portion the silicon substrate prior to converting the silicon portion entirely to silica. In this case, the silica formed by oxidizing the thinned portion of the silicon substrate can be used, for example, as a window to provide optical access through the silicon substrate.

  6. Method for producing high quality oxide films on substrates

    DOEpatents

    Ruckman, M.W.; Strongin, M.; Gao, Y.L.

    1993-11-23

    A method is described for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material. 4 figures.

  7. Salbutamol intake and substrate oxidation during submaximal exercise.

    PubMed

    Arlettaz, A; Le Panse, B; Portier, H; Lecoq, A-M; Thomasson, R; De Ceaurriz, J; Collomp, K

    2009-01-01

    In order to test the hypothesis that salbutamol would change substrate oxidation during submaximal exercise, eight recreationally trained men twice performed 1 h at 60% VO(2) peak after ingestion of placebo or 4 mg of salbutamol. Gas exchange was monitored and blood samples were collected during exercise for GH, ACTH, insulin, and blood glucose and lactate determination. With salbutamol versus placebo, there was no significant difference in total energy expenditure and substrate oxidation, but the substrate oxidation balance was significantly modified after 40 min of exercise. ACTH was significantly decreased with salbutamol during the last 10 min of exercise, whereas no difference was found between the two treatments in the other hormonal and metabolic parameters. The theory that the ergogenic effect of salbutamol results from a change in substrate oxidation has little support during relatively short term endurance exercise, but it is conceivable that longer exercise duration can generate positive findings.

  8. Antibacterial graphene oxide coatings on polymer substrate

    NASA Astrophysics Data System (ADS)

    Liu, Yiming; Wen, Jing; Gao, Yang; Li, Tianyang; Wang, Huifang; Yan, Hong; Niu, Baolong; Guo, Ruijie

    2018-04-01

    Graphene oxide (GO) was thought to be a promising antibacterial material. In this work, graphene oxide coatings on polymer substrate were prepared and the antibacterial activity against E. coli and S. aureus was investigated. It was demonstrated that the coatings exhibited stronger antibacterial activity against E. coli with thin membrane than S. aureus with thick membrane. Take into consideration the fact that the coatings presented smooth, sharp edges-free morphology and bonded parallelly to substrate, which was in mark contrast with their precursor GO nanosheets, oxidative stress mechanism was considered the main factor of antibacterial activity. The coatings, which are easy to recycle and have no inhalation risk, provide an alternative for application in antibacterial medical instruments.

  9. Regulation of Substrate Oxidation Preferences in Muscle by the Peptide Hormone Adropin

    PubMed Central

    Gao, Su; McMillan, Ryan P.; Jacas, Jordi; Zhu, Qingzhang; Li, Xuesen; Kumar, Ganesh K.; Casals, Núria; Hegardt, Fausto G.; Robbins, Paul D.; Lopaschuk, Gary D.; Hulver, Matthew W.

    2014-01-01

    Rigorous control of substrate oxidation by humoral factors is essential for maintaining metabolic homeostasis. During feeding and fasting cycles, carbohydrates and fatty acids are the two primary substrates in oxidative metabolism. Here, we report a novel role for the peptide hormone adropin in regulating substrate oxidation preferences. Plasma levels of adropin increase with feeding and decrease upon fasting. A comparison of whole-body substrate preference and skeletal muscle substrate oxidation in adropin knockout and transgenic mice suggests adropin promotes carbohydrate oxidation over fat oxidation. In muscle, adropin activates pyruvate dehydrogenase (PDH), which is rate limiting for glucose oxidation and suppresses carnitine palmitoyltransferase-1B (CPT-1B), a key enzyme in fatty acid oxidation. Adropin downregulates PDH kinase-4 (PDK4) that inhibits PDH, thereby increasing PDH activity. The molecular mechanisms of adropin’s effects involve acetylation (suggesting inhibition) of the transcriptional coactivator PGC-1α, downregulating expression of Cpt1b and Pdk4. Increased PGC-1α acetylation by adropin may be mediated by inhibiting Sirtuin-1 (SIRT1), a PGC-1α deacetylase. Altered SIRT1 and PGC-1α activity appear to mediate aspects of adropin’s metabolic actions in muscle. Similar outcomes were observed in fasted mice treated with synthetic adropin. Together, these results suggest a role for adropin in regulating muscle substrate preference under various nutritional states. PMID:24848071

  10. Overlay coating degradation by simultaneous oxidation and coating/substrate interdiffusion. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.

    1983-01-01

    Degradation of NiCrAlZr overlay coatings on various NiCrAl substrates was examined after cyclic oxidation. Concentration/distance profiles were measured in the coating and substrate after various oxidation exposures at 1150 C. For each stubstrate, the Al content in the coating decreased rapidly. The concentration/distance profiles, and particularly that for Al, reflected the oxide spalling resistance of each coated substrate. A numerical model was developed to simulate diffusion associated with overlay-coating degradation by oxidation and coating/substrate interdiffusion. Input to the numerical model consisted of the Cr and Al content of the coating and substrate, ternary diffusivities, and various oxide spalling parameters. The model predicts the Cr and Al concentrations in the coating and substrate after any number of oxidation/thermal cycles. The numerical model also predicts coating failure based on the ability of the coating to supply sufficient Al to the oxide scale. The validity of the model was confirmed by comparison of the predicted and measured concentration/distance profiles. The model was subsequently used to identify the most critical system parameters affecting coating life.

  11. Oxide film on metal substrate reduced to form metal-oxide-metal layer structure

    NASA Technical Reports Server (NTRS)

    Youngdahl, C. A.

    1967-01-01

    Electrically conductive layer of zirconium on a zirconium-oxide film residing on a zirconium substrate is formed by reducing the oxide in a sodium-calcium solution. The reduced metal remains on the oxide surface as an adherent layer and seems to form a barrier that inhibits further reaction.

  12. Oxidation stress evolution and relaxation of oxide film/metal substrate system

    NASA Astrophysics Data System (ADS)

    Dong, Xuelin; Feng, Xue; Hwang, Keh-Chih

    2012-07-01

    Stresses in the oxide film/metal substrate system are crucial to the reliability of the system at high temperature. Two models for predicting the stress evolution during isothermal oxidation are proposed. The deformation of the system is depicted by the curvature for single surface oxidation. The creep strain of the oxide and metal, and the lateral growth strain of the oxide are considered. The proposed models are compared with the experimental results in literature, which demonstrates that the elastic model only considering for elastic strain gives an overestimated stress in magnitude, but the creep model is consistent with the experimental data and captures the stress relaxation phenomenon during oxidation. The effects of the parameter for the lateral growth strain rate are also analyzed.

  13. Application of a mixed metal oxide catalyst to a metallic substrate

    NASA Technical Reports Server (NTRS)

    Sevener, Kathleen M. (Inventor); Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Wisner, Daniel L. (Inventor)

    2009-01-01

    A method for applying a mixed metal oxide catalyst to a metallic substrate for the creation of a robust, high temperature catalyst system for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in propulsion systems. The method begins by forming a prepared substrate material consisting of a metallic inner substrate and a bound layer of a noble metal intermediate. Alternatively, a bound ceramic coating, or frit, may be introduced between the metallic inner substrate and noble metal intermediate when the metallic substrate is oxidation resistant. A high-activity catalyst slurry is applied to the surface of the prepared substrate and dried to remove the organic solvent. The catalyst layer is then heat treated to bind the catalyst layer to the surface. The bound catalyst layer is then activated using an activation treatment and calcinations to form the high-activity catalyst system.

  14. Experimental and Modeling Studies on the Microstructures and Properties of Oxidized Aluminum Nitride Ceramic Substrates

    NASA Astrophysics Data System (ADS)

    Cao, Ye; Xu, Haixian; Zhan, Jun; Zhang, Hao; Wei, Xin; Wang, Jianmin; Cui, Song; Tang, Wenming

    2018-05-01

    Oxidation of aluminum nitride (AlN) ceramic substrates doped with 2 wt.% Y2O3 was performed in air at temperatures ranging from 1000 to 1300 °C for various lengths of time. Microstructure, bending strength, and thermal conductivity of the oxidized AlN substrates were studied experimentally and also via mathematical models. The results show that the oxide layer formed on the AlN substrates is composed of α-Al2O3 nanocrystallines and interconnected micropores. Longitudinal and transverse cracks are induced in the oxide layer under tensile and shear stresses, respectively. Intergranular oxidation of the AlN grains close to the oxide layer/AlN interface also occurs, leading to widening and cracking of the AlN grain boundaries. These processes result in the monotonous degradation of bending strength and thermal conductivity of the oxidized AlN substrates. Two mathematic models concerning these properties of the oxidized AlN substrates versus the oxide layer thickness were put forward. They fit well with the experimental results.

  15. Spectroellipsometric detection of silicon substrate damage caused by radiofrequency sputtering of niobium oxide

    NASA Astrophysics Data System (ADS)

    Lohner, Tivadar; Serényi, Miklós; Szilágyi, Edit; Zolnai, Zsolt; Czigány, Zsolt; Khánh, Nguyen Quoc; Petrik, Péter; Fried, Miklós

    2017-11-01

    Substrate surface damage induced by deposition of metal atoms by radiofrequency (rf) sputtering or ion beam sputtering onto single-crystalline silicon (c-Si) surface has been characterized earlier by electrical measurements. The question arises whether it is possible to characterize surface damage using spectroscopic ellipsometry (SE). In our experiments niobium oxide layers were deposited by rf sputtering on c-Si substrates in gas mixture of oxygen and argon. Multiple angle of incidence spectroscopic ellipsometry measurements were performed, a four-layer optical model (surface roughness layer, niobium oxide layer, native silicon oxide layer and ion implantation-amorphized silicon [i-a-Si] layer on a c-Si substrate) was created in order to evaluate the spectra. The evaluations yielded thicknesses of several nm for the i-a-Si layer. Better agreement could be achieved between the measured and the generated spectra by inserting a mixed layer (with components of c-Si and i-a-Si applying the effective medium approximation) between the silicon oxide layer and the c-Si substrate. High depth resolution Rutherford backscattering (RBS) measurements were performed to investigate the interface disorder between the deposited niobium oxide layer and the c-Si substrate. Atomic resolution cross-sectional transmission electron microscopy investigation was applied to visualize the details of the damaged subsurface region of the substrate.

  16. Deposition of an Ultraflat Graphene Oxide Nanosheet on Atomically Flat Substrates

    NASA Astrophysics Data System (ADS)

    Khan, M. Z. H.; Shahed, S. M. F.; Yuta, N.; Komeda, T.

    2017-07-01

    In this study, graphene oxide (GO) sheets produced in the form of stable aqueous dispersions were deposited on Au (111), freshly cleaved mica, and highly oriented pyrolytic graphite (HOPG) substrates. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to study the presence and distinct contact of GO sheets on the substrates. It was revealed from the topography images that high-quality ultraflat GO monolayer sheets formed on the substrates without distinct cracking/wrinkling or folding. GO sheets with apparent height variation observed by microscopy also indicate ultraflat deposition with clear underlying steps. It was observed that ultrasonication and centrifuge steps prior to deposition were very effective for getting oxidation debris (OD)-free ultraflat single monolayer GO nanosheets onto substrates and that the process depends on the concentration of supplied GO solutions.

  17. Elemental Metals or Oxides Distributed on a Carbon Substrate or Self-Supported and the Manufacturing Process Using Graphite Oxide as Template

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Chen (Inventor)

    1999-01-01

    A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a percursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon, metal, chloride, and oxygen. This intermediary product can be further processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon, metal carbonate, and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide; b) in an inert environment to produce metal oxide on carbon substrate; c) in a reducing environment to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.

  18. Elemental Metals or Oxides Distributed on a Carbon Substrate or Self-Supported and the Manufacturing Process Using Graphite Oxide as Template

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    1999-01-01

    A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon, metal, chloride, and oxygen. This intermediary product can be further processed by direct exposure to carbonate-solutions to form a second intermediary product comprising carbon, metal carbonate, and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide; b) in an inert environment to produce metal oxide on carbon substrate; c) in a reducing environment to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.

  19. Screening method for selecting semiconductor substrates having defects below a predetermined level in an oxide layer

    DOEpatents

    Warren, William L.; Vanheusden, Karel J. R.; Schwank, James R.; Fleetwood, Daniel M.; Shaneyfelt, Marty R.; Winokur, Peter S.; Devine, Roderick A. B.

    1998-01-01

    A method for screening or qualifying semiconductor substrates for integrated circuit fabrication. The method comprises the steps of annealing at least one semiconductor substrate at a first temperature in a defect-activating ambient (e.g. hydrogen, forming gas, or ammonia) for sufficient time for activating any defects within on oxide layer of the substrate; measuring a defect-revealing electrical characteristic of at least a portion of the oxide layer for determining a quantity of activated defects therein; and selecting substrates for which the quantity of activated defects is below a predetermined level. The defect-revealing electrical characteristic may be a capacitance-versus-voltage (C-V) characteristic or a current-versus-voltage (I-V) characteristic that is dependent on an electrical charge in the oxide layer generated by the activated defects. Embodiments of the present invention may be applied for screening any type of semiconductor substrate or wafer having an oxide layer formed thereon or therein. This includes silicon-on-insulator substrates formed by a separation by the implantation of oxygen (SIMOX) process or the bond and etch back silicon-on-insulator (BESOI) process, as well as silicon substrates having a thermal oxide layer or a deposited oxide layer.

  20. Two Oxidation Sites for Low Redox Potential Substrates

    PubMed Central

    Morales, María; Mate, María J.; Romero, Antonio; Martínez, María Jesús; Martínez, Ángel T.; Ruiz-Dueñas, Francisco J.

    2012-01-01

    Versatile peroxidase shares with manganese peroxidase and lignin peroxidase the ability to oxidize Mn2+ and high redox potential aromatic compounds, respectively. Moreover, it is also able to oxidize phenols (and low redox potential dyes) at two catalytic sites, as shown by biphasic kinetics. A high efficiency site (with 2,6-dimethoxyphenol and p-hydroquinone catalytic efficiencies of ∼70 and ∼700 s−1 mm−1, respectively) was localized at the same exposed Trp-164 responsible for high redox potential substrate oxidation (as shown by activity loss in the W164S variant). The second site, characterized by low catalytic efficiency (∼3 and ∼50 s−1 mm−1 for 2,6-dimethoxyphenol and p-hydroquinone, respectively) was localized at the main heme access channel. Steady-state and transient-state kinetics for oxidation of phenols and dyes at the latter site were improved when side chains of residues forming the heme channel edge were removed in single and multiple variants. Among them, the E140G/K176G, E140G/P141G/K176G, and E140G/W164S/K176G variants attained catalytic efficiencies for oxidation of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) at the heme channel similar to those of the exposed tryptophan site. The heme channel enlargement shown by x-ray diffraction of the E140G, P141G, K176G, and E140G/K176G variants would allow a better substrate accommodation near the heme, as revealed by the up to 26-fold lower Km values (compared with native VP). The resulting interactions were shown by the x-ray structure of the E140G-guaiacol complex, which includes two H-bonds of the substrate with Arg-43 and Pro-139 in the distal heme pocket (at the end of the heme channel) and several hydrophobic interactions with other residues and the heme cofactor. PMID:23071108

  1. Determination of interfacial adhesion strength between oxide scale and substrate for metallic SOFC interconnects

    NASA Astrophysics Data System (ADS)

    Sun, X.; Liu, W. N.; Stephens, E.; Khaleel, M. A.

    The interfacial adhesion strength between the oxide scale and the substrate is crucial to the reliability and durability of metallic interconnects in solid oxide fuel cell (SOFC) operating environments. It is necessary, therefore, to establish a methodology to quantify the interfacial adhesion strength between the oxide scale and the metallic interconnect substrate, and furthermore to design and optimize the interconnect material as well as the coating materials to meet the design life of an SOFC system. In this paper, we present an integrated experimental/analytical methodology for quantifying the interfacial adhesion strength between the oxide scale and a ferritic stainless steel interconnect. Stair-stepping indentation tests are used in conjunction with subsequent finite element analyses to predict the interfacial strength between the oxide scale and Crofer 22 APU substrate.

  2. Screening method for selecting semiconductor substrates having defects below a predetermined level in an oxide layer

    DOEpatents

    Warren, W.L.; Vanheusden, K.J.R.; Schwank, J.R.; Fleetwood, D.M.; Shaneyfelt, M.R.; Winokur, P.S.; Devine, R.A.B.

    1998-07-28

    A method is disclosed for screening or qualifying semiconductor substrates for integrated circuit fabrication. The method comprises the steps of annealing at least one semiconductor substrate at a first temperature in a defect-activating ambient (e.g. hydrogen, forming gas, or ammonia) for sufficient time for activating any defects within on oxide layer of the substrate; measuring a defect-revealing electrical characteristic of at least a portion of the oxide layer for determining a quantity of activated defects therein; and selecting substrates for which the quantity of activated defects is below a predetermined level. The defect-revealing electrical characteristic may be a capacitance-versus voltage (C-V) characteristic or a current-versus-voltage (I-V) characteristic that is dependent on an electrical charge in the oxide layer generated by the activated defects. Embodiments of the present invention may be applied for screening any type of semiconductor substrate or wafer having an oxide layer formed thereon or therein. This includes silicon-on-insulator substrates formed by a separation by the implantation of oxygen (SIMOX) process or the bond and etch back silicon-on-insulator (BESOI) process, as well as silicon substrates having a thermal oxide layer or a deposited oxide layer. 5 figs.

  3. Oxidation of monohydric phenol substrates by tyrosinase. An oximetric study.

    PubMed

    Naish-Byfield, S; Riley, P A

    1992-11-15

    The purity of commercially available mushroom tyrosinase was investigated by non-denaturing PAGE. Most of the protein in the preparation migrated as a single band under these conditions. This band contained both tyrosinase and dopa oxidase activity. No other activity of either classification was found in the preparation. Oxygen consumption by tyrosinase during oxidation of the monohydric phenol substrates tyrosine and 4-hydroxyanisole (4HA) was monitored by oximetry in order to determine the stoichiometry of the reactions. For complete oxidation, the molar ratio of oxygen: 4HA was 1:1. Under identical conditions, oxidation of tyrosine required 1.5 mol of oxygen/mol of tyrosine. The additional oxygen uptake during tyrosine oxidation is due to the internal cyclization of dopaquinone to form cyclodopa, which undergoes a redox reaction with dopaquinone to form dopachrome and dopa, which is then oxidized by the enzyme, leading to an additional 0.5 mol of oxygen/mol of original substrate. Oxygen consumption for complete oxidation of 200 nmol of 4HA was constant over a range of concentrations of tyrosinase of 33-330 units/ml of substrate. The maximum rate of reaction was directly proportional to the concentration of tyrosinase, whereas the length of the lag phase decreased non-linearly with increasing tyrosinase concentration. Activation of the enzyme by exposure to citrate was not seen, nor was the lag phase abolished by exposure of the enzyme to low pH. Michaelis-Menten analysis of tyrosinase in which the lag phase is abolished by pre-exposure of the enzyme to a low concentration of dithiothreitol gave Km values for tyrosine and 4HA of 153 and 20 microM respectively.

  4. [Oxidation of sulfur-containing substrates by aboriginal and experimentally designed microbial communities].

    PubMed

    Pivovarova, T A; Bulaev, A G; Roshchupko, P V; Belyĭ, A V; Kondrat'eva, T F

    2012-01-01

    Aboriginal and experimental (constructed of pure microbial cultures) communities of acidophilic chemolithotrophs have been studied. The oxidation of elemental sulfur, sodium thiosulfate, and potassium tetrathionate as sole sources of energy has been monitored. The oxidation rate of the experimental community is higher as compared to the aboriginal community isolated from a flotation concentrate of pyrrhotine-containing pyrite-arsenopyrite gold-arsenic sulfide ore. The degree of oxidation of the mentioned S substrates amounts to 17.91, 68.30, and 93.94% for the experimental microbial community and to 10.71, 56.03, and 79.50% for the aboriginal community, respectively. The degree of oxidation of sulfur sulfide forms in the ore flotation concentrate is 59.15% by the aboriginal microbial community and 49.40% by the experimental microbial community. Despite a higher rate of oxidation of S substrates as a sole source of energy by the experimental microbial community, the aboriginal community oxidizes S substrates at a higher rate in the flotation concentrate of pyrrhotine-containing pyrite-arsenopyrite gold-arsenic sulfide ore, from which it was isolated. Bacterial-chemical oxidation of the flotation concentrate by the aboriginal microbial community allows for the extraction of an additional 32.3% of gold from sulfide minerals, which is by 5.7% larger compared to the yield obtained by the experimental microbial community.

  5. Polycrystalline ferroelectric or multiferroic oxide articles on biaxially textured substrates and methods for making same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goyal, Amit; Shin, Junsoo

    A polycrystalline ferroelectric and/or multiferroic oxide article includes a substrate having a biaxially textured surface; at least one biaxially textured buffer layer supported by the substrate; and a biaxially textured ferroelectric or multiferroic oxide layer supported by the buffer layer. Methods for making polycrystalline ferroelectric and/or multiferroic oxide articles are also disclosed.

  6. Substrate inhibition: Oxidation of D-sorbitol and D-mannitol by potassium periodate in alkaline medium

    NASA Astrophysics Data System (ADS)

    Lakshman Kumar, Y.; Venkata Nadh, R.; Radhakrishnamurti, P. S.

    2014-05-01

    In the oxidation of D-sorbitol and D-mannitol by potassium periodate in alkaline media, substrate inhibition was observed with both substrates, i.e., a decrease in the rate of the reaction was observed with an increase in the concentration of substrate. The substrate inhibition was attributed to the formation of stable complex between the substrate and periodate. The reactions were found to be first order in case of periodate and a positive fractional order with hydroxide ions. Arrhenius parameters were calculated for the oxidation of sorbitol and mannitol by potassium periodate in alkali media.

  7. Spinel-structured metal oxide on a substrate and method of making same by molecular beam epitaxy

    DOEpatents

    Chambers, Scott A.

    2006-02-21

    A method of making a spinel-structured metal oxide on a substrate by molecular beam epitaxy, comprising the step of supplying activated oxygen, a first metal atom flux, and at least one other metal atom flux to the surface of the substrate, wherein the metal atom fluxes are individually controlled at the substrate so as to grow the spinel-structured metal oxide on the substrate and the metal oxide is substantially in a thermodynamically stable state during the growth of the metal oxide. A particular embodiment of the present invention encompasses a method of making a spinel-structured binary ferrite, including Co ferrite, without the need of a post-growth anneal to obtain the desired equilibrium state.

  8. Pulsed laser deposition of transparent conductive oxide thin films on flexible substrates

    NASA Astrophysics Data System (ADS)

    Socol, G.; Socol, M.; Stefan, N.; Axente, E.; Popescu-Pelin, G.; Craciun, D.; Duta, L.; Mihailescu, C. N.; Mihailescu, I. N.; Stanculescu, A.; Visan, D.; Sava, V.; Galca, A. C.; Luculescu, C. R.; Craciun, V.

    2012-11-01

    The influence of target-substrate distance during pulsed laser deposition of indium zinc oxide (IZO), indium tin oxide (ITO) and aluminium-doped zinc oxide (AZO) thin films grown on polyethylene terephthalate (PET) substrates was investigated. It was found that the properties of such flexible transparent conductive oxide (TCO)/PET electrodes critically depend on this parameter. The TCO films that were deposited at distances of 6 and 8 cm exhibited an optical transmittance higher than 90% in the visible range and electrical resistivities around 5 × 10-4 Ω cm. In addition to these excellent electrical and optical characteristics the films grown at 8 cm distance were homogenous, smooth, adherent, and without cracks or any other extended defects, being suitable for opto-electronic device applications.

  9. The Effect of Molybdenum Substrate Oxidation on Molybdenum Splat Formation

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Li, Chang-Jiu

    2018-01-01

    Disk splats are usually observed when the deposition temperature exceeds the transition temperature, whereas thick oxide layer will reduce the adhesion resulting from high deposition temperature. In present study, single molybdenum splats were deposited onto polished molybdenum substrates with different preheating processes to clarify the effect of surface oxidation on the splat formation. Three substrate samples experienced three different preheating processes in an argon atmosphere. Two samples were preheated to 350 and 550 °C, and another sample was cooled to 350 °C after it was preheated to 550 °C. The chemistry and compositions of substrate surface were examined by XPS. The cross sections of splats were prepared by focus ion beam (FIB) and then characterized by SEM. Nearly disk-shaped splat with small fingers in the periphery was observed on the sample preheated to 350 °C. A perfect disk-shape splat was deposited at 550 °C. With the sample on the substrate preheated to 350 °C (cooling down from 550 °C), flower-shaped splat exhibited a central core and discrete periphery detached by some voids. The results of peeling off splats by carbon tape and the morphology of FIB sampled cross sections indicated that no effective bonding formed at the splat-substrate interface for the substrate ever heated to 550 °C, due to the increasing content of MoO3 on the preheated molybdenum surface.

  10. Effects of substrate temperature on properties of pulsed dc reactively sputtered tantalum oxide films

    NASA Astrophysics Data System (ADS)

    Jain, Pushkar; Juneja, Jasbir S.; Bhagwat, Vinay; Rymaszewski, Eugene J.; Lu, Toh-Ming; Cale, Timothy S.

    2005-05-01

    The effects of substrate heating on the stoichiometry and the electrical properties of pulsed dc reactively sputtered tantalum oxide films over a range of film thickness (0.14 to 5.4 μm) are discussed. The film stoichiometry, and hence the electrical properties, of tantalum oxide films; e.g., breakdown field, leakage current density, dielectric constant, and dielectric loss are compared for two different cases: (a) when no intentional substrate/film cooling is provided, and (b) when the substrate is water cooled during deposition. All other operating conditions are the same, and the film thickness is directly related to deposition time. The tantalum oxide films deposited on the water-cooled substrates are stoichiometric, and exhibit excellent electrical properties over the entire range of film thickness. ``Noncooled'' tantalum oxide films are stoichiometric up to ~1 μm film thickness, beyond that the deposited oxide is increasingly nonstoichiometric. The presence of partially oxidized Ta in thicker (>~1 μm) noncooled tantalum oxide films causes a lower breakdown field, higher leakage current density, higher apparent dielectric constant, and dielectric loss. The growth of nonstoichiometric tantalum oxide in thicker noncooled films is attributed to decreased surface oxygen concentration due to oxygen recombination and desorption at higher film temperatures (>~100 °C). The quantitative results presented reflect experience with a specific piece of equipment; however, the procedures presented can be used to characterize deposition processes in which film stoichiometry can change.

  11. Laser surface treatment of porous ceramic substrate for application in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Mahmod, D. S. A.; Khan, A. A.; Munot, M. A.; Glandut, N.; Labbe, J. C.

    2016-08-01

    Laser has offered a large number of benefits for surface treatment of ceramics due to possibility of localized heating, very high heating/cooling rates and possibility of growth of structural configurations only produced under non-equilibrium high temperature conditions. The present work investigates oxidation of porous ZrB2-SiC sintered ceramic substrates through treatment by a 1072 ± 10 nm ytterbium fiber laser. A multi-layer structure is hence produced showing successively oxygen rich distinct layers. The porous bulk beneath these layers remained unaffected as this laser-formed oxide scale and protected the substrate from oxidation. A glassy SiO2 structure thus obtained on the surface of the substrate becomes subject of interest for further research, specifically for its utilization as solid protonic conductor in Solid Oxide Fuel Cells (SOFCs).

  12. Process for depositing epitaxial alkaline earth oxide onto a substrate and structures prepared with the process

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    1996-01-01

    A process and structure involving a silicon substrate utilize molecular beam epitaxy (MBE) and/or electron beam evaporation methods and an ultra-high vacuum facility to grow a layup of epitaxial alkaline earth oxide films upon the substrate surface. By selecting metal constituents for the oxides and in the appropriate proportions so that the lattice parameter of each oxide grown closely approximates that of the substrate or base layer upon which oxide is grown, lattice strain at the film/film or film/substrate interface of adjacent films is appreciably reduced or relieved. Moreover, by selecting constituents for the oxides so that the lattice parameters of the materials of adjacent oxide films either increase or decrease in size from one parameter to another parameter, a graded layup of films can be grown (with reduced strain levels therebetween) so that the outer film has a lattice parameter which closely approximates that of, and thus accomodates the epitaxial growth of, a pervoskite chosen to be grown upon the outer film.

  13. Tyrosinase kinetics: failure of acceleration in oxidation of ring-blocked monohydric phenol substrate.

    PubMed

    Naish-Byfield, S; Riley, P A

    1998-04-01

    When 2,5,6-trimethyl-4-hydroxyanisole is used as substrate for mushroom tyrosinase the oxidation rate is slow and the kinetics do not exhibit an initial acceleration (lag period), in contrast to the kinetics of oxidation of the parent compound, 4-hydroxyanisole. This finding is interpreted as evidence that the acceleration of oxidation of 4-hydroxyanisole is indirectly contingent on a reductive nucleophile addition to the orthoquinone product of the monohydric phenol, which is prevented by ring methylation. Such a view is consistent with the proposal that the lag-phase characteristic of the kinetics of monohydric phenol oxidation by tyrosinase is due to the activation of previously inactive enzyme by electron donation from an orthodiphenol substrate formed from the orthoquinone oxidation product.

  14. Characterization of Thermal Oxides on 4H-SiC Epitaxial Substrates Using Fourier-Transform Infrared Spectroscopy.

    PubMed

    Seki, Hirofumi; Yoshikawa, Masanobu; Kobayashi, Takuma; Kimoto, Tsunenobu; Ozaki, Yukihiro

    2017-05-01

    Fourier transform infrared (FT-IR) spectra were measured for thermal oxides with different electrical properties grown on 4H-SiC substrates. The peak frequency of the transverse optical (TO) phonon mode was blue-shifted by 5 cm -1 as the oxide-layer thickness decreased to 3 nm. The blue shift of the TO mode indicates interfacial compressive stress in the oxide. Comparison of data for the oxide on a SiC substrate with that for similar oxides on a Si substrate implies that the peak shift of the TO mode at the SiO 2 /SiC interface is larger than that of SiO 2 /Si, which suggests that the interfacial stress for the oxide on the SiC substrate is larger than that on the Si substrate. For the SiO 2 /SiC interfacial region (<3 nm oxide thickness), despite the fact that the blue shift of the TO modes becomes larger while approaching the oxide/SiC interface, the peak frequency of the TO modes red-shifts at the oxide/SiC interface. The peak-frequency shift of the TO mode for the sample without post-oxidation annealing was larger than that for the samples post-annealed in a nitric oxide atmosphere. The channel mobilities are correlated with the degree of shift of the TO mode when the oxide thickness is <3 nm. It appears that the compressive stress at the SiO 2 /SiC interface generates silicon suboxide components and weakens the Si-O bonds. As the result, the TO mode was red-shifted and the oxygen deficiency increased to relax the compressive stress in the oxide with <3 nm thickness. Fourier transform infrared spectroscopy measurements provide unique and useful information about stress and inhomogeneity at the oxide/SiC interface.

  15. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    NASA Astrophysics Data System (ADS)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo; Kim, Dong Rip

    2015-06-01

    Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields.

  16. Substrate specificity and copper loading of the manganese-oxidizing multicopper oxidase Mnx from Bacillus sp. PL-12.

    PubMed

    Butterfield, Cristina N; Tebo, Bradley M

    2017-02-22

    Manganese(ii) oxidation in the environment is thought to be driven by bacteria because enzymatic catalysis is many orders of magnitude faster than the abiotic processes. The heterologously purified Mn oxidase (Mnx) from marine Bacillus sp. PL-12 is made up of the multicopper oxidase (MCO) MnxG and two small Cu and heme-binding proteins of unknown function, MnxE and MnxF. Mnx binds Cu and oxidizes both Mn(ii) and Mn(iii), generating Mn(iv) oxide minerals that resemble those found on the Bacillus spore surface. Spectroscopic techniques have illuminated details about the metallo-cofactors of Mnx, but very little is known about their requirement for catalytic activity, and even less is known about the substrate specificity of Mnx. Here we quantify the canonical MCO Cu and persistent peripheral Cu bound to Mnx, and test Mnx oxidizing ability toward different substrates at varying pH. Mn(ii) appears to be the best substrate in terms of k cat , but its oxidation does not follow Michaelis-Menten kinetics, instead showing a sigmoidal cooperative behavior. Mnx also oxidizes Fe(ii) substrate, but in a Michaelis-Menten manner and with a decreased activity, as well as organic substrates. The reduced metals are more rapidly consumed than the larger organic substrates, suggesting the hypothesis that the Mnx substrate site is small and tuned for metal oxidation. Of biological relevance is the result that Mnx has the highest catalytic efficiency for Mn(ii) at the pH of sea water, especially when the protein is loaded with greater than the requisite four MCO copper atoms, suggesting that the protein has evolved specifically for Mn oxidation.

  17. Synthetic polymeric substrates as potent pro-oxidant versus anti-oxidant regulators of cytoskeletal remodeling and cell apoptosis.

    PubMed

    Sung, Hak-Joon; Chandra, Prafulla; Treiser, Matthew D; Liu, Er; Iovine, Carmine P; Moghe, Prabhas V; Kohn, Joachim

    2009-03-01

    The role of reactive oxygen species (ROS)-mediated cell signal transduction pathways emanating from engineered cell substrates remains unclear. To elucidate the role, polymers derived from the amino acid L-tyrosine were used as synthetic matrix substrates. Variations in their chemical properties were created by co-polymerizing hydrophobic L-tyrosine derivatives with uncharged hydrophilic poly(ethylene glycol) (PEG, Mw = 1,000 Da), and negatively charged desaminotyrosyl-tyrosine (DT). These substrates were characterized for their intrinsic ability to generate ROS, as well as their ability to elicit Saos-2 cell responses in terms of intracellular ROS production, actin remodeling, and apoptosis. PEG-containing substrates induced both exogenous and intracellular ROS production, whereas the charged substrates reduced production of both types, indicating a coupling of exogenous ROS generation and intracellular ROS production. Furthermore, PEG-mediated ROS induction caused nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase and an increase in caspase-3 activity, confirming a link with apoptosis. PEG-rich pro-oxidant substrates caused cytoskeletal actin remodeling through beta-actin cleavage by caspase-3 into fractins. The fractins co-localized to the mitochondria and reduced the mitochondrial membrane potential. The remnant cytosolic beta-actin was polymerized and condensed, events consistent with apoptotic cell shrinkage. The cytoskeletal remodeling was integral to the further augmentation of intracellular ROS production. Conversely, the anti-oxidant DT-containing charged substrates suppressed the entire cascade of apoptotic progression. We demonstrate that ROS activity serves an important role in "outside-in" signaling for cells grown on substrates: the ROS activity couples exogenous stress, driven by substrate composition, to changes in intracellular signaling. This signaling causes cell apoptosis, which is mediated by actin remodeling.

  18. XPS study of graphene oxide reduction induced by (100) and (111)-oriented Si substrates

    NASA Astrophysics Data System (ADS)

    Priante, F.; Salim, M.; Ottaviano, L.; Perrozzi, F.

    2018-02-01

    The reduction of graphene oxide (GO) has been extensively studied in literature in order to let GO partially recover the properties of graphene. Most of the techniques proposed to reduce GO are based on high temperature annealing or chemical reduction. A new procedure, based on the direct reduction of GO by etched Si substrate, was recently proposed in literature. In the present work, we accurately investigated the Si-GO interaction with x-ray photoelectron spectroscopy. In order to avoid external substrate oxidation factors we used EtOH as the GO solvent instead of water, and thermal annealing was carried out in UHV. We investigated the effect of Si(100), Si(111) and Au substrates on GO, to probe the role played by both the substrate composition and substrate orientation during the reduction process. A similar degree of GO reduction was observed for all samples but only after thermal annealing, ruling out the direct reduction effect of the substrate.

  19. Effects of MAR-M247 substrate (modified) composition on coating oxidation coating/substrate interdiffusion. M.S. Thesis. Final Report; [protective coatings for hot section components of gas turbine engines

    NASA Technical Reports Server (NTRS)

    Pilsner, B. H.

    1985-01-01

    The effects of gamma+gamma' Mar-M247 substrate composition on gamma+beta Ni-Cr-Al-Zr coating oxidation and coating/substrate interdiffusion were evaluated. These results were also compared to a prior study for a Ni-Cr-Al-Zr coated gamma Ni-Cr-Al substrate with equivalent Al and Cr atomic percentages. Cyclic oxidation behavior at 1130 C was investigated using change in weight curves. Concentration/distance profiles were measured for Al, Cr, Co, W, and Ta. The surface oxides were examined by X-ray diffraction and scanning electron microscopy. The results indicate that variations of Ta and C concentrations in the substrate do not affect oxidation resistance, while additions of grain boundary strengthening elements (Zr, Hf, B) increase oxidation resistance. In addition, the results indicate that oxidation phenomena in gamma+beta/gamma+gamma' Mar-M247 systems have similar characteristics to the l gamma+beta/gamma Ni-Cr-Al system.

  20. Cu-rGO subsurface layer creation on copper substrate and its resistance to oxidation

    NASA Astrophysics Data System (ADS)

    Pietrzak, Katarzyna; Strojny-Nędza, Agata; Olesińska, Wiesława; Bańkowska, Anna; Gładki, Andrzej

    2017-11-01

    On the basis of a specially designed experiment, this paper presents a model, which is an attempt to explain the mechanism of formatting and creating oxidation resistance of Cu-rGO subsurface layers. Practically zero chemical affinity of copper to carbon is a fundamental difficulty in creating composite structures of Cu-C, properties which are theoretically possible to estimate. In order to bind the thermally reduced graphene oxide with copper surface, the effect of structural rebuilding of the copper oxide, in the process of annealing in a nitrogen atmosphere, have been used. On intentionally oxidized and anoxic copper substrates the dispersed graphene oxide (GO) and thermally reduced graphene oxide (rGO) were loaded. Annealing processes after the binding effects of both graphene oxide forms to Cu substrates were tested. The methods for high-resolution electron microscopy were found subsurface rGO-Cu layer having a substantially greater resistance to oxidation than pure copper. The mechanism for the effective resistance to oxidation of the Cu-rGO has been presented in a hypothetical form.

  1. Methods for both coating a substrate with aluminum oxide and infusing the substrate with elemental aluminum

    DOEpatents

    Choi, Jung-Pyung; Weil, Kenneth Scott

    2016-11-01

    Methods of aluminizing the surface of a metal substrate. The methods of the present invention do not require establishment of a vacuum or a reducing atmosphere, as is typically necessary. Accordingly, aluminization can occur in the presence of oxygen, which greatly simplifies and reduces processing costs by allowing deposition of the aluminum coating to be performed, for example, in air. Embodiments of the present invention can be characterized by applying a slurry that includes a binder and powder granules containing aluminum to the metal substrate surface. Then, in a combined step, a portion of the aluminum is diffused into the substrate and a portion of the aluminum is oxidized by heating the slurry to a temperature greater than the melting point of the aluminum in an oxygen-containing atmosphere.

  2. Metal Oxide Thin Film Transistors on Paper Substrate: Fabrication, Characterization, and Printing Process

    NASA Astrophysics Data System (ADS)

    Choi, Nack-Bong

    Flexible electronics is an emerging next-generation technology that offers many advantages such as light weight, durability, comfort, and flexibility. These unique features enable many new applications such as flexible display, flexible sensors, conformable electronics, and so forth. For decades, a variety of flexible substrates have been demonstrated for the application of flexible electronics. Most of them are plastic films and metal foils so far. For the fundamental device of flexible circuits, thin film transistors (TFTs) using poly silicon, amorphous silicon, metal oxide and organic semiconductor have been successfully demonstrated. Depending on application, low-cost and disposable flexible electronics will be required for convenience. Therefore it is important to study inexpensive substrates and to explore simple processes such as printing technology. In this thesis, paper is introduced as a new possible substrate for flexible electronics due to its low-cost and renewable property, and amorphous indium gallium zinc oxide (a-IGZO) TFTs are realized as the promising device on the paper substrate. The fabrication process and characterization of a-IGZO TFT on the paper substrate are discussed. a-IGZO TFTs using a polymer gate dielectric on the paper substrate demonstrate excellent performances with field effect mobility of ˜20 cm2 V-1 s-1, on/off current ratio of ˜106, and low leakage current, which show the enormous potential for flexible electronics application. In order to complement the n-channel a-IGZO TFTs and then enable complementary metal-oxide semiconductor (CMOS) circuit architectures, cuprous oxide is studied as a candidate material of p-channel oxide TFTs. In this thesis, a printing process is investigated as an alternative method for the fabrication of low-cost and disposable electronics. Among several printing methods, a modified offset roll printing that prints high resolution patterns is presented. A new method to fabricate a high resolution

  3. Fowler-Nordheim analysis of oxides on 4H-SiC substrates using noncontact metrology

    NASA Astrophysics Data System (ADS)

    Oborina, Elena I.; Benjamin, Helen N.; Hoff, Andrew M.

    2009-10-01

    A noncontact corona-Kelvin metrology technique was applied to investigate stress-induced leakage current (SILC) on thermal and afterglow thermal oxides grown on n-type 4H-SiC substrates. The equivalent oxide thickness was extracted from noncontact C-V measurements and used to obtain the experimental Fowler-Nordheim (F-N) plots. Differences between characteristics calculated from theory and experimental plots were found. Modification of the theoretical F-N characteristics with respect to trapped charge phenomena effectively eliminated the offset between theoretically predicted and experimental curves for thermal oxides grown at atmosphere but was unable to achieve such agreement in the case of afterglow oxides. Only variations in the effective barrier and trapped charge combined provided overlay between calculated and experimental F-N plots for afterglow oxides. In addition, the SILC property VSASS, or self-adjusting steady state voltage, is suggested as a useful monitor characteristic for oxides on SiC. This parameter was larger for afterglow oxides compared to thermal oxides of similar thickness. The SASS voltage also showed that the afterglow oxide interface was stable to substrate injected stress fluence in accumulation compared to thermal oxide of comparable thickness.

  4. Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof

    DOEpatents

    Sarin, V.K.

    1990-08-21

    An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications is disclosed. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al[sub x]N[sub y]O[sub z] layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al[sub x]N[sub y]O[sub z] layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

  5. Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof

    DOEpatents

    Sarin, Vinod K.

    1990-01-01

    An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al.sub.x N.sub.y O.sub.z layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al.sub.x N.sub.y O.sub.z layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

  6. Oxide perovskite crystals for HTSC film substrates microwave applications

    NASA Technical Reports Server (NTRS)

    Bhalla, A. S.; Guo, Ruyan

    1995-01-01

    The research focused upon generating new substrate materials for the deposition of superconducting yttrium barium cuprate (YBCO) has yielded several new hosts in complex perovskites, modified perovskites, and other structure families. New substrate candidates such as Sr(Al(1/2)Ta(1/2))O3 and Sr(Al(1/2)Nb(1/2))O3, Ba(Mg(1/3)Ta(2/3))O3 in complex oxide perovskite structure family and their solid solutions with ternary perovskite LaAlO3 and NdGaO3 are reported. Conventional ceramic processing techniques were used to fabricate dense ceramic samples. A laser heated molten zone growth system was utilized for the test-growth of these candidate materials in single crystal fiber form to determine crystallographic structure, melting point, thermal, and dielectric properties as well as to make positive identification of twin free systems. Some of those candidate materials present an excellent combination of properties suitable for microwave HTSC substrate applications.

  7. Solution processable broadband transparent mixed metal oxide nanofilm optical coatings via substrate diffusion doping.

    PubMed

    Glynn, Colm; Aureau, Damien; Collins, Gillian; O'Hanlon, Sally; Etcheberry, Arnaud; O'Dwyer, Colm

    2015-12-21

    Devices composed of transparent materials, particularly those utilizing metal oxides, are of significant interest due to increased demand from industry for higher fidelity transparent thin film transistors, photovoltaics and a myriad of other optoelectronic devices and optics that require more cost-effective and simplified processing techniques for functional oxides and coatings. Here, we report a facile solution processed technique for the formation of a transparent thin film through an inter-diffusion process involving substrate dopant species at a range of low annealing temperatures compatible with processing conditions required by many state-of-the-art devices. The inter-diffusion process facilitates the movement of Si, Na and O species from the substrate into the as-deposited vanadium oxide thin film forming a composite fully transparent V0.0352O0.547Si0.4078Na0.01. Thin film X-ray diffraction and Raman scattering spectroscopy show the crystalline component of the structure to be α-NaVO3 within a glassy matrix. This optical coating exhibits high broadband transparency, exceeding 90-97% absolute transmission across the UV-to-NIR spectral range, while having low roughness and free of surface defects and pinholes. The production of transparent films for advanced optoelectronic devices, optical coatings, and low- or high-k oxides is important for planar or complex shaped optics or surfaces. It provides opportunities for doping metal oxides to ternary, quaternary or other mixed metal oxides on glass, encapsulants or other substrates that facilitate diffusional movement of dopant species.

  8. Substrate Temperature effect on the transition characteristics of Vanadium (IV) oxide

    NASA Astrophysics Data System (ADS)

    Yang, Tsung-Han; Wei, Wei; Jin, Chunming; Narayan, Jay

    2008-10-01

    One of the semiconductor to metal transition material (SMT) is Vanadium Oxide (VO2) which has a very sharp transition temperature close to 340 K as the crystal structure changes from monoclinic phase (semiconductor) into tetragonal phase (metal phase). We have grown high-quality epitaxial vanadium oxide (VO2) films on sapphire (0001) substrates by pulsed laser deposition for oxygen pressure 10-2torr and obtained interesting results without further annealing treatments. The epitaxial growth via domain matching epitaxy, where integral multiples of planes matched across the film-substrate interface. We were able to control the transition characteristics such as the sharpness (T), amplitude (A) of SMT transition and the width of thermal hysteresis (H) by altering the substrate temperature from 300 ^oC, 400 ^oC, 500 ^oC, and 600 ^oC. We use the XRD to identify the microstructure of film and measure the optical properties of film. Finally the transition characteristics is observed by the resistance with the increase of temperature by Van Der Pauw method from 25 to 100 ^oC to measure the electrical resistivity hystersis loop during the transition temperature.

  9. Substrate and nutrient limitation of ammonia-oxidizing bacteria and archaea in temperate forest soil

    Treesearch

    J.S. Norman; J.E. Barrett

    2014-01-01

    Ammonia-oxidizing microbes control the rate-limiting step of nitrification, a critical ecosystem process, which affects retention and mobility of nitrogen in soil ecosystems. This study investigated substrate (NH4þ) and nutrient (K and P) limitation of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in temperate forest soils at Coweeta Hydrologic...

  10. Influence of substrate preparation on the shaping of the topography of the surface of nanoceramic oxide layers

    NASA Astrophysics Data System (ADS)

    Bara, Marek; Kubica, Marek

    2014-02-01

    The paper discusses the shaping mechanism and changes occurring in the structure and topography of the surface of nanoceramic oxide layers during their formation. The paper presents the influence of substrate preparation on the surface topography of oxide layers. The layers were produced via hard anodizing on the EN AW-5251 aluminum alloy. The layers obtained were subjected to microscope examinations, image and chemical composition analyses, and stereometric examinations. Heredity of substrate properties in the topography of the surface of nanoceramic oxide layers formed as a result of electrochemical oxidation has been shown.

  11. A Review of the Effect of Dietary Composition on Fasting Substrate Oxidation in Healthy and Overweight Subjects.

    PubMed

    Whelan, Megan E; Wright, Olivia R L; Hickman, Ingrid J

    2016-01-01

    The purpose of this review was to assess existing evidence on the effects of chronic dietary macronutrient composition on substrate oxidation during a fasted state in healthy and overweight subjects. A systematic review of studies was conducted across five databases. Studies were included if they were English language studies of human adults, ≥19 years, used indirect calorimetry (ventilated hood technique), specified dietary macronutrient composition, and measured substrate oxidation. There was no evidence that variations of a typical, non-experimental diet influenced rate or ratio of substrate utilization, however there may be an upper and lower threshold for when macronutrient composition may directly alter preferences for fuel oxidation rates during a fasted state. This review indicates that macronutrient composition of a wide range of typical, non-experimental dietary fat and carbohydrate intakes has no effect on fasting substrate oxidation. This suggests that strict control of dietary intake prior to fasting indirect calorimetry measurements may be an unnecessary burden for study participants. Further research into the effects of long-term changes in isocaloric macronutrient shift is required.

  12. Process for depositing an oxide epitaxially onto a silicon substrate and structures prepared with the process

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    1993-01-01

    A process and structure involving a silicon substrate utilizes an ultra high vacuum and molecular beam epitaxy (MBE) methods to grow an epitaxial oxide film upon a surface of the substrate. As the film is grown, the lattice of the compound formed at the silicon interface becomes stabilized, and a base layer comprised of an oxide having a sodium chloride-type lattice structure grows epitaxially upon the compound so as to cover the substrate surface. A perovskite may then be grown epitaxially upon the base layer to render a product which incorporates silicon, with its electronic capabilities, with a perovskite having technologically-significant properties of its own.

  13. Polypyrrole Coated Cellulosic Substrate Modified by Copper Oxide as Electrode for Nitrate Electroreduction

    NASA Astrophysics Data System (ADS)

    Hamam, A.; Oukil, D.; Dib, A.; Hammache, H.; Makhloufi, L.; Saidani, B.

    2015-08-01

    The aim of this work is to synthesize polypyrrole (PPy) films on nonconducting cellulosic substrate and modified by copper oxide particles for use in the nitrate electroreduction process. Firstly, the chemical polymerization of polypyrrole onto cellulosic substrate is conducted by using FeCl3 as an oxidant and pyrrole as monomer. The thickness and topography of the different PPy films obtained were estimated using a profilometer apparatus. The electrochemical reactivity of the obtained electrodes was tested by voltamperometry technique and electrochemical impedance spectroscopy. Secondly, the modification of the PPy film surface by incorporation of copper oxide particles is conducted by applying a galvanostatic procedure from a CuCl2 solution. The SEM, EDX and XRD analysis showed the presence of CuO particles in the polymer films with dimensions less than 50 nm. From cyclic voltamperometry experiments, the composite activity for the nitrate electroreduction reaction was evaluated and the peak of nitrate reduction is found to vary linearly with initial nitrate concentration.

  14. Probing the structural dependency of photoinduced properties of colloidal quantum dots using metal-oxide photo-active substrates.

    PubMed

    Patty, Kira; Sadeghi, Seyed M; Campbell, Quinn; Hamilton, Nathan; West, Robert G; Mao, Chuanbin

    2014-09-21

    We used photoactive substrates consisting of about 1 nm coating of a metal oxide on glass substrates to investigate the impact of the structures of colloidal quantum dots on their photophysical and photochemical properties. We showed during irradiation these substrates can interact uniquely with such quantum dots, inducing distinct forms of photo-induced processes when they have different cores, shells, or ligands. In particular, our results showed that for certain types of core-shell quantum dot structures an ultrathin layer of a metal oxide can reduce suppression of quantum efficiency of the quantum dots happening when they undergo extensive photo-oxidation. This suggests the possibility of shrinking the sizes of quantum dots without significant enhancement of their non-radiative decay rates. We show that such quantum dots are not influenced significantly by Coulomb blockade or photoionization, while those without a shell can undergo a large amount of photo-induced fluorescence enhancement via such blockade when they are in touch with the metal oxide.

  15. Probing the structural dependency of photoinduced properties of colloidal quantum dots using metal-oxide photo-active substrates

    PubMed Central

    Patty, Kira; Sadeghi, Seyed M.; Campbell, Quinn; Hamilton, Nathan; West, Robert G.; Mao, Chuanbin

    2014-01-01

    We used photoactive substrates consisting of about 1 nm coating of a metal oxide on glass substrates to investigate the impact of the structures of colloidal quantum dots on their photophysical and photochemical properties. We showed during irradiation these substrates can interact uniquely with such quantum dots, inducing distinct forms of photo-induced processes when they have different cores, shells, or ligands. In particular, our results showed that for certain types of core-shell quantum dot structures an ultrathin layer of a metal oxide can reduce suppression of quantum efficiency of the quantum dots happening when they undergo extensive photo-oxidation. This suggests the possibility of shrinking the sizes of quantum dots without significant enhancement of their non-radiative decay rates. We show that such quantum dots are not influenced significantly by Coulomb blockade or photoionization, while those without a shell can undergo a large amount of photo-induced fluorescence enhancement via such blockade when they are in touch with the metal oxide. PMID:25316953

  16. The effects of diurnal Ramadan fasting on energy expenditure and substrate oxidation in healthy men.

    PubMed

    Alsubheen, Sana'a A; Ismail, Mohammad; Baker, Alicia; Blair, Jason; Adebayo, Adeboye; Kelly, Liam; Chandurkar, Vikram; Cheema, Sukhinder; Joanisse, Denis R; Basset, Fabien A

    2017-12-01

    The study aimed to examine the effects of diurnal Ramadan fasting (RF) on substrate oxidation, energy production, blood lipids and glucose as well as body composition. Nine healthy Muslim men (fasting (FAST) group) and eight healthy non-practicing men (control (CNT) group) were assessed pre- and post-RF. FAST were additionally assessed at days 10, 20 and 30 of RF in the morning and evening. Body composition was determined by hydrodensitometry, substrate oxidation and energy production by indirect calorimetry, blood metabolic profile by biochemical analyses and energy balance by activity tracker recordings and food log analyses. A significant group×time interaction revealed that chronic RF reduced body mass and adiposity in FAST, without changing lean mass, whereas CNT subjects remained unchanged. In parallel to these findings, a significant main diurnal effect (morning v. evening) of RF on substrate oxidation (a shift towards lipid oxidation) and blood metabolic profile (a decrease in glucose and an increase in total cholesterol and TAG levels, respectively) was observed, which did not vary over the course of the Ramadan. In conclusion, although RF induces diurnal metabolic adjustments (morning v. evening), no carryover effect was observed throughout RF despite the extended daily fasting period (18·0 (sd 0·3) h) and changes in body composition.

  17. EXAMINATION OF THE OXIDATION PROTECTION OF ZINC COATINGS FORMED ON COPPER ALLOYS AND STEEL SUBSTRATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papazoglou, M.; Chaliampalias, D.; Vourlias, G.

    2010-01-21

    The exposure of metallic components at aggressive high temperature environments, usually limit their usage at similar application because they suffer from severe oxidation attack. Copper alloys are used in a wide range of high-quality indoor and outdoor applications, statue parts, art hardware, high strength and high thermal conductivity applications. On the other hand, steel is commonly used as mechanical part of industrial set outs or in the construction sector due to its high mechanical properties. The aim of the present work is the examination of the oxidation resistance of pack cementation zinc coatings deposited on copper, leaded brass and steelmore » substrates at elevated temperature conditions. Furthermore, an effort made to make a long-term evaluation of the coated samples durability. The oxidation results showed that bare substrates appear to have undergone severe damage comparing with the coated ones. Furthermore, the mass gain of the uncoated samples was higher than this of the zinc covered ones. Particularly zinc coated brass was found to be more resistant to oxidation conditions in which it was exposed as it has the lower mass gain as compared to the bare substrates and zinc coated copper. Zinc coated steel was also proved to be more resistive than the uncoated steel.« less

  18. Effects of UV Aging on the Cracking of Titanium Oxide Layer on Poly(ethylene terephthalate) Substrate: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chao; Gray, Matthew H.; Tirawat, Robert

    Thin oxide and metal films deposited on polymer substrates is an emerging technology for advanced reflectors for concentrated solar power applications, due to their unique combination of light weight, flexibility and inexpensive manufacture. Thus far, there is little knowledge on the mechanical integrity or structural persistence of such multi-layer thin film systems under long-term environmental aging. In this paper, the cracking of a brittle titanium dioxide layer deposited onto elasto-plastic poly(ethylene terephthalate) (PET) substrate is studied through a combination of experiment and modeling. In-situ fragmentation tests have been conducted to monitor the onset and evolution of cracks both on pristinemore » and on samples aged with ultraviolet (UV) light. An analytical model is presented to simulate the cracking behavior and to predict the effects of UV aging. Based on preliminary experimental observation, the effect of aging is divided into three aspects and analyzed independently: mechanical property degradation of the polymer substrate; degradation of the interlayer between substrate and oxide coating; and internal stress-induced cracks on the oxide coating.« less

  19. Investigation into the role of NaCL deposited on oxide and metal substrates in the initiation of hot corrosion

    NASA Technical Reports Server (NTRS)

    Birks, N.

    1981-01-01

    The conversion to Na2SO4 of NaCl deposited on oxide substrates was studied as a function of temperature, in air with various SO2 and H2O partial pressures. The substrate was either a pure oxide or an oxide scale growing on a metal specimen. The progress of the reaction was observed using the SEM-EDAX technique to monitor morphological effects and, as far as possible, establish the rate of the process. The physical characteristics of the interaction between salt and substrate were also examined with particular reference to physical damage to the underlying oxide, especially when this is a scale on a metal specimen. An effort was also made to establish the conditions under which liquid phases may form and the mechanisms by which they form.

  20. Effects of p-Synephrine and Caffeine Ingestion on Substrate Oxidation during Exercise.

    PubMed

    Gutiérrez-Hellín, Jorge; Del Coso, Juan

    2018-04-27

    Caffeine and p-synephrine are substances usually included in commercially-available products for weight loss because of their purported thermogenic effects. However, scientific information is lacking about the effects of combining these substances on substrate oxidation during exercise. The purpose of this investigation was to determine the isolated and combined effects of p-synephrine and caffeine on fat oxidation rate during exercise. In a double-blind randomized experiment, 13 healthy subjects participated in 4 experimental trials after the ingestion of a capsule containing either a placebo, 3 mg·kg of caffeine, 3 mg·kg of p-synephrine, or the combination of these doses of caffeine and p-synephrine. Energy expenditure and substrate oxidation rates were measured by indirect calorimetry during a cycle ergometer ramp test from 30 to 90% of VO2max. In comparison to the placebo, the ingestion of caffeine, p-synephrine, or p-synephrine+caffeine did not alter total energy expenditure or heart rate during the whole exercise test. However, the ingestion of caffeine (0.44 ± 0.15 g·min, P = 0.03), p-synephrine (0.43 ± 0.19 g·min, P < 0.01), and p-synephrine+caffeine (0.45 ± 0.15 g·min, P = 0.02) increased the maximal rate of fat oxidation during exercise when compared to the placebo (0.30 ± 0.12 g·min). The exercise intensity that elicited maximal fat oxidation was similar in all trials (~46.2 ± 10.2% of VO2max). Caffeine, p-synephrine and p-synephrine+caffeine increased the maximal rate of fat oxidation during exercise compared to a placebo, without modifying energy expenditure or heart rate. However, the co-ingestion of p-synephrine and caffeine did not present an additive effect to further increase fat oxidation during exercise.

  1. Probing the structural dependency of photoinduced properties of colloidal quantum dots using metal-oxide photo-active substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patty, Kira; Campbell, Quinn; Hamilton, Nathan

    We used photoactive substrates consisting of about 1 nm coating of a metal oxide on glass substrates to investigate the impact of the structures of colloidal quantum dots on their photophysical and photochemical properties. We showed during irradiation these substrates can interact uniquely with such quantum dots, inducing distinct forms of photo-induced processes when they have different cores, shells, or ligands. In particular, our results showed that for certain types of core-shell quantum dot structures an ultrathin layer of a metal oxide can reduce suppression of quantum efficiency of the quantum dots happening when they undergo extensive photo-oxidation. This suggestsmore » the possibility of shrinking the sizes of quantum dots without significant enhancement of their non-radiative decay rates. We show that such quantum dots are not influenced significantly by Coulomb blockade or photoionization, while those without a shell can undergo a large amount of photo-induced fluorescence enhancement via such blockade when they are in touch with the metal oxide.« less

  2. Raman spectroscopy analysis of air grown oxide scale developed on pure zirconium substrate

    NASA Astrophysics Data System (ADS)

    Kurpaska, L.; Favergeon, J.; Lahoche, L.; El-Marssi, M.; Grosseau Poussard, J.-L.; Moulin, G.; Roelandt, J.-M.

    2015-11-01

    Using Raman spectroscopy technique, external and internal parts of zirconia oxide films developed at 500 °C and 600 °C on pure zirconium substrate under air at normal atmospheric pressure have been examined. Comparison of Raman peak positions of tetragonal and monoclinic zirconia phases, recorded during the oxide growth at elevated temperature, and after cooling at room temperature have been presented. Subsequently, Raman peak positions (or shifts) were interpreted in relation with the stress evolution in the growing zirconia scale, especially closed to the metal/oxide interface, where the influence of compressive stress in the oxide is the biggest. Reported results, for the first time show the presence of a continuous layer of tetragonal zirconia phase developed in the proximity of pure zirconium substrate. Based on the Raman peak positions we prove that this tetragonal layer is stabilized by the high compressive stress and sub-stoichiometry level. Presence of the tetragonal phase located in the outer part of the scale have been confirmed, yet its Raman characteristics suggest a stress-free tetragonal phase, therefore different type of stabilization mechanism. Presented study suggest that its stabilization could be related to the lattice defects introduced by highstoichiometry of zirconia or presence of heterovalent cations.

  3. Cyclic Oxidation Behavior of Cold Sprayed CuCrAl-Coated and Uncoated GRCop-84 Substrates for Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Barrett, C.; Karthikeyan, J.; Garlick, R.

    2006-01-01

    A newly developed Cu-23 (wt %) Cr-5%Al (CuCrAl) alloy shown to resist hydridation and oxidation in an as-cast form is currently being considered as a protective coating for GRCop-84, which is an advanced copper alloy containing 8 (at.%) Cr and 4 (at.%) Nb. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique. Cyclic oxidation tests conducted in air on both coated and uncoated substrates between 773 and 1073 K revealed that the coating remained intact and protected the substrate up to 1073 K. No significant weight loss of the coated specimens were observed at 773 and 873 K even after a cumulative cyclic time of 500 h. About a 10 percent weight loss observed at 973 and 1073 K was attributed to the excessive oxidation of the uncoated sides. In contrast, the uncoated substrate lost as much as 80 percent of its original weight under similar test conditions. It is concluded that the cold sprayed CuCrAl coating is suitable for protecting GRCop-84 substrates.

  4. Lactate is a preferential oxidative energy substrate over glucose for neurons in culture.

    PubMed

    Bouzier-Sore, Anne-Karine; Voisin, Pierre; Canioni, Paul; Magistretti, Pierre J; Pellerin, Luc

    2003-11-01

    The authors investigated concomitant lactate and glucose metabolism in primary neuronal cultures using 13C- and 1H-NMR spectroscopy. Neurons were incubated in a medium containing either [1-13C]glucose and different unlabeled lactate concentrations, or unlabeled glucose and different [3-13C]lactate concentrations. Overall, 13C-NMR spectra of cellular extracts showed that more 13C was incorporated into glutamate when lactate was the enriched substrate. Glutamate 13C-enrichment was also found to be much higher in lactate-labeled than in glucose-labeled conditions. When glucose and lactate concentrations were identical (5.5 mmol/L), relative contributions of glucose and lactate to neuronal oxidative metabolism amounted to 21% and 79%, respectively. Results clearly indicate that when neurons are in the presence of both glucose and lactate, they preferentially use lactate as their main oxidative substrate.

  5. Influence of organic substrates on the kinetics of bacterial As(III) oxidation

    NASA Astrophysics Data System (ADS)

    Lescure, T.; Joulian, C.; Bauda, P.; Hénault, C.; Battaglia-Brunet, F.

    2012-04-01

    Soil microflora plays a major role on the behavior of metals and metalloids. Arsenic speciation, in particular, is related to the activity of bacteria able to oxidize, reduce or methylate this element, and determines mobility, bioavailability and toxicity of As. Arsenite (AsIII) is more toxic and more mobile than arsenate (AsV). Bacterial As(III)-oxidation tends to reduce the toxicity of arsenic in soils and the risk of transfer toward underlying aquifers, that would affect the quality of water resources. Previous results suggest that organic matter may affect kinetics or efficiency of bacterial As(III)-oxidation in presence of oxygen, thus in conventional physico-chemical conditions of a surface soil. Different hypothesis can be proposed to explain the influence of organic matter on As(III) oxidation. Arsenic is a potential energy source for bacteria. The presence of easily biodegradable organic matter may inhibit the As(III) oxidation process because bacteria would first metabolize these more energetic substrates. A second hypothesis would be that, in presence of organic matter, the Ars system involved in bacterial resistance to arsenic would be more active and would compete with the Aio system of arsenite oxidation, decreasing the global As(III) oxidation rate. In addition, organic matter influences the solubility of iron oxides which often act as the main pitfalls of arsenic in soils. The concentration and nature of organic matter could therefore have a significant influence on the bioavailability of arsenic and hence on its environmental impact. The influence of organic matter on biological As(III) oxidation has not yet been determined in natural soils. In this context, soil amendment with organic matter during operations of phytostabilization or, considering diffuse pollutions, through agricultural practices, may affect the mobility and bio-availability of the toxic metalloid. The objective of the present project is to quantify the influence of organic matter

  6. Natural printed silk substrate circuit fabricated via surface modification using one step thermal transfer and reduction graphene oxide

    NASA Astrophysics Data System (ADS)

    Cao, Jiliang; Huang, Zhan; Wang, Chaoxia

    2018-05-01

    Graphene conductive silk substrate is a preferred material because of its biocompatibility, flexibility and comfort. A flexible natural printed silk substrate circuit was fabricated by one step transfer of graphene oxide (GO) paste from transfer paper to the surface of silk fabric and reduction of the GO to reduced graphene oxide (RGO) using a simple hot press treatment. The GO paste was obtained through ultrasonic stirring exfoliation under low temperature, and presented excellent printing rheological properties at high concentration. The silk fabric was obtained a surface electric resistance as low as 12.15 KΩ cm-1, in the concentration of GO 50 g L-1 and hot press at 220 °C for 120 s. Though the whiteness and strength decreased with the increasing of hot press temperature and time slowly, the electric conductivity of RGO surface modification silk substrate improved obviously. The surface electric resistance of RGO/silk fabrics increased from 12.15 KΩ cm-1 to 18.05 KΩ cm-1, 28.54 KΩ cm-1 and 32.53 KΩ cm-1 after 10, 20 and 30 washing cycles, respectively. The results showed that the printed silk substrate circuit has excellent washability. This process requires no chemical reductant, and the reduction efficiency and reduction degree of GO is high. This time-effective and environmentally-friendly one step thermal transfer and reduction graphene oxide onto natural silk substrate method can be easily used to production of reduced graphene oxide (RGO) based flexible printed circuit.

  7. Heteroepitaxial growth of tin-doped indium oxide films on single crystalline yttria stabilized zirconia substrates

    NASA Astrophysics Data System (ADS)

    Kamei, Masayuki; Yagami, Teruyuki; Takaki, Satoru; Shigesato, Yuzo

    1994-05-01

    Heteroepitaxial growth of tin-doped indium oxide (ITO) film was achieved for the first time by using single crystalline yttria stabilized zirconia (YSZ) as substrates. The epitaxial relationship between ITO film and YSZ substrate was ITO[100]∥YSZ[100]. By comparing the electrical properties of this epitaxial ITO film with that of a randomly oriented polycrystalline ITO film grown on a glass substrate, neither the large angle grain boundaries nor the crystalline orientation were revealed to be dominant in determining the carrier mobility in ITO films.

  8. Reversible phase transition in vanadium oxide films sputtered on metal substrates

    NASA Astrophysics Data System (ADS)

    Palai, Debajyoti; Carmel Mary Esther, A.; Porwal, Deeksha; Pradeepkumar, Maurya Sandeep; Raghavendra Kumar, D.; Bera, Parthasarathi; Sridhara, N.; Dey, Arjun

    2016-11-01

    Vanadium oxide films, deposited on aluminium (Al), titanium (Ti) and tantalum (Ta) metal substrates by pulsed RF magnetron sputtering at a working pressure of 1.5 x10-2 mbar at room temperature are found to display mixed crystalline vanadium oxide phases viz., VO2, V2O3, V2O5. The films have been characterized by field-emission scanning electron microscopy, X-ray diffraction, differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy, and their thermo-optical and electrical properties have been investigated. Studies of the deposited films by DSC have revealed a reversible-phase transition found in the temperature range of 45-49 °C.

  9. Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom

    DOEpatents

    Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.

    2005-10-18

    An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  10. Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom

    DOEpatents

    Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.

    2003-09-09

    An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  11. Development and Comparison of the Substrate Scope of Pd-Catalysts for the Aerobic Oxidation of Alcohols

    PubMed Central

    Schultz, Mitchell J.; Hamilton, Steven S.; Jensen, David R.; Sigman, Matthew S.

    2009-01-01

    Three catalysts for aerobic oxidation of alcohols are discussed and the effectiveness of each is evaluated for allylic, benzylic, aliphatic, and functionalized alcohols. Additionally, chiral nonracemic substrates as well as chemoselective and diastereoselective oxidations are investigated. In this study, the most convenient system for the Pd-catalyzed aerobic oxidation of alcohols is Pd(OAc)2 in combination with triethylamine. This system functions effectively for the majority of alcohols tested and uses mild conditions (3 to 5 mol % of catalyst, room temperature). Pd(IiPr)(OAc)2(H2O) (1) also successfully oxidizes the majority of alcohols evaluated. This system has the advantage of significantly lowering catalyst loadings but requires higher temperatures (0.1 to 1 mol % of catalyst, 60 °C). A new catalyst is also disclosed, Pd(IiPr)(OPiv)2 (2). This catalyst operates under very mild conditions (1 mol %, room temperature, and air as the O2 source) but with a more limited substrate scope. PMID:15844968

  12. Tuning Material Properties of Oxides and Nitrides by Substrate Biasing during Plasma-Enhanced Atomic Layer Deposition on Planar and 3D Substrate Topographies.

    PubMed

    Faraz, Tahsin; Knoops, Harm C M; Verheijen, Marcel A; van Helvoirt, Cristian A A; Karwal, Saurabh; Sharma, Akhil; Beladiya, Vivek; Szeghalmi, Adriana; Hausmann, Dennis M; Henri, Jon; Creatore, Mariadriana; Kessels, Wilhelmus M M

    2018-04-18

    Oxide and nitride thin-films of Ti, Hf, and Si serve numerous applications owing to the diverse range of their material properties. It is therefore imperative to have proper control over these properties during materials processing. Ion-surface interactions during plasma processing techniques can influence the properties of a growing film. In this work, we investigated the effects of controlling ion characteristics (energy, dose) on the properties of the aforementioned materials during plasma-enhanced atomic layer deposition (PEALD) on planar and 3D substrate topographies. We used a 200 mm remote PEALD system equipped with substrate biasing to control the energy and dose of ions by varying the magnitude and duration of the applied bias, respectively, during plasma exposure. Implementing substrate biasing in these forms enhanced PEALD process capability by providing two additional parameters for tuning a wide range of material properties. Below the regimes of ion-induced degradation, enhancing ion energies with substrate biasing during PEALD increased the refractive index and mass density of TiO x and HfO x and enabled control over their crystalline properties. PEALD of these oxides with substrate biasing at 150 °C led to the formation of crystalline material at the low temperature, which would otherwise yield amorphous films for deposition without biasing. Enhanced ion energies drastically reduced the resistivity of conductive TiN x and HfN x films. Furthermore, biasing during PEALD enabled the residual stress of these materials to be altered from tensile to compressive. The properties of SiO x were slightly improved whereas those of SiN x were degraded as a function of substrate biasing. PEALD on 3D trench nanostructures with biasing induced differing film properties at different regions of the 3D substrate. On the basis of the results presented herein, prospects afforded by the implementation of this technique during PEALD, such as enabling new routes for

  13. Tuning Material Properties of Oxides and Nitrides by Substrate Biasing during Plasma-Enhanced Atomic Layer Deposition on Planar and 3D Substrate Topographies

    PubMed Central

    2018-01-01

    Oxide and nitride thin-films of Ti, Hf, and Si serve numerous applications owing to the diverse range of their material properties. It is therefore imperative to have proper control over these properties during materials processing. Ion-surface interactions during plasma processing techniques can influence the properties of a growing film. In this work, we investigated the effects of controlling ion characteristics (energy, dose) on the properties of the aforementioned materials during plasma-enhanced atomic layer deposition (PEALD) on planar and 3D substrate topographies. We used a 200 mm remote PEALD system equipped with substrate biasing to control the energy and dose of ions by varying the magnitude and duration of the applied bias, respectively, during plasma exposure. Implementing substrate biasing in these forms enhanced PEALD process capability by providing two additional parameters for tuning a wide range of material properties. Below the regimes of ion-induced degradation, enhancing ion energies with substrate biasing during PEALD increased the refractive index and mass density of TiOx and HfOx and enabled control over their crystalline properties. PEALD of these oxides with substrate biasing at 150 °C led to the formation of crystalline material at the low temperature, which would otherwise yield amorphous films for deposition without biasing. Enhanced ion energies drastically reduced the resistivity of conductive TiNx and HfNx films. Furthermore, biasing during PEALD enabled the residual stress of these materials to be altered from tensile to compressive. The properties of SiOx were slightly improved whereas those of SiNx were degraded as a function of substrate biasing. PEALD on 3D trench nanostructures with biasing induced differing film properties at different regions of the 3D substrate. On the basis of the results presented herein, prospects afforded by the implementation of this technique during PEALD, such as enabling new routes for

  14. Nitrification in a zeoponic substrate

    NASA Technical Reports Server (NTRS)

    McGilloway, R. L.; Weaver, R. W.; Ming, D. W.; Gruener, J. E.

    2003-01-01

    Clinoptilolite is a zeolite mineral with high cation exchange capacity used in zeoponic substrates that have been proposed as a solid medium for growing plants or as a fertilizer material. The kinetics of nitrification has not been measured for NH4+ saturated zeoponic substrate. Experiments were conducted to evaluate the production of NO2- and NO3-, and nitrifier populations in zeoponic substrates. Small columns were filled with zeoponic substrate inoculated with a commercial inoculum or soil enrichment culture of nitrifying bacteria. In addition to column studies, a growth chamber study was conducted to evaluate the kinetics of nitrification in zeoponic substrates used to grow radishes (Raphanus sativus L.). The zeoponic substrate provided a readily available source of NH4+, and nitrifying bacteria were active in the substrate. Ammonium oxidation rates in column studies ranged from 5 to 10 micrograms N g-1 substrate h-1, and NO2- oxidation rates were 2 to 9.5 micrograms N g-1 substrate h-1. Rates determined from the growth chamber study were approximately 1.2 micrograms N g-1 substrate h-1. Quantities of NH4+ oxidized to NO2- and NO3- in inoculated zeoponic substrate were in excess of plant up-take. Acidification as a result of NH4+ oxidation resulted in a pH decline, and the zeoponic substrate showed limited buffering capacity.

  15. Stress generation in thermally grown oxide films. [oxide scale spalling from superalloy substrates

    NASA Technical Reports Server (NTRS)

    Kumnick, A. J.; Ebert, L. J.

    1981-01-01

    A three dimensional finite element analysis was conducted, using the ANSYS computer program, of the stress state in a thin oxide film thermally formed on a rectangular piece of NiCrAl alloy. The analytical results indicate a very high compressive stress in the lateral directions of the film (approximately 6200 MPa), and tensile stresses in the metal substrate that ranged from essentially zero to about 55 MPa. It was found further that the intensity of the analytically determined average stresses could be approximated reasonably well by the modification of an equation developed previously by Oxx for stresses induced into bodies by thermal gradients.

  16. Effect of preexercise ingestion of modified cornstarch on substrate oxidation during endurance exercise.

    PubMed

    Johannsen, Neil M; Sharp, Rick L

    2007-06-01

    The purpose of this study was to investigate differences in substrate oxidation between dextrose (DEX) and unmodified (UAMS) and acid/alcohol-modified (MAMS) cornstarches. Seven endurance-trained men (VO2peak = 59.1 +/- 5.4 mL.kg-1.min-1) participated in 2 h of exercise (66.4% +/- 3.3% VO2peak) 30 min after ingesting 1 g/kg body weight of the experimental carbohydrate or placebo (PLA). Plasma glucose and insulin were elevated after DEX (P < 0.05) compared with UAMS, MAMS, and PLA. Although MAMS and DEX raised carbohydrate oxidation rate through 90 min of exercise, only MAMS persisted throughout 120 min (P < 0.05 compared with all trials). Exogenous-carbohydrate oxidation rate was higher in DEX than in MAMS and UAMS until 90 min of exercise. Acid/alcohol modification resulted in augmented carbohydrate oxidation with a small, sustained increase in exogenous-carbohydrate oxidation rate. MAMS appears to be metabolizable and available for oxidation during exercise.

  17. Hydrophilicity Reinforced Adhesion of Anodic Alumina Oxide Template Films to Conducting Substrates for Facile Fabrication of Highly Ordered Nanorod Arrays.

    PubMed

    Wang, Chuanju; Wang, Guiqiang; Yang, Rui; Sun, Xiangyu; Ma, Hui; Sun, Shuqing

    2017-01-17

    Arrays of ordered nanorods are of special interest in many fields. However, it remains challenging to obtain such arrays on conducting substrates in a facile manner. In this article, we report the fabrication of highly ordered and vertically standing nanorod arrays of both metals and semiconductors on Au films and indium tin oxide glass substrates without an additional layering. In this approach, following the simple hydrophilic treatment of an anodic aluminum oxide (AAO) membrane and conducting substrates, the AAO membrane was transferred onto the modified substrates with excellent adhesion. Subsequently, nanorod arrays of various materials were electrodeposited on the conducting substrates directly. This method avoids any expensive and tedious lithographic and ion milling process, which provides a simple yet robust route to the fabrication of arrays of 1D materials with high aspect ratio on conducting substrates, which shall pave the way for many practical applications in a range of fields.

  18. Stretchable metal oxide thin film transistors on engineered substrate for electronic skin applications.

    PubMed

    Romeo, Alessia; Lacour, Stphanie P

    2015-08-01

    Electronic skins aim at providing distributed sensing and computation in a large-area and elastic membrane. Control and addressing of high-density soft sensors will be achieved when thin film transistor matrices are also integrated in the soft carrier substrate. Here, we report on the design, manufacturing and characterization of metal oxide thin film transistors on these stretchable substrates. The TFTs are integrated onto an engineered silicone substrate with embedded strain relief to protect the devices from catastrophic cracking. The TFT stack is composed of an amorphous In-Ga-Zn-O active layer, a hybrid AlxOy/Parylene dielectric film, gold electrodes and interconnects. All layers are prepared and patterned with planar, low temperature and dry processing. We demonstrate the interconnected IGZO TFTs sustain applied tensile strain up to 20% without electrical degradation and mechanical fracture. Active devices are critical for distributed sensing. The compatibility of IGZO TFTs with soft and biocompatible substrates is an encouraging step towards wearable electronic skins.

  19. Effects of RF plasma treatment on spray-pyrolyzed copper oxide films on silicon substrates

    NASA Astrophysics Data System (ADS)

    Madera, Rozen Grace B.; Martinez, Melanie M.; Vasquez, Magdaleno R., Jr.

    2018-01-01

    The effects of radio-frequency (RF) argon (Ar) plasma treatment on the structural, morphological, electrical and compositional properties of the spray-pyrolyzed p-type copper oxide films on n-type (100) silicon (Si) substrates were investigated. The films were successfully synthesized using 0.3 M copper acetate monohydrate sprayed on precut Si substrates maintained at 350 °C. X-ray diffraction revealed cupric oxide (CuO) with a monoclinic structure. An apparent improvement in crystallinity was realized after Ar plasma treatment, attributed to the removal of residues contaminating the surface. Scanning electron microscope images showed agglomerated monoclinic grains and revealed a reduction in size upon plasma exposure induced by the sputtering effect. The current-voltage characteristics of CuO/Si showed a rectifying behavior after Ar plasma exposure with an increase in turn-on voltage. Four-point probe measurements revealed a decrease in sheet resistance after plasma irradiation. Fourier transform infrared spectral analyses also showed O-H and C-O bands on the films. This work was able to produce CuO thin films via spray pyrolysis on Si substrates and enhancement in their properties by applying postdeposition Ar plasma treatment.

  20. Surface Electrochemical Modification of a Nickel Substrate to Prepare a NiFe-based Electrode for Water Oxidation.

    PubMed

    Guo, Dingyi; Qi, Jing; Zhang, Wei; Cao, Rui

    2017-01-20

    The slow kinetics of water oxidation greatly jeopardizes the efficiency of water electrolysis for H 2 production. Developing highly active water oxidation electrodes with affordable fabrication costs is thus of great importance. Herein, a Ni II Fe III surface species on Ni metal substrate was generated by electrochemical modification of Ni in a ferrous solution by a fast, simple, and cost-effective procedure. In the prepared Ni II Fe III catalyst film, Fe III was incorporated uniformly through controlled oxidation of Fe II cations on the electrode surface. The catalytically active Ni II originated from the Ni foam substrate, which ensured the close contact between the catalyst and the support toward improved charge-transfer efficiency. The as-prepared electrode exhibited high activity and long-term stability for electrocatalytic water oxidation. The overpotentials required to reach water oxidation current densities of 50, 100, and 500 mA cm -2 are 276, 290, and 329 mV, respectively. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Influences of ultra-thin Ti seed layers on the dewetting phenomenon of Au films deposited on Si oxide substrates

    NASA Astrophysics Data System (ADS)

    Kamiko, Masao; Kim, So-Mang; Jeong, Young-Seok; Ha, Jae-Ho; Koo, Sang-Mo; Ha, Jae-Geun

    2018-05-01

    The influences of a Ti seed layer (1 nm) on the dewetting phenomenon of Au films (5 nm) grown onto amorphous SiO2 substrates have been studied and compared. Atomic force microscopy results indicated that the introduction of Ti between the substrate and Au promoted the dewetting phenomenon. X-ray diffraction measurements suggested that the initial deposition of Ti promoted crystallinity of Au. A series of Auger electron spectroscopy and X-ray photoelectron spectroscopy results revealed that Ti transformed to a Ti oxide layer by reduction of the amorphous SiO2 substrate surface, and that the Ti seed layer remained on the substrate, without going through the dewetting process during annealing. We concluded that the enhancement of Au dewetting and the improvement in crystallinity of Au by the insertion of Ti could be attributed to the fact that Au location was changed from the surface of the amorphous SiO2 substrate to that of the Ti oxide layer.

  2. Short-term starvation is a strategy to unravel the cellular capacity of oxidizing specific exogenous/endogenous substrates in mitochondria.

    PubMed

    Zeidler, Julianna D; Fernandes-Siqueira, Lorena O; Carvalho, Ana S; Cararo-Lopes, Eduardo; Dias, Matheus H; Ketzer, Luisa A; Galina, Antonio; Da Poian, Andrea T

    2017-08-25

    Mitochondrial oxidation of nutrients is tightly regulated in response to the cellular environment and changes in energy demands. In vitro studies evaluating the mitochondrial capacity of oxidizing different substrates are important for understanding metabolic shifts in physiological adaptations and pathological conditions, but may be influenced by the nutrients present in the culture medium or by the utilization of endogenous stores. One such influence is exemplified by the Crabtree effect (the glucose-mediated inhibition of mitochondrial respiration) as most in vitro experiments are performed in glucose-containing media. Here, using high-resolution respirometry, we evaluated the oxidation of endogenous or exogenous substrates by cell lines harboring different metabolic profiles. We found that a 1-h deprivation of the main energetic nutrients is an appropriate strategy to abolish interference of endogenous or undesirable exogenous substrates with the cellular capacity of oxidizing specific substrates, namely glutamine, pyruvate, glucose, or palmitate, in mitochondria. This approach primed mitochondria to immediately increase their oxygen consumption after the addition of the exogenous nutrients. All starved cells could oxidize exogenous glutamine, whereas the capacity for oxidizing palmitate was limited to human hepatocarcinoma Huh7 cells and to C2C12 mouse myoblasts that differentiated into myotubes. In the presence of exogenous glucose, starvation decreased the Crabtree effect in Huh7 and C2C12 cells and abrogated it in mouse neuroblastoma N2A cells. Interestingly, the fact that the Crabtree effect was observed only for mitochondrial basal respiration but not for the maximum respiratory capacity suggests it is not caused by a direct effect on the electron transport system. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Substrate Oxide Layer Thickness Optimization for a Dual-Width Plasmonic Grating for Surface-Enhanced Raman Spectroscopy (SERS) Biosensor Applications

    PubMed Central

    Bauman, Stephen J.; Brawley, Zachary T.; Darweesh, Ahmad A.; Herzog, Joseph B.

    2017-01-01

    This work investigates a new design for a plasmonic SERS biosensor via computational electromagnetic models. It utilizes a dual-width plasmonic grating design, which has two different metallic widths per grating period. These types of plasmonic gratings have shown larger optical enhancement than standard single-width gratings. The new structures have additional increased enhancement when the spacing between the metal decreases to sub-10 nm dimensions. This work integrates an oxide layer to improve the enhancement even further by carefully studying the effects of the substrate oxide thickness on the enhancement and reports ideal substrate parameters. The combined effects of varying the substrate and the grating geometry are studied to fully optimize the device’s enhancement for SERS biosensing and other plasmonic applications. The work reports the ideal widths and substrate thickness for both a standard and a dual-width plasmonic grating SERS biosensor. The ideal geometry, comprising a dual-width grating structure atop an optimal SiO2 layer thickness, improves the enhancement by 800%, as compared to non-optimized structures with a single-width grating and a non-optimal oxide thickness. PMID:28665308

  4. Effect of oxidation of the non-catalytic β-propeller domain on the substrate specificity of prolyl oligopeptidase from Pleurotus eryngii.

    PubMed

    Tokai, Shota; Bito, Tomohiro; Shimizu, Katsuhiko; Arima, Jiro

    2017-05-27

    Enzymes belonging to the S9 family of prolyl oligopeptidases are of interest because of their pharmacological importance and have a non-catalytic β-propeller domain. In this study, we found that the oxidation of Met203, which lies on surface of the β-propeller domain, leads to change in the substrate specificity of eryngase, an enzyme from Pleurotus eryngii and a member of the S9 family of prolyl oligopeptidases. The activity of eryngase for L-Phe-p-nitroanilide was maintained following hydrogen peroxide treatment but was dramatically reduced for other p-nitroanilide substrates. MALDI-TOF MS analysis using tryptic peptides of eryngase indicated that the change in substrate specificity was triggered by oxidizing Met203 to methionine sulfoxide. In addition, mutations of Met203 to smaller residues provided specificities similar to those observed following oxidation of the wild-type enzyme. Substitution of Met203 with Phe significantly decreased activity, indicating that Met203 may be involved in substrate gating. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Correlating the chemical composition and size of various metal oxide substrates with the catalytic activity and stability of as-deposited Pt nanoparticles for the methanol oxidation reaction

    DOE PAGES

    Megan E. Scofield; Wong, Stanislaus S.; Koenigsmann, Christopher; ...

    2015-12-09

    The performance of electrode materials in conventional direct alcohol fuel cells (DAFC) is constrained by (i) the low activity of the catalyst materials relative to their overall cost, (ii) the poisoning of the active sites due to the presence of partially oxidized carbon species (such as but not limited to CO, formate, and acetate) produced during small molecule oxidation, and (iii) the lack of catalytic stability and durability on the underlying commercial carbon support. Therefore, as a viable alternative, we have synthesized various metal oxide and perovskite materials of different sizes and chemical compositions as supports for Pt nanoparticles (NPs).more » Our results including unique mechanistic studies demonstrate that the SrRuO 3 substrate with immobilized Pt NPs at its surface evinces the best methanol oxidation performance as compared with all of the other substrate materials tested herein, including commercial carbon itself. In addition, data from electron energy loss spectroscopy (EELS) and X-ray photoelectron spectroscopy (XPS) confirmed the presence of electron transfer from bound Pt NPs to surface Ru species within the SrRuO 3 substrate itself, thereby suggesting that favorable metal support interactions are responsible for the increased methanol oxidation reaction (MOR) activity of Pt species with respect to the underlying SrRuO 3 composite catalyst material.« less

  6. COSIM: A Finite-Difference Computer Model to Predict Ternary Concentration Profiles Associated With Oxidation and Interdiffusion of Overlay-Coated Substrates

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.

    2001-01-01

    A finite-difference computer program (COSIM) has been written which models the one-dimensional, diffusional transport associated with high-temperature oxidation and interdiffusion of overlay-coated substrates. The program predicts concentration profiles for up to three elements in the coating and substrate after various oxidation exposures. Surface recession due to solute loss is also predicted. Ternary cross terms and concentration-dependent diffusion coefficients are taken into account. The program also incorporates a previously-developed oxide growth and spalling model to simulate either isothermal or cyclic oxidation exposures. In addition to predicting concentration profiles after various oxidation exposures, the program can also be used to predict coating life based on a concentration dependent failure criterion (e.g., surface solute content drops to 2%). The computer code is written in FORTRAN and employs numerous subroutines to make the program flexible and easily modifiable to other coating oxidation problems.

  7. COSIM: A Finite-Difference Computer Model to Predict Ternary Concentration Profiles Associated with Oxidation and Interdiffusion of Overlay-Coated Substrates

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.

    2000-01-01

    A finite-difference computer program (COSIM) has been written which models the one-dimensional, diffusional transport associated with high-temperature oxidation and interdiffusion of overlay-coated substrates. The program predicts concentration profiles for up to three elements in the coating and substrate after various oxidation exposures. Surface recession due to solute loss is also predicted. Ternary cross terms and concentration-dependent diffusion coefficients are taken into account. The program also incorporates a previously-developed oxide growth and spalling model to simulate either isothermal or cyclic oxidation exposures. In addition to predicting concentration profiles after various oxidation exposures, the program can also be used to predict coating fife based on a concentration dependent failure criterion (e.g., surface solute content drops to two percent). The computer code, written in an extension of FORTRAN 77, employs numerous subroutines to make the program flexible and easily modifiable to other coating oxidation problems.

  8. Stabilization of ultrathin (hydroxy)oxide films on transition metal substrates for electrochemical energy conversion

    NASA Astrophysics Data System (ADS)

    Zeng, Zhenhua; Chang, Kee-Chul; Kubal, Joseph; Markovic, Nenad M.; Greeley, Jeffrey

    2017-06-01

    Design of cost-effective electrocatalysts with enhanced stability and activity is of paramount importance for the next generation of energy conversion systems, including fuel cells and electrolysers. However, electrocatalytic materials generally improve one of these properties at the expense of the other. Here, using density functional theory calculations and electrochemical surface science measurements, we explore atomic-level features of ultrathin (hydroxy)oxide films on transition metal substrates and demonstrate that these films exhibit both excellent stability and activity for electrocatalytic applications. The films adopt structures with stabilities that significantly exceed bulk Pourbaix limits, including stoichiometries not found in bulk and properties that are tunable by controlling voltage, film composition, and substrate identity. Using nickel (hydroxy)oxide/Pt(111) as an example, we further show how the films enhance activity for hydrogen evolution through a bifunctional effect. The results suggest design principles for this class of electrocatalysts with simultaneously enhanced stability and activity for energy conversion.

  9. Stabilization of ultrathin (hydroxy)oxide films on transition metal substrates for electrochemical energy conversion

    DOE PAGES

    Zeng, Zhenhua; Chang, Kee-Chul; Kubal, Joseph; ...

    2017-05-08

    Design of cost-effective electrocatalysts with enhanced stability and activity is of paramount importance for the next generation of energy conversion systems, including fuel cells and electrolyzers. However, electrocatalytic materials generally improve one of these properties at the expense of the other. Here, using Density Functional Theory calculations and electrochemical surface science measurements, we explore atomic-level features of ultrathin (hydroxy)oxide films on transition metal substrates and demonstrate that these films exhibit both excellent stability and activity for electrocatalytic applications. The films adopt structures with stabilities that significantly exceed bulk Pourbaix limits, including stoichiometries not found in bulk and properties that aremore » tunable by controlling voltage, film composition, and substrate identity. Using nickel (hydroxy)oxide/Pt(111) as an example, we further show how the films enhance activity for hydrogen evolution through a bifunctional effect. Finally, the results suggest design principles for a new class of electrocatalysts with simultaneously enhanced stability and activity for energy conversion.« less

  10. Effect of graphene oxide ratio on the cell adhesion and growth behavior on a graphene oxide-coated silicon substrate

    NASA Astrophysics Data System (ADS)

    Jeong, Jin-Tak; Choi, Mun-Ki; Sim, Yumin; Lim, Jung-Taek; Kim, Gil-Sung; Seong, Maeng-Je; Hyung, Jung-Hwan; Kim, Keun Soo; Umar, Ahmad; Lee, Sang-Kwon

    2016-09-01

    Control of living cells on biocompatible materials or on modified substrates is important for the development of bio-applications, including biosensors and implant biomaterials. The topography and hydrophobicity of substrates highly affect cell adhesion, growth, and cell growth kinetics, which is of great importance in bio-applications. Herein, we investigate the adhesion, growth, and morphology of cultured breast cancer cells on a silicon substrate, on which graphene oxides (GO) was partially formed. By minimizing the size and amount of the GO-containing solution and the further annealing process, GO-coated Si samples were prepared which partially covered the Si substrates. The coverage of GO on Si samples decreases upon annealing. The behaviors of cells cultured on two samples have been observed, i.e. partially GO-coated Si (P-GO) and annealed partially GO-coated Si (Annealed p-GO), with a different coverage of GO. Indeed, the spreading area covered by the cells and the number of cells for a given culture period in the incubator were highly dependent on the hydrophobicity and the presence of oxygenated groups on GO and Si substrates, suggesting hydrophobicity-driven cell growth. Thus, the presented method can be used to control the cell growth via an appropriate surface modification.

  11. Decoding the Substrate Supply to Human Neuronal Nitric Oxide Synthase

    PubMed Central

    Habermeier, Alice; Closs, Ellen I.

    2013-01-01

    Nitric oxide, produced by the neuronal nitric oxide synthase (nNOS) from L-arginine is an important second messenger molecule in the central nervous system: It influences the synthesis and release of neurotransmitters and plays an important role in long-term potentiation, long-term depression and neuroendocrine secretion. However, under certain pathological conditions such as Alzheimer’s or Parkinson’s disease, stroke and multiple sclerosis, excessive NO production can lead to tissue damage. It is thus desirable to control NO production in these situations. So far, little is known about the substrate supply to human nNOS as a determinant of its activity. Measuring bioactive NO via cGMP formation in reporter cells, we demonstrate here that nNOS in both, human A673 neuroepithelioma and TGW-nu-I neuroblastoma cells can be fast and efficiently nourished by extracellular arginine that enters the cells via membrane transporters (pool I that is freely exchangeable with the extracellular space). When this pool was depleted, NO synthesis was partially sustained by intracellular arginine sources not freely exchangeable with the extracellular space (pool II). Protein breakdown made up by far the largest part of pool II in both cell types. In contrast, citrulline to arginine conversion maintained NO synthesis only in TGW-nu-I neuroblastoma, but not A673 neuroepithelioma cells. Histidine mimicked the effect of protease inhibitors causing an almost complete nNOS inhibition in cells incubated additionally in lysine that depletes the exchangeable arginine pool. Our results identify new ways to modulate nNOS activity by modifying its substrate supply. PMID:23874440

  12. Titanium oxide as substrate for neural cell growth.

    PubMed

    Carballo-Vila, Mónica; Moreno-Burriel, Berta; Chinarro, Eva; Jurado, José R; Casañ-Pastor, Nieves; Collazos-Castro, Jorge E

    2009-07-01

    Titanium oxide has antiinflammatory activity and tunable electrochemical behavior that make it an attractive material for the fabrication of implantable devices. The most stable composition is TiO2 and occurs mainly in three polymorphs, namely, anatase, rutile, and brookite, which differ in its crystallochemical properties. Here, we report the preparation of rutile surfaces that permit good adherence and axonal growth of cultured rat cerebral cortex neurons. Rutile disks were obtained by sinterization of TiO2 powders of commercial origin or precipitated from hydrolysis of Ti(IV)-isopropoxide. Commercial powders sintered at 1300-1600 degrees C produced rutile surfaces with abnormal grain growth, probably because of impurities of the powders. Neurons cultured on those surfaces survived in variable numbers and showed fewer neurites than on control materials. On the other hand, rutile sintered from precipitated powders had less contaminants and more homogenous grain growth. By adjusting the thermal treatment it was possible to obtain surfaces performing well as substrate for neuron survival for at least 10 days. Some surfaces permitted normal axonal elongation, whereas dendrite growth was generally impaired. These findings support the potential use of titanium oxide in neuroprostheses and other devices demanding materials with enhanced properties in terms of biocompatibility and axon growth promotion.

  13. Preparation of Cobalt-Based Electrodes by Physical Vapor Deposition on Various Nonconductive Substrates for Electrocatalytic Water Oxidation.

    PubMed

    Wu, Yizhen; Wang, Le; Chen, Mingxing; Jin, Zhaoxia; Zhang, Wei; Cao, Rui

    2017-12-08

    Artificial photosynthesis requires efficient anodic electrode materials for water oxidation. Cobalt metal thin films are prepared through facile physical vapor deposition (PVD) on various nonconductive substrates, including regular and quartz glass, mica sheet, polyimide, and polyethylene terephthalate (PET). Subsequent surface electrochemical modification by cyclic voltammetry (CV) renders these films active for electrocatalytic water oxidation, reaching a current density of 10 mA cm -2 at a low overpotential of 330 mV in 1.0 m KOH solution. These electrodes are robust with unchanged activity throughout prolonged chronopotentiometry measurements. This work is thus significant to show that the combination of PVD and CV is very valuable and convenient to fabricate active electrodes on various nonconductive substrates, particularly with flexible polyimide and PET substrates. This efficient, safe and convenient method can potentially be expanded to many other electrochemical applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Structural and optical properties of Ag-doped copper oxide thin films on polyethylene napthalate substrate prepared by low temperature microwave annealing

    NASA Astrophysics Data System (ADS)

    Das, Sayantan; Alford, T. L.

    2013-06-01

    Silver doped cupric oxide thin films are prepared on polyethylene naphthalate (flexible polymer) substrates. Thin films Ag-doped CuO are deposited on the substrate by co-sputtering followed by microwave assisted oxidation of the metal films. The low temperature tolerance of the polymer substrates led to the search for innovative low temperature processing techniques. Cupric oxide is a p-type semiconductor with an indirect band gap and is used as selective absorption layer solar cells. X-ray diffraction identifies the CuO phases. Rutherford backscattering spectrometry measurements confirm the stoichiometry of each copper oxide formed. The surface morphology is determined by atomic force microscopy. The microstructural properties such as crystallite size and the microstrain for (-111) and (111) planes are calculated and discussed. Incorporation of Ag led to the lowering of band gap in CuO. Consequently, it is determined that Ag addition has a strong effect on the structural, morphological, surface, and optical properties of CuO grown on flexible substrates by microwave annealing. Tauc's plot is used to determine the optical band gap of CuO and Ag doped CuO films. The values of the indirect and direct band gap for CuO are found to be 2.02 eV and 3.19 eV, respectively.

  15. Reduced heart size and increased myocardial fuel substrate oxidation in ACC2 mutant mice

    PubMed Central

    Essop, M. Faadiel; Camp, Heidi S.; Choi, Cheol Soo; Sharma, Saumya; Fryer, Ryan M.; Reinhart, Glenn A.; Guthrie, Patrick H.; Bentebibel, Assia; Gu, Zeiwei; Shulman, Gerald I.; Taegtmeyer, Heinrich; Wakil, Salih J.; Abu-Elheiga, Lutfi

    2008-01-01

    The cardiac-enriched isoform of acetyl-CoA carboxylase (ACC2) is a key regulator of mitochondrial fatty acid (FA) uptake via carnitine palmitoyltransferase 1 (CPT1). To test the hypothesis that oxidative metabolism is upregulated in hearts from animals lacking ACC2 (employing a transgenic Acc2-mutant mouse), we assessed cardiac function in vivo and determined rates of myocardial substrate oxidation ex vivo. When examined by echocardiography, there was no difference in systolic function, but left ventricular mass of the Acc2-mutant (MUT) mouse was significantly reduced (∼25%) compared with wild-types (WT). Reduced activation of the mammalian target of rapamycin (mTOR) and its downstream target p70S6K was found in MUT hearts. Exogenous oxidation rates of oleate were increased ∼22%, and, unexpectedly, exogenous glucose oxidation rates were also increased in MUT hearts. Using a hyperinsulinemic-euglycemic clamp, we found that glucose uptake in MUT hearts was increased by ∼83%. Myocardial triglyceride levels were significantly reduced in MUT vs. WT while glycogen content was the same. In parallel, transcript levels of PPARα and its target genes, pyruvate dehydrogenase kinase-4 (PDK-4), malonyl-CoA decarboxylase (MCD), and mCPT1, were downregulated in MUT mice. In summary, we report that 1) Acc2-mutant hearts exhibit a marked preference for the oxidation of both glucose and FAs coupled with greater utilization of endogenous fuel substrates (triglycerides), 2) attenuated mTOR signaling may result in reduced heart sizes observed in Acc2-mutant mice, and 3) Acc2-mutant hearts displayed normal functional parameters despite a significant decrease in size. PMID:18487439

  16. PPARδ activation in human myotubes increases mitochondrial fatty acid oxidative capacity and reduces glucose utilization by a switch in substrate preference.

    PubMed

    Feng, Yuan Z; Nikolić, Nataša; Bakke, Siril S; Boekschoten, Mark V; Kersten, Sander; Kase, Eili T; Rustan, Arild C; Thoresen, G Hege

    2014-02-01

    The role of peroxisome proliferator-activated receptor δ (PPARδ) activation on global gene expression and mitochondrial fuel utilization were investigated in human myotubes. Only 21 genes were up-regulated and 3 genes were down-regulated after activation by the PPARδ agonist GW501516. Pathway analysis showed up-regulated mitochondrial fatty acid oxidation, TCA cycle and cholesterol biosynthesis. GW501516 increased oleic acid oxidation and mitochondrial oxidative capacity by 2-fold. Glucose uptake and oxidation were reduced, but total substrate oxidation was not affected, indicating a fuel switch from glucose to fatty acid. Cholesterol biosynthesis was increased, but lipid biosynthesis and mitochondrial content were not affected. This study confirmed that the principal effect of PPARδ activation was to increase mitochondrial fatty acid oxidative capacity. Our results further suggest that PPARδ activation reduced glucose utilization through a switch in mitochondrial substrate preference by up-regulating pyruvate dehydrogenase kinase isozyme 4 and genes involved in lipid metabolism and fatty acid oxidation.

  17. The effect of raw potato starch on energy expenditure and substrate oxidation.

    PubMed

    Tagliabue, A; Raben, A; Heijnen, M L; Deurenberg, P; Pasquali, E; Astrup, A

    1995-05-01

    Because resistant starch (RS) is not absorbed as glucose in the small intestine of healthy humans, postprandial thermogenesis should be lower after the intake of RS as compared with digestible starch. To evaluate this hypothesis, we measured 5-h postprandial thermogenesis and substrate oxidation by indirect calorimetry after ingestion of 50 g pregelatinized (0% RS) and 50 g raw potato starch (54% type II RS) in 15 healthy, normal-weight young males. The subjects consumed each starch (mixed in diluted fruit syrup) twice on separate days and in random order. RS intake was followed by lower thermogenesis (46.5 +/- 13.1 compared with 115.4 +/- 10.4 kJ/5 h; P = 0.008), lower glucose oxidation (P < 0.0005), and greater fat oxidation (P = 0.013) than was pregelatinized starch consumption. Our results suggest that RS has no thermogenic effect and that its presence does not influence the size of the thermic response to digestible starch.

  18. Oxide mediated liquid-solid growth of high aspect ratio aligned gold silicide nanowires on Si(110) substrates.

    PubMed

    Bhatta, Umananda M; Rath, Ashutosh; Dash, Jatis K; Ghatak, Jay; Yi-Feng, Lai; Liu, Chuan-Pu; Satyam, P V

    2009-11-18

    Silicon nanowires grown using the vapor-liquid-solid method are promising candidates for nanoelectronics applications. The nanowires grow from an Au-Si catalyst during silicon chemical vapor deposition. In this paper, the effect of temperature, oxide at the interface and substrate orientation on the nucleation and growth kinetics during formation of nanogold silicide structures is explained using an oxide mediated liquid-solid growth mechanism. Using real time in situ high temperature transmission electron microscopy (with 40 ms time resolution), we show the formation of high aspect ratio ( approximately 15.0) aligned gold silicide nanorods in the presence of native oxide at the interface during in situ annealing of gold thin films on Si(110) substrates. Steps observed in the growth rate and real time electron diffraction show the existence of liquid Au-Si nano-alloy structures on the surface besides the un-reacted gold nanostructures. These results might enable us to engineer the growth of nanowires and similar structures with an Au-Si alloy as a catalyst.

  19. Direct-writing of copper-based micropatterns on polymer substrates using femtosecond laser reduction of copper (II) oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Mizoshiri, Mizue; Ito, Yasuaki; Sakurai, Junpei; Hata, Seiichi

    2017-04-01

    Copper (Cu)-based micropatterns were fabricated on polymer substrates using femtosecond laser reduction of copper (II) oxide (CuO) nanoparticles. CuO nanoparticle solution, which consisted of CuO nanoparticles, ethylene glycol as a reductant agent, and polyvinylpyrrolidone as a dispersant, was spin-coated on poly(dimethylsiloxane) (PDMS) substrates and was irradiated by focused femtosecond laser pulses to fabricate Cu-based micropatterns. When the laser pulses were raster-scanned onto the solution, CuO nanoparticles were reduced and sintered. Cu-rich and copper (I)-oxide (Cu2O)-rich micropatterns were formed at laser scanning speeds of 15 mm/s and 0.5 mm/s, respectively, and at a pulse energy of 0.54 nJ. Cu-rich electrically conductive micropatterns were obtained without significant damages on the substrates. On the other hand, Cu2O-rich micropatterns exhibited no electrical conductivity, indicating that microcracks were generated on the micropatterns by thermal expansion and shrinking of the substrates. We demonstrated a direct-writing of Cu-rich micro-temperature sensors on PDMS substrates using the foregoing laser irradiation condition. The resistance of the fabricated sensors increased with increasing temperature, which is consistent with that of Cu. This direct-writing technique is useful for fabricating Cu-polymer composite microstructures.

  20. Electrophoretic deposition of graphene oxide reinforced chitosan-hydroxyapatite nanocomposite coatings on Ti substrate.

    PubMed

    Shi, Y Y; Li, M; Liu, Q; Jia, Z J; Xu, X C; Cheng, Y; Zheng, Y F

    2016-03-01

    Electrophoretic deposition (EPD) is a facile and feasible technique to prepare functional nanocomposite coatings for application in orthopedic-related implants. In this work, a ternary graphene oxide-chitosan-hydroxyapatite (GO-CS-HA) composite coating on Ti substrate was successfully fabricated by EPD. Coating microstructure and morphologies were investigated by scanning electron microscopy, contact angle test, Raman spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. It was found GO-CS surface were uniformly decorated by HA nanoparticles. The potentiodynamic polarization test in simulated body fluid indicated that the GO-CS-HA coatings could provide effective protection of Ti substrate from corrosion. This ternary composite coating also exhibited good biocompatibility during incubation with MG63 cells. In addition, the nanocomposite coatings could decrease the attachment of Staphylococcus aureus.

  1. Residual stress analysis for oxide thin film deposition on flexible substrate using finite element method

    NASA Astrophysics Data System (ADS)

    Chen, Hsi-Chao; Huang, Chen-Yu; Lin, Ssu-Fan; Chen, Sheng-Hui

    2011-09-01

    Residual or internal stresses directly affect a variety of phenomena including adhesion, generation of crystalline defects, perfection of epitaxial layers and formation of film surface growths such as hillocks and whiskers. Sputtering oxide films with high density promote high compressive stress, and it offers researchers a reference if the value of residual stress could be analyzed directly. Since, the study of residual stress of SiO2 and Nb2O5 thin film deposited by DC magnetron sputtered on hard substrate (BK7) and flexible substrate (PET and PC). A finite element method (FEM) with an equivalent-reference-temperature (ERT) technique had been proposed and used to model and evaluate the intrinsic strains of layered structures. The research has improved the equivalent reference temperature (ERT) technique of the simulation of intrinsic strain for oxygen film. The results have also generalized two models connecting to the lattice volume to predict the residual stress of hard substrate and flexible substrate with error of 3% and 6%, respectively.

  2. Methods of repairing a substrate

    NASA Technical Reports Server (NTRS)

    Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)

    2011-01-01

    A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium boride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.

  3. Charge transfer from an adsorbed ruthenium-based photosensitizer through an ultra-thin aluminium oxide layer and into a metallic substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, Andrew J.; Temperton, Robert H.; Handrup, Karsten

    2014-06-21

    The interaction of the dye molecule N3 (cis-bis(isothiocyanato)bis(2,2-bipyridyl-4,4′-dicarbo-xylato) -ruthenium(II)) with the ultra-thin oxide layer on a AlNi(110) substrate, has been studied using synchrotron radiation based photoelectron spectroscopy, resonant photoemission spectroscopy, and near edge X-ray absorption fine structure spectroscopy. Calibrated X-ray absorption and valence band spectra of the monolayer and multilayer coverages reveal that charge transfer is possible from the molecule to the AlNi(110) substrate via tunnelling through the ultra-thin oxide layer and into the conduction band edge of the substrate. This charge transfer mechanism is possible from the LUMO+2 and 3 in the excited state but not from the LUMO,more » therefore enabling core-hole clock analysis, which gives an upper limit of 6.0 ± 2.5 fs for the transfer time. This indicates that ultra-thin oxide layers are a viable material for use in dye-sensitized solar cells, which may lead to reduced recombination effects and improved efficiencies of future devices.« less

  4. The oxidative DNA glycosylases of Mycobacterium tuberculosis exhibit different substrate preferences from their Escherichia coli counterparts

    PubMed Central

    Guo, Yin; Bandaru, Viswanath; Jaruga, Pawel; Zhao, Xiaobei; Burrows, Cynthia J.; Iwai, Shigenori; Dizdaroglu, Miral; Bond, Jeffrey P.; Wallace, Susan S.

    2010-01-01

    The DNA glycosylases that remove oxidized DNA bases fall into two general families: the Fpg/Nei family and the Nth superfamily. Based on protein sequence alignments, we identified four putative Fpg/Nei family members, as well as a putative Nth protein in Mycobacterium tuberculosis H37Rv. All four Fpg/Nei proteins were successfully overexpressed using a bicistronic vector created in our laboratory. The MtuNth protein was also overexpressed in soluble form. The substrate specificities of the purified enzymes were characterized in vitro with oligodeoxynucleotide substrates containing single lesions. Some were further characterized by gas chromatography/mass spectrometry (GC/MS) analysis of products released from γ-irradiated DNA. MtuFpg1 has a substrate specificity similar to that of EcoFpg. Both EcoFpg and MtuFpg1 are more efficient at removing spiroiminodihydantoin (Sp) than 7,8-dihydro-8-oxoguanine (8-oxoG). However, MtuFpg1 shows a substantially increased opposite base discrimination compared to EcoFpg. MtuFpg2 contains only the C-terminal domain of an Fpg protein and has no detectable DNA binding activity or DNA glycosylase/lyase activity and thus appears to be a pseudogene. MtuNei1 recognizes oxidized pyrimidines on both double-stranded and single-stranded DNA and exhibits uracil DNA glycosylase activity. MtuNth recognizes a variety of oxidized bases, including urea, 5,6-dihydrouracil (DHU), 5-hydroxyuracil (5-OHU), 5-hydroxycytosine (5-OHC) and methylhydantoin (MeHyd). Both MtuNei1 and MtuNth excise thymine glycol (Tg); however, MtuNei1 strongly prefers the (5R) isomers, whereas MtuNth recognizes only the (5S) isomers. MtuNei2 did not demonstrate activity in vitro as a recombinant protein, but like MtuNei1 when expressed in Escherichia coli, it decreased the spontaneous mutation frequency of both the fpg mutY nei triple and nei nth double mutants, suggesting that MtuNei2 is functionally active in vivo recognizing both guanine and cytosine oxidation products

  5. Formation of porous silicon oxide from substrate-bound silicon rich silicon oxide layers by continuous-wave laser irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Fricke-Begemann, Th.; Peretzki, P.; Ihlemann, J.; Seibt, M.

    2018-03-01

    Silicon nanocrystals embedded in silicon oxide that show room temperature photoluminescence (PL) have great potential in silicon light emission applications. Nanocrystalline silicon particle formation by laser irradiation has the unique advantage of spatially controlled heating, which is compatible with modern silicon micro-fabrication technology. In this paper, we employ continuous wave laser irradiation to decompose substrate-bound silicon-rich silicon oxide films into crystalline silicon particles and silicon dioxide. The resulting microstructure is studied using transmission electron microscopy techniques with considerable emphasis on the formation and properties of laser damaged regions which typically quench room temperature PL from the nanoparticles. It is shown that such regions consist of an amorphous matrix with a composition similar to silicon dioxide which contains some nanometric silicon particles in addition to pores. A mechanism referred to as "selective silicon ablation" is proposed which consistently explains the experimental observations. Implications for the damage-free laser decomposition of silicon-rich silicon oxides and also for controlled production of porous silicon dioxide films are discussed.

  6. Fabrication and characterization of conductive anodic aluminum oxide substrates

    NASA Astrophysics Data System (ADS)

    Altuntas, Sevde; Buyukserin, Fatih

    2014-11-01

    Biomaterials that allow the utilization of electrical, chemical and topographic cues for improved neuron-material interaction and neural regeneration hold great promise for nerve tissue engineering applications. The nature of anodic aluminum oxide (AAO) membranes intrinsically provides delicate control over topographic and chemical cues for enhanced cell interaction; however their use in nerve regeneration is still very limited. Herein, we report the fabrication and characterization of conductive AAO (CAAO) surfaces for the ultimate goal of integrating electrical cues for improved nerve tissue behavior on the nanoporous substrate material. Parafilm was used as a protecting polymer film, for the first time, in order to obtain large area (50 cm2) free-standing AAO membranes. Carbon (C) was then deposited on the AAO surface via sputtering. Morphological characterization of the CAAO surfaces revealed that the pores remain open after the deposition process. The presence of C on the material surface and inside the nanopores was confirmed by XPS and EDX studies. Furthermore, I-V curves of the surface were used to extract surface resistance values and conductive AFM demonstrated that current signals can only be achieved where conductive C layer is present. Finally, novel nanoporous C films with controllable pore diameters and one dimensional (1-D) C nanostructures were obtained by the dissolution of the template AAO substrate.

  7. THz behavior of indium-tin-oxide films on p-Si substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, E. R., E-mail: elliott.brown@wright.edu; Zhang, W-D., E-mail: wzzhang@fastmail.fm; Chen, H.

    2015-08-31

    This paper reports broadband THz free-space transmission measurements and modeling of indium-tin-oxide (ITO) thin films on p-doped Si substrates. Two such samples having ITO thickness of 50 and 100 nm, and DC sheet conductance 260 and 56 Ω/sq, respectively, were characterized between 0.2 and 1.2 THz using a frequency-domain spectrometer. The 50-nm-film sample displayed very flat transmittance over the 1-THz bandwidth, suggesting it is close to the critical THz sheet conductance that suppresses multi-pass interference in the substrate. An accurate transmission-line-based equivalent circuit is developed to explain the effect, and then used to show that the net reflectivity and absorptivity necessarilymore » oscillate with frequency. This has important implications for the use of thin-film metallic coupling layers on THz components and devices, such as detectors and sources. Consistent with previous reported results, the sheet conductance that best fits the THz transmittance data is roughly 50% higher than the DC values for both samples.« less

  8. Use of aluminum oxide as a permeation barrier for producing thin films on aluminum substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Provo, James L., E-mail: jlprovo@verizon.net

    2016-07-15

    Aluminum has desirable characteristics of good thermal properties, good electrical characteristics, good optical properties, and the characteristic of being nonmagnetic and having a low atomic weight (26.98 g atoms), but because of its low melting point (660 °C) and ability as a reactive metal to alloy with most common metals in use, it has been ignored as a substrate material for use in processing thin films. The author developed a simple solution to this problem, by putting a permeation barrier of alumina (Al{sub 2}O{sub 3}) onto the surface of pure Al substrates by using a standard chemical oxidation process of the surfacemore » (i.e., anodization), before additional film deposition of reactive metals at temperatures up to 500 °C for 1-h, without the formation of alloys or intermetallic compounds to affect the good properties of Al substrates. The chromic acid anodization process used (MIL-A-8625) produced a film barrier of ∼(500–1000) nm of alumina. The fact that refractory Al{sub 2}O{sub 3} can inhibit the reaction of metals with Al at temperatures below 500 °C suggests that Al is a satisfactory substrate if properly oxidized prior to film deposition. To prove this concept, thin film samples of Cr, Mo, Er, Sc, Ti, and Zr were prepared on anodized Al substrates and studied by x-ray diffraction, Rutherford ion back scattering, and Auger/argon sputter surface profile analysis to determine any film substrate interactions. In addition, a major purpose of our study was to determine if ErD{sub 2} thin films could be produced on Al substrates with fully hydrided Er films. Thus, a thin film of ErD{sub 2} on an anodized Al substrate was prepared and studied, with and without the alumina permeation barrier. Films for study were prepared on 1.27 cm diameter Al substrates with ∼500 nm of the metals studied after anodization. Substrates were weighed, cleaned, and vacuum fired at 500 °C prior to use. The Al substrates were deposited using standard

  9. Parametrization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity

    NASA Astrophysics Data System (ADS)

    Losurdo, M.; Giangregorio, M.; Capezzuto, P.; Bruno, G.; de Rosa, R.; Roca, F.; Summonte, C.; Plá, J.; Rizzoli, R.

    2002-01-01

    Indium-tin-oxide (ITO) films deposited by sputtering and e-gun evaporation on both transparent (Corning glass) and opaque (c-Si, c-Si/SiO2) substrates and in c-Si/a-Si:H/ITO heterostructures have been analyzed by spectroscopic ellipsometry (SE) in the range 1.5-5.0 eV. Taking the SE advantage of being applicable to absorbent substrate, ellipsometry is used to determine the spectra of the refractive index and extinction coefficient of the ITO films. The effect of the substrate surface on the ITO optical properties is focused and discussed. To this aim, a parametrized equation combining the Drude model, which considers the free-carrier response at the infrared end, and a double Lorentzian oscillator, which takes into account the interband transition contribution at the UV end, is used to model the ITO optical properties in the useful UV-visible range, whatever the substrate and deposition technique. Ellipsometric analysis is corroborated by sheet resistance measurements.

  10. Tribology study of reduced graphene oxide sheets on silicon substrate synthesized via covalent assembly.

    PubMed

    Ou, Junfei; Wang, Jinqing; Liu, Sheng; Mu, Bo; Ren, Junfang; Wang, Honggang; Yang, Shengrong

    2010-10-19

    Reduced graphene oxide (RGO) sheets were covalently assembled onto silicon wafers via a multistep route based on the chemical adsorption and thermal reduction of graphene oxide (GO). The formation and microstructure of RGO were analyzed by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Raman spectroscopy, and water contact angle (WCA) measurements. Characterization by atomic force microscopy (AFM) was performed to evaluate the morphology and microtribological behaviors of the samples. Macrotribological performance was tested on a ball-on-plate tribometer. Results show that the assembled RGO possesses good friction reduction and antiwear ability, properties ascribed to its intrinsic structure, that is, the covalent bonding to the substrate and self-lubricating property of RGO.

  11. Substrate oxidation capacity in rodent skeletal muscle: effects of exposure to zero gravity

    NASA Technical Reports Server (NTRS)

    Baldwin, K. M.; Herrick, R. E.; McCue, S. A.

    1993-01-01

    A study was conducted, as part of the integrated National Aeronautics and Space Administration Space Life Sciences 1 mission flown in June of 1991, to ascertain the effects of 9 days of exposure to zero gravity on the capacity of rodent skeletal muscle fiber types to oxidize either [14C]pyruvate or [14C]palmitate under state 3 metabolic conditions, i.e., nonlimiting amounts of substrate and cofactors. In addition, activity levels of marker enzymes of the tricarboxylic acid cycle, malate shuttle, and beta-oxidation were measured. Results showed that significant differences in muscle weight occurred in both the predominantly slow vastus intermedius and predominantly fast vastus lateralis of flight vs. control groups (P < 0.05). Total protein content of the muscle samples was similar between groups. Both pyruvate oxidation capacity and the marker oxidative enzymes were not altered in the flight relative to control animals. However, the capacity to oxidize long-chain fatty acids was significantly reduced by 37% in both the high- and low-oxidative regions of the vastus muscle (P < 0.05). Although these findings of a selective reduction in fatty acid oxidation capacity in response to spaceflight are surprising, they are consistent with previous findings showing 1) an increased capacity to take up glucose and upregulate glucose transporter proteins and 2) a marked accumulation of triglycerides in the skeletal muscles of rats subjected to states of unloading. Thus, skeletal muscle of animals exposed to non-weight-bearing environments undergo subcellular transformations that may preferentially bias energy utilization to carbohydrates.

  12. Cortical substrate oxidation during hyperketonemia in the fasted anesthetized rat in vivo.

    PubMed

    Jiang, Lihong; Mason, Graeme F; Rothman, Douglas L; de Graaf, Robin A; Behar, Kevin L

    2011-12-01

    Ketone bodies are important alternate brain fuels, but their capacity to replace glucose and support neural function is unclear. In this study, the contributions of ketone bodies and glucose to cerebral cortical metabolism were measured in vivo in halothane-anesthetized rats fasted for 36 hours (n=6) and receiving intravenous [2,4-(13)C(2)]-D-β-hydroxybutyrate (BHB). Time courses of (13)C-enriched brain amino acids (glutamate-C4, glutamine-C4, and glutamate and glutamine-C3) were measured at 9.4 Tesla using spatially localized (1)H-[(13)C]-nuclear magnetic resonance spectroscopy. Metabolic rates were estimated by fitting a constrained, two-compartment (neuron-astrocyte) metabolic model to the (13)C time-course data. We found that ketone body oxidation was substantial, accounting for 40% of total substrate oxidation (glucose plus ketone bodies) by neurons and astrocytes. D-β-Hydroxybutyrate was oxidized to a greater extent in neurons than in astrocytes (≈ 70:30), and followed a pattern closely similar to the metabolism of [1-(13)C]glucose reported in previous studies. Total neuronal tricarboxylic acid cycle (TCA) flux in hyperketonemic rats was similar to values reported for normal (nonketotic) anesthetized rats infused with [1-(13)C]glucose, but neuronal glucose oxidation was 40% to 50% lower, indicating that ketone bodies had compensated for the reduction in glucose use.

  13. Cortical substrate oxidation during hyperketonemia in the fasted anesthetized rat in vivo

    PubMed Central

    Jiang, Lihong; Mason, Graeme F; Rothman, Douglas L; de Graaf, Robin A; Behar, Kevin L

    2011-01-01

    Ketone bodies are important alternate brain fuels, but their capacity to replace glucose and support neural function is unclear. In this study, the contributions of ketone bodies and glucose to cerebral cortical metabolism were measured in vivo in halothane-anesthetized rats fasted for 36 hours (n=6) and receiving intravenous [2,4-13C2]--β-hydroxybutyrate (BHB). Time courses of 13C-enriched brain amino acids (glutamate-C4, glutamine-C4, and glutamate and glutamine-C3) were measured at 9.4 Tesla using spatially localized 1H-[13C]-nuclear magnetic resonance spectroscopy. Metabolic rates were estimated by fitting a constrained, two-compartment (neuron–astrocyte) metabolic model to the 13C time-course data. We found that ketone body oxidation was substantial, accounting for 40% of total substrate oxidation (glucose plus ketone bodies) by neurons and astrocytes. -β-Hydroxybutyrate was oxidized to a greater extent in neurons than in astrocytes (∼70:30), and followed a pattern closely similar to the metabolism of [1-13C]glucose reported in previous studies. Total neuronal tricarboxylic acid cycle (TCA) flux in hyperketonemic rats was similar to values reported for normal (nonketotic) anesthetized rats infused with [1-13C]glucose, but neuronal glucose oxidation was 40% to 50% lower, indicating that ketone bodies had compensated for the reduction in glucose use. PMID:21731032

  14. Identification of Surface-Exposed Protein Radicals and A Substrate Oxidation Site in A-Class Dye-Decolorizing Peroxidase from Thermomonospora curvata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, Ruben; Chen, Xuejie; Ramyar, Kasra X.

    Dye-decolorizing peroxidases (DyPs) are a family of heme peroxidases in which a catalytic distal aspartate is involved in H 2O 2 activation to catalyze oxidations under acidic conditions. They have received much attention due to their potential applications in lignin compound degradation and biofuel production from biomass. However, the mode of oxidation in bacterial DyPs remains unknown. We have recently reported that the bacterial TcDyP from Thermomonospora curvata is among the most active DyPs and shows activity toward phenolic lignin model compounds. On the basis of the X-ray crystal structure solved at 1.75 Å, sigmoidal steady-state kinetics with Reactive Bluemore » 19 (RB19), and formation of compound II like product in the absence of reducing substrates observed with stopped-flow spectroscopy and electron paramagnetic resonance (EPR), we hypothesized that the TcDyP catalyzes oxidation of large-size substrates via multiple surface-exposed protein radicals. Among 7 tryptophans and 3 tyrosines in TcDyP consisting of 376 residues for the matured protein, W263, W376, and Y332 were identified as surface-exposed protein radicals. Only the W263 was also characterized as one of the surface-exposed oxidation sites. SDS-PAGE and size-exclusion chromatography demonstrated that W376 represents an off-pathway destination for electron transfer, resulting in the cross-linking of proteins in the absence of substrates. Mutation of W376 improved compound I stability and overall catalytic efficiency toward RB19. While Y332 is highly conserved across all four classes of DyPs, its catalytic function in A-class TcDyP is minimal, possibly due to its extremely small solvent-accessible areas. Identification of surface-exposed protein radicals and substrate oxidation sites is important for understanding the DyP mechanism and modulating its catalytic functions for improved activity on phenolic lignin.« less

  15. Process for the deposition of high temperature stress and oxidation resistant coatings on silicon-based substrates

    DOEpatents

    Sarin, V.K.

    1991-07-30

    A process is disclosed for depositing a high temperature stress and oxidation resistant coating on a silicon nitride- or silicon carbide-based substrate body. A gas mixture is passed over the substrate at about 900--1500 C and about 1 torr to about ambient pressure. The gas mixture includes one or more halide vapors with other suitable reactant gases. The partial pressure ratios, flow rates, and process times are sufficient to deposit a continuous, fully dense, adherent coating. The halide and other reactant gases are gradually varied during deposition so that the coating is a graded coating of at least two layers. Each layer is a graded layer changing in composition from the material over which it is deposited to the material of the layer and further to the material, if any, deposited thereon, so that no clearly defined compositional interfaces exist. The gases and their partial pressures are varied according to a predetermined time schedule and the halide and other reactant gases are selected so that the layers include (a) an adherent, continuous intermediate layer about 0.5-20 microns thick of an aluminum nitride or an aluminum oxynitride material, over and chemically bonded to the substrate body, and (b) an adherent, continuous first outer layer about 0.5-900 microns thick including an oxide of aluminum or zirconium over and chemically bonded to the intermediate layer.

  16. Process for the deposition of high temperature stress and oxidation resistant coatings on silicon-based substrates

    DOEpatents

    Sarin, Vinod K.

    1991-01-01

    A process for depositing a high temperature stress and oxidation resistant coating on a silicon nitride- or silicon carbide-based substrate body. A gas mixture is passed over the substrate at about 900.degree.-1500.degree. C. and about 1 torr to about ambient pressure. The gas mixture includes one or more halide vapors with other suitable reactant gases. The partial pressure ratios, flow rates, and process times are sufficient to deposit a continuous, fully dense, adherent coating. The halide and other reactant gases are gradually varied during deposition so that the coating is a graded coating of at least two layers. Each layer is a graded layer changing in composition from the material over which it is deposited to the material of the layer and further to the material, if any, deposited thereon, so that no clearly defined compositional interfaces exist. The gases and their partial pressures are varied according to a predetermined time schedule and the halide and other reactant gases are selected so that the layers include (a) an adherent, continuous intermediate layer about 0.5-20 microns thick of an aluminum nitride or an aluminum oxynitride material, over and chemically bonded to the substrate body, and (b) an adherent, continuous first outer layer about 0.5-900 microns thick including an oxide of aluminum or zirconium over and chemically bonded to the intermediate layer.

  17. Copper oxide thin films anchored on glass substrate by sol gel spin coating technique

    NASA Astrophysics Data System (ADS)

    Krishnaprabha, M.; Venu, M. Parvathy; Pattabi, Manjunatha

    2018-05-01

    Owing to the excellent optical, thermal, electrical and photocatalytic properties, copper oxide nanoparticles/films have found applications in optoelectronic devices like solar/photovoltaic cells, lithium ion batteries, gas sensors, catalysts, magnetic storage media etc. Copper oxide is a p-type semiconductor material having a band gap energy varying from 1.2 eV-2.1 eV. Syzygium Samarangense fruit extract was used as reducing agent to synthesize copper oxide nanostructures at room temperature from 10 mM copper sulphate pentahydrate solution. The synthesized nanostructures are deposited onto glass substrate by spin coating followed by annealing the film at 200 °C. Both the copper oxide colloid and films are characterized using UV-Vis spectroscopy, field emission scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDS) techniques. Presence of 2 peaks at 500 nm and a broad peak centered around 800 nm in the UV-Vis absorbance spectra of copper oxide colloid/films is indicative of the formation of anisotropic copper oxide nanostructures is confirmed by the FESEM images which showed the presence of triangular shaped and rod shaped particles. The rod shaped particles inside island like structures were found in unannealed films whereas the annealed films contained different shaped particles with reduced sizes. The elemental analysis using EDS spectra of copper oxide nanoparticles/films showed the presence of both copper and oxygen. Electrical properties of copper oxide nanoparticles are affected due to quantum size effect. The electrical studies carried out on both unannealed and annealed copper oxide films revealed an increase in resistivity with annealing of the films.

  18. Substrate oxidation influences liking, wanting, macronutrient selection, and consumption of food in humans.

    PubMed

    Brondel, Laurent; Landais, Laurine; Romer, Michael A; Holley, André; Pénicaud, Luc

    2011-09-01

    Several carbohydrate-based models of feeding have been described. The influence of the substrate oxidation rate on liking, wanting, and macronutrient selection, however, is not known in humans. The aim of this study was to investigate the influence of the substrate oxidation rate on the above variables. A randomized 4-condition study was conducted in 16 normal-weight men (mean ± SD age: 23 ± 3 y). The sessions differed in the composition of breakfast, which was either high in carbohydrates (HC) or low in carbohydrates (LC) or high in fat (HF) or low in fat (LF). Two hours and 20 minutes after breakfast, energy expenditure (EE) and respiratory exchange ratios (RERs) were measured. Next, olfactory liking for 4 foods (sweet and fatty) and ad libitum energy intake (carbohydrate- and fat-rich bread) were evaluated. EE was higher (P < 0.001) and subsequent intake was lower (P < 0.01) after the HC and HF breakfasts than after the LC and LF breakfasts. The HC and LC breakfasts induced a higher RER (P < 0.001), lower olfactory liking for sweet foods (P < 0.05), and the consumption of a lower proportion of carbohydrate-rich bread (P< 0.05) than did the HF and LF breakfasts. The HF breakfast induced the lowest RER (P < 0.001), the lowest olfactory liking for fatty foods (P < 0.05), and the lowest proportion of fat-rich bread consumed (P < 0.01). Above all, a negative correlation was found between the RER and olfactory liking for sweet foods (P < 0.001). A high fat oxidation rate induces a strong liking for carbohydrates and a low liking for fats, which lends new support to the carbohydrate-based model of feeding. This trial is registered at clinicaltrials.gov as NCT01122082.

  19. Continuous lengths of oxide superconductors

    DOEpatents

    Kroeger, Donald M.; List, III, Frederick A.

    2000-01-01

    A layered oxide superconductor prepared by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon. A continuous length of a second substrate ribbon is overlaid on the first substrate ribbon. Sufficient pressure is applied to form a bound layered superconductor precursor powder between the first substrate ribbon and the second substrate ribbon. The layered superconductor precursor is then heat treated to establish the oxide superconducting phase. The layered oxide superconductor has a smooth interface between the substrate and the oxide superconductor.

  20. Postprandial thermogenesis and substrate oxidation are unaffected by sleep restriction

    PubMed Central

    Shechter, Ari; Rising, Russell; Wolfe, Scott; Albu, Jeanine B.; St-Onge, Marie-Pierre

    2014-01-01

    Background/Objectives The extent to which alterations in energy expenditure (EE) in response to sleep restriction contribute to the short sleep-obesity relationship is not clearly defined. Short sleep may induce changes in resting metabolic rate (RMR), thermic effect of food (TEF), and postprandial substrate oxidation. Subjects/Methods Ten females (age and BMI: 22-43 y and 23.4-28 kg/m2) completed a randomized, crossover study assessing the effects of short (4 h/night) and habitual (8 h/night) sleep duration on fasting and postprandial RMR and respiratory quotient (RQ). Measurements were taken after 3 nights using whole-room indirect calorimetry. The TEF was assessed over a 6-h period following consumption of a high-fat liquid meal. Results Short vs. habitual sleep did not affect RMR (1.01 ± 0.05 and 0.97 ± 0.04 kcal/min; p=0.23). Fasting RQ was significantly lower after short vs. habitual sleep (0.84 ± 0.01 and 0.88 ± 0.01; p=0.028). Postprandial EE (short: 1.13 ± 0.04 and habitual: 1.10 ± 0.04, p=0.09) and RQ (short: 0.88 ± 0.01 and habitual: 0.88 ± 0.01, p=0.50) after the high-fat meal were not different between conditions. TEF was similar between conditions (0.24 ± 0.02 kcal/min in both; p=0.98), as was the ~6-h incremental area under the curve (1.16 ± 0.10 and 1.17 ± 0.09 kcal/min x 356 min after short and habitual sleep, respectively; p=0.92). Conclusions Current findings observed in non-obese healthy premenopausal women do not support the hypothesis that alterations in TEF and postprandial substrate oxidation are major contributors to the higher rate of obesity observed in short sleepers. In exploring a role of sleep duration on EE, research should focus on potential alterations in physical activity to explain the increased obesity risk in short sleepers. PMID:24352294

  1. Lipid oxidation in minced beef meat with added Krebs cycle substrates to stabilise colour.

    PubMed

    Yi, G; Grabež, V; Bjelanovic, M; Slinde, E; Olsen, K; Langsrud, O; Phung, V T; Haug, A; Oostindjer, M; Egelandsdal, B

    2015-11-15

    Krebs cycle substrates (KCS) can stabilise the colour of packaged meat by oxygen reduction. This study tested whether this reduction releases reactive oxygen species that may lead to lipid oxidation in minced meat under two different storage conditions. KCS combinations of succinate and glutamate increased peroxide forming potential (PFP, 1.18-1.32 mmol peroxides/kg mince) and thiobarbituric acid reactive substances (TBARS, 0.30-0.38 mg malondialdehyde (MDA) equivalents/kg mince) under low oxygen storage conditions. Both succinate and glutamate were metabolised. Moreover, under high oxygen (75%) storage conditions, KCS combinations of glutamate, citrate and malate increased PFP (from 1.22 to 1.29 mmol peroxides/kg) and TBARS (from 0.37 to 0.40 mg MDA equivalents/kg mince). Only glutamate was metabolised. The KCS combinations that were added to stabilise colour were metabolised during storage, and acted as pro-oxidants that promoted lipid oxidation in both high and low oxygen conditions. Copyright © 2015. Published by Elsevier Ltd.

  2. Metal Catalyst for Low-Temperature Growth of Controlled Zinc Oxide Nanowires on Arbitrary Substrates

    PubMed Central

    Kim, Baek Hyun; Kwon, Jae W.

    2014-01-01

    Zinc oxide nanowires generated by hydrothermal method present superior physical and chemical characteristics. Quality control of the growth has been very challenging and controlled growth is only achievable under very limited conditions using homogeneous seed layers with high temperature processes. Here we show the controlled ZnO nanowire growth on various organic and inorganic materials without the requirement of a homogeneous seed layer and a high temperature process. We also report the discovery of an important role of the electronegativity in the nanowire growth on arbitrary substrates. Using heterogeneous metal oxide interlayers with low-temperature hydrothermal methods, we demonstrate well-controlled ZnO nanowire arrays and single nanowires on flat or curved surfaces. A metal catalyst and heterogeneous metal oxide interlayers are found to determine lattice-match with ZnO and to largely influence the controlled alignment. These findings will contribute to the development of novel nanodevices using controlled nanowires. PMID:24625584

  3. Bacterial growth and substrate degradation by BTX-oxidizing culture in response to salt stress.

    PubMed

    Lee, Chi-Yuan; Lin, Ching-Hsing

    2006-01-01

    Interactions between microbial growth and substrate degradation are important in determining the performance of trickle-bed bioreactors (TBB), especially when salt is added to reduce biomass formation in order to alleviate media clogging. This study was aimed at quantifying salinity effects on bacterial growth and substrate degradation, and at acquiring kinetic information in order to improve the design and operation of TBB. Experiment works began by cultivating a mixed culture in a chemostat reactor receiving artificial influent containing a mixture of benzene, toluene, and xylene (BTX), followed by using the enrichment culture to degrade the individual BTX substrates under a particular salinity, which ranged 0-50 g l(-1) in batch mode. Then, the measured concentrations of biomass and residual substrate versus time were analyzed with the microbial kinetics; moreover, the obtained microbial kinetic constants under various salinities were modeled using noncompetitive inhibition kinetics. For the three substrates the observed bacterial yields appeared to be decreased from 0.51-0.74 to 0.20-0.22 mg mg(-1) and the maximum specific rate of substrate utilization, q, declined from 0.25-0.42 to 0.07-0.11 h(-1), as the salinity increased from 0 to 50 NaCl g l(-1). The NaCl acted as noncompetitive inhibitor, where the modeling inhibitions of the coefficients, K ( T(S)), were 22.7-29.7 g l(-1) for substrate degradation and K ( T(mu)), 13.0-19.0 g l(-1), for biomass formation. The calculated ratios for the bacterial maintenance rate, m (S), to q, further indicated that the percentage energy spent on maintenance increased from 19-24 to 86-91% as salinity level increased from 0 to 50 g l(-1). These results revealed that the bacterial growth was more inhibited than substrate degradation by the BTX oxidizers under the tested salinity levels. The findings from this study demonstrate the potential of applying NaCl salt to control excessive biomass formation in biotrickling filters.

  4. Gaseous Oxidized Mercury Flux from Substrates Associated with Industrial Scale Gold Mining in Nevada, USA

    NASA Astrophysics Data System (ADS)

    Miller, M. B.

    2015-12-01

    Gaseous elemental and oxidized mercury (Hg) fluxes were measured in a laboratory setting from substrate materials derived from industrial-scale open pit gold mining operations in Nevada, USA. Mercury is present in these substrates at a range of concentrations (10 - 40000 ng g-1), predominantly of local geogenic origin in association with the mineralized gold ores, but altered and redistributed to a varying degree by subsequent ore extraction and processing operations, including deposition of Hg recently emitted to the atmosphere from large point sources on the mines. Waste rock, heap leach, and tailings material usually comprise the most extensive and Hg emission relevant substrate surfaces. All three of these material types were collected from active Nevada mine sites in 2010 for previous research, and have since been stored undisturbed at the University of Nevada, Reno. Gaseous elemental Hg (GEM) flux was previously measured from these materials under a variety of conditions, and was re-measured in this study, using Teflon® flux chambers and Tekran® 2537A automated ambient air analyzers. GEM flux from dry undisturbed materials was comparable between the two measurement periods. Gaseous oxidized Hg (GOM) flux from these materials was quantified using an active filter sampling method that consisted of polysulfone cation-exchange membranes deployed in conjunction with the GEM flux apparatus. Initial measurements conducted within greenhouse laboratory space indicate that in dry conditions GOM is deposited to relatively low Hg cap and leach materials, but may be emitted from the much higher Hg concentration tailings material.

  5. Semiconductor films on flexible iridium substrates

    DOEpatents

    Goyal, Amit

    2005-03-29

    A laminate semiconductor article includes a flexible substrate, an optional biaxially textured oxide buffer system on the flexible substrate, a biaxially textured Ir-based buffer layer on the substrate or the buffer system, and an epitaxial layer of a semiconductor. Ir can serve as a substrate with an epitaxial layer of a semiconductor thereon.

  6. Oxidations of Organic and Inorganic Substrates by Superoxo-, hydroperoxo-, and oxo-compounds of the transition metals.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasbinder, Michael John

    2006-01-01

    values of the Hammett reaction constant PN were -1.0(1) for 4-nitro-2-methylpyridine-N-oxide and -2.6(4) for 4-methylpyridine-N-oxide as substrates. The negative value confirms pyridine is acting as a nucleophile. Nucleophiles other than pyridine derivatives were also tested. In the end, it was found that the most effective nucleophiles were the pyridine-N-oxides themselves, meaning that a second equivalent of substrate serves as the most efficient promoter of this oxygen-atom transfer reaction. This relative nucleophilicity of pyridines and pyridine-N-oxides is similar to what is observed in other OAT reactions generating high-valent metal-oxo species.« less

  7. Influences of Indium Tin Oxide Layer on the Properties of RF Magnetron-Sputtered (BaSr)TiO3 Thin Films on Indium Tin Oxide-Coated Glass Substrate

    NASA Astrophysics Data System (ADS)

    Kim, Tae Song; Oh, Myung Hwan; Kim, Chong Hee

    1993-06-01

    Nearly stoichiometric ((Ba+Sr)/Ti=1.08-1.09) and optically transparent (BaSr)TiO3 thin films were deposited on an indium tin oxide (ITO)-coated glass substrate by means of rf magnetron sputtering for their application to the insulating layer of an electroluminescent flat panel display. The influence of the ITO layer on the properties of (BaSr)TiO3 thin films deposited on the ITO-coated substrate was investigated. The ITO layer did not affect the crystallographic orientation of (BaSr)TiO3 thin film, but enhanced the grain growth. Another effect of the ITO layer on (BaSr)TiO3 thin films was the interdiffusion phenomenon, which was studied by means of secondary ion mass spectrometry (SIMS). As the substrate temperature increased, interdiffusion intensified at the interface not only between the grown film and ITO layer but also between the ITO layer and base glass substrate. The refractive index (nf) of (BaSr)TiO3 thin film deposited on a bare glass substrate was 2.138-2.286, as a function of substrate temperature.

  8. Postprandial energy metabolism and substrate oxidation in response to the inclusion of a sugar- or non-nutritive sweetened beverage with meals differing in protein content

    USDA-ARS?s Scientific Manuscript database

    Protein-rich diets may promote achieving and maintaining a healthy body weight by increasing energy metabolism and substrate oxidation, especially fat oxidation. Sugar sweetened beverages (SSBs) are considered a major contributor to the obesogenic food environment and may decrease fat oxidation. The...

  9. The effect of suspending solution supplemented with marine cations on the oxidation of Biolog GN MicroPlate substrates by Vibrionaceae bacteria.

    PubMed

    Noble, L D; Gow, J A

    1998-03-01

    Bacteria belonging to the family Vibrionaceae were suspended using saline and a solution prepared from a marine-cations supplement. The effect of this on the profile of oxidized substrates obtained when using Biolog GN MicroPlates was investigated. Thirty-nine species belonging to the genera Aeromonas, Listonella, Photobacterium, and Vibrio were studied. Of the strains studied, species of Listonella, Photobacterium, and Vibrio could be expected to benefit from a marine-cations supplement that contained Na+, K+, and Mg2+. Bacteria that are not of marine origin are usually suspended in normal saline. Of the 39 species examined, 9 were not included in the Biolog data base and were not identified. Of the 30 remaining species, 50% were identified correctly using either of the suspending solutions. A further 20% were correctly identified only when suspended in saline. Three species, or 10%, were correctly identified only after suspension in the marine-cations supplemented solution. The remaining 20% of species were not correctly identified by either method. Generally, more substrates were oxidized when the bacteria had been suspended in the more complex salts solution. Usually, when identifications were incorrect, the use of the marine-cations supplemented suspending solution had resulted in many more substrates being oxidized. Based on these results, it would be preferable to use saline to suspend the cells when using Biolog for identification of species of Vibrionaceae. A salts solution containing a marine-cations supplement would be preferable for environmental studies where the objective is to determine profiles of substrates that the bacteria have the potential to oxidize. If identifications are done using marine-cations supplemented suspending solution, it would be advisable to include reference cultures to determine the effect of the supplement. Of the Vibrio and Listonella species associated with human clinical specimens, 8 out of the 11 studied were identified

  10. Effect of Native Oxide Film on Commercial Magnesium Alloys Substrates and Carbonate Conversion Coating Growth and Corrosion Resistance

    PubMed Central

    Feliu, Sebastián; Samaniego, Alejandro; Bermudez, Elkin Alejandro; El-Hadad, Amir Abdelsami; Llorente, Irene; Galván, Juan Carlos

    2014-01-01

    Possible relations between the native oxide film formed spontaneously on the AZ31 and AZ61 magnesium alloy substrates with different surface finish, the chemistry of the outer surface of the conversion coatings that grows after their subsequent immersion on saturated aqueous NaHCO3 solution treatment and the enhancement of corrosion resistance have been studied. The significant increase in the amount of aluminum and carbonate compounds on the surface of the conversion coating formed on the AZ61 substrate in polished condition seems to improve the corrosion resistance in low chloride ion concentration solutions. In contrast, the conversion coatings formed on the AZ31 substrates in polished condition has little effect on their protective properties compared to the respective as-received surface. PMID:28788582

  11. Effect of Native Oxide Film on Commercial Magnesium Alloys Substrates and Carbonate Conversion Coating Growth and Corrosion Resistance.

    PubMed

    Feliu, Sebastián; Samaniego, Alejandro; Bermudez, Elkin Alejandro; El-Hadad, Amir Abdelsami; Llorente, Irene; Galván, Juan Carlos

    2014-03-28

    Possible relations between the native oxide film formed spontaneously on the AZ31 and AZ61 magnesium alloy substrates with different surface finish, the chemistry of the outer surface of the conversion coatings that grows after their subsequent immersion on saturated aqueous NaHCO₃ solution treatment and the enhancement of corrosion resistance have been studied. The significant increase in the amount of aluminum and carbonate compounds on the surface of the conversion coating formed on the AZ61 substrate in polished condition seems to improve the corrosion resistance in low chloride ion concentration solutions. In contrast, the conversion coatings formed on the AZ31 substrates in polished condition has little effect on their protective properties compared to the respective as-received surface.

  12. Methods of selectively incorporating metals onto substrates

    DOEpatents

    Ernst; Richard D. , Eyring; Edward M. , Turpin; Gregory C. , Dunn; Brian C.

    2008-09-30

    A method for forming multi-metallic sites on a substrate is disclosed and described. A substrate including active groups such as hydroxyl can be reacted with a pretarget metal complex. The target metal attached to the active group can then be reacted with a secondary metal complex such that an oxidation-reduction (redox) reaction occurs to form a multi-metallic species. The substrate can be a highly porous material such as aerogels, xerogels, zeolites, and similar materials. Additional metal complexes can be reacted to increase catalyst loading or control co-catalyst content. The resulting compounds can be oxidized to form oxides or reduced to form metals in the ground state which are suitable for practical use.

  13. Effect of substrates on structural and optical properties of tin oxide (SnO2) nanostructures.

    PubMed

    Johari, Anima; Bhatnagar, M C; Rana, Vikas

    2012-10-01

    We report on controlling the morphology of tin oxide (SnO2) nanostructures and the study of the effect of surface morphology on structural and optical properties of SnO2 nanostuctures. In present work, Tin oxide (SnO2) nanostructures such as nanowires and nanorods have been grown by thermal evaporation of SnO2 powder. To demonstrate the effect of different substrates on the morphology of grown SnO2 nanostructures, the thermal evaporation of SnO2 powder was carried out on Si and gold catalyzed Si (Au/Si) substrates. The scanning-electron-microscopic analysis shows the growth of SnO2 nanowires on Au/Si substrate and growth of SnO2 nanorods on Si substrate. The scanning-and transmission-electron-microscopic analysis shows that the diameter of SnO2 nanowires and nanorods are about 70 nm and 95 nm respectively and their length is about 80 microm and 30 microm respectively. The vapor-liquid-solid (VLS) growth of SnO2 nanowires and vapor-solid (VS) growth of SnO2 nanorods is also confirmed with the help of TEM and EDX spectra. The synthesized SnO2 nanowires show tetragonal rutile structure of SnO2, whereas SnO2 nanorods show tetragonal rutile as well as cassiterite structure of SnO2. UV-Vis absorption spectra showed the optical band gaps of 4.1 eV and 3.8 eV for the SnO2 nanowires and the nanorods, respectively. The SnO2 nanowires and nanorods show photoluminescence with broad emission peaks centred at around 600 nm and 580 nm respectively. Raman spectra of SnO2 nanowires shows three Raman shifts (478, 632, 773 cm(-1)) corresponding to Eg, A1g and B2g vibration modes, whereas in Raman spectra of SnO2 nanorods, A1g peak is dramatically reduced and the B2g mode is totally quenched.

  14. Aluminum-doped zinc oxide thin films grown on various substrates using facing target sputtering system

    NASA Astrophysics Data System (ADS)

    Kim, Hwa-Min; Lee, Chang Hyun; Shon, Sun Young; Kim, Bong Hwan

    2017-11-01

    Aluminum-doped zinc oxide (AZO) films were fabricated on various substrates, such as glass, polyethylene naphthalate (PEN), and polyethylene terephthalate (PET), at room temperature using a facing target sputtering (FTS) system with hetero ZnO and Al2O3 targets, and their electrical and optical properties were investigated. The AZO film on glass exhibited compressive stress while the films on the plastic substrates showed tensile stress. These stresses negatively affected the crystalline quality of the AZO films, and it is suggested that the poor crystalline quality of the films may be related to the neutral Al-based defect complexes formed in the films; these complexes act as neutral impurity scattering centers. AZO films with good optoelectronic properties could be formed on the glass and plastic substrates by the FTS technique using the hetero targets. The AZO films deposited on the glass, PEN, and PET substrates showed very low resistivities, of 5.0 × 10-4 Ω cm, 7.0 × 10-4 Ω cm, and 7.4 × 10-4 Ω cm, respectively. Further, the figure merit of the AZO film formed on the PEN substrate in the visible range (400-700 nm) was significantly higher than that of the AZO film on PET and similar to that of the AZO film on glass. Finally, the average transmittances of the films in the visible range (400-700 nm) were 83.16% (on glass), 76.3% (on PEN), and 78.16% (on PET).

  15. High resolution masks for ion milling pores through substrates of biological interest

    NASA Technical Reports Server (NTRS)

    Donovan, S. S.

    1978-01-01

    The feasibility was investigated of electrochemically oxidizing vapor deposited aluminum coatings to produce porous aluminum oxide coatings with submicron pore diameters and with straight channels normal to the substrate surface. Porous aluminum oxide coatings were produced from vapor deposited aluminum coatings on thin stainless steel (304), copper, Teflon (FEP) and Kapton substrates and also on pure aluminum substrates. Scanning electron microscope examination indicated that porous oxide coatings can be produced with straight channels, appropriate pore diameters and none or minimal intervening residual aluminum. The oxide coatings on the copper and Kapton substrates had the straightest channels and in general were superior to those fabricated on the other substrate materials. For oxide coatings fabricated at 600 V and 300 V, pore diameters were 0.4-0.6, and 0.3 micron with center-to-center spacing of 0.7-0.8, and 0.4 micron, respectively. Estimated direct labor and materials costs to prepare an oxide mask is anticipated to be about $4-$6 per square foot.

  16. Substrate Structures For Growth Of Highly Oriented And/Or Epitaxial Layers Thereon

    DOEpatents

    Arendt, Paul N.; Foltyn, Stephen R.; Groves, James R.; Jia, Quanxi

    2005-07-26

    A composite substrate structure including a substrate, a layer of a crystalline metal oxide or crystalline metal oxynitride material upon the substrate, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the crystalline metal oxide or crystalline metal oxynitride material layer is provided together with additional layers such as one or more layers of a buffer material upon the oriented cubic oxide material layer. Jc's of 2.3×106 A/cm2 have been demonstrated with projected Ic's of 320 Amperes across a sample 1 cm wide for a superconducting article including a flexible polycrystalline metallic substrate, an inert oxide material layer upon the surface of the flexible polycrystalline metallic substrate, a layer of a crystalline metal oxide or crystalline metal oxynitride material upon the layer of the inert oxide material, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the crystalline metal oxide or crystalline metal oxynitride material layer, a layer of a buffer material upon the oriented cubic oxide material layer, and, a top-layer of a high temperature superconducting material upon the layer of a buffer material.

  17. Fabricate heterojunction diode by using the modified spray pyrolysis method to deposit nickel-lithium oxide on indium tin oxide substrate.

    PubMed

    Wu, Chia-Ching; Yang, Cheng-Fu

    2013-06-12

    P-type lithium-doped nickel oxide (p-LNiO) thin films were deposited on an n-type indium tin oxide (ITO) glass substrate using the modified spray pyrolysis method (SPM), to fabricate a transparent p-n heterojunction diode. The structural, optical, and electrical properties of the p-LNiO and ITO thin films and the p-LNiO/n-ITO heterojunction diode were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), UV-visible spectroscopy, Hall effect measurement, and current-voltage (I-V) measurements. The nonlinear and rectifying I-V properties confirmed that a heterojunction diode characteristic was successfully formed in the p-LNiO/n-ITO (p-n) structure. The I-V characteristic was dominated by space-charge-limited current (SCLC), and the Anderson model demonstrated that band alignment existed in the p-LNiO/n-ITO heterojunction diode.

  18. Oxidative potential of some endophytic fungi using 1-indanone as a substrate.

    PubMed

    Fill, Taicia Pacheco; da Silva, Jose Vinicius; de Oliveira, Kleber Thiago; da Silva, Bianca Ferreira; Rodrigues-Fo, Edson

    2012-06-01

    The oxidative potential of the fungus Penicillium brasilianum, a strain isolated as an endophyte from a Meliaceae plant (Melia azedarach), was investigated using 1-indanone as a substrate to track the production of monooxygenases. The fungus produced the dihydrocoumarin from 1-indanone with the classical Baeyer-Villiger reaction regiochemistry, and (-)-(R)-3-hydroxy-1-indanone with 78% ee. Minor compounds resulting from lipase and SAM activities were also detected. The biotransformation procedures were also applied to a collection of Penicillium and Aspergillus fungi obtained from M. azedarach and Murraya paniculata. The results showed that Baeyer-Villiger were mostly active in fungi isolated from M. azedarach. Almost all of the fungi tested produced 3-hydroxy-1-indanone..

  19. Substrate-specific modifications on magnetic iron oxide nanoparticles as an artificial peroxidase for improving sensitivity in glucose detection.

    PubMed

    Liu, Yanping; Yu, Faquan

    2011-04-08

    Magnetic iron oxide nanoparticles (MION) were recently found to act as a peroxidase with intrinsic advantages over natural counterparts. Their limited affinity toward catalysis substrates, however, dramatically reduces their utility. In this paper, some effective groups were screened out and conjugated on MION as substrate-specific modifications for improving MION's affinity to substrates and hence utility. Nanoparticles of four different superficial structures were synthesized and characterized by TEM, size, zeta potential and SQUID, and assayed for peroxidase activity. Glucose detection was selected as an application model system to evaluate the bonus thereof. Catalysis was found to follow Michaelis-Menten kinetics. Sulfhydryl groups incorporated on MION (SH-MION) notably improve the affinity toward a substrate (hydrogen peroxide) and so do amino groups (NH₂-MION) toward another substrate, proved by variation in the determined kinetic parameters. A synergistically positive effect was observed and an apparently elevated detection sensitivity and a significantly lowered detection limit of glucose were achieved when integrated with both sulfhydryl and amino groups (SH-NH₂-MION). Our findings suggest that substrate-specific surface modifications are a straightforward and robust strategy to improve MION peroxidase-like activity. The high activity extends magnetic nanoparticles to wide applications other than glucose detection.

  20. Organic molecules on metal and oxide semiconductor substrates: Adsorption behavior and electronic energy level alignment

    NASA Astrophysics Data System (ADS)

    Ruggieri, Charles M.

    Modern devices such as organic light emitting diodes use organic/oxide and organic/metal interfaces for crucial processes such as charge injection and charge transfer. Understanding fundamental physical processes occurring at these interfaces is essential to improving device performance. The ultimate goal of studying such interfaces is to form a predictive model of interfacial interactions, which has not yet been established. To this end, this thesis focuses on obtaining a better understanding of fundamental physical interactions governing molecular self-assembly and electronic energy level alignment at organic/metal and organic/oxide interfaces. This is accomplished by investigating both the molecular adsorption geometry using scanning tunneling microscopy, as well as the electronic structure at the interface using direct and inverse photoemission spectroscopy, and analyzing the results in the context of first principles electronic structure calculations. First, we study the adsorption geometry of zinc tetraphenylporphyrin (ZnTPP) molecules on three noble metal surfaces: Au(111), Ag(111), and Ag(100). These surfaces were chosen to systematically compare the molecular self-assembly and adsorption behavior on two metals of the same surface symmetry and two surface symmetries of one metal. From this investigation, we improve the understanding of self-assembly at organic/metal interfaces and the relative strengths of competing intermolecular and molecule-substrate interactions that influence molecular adsorption geometry. We then investigate the electronic structure of the ZnTPP/Au(111), Ag(111), and Ag(100) interfaces as examples of weakly-interacting systems. We compare these cases to ZnTPP on TiO2(110), a wide-bandgap oxide semiconductor, and explain the intermolecular and molecule-substrate interactions that determine the electronic energy level alignment at the interface. Finally we study tetracyanoquinodimethane (TCNQ), a strong electron acceptor, on TiO2

  1. Substrate-dependent temperature sensitivity of soil organic matter decomposition

    NASA Astrophysics Data System (ADS)

    Myachina, Olga; Blagodatskaya, Evgenia

    2015-04-01

    Activity of extracellular enzymes responsible for decomposition of organics is substrate dependent. Quantity of the substrate is the main limiting factor for enzymatic or microbial heterotrophic activity in soils. Different mechanisms of enzymes response to temperature suggested for low and high substrate availability were never proved for real soil conditions. We compared the temperature responses of enzymes-catalyzed reactions in soils. Basing on Michaelis-Menten kinetics we determined the enzymes affinity to substrate (Km) and mineralization potential of heterotrophic microorganisms (Vmax) 1) for three hydrolytic enzymes: β-1,4-glucosidase, N-acetyl- β -D-glucosaminidase and phosphatase by the application of fluorogenically labeled substrates and 2) for mineralization of 14C-labeled glucose by substrate-dependent respiratory response. Here we show that the amount of available substrate is responsible for temperature sensitivity of hydrolysis of polymers in soil, whereas monomers oxidation to CO2 does not depend on substrate amount and is mainly temperature governed. We also found that substrate affinity of enzymes (which is usually decreases with the temperature) differently responded to warming for the process of depolymerisation versus monomers oxidation. We suggest the mechanism to temperature acclimation based on different temperature sensitivity of enzymes kinetics for hydrolysis of polymers and for monomers oxidation.

  2. Effects of quality of energy on substrate oxidation in enterally fed, low-birth-weight infants.

    PubMed

    Kashyap, S; Towers, H M; Sahni, R; Ohira-Kist, K; Abildskov, K; Schulze, K F

    2001-09-01

    Carbohydrate and fat may differ in their ability to support energy-requiring physiologic processes, such as protein synthesis and growth. If so, varying the constituents of infant formula might be therapeutically advantageous. We tested the hypothesis that low-birth-weight infants fed a diet containing 65% of nonprotein energy as carbohydrate oxidize relatively more carbohydrate and relatively less protein than do infants fed an isoenergetic, isonitrogenous diet containing 35% of nonprotein energy as carbohydrate. Sixty-two low-birth-weight infants weighing from 750 to 1600 g at birth were assigned randomly and blindly to receive 1 of 5 formulas that differed only in the quantity and quality of nonprotein energy. Formula containing 544 kJ x kg(-1) x d(-1) with either 50%, 35%, or 65% of nonprotein energy as carbohydrate was administered to control subjects, group 1, and group 2, respectively. Groups 3 and 4 received gross energy intakes of 648 kJ x kg(-1) x d(-1) with 35% and 65% of nonprotein energy as carbohydrate. Protein intake was targeted at 4 g x kg(-1) x d(-1). Substrate oxidation was estimated from biweekly, 6-h measurements of gas exchange and 24-h urinary nitrogen excretion. Carbohydrate oxidation was positively (r = 0.71, P < 0.0001) and fat oxidation was negatively (r = -0.46, P < 0.001) correlated with carbohydrate intake. Protein oxidation was negatively correlated with carbohydrate oxidation (r = -0.42, P < 0.001). Fat oxidation was not correlated with protein oxidation. Protein oxidation was less in infants receiving 65% of nonprotein energy as carbohydrate than in groups receiving 35% nonprotein energy as carbohydrate. These data support the hypothesis that energy supplied as carbohydrate is more effective than energy supplied as fat in sparing protein oxidation in enterally fed low-birth-weight infants.

  3. Designing interlayers to improve the mechanical reliability of transparent conductive oxide coatings on flexible substrates

    NASA Astrophysics Data System (ADS)

    Kim, Eun-Hye; Yang, Chan-Woo; Park, Jin-Woo

    2012-05-01

    In this study, we investigate the effect of interlayers on the mechanical properties of transparent conductive oxide (TCO) on flexible polymer substrates. Indium tin oxide (ITO), which is the most widely used TCO film, and Ti, which is the most widely used adhesive interlayer, are selected as the coating and the interlayer, respectively. These films are deposited on the polymer substrates using dc-magnetron sputtering to achieve varying thicknesses. The changes in the following critical factors for film cracking and delamination are analyzed: the internal stress (σi) induced in the coatings during deposition using a white light interferometer, the crystallinity using a transmission electron microscope, and the surface roughness of ITO caused by the interlayer using an atomic force microscope. The resistances to the cracking and delamination of ITO are evaluated using a fragmentation test. Our tests and analyses reveal the important role of the interlayers, which significantly reduce the compressive σi that is induced in the ITO and increase the resistance to the buckling delamination of the ITO. However, the relaxation of σi is not beneficial to cracking because there is less compensation for the external tension as σi further decreases. Based on these results, the microstructural control is revealed as a more influential factor than σi for improving crack resistance.

  4. Facile fabrication of Ag dendrite-integrated anodic aluminum oxide membrane as effective three-dimensional SERS substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Cong-yun; Lu, Ya; Zhao, Bin; Hao, Yao-wu; Liu, Ya-qing

    2016-07-01

    A novel surface enhanced Raman scattering (SERS)-active substrate has been successfully developed, where Ag-dendrites are assembled on the surface and embedded in the channels of anodic aluminum oxide (AAO) membrane, via electrodeposition in AgNO3/PVP aqueous system. Reaction conditions were systematically investigated to attain the best Raman enhancement. The growth mechanism of Ag dendritic nanostructures has been proposed. The Ag dendrite-integrated AAO membrane with unique hierarchical structures exhibits high SERS activity for detecting rhodamine 6G with a detection limit as low as 1 × 10-11 M. Furthermore, the three-dimensional (3D) substrates display a good reproducibility with the average intensity variations at the major Raman peak less than 12%. Most importantly, the 3D SERS substrates without any surface modification show an outstanding SERS response for the molecules with weak affinity for noble metal surfaces. The potential application for the detection of polycyclic aromatic hydrocarbons (PAHs) was evaluated with fluoranthene as Raman target molecule and a sensitive SERS detection with a limit down to 10-8 M was reached. The 3D SERS-active substrate shows promising potential for rapid detection of trace organic pollutants even weak affinity molecules in the environment.

  5. High-performance SERS substrate based on hybrid structure of graphene oxide/AgNPs/Cu film@pyramid Si

    PubMed Central

    Li, Zhe; Xu, Shi Cai; Zhang, Chao; Liu, Xiao Yun; Gao, Sai Sai; Hu, Li Tao; Guo, Jia; Ma, Yong; Jiang, Shou Zhen; Si, Hai Peng

    2016-01-01

    We present a novel surface-enhanced Raman scattering (SERS) substrate based on graphene oxide/silver nanoparticles/copper film covered silicon pyramid arrays (GO/AgNPs/PCu@Si) by a low-cost and simple method. The GO/AgNPs/PCu@Si substrate presents high sensitivity, good homogeneity and well stability with R6G molecules as a probe. The detected concentration of Rhodamine 6 G (R6G) is as low as 10−15 M. These sensitive SERS behaviors are also confirmed in theory via a commercial COMSOL software, the electric field enhancement is not only formed between the AgNPs, but also formed between the AgNPs and Cu film. And the GO/AgNPs/PCu@Si substrates also present good property on practical application for the detection of methylene blue (MB) and crystal violet (CV). This work may offer a novel and practical method to facilitate the SERS applications in areas of medicine, food safety and biotechnology. PMID:27924863

  6. High-performance SERS substrate based on hybrid structure of graphene oxide/AgNPs/Cu film@pyramid Si

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Xu, Shi Cai; Zhang, Chao; Liu, Xiao Yun; Gao, Sai Sai; Hu, Li Tao; Guo, Jia; Ma, Yong; Jiang, Shou Zhen; Si, Hai Peng

    2016-12-01

    We present a novel surface-enhanced Raman scattering (SERS) substrate based on graphene oxide/silver nanoparticles/copper film covered silicon pyramid arrays (GO/AgNPs/PCu@Si) by a low-cost and simple method. The GO/AgNPs/PCu@Si substrate presents high sensitivity, good homogeneity and well stability with R6G molecules as a probe. The detected concentration of Rhodamine 6 G (R6G) is as low as 10-15 M. These sensitive SERS behaviors are also confirmed in theory via a commercial COMSOL software, the electric field enhancement is not only formed between the AgNPs, but also formed between the AgNPs and Cu film. And the GO/AgNPs/PCu@Si substrates also present good property on practical application for the detection of methylene blue (MB) and crystal violet (CV). This work may offer a novel and practical method to facilitate the SERS applications in areas of medicine, food safety and biotechnology.

  7. High-performance SERS substrate based on hybrid structure of graphene oxide/AgNPs/Cu film@pyramid Si.

    PubMed

    Li, Zhe; Xu, Shi Cai; Zhang, Chao; Liu, Xiao Yun; Gao, Sai Sai; Hu, Li Tao; Guo, Jia; Ma, Yong; Jiang, Shou Zhen; Si, Hai Peng

    2016-12-07

    We present a novel surface-enhanced Raman scattering (SERS) substrate based on graphene oxide/silver nanoparticles/copper film covered silicon pyramid arrays (GO/AgNPs/PCu@Si) by a low-cost and simple method. The GO/AgNPs/PCu@Si substrate presents high sensitivity, good homogeneity and well stability with R6G molecules as a probe. The detected concentration of Rhodamine 6 G (R6G) is as low as 10 -15 M. These sensitive SERS behaviors are also confirmed in theory via a commercial COMSOL software, the electric field enhancement is not only formed between the AgNPs, but also formed between the AgNPs and Cu film. And the GO/AgNPs/PCu@Si substrates also present good property on practical application for the detection of methylene blue (MB) and crystal violet (CV). This work may offer a novel and practical method to facilitate the SERS applications in areas of medicine, food safety and biotechnology.

  8. Combining Solvent Isotope Effects with Substrate Isotope Effects in Mechanistic Studies of Alcohol and Amine Oxidation by Enzymes*

    PubMed Central

    Fitzpatrick, Paul F.

    2014-01-01

    Oxidation of alcohols and amines is catalyzed by multiple families of flavin-and pyridine nucleotide-dependent enzymes. Measurement of solvent isotope effects provides a unique mechanistic probe of the timing of the cleavage of the OH and NH bonds, necessary information for a complete description of the catalytic mechanism. The inherent ambiguities in interpretation of solvent isotope effects can be significantly decreased if isotope effects arising from isotopically labeled substrates are measured in combination with solvent isotope effects. The application of combined solvent and substrate (mainly deuterium) isotope effects to multiple enzymes is described here to illustrate the range of mechanistic insights that such an approach can provide. PMID:25448013

  9. X-ray photoelectron spectroscopic study of the oxide removal mechanism of GaAs /100/ molecular beam epitaxial substrates in in situ heating

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Lewis, B. F.; Grunthaner, F. J.

    1983-01-01

    A standard cleaning procedure for GaAs (100) molecular beam epitaxial (MBE) substrates is a chemical treatment with a solution of H2SO4/H2O2/H2O, followed by in situ heating prior to MBE growth. X-ray photoelectron spectroscopic (XPS) studies of the surface following the chemical treatment show that the oxidized As is primarily As(+ 5). Upon heating to low temperatures (less than (350 C) the As(+ 5) oxidizes the substrate to form Ga2O3 and elemental As, and the As(+ 5) is reduced to As(+ 3) in the process. At higher temperatures (500 C), the As(+ 3) and elemental As desorb, while the Ga(+ 3) begins desorbing at about 600 C.

  10. Real-time sensing of epithelial cell-cell and cell-substrate interactions by impedance spectroscopy on porous substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mondal, D.; RoyChaudhuri, C., E-mail: chirosreepram@yahoo.com; Pal, D.

    2015-07-28

    Oxidized porous silicon (PS) is a common topographical biocompatible substrate that potentially provides a distinct in vitro environment for better understanding of in vivo behavior. But in the reported studies on oxidized PS, cell-cell and cell-substrate interactions have been detected only by fluorescent labeling. This paper is the first attempt to investigate real-time sensing of these interactions on HaCaT cells by label-free impedance spectroscopy on oxidized PS of two pore diameters (50 and 500 nm). One of the major requirements for successful impedance spectroscopy measurement is to restrict the channeling of electric field lines through the pores. To satisfy this criterion,more » we have designed the pore depths after analyzing the penetration of the medium by using computational fluid dynamics simulation. A distributed electrical model was also developed for estimating the various cellular attributes by considering a pseudorandom distribution of pores. It is observed from the impedance measurements and from the model that the proliferation rate increases for 50 nm pores but decreases for 500 nm pores compared to that for planar substrates. The rate of decrease in cell substrate separation (h) in the initial stage is more than the rate of increase in cell-cell junction resistance (R{sub b}) corresponding to the initial adhesion phase of cells. It is observed that R{sub b} and h are higher for 50 nm pores than those for planar substrates, corresponding to the fact that substrates more conducive toward cell adhesion encourage cell-cell interactions than direct cell-substrate interactions. Thus, the impedance spectroscopy coupled with the proposed theoretical framework for PS substrates can sense and quantify the cellular interactions.« less

  11. Impact of aldosterone antagonists on the substrate for atrial fibrillation: Aldosterone promotes oxidative stress and atrial structural/electrical remodeling

    PubMed Central

    Mayyas, Fadia; Alzoubi, Karem H.; Van Wagoner, David R.

    2014-01-01

    Atrial fibrillation (AF), the most common cardiac arrhythmia, is an electrocardiographic description of a condition with multiple and complex underlying mechanisms. Oxidative stress is an important driver of structural remodeling that creates a substrate for AF. Oxidant radicals may promote increase of atrial oxidative damage, electrical and structural remodeling, and atrial inflammation. AF and other cardiovascular morbidities activate angiotensin (Ang-II)-dependent and independent cascades. A key component of the renin–angiotensin-aldosterone system (RAAS) is the mineralocorticoid aldosterone. Recent studies provide evidence of myocardial aldosterone synthesis. Aldosterone promotes cardiac oxidative stress, inflammation and structural/electrical remodeling via multiple mechanisms. In HF patients, aldosterone production is enhanced. In patients and in experimental HF and AF models, aldosterone receptor antagonists have favorable influences on cardiac remodeling and oxidative stress. Therapeutic approaches that seek to reduce AF burden by modulating the aldosterone system are likely beneficial but underutilized. PMID:23993726

  12. Osteoblast responses to different oxide coatings produced by the sol-gel process on titanium substrates.

    PubMed

    Ochsenbein, Anne; Chai, Feng; Winter, Stefan; Traisnel, Michel; Breme, Jürgen; Hildebrand, Hartmut F

    2008-09-01

    In order to improve the osseointegration of endosseous implants made from titanium, the structure and composition of the surface were modified. Mirror-polished commercially pure (cp) titanium substrates were coated by the sol-gel process with different oxides: TiO(2), SiO(2), Nb(2)O(5) and SiO(2)-TiO(2). The coatings were physically and biologically characterized. Infrared spectroscopy confirmed the absence of organic residues. Ellipsometry determined the thickness of layers to be approximately 100nm. High resolution scanning electron microscopy (SEM) and atomice force microscopy revealed a nanoporous structure in the TiO(2) and Nb(2)O(5) layers, whereas the SiO(2) and SiO(2)-TiO(2) layers appeared almost smooth. The R(a) values, as determined by white-light interferometry, ranged from 20 to 50nm. The surface energy determined by the sessile-drop contact angle method revealed the highest polar component for SiO(2) (30.7mJm(-2)) and the lowest for cp-Ti and 316L stainless steel (6.7mJm(-2)). Cytocompatibility of the oxide layers was investigated with MC3T3-E1 osteoblasts in vitro (proliferation, vitality, morphology and cytochemical/immunolabelling of actin and vinculin). Higher cell proliferation rates were found in SiO(2)-TiO(2) and TiO(2), and lower in Nb(2)O(5) and SiO(2); whereas the vitality rates increased for cp-Ti and Nb(2)O(5). Cytochemical assays showed that all substrates induced a normal cytoskeleton and well-developed focal adhesion contacts. SEM revealed good cell attachment for all coating layers. In conclusion, the sol-gel-derived oxide layers were thin, pure and nanostructured; consequent different osteoblast responses to those coatings are explained by the mutual action and coadjustment of different interrelated surface parameters.

  13. Urate as a Physiological Substrate for Myeloperoxidase

    PubMed Central

    Meotti, Flavia C.; Jameson, Guy N. L.; Turner, Rufus; Harwood, D. Tim; Stockwell, Samantha; Rees, Martin D.; Thomas, Shane R.; Kettle, Anthony J.

    2011-01-01

    Urate and myeloperoxidase (MPO) are associated with adverse outcomes in cardiovascular disease. In this study, we assessed whether urate is a likely physiological substrate for MPO and if the products of their interaction have the potential to exacerbate inflammation. Urate was readily oxidized by MPO and hydrogen peroxide to 5-hydroxyisourate, which decayed to predominantly allantoin. The redox intermediates of MPO were reduced by urate with rate constants of 4.6 × 105 m−1 s−1 for compound I and 1.7 × 104 m−1 s−1 for compound II. Urate competed with chloride for oxidation by MPO and at hyperuricemic levels is expected to be a substantive substrate for the enzyme. Oxidation of urate promoted super-stoichiometric consumption of glutathione, which indicates that it is converted to a free radical intermediate. In combination with superoxide and hydrogen peroxide, MPO oxidized urate to a reactive hydroperoxide. This would form by addition of superoxide to the urate radical. Urate also enhanced MPO-dependent consumption of nitric oxide. In human plasma, stimulated neutrophils produced allantoin in a reaction dependent on the NADPH oxidase, MPO and superoxide. We propose that urate is a physiological substrate for MPO that is oxidized to the urate radical. The reactions of this radical with superoxide and nitric oxide provide a plausible link between urate and MPO in cardiovascular disease. PMID:21266577

  14. Method for plating with metal oxides

    DOEpatents

    Silver, Gary L.; Martin, Frank S.

    1994-08-23

    A method of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate.

  15. Microfabrication of SrRuO3 thin films on various oxide substrates using LaAlO3/BaOx sacrificial bilayers

    NASA Astrophysics Data System (ADS)

    Harada, Takayuki; Tsukazaki, Atsushi

    2018-02-01

    Oxides provide various fascinating physical properties that could find use in future device applications. However, the physical properties of oxides are often affected by formation of oxygen vacancies during device fabrication processes. In this study, to develop a damage-free patterning process for oxides, we focus on a lift-off process using a sacrificial template layer, by which we can pattern oxide thin films without severe chemical treatment or plasma bombardment. As oxides need high thin-film growth temperature, a sacrificial template needs to be made of thermally stable and easily etchable materials. To meet these requirements, we develop a sacrificial template with a carefully designed bilayer structure. Combining a thermally and chemically stable LaAlO3 and a water-soluble BaOx, we fabricated a LaAlO3/BaOx sacrificial bilayer. The patterned LaAlO3/BaOx sacrificial bilayers were prepared on oxide substrates by room-temperature pulsed laser deposition and standard photolithography process. The structure of the sacrificial bilayer can be maintained even in rather tough conditions needed for oxide thin film growth: several hundred degrees Celsius under high oxygen pressure. Indeed, the LaAlO3/BaOx bilayer is easily removable by sonication in water. We applied the lift-off method using the LaAlO3/BaOx sacrificial bilayer to a representative oxide conductor SrRuO3 and fabricated micron-scale Hall-bar devices. The SrRuO3 channels with the narrowest line width of 5 μm exhibit an almost identical transport property to that of the pristine film, evidencing that the developed process is beneficial for patterning oxides. We show that the LaAlO3/BaOx lift-off process is applicable to various oxide substrates: SrTiO3, MgO, and Al2O3. The new versatile patterning process will expand the range of application of oxide thin films in electronic and photonic devices.

  16. Method for plating with metal oxides

    DOEpatents

    Silver, G.L.; Martin, F.S.

    1994-08-23

    A method is disclosed of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate. 1 fig.

  17. Environmentally-assisted technique for transferring devices onto non-conventional substrates

    DOEpatents

    Lee, Chi-Hwan; Kim, Dong Rip; Zheng, Xiaolin

    2016-05-10

    A device fabrication method includes: (1) providing a growth substrate including an oxide layer; (2) forming a metal layer over the oxide layer; (3) forming a stack of device layers over the metal layer; (4) performing fluid-assisted interfacial debonding of the metal layer to separate the stack of device layers and the metal layer from the growth substrate; and (5) affixing the stack of device layers to a target substrate.

  18. Method of making an apparatus for transpiration cooling of substrates such as turbine airfoils

    DOEpatents

    Alvin, Mary Anne; Anderson, Iver; Heidlof, Andy; White, Emma; McMordie, Bruce

    2017-02-28

    A method and apparatus for generating transpiration cooling using an oxidized porous HTA layer metallurgically bonded to a substrate having micro-channel architectures. The method and apparatus generates a porous HTA layer by spreading generally spherical HTA powder particles on a substrate, partially sintering under O.sub.2 vacuum until the porous HTA layer exhibits a porosity between 20% and 50% and a neck size ratio between 0.1 and 0.5, followed by a controlled oxidation generating an oxidation layer of alumina, chromia, or silica at a thickness of about 20 to about 500 nm. In particular embodiments, the oxidized porous HTA layer and the substrate comprise Ni as a majority element. In other embodiments, the oxidized porous HTA layer and the substrate further comprise Al, and in additional embodiments, the oxidized porous HTA layer and the substrate comprise .gamma.-Ni+.gamma.'-Ni.sub.3Al.

  19. Electrical characterization of anodic alumina substrate with via-in-pad structure

    NASA Astrophysics Data System (ADS)

    Kim, Moonjung

    2013-10-01

    An anodic alumina substrate has been developed as a package substrate for dynamic random access memory devices. Unlike the conventional package substrates commonly made by laminating an epoxy-based core and cladding with copper, this substrate is fabricated using aluminum anodization technology. The anodization process produces a thick aluminum oxide layer on the aluminum substrate to be used as a dielectric layer. Placing copper patterns on the anodic aluminum oxide layer forms a new substrate structure that consists of a layered structure of aluminum, anodic aluminum oxide, and copper. Using selective anodization in the fabrication process, a via structure connecting the top copper layer and bottom aluminum layer is demonstrated. Additionally, by putting vias directly in the bond and ball pads in the substrate design, the via-in-pad structure is applied in this work. These two-layer metal structures and via-in-pad arrangements make routing easier and thus provide more design flexibility. Additionally, this new package substrate has improved the power distribution network impedance given the characteristics of these structures.

  20. Fabrication of p-type porous silicon nanowire with oxidized silicon substrate through one-step MACE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shaoyuan; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093; Ma, Wenhui, E-mail: mwhsilicon@163.com

    2014-05-01

    In this paper, the simple pre-oxidization process is firstly used to treat the starting silicon wafer, and then MPSiNWs are successfully fabricated from the moderately doped wafer by one-step MACE technology in HF/AgNO{sub 3} system. The PL spectrum of MPSiNWs obtained from the oxidized silicon wafers show a large blue-shift, which can be attributed to the deep Q. C. effect induced by numerous mesoporous structures. The effects of HF and AgNO{sub 3} concentration on formation of SiNWs were carefully investigated. The results indicate that the higher HF concentration is favorable to the growth of SiNWs, and the density of SiNWsmore » is significantly reduced when Ag{sup +} ions concentrations are too high. The deposition behaviors of Ag{sup +} ions on oxidized and unoxidized silicon surface were studied. According to the experimental results, a model was proposed to explain the formation mechanism of porous SiNWs by etching the oxidized starting silicon. - Graphical abstract: Schematic cross-sectional views of PSiNWs array formation by etching oxidized silicon wafer in HF/AgNO{sub 3} solution. (A) At the starting point; (B) during the etching process; and (C) after Ag dendrites remove. - Highlights: • Prior to etching, a simple pre-oxidation is firstly used to treat silicon substrate. • The medially doped p-type MPSiNWs are prepared by one-step MACE. • Deposition behaviors of Ag{sup +} ions on oxidized and unoxidized silicon are studied. • A model is finally proposed to explain the formation mechanism of PSiNWs.« less

  1. Effects of substrate voltage on noise characteristics and hole lifetime in SOI metal-oxide-semiconductor field-effect transistor photon detector.

    PubMed

    Putranto, Dedy Septono Catur; Priambodo, Purnomo Sidi; Hartanto, Djoko; Du, Wei; Satoh, Hiroaki; Ono, Atsushi; Inokawa, Hiroshi

    2014-09-08

    Low-frequency noise and hole lifetime in silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect transistors (MOSFETs) are analyzed, considering their use in photon detection based on single-hole counting. The noise becomes minimum at around the transition point between front- and back-channel operations when the substrate voltage is varied, and increases largely on both negative and positive sides of the substrate voltage showing peculiar Lorentzian (generation-recombination) noise spectra. Hole lifetime is evaluated by the analysis of drain current histogram at different substrate voltages. It is found that the peaks in the histogram corresponding to the larger number of stored holes become higher as the substrate bias becomes larger. This can be attributed to the prolonged lifetime caused by the higher electric field inside the body of SOI MOSFET. It can be concluded that, once the inversion channel is induced for detection of the photo-generated holes, the small absolute substrate bias is favorable for short lifetime and low noise, leading to high-speed operation.

  2. Hyperthyroidism stimulates mitochondrial proton leak and ATP turnover in rat hepatocytes but does not change the overall kinetics of substrate oxidation reactions.

    PubMed

    Harper, M E; Brand, M D

    1994-08-01

    Thyroid hormones have well-known effects on oxidative phosphorylation, but there is little quantitative information on their important sites of action. We have used top-down elasticity analysis, an extension of metabolic control analysis, to identify the sites of action of thyroid hormones on oxidative phosphorylation in rat hepatocytes. We divided the oxidative phosphorylation system into three blocks of reactions: the substrate oxidation subsystem, the phosphorylating subsystem, and the mitochondrial proton leak subsystem and have identified those blocks of reactions whose kinetics are significantly changed by hyperthyroidism. Our results show significant effects on the kinetics of the proton leak and the phosphorylating subsystems. Quantitative analyses revealed that 43% of the increase in resting respiration rate in hyperthyroid hepatocytes compared with euthyroid hepatocytes was due to differences in the proton leak and 59% was due to differences in the activity of the phosphorylating subsystem. There were no significant effects on the substrate oxidation subsystem. Changes in nonmitochondrial oxygen consumption accounted for -2% of the change in respiration rate. Top-down control analysis revealed that the distribution of control over the rates of mitochondrial oxygen consumption, ATP synthesis and consumption, and proton leak and over mitochondrial membrane potential (delta psi m) was similar in hepatocytes from hyperthyroid and littermate-paired euthyroid controls. The results of this study include the first complete top-down elasticity and control analyses of oxidative phosphorylation in hepatocytes from hyperthyroid rats.

  3. Anti-reflective coating with a conductive indium tin oxide layer on flexible glass substrates.

    PubMed

    Sung, Yilin; Malay, Robert E; Wen, Xin; Bezama, Christian N; Soman, Varun V; Huang, Ming-Huang; Garner, Sean M; Poliks, Mark D; Klotzkin, David

    2018-03-20

    Flexible glass has many applications including photovoltaics, organic light-emitting device (OLED) lighting, and displays. Its ability to be processed in a roll-to-roll facility enables high-throughput continuous manufacturing compared to conventional glass processing. For photovoltaic, OLED lighting, and display applications, transparent conductors are required with minimal optical reflection losses. Here, we demonstrate an anti-reflective coating (ARC) that incorporates a useful transparent conductor that is realizable on flexible substrates. This reduces the average reflectivity to less than 6% over the visible band from normal incidence to incident angles up to 60°. This ARC is designed by the average uniform algorithm method. The coating materials consist of a multilayer stack of an electrically functional conductive indium tin oxide with conductivity 2.95×10 5   Siemens/m (31 Ω/□), and AlSiO 2 . The coatings showed modest changes in reflectivity and no delamination after 10,000 bending cycles. This demonstrates that effective conductive layers can be integrated into ARCs and can be realized on flexible glass substrates with proper design and process control.

  4. Investigation for surface resistance of yttrium-barium-copper-oxide thin films on various substrates for microwave applications

    NASA Astrophysics Data System (ADS)

    Yao, Hongjun

    High temperature superconducting (HTS) materials such as YBCO (Yttrium-Barium-Copper-Oxide) are very attractive in microwave applications because of their extremely low surface resistance. In the proposed all-HTS tunable filter, a layer of HTS thin film on a very thin substrate (100 mum) is needed to act as the toractor that can be rotated to tune the frequency. In order to provide more substrate candidates that meet both electrical and mechanical requirements for this special application, surface resistance of YBCO thin films on various substrates was measured using microstrip ring resonator method. For alumina polycrystalline substrate, a layer of YSZ (Yttrium stabilized Zirconia) was deposited using IBAD (ion beam assisted deposition) method prior to YBCO deposition. The surface resistance of the YBCO thin film on alumina was found to be 22 mO due to high-angle grain boundary problem caused by the mixed in-plane orientations and large FWHM (full width at half maximum) of the thin film. For YBCO thin films on a YSZ single crystal substrate, the surface resistance showed even higher value of 30 mO because of the mixed in-plane orientation problem. However, by annealing the substrate in 200 Torr oxygen at 730°C prior to deposition, the in-plane orientation of YBCO thin films can be greatly improved. Therefore, the surface resistance decreased to 1.4 mO, which is still more than an order higher than the reported best value. The YBCO thin films grown on LaAlO3 single crystal substrate showed perfect in-plane orientation with FWHM less 1°. The surface resistance was as low as 0.032 mO. A tunable spiral resonator made of YBCO thin film on LaAlO3 single crystal substrate demonstrated that the resonant frequency can be tuned in a rang as large as 500 MHz by changing the gap between toractor and substrate. The Q-factor was more than 12,000, which ensured the extraordinarily high sensitivity for the proposed all-HTS tunable filter.

  5. Control of substrate oxidation in MOD cerawwwmic coating on low-activation ferritic steel with reduced-pressure atmosphere

    NASA Astrophysics Data System (ADS)

    Tanaka, Teruya; Muroga, Takeo

    2014-12-01

    An Er2O3 ceramic coating fabricated using the metal-organic decomposition (MOD) method on a Cr2O3-covered low-activation ferritic steel JLF-1 substrate was examined to improve hydrogen permeation barrier performance of the coating. The Cr2O3 layer was obtained before coating by heat treating the substrate at 700 °C under reduced pressures of <5 × 10-3 Pa and 5 Pa. The Cr2O3 layer was significantly stable even with heat treatment at 700 °C in air. This layer prevented further production of Fe2O3, which has been considered to degrade coating performance. An MOD Er2O3 coating with a smooth surface was successfully obtained on a Cr2O3-covered JLF-1 substrate by dip coating followed by drying and baking. Preprocessing to obtain a Cr2O3 layer would provide flexibility in the coating process for blanket components and ducts. Moreover, the Cr2O3 layer suppressed hydrogen permeation through the JLF-1 substrate. While further optimization of the coating fabrication process is required, it would be possible to suppress hydrogen permeation significantly by multilayers of Cr2O3 and MOD oxide ceramic.

  6. Effect of substrate availability on nitrous oxide production by deammonification processes under anoxic conditions

    PubMed Central

    Schneider, Yvonne; Beier, Maike; Rosenwinkel, Karl‐Heinz

    2012-01-01

    Summary Due to its high global warming potential, nitrous oxide (N2O) emissions from wastewater treatment processes have recently received a high degree of attention. Nevertheless, there is still a lack of information regarding the microbiological processes leading to N2O production. In this study, two lab‐scale sequencing batch reactors were operated with deammonification biomass to investigate the role of denitrification and the influence of substrate availability regarding N2O formation during the anoxic phase of deammonification. Three different operational phases were established: within the first phase conversion by anammox was favoured and after a transition phase, denitrification activity was promoted. Low nitrous oxide production was observed during stable operation aiming for anammox conversion. Pulsed inflow of the wastewater containing ammonium (NH4+) and nitrite (NO2‐) led to increased N2O production rates. Within the period of denitrification as dominating nitrogen conversion process, the nitrous oxide concentration level was higher during continuous inflow conditions, but the reaction to pulsed inflow was less pronounced. The results indicated that denitrification was responsible for N2O formation from the deammonification biomass. Operational settings to achieve suppression of denitrification processes to a large extend were deducted from the results of the experiments. PMID:22296600

  7. Oxygen consumption, substrate oxidation, and blood pressure following sprint interval exercise.

    PubMed

    Chan, Huan Hao; Burns, Stephen Francis

    2013-02-01

    This study examined the acute effect of sprint interval exercise (SIE) on postexercise oxygen consumption, substrate oxidation, and blood pressure. The participants were 10 healthy males aged 21-27 years. Following overnight fasts, each participant undertook 2 trials in a random balanced order: (i) four 30-s bouts of SIE on a cycle ergometer, separated by 4.5 min of recovery, and (ii) resting (control) in the laboratory for an equivalent period. Time-matched measurements of oxygen consumption, respiratory exchange ratio, and blood pressure were made for 2 h into recovery. Total 2-h oxygen consumption was significantly higher in the SIE than in the control trial (mean ± SD: 31.9 ± 6.7 L vs Exercise: 45.5 ± 6.8 L, p < 0.001). The rate of fat oxidation was 75% higher 2 h after the exercise trial compared with the control trial ( 0.08 ± 0.05 g·min(-1) vs Exercise: 0.14 ± 0.06 g·min(-1), p = 0.035). Systolic blood pressure ( 117 ± 8 mm Hg vs Exercise: 109 ± 8 mm Hg, p < 0.05) and diastolic blood pressure ( 84 ± 6 mm Hg vs Exercise: 77 ± 5 mm Hg, p < 0.05) were significantly lower 2 h after the exercise trial compared with the control trial. These data showed a 42% increase in oxygen consumption (∼13.6 L) over 2 h after a single bout of SIE. Moreover, the rate of fat oxidation increased by 75%, whereas blood pressure was reduced by ∼8 mm Hg 2 h after SIE. Whether these acute benefits of SIE can translate into long-term changes in body composition and an improvement in vascular health needs investigation.

  8. Aluminium or copper substrate panel for selective absorption of solar energy

    NASA Technical Reports Server (NTRS)

    Roberts, M. L.; Sharpe, M. H.; Krupnick, A. C. (Inventor)

    1979-01-01

    A method for making panels which selectively absorb solar energy is disclosed. The panels are comprised of an aluminum substrate, a layer of zinc thereon, a layer of nickel over the zinc layer and an outer layer of solar energy absorbing nickel oxide or a copper substrate with a layer of nickel thereon and a layer of solar energy absorbing nickel oxide distal from the copper substrate.

  9. Structural, electronic and chemical properties of metal/oxide and oxide/oxide interfaces and thin film structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lad, Robert J.

    1999-12-14

    This project focused on three different aspects of oxide thin film systems: (1) Model metal/oxide and oxide/oxide interface studies were carried out by depositing ultra-thin metal (Al, K, Mg) and oxide (MgO, AlO{sub x}) films on TiO{sub 2}, NiO and {alpha}-Al{sub 2}O{sub 3} single crystal oxide substrates. (2) Electron cyclotron resonance (ECR) oxygen plasma deposition was used to fabricate AlO{sub 3} and ZrO{sub 2} films on sapphire substrates, and film growth mechanisms and structural characteristics were investigated. (3) The friction and wear characteristics of ZrO{sub 2} films on sapphire substrates in unlubricated sliding contact were studied and correlated with filmmore » microstructure. In these studies, thin film and interfacial regions were characterized using diffraction (RHEED, LEED, XRD), electron spectroscopies (XPS, UPS, AES), microscopy (AFM) and tribology instruments (pin-on-disk, friction microprobe, and scratch tester). By precise control of thin film microstructure, an increased understanding of the structural and chemical stability of interface regions and tribological performance of ultra-thin oxide films was achieved in these important ceramic systems.« less

  10. Redox-dependent substrate-cofactor interactions in the Michaelis-complex of a flavin-dependent oxidoreductase

    NASA Astrophysics Data System (ADS)

    Werther, Tobias; Wahlefeld, Stefan; Salewski, Johannes; Kuhlmann, Uwe; Zebger, Ingo; Hildebrandt, Peter; Dobbek, Holger

    2017-07-01

    How an enzyme activates its substrate for turnover is fundamental for catalysis but incompletely understood on a structural level. With redox enzymes one typically analyses structures of enzyme-substrate complexes in the unreactive oxidation state of the cofactor, assuming that the interaction between enzyme and substrate is independent of the cofactors oxidation state. Here, we investigate the Michaelis complex of the flavoenzyme xenobiotic reductase A with the reactive reduced cofactor bound to its substrates by X-ray crystallography and resonance Raman spectroscopy and compare it to the non-reactive oxidized Michaelis complex mimics. We find that substrates bind in different orientations to the oxidized and reduced flavin, in both cases flattening its structure. But only authentic Michaelis complexes display an unexpected rich vibrational band pattern uncovering a strong donor-acceptor complex between reduced flavin and substrate. This interaction likely activates the catalytic ground state of the reduced flavin, accelerating the reaction within a compressed cofactor-substrate complex.

  11. Redox-dependent substrate-cofactor interactions in the Michaelis-complex of a flavin-dependent oxidoreductase

    PubMed Central

    Werther, Tobias; Wahlefeld, Stefan; Salewski, Johannes; Kuhlmann, Uwe; Zebger, Ingo; Hildebrandt, Peter; Dobbek, Holger

    2017-01-01

    How an enzyme activates its substrate for turnover is fundamental for catalysis but incompletely understood on a structural level. With redox enzymes one typically analyses structures of enzyme–substrate complexes in the unreactive oxidation state of the cofactor, assuming that the interaction between enzyme and substrate is independent of the cofactors oxidation state. Here, we investigate the Michaelis complex of the flavoenzyme xenobiotic reductase A with the reactive reduced cofactor bound to its substrates by X-ray crystallography and resonance Raman spectroscopy and compare it to the non-reactive oxidized Michaelis complex mimics. We find that substrates bind in different orientations to the oxidized and reduced flavin, in both cases flattening its structure. But only authentic Michaelis complexes display an unexpected rich vibrational band pattern uncovering a strong donor–acceptor complex between reduced flavin and substrate. This interaction likely activates the catalytic ground state of the reduced flavin, accelerating the reaction within a compressed cofactor–substrate complex.

  12. Environmentally-assisted technique for transferring devices onto non-conventional substrates

    DOEpatents

    Lee, Chi-Hwan; Kim, Dong Rip; Zheng, Xiaolin

    2014-08-26

    A device fabrication method includes: (1) providing a growth substrate including a base and an oxide layer disposed over the base; (2) forming a metal layer over the oxide layer; (3) forming a stack of device layers over the metal layer; (4) performing interfacial debonding of the metal layer to separate the stack of device layers and the metal layer from the growth substrate; and (5) affixing the stack of device layers to a target substrate.

  13. Effect of plasma power on reduction of printable graphene oxide thin films on flexible substrates

    NASA Astrophysics Data System (ADS)

    Banerjee, Indrani; Mahapatra, Santosh K.; Pal, Chandana; Sharma, Ashwani K.; Ray, Asim K.

    2018-05-01

    Room temperature hydrogen plasma treatment on solution processed 300 nm graphene oxide (GO) films on flexible indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrates has been performed by varying the plasma power between 20 W and 60 W at a constant exposure time of 30 min with a view to examining the effect of plasma power on reduction of GO. X-ray powder diffraction (XRD) and Raman spectroscopic studies show that high energy hydrogen species generated in the plasma assist fast exfoliation of the oxygenated functional groups present in the GO samples. Significant decrease in the optical band gap is observed from 4.1 eV for untreated samples to 0.5 eV for 60 W plasma treated samples. The conductivity of the films treated with 60 W plasma power is estimated to be six orders of magnitude greater than untreated GO films and this enhancement of conductivity on plasma reduction has been interpreted in terms of UV-visible absorption spectra and density functional based first principle computational calculations. Plasma reduction of GO/ITO/PET structures can be used for efficiently tuning the electrical and optical properties of reduced graphene oxide (rGO) for flexible electronics applications.

  14. Transparent resistive switching memory using aluminum oxide on a flexible substrate

    NASA Astrophysics Data System (ADS)

    Yeom, Seung-Won; Shin, Sang-Chul; Kim, Tan-Young; Ha, Hyeon Jun; Lee, Yun-Hi; Shim, Jae Won; Ju, Byeong-Kwon

    2016-02-01

    Resistive switching memory (ReRAM) has attracted much attention in recent times owing to its fast switching, simple structure, and non-volatility. Flexible and transparent electronic devices have also attracted considerable attention. We therefore fabricated an Al2O3-based ReRAM with transparent indium-zinc-oxide (IZO) electrodes on a flexible substrate. The device transmittance was found to be higher than 80% in the visible region (400-800 nm). Bended states (radius = 10 mm) of the device also did not affect the memory performance because of the flexibility of the two transparent IZO electrodes and the thin Al2O3 layer. The conduction mechanism of the resistive switching of our device was explained by ohmic conduction and a Poole-Frenkel emission model. The conduction mechanism was proved by oxygen vacancies in the Al2O3 layer, as analyzed by x-ray photoelectron spectroscopy analysis. These results encourage the application of ReRAM in flexible and transparent electronic devices.

  15. Aligned carbon nanotube, graphene and graphite oxide thin films via substrate-directed rapid interfacial deposition

    NASA Astrophysics Data System (ADS)

    D'Arcy, Julio M.; Tran, Henry D.; Stieg, Adam Z.; Gimzewski, James K.; Kaner, Richard B.

    2012-05-01

    A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated.A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated. Electronic supplementary information (ESI) available: Droplet coalescence, catenoid formation, mechanism of film growth, scanning electron micrographs showing carbon nanotube alignment, flexible transparent films of SWCNTs, AFM images of a chemically converted graphene film, and SEM images of SWCNT free-standing thin films. See DOI: 10.1039/c2nr00010e

  16. Micro-nano zinc oxide film fabricated by biomimetic mineralization: Designed architectures for SERS substrates

    NASA Astrophysics Data System (ADS)

    Lu, Fei; Guo, Yue; Wang, Yunxin; Song, Wei; Zhao, Bing

    2018-05-01

    In this study, we have investigated the effect of the surface morphologies of the zinc oxide (ZnO) substrates on surface enhanced Raman spectroscopy (SERS). During synthetic process, the self-assembly monolayers (SAMs) with different terminal groups are used as templates to induce the nucleation and growth of Zn(NO3)2·6H2O crystals, then different morphologies micro-nano ZnO powders are obtained by annealing Zn(NO3)2·6H2O crystals at 450 °C. The products obtained at different conditions are characterized by means of X-ray diffraction (XRD) patterns, scanning electron microscopy (SEM) and Raman spectra. The as-prepared ZnO micro-sized particles have been used the efficient Surface enhanced Raman scattering (SERS) substrates, and the SERS signals of 4-mercaptopyridine (Mpy) probe molecules are much influenced by the morphologies of the ZnO structures. Results indicated that the more (0001) facets appear in the of ZnO morphology, the greater degree of charge-transfer (PCT) for the SERS enhancement on the surface of semiconductors is achieved. The chemical interaction between ZnO structures and Mpy molecules plays a very important role in the SERS enhancement.

  17. Fully transparent flexible tin-doped zinc oxide thin film transistors fabricated on plastic substrate.

    PubMed

    Han, Dedong; Zhang, Yi; Cong, Yingying; Yu, Wen; Zhang, Xing; Wang, Yi

    2016-12-12

    In this work, we have successfully fabricated bottom gate fully transparent tin-doped zinc oxide thin film transistors (TZO TFTs) fabricated on flexible plastic substrate at low temperature by RF magnetron sputtering. The effect of O 2 /Ar gas flow ratio during channel deposition on the electrical properties of TZO TFTs was investigated, and we found that the O 2 /Ar gas flow ratio have a great influence on the electrical properties. TZO TFTs on flexible substrate has very nice electrical characteristics with a low off-state current (I off ) of 3 pA, a high on/off current ratio of 2 × 10 7 , a high saturation mobility (μ sat ) of 66.7 cm 2 /V•s, a steep subthreshold slope (SS) of 333 mV/decade and a threshold voltage (V th ) of 1.2 V. Root-Mean-Square (RMS) roughness of TZO thin film is about 0.52 nm. The transmittance of TZO thin film is about 98%. These results highlight that the excellent device performance can be realized in TZO film and TZO TFT can be a promising candidate for flexible displays.

  18. Fully transparent flexible tin-doped zinc oxide thin film transistors fabricated on plastic substrate

    NASA Astrophysics Data System (ADS)

    Han, Dedong; Zhang, Yi; Cong, Yingying; Yu, Wen; Zhang, Xing; Wang, Yi

    2016-12-01

    In this work, we have successfully fabricated bottom gate fully transparent tin-doped zinc oxide thin film transistors (TZO TFTs) fabricated on flexible plastic substrate at low temperature by RF magnetron sputtering. The effect of O2/Ar gas flow ratio during channel deposition on the electrical properties of TZO TFTs was investigated, and we found that the O2/Ar gas flow ratio have a great influence on the electrical properties. TZO TFTs on flexible substrate has very nice electrical characteristics with a low off-state current (Ioff) of 3 pA, a high on/off current ratio of 2 × 107, a high saturation mobility (μsat) of 66.7 cm2/V•s, a steep subthreshold slope (SS) of 333 mV/decade and a threshold voltage (Vth) of 1.2 V. Root-Mean-Square (RMS) roughness of TZO thin film is about 0.52 nm. The transmittance of TZO thin film is about 98%. These results highlight that the excellent device performance can be realized in TZO film and TZO TFT can be a promising candidate for flexible displays.

  19. Effect of substrate availability on nitrous oxide production by deammonification processes under anoxic conditions.

    PubMed

    Schneider, Yvonne; Beier, Maike; Rosenwinkel, Karl-Heinz

    2012-05-01

    Due to its high global warming potential, nitrous oxide (N(2)O) emissions from wastewater treatment processes have recently received a high degree of attention. Nevertheless, there is still a lack of information regarding the microbiological processes leading to N(2)O production. In this study, two lab-scale sequencing batch reactors were operated with deammonification biomass to investigate the role of denitrification and the influence of substrate availability regarding N(2)O formation during the anoxic phase of deammonification. Three different operational phases were established: within the first phase conversion by anammox was favoured and after a transition phase, denitrification activity was promoted. Low nitrous oxide production was observed during stable operation aiming for anammox conversion. Pulsed inflow of the wastewater containing ammonium (NH(4)(+)) and nitrite (NO(2)(-)) led to increased N(2)O production rates. Within the period of denitrification as dominating nitrogen conversion process, the nitrous oxide concentration level was higher during continuous inflow conditions, but the reaction to pulsed inflow was less pronounced. The results indicated that denitrification was responsible for N(2)O formation from the deammonification biomass. Operational settings to achieve suppression of denitrification processes to a large extend were deducted from the results of the experiments. © 2012 The Authors. Microbial Biotechnology © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  20. Structural and Kinetic Properties of the Aldehyde Dehydrogenase NahF, a Broad Substrate Specificity Enzyme for Aldehyde Oxidation.

    PubMed

    Coitinho, Juliana B; Pereira, Mozart S; Costa, Débora M A; Guimarães, Samuel L; Araújo, Simara S; Hengge, Alvan C; Brandão, Tiago A S; Nagem, Ronaldo A P

    2016-09-27

    The salicylaldehyde dehydrogenase (NahF) catalyzes the oxidation of salicylaldehyde to salicylate using NAD(+) as a cofactor, the last reaction of the upper degradation pathway of naphthalene in Pseudomonas putida G7. The naphthalene is an abundant and toxic compound in oil and has been used as a model for bioremediation studies. The steady-state kinetic parameters for oxidation of aliphatic or aromatic aldehydes catalyzed by 6xHis-NahF are presented. The 6xHis-NahF catalyzes the oxidation of aromatic aldehydes with large kcat/Km values close to 10(6) M(-1) s(-1). The active site of NahF is highly hydrophobic, and the enzyme shows higher specificity for less polar substrates than for polar substrates, e.g., acetaldehyde. The enzyme shows α/β folding with three well-defined domains: the oligomerization domain, which is responsible for the interlacement between the two monomers; the Rossmann-like fold domain, essential for nucleotide binding; and the catalytic domain. A salicylaldehyde molecule was observed in a deep pocket in the crystal structure of NahF where the catalytic C284 and E250 are present. Moreover, the residues G150, R157, W96, F99, F274, F279, and Y446 were thought to be important for catalysis and specificity for aromatic aldehydes. Understanding the molecular features responsible for NahF activity allows for comparisons with other aldehyde dehydrogenases and, together with structural information, provides the information needed for future mutational studies aimed to enhance its stability and specificity and further its use in biotechnological processes.

  1. Low-Temperature Oxidation-Free Selective Laser Sintering of Cu Nanoparticle Paste on a Polymer Substrate for the Flexible Touch Panel Applications.

    PubMed

    Kwon, Jinhyeong; Cho, Hyunmin; Eom, Hyeonjin; Lee, Habeom; Suh, Young Duk; Moon, Hyunjin; Shin, Jaeho; Hong, Sukjoon; Ko, Seung Hwan

    2016-05-11

    Copper nanomaterials suffer from severe oxidation problem despite the huge cost effectiveness. The effect of two different processes for conventional tube furnace heating and selective laser sintering on copper nanoparticle paste is compared in the aspects of chemical, electrical and surface morphology. The thermal behavior of the copper thin films by furnace and laser is compared by SEM, XRD, FT-IR, and XPS analysis. The selective laser sintering process ensures low annealing temperature, fast processing speed with remarkable oxidation suppression even in air environment while conventional tube furnace heating experiences moderate oxidation even in Ar environment. Moreover, the laser-sintered copper nanoparticle thin film shows good electrical property and reduced oxidation than conventional thermal heating process. Consequently, the proposed selective laser sintering process can be compatible with plastic substrate for copper based flexible electronics applications.

  2. Highly efficient aerobic oxidation of alcohols by using less-hindered nitroxyl-radical/copper catalysis: optimum catalyst combinations and their substrate scope.

    PubMed

    Sasano, Yusuke; Kogure, Naoki; Nishiyama, Tomohiro; Nagasawa, Shota; Iwabuchi, Yoshiharu

    2015-04-01

    The oxidation of alcohols into their corresponding carbonyl compounds is one of the most fundamental transformations in organic chemistry. In our recent report, 2-azaadamantane N-oxyl (AZADO)/copper catalysis promoted the highly chemoselective aerobic oxidation of unprotected amino alcohols into amino carbonyl compounds. Herein, we investigated the extension of the promising AZADO/copper-catalyzed aerobic oxidation of alcohols to other types of alcohol. During close optimization of the reaction conditions by using various alcohols, we found that the optimum combination of nitroxyl radical, copper salt, and solution concentration was dependent on the type of substrate. Various alcohols, including highly hindered and heteroatom-rich ones, were efficiently oxidized into their corresponding carbonyl compounds under mild conditions with lower amounts of the catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Biaxially textured composite substrates

    DOEpatents

    Groves, James R.; Foltyn, Stephen R.; Arendt, Paul N.

    2005-04-26

    An article including a substrate, a layer of a metal phosphate material such as an aluminum phosphate material upon the surface of the substrate, and a layer of an oriented cubic oxide material having a rock-salt-like structure upon the metal phosphate material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon a layer of a buffer material such as a SrTi.sub.x Ru.sub.1-x O.sub.3 layer.

  4. Bio-inspired in situ growth of monolayer silver nanoparticles on graphene oxide paper as multifunctional substrate

    NASA Astrophysics Data System (ADS)

    Li, Shi-Kuo; Yan, You-Xian; Wang, Jin-Long; Yu, Shu-Hong

    2013-11-01

    In this study, we report a facile bio-inspired method for large-scale preparation of highly dispersed Ag nanoparticles (NPs) on the surface of flexible reduced graphene oxide (rGO) paper with using dopamine (DA) both as a reductant and a surface modifier. Through the self-polymerization of dopamine, free-standing GO paper can be simultaneously reduced and modified with following in situ growth of monolayer Ag NPs on such a substrate. The spherical Ag NPs with an average diameter of 80 nm have a narrow size distribution and tunable cover density. Such a flexible rGO/Ag hybrid paper presents enhanced antibacterial activity against E. coli and a high active and sensitive SERS response toward Rhodamine 6G (R6G) molecules. The detection signals can be obtained while the R6G concentration is as low as to 10-8 M. This work provides a simple strategy for large-scale fabrication of monolayer Ag NPs on flexible rGO paper as a portable antibacterial substrate and a potential SERS substrate for molecular detection applications.In this study, we report a facile bio-inspired method for large-scale preparation of highly dispersed Ag nanoparticles (NPs) on the surface of flexible reduced graphene oxide (rGO) paper with using dopamine (DA) both as a reductant and a surface modifier. Through the self-polymerization of dopamine, free-standing GO paper can be simultaneously reduced and modified with following in situ growth of monolayer Ag NPs on such a substrate. The spherical Ag NPs with an average diameter of 80 nm have a narrow size distribution and tunable cover density. Such a flexible rGO/Ag hybrid paper presents enhanced antibacterial activity against E. coli and a high active and sensitive SERS response toward Rhodamine 6G (R6G) molecules. The detection signals can be obtained while the R6G concentration is as low as to 10-8 M. This work provides a simple strategy for large-scale fabrication of monolayer Ag NPs on flexible rGO paper as a portable antibacterial substrate and a

  5. Structural transition of secondary phase oxide nanorods in epitaxial YBa2Cu3O7-δ films on vicinal substrates

    NASA Astrophysics Data System (ADS)

    Shi, Jack J.; Wu, Judy Z.

    2012-12-01

    A theoretical study of a structural transition of secondary phase oxide nanorods in epitaxial YBa2Cu3O7-δ films on vicinal SrTiO3 substrates is presented. Two possible types of film/substrate interface are considered, with one assuming complete coherence, while the other is defective as manifested by the presence of antiphase grain boundaries. Only in the former case does the increase of the vicinal angle of the substrate lead to a substantial change of the strain field in the film, resulting in a transition of the nanorod orientation from the normal to the in-plane direction of the film. The calculated threshold vicinal angle for the onset of the transition and lattice deformation of the YBa2Cu3O7-δ film due to the inclusion of the nanorods is in very good agreement with experimental observations. This result sheds lights on the understanding of the role of the film/substrate lattice mismatch in controlling self-assembly of dopant nanostructures in matrix films.

  6. Highly sensitive, reproducible and stable SERS substrate based on reduced graphene oxide/silver nanoparticles coated weighing paper

    NASA Astrophysics Data System (ADS)

    Xiao, Guina; Li, Yunxiang; Shi, Wangzhou; Shen, Leo; Chen, Qi; Huang, Lei

    2017-05-01

    Paper-based surface-enhanced Raman scattering (SERS) substrates receive a great deal of attention due to low cost and high flexibility. Herein, we developed an efficient SERS substrate by gravure printing of sulfonated reduced graphene-oxide (S-RGO) thin film and inkjet printing of silver nanoparticles (AgNPs) on weighing paper successively. Malachite green (MG) and rhodamine 6G (R6G) were chosen as probe molecules to evaluate the enhanced performance of the fabricated SERS-active substrates. It was found that the S-RGO/AgNPs composite structure possessed higher enhancement ability than the pure AgNPs. The Raman enhancement factor of S-RGO/AgNPs was calculated to be as large as 109. The minimum detection limit for MG and R6G was down to 10-7 M with good linear responses (R2 = 0.9996, 0.9983) range from 10-4 M to 10-7 M. In addition, the S-RGO/AgNPs exhibited good uniformity with a relative standard deviation (RSD) of 7.90% measured by 572 points, excellent reproducibility with RSD smaller than 3.36%, and long-term stability with RSD less than 7.19%.

  7. Investigation of structural and electrical properties on substrate material for high frequency metal-oxide-semiconductor (MOS) devices

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Yang, Sung-Hyun; Janardhan Reddy, K.; JagadeeshChandra, S. V.

    2017-04-01

    Hafnium oxide (HfO2) thin films were grown on cleaned P-type <1 0 0> Ge and Si substrates by using atomic layer deposition technique (ALD) with thickness of 8 nm. The composition analysis of as-deposited and annealed HfO2 films was characterized by XPS, further electrical measurements; we fabricated the metal-oxide-semiconductor (MOS) devices with Pt electrode. Post deposition annealing in O2 ambient at 500 °C for 30 min was carried out on both Ge and Si devices. Capacitance-voltage (C-V) and conductance-voltage (G-V) curves measured at 1 MHz. The Ge MOS devices showed improved interfacial and electrical properties, high dielectric constant (~19), smaller EOT value (0.7 nm), and smaller D it value as Si MOS devices. The C-V curves shown significantly high accumulation capacitance values from Ge devices, relatively when compare with the Si MOS devices before and after annealing. It could be due to the presence of very thin interfacial layer at HfO2/Ge stacks than HfO2/Si stacks conformed by the HRTEM images. Besides, from current-voltage (I-V) curves of the Ge devices exhibited similar leakage current as Si devices. Therefore, Ge might be a reliable substrate material for structural, electrical and high frequency applications.

  8. Mogul-Patterned Elastomeric Substrate for Stretchable Electronics.

    PubMed

    Lee, Han-Byeol; Bae, Chan-Wool; Duy, Le Thai; Sohn, Il-Yung; Kim, Do-Il; Song, You-Joon; Kim, Youn-Jea; Lee, Nae-Eung

    2016-04-01

    A mogul-patterned stretchable substrate with multidirectional stretchability and minimal fracture of layers under high stretching is fabricated by double photolithography and soft lithography. Au layers and a reduced graphene oxide chemiresistor on a mogul-patterned poly(dimethylsiloxane) substrate are stable and durable under various stretching conditions. The newly designed mogul-patterned stretchable substrate shows great promise for stretchable electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Metabolism of Nitrogen Oxides in Ammonia-Oxidizing Bacteria

    NASA Astrophysics Data System (ADS)

    Kozlowski, J.; Stein, L. Y.

    2014-12-01

    Ammonia-oxidizing bacteria (AOB) are key microorganisms in the transformation of nitrogen intermediates in most all environments. Until recently there was very little work done to elucidate the physiology of ammonia-oxidizing bacteria cultivated from variable trophic state environments. With a greater variety of ammonia-oxidizers now in pure culture the importance of comparative physiological and genomic analysis is crucial. Nearly all known physiology of ammonia-oxidizing bacteria lies within the Nitrosomonas genus with Nitrosomonas europaea strain ATCC 19718 as the model. To more broadly characterize and understand the nature of obligate ammonia chemolithotrophy and the contribution of AOB to production of nitrogen oxides, Nitrosomonas spp. and Nitrosospira spp. isolated from variable trophic states and with sequenced genomes, were utilized. Instantaneous ammonia- and hydroxylamine-oxidation kinetics as a function of oxygen and substrate concentration were measured using an oxygen micro-sensor. The pathway intermediates nitric oxide and nitrous oxide were measured in real time using substrate-specific micro-sensors to elucidate whether production of these molecules is stoichiometric with rates of substrate oxidation. Genomic inventory was compared among the strains to identify specific pathways and modules to explain physiological differences in kinetic rates and production of N-oxide intermediates as a condition of their adaptation to different ammonium concentrations. This work provides knowledge of how nitrogen metabolism is differentially controlled in AOB that are adapted to different concentrations of ammonium. Overall, this work will provide further insight into the control of ammonia oxidizing chemolithotrophy across representatives of the Nitrosomonas and Nitrosospira genus, which can then be applied to examine additional genome-sequenced AOB isolates.

  10. Use of human wastes oxidized to different degrees in cultivation of higher plants on the soil-like substrate intended for closed ecosystems

    NASA Astrophysics Data System (ADS)

    Tikhomirov, A. A.; Kudenko, Yu. A.; Ushakova, S. A.; Tirranen, L. S.; Gribovskaya, I. A.; Gros, J.-B.; Lasseur, Ch.

    2010-09-01

    To close mass exchange loops in bioregenerative life support systems more efficiently, researchers of the Institute of Biophysics SB RAS (Krasnoyarsk, Russia) have developed a procedure of wet combustion of human wastes and inedible parts of plants using H 2O 2 in alternating electromagnetic field. Human wastes pretreated in this way can be used as nutrient solutions to grow plants in the phototrophic unit of the LSS. The purpose of this study was to explore the possibilities of using human wastes oxidized to different degrees to grow plants cultivated on the soil-like substrate (SLS). The treated human wastes were analyzed to test their sterility. Then we investigated the effects produced by human wastes oxidized to different degrees on growth and development of wheat plants and on the composition of microflora in the SLS. The irrigation solution contained water, substances extracted from the substrate, and certain amounts of the mineralized human wastes. The experiments showed that the human wastes oxidized using reduced amounts of 30% H 2O 2: 1 ml/g of feces and 0.25 ml/ml of urine were still sterile. The experiments with wheat plants grown on the SLS and irrigated by the solution containing treated human wastes in the amount simulating 1/6 of the daily diet of a human showed that the degree of oxidation of human wastes did not significantly affect plant productivity. On the other hand, the composition of the microbiota of irrigation solutions was affected by the oxidation level of the added metabolites. In the solutions supplemented with partially oxidized metabolites yeast-like microscopic fungi were 20 times more abundant than in the solutions containing fully oxidized metabolites. Moreover, in the solutions containing incompletely oxidized human wastes the amounts of phytopathogenic bacteria and denitrifying microorganisms were larger. Thus, insufficiently oxidized sterile human wastes added to the irrigation solutions significantly affect the composition of

  11. High transconductance zinc oxide thin-film transistors on flexible plastic substrates

    NASA Astrophysics Data System (ADS)

    Kimura, Yuta; Higaki, Tomohiro; Maemoto, Toshihiko; Sasa, Shigehiko; Inoue, Masataka

    2012-02-01

    We report the fabrication and characterization on high-performance ZnO based TFTs on unheated plastic substrate. ZnO films were grown by pulsed laser deposition (PLD) on polyethylene napthalate (PEN) substrates. Top-gate ZnO-TFTs were fabricated by photolithography and wet chemical etching. The source and drain contacts were formed by lift-off of e-beam deposited Ti(20 nm)/Au(200 nm). An HfO2 with thickness 100 nm was selected as the gate insulator, and top gate electrode Ti(20 nm)/Au(200 nm) was deposited by e-beam evaporation. We prepared a set of the structure with SiO2/TiO2 to investigate the characteristic changes that appear in the film characteristics in response to bending. From the ID-VDS and the transfer characteristics which are affected by bending and return for the ZnO-TFT with SiO2/TiO2 buffers, the TFTs were bent to a curvature radius of 8.5 mm. The transconductance, gm is obtained 1.7 mS/mm on flat, 1.4 mS/mm on bending and 1.3 mS/mm on returning the film, respectively. The ID-VDS characteristics were therefore not changed by bending. All of the devices exhibited a clear pinch-off behavior and a high on/off current ratio of ˜10^6. The threshold voltages, Vth were not changed drastically. Furthermore, TFT structures were changed from a conventional top-gate type to a bottom-gate type. A high transconductance of 95.8 mS/mm was achieved in the bottom-gate type TFT by using Al2O3 oxide buffer.

  12. The structures of the horseradish peroxidase C-ferulic acid complex and the ternary complex with cyanide suggest how peroxidases oxidize small phenolic substrates.

    PubMed

    Henriksen, A; Smith, A T; Gajhede, M

    1999-12-03

    We have solved the x-ray structures of the binary horseradish peroxidase C-ferulic acid complex and the ternary horseradish peroxidase C-cyanide-ferulic acid complex to 2.0 and 1.45 A, respectively. Ferulic acid is a naturally occurring phenolic compound found in the plant cell wall and is an in vivo substrate for plant peroxidases. The x-ray structures demonstrate the flexibility and dynamic character of the aromatic donor binding site in horseradish peroxidase and emphasize the role of the distal arginine (Arg(38)) in both substrate oxidation and ligand binding. Arg(38) hydrogen bonds to bound cyanide, thereby contributing to the stabilization of the horseradish peroxidase-cyanide complex and suggesting that the distal arginine will be able to contribute with a similar interaction during stabilization of a bound peroxy transition state and subsequent O-O bond cleavage. The catalytic arginine is additionally engaged in an extensive hydrogen bonding network, which also includes the catalytic distal histidine, a water molecule and Pro(139), a proline residue conserved within the plant peroxidase superfamily. Based on the observed hydrogen bonding network and previous spectroscopic and kinetic work, a general mechanism of peroxidase substrate oxidation is proposed.

  13. Respective effects of oxygen and energy substrate deprivation on beta cell viability.

    PubMed

    Lablanche, Sandrine; Cottet-Rousselle, Cécile; Argaud, Laurent; Laporte, Camille; Lamarche, Frédéric; Richard, Marie-Jeanne; Berney, Thierry; Benhamou, Pierre-Yves; Fontaine, Eric

    2015-01-01

    Deficit in oxygen and energetic substrates delivery is a key factor in islet loss during islet transplantation. Permeability transition pore (PTP) is a mitochondrial channel involved in cell death. We have studied the respective effects of oxygen and energy substrate deprivation on beta cell viability as well as the involvement of oxidative stress and PTP opening. Energy substrate deprivation for 1h followed by incubation in normal conditions led to a cyclosporin A (CsA)-sensitive-PTP-opening in INS-1 cells and human islets. Such a procedure dramatically decreased INS-1 cells viability except when transient removal of energy substrates was performed in anoxia, in the presence of antioxidant N-acetylcysteine (NAC) or when CsA or metformin inhibited PTP opening. Superoxide production increased during removal of energy substrates and increased again when normal energy substrates were restored. NAC, anoxia or metformin prevented the two phases of oxidative stress while CsA prevented the second one only. Hypoxia or anoxia alone did not induce oxidative stress, PTP opening or cell death. In conclusion, energy substrate deprivation leads to an oxidative stress followed by PTP opening, triggering beta cell death. Pharmacological prevention of PTP opening during islet transplantation may be a suitable option to improve islet survival and graft success. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Electrocatalyst for alcohol oxidation in fuel cells

    DOEpatents

    Adzic, Radoslav R.; Marinkovic, Nebojsa S.

    2001-01-01

    Binary and ternary electrocatalysts are provided for oxidizing alcohol in a fuel cell. The binary electrocatalyst includes 1) a substrate selected from the group consisting of NiWO.sub.4 or CoWO.sub.4 or a combination thereof, and 2) Group VIII noble metal catalyst supported on the substrate. The ternary electrocatalyst includes 1) a substrate as described above, and 2) a catalyst comprising Group VIII noble metal, and ruthenium oxide or molybdenum oxide or a combination thereof, said catalyst being supported on said substrate.

  15. Superlubricating graphene and graphene oxide films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumant, Anirudha V.; Erdemir, Ali; Choi, Junho

    A system and method for forming at least one of graphene and graphene oxide on a substrate and an opposed wear member. The system includes graphene and graphene oxide formed by an exfoliation process or solution processing method to dispose graphene and/or graphene oxide onto a substrate. The system further includes an opposing wear member disposed on another substrate and a gas atmosphere of an inert gas like N2, ambient, a humid atmosphere and a water solution.

  16. Oxidation-Resistant Coating For Bipolar Lead/Acid Battery

    NASA Technical Reports Server (NTRS)

    Bolstad, James J.

    1993-01-01

    Cathode side of bipolar substrate coated with nonoxidizable conductive layer. Coating prepared as water slurry of aqueous dispersion of polyethylene copolymer plus such conductive fillers as tin oxide, titanium, tantalum, or tungsten oxide. Applied easily to substrate of polyethylene carbon plastic. As slurry dries, conductive, oxidation-resistant coating forms on positive side of substrate.

  17. Superconductive articles including cerium oxide layer

    DOEpatents

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.

  18. Sol-gel derived (La 0.8M 0.2)CrO 3 (M dbnd Ca, Sr) coating layer on stainless-steel substrate for use as a separator in intermediate-temperature solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    A Lee, E.; Lee, S.; Hwang, H. J.; Moon, J.-W.

    A ceramic coating technique is applied to reduce the voltage drop caused by oxidation of the metallic separator (SUS444) in intermediate-temperature (IT) solid oxide fuel cell (SOFCs) systems. Precursor solutions for (La, Ca)CrO 3 (LCC) and (La, Sr)CrO 3 (LSC) coatings are prepared by adding nitric acid and ethylene glycol into an aqueous solution of lanthanum, strontium (or calcium) and chromium nitrates. Dried LCC and LSC gel films are heat-treated at 400-800 °C after dip-coating on the SUS444 substrate. XRD and Fourier-transform infrared (FT-IR) analysis is used to examine the crystallization behaviour and chemical structure of the precursor solution. The oxidation behaviour of the coated SUS444 substrate is compared with an uncoated SUS444 substrate. The oxidation of the SUS444 is inhibited by the LCC and LSC thin film layers.

  19. Control of Alq3 wetting layer thickness via substrate surface functionalization.

    PubMed

    Tsoi, Shufen; Szeto, Bryan; Fleischauer, Michael D; Veinot, Jonathan G C; Brett, Michael J

    2007-06-05

    The effects of substrate surface energy and vapor deposition rate on the initial growth of porous columnar tris(8-hydroxyquinoline)aluminum (Alq3) nanostructures were investigated. Alq3 nanostructures thermally evaporated onto as-supplied Si substrates bearing an oxide were observed to form a solid wetting layer, likely caused by an interfacial energy mismatch between the substrate and Alq3. Wetting layer thickness control is important for potential optoelectronic applications. A dramatic decrease in wetting layer thickness was achieved by depositing Alq3 onto alkyltrichlorosilane-derivatized Si/oxide substrates. Similar effects were noted with increasing deposition rates. These two effects enable tailoring of the wetting layer thickness.

  20. Atomic layer deposition of ultrathin blocking layer for low-temperature solid oxide fuel cell on nanoporous substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Wonjong; Cho, Gu Young; Noh, Seungtak

    2015-01-15

    An ultrathin yttria-stabilized zirconia (YSZ) blocking layer deposited by atomic layer deposition (ALD) was utilized for improving the performance and reliability of low-temperature solid oxide fuel cells (SOFCs) supported by an anodic aluminum oxide substrate. Physical vapor-deposited YSZ and gadolinia-doped ceria (GDC) electrolyte layers were deposited by a sputtering method. The ultrathin ALD YSZ blocking layer was inserted between the YSZ and GDC sputtered layers. To investigate the effects of an inserted ultrathin ALD blocking layer, SOFCs with and without an ultrathin ALD blocking layer were electrochemically characterized. The open circuit voltage (1.14 V) of the ALD blocking-layered SOFC was visiblymore » higher than that (1.05 V) of the other cell. Furthermore, the ALD blocking layer augmented the power density and improved the reproducibility.« less

  1. The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose-methanol-choline superfamily.

    PubMed

    Wongnate, Thanyaporn; Chaiyen, Pimchai

    2013-07-01

    Enzymes in the glucose-methanol-choline (GMC) oxidoreductase superfamily catalyze the oxidation of an alcohol moiety to the corresponding aldehyde. In this review, the current understanding of the sugar oxidation mechanism in the reaction of pyranose 2-oxidase (P2O) is highlighted and compared with that of other enzymes in the GMC family for which structural and mechanistic information is available, including glucose oxidase, choline oxidase, cholesterol oxidase, cellobiose dehydrogenase, aryl-alcohol oxidase, and pyridoxine 4-oxidase. Other enzymes in the family that have been newly discovered or for which less information is available are also discussed. A large primary kinetic isotope effect was observed for the flavin reduction when 2-d-D-glucose was used as a substrate, but no solvent kinetic isotope effect was detected for the flavin reduction step. The reaction of P2O is consistent with a hydride transfer mechanism in which there is stepwise formation of d-glucose alkoxide prior to the hydride transfer. Site-directed mutagenesis of P2O and pH-dependence studies indicated that His548 is a catalytic base that facilitates the deprotonation of C2-OH in D-glucose. This finding agrees with the current mechanistic model for aryl-alcohol oxidase, glucose oxidase, cellobiose dehydrogenase, methanol oxidase, and pyridoxine 4-oxidase, but is different from that of cholesterol oxidase and choline oxidase. Although all of the GMC enzymes share similar structural folding and use the hydride transfer mechanism for flavin reduction, they appear to have subtle differences in the fine-tuned details of how they catalyze substrate oxidation. © 2013 The Authors Journal compilation © 2013 FEBS.

  2. Superconductive articles including cerium oxide layer

    DOEpatents

    Wu, X.D.; Muenchausen, R.E.

    1993-11-16

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure. 7 figures.

  3. Two endogenous substrates for polyphenoloxidase in pericarp tissues of postharvest rambutan fruit.

    PubMed

    Sun, Jian; Su, Weiqiang; Peng, Hongxiang; Zhu, Jianhua; Xu, Liangxiong; Bruñá, Nuria Martí

    2010-08-01

    The catalytic oxidation of phenolic substrates by polyphenoloxidase (PPO) causes pericarp browning of postharvest rambutan fruit. In the present study, PPO and its endogenous substrates were extracted from rambutan pericarp tissues (RPT). The substrate extracts were sequentially partitioned with ethyl acetate and n-butanol. The analysis of total phenolic content showed that the most phenolic compounds were distributed in ethyl acetate fraction. By high-performance liquid chromatography (HPLC), (-)-epicatechin (EC) and proanthocyanidin A2 (PA2) were identified from this fraction. After reacting with rambutan PPO, EC turned brown rapidly within 10 min, indicating that it was a significant endogenous substrate. Although PA2 could also be oxidized by the PPO, it turned brown very slowly. In addition, because EC and PA2 were continually catalyzed into browning products by PPO during storage of the fruit at 4 and 25 degrees C, their contents in RPT gradually declined with the extended storage time. It was further observed that both substrate contents in rambutan fruit storing at 25 degrees C decreased more rapidly than that storing at 4 degrees C, suggesting that low temperature inhibited the catalytic oxidation of substrates so as to slow down pericarp browning. Practical Application: Pericarp browning is a serious problem to storage and transport of harvested rambutan fruit. A generally accepted opinion on the browning mechanism is the oxidation of phenolic substrates by PPO. Ascertaining PPO substrates will effectively help us to control enzymatic reaction by chemical methods so as to delay or even prevent pericarp browning of harvested rambutan fruit.

  4. Differential substrate behaviour of phenol and aniline derivatives during oxidation by horseradish peroxidase: kinetic evidence for a two-step mechanism.

    PubMed

    Gilabert, María Angeles; Hiner, Alexander N P; García-Ruiz, Pedro Antonio; Tudela, José; García-Molina, Francisco; Acosta, Manuel; García-Cánovas, Francisco; Rodríguez-López, José Neptuno

    2004-06-01

    The catalytic constant (k(cat)) and the second-order association constant of compound II with reducing substrate (k(5)) of horseradish peroxidase C (HRPC) acting on phenols and anilines have been determined from studies of the steady-state reaction velocities (V(0) vs. [S(0)]). Since k(cat)=k(2)k(6)/k(2)+k(6), and k(2) (the first-order rate constant for heterolytic cleavage of the oxygen-oxygen bond of hydrogen peroxide during compound I formation) is known, it has been possible to calculate the first-order rate constant for the transformation of each phenol or aniline by HRPC compound II (k(6)). The values of k(6) are quantitatively correlated to the sigma values (Hammett equation) and can be rationalized by an aromatic substrate oxidation mechanism in which the substrate donates an electron to the oxyferryl group in HRPC compound II, accompanied by two proton additions to the ferryl oxygen atom, one from the substrate and the other the protein or solvent. k(6) is also quantitatively correlated to the experimentally determined (13)C-NMR chemical shifts (delta(1)) and the calculated ionization potentials, E (HOMO), of the substrates. Similar dependencies were observed for k(cat) and k(5). From the kinetic analysis, the absolute values of the Michaelis constants for hydrogen peroxide and the reducing substrates (K(M)(H(2)O(2)) and K(M)(S)), respectively, were obtained.

  5. Buffer layers on metal alloy substrates for superconducting tapes

    DOEpatents

    Jia, Quanxi; Foltyn, Stephen R.; Arendt, Paul N.; Groves, James R.

    2004-06-29

    An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer, and a layer of a SrRuO.sub.3 buffer material upon the oriented cubic oxide material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon the layer of a SrRuO.sub.3 buffer material layer. With a HTS top-layer of YBCO upon at least one layer of the SrRuO.sub.3 buffer material in such an article, J.sub.c 's of up to 1.3.times.10.sup.6 A/cm.sup.2 have been demonstrated with projected IC's of over 200 Amperes across a sample 1 cm wide.

  6. Study of thickness and uniformity of oxide passivation with DI-O3 on silicon substrate for electronic and photonic applications

    NASA Astrophysics Data System (ADS)

    Sharma, Mamta; Hazra, Purnima; Singh, Satyendra Kumar

    2018-05-01

    Since the beginning of semiconductor fabrication technology evolution, clean and passivated substrate surface is one of the prime requirements for fabrication of Electronic and optoelectronic device fabrication. However, as the scale of silicon circuits and device architectures are continuously decreased from micrometer to nanometer (from VLSI to ULSI technology), the cleaning methods to achieve better wafer surface qualities has raised research interests. The development of controlled and uniform silicon dioxide is the most effective and reliable way to achieve better wafer surface quality for fabrication of electronic devices. On the other hand, in order to meet the requirement of high environment safety/regulatory standards, the innovation of cleaning technology is also in demand. The controlled silicon dioxide layer formed by oxidant de-ionized ozonated water has better uniformity. As the uniformity of the controlled silicon dioxide layer is improved on the substrate, it enhances the performance of the devices. We can increase the thickness of oxide layer, by increasing the ozone time treatment. We reported first time to measurement of thickness of controlled silicon dioxide layer and obtained the uniform layer for same ozone time.

  7. Tensile strain effect in ferroelectric perovskite oxide thin films on spinel magnesium aluminum oxide substrate

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaolan

    Ferroelectrics are used in FeRAM (Ferroelectric random-access memory). Currently (Pb,Zr)TiO3 is the most common ferroelectric material. To get lead-free and high performance ferroelectric material, we investigated perovskite ferroelectric oxides (Ba,Sr)TiO3 and BiFeO3 films with strain. Compressive strain has been investigated intensively, but the effects of tensile strain on the perovskite films have yet to be explored. We have deposited (Ba,Sr)TiO3, BiFeO3 and related films by pulsed laser deposition (PLD) and analyzed the films by X-ray diffractometry (XRD), atomic force microscopy (AFM), etc. To obtain inherently fully strained films, the selection of the appropriate substrates is crucial. MgAl2O4 matches best with good quality and size, yet the spinel structure has an intrinsic incompatibility to that of perovskite. We introduced a rock-salt structure material (Ni 1-xAlxO1+delta) as a buffer layer to mediate the structural mismatch for (Ba,Sr)TiO3 films. With buffer layer Ni1-xAlxO1+delta, we show that the BST films have high quality crystallization and are coherently epitaxial. AFM images show that the films have smoother surfaces when including the buffer layer, indicating an inherent compatibility between BST-NAO and NAO-MAO. In-plane Ferroelectricity measurement shows double hysteresis loops, indicating an antiferroelectric-like behavior: pinned ferroelectric domains with antiparallel alignments of polarization. The Curie temperatures of the coherent fully strained BST films are also measured. It is higher than 900°C, at least 800°C higher than that of bulk. The improved Curie temperature makes the use of BST as FeRAM feasible. We found that the special behaviors of ferroelectricity including hysteresis loop and Curie temperature are due to inherent fully tensile strain. This might be a clue of physics inside ferroelectric stain engineering. An out-of-plane ferroelectricity measurement would provide a full whole story of the tensile strain. However, a

  8. Enhancement of emission efficiency of colloidal CdSe quantum dots on silicon substrate via an ultra-thin layer of aluminum oxide.

    PubMed

    Patty, K; Sadeghi, S M; Nejat, A; Mao, C-B

    2014-04-18

    We demonstrate that an ultra-thin layer of aluminum oxide can significantly enhance the emission efficiency of colloidal quantum dots on a Si substrate. For an ensemble of single quantum dots, our results show that this super brightening process can increase the fluorescence of CdSe quantum dots, forming well-resolved spectra, while in the absence of this layer the emission remains mostly at the noise level. We demonstrate that this process can be further enhanced with irradiation of the quantum dots, suggesting a significant photo-induced fluorescence enhancement via considerable suppression of non-radiative decay channels of the quantum dots. We study the impact of the Al oxide thickness on Si and interdot interactions, and discuss the results in terms of photo-induced catalytic properties of the Al oxide and the effects of such an oxide on the Coulomb blockade responsible for suppression of photo-ionization of the quantum dots.

  9. Characteristics of high-k gate dielectric formed by the oxidation of sputtered Hf/Zr/Hf thin films on the Si substrate

    NASA Astrophysics Data System (ADS)

    Kim, H. D.; Roh, Y.; Lee, J. E.; Kang, H.-B.; Yang, C.-W.; Lee, N.-E.

    2004-07-01

    We have investigated the effects of high temperature annealing on the physical and electrical properties of multilayered high-k gate oxide [HfSixOy/HfO2/intermixed-layer(IL)/ZrO2/intermixed-layer(IL)/HfO2] in metal-oxide-semiconductor device. The multilayered high-k films were formed after oxidizing the Hf/Zr/Hf films deposited directly on the Si substrate. The subsequent N2 annealing at high temperature (>= 700 °C) not only results in the polycrystallization of the multilayered high-k films, but also causes the diffusion of Zr. The latter transforms the HfSixOy/HfO2/IL/ZrO2/IL/HfO2 film into the Zr-doped HfO2 film, and improves electrical properties in general. However, the thin SiOx interfacial layer starts to form if annealing temperature increases over 700 °C, deteriorating the equivalent oxide thickness. .

  10. A flexible and stable surface-enhanced Raman scattering (SERS) substrate based on Au nanoparticles/Graphene oxide/Cicada wing array

    NASA Astrophysics Data System (ADS)

    Shi, Guochao; Wang, Mingli; Zhu, Yanying; Shen, Lin; Wang, Yuhong; Ma, Wanli; Chen, Yuee; Li, Ruifeng

    2018-04-01

    In this work, we presented an eco-friendly and low-cost method to fabricate a kind of flexible and stable Au nanoparticles/graphene oxide/cicada wing (AuNPs/GO/CW) substrate. By controlling the ratio of reactants, the optimum SERS substrate with average AuNPs size of 65 nm was obtained. The Raman enhancement factor for rhodamine 6G (R6G) was 1.08 ×106 and the limit of detection (LOD) was as low as 10-8 M. After calibrating the Raman peak intensities of R6G, it could be quantitatively detected. In order to better understand the experimental results, the 3D finite-different time-domain simulation was used to simulate the AuNPs/GO/CW-1 (the diameter of the AuNPs was 65 nm) to further investigate the SERS enhancement effect. More importantly, the AuNPs/GO/CW-1 substrates not only can provide strong enhancement factors but also can be stable and reproducible. This SERS substrates owned a good stability for the SERS intensity which was reduced only by 25% after the aging time of 60 days and the relative standard deviation was lower than 20%, revealing excellent uniformity and reproducibility. Our positive findings can pave a new way to optimize the application of SERS substrate as well as provide more SERS platforms for quantitative detection of organic contaminants vestige, which makes it very promising in the trace detection of biological molecules.

  11. Formation and possible growth mechanism of bismuth nanowires on various substrates

    NASA Astrophysics Data System (ADS)

    Volkov, V. T.; Kasumov, A. Yu.; Kasumov, Yu. A.; Khodos, I. I.

    2017-08-01

    In this work, we report results of a study of bismuth nanowires growth on various substrates, including Fe, Ni, Co, W, Pt, Au thin films on oxidized Si, Si (111), oxidized Si (100), and fused quartz. The nanowires (NW) were prepared by RF diode sputtering of Bi onto a substrate heated to about 200 °C. The structure of the wires was studied by a scanning and transmission electron microscopy. The NWs are monocrystalline up to a length of several micrometers and possess a very thin (less than 2 nm) oxide layer. A major influence of the substrate type on the quantity and the length of the obtained nanowires is observed. Based on the above studies, we propose a possible mechanism of a bismuth nanowire growth.

  12. Carbohydrate intake and glycemic index affect substrate oxidation during a controlled weight cycle in healthy men.

    PubMed

    Kahlhöfer, J; Lagerpusch, M; Enderle, J; Eggeling, B; Braun, W; Pape, D; Müller, M J; Bosy-Westphal, A

    2014-09-01

    Because both, glycemic index (GI) and carbohydrate content of the diet increase insulin levels and could thus impair fat oxidation, we hypothesized that refeeding a low GI, moderate-carbohydrate diet facilitates weight maintenance. Healthy men (n=32, age 26.0±3.9 years; BMI 23.4±2.0 kg/m(2)) followed 1 week of controlled overfeeding, 3 weeks of caloric restriction and 2 weeks of hypercaloric refeeding (+50, -50 and +50% energy requirement) with low vs high GI (41 vs 74) and moderate vs high CHO intake (50% vs 65% energy). We measured adaptation of fasting macronutrient oxidation and the capacity to supress fat oxidation during an oral glucose tolerance test. Changes in fat mass were measured by quantitative magnetic resonance. During overfeeding, participants gained 1.9±1.2 kg body weight, followed by a weight loss of -6.3±0.6 kg and weight regain of 2.8±1.0 kg. Subjects with 65% CHO gained more body weight compared with 50% CHO diet (P<0.05) particularly with HGI meals (P<0.01). Refeeding a high-GI diet led to an impaired basal fat oxidation when compared with a low-GI diet (P<0.02), especially at 65% CHO intake. Postprandial metabolic flexibility was unaffected by refeeding at 50% CHO but clearly impaired by 65% CHO diet (P<0.05). Impairment in fasting fat oxidation was associated with regain in fat mass (r=0.43, P<0.05) and body weight (r=0.35; P=0.051). Both higher GI and higher carbohydrate content affect substrate oxidation and thus the regain in body weight in healthy men. These results argue in favor of a lower glycemic load diet for weight maintenance after weight loss.

  13. Surface control alloy substrates and methods of manufacture therefor

    DOEpatents

    Fritzemeier, Leslie G.; Li, Qi; Rupich, Martin W.; Thompson, Elliott D.; Siegal, Edward J.; Thieme, Cornelis Leo Hans; Annavarapu, Suresh; Arendt, Paul N.; Foltyn, Stephen R.

    2004-05-04

    Methods and articles for controlling the surface of an alloy substrate for deposition of an epitaxial layer. The invention includes the use of an intermediate layer to stabilize the substrate surface against oxidation for subsequent deposition of an epitaxial layer.

  14. Ammonia release method for depositing metal oxides

    DOEpatents

    Silver, Gary L.; Martin, Frank S.

    1994-12-13

    A method of depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates.

  15. Dose effects of New Zealand blackcurrant on substrate oxidation and physiological responses during prolonged cycling.

    PubMed

    Cook, Matthew David; Myers, Stephen David; Gault, Mandy Lucinda; Edwards, Victoria Charlotte; Willems, Mark Elisabeth Theodorus

    2017-06-01

    It has been previously shown that New Zealand blackcurrant (NZBC) extract increased fat oxidation during short duration cycling. The present study examined the effect of different doses of NZBC extract on substrate oxidation and physiological responses during prolonged cycling. Using a randomized counterbalanced Latin-square design, 15 endurance-trained male cyclists (age: 38 ± 12 years, height: 187 ± 5 cm, body mass: 76 ± 10 kg, [Formula: see text]: 56 ± 8 mL kg -1  min -1 , and mean ± SD) completed four separate 120-min cycling bouts at 65% [Formula: see text] after ingesting no dose, or one of three doses (300, 600, or 900 mg day -1 ) of NZBC extract (CurraNZ™) for 7 days. A dose effect (P < 0.05) was observed for average fat oxidation (0, 300, 600, and 900 mg day -1 values of 0.63 ± 0.21, 0.70 ± 0.17, 0.73 ± 0.19, and 0.73 ± 0.14 g min -1 ) and carbohydrate oxidation (0, 300, 600, and 900 mg day -1 values of 1.78 ± 0.51, 1.65 ± 0.48, 1.57 ± 0.44, and 1.56 ± 0.50 g min -1 ). The individual percentage change of mean fat oxidation was 21.5 and 24.1% for 600 and 900 mg day -1 NZBC extract, respectively, compared to no dose. Heart rate, [Formula: see text], [Formula: see text], plasma lactate, and glucose were not affected. Seven-day intake of New Zealand blackcurrant extract demonstrated a dose-dependent effect on increasing fat oxidation during 120-min cycling at 65% [Formula: see text] in endurance-trained male cyclists.

  16. Is Oxidized Thioredoxin a Major Trigger for Cysteine Oxidation? Clues from a Redox Proteomics Approach

    PubMed Central

    García-Santamarina, Sarela; Boronat, Susanna; Calvo, Isabel A.; Rodríguez-Gabriel, Miguel; Ayté, José; Molina, Henrik

    2013-01-01

    Abstract Cysteine oxidation mediates oxidative stress toxicity and signaling. It has been long proposed that the thioredoxin (Trx) system, which consists of Trx and thioredoxin reductase (Trr), is not only involved in recycling classical Trx substrates, such as ribonucleotide reductase, but it also regulates general cytoplasmic thiol homeostasis. To investigate such a role, we have performed a proteome-wide analysis of cells expressing or not the two components of the Trx system. We have compared the reversibly oxidized thiol proteomes of wild-type Schizosaccharomyces pombe cells with mutants lacking Trx or Trr. Specific Trx substrates are reversibly-oxidized in both strain backgrounds; however, in the absence of Trr, Trx can weakly recycle its substrates at the expense of an alternative electron donor. A massive thiol oxidation occurs only in cells lacking Trr, with 30% of all cysteine-containing peptides being reversibly oxidized; this oxidized cysteine proteome depends on the presence of Trxs. Our observations lead to the hypothesis that, in the absence of its reductase, the natural electron donor Trx becomes a powerful oxidant and triggers general thiol oxidation. Antioxid. Redox Signal. 18, 1549–1556. PMID:23121505

  17. Aerosol chemical vapor deposition of metal oxide films

    DOEpatents

    Ott, K.C.; Kodas, T.T.

    1994-01-11

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said substrate.

  18. Effect of organic solar cells using various power O2 plasma treatments on the indium tin oxide substrate.

    PubMed

    Ke, Jhong-Ciao; Wang, Yeong-Her; Chen, Kan-Lin; Huang, Chien-Jung

    2016-03-01

    The effect of organic solar cells (OSCs) by using different power O2 plasma treatments on indium tin oxide (ITO) substrate was studied. The power of O2 plasma treatment on ITO substrate was varied from 20W to 80W, and the power conversion efficiency of device was improved from 1.18% to 1.93% at 20W O2 plasma treatment. The function of O2 plasma treatment on ITO substrate was to remove the surface impurity and to improve the work function of ITO, which can reduce the energy offset between the ITO and SubPc layer and depress the leakage current of device, leading to the shunt resistance increased from 897 to 1100Ωcm(2). The surface roughness of ITO decreased from 3.81 to 3.33nm and the work function of ITO increased from 4.75 to 5.2eV after 20W O2 plasma treatment on ITO substrate. As a result, the open circuit voltage and the fill factor were improved from 0.46 to 0.70V and from 0.56 to 0.61, respectively. However, the series resistance of device was dramatically increased as the power of O2 plasma treatment exceeds 40W, leading to the efficiency reduction. The result is attributed to the variation of oxygen vacancies in ITO film after the 60, 80W O2 plasma treatment. As a consequence, the power of O2 plasma treatment on ITO substrate for the OSCs application should be controlled below 40W to avoid affecting the electricity of ITO film. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Electrodeposition of biaxially textured layers on a substrate

    DOEpatents

    Bhattacharya, Raghu N; Phok, Sovannary; Spagnol, Priscila; Chaudhuri, Tapas

    2013-11-19

    Methods of producing one or more biaxially textured layer on a substrate, and articles produced by the methods, are disclosed. An exemplary method may comprise electrodepositing on the substrate a precursor material selected from the group consisting of rare earths, transition metals, actinide, lanthanides, and oxides thereof. An exemplary article (150) may comprise a biaxially textured base material (130), and at least one biaxially textured layer (110) selected from the group consisting of rare earths, transition metals, actinides, lanthanides, and oxides thereof. The at least one biaxially textured layer (110) is formed by electrodeposition on the biaxially textured base material (130).

  20. Substrate specific effects of calcium on metabolism of rat heart mitochondria.

    PubMed

    Panov, A V; Scaduto, R C

    1996-04-01

    Oxidative metabolism in the heart is tightly coupled to mechanical work. Because this coupling process is believed to involve Ca2+, the roles of mitochondrial Ca2+ in the regulation of oxidative phosphorylation was studied in isolated rat heart mitochondria. The electrical component of the mitochondrial membrane potential (delta psi) and the redox state of the pyridine nucleotides were determined during the oxidation of various substrates under different metabolic states. In the absence of added adenine nucleotides, the NADP+ redox couple was almost completely reduced, regardless of the specific substrate and the presence of Ca2+, whereas NAD+ couple redox state was highly dependent on the substrate type and the presence of Ca2+. Titration of respiration with ADP, in the presence of excess hexokinase and glucose, showed that both respiration and NAD(P)+ reduction were very sensitive to ADP. The maximal enzyme reaction rate of ADP-stimulated respiration Michaelis constants (Km) for ADP were dependent on the particular substrate employed. delta psi was much less sensitive to ADP. With either alpha-ketoglutarate or glutamate as substrate, Ca2+ significantly increased reduction of NAD(P)+.Ca2+ did not influence NAD(P)+ reduction with either acetylcarnitine or pyruvate as substrate. In the presence of ADP, delta psi was increased by Ca2+ at all metabolic states with glutamate plus malate, 0.5 mM alpha-ketoglutarate plus malate, or pyruvate plus malate as substrates. The data presented support the hypothesis that cardiac respiration is controlled by the availability of both Ca2+ and ADP to mitochondria. The data indicate that an increase in substrate supply to mitochondria can increase mitochondrial respiration at given level of ADP. This effect can be produced by Ca2+ with substrates such as glutamate, which utilize alpha-ketoglutarate dehydrogenase activity for oxidation. Increases in respiration by Ca2+ may mitigate an increase in ADP during periods of increased

  1. Ammonia release method for depositing metal oxides

    DOEpatents

    Silver, G.L.; Martin, F.S.

    1994-12-13

    A method is described for depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates. 1 figure.

  2. Reactions of Charged Substrates. 5. The Solvolysis and Sodium Azide Substitution Reactions of Benzylpyridinium Ions in Deuterium Oxide.

    PubMed

    Buckley, Neil; Oppenheimer, Norman J.

    1996-10-18

    Second-order rate constants and activation values were measured for the reactions with NaN(3) of a series of 4-Y-substituted (Y = MeO, Me, H, Cl, and NO(2)) benzyl 3'-Z-substituted (Z = CN, CONH(2), H, F, Ac) pyridinium chlorides in deuterium oxide. 3'-Cyanopyridine substrates reacted much faster than nicotinamide and pyridine substrates; in the pyridine series the 4-Me, 4-H, and 4-Cl benzyl analogs did not react for up to 6 months at 96()() degrees C in 1.7 M NaN(3). The 3'-cyanopyridine substrates do not exhibit borderline kinetic behavior, but the nicotinamide substrates do. The Hammett plot is flat for the NaN(3) reaction of 3'-cyanopyridine substrates and increasingly V-shaped for the nicotinamide and pyridine substrates. The values of beta(LG) (four-point plot) for the NaN(3) reaction of the 4-MeO benzyl substrates is -1.45, which is usually interpreted as being a very "late" activated complex. Two-point Brønsted "plots" for the other benzyl derivatives and for two N-methylpyridinium ions give values of beta(LG) in the same range. The second-order rate constant and activation values for N-methyl-3'-cyanopyridinium iodide are within the same range as those for the benzyl substrates. For the hydrolysis reaction, the Hammett plot is linear for 3'-cyanopyridine substrates (rho(+) = -1.24) and flat for the nicotinamide substrates. The extent of hydrolysis of 0.005-0.05 M solutions of the 3'-cyanopyridinie substrates depended on the initial concentration of substrate, and hydrolysis was slowed significantly or stopped completely in the presence of exogenous 3-cyanopyridine. These results show that an equilibrium is established among the products for the 4-MeO, 4-Me, 4-H, and 4-Cl substrates; the 4-NO(2) substrate reacted too slowly to discern any difference. Data for the extent of hydrolysis were fitted by an equation derived assuming the equilibrium. Despite this limitation on a classic test of mechanism, the rates and rho values are consistent with direct

  3. Substrate specificity of sheep liver sorbitol dehydrogenase.

    PubMed Central

    Lindstad, R I; Köll, P; McKinley-McKee, J S

    1998-01-01

    The substrate specificity of sheep liver sorbitol dehydrogenase has been studied by steady-state kinetics over the range pH 7-10. Sorbitol dehydrogenase stereo-selectively catalyses the reversible NAD-linked oxidation of various polyols and other secondary alcohols into their corresponding ketones. The kinetic constants are given for various novel polyol substrates, including L-glucitol, L-mannitol, L-altritol, D-altritol, D-iditol and eight heptitols, as well as for many aliphatic and aromatic alcohols. The maximum velocities (kcat) and the substrate specificity-constants (kcat/Km) are positively correlated with increasing pH. The enzyme-catalysed reactions occur by a compulsory ordered kinetic mechanism with the coenzyme as the first, or leading, substrate. With many substrates, the rate-limiting step for the overall reaction is the enzyme-NADH product dissociation. However, with several substrates there is a transition to a mechanism with partial rate-limitation at the ternary complex level, especially at low pH. The kinetic data enable the elucidation of new empirical rules for the substrate specificity of sorbitol dehydrogenase. The specificity-constants for polyol oxidation vary as a function of substrate configuration with D-xylo> D-ribo > L-xylo > D-lyxo approximately L-arabino > D-arabino > L-lyxo. Catalytic activity with a polyol or an aromatic substrate and various 1-deoxy derivatives thereof varies with -CH2OH > -CH2NH2 > -CH2OCH3 approximately -CH3. The presence of a hydroxyl group at each of the remaining chiral centres of a polyol, apart from the reactive C2, is also nonessential for productive ternary complex formation and catalysis. A predominantly nonpolar enzymic epitope appears to constitute an important structural determinant for the substrate specificity of sorbitol dehydrogenase. The existence of two distinct substrate binding regions in the enzyme active site, along with that of the catalytic zinc, is suggested to account for the lack of

  4. Oxidized film structure and method of making epitaxial metal oxide structure

    DOEpatents

    Gan, Shupan [Richland, WA; Liang, Yong [Richland, WA

    2003-02-25

    A stable oxidized structure and an improved method of making such a structure, including an improved method of making an interfacial template for growing a crystalline metal oxide structure, are disclosed. The improved method comprises the steps of providing a substrate with a clean surface and depositing a metal on the surface at a high temperature under a vacuum to form a metal-substrate compound layer on the surface with a thickness of less than one monolayer. The compound layer is then oxidized by exposing the compound layer to essentially oxygen at a low partial pressure and low temperature. The method may further comprise the step of annealing the surface while under a vacuum to further stabilize the oxidized film structure. A crystalline metal oxide structure may be subsequently epitaxially grown by using the oxidized film structure as an interfacial template and depositing on the interfacial template at least one layer of a crystalline metal oxide.

  5. Effects of substrate microstructure on the formation of oriented oxide nanotube arrays on Ti and Ti alloys

    NASA Astrophysics Data System (ADS)

    Ferreira, C. P.; Gonçalves, M. C.; Caram, R.; Bertazzoli, R.; Rodrigues, C. A.

    2013-11-01

    The formation of nanotubular oxide layers on Ti and Ti alloys has been widely investigated for the photocatalytic degradation of organic compounds due to their excellent catalytic efficiency, chemical stability, and low cost and toxicity. Aiming to improve the photocatalytic efficiency of this nanostructured oxide, this work investigated the influence of substrate grain size on the growth of nanotubular oxide layers. Ti and Ti alloys (Ti-6Al, Ti-6Al-7Nb) were produced by arc melting with non-consumable tungsten electrode and water-cooled copper hearth under argon atmosphere. Some of the ingots were heat-treated at 1000 °C for 12 and 24 h in argon atmosphere, followed by slow cooling rates to reduce crystalline defects and increase the grain size of their microstructures. Three types of samples were anodized: commercial substrate, as-prepared and heat-treated samples. The anodization was performed using fluoride solution and a cell potential of 20 V. The samples were characterized by optical microscopy, field-emission scanning electron microscopy and X-ray diffraction. The heat treatment preceding the anodization process increased the grain size of pure Ti and Ti alloys and promoted the formation of Widmanstätten structures in Ti6Al7Nb. The nanotubes layers grown on smaller grain and thermally untreated samples were more regular and homogeneous. In the case of Ti-6Al-7Nb alloy, which presents a α + β phase microstructure, the morphology of nanotubes nucleated on α matrix was more regular than those of nanotubes nucleated on β phase. After the annealing process, the Ti-6Al-7Nb alloy presented full diffusion process and the growth of equilibrium phases resulting in the appearance of regions containing higher concentrations of Nb, i.e. beta phase. In those regions the dissolution rate of Nb2O5 is lower than that of TiO2, resulting in a nanoporous layer. In general, heat treating reduces crystalline defects and promotes the increasing of the grain sizes, not

  6. Evidence for greater oxidative substrate flexibility in male carriers of the Pro 12 Ala polymorphism in PPARgamma2.

    PubMed

    Thamer, C; Haap, M; Volk, A; Maerker, E; Becker, R; Bachmann, O; Machicao, F; Häring, H U; Stumvoll, M

    2002-03-01

    The Pro12Ala polymorphism of the peroxisome proliferator-activated receptor gamma2 (PPARgamma2) gene is associated with reduced type 2 diabetes risk and increased insulin sensitivity. It is possible that the oxidative shift from lipid to glucose as a fuel is more efficient in Ala allele carriers. To test this hypothesis, we examined carbohydrate and lipid oxidation by indirect calorimetry in lean, glucose tolerant subjects with (X/Ala, n = 25) and without the Pro12Ala polymorphism (Pro/Pro, n = 73) basally and after insulin stimulation during a 2-hour eugylcaemic hyperinsulinaemic clamp. Insulin sensitivity was non-significantly greater in X/Ala (0.13 +/- 0.01 micromol/kg/min/pM) than in Pro/Pro (0.12 +/- 0.01 micromol/kg/min/pM, p = 0.27). Basally, there were no lipid nor carbohydrate oxidation differences between the groups. Interestingly, the decrease in lipid oxidation during insulin stimulation was significantly greater in male X/Ala (- 0.51 +/- 0.06 mg/kg/min) than in male Pro/Pro (- 0.35 +/- 0.04 mg/kg/min, p = 0.03). No difference was observed in females. Analogously, the change in carbohydrate oxidation in male X/Ala (1.34 +/- 0.2 mg/kg/min) was significantly greater than in male Pro/Pro (1.03 +/- 0.12 mg/kg/min, p = 0.05). The respiratory quotient increased more, but not significantly more, in male X/Ala (0.11 +/- 0.01) than in male Pro/Pro subjects (0.08 +/- 0.01, p = 0.08) but similarly in females. These results indicate that the mechanism by which the Ala allele improves insulin sensitivity might involve enhanced suppression of lipid oxidation permitting more efficient (predominantly non-oxidative) glucose disposal. It is unclear why this could be demonstrated only in males, although gender differences in substrate oxidation are well documented.

  7. High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage.

    PubMed

    Xia, Xinhui; Tu, Jiangping; Zhang, Yongqi; Wang, Xiuli; Gu, Changdong; Zhao, Xin-Bing; Fan, Hong Jin

    2012-06-26

    The high performance of a pseudocapacitor electrode relies largely on a scrupulous design of nanoarchitectures and smart hybridization of bespoke active materials. We present a powerful two-step solution-based method for the fabrication of transition metal oxide core/shell nanostructure arrays on various conductive substrates. Demonstrated examples include Co(3)O(4) or ZnO nanowire core and NiO nanoflake shells with a hierarchical and porous morphology. The "oriented attachment" and "self-assembly" crystal growth mechanisms are proposed to explain the formation of the NiO nanoflake shell. Supercapacitor electrodes based on the Co(3)O(4)/NiO nanowire arrays on 3D macroporous nickel foam are thoroughly characterized. The electrodes exhibit a high specific capacitance of 853 F/g at 2 A/g after 6000 cycles and an excellent cycling stability, owing to the unique porous core/shell nanowire array architecture, and a rational combination of two electrochemically active materials. Our growth approach offers a new technique for the design and synthesis of transition metal oxide or hydroxide hierarchical nanoarrays that are promising for electrochemical energy storage, catalysis, and gas sensing applications.

  8. Functionalization of Ti99.2 substrates surface by hybrid treatment investigated with spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Jasinski, Jaroslaw Jan; Lubas, Malgorzata; Kurpaska, Lukasz; Napadlek, Wojciech; Sitarz, Maciej

    2018-07-01

    The article presents spectroscopic investigation of Ti 99.2 based functional substrates formed by hybrid oxidation process. Surface treatments were performed by combining methods of fluidized bed atmospheric diffusion treatment (FADT) with physical vapor deposition (PVD) - magnetron sputtering and laser surface texturing (LST) treatments. The processes were implemented to form a titanium diffusive layer saturated with oxygen in the substrate and a tight homogeneous oxide coating on Ti surface deposited with magnetron sputtering or laser texturing technique. The hybrid treatment was realized in Al2O3 fluidized bed reactor with air atmosphere, at 640 °C for 8 h and 12 h. At the same time, magnetron sputtering with the use of TiO2 target at a pressure of 3 × 102 mbar and laser surface texturing treatment with Nd:YAG λ = 1064 nm was performed. In order to investigate the effects of hybrid oxidation, microscopic (AFM, CLSM, SEM/SEM-EDX), spectroscopic (RS) and X-ray investigations (GID-XRD) were performed. Applied hybrid technique made possible to combine the effects of the generated layers and to reduce the stresses in the area of the PVD coating/oxidized Ti substrate interface. Furthermore, Raman spectroscopy results obtained at oxide layers manufactured with different variants of oxidation allowed detailed analysis of the created oxides. The coatings have shown structure with a Tiα(O) diffusion zone, a TiO2 rutile and anatase oxide zone deposited and textured on the substrate. Phase composition and morphology of these oxides is essential for the osseointegration process i.e. intensity of hydroxyapatite growing on the implant surface. Performed processes influenced the surface roughness parameter and cause the increase of substrate functional properties, which are important for biomedical applications.

  9. Multifunctional epitaxial systems on silicon substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singamaneni, Srinivasa Rao, E-mail: ssingam@ncsu.edu; Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709; Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968

    2016-09-15

    Multifunctional heterostructures can exhibit a wide range of functional properties, including colossal magneto-resistance, magnetocaloric, and multiferroic behavior, and can display interesting physical phenomena including spin and charge ordering and strong spin-orbit coupling. However, putting this functionality to work remains a challenge. To date, most of the work reported in the literature has dealt with heterostructures deposited onto closely lattice matched insulating substrates such as DyScO{sub 3}, SrTiO{sub 3} (STO), or STO buffered Si(100) using concepts of lattice matching epitaxy (LME). However, strain in heterostructures grown by LME is typically not fully relaxed and the layers contain detrimental defects such asmore » threading dislocations that can significantly degrade the physical properties of the films and adversely affect the device characteristics. In addition, most of the substrates are incompatible with existing CMOS-based technology, where Si (100) substrates dominate. This review discusses recent advances in the integration of multifunctional oxide and non-oxide materials onto silicon substrates. An alternative thin film growth approach, called “domain matching epitaxy,” is presented which identifies approaches for minimizing lattice strain and unwanted defects in large misfit systems (7%–25% and higher). This approach broadly allows for the integration of multifunctional materials onto silicon substrates, such that sensing, computation, and response functions can be combined to produce next generation “smart” devices. In general, pulsed laser deposition has been used to epitaxially grow these materials, although the concepts developed here can be extended to other deposition techniques, as well. It will be shown that TiN and yttria-stabilized zirconia template layers provide promising platforms for the integration of new functionality into silicon-based computer chips. This review paper reports on a number of thin

  10. Method for making an aluminum or copper substrate panel for selective absorption of solar energy

    NASA Technical Reports Server (NTRS)

    Roberts, M. L.; Sharpe, M. H.; Krupnick, A. C. (Inventor)

    1978-01-01

    A panel is described for selectively absorbing solar energy comprising an aluminum substrate. A zinc layer was covered by a layer of nickel and an outer layer of solar energy absorbing nickel oxide or a copper substrate with a nickel layer. A layer of solar energy absorbing nickel oxide distal from the copper substrate was included. A method for making these panels is disclosed.

  11. Electro-deposition of superconductor oxide films

    DOEpatents

    Bhattacharya, Raghu N.

    2001-01-01

    Methods for preparing high quality superconducting oxide precursors which are well suited for further oxidation and annealing to form superconducting oxide films. The method comprises forming a multilayered superconducting precursor on a substrate by providing an electrodeposition bath comprising an electrolyte medium and a substrate electrode, and providing to the bath a plurality of precursor metal salts which are capable of exhibiting superconducting properties upon subsequent treatment. The superconducting precursor is then formed by electrodepositing a first electrodeposited (ED) layer onto the substrate electrode, followed by depositing a layer of silver onto the first electrodeposited (ED) layer, and then electrodepositing a second electrodeposited (ED) layer onto the Ag layer. The multilayered superconducting precursor is suitable for oxidation at a sufficient annealing temperature in air or an oxygen-containing atmosphere to form a crystalline superconducting oxide film.

  12. Thermal Catalytic Oxidation of Airborne Contaminants by a Reactor Using Ultra-Short Channel Length, Monolithic Catalyst Substrates

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Tomes, K. M.; Tatara, J. D.

    2005-01-01

    Contaminated air, whether in a crewed spacecraft cabin or terrestrial work and living spaces, is a pervasive problem affecting human health, performance, and well being. The need for highly effective, economical air quality processes spans a wide range of terrestrial and space flight applications. Typically, air quality control processes rely on absorption-based processes. Most industrial packed-bed adsorption processes use activated carbon. Once saturated, the carbon is either dumped or regenerated. In either case, the dumped carbon and concentrated waste streams constitute a hazardous waste that must be handled safely while minimizing environmental impact. Thermal catalytic oxidation processes designed to address waste handling issues are moving to the forefront of cleaner air quality control and process gas decontamination processes. Careful consideration in designing the catalyst substrate and reactor can lead to more complete contaminant destruction and poisoning resistance. Maintenance improvements leading to reduced waste handling and process downtime can also be realized. Performance of a prototype thermal catalytic reaction based on ultra-short waste channel, monolith catalyst substrate design, under a variety of process flow and contaminant loading conditions, is discussed.

  13. Initial growth processes in the epitaxy of Ge with GeH{sub 4} on oxidized Si substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angermeier, D.; Kuhn, W.S.; Druihle, R.

    1997-02-01

    The heteroepitaxial growth of Ge on (100) Si in a horizontal, atmospheric pressure metallorganic vapor-phase epitaxy reactor is reported using germane GeH{sub 4} (0.1% in H{sub 2}). A particularly crucial parameter for germanium deposition on silicon is the time for the onset of epitaxial growth, the incubation time. The time was measured at substrate temperatures between 450 and 600{degree}C. At a substrate temperature of 450{degree}C an incubation time of 520 s was found and for the subsequent epitaxy growth rates of 50 nm/min were determined by Nomarski microscopy and electron diffraction. The existence of residual oxide in the reactor chambermore » forming an in situ SiO{sub 2} layer was evaluated by x-ray photoemission spectroscopy. To obtain a more thorough understanding of the gas- and solid-phase composition of Ge, Si, and oxygen the Gibbs energy of the system was calculated for various growth temperatures. It was concluded that SiO{sub 2} molecules are reduced by GeH{sub 4} molecules during the incubation period.« less

  14. Fluorine compounds for doping conductive oxide thin films

    DOEpatents

    Gessert, Tim; Li, Xiaonan; Barnes, Teresa M; Torres, Jr., Robert; Wyse, Carrie L

    2013-04-23

    Methods of forming a conductive fluorine-doped metal oxide layer on a substrate by chemical vapor deposition are described. The methods may include heating the substrate in a processing chamber, and introducing a metal-containing precursor and a fluorine-containing precursor to the processing chamber. The methods may also include adding an oxygen-containing precursor to the processing chamber. The precursors are reacted to deposit the fluorine-doped metal oxide layer on the substrate. Methods may also include forming the conductive fluorine-doped metal oxide layer by plasma-assisted chemical vapor deposition. These methods may include providing the substrate in a processing chamber, and introducing a metal-containing precursor, and a fluorine-containing precursor to the processing chamber. A plasma may be formed that includes species from the metal-containing precursor and the fluorine-containing precursor. The species may react to deposit the fluorine-doped metal oxide layer on the substrate.

  15. Complex oxides useful for thermoelectric energy conversion

    DOEpatents

    Majumdar, Arunava [Orinda, CA; Ramesh, Ramamoorthy [Moraga, CA; Yu, Choongho [College Station, TX; Scullin, Matthew L [Berkeley, CA; Huijben, Mark [Enschede, NL

    2012-07-17

    The invention provides for a thermoelectric system comprising a substrate comprising a first complex oxide, wherein the substrate is optionally embedded with a second complex oxide. The thermoelectric system can be used for thermoelectric power generation or thermoelectric cooling.

  16. Hole injection and dielectric breakdown in 6H-SiC and 4H-SiC metal-oxide-semiconductor structures during substrate electron injection via Fowler-Nordheim tunneling

    NASA Astrophysics Data System (ADS)

    Samanta, Piyas; Mandal, Krishna C.

    2015-12-01

    Hole injection into silicon dioxide (SiO2) films (8-40 nm thick) is investigated for the first time during substrate electron injection via Fowler-Nordheim (FN) tunneling in n-type 4H- and 6H-SiC (silicon carbide) based metal-oxide-semiconductor (MOS) structures at a wide range of temperatures (T) between 298 and 598 K and oxide electric fields Eox from 6 to 10 MV/cm. Holes are generated in heavily doped n-type polycrystalline silicon (n+ -polySi) gate serving as the anode as well as in the bulk silicon dioxide (SiO2) film via hot-electron initiated band-to-band ionization (BTBI). In absence of oxide trapped charges, it is shown that at a given temperature, the hole injection rates from either of the above two mechanisms are higher in n-4H-SiC MOS devices than those in n-6H-SiC MOS structures when compared at a given Eox and SiO2 thickness (tox). On the other hand, relative to n-4H-SiC devices, n-6H-SiC structures exhibit higher hole injection rates for a given tox during substrate electron injection at a given FN current density je,FN throughout the temperature range studied here. These two observations clearly reveal that the substrate material (n-6H-SiC and n-4H-SiC) dependencies on time-to-breakdown (tBD) or injected charge (electron) to breakdown (QBD) of the SiO2 film depend on the mode of FN injections (constant field/voltage and current) from the substrate which is further verified from the rigorous device simulation as well.

  17. Versatile peroxidase of Bjerkandera fumosa: substrate and inhibitor specificity.

    PubMed

    Pozdnyakova, Natalia; Makarov, Oleg; Chernyshova, Marina; Turkovskaya, Olga; Jarosz-Wilkolazka, Anna

    2013-01-10

    The inhibitor and substrate specificities of versatile peroxidase from Bjerkandera fumosa (VPBF) were studied. Two different effects were found: NaN(3), Tween-80, anthracene, and fluorene decreased the activity of VPBF, but p-aminobenzoic acid increased it. A mixed mechanism of effector influence on the activity of this enzyme was shown. The catalytic properties of VPBF in the oxidation of mono- and polycyclic aromatic compounds were studied also. 2,7-Diaminofluorene, ABTS, veratryl alcohol, and syringaldazine can be oxidized by VPBF in two ways: either directly by the enzyme or by diffusible chelated Mn(3+) as an oxidizing agent. During VPBF oxidation of 2,7-diaminofluorene, both with and without Mn(2+), biphasic kinetics with apparent saturation in both micromolar and millimolar ranges were obtained. In the case of ABTS, inhibition of VPBF activity by an excess of substrate was observed. Direct oxidation of p-aminobenzoic acid by versatile peroxidase was found for the first time. The oxidation of three- and four-ring PAHs by VPBF was investigated, and the oxidation of anthracene, phenanthrene, fluorene, pyrene, chrysene, and fluoranthene was shown. The products of PAH oxidation (9,10-anthraquinone, 9,10-phenanthrenequinone, and 9-fluorenone) catalyzed by VPBF were identified. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Process for producing metal compounds from graphite oxide

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    2000-01-01

    A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon, metal, chloride, and oxygen This intermediary product can be flier processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon, metal carbonate, and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide; b) in an inert environment to produce metal oxide on carbon substrate; c) in a reducing environment to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.

  19. Process for Producing Metal Compounds from Graphite Oxide

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    2000-01-01

    A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon. metal. chloride. and oxygen This intermediary product can be flier processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon. metal carbonate. and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide: b) in an inert environment to produce metal oxide on carbon substrate: c) in a reducing environment. to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.

  20. Molecular system bioenergetics: regulation of substrate supply in response to heart energy demands.

    PubMed

    Saks, Valdur; Favier, Roland; Guzun, Rita; Schlattner, Uwe; Wallimann, Theo

    2006-12-15

    This review re-evaluates regulatory aspects of substrate supply in heart. In aerobic heart, the preferred substrates are always free fatty acids, and workload-induced increase in their oxidation is observed at unchanged global levels of ATP, phosphocreatine and AMP. Here, we evaluate the mechanisms of regulation of substrate supply for mitochondrial respiration in muscle cells, and show that a system approach is useful also for revealing mechanisms of feedback signalling within the network of substrate oxidation and particularly for explaining the role of malonyl-CoA in regulation of fatty acid oxidation in cardiac muscle. This approach shows that a key regulator of fatty acid oxidation is the energy demand. Alterations in malonyl-CoA would not be the reason for, but rather the consequence of, the increased fatty acid oxidation at elevated workloads, when the level of acetyl-CoA decreases due to shifts in the kinetics of the Krebs cycle. This would make malonyl-CoA a feedback regulator that allows acyl-CoA entry into mitochondrial matrix space only when it is needed. Regulation of malonyl-CoA levels by AMPK does not seem to work as a master on-off switch, but rather as a modulator of fatty acid import.

  1. Oxidation of monohydric phenol substrates by tyrosinase: effect of dithiothreitol on kinetics.

    PubMed

    Naish-Byfield, S; Cooksey, C J; Riley, P A

    1994-11-15

    The effect of thiol compounds on the monophenolase activity of tyrosinase was investigated using 4-hydroxyanisole as the substrate and dithiothreitol (DTT) as the model thiol compound. We have demonstrated three actions of DTT on tyrosinase-catalysed reactions: (1) direct reduction of the copper at the active site of the enzyme; (2) generation of secondary, oxidizable species by adduct formation with the o-quinone reaction product, 4-MOB, which leads to an increase in the total oxygen utilization by the reaction system; and (3) reversible inhibition of the enzyme. We confirm our previous observation that, at approx. 10 mol of DTT/mol of enzyme, the lag phase associated with monohydric phenol oxidation by tyrosinase is abolished. We suggest that this is due to reduction of the copper at the active site of the enzyme by DTT, since (a) reduction of active-site copper in situ by DTT was demonstrated by [Cu(I)]2-carbon monoxide complex formation and (b) abolition of the lag at low DTT concentration occurs without effect on the maximum rate of reaction or on the total amount of oxygen utilized. At concentrations of DTT above that required to abolish the lag, we found that the initial velocity of the reaction increased with increasing DTT, with a concomitant increase in the total oxygen utilization. This is due to the formation of DTT-4-methoxy-o-benzoquinone (4-MOB) adducts which provide additional dihydric phenol substrate either directly or by reducing nascent 4-MOB. We present n.m.r. evidence for the formation of mono- and di-aromatic DTT adducts with 4-MOB, consistent with a suggested reoxidation scheme in the presence of tyrosinase. Inhibition of the enzyme at concentrations of DTT above 300 pmol/unit of enzyme was released on exhaustion of DTT by adduct formation with 4-MOB as it was generated.

  2. Change in postprandial substrate oxidation after a high fructose meal is related to Body Mass Index (BMI) in Healthy Men

    PubMed Central

    Smeraglio, Anne C.; Kennedy, Emily K.; Horgan, Angela; Purnell, Jonathan Q.; Gillingham, Melanie B.

    2013-01-01

    Oral fructose decreases fat oxidation and increases carbohydrate (CHO) oxidation in obese subjects, but the metabolic response to fructose in lean individuals is less well understood. The purpose of this study was to assess the effects of a single fructose-rich mixed meal on substrate oxidation in young healthy non-obese males. We hypothesized that a decrease in fat oxidation and an increase in carbohydrate oxidation would be observed following a fructose-rich mixed meal compared to a glucose-rich mixed meal. Twelve healthy males, normal to overweight and age 23–31 years old, participated in a double-blind, cross-over study. Each participant completed two study visits, eating a mixed meal containing 30% of the calories from either fructose or glucose. Blood samples for glucose, insulin, triglycerides, and leptin as well as gas exchange by indirect calorimetry were measured intermittently for 7 hours. Serum insulin was higher after a fructose mixed meal but plasma glucose, plasma leptin and serum triglycerides were not different. Mean postprandial respiratory quotient and estimated fat oxidation did not differ between the fructose and glucose meals. The change in fat oxidation between the fructose and glucose rich meals negatively correlated with BMI (r=−0.59, P=0.04 and r=−0.59, P=0.04 at the 4 and 7 hour time points, respectively). In healthy non-obese males, BMI correlates with altered postprandial fat oxidation after a high-fructose mixed meal. The metabolic response to a high fructose meal may be modulated by BMI. PMID:23746558

  3. Thin Film Transistors On Plastic Substrates

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.; Sigmon, Thomas W.; Aceves, Randy C.

    2004-01-20

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.

  4. Stability of perovskite solar cells on flexible substrates

    NASA Astrophysics Data System (ADS)

    Tam, Ho Won; Chen, Wei; Liu, Fangzhou; He, Yanling; Leung, Tik Lun; Wang, Yushu; Wong, Man Kwong; Djurišić, Aleksandra B.; Ng, Alan Man Ching; He, Zhubing; Chan, Wai Kin; Tang, Jinyao

    2018-02-01

    Perovskite solar cells are emerging photovoltaic technology with potential for low cost, high efficiency devices. Currently, flexible devices efficiencies over 15% have been achieved. Flexible devices are of significant interest for achieving very low production cost via roll-to-roll processing. However, the stability of perovskite devices remains a significant challenge. Unlike glass substrate which has negligible water vapor transmission rate (WVTR), polymeric flexible film substrates suffer from high moisture permeability. As PET and PEN flexible substrates exhibit higher water permeability then glass, transparent flexible backside encapsulation should be used to maximize light harvesting in perovskite layer while WVTR should be low enough. Wide band gap materials are transparent in the visible spectral range low temperature processable and can be a moisture barrier. For flexible substrates, approaches like atomic layer deposition (ALD) and low temperature solution processing could be used for metal oxide deposition. In this work, ALD SnO2, TiO2, Al2O3 and solution processed spin-on-glass was used as the barrier layer on the polymeric side of indium tin oxide (ITO) coated PEN substrates. The UV-Vis transmission spectra of the prepared substrates were investigated. Perovskite solar cells will be fabricated and stability of the devices were encapsulated with copolymer films on the top side and tested under standard ISOS-L-1 protocol and then compared to the commercial unmodified ITO/PET or ITO/PEN substrates. In addition, devices with copolymer films laminated on both sides successfully surviving more than 300 hours upon continuous AM1.5G illumination were demonstrated.

  5. Effect of charged impurities and morphology on oxidation reactivity of graphene

    NASA Astrophysics Data System (ADS)

    Yamamoto, Mahito; Cullen, William; Einstein, Theodore; Fuhrer, Michael

    2012-02-01

    Chemical reactivity of single layer graphene supported on a substrate is observed to be enhanced over thicker graphene. Possible mechanisms for the enhancement are Fermi level fluctuations due to ionized impurities on the substrate, and structural deformation of graphene induced by coupling to the substrate geometry. Here, we study the substrate-dependent oxidation reactivity of graphene, employing various substrates such as SiO2, mica, SiO2 nanoparticle thin film, and hexagonal boron nitride, which exhibit different charged impurity concentrations and surface roughness. Graphene is prepared on each substrate via mechanical exfoliation and oxidized in Ar/O2 mixture at temperatures from 400-600 ^oC. After oxidation, the Raman spectrum of graphene is measured, and the Raman D to G peak ratio is used to quantify the density of point defects introduced by oxidation. We will discuss the correlations among the defect density in oxidized graphene, substrate charge inhomogeneity, substrate corrugations, and graphene layer thickness. This work has been supported by the University of Maryland NSF-MRSEC under Grant No. DMR 05-20471 with supplemental funding from NRI, and NSF-DMR 08-04976.

  6. Osteogenic potential of in situ TiO2 nanowire surfaces formed by thermal oxidation of titanium alloy substrate

    NASA Astrophysics Data System (ADS)

    Tan, A. W.; Ismail, R.; Chua, K. H.; Ahmad, R.; Akbar, S. A.; Pingguan-Murphy, B.

    2014-11-01

    Titanium dioxide (TiO2) nanowire surface structures were fabricated in situ by a thermal oxidation process, and their ability to enhance the osteogenic potential of primary osteoblasts was investigated. Human osteoblasts were isolated from nasal bone and cultured on a TiO2 nanowires coated substrate to assess its in vitro cellular interaction. Bare featureless Ti-6Al-4V substrate was used as a control surface. Initial cell adhesion, cell proliferation, cell differentiation, cell mineralization, and osteogenic related gene expression were examined on the TiO2 nanowire surfaces as compared to the control surfaces after 2 weeks of culturing. Cell adhesion and cell proliferation were assayed by field emission scanning electron microscope (FESEM) and Alamar Blue reduction assay, respectively. The nanowire surfaces promoted better cell adhesion and spreading than the control surface, as well as leading to higher cell proliferation. Our results showed that osteoblasts grown onto the TiO2 nanowire surfaces displayed significantly higher production levels of alkaline phosphatase (ALP), extracellular (ECM) mineralization and genes expression of runt-related transcription factor (Runx2), bone sialoprotein (BSP), ostoepontin (OPN) and osteocalcin (OCN) compared to the control surfaces. This suggests the potential use of such surface modification on Ti-6Al-4V substrates as a promising means to improve the osteointegration of titanium based implants.

  7. AIBA as Free Radical Initiator for Abrasive-Free Polishing of Hard Disk Substrate

    NASA Astrophysics Data System (ADS)

    Lei, Hong; Ren, Xiaoyan

    2015-04-01

    In order to optimize the existing slurry for abrasive-free polishing (AFP) of a hard disk substrate, a water-soluble free radical initiator, 2,2'-azobis (2-methylpropionamidine) dihydrochloride (AIBA) was introduced into H2O2-based slurry in the present work. Polishing experiment results with AIBA in the H2O2 slurry indicate that the material removal rate (MRR) increases and the polished surface has a lower surface roughness. The mechanism of AIBA in AFP was investigated using electron spin-resonance spectroscopy and UV-Visible analysis, which showed that the concentration of hydroxyl radical (a stronger oxidizer than H2O2) in the slurry was enhanced in the present of AIBA. The structure of the film formed on the substrate surface was investigated by scanning electron microscopy, auger electron spectroscopy and electrochemical impedance spectroscopy technology, showing that a looser and porous oxide film was found on the hard disk substrate surface when treated with the H2O2-AIBA slurry. Furthermore, potentiodynamic polarization tests show that the H2O2-AIBA slurry has a higher corrosion current density, implying that a fast dissolution reaction can occur on the substrate surface. Therefore, we can conclude that the stronger oxidation ability, loose oxide film on the substrate surface, and the higher corrosion-wear rate of the H2O2-AIBA slurry lead to the higher MRR.

  8. Understanding and improving the low optical emission of InGaAs quantum wells grown on oxidized patterned (001) silicon substrate

    NASA Astrophysics Data System (ADS)

    Roque, J.; Haas, B.; David, S.; Rochat, N.; Bernier, N.; Rouvière, J. L.; Salem, B.; Gergaud, P.; Moeyaert, J.; Martin, M.; Bertin, F.; Baron, T.

    2018-05-01

    In 0.3 Ga 0.7 As quantum wells (QW) embedded in AlGaAs barriers and grown on oxidized patterned (001) silicon substrates by metalorganic chemical vapor deposition using the aspect ratio trapping method are studied. An appropriate method combining cathodoluminescence and high resolution scanning transmission electron microscopy characterization is performed to spatially correlate the optical and structural properties of the QW. A triple period (TP) ordering along the ⟨111⟩ direction induced by the temperature decrease during the growth to favor indium incorporation and aligned along the oxidized patterns is observed in the QW. Local ordering affects the band gap and contributes to the decrease of the optical emission efficiency. Using thermal annealing, we were able to remove the TP ordering and improve the QW optical emission by two orders of magnitude.

  9. Modeling Geometric Arrangements of TiO2-Based Catalyst Substrates and Isotropic Light Sources to Enhance the Efficiency of a Photocatalystic Oxidation (PCO) Reactor

    NASA Technical Reports Server (NTRS)

    Richards, Jeffrey T.; Levine, Lanfang H.; Husk, Geoffrey K.

    2011-01-01

    The closed confined environments of the ISS, as well as in future spacecraft for exploration beyond LEO, provide many challenges to crew health. One such challenge is the availability of a robust, energy efficient, and re-generable air revitalization system that controls trace volatile organic contaminants (VOCs) to levels below a specified spacecraft maximum allowable concentration (SMAC). Photocatalytic oxidation (PCO), which is capable of mineralizing VOCs at room temperature and of accommodating a high volumetric flow, is being evaluated as an alternative trace contaminant control technology. In an architecture of a combined air and water management system, placing a PCO unit before a condensing heat exchanger for humidity control will greatly reduce the organic load into the humidity condensate loop ofthe water processing assembly (WPA) thereby enhancing the life cycle economics ofthe WPA. This targeted application dictates a single pass efficiency of greater than 90% for polar VOCs. Although this target was met in laboratory bench-scaled reactors, no commercial or SBIR-developed prototype PCO units examined to date have achieved this goal. Furthermore, the formation of partial oxidation products (e.g., acetaldehyde) was not eliminated. It is known that single pass efficiency and partial oxidation are strongly dependent upon the contact time and catalyst illumination, hence the requirement for an efficient reactor design. The objective of this study is to maximize the apparent contact time and illuminated catalyst surface area at a given reactor volume and volumetric flow. In this study, a Ti02-based photocatalyst is assumed to be immobilized on porous substrate panels and illumination derived from linear isotropic light sources. Mathematical modeling using computational fluid dynamics (CFD) analyses were performed to investigate the effect of: 1) the geometry and configuration of catalyst-coated substrate panels, 2) porosity of the supporting substrate, and 3

  10. Spectroscopic Ellipsometry Measurements of Wurtzite Gallium Nitride Surfaces as a Function of Buffered Oxide Etch Substrate Submersion

    NASA Astrophysics Data System (ADS)

    Szwejkowski, Chester; Constantin, Costel; Duda, John; Hopkins, Patrick; Optical Studies of GaN interfaces Collaboration

    2013-03-01

    Gallium nitride (GaN) is considered the most important semiconductor after the discovery of silicon. Understanding the optical properties of GaN surfaces is imperative in determining the utility and applicability of this class of materials to devices. In this work, we present preliminary results of spectroscopic ellipsometry measurements as a function of surface root mean square (RMS). We used commercially available 5mm x 5mm, one side polished GaN (3-7 μm)/Sapphire (430 μm) substrates that have a wurtzite crystal structure and they are slightly n-type doped. The GaN substrates were cleaned with Acetone (20 min)/Isopropanol(20 min)/DI water (20 min) before they were submerged into Buffered Oxide Etch (BOE) for 10s - 60s steps. This BOE treatment produced RMS values of 1-30 nm as measured with an atomic force microscope. Preliminary qualitative ellipsometric measurements show that the complex refractive index and the complex dielectric function decrease with an increase of RMS. More measurements need to be done in order to provide explicit quantitative results. This work was supported by the 4-VA Collaborative effort between James Madison University and University of Virginia.

  11. Substrate Selection for Fundamental Studies of Electrocatalysts and Photoelectrodes: Inert Potential Windows in Acidic, Neutral, and Basic Electrolyte

    PubMed Central

    Gorlin, Yelena; Jaramillo, Thomas F.

    2014-01-01

    The selection of an appropriate substrate is an important initial step for many studies of electrochemically active materials. In order to help researchers with the substrate selection process, we employ a consistent experimental methodology to evaluate the electrochemical reactivity and stability of seven potential substrate materials for electrocatalyst and photoelectrode evaluation. Using cyclic voltammetry with a progressively increased scan range, we characterize three transparent conducting oxides (indium tin oxide, fluorine-doped tin oxide, and aluminum-doped zinc oxide) and four opaque conductors (gold, stainless steel 304, glassy carbon, and highly oriented pyrolytic graphite) in three different electrolytes (sulfuric acid, sodium acetate, and sodium hydroxide). We determine the inert potential window for each substrate/electrolyte combination and make recommendations about which materials may be most suitable for application under different experimental conditions. Furthermore, the testing methodology provides a framework for other researchers to evaluate and report the baseline activity of other substrates of interest to the broader community. PMID:25357131

  12. Substrate Selection for Fundamental Studies of Electrocatalysts and Photoelectrodes: Inert Potential Windows in Acidic, Neutral, and Basic Electrolyte

    DOE PAGES

    Benck, Jesse D.; Pinaud, Blaise A.; Gorlin, Yelena; ...

    2014-10-30

    The selection of an appropriate substrate is an important initial step for many studies of electrochemically active materials. In order to help researchers with the substrate selection process, we employ a consistent experimental methodology to evaluate the electrochemical reactivity and stability of seven potential substrate materials for electrocatalyst and photoelectrode evaluation. Using cyclic voltammetry with a progressively increased scan range, we characterize three transparent conducting oxides (indium tin oxide, fluorine-doped tin oxide, and aluminum-doped zinc oxide) and four opaque conductors (gold, stainless steel 304, glassy carbon, and highly oriented pyrolytic graphite) in three different electrolytes (sulfuric acid, sodium acetate, andmore » sodium hydroxide). Here, we determine the inert potential window for each substrate/electrolyte combination and make recommendations about which materials may be most suitable for application under different experimental conditions. Furthermore, the testing methodology provides a framework for other researchers to evaluate and report the baseline activity of other substrates of interest to the broader community.« less

  13. Directed-Assembly of Carbon Nanotubes on Soft Substrates for Flexible Biosensor Array

    NASA Astrophysics Data System (ADS)

    Lee, Hyoung Woo; Koh, Juntae; Lee, Byung Yang; Kim, Tae Hyun; Lee, Joohyung; Hong, Seunghun; Yi, Mihye; Jhon, Young Min

    2009-03-01

    We developed a method to selectively assemble and align carbon nanotubes (CNTs) on soft substrates for flexible biosensors. In this strategy, thin oxide layer was deposited on soft substrates via low temperature plasma enhanced chemical vapor deposition, and linker-free assembly process was applied onto the oxide surface where the assembly of carbon nanotubes was guided by methyl-terminated molecular patterns on the oxide surface. The electrical characterization of the fabricated CNT devices exhibited typical p-type gating effect and 1/f noise behavior. The bare oxide regions near CNTs were functionalized with glutamate oxidase to fabricate selective biosensors to detect two forms of glutamate substances existing in different situations: L-glutamic acid, a neuro-transmitting material, and monosodium glutamate, a food additive.

  14. Statistical assessment of dumpsite soil suitability to enhance methane bio-oxidation under interactive influence of substrates and temperature.

    PubMed

    Bajar, Somvir; Singh, Anita; Kaushik, C P; Kaushik, Anubha

    2017-05-01

    Biocovers are considered as the most effective and efficient way to treat methane (CH 4 ) emission from dumpsites and landfills. Active methanotrophs in the biocovers play a crucial role in reduction of emissions through microbiological methane oxidation. Several factors affecting methane bio-oxidation (MOX) have been well documented, however, their interactive effect on the oxidation process needs to be explored. Therefore, the present study was undertaken to investigate the suitability of a dumpsite soil to be employed as biocover, under the influence of substrate concentrations (CH 4 and O 2 ) and temperature at variable incubation periods. Statistical design matrix of Response Surface Methodology (RSM) revealed that MOX rate up to 69.58μgCH 4 g -1 dw h -1 could be achieved under optimum conditions. MOX was found to be more dependent on CH 4 concentration at higher level (30-40%, v/v), in comparison to O 2 concentration. However, unlike other studies MOX was found in direct proportionality relationship with temperature within a range of 25-35°C. The results obtained with the dumpsite soil biocover open up a new possibility to provide improved, sustained and environmental friendly systems to control even high CH 4 emissions from the waste sector. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Thermal bubble inkjet printing of water-based graphene oxide and graphene inks on heated substrate

    NASA Astrophysics Data System (ADS)

    Huang, Simin; Shen, Ruoxi; Qian, Bo; Li, Lingying; Wang, Wenhao; Lin, Guanghui; Zhang, Xiaofei; Li, Peng; Xie, Yonglin

    2018-04-01

    Stable-jetting water-based graphene oxide (GO) and graphene (GR) inks without any surfactant or stabilizer are prepared from an unstable-jetting water-based starting solvent, with many thermal bubble inkjet satellite drops, by simply increasing the material concentration. The concentration-dependent thermal bubble inkjet droplet generation process is studied in detail. To overcome the low concentration properties of water-based thermal bubble inkjet inks, the substrate temperature is tuned below 60 °C to achieve high-quality print lines. Due to the difference in hydrophilicity and hydrophobicity of the 2D materials, the printed GO lines show a different forming mechanism from that of the GR lines. The printed GO lines are reduced by thermal annealing and by ascorbic acid, respectively. The reduced GO lines exhibit electrical conductivity of the same order of magnitude as that of the GR lines.

  16. Buried oxide layer in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  17. Calcium regulation of oxidative phosphorylation in rat skeletal muscle mitochondria.

    PubMed

    Kavanagh, N I; Ainscow, E K; Brand, M D

    2000-02-24

    Activation of oxidative phosphorylation by physiological levels of calcium in mitochondria from rat skeletal muscle was analysed using top-down elasticity and regulation analysis. Oxidative phosphorylation was conceptually divided into three subsystems (substrate oxidation, proton leak and phosphorylation) connected by the membrane potential or the protonmotive force. Calcium directly activated the phosphorylation subsystem and (with sub-saturating 2-oxoglutarate) the substrate oxidation subsystem but had no effect on the proton leak kinetics. The response of mitochondria respiring on 2-oxoglutarate at two physiological concentrations of free calcium was quantified using control and regulation analysis. The partial integrated response coefficients showed that direct stimulation of substrate oxidation contributed 86% of the effect of calcium on state 3 oxygen consumption, and direct activation of the phosphorylation reactions caused 37% of the increase in phosphorylation flux. Calcium directly activated phosphorylation more strongly than substrate oxidation (78% compared to 45%) to achieve homeostasis of mitochondrial membrane potential during large increases in flux.

  18. Alumina nanoparticle/polymer nanocomposite dielectric for flexible amorphous indium-gallium-zinc oxide thin film transistors on plastic substrate with superior stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Hsin-Cheng; Pei, Zingway, E-mail: zingway@dragon.nchu.edu.tw; Graduate Institute of Optoelectronic Engineering, National Chung Hsing University, Taichung 40227, Taiwan

    In this study, the Al{sub 2}O{sub 3} nanoparticles were incorporated into polymer as a nono-composite dielectric for used in a flexible amorphous Indium-Gallium-Zinc Oxide (a-IGZO) thin-film transistor (TFT) on a polyethylene naphthalate substrate by solution process. The process temperature was well below 100 °C. The a-IGZO TFT exhibit a mobility of 5.13 cm{sup 2}/V s on the flexible substrate. After bending at a radius of 4 mm (strain = 1.56%) for more than 100 times, the performance of this a-IGZO TFT was nearly unchanged. In addition, the electrical characteristics are less altered after positive gate bias stress at 10 V for 1500 s. Thus, this technology ismore » suitable for use in flexible displays.« less

  19. Influence of expression of UCP3, PLIN1 and PPARG2 on the oxidation of substrates after hypocaloric dietary intervention.

    PubMed

    Cortes de Oliveira, Cristiana; Nicoletti, Carolina Ferreira; Pinhel, Marcela Augusta de Souza; de Oliveira, Bruno Affonso Parenti; Quinhoneiro, Driele Cristina Gomes; Noronha, Natália Yumi; Fassini, Priscila Giacomo; Marchini, Júlio Sérgio; da Silva Júnior, Wilson Araújo; Salgado Júnior, Wilson; Nonino, Carla Barbosa

    2018-08-01

    In addition to environmental and psychosocial factors, it is known that genetic factors can also influence the regulation of energy metabolism, body composition and determination of excess weight. The objective of this study was to evaluate the influence of UCP3, PLIN1 and PPARG2 genes on the substrates oxidation in women with grade III obesity after hypocaloric dietary intervention. This is a longitudinal study with 21 women, divided into two groups: Intervention Group (G1): 11 obese women (Body Mass Index (BMI) ≥40 kg/m 2 ), and Control Group (G2): 10 eutrophic women (BMI between 18.5 kg/m 2 and 24.9 kg/m 2 ). Weight (kg), height (m), BMI (kg/m 2 ), substrate oxidation (by Indirect Calorimetry) and abdominal subcutaneous adipose tissue were collected before and after the intervention. For the dietary intervention, the patients were hospitalized for 6 weeks receiving 1200 kcal/day. There was a significant weight loss (8.4 ± 4.3 kg - 5.2 ± 1.8%) and reduction of UCP3 expression after hypocaloric dietary intervention. There was a positive correlation between carbohydrate oxidation and UCP3 (r = 0.609; p = 0.04), PLIN1 (r = 0.882; p = 0.00) and PPARG2 (r = 0.791; p = 0.00) expression before dietary intervention and with UCP3 (r = 0.682; p = 0.02) and PLIN1 (r = 0.745; p = 0.00) genes after 6 weeks of intervention. There was a negative correlation between lipid oxidation and PLIN1 (r = -0.755; p = 0.00) and PPARG2 (r = 0.664; p = 0.02) expression before dietary intervention and negative correlation with PLIN1 (r = 0.730; p = 0.02) expression after 6 weeks of hypocaloric diet. Hypocaloric diet reduces UCP3 expression in individuals with obesity and the UCP3, PLIN1 and PPARG2 expression correlate positively with carbohydrate oxidation and negatively with lipid oxidation. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  20. The role of glutamine and other alternate substrates as energy sources in the fetal rat lung type II cell.

    PubMed

    Fox, R E; Hopkins, I B; Cabacungan, E T; Tildon, J T

    1996-07-01

    Glucose has been thought to be the primary substrate for energy metabolism in the developing lung; however, alternate substrates are used for energy metabolism in other organs. To examine the role of alternate substrates in the lung, we measured rates of oxidation of glutamine, glucose, lactate, and 3-hydroxybutyrate in type II pneumocytes isolated from d 19 fetal rat lungs by measuring the production of 14CO2 from labeled substrates. Glutamine had a rate of 24.36 +/- 4.51 nmol 14CO2 produced/ h/mg of protein (mean +/- SEM), whereas lactate had a significantly higher rate, 40.29 +/- 4.42. 3-Hydroxybutyrate had a rate of 14.91 +/- 1.93. The rate of glucose oxidation was 2.13 +/- 0.36, significantly lower than that of glutamine. To examine the interactions of substrates normally found in the intracellular milieu, we measured the effect of unlabeled substrates as competitors on labeled substrate. This identifies multiple metabolic compartments of energy metabolism. Glucose, but not lactate, inhibited the oxidation of glutamine, suggesting a compartmentation of tricarboxylic acid cycle activity, rather than simple dilution by glucose. Glucose and lactate had reciprocal inhibition. Our data suggest at least two separate compartments in the type II cells for substrate oxidation, one for glutamine metabolism and a second for glucose metabolism. In summary, we have documented that glutamine and other alternate substrates are oxidized preferentially over glucose for energy metabolism in the d 19 fetal rat lung type II pneumocyte. In addition, we have delineated some of the compartmentation that occurs within the developing type II cell, which may determine how these substrates are used.

  1. Enzymatic Browning in Sugar Beet Leaves (Beta vulgaris L.): Influence of Caffeic Acid Derivatives, Oxidative Coupling, and Coupled Oxidation.

    PubMed

    Vissers, Anne; Kiskini, Alexandra; Hilgers, Roelant; Marinea, Marina; Wierenga, Peter Alexander; Gruppen, Harry; Vincken, Jean-Paul

    2017-06-21

    Sugar beet (Beta vulgaris L.) leaves of 8 month (8 m ) plants showed more enzymatic browning than those of 3 month (3 m ). Total phenolic content increased from 4.6 to 9.4 mg/g FW in 3 m and 8 m , respectively, quantitated by reverse-phase-ultrahigh-performance liquid chromatography-ultraviolet-mass spectrometry (RP-UHPLC-UV-MS). The PPO activity was 6.7 times higher in extracts from 8 m than from 3 m leaves. Substrate content increased from 0.53 to 2.45 mg/g FW in 3 m and 8 m , respectively, of which caffeic acid glycosyl esters were most important, increasing 10-fold with age. Caffeic acid glycosides and vitexin derivatives were no substrates. In 3 m and 8 m, nonsubstrate-to-substrate ratios were 8:1 and 3:1, respectively. A model system showed browning at 3:1 ratio due to formation of products with extensive conjugated systems through oxidative coupling and coupled oxidation. The 8:1 ratio did not turn brown as oxidative coupling occurred without much coupled oxidation. We postulate that differences in nonsubstrate-to-substrate ratio and therewith extent of coupled oxidation explain browning.

  2. Enzymatic Browning in Sugar Beet Leaves (Beta vulgaris L.): Influence of Caffeic Acid Derivatives, Oxidative Coupling, and Coupled Oxidation

    PubMed Central

    2017-01-01

    Sugar beet (Beta vulgaris L.) leaves of 8 month (8m) plants showed more enzymatic browning than those of 3 month (3m). Total phenolic content increased from 4.6 to 9.4 mg/g FW in 3m and 8m, respectively, quantitated by reverse-phase-ultrahigh-performance liquid chromatography–ultraviolet-mass spectrometry (RP-UHPLC–UV-MS). The PPO activity was 6.7 times higher in extracts from 8m than from 3m leaves. Substrate content increased from 0.53 to 2.45 mg/g FW in 3m and 8m, respectively, of which caffeic acid glycosyl esters were most important, increasing 10-fold with age. Caffeic acid glycosides and vitexin derivatives were no substrates. In 3m and 8m, nonsubstrate-to-substrate ratios were 8:1 and 3:1, respectively. A model system showed browning at 3:1 ratio due to formation of products with extensive conjugated systems through oxidative coupling and coupled oxidation. The 8:1 ratio did not turn brown as oxidative coupling occurred without much coupled oxidation. We postulate that differences in nonsubstrate-to-substrate ratio and therewith extent of coupled oxidation explain browning. PMID:28570816

  3. Substrate- and isoform-specific proteome stability in normal and stressed cardiac mitochondria.

    PubMed

    Lau, Edward; Wang, Ding; Zhang, Jun; Yu, Hongxiu; Lam, Maggie P Y; Liang, Xiangbo; Zong, Nobel; Kim, Tae-Young; Ping, Peipei

    2012-04-27

    Mitochondrial protein homeostasis is an essential component of the functions and oxidative stress responses of the heart. To determine the specificity and efficiency of proteome turnover of the cardiac mitochondria by endogenous and exogenous proteolytic mechanisms. Proteolytic degradation of the murine cardiac mitochondria was assessed by 2-dimensional differential gel electrophoresis and liquid chromatography-tandem mass spectrometry. Mitochondrial proteases demonstrated a substrate preference for basic protein variants, which indicates a possible recognition mechanism based on protein modifications. Endogenous mitochondrial proteases and the cytosolic 20S proteasome exhibited different substrate specificities. The cardiac mitochondrial proteome contains low amounts of proteases and is remarkably stable in isolation. Oxidative damage lowers the proteolytic capacity of cardiac mitochondria and reduces substrate availability for mitochondrial proteases. The 20S proteasome preferentially degrades specific substrates in the mitochondria and may contribute to cardiac mitochondrial proteostasis.

  4. Rare earth zirconium oxide buffer layers on metal substrates

    DOEpatents

    Williams, Robert K.; Paranthaman, Mariappan; Chirayil, Thomas G.; Lee, Dominic F.; Goyal, Amit; Feenstra, Roeland

    2001-01-01

    A laminate article comprises a substrate and a biaxially textured (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer over the substrate, wherein 0substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.

  5. Influence of low versus moderate glycemic index of diet on substrate oxidation and energy expenditure during incremental exercise in endurance athletes: a randomized counterbalanced cross-over trial.

    PubMed

    Durkalec-Michalski, Krzysztof; Zawieja, Emilia Ewa; Zawieja, Bogna Ewa; Podgórski, Tomasz; Jurkowska, Dominika; Jeszka, Jan

    2017-12-18

    The study was aimed at assessing the influence of 3-week low glycemic index (LGI) versus moderate glycemic index (MGI) diet on substrate oxidation during incremental exercise. 17 runners completed two 3-week trials of either LGI or MGI diet in a randomised counterbalanced manner. Before and after each trial the incremental cycling test was performed. Metabolic alternations were observed only within tested diets and no significant differences in fat and carbohydrate (CHO) oxidation were found between MGI and LGI diets. Following MGI diet CHO oxidation rate increased. The AUC of fat oxidation decreased after both diets. Percent contribution of fat to energy yield declined, whereas contribution of CHO was augmented following MGI diet. This study indicates that the 3-week MGI diet increased the rate of carbohydrate oxidation during incremental cycling test and improved performance in acute intense exercise test, while both high-carbohydrate diets downregulated fat oxidation rate.

  6. High temperature oxidation resistant cermet compositions

    NASA Technical Reports Server (NTRS)

    Phillips, W. M. (Inventor)

    1976-01-01

    Cermet compositions are designed to provide high temperature resistant refractory coatings on stainless steel or molybdenum substrates. A ceramic mixture of chromium oxide and aluminum oxide form a coating of chromium oxide as an oxidation barrier around the metal particles, to provide oxidation resistance for the metal particles.

  7. Anisotropy-based crystalline oxide-on-semiconductor material

    DOEpatents

    McKee, Rodney Allen; Walker, Frederick Joseph

    2000-01-01

    A semiconductor structure and device for use in a semiconductor application utilizes a substrate of semiconductor-based material, such as silicon, and a thin film of a crystalline oxide whose unit cells are capable of exhibiting anisotropic behavior overlying the substrate surface. Within the structure, the unit cells of the crystalline oxide are exposed to an in-plane stain which influences the geometric shape of the unit cells and thereby arranges a directional-dependent quality of the unit cells in a predisposed orientation relative to the substrate. This predisposition of the directional-dependent quality of the unit cells enables the device to take beneficial advantage of characteristics of the structure during operation. For example, in the instance in which the crystalline oxide of the structure is a perovskite, a spinel or an oxide of similarly-related cubic structure, the structure can, within an appropriate semiconductor device, exhibit ferroelectric, piezoelectric, pyroelectric, electro-optic, ferromagnetic, antiferromagnetic, magneto-optic or large dielectric properties that synergistically couple to the underlying semiconductor substrate.

  8. Low-cost flexible supercapacitors based on laser reduced graphene oxide supported on polyethylene terephthalate substrate

    NASA Astrophysics Data System (ADS)

    Ghoniem, Engy; Mori, Shinsuke; Abdel-Moniem, Ahmed

    2016-08-01

    A controlled high powered CO2 laser system is used to reduce and pattern graphene oxide (GO) film supported onto a flexible polyethylene terephthalate (PET) substrate. The laser reduced graphene oxide (rGO) film is characterized and evaluated electrochemically in the absence and presence of an overlying anodicaly deposited thin film of pseuodcapactive MnO2 as electrodes for supercapacitor applications using aqueous electrolyte. The laser treatment of the GO film leads to an overlapped structure of defective multi-layer rGO sheets with an electrical conductivity of 273 S m-1. The rGO and MnO2/rGO electrodes exhibit specific capacitance in the range of 82-107 and 172-368 Fg-1 at applied current range of 0.1-1.0 mA cm-2 and retain 98 and 95% of their initial capacitances after 2000 cycles at a current density of 1.0 mA cm-2, respectively. Also, the rGO is assigned as an electrode material for flexible conventionally stacked and interdigitated in-plane supercapacitor structures using gel electrolyte. Three electrode architectures of 2, 4, and 6 sub-electrodes are studied for the interdigital in-plane design. The device with interdigital 6 sub-electrodes architecture I-PS(6) delivers power density of 537.1 Wcm-3 and an energy density of 0.45 mWh cm-3.

  9. Iron films deposited on porous alumina substrates

    NASA Astrophysics Data System (ADS)

    Yamada, Yasuhiro; Tanabe, Kenichi; Nishida, Naoki; Kobayashi, Yoshio

    2016-12-01

    Iron films were deposited on porous alumina substrates using an arc plasma gun. The pore sizes (120 - 250 nm) of the substrates were controlled by changing the temperature during the anodic oxidation of aluminum plates. Iron atoms penetrated into pores with diameters of less than 160 nm, and were stabilized by forming γ-Fe, whereas α-Fe was produced as a flat plane covering the pores. For porous alumina substrates with pore sizes larger than 200 nm, the deposited iron films contained many defects and the resulting α-Fe had smaller hyperfine magnetic fields. In addition, only a very small amount of γ-Fe was obtained. It was demonstrated that the composition and structure of an iron film can be affected by the surface morphology of the porous alumina substrate on which the film is grown.

  10. Equilibrating metal-oxide cluster ensembles for oxidation reactions using oxygen in water

    Treesearch

    Ira A. Weinstock; Elena M. G. Barbuzzi; Michael W. Wemple; Jennifer J. Cowan; Richard S. Reiner; Dan M. Sonnen; Robert A. Heintz; James S. Bond; Craig L. Hill

    2001-01-01

    Although many enzymes can readily and selectively use oxygen in water--the most familiar and attractive of all oxidants and solvents, respectively–-the design of synthetic catalysts for selective water-based oxidation processes utilizing molecular oxygen remains a daunting task. Particularly problematic is the fact that oxidation of substrates by O2 involves radical...

  11. Synthesis of ceria based superhydrophobic coating on Ni20Cr substrate via cathodic electrodeposition.

    PubMed

    Pedraza, F; Mahadik, S A; Bouchaud, B

    2015-12-21

    In this work, superhydrophobic cerium oxide coating surface (111) with dual scale texture on Ni20Cr substrate is obtained by combination of electropolishing the substrate and subsequent cathodic electrodeposition and long-term UVH surface relaxation. To form hierarchical structures of CeO2 is controllable by varying the substrate roughness, and electropolishing period. The results indicated that at the optimal condition, the surface of the cerium oxide coating showed a superhydrophobicity with a great water contact angle (151.0 ± 1.4°) with Gecko state. An interface model for electropolishing of substrate surface in cerium nitrate medium is proposed. We expect that this facile process can be readily and widely adopted for the design of superhydrophobic coating on engineering materials.

  12. Effect of the melanocortin-3 receptor Thr6Lys and Val81Ile genetic variants on body composition and substrate oxidation in Chilean obese children.

    PubMed

    Obregón, Ana M; Diaz, Erik; Santos, Jose L

    2012-03-01

    Mice genetically deficient in the melanocortin-3 receptor gene are characterized by normal body weight, increased body fat, mild hypophagia, reduced locomotor activity, and increased respiratory quotient compared with wild-type mice. In humans, the 6Lys-81Ile haplotype of melanocortin-3 receptor (MC3R) gene has been associated with childhood obesity, higher body fat percentage, and reduced fat oxidation compared to non-carriers. The aim of this study was to evaluate the association between MC3R 6Lys-81Ile haplotype with body composition and substrate oxidation in response to moderate exercise in obese children. Eight Chilean obese children (aged 8-12) carriers of MC3R 6Lys-81Ile haplotype were compared with eight age-gender-matched obese non-carriers. Children were identified through a previous cross-sectional study on genetic determinants of childhood obesity (n = 229). Genotypes for MC3R Thr6Lys and Val81Ile were determined by polymerase chain reaction-restriction fragment length polymorphism. Body composition was assessed by the four-compartment model (dual-energy X-ray absorptiometry, total body water by the deuterium dilution technique, and total fat mass by air-displacement plethysmography). Substrate oxidation was assessed by indirect calorimetry in response to moderate exercise (60% VO(2 max)). Wilcoxon matched-pairs test was used to compare quantitative variables. No significant differences among carriers and non-carriers were found in anthropometrical and body composition measurements. The Carriers of the 6Lys-81Ile haplotype showed higher respiratory quotient (p = 0.06) and a significantly higher glucose oxidation (p = 0.01) compared with non-carriers after standardization for fat-free mass. Our results are consistent with a possible participation of MC3R 6Lys-81Ile variants in glucose oxidation in response to moderate exercise.

  13. Patterning by area selective oxidation

    DOEpatents

    Nam, Chang-Yong; Kamcev, Jovan; Black, Charles T.; Grubbs, Robert

    2015-12-29

    Technologies are described for methods for producing a pattern of a material on a substrate. The methods may comprise receiving a patterned block copolymer on a substrate. The patterned block copolymer may include a first polymer block domain and a second polymer block domain. The method may comprise exposing the patterned block copolymer to a light effective to oxidize the first polymer block domain in the patterned block copolymer. The method may comprise applying a precursor to the block copolymer. The precursor may infuse into the oxidized first polymer block domain and generate the material. The method may comprise applying a removal agent to the block copolymer. The removal agent may be effective to remove the first polymer block domain and the second polymer block domain from the substrate, and may not be effective to remove the material in the oxidized first polymer block domain.

  14. Oral Administration of Interferon Tau Enhances Oxidation of Energy Substrates and Reduces Adiposity in Zucker Diabetic Fatty Rats

    PubMed Central

    Tekwe, Carmen D.; Lei, Jian; Yao, Kang; Rezaei, Reza; Li, Xilong; Dahanayaka, Sudath; Carroll, Raymond J.; Meininger, Cynthia J.; Bazer, Fuller W.; Wu, Guoyao

    2013-01-01

    Male Zucker diabetic fatty (ZDF) rats were used to study effects of oral administration of interferon tau (IFNT) in reducing obesity. Eighteen ZDF rats (28 days of age) were assigned randomly to receive 0, 4 or 8 μg IFNT/kg body weight (BW) per day (n=6/group) for 8 weeks. Water consumption was measured every two days. Food intake and BW were recorded weekly. Energy expenditure in 4-, 6-, 8-, and 10-week-old rats was determined using indirect calorimetry. Starting at 7 weeks of age, urinary glucose and ketone bodies were tested daily. Rates of glucose and oleate oxidation in liver, brown adipose tissue, and abdominal adipose tissue, leucine catabolism in skeletal muscle, and lipolysis in white and brown adipose tissues were greater for rats treated with 8 μg IFNT/kg BW/day in comparison with control rats. Treatment with 8 μg IFNT/kg BW/day increased heat production, reduced BW gain and adiposity, ameliorated fatty liver syndrome, delayed the onset of diabetes, and decreased concentrations of glucose, free fatty acids, triacylglycerol, cholesterol, and branched-chain amino acids in plasma, compared to control rats. Oral administration of 8 μg IFNT/kg BW/day ameliorated oxidative stress in skeletal muscle, liver and adipose tissue, as indicated by decreased ratios of oxidized glutathione to reduced glutathione and increased concentrations of the antioxidant tetrahydrobiopterin. These results indicate that IFNT stimulates oxidation of energy substrates and reduces obesity in ZDF rats and may have broad important implications for preventing and treating obesity-related diseases in mammals. PMID:23804503

  15. Aerosol chemical vapor deposition of metal oxide films

    DOEpatents

    Ott, Kevin C.; Kodas, Toivo T.

    1994-01-01

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said FIELD OF THE INVENTION The present invention relates to the field of film coating deposition techniques, and more particularly to the deposition of multicomponent metal oxide films by aerosol chemical vapor deposition. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  16. A new approach to the immobilisation of poly(ethylene oxide) for the reduction of non-specific protein adsorption on conductive substrates

    NASA Astrophysics Data System (ADS)

    Cole, Martin A.; Thissen, Helmut; Losic, Dusan; Voelcker, Nicolas H.

    2007-04-01

    Biomedical and biotechnological devices often require surface modifications to improve their performance. In most cases, uniform coatings are desired which provide a specific property or lead to a specific biological response. In the present work, we have generated pinhole-free coatings providing amine functional groups achieved by electropolymerisation of tyramine on highly doped silicon substrates. Furthermore, amine groups were used for the subsequent grafting of poly(ethylene oxide) aldehyde via reductive amination. All surface modification steps were characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The results indicate that the stability and the density of amine functional groups introduced at the surface via electropolymerisation compare favourably with alternative coatings frequently used in biomedical and biotechnological devices such as plasma polymer films. Furthermore, protein adsorption on amine and poly(ethylene oxide) coatings was studied by XPS and a colorimetric assay to test enzymatic activity. The grafting of poly(ethylene oxide) under cloud point conditions on electropolymerised tyramine layers resulted in surfaces with extremely low protein fouling character.

  17. Method of making controlled morphology metal-oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozcan, Soydan; Lu, Yuan

    2016-05-17

    A method of making metal oxides having a preselected morphology includes preparing a suspension that includes a solvent, polymeric nanostructures having multiplicities of hydroxyl surface groups and/or carboxyl surface groups, and a metal oxide precursor. The suspension has a preselected ratio of the polymeric nanostructures to the metal oxide precursor of at least 1:3, the preselected ratio corresponding to a preselected morphology. Subsequent steps include depositing the suspension onto a substrate, removing the solvent to form a film, removing the film from the substrate, and annealing the film to volatilize the polymeric nanostructures and convert the metal oxide precursor tomore » metal oxide nanoparticles having the preselected morphology or to a metal oxide nanosheet including conjoined nanoparticles having the preselected morphology.« less

  18. Community analysis of biofilms on flame-oxidized stainless steel anodes in microbial fuel cells fed with different substrates.

    PubMed

    Eyiuche, Nweze Julius; Asakawa, Shiho; Yamashita, Takahiro; Ikeguchi, Atsuo; Kitamura, Yutaka; Yokoyama, Hiroshi

    2017-06-29

    The flame-oxidized stainless steel anode (FO-SSA) is a newly developed electrode that enhances microbial fuel cell (MFC) power generation; however, substrate preference and community structure of the biofilm developed on FO-SSA have not been well characterized. Herein, we investigated the community on FO-SSA using high-throughput sequencing of the 16S rRNA gene fragment in acetate-, starch-, glucose-, and livestock wastewater-fed MFCs. Furthermore, to analyze the effect of the anode material, the acetate-fed community formed on a common carbon-based electrode-carbon-cloth anode (CCA)-was examined for comparison. Substrate type influenced the power output of MFCs using FO-SSA; the highest electricity was generated using acetate as a substrate, followed by peptone, starch and glucose, and wastewater. Intensity of power generation using FO-SSA was related to the abundance of exoelectrogenic genera, namely Geobacter and Desulfuromonas, of the phylum Proteobacteria, which were detected at a higher frequency in acetate-fed communities than in communities fed with other substrates. Lactic acid bacteria (LAB)-Enterococcus and Carnobacterium-were predominant in starch- and glucose-fed communities, respectively. In the wastewater-fed community, members of phylum Planctomycetes were frequently detected (36.2%). Exoelectrogenic genera Geobacter and Desulfuromonas were also detected in glucose-, starch-, and wastewater-fed communities on FO-SSA, but with low frequency (0-3.2%); the lactate produced by Carnobacterium and Enterococcus in glucose- and starch-fed communities might affect exoelectrogenic bacterial growth, resulting in low power output by MFCs fed with these substrates. Furthermore, in the acetate-fed community on FO-SSA, Desulfuromonas was abundant (15.4%) and Geobacter had a minor proportion (0.7%), while in that on CCA, both Geobacter and Desulfuromonas were observed at similar frequencies (6.0-9.8%), indicating that anode material affects exoelectrogenic genus

  19. Interfacial nanobubbles on atomically flat substrates with different hydrophobicities.

    PubMed

    Wang, Xingya; Zhao, Binyu; Ma, Wangguo; Wang, Ying; Gao, Xingyu; Tai, Renzhong; Zhou, Xingfei; Zhang, Lijuan

    2015-04-07

    The dependence of the morphology of interfacial nanobubbles on atomically flat substrates with different wettability ranges was investigated by using PeakForce quantitative nanomechanics. Interfacial nanobubbles were formed and imaged on silicon nitride (Si3N4), mica, and highly ordered pyrolytic graphite (HOPG) substrates that were partly covered by reduced graphene oxide (rGO). The contact angles and sizes of those nanobubbles were measured under the same conditions. Nanobubbles with the same lateral width exhibited different heights on the different substrates, with the order Si3N4≈mica>rGO>HOPG, which is consistent with the trend of the hydrophobicity of the substrates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Effect of low current density and low frequency on oxidation resistant and coating activity of coated FeCrAl substrate by γ-Al2O3 powder

    NASA Astrophysics Data System (ADS)

    Leman, A. M.; Feriyanto, Dafit; Zakaria, Supaat; Sebayang, D.; Rahman, Fakhrurrazi; Jajuli, Afiqah

    2017-09-01

    High oxidation resistant is the needed material properties for material that operates in high temperature such as catalytic converter material. FeCrAl alloy acts as metallic material and is used as substrate material that is coated by ceramic material i.e. γ-Al2O3. The main purpose of this research is to increase oxidation resistant of metallic material as it will help improve the life time of metallic catalytic converter. Ultrasonic technique (UB) and Nickel electroplating technique (EL) were used to achieve the objective. UB was carried out using various time of 1, 1.5, 2, 2.5 and 3 h, in low frequency of 35 kHz and ethanol as the electrolyte. Meanwhile, EL was conducted using various times of 15, 30, 45, 60 and 75 minutes, DC power supply was 1.28A and sulphamate type as the solution. The characterization and analysis were carried out using Scanning Electron Microscopy (SEM) and box furnace at various temperature of 1000, 1100 and 1200 °C. SEM analysis shows the surface morphology of treated and untreated samples. Untreated samples shows finer surface structure as compared to UB and EL samples. It was caused by γ-Al2O3 which was embedded during UB and EL process on the surface of FeCrAl substrate to develop protective oxide layer. The layer was used to protect the substrate from extreme environment condition and temperature operation. Oxidation resistant analysis shows that treated samples had lower mass change as compared to untreated samples. Lowest mass change of treated samples were located at UB 1.5 h and EL at 30 minute with 0.00475 g and 0.00243 g for temperature of 1000 °C, 0.00495 g and 000284 g for temperature of 1100 °C and 0.00519 g and 0.00304 g for temperature 1200 °C, Based on the overall results, it can be concluded that EL 30 minute samples was the appropriate parameter to coat FeCrAl by γ-Al2O3 to develop metallic catalytic converter that is high oxidation resistant in high temperature operation.

  1. Fabricating metal-oxide-semiconductor field-effect transistors on a polyethylene terephthalate substrate by applying low-temperature layer transfer of a single-crystalline silicon layer by meniscus force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakaike, Kohei; Akazawa, Muneki; Nakamura, Shogo

    2013-12-02

    A low-temperature local-layer technique for transferring a single-crystalline silicon (c-Si) film by using a meniscus force was proposed, and an n-channel metal-oxide-semiconductor field-effect transistor (MOSFET) was fabricated on polyethylene terephthalate (PET) substrate. It was demonstrated that it is possible to transfer and form c-Si films in the required shape at the required position on PET substrates at extremely low temperatures by utilizing a meniscus force. The proposed technique for layer transfer was applied for fabricating high-performance c-Si MOSFETs on a PET substrate. The fabricated MOSFET showed a high on/off ratio of more than 10{sup 8} and a high field-effect mobilitymore » of 609 cm{sup 2} V{sup −1} s{sup −1}.« less

  2. A Highly Efficient Sensor Platform Using Simply Manufactured Nanodot Patterned Substrates

    PubMed Central

    Rasappa, Sozaraj; Ghoshal, Tandra; Borah, Dipu; Senthamaraikannan, Ramsankar; Holmes, Justin D.; Morris, Michael A.

    2015-01-01

    Block copolymer (BCP) self-assembly is a low-cost means to nanopattern surfaces. Here, we use these nanopatterns to directly print arrays of nanodots onto a conducting substrate (Indium Tin Oxide (ITO) coated glass) for application as an electrochemical sensor for ethanol (EtOH) and hydrogen peroxide (H2O2) detection. The work demonstrates that BCP systems can be used as a highly efficient, flexible methodology for creating functional surfaces of materials. Highly dense iron oxide nanodots arrays that mimicked the original BCP pattern were prepared by an ‘insitu’ BCP inclusion methodology using poly(styrene)-block-poly(ethylene oxide) (PS-b-PEO). The electrochemical behaviour of these densely packed arrays of iron oxide nanodots fabricated by two different molecular weight PS-b-PEO systems was studied. The dual detection of EtOH and H2O2 was clearly observed. The as-prepared nanodots have good long term thermal and chemical stability at the substrate and demonstrate promising electrocatalytic performance. PMID:26290188

  3. Protein dynamics promote hydride tunnelling in substrate oxidation by aryl-alcohol oxidase.

    PubMed

    Carro, Juan; Martínez-Júlvez, Marta; Medina, Milagros; Martínez, Angel T; Ferreira, Patricia

    2017-11-01

    The temperature dependence of hydride transfer from the substrate to the N5 of the FAD cofactor during the reductive half-reaction of Pleurotus eryngii aryl-alcohol oxidase (AAO) is assessed here. Kinetic isotope effects on both the pre-steady state reduction of the enzyme and its steady-state kinetics, with differently deuterated substrates, suggest an environmentally-coupled quantum-mechanical tunnelling process. Moreover, those kinetic data, along with the crystallographic structure of the enzyme in complex with a substrate analogue, indicate that AAO shows a pre-organized active site that would only require the approaching of the hydride donor and acceptor for the tunnelled transfer to take place. Modification of the enzyme's active-site architecture by replacement of Tyr92, a residue establishing hydrophobic interactions with the substrate analogue in the crystal structure, in the Y92F, Y92L and Y92W variants resulted in different temperature dependence patterns that indicated a role of this residue in modulating the transfer reaction.

  4. [Effect of sodium and calcium ions on glutamate and glutamine oxidation by rat brain synaptosomes].

    PubMed

    Nilova, N S

    1978-08-01

    5 mM oxidative substrates and 0.15 mM Ca(2+) being used, different effects of Ca(2+) on the oxidation are possible, such as an additional inhibition of glutamine oxidation and an additional activation of glutamate oxidation. A decreased Na+-ion concentration in the medium inhibited synaptosomal respiration with glutamate as a substrate. With glutamine as a substrate oxygen consumption does not change.

  5. A Study on the Deposition of Al2O3 Coatings on Polymer Substrates by a Plasma Spray/Micro-Arc Oxidation Two-Step Method

    NASA Astrophysics Data System (ADS)

    Sun, Guanhong; He, Xiaodong; Jiang, Jiuxing; Sun, Yue; Zhong, Yesheng

    2013-02-01

    To increase the wear resistance of polymer matrix composites, alumina coatings were deposited on polymer substrates by a two-step method combining plasma spraying and micro-arc oxidation. The microstructures and phase compositions of the processed coatings were investigated for different treatment times. Uniformly distributed pores were found in addition to the presence of various coral-like structures and floccules on the surface of the coatings. The presence of α-Al2O3 and γ-Al2O3 phases was identified by XRD. The distribution of alumina was analyzed by EDS and is discussed. The maximum bond strength of the coatings was found to be 5.89 MPa. There was little thermal damage in the polymer substrates after the coatings were produced.

  6. The growth of ultralong and highly blue luminescent gallium oxide nanowires and nanobelts, and direct horizontal nanowire growth on substrates.

    PubMed

    Kuo, Chi-Liang; Huang, Michael H

    2008-04-16

    We report the growth of ultralong β-Ga(2)O(3) nanowires and nanobelts on silicon substrates using a vapor phase transport method. The growth was carried out in a tube furnace, with gallium metal serving as the gallium source. The nanowires and nanobelts can grow to lengths of hundreds of nanometers and even millimeters. Their full lengths have been captured by both scanning electron microscope (SEM) and optical images. X-ray diffraction (XRD) patterns and transmission electron microscope (TEM) images have been used to study the crystal structures of these nanowires and nanobelts. Strong blue emission from these ultralong nanostructures can be readily observed by irradiation with an ultraviolet (UV) lamp. Diffuse reflectance spectroscopy measurements gave a band gap of 4.56 eV for these nanostructures. The blue emission shows a band maximum at 470 nm. Interestingly, by annealing the silicon substrates in an oxygen atmosphere to form a thick SiO(2) film, and growing Ga(2)O(3) nanowires over the sputtered gold patterned regions, horizontal Ga(2)O(3) nanowire growth in the non-gold-coated regions can be observed. These horizontal nanowires can grow to as long as over 10 µm in length. Their composition has been confirmed by TEM characterization. This represents one of the first examples of direct horizontal growth of oxide nanowires on substrates.

  7. Wettability of eutectic NaLiCO3 salt on magnesium oxide substrates at 778 K

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Li, Qi; Cao, Hui; Leng, Guanghui; Li, Yongliang; Wang, Li; Zheng, Lifang; Ding, Yulong

    2018-06-01

    We investigated the wetting behavior of a eutectic carbonate salt of NaLiCO3 on MgO substrates at an elevated temperature of 778 K by measuring contact angle with a sessile drop method. Both sintered and non-sintered MgO were prepared and used as the substrates. The sintered substrates were obtained by sintering compacted MgO powders at 500-1300 °C. For comparison purposes, a single crystal MgO substrate was also used in the work. The different sintering temperatures provided MgO substrates with different structures, allowing their effects on salt penetration and hence wettability and surface energy to be investigated. A scanning electron microscope equipped with energy dispersive spectrometry and an atomic force microscope were used to observe the morphology and structures of the MgO substrates as well as the salt penetration. The results showed a good wettability of the carbonate salt on both the sintered and non-sintered MgO substrates and the wettability depended strongly on the structure of the substrates. The non-sintered MgO substrate has a loose surface particle packing with large pores and crevices, leading to significant salt infiltration, and the corresponding contact angle was measured to be ∼25°. The contact angle of the salt on the sintered MgO substrates increased with an increase in the sintering temperature of the MgO substrate, and the contact angle of the salt on the single crystal substrate was the highest at ∼40°. The effect of the sintering temperature for making the MgO substrate could be linked to the surface energy, and the linkage is validated by the AFM measurements of the adhesion forces of the MgO substrates.

  8. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes.

    PubMed

    Jiang, Jian; Li, Yuanyuan; Liu, Jinping; Huang, Xintang

    2011-01-01

    Lithium ion battery (LIB) is potentially one of the most attractive energy storage devices. To meet the demands of future high-power and high-energy density requirements in both thin-film microbatteries and conventional batteries, it is challenging to explore novel nanostructured anode materials instead of conventional graphite. Compared to traditional electrodes based on nanostructure powder paste, directly grown ordered nanostructure array electrodes not only simplify the electrode processing, but also offer remarkable advantages such as fast electron transport/collection and ion diffusion, sufficient electrochemical reaction of individual nanostructures, enhanced material-electrolyte contact area and facile accommodation of the strains caused by lithium intercalation and de-intercalation. This article provides a brief overview of the present status in the area of LIB anodes based on one-dimensional nanostructure arrays growing directly on conductive inert metal substrates, with particular attention to metal oxides synthesized by an anodized alumina membrane (AAM)-free solution-based or hydrothermal methods. Both the scientific developments and the techniques and challenges are critically analyzed.

  9. Film transfer enabled by nanosheet seed layers on arbitrary sacrificial substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dral, A. P.; Nijland, M.; Koster, G.

    An approach for film transfer is demonstrated that makes use of seed layers of nanosheets on arbitrary sacrificial substrates. Epitaxial SrTiO{sub 3}, SrRuO{sub 3}, and BiFeO{sub 3} films were grown on Ca{sub 2}Nb{sub 3}O{sub 10} nanosheet seed layers on phlogopite mica substrates. Cleavage of the mica substrates enabled film transfer to flexible polyethylene terephthalate substrates. Electron backscatter diffraction, X-ray diffraction, and atomic force microscopy confirmed that crystal orientation and film morphology remained intact during transfer. The generic nature of this approach is illustrated by growing films on zinc oxide substrates with a nanosheet seed layer. Film transfer to a flexiblemore » substrate was accomplished via acid etching.« less

  10. Rethinking the role of fat oxidation: substrate utilisation during high-intensity interval training in well-trained and recreationally trained runners

    PubMed Central

    Hetlelid, Ken J; Plews, Daniel J; Herold, Eva; Laursen, Paul B; Seiler, Stephen

    2015-01-01

    Background Although carbohydrate is the predominant fuel source supporting high-intensity exercise workloads, the role of fat oxidation, and the degree to which it may be altered by training status, is less certain. Methods We compared substrate oxidation rates, using indirect calorimetry, during a high-intensity interval training (HIT) session in well-trained (WT) and recreationally trained (RT) runners. Following preliminary testing, 9 WT (VO2max 71±5 mL/min/kg) and 9 RT (VO2max 55±5 mL/min/kg) male runners performed a self-paced HIT sequence consisting of six, 4 min work bouts separated by 2 min recovery periods on a motorised treadmill set at a 5% gradient. Results WT and RT runners performed the HIT session with the same perceived effort (rating of perceived exertion (RPE) =18.3±0.7 vs 18.2±1.1, respectively), blood lactate (6.4±2.1 vs 6.2±2.5 mmol/L) and estimated carbohydrate oxidation rates (4.2±0.29 vs 4.4±0.45 g/min; effect size (ES) 90% confidence limits (CL)=−0.19±0.85). Fat oxidation (0.64±0.13 vs 0.22±0.16 g/min for WT and RT, respectively) accounted for 33±6% of the total energy expenditure in WT vs 16±6% in RT most likely very large difference in fat oxidation (ES 90% CL=1.74±0.83) runners. Higher rates of fat oxidation had a very large correlation with VO2max (r=0.86; 90% CI (0.7 to 0.94). Conclusions Despite similar RPE, blood lactate and carbohydrate oxidation rates, the better performance by the WT group was explained by their nearly threefold higher rates of fat oxidation at high intensity. PMID:27900134

  11. Nonlinear optical parameters of nanocrystalline AZO thin film measured at different substrate temperatures

    NASA Astrophysics Data System (ADS)

    Jilani, Asim; Abdel-wahab, M. Sh; Al-ghamdi, Attieh A.; Dahlan, Ammar sadik; Yahia, I. S.

    2016-01-01

    The 2.2 wt% of aluminum (Al)-doped zinc oxide (AZO) transparent and preferential c-axis oriented thin films were prepared by using radio frequency (DC/RF) magnetron sputtering at different substrate temperature ranging from room temperature to 200 °C. For structural analysis, X-ray Diffraction (XRD) and Atomic Force Electron Microscope (AFM) was used for morphological studies. The optical parameters such as, optical energy gap, refractive index, extinction coefficient, dielectric loss, tangent loss, first and third order nonlinear optical properties of transparent films were investigated. High transmittance above 90% and highly homogeneous surface were observed in all samples. The substrate temperature plays an important role to get the best transparent conductive oxide thin films. The substrate temperature at 150 °C showed the growth of highly transparent AZO thin film. Energy gap increased with the increased in substrate temperature of Al doped thin films. Dielectric constant and loss were found to be photon energy dependent with substrate temperature. The change in substrate temperature of Al doped thin films also affect the non-liner optical properties of thin films. The value of χ(3) was found to be changed with the grain size of the thin films that directly affected by the substrate temperature of the pure and Al doped ZnO thin films.

  12. Some material structural properties of SOI substrates produced by SDB technology

    NASA Astrophysics Data System (ADS)

    Hui, Li; Guo-Liang, Sun; Juan, Zhan; Qin-Yi, Tong

    1987-10-01

    SOI substrates have been produced by silicon direct bonding (SDB) technology. Thermal oxides ranging in thickness from native oxide to 1 μm or even more, on either or both wafers have been bonded successfully. The fracture strength of the SOI layer is 130-200 kg/cm 2 which is similar to the value of intrinsic bulk silicon. Dislocations have been shown to be concentrated on the backsides of the substrate and no additional defects have been developed within 80 μm of the Si-SiO 2 bonding area. Mobility and minority carrier lifetime similar to that of the original bulk silicon have been obtained after annealing.

  13. Biocatalytic oxidation by chloroperoxidase from Caldariomyces fumago in polymersome nanoreactors.

    PubMed

    de Hoog, H M; Nallani, M; Cornelissen, J J L M; Rowan, A E; Nolte, R J M; Arends, I W C E

    2009-11-21

    The encapsulation of chloroperoxidase from Caldariomyces fumago (CPO) in block copolymer polymersomes is reported. Fluorescence and electron microscopy show that when the encapsulating conditions favour self-assembly of the block copolymer, the enzyme is incorporated with concentrations that are 50 times higher than the enzyme concentration before encapsulation. The oxidation of two substrates by the encapsulated enzyme was studied: i) pyrogallol, a common substrate used to assay CPO enzymatic activity and ii) thioanisole, of which the product, (R)-methyl phenyl sulfoxide, is an important pharmaceutical intermediate. The CPO-loaded polymersomes showed distinct reactivity towards these substrates. While the oxidation of pyrogallol was limited by diffusion of the substrate into the polymersome, the rate-limiting step for the oxidation of thioansiole was the turnover by the enzyme.

  14. Vertical growth of ZnO nanorods on ZnO seeded FTO substrate for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Marimuthu, T.; Anandhan, N.

    2018-04-01

    Zinc oxide (ZnO) nanorods (NRs) were electrochemically grown on fluorine doped tin oxide (FTO) and ZnO seeded FTO substrates. X-ray diffraction (XRD) patterns, Raman spectra and photoluminescence (PL) spectra reveal that the hexagonal wurtzite structured ZnO grown on a seeded FTO substrate has a high crystallinity, crystal quality and less atomic defects. Felid emission scanning electron microscope (FE-SEM) images display a high growth density of NRs grown on seeded FTO substrate compared to NRs grown on FTO substrate. The efficiency of the DSSCs based on NRs grown on FTO and seeded FTO substrates is 0.85 and 1.52 %, respectively. UV-Vis absorption spectra and electrochemical impedance spectra depict that the NRs grown on seeded FTO photoanode have higher dye absorption and charge recombination resistance than that of the NRs grown on FTO substrate.

  15. Active-site copper reduction promotes substrate binding of fungal lytic polysaccharide monooxygenase and reduces stability.

    PubMed

    Kracher, Daniel; Andlar, Martina; Furtmüller, Paul G; Ludwig, Roland

    2018-02-02

    Lytic polysaccharide monooxygenases (LPMOs) are a class of copper-containing enzymes that oxidatively degrade insoluble plant polysaccharides and soluble oligosaccharides. Upon reductive activation, they cleave the substrate and promote biomass degradation by hydrolytic enzymes. In this study, we employed LPMO9C from Neurospora crassa , which is active toward cellulose and soluble β-glucans, to study the enzyme-substrate interaction and thermal stability. Binding studies showed that the reduction of the mononuclear active-site copper by ascorbic acid increased the affinity and the maximum binding capacity of LPMO for cellulose. The reduced redox state of the active-site copper and not the subsequent formation of the activated oxygen species increased the affinity toward cellulose. The lower affinity of oxidized LPMO could support its desorption after catalysis and allow hydrolases to access the cleavage site. It also suggests that the copper reduction is not necessarily performed in the substrate-bound state of LPMO. Differential scanning fluorimetry showed a stabilizing effect of the substrates cellulose and xyloglucan on the apparent transition midpoint temperature of the reduced, catalytically active enzyme. Oxidative auto-inactivation and destabilization were observed in the absence of a suitable substrate. Our data reveal the determinants of LPMO stability under turnover and non-turnover conditions and indicate that the reduction of the active-site copper initiates substrate binding. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Method For Improving The Oxidation Resistance Of Metal Substrates Coated With Thermal Barrier Coatings

    DOEpatents

    Thompson, Anthony Mark; Gray, Dennis Michael; Jackson, Melvin Robert

    2003-05-13

    A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described. A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described.

  17. Fabrication of long-term stable superoleophobic surface based on copper oxide/cobalt oxide with micro-nanoscale hierarchical roughness

    NASA Astrophysics Data System (ADS)

    Barthwal, Sumit; Lim, Si-Hyung

    2015-02-01

    We have demonstrated a simple and cost-effective technique for the large-area fabrication of a superoleophobic surface using copper as a substrate. The whole process included three simple steps: First, the copper substrate was oxidized under hot alkaline conditions to fabricate flower-like copper oxide microspheres by heating at a particular temperature for an interval of time. Second, the copper-oxide-covered copper substrate was further heated in a solution of cobalt nitrate and ammonium nitrate in the presence of an ammonia solution to fabricate cobalt oxide nanostructures. We applied this second step to increase the surface roughness because it is an important criterion for improved superoleophobicity. Finally, to reduce the surface energy of the fabricated structures, the surfaces were chemically modified with perfluorooctyltrichlorosilane. Contact-angle measurements indicate that the micro-nano binary (MNB) hierarchical structures fabricated on the copper substrate became super-repellent toward a broad range of liquids with surface tension in the range of 21.5-72 mN/m. In an attempt to significantly improve the superoleophobic property of the surface, we also examined and compared the role of nanostructures in MNB hierarchical structures with only micro-fabricated surfaces. The fabricated MNB hierarchical structures also displays thermal stability and excellent long-term stability after exposure in air for more than 9 months. Our method might provide a general route toward the preparation of novel hierarchical films on metal substrates for various industrial applications.

  18. Oxidations of N-(3-indoleethyl) cyclic aliphatic amines by horseradish peroxidase: the indole ring binds to the enzyme and mediates electron-transfer amine oxidation.

    PubMed

    Ling, Ke-Qing; Li, Wen-Shan; Sayre, Lawrence M

    2008-01-23

    Although oxidations of aromatic amines by horseradish peroxidase (HRP) are well-known, typical aliphatic amines are not substrates of HRP. In this study, the reactions of N-benzyl and N-methyl cyclic amines with HRP were found to be slow, but reactions of N-(3-indoleethyl) cyclic amines were 2-3 orders of magnitude faster. Analyses of pH-rate profiles revealed a dominant contribution to reaction by the amine-free base forms, the only species found to bind to the enzyme. A metabolic study on a family of congeneric N-(3-indoleethyl) cyclic amines indicated competition between amine and indole oxidation pathways. Amine oxidation dominated for the seven- and eight-membered azacycles, where ring size supports the change in hybridization from sp3 to sp2 that occurs upon one-electron amine nitrogen oxidation, whereas only indole oxidation was observed for the six-membered ring congener. Optical difference spectroscopic binding data and computational docking simulations suggest that all the arylalkylamine substrates bind to the enzyme through their aromatic termini with similar binding modes and binding affinities. Kinetic saturation was observed for a particularly soluble substrate, consistent with an obligatory role of an enzyme-substrate complexation preceding electron transfer. The significant rate enhancements seen for the indoleethylamine substrates suggest the ability of the bound indole ring to mediate what amounts to medium long-range electron-transfer oxidation of the tertiary amine center by the HRP oxidants. This is the first systematic investigation to document aliphatic amine oxidation by HRP at rates consistent with normal metabolic turnover, and the demonstration that this is facilitated by an auxiliary electron-rich aromatic ring.

  19. Influence of oxidation temperature on the oxide scale formation of NiCoCrAl coatings

    NASA Astrophysics Data System (ADS)

    Sugiarti, E.; Zaini, K. A.; Sundawa, R.; Wang, Y.; Ohnuki, S.; Hayashi, S.

    2017-04-01

    Intermetalic coatings of NiCoCrAl have been successfully developed on low carbon steel substrate to improve oxidation resistance in extreme environments. The influence of oxidation temperature on the oxide scale formation was studied in the temperature range of 600-1000 °C. The measurements were made in air under isothermal oxidation test for 100 h. The surface morphology showed that a cauliflower like structure developed entire the oxide scale of sample oxidized at 800 °C and 1000 °C, while partly distributed on the surface of sample oxidized at 600 °C. The XRD analysis identified Cr2O3 phase predominantly formed on the oxidized sample at 600 °C and meta-stable Al2O3 with several polymorphs crystalline structures: η, δ, θ, κ, and α-Al2O3 at relatively high temperatures, i.e. 800 °C and 1000 °C. A Cross-sectional microstructure showed that complex and porous structures formed on the top surface of 600 °C and 1000 °C samples. In contrast, a very thin oxide scale formed on 800 °C oxidized samples and it appeared to act as a diffusion barrier of oxygen to diffuse inward, hence could increase in the service life of carbon steel substrate.

  20. Influence of hormonal status on substrate utilization at rest and during exercise in the female population.

    PubMed

    Isacco, Laurie; Duché, Pascale; Boisseau, Nathalie

    2012-04-01

    During exercise, substrate utilization plays a major role in performance and disease prevention. The contribution of fat and carbohydrates to energy expenditure during exercise is modulated by several factors, including intensity and duration of exercise, age, training and diet, but also gender. Because sex hormone levels change throughout a woman's lifetime (in connection with puberty, the menstrual cycle, use of oral contraceptives and menopause), the female population has to be considered specifically in terms of substrate utilization, and metabolic and hormonal responses to exercise. Before puberty, there is no difference between males and females when it comes to substrate oxidation during exercise. This is not the case during adulthood, since women are known to rely more on fat than men for the same relative intensity of exercise. Among adult women, the menstrual cycle and use of oral contraceptives may influence substrate oxidation. While some authors have noted that the luteal phase of the menstrual cycle is connected with greater lipid oxidation, compared with the follicular stage, other authors have found no difference. Among oral contraceptive users, fat oxidation is sometimes increased during prolonged exercise with a concomitant rise in lipolytic hormones, as well as growth hormone. If this result is not always observed, the type of oral contraceptive (monophasic vs triphasic) and hormone doses may be implicated. Menopause represents a hormonal transition in a woman's life, leading to a decline in ovarian hormone production. A decrease in fat oxidation is consequently observed, and some studies have demonstrated a similar respiratory exchange ratio during prolonged exercise in postmenopausal women and in men. As is the case during puberty, no sex difference should thus appear after menopause in the absence of hormonal replacement therapy (HRT). Results concerning women who take HRT remain conflicting. HRT may act on fat loss by increasing lipid

  1. Interfacial development of electrophoretically deposited graphene oxide films on Al alloys

    DOE PAGES

    Jin, Sumin; Dickerson, James H.; Pham, Viet Hung; ...

    2015-07-28

    Adhesion between film and substrate is critical for electronic device and coating applications. Interfacial development between electrophoretically deposited graphene oxide films on Al 1100 and Al 5052 alloys were investigated using FT-IR and XPS depth profiling techniques. Obtained results suggest metal ion permeation from the substrates into deposited graphene oxide films. The interface between the films and the substrates were primarily composed of Al-O-C bonds from oxygenated defects on graphene oxide plane rather than expected Al-C formation. Films heat treated at 150 °C had change in microstructure and peak shifts in XPS spectra suggesting change in chemical structure of bondsmore » between the films and the substrates.« less

  2. 3D hierarchical Ag nanostructures formed on poly(acrylic acid) brushes grafted graphene oxide as promising SERS substrates

    NASA Astrophysics Data System (ADS)

    Xing, Guoke; Wang, Ke; Li, Ping; Wang, Wenqin; Chen, Tao

    2018-03-01

    In this study, in situ generation of Ag nanostructures with various morphology on poly(acrylic acid) (PAA) brushes grafted onto graphene oxide (GO), for use as substrates for surface-enhanced Raman scattering (SERS), is demonstrated. The overall synthetic strategy involves the loading of Ag precursor ions ((Ag+ and [Ag(NH3)2]+) onto PAA brush-grafted GO, followed by their in situ reduction to Ag nanostructures of various morphology using a reducing agent (NaBH4 or ascorbic acid). Novel 3D hierarchical flowerlike Ag nanostructures were obtained by using AgNO3 as precursor and ascorbic acid as reducing agent. Using 4-aminothiophenol as probe molecules, the as-prepared hierarchical Ag nanostructures exhibited excellent SERS performance, providing enhancement factors of ˜107.

  3. Electrochemically deposited gallium oxide nanostructures on silicon substrates

    PubMed Central

    2014-01-01

    We report a synthesis of β-Ga2O3 nanostructures on Si substrate by electrochemical deposition using a mixture of Ga2O3, HCl, NH4OH, and H2O. The presence of Ga3+ ions contributed to the deposition of Ga2O3 nanostructures on the Si surface with the assistance of applied potentials. The morphologies of the grown structures strongly depended on the molarity of Ga2O3 and pH level of electrolyte. β-Ga2O3 nanodot-like structures were grown on Si substrate at a condition with low molarity of Ga2O3. However, Ga2O3 nanodot structures covered with nanorods on top of their surfaces were obtained at higher molarity, and the densities of nanorods seem to increase with the decrease of pH level. High concentration of Ga3+ and OH- ions may promote the reaction of each other to produce Ga2O3 nanorods in the electrolyte. Such similar nature of Ga2O3 nanorods was also obtained by using hydrothermal process. The grown structures seem to be interesting for application in electronic and optoelectronic devices as well as to be used as a seed structure for subsequent chemical synthesis of GaN by thermal transformation method. PMID:24629107

  4. CHEMICAL SOLUTION DEPOSITION BASED OXIDE BUFFERS AND YBCO COATED CONDUCTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paranthaman, Mariappan Parans

    We have reviewed briefly the growth of buffer and high temperature superconducting oxide thin films using a chemical solution deposition (CSD) method. In the Rolling-Assisted Biaxially Textured Substrates (RABiTS) process, developed at Oak Ridge National Laboratory, utilizes the thermo mechanical processing to obtain the flexible, biaxially oriented copper, nickel or nickel-alloy substrates. Buffers and Rare Earth Barium Copper Oxide (REBCO) superconductors have been deposited epitaxially on the textured nickel alloy substrates. The starting substrate serves as a template for the REBCO layer, which has substantially fewer weak links. Buffer layers play a major role in fabricating the second generation REBCOmore » wire technology. The main purpose of the buffer layers is to provide a smooth, continuous and chemically inert surface for the growth of the REBCO film, while transferring the texture from the substrate to the superconductor layer. To achieve this, the buffer layers need to be epitaxial to the substrate, i.e. they have to nucleate and grow in the same bi-axial texture provided by the textured metal foil. The most commonly used RABiTS multi-layer architectures consist of a starting template of biaxially textured Ni-5 at.% W (Ni-W) substrate with a seed (first) layer of Yttrium Oxide (Y2O3), a barrier (second) layer of Yttria Stabilized Zirconia (YSZ), and a Cerium Oxide (CeO2) cap (third) layer. These three buffer layers are generally deposited using physical vapor deposition (PVD) techniques such as reactive sputtering. On top of the PVD template, REBCO film is then grown by a chemical solution deposition. This article reviews in detail about the list of oxide buffers and superconductor REBCO films grown epitaxially on single crystal and/or biaxially textured Ni-W substrates using a CSD method.« less

  5. Hexagonal AlN Layers Grown on Sulfided Si(100) Substrate

    NASA Astrophysics Data System (ADS)

    Bessolov, V. N.; Gushchina, E. V.; Konenkova, E. V.; L'vova, T. V.; Panteleev, V. N.; Shcheglov, M. P.

    2018-01-01

    We have studied the influence of sulfide passivation on the initial stages of aluminum nitride (AlN)-layer nucleation and growth by hydride vapor-phase epitaxy (HVPE) on (100)-oriented single-crystalline silicon substrates. It is established that the substrate pretreatment in (NH4)2S aqueous solution leads to the columnar nucleation of hexagonal AlN crystals of two modifications rotated by 30° relative to each other. Based on the sulfide treatment, a simple method of oxide removal from and preparation of Si(100) substrate surface is developed that can be used for the epitaxial growth of group-III nitride layers.

  6. Plasma enhanced chemical vapor deposition (PECVD) method of forming vanadium oxide films and vanadium oxide thin-films prepared thereby

    DOEpatents

    Zhang, Ji-Guang; Tracy, C. Edwin; Benson, David K.; Turner, John A.; Liu, Ping

    2000-01-01

    A method is disclosed of forming a vanadium oxide film on a substrate utilizing plasma enhanced chemical vapor deposition. The method includes positioning a substrate within a plasma reaction chamber and then forming a precursor gas comprised of a vanadium-containing chloride gas in an inert carrier gas. This precursor gas is then mixed with selected amounts of hydrogen and oxygen and directed into the reaction chamber. The amounts of precursor gas, oxygen and hydrogen are selected to optimize the final properties of the vanadium oxide film An rf plasma is generated within the reaction chamber to chemically react the precursor gas with the hydrogen and the oxygen to cause deposition of a vanadium oxide film on the substrate while the chamber deposition pressure is maintained at about one torr or less. Finally, the byproduct gases are removed from the plasma reaction chamber.

  7. Hydride transfer made easy in the oxidation of alcohols catalyzed by choline oxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gadda, G.; Orville, A.; Pennati, A.

    2008-06-08

    Choline oxidase (E.C. 1.1.3.17) catalyzes the two-step, four-electron oxidation of choline to glycine betaine with betaine aldehyde as enzyme-associated intermediate and molecular oxygen as final electron acceptor (Scheme 1). The gem-diol, hydrated species of the aldehyde intermediate of the reaction acts as substrate for aldehyde oxidation, suggesting that the enzyme may use similar strategies for the oxidation of the alcohol substrate and aldehyde intermediate. The determination of the chemical mechanism for alcohol oxidation has emerged from biochemical, mechanistic, mutagenetic, and structural studies. As illustrated in the mechanism of Scheme 2, the alcohol substrate is initially activated in the active sitemore » of the enzyme by removal of the hydroxyl proton. The resulting alkoxide intermediate is then stabilized in the enzyme-substrate complex via electrostatic interactions with active site amino acid residues. Alcohol oxidation then occurs quantum mechanically via the transfer of the hydride ion from the activated substrate to the N(5) flavin locus. An essential requisite for this mechanism of alcohol oxidation is the high degree of preorganization of the activated enzyme-substrate complex, which is achieved through an internal equilibrium of the Michaelis complex occurring prior to, and independently from, the subsequent hydride transfer reaction. The experimental evidence that support the mechanism for alcohol oxidation shown in Scheme 2 is briefly summarized in the Results and Discussion section.« less

  8. Perpendicularly magnetized (001)-textured D0{sub 22} MnGa films grown on an (Mg{sub 0.2}Ti{sub 0.8})O buffer with thermally oxidized Si substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hwachol; Sukegawa, Hiroaki, E-mail: sukegawa.hiroaki@nims.go.jp; Liu, Jun

    2015-10-28

    We report the growth of (001)-textured polycrystalline D0{sub 22} MnGa films with perpendicular magnetic anisotropy (PMA) on thermally oxidized Si substrates using an (Mg{sub 0.2}Ti{sub 0.8})O (MTO) buffer layer. The ordered D0{sub 22} MnGa film grown at the optimum substrate temperature of 530 °C on the MTO buffer layer shows PMA with magnetization of 80 kA/m, PMA energy density of 0.28 MJ/m{sup 3}, and coercivity of 2.3 T. The scanning transmission electron microscope analysis confirms the formation of a highly (001)-textured structure and the elementally sharp interfaces between the MTO layer and the MnGa layer. The achieved D0{sub 22} MnGa PMA films on anmore » amorphous substrate will provide the possible pathway of integration of a Mn-based PMA film into Si-based substrates.« less

  9. Substrate-biasing during plasma-assisted atomic layer deposition to tailor metal-oxide thin film growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Profijt, H. B.; Sanden, M. C. M. van de; Kessels, W. M. M.

    2013-01-15

    Two substrate-biasing techniques, i.e., substrate-tuned biasing and RF biasing, have been implemented in a remote plasma configuration, enabling control of the ion energy during plasma-assisted atomic layer deposition (ALD). With both techniques, substrate bias voltages up to -200 V have been reached, which allowed for ion energies up to 272 eV. Besides the bias voltage, the ion energy and the ion flux, also the electron temperature, the electron density, and the optical emission of the plasma have been measured. The effects of substrate biasing during plasma-assisted ALD have been investigated for Al{sub 2}O{sub 3}, Co{sub 3}O{sub 4}, and TiO{sub 2}more » thin films. The growth per cycle, the mass density, and the crystallinity have been investigated, and it was found that these process and material properties can be tailored using substrate biasing. Additionally, the residual stress in substrates coated with Al{sub 2}O{sub 3} films varied with the substrate bias voltage. The results reported in this article demonstrate that substrate biasing is a promising technique to tailor the material properties of thin films synthesized by plasma-assisted ALD.« less

  10. Method of forming oxide coatings. [for solar collector heating panels

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E. (Inventor)

    1983-01-01

    This invention is concerned with an improved plating process for covering a substrate with a black metal oxide film. The invention is particularly directed to making a heating panel for a solar collector. A compound is electrodeposited from an aqueous solution containing cobalt metal salts onto a metal substrate. This compound is converted during plating into a black, highly absorbing oxide coating which contains hydrated oxides. This is achieved by the inclusion of an oxidizing agent in the plating bath. The inclusion of an oxidizing agent in the plating bath is contrary to standard electroplating practice. The hydrated oxides are converted to oxides by treatment in a hot bath, such as boiling water. An oxidizing agent may be added to the hot liquid treating bath.

  11. Diffusion Barriers to Increase the Oxidative Life of Overlay Coatings

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Lei, Jih-Fen

    1999-01-01

    Currently, most blades and vanes in the hottest section of aero gas turbine engines require some type of coating for oxidation protection. Newly developed single crystal superalloys have the mechanical potential to operate at increasingly higher component temperatures. However, at these elevated temperatures, coating/substrate interdiffusion can shorten the protective life of the coating. Diffusion barriers between overlay coatings and substrates are being examined to extend the protective life of the coating. A previously- developed finite-difference diffusion model has been modified to predict the oxidative life enhancement due to use of a diffusion barrier. The original diffusion model, designated COSIM, simulates Al diffusion in the coating to the growing oxide scale as well as Al diffusion into the substrate. The COSIM model incorporates an oxide growth and spalling model to provide the rate of Al consumption during cyclic oxidation. Coating failure is predicted when the Al concentration at the coating surface drops to a defined critical level. The modified COSIM model predicts the oxidative life of an overlay coating when a diffusion barrier is present eliminating diffusion of Al from the coating into the substrate. Both the original and the modified diffusion models have been used to predict the effectiveness of a diffusion barrier in extending the protective life of a NiCrAl overlay coating undergoing cyclic oxidation at 1100 C.

  12. Porous Aluminum Oxide and Magnesium Oxide Films Using Organic Hydrogels as Structure Matrices

    PubMed Central

    Chen, Zimei

    2018-01-01

    We describe the synthesis of mesoporous Al2O3 and MgO layers on silicon wafer substrates by using poly(dimethylacrylamide) hydrogels as porogenic matrices. Hydrogel films are prepared by spreading the polymer through spin-coating, followed by photo-cross-linking and anchoring to the substrate surface. The metal oxides are obtained by swelling the hydrogels in the respective metal nitrate solutions and subsequent thermal conversion. Combustion of the hydrogel results in mesoporous metal oxide layers with thicknesses in the μm range and high specific surface areas up to 558 m2∙g−1. Materials are characterized by SEM, FIB ablation, EDX, and Kr physisorption porosimetry. PMID:29565802

  13. Literature survey on oxidations and fatigue lives at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Liu, H. W.; Oshida, Y.

    1984-01-01

    Nickel-base superalloys are the most complex and the most widely used for high temperature applications such as aircraft engine components. The desirable properties of nickel-base superalloys at high temperatures are tensile strength, thermomechanical fatigue resistance, low thermal expansion, as well as oxidation resistance. At elevated temperature, fatigue cracks are often initiated by grain boundary oxidation, and fatigue cracks often propagate along grain boundaries, where the oxidation rate is higher. Oxidation takes place at the interface between metal and gas. Properties of the metal substrate, the gaseous environment, as well as the oxides formed all interact to make the oxidation behavior of nickel-base superalloys extremely complicated. The important topics include general oxidation, selective oxidation, internal oxidation, grain boundary oxidation, multilayer oxide structure, accelerated oxidation under stress, stress-generation during oxidation, composition and substrate microstructural changes due to prolonged oxidation, fatigue crack initiation at oxidized grain boundaries and the oxidation accelerated fatigue crack propagation along grain boundaries.

  14. Effect of the substrate temperature on the physical properties of molybdenum tri-oxide thin films obtained through the spray pyrolysis technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, H.M.; Torres, J., E-mail: njtorress@unal.edu.co; Lopez Carreno, L.D.

    2013-01-15

    Polycrystalline molybdenum tri-oxide thin films were prepared using the spray pyrolysis technique; a 0.1 M solution of ammonium molybdate tetra-hydrated was used as a precursor. The samples were prepared on Corning glass substrates maintained at temperatures ranging between 423 and 673 K. The samples were characterized through micro Raman, X-ray diffraction, optical transmittance and DC electrical conductivity. The species MoO{sub 3} (H{sub 2}O){sub 2} was found in the sample prepared at a substrate temperature of 423 K. As the substrate temperature rises, the water disappears and the samples crystallize into {alpha}-MoO{sub 3}. The optical gap diminishes as the substrate temperaturemore » rises. Two electrical transport mechanisms were found: hopping under 200 K and intrinsic conduction over 200 K. The MoO{sub 3} films' sensitivity was analyzed for CO and H{sub 2}O in the temperature range 160 to 360 K; the results indicate that CO and H{sub 2}O have a reduction character. In all cases, it was found that the sensitivity to CO is lower than that to H{sub 2}O. - Highlights: Black-Right-Pointing-Pointer A low cost technique is used which produces good material. Black-Right-Pointing-Pointer Thin films are prepared using ammonium molybdate tetra hydrated. Black-Right-Pointing-Pointer The control of the physical properties of the samples could be done. Black-Right-Pointing-Pointer A calculation method is proposed to determine the material optical properties. Black-Right-Pointing-Pointer The MoO{sub 3} thin films prepared by spray pyrolysis could be used as gas sensor.« less

  15. ZnO deposition on metal substrates: Relating fabrication, morphology, and wettability

    NASA Astrophysics Data System (ADS)

    Beaini, Sara S.; Kronawitter, Coleman X.; Carey, Van P.; Mao, Samuel S.

    2013-05-01

    It is not common practice to deposit thin films on metal substrates, especially copper, which is a common heat exchanger metal and practical engineering material known for its heat transfer properties. While single crystal substrates offer ideal surfaces with uniform structure for compatibility with oxide deposition, metallic surfaces needed for industrial applications exhibit non-idealities that complicate the fabrication of oxide nanostructure arrays. The following study explored different ZnO fabrication techniques to deposit a (super)hydrophobic thin film of ZnO on a metal substrate, specifically copper, in order to explore its feasibility as an enhanced condensing surface. ZnO was selected for its non-toxicity, ability to be made (super)hydrophobic with hierarchical roughness, and its photoinduced hydrophilicity characteristic, which could be utilized to pattern it to have both hydrophobic-hydrophilic regions. We investigated the variation of ZnO's morphology and wetting state, using SEMs and sessile drop contact angle measurements, as a function of different fabrication techniques: sputtering, pulsed laser deposition (PLD), electrodeposition and annealing Zn. We successfully fabricated (super)hydrophobic ZnO on a mirror finish, commercially available copper substrate using the scalable electrodeposition technique. PLD for ZnO deposition did not prove viable, as the ZnO samples on metal substrates were hydrophilic and the process does not lend itself to scalability. The annealed Zn sheets did not exhibit consistent wetting state results.

  16. Directed assembly of carbon nanotubes on soft substrates for use as a flexible biosensor array.

    PubMed

    Koh, Juntae; Yi, Mihye; Yang Lee, Byung; Kim, Tae Hyun; Lee, Joohyung; Jhon, Young Min; Hong, Seunghun

    2008-12-17

    We have developed a method to selectively assemble and align carbon nanotubes (CNTs) on soft substrates for use as flexible biosensors. In this strategy, a thin oxide layer was deposited on soft substrates via low temperature plasma enhanced chemical vapor deposition, and a linker-free assembly process was applied on the oxide surface where the assembly of carbon nanotubes was guided by methyl-terminated molecular patterns on the oxide surface. The electrical characterization of the fabricated CNT devices exhibited a typical p-type gating effect and 1/f noise behavior. The bare oxide regions near CNTs were functionalized with glutamate oxidase to fabricate selective biosensors to detect two forms of glutamate substances existing in different situations: L-glutamic acid, a neurotransmitting material, and monosodium glutamate, a food additive.

  17. Identifying suitable substrates for high-quality graphene-based heterostructures

    NASA Astrophysics Data System (ADS)

    Banszerus, L.; Janssen, H.; Otto, M.; Epping, A.; Taniguchi, T.; Watanabe, K.; Beschoten, B.; Neumaier, D.; Stampfer, C.

    2017-06-01

    We report on a scanning confocal Raman spectroscopy study investigating the strain-uniformity and the overall strain and doping of high-quality chemical vapour deposited (CVD) graphene-based heterostuctures on a large number of different substrate materials, including hexagonal boron nitride (hBN), transition metal dichalcogenides, silicon, different oxides and nitrides, as well as polymers. By applying a hBN-assisted, contamination free, dry transfer process for CVD graphene, high-quality heterostructures with low doping densities and low strain variations are assembled. The Raman spectra of these pristine heterostructures are sensitive to substrate-induced doping and strain variations and are thus used to probe the suitability of the substrate material for potential high-quality graphene devices. We find that the flatness of the substrate material is a key figure for gaining, or preserving high-quality graphene.

  18. Stabilized chromium oxide film

    DOEpatents

    Nyaiesh, A.R.; Garwin, E.L.

    1986-08-04

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150A are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  19. Stabilized chromium oxide film

    DOEpatents

    Garwin, Edward L.; Nyaiesh, Ali R.

    1988-01-01

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150.ANG. are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  20. Effects of high-intensity interval training on physical capacities and substrate oxidation rate in obese adolescents.

    PubMed

    Lazzer, S; Tringali, G; Caccavale, M; De Micheli, R; Abbruzzese, L; Sartorio, A

    2017-02-01

    To investigate the effects of a 3-week weight-management program entailing moderate energy restriction, nutritional education, psychological counseling and three different exercise training (a: low intensity, LI: 40 % V'O 2 max; b: high intensity, HI: 70 % V'O 2 max; c: high-intensity interval training, HIIT), on body composition, energy expenditure and fat oxidation rate in obese adolescents. Thirty obese adolescents (age: 15-17 years, BMI: 37.5 kg m -2 ) participated in this study. Before starting (week 0, W0) and at the end of the weight-management program (week 3, W3), body composition was assessed by an impedancemeter; basal metabolic rate (BMR), energy expenditure and substrate oxidation rate were measured during exercise and post-exercise recovery by indirect calorimetry. At W3, body mass (BM) and fat mass (FM) decreased significantly in all groups, the decreases being significantly greater in the LI than in the HI and HIIT subgroups (BM: -8.4 ± 1.5 vs -6.3 ± 1.9 vs -4.9 ± 1.3 kg and FM: -4.2 ± 1.9 vs -2.8 ± 1.2 vs -2.3 ± 1.4 kg, p < 0.05, respectively). V'O 2 peak, expressed in relative values, changed significantly only in the HI and HIIT groups by 0.009 ± 0.005 and 0.007 ± 0.004 L kg FFM -1  min -1 (p < 0.05). Furthermore, the HI and HIIT subgroups exhibited a greater absolute rate of fat oxidation between 50 and 70 % V'O 2 peak at W3. No significant changes were observed at W3 in BMR, energy expenditure during exercise and post-exercise recovery. A 3-week weight-management program induced a greater decrease in BM and FM in the LI than in the HI and HIIT subgroups, and greater increase in V'O 2 peak and fat oxidation rate in the HI and HIIT than in the LI subgroup.

  1. Direct transparent electrode patterning on layered GaN substrate by screen printing of indium tin oxide nanoparticle ink for Eu-doped GaN red light-emitting diode

    NASA Astrophysics Data System (ADS)

    Kashiwagi, Y.; Koizumi, A.; Takemura, Y.; Furuta, S.; Yamamoto, M.; Saitoh, M.; Takahashi, M.; Ohno, T.; Fujiwara, Y.; Murahashi, K.; Ohtsuka, K.; Nakamoto, M.

    2014-12-01

    Transparent electrodes were formed on Eu-doped GaN-based red-light-emitting diode (GaN:Eu LED) substrates by the screen printing of indium tin oxide nanoparticle (ITO np) inks as a wet process. The ITO nps with a mean diameter of 25 nm were synthesized by the controlled thermolysis of a mixture of indium complexes and tin complexes. After the direct screen printing of ITO np inks on GaN:Eu LED substrates and sintering at 850 °C for 10 min under atmospheric conditions, the resistivity of the ITO film was 5.2 mΩ cm. The fabricated LED up to 3 mm square surface emitted red light when the on-voltage was exceeded.

  2. Atomic Layer Deposition of HfO2 and Si Nitride on Ge Substrates

    NASA Astrophysics Data System (ADS)

    Zhu, Shiyang; Nakajima, Anri

    2007-12-01

    Hafnium oxide (HfO2) thin films were deposited on Ge substrates at 300 °C using atomic layer deposition (ALD) with tetrakis(diethylamino)hafnium (termed as TDEAH) as a precursor and water as an oxidant. The deposition rate was estimated to be 0.09 nm/cycle and the deposited HfO2 films have a smooth surface and an almost stoichiometric composition, indicating that the growth follows a layer-by-layer kinetics, similarly to that on Si substrates. Si nitride thin films were also deposited on Ge by ALD using SiCl4 as a precursor and NH3 as an oxidant. Si nitride has a smaller deposition rate of about 0.055 nm/cycle and a larger gate leakage current than HfO2 deposited on Ge by ALD.

  3. Method of forming buried oxide layers in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2000-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  4. System and process for aluminization of metal-containing substrates

    DOEpatents

    Chou, Yeong-Shyung; Stevenson, Jeffry W.

    2017-12-12

    A system and method are detailed for aluminizing surfaces of metallic substrates, parts, and components with a protective alumina layer in-situ. Aluminum (Al) foil sandwiched between the metallic components and a refractory material when heated in an oxidizing gas under a compression load at a selected temperature forms the protective alumina coating on the surface of the metallic components. The alumina coating minimizes evaporation of volatile metals from the metallic substrates, parts, and components in assembled devices that can degrade performance during operation at high temperature.

  5. System and process for aluminization of metal-containing substrates

    DOEpatents

    Chou, Yeong-Shyung; Stevenson, Jeffry W

    2015-11-03

    A system and method are detailed for aluminizing surfaces of metallic substrates, parts, and components with a protective alumina layer in-situ. Aluminum (Al) foil sandwiched between the metallic components and a refractory material when heated in an oxidizing gas under a compression load at a selected temperature forms the protective alumina coating on the surface of the metallic components. The alumina coating minimizes evaporation of volatile metals from the metallic substrates, parts, and components in assembled devices during operation at high temperature that can degrade performance.

  6. A comparison of normal versus low dietary carbohydrate intake on substrate oxidation during and after moderate intensity exercise in women.

    PubMed

    Patterson, Rachel; Potteiger, Jeffrey A

    2011-12-01

    We compared the effects of consuming a 2-day low-carbohydrate (CHO) diet (low-CHO; 20% CHO, 40% protein, 40% fat) versus an isocaloric 2-day moderate-CHO diet (mod-CHO; 55% CHO, 15% protein, 30% fat) on substrate oxidation during and after exercise in ten active, young women. Subjects were 24.9 ± 6.2% body fat with a VO(2max) of 68.8 ± 13.8 ml/kg FFM/min. For 2 days prior to exercise, subjects consumed either the mod-CHO or the low-CHO diet and then completed treadmill exercise at 55% of VO(2max) until 350 kcal of energy was expended. During exercise and for 2 h post-exercise, expired gases were analyzed to determine oxidation rates for CHO (CHO-OX) and fat (FAT-OX). Significant differences (p < 0.05) were found between diets for CHO-OX and FAT-OX (mg/kg FFM/min) during exercise, 1 h post-ex, and 2 h post-ex. During exercise, FAT-OX was higher (low-CHO 8.7 ± 2.2 vs. mod-CHO 6.2 ± 2.2) and CHO-OX was lower (low-CHO 25.1 ± 5.6 vs. mod-CHO 31.1 ± 6.2) following the low-CHO diet. A similar trend was observed during 1 h post-ex for FAT-OX (low-CHO 2.2 ± 0.5 vs. mod-CHO 1.6 ± 0.5) and CHO-OX (low-CHO 2.5 ± 1.2 vs. mod-CHO 4.1 ± 1.9), as well as 2 h post-ex for FAT-OX (low-CHO vs. 1.9 ± 0.5 mod-CHO 1.7 ± 0.4) and CHO-OX (low-CHO 2.5 ± 0.9 vs. mod-CHO 3.1 ± 1.1). Significant positive correlations were observed between VO(2max) and CHO-OX during exercise and post-exercise, as well as significant negative correlations between VO(2max) and FAT-OX post-exercise in the low-CHO condition. Waist circumference and FAT-OX exhibited a significant negative correlation during exercise in the low-CHO condition. Dietary macronutrient intake influenced substrate oxidation in active young women during and after moderate intensity exercise.

  7. Preparation of Mica and Silicon Substrates for DNA Origami Analysis and Experimentation

    PubMed Central

    Pillers, Michelle A.; Shute, Rebecca; Farchone, Adam; Linder, Keenan P.; Doerfler, Rose; Gavin, Corey; Goss, Valerie; Lieberman, Marya

    2015-01-01

    The designed nature and controlled, one-pot synthesis of DNA origami provides exciting opportunities in many fields, particularly nanoelectronics. Many of these applications require interaction with and adhesion of DNA nanostructures to a substrate. Due to its atomically flat and easily cleaned nature, mica has been the substrate of choice for DNA origami experiments. However, the practical applications of mica are relatively limited compared to those of semiconductor substrates. For this reason, a straightforward, stable, and repeatable process for DNA origami adhesion on derivatized silicon oxide is presented here. To promote the adhesion of DNA nanostructures to silicon oxide surface, a self-assembled monolayer of 3-aminopropyltriethoxysilane (APTES) is deposited from an aqueous solution that is compatible with many photoresists. The substrate must be cleaned of all organic and metal contaminants using Radio Corporation of America (RCA) cleaning processes and the native oxide layer must be etched to ensure a flat, functionalizable surface. Cleanrooms are equipped with facilities for silicon cleaning, however many components of DNA origami buffers and solutions are often not allowed in them due to contamination concerns. This manuscript describes the set-up and protocol for in-lab, small-scale silicon cleaning for researchers who do not have access to a cleanroom or would like to incorporate processes that could cause contamination of a cleanroom CMOS clean bench. Additionally, variables for regulating coverage are discussed and how to recognize and avoid common sample preparation problems is described. PMID:26274888

  8. Epitaxy of mercury-based high temperature superconducting films on oxide and metal substrates

    NASA Astrophysics Data System (ADS)

    Xie, Yi-Yuan

    High-Tc superconducting (HTS) cuprates are highly anisotropic thus epitaxy along certain crystalline directions is essential to realize high-current-carrying capability at temperatures above 77 K. Hg-based HTS (Hg-HTS) cuprates have the record-high Tc up to 135 K, therefore are of great interest for fundamental research and practical applications. However, growth Of epitaxial Hg-HTS films is extremely difficult in conventional thermal-reaction process since Hg is highly volatile. Motivated by this, we first developed a cation-exchange process for growing epitaxial Hg-HTS films, which involves two steps: selection of precursor matrices with predesigned structure and composition followed by cation-exchange processing. New materials are formed via "atomic surgery" on an existing structure rather than thermal reaction among amorphous oxides in conventional process, thus the structural features of the precursor are inherited by the new material. Using epitaxial Tl-based HTS films as precursor and annealing them in Hg-vapor, epitaxial Hg-HTS films with superior quality have been obtained. This success encouraged us to develop epitaxy on metal tapes for coated conductors and On large-area wafers for electronic devices. For coated conductors, we addressed three critical issues: epitaxy on metal substrates, enhancement of in-field Jcs and scale-up in thickness and length. First, using a fabrication scheme that combines two processes: cation-exchange and fast-temperature-ramping-annealing, epitaxial HgBa2CaCu2O6+delta films were grown on rolling-assisted-biaxially-textured Ni substrates buffered with CeO 2/YSZ/CeO2 for the first time. We fabricated HgBa2CaCu 2O6+delta coated conductors with Tc = 122--124 K and self-field Jc > 1 x 106A/cm2 at 92 K which are record-high for HTS coated conductors. Second, we demonstrated improved in-field J cs via overdoping HgBa2CaCu 2O6+delta films (by means Of charge "overdoped"), heavy-ion-irradiation and substrate engineering. Finally

  9. Fabrication of Highly Ordered Anodic Aluminium Oxide Templates on Silicon Substrates

    DTIC Science & Technology

    2007-01-01

    highly ordered anodic aluminium oxide ( AAO ) templates of unprecedented pore uniformity directly on Si, enabled by new advances on two fronts – direct...field emitter, sensors, oscillators and photodetectors. 15. SUBJECT TERMS Anodic aluminum oxide , template-assisted nanofabrication, carbon nanotube...Fabrication of the aligned and patterned carbon nanotube field emitters using the anodic aluminum oxide nano-template on a Si wafer’, Synth. Met

  10. Myocardial reloading after extracorporeal membrane oxygenation alters substrate metabolism while promoting protein synthesis.

    PubMed

    Kajimoto, Masaki; O'Kelly Priddy, Colleen M; Ledee, Dolena R; Xu, Chun; Isern, Nancy; Olson, Aaron K; Des Rosiers, Christine; Portman, Michael A

    2013-08-19

    Extracorporeal membrane oxygenation (ECMO) unloads the heart, providing a bridge to recovery in children after myocardial stunning. ECMO also induces stress which can adversely affect the ability to reload or wean the heart from the circuit. Metabolic impairments induced by altered loading and/or stress conditions may impact weaning. However, cardiac substrate and amino acid requirements upon weaning are unknown. We assessed the hypothesis that ventricular reloading with ECMO modulates both substrate entry into the citric acid cycle (CAC) and myocardial protein synthesis. Sixteen immature piglets (7.8 to 15.6 kg) were separated into 2 groups based on ventricular loading status: 8-hour ECMO (UNLOAD) and postwean from ECMO (RELOAD). We infused into the coronary artery [2-(13)C]-pyruvate as an oxidative substrate and [(13)C6]-L-leucine as an indicator for amino acid oxidation and protein synthesis. Upon RELOAD, each functional parameter, which were decreased substantially by ECMO, recovered to near-baseline level with the exclusion of minimum dP/dt. Accordingly, myocardial oxygen consumption was also increased, indicating that overall mitochondrial metabolism was reestablished. At the metabolic level, when compared to UNLOAD, RELOAD altered the contribution of various substrates/pathways to tissue pyruvate formation, favoring exogenous pyruvate versus glycolysis, and acetyl-CoA formation, shifting away from pyruvate decarboxylation to endogenous substrate, presumably fatty acids. Furthermore, there was also a significant increase of tissue concentrations for all CAC intermediates (≈80%), suggesting enhanced anaplerosis, and of fractional protein synthesis rates (>70%). RELOAD alters both cytosolic and mitochondrial energy substrate metabolism, while favoring leucine incorporation into protein synthesis rather than oxidation in the CAC. Improved understanding of factors governing these metabolic perturbations may serve as a basis for interventions and thereby improve

  11. Influence of substrate rocks on Fe Mn crust composition

    NASA Astrophysics Data System (ADS)

    Hein, James R.; Morgan, Charles L.

    1999-05-01

    Principal Component and other statistical analyses of chemical and mineralogical data of Fe-Mn oxyhydroxide crusts and their underlying rock substrates in the central Pacific indicate that substrate rocks do not influence crust composition. Two ridges near Johnston Atoll were dredged repetitively and up to seven substrate rock types were recovered from small areas of similar water depths. Crusts were analyzed mineralogically and chemically for 24 elements, and substrates were analyzed mineralogically and chemically for the 10 major oxides. Compositions of crusts on phosphatized substrates are distinctly different from crusts on substrates containing no phosphorite. However, that relationship only indicates that the episodes of phosphatization that mineralized the substrate rocks also mineralized the crusts that grew on them. A two-fold increase in copper contents in crusts that grew on phosphatized clastic substrate rocks, relative to crusts on other substrate rock types, is also associated with phosphatization and must have resulted from chemical reorganization during diagenesis. Phosphatized crusts show increases in Sr, Zn, Ca, Ba, Cu, Ce, V, and Mo contents and decreases in Fe, Si, and As contents relative to non-phosphatized crusts. Our statistical results support previous studies which show that crust compositions reflect predominantly direct precipitation from seawater (hydrogenetic), and to lesser extents reflect detrital input and diagenetic replacement of parts of the older crust generation by carbonate fluorapatite.

  12. Influence of substrate rocks on Fe-Mn crust composition

    USGS Publications Warehouse

    Hein, J.R.; Morgan, C.L.

    1999-01-01

    Principal Component and other statistical analyses of chemical and mineralogical data of Fe-Mn oxyhydroxide crusts and their underlying rock substrates in the central Pacific indicate that substrate rocks do not influence crust composition. Two ridges near Johnston Atoll were dredged repetitively and up to seven substrate rock types were recovered from small areas of similar water depths. Crusts were analyzed mineralogically and chemically for 24 elements, and substrates were analyzed mineralogically and chemically for the 10 major oxides. Compositions of crusts on phosphatized substrates are distinctly different from crusts on substrates containing no phosphorite. However, that relationship only indicates that the episodes of phosphatization that mineralized the substrate rocks also mineralized the crusts that grew on them. A two-fold increase in copper contents in crusts that grew on phosphatized clastic substrate rocks, relative to crusts on other substrate rock types, is also associated with phosphatization and must have resulted from chemical reorganization during diagenesis. Phosphatized crusts show increases in Sr, Zn, Ca, Ba, Cu, Ce, V, and Mo contents and decreases in Fe, Si, and As contents relative to non-phosphatized crusts. Our statistical results support previous studies which show that crust compositions reflect predominantly direct precipitation from seawater (hydrogenetic), and to lesser extents reflect detrital input and diagenetic replacement of parts of the older crust generation by carbonate fluorapatite.

  13. Method for improving the oxidation-resistance of metal substrates coated with thermal barrier coatings

    DOEpatents

    Thompson, Anthony Mark; Gray, Dennis Michael; Jackson, Melvin Robert

    2002-01-01

    A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described.

  14. Buffer layers on metal alloy substrates for superconducting tapes

    DOEpatents

    Jia, Quanxi; Foltyn, Stephen R.; Arendt, Paul N.; Groves, James R.

    2004-10-05

    An article including a substrate, at least one intermediate layer upon the surface of the substrate, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the at least one intermediate layer, and a layer of a SrRuO.sub.3 buffer material upon the oriented cubic oxide material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon the layer of a SrRuO.sub.3 buffer material layer. With a HTS top-layer of YBCO upon at least one layer of the SrRuO.sub.3 buffer material in such an article, J.sub.c 's of up to 1.3.times.10.sup.6 A/cm.sup.2 have been demonstrated with projected I.sub.c 's of over 200 Amperes across a sample 1 cm wide.

  15. Identification of human flavin-containing monooxygenase 3 substrates by a colorimetric screening assay.

    PubMed

    Catucci, Gianluca; Polignano, Isabelle; Cusumano, Debora; Medana, Claudio; Gilardi, Gianfranco; Sadeghi, Sheila J

    2017-04-01

    Human hepatic flavin-containing monooxygenase 3 is a phase I drug-metabolizing enzyme that is responsible for the oxidation of a variety of drugs and xenobiotics. This work reports on a high throughput rapid colorimetric assay for the screening of substrates or inhibitors of this enzyme. The method is based on the competition of two substrates for access to the active site of hFMO3 whereby the enzymatic product of the first drug converts nitro-5-thiobenzoate (TNB, yellow) to 5,5'-dithiobis (2-nitrobenzoate) (DTNB, colourless). Upon addition of a competing substrate, the amount of detected DNTB is decreased. The assay is validated testing three known substrates of hFMO3, namely benzydamine, tozasertib and tamoxifen. The latter drugs resulted in 41%-55% inhibition. In addition, two other drugs also classified as doping drugs, selegiline and clomiphene, were selected based on their chemical structure similarity to known substrates of hFMO3. These drugs showed 21% and 60% inhibition in the colorimetric assay and therefore were proven to be hFMO3 substrates. LC-MS was used to confirm their N-oxide products. Further characterisation of these newly identified hFMO3 substrates was performed determining their K m and k cat values that resulted to be 314 μM and 1.4 min -1 for selegiline and, 18 μM and 0.1 min -1 for clomiphene. This method paves the way for a rapid automated high throughput screening of nitrogen-containing compounds as substrates/inhibitors of hFMO3. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. VO2 Thermochromic Films on Quartz Glass Substrate Grown by RF-Plasma-Assisted Oxide Molecular Beam Epitaxy

    PubMed Central

    Zhang, Dong; Sun, Hong-Jun; Wang, Min-Huan; Miao, Li-Hua; Liu, Hong-Zhu; Zhang, Yu-Zhi; Bian, Ji-Ming

    2017-01-01

    Vanadium dioxide (VO2) thermochromic thin films with various thicknesses were grown on quartz glass substrates by radio frequency (RF)-plasma assisted oxide molecular beam epitaxy (O-MBE). The crystal structure, morphology and chemical stoichiometry were investigated systemically by X-ray diffraction (XRD), atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses. An excellent reversible metal-to-insulator transition (MIT) characteristics accompanied by an abrupt change in both electrical resistivity and optical infrared (IR) transmittance was observed from the optimized sample. Remarkably, the transition temperature (TMIT) deduced from the resistivity-temperature curve was reasonably consistent with that obtained from the temperature-dependent IR transmittance. Based on Raman measurement and XPS analyses, the observations were interpreted in terms of residual stresses and chemical stoichiometry. This achievement will be of great benefit for practical application of VO2-based smart windows. PMID:28772673

  17. Two Dimensional Polymer That Generates Nitric Oxide.

    DOEpatents

    McDonald, William F.; Koren, Amy B.

    2005-10-04

    A polymeric composition that generates nitric oxide and a process for rendering the surface of a substrate nonthrombogenic by applying a coating of the polymeric composition to the substrate are disclosed. The composition comprises: (1) a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, and (ii) a crosslinking agent containing functional groups capable of reacting with the amino groups; and (2) a plurality of nitric oxide generating functional groups associated with the crosslinked chemical combination. Once exposed to a physiological environment, the coating generates nitric oxide thereby inhibiting platelet aggregation. In one embodiment, the nitric oxide generating functional groups are provided by a nitrated compound (e.g., nitrocellulose) imbedded in the polymeric composition. In another embodiment, the nitric oxide generating functional groups comprise N2O2- groups covalently bonded to amino groups on the polymer.

  18. The microstructure of laterally seeded silicon-on-oxide

    NASA Astrophysics Data System (ADS)

    Pinizzotto, R. F.; Lam, H. W.; Vaandrager, B. L.

    1982-03-01

    The production of large scale integrated circuits in thin silicon films on insulating substrates is currently of much interest in the electronics industry. One of the most promising techniques of forming this composite structure is by lateral seeding. We have used optical microscopy and transmission electron microscopy to characterize the microstructure of silicon-on-oxide formed by scanning CW laser induced lateral epitaxy. The primary defects are dislocations. Dislocation rearrangement leads to the formation of both small angle boundaries (stable, regular dislocation arrays) and grain boundaries. The grains were found to be misoriented to the <100> direction perpendicular to the film plane by ≤ 4° and to the <100> directions in the plane of the film by ≤ 2°. Internal reflection twins are a common defect. Microtwinning was found to occur at the vertical step caused by the substrate-oxide interface if the substrate to oxide step height was > 120 nm. The microstructure is continuous across successive scan lines. Microstructural defects are found to initiate at the same topographical location in different oxide pads. We propose that this is due to the meeting of two crystallization growth fronts. The liquid silicon between the fronts causes large stresses in this area because of the 9% volume increase during solidification. The defects observed in the bulk may form by a similar mechanism or by dislocation generation at substrate-oxide interface irregularities. The models predict that slower growth leads to improved material quality. This has been observed experimentally.

  19. Tin-gallium-oxide-based UV-C detectors

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Partha; Toporkov, Mykyta; Schoenfeld, Winston V.

    2018-02-01

    The emergence of conductive gallium oxide single crystal substrates offers the potential for vertical Schottky detectors operating in the UV-C spectral region. We report here on our recent work in the development of Tin Gallium oxide (TGO) thin film metal-semiconductor-metal (MSM) and Schottky detectors using plasma-assisted molecular beam epitaxy on c plane sapphire and bulk Ga2O3 substrates. Tin alloying of gallium oxide thin films was found to systematically reduce the optical band gap of the compound, providing tunability in the UV-C spectral region. Tin concentration in the TGO epilayers was found to be highly dependent on growth conditions, and Ga flux in particular. First attempts to demonstrate vertical Schottky photodetectors using TGO epilayers on bulk n-type Ga2O3 substrates were successful. Resultant devices showed strong photoresponse to UV-C light with peak responsivities clearly red shifted in comparison to Ga2O3 homoepitaxial Schottky detectors due to TGO alloying.

  20. Myocardial Reloading after Extracorporeal Membrane Oxygenation Alters Substrate Metabolism While Promoting Protein Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kajimoto, Masaki; Priddy, Colleen M.; Ledee, Dolena

    2013-08-19

    Extracorporeal membrane oxygenation (ECMO) unloads the heart providing a bridge to recovery in children after myocardial stunning. Mortality after ECMO remains high.Cardiac substrate and amino acid requirements upon weaning are unknown and may impact recovery. We assessed the hypothesis that ventricular reloading modulates both substrate entry into the citric acid cycle (CAC) and myocardial protein synthesis. Fourteen immature piglets (7.8-15.6 kg) were separated into 2 groups based on ventricular loading status: 8 hour-ECMO (UNLOAD) and post-wean from ECMO (RELOAD). We infused [2-13C]-pyruvate as an oxidative substrate and [13C6]-L-leucine, as a tracer of amino acid oxidation and protein synthesis into themore » coronary artery. RELOAD showed marked elevations in myocardial oxygen consumption above baseline and UNLOAD. Pyruvate uptake was markedly increased though RELOAD decreased pyruvate contribution to oxidative CAC metabolism.RELOAD also increased absolute concentrations of all CAC intermediates, while maintaining or increasing 13C-molar percent enrichment. RELOAD also significantly increased cardiac fractional protein synthesis rates by >70% over UNLOAD. Conclusions: RELOAD produced high energy metabolic requirement and rebound protein synthesis. Relative pyruvate decarboxylation decreased with RELOAD while promoting anaplerotic pyruvate carboxylation and amino acid incorporation into protein rather than to the CAC for oxidation. These perturbations may serve as therapeutic targets to improve contractile function after ECMO.« less

  1. Subcellular localization of rat CYP2E1 impacts metabolic efficiency toward common substrates.

    PubMed

    Hartman, Jessica H; Martin, H Cass; Caro, Andres A; Pearce, Amy R; Miller, Grover P

    2015-12-02

    Cytochrome P450 2E1 (CYP2E1) detoxifies or bioactivates many low molecular-weight compounds. Most knowledge about CYP2E1 activity relies on studies of the enzyme localized to endoplasmic reticulum (erCYP2E1); however, CYP2E1 undergoes transport to mitochondria (mtCYP2E1) and becomes metabolically active. We report the first comparison of in vitro steady-state kinetic profiles for erCYP2E1 and mtCYP2E1 oxidation of probe substrate 4-nitrophenol and pollutants styrene and aniline using subcellular fractions from rat liver. For all substrates, metabolic efficiency changed with substrate concentration for erCYP2E1 reflected in non-hyperbolic kinetic profiles but not for mtCYP2E1. Hyperbolic kinetic profiles for the mitochondrial enzyme were consistent with Michaelis-Menten mechanism in which metabolic efficiency was constant. By contrast, erCYP2E1 metabolism of 4-nitrophenol led to a loss of enzyme efficiency at high substrate concentrations when substrate inhibited the reaction. Similarly, aniline metabolism by erCYP2E1 demonstrated negative cooperativity as metabolic efficiency decreased with increasing substrate concentration. The opposite was observed for erCYP2E1 oxidation of styrene; the sigmoidal kinetic profile indicated increased efficiency at higher substrate concentrations. These mechanisms and CYP2E1 levels in mitochondria and endoplasmic reticulum were used to estimate the impact of CYP2E1 subcellular localization on metabolic flux of pollutants. Those models showed that erCYP2E1 mainly carries out aniline metabolism at all aniline concentrations. Conversely, mtCYP2E1 dominates styrene oxidation at low styrene concentrations and erCYP2E1 at higher concentrations. Taken together, subcellular localization of CYP2E1 results in distinctly different enzyme activities that could impact overall metabolic clearance and/or activation of substrates and thus impact the interpretation and prediction of toxicological outcomes. Copyright © 2015 Elsevier Ireland Ltd

  2. Structure and corrosion behavior of sputter deposited cerium oxide based coatings with various thickness on Al 2024-T3 alloy substrates

    NASA Astrophysics Data System (ADS)

    Liu, Yuanyuan; Huang, Jiamu; Claypool, James B.; Castano, Carlos E.; O'Keefe, Matthew J.

    2015-11-01

    Cerium oxide based coatings from ∼100 to ∼1400 nm in thickness were deposited onto Al 2024-T3 alloy substrates by magnetron sputtering of a 99.99% pure CeO2 target. The crystallite size of CeO2 coatings increased from 15 nm to 46 nm as the coating thickness increased from ∼100 nm to ∼1400 nm. The inhomogeneous lattice strain increased from 0.36% to 0.91% for the ∼100 nm to ∼900 nm thick coatings and slightly decreased to 0.89% for the ∼1400 nm thick coating. The highest adhesion strength to Al alloy substrates was for the ∼210 nm thick coating, due to a continuous film coverage and low internal stress. Electrochemical measurements indicated that sputter deposited crystalline CeO2 coatings acted as physical barriers that provide good cathodic inhibition for Al alloys in saline solution. The ∼900 nm thick CeO2 coated sample had the best corrosion performance that increased the corrosion resistance by two orders magnitude and lowered the cathodic current density 30 times compared to bare Al 2024-T3 substrates. The reduced defects and exposed surface, along with suppressed charge mobility, likely accounts for the improved corrosion performance as coating thickness increased from ∼100 nm to ∼900 nm. The corrosion performance decreased for ∼1400 nm thick coatings due in part to an increase in coating defects and porosity along with a decrease in adhesion strength.

  3. Structural basis of redox-dependent substrate binding of protein disulfide isomerase

    PubMed Central

    Yagi-Utsumi, Maho; Satoh, Tadashi; Kato, Koichi

    2015-01-01

    Protein disulfide isomerase (PDI) is a multidomain enzyme, operating as an essential folding catalyst, in which the b′ and a′ domains provide substrate binding sites and undergo an open–closed domain rearrangement depending on the redox states of the a′ domain. Despite the long research history of this enzyme, three-dimensional structural data remain unavailable for its ligand-binding mode. Here we characterize PDI substrate recognition using α-synuclein (αSN) as the model ligand. Our nuclear magnetic resonance (NMR) data revealed that the substrate-binding domains of PDI captured the αSN segment Val37–Val40 only in the oxidized form. Furthermore, we determined the crystal structure of an oxidized form of the b′–a′ domains in complex with an undecapeptide corresponding to this segment. The peptide-binding mode observed in the crystal structure with NMR validation, was characterized by hydrophobic interactions on the b′ domain in an open conformation. Comparison with the previously reported crystal structure indicates that the a′ domain partially masks the binding surface of the b′ domain, causing steric hindrance against the peptide in the reduced form of the b′–a′ domains that exhibits a closed conformation. These findings provide a structural basis for the mechanism underlying the redox-dependent substrate binding of PDI. PMID:26350503

  4. Alterations in energy substrate metabolism in mice with different degrees of sepsis.

    PubMed

    Irahara, Takayuki; Sato, Norio; Otake, Kosuke; Matsumura, Shigenobu; Inoue, Kazuo; Ishihara, Kengo; Fushiki, Tohru; Yokota, Hiroyuki

    2018-07-01

    Nutritional management is crucial during the acute phase of severe illnesses. However, the appropriate nutritional requirements for patients with sepsis are poorly understood. We investigated alterations in carbohydrate, fat, and protein metabolism in mice with different degrees of sepsis. C57BL/6 mice were divided into three groups: control mice group, administered with saline, and low- and high-dose lipopolysaccharide (LPS) groups, intraperitoneally administered with 1 and 5 mg of LPS/kg, respectively. Rectal temperature, food intake, body weight, and spontaneous motor activity were measured. Indirect calorimetry was performed using a respiratory gas analysis for 120 h, after which carbohydrate oxidation and fatty acid oxidation were calculated. Urinary nitrogen excretion was measured to evaluate protein metabolism. The substrate utilization ratio was recalculated. Plasma and liver carbohydrate and lipid levels were evaluated at 24, 72, and 120 h after LPS administration. Biological reactions decreased significantly in the low- and high-LPS groups. Fatty acid oxidation and protein oxidation increased significantly 24 h after LPS administration, whereas carbohydrate oxidation decreased significantly. Energy substrate metabolism changed from glucose to predominantly lipid metabolism depending on the degree of sepsis, and protein metabolism was low. Plasma lipid levels decreased, whereas liver lipid levels increased at 24 h, suggesting that lipids were transported to the liver as the energy source. Our findings revealed that energy substrate metabolism changed depending on the degree of sepsis. Therefore, in nutritional management, such metabolic alterations must be considered, and further studies on the optimum nutritional intervention during severe sepsis are necessary. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Facile chemical routes to mesoporous silver substrates for SERS analysis

    PubMed Central

    Tastekova, Elina A; Polyakov, Alexander Yu; Goldt, Anastasia E; Sidorov, Alexander V; Oshmyanskaya, Alexandra A; Sukhorukova, Irina V; Shtansky, Dmitry V; Grünert, Wolgang

    2018-01-01

    Mesoporous silver nanoparticles were easily synthesized through the bulk reduction of crystalline silver(I) oxide and used for the preparation of highly porous surface-enhanced Raman scattering (SERS)-active substrates. An analogous procedure was successfully performed for the production of mesoporous silver films by chemical reduction of oxidized silver films. The sponge-like silver blocks with high surface area and the in-situ-prepared mesoporous silver films are efficient as both analyte adsorbents and Raman signal enhancement mediators. The efficiency of silver reduction was characterized by X-ray diffraction and X-ray photoelectron spectroscopy. The developed substrates were applied for SERS detection of rhodamine 6G (enhancement factor of about 1–5 × 105) and an anti-ischemic mildronate drug (meldonium; enhancement factor of ≈102) that is known for its ability to increase the endurance performance of athletes. PMID:29600149

  6. Chloroperoxidase-catalyzed oxidation of 4,6-dimethyldibenzothiophene as dimer complexes: evidence for kinetic cooperativity.

    PubMed

    Torres, Eduardo; Aburto, Jorge

    2005-05-15

    A sigmoidal kinetic behavior of chloroperoxidase for the oxidation of 4,6-dimethyldibenzothiophene (4,6-DMDBT) in water-miscible organic solvent is for the first time reported. Kinetics of 4,6-DMDBT oxidation showed a cooperative profile probably due to the capacity of chloroperoxidase to recognize a substrate dimer (pi-pi dimer) in its active site. Experimental evidence is given for dimer formation and its presence in the active site of chloroperoxidase. The kinetic data were adjusted for a binding site able to interact with either monomer or dimer substrates, producing a cooperative model describing a one-site binding of two related species. Determination of kinetics constants by iterative calculations of possible oxidation paths of 4,6-DMDBT suggests that kinetics oxidation of dimer substrate is preferred when compared to monomer oxidation. Steady-state fluorometry of substrate in the absence and presence of chloroperoxidase, described by the spectral center of mass, supports this last conclusion.

  7. Substrate independent approach for synthesis of graphene platelet networks.

    PubMed

    Shashurin, A; Fang, X; Zemlyanov, D; Keidar, M

    2017-06-23

    Graphene platelet networks (GPNs) comprised of randomly oriented graphene flakes two to three atomic layers thick are synthesized using a novel plasma-based approach. The approach uses a substrate capable of withstanding synthesis temperatures around 800 °C, but is fully independent of the substrate material. The synthesis occurs directly on the substrate surface without the necessity of any additional steps. GPNs were synthesized on various substrate materials including silicon (Si), thermally oxidized Si (SiO 2 ), molybdenum (Mo), nickel (Ni) and copper (Cu), nickel-chromium (NiCr) alloy and alumina ceramics (Al 2 O 3 ). The mismatch between the atomic structures of sp 2 honeycomb carbon networks and the substrate material is fully eliminated shortly after the synthesis initiation, namely when about 100 nm thick deposits are formed on the substrate. GPN structures synthesized on a substrate at a temperature of about 800 °C are significantly more porous in comparison to the much denser packed amorphous carbon deposits synthesized at lower temperatures. The method proposed here can potentially revolutionize the area of electrochemical energy storage by offering a single-step direct approach for the manufacture of graphene-based electrodes for non-Faradaic supercapacitors. Mass production can be achieved using this method if a roll-to-roll system is utilized.

  8. Substrate independent approach for synthesis of graphene platelet networks

    NASA Astrophysics Data System (ADS)

    Shashurin, A.; Fang, X.; Zemlyanov, D.; Keidar, M.

    2017-06-01

    Graphene platelet networks (GPNs) comprised of randomly oriented graphene flakes two to three atomic layers thick are synthesized using a novel plasma-based approach. The approach uses a substrate capable of withstanding synthesis temperatures around 800 °C, but is fully independent of the substrate material. The synthesis occurs directly on the substrate surface without the necessity of any additional steps. GPNs were synthesized on various substrate materials including silicon (Si), thermally oxidized Si (SiO2), molybdenum (Mo), nickel (Ni) and copper (Cu), nickel-chromium (NiCr) alloy and alumina ceramics (Al2O3). The mismatch between the atomic structures of sp2 honeycomb carbon networks and the substrate material is fully eliminated shortly after the synthesis initiation, namely when about 100 nm thick deposits are formed on the substrate. GPN structures synthesized on a substrate at a temperature of about 800 °C are significantly more porous in comparison to the much denser packed amorphous carbon deposits synthesized at lower temperatures. The method proposed here can potentially revolutionize the area of electrochemical energy storage by offering a single-step direct approach for the manufacture of graphene-based electrodes for non-Faradaic supercapacitors. Mass production can be achieved using this method if a roll-to-roll system is utilized.

  9. Colorless polyimide/organoclay nanocomposite substrates for flexible organic light-emitting devices.

    PubMed

    Kim, Jin-Hoe; Choi, Myeon-Chon; Kim, Hwajeong; Kim, Youngkyoo; Chang, Jin-Hae; Han, Mijeong; Kim, Il; Ha, Chang-Sik

    2010-01-01

    We report the preparation and application of indium tin oxide (ITO) coated fluorine-containing polyimide/organoclay nanocomposite substrate. Fluorine-containing polyimide/organoclay nanocomposite films were prepared through thermal imidization of poly(amic acid)/organoclay mixture films, whilst on which ITO thin films were coated on the films using a radio-frequency planar magnetron sputtering by varying the substrate temperature and the ITO thickness. Finally the ITO coated fluorine-containing polyimide/organoclay nanocomposite substrate was employed to make flexible organic light-emitting devices (OLED). Results showed that the lower sheet resistance was achieved when the substrate temperature was high and the ITO film was thick even though the optical transmittance was slightly lowered as the thickness increased. approximately 10 nm width ITO nanorods were found for all samples but the size of clusters with the nanorods was generally increased with the substrate temperature and the thickness. The flexible OLED made using the present substrate was quite stable even when the device was extremely bended.

  10. Direct transparent electrode patterning on layered GaN substrate by screen printing of indium tin oxide nanoparticle ink for Eu-doped GaN red light-emitting diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashiwagi, Y., E-mail: kasiwagi@omtri.or.jp; Yamamoto, M.; Saitoh, M.

    2014-12-01

    Transparent electrodes were formed on Eu-doped GaN-based red-light-emitting diode (GaN:Eu LED) substrates by the screen printing of indium tin oxide nanoparticle (ITO np) inks as a wet process. The ITO nps with a mean diameter of 25 nm were synthesized by the controlled thermolysis of a mixture of indium complexes and tin complexes. After the direct screen printing of ITO np inks on GaN:Eu LED substrates and sintering at 850 °C for 10 min under atmospheric conditions, the resistivity of the ITO film was 5.2 mΩ cm. The fabricated LED up to 3 mm square surface emitted red light when the on-voltage was exceeded.

  11. SELECTIVE OXIDATION IN SUPERCRITICAL CARBON DIOXIDE USING CLEAN OXIDANTS

    EPA Science Inventory

    We have systematically investigated heterogeneous catalytic oxidation of different substrates in supercritical carbon dioxide (SC-CO2). Three types of catagysts: a metal complex, 0.5% platinum g-alumina and 0.5% palladium g-alumina were used at a pressure of 200 bar, temperatures...

  12. Thermoelectric material including conformal oxide layers and method of making the same using atomic layer deposition

    DOEpatents

    Cho, Jung Young; Ahn, Dongjoon; Salvador, James R.; Meisner, Gregory P.

    2016-06-07

    A thermoelectric material includes a substrate particle and a plurality of conformal oxide layers formed on the substrate particle. The plurality of conformal oxide layers has a total oxide layer thickness ranging from about 2 nm to about 20 nm. The thermoelectric material excludes oxide nanoparticles. A method of making the thermoelectric material is also disclosed herein.

  13. Nanostructured transparent conducting oxide electrochromic device

    DOEpatents

    Milliron, Delia; Tangirala, Ravisubhash; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2016-05-17

    The embodiments described herein provide an electrochromic device. In an exemplary embodiment, the electrochromic device includes (1) a substrate and (2) a film supported by the substrate, where the film includes transparent conducting oxide (TCO) nanostructures. In a further embodiment, the electrochromic device further includes (a) an electrolyte, where the nanostructures are embedded in the electrolyte, resulting in an electrolyte, nanostructure mixture positioned above the substrate and (b) a counter electrode positioned above the mixture. In a further embodiment, the electrochromic device further includes a conductive coating deposited on the substrate between the substrate and the mixture. In a further embodiment, the electrochromic device further includes a second substrate positioned above the mixture.

  14. Highly effective carbon sphere counter electrodes based on different substrates for dye-sensitized solar cell.

    PubMed

    Han, Qianji; Wang, Hongrui; Liu, Yali; Yan, Yajing; Wu, Mingxing

    2017-11-15

    A monodisperse carbon sphere with high uniformity, high catalytic activity and conductivity are successfully synthesized. Versatile counter electrodes using this carbon sphere catalyst on different substrates of fluorine-doped tin oxide (FTO) glass, indium-doped tin oxide polyethylenena phthalate (ITO-PEN), and Ti foil are fabricated for dye-sensitized solar cell (DSC). The impacts of substrates on the catalytic activities of the carbon sphere counter electrodes have been also evaluated by electrochemical analysis technologies, such as cyclic voltammetry, electrochemical impedance spectroscopy and Tafel polarization curves. With cobalt electrolyte, the DSC using carbon sphere counter electrodes based on FTO glass, ITO-PEN, and Ti substrates yield high power conversion efficiency values of 8.57%, 6.66%, and 9.10%, respectively. The catalytic activities of the prepared carbon sphere counter electrodes on different substrates are determined by the apparent activation energy for the cobalt redox couple regeneration on these electrodes. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Acetoacetate is a more efficient energy-yielding substrate for human mesenchymal stem cells than glucose and generates fewer reactive oxygen species.

    PubMed

    Board, Mary; Lopez, Colleen; van den Bos, Christian; Callaghan, Richard; Clarke, Kieran; Carr, Carolyn

    2017-07-01

    Stem cells have been assumed to demonstrate a reliance on anaerobic energy generation, suited to their hypoxic in vivo environment. However, we found that human mesenchymal stem cells (hMSCs) have an active oxidative metabolism with a range of substrates. More ATP was consistently produced from substrate oxidation than glycolysis by cultured hMSCs. Strong substrate preferences were shown with the ketone body, acetoacetate, being oxidised at up to 35 times the rate of glucose. ROS-generation was 45-fold lower during acetoacetate oxidation compared with glucose and substrate preference may be an adaptation to reduce oxidative stress. The UCP2 inhibitor, genipin, increased ROS production with either acetoacetate or glucose by 2-fold, indicating a role for UCP2 in suppressing ROS production. Addition of pyruvate stimulated acetoacetate oxidation and this combination increased ATP production 27-fold, compared with glucose alone, which has implications for growth medium composition. Oxygen tension during culture affected metabolism by hMSCs. Between passages 2 and 5, rates of both glycolysis and substrate-oxidation increased at least 2-fold for normoxic (20% O 2 )- but not hypoxic (5% O 2 )-cultured hMSCs, despite declining growth rates and no detectable signs of differentiation. Culture of the cells with 3-hydroxybutyrate abolished the increased rates of these pathways. These findings have implications for stem cell therapy, which necessarily involves in vitro culture of cells, since low passage number normoxic cultured stem cells show metabolic adaptations without detectable changes in stem-like status. Copyright © 2017. Published by Elsevier Ltd.

  16. Energy Expenditure and Substrate Oxidation in Response to Side-Alternating Whole Body Vibration across Three Commonly-Used Vibration Frequencies

    PubMed Central

    Fares, Elie-Jacques; Charrière, Nathalie; Montani, Jean-Pierre; Schutz, Yves; Dulloo, Abdul G.; Miles-Chan, Jennifer L.

    2016-01-01

    Background and Aim There is increasing recognition about the importance of enhancing energy expenditure (EE) for weight control through increases in low-intensity physical activities comparable with daily life (1.5–4 METS). Whole-body vibration (WBV) increases EE modestly and could present both a useful adjuvant for obesity management and tool for metabolic phenotyping. However, it is unclear whether a “dose-response” exists between commonly-used vibration frequencies (VF) and EE, nor if WBV influences respiratory quotient (RQ), and hence substrate oxidation. We aimed to investigate the EE-VF and RQ-VF relationships across three different frequencies (30, 40, and 50Hz). Methods EE and RQ were measured in 8 healthy young adults by indirect calorimetry at rest, and subsequently during side-alternating WBV at one of 3 VFs (30, 40, and 50 Hz). Each frequency was assessed over 5 cycles of intermittent WBV (30s vibration/30s rest), separated by 5 min seated rest. During the WBV participants stood on the platform with knees flexed sufficiently to maintain comfort, prevent transmission of vibration to the upper body, and minimise voluntary physical exertion. Repeatability was assessed across 3 separate days in a subset of 4 individuals. In order to assess any sequence/habituation effect, an additional group of 6 men underwent 5 cycles of intermittent WBV (30s vibration/30s rest) at 40 Hz, separated by 5 min seated rest. Results Side-alternating WBV increased EE relative to standing, non-vibration levels (+36%, p<0.001). However, no differences in EE were observed across VFs. Similarly, no effect of VF on RQ was found, nor did WBV alter RQ relative to standing without vibration. Conclusion No relationship could be demonstrated between EE and VF in the range of 30-50Hz, and substrate oxidation did not change in response to WBV. Furthermore, the thermogenic effect of intermittent WBV, whilst robust, was quantitatively small (<2 METS). PMID:26974147

  17. Energy Expenditure and Substrate Oxidation in Response to Side-Alternating Whole Body Vibration across Three Commonly-Used Vibration Frequencies.

    PubMed

    Fares, Elie-Jacques; Charrière, Nathalie; Montani, Jean-Pierre; Schutz, Yves; Dulloo, Abdul G; Miles-Chan, Jennifer L

    2016-01-01

    There is increasing recognition about the importance of enhancing energy expenditure (EE) for weight control through increases in low-intensity physical activities comparable with daily life (1.5-4 METS). Whole-body vibration (WBV) increases EE modestly and could present both a useful adjuvant for obesity management and tool for metabolic phenotyping. However, it is unclear whether a "dose-response" exists between commonly-used vibration frequencies (VF) and EE, nor if WBV influences respiratory quotient (RQ), and hence substrate oxidation. We aimed to investigate the EE-VF and RQ-VF relationships across three different frequencies (30, 40, and 50Hz). EE and RQ were measured in 8 healthy young adults by indirect calorimetry at rest, and subsequently during side-alternating WBV at one of 3 VFs (30, 40, and 50 Hz). Each frequency was assessed over 5 cycles of intermittent WBV (30s vibration/30s rest), separated by 5 min seated rest. During the WBV participants stood on the platform with knees flexed sufficiently to maintain comfort, prevent transmission of vibration to the upper body, and minimise voluntary physical exertion. Repeatability was assessed across 3 separate days in a subset of 4 individuals. In order to assess any sequence/habituation effect, an additional group of 6 men underwent 5 cycles of intermittent WBV (30s vibration/30s rest) at 40 Hz, separated by 5 min seated rest. Side-alternating WBV increased EE relative to standing, non-vibration levels (+36%, p<0.001). However, no differences in EE were observed across VFs. Similarly, no effect of VF on RQ was found, nor did WBV alter RQ relative to standing without vibration. No relationship could be demonstrated between EE and VF in the range of 30-50Hz, and substrate oxidation did not change in response to WBV. Furthermore, the thermogenic effect of intermittent WBV, whilst robust, was quantitatively small (<2 METS).

  18. Flavin-mediated dual oxidation controls an enzymatic Favorskii-type rearrangement

    PubMed Central

    Louie, Gordon; Noel, Joseph P.; Baran, Phil S.; Palfey, Bruce; Moore, Bradley S.

    2013-01-01

    Flavoproteins catalyze a diversity of fundamental redox reactions and are one of the most studied enzyme families1,2. As monooxygenases, they are universally thought to control oxygenation by means of a peroxyflavin species that transfers a single atom of molecular oxygen to an organic substrate1,3,4. Here we report that the bacterial flavoenzyme EncM5,6 catalyzes the peroxyflavin-independent oxygenation-dehydrogenation dual oxidation of a highly reactive poly(β-carbonyl). The crystal structure of EncM with bound substrate mimics coupled with isotope labeling studies reveal previously unknown flavin redox biochemistry. We show that EncM maintains an unanticipated stable flavin oxygenating species, proposed to be a flavin-N5-oxide, to promote substrate oxidation and trigger a rare Favorskii-type rearrangement that is central to the biosynthesis of the antibiotic enterocin. This work provides new insight into the fine-tuning of the flavin cofactor in offsetting the innate reactivity of a polyketide substrate to direct its efficient electrocyclization. PMID:24162851

  19. Uniting Superhydrophobic, Superoleophobic and Lubricant Infused Slippery Behavior on Copper Oxide Nano-structured Substrates

    NASA Astrophysics Data System (ADS)

    Ujjain, Sanjeev Kumar; Roy, Pritam Kumar; Kumar, Sumana; Singha, Subhash; Khare, Krishnacharya

    2016-10-01

    Alloys, specifically steel, are considered as the workhorse of our society and are inimitable engineering materials in the field of infrastructure, industry and possesses significant applications in our daily life. However, creating a robust synthetic metallic surface that repels various liquids has remained extremely challenging. The wettability of a solid surface is known to be governed by its geometric nano-/micro structure and the chemical composition. Here, we are demonstrating a facile and economical way to generate copper oxide micro-nano structures with spherical (0D), needle (1D) and hierarchical cauliflower (3D) morphologies on galvanized steel substrates using a simple chemical bath deposition method. These nano/micro textured steel surfaces, on subsequent coating of a low surface energy material display excellent superhydrophobic, superoleophobic and slippery behavior. Polydimethylsiloxane coated textured surfaces illustrate superhydrophobicity with water contact angle about 160°(2) and critical sliding angle ~2°. When functionalized with low-surface energy perfluoroalkylsilane, these surfaces display high repellency for low surface tension oils as well as hydrocarbons. Among them, the hierarchical cauliflower morphology exhibits re-entrant structure thereby showing the best superoleophobicity with contact angle 149° for dodecane. Once infused with a lubricant like silicone oil, they show excellent slippery behavior with low contact angle hysteresis (~ 2°) for water drops.

  20. 2,3-Dihydro-2,5-dihydroxy-4H-benzopyran-4-one: a nonphysiological substrate for fungal melanin biosynthetic enzymes.

    PubMed

    Thompson, J E; Basarab, G S; Pierce, J; Hodge, C N; Jordan, D B

    1998-02-01

    We have synthesized an alternate substrate for trihydroxynaphthalene reductase (3HNR) and scytalone dehydratase (SD), two enzymes in the fungal melanin biosynthetic pathway. The oxidation of 2,3-dihydro-2,5-dihydroxy-4H-benzopyran-4-one (DDBO) to 4,5-dihydroxy-2H-benzopyran-2-one (DBO) with concomitant reduction of NADP+ is catalyzed by 3HNR. DDBO is dehydrated by SD to 5-hydroxy-4H-1-benzopyran-4-one (HBO). These reactions can be monitored using continuous spectrophotometric assays. DDBO race-mizes rapidly, so chiral synthesis to mimic the natural substrate is not required. DDBO, DBO, and HBO are stable in aerated aqueous solution, in contrast to the rapidly autooxidizing trihydroxynaphthalene, a physiological substrate for 3HNR and product of SD. Unlike the natural substrates, DDBO, DBO, and HBO do not change protonation state between pH's 4 and 9. Oxidation of DDBO is effectively irreversible at pH 7, as DBO deprotonates with a pKa of 2.5. At pH 7.0 and 25 degrees C, the kcat for 3HNR catalyzed DDBO oxidation is 14 s-1 and the K(m) is 5 microM; the kcat for SD catalyzed DDBO dehydration is 400 s-1 and the K(m) is 15 microM. Based on these kinetic constants, DDBO is a better substrate than the natural substrate scytalone for both 3HNR and SD at neutral pH. An explanation for the preference of DDBO over scytalone in the oxidation and dehydration reactions is offered.

  1. Sol-gel derived ceramic electrolyte films on porous substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kueper, T.W.

    1992-05-01

    A process for the deposition of sol-gel derived thin films on porous substrates has been developed; such films should be useful for solid oxide fuel cells and related applications. Yttria-stabilized zirconia films have been formed from metal alkoxide starting solutions. Dense films have been deposited on metal substrates and ceramic substrates, both dense and porous, through dip-coating and spin-coating techniques, followed by a heat treatment in air. X-ray diffraction has been used to determine the crystalline phases formed and the extent of reactions with various substrates which may be encountered in gas/gas devices. Surface coatings have been successfully applied tomore » porous substrates through the control of substrate pore size and deposition parameters. Wetting of the substrate pores by the coating solution is discussed, and conditions are defined for which films can be deposited over the pores without filling the interiors of the pores. Shrinkage cracking was encountered in films thicker than a critical value, which depended on the sol-gel process parameters and on the substrate characteristics. Local discontinuities were also observed in films which were thinner than a critical value which depended on the substrate pore size. A theoretical discussion of cracking mechanisms is presented for both types of cracking, and the conditions necessary for successful thin formation are defined. The applicability of these film gas/gas devices is discussed.« less

  2. Fabrication of heterojunction solar cells by improved tin oxide deposition on insulating layer

    DOEpatents

    Feng, Tom; Ghosh, Amal K.

    1980-01-01

    Highly efficient tin oxide-silicon heterojunction solar cells are prepared by heating a silicon substrate, having an insulating layer thereon, to provide a substrate temperature in the range of about 300.degree. C. to about 400.degree. C. and thereafter spraying the so-heated substrate with a solution of tin tetrachloride in a organic ester boiling below about 250.degree. C. Preferably the insulating layer is naturally grown silicon oxide layer.

  3. Challenges in assignment of allosteric effects in cytochrome P450-catalyzed substrate oxidations to structural dynamics in the hemoprotein architecture.

    PubMed

    Hlavica, Peter

    2017-02-01

    Cytochrome P450s (CYP) represent a superfamily of b-type hemoproteins catalyzing NAD(P)H-dependent oxidative biotransformation of a vast array of natural and xenobiotic compounds. Many eu- and prokaryotic members of this class of monooxygenases display complex non-Michaelis-Menten saturation kinetics, suggestive of homo-/heterotropic cooperativity arising from substrate-/effector-induced allosteric interactions. Here, the paradigm of multiple-ligand occupancy of the catalytic pocket in combination with enzyme oligomerization provides the most favored explanations for the atypical kinetic patterns. Making use of available data from crystallographic analyses, homology modeling and site-directed mutagenesis, the present review focuses on assessment of the topology of prospective key players dictating allosterism. Based on a general, CYP3A4-related construct, the majority of determinants were found to cluster within the six known substrate recognition sites (SRSs). Here, the B'/B'-C domains (SRS-1) and the F-helical region (SRS-2) harbor 51% of the critical residues, while SRS-4/5/6 each accommodate about 11-17% of the presumed docking spots. Of note, 12% of the total number of functional amino acids resides in non-SRS motifs. Average frequency of conservation of the allosteric sites examined was found to be fairly low (~13%), hinting at the requirement of some degree of conformational flexibility. Reactivity toward ligands coincides with the lipophilicity/hydrophilicity profile and bulkiness of the elements acting as selective filters. In sum, cooperative scenarios mainly pertain to regulative effects on substrate ingress, tuning of the open/closed equilibrium of the substrate access channel, modulation of the active-site capacity and productive ligand orientation toward the iron-oxene core. Deeper insight into the molecular mechanism of allostery may help avoid undesired drug-drug interplay in medicinal therapy and offer detoxification response to toxic agents

  4. Differential substrate behaviours of ethylene oxide and propylene oxide towards human glutathione transferase theta hGSTT1-1.

    PubMed

    Thier, R; Wiebel, F A; Bolt, H M

    1999-11-01

    The transformation of ethylene oxide (EO), propylene oxide (PO) and 1-butylene oxide (1-BuO) by human glutathione transferase theta (hGSTT1-1) was studied comparatively using 'conjugator' (GSTT1 + individuals) erythrocyte lysates. The relative sequence of velocity of enzymic transformation was PO > EO > 1-BuO. The faster transformation of PO compared to EO was corroborated in studies with human and rat GSTT1-1 (hGSTT1-1 and rGSTT1-1, respectively) expressed by Salmonella typhimurium TA1535. This sequence of reactivities of homologous epoxides towards GSTT1-1 contrasts to the sequence observed in homologous alkyl halides (methyl bromide, MBr; ethyl bromide, EtBr; n-propyl bromide, PrBr) where the relative sequence MeBr > EtBr > PrBr is observed. The higher reactivity towards GSTT1-1 of propylene oxide compared to ethylene oxide is consistent with a higher chemical reactivity. This is corroborated by experimental data of acid-catalysed hydrolysis of a number of aliphatic epoxides, including ethylene oxide and propylene oxide and consistent with semi-empirical molecular orbital modelings.

  5. Toward Plastic Smart Windows: Optimization of Indium Tin Oxide Electrodes for the Synthesis of Electrochromic Devices on Polycarbonate Substrates.

    PubMed

    Laurenti, Marco; Bianco, Stefano; Castellino, Micaela; Garino, Nadia; Virga, Alessandro; Pirri, Candido F; Mandracci, Pietro

    2016-03-01

    Plastic smart windows are becoming one of the key elements in view of the fabrication of inexpensive, lightweight electrochromic (EC) devices to be integrated in the new generation of high-energy-efficiency buildings and automotive applications. However, fabricating electrochromic devices on polymer substrates requires a reduction of process temperature, so in this work we focus on the development of a completely room-temperature deposition process aimed at the preparation of ITO-coated polycarbonate (PC) structures acting as transparent and conductive plastic supports. Without providing any substrate heating or surface activation pretreatments of the polymer, different deposition conditions are used for growing indium tin oxide (ITO) thin films by the radiofrequency magnetron sputtering technique. According to the characterization results, the set of optimal deposition parameters is selected to deposit ITO electrodes having high optical transmittance in the visible range (∼90%) together with low sheet resistance (∼8 ohm/sq). The as-prepared ITO/PC structures are then successfully tested as conductive supports for the fabrication of plastic smart windows. To this purpose, tungsten trioxide thin films are deposited by the reactive sputtering technique on the ITO/PC structures, and the resulting single electrode EC devices are characterized by chronoamperometric experiments and cyclic voltammetry. The fast switching response between colored and bleached states, together with the stability and reversibility of their electrochromic behavior after several cycling tests, are considered to be representative of the high quality of the EC film but especially of the ITO electrode. Indeed, even if no adhesion promoters, additional surface activation pretreatments, or substrate heating were used to promote the mechanical adhesion among the electrode and the PC surface, the observed EC response confirmed that the developed materials can be successfully employed for the

  6. Method of producing solution-derived metal oxide thin films

    DOEpatents

    Boyle, Timothy J.; Ingersoll, David

    2000-01-01

    A method of preparing metal oxide thin films by a solution method. A .beta.-metal .beta.-diketonate or carboxylate compound, where the metal is selected from groups 8, 9, 10, 11, and 12 of the Periodic Table, is solubilized in a strong Lewis base to form a homogeneous solution. This precursor solution forms within minutes and can be deposited on a substrate in a single layer or a multiple layers to form a metal oxide thin film. The substrate with the deposited thin film is heated to change the film from an amorphous phase to a ceramic metal oxide and cooled.

  7. A self-contained 48-well fatty acid oxidation assay.

    PubMed

    Wang, Xiaojun; Wang, Rose; Nemcek, Thomas A; Cao, Ning; Pan, Jeffrey Y; Frevert, Ernst U

    2004-02-01

    The modulation of fatty acid metabolism and especially the stimulation of fatty acid oxidation in liver or skeletal muscle are attractive therapeutic approaches for the treatment of obesity and the associated insulin resistance. However, current beta-oxidation assays are run in very low throughput, which represents an obstacle for drug discovery in this area. Here we describe results for a 48-well beta-oxidation assay using a new instrument design. A connecting chamber links two adjacent wells to form an experimental unit, in which one well contains the beta-oxidation reaction and the other captures CO(2). The experimental units are sealed from each other and from the outside to prevent release of radioactivity from the labeled substrate. CO(2) capture in this instrument is linear with time and over the relevant experimental range of substrate concentration. Cellular viability is maintained in the sealed environment, and cells show the expected responses to modulators of beta-oxidation, such as the AMP kinase activator 5-aminoimidazole carboxamide riboside. Data are presented for different lipid substrates and cell lines. The increased throughput of this procedure compared with previously described methods should facilitate the evaluation of compounds that modulate fatty acid metabolism.

  8. Oxidative Attack of Carbon/Carbon Substrates through Coating Pinholes

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Leonhardt, Todd; Curry, Donald; Rapp, Robert A.

    1998-01-01

    A critical issue with oxidation protected carbon/carbon composites used for spacecraft thermal protection is the formation of coating pinholes. In laboratory experiments, artificial pinholes were drilled through SiC-coatings on a carbon/carbon material and the material was oxidized at 600, 1000, and 1400 C at reduced pressures of air. The attack of the carbon/carbon was quantified by both weight loss and a novel cross-sectioning technique. A two-zone, one dimensional diffusion control model was adapted to analyze this problem. Agreement of the model with experiment was reasonable at 1000 and 1400 C; however results at lower temperatures show clear deviations from the theory suggesting that surface reaction control plays a role.

  9. Titanium disilicide formation by sputtering of titanium on heated silicon substrate

    NASA Astrophysics Data System (ADS)

    Tanielian, M.; Blackstone, S.

    1984-09-01

    We have sputter deposited titanium on bare silicon substrates at elevated temperatures. We find that at a substrate temperature of about 515 °C titanium silicide is formed due to the reaction of the titanium with the Si. The resistivity of the silicide is about 15 μΩ cm and it is not etchable in a selective titanium etch. This process can have applications in low-temperature, metal-oxide-semiconductor self-aligned silicide formation for very large scale integrated

  10. Flexible organic light emitting diodes fabricated on biocompatible silk fibroin substrate

    NASA Astrophysics Data System (ADS)

    Liu, Yuqiang; Xie, Yuemin; Liu, Yuan; Song, Tao; Zhang, Ke-Qin; Liao, Liangsheng; Sun, Baoquan

    2015-10-01

    Flexible and biodegradable electronics are currently under extensive investigation for biocompatible and environmentally-friendly applications. Synthetic plastic foils are widely used as substrates for flexible electronics. But typical plastic substrates such as polyethylene naphthalate (PEN) could not be degraded in a natural bio-environment. A great demand still exists for a next-generation biocompatible and biodegradable substrate for future application. For example, electronic devices can be potentially integrated into the human body. In this work, we demonstrate that the biocompatible and biodegradable natural silk fibroin (SF) films embedded with silver nanowires (AgNWs) mesh could be employed as conductive transparent substrates to fabricate flexible organic light emitting diodes (OLEDs). Compared with commercial PEN substrates coated with indium tin oxide, the AgNWs/SF composite substrates exhibit a similar sheet resistance of 12 Ω sq-1, a lower surface roughness, as well as a broader light transmission range. Flexible OLEDs based on AgNWs/SF substrates achieve a current efficiency of 19 cd A-1, demonstrating the potential of the flexible AgNWs/SF films as conductive and transparent substrates for next-generation biodegradable devices.

  11. High-voltage SPM oxidation of ZrN: materials for multiscale applications

    NASA Astrophysics Data System (ADS)

    Farkas, N.; Comer, J. R.; Zhang, G.; Evans, E. A.; Ramsier, R. D.; Dagata, J. A.

    2005-02-01

    Scanning probe microscope (SPM) oxidation was used to form zirconium oxide features on 200 nm thick ZrN films. The features exhibit rapid yet controlled growth kinetics, even in contact mode with 70 V dc applied between the probe tip and substrate. The features grown for times longer than 10 s are higher than 200 nm, and reach more than 1000 nm in height after 300 s. Long-time oxidation experiments and selective etching of the oxides and nitrides lead us to propose that as the oxidation reaches the silicon substrate, delamination occurs with the simultaneous formation of a thin layer of new material at the ZrN/Si interface. High-voltage oxide growth on ZrN is fast and sustainable, and the robust oxide features are promising candidates for multiscale (nanometre-to-micrometre) applications.

  12. Oriented conductive oxide electrodes on SiO2/Si and glass

    DOEpatents

    Jia, Quanxi; Arendt, Paul N.

    2001-01-01

    A thin film structure is provided including a silicon substrate with a layer of silicon dioxide on a surface thereof, and a layer of cubic oxide material deposited upon the layer of silicon dioxide by ion-beam-assisted-deposition, said layer of cubic oxide material characterized as biaxially oriented. Preferably, the cubic oxide material is yttria-stabilized zirconia. Additional thin layers of biaxially oriented ruthenium oxide or lanthanum strontium cobalt oxide are deposited upon the layer of yttria-stabilized zirconia. An intermediate layer of cerium oxide is employed between the yttria-stabilized zirconia layer and the lanthanum strontium cobalt oxide layer. Also, a layer of barium strontium titanium oxide can be upon the layer of biaxially oriented ruthenium oxide or lanthanum strontium cobalt oxide. Also, a method of forming such thin film structures, including a low temperature deposition of a layer of a biaxially oriented cubic oxide material upon the silicon dioxide surface of a silicon dioxide/silicon substrate is provided.

  13. Nutrient sensing by the mitochondrial transcription machinery dictates oxidative phosphorylation

    PubMed Central

    Liu, Lijun; Nam, Minwoo; Fan, Wei; Akie, Thomas E.; Hoaglin, David C.; Gao, Guangping; Keaney, John F.; Cooper, Marcus P.

    2014-01-01

    Sirtuin 3 (SIRT3), an important regulator of energy metabolism and lipid oxidation, is induced in fasted liver mitochondria and implicated in metabolic syndrome. In fasted liver, SIRT3-mediated increases in substrate flux depend on oxidative phosphorylation (OXPHOS), but precisely how OXPHOS meets the challenge of increased substrate oxidation in fasted liver remains unclear. Here, we show that liver mitochondria in fasting mice adapt to the demand of increased substrate oxidation by increasing their OXPHOS efficiency. In response to cAMP signaling, SIRT3 deacetylated and activated leucine-rich protein 130 (LRP130; official symbol, LRPPRC), promoting a mitochondrial transcriptional program that enhanced hepatic OXPHOS. Using mass spectrometry, we identified SIRT3-regulated lysine residues in LRP130 that generated a lysine-to-arginine (KR) mutant of LRP130 that mimics deacetylated protein. Compared with wild-type LRP130 protein, expression of the KR mutant increased mitochondrial transcription and OXPHOS in vitro. Indeed, even when SIRT3 activity was abolished, activation of mitochondrial transcription and OXPHOS by the KR mutant remained robust, further highlighting the contribution of LRP130 deacetylation to increased OXPHOS in fasted liver. These data establish a link between nutrient sensing and mitochondrial transcription that regulates OXPHOS in fasted liver and may explain how fasted liver adapts to increased substrate oxidation. PMID:24430182

  14. Development of p-type oxide semiconductors based on tin oxide and its alloys: application to thin film transistors

    NASA Astrophysics Data System (ADS)

    Barros, Ana Raquel Xarouco de

    In spite of the recent p-type oxide TFTs developments based on SnOx and CuxO, the results achieved so far refer to devices processed at high temperatures and are limited by a low hole mobility and a low On-Off ratio and still there is no report on p-type oxide TFTs with performance similar to n-type, especially when comparing their field-effect mobility values, which are at least one order of magnitude higher on n-type oxide TFTs. Achieving high performance p-type oxide TFTs will definitely promote a new era for electronics in rigid and flexible substrates, away from silicon. None of the few reported p-channel oxide TFTs is suitable for practical applications, which demand significant improvements in the device engineering to meet the real-world electronic requirements, where low processing temperatures together with high mobility and high On-Off ratio are required for TFT and CMOS applications. The present thesis focuses on the study and optimization of p-type thin film transistors based on oxide semiconductors deposited by r.f. magnetron sputtering without intentional substrate heating. In this work several p-type oxide semiconductors were studied and optimized based on undoped tin oxide, Cu-doped SnOx and In-doped SnO2.

  15. Template-based preparation of free-standing semiconducting polymeric nanorod arrays on conductive substrates.

    PubMed

    Haberkorn, Niko; Weber, Stefan A L; Berger, Rüdiger; Theato, Patrick

    2010-06-01

    We describe the synthesis and characterization of a cross-linkable siloxane-derivatized tetraphenylbenzidine (DTMS-TPD), which was used for the fabrication of semiconducting highly ordered nanorod arrays on conductive indium tin oxide or Pt-coated substrates. The stepwise process allow fabricating of macroscopic areas of well-ordered free-standing nanorod arrays, which feature a high resistance against organic solvents, semiconducting properties and a good adhesion to the substrate. Thin films of the TPD derivate with good hole-conducting properties could be prepared by cross-linking and covalently attaching to hydroxylated substrates utilizing an initiator-free thermal curing at 160 degrees C. The nanorod arrays composed of cross-linked DTMS-TPD were fabricated by an anodic aluminum oxide (AAO) template approach. Furthermore, the nanorod arrays were investigated by a recently introduced method allowing to probe local conductivity on fragile structures. It revealed that more than 98% of the nanorods exhibit electrical conductance and consequently feature a good electrical contact to the substrate. The prepared nanorod arrays have the potential to find application in the fabrication of multilayered device architectures for building well-ordered bulk-heterojunction solar cells.

  16. The effects of interval- vs. continuous exercise on excess post-exercise oxygen consumption and substrate oxidation rates in subjects with type 2 diabetes.

    PubMed

    Karstoft, Kristian; Wallis, Gareth A; Pedersen, Bente K; Solomon, Thomas P J

    2016-09-01

    For unknown reasons, interval training often reduces body weight more than energy-expenditure matched continuous training. We compared the acute effects of time-duration and oxygen-consumption matched interval- vs. continuous exercise on excess post-exercise oxygen consumption (EPOC), substrate oxidation rates and lipid metabolism in the hours following exercise in subjects with type 2 diabetes (T2D). Following an overnight fast, ten T2D subjects (M/F: 7/3; age=60.3±2.3years; body mass index (BMI)=28.3±1.1kg/m(2)) completed three 60-min interventions in a counterbalanced, randomized order: 1) control (CON), 2) continuous walking (CW), 3) interval-walking (IW - repeated cycles of 3min of fast and 3min of slow walking). Indirect calorimetry was applied during each intervention and repeatedly for 30min per hour during the following 5h. A liquid mixed meal tolerance test (MMTT, 450kcal) was consumed by the subjects 45min after completion of the intervention with blood samples taken regularly. Exercise interventions were successfully matched for total oxygen consumption (CW=1641±133mL/min; IW=1634±126mL/min, P>0.05). EPOC was higher after IW (8.4±1.3l) compared to CW (3.7±1.4l, P<0.05). Lipid oxidation rates were increased during the MMTT in IW (1.03±0.12mg/kg per min) and CW (0.87±0.04mg/kg per min) compared with CON (0.73±0.04mg/kg per min, P<0.01 and P<0.05, respectively), with no difference between IW and CW. Moreover, free fatty acids and glycerol concentrations, and glycerol kinetics were increased comparably during and after IW and CW compared to CON. Interval exercise results in greater EPOC than oxygen-consumption matched continuous exercise during a post-exercise MMTT in subjects with T2D, whereas effects on substrate oxidation and lipid metabolism are comparable. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Epitaxial growth of CoO films on semiconductor and metal substrates by constructing a complex heterostructure

    NASA Astrophysics Data System (ADS)

    Entani, S.; Kiguchi, M.; Saiki, K.; Koma, A.

    2003-01-01

    Epitaxial growth of CoO films was studied using reflection high-energy electron diffraction (RHEED), electron energy loss spectroscopy (EELS), ultraviolet photoelectron spectroscopy (UPS) and Auger electron spectroscopy (AES). The RHEED results indicated that an epitaxial CoO film grew on semiconductor and metal substrates (CoO (0 0 1)∥GaAs (0 0 1), Cu (0 0 1), Ag (0 0 1) and [1 0 0]CoO∥[1 0 0] substrates) by constructing a complex heterostructure with two alkali halide buffer layers. The AES, EELS and UPS results showed that the grown CoO film had almost the same electronic structure as bulk CoO. We could show that use of alkali halide buffer layers was a good way to grow metal oxide films on semiconductor and metal substrates in an O 2 atmosphere. The alkali halide layers not only works as glue to connect very dissimilar materials but also prevents oxidation of metal and semiconductor substrates.

  18. Conductive and robust nitride buffer layers on biaxially textured substrates

    DOEpatents

    Sankar, Sambasivan; Goyal, Amit; Barnett, Scott A.; Kim, Ilwon; Kroeger, Donald M.

    2004-08-31

    The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metal and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layers. In some embodiments the article further comprises electromagnetic devices which may be super conducting properties.

  19. Conductive and robust nitride buffer layers on biaxially textured substrates

    DOEpatents

    Sankar, Sambasivan [Chicago, IL; Goyal, Amit [Knoxville, TN; Barnett, Scott A [Evanston, IL; Kim, Ilwon [Skokie, IL; Kroeger, Donald M [Knoxville, TN

    2009-03-31

    The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metals and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layer. In some embodiments the article further comprises electromagnetic devices which may have superconducting properties.

  20. Oxidation-driven surface dynamics on NiAl(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Hailang; Chen, Xidong; Li, Liang

    Atomic steps, a defect common to all crystal surfaces, can play an important role in many physical and chemical processes. However, attempts to predict surface dynamics under nonequilibrium conditions are usually frustrated by poor knowledge of the atomic processes of surface motion arising from mass transport from/to surface steps. Using low-energy electron microscopy that spatially and temporally resolves oxide film growth during the oxidation of NiAl(100) we demonstrate that surface steps are impermeable to oxide film growth. The advancement of the oxide occurs exclusively on the same terrace and requires the coordinated migration of surface steps. The resulting piling upmore » of surface steps ahead of the oxide growth front progressively impedes the oxide growth. This process is reversed during oxide decomposition. The migration of the substrate steps is found to be a surface-step version of the well-known Hele-Shaw problem, governed by detachment (attachment) of Al atoms at step edges induced by the oxide growth (decomposition). As a result, by comparing with the oxidation of NiAl(110) that exhibits unimpeded oxide film growth over substrate steps, we suggest that whenever steps are the source of atoms used for oxide growth they limit the oxidation process; when atoms are supplied from the bulk, the oxidation rate is not limited by the motion of surface steps.« less

  1. Oxidation-driven surface dynamics on NiAl(100)

    DOE PAGES

    Qin, Hailang; Chen, Xidong; Li, Liang; ...

    2014-12-29

    Atomic steps, a defect common to all crystal surfaces, can play an important role in many physical and chemical processes. However, attempts to predict surface dynamics under nonequilibrium conditions are usually frustrated by poor knowledge of the atomic processes of surface motion arising from mass transport from/to surface steps. Using low-energy electron microscopy that spatially and temporally resolves oxide film growth during the oxidation of NiAl(100) we demonstrate that surface steps are impermeable to oxide film growth. The advancement of the oxide occurs exclusively on the same terrace and requires the coordinated migration of surface steps. The resulting piling upmore » of surface steps ahead of the oxide growth front progressively impedes the oxide growth. This process is reversed during oxide decomposition. The migration of the substrate steps is found to be a surface-step version of the well-known Hele-Shaw problem, governed by detachment (attachment) of Al atoms at step edges induced by the oxide growth (decomposition). As a result, by comparing with the oxidation of NiAl(110) that exhibits unimpeded oxide film growth over substrate steps, we suggest that whenever steps are the source of atoms used for oxide growth they limit the oxidation process; when atoms are supplied from the bulk, the oxidation rate is not limited by the motion of surface steps.« less

  2. Cyclic oxidation behavior of plasma sprayed NiCrAlY/WC-Co/cenosphere coating

    NASA Astrophysics Data System (ADS)

    Mathapati, Mahantayya; Ramesh M., R.; Doddamani, Mrityunjay

    2018-04-01

    Components working at elevated temperature like boiler tubes of coal and gas fired power generation plants, blades of gas and steam turbines etc. experience degradation owing to oxidation. Oxidation resistance of such components can be increased by developing protective coatings. In the present investigation NiCrAlY-WC-Co/Cenosphere coating is deposited on MDN 321 steel substrate using plasma spray coating. Thermo cyclic oxidation behavior of coating and substrate is studied in static air at 600 °C for 20 cycles. The thermo gravimetric technique is used to approximate the kinetics of oxidation. X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray mapping techniques are used to characterize the oxidized samples. NiCrAlY-WC-Co/Cenosphere coating exhibited lower oxidation rate in comparison to MDN 321 steel substrate. The lower oxidation rate of coating is attributed to formation of Al2O3, Cr2O3, NiO and CoWO4 oxides on the outermost surface.

  3. Method for depositing an oxide coating

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E. (Inventor)

    1982-01-01

    A metal oxide coating is plated onto a metal substrate at the cathode from an acid solution which contains an oxidizing agent. The process is particularly useful for producing solar panels. Conventional plating at the cathode avoids the presence of oxidizing agents. Coatings made in accordance with the invention are stable both at high temperatures and while under the influence of high photon flux in the visible range.

  4. Comprehensive Evaluation for Substrate Selectivity of Cynomolgus Monkey Cytochrome P450 2C9, a New Efavirenz Oxidase.

    PubMed

    Hosaka, Shinya; Murayama, Norie; Satsukawa, Masahiro; Uehara, Shotaro; Shimizu, Makiko; Iwasaki, Kazuhide; Iwano, Shunsuke; Uno, Yasuhiro; Yamazaki, Hiroshi

    2015-07-01

    Cynomolgus monkeys are widely used as primate models in preclinical studies, because of their evolutionary closeness to humans. In humans, the cytochrome P450 (P450) 2C enzymes are important drug-metabolizing enzymes and highly expressed in livers. The CYP2C enzymes, including CYP2C9, are also expressed abundantly in cynomolgus monkey liver and metabolize some endogenous and exogenous substances like testosterone, S-mephenytoin, and diclofenac. However, comprehensive evaluation regarding substrate specificity of monkey CYP2C9 has not been conducted. In the present study, 89 commercially available drugs were examined to find potential monkey CYP2C9 substrates. Among the compounds screened, 20 drugs were metabolized by monkey CYP2C9 at a relatively high rates. Seventeen of these compounds were substrates or inhibitors of human CYP2C9 or CYP2C19, whereas three drugs were not, indicating that substrate specificity of monkey CYP2C9 resembled those of human CYP2C9 or CYP2C19, with some differences in substrate specificities. Although efavirenz is known as a marker substrate for human CYP2B6, efavirenz was not oxidized by CYP2B6 but by CYP2C9 in monkeys. Liquid chromatography-mass spectrometry analysis revealed that monkey CYP2C9 and human CYP2B6 formed the same mono- and di-oxidized metabolites of efavirenz at 8 and 14 positions. These results suggest that the efavirenz 8-oxidation could be one of the selective markers for cynomolgus monkey CYP2C9 among the major three CYP2C enzymes tested. Therefore, monkey CYP2C9 has the possibility of contributing to limited specific differences in drug oxidative metabolism between cynomolgus monkeys and humans. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Generic process for preparing a crystalline oxide upon a group IV semiconductor substrate

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.; Chisholm, Matthew F.

    2000-01-01

    A process for growing a crystalline oxide epitaxially upon the surface of a Group IV semiconductor, as well as a structure constructed by the process, is described. The semiconductor can be germanium or silicon, and the crystalline oxide can generally be represented by the formula (AO).sub.n (A'BO.sub.3).sub.m in which "n" and "m" are non-negative integer repeats of planes of the alkaline earth oxides or the alkaline earth-containing perovskite oxides. With atomic level control of interfacial thermodynamics in a multicomponent semiconductor/oxide system, a highly perfect interface between a semiconductor and a crystalline oxide can be obtained.

  6. A dye-decolorizing peroxidase from Bacillus subtilis exhibiting substrate-dependent optimum temperature for dyes and β-ether lignin dimer

    PubMed Central

    Min, Kyoungseon; Gong, Gyeongtaek; Woo, Han Min; Kim, Yunje; Um, Youngsoon

    2015-01-01

    In the biorefinery using lignocellulosic biomass as feedstock, pretreatment to breakdown or loosen lignin is important step and various approaches have been conducted. For biological pretreatment, we screened Bacillus subtilis KCTC2023 as a potential lignin-degrading bacterium based on veratryl alcohol (VA) oxidation test and the putative heme-containing dye-decolorizing peroxidase was found in the genome of B. subtilis KCTC2023. The peroxidase from B. subtilis KCTC2023 (BsDyP) was capable of oxidizing various substrates and atypically exhibits substrate-dependent optimum temperature: 30°C for dyes (Reactive Blue19 and Reactive Black5) and 50°C for high redox potential substrates (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid [ABTS], VA, and veratryl glycerol-β-guaiacyl ether [VGE]) over +1.0 V vs. normal hydrogen electrode. At 50°C, optimum temperature for high redox potential substrates, BsDyP not only showed the highest VA oxidation activity (0.13 Umg−1) among the previously reported bacterial peroxidases but also successfully achieved VGE decomposition by cleaving Cα-Cβ bond in the absence of any oxidative mediator with a specific activity of 0.086 Umg−1 and a conversion rate of 53.5%. Based on our results, BsDyP was identified as the first bacterial peroxidase capable of oxidizing high redox potential lignin-related model compounds, especially VGE, revealing a previously unknown versatility of lignin degrading biocatalyst in nature. PMID:25650125

  7. Synthesis of high {Tc} superconducting coatings and patterns by melt writing and oxidation of metallic precursor alloys

    DOEpatents

    Gao, W.; Vander Sande, J.B.

    1998-07-28

    A method is provided for fabrication of superconducting oxides and superconducting oxide composites and for joining superconductors to other materials. A coating of a molten alloy containing the metallic elements of the oxide is applied to a substrate surface and oxidized to form the superconducting oxide. A material can be contacted to the molten alloy which is subsequently oxidized joining the material to the resulting superconducting oxide coating. Substrates of varied composition and shape can be coated or joined by this method. 5 figs.

  8. Mo-Si-B-Based Coatings for Ceramic Base Substrates

    NASA Technical Reports Server (NTRS)

    Perepezko, John Harry (Inventor); Sakidja, Ridwan (Inventor); Ritt, Patrick (Inventor)

    2015-01-01

    Alumina-containing coatings based on molybdenum (Mo), silicon (Si), and boron (B) ("MoSiB coatings") that form protective, oxidation-resistant scales on ceramic substrate at high temperatures are provided. The protective scales comprise an aluminoborosilicate glass, and may additionally contain molybdenum. Two-stage deposition methods for forming the coatings are also provided.

  9. Patterned growth of carbon nanotubes on Si substrates without predeposition of metal catalysts

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Yu, J.

    2005-07-01

    Aligned carbon nanotubes (CNTs) can be readily synthesized on quartz or silicon-oxide-coated Si substrates using a chemical vapor deposition method, but it is difficult to grow them on pure Si substrates without predeposition of metal catalysts. We report that aligned CNTs were grown by pyrolysis of iron phthalocyanine at 1000°C on the templates created on Si substrates with simple mechanical scratching. Scanning electron microscopy and x-ray energy spectroscopy analysis revealed that the trenches and patterns created on the surface of Si substrates were preferred nucleation sites for nanotube growth due to a high surface energy, metastable surface structure, and possible capillarity effect. A two-step pyrolysis process maintained Fe as an active catalyst.

  10. Boron doped Si rich oxide/SiO{sub 2} and silicon rich nitride/SiN{sub x} bilayers on molybdenum-fused silica substrates for vertically structured Si quantum dot solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Ziyun, E-mail: z.lin@unsw.edu.au; Wu, Lingfeng; Jia, Xuguang

    2015-07-28

    Vertically structured Si quantum dots (QDs) solar cells with molybdenum (Mo) interlayer on quartz substrates would overcome current crowding effects found in mesa-structured cells. This study investigates the compatibility between boron (B) doped Si QDs bilayers and Mo-fused silica substrate. Both Si/SiO{sub 2} and Si/SiN{sub x} based QDs bilayers were studied. The material compatibility under high temperature treatment was assessed by examining Si crystallinity, microstress, thin film adhesion, and Mo oxidation. It was observed that the presence of Mo interlayer enhanced the Si QDs size confinement, crystalline fraction, and QDs size uniformity. The use of B doping was preferred comparedmore » to phosphine (PH{sub 3}) doping studied previously in terms of better surface and interface properties by reducing oxidized spots on the film. Though crack formation due to thermal mismatch after annealing remained, methods to overcome this problem were proposed in this paper. Schematic diagram to fabricate full vertical structured Si QDs solar cells was also suggested.« less

  11. A Pyridine Alkoxide Chelate Ligand That Promotes Both Unusually High Oxidation States and Water-Oxidation Catalysis

    DOE PAGES

    Michaelos, Thoe K.; Shopov, Dimitar Y.; Sinha, Shashi Bhushan; ...

    2017-03-08

    Here, water-oxidation catalysis is a critical bottleneck in the direct generation of solar fuels by artificial photosynthesis. Catalytic oxidation of difficult substrates such as water requires harsh conditions, so that the ligand must be designed both to stabilize high oxidation states of the metal center and to strenuously resist ligand degradation. Typical ligand choices either lack sufficient electron donor power or fail to stand up to the oxidizing conditions. This research on Ir-based water-oxidation catalysts (WOCs) has led us to identify a ligand, 2-(2'-pyridyl)-2-propanoate or “pyalk” that fulfills these requirements.

  12. High spectral selectivity for solar absorbers using a monolayer transparent conductive oxide coated on a metal substrate

    NASA Astrophysics Data System (ADS)

    Shimizu, Makoto; Suzuki, Mari; Iguchi, Fumitada; Yugami, Hiroo

    2017-05-01

    A spectrally selective absorber composed of a monolayer transparent conductive oxide (TCO) coated on a metal substrate is investigated for use in solar systems operating at temperatures higher (>973 K) than the operation temperature of conventional systems ( ˜ 673 K). This method is different from the currently used solar-selective coating technologies, such as those using multilayered and cermet materials. The spectral selective absorption property can be attributed to the inherent optical property of TCO owing to the plasma frequency and interferences between the substrates. Since spectral selectivity can be achieved using monolayered materials, the effect of atomic diffusion occurring at each layer boundary in a multilayer or cermet coatings under high-temperature conditions can be reduced. In addition, since this property is attributed to the inherent property of TCO, the precise control of the layer thickness can be omitted if the layer is sufficiently thick (>0.5 μm). The optimum TCO properties, namely, carrier density and mobility, required for solar-selective absorbers are analyzed to determine the cutoff wavelength and emittance in the infrared range. A solar absorptance of 0.95 and hemispherical emittance of 0.10 at 973 K are needed for achieving the optimum TCO properties, i.e., a carrier density of 5.5 × 1020 cm-3 and mobility of 90 cm2 V-1 s-1 are required. Optical simulations indicate that the spectrally selective absorption weakly depends on the incident angle and film thickness. The thermal stability of the fabricated absorber treated at temperatures up to 973 K for 10 h is verified in vacuum by introducing a SiO2 interlayer, which plays an important role as a diffusion barrier.

  13. Application of diffusion barriers to the refractory fibers of tungsten, columbium, carbon and aluminum oxide

    NASA Technical Reports Server (NTRS)

    Douglas, F. C.; Paradis, E. L.; Veltri, R. D.

    1973-01-01

    A radio frequency powered ion-plating system was used to plate protective layers of refractory oxides and carbide onto high strength fiber substrates. Subsequent overplating of these combinations with nickel and titanium was made to determine the effectiveness of such barrier layers in preventing diffusion of the overcoat metal into the fibers with consequent loss of fiber strength. Four substrates, five coatings, and two metal matrix materials were employed for a total of forty material combinations. The substrates were tungsten, niobium, NASA-Hough carbon, and Tyco sapphire. The diffusion-barrier coatings were aluminum oxide, yttrium oxide, titanium carbide, tungsten carbide with 14% cobalt addition, and zirconium carbide. The metal matrix materials were IN 600 nickel and Ti 6/4 titanium. Adhesion of the coatings to all substrates was good except for the NASA-Hough carbon, where flaking off of the oxide coatings in particular was observed.

  14. Uniting Superhydrophobic, Superoleophobic and Lubricant Infused Slippery Behavior on Copper Oxide Nano-structured Substrates

    PubMed Central

    Ujjain, Sanjeev Kumar; Roy, Pritam Kumar; Kumar, Sumana; Singha, Subhash; Khare, Krishnacharya

    2016-01-01

    Alloys, specifically steel, are considered as the workhorse of our society and are inimitable engineering materials in the field of infrastructure, industry and possesses significant applications in our daily life. However, creating a robust synthetic metallic surface that repels various liquids has remained extremely challenging. The wettability of a solid surface is known to be governed by its geometric nano-/micro structure and the chemical composition. Here, we are demonstrating a facile and economical way to generate copper oxide micro-nano structures with spherical (0D), needle (1D) and hierarchical cauliflower (3D) morphologies on galvanized steel substrates using a simple chemical bath deposition method. These nano/micro textured steel surfaces, on subsequent coating of a low surface energy material display excellent superhydrophobic, superoleophobic and slippery behavior. Polydimethylsiloxane coated textured surfaces illustrate superhydrophobicity with water contact angle about 160°(2) and critical sliding angle ~2°. When functionalized with low-surface energy perfluoroalkylsilane, these surfaces display high repellency for low surface tension oils as well as hydrocarbons. Among them, the hierarchical cauliflower morphology exhibits re-entrant structure thereby showing the best superoleophobicity with contact angle 149° for dodecane. Once infused with a lubricant like silicone oil, they show excellent slippery behavior with low contact angle hysteresis (~ 2°) for water drops. PMID:27752098

  15. Substrate bias effect on the fabrication of thermochromic VO2 films by reactive RF sputtering

    NASA Astrophysics Data System (ADS)

    Miyazaki, H.; Yasui, I.

    2006-05-01

    Vanadium oxide VOx films were deposited by reactive RF magnetron sputtering by applying a substrate bias, in which the Ar ions in plasma impacted the growing film surface. The vanadium valence of the VOx film decreased when the substrate negative bias voltage was increased. The VO2 film was successfully deposited at a substrate temperature of 400 °C and with a bias voltage of -50 to -80 V. The transition temperatures of the VO2 films with a substrate bias of -50 and -80 V were about 56 °C and 44 °C, respectively.

  16. Ordering of lamellar block copolymers on oxidized silane coatings

    DOE PAGES

    Mahadevapuram, Nikhila; Mitra, Indranil; Sridhar, Shyam; ...

    2016-01-02

    Thin films of lamellar poly(styrene-b-methyl methacrylate) (PS-PMMA) block copolymers are widely investigated for surface patterning. These materials can generate dense arrays of nanoscale lines when the lamellar domains are oriented perpendicular to the substrate. To stabilize this preferred domain orientation, we tuned the substrate surface energy using oxidation of hydrophobic silane coatings. This simple approach is effective for a broad range of PS-PMMA film thicknesses when the oxidation time is optimized, which demonstrates that the substrate coating is energetically neutral with respect to PS and PMMA segments. The lamellar films are characterized by high densities of defects that exhibit amore » strong dependence on film thickness: in-plane topological defects disrupt the lateral order in ultrathin films, while lamellar domains in thick films can bend and tilt to large misorientation angles. As a result, the types and densities of these defects are similar to those observed with other classes of neutral substrate coatings, such as random copolymer brushes, which demonstrates that oxidized silanes can be used to control PS-PMMA self assembly in thin films.« less

  17. Flexible Electronics Powered by Mixed Metal Oxide Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Marrs, Michael

    A low temperature amorphous oxide thin film transistor (TFT) and amorphous silicon PIN diode backplane technology for large area flexible digital x-ray detectors has been developed to create 7.9-in. diagonal backplanes. The critical steps in the evolution of the backplane process include the qualification and optimization of the low temperature (200 °C) metal oxide TFT and a-Si PIN photodiode process, the stability of the devices under forward and reverse bias stress, the transfer of the process to flexible plastic substrates, and the fabrication and assembly of the flexible detectors. Mixed oxide semiconductor TFTs on flexible plastic substrates suffer from performance and stability issues related to the maximum processing temperature limitation of the polymer. A novel device architecture based upon a dual active layer improves both the performance and stability. Devices are directly fabricated below 200 ºC on a polyethylene naphthalate (PEN) substrate using mixed metal oxides of either zinc indium oxide (ZIO) or indium gallium zinc oxide (IGZO) as the active semiconductor. The dual active layer architecture allows for adjustment to the saturation mobility and threshold voltage stability without the requirement of high temperature annealing, which is not compatible with flexible plastic substrates like PEN. The device performance and stability is strongly dependent upon the composition of the mixed metal oxide; this dependency provides a simple route to improving the threshold voltage stability and drive performance. By switching from a single to a dual active layer, the saturation mobility increases from 1.2 cm2/V-s to 18.0 cm2/V-s, while the rate of the threshold voltage shift decreases by an order of magnitude. This approach could assist in enabling the production of devices on flexible substrates using amorphous oxide semiconductors. Low temperature (200°C) processed amorphous silicon photodiodes were developed successfully by balancing the tradeoffs

  18. Carbon fiber brush electrode as a novel substrate for atmospheric solids analysis probe (ASAP) mass spectrometry: Electrochemical oxidation of brominated phenols.

    PubMed

    Skopalová, Jana; Barták, Petr; Bednář, Petr; Tomková, Hana; Ingr, Tomáš; Lorencová, Iveta; Kučerová, Pavla; Papoušek, Roman; Borovcová, Lucie; Lemr, Karel

    2018-01-25

    A carbon fiber brush electrode (CFBE) was newly designed and used as a substrate for both controlled potential electrolysis and atmospheric solids analysis probe (ASAP) mass spectrometry. Electropolymerized and strongly adsorbed products of electrolysis were directly desorbed and ionized from the electrode surface. Electrochemical properties of the electrode investigated by cyclic voltammetry revealed large electroactive surface area (23 ± 3 cm 2 ) at 1.3 cm long array of carbon fibers with diameter 6-9 μm. Some products of electrochemical oxidation of pentabromophenol and 2,4,6-tribromophenol formed a compact layer on the carbon fibers and were analyzed using ASAP. Eleven new oligomeric products were identified including quinones and biphenoquinones. These compounds were not observed previously in electrolyzed solutions by liquid or gas chromatography/mass spectrometry. The thickness around 58 nm and 45 nm of the oxidation products layers deposited on carbon fibers during electrolysis of pentabromophenol and 2,4,6-tribromophenol, respectively, was estimated from atomic force microscopy analysis and confirmed by scanning electron microscopy with energy-dispersive X-ray spectroscopy measurements. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Substrate co-doping modulates electronic metal–support interactions and significantly enhances single-atom catalysis

    DOE PAGES

    Shi, Jinlei; Wu, Jinghe; Zhao, Xingju; ...

    2016-10-07

    Transitional metal nanoparticles or atoms deposited on appropriate substrates can lead to highly economical, efficient, and selective catalysis. One of the greatest challenges is to control the electronic metal–support interactions (EMSI) between the supported metal atoms and the substrate so as to optimize their catalytic performance. Here, from first-principles calculations, we show that an otherwise inactive Pd single adatom on TiO 2(110) can be tuned into a highly effective catalyst, e.g. for O 2 adsorption and CO oxidation, by purposefully selected metal–nonmetal co-dopant pairs in the substrate. Such an effect is proved here to result unambiguously from a significantly enhancedmore » EMSI. A nearly linear correlation is noted between the strength of the EMSI and the activation of the adsorbed O 2 molecule, as well as the energy barrier for CO oxidation. Particularly, the enhanced EMSI shifts the frontier orbital of the deposited Pd atom upward and largely enhances the hybridization and charge transfer between the O 2 molecule and the Pd atom. Upon co-doping, the activation barrier for CO oxidation on the Pd monomer is also reduced to a level comparable to that on the Pd dimer which was experimentally reported to be highly efficient for CO oxidation. The present findings provide new insights into the understanding of the EMSI in heterogeneous catalysis and can open new avenues to design and fabricate cost-effective single-atom-sized and/or nanometer-sized catalysts.« less

  20. Controlling the size of gold nanoparticles grown on indium tin oxide substrates prepared by seed mediated growth method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fauzia, Vivi, E-mail: vivi@sci.ui.ac.id; Pratiwi, Nur Intan; Adela, Faiz

    One of the unique optical properties of gold nanoparticles is the enhanced absorption and scattering light around metal nanoparticles commonly called the Localized Surface Plasmon Resonance (LSPR) effect of gold nanoparticles. This property is determined by the shape and size of gold nanoparticles. In this work, we observed the role of three materials used in synthesis process on the morphology and the LSPR effect of gold nanoparticles. The gold nanoparticles were directly grown on indium tin oxide (ITO) coated glass substrates using the seed mediated growth method with three different concentrations of trisodium citrate (Na{sub 3}C{sub 6}H{sub 5}O{sub 7}), C{submore » 16}TAB and ascorbic acid (C{sub 6}H{sub 8}O{sub 6}). Based on the FESEM image and optical absorption spectrum of gold nanoparticles, it was found that the higher concentration of those materials has decreased the size of gold nananoparticles and shifted the LSPR peaks to lower wavelength.« less

  1. The Role of the Substrate on Photophysical Properties of Highly Ordered 15R-SiC Thin Films

    NASA Astrophysics Data System (ADS)

    Mourya, Satyendra; Jaiswal, Jyoti; Malik, Gaurav; Kumar, Brijesh; Chandra, Ramesh

    2018-06-01

    We report on the structural optimization and photophysical properties of in situ RF-sputtered single crystalline 15R-SiC thin films deposited on various substrates (ZrO2, MgO, SiC, and Si). The role of the substrates on the structural, electronic, and photodynamic behavior of the grown films have been demonstrated using x-ray diffraction, photoluminescence (PL) and time-resolved photoluminescence spectroscopy. The appropriate bonding order and the presence of native oxide on the surface of the grown samples are confirmed by x-ray photoelectron spectroscopy measurement. A deep-blue PL emission has been observed corresponding to the Si-centered defects occurring in the native oxide. Deconvolution of the PL spectra manifested two decay mechanisms corresponding to the radiative recombination. The PL intensity and carrier lifetime were found to be substrate- dependent which may be ascribed to the variation in the trap-density of the films grown on different substrates.

  2. Pre-steady-state Kinetics Reveal the Substrate Specificity and Mechanism of Halide Oxidation of Truncated Human Peroxidasin 1*

    PubMed Central

    Paumann-Page, Martina; Katz, Romy-Sophie; Bellei, Marzia; Schwartz, Irene; Edenhofer, Eva; Sevcnikar, Benjamin; Soudi, Monika

    2017-01-01

    Human peroxidasin 1 is a homotrimeric multidomain peroxidase that is secreted to the extracellular matrix. The heme enzyme was shown to release hypobromous acid that mediates the formation of specific covalent sulfilimine bonds to reinforce collagen IV in basement membranes. Maturation by proteolytic cleavage is known to activate the enzyme. Here, we present the first multimixing stopped-flow study on a fully functional truncated variant of human peroxidasin 1 comprising four immunoglobulin-like domains and the catalytically active peroxidase domain. The kinetic data unravel the so far unknown substrate specificity and mechanism of halide oxidation of human peroxidasin 1. The heme enzyme is shown to follow the halogenation cycle that is induced by the rapid H2O2-mediated oxidation of the ferric enzyme to the redox intermediate compound I. We demonstrate that chloride cannot act as a two-electron donor of compound I, whereas thiocyanate, iodide, and bromide efficiently restore the ferric resting state. We present all relevant apparent bimolecular rate constants, the spectral signatures of the redox intermediates, and the standard reduction potential of the Fe(III)/Fe(II) couple, and we demonstrate that the prosthetic heme group is post-translationally modified and cross-linked with the protein. These structural features provide the basis of human peroxidasin 1 to act as an effective generator of hypobromous acid, which mediates the formation of covalent cross-links in collagen IV. PMID:28154175

  3. Pre-steady-state Kinetics Reveal the Substrate Specificity and Mechanism of Halide Oxidation of Truncated Human Peroxidasin 1.

    PubMed

    Paumann-Page, Martina; Katz, Romy-Sophie; Bellei, Marzia; Schwartz, Irene; Edenhofer, Eva; Sevcnikar, Benjamin; Soudi, Monika; Hofbauer, Stefan; Battistuzzi, Gianantonio; Furtmüller, Paul G; Obinger, Christian

    2017-03-17

    Human peroxidasin 1 is a homotrimeric multidomain peroxidase that is secreted to the extracellular matrix. The heme enzyme was shown to release hypobromous acid that mediates the formation of specific covalent sulfilimine bonds to reinforce collagen IV in basement membranes. Maturation by proteolytic cleavage is known to activate the enzyme. Here, we present the first multimixing stopped-flow study on a fully functional truncated variant of human peroxidasin 1 comprising four immunoglobulin-like domains and the catalytically active peroxidase domain. The kinetic data unravel the so far unknown substrate specificity and mechanism of halide oxidation of human peroxidasin 1. The heme enzyme is shown to follow the halogenation cycle that is induced by the rapid H 2 O 2 -mediated oxidation of the ferric enzyme to the redox intermediate compound I. We demonstrate that chloride cannot act as a two-electron donor of compound I, whereas thiocyanate, iodide, and bromide efficiently restore the ferric resting state. We present all relevant apparent bimolecular rate constants, the spectral signatures of the redox intermediates, and the standard reduction potential of the Fe(III)/Fe(II) couple, and we demonstrate that the prosthetic heme group is post-translationally modified and cross-linked with the protein. These structural features provide the basis of human peroxidasin 1 to act as an effective generator of hypobromous acid, which mediates the formation of covalent cross-links in collagen IV. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. The oxidative half-reaction of Old Yellow Enzyme. The role of tyrosine 196.

    PubMed

    Kohli, R M; Massey, V

    1998-12-04

    Tyrosine 196 in Old Yellow Enzyme (OYE) was mutated to phenylalanine, and the resulting mutant enzyme was characterized to evaluate the mechanistic role of the residue. The residue demonstrates little effect on ligand binding and the reductive half-reaction, but a dramatic slowing by nearly 6 orders of magnitude of its oxidative half-reaction with 2-cyclohexenone. Observation of the oxidative half-reaction with a series of substrates allows us to propose a model describing the mechanism of the oxidative half-reaction. In addition, the curtailed reactivity with enones allows for characterization of the manner in which reduced enzyme primes the substrate for the redox reaction by observation of the Michaelis complex with reduced enzyme bound to substrate.

  5. A hot-spot-active magnetic graphene oxide substrate for microRNA detection based on cascaded chemiluminescence resonance energy transfer.

    PubMed

    Bi, Sai; Chen, Min; Jia, Xiaoqiang; Dong, Ying

    2015-02-28

    Herein, a cascaded chemiluminescence resonance energy transfer (C-CRET) process was demonstrated from horseradish peroxidase (HRP)-mimicking DNAzyme-catalyzed luminol-H2O2 to fluorescein and further to graphene oxide (GO) when HRP-mimicking DNAzyme/fluorescein was in close proximity to the GO surface. The proposed C-CRET system was successfully implemented to construct three modes of C-CRET hot-spot-active substrates (modes I, II and III) by covalently immobilizing HRP-mimicking DNAzyme/fluorescein-labeled hairpin DNAs (hot-spot-generation probes) on magnetic GO (MGO), resulting in a signal "off" state due to the quenching of the luminol/H2O2/HRP-mimicking DNAzyme/fluorescein CRET system by GO. Upon the introduction of microRNA-122 (miRNA-122), the targets (mode I) or the new triggers that were generated through a strand displacement reaction (SDR) initiated by miRNA-122 (modes II and III) hybridized with the loop domains of hairpin probes on MGO to form double-stranded (modes I and II) or triplex-stem structures (mode III), causing an "open" configuration of the hairpin probe and a CRET signal "on" state, thus achieving sensitive and selective detection of miRNA-122. More importantly, the substrate exhibited excellent controllability, reversibility and reproducibility through SDR and magnetic separation (modes II and III), especially sequence-independence for hairpin probes in mode III, holding great potential for the development of a versatile platform for optical biosensing.

  6. Oxidase-functionalized Fe(3)O(4) nanoparticles for fluorescence sensing of specific substrate.

    PubMed

    Liu, Cheng-Hao; Tseng, Wei-Lung

    2011-10-03

    This study reports the development of a reusable, single-step system for the detection of specific substrates using oxidase-functionalized Fe(3)O(4) nanoparticles (NPs) as a bienzyme system and using amplex ultrared (AU) as a fluorogenic substrate. In the presence of H(2)O(2), the reaction pH between Fe(3)O(4) NPs and AU was similar to the reaction of oxidase and the substrate. The catalytic activity of Fe(3)O(4) NPs with AU was nearly unchanged following modification with poly(diallyldimethylammonium chloride) (PDDA). Based on these features, we prepared a composite of PDDA-modified Fe(3)O(4) NPs and oxidase for the quantification of specific substrates through the H(2)O(2)-mediated oxidation of AU. By monitoring fluorescence intensity at 587 nm of oxidized AU, the minimum detectable concentrations of glucose, galactose, and choline were found to be 3, 2, and 20 μM using glucose oxidase-Fe(3)O(4), galactose oxidase-Fe(3)O(4), and choline oxidase-Fe(3)O(4) composites, respectively. The identification of glucose in blood was selected as the model to validate the applicability of this proposed method. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Cycle oxidation behavior and anti-oxidation mechanism of hot-dipped aluminum coating on TiBw/Ti6Al4V composites with network microstructure.

    PubMed

    Li, X T; Huang, L J; Wei, S L; An, Q; Cui, X P; Geng, L

    2018-04-10

    Controlled and compacted TiAl 3 coating was successfully fabricated on the network structured TiBw/Ti6Al4V composites by hot-dipping aluminum and subsequent interdiffusion treatment. The network structure of the composites was inherited to the TiAl 3 coating, which effectively reduces the thermal stress and avoids the cracks appeared in the coating. Moreover, TiB reinforcements could pin the TiAl 3 coating which can effectively improve the bonding strength between the coating and composite substrate. The cycle oxidation behavior of the network structured coating on 873 K, 973 K and 1073 K for 100 h were investigated. The results showed the coating can remarkably improve the high temperature oxidation resistance of the TiBw/Ti6Al4V composites. The network structure was also inherited to the Al 2 O 3 oxide scale, which effectively decreases the tendency of cracking even spalling about the oxide scale. Certainly, no crack was observed in the coating after long-term oxidation due to the division effect of network structured coating and pinning effect of TiB reinforcements. Interfacial reaction between the coating and the composite substrate occurred and a bilayer structure of TiAl/TiAl 2 formed next to the substrate after oxidation at 973 K and 1073 K. The anti-oxidation mechanism of the network structured coating was also discussed.

  8. Electrophoretic-deposited novel ternary silk fibroin/graphene oxide/hydroxyapatite nanocomposite coatings on titanium substrate for orthopedic applications

    NASA Astrophysics Data System (ADS)

    Li, Ming; Xiong, Pan; Mo, Maosong; Cheng, Yan; Zheng, Yufeng

    2016-09-01

    The combination of graphene oxide (GO) with robust mechanical property, silk fibroin (SF) with fascinating biological effects and hydroxyapatite (HA) with superior osteogenic activity is a competitive approach to make novel coatings for orthopedic applications. Herein, the feasibility of depositing ternary SF/GO/HA nanocomposite coatings on Ti substrate was firstly verified by exploiting electrophoretic nanotechnology, with SF being used as both a charging additive and a dispersion agent. The surface morphology, microstructure and composition, in vitro hemocompatibility and in vitro cytocompatibility of the resulting coatings were investigated by SEM, Raman, FTIR spectra and biocompatibility tests. Results demonstrated that GO, HA and SF could be co-deposited with a uniform, smooth thin-film morphology. The hemolysis rate analysis and the platelet adhesion test indicated good blood compatibility of the coatings. The human osteosarcoma MG63 cells displayed well adhesion and proliferation behaviors on the prepared coatings, with enhanced ALP activities. The present study suggested that SF/GO/HA nanocomposite coatings could be a promising candidate for the surface functionalization of biomaterials, especially as orthopedic implant coating.

  9. Effect of parathyroid hormone and calcium ions on substrate oxidation by isolated glomeruli of the rat.

    PubMed

    Wang, M S; Kurokawa, K

    1981-11-05

    Effect of Ca2+ and parathyroid hormone (PTH) on 14 CO2 production from certain metabolic substrates by isolated glomeruli of rat kidney were examined. Increasing calcium concentration in the incubation medium inhibited 14CO2 production from 14C-labeled alpha-ketoglutarate and succinate, stimulated 14CO2 production from [1-14C]glucose and [1-14C]glutamate, but was without effect on that from [6-14C]glucose. PTH in the presence but not in the absence of Ca2+ inhibited 14CO2 production from labeled alpha-ketoglutarate and glutamate but not from labeled glucose. Additions of cyclic AMP as well as hormonal agents known to act directly on the glomureli, such as histamine, epinephrine, prostaglandin E2, vasopressin, angiotensin II and insulin, did not alter 14 CO2 production from labeled alpha-ketoglutarate. These data show the presence of calcium-dependent inhibitory actions on PTH on oxidation of alpha-ketoglutarate and glutamate which may be independent of cyclic AMP. These metabolic effects of PTH may underlie the alteration in the glomerular ultrafiltration coefficient and glomerular filtration induced by the hormone.

  10. IBX-mediated oxidation of unactivated cyclic amines: application in highly diastereoselective oxidative Ugi-type and aza-Friedel-Crafts reactions.

    PubMed

    de Graaff, C; Bensch, L; van Lint, Matthijs J; Ruijter, E; Orru, R V A

    2015-10-28

    The first o-iodoxybenzoic acid (IBX) mediated oxidation of unactivated amines to imines is described. A range of meso-pyrrolidines were shown to be suitable substrates. The chemical space was further explored with one-pot oxidative Ugi-type and aza-Friedel-Crafts reactions, which proved to be highly diastereoselective.

  11. Stabilization of Oxidized Copper Nanoclusters in Confined Spaces

    DOE PAGES

    Akter, Nusnin; Wang, Mengen; Zhong, Jian-Qiang; ...

    2018-01-04

    Copper is an important industrial catalyst. The ability to manipulate the oxidation state of copper clusters in a controlled way is critical to understanding structure–reactivity relations of copper catalysts at the molecular level. Experimentally, cupric oxide surfaces or even small domains can only be stabilized at elevated temperatures and in the presence of oxygen, as copper can be easily reduced under reaction conditions. Herein bilayer silica films grown on a metallic substrate are used to trap diluted copper oxide clusters. By combining in situ experiments with first principles calculations, it is found that the confined space created by the silicamore » film leads to an increase in the energy barrier for Cu diffusion. Dispersed copper atoms trapped by the silica film can be easily oxidized by surface oxygen chemisorbed on the metallic substrate, which results in the formation and stabilization of Cu 2+ cations.« less

  12. Creation of hydrophobic surfaces using a paint containing functionalized oxide particles

    NASA Astrophysics Data System (ADS)

    Sino, Paul Albert L.; Herrera, Marvin U.; Balela, Mary Donnabelle L.

    2017-05-01

    Hydrophobic surfaces were created by coating various substrates (aluminum sheet, soda-lime glass, silicon carbide polishing paper, glass with double-sided adhesive) with paint containing functionalized oxide particles. The paint was created by functionalizing oxide particles (ground ZnO, TiO2 nanoparticles, or TiO2 microparticles) with fluorosilane molecules in absolute ethanol. Water contact angle of samples shows that the coated substrate becomes hydrophobic (water contact angle ≥ 90°). Among the oxides that were used, ground ZnO yielded contact angle exemplifying superhydrophobicity (water contact angle ≥ 150°). Scanning electron micrograph of paint-containing TiO2 nanoparticles shows rough functionalized oxides structures which probably increase the hydrophobicity of the surface.

  13. Synthesis of high T.sub.C superconducting coatings and patterns by melt writing and oxidation of metallic precursor alloys

    DOEpatents

    Gao, Wei; Vander Sande, John B.

    1998-01-01

    A method is provided for fabrication of superconducting oxides and superconducting oxide composites and for joining superconductors to other materials. A coating of a molten alloy containing the metallic elements of the oxide is applied to a substrate surface and oxidized to form the superconducting oxide. A material can be contacted to the molten alloy which is subsequently oxidized joining the material to the resulting superconducting oxide coating. Substrates of varied composition and shape can be coated or joined by this method.

  14. Development of coated conductors by inclined substrate deposition

    NASA Astrophysics Data System (ADS)

    Balachandran, U.; Ma, B.; Li, M.; Fisher, B. L.; Koritala, R. E.; Miller, D. J.; Dorris, S. E.

    2003-10-01

    Inclined substrate deposition (ISD) offers the potential for rapid production of high-quality biaxially textured buffer layers suitable for YBa 2Cu 3O 7- δ (YBCO)-coated conductors. We have grown biaxially textured magnesium oxide (MgO) films on Hastelloy C276 (HC) substrates by ISD at deposition rates of 20-100 Å/s. Scanning electron microscopy of the ISD MgO films showed columnar grain structures with a roof-tile-shaped surface. X-ray pole figure analysis revealed that the c-axis of the ISD MgO films is titled at an angle ≈32° from the substrate normal. A small full-width at half maximum of ≈9° was observed for the φ-scan of MgO films. YBCO films were grown on ISD MgO buffered HC substrates by pulsed laser deposition and were determined to be biaxially aligned with the c-axis parallel to the substrate normal. The orientation relationship between the ISD template and the top YBCO film was investigated by X-ray pole figure analysis and transmission electron microscopy. A transport critical current density of Jc=5.5×10 5 A/cm 2 at 77 K in self-field was measured on a YBCO film that was 0.46-μm thick, 4-mm wide, 10-mm long.

  15. High throughput assay for cytochrome P450 BM3 for screening libraries of substrates and combinatorial mutants.

    PubMed

    Tsotsou, Georgia Eleni; Cass, Anthony Edward George; Gilardi, Gianfranco

    2002-01-01

    A rapid method for identifying compounds that are potential substrates for the drug metabolising enzyme cytochrome P450 is described. The strategy is based on the detection of a degradation product of NAD(P)H oxidation during substrate turnover by the enzyme expressed in Escherichia coli cells spontaneously lysed under the experimental conditions. The performance of the method has been tested on two known substrates of the wild-type cytochrome P450 BM3, arachidonic (AA) and lauric (LA) acids, and two substrates with environmental significance, the anionic surfactant sodium dodecyl sulfate (SDS), and the solvent 1,1,2,2-tetrachloroethane (TCE). The minimal background signal given from cells expressing cytochrome P450 BM3 in the absence of added substrate is only 3% of the signal in the presence of saturating substrate. Control experiments have proven that this method is specifically detecting NADPH oxidation by catalytic turnover of P450 BM3. The assay has been adapted to a microtitre plate format and used to screen a series of furazan derivatives as potential substrates. Three derivatives were identified as substrates. The method gave a significant different signal for two isomeric furazan derivatives. All results found on the cell lysate were verified and confirmed with the purified enzyme. This strategy opens the way to automated high throughput screening of NAD(P)H-linked enzymatic activity of molecules of pharmacological and biotechnological interest and libraries of random mutants of NAD(P)H-dependent biocatalysts.

  16. Differences in energy expenditure and substrate oxidation between habitual high fat and low fat consumers (phenotypes).

    PubMed

    Cooling, J; Blundell, J

    1998-07-01

    To investigate physiological differences between habitual high-fat (HF) and low-fat (LF) consumers, which could influence the balance between energy expenditure and energy intake, and the potential for weight gain. 16 young, lean males (eight HF and eight LF consumers; % energy from fat 44.3 and 32.0, respectively). Habitual dietary variables (from FFQ), body mass index (BMI), body fat % (measured by impedance), resting metabolic rate (RMR) (indirect calorimetry), substrate oxidation and basal heart rate, postprandial thermogenesis and heart rate in response to a high-fat (low carbohydrate (CHO)) and high-CHO (low fat) challenge. HF and LF (selected for their intake of fat) did not differ significantly in BMI or % body fat. HF had a significantly higher RMR (1624 vs 1455 kcal/d) and basal heart rate (66 vs 57 bpm) than LF. Differences in oxygen utilisation and heart rate were maintained over a 180 min period, following the high-fat and high-CHO challenge meals. HF had a significantly lower resting respiratory quotient (RQ) than LF and the differences in average RQ were significant over the 180 min examination period. HF had a significantly lower RQ response to the high fat (low CHO) than to the high CHO (low fat) challenge; this effect was not observed in LF. HF had higher total energy intake than LF and a higher absolute (but not %) intake of protein. Significant differences in basal energy expenditure and fat oxidation between habitual HF and LF consumers have been observed. The contributions of energy intake and protein intake (g not %) remain to be determined. In this particular group of subjects (young adult males) a high energy intake characterised by a large fat component is associated with metabolic adaptations which could offset the weight inducing properties of a high-fat diet. These physiological differences may be important when considering the relationship between dietary-fat and obesity.

  17. Role of Oxides and Porosity on High-Temperature Oxidation of Liquid-Fueled HVOF Thermal-Sprayed Ni50Cr Coatings

    NASA Astrophysics Data System (ADS)

    Song, B.; Bai, M.; Voisey, K. T.; Hussain, T.

    2017-02-01

    High chromium content in Ni50Cr thermally sprayed coatings can generate a dense and protective scale at the surface of coating. Thus, the Ni50Cr coating is widely used in high-temperature oxidation and corrosion applications. A commercially available gas atomized Ni50Cr powder was sprayed onto a power plant steel (ASME P92) using a liquid-fueled high velocity oxy-fuel thermal spray with three processing parameters in this study. Microstructure of as-sprayed coatings was examined using oxygen content analysis, mercury intrusion porosimetry, scanning electron microscope (SEM), energy-dispersive x-ray spectroscopy (EDX) and x-ray diffraction (XRD). Short-term air oxidation tests (4 h) of freestanding coatings (without boiler steel substrate) in a thermogravimetric analyzer at 700 °C were performed to obtain the kinetics of oxidation of the as-sprayed coating. Long-term air oxidation tests (100 h) of the coated substrates were performed at same temperature to obtain the oxidation products for further characterization in detail using SEM/EDX and XRD. In all samples, oxides of various morphologies developed on top of the Ni50Cr coatings. Cr2O3 was the main oxidation product on the surface of all three coatings. The coating with medium porosity and medium oxygen content has the best high-temperature oxidation performance in this study.

  18. Electrocatalytic performance of Pt nanoparticles sputter-deposited on indium tin oxide toward methanol oxidation reaction: The particle size effect

    NASA Astrophysics Data System (ADS)

    Ting, Chao-Cheng; Chao, Chih-Hsuan; Tsai, Cheng Yu; Cheng, I.-Kai; Pan, Fu-Ming

    2017-09-01

    We sputter-deposited Pt nanoparticles with an average size ranging from 2.0 nm to 8.5 nm on the indium-tin oxide (ITO) glass substrate, and studied the effect of the size of Pt nanoparticles on electrocatalytic activity of the Pt/ITO electrode toward methanol oxidation reaction (MOR) in acidic solution. X-ray photoelectron spectroscopy (XPS) reveals an interfacial oxidized Pt layer present between Pt nanoparticles and the ITO substrate, which may modify the surface electronic structure of Pt nanoparticles and thus influences the electrocatalytic properties of the Pt catalyst toward MOR. According to electrochemical analyses, smaller Pt nanoparticles exhibit slower kinetics for CO electrooxidation and MOR. However, a smaller particle size enables better CO tolerance because the bifunctional mechanism is more effective on smaller Pt nanoparticles. The electrocatalytic activity decays rapidly for Pt nanoparticles with a size smaller than 3 nm and larger than 8 nm. The rapid activity decay is attributed to Pt dissolution for smaller nanoparticles and to CO poisoning for larger ones. Pt nanoparticles of 5-6 nm in size loaded on ITO demonstrate a greatly improved electrocatalytic activity and stability compared with those deposited on different substrates in our previous studies.

  19. A hot-spot-active magnetic graphene oxide substrate for microRNA detection based on cascaded chemiluminescence resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Bi, Sai; Chen, Min; Jia, Xiaoqiang; Dong, Ying

    2015-02-01

    Herein, a cascaded chemiluminescence resonance energy transfer (C-CRET) process was demonstrated from horseradish peroxidase (HRP)-mimicking DNAzyme-catalyzed luminol-H2O2 to fluorescein and further to graphene oxide (GO) when HRP-mimicking DNAzyme/fluorescein was in close proximity to the GO surface. The proposed C-CRET system was successfully implemented to construct three modes of C-CRET hot-spot-active substrates (modes I, II and III) by covalently immobilizing HRP-mimicking DNAzyme/fluorescein-labeled hairpin DNAs (hot-spot-generation probes) on magnetic GO (MGO), resulting in a signal ``off'' state due to the quenching of the luminol/H2O2/HRP-mimicking DNAzyme/fluorescein CRET system by GO. Upon the introduction of microRNA-122 (miRNA-122), the targets (mode I) or the new triggers that were generated through a strand displacement reaction (SDR) initiated by miRNA-122 (modes II and III) hybridized with the loop domains of hairpin probes on MGO to form double-stranded (modes I and II) or triplex-stem structures (mode III), causing an ``open'' configuration of the hairpin probe and a CRET signal ``on'' state, thus achieving sensitive and selective detection of miRNA-122. More importantly, the substrate exhibited excellent controllability, reversibility and reproducibility through SDR and magnetic separation (modes II and III), especially sequence-independence for hairpin probes in mode III, holding great potential for the development of a versatile platform for optical biosensing.Herein, a cascaded chemiluminescence resonance energy transfer (C-CRET) process was demonstrated from horseradish peroxidase (HRP)-mimicking DNAzyme-catalyzed luminol-H2O2 to fluorescein and further to graphene oxide (GO) when HRP-mimicking DNAzyme/fluorescein was in close proximity to the GO surface. The proposed C-CRET system was successfully implemented to construct three modes of C-CRET hot-spot-active substrates (modes I, II and III) by covalently immobilizing HRP-mimicking DNAzyme

  20. Redox Chemistry in Laccase-Catalyzed Oxidation of N-Hydroxy Compounds

    PubMed Central

    Xu, Feng; Kulys, Juozas J.; Duke, Kyle; Li, Kaichang; Krikstopaitis, Kastis; Deussen, Heinz-Josef W.; Abbate, Eric; Galinyte, Vilija; Schneider, Palle

    2000-01-01

    1-Hydroxybenzotriazole, violuric acid, and N-hydroxyacetanilide are three N-OH compounds capable of mediating a range of laccase-catalyzed biotransformations, such as paper pulp delignification and degradation of polycyclic hydrocarbons. The mechanism of their enzymatic oxidation was studied with seven fungal laccases. The oxidation had a bell-shaped pH-activity profile with an optimal pH ranging from 4 to 7. The oxidation rate was found to be dependent on the redox potential difference between the N-OH substrate and laccase. A laccase with a higher redox potential or an N-OH compound with a lower redox potential tended to have a higher oxidation rate. Similar to the enzymatic oxidation of phenols, phenoxazines, phenothiazines, and other redox-active compounds, an “outer-sphere” type of single-electron transfer from the substrate to laccase and proton release are speculated to be involved in the rate-limiting step for N-OH oxidation. PMID:10788380

  1. A novel missense substitution (Val1483Ile) in the fatty acid synthase gene (FAS) is associated with percentage of body fat and substrate oxidation rates in nondiabetic Pima Indians.

    PubMed

    Kovacs, Peter; Harper, Inge; Hanson, Robert L; Infante, Aniello M; Bogardus, Clifton; Tataranni, P Antonio; Baier, Leslie J

    2004-07-01

    Inhibition of fatty acid synthase (FAS) induces a rapid decline in fat stores in mice, suggesting a role for this enzyme in energy homeostasis. The human FAS gene (FAS) maps to chromosome 17q25, a region previously shown to have suggestive linkage to adiposity in a genome-wide linkage scan for genetic determinants of obesity in Pima Indians. To investigate the potential role of FAS in the pathophysiology of human obesity, the FAS gene was sequenced and 13 single nucleotide polymorphisms (SNPs) were identified. Five representative SNPs were genotyped in 216 full-blooded, nondiabetic Pima Indians for association analyses. A Val1483Ile polymorphism (GTC to ATC; allele frequency of A = 0.10) was associated with percentage of body fat and 24-h substrate oxidation rates measured in a respiratory chamber. Compared with homozygotes for the Val variant, subjects with Ile/x had a lower mean percentage of body fat (30 +/- 1 vs. 33 +/- 1%, P = 0.002; adjusted for age, sex, and family membership) and a lower mean carbohydrate oxidation rate (983 +/- 41 vs. 1,094 +/- 19 kcal/day, P = 0.03), which resulted in a lower mean 24-h respiratory quotient (0.845 +/- 0.01 vs. 0.850 +/- 0.01 kcal/day, P = 0.04; both adjusted for age, sex, family membership, percentage of body fat, and energy balance). Our findings indicate that the Val1483Ile substitution in FAS is protective against obesity in Pima Indians, an effect possibly explained by the role of this gene in the regulation of substrate oxidation.

  2. Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals

    NASA Astrophysics Data System (ADS)

    Carey, Benjamin J.; Ou, Jian Zhen; Clark, Rhiannon M.; Berean, Kyle J.; Zavabeti, Ali; Chesman, Anthony S. R.; Russo, Salvy P.; Lau, Desmond W. M.; Xu, Zai-Quan; Bao, Qiaoliang; Kevehei, Omid; Gibson, Brant C.; Dickey, Michael D.; Kaner, Richard B.; Daeneke, Torben; Kalantar-Zadeh, Kourosh

    2017-02-01

    A variety of deposition methods for two-dimensional crystals have been demonstrated; however, their wafer-scale deposition remains a challenge. Here we introduce a technique for depositing and patterning of wafer-scale two-dimensional metal chalcogenide compounds by transforming the native interfacial metal oxide layer of low melting point metal precursors (group III and IV) in liquid form. In an oxygen-containing atmosphere, these metals establish an atomically thin oxide layer in a self-limiting reaction. The layer increases the wettability of the liquid metal placed on oxygen-terminated substrates, leaving the thin oxide layer behind. In the case of liquid gallium, the oxide skin attaches exclusively to a substrate and is then sulfurized via a relatively low temperature process. By controlling the surface chemistry of the substrate, we produce large area two-dimensional semiconducting GaS of unit cell thickness (~1.5 nm). The presented deposition and patterning method offers great commercial potential for wafer-scale processes.

  3. Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals.

    PubMed

    Carey, Benjamin J; Ou, Jian Zhen; Clark, Rhiannon M; Berean, Kyle J; Zavabeti, Ali; Chesman, Anthony S R; Russo, Salvy P; Lau, Desmond W M; Xu, Zai-Quan; Bao, Qiaoliang; Kevehei, Omid; Gibson, Brant C; Dickey, Michael D; Kaner, Richard B; Daeneke, Torben; Kalantar-Zadeh, Kourosh

    2017-02-17

    A variety of deposition methods for two-dimensional crystals have been demonstrated; however, their wafer-scale deposition remains a challenge. Here we introduce a technique for depositing and patterning of wafer-scale two-dimensional metal chalcogenide compounds by transforming the native interfacial metal oxide layer of low melting point metal precursors (group III and IV) in liquid form. In an oxygen-containing atmosphere, these metals establish an atomically thin oxide layer in a self-limiting reaction. The layer increases the wettability of the liquid metal placed on oxygen-terminated substrates, leaving the thin oxide layer behind. In the case of liquid gallium, the oxide skin attaches exclusively to a substrate and is then sulfurized via a relatively low temperature process. By controlling the surface chemistry of the substrate, we produce large area two-dimensional semiconducting GaS of unit cell thickness (∼1.5 nm). The presented deposition and patterning method offers great commercial potential for wafer-scale processes.

  4. Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals

    PubMed Central

    Carey, Benjamin J.; Ou, Jian Zhen; Clark, Rhiannon M.; Berean, Kyle J.; Zavabeti, Ali; Chesman, Anthony S. R.; Russo, Salvy P.; Lau, Desmond W. M.; Xu, Zai-Quan; Bao, Qiaoliang; Kavehei, Omid; Gibson, Brant C.; Dickey, Michael D.; Kaner, Richard B.; Daeneke, Torben; Kalantar-Zadeh, Kourosh

    2017-01-01

    A variety of deposition methods for two-dimensional crystals have been demonstrated; however, their wafer-scale deposition remains a challenge. Here we introduce a technique for depositing and patterning of wafer-scale two-dimensional metal chalcogenide compounds by transforming the native interfacial metal oxide layer of low melting point metal precursors (group III and IV) in liquid form. In an oxygen-containing atmosphere, these metals establish an atomically thin oxide layer in a self-limiting reaction. The layer increases the wettability of the liquid metal placed on oxygen-terminated substrates, leaving the thin oxide layer behind. In the case of liquid gallium, the oxide skin attaches exclusively to a substrate and is then sulfurized via a relatively low temperature process. By controlling the surface chemistry of the substrate, we produce large area two-dimensional semiconducting GaS of unit cell thickness (∼1.5 nm). The presented deposition and patterning method offers great commercial potential for wafer-scale processes. PMID:28211538

  5. Effect of substrates on Zinc Oxide thin films fabrication using sol-gel method

    NASA Astrophysics Data System (ADS)

    Kadir, Rosmalini Ab; Taib, Nurmalina Mohd; Ahmad, Wan Rosmaria Wan; Aziz, Anees Abdul; Sabirin Zoolfakar, Ahmad

    2018-03-01

    The properties of ZnO thin films were deposited on three different substrates via dip coating method was investigated. The films were prepared on glass, ITO and p-type silicon. Characterization of the film revealed that the properties of the dip coated ZnO thin films were influenced by the type of substrates. The grains on ITO and glass were ∼10 nm in size while the grains on wafer agglomerate together to form a denser film. Studies of the optical properties using UV-VIS-NIR of the fabricated films demonstrated that glass has the highest transmittance compared to ITO.

  6. Zinc oxide films chemically grown onto rigid and flexible substrates for TFT applications

    NASA Astrophysics Data System (ADS)

    Suchea, M.; Kornilios, N.; Koudoumas, E.

    2010-10-01

    This contribution presents some preliminary results regarding the use of a chemical route for the growth of good quality ZnO thin films that can be used for the fabrication of thin film transistors (TFTs). The films were grown at rather low temperature (60 °C) on glass and PET substrates using non-aqueous (zinc acetate dihydrate in methanol) precursor solution and their surface morphology, crystalline structure, optical transmittance and electrical characteristics were studied. The study indicated that good quality films with desirable ZnO structure onto rigid and flexible substrates can be obtained, using a simple, cheap, low temperature chemical growth method.

  7. Structure and method for controlling band offset and alignment at a crystalline oxide-on-semiconductor interface

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    2003-11-25

    A crystalline oxide-on-semiconductor structure and a process for constructing the structure involves a substrate of silicon, germanium or a silicon-germanium alloy and an epitaxial thin film overlying the surface of the substrate wherein the thin film consists of a first epitaxial stratum of single atomic plane layers of an alkaline earth oxide designated generally as (AO).sub.n and a second stratum of single unit cell layers of an oxide material designated as (A'BO.sub.3).sub.m so that the multilayer film arranged upon the substrate surface is designated (AO).sub.n (A'BO.sub.3).sub.m wherein n is an integer repeat of single atomic plane layers of the alkaline earth oxide AO and m is an integer repeat of single unit cell layers of the A'BO.sub.3 oxide material. Within the multilayer film, the values of n and m have been selected to provide the structure with a desired electrical structure at the substrate/thin film interface that can be optimized to control band offset and alignment.

  8. Structural and elastoplastic properties of β -Ga2O3 films grown on hybrid SiC/Si substrates

    NASA Astrophysics Data System (ADS)

    Osipov, A. V.; Grashchenko, A. S.; Kukushkin, S. A.; Nikolaev, V. I.; Osipova, E. V.; Pechnikov, A. I.; Soshnikov, I. P.

    2018-04-01

    Structural and mechanical properties of gallium oxide films grown on (001), (011) and (111) silicon substrates with a buffer layer of silicon carbide are studied. The buffer layer was fabricated by the atom substitution method, i.e., one silicon atom per unit cell in the substrate was substituted by a carbon atom by chemical reaction with carbon monoxide. The surface and bulk structure properties of gallium oxide films have been studied by atomic-force microscopy and scanning electron microscopy. The nanoindentation method was used to investigate the elastoplastic characteristics of gallium oxide, and also to determine the elastic recovery parameter of the films under study. The ultimate tensile strength, hardness, elastic stiffness constants, elastic compliance constants, Young's modulus, linear compressibility, shear modulus, Poisson's ratio and other characteristics of gallium oxide have been calculated by quantum chemistry methods based on the PBESOL functional. It is shown that all these properties of gallium oxide are essentially anisotropic. The calculated values are compared with experimental data. We conclude that a change in the silicon orientation leads to a significant reorientation of gallium oxide.

  9. Use resources of human exometabolites of different oxidation levels for higher plants cultivation on the soil-like substrate as applied to closed ecosystems

    NASA Astrophysics Data System (ADS)

    Tikhomirov, Alexander A.; Kudenko, Yurii; Ushakova, Sofya; Tirranen, Lyalya; Gribovskaya, Illiada; Gros, Jean-Bernard; Lasseur, Christophe

    The technology of ‘wet incineration' of human exometabolites and inedible plants biomass by means of H2 O2 in alternating electromagnetic field to increase a closure of mass exchange processes in bioregenerative life support systems (BLSS) was developed at the Institute of Biophysics of the Siberian Branch of Russian Academy of Sciences (Krasnoyarsk, Russia). Human exometabolites mineralized can be used in a nutrient solution for plants cultivation in the BLSS phototrophic link. The objective of the given work appears to be the study of use resources of human exometabolites of different oxidation levels processed by the abovementioned method for higher plants cultivation on the soil-like substrate (SLS). The mineralized human wastes were tested for the purpose of their sterility. Then the effect of human exometabolites of different oxidation levels both on wheat productivity and on the SLS microflora composition was examined. The SLS extract with a definite amount of human mineralized wastes was used as an irrigation solution. The conducted experiments demonstrated that the H2 O2 decreasing to 1 ml on 1 g of feces and to 0.25 ml on 1 ml of urine had not affected the sterility of mineralized human wastes. Wheat cultivation on the SLS with the addition in an irrigation solution of mineralized human wastes in the amount simulating 1/6 of a daily human diet showed the absence of basic dependence of plants productivity on oxidation level of human exometabolites. Yet the analysis of the microflora composition of the irrigation solutions demonstrated its dependence on the oxidation level of the exometabolites introduced. The amount of yeast-like fungi increased in 20 times in the solutions containing less oxidized exometabolites in comparison with the variant in which the human wastes were subjected to a full-scale oxidation. Besides, the solutions with less oxidized exometabolites displayed a bigger content of plant pathogenic bacteria and denitrifies. Consequently the

  10. Epitaxy of Polar Oxides and Semiconductors

    NASA Astrophysics Data System (ADS)

    Shelton, Christopher Tyrel

    Integrating polar oxide materials with wide-bandgap nitride semiconductors offers the possibility of a tunable 2D carrier gas (2DCG) - provided defect densities are low and interfaces are abrupt. This dissertation investigates a portion of the synthesis science necessary to produce a "semiconductor-grade" interface between these highly dissimilar materials. A significant portion of this work is aligned with efforts to engineer a step-free GaN substrate to produce single in-plane oriented rocksalt oxide films. Initially, we explore the homoepitaxial MOCVD growth conditions necessary to produce highquality GaN films on ammonothermally grown substrates. Ammono substrates are only recently available for purchase and are the market leader in low-dislocation density material. Their novelty requires development of an understanding of morphology trade-offs in processing space. This includes preservation of the epi-polished surface in aggressive MOCVD environments and an understanding of the kinetic barriers affecting growth morphologies. Based on several factors, it was determined that GaN exhibits an 'uphill' diffusion bias that may likely be ascribed to a positive Ehrlich-Schwoebel (ES) barrier. This barrier should have a stabilizing effect against step-bunching but, for many growth conditions, regular step bunching was observed. One possible explanation for the step-bunching instability is the presence of impurities. Experimentally, conditions which incorporate more carbon into GaN homoepitaxial layers are correlated with step-bunching while conditions that suppress carbon produce bilayer stepped morphologies. These observations lead us to the conclusion that GaN homoepitaxial morphology is a competition between impurity induced step-bunching and a stabilizing diffusion bias due to a positive ES barrier. Application of the aforementioned homoepitaxial growth techniques to discrete substrate regions using selected- and confined area epitaxy (SAE,CAE) produces some

  11. Theoretical Study of the Oxidation Behavior of Precipitation Hardening Steel

    NASA Astrophysics Data System (ADS)

    Pistofidis, N.; Vourlias, G.; Psyllaki, P.; Chrissafis, K.

    2010-01-01

    The oxidation of precipitation hardening (PH) steels is a rather unexplored area. In the present work an attempt is made is made to estimate the kinetics of a PH steel. For this purpose specimens of the material under examination were isothermally heated at 850, 900 and 950° C for 15 hr. Kinetics was based on TGA results. During heating a thick scale is formed on the substrate surface, which is composed by different oxides. The layer close to the substrate is compact and as a result it impedes corrosion. The mathematical analysis of the collected data shows that the change of the mass of the substrate per unit area versus time is described by a parabolic law.

  12. Giant Dirac point shift of graphene phototransistors by doped silicon substrate current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimatani, Masaaki; Ogawa, Shinpei, E-mail: Ogawa.Shimpei@eb.MitsubishiElectric.co.jp; Fujisawa, Daisuke

    2016-03-15

    Graphene is a promising new material for photodetectors due to its excellent optical properties and high-speed response. However, graphene-based phototransistors have low responsivity due to the weak light absorption of graphene. We have observed a giant Dirac point shift upon white light illumination in graphene-based phototransistors with n-doped Si substrates, but not those with p-doped substrates. The source-drain current and substrate current were investigated with and without illumination for both p-type and n-type Si substrates. The decay time of the drain-source current indicates that the Si substrate, SiO{sub 2} layer, and metal electrode comprise a metal-oxide-semiconductor (MOS) capacitor due tomore » the presence of defects at the interface between the Si substrate and SiO{sub 2} layer. The difference in the diffusion time of the intrinsic major carriers (electrons) and the photogenerated electron-hole pairs to the depletion layer delays the application of the gate voltage to the graphene channel. Therefore, the giant Dirac point shift is attributed to the n-type Si substrate current. This phenomenon can be exploited to realize high-performance graphene-based phototransistors.« less

  13. Oxidation of Structural Fe(II) in Biotite by Lithotrophic Fe(II)-oxidizing microorganisms

    NASA Astrophysics Data System (ADS)

    Shelobolina, E.; Blöthe, M.; Xu, H.; Konishi, H.; Roden, E.

    2008-12-01

    The potential for microbial involvement in the oxidation of Fe(II)-bearing phyllosilicates is an understudied aspect of soil/sediment Fe biogeochemistry. An important property of structural Fe in Fe-bearing smectites is their ability to undergo multiple redox cycles without being mobilized. An obvious choice of mineral substrate for enumeration/isolation of Fe(II)-oxidizing microorganisms would be reduced smectite. But reduced smectite is readily oxidized by air. That is why biotite was chosen as a substrate for this study. In contrast to smectite, biotite is more stable in the presence of air, but incapable of redox cycling. Once Fe(II) is oxidized, biotite is weathered to expendable 2:1 phyllosilicates or kaolinite. First, we evaluated the ability of a neutral-pH lithoautotrophic nitrate-reducing enrichment culture (MPI culture), recovered by Straub et al (Appl. Environ. Microbiol., 1996, 62:1458-1460) from a freshwater ditch, to oxidize two different specimens of biotite. The culture was capable of multiple transfers in anaerobic nitrate-containing biotite suspensions. The growth of MPI culture resulted in decrease of 0.5 N HCl-extractable Fe(II) content and simultaneous nitrate reduction. Cell yields were comparable to those observed for other neutral-pH lithoautotrophic Fe(II)-oxidizing bacteria. High resolution TEM examination revealed structural and chemical changes at the edges of oxidized biotite and formation of reddish amorphous precipitates dominated by Si and Fe. To further evaluate efficiency of biotite for recovery of oxygen- and nitrate-dependent Fe(II) oxidizing cultures microbial enumeration study was performed using subsoil from a site near Madison, WI. The soil is rich in Fe-bearing smectite and shows evidence of redoximorphic features. The enumeration of Fe(II) oxidizing organisms from this sediment showed 10-fold higher efficiency of biotite over soluble Fe(II) for recovery of Fe(II)-oxidizers. Isolation and identification of both aerobic and

  14. Rare isotope studies involving catalytic oxidation of CO over platinum-tin oxide

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T.; Wood, George M., Jr.; Hess, Robert V.; Hoyt, Ronald F.

    1987-01-01

    Results of studies utilizing normal and rare oxygen isotopes in the catalytic oxidation of carbon monoxide over a platinum-tin oxide catalyst substrate are presented. Chemisorption of labeled carbon monoxide on the catalyst followed by thermal desorption yielded a carbon dioxide product with an oxygen-18 composition consistent with the formation of a carbonate-like intermediate in the chemisorption process. The efficacy of a method developed for the oxygen-18 labeling of the platinum-tin oxide catalyst surface for use in closed cycle pulsed care isotope carbon dioxide lasers is demonstrated for the equivalent of 10 to the 6th power pulses at 10 pulses per second.

  15. Multiple isotope effects with alternative dinucleotide substrates as a probe of the malic enzyme reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, P.M.; Urbauer, J.L.; Cleland, W.W.

    1991-06-11

    Deuterium isotope effects and {sup 13}C isotope effects with deuterium- and protium-labeled malate have been obtained for both NAD- and NADP-malic enzymes by using a variety of alternative dinucleotide substrates. With nicotinamide-containing dinucleotides as the oxidizing substrate, the {sup 13}C effect decreases when deuterated malate is the substrate compared to the value obtained with protium-labeled malate. These data are consistent with a stepwise chemical mechanism in which hydride transfer precedes decarboxylation of the oxalacetate intermediate as previously proposed. When dinucleotide substrates such as thio-NAD, 3-nicotinamide rings are used, the {sup 13}C effect increases when deuterated malate is the substrate comparedmore » to the value obtained with protium-labeled malate. These data, at face value, are consistent with a change in mechanism from stepwise to concerted for the oxidative decarboxylation portion of the mechanism. However, the increase in the deuterium isotope effect from 1.5 to 3 with a concomitant decrease in the {sup 13}C isotope effect from 1.034 to 1.003 as the dinucleotide substrate is changed suggests that the reaction may still be stepwise with the non-nicotinamide dinucleotides. A more likely explanation is that a {beta}-secondary {sup 13}C isotope effect accompanies hydride transfer as a result of hyperconjugation of the {beta}-carboxyl of malate as the transition state for the hydride transfer step is approached.« less

  16. Densification behavior of ceramic and crystallizable glass materials constrained on a rigid substrate

    NASA Astrophysics Data System (ADS)

    Calata, Jesus N.

    2005-11-01

    Constrained sintering is an important process for many applications. The sintering process almost always involves some form of constraint, both internal and external, such as rigid particles, reinforcing fibers and substrates to which the porous body adheres. The densification behavior of zinc oxide and cordierite-base crystallizable glass constrained on a rigid substrate was studied to add to the understanding of the behavior of various materials undergoing sintering when subjected to external substrate constraint. Porous ZnO films were isothermally sintered at temperatures between 900°C and 1050°C. The results showed that the densification of films constrained on substrates is severely reduced. This was evident in the sintered microstructures where the particles are joined together by narrower necks forming a more open structure, instead of the equiaxed grains with wide grain boundaries observed in the freestanding films. The calculated activation energies of densification were also different. For the density range of 60 to 64%, the constrained film had an activation energy of 391 +/- 34 kJ/mole compared to 242 +/- 21 kJ/mole for the freestanding film, indicating a change in the densification mechanism. In-plane stresses were observed during the sintering of the constrained films. Yielding of the films, in which the stresses dropped slight or remained unchanged, occurred at relative densities below 60% before the stresses climbed linearly with increasing density followed by a gradual relaxation. A substantial amount of the stresses remained after cooling. Free and constrained films of the cordierite-base crystallizable glass (glass-ceramic) were sintered between 900°C and 1000°C. The substrate constraint did not have a significant effect on the densification rate but the constrained films eventually underwent expansion. Calculations of the densification activation energy showed that, on average, it was close to 1077 kJ/mole, the activation energy of the glass

  17. Optical characterization of nanoporous AAO sensor substrate

    NASA Astrophysics Data System (ADS)

    Kassu, Aschalew; Farley, Carlton W.; Sharma, Anup

    2014-05-01

    Nanoporous anodic aluminum oxide (AAO) has been investigated as an ideal and cost-effective chemical and biosensing platform. In this paper, we report the optical properties of periodic 100 micron thick nanoporous anodic alumina membranes with uniform and high density cylindrical pores penetrating the entire thickness of the substrate, ranging in size from 18 nm to 150 nm in diameter and pore periods from 44 nm to 243 nm. The surface geometry of the top and bottom surface of each membrane is studied using atomic force microscopy. The optical properties including transmittance, reflectance, and absorbance spectra on both sides of each substrate are studied and found to be symmetrical. It is observed that, as the pore size increases, the peak resonance intensity in transmittance decreases and in absorbance increases. The effects of the pore sizes on the optical properties of the bare nanoporous membranes and the benefit of using arrays of nanohole arrays with varying hole size and periodicity as a chemical sensing platform is also discussed. To characterize the optical sensing technique, transmittance and reflectance measurements of various concentrations of a standard chemical adsorbed on the bare nanoporous substrates are investigated. The preliminary results presented here show variation in transmittance and reflectance spectra with the concentration of the chemical used or the amount of the material adsorbed on the surface of the substrate.

  18. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model

    PubMed Central

    Canelles, Sandra; Argente, Jesús; Barrios, Vicente

    2016-01-01

    ABSTRACT Insulin receptor substrate-2-deficient (IRS2−/−) mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I) and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2−/− mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2−/− mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2−/− mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2−/− mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus. PMID:27013528

  19. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model.

    PubMed

    Baquedano, Eva; Burgos-Ramos, Emma; Canelles, Sandra; González-Rodríguez, Agueda; Chowen, Julie A; Argente, Jesús; Barrios, Vicente; Valverde, Angela M; Frago, Laura M

    2016-05-01

    Insulin receptor substrate-2-deficient (IRS2(-/-)) mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I) and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2(-/-) mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2(-/-) mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2(-/-) mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2(-/-) mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus. © 2016. Published by The Company of Biologists Ltd.

  20. Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate

    PubMed Central

    Zhang, Chengpeng; Yi, Peiyun; Peng, Linfa; Lai, Xinmin; Chen, Jie; Huang, Meizhen; Ni, Jun

    2017-01-01

    Surface-enhanced Raman spectroscopy (SERS) has been a powerful tool for applications including single molecule detection, analytical chemistry, electrochemistry, medical diagnostics and bio-sensing. Especially, flexible SERS substrates are highly desirable for daily-life applications, such as real-time and in situ Raman detection of chemical and biological targets, which can be used onto irregular surfaces. However, it is still a major challenge to fabricate the flexible SERS substrate on large-area substrates using a facile and cost-effective technique. The roll-to-roll ultraviolet nanoimprint lithography (R2R UV-NIL) technique provides a solution for the continuous fabrication of flexible SERS substrate due to its high-speed, large-area, high-resolution and high-throughput. In this paper, we presented a facile and cost-effective method to fabricate flexible SERS substrate including the fabrication of polymer nanostructure arrays and the metallization of the polymer nanostructure arrays. The polymer nanostructure arrays were obtained by using R2R UV-NIL technique and anodic aluminum oxide (AAO) mold. The functional SERS substrates were then obtained with Au sputtering on the surface of the polymer nanostructure arrays. The obtained SERS substrates exhibit excellent SERS and flexibility performance. This research can provide a beneficial direction for the continuous production of the flexible SERS substrates. PMID:28051175

  1. Bioelectro-Claus processes using MFC technology: Influence of co-substrate.

    PubMed

    Raschitor, A; Soreanu, G; Fernandez-Marchante, C M; Lobato, J; Cañizares, P; Cretescu, I; Rodrigo, M A

    2015-01-01

    This work is focused on the removal of sulphide from wastewater using a two chamber microbial fuel cell, seeded with activated sludge and operated in semi-continuous mode. Two co-substrates were used in order to provide the system for carbon and nutrient source: actual urban wastewater and synthetic wastewater. Results show that sulphide is efficiency depleted (removals over 94%) and that electricity is efficiently produced (maximum power density is 150 mW m(-2)) meanwhile COD is also oxidised (removals higher than 60%). Sulphur and sulphate are obtained as the final products of the oxidation and final speciation depends on the type of co-substrate used. The start-up of the system is very rapid and production of electricity and polarisation curves do not depend on the co-substrate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOEpatents

    Riley, B.; Szreders, B.E.

    1988-04-26

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  3. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOEpatents

    Brian, Riley; Szreders, Bernard E.

    1989-01-01

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  4. A spontaneous change in the oxidation states of Pd/WO3 toward an active phase during catalytic cycles of CO oxidation

    NASA Astrophysics Data System (ADS)

    Jeon, Byungwook; Kim, Ansoon; Lee, Young-Ahn; Seo, Hyungtak; Kim, Yu Kwon

    2017-11-01

    CO oxidation over Pd/WO3 films prepared on a glass substrate has been examined at the substrate temperature of 150 - 250 °C and pressures less than 1 Torr with a stoichiometric mixture of CO and O2. Under the given reaction condition, the chemical states of the Pd/WO3 film gradually change into the most catalytically active form with the highest saturation reaction rate regardless of the initial oxidation states. The measured CO oxidation rate over the Pd/WO3 is strongly dependent on the chemical states of Pd and W. Either metallic Pd or fully oxidized PdO phase is not as catalytically active as the active form with mixed metallic Pd and thin PdO layers supported on WO3 with partially reduced W5+ state which is spontaneously obtained during the catalytic reaction cycles. Our results indicate that the facile oxygen transfer between Pd and WO3 layers not only facilitate the spontaneous changes into the active form, but also act as a promotional role in CO oxidation over the Pd layer.

  5. Metal/metal oxide doped oxide catalysts having high deNOx selectivity for lean NOx exhaust aftertreatment systems

    DOEpatents

    Park, Paul W.

    2004-03-16

    A lean NOx catalyst and method of preparing the same is disclosed. The lean NOx catalyst includes a ceramic substrate, an oxide support material, preferably .gamma.-alumina, deposited on the substrate and a metal promoter or dopant introduced into the oxide support material. The metal promoters or dopants are selected from the group consisting of indium, gallium, tin, silver, germanium, gold, nickel, cobalt, copper, iron, manganese, molybdenum, chromium, cerium, vanadium, oxides thereof, and combinations thereof. The .gamma.-alumina preferably has a pore volume of from about 0.5 to about 2.0 cc/g; a surface area of between about 80 to 350 m.sup.2 /g; an average pore size diameter of between about 3 to 30 nm; and an impurity level of less than or equal to 0.2 weight percent. In a preferred embodiment the .gamma.-alumina is prepared by a sol-gel method, with the metal doping of the .gamma.-alumina preferably accomplished using an incipient wetness impregnation technique.

  6. Thick adherent dielectric films on plastic substrates and method for depositing same

    DOEpatents

    Wickboldt, Paul; Ellingboe, Albert R.; Theiss, Steven D.; Smith, Patrick M.

    2002-01-01

    Thick adherent dielectric films deposited on plastic substrates for use as a thermal barrier layer to protect the plastic substrates from high temperatures which, for example, occur during laser annealing of layers subsequently deposited on the dielectric films. It is desirable that the barrier layer has properties including: a thickness of 1 .mu.m or greater, adheres to a plastic substrate, does not lift-off when cycled in temperature, has few or no cracks and does not crack when subjected to bending, resistant to lift-off when submersed in fluids, electrically insulating and preferably transparent. The thick barrier layer may be composed, for example, of a variety of dielectrics and certain metal oxides, and may be deposited on a variety of plastic substrates by various known deposition techniques. The key to the method of forming the thick barrier layer on the plastic substrate is maintaining the substrate cool during deposition of the barrier layer. Cooling of the substrate maybe accomplished by the use of a cooling chuck on which the plastic substrate is positioned, and by directing cooling gas, such as He, Ar and N.sub.2, between the plastic substrate and the cooling chucks. Thick adherent dielectric films up to about 5 .mu.m have been deposited on plastic substrates which include the above-referenced properties, and which enable the plastic substrates to withstand laser processing temperatures applied to materials deposited on the dielectric films.

  7. Oxidation resistant slurry coating for carbon-based materials

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Rybicki, G. C. (Inventor)

    1985-01-01

    An oxidation resistant coating is produced on carbon-base materials, and the same processing step effects an infiltration of the substrate with silicon containing material. The process comprises making a slurry of nickel and silicon powders in a nitrocellulose lacquer, spraying onto the graphite or carbon-carbon substrate, and sintering in vacuum to form a fused coating that wets and covers the surface as well as penetrates into the pores of the substrate. Optimum wetting and infiltration occurs in the range of Ni-60 w/o Si to Ni-90 w/o Si with deposited thicknesses of 25-100 mg/sq. cm. Sintering temperatures of about 1200 C to about 1400 C are used, depending on the melting point of the specific coating composition. The sintered coating results in Ni-Si intermetallic phases and SiC, both of which are highly oxidation resistant.

  8. Preparation of thin hexagonal highly-ordered anodic aluminum oxide (AAO) template onto silicon substrate and growth ZnO nanorod arrays by electrodeposition

    NASA Astrophysics Data System (ADS)

    Chahrour, Khaled M.; Ahmed, Naser M.; Hashim, M. R.; Elfadill, Nezar G.; Qaeed, M. A.; Bououdina, M.

    2014-12-01

    In this study, anodic aluminum oxide (AAO) templates of Aluminum thin films onto Ti-coated silicon substrates were prepared for growth of nanostructure materials. Hexagonally highly ordered thin AAO templates were fabricated under controllable conditions by using a two-step anodization. The obtained thin AAO templates were approximately 70 nm in pore diameter and 250 nm in length with 110 nm interpore distances within an area of 3 cm2. The difference between first and second anodization was investigated in details by in situ monitoring of current-time curve. A bottom barrier layer of the AAO templates was removed during dropping the voltage in the last period of the anodization process followed by a wet etching using phosphoric acid (5 wt%) for several minutes at ambient temperature. As an application, Zn nanorod arrays embedded in anodic alumina (AAO) template were fabricated by electrodeposition. Oxygen was used to oxidize the electrodeposited Zn nanorods in the AAO template at 700 °C. The morphology, structure and photoluminescence properties of ZnO/AAO assembly were analyzed using Field-emission scanning electron microscope (FESEM), Energy dispersive X-ray spectroscopy (EDX), Atomic force microscope (AFM), X-ray diffraction (XRD) and photoluminescence (PL).

  9. Evaluation of Energy Expenditure and Oxidation of Energy Substrates in Adult Males after Intake of Meals with Varying Fat and Carbohydrate Content.

    PubMed

    Adamska-Patruno, Edyta; Ostrowska, Lucyna; Golonko, Anna; Pietraszewska, Barbara; Goscik, Joanna; Kretowski, Adam; Gorska, Maria

    2018-05-16

    Obesity is a result of positive energy balance. The aim of this study was to measure (in crossover trials) the energy expenditure and oxidation of glucose and lipids, both at the fasting state and after an intake of meals with a varying macronutrient content, in normal-weight and overweight/obese people. In the study, 46 healthy adult males (23 with normal body weight and 23 overweight/obese), aged 21⁻58, were examined. During two consecutive visits, subjects received isocaloric standardized meals (450 kcal) with different content of basic nutrients. Resting metabolic rate and carbohydrate and fat utilization were evaluated during the fasting state and postprandially, using an indirect calorimetry method. Energy expenditure was higher in people with normal body weight and slightly higher after the high-carbohydrate meal. In overweight/obese people, increased expenditure was noted after normo-carbohydrate meal intake. The high-fat meal induced lower postprandial thermal response compared to a high-carbohydrate meal, both in people with normal body weight and in overweight/obese men. Glucose utilization was higher after the high-carbohydrate meal, and it was higher in the normal body weight group than in overweight/obese people. In addition, overweight/obese people showed a lower level of fatty acid oxidation under fasting conditions which, together with limited ability to oxidize energy substrates, depending on their availability, indicates that these people are characterized by lower metabolic flexibility.

  10. Rapid Covalent Modification of Silicon Oxide Surfaces through Microwave-Assisted Reactions with Alcohols.

    PubMed

    Lee, Austin W H; Gates, Byron D

    2016-07-26

    We demonstrate the method of a rapid covalent modification of silicon oxide surfaces with alcohol-containing compounds with assistance by microwave reactions. Alcohol-containing compounds are prevalent reagents in the laboratory, which are also relatively easy to handle because of their stability against exposure to atmospheric moisture. The condensation of these alcohols with the surfaces of silicon oxides is often hindered by slow reaction kinetics. Microwave radiation effectively accelerates this condensation reaction by heating the substrates and/or solvents. A variety of substrates were modified in this demonstration, such as silicon oxide films of various thicknesses, glass substrates such as microscope slides (soda lime), and quartz. The monolayers prepared through this strategy demonstrated the successful formation of covalent surface modifications of silicon oxides with water contact angles of up to 110° and typical hysteresis values of 2° or less. An evaluation of the hydrolytic stability of these monolayers demonstrated their excellent stability under acidic conditions. The techniques introduced in this article were successfully applied to tune the surface chemistry of silicon oxides to achieve hydrophobic, oleophobic, and/or charged surfaces.

  11. Atomically Defined Templates for Epitaxial Growth of Complex Oxide Thin Films

    PubMed Central

    Dral, A. Petra; Dubbink, David; Nijland, Maarten; ten Elshof, Johan E.; Rijnders, Guus; Koster, Gertjan

    2014-01-01

    Atomically defined substrate surfaces are prerequisite for the epitaxial growth of complex oxide thin films. In this protocol, two approaches to obtain such surfaces are described. The first approach is the preparation of single terminated perovskite SrTiO3 (001) and DyScO3 (110) substrates. Wet etching was used to selectively remove one of the two possible surface terminations, while an annealing step was used to increase the smoothness of the surface. The resulting single terminated surfaces allow for the heteroepitaxial growth of perovskite oxide thin films with high crystalline quality and well-defined interfaces between substrate and film. In the second approach, seed layers for epitaxial film growth on arbitrary substrates were created by Langmuir-Blodgett (LB) deposition of nanosheets. As model system Ca2Nb3O10- nanosheets were used, prepared by delamination of their layered parent compound HCa2Nb3O10. A key advantage of creating seed layers with nanosheets is that relatively expensive and size-limited single crystalline substrates can be replaced by virtually any substrate material. PMID:25549000

  12. Electromechanical properties of amorphous In-Zn-Sn-O transparent conducting film deposited at various substrate temperatures on polyimide substrate

    NASA Astrophysics Data System (ADS)

    Kim, Young Sung; Lee, Eun Kyung; Eun, Kyoungtae; Choa, Sung-Hoon

    2015-09-01

    The electromechanical properties of the amorphous In-Zn-Sn-O (IZTO) film deposited at various substrate temperatures were investigated by bending, stretching, twisting, and cyclic bending fatigue tests. Amorphous IZTO films were grown on a transparent polyimide substrate using a pulsed DC magnetron sputtering system at different substrate temperatures ranging from room temperature to 200 °C. A single oxide alloyed ceramic target (In2O3: 80 wt %, ZnO: 10 wt %, SnO2: 10 wt % composition) was used. The amorphous IZTO film deposited at 150 °C exhibited an optimized electrical resistivity of 5.8 × 10-4 Ω cm, optical transmittance of 87%, and figure of merit of 8.3 × 10-3 Ω-1. The outer bending tests showed that the critical bending radius decreased as substrate temperature increased. On the other hand, in the inner bending tests, the critical bending radius increased with an increase in substrate temperature. The differences in the bendability of IZTO films for the outer and inner bending tests could be attributed to the internal residual stress of the films. The uniaxial stretching tests also showed the effects of the internal stress on the mechanical flexibility of the film. The bending and stretching test results demonstrated that the IZTO film had higher bendability and stretchability than the conventional ITO film. The IZTO film could withstand 10,000 bending cycles at a bending radius of 10 mm. The effect of the surface roughness on the mechanical durability of all IZTO films was very small due to their very smooth surfaces.

  13. 3.4-Inch Quarter High Definition Flexible Active Matrix Organic Light Emitting Display with Oxide Thin Film Transistor

    NASA Astrophysics Data System (ADS)

    Hatano, Kaoru; Chida, Akihiro; Okano, Tatsuya; Sugisawa, Nozomu; Inoue, Tatsunori; Seo, Satoshi; Suzuki, Kunihiko; Oikawa, Yoshiaki; Miyake, Hiroyuki; Koyama, Jun; Yamazaki, Shunpei; Eguchi, Shingo; Katayama, Masahiro; Sakakura, Masayuki

    2011-03-01

    In this paper, we report a 3.4-in. flexible active matrix organic light emitting display (AMOLED) display with remarkably high definition (quarter high definition: QHD) in which oxide thin film transistors (TFTs) are used. We have developed a transfer technology in which a TFT array formed on a glass substrate is separated from the substrate by physical force and then attached to a flexible plastic substrate. Unlike a normal process in which a TFT array is directly fabricated on a thin plastic substrate, our transfer technology permits a high integration of high performance TFTs, such as low-temperature polycrystalline silicon TFTs (LTPS TFTs) and oxide TFTs, on a plastic substrate, because a flat, rigid, and thermally-stable glass substrate can be used in the TFT fabrication process in our transfer technology. As a result, this technology realized an oxide TFT array for an AMOLED on a plastic substrate. Furthermore, in order to achieve a high-definition AMOLED, color filters were incorporated in the TFT array and a white organic light-emitting diode (OLED) was combined. One of the features of this device is that the whole body of the device can be bent freely because a source driver and a gate driver can be integrated on the substrate due to the high mobility of an oxide TFT. This feature means “true” flexibility.

  14. The development of latent fingerprints by zinc oxide and tin oxide nanoparticles prepared by precipitation technique

    NASA Astrophysics Data System (ADS)

    Luthra, Deepali; Kumar, Sacheen

    2018-05-01

    Fingerprints are the very important evidence at the crime scene which must be developed clearly with shortest duration of time to solve the case. Metal oxide nanoparticles could be the mean to develop the latent fingerprints. Zinc oxide and Tin Oxide Nanoparticles were prepared by using chemical precipitation technique which were dried and characterized by X-ray diffraction, UV-Visible spectroscopy and FTIR. The size of zinc oxide crystallite was found to be 14.75 nm with minimum reflectance at 360 nm whereas tin oxide have the size of 90 nm and reflectance at minimum level 321 nm. By using these powdered samples on glass, plastic and glossy cardboard, latent fingerprints were developed. Zinc oxide was found to be better candidate than tin oxide for the fingerprint development on all the three types of substrates.

  15. Continuous-flow mass production of silicon nanowires via substrate-enhanced metal-catalyzed electroless etching of silicon with dissolved oxygen as an oxidant.

    PubMed

    Hu, Ya; Peng, Kui-Qing; Liu, Lin; Qiao, Zhen; Huang, Xing; Wu, Xiao-Ling; Meng, Xiang-Min; Lee, Shuit-Tong

    2014-01-13

    Silicon nanowires (SiNWs) are attracting growing interest due to their unique properties and promising applications in photovoltaic devices, thermoelectric devices, lithium-ion batteries, and biotechnology. Low-cost mass production of SiNWs is essential for SiNWs-based nanotechnology commercialization. However, economic, controlled large-scale production of SiNWs remains challenging and rarely attainable. Here, we demonstrate a facile strategy capable of low-cost, continuous-flow mass production of SiNWs on an industrial scale. The strategy relies on substrate-enhanced metal-catalyzed electroless etching (MCEE) of silicon using dissolved oxygen in aqueous hydrofluoric acid (HF) solution as an oxidant. The distinct advantages of this novel MCEE approach, such as simplicity, scalability and flexibility, make it an attractive alternative to conventional MCEE methods.

  16. Heat Flux Analysis of a Reacting Thermite Spray Impingent on a Substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric S. Collins; Michelle L. Pantoya; Michael A. Daniels

    2012-03-01

    Spray combustion from a thermite reaction is a new area of research relevant to localized energy generation applications, such as welding or cutting. In this study, we characterized the heat flux of combustion spray impinging on a target from a nozzle for three thermite mixtures. The reactions studied include aluminum (Al) with iron oxide (Fe2O3), Al with copper oxide (CuO), and Al with molybdenum oxide (MoO3). Several standoff distances (i.e., distance from the nozzle exit to the target) were analyzed. A fast response heat flux sensor was engineered for this purpose and is discussed in detail. Results correlated substrate damagemore » to a threshold heat flux of 4550 W/cm2 for a fixed-nozzle configuration. Also, higher gas-generating thermites were shown to produce a widely dispersed spray and be less effective at imparting kinetic energy damage to a target. These results provide an understanding of the role of thermal and physical properties (i.e., such as heat of combustion, gas generation, and particle size) on thermite spray combustion performance measured by damaging a target substrate.« less

  17. Tirandamycin biosynthesis is mediated by co-dependent oxidative enzymes

    NASA Astrophysics Data System (ADS)

    Carlson, Jacob C.; Li, Shengying; Gunatilleke, Shamila S.; Anzai, Yojiro; Burr, Douglas A.; Podust, Larissa M.; Sherman, David H.

    2011-08-01

    Elucidation of natural product biosynthetic pathways provides important insights into the assembly of potent bioactive molecules, and expands access to unique enzymes able to selectively modify complex substrates. Here, we show full reconstitution, in vitro, of an unusual multi-step oxidative cascade for post-assembly-line tailoring of tirandamycin antibiotics. This pathway involves a remarkably versatile and iterative cytochrome P450 monooxygenase (TamI) and a flavin adenine dinucleotide-dependent oxidase (TamL), which act co-dependently through the repeated exchange of substrates. TamI hydroxylates tirandamycin C (TirC) to generate tirandamycin E (TirE), a previously unidentified tirandamycin intermediate. TirE is subsequently oxidized by TamL, giving rise to the ketone of tirandamycin D (TirD), after which a unique exchange back to TamI enables successive epoxidation and hydroxylation to afford, respectively, the final products tirandamycin A (TirA) and tirandamycin B (TirB). Ligand-free, substrate- and product-bound crystal structures of bicovalently flavinylated TamL oxidase reveal a likely mechanism for the C10 oxidation of TirE.

  18. High-efficiency robust perovskite solar cells on ultrathin flexible substrates

    PubMed Central

    Li, Yaowen; Meng, Lei; Yang, Yang (Michael); Xu, Guiying; Hong, Ziruo; Chen, Qi; You, Jingbi; Li, Gang; Yang, Yang; Li, Yongfang

    2016-01-01

    Wide applications of personal consumer electronics have triggered tremendous need for portable power sources featuring light-weight and mechanical flexibility. Perovskite solar cells offer a compelling combination of low-cost and high device performance. Here we demonstrate high-performance planar heterojunction perovskite solar cells constructed on highly flexible and ultrathin silver-mesh/conducting polymer substrates. The device performance is comparable to that of their counterparts on rigid glass/indium tin oxide substrates, reaching a power conversion efficiency of 14.0%, while the specific power (the ratio of power to device weight) reaches 1.96 kW kg−1, given the fact that the device is constructed on a 57-μm-thick polyethylene terephthalate based substrate. The flexible device also demonstrates excellent robustness against mechanical deformation, retaining >95% of its original efficiency after 5,000 times fully bending. Our results confirmed that perovskite thin films are fully compatible with our flexible substrates, and are thus promising for future applications in flexible and bendable solar cells. PMID:26750664

  19. Effect of time and of precursor molecule on the deposition of hydrophobic nanolayers on ethyelene tetrafluoroethylene-silicon oxide substrates

    NASA Astrophysics Data System (ADS)

    Rossi, Gabriella; Castellano, Piera; Incarnato, Loredana

    2016-10-01

    A method was developed for generating transparent and hydrophobic nanolayers chemisorbed onto flexible substrates of ethylene tetrafluoroethylene-silicon oxide (ETFE-SiOx). In particular, the effect of the deposition time and of the precursor molecule on the nanocoating process was analyzed with the aim of pursuing an optimization of the above method in an industrial application perspective. It was found that precursor molecule of triethoxysilane allowed to obtain better hydrophobic properties on the SiOx surface in shorter times compared to trichlorosilane, reaching the 92 % of final contact angle (CA) value of 106° after only 1 h of deposition. The optical properties and surface morphology were also assessed in function of time, revealing that an initial transparency reduction is followed by a subsequent transmittance increase during the self assembly of fluoroalkylsilanes on the SiOx surface, coherently with the surface roughness analysis data. Encouraging results were also obtained in terms of oleophobic properties improvement of the nanocoated surfaces.

  20. Iron [Fe(0)]-rich substrate based on iron-carbon micro-electrolysis for phosphorus adsorption in aqueous solutions.

    PubMed

    Deng, Shihai; Li, Desheng; Yang, Xue; Xing, Wei; Li, Jinlong; Zhang, Qi

    2017-02-01

    The phosphorus (P) adsorption properties of an iron [Fe(0)]-rich substrate (IRS) composed of iron scraps and activated carbon were investigated based on iron-carbon micro-electrolysis (IC-ME) and compared to the substrates commonly used in constructed wetlands (CWs) to provide an initial characterization of the [Fe(0)]-rich substrate. The results showed that P was precipitated by Fe(III) dissolved from the galvanic cell reactions in the IRS and the reaction was suppressed by the pH and stopped when the pH exceeded 8.90 ± 0.09. The adsorption capacity of the IRS decreased by only 4.6% in the second round of adsorption due to Fe(0) consumption in the first round. Substrates with high Ca- and Mg-oxide contents and high Fe- and Al-oxide contents had higher P adsorption capacities at high and low pH values, respectively. Substrates containing high Fe and Al concentrations and low Ca concentrations were more resistant to decreases in the P adsorption capacity resulting from organic matter (OM) accumulation. The IRS with an iron scrap to activated carbon volume ratio of 3:2 resulted in the highest P adsorption capacity (9.34 ± 0.14 g P kg -1 ), with minimal pH change and strong adaptability to OM accumulation. The Fe(0)-rich substrate has the considerable potential for being used as a CW substrate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Substrates coated with silver nanoparticles as a neuronal regenerative material

    PubMed Central

    Alon, Noa; Miroshnikov, Yana; Perkas, Nina; Nissan, Ifat; Gedanken, Aharon; Shefi, Orit

    2014-01-01

    Much effort has been devoted to the design of effective biomaterials for nerve regeneration. Here, we report the novel use of silver nanoparticles (AgNPs) as regenerative agents to promote neuronal growth. We grew neuroblastoma cells on surfaces coated with AgNPs and studied the effect on the development of the neurites during the initiation and the elongation growth phases. We find that the AgNPs function as favorable anchoring sites, and the growth on the AgNP-coated substrates leads to a significantly enhanced neurite outgrowth. Cells grown on substrates coated with AgNPs have initiated three times more neurites than cells grown on uncoated substrates, and two times more than cells grown on substrates sputtered with a plain homogenous layer of silver. The growth of neurites on AgNPs in the elongation phase was enhanced as well. A comparison with substrates coated with gold nanoparticles (AuNPs) and zinc oxide nanoparticles (ZnONPs) demonstrated a clear silver material-driven promoting effect, in addition to the nanotopography. The growth on substrates coated with AgNPs has led to a significantly higher number of initiating neurites when compared to substrates coated with AuNPs or ZnONPs. All nanoparticle-coated substrates affected and promoted the elongation of neurites, with a significant positive maximal effect for the AgNPs. Our results, combined with the well-known antibacterial effect of AgNPs, suggest the use of AgNPs as an attractive nanomaterial – with dual activity – for neuronal repair studies. PMID:24872701

  2. Enhance the pyroelectricity of polyvinylidene fluoride by graphene-oxide doping.

    PubMed

    Hu, Yuh-Chung; Hsu, Wei-Li; Wang, Yi-Ta; Ho, Cheng-Tao; Chang, Pei-Zen

    2014-04-16

    The high quality properties and benefits of graphene-oxide have generated an active area of research where many investigations have shown potential applications in various technological fields. This paper proposes a methodology for enhancing the pyro-electricity of PVDF by graphene-oxide doping. The PVDF film with graphene-oxide is prepared by the sol-gel method. Firstly, PVDF and graphene-oxide powders are dispersed into dimethylformamide as solvent to form a sol solution. Secondly, the sol solution is deposited on a flexible ITO/PET substrate by spin-coating. Thirdly, the particles in the sol solution are polymerized through baking off the solvent to produce a gel in a state of a continuous network of PVDF and graphene-oxide. The final annealing process pyrolyzes the gel and form a β-phase PVDF film with graphene-oxide doping. A complete study on the process of the graphene oxide doping of PVDF is accomplished. Some key points about the process are addressed based on experiments. The solutions to some key issues are found in this work, such as the porosity of film, the annealing temperature limitation by the use of flexible PET substrate, and the concentrations of PVDF and graphene-oxide.

  3. Understanding the Broad Substrate Repertoire of Nitroreductase Based on Its Kinetic Mechanism*

    PubMed Central

    Pitsawong, Warintra; Hoben, John P.; Miller, Anne-Frances

    2014-01-01

    The oxygen-insensitive nitroreductase from Enterobacter cloacae (NR) catalyzes two-electron reduction of nitroaromatics to the corresponding nitroso compounds and, subsequently, to hydroxylamine products. NR has an unusually broad substrate repertoire, which may be related to protein dynamics (flexibility) and/or a simple non-selective kinetic mechanism. To investigate the possible role of mechanism in the broad substrate repertoire of NR, the kinetics of oxidation of NR by para-nitrobenzoic acid (p-NBA) were investigated using stopped-flow techniques at 4 °C. The results revealed a hyperbolic dependence on the p-NBA concentration with a limiting rate of 1.90 ± 0.09 s−1, indicating one-step binding before the flavin oxidation step. There is no evidence for a distinct binding step in which specificity might be enforced. The reduction of p-NBA is rate-limiting in steady-state turnover (1.7 ± 0.3 s−1). The pre-steady-state reduction kinetics of NR by NADH indicate that NADH reduces the enzyme with a rate constant of 700 ± 20 s−1 and a dissociation constant of 0.51 ± 0.04 mm. Thus, we demonstrate simple transient kinetics in both the reductive and oxidative half-reactions that help to explain the broad substrate repertoire of NR. Finally, we tested the ability of NR to reduce para-hydroxylaminobenzoic acid, demonstrating that the corresponding amine does not accumulate to significant levels even under anaerobic conditions. Thus E. cloacae NR is not a good candidate for enzymatic production of aromatic amines. PMID:24706760

  4. Wet-chemical passivation of atomically flat and structured silicon substrates for solar cell application

    NASA Astrophysics Data System (ADS)

    Angermann, H.; Rappich, J.; Korte, L.; Sieber, I.; Conrad, E.; Schmidt, M.; Hübener, K.; Polte, J.; Hauschild, J.

    2008-04-01

    Special sequences of wet-chemical oxidation and etching steps were optimised with respect to the etching behaviour of differently oriented silicon to prepare very smooth silicon interfaces with excellent electronic properties on mono- and poly-crystalline substrates. Surface photovoltage (SPV) and photoluminescence (PL) measurements, atomic force microscopy (AFM) and scanning electron microscopy (SEM) investigations were utilised to develop wet-chemical smoothing procedures for atomically flat and structured surfaces, respectively. Hydrogen-termination as well as passivation by wet-chemical oxides were used to inhibit surface contamination and native oxidation during the technological processing. Compared to conventional pre-treatments, significantly lower micro-roughness and densities of surface states were achieved on mono-crystalline Si(100), on evenly distributed atomic steps, such as on vicinal Si(111), on silicon wafers with randomly distributed upside pyramids, and on poly-crystalline EFG ( Edge-defined Film-fed- Growth) silicon substrates. The recombination loss at a-Si:H/c-Si interfaces prepared on c-Si substrates with randomly distributed upside pyramids was markedly reduced by an optimised wet-chemical smoothing procedure, as determined by PL measurements. For amorphous-crystalline hetero-junction solar cells (ZnO/a-Si:H(n)/c-Si(p)/Al) with textured c-Si substrates the smoothening procedure results in a significant increase of short circuit current Isc, fill factor and efficiency η. The scatter in the cell parameters for measurements on different cells is much narrower, as compared to conventional pre-treatments, indicating more well-defined and reproducible surface conditions prior to a-Si:H emitter deposition and/or a higher stability of the c-Si surface against variations in the a-Si:H deposition conditions.

  5. Oxidation-induced spin reorientation in Co adatoms and CoPd dimers on Ni/Cu(100)

    NASA Astrophysics Data System (ADS)

    Chen, K.; Beeck, T.; Fiedler, S.; Baev, I.; Wurth, W.; Martins, M.

    2016-04-01

    Ultrasmall magnetic clusters and adatoms are of strong current interest because of their possible use in future technological applications. Here, we demonstrate that the magnetic coupling between the adsorbates and the substrate can be significantly changed through oxidation. The magnetic properties of Co adatoms and CoPd dimers deposited on a remanently magnetized Ni/Cu(100) substrate have been investigated by x-ray absorption and x-ray magnetic circular dichroism spectroscopy at the Co L2 ,3 edges. Using spectral differences, pure and oxidized components are distinguished, and their respective magnetic moments are determined. The Co adatoms and the CoPd dimers are coupled ferromagnetically to the substrate, while their oxides, Co-O and CoPd-O, are coupled antiferromagnetically to the substrate. Along with the spin reorientation from the pure to the oxidized state, the magnetic moment of the adatom is highly reduced from Co to Co-O. In contrast, the magnetic moment of the dimer is of similar order for CoPd and CoPd-O.

  6. Dependence of nitrite oxidation on nitrite and oxygen in low-oxygen seawater

    NASA Astrophysics Data System (ADS)

    Sun, Xin; Ji, Qixing; Jayakumar, Amal; Ward, Bess B.

    2017-08-01

    Nitrite oxidation is an essential step in transformations of fixed nitrogen. The physiology of nitrite oxidizing bacteria (NOB) implies that the rates of nitrite oxidation should be controlled by concentration of their substrate, nitrite, and the terminal electron acceptor, oxygen. The sensitivities of nitrite oxidation to oxygen and nitrite concentrations were investigated using 15N tracer incubations in the Eastern Tropical North Pacific. Nitrite stimulated nitrite oxidation under low in situ nitrite conditions, following Michaelis-Menten kinetics, indicating that nitrite was the limiting substrate. The nitrite half-saturation constant (Ks = 0.254 ± 0.161 μM) was 1-3 orders of magnitude lower than in cultivated NOB, indicating higher affinity of marine NOB for nitrite. The highest rates of nitrite oxidation were measured in the oxygen depleted zone (ODZ), and were partially inhibited by additions of oxygen. This oxygen sensitivity suggests that ODZ specialist NOB, adapted to low-oxygen conditions, are responsible for apparently anaerobic nitrite oxidation.

  7. Thermal oxidation of synthesized graphenes and their optical property characterization.

    PubMed

    Lee, Byeong-Joo; Jeong, Goo-Hwan

    2011-07-01

    The results of the thermal oxidation of synthesized graphenes and their optical property characterization using Raman spectroscopy are reported. Graphene was synthesized via thermal-chemical vapor deposition on Ni catalytic thin films deposited by electron beam deposition, and was successfully transferred onto three-dimensional trench substrates to obtain a suspended structure, which is the most appropriate template for use in probing the changes of physical properties of graphene by ignoring the substrate effects. The thermal oxidation was performed in a tube furnace at an elevated temperature of 500 degrees C under air, and Raman analysis was repeatedly carried out to investigate the oxidation effects. A drastic structural change of graphene was anticipated from the based on the dramatic changes in the Raman spectra. It is expected that controlled oxidation will help systematically decrease in the number of graphene layers, which will contribute to the successful development of graphene-based devices that are capable of operating under oxidative environments.

  8. Disparate effects of oxidation on plasma acyltransferase activities: inhibition of cholesterol esterification but stimulation of transesterification of oxidized phospholipids.

    PubMed

    Subbaiah, P V; Liu, M

    1996-05-31

    Oxidation of lipoproteins results in the formation of several polar phospholipids with pro-inflammatory and pro-atherogenic properties. To examine the possible role of lecithin/cholesterol acyltransferase (LCAT) in the metabolism of these oxidized phospholipids, we oxidized whole plasma with either Cu(2+) or a free-radical generator, and determined the various activities of LCAT. Oxidation caused a reduction in plasma phosphatidylcholine (PC), an increase in a short-chain polar PC (SCP-PC), and an inhibition of the transfer of long-chain acyl groups to cholesterol (LCAT activity) or to lyso PC (lysolecithin acyltransferase (LAT) I activity). However, the transfer of short-chain acyl groups from SCP-PC to lyso PCLAT II activity) was stimulated several fold, in direct correlation with the degree of oxidation. LAT II activity was not stimulated by oxidation in LCAT-deficient plasma, showing that it is carried out by LCAT. Oxidized normal plasma exhibited low LCAT activity even in the presence of exogenous proteoliposome substrate, indicating that the depletion of substrate PC was not responsible for the loss of activity. Oxidation of isolated LDL or HDL abolished their ability to support LCAT and LAT I activities of exogenous enzyme, but promoted the LAT II activity. Purified LCAT lost its LCAT and LAT I functions, but not its LAT II function, when oxidized in vitro. These results show that while oxidation of plasma causes a loss of LCAT's ability to transfer long-chain acyl groups, its ability to transfer short-chain acyl groups, from SCP-PC is retained, and even stimulated, suggesting that LCAT may have a physiological role in the metabolism of oxidized PC in plasma.

  9. Method and apparatus for forming high-critical-temperature superconducting layers on flat and/or elongated substrates

    DOEpatents

    Ciszek, Theodore F.

    1994-01-01

    An elongated, flexible superconductive wire or strip is fabricated by pulling it through and out of a melt of metal oxide material at a rate conducive to forming a crystalline coating of superconductive metal oxide material on an elongated, flexible substrate wire or strip. A coating of crystalline superconductive material, such as Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.8, is annealed to effect conductive contact between adjacent crystalline structures in the coating material, which is then cooled to room temperature. The container for the melt can accommodate continuous passage of the substrate through the melt. Also, a second pass-through container can be used to simultaneously anneal and overcoat the superconductive coating with a hot metallic material, such as silver or silver alloy. A hollow, elongated tube casting method of forming an elongated, flexible superconductive wire includes drawing the melt by differential pressure into a heated tubular substrate.

  10. Method and apparatus for forming high-critical-temperature superconducting layers on flat and/or elongated substrates

    DOEpatents

    Ciszek, T.F.

    1994-04-19

    An elongated, flexible superconductive wire or strip is fabricated by pulling it through and out of a melt of metal oxide material at a rate conducive to forming a crystalline coating of superconductive metal oxide material on an elongated, flexible substrate wire or strip. A coating of crystalline superconductive material, such as Bi[sub 2]Sr[sub 2]CaCu[sub 2]O[sub 8], is annealed to effect conductive contact between adjacent crystalline structures in the coating material, which is then cooled to room temperature. The container for the melt can accommodate continuous passage of the substrate through the melt. Also, a second pass-through container can be used to simultaneously anneal and overcoat the superconductive coating with a hot metallic material, such as silver or silver alloy. A hollow, elongated tube casting method of forming an elongated, flexible superconductive wire includes drawing the melt by differential pressure into a heated tubular substrate. 8 figures.

  11. Au coated PS nanopillars as a highly ordered and reproducible SERS substrate

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Tae; Schilling, Joerg; Schweizer, Stefan L.; Sauer, Guido; Wehrspohn, Ralf B.

    2017-07-01

    Noble metal nanostructures with nanometer gap size provide strong surface-enhanced Raman scattering (SERS) which can be used to detect trace amounts of chemical and biological molecules. Although several approaches were reported to obtain active SERS substrates, it still remains a challenge to fabricate SERS substrates with high sensitivity and reproducibility using low-cost techniques. In this article, we report on the fabrication of Au sputtered PS nanopillars based on a template synthetic method as highly ordered and reproducible SERS substrates. The SERS substrates are fabricated by anodic aluminum oxide (AAO) template-assisted infiltration of polystyrene (PS) resulting in hemispherical structures, and a following Au sputtering process. The optimum gap size between adjacent PS nanopillars and thickness of the Au layers for high SERS sensitivity are investigated. Using the Au sputtered PS nanopillars as an active SERS substrate, the Raman signal of 4-methylbenzenethiol (4-MBT) with a concentration down to 10-9 M is identified with good signal reproducibility, showing great potential as promising tool for SERS-based detection.

  12. High flux filtration medium based on nanofibrous substrate with hydrophilic nanocomposite coating.

    PubMed

    Wang, Xuefen; Chen, Xuming; Yoon, Kyunghwan; Fang, Dufei; Hsiao, Benjamin S; Chu, Benjamin

    2005-10-01

    A novel high flux filtration medium, consisting of a three-tier composite structure, i.e., a nonporous hydrophilic nanocomposite coating top layer, an electrospun nanofibrous substrate midlayer, and a conventional nonwoven microfibrous support, was demonstrated for oil/water emulsion separations for the first time. The nanofibrous substrate was prepared by electrospinning of poly(vinyl alcohol) (PVA) followed by chemical cross-linking with glutaraldehyde (GA) in acetone. The resulting cross-linked PVA substrates showed excellent water resistance and good mechanical properties. The top coating was based on a nanocomposite layer containing hydrophilic polyether-b-polyamide copolymer or a cross-linked PVA hydrogel incorporated with surface-oxidized multiwalled carbon nanotubes (MWNTs). Scanning electron microscopy (SEM) examinations indicated that the nanocomposite layer was nonporous within the instrumental resolution and MWNTs were well dispersed in the polymer matrix. Oil/ water emulsion tests showed that this unique type of filtration media exhibited a high flux rate (up to 330 L/m2-h at the feed pressure of 100 psi) and an excellent total organic solute rejection rate (99.8%) without appreciable fouling. The increase in the concentration of surface-oxidized MWNT in the coating layer generally improves the flux rate, which can be attributed to the generation of more effective hydrophilic nanochannels for water passage in the composite membranes.

  13. Substituent effect on the oxidation of phenols and aromatic amines by horseradish peroxidase compound I.

    PubMed

    Job, D; Dunford, H B

    1976-07-15

    A stopped-flow kinetic study shows that the reduction rate of horseradish peroxidase compound I by phenols and aromatic amines is greatly dependent upon the substituent effect on the benzene ring. Morever it has been possible to relate the reduction rate constants of monosubstituted substrates by a linear free-energy relationship (Hammett equation). The correlation of log (rate constants) with sigma values (Hammett equation) and the absence of correlation with sigma+ values (Okamoto-Brown equation) can be explained by a mechanism of aromatic substrate oxidations, in which the substrate gives an electron to the enzyme compound I and simultaneously loses a proton. The analogy which has been made with oxidation potentials of phenols or anilines strengthens the view that the reaction is only dependent on the relative ease of oxidation of the substrate. The rate constant obtained for p-aminophenol indicates that a value of 2.3 X 10(8) M-1 S-1 probably approaches the diffusion-controlled limit for a bimolecular reaction involving compound I and an aromatic substrate.

  14. Growth of carbon nanotubes by Fe-catalyzed chemical vapor processes on silicon-based substrates

    NASA Astrophysics Data System (ADS)

    Angelucci, Renato; Rizzoli, Rita; Vinciguerra, Vincenzo; Fortuna Bevilacqua, Maria; Guerri, Sergio; Corticelli, Franco; Passini, Mara

    2007-03-01

    In this paper, a site-selective catalytic chemical vapor deposition synthesis of carbon nanotubes on silicon-based substrates has been developed in order to get horizontally oriented nanotubes for field effect transistors and other electronic devices. Properly micro-fabricated silicon oxide and polysilicon structures have been used as substrates. Iron nanoparticles have been obtained both from a thin Fe film evaporated by e-gun and from iron nitrate solutions accurately dispersed on the substrates. Single-walled nanotubes with diameters as small as 1 nm, bridging polysilicon and silicon dioxide “pillars”, have been grown. The morphology and structure of CNTs have been characterized by SEM, AFM and Raman spectroscopy.

  15. Characterization of Zinc Oxide (ZnO) piezoelectric properties for Surface Acoustic Wave (SAW) device

    NASA Astrophysics Data System (ADS)

    Rosydi Zakaria, Mohd; Johari, Shazlina; Hafiz Ismail, Mohd; Hashim, Uda

    2017-11-01

    In fabricating Surface Acoustic Wave (SAW) biosensors device, the substrate is one of important factors that affected to performance device. there are many types of piezoelectric substrate in the markets and the cheapest is zinc Oxide substrate. Zinc Oxide (ZnO) with its unique properties can be used as piezoelectric substrate along with SAW devices for detection of DNA in this research. In this project, ZnO thin film is deposited onto silicon oxide substrate using electron beam evaporation (E-beam) and Sol-Gel technique. Different material structure is used to compare the roughness and best piezoelectric substrate of ZnO thin film. Two different structures of ZnO target which are pellet and granular are used for e-beam deposition and one sol-gel liquid were synthesize and compared. Parameter for thickness of ZnO e-beam deposition is fixed to a 0.1kÅ for both materials structure and sol-gel was coat using spin coat technique. After the process is done, samples are annealed at temperature of 500°C for 2 hours. The structural properties of effect of post annealing using different material structure of ZnO are studied using Atomic Force Microscopic (AFM) for surface morphology and X-ray Diffraction (XRD) for phase structure.

  16. Theoretical reflections on the structural polymorphism of the oxygen-evolving complex in the S2 state and the correlations to substrate water exchange and water oxidation mechanism in photosynthesis.

    PubMed

    Guo, Yu; Li, Hui; He, Lan-Lan; Zhao, Dong-Xia; Gong, Li-Dong; Yang, Zhong-Zhi

    2017-10-01

    The structural polymorphism of the oxygen-evolving complex is of great significance to photosynthetic water oxidation. Employing density functional theory calculations, we have made further advisement on the interconversion mechanism of O5 transfer in the S 2 state, mainly focusing on the potentiality of multi-state reactivity and spin transitions. Then, O5 protonation is proven impossible in S 2 for irreversibility of the interconversion, which serves as an auxiliary judgment for the protonation state of O5 in S 1 . Besides, the structural polymorphism could also be archived by alternative mechanisms involving Mn3 ligand exchange, one of which with Mn3(III) makes sense to substrate water exchange in S 2 , although being irresponsible for the derivations of the observed EPR signals. During the water exchange, high-spin states would prevail to facilitate electron transfer between the ferromagnetically coupled Mn centers. In addition, water exchange in S 1 could account for the closed-cubane structure as the initial form entering S 2 at cryogenic temperatures. With regard to water oxidation, the structural flexibility and variability in both S 2 and S 3 guarantee smooth W2-O5 coupling in S 4 , according to the substrate assignments from water exchange kinetics. Within this theoretical framework, the new XFEL findings on S 1 -S 3 can be readily rationalized. Finally, an alternative mechanistic scenario for OO bond formation with ·OH radical near O4 is presented, followed by water binding to the pivot Mn4(III) from O4 side during S 4 -S 0 . This may diversify the substrate sources combined with the Ca channel in water delivery for the forthcoming S-cycle. Copyright © 2017. Published by Elsevier B.V.

  17. Thermal stress in flexible interdigital transducers with anisotropic electroactive cellulose substrates

    NASA Astrophysics Data System (ADS)

    Yoon, Sean J.; Kim, Jung Woong; Kim, Hyun Chan; Kang, Jinmo; Kim, Jaehwan

    2017-12-01

    Thermal stress in flexible interdigital transducers a reliability concern in the development of flexible devices, which may lead to interface delamination, stress voiding and plastic deformation. In this paper, a mathematical model is presented to investigate the effect of material selections on the thermal stress in interdigital transducers. We modified the linear relationships in the composite materials theory with the effect of high curvature, anisotropic substrate and small substrate thickness. We evaluated the thermal stresses of interdigital transducers, fabricated with various electrodes, insulators and substrate materials for the comparison. The results show that, among various insulators, organic polymer developed the highest stress level while oxide showed the lowest stress level. Aluminium shows a higher stress level and curvature as an electrode than gold. As substrate materials, polyimide and electroactive cellulose show similar stress levels except the opposite sign convention to each other. Polyimide shows positive curvatures while electroactive cellulose shows negative curvatures, which is attributed to the stress and thermal expansion state of the metal/insulator composite. The results show that the insulator is found to be responsible for the confinement across the metal lines while the substrate is responsible for the confinement along the metal lines.

  18. Thin SiGe virtual substrates for Ge heterostructures integration on silicon

    NASA Astrophysics Data System (ADS)

    Cecchi, S.; Gatti, E.; Chrastina, D.; Frigerio, J.; Müller Gubler, E.; Paul, D. J.; Guzzi, M.; Isella, G.

    2014-03-01

    The possibility to reduce the thickness of the SiGe virtual substrate, required for the integration of Ge heterostructures on Si, without heavily affecting the crystal quality is becoming fundamental in several applications. In this work, we present 1 μm thick Si1-xGex buffers (with x > 0.7) having different designs which could be suitable for applications requiring a thin virtual substrate. The rationale is to reduce the lattice mismatch at the interface with the Si substrate by introducing composition steps and/or partial grading. The relatively low growth temperature (475 °C) makes this approach appealing for complementary metal-oxide-semiconductor integration. For all the investigated designs, a reduction of the threading dislocation density compared to constant composition Si1-xGex layers was observed. The best buffer in terms of defects reduction was used as a virtual substrate for the deposition of a Ge/SiGe multiple quantum well structure. Room temperature optical absorption and photoluminescence analysis performed on nominally identical quantum wells grown on both a thick graded virtual substrate and the selected thin buffer demonstrates a comparable optical quality, confirming the effectiveness of the proposed approach.

  19. Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates.

    PubMed

    Wang, Yipei; Ma, Yaoguang; Guo, Xin; Tong, Limin

    2012-08-13

    Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates are investigated using a finite-element method. Au and Ag are selected as plasmonic materials for nanowire waveguides with diameters down to 5-nm-level. Typical dielectric materials with relatively low to high refractive indices, including magnesium fluoride (MgF2), silica (SiO2), indium tin oxide (ITO) and titanium dioxide (TiO2), are used as supporting substrates. Basic waveguiding properties, including propagation constants, power distributions, effective mode areas, propagation distances and losses are obtained at the typical plasmonic resonance wavelength of 660 nm. Compared to that of a freestanding nanowire, the mode area of a substrate-supported nanowire could be much smaller while maintaining an acceptable propagation length. For example, the mode area and propagation length of a 100-nm-diameter Ag nanowire with a MgF2 substrate are about 0.004 μm2 and 3.4 μm, respectively. The dependences of waveguiding properties on geometric and material parameters of the nanowire-substrate system are also provided. Our results may provide valuable references for waveguiding dielectric-supported metal nanowires for practical applications.

  20. Influence of Hydrostatic Pressure on the Corrosion Behavior of Superhydrophobic Surfaces on Bare and Oxidized Aluminum Substrates.

    PubMed

    Ou, J F; Fang, X Z; Zhao, W J; Lei, S; Xue, M S; Wang, F J; Li, C Q; Lu, Y L; Li, W

    2018-05-22

    It is generally recognized that superhydrophobic surfaces in water may be used for corrosion resistance due to the entrapped air in the solid/liquid interface and could find potential applications in the protection of ship hull. For a superhydrophobic surface, as its immersion depth into water increases, the resultant hydrostatic pressure is also increased, and the entrapped air can be squeezed out much more easily. It is therefore predicted that high hydrostatic pressure would cause an unexpected decrease in corrosion resistance for the vessels in deep water (e.g., submarines) because of the unstable entrapped air. In this work, in order to clarify the role of hydrostatic pressure in the corrosion behavior of superhydrophobic surfaces, two typical superhydrophobic surfaces (SHSs) were prepared on bare and oxidized aluminum substrates, respectively, and then were immersed into the NaCl aqueous solutions with different depths of ∼0 cm (hydrostatic pressure ∼0 kPa), 10 cm (1 kPa), and 150 cm (15 kPa). It was found out for the SHSs on the oxidized Al, as the hydrostatic pressure increased, the corrosion behavior became severe. However, for the SHSs on the bare Al, their corrosion behavior was complex due to hydrostatic pressure. It was found that the corrosion resistance under 1 kPa was the highest. Further mechanism analysis revealed that this alleviated corrosion behavior under 1 kPa resulted from suppressing the oxygen diffusion through the liquid and reducing the subsequent corrosion rate as compared with 0 kPa, whereas the relatively low hydrostatic pressure (HP) could stabilize the entrapped air and hence enhance the corrosion resistance, compared with 15 kPa. The present study therefore provided a fundamental understanding for the applications of SHSs to prevent the corrosion, especially for various vessels in deep water.

  1. Effect of green tea on resting energy expenditure and substrate oxidation during weight loss in overweight females.

    PubMed

    Diepvens, Kristel; Kovacs, Eva M R; Nijs, Ilse M T; Vogels, Neeltje; Westerterp-Plantenga, Margriet S

    2005-12-01

    We assessed the effect of ingestion of green tea (GT) extract along with a low-energy diet (LED) on resting energy expenditure (REE), substrate oxidation and body weight as GT has been shown to increase energy expenditure and fat oxidation in the short term in both animals and people. Forty-six overweight women (BMI 27.6 (sd 1.8) kg/m2) were fed in energy balance from day 1 to day 3, followed by a LED with GT (1125 mg tea catechins +225 mg caffeine/d) or placebo (PLAC) from day 4 to day 87. Caffeine intake was standardised to 300 mg/d. Energy expenditure was measured on days 4 and 32. Reductions in weight (4.19 (sd 2.0) kg PLAC, 4.21 (sd 2.7) kg GT), BMI, waist:hip ratio, fat mass and fat-free mass were not statistically different between treatments. REE as a function of fat-free mass and fat mass was significantly reduced over 32 d in the PLAC group (P<0.05) but not in the GT group. Dietary restraint increased over time (P<0.001) in both groups, whereas disinhibition and general hunger decreased (P<0.05). The GT group became more hungry over time and less thirsty, and showed increased prospective food consumption compared with PLAC (P<0.05). Taken together, the ingestion of GT along with a LED had no additional benefit for any measures of body weight or body composition. Although the decrease in REE as a function of fat-free mass and fat mass was not significant with GT treatment, whereas it was with PLAC treatment, no significant effect of treatment over time was seen, suggesting that a robust limitation of REE reduction during a LED was not achieved by GT.

  2. The effect of moderate versus severe simulated altitude on appetite, gut hormones, energy intake and substrate oxidation in men.

    PubMed

    Matu, Jamie; Deighton, Kevin; Ispoglou, Theocharis; Duckworth, Lauren

    2017-06-01

    Acute exposure to high altitude (>3500 m) is associated with marked changes in appetite regulation and substrate oxidation but the effects of lower altitudes are unclear. This study examined appetite, gut hormone, energy intake and substrate oxidation responses to breakfast ingestion and exercise at simulated moderate and severe altitudes compared with sea-level. Twelve healthy males (mean ± SD; age 30 ± 9years, body mass index 24.4 ± 2.7 kg·m -2 ) completed in a randomised crossover order three, 305 min experimental trials at a simulated altitude of 0 m, 2150 m (∼15.8% O 2 ) and 4300 m (∼11.7% O 2 ) in a normobaric chamber. Participants entered the chamber at 8am following a 12 h fast. A standardised breakfast was consumed inside the chamber at 1 h. One hour after breakfast, participants performed a 60 min treadmill walk at 50% of relative V˙O 2max . An ad-libitum buffet meal was consumed 1.5 h after exercise. Blood samples were collected prior to altitude exposure and at 60, 135, 195, 240 and 285 min. No trial based differences were observed in any appetite related measure before exercise. Post-exercise area under the curve values for acylated ghrelin, pancreatic polypeptide and composite appetite score were lower (all P < 0.05) at 4300 m compared with sea-level and 2150 m. There were no differences in glucagon-like peptide-1 between conditions (P = 0.895). Mean energy intake was lower at 4300 m (3728 ± 3179 kJ) compared with sea-level (7358 ± 1789 kJ; P = 0.007) and 2150 m (7390 ± 1226 kJ; P = 0.004). Proportional reliance on carbohydrate as a fuel was higher (P = 0.01) before breakfast but lower during (P = 0.02) and after exercise (P = 0.01) at 4300 m compared with sea-level. This study suggests that altitude-induced anorexia and a subsequent reduction in energy intake occurs after exercise during exposure to severe but not moderate simulated altitude. Acylated ghrelin concentrations may contribute to

  3. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    PubMed

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  4. Laser induced single spot oxidation of titanium

    NASA Astrophysics Data System (ADS)

    Jwad, Tahseen; Deng, Sunan; Butt, Haider; Dimov, S.

    2016-11-01

    Titanium oxides have a wide range of applications in industry, and they can be formed on pure titanium using different methods. Laser-induced oxidation is one of the most reliable methods due to its controllability and selectivity. Colour marking is one of the main applications of the oxidation process. However, the colourizing process based on laser scanning strategies is limited by the relative large processing area in comparison to the beam size. Single spot oxidation of titanium substrates is proposed in this research in order to increase the resolution of the processed area and also to address the requirements of potential new applications. The method is applied to produce oxide films with different thicknesses and hence colours on titanium substrates. High resolution colour image is imprinted on a sheet of pure titanium by converting its pixels' colours into laser parameter settings. Optical and morphological periodic surface structures are also produced by an array of oxide spots and then analysed. Two colours have been coded into one field and the dependencies of the reflected colours on incident and azimuthal angles of the light are discussed. The findings are of interest to a range of application areas, as they can be used to imprint optical devices such as diffusers and Fresnel lenses on metallic surfaces as well as for colour marking.

  5. Metalorganic deposition method for forming epitaxial thallium-based copper oxide superconducting films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, W.L.; Eddy, M.M.; Hammond, R.B.

    1991-12-10

    This patent describes a method for producing a superconducting article comprising an oriented metal oxide superconducting layer containing thallium, optionally calcium, barium and copper, the layer being at least 30 {Angstrom} and having a c-axis oriented normal to a crystalline substrate surface. It comprises coating the crystalline substrate surface with a solution of thallium, optionally calcium, barium and copper carboxylate soaps dispersed in a medium of hydrocarbons of halohydrocarbons with a stoichiometric metal ratio to form the oxide superconducting layer, prepyrolyzing the soaps coated on the substrate at a temperature of 350{degrees} C. or less in an oxygen containing atmosphere,more » and pyrolyzing the soaps at a temperature in the range of 800{degrees} - 900{degrees} C. in the presence of oxygen and an overpressure of thallium for a sufficient time to produce the superconducting layer on the substrate, wherein usable portions of the superconducting layer are epitaxial to the substrate.« less

  6. pH Dependence of a Mammalian Polyamine Oxidase: Insights into Substrate Specificity and the Role of Lysine 315†

    PubMed Central

    Pozzi, Michelle Henderson; Gawandi, Vijay; Fitzpatrick, Paul F.

    2009-01-01

    Mammalian polyamine oxidases (PAO) catalyze the oxidation of N1-acetylspermine and N1-acetylspermidine to produce N-acetyl-3-aminopropanaldehyde and spermidine or putrescine. Structurally, PAO is a member of the monoamine oxidase family of flavoproteins. The effects of pH on kinetic parameters of mouse PAO have been determined to provide insight into the protonation state of the polyamine required for catalysis and the roles of ionizable residues in the active site in amine oxidation. For N1-acetylspermine, N1-acetylspermidine, and spermine, the kcat/Kamine-pH profiles are bell-shaped. In each case the profile agrees with that expected if the productive form of the substrate has a single positively charged nitrogen. The pKi-pH profiles for a series of polyamine analogs are most consistent with the nitrogen at the site of oxidation being neutral and one other nitrogen being positively charged in the reactive form of the substrate. With N1-acetylspermine as substrate, the value of kred, the limiting rate constant for flavin reduction, is pH dependent, decreasing below a pKa value of 7.3, again consistent with the requirement for an uncharged nitrogen for substrate oxidation. Lys315 in PAO corresponds to a conserved active site residue found throughout the monoamine oxidase family. Mutation of Lys315 to methionine has no effect on the kcat/Kamine profile for spermine, the kred value with N1-acetylspermine is only 1.8-fold lower in the mutant protein, and the pKa in the kred-pH profile with N1-acetylspermine shifts to 7.8. These results rule out Lys315 as a source of a pKa in the kcat/Kamine or kcat/kred profiles. They also establish that this residue does not play a critical role in amine oxidation by PAO. PMID:19199575

  7. Properties of mixed molybdenum oxide iridium oxide thin films synthesized by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Patil, P. S.; Kawar, R. K.; Sadale, S. B.; Inamdar, A. I.; Deshmukh, H. P.

    2006-09-01

    Molybdenum-doped iridium oxide thin films have been deposited onto corning glass- and fluorine-doped tin oxide coated corning glass substrates at 350 °C by using a pneumatic spray pyrolysis technique. An aqueous solution of 0.01 M ammonium molybdate was mixed with 0.01 M iridium trichloride solution in different volume proportions and the resultant solution was used as a precursor solution for spraying. The as-deposited samples were annealed at 600 °C in air medium for 1 h. The structural, electrical and optical properties of as-deposited and annealed Mo-doped iridium oxide were studied and values of room temperature electrical resistivity, and thermoelectric power were estimated. The as-deposited samples with 2% Mo doping exhibit more pronounced electrochromism than other samples, including pristine Ir oxide.

  8. Composite TiO2/clays materials for photocatalytic NOx oxidation

    NASA Astrophysics Data System (ADS)

    Todorova, N.; Giannakopoulou, T.; Karapati, S.; Petridis, D.; Vaimakis, T.; Trapalis, C.

    2014-11-01

    TiO2 photocatalyst received much attention for air purification applications especially for removal of air pollutants like NOx, VOCs etc. It has been established that the activity of the photocatalyst can be significantly enhanced by its immobilization onto suitable substrates like inorganic minerals, porous silica, hydroxyapatite, adsorbent materials like activated carbon, various co-catalysts such as semiconductors, graphene, reduced graphite oxide, etc. In the present work, photocatalytic composite materials consisted of mineral substrate and TiO2 in weight ratio 1:1 were manufactured and examined for oxidation and removal of nitric oxides NOx (NO and NO2). Commercial titania P25 (Evonik-Degussa) and urea-modified P25 were used as photocatalytically active components. Inorganic minerals, namely kunipia, talk and hydrotalcite were selected as supporting materials due to their layered structure and expected high NOx adsorption capability. Al3+ and Ca2+ intercalation was applied in order to improve the dispersion of TiO2 and its loading into the supporting matrix. The X-ray diffraction analysis and Scanning Electron Microscopy revealed the binary structure of the composites and homogeneous dispersion of the photocatalyst into the substrates. The photocatalytic behavior of the materials in NOx oxidation and removal was investigated under UV and visible light irradiation. The composite materials exhibited superior photocatalytic activity than the bare titania under both types of irradiation. Significant visible light activity was recorded for the composites containing urea-modified titania that was accredited to the N-doping of the semiconductor. Among the different substrates, the hydrotalcite caused highest increase in the NOx removal, while among the intercalation ions the Ca2+ was more efficient. The results were related to the improved dispersion of the TiO2 and the synergetic activity of the substrates as NOx adsorbers.

  9. 3D highly oriented nanoparticulate and microparticulate array ofmetal oxide materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vayssieres, Lionel; Guo, Jinghua; Nordgren, Joseph

    2006-09-15

    Advanced nano and micro particulate thin films of 3d transition and post-transition metal oxides consisting of nanorods and microrods with parallel and perpendicular orientation with respect to the substrate normal, have been successfully grown onto various substrates by heteronucleation, without template and/or surfactant, from the aqueous condensation of solution of metal salts or metal complexes (aqueous chemical growth). Three-dimensional arrays of iron oxide nanorods and zinc oxide nanorods with parallel and perpendicular orientation are presented as well as the oxygen K-edge polarization dependent x-ray absorption spectroscopy (XAS) study of anisotropic perpendicularly oriented microrod array of ZnO performed at synchrotron radiationmore » source facility.« less

  10. Lithography-Free Fabrication of Reconfigurable Substrate Topography For Contact Guidance

    PubMed Central

    Pholpabu, Pitirat; Kustra, Stephen; Wu, Haosheng; Balasubramanian, Aditya; Bettinger, Christopher J.

    2014-01-01

    Mammalian cells detect and respond to topographical cues presented in natural and synthetic biomaterials both in vivo and in vitro. Micro- and nano-structures influence the adhesion, morphology, proliferation, migration, and differentiation of many phenotypes. Although the mechanisms that underpin cell-topography interactions remain elusive, synthetic substrates with well-defined micro- and nano-structures are important tools to elucidate the origin of these responses. Substrates with reconfigurable topography are desirable because programmable cues can be harmonized with dynamic cellular responses. Here we present a lithography-free fabrication technique that can reversibly present topographical cues using an actuation mechanism that minimizes the confounding effects of applied stimuli. This method utilizes strain-induced buckling instabilities in bi-layer substrate materials with rigid uniform silicon oxide membranes that are thermally deposited on elastomeric substrates. The resulting surfaces are capable of reversible of substrates between three distinct states: flat substrates (A = 1.53 ± 0.55 nm, Rms = 0.317 ± 0.048 nm); parallel wavy grating arrays (A|| = 483.6 ± 7.8 nm and λ|| = 4.78 ± 0.16 μm); perpendicular wavy grating arrays (A⊥ = 429.3 ± 5.8 nm; λ⊥ = 4.95 ± 0.36 μm). The cytoskeleton dynamics of 3T3 fibroblasts in response to these surfaces was measured using optical microscopy. Fibroblasts cultured on dynamic substrates that are switched from flat to topographic features (FLAT-WAVY) exhibit a robust and rapid change in gross morphology as measured by a reduction in circularity from 0.30 ± 0.13 to 0.15 ± 0.08 after 5 min. Conversely, dynamic substrate sequences of FLAT-WAVY-FLAT do not significantly alter the gross steady-state morphology. Taken together, substrates that present topographic structures reversibly can elucidate dynamic aspects of cell-topography interactions. PMID:25468368

  11. The Chemical Vapor Deposition of Thin Metal Oxide Films

    NASA Astrophysics Data System (ADS)

    Laurie, Angus Buchanan

    1990-01-01

    Chemical vapor deposition (CVD) is an important method of preparing thin films of materials. Copper (II) oxide is an important p-type semiconductor and a major component of high T_{rm c} superconducting oxides. By using a volatile copper (II) chelate precursor, copper (II) bishexafluoroacetylacetonate, it has been possible to prepare thin films of copper (II) oxide by low temperature normal pressure metalorganic chemical vapor deposition. In the metalorganic CVD (MOCVD) production of oxide thin films, oxygen gas saturated with water vapor has been used mainly to reduce residual carbon and fluorine content. This research has investigated the influence of water-saturated oxygen on the morphology of thin films of CuO produced by low temperature chemical vapor deposition onto quartz, magnesium oxide and cubic zirconia substrates. ZnO is a useful n-type semiconductor material and is commonly prepared by the MOCVD method using organometallic precursors such as dimethyl or diethylzinc. These compounds are difficult to handle under atmospheric conditions. In this research, thin polycrystalline films of zinc oxide were grown on a variety of substrates by normal pressure CVD using a zinc chelate complex with zinc(II) bishexafluoroacetylacetonate dihydrate (Zn(hfa)_2.2H _2O) as the zinc source. Zn(hfa) _2.2H_2O is not moisture - or air-sensitive and is thus more easily handled. By operating under reduced-pressure conditions (20-500 torr) it is possible to substantially reduce deposition times and improve film quality. This research has investigated the reduced-pressure CVD of thin films of CuO and ZnO. Sub-micron films of tin(IV) oxide (SnO _2) have been grown by normal pressure CVD on quartz substrates by using tetraphenyltin (TPT) as the source of tin. All CVD films were characterized by X-ray powder diffraction (XRPD), scanning electron microscopy (SEM) and electron probe microanalysis (EPMA).

  12. Development of RF sputtered chromium oxide coating for wear application

    NASA Technical Reports Server (NTRS)

    Bhushan, B.

    1979-01-01

    The radio frequency sputtering technique was used to deposite a hard refractory, chromium oxide coating on an Inconel X-750 foil 0.1 mm thick. Optimized sputtering parameters for a smooth and adherent coating were found to be as follows: target-to-substrate spacing, 41.3 mm; argon pressure, 5-10 mTorr; total power to the sputtering module, 400 W (voltage at the target, 1600 V), and a water-cooled substrate. The coating on the annealed foil was more adherent than that on the heat-treated foil. Substrate biasing during the sputter deposition of Cr2O3 adversely affected adherence by removing naturally occurring interfacial oxide layers. The deposited coatings were amorphous and oxygen deficient. Since amorphous materials are extremely hard, the structure was considered to be desirable.

  13. Metallic oxide switches using thick film technology

    NASA Technical Reports Server (NTRS)

    Patel, D. N.; Williams, L., Jr.

    1974-01-01

    Metallic oxide thick film switches were processed on alumina substrates using thick film technology. Vanadium pentoxide in powder form was mixed with other oxides e.g., barium, strontium copper and glass frit, ground to a fine powder. Pastes and screen printable inks were made using commercial conductive vehicles and appropriate thinners. Some switching devices were processed by conventional screen printing and firing of the inks and commercial cermet conductor terminals on 96% alumina substrates while others were made by applying small beads or dots of the pastes between platinum wires. Static, and dynamic volt-ampere, and pulse tests indicate that the switching and self-oscillatory characteristics of these devices could make them useful in memory element, oscillator, and automatic control applications.

  14. Reactive metal-oxide interfaces: A microscopic view

    NASA Astrophysics Data System (ADS)

    Picone, A.; Riva, M.; Brambilla, A.; Calloni, A.; Bussetti, G.; Finazzi, M.; Ciccacci, F.; Duò, L.

    2016-03-01

    Metal-oxide interfaces play a fundamental role in determining the functional properties of artificial layered heterostructures, which are at the root of present and future technological applications. Magnetic exchange and magnetoelectric coupling, spin filtering, metal passivation, catalytic activity of oxide-supported nano-particles are just few examples of physical and chemical processes arising at metal-oxide hybrid systems, readily exploited in working devices. These phenomena are strictly correlated with the chemical and structural characteristics of the metal-oxide interfacial region, making a thorough understanding of the atomistic mechanisms responsible of its formation a prerequisite in order to tailor the device properties. The steep compositional gradient established upon formation of metal-oxide heterostructures drives strong chemical interactions at the interface, making the metal-oxide boundary region a complex system to treat, both from an experimental and a theoretical point of view. However, once properly mastered, interfacial chemical interactions offer a further degree of freedom for tuning the material properties. The goal of the present review is to provide a summary of the latest achievements in the understanding of metal/oxide and oxide/metal layered systems characterized by reactive interfaces. The influence of the interface composition on the structural, electronic and magnetic properties will be highlighted. Particular emphasis will be devoted to the discussion of ultra-thin epitaxial oxides stabilized on highly oxidizable metals, which have been rarely exploited as oxide supports as compared to the much more widespread noble and quasi noble metallic substrates. In this frame, an extensive discussion is devoted to the microscopic characterization of interfaces between epitaxial metal oxides and the Fe(001) substrate, regarded from the one hand as a prototypical ferromagnetic material and from the other hand as a highly oxidizable metal.

  15. The Nitric Acid Oxidation of Selected Alcohols and Ketones.

    ERIC Educational Resources Information Center

    Field, Kurt W.; And Others

    1985-01-01

    Shows that nitric acid can be used as a rapid, versatile, and economical oxidant for selected organic substances. The experiments (with background information, procedures, and results provided) require one three-hour laboratory period but could serve as open-ended projects since substrates not described could be oxidized. (JN)

  16. Oxidation of Proline by Mitochondria Isolated from Water-Stressed Maize Shoots 1

    PubMed Central

    Sells, Gary D.; Koeppe, David E.

    1981-01-01

    Proline oxidation and coupled phosphorylation were measured in mitochondria after isolation from shoots of water-stressed, etiolated maize (Zea mays L.) seedlings. Both state III and state IV rates of proline oxidation decreased as a logarithmic function of increased seedling water stress between −5 and −10 bars. Proline oxidation rates decreased 62% (state III) and 58% (state IV) as seedling water potentials were decreased from −5 to −10 bars. By comparison, oxidation of succinate, exogenous NADH, or malate + pyruvate decreased only 10 to 15% in this stress range. These decreases were a linear function of increased stress and were comparable to oxidation rates of mitochondria subjected to varying in vitro osmotic potentials. Osmotically induced in vitro stress reduced proline oxidation rates linearly with more negative osmotic potentials, a decrease that was similar to the responses of the other substrates to more negative osmotic potentials. Some decrease in coupling, with all substrates as determined by ADP/O ratios, was observed under osmotic stress. Mitochondria were also isolated from shoot tissue that had been stressed and then rewatered. On a percentage basis, the recovery of proline oxidation was greater than that of the other substrates. The decreases in the proline oxidase activity of mitochondria after only slight stress indicate a mitochondrial sensitivity to water stress at significantly less negative water potentials than previously reported for measurements of maize membrane permeability and respiratory activity. PMID:16662051

  17. Power electronics substrate for direct substrate cooling

    DOEpatents

    Le, Khiet [Mission Viejo, CA; Ward, Terence G [Redondo Beach, CA; Mann, Brooks S [Redondo Beach, CA; Yankoski, Edward P [Corona, CA; Smith, Gregory S [Woodland Hills, CA

    2012-05-01

    Systems and apparatus are provided for power electronics substrates adapted for direct substrate cooling. A power electronics substrate comprises a first surface configured to have electrical circuitry disposed thereon, a second surface, and a plurality of physical features on the second surface. The physical features are configured to promote a turbulent boundary layer in a coolant impinged upon the second surface.

  18. Kinetic characterization of oxyresveratrol as a tyrosinase substrate.

    PubMed

    Ortiz-Ruiz, Carmen Vanessa; Ballesta de Los Santos, Manuel; Berna, Jose; Fenoll, Jose; Garcia-Ruiz, Pedro Antonio; Tudela, Jose; Garcia-Canovas, Francisco

    2015-11-01

    Oxyresveratrol is a stilbenoid described as a powerful inhibitor of tyrosinase and proposed as skin-whitening and anti-browning agent. However, the enzyme is capable of acting on it, considering it as a substrate, as it has been proved in the case of its analogous resveratrol. Tyrosinase hydroxylates the oxyresveratrol to an o-diphenol and oxidizes the latter to an o-quinone, which finally isomerizes to p-quinone. For these reactions to take place the presence of the Eox (oxy-tyrosinase) form is necessary. The kinetic analysis of the proposed mechanism has allowed the kinetic characterization of this molecule as a substrate of tyrosinase, affording a catalytic constant of 5.39 ± 0.21 sec(-1) and a Michaelis constant of 8.65 ± 0.73 µM. © 2015 International Union of Biochemistry and Molecular Biology.

  19. Electrical and mechanical characteristics of fully transparent IZO thin-film transistors on stress-relieving bendable substrates

    NASA Astrophysics Data System (ADS)

    Park, Sukhyung; Cho, Kyoungah; Oh, Hyungon; Kim, Sangsig

    2016-10-01

    In this study, we report the electrical and mechanical characteristics of fully transparent indium zinc oxide (IZO) thin-film transistors (TFTs) fabricated on stress-relieving bendable substrates. An IZO TFT on a stress-relieving substrate can operate normally at a bending radius of 6 mm, while an IZO TFT on a normal plastic substrate fails to operate normally at a bending radius of 15 mm. A plastic island with high Young's modulus embedded on a soft elastomer layer with low Young's modulus plays the role of a stress-relieving substrate for the operation of the bent IZO TFT. The stress and strain distributions over the IZO TFT will be analyzed in detail in this paper.

  20. Cyclic Thermal Stress-Induced Degradation of Cu Metallization on Si3N4 Substrate at -40°C to 300°C

    NASA Astrophysics Data System (ADS)

    Lang, Fengqun; Yamaguchi, Hiroshi; Nakagawa, Hiroshi; Sato, Hiroshi

    2015-01-01

    The high-temperature reliability of active metal brazed copper (AMC) on Si3N4 ceramic substrates used for fabricating SiC high-temperature power modules was investigated under harsh environments. The AMC substrate underwent isothermal storage at 300°C for up to 3000 h and a thermal cycling test at -40°C to 300°C for up to 3000 cycles. During isothermal storage at 300°C, the AMC substrate exhibited high reliability, characterized by very little deformation of the copper (Cu) layer, low crack growth, and low oxidation rate of the Cu layer. Under thermal cycling conditions at -40°C to 300°C, no detachment of the Cu layer was observed even after the maximum 3000 cycles of the experiment. However, serious deformation of the Cu layer occurred and progressed as the number of thermal cycles increased, thus significantly roughening the surface of the Cu metallized layer. The cyclic thermal stress led to a significant increase in the crack growth and oxidation of the Cu layer. The maximum depth of the copper oxides reached up to 5/6 of the Cu thickness. The deformation of the Cu layer was the main cause of the decrease of the bond strength under thermal cycling conditions. The shear strength of the SiC chips bonded on the AMC substrate with a Au-12 wt.%Ge solder decreased from the original 83 MPa to 14 MPa after 3000 cycles. Therefore, the cyclic thermal stress destroyed the Cu oxides and enhanced the oxidation of the Cu layer.