Science.gov

Sample records for oxide target elements

  1. OXIDATION OF TRANSURANIC ELEMENTS

    DOEpatents

    Moore, R.L.

    1959-02-17

    A method is reported for oxidizing neptunium or plutonium in the presence of cerous values without also oxidizing the cerous values. The method consists in treating an aqueous 1N nitric acid solution, containing such cerous values together with the trivalent transuranic elements, with a quantity of hydrogen peroxide stoichiometrically sufficient to oxidize the transuranic values to the hexavalent state, and digesting the solution at room temperature.

  2. Oxide fiber targets at ISOLDE

    NASA Astrophysics Data System (ADS)

    Köster, U.; Bergmann, U. C.; Carminati, D.; Catherall, R.; Cederkäll, J.; Correia, J. G.; Crepieux, B.; Dietrich, M.; Elder, K.; Fedoseyev, V. N.; Fraile, L.; Franchoo, S.; Fynbo, H.; Georg, U.; Giles, T.; Joinet, A.; Jonsson, O. C.; Kirchner, R.; Lau, Ch.; Lettry, J.; Maier, H. J.; Mishin, V. I.; Oinonen, M.; Peräjärvi, K.; Ravn, H. L.; Rinaldi, T.; Santana-Leitner, M.; Wahl, U.; Weissman, L.; Isolde Collaboration

    2003-05-01

    Many elements are rapidly released from oxide matrices. Some oxide powder targets show a fast sintering, thus losing their favorable release characteristics. Loosely packed oxide fiber targets are less critical since they may maintain their open structure even when starting to fuse together at some contact points. The experience with various oxide fiber targets (titania, zirconia, ceria and thoria) used in the last years at ISOLDE is reviewed. For short-lived isotopes of Cu, Ga and Xe the zirconia and ceria targets respectively provided significantly higher yields than any other target (metal foils, oxide powders, etc.) tested before. Titania fibers, which were not commercially available, were produced in a relic process by impregnation of a rayon felt in a titanium chloride solution and subsequent calcination by heating the dried felt in air. Thoria fibers were obtained either by the same process or by burning commercial gas lantern mantle cloth. In the future a beryllia fiber target could be used to produce very intense 6He beams (order of 10 13 ions per second) via the 9Be(n,α) reaction using spallation neutrons.

  3. Separation of transuranium elements from irradiated targets

    SciTech Connect

    Wham, R.M.; Benker, D.E.; Felker, L.K.; Chattin, F.R.

    1993-12-31

    Aluminum targets containing curium/americium oxide are irradiated to produce the transcurium actinides einsteinium, fermium, berkelium, and californium. Recovery of recycle curium/americium and the transcurium elements involves several chemical processing steps to selectively recover those elements and remove fission products. Chemical processing steps developed at the Radiochemical Engineering Development Center (REDC) include aluminum dejacketing, solvent extraction to remove bulk impurities, solvent extraction to remove plutonium, anion exchange to partition curium and transcurium elements from the rare earths, and a second anion exchange cycle to separate americium/curium from the transcurium elements.

  4. Removable preheater elements improve oxide induction furnace

    NASA Technical Reports Server (NTRS)

    Leipold, M. H.

    1964-01-01

    Heat and corrosion resistant preheater elements are used in oxide induction furnaces to raise the temperature to the level for conducting electricity. These preheater elements are then removed and the induction coil energized.

  5. Oxidation of hydrogen halides to elemental halogens

    DOEpatents

    Rohrmann, Charles A.; Fullam, Harold T.

    1985-01-01

    A process for oxidizing hydrogen halides having substantially no sulfur impurities by means of a catalytically active molten salt is disclosed. A mixture of the subject hydrogen halide and an oxygen bearing gas is contacted with a molten salt containing an oxidizing catalyst and alkali metal normal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen and substantially free of sulfur oxide gases.

  6. Recent developments in zinc oxide target chemistry

    SciTech Connect

    Heaton, R.C.; Taylor, W.A.; Phillips, D.R.; Jamriska, D.J. Sr.; Garcia, J.B.

    1994-04-01

    Zinc oxide targets irradiated with high energy protons at the Los Alamos Meson Physics Facility (LAMPF) contain a number of radioactive spallation products in quantities large enough to warrant recovery. This paper describes methods for recovering {sup 7}Be, {sup 46}Sc, and {sup 48}V from such targets and offers suggestions on possible ways to recover additional isotopes. The proposed methods are based on traditional precipitation and ion exchange techniques, are readily adaptable to hot cell use, and produce no hazardous waste components. The products are obtained in moderate to high yields and have excellent radiopurity.

  7. Association of trace elements with iron oxides during rock weathering

    SciTech Connect

    Koons, R.D.; Helmke, P.A.; Jackson, M.L.

    1980-01-01

    The association of trace elements with Fe oxides during the early stages of rock weathering was determined by analysis of fresh diabase and granite rocks, their associated whole and size-separated saprolites, and goethite by neutron activation and X-ray fluorescence. The same elements are found to be associated with Fe oxides when the results are interpreted by analysis of correlation, by the distribution of elements in the various size fractions by the effects of removing free Fe oxides, and by direct analysis of geothite from the saprolite. The elements Co, Cr, Mn, Sc, Th, U, Zn, and the heavy rare-earth elements during the weathering of diabase, and As, Co, Cr, Sc, Th, U, Zn, and the heavy rare-earth elements during the weathering of granite are associated with Fe oxides. The concentrations of Mn are too low in this system to separate the effects of Mn oxides from those of Fe oxides.

  8. Commissioning a Rotating Target Wheel Assembly for Heavy Element Studies

    NASA Astrophysics Data System (ADS)

    Fields, L. D.; Bennett, M. E.; Mayorov, D. A.; Folden, C. M.

    2013-10-01

    The heaviest elements are produced artificially by fusing nuclei of light elements within an accelerator to form heavier nuclei. The most direct method to increase the production rate of nuclei is to increase the beam intensity, necessitating the use of a rotating target to minimize damage to the target by deposited heat. Such a target wheel was constructed for heavy element research at Texas A&M University, Cyclotron Institute, consisting of a wheel with three banana-shaped target cutouts. The target is designed to rotate at 1700 rpm, and a fiber optic cable provides a signal to trigger beam pulsing in order to avoid irradiating the spokes between target segments. Following minor mechanical modifications and construction of a dedicated electrical panel, the rotating target assembly was commissioned for a beam experiment. A 15 MeV/u beam of 20Ne was delivered from the K500 cyclotron and detected by a ruggedized silicon detector. The beam pulsing response time was characterized as a function of the rational frequency of the target wheel. Preliminary analysis suggests that the K500 is capable of pulsing at rates of up to 250 Hz, which is sufficient for planned future experiments. Funded by DOE and NSF-REU Program.

  9. Actinide targets for the synthesis of super-heavy elements

    DOE PAGES

    Roberto, J.; Alexander, Charles W.; Boll, Rose Ann; Ezold, Julie G.; Felker, Leslie Kevin; Rykaczewski, Krzysztof Piotr; Hogle, Susan L.

    2015-06-18

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of 48Ca beams on actinide targets. These target materials, including 242Pu, 244Pu, 243Am, 245Cm, 248Cm, 249Cf, and 249Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing themore » production of rare actinides including 249Bk, 251Cf, and 254Es are described.« less

  10. Actinide targets for the synthesis of super-heavy elements

    SciTech Connect

    Roberto, J.; Alexander, Charles W.; Boll, Rose Ann; Ezold, Julie G.; Felker, Leslie Kevin; Rykaczewski, Krzysztof Piotr; Hogle, Susan L.

    2015-06-18

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of 48Ca beams on actinide targets. These target materials, including 242Pu, 244Pu, 243Am, 245Cm, 248Cm, 249Cf, and 249Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing the production of rare actinides including 249Bk, 251Cf, and 254Es are described.

  11. Actinide targets for the synthesis of super-heavy elements

    NASA Astrophysics Data System (ADS)

    Roberto, J. B.; Alexander, C. W.; Boll, R. A.; Burns, J. D.; Ezold, J. G.; Felker, L. K.; Hogle, S. L.; Rykaczewski, K. P.

    2015-12-01

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of 48Ca beams on actinide targets. These target materials, including 242Pu, 244Pu, 243Am, 245Cm, 248Cm, 249Cf, and 249Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing the production of rare actinides including 249Bk, 251Cf, and 254Es are described.

  12. Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria

    NASA Astrophysics Data System (ADS)

    Hu, Haiyan; Lin, Hui; Zheng, Wang; Tomanicek, Stephen J.; Johs, Alexander; Feng, Xinbin; Elias, Dwayne A.; Liang, Liyuan; Gu, Baohua

    2013-09-01

    Methylmercury is a neurotoxin that poses significant health risks to humans. Some anaerobic sulphate- and iron-reducing bacteria can methylate oxidized forms of mercury, generating methylmercury. One strain of sulphate-reducing bacteria (Desulfovibrio desulphuricans ND132) can also methylate elemental mercury. The prevalence of this trait among different bacterial strains and species remains unclear, however. Here, we compare the ability of two strains of the sulphate-reducing bacterium Desulfovibrio and one strain of the iron-reducing bacterium Geobacter to oxidize and methylate elemental mercury in a series of laboratory incubations. Experiments were carried out under dark, anaerobic conditions, in the presence of environmentally relevant concentrations of elemental mercury. We report differences in the ability of these organisms to oxidize and methylate elemental mercury. In line with recent findings, we show that D.desulphuricans ND132 can both oxidize and methylate elemental mercury. We find that the rate of methylation of elemental mercury is about one-third the rate of methylation of oxidized mercury. We also show that Desulfovibrio alaskensis G20 can oxidize, but not methylate, elemental mercury. Geobacter sulphurreducens PCA is able to oxidize and methylate elemental mercury in the presence of cysteine. We suggest that the activity of methylating and non-methylating bacteria may together enhance the formation of methylmercury in anaerobic environments.

  13. Stability of optical elements in the NIF target area building

    NASA Astrophysics Data System (ADS)

    Trummer, David J.; Foley, Richard J.; Shaw, Gene S.

    1999-07-01

    The target Area Building (TAB) of the NIF is 300 feet long, 100 feet wide, and 100 feet tall and is comprised of a cylindrical target building and two switchyard space frames. The reinforced concrete target building houses the target chamber, target positioner, turning mirrors, final optics assemblies, and diagnostics, while the steel switchyard space frames support turning mirrors and diagnostic equipment. Within the TAB, the 192 independent laser beams of the NIF laser system are required to be accurately positioned. In order to satisfy the engineering system requirement for optical system positioning, the TAB must provide a stable platform for optical elements before and during a shot. This paper summarizes the stability analyses that were performed in support of the TAB and optical system design. Sources that influence optic stability are structural excitations, such as ambient and wind induced vibrations, and thermal transients, such as diurnal and HVAC temperature changes. A positioning error budget has been developed for the NIF project for use in the design and evaluation of structures which support optical elements. To satisfy the error budget requirements, vibrational stability will be achieved through a combination of facility design, optical support structure design, and passive damping. Thermal stability will be accomplished by using thermal-mass concrete structures, conditioned air flow, and a reduction of heat sources. Finite element analysis has been used to evaluate the design of the TAB and optical support structures. A detailed structural model of the TAG that includes the target positioner, target chamber, turning mirrors, and diagnostics, has been used for stability evaluations. Finite element analyses covering ambient ground vibration, thermal loads, pressure fluctuations, and wind excitations have demonstrated that the current design of the TAB provides a stable platform for maintaining beam alignment.

  14. Matrix effects in PIXE elemental analysis of thick calculi targets

    NASA Astrophysics Data System (ADS)

    Kwiatek, Wojciech M.; Lekki, Janusz; Nowak, Tomasz; Dutkiewicz, Erazm M.; Paluszkiewicz, Czeslawa

    1997-02-01

    The PIXE technique for Trace Element Analysis have been applied to the studies of mineral deposits such as kidney stones in human organism. The calculi mainly composed of phosphates, oxalates and uric acid were extracted during surgical operations and were measured at the proton beam as thick targets. Trace elements studies of such samples are influenced by the thick targets matrix effects and by the sample composition changes caused by energy deposition in the target due to the proton beam irradiation. These both difficulties are especially pronounced in the case of the biological samples. In this paper the procedure dealing with the above problems is described, basing on calculations with the use of principal formula for the detected X-ray yields and two complementary techniques for PIXE experiments such as Fourier Transform InfraRed Spectroscopy (FTIR) and Elastic Back Scattering (EBS). A rough estimation of sample chemical composition was achieved by means of the FTIR analysis, which also may serve as a tool for local sample temperature estimation during beam irradiation. Composition of major target elements, needed for beam stopping and X-rays attenuation calculations were determined using the EBS technique applied simultaneously with PIXE. The above approach was used to estimate elemental contents of several samples. Comparison between traditionally calculated and improved results is presented.

  15. Rosamines Targeting the Cancer Oxidative Phosphorylation Pathway

    PubMed Central

    Lim, Siang Hui; Wu, Liangxing; Kiew, Lik Voon; Chung, Lip Yong; Burgess, Kevin; Lee, Hong Boon

    2014-01-01

    Reprogramming of energy metabolism is pivotal to cancer, so mitochondria are potential targets for anticancer therapy. A prior study has demonstrated the anti-proliferative activity of a new class of mitochondria-targeting rosamines. This present study describes in vitro cytotoxicity of second-generation rosamine analogs, their mode of action, and their in vivo efficacies in a tumor allografted mouse model. Here, we showed that these compounds exhibited potent cytotoxicity (average IC50<0.5 µM), inhibited Complex II and ATP synthase activities of the mitochondrial oxidative phosphorylation pathway and induced loss of mitochondrial transmembrane potential. A NCI-60 cell lines screen further indicated that rosamine analogs 4 and 5 exhibited potent antiproliferative effects with Log10GI50 = −7 (GI50 = 0.1 µM) and were more effective against a colorectal cancer sub-panel than other cell lines. Preliminary in vivo studies on 4T1 murine breast cancer-bearing female BALB/c mice indicated that treatment with analog 5 in a single dosing of 5 mg/kg or a schedule dosing of 3 mg/kg once every 2 days for 6 times (q2d×6) exhibited only minimal induction of tumor growth delay. Our results suggest that rosamine analogs may be further developed as mitochondrial targeting agents. Without a doubt proper strategies need to be devised to enhance tumor uptake of rosamines, i.e. by integration to carrier molecules for better therapeutic outcome. PMID:24622277

  16. NOVEL OXIDANT FOR ELEMENTAL MERCURY CONTROL FROM FLUE GAS

    EPA Science Inventory

    A novel economical oxidant has been developed for elemental mercury (Hg(0)) removal from coal-fired boilers. The oxidant was rigorously tested in a lab-scale fixed-bed system with the Norit America's FGD activated carbon (DOE's benchmark sorbent) in a typical PRB subbituminous/l...

  17. NASA-SETI microwave observing project: Targeted Search Element (TSE)

    NASA Technical Reports Server (NTRS)

    Webster, L. D.

    1991-01-01

    The Targeted Search Element (TSE) performs one of two complimentary search strategies of the NASA-SETI Microwave Observing Project (MOP): the targeted search. The principle objective of the targeted search strategy is to scan the microwave window between the frequencies of one and three gigahertz for narrowband microwave emissions eminating from the direction of 773 specifically targeted stars. The scanning process is accomplished at a minimum resolution of one or two Hertz at very high sensitivity. Detectable signals will be of a continuous wave or pulsed form and may also drift in frequency. The TSE will possess extensive radio frequency interference (RFI) mitigation and verification capability as the majority of signals detected by the TSE will be of local origin. Any signal passing through RFI classification and classifiable as an extraterrestrial intelligence (ETI) candidate will be further validated at non-MOP observatories using established protocol. The targeted search will be conducted using the capability provided by the TSE. The TSE provides six Targeted Search Systems (TSS) which independently or cooperatively perform automated collection, analysis, storage, and archive of signal data. Data is collected in 10 megahertz chunks and signal processing is performed at a rate of 160 megabits per second. Signal data is obtained utilizing the largest radio telescopes available for the Targeted Search such as those at Arecibo and Nancay or at the dedicated NASA-SETI facility. This latter facility will allow continuous collection of data. The TSE also provides for TSS utilization planning, logistics, remote operation, and for off-line data analysis and permanent archive of both the Targeted Search and Sky Survey data.

  18. The quantification of mixture stoichiometry when fuel molecules contain oxidizer elements or oxidizer molecules contain fuel elements.

    SciTech Connect

    Mueller, Charles J.

    2005-05-01

    The accurate quantification and control of mixture stoichiometry is critical in many applications using new combustion strategies and fuels (e.g., homogeneous charge compression ignition, gasoline direct injection, and oxygenated fuels). The parameter typically used to quantify mixture stoichiometry (i.e., the proximity of a reactant mixture to its stoichiometric condition) is the equivalence ratio, /gf. The traditional definition of /gf is based on the relative amounts of fuel and oxidizer molecules in a mixture. This definition provides an accurate measure of mixture stoichiometry when the fuel molecule does not contain oxidizer elements and when the oxidizer molecule does not contain fuel elements. However, the traditional definition of /gf leads to problems when the fuel molecule contains an oxidizer element, as is the case when an oxygenated fuel is used, or once reactions have started and the fuel has begun to oxidize. The problems arise because an oxidizer element in a fuel molecule is counted as part of the fuel, even though it acts as an oxidizer. Similarly, if an oxidizer molecule contains fuel elements, the fuel elements in the oxidizer molecule are misleadingly lumped in with the oxidizer in the traditional definition of /gf. In either case, use of the traditional definition of /gf to quantify the mixture stoichiometry can lead to significant errors. This paper introduces the oxygen equivalence ratio, /gf/gV, a parameter that properly characterizes the instantaneous mixture stoichiometry for a broader class of reactant mixtures than does /gf. Because it is an instantaneous measure of mixture stoichiometry,/gf/gV can be used to track the time-evolution of stoichiometry as a reaction progresses. The relationship between /gf/gV and /gf is shown. Errors are involved when the traditional definition of /gf is used as a measure of mixture stoichiometry with fuels that contain oxidizer elements or oxidizers that contain fuel elements; /gf/gV is used to quantify

  19. Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria

    SciTech Connect

    Hu, Haiyan; Lin, Hui; Zheng, Wang; Tomanicek, Stephen J; Johs, Alexander; Feng, Xinbin; Elias, Dwayne A; Liang, Liyuan; Gu, Baohua

    2013-08-04

    Methylmercury is a neurotoxin that poses significant health risks to humans. Some anaerobic sulphate- and iron-reducing bacteria can methylate oxidized forms of mercury, generating methylmercury1-4. One strain of sulphate-reducing bacteria (Desulfovibrio desulfuricans ND132) can also methylate elemental mercury5. The prevalence of this trait among different bacterial strains and species remains unclear, however. Here, we compare the ability of two strains of the sulphate-reducing bacterium Desulfovibrio and one strain of the iron-reducing bacterium Geobacter to oxidise and methylate elemental mercury in a series of laboratory incubations. Experiments were carried out under dark, anaerobic conditions, in the presence of environmentally-relevant concentrations of elemental mercury. We report differences in the ability of these organisms to oxidise and methylate elemental mercury. In line with recent findings5, we show that Desulfovibrio desulfuricans ND132 can both oxidise and methylate elemental mercury. However, the rate of methylation of elemental mercury is only about one third the rate of methylation of oxidized mercury. We also show that Desulfovibrio alaskensis G20 can oxidise, but not methylate, elemental mercury. Geobacter sulfurreducens PCA is able to oxidise and methylate elemental mercury in the presence of cysteine. We suggest that the activity of methylating and non-methylating bacteria may together enhance the formation of methylmercury in anaerobic environments.

  20. Oxidative elemental cycling under the low O2 Eoarchean atmosphere.

    PubMed

    Frei, Robert; Crowe, Sean A; Bau, Michael; Polat, Ali; Fowle, David A; Døssing, Lasse N

    2016-01-01

    The Great Oxidation Event signals the first large-scale oxygenation of the atmosphere roughly 2.4 Gyr ago. Geochemical signals diagnostic of oxidative weathering, however, extend as far back as 3.3-2.9 Gyr ago. 3.8-3.7 Gyr old rocks from Isua, Greenland stand as a deep time outpost, recording information on Earth's earliest surface chemistry and the low oxygen primordial biosphere. Here we find fractionated Cr isotopes, relative to the igneous silicate Earth reservoir, in metamorphosed banded iron formations (BIFs) from Isua that indicate oxidative Cr cycling 3.8-3.7 Gyr ago. Elevated U/Th ratios in these BIFs relative to the contemporary crust, also signal oxidative mobilization of U. We suggest that reactive oxygen species were present in the Eoarchean surface environment, under a very low oxygen atmosphere, inducing oxidative elemental cycling during the deposition of the Isua BIFs and possibly supporting early aerobic biology. PMID:26864443

  1. Oxidative elemental cycling under the low O2 Eoarchean atmosphere

    NASA Astrophysics Data System (ADS)

    Frei, Robert; Crowe, Sean A.; Bau, Michael; Polat, Ali; Fowle, David A.; Døssing, Lasse N.

    2016-02-01

    The Great Oxidation Event signals the first large-scale oxygenation of the atmosphere roughly 2.4 Gyr ago. Geochemical signals diagnostic of oxidative weathering, however, extend as far back as 3.3-2.9 Gyr ago. 3.8-3.7 Gyr old rocks from Isua, Greenland stand as a deep time outpost, recording information on Earth’s earliest surface chemistry and the low oxygen primordial biosphere. Here we find fractionated Cr isotopes, relative to the igneous silicate Earth reservoir, in metamorphosed banded iron formations (BIFs) from Isua that indicate oxidative Cr cycling 3.8-3.7 Gyr ago. Elevated U/Th ratios in these BIFs relative to the contemporary crust, also signal oxidative mobilization of U. We suggest that reactive oxygen species were present in the Eoarchean surface environment, under a very low oxygen atmosphere, inducing oxidative elemental cycling during the deposition of the Isua BIFs and possibly supporting early aerobic biology.

  2. Oxidative elemental cycling under the low O2 Eoarchean atmosphere.

    PubMed

    Frei, Robert; Crowe, Sean A; Bau, Michael; Polat, Ali; Fowle, David A; Døssing, Lasse N

    2016-02-11

    The Great Oxidation Event signals the first large-scale oxygenation of the atmosphere roughly 2.4 Gyr ago. Geochemical signals diagnostic of oxidative weathering, however, extend as far back as 3.3-2.9 Gyr ago. 3.8-3.7 Gyr old rocks from Isua, Greenland stand as a deep time outpost, recording information on Earth's earliest surface chemistry and the low oxygen primordial biosphere. Here we find fractionated Cr isotopes, relative to the igneous silicate Earth reservoir, in metamorphosed banded iron formations (BIFs) from Isua that indicate oxidative Cr cycling 3.8-3.7 Gyr ago. Elevated U/Th ratios in these BIFs relative to the contemporary crust, also signal oxidative mobilization of U. We suggest that reactive oxygen species were present in the Eoarchean surface environment, under a very low oxygen atmosphere, inducing oxidative elemental cycling during the deposition of the Isua BIFs and possibly supporting early aerobic biology.

  3. NOVEL OXIDANT FOR ELEMENTAL MERCURY CONTROL FROM FLUE GAS

    EPA Science Inventory

    The primary objective of this study is to develop and test advanced noncarbonaceous solid sorbent materials suitable for removing the elemental form of mercury from power plant emissions. An efficient and cost-effective novel Hg(0) oxidant was evaluated in a lab-scale fixed-bed ...

  4. A new method for oxidation of gaseous, elemental mercury.

    SciTech Connect

    Livengood, C. D.; Mendelsohn, M. H.

    1999-08-23

    Elemental mercury (Hg) is difficult to remove from flue-gas streams using existing wet-scrubber technology, primarily because of its limited volubility in water. We have proposed and tested a concept for enhancing gaseous Hg{sup 0}removal in wet scrubber systems by altering the chemical form of the Hg{sup 0} to a water-soluble oxidized species. Recently, we have discovered a new method for injection of the oxidizing species that dramatically improves reactant utilization and at the same time gives significant nitric oxide (NO) oxidation as well. Our method uses a diluted oxidizing solution containing chloric acid and sodium chlorate (sold commercially as NOXSORB{trademark}). When this solution is injected into a gas stream containing Hg{sup 0} at about 300 F, we found that nearly 100% of the Hg{sup 0} was removed from the gas phase and was recovered in liquid samples from the test system. At the same time, approximately 80% of the added NO was also removed (oxidized). The effect of sulfur dioxide (SO{sub 2}) on this method was also investigated, and it appears to decrease slightly the amount of Hg oxidized. We are currently testing the effect of variations in oxidizing solution concentration, SO{sub 2} concentration, NO concentration, and reaction time (residence time).

  5. Dissolution of Neptunium Oxide in Unirradiated Mark 53 Targets

    SciTech Connect

    Rudisill, T.S.

    2002-06-07

    Nine unirradiated Mark 53 targets currently stored at the K-Reactor must be dissolved to allow recovery of the neptunium content. The Mark 53 targets are an aluminum clad neptunium oxide (NpO2)/aluminum metal cermet used for the production of plutonium-238. The targets will be dissolved in H-Canyon and blended with solutions generated from routine fuel dissolutions for purification by solvent extraction

  6. Chemoprevention with phytochemicals targeting inducible nitric oxide synthase.

    PubMed

    Murakami, Akira

    2009-01-01

    A regulated low level of nitric oxide (NO) production in the body is essential for maintaining homeostasis (neuroprotection, vasorelaxation, etc.), though certain pathophysiological conditions associated with inflammation involve de novo synthesis of inducible NO synthase (iNOS) in immune cells, including macrophages. A large body of evidence indicates that many inflammatory diseases, such as colitis and gastritis, as well as many types of cancer, occur through sustained and elevated activation of this particular enzyme. The biochemical process of iNOS protein expression is tightly regulated and complex, in which the endotoxin lipopolysaccharide selectively binds to toll-like receptor 4 and thereby activates its adaptor protein MyD88, which in turn targets downstream proteins such as IRAK and TRAF6. This leads to functional activation of key protein kinases, including IkB kinases and mitogen-activated protein kinases (MAPKs), such as p38 MAPK, JNK1/2, and ERK1/2, all of which are involved in activating key transcription factors, including nuclear factor-kappaB and activator protein-1. In addition, the production of proinflammatory cytokines such as interferon-gamma and interleukin-12 potentiates iNOS induction in autocrine fashions. Meanwhile, an LPS-stimulated p38 MAPK pathway plays a pivotal role in the stabilization of iNOS mRNA, which has the AU-rich element in its 3'-untranslated region, for rapid NO production. Thus, suppression and/or inhibition of the above-mentioned signaling molecules may have a great potential for the prevention and treatment of inflammation-associated carcinogenesis. In fact, there have been numerous reports of phytochemicals found capable of targeting NO production by unique mechanisms, including polyphenols, terpenoids, and others. This review article briefly highlights the molecular mechanisms underlying endotoxin-induced iNOS expression in macrophages, and also focuses on promising natural agents that may be useful for anti

  7. Oxidative elemental cycling under the low O2 Eoarchean atmosphere

    PubMed Central

    Frei, Robert; Crowe, Sean A.; Bau, Michael; Polat, Ali; Fowle, David A.; Døssing, Lasse N.

    2016-01-01

    The Great Oxidation Event signals the first large-scale oxygenation of the atmosphere roughly 2.4 Gyr ago. Geochemical signals diagnostic of oxidative weathering, however, extend as far back as 3.3–2.9 Gyr ago. 3.8–3.7 Gyr old rocks from Isua, Greenland stand as a deep time outpost, recording information on Earth’s earliest surface chemistry and the low oxygen primordial biosphere. Here we find fractionated Cr isotopes, relative to the igneous silicate Earth reservoir, in metamorphosed banded iron formations (BIFs) from Isua that indicate oxidative Cr cycling 3.8–3.7 Gyr ago. Elevated U/Th ratios in these BIFs relative to the contemporary crust, also signal oxidative mobilization of U. We suggest that reactive oxygen species were present in the Eoarchean surface environment, under a very low oxygen atmosphere, inducing oxidative elemental cycling during the deposition of the Isua BIFs and possibly supporting early aerobic biology. PMID:26864443

  8. Accumulation and oxidation of elemental mercury in tropical soils.

    PubMed

    Soares, Liliane Catone; Egreja Filho, Fernando Barboza; Linhares, Lucília Alves; Windmoller, Cláudia Carvalhinho; Yoshida, Maria Irene

    2015-09-01

    The role of chemical and mineralogical soil properties in the retention and oxidation of atmospheric mercury in tropical soils is discussed based on thermal desorption analysis. The retention of gaseous mercury by tropical soils varied greatly both quantitatively and qualitatively with soil type. The average natural mercury content of soils was 0.08 ± 0.06 μg g(-1) with a maximum of 0.215 ± 0.009 μg g(-1). After gaseous Hg(0) incubation experiments, mercury content of investigated soils ranged from 0.6 ± 0.2 to 735 ± 23 μg g(-1), with a mean value of 44 ± 146 μg g(-1). Comparatively, A horizon of almost all soil types adsorbed more mercury than B horizon from the same soil, which demonstrates the key role of organic matter in mercury adsorption. In addition to organic matter, pH and CEC also appear to be important soil characteristics for the adsorption of mercury. All thermograms showed Hg(2+) peaks, which were predominant in most of them, indicating that elemental mercury oxidized in tropical soils. After four months of incubation, the thermograms showed oxidation levels from 70% to 100%. As none of the samples presented only the Hg(0) peak, and the soils retained varying amounts of mercury despite exposure under the same incubation conditions, it became clear that oxidation occurred on soil surface. Organic matter seemed to play a key role in mercury oxidation through complexation/stabilization of the oxidized forms. The lower percentages of available mercury (extracted with KNO3) in A horizons when compared to B horizons support this idea.

  9. Accumulation and oxidation of elemental mercury in tropical soils.

    PubMed

    Soares, Liliane Catone; Egreja Filho, Fernando Barboza; Linhares, Lucília Alves; Windmoller, Cláudia Carvalhinho; Yoshida, Maria Irene

    2015-09-01

    The role of chemical and mineralogical soil properties in the retention and oxidation of atmospheric mercury in tropical soils is discussed based on thermal desorption analysis. The retention of gaseous mercury by tropical soils varied greatly both quantitatively and qualitatively with soil type. The average natural mercury content of soils was 0.08 ± 0.06 μg g(-1) with a maximum of 0.215 ± 0.009 μg g(-1). After gaseous Hg(0) incubation experiments, mercury content of investigated soils ranged from 0.6 ± 0.2 to 735 ± 23 μg g(-1), with a mean value of 44 ± 146 μg g(-1). Comparatively, A horizon of almost all soil types adsorbed more mercury than B horizon from the same soil, which demonstrates the key role of organic matter in mercury adsorption. In addition to organic matter, pH and CEC also appear to be important soil characteristics for the adsorption of mercury. All thermograms showed Hg(2+) peaks, which were predominant in most of them, indicating that elemental mercury oxidized in tropical soils. After four months of incubation, the thermograms showed oxidation levels from 70% to 100%. As none of the samples presented only the Hg(0) peak, and the soils retained varying amounts of mercury despite exposure under the same incubation conditions, it became clear that oxidation occurred on soil surface. Organic matter seemed to play a key role in mercury oxidation through complexation/stabilization of the oxidized forms. The lower percentages of available mercury (extracted with KNO3) in A horizons when compared to B horizons support this idea. PMID:25950134

  10. Process for oxidation of hydrogen halides to elemental halogens

    DOEpatents

    Lyke, Stephen E.

    1992-01-01

    An improved process for generating an elemental halogen selected from chlorine, bromine or iodine, from a corresponding hydrogen halide by absorbing a molten salt mixture, which includes sulfur, alkali metals and oxygen with a sulfur to metal molar ratio between 0.9 and 1.1 and includes a dissolved oxygen compound capable of reacting with hydrogen halide to produce elemental halogen, into a porous, relatively inert substrate to produce a substrate-supported salt mixture. Thereafter, the substrate-supported salt mixture is contacted (stage 1) with a hydrogen halide while maintaining the substrate-supported salt mixture during the contacting at an elevated temperature sufficient to sustain a reaction between the oxygen compound and the hydrogen halide to produce a gaseous elemental halogen product. This is followed by purging the substrate-supported salt mixture with steam (stage 2) thereby recovering any unreacted hydrogen halide and additional elemental halogen for recycle to stage 1. The dissolved oxygen compound is regenerated in a high temperature (stage 3) and an optical intermediate temperature stage (stage 4) by contacting the substrate-supported salt mixture with a gas containing oxygen whereby the dissolved oxygen compound in the substrate-supported salt mixture is regenerated by being oxidized to a higher valence state.

  11. Oxidative Stress in Intracerebral Hemorrhage: Sources, Mechanisms, and Therapeutic Targets

    PubMed Central

    Hu, Xin; Tao, Chuanyuan; Gan, Qi; Zheng, Jun; Li, Hao; You, Chao

    2016-01-01

    Intracerebral hemorrhage (ICH) is associated with the highest mortality and morbidity despite only constituting approximately 10–15% of all strokes. Complex underlying mechanisms consisting of cytotoxic, excitotoxic, and inflammatory effects of intraparenchymal blood are responsible for its highly damaging effects. Oxidative stress (OS) also plays an important role in brain injury after ICH but attracts less attention than other factors. Increasing evidence has demonstrated that the metabolite axis of hemoglobin-heme-iron is the key contributor to oxidative brain damage after ICH, although other factors, such as neuroinflammation and prooxidases, are involved. This review will discuss the sources, possible molecular mechanisms, and potential therapeutic targets of OS in ICH. PMID:26843907

  12. Transcriptional Targeting in the Airway Using Novel Gene Regulatory Elements

    PubMed Central

    Burnight, Erin R.; Wang, Guoshun; McCray, Paul B.

    2012-01-01

    The delivery of cystic fibrosis transmembrane conductance regulator (CFTR) to airway epithelia is a goal of many gene therapy strategies to treat cystic fibrosis. Because the native regulatory elements of the CFTR are not well characterized, the development of vectors with heterologous promoters of varying strengths and specificity would aid in our selection of optimal reagents for the appropriate expression of the vector-delivered CFTR gene. Here we contrasted the performance of several novel gene-regulatory elements. Based on airway expression analysis, we selected putative regulatory elements from BPIFA1 and WDR65 to investigate. In addition, we selected a human CFTR promoter region (∼ 2 kb upstream of the human CFTR transcription start site) to study. Using feline immunodeficiency virus vectors containing the candidate elements driving firefly luciferase, we transduced murine nasal epithelia in vivo. Luciferase expression persisted for 30 weeks, which was the duration of the experiment. Furthermore, when the nasal epithelium was ablated using the detergent polidocanol, the mice showed a transient loss of luciferase expression that returned 2 weeks after administration, suggesting that our vectors transduced a progenitor cell population. Importantly, the hWDR65 element drove sufficient CFTR expression to correct the anion transport defect in CFTR-null epithelia. These results will guide the development of optimal vectors for sufficient, sustained CFTR expression in airway epithelia. PMID:22447971

  13. Cell Labeling and Targeting with Superparamagnetic Iron Oxide Nanoparticles.

    PubMed

    Tefft, Brandon J; Uthamaraj, Susheil; Harburn, J Jonathan; Klabusay, Martin; Dragomir-Daescu, Dan; Sandhu, Gurpreet S

    2015-10-19

    Targeted delivery of cells and therapeutic agents would benefit a wide range of biomedical applications by concentrating the therapeutic effect at the target site while minimizing deleterious effects to off-target sites. Magnetic cell targeting is an efficient, safe, and straightforward delivery technique. Superparamagnetic iron oxide nanoparticles (SPION) are biodegradable, biocompatible, and can be endocytosed into cells to render them responsive to magnetic fields. The synthesis process involves creating magnetite (Fe3O4) nanoparticles followed by high-speed emulsification to form a poly(lactic-co-glycolic acid) (PLGA) coating. The PLGA-magnetite SPIONs are approximately 120 nm in diameter including the approximately 10 nm diameter magnetite core. When placed in culture medium, SPIONs are naturally endocytosed by cells and stored as small clusters within cytoplasmic endosomes. These particles impart sufficient magnetic mass to the cells to allow for targeting within magnetic fields. Numerous cell sorting and targeting applications are enabled by rendering various cell types responsive to magnetic fields. SPIONs have a variety of other biomedical applications as well including use as a medical imaging contrast agent, targeted drug or gene delivery, diagnostic assays, and generation of local hyperthermia for tumor therapy or tissue soldering.

  14. Targeting Oxidative Stress in Central Nervous System Disorders.

    PubMed

    Patel, Manisha

    2016-09-01

    There is widespread recognition that reactive oxygen species (ROS) play key roles in normal brain function and pathology in the context of neurological disease. Oxidative stress continues to be a key therapeutic target for neurological diseases. In developing antioxidant therapies for neurological disease, special attention should be given to the brain's unique vulnerability to oxidative insults and its architecture. Consideration of antioxidant therapy should be guided by a strong rationale for oxidative stress in a given neurological disease. This review provides an overview of processes that can guide the development of antioxidant therapies in neurological diseases, such as knowledge of basic redox mechanisms, unique features of brain pathophysiology, mechanisms and classes of antioxidants, and desirable properties of drug candidates.

  15. Targeting Oxidative Stress in Central Nervous System Disorders.

    PubMed

    Patel, Manisha

    2016-09-01

    There is widespread recognition that reactive oxygen species (ROS) play key roles in normal brain function and pathology in the context of neurological disease. Oxidative stress continues to be a key therapeutic target for neurological diseases. In developing antioxidant therapies for neurological disease, special attention should be given to the brain's unique vulnerability to oxidative insults and its architecture. Consideration of antioxidant therapy should be guided by a strong rationale for oxidative stress in a given neurological disease. This review provides an overview of processes that can guide the development of antioxidant therapies in neurological diseases, such as knowledge of basic redox mechanisms, unique features of brain pathophysiology, mechanisms and classes of antioxidants, and desirable properties of drug candidates. PMID:27491897

  16. Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation

    USGS Publications Warehouse

    Verplanck, P.L.; Nordstrom, D.K.; Taylor, H.E.; Kimball, B.A.

    2004-01-01

    Ferrous iron rapidly oxidizes to Fe (III) and precipitates as hydrous Fe (III) oxides in acid mine waters. This study examines the effect of Fe precipitation on the rare earth element (REE) geochemistry of acid mine waters to determine the pH range over which REEs behave conservatively and the range over which attenuation and fractionation occur. Two field studies were designed to investigate REE attenuation during Fe oxidation in acidic, alpine surface waters. To complement these field studies, a suite of six acid mine waters with a pH range from 1.6 to 6.1 were collected and allowed to oxidize in the laboratory at ambient conditions to determine the partitioning of REEs during Fe oxidation and precipitation. Results from field experiments document that even with substantial Fe oxidation, the REEs remain dissolved in acid, sulfate waters with pH below 5.1. Between pH 5.1 and 6.6 the REEs partitioned to the solid phases in the water column, and heavy REEs were preferentially removed compared to light REEs. Laboratory experiments corroborated field data with the most solid-phase partitioning occurring in the waters with the highest pH. ?? 2004 Elsevier Ltd. All rights reserved.

  17. Targeting the Ataxia Telangiectasia Mutated-null phenotype in chronic lymphocytic leukemia with pro-oxidants

    PubMed Central

    Agathanggelou, Angelo; Weston, Victoria J.; Perry, Tracey; Davies, Nicholas J.; Skowronska, Anna; Payne, Daniel T.; Fossey, John S.; Oldreive, Ceri E.; Wei, Wenbin; Pratt, Guy; Parry, Helen; Oscier, David; Coles, Steve J.; Hole, Paul S.; Darley, Richard L.; McMahon, Michael; Hayes, John D.; Moss, Paul; Stewart, Grant S.; Taylor, A. Malcolm R.; Stankovic, Tatjana

    2015-01-01

    Inactivation of the Ataxia Telangiectasia Mutated gene in chronic lymphocytic leukemia results in resistance to p53-dependent apoptosis and inferior responses to treatment with DNA damaging agents. Hence, p53-independent strategies are required to target Ataxia Telangiectasia Mutated-deficient chronic lymphocytic leukemia. As Ataxia Telangiectasia Mutated has been implicated in redox homeostasis, we investigated the effect of the Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia genotype on cellular responses to oxidative stress with a view to therapeutic targeting. We found that in comparison to Ataxia Telangiectasia Mutated-wild type chronic lymphocytic leukemia, pro-oxidant treatment of Ataxia Telangiectasia Mutated-null cells led to reduced binding of NF-E2 p45-related factor-2 to antioxidant response elements and thus decreased expression of target genes. Furthermore, Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia cells contained lower levels of antioxidants and elevated mitochondrial reactive oxygen species. Consequently, Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia, but not tumors with 11q deletion or TP53 mutations, exhibited differentially increased sensitivity to pro-oxidants both in vitro and in vivo. We found that cell death was mediated by a p53- and caspase-independent mechanism associated with apoptosis inducing factor activity. Together, these data suggest that defective redox-homeostasis represents an attractive therapeutic target for Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia. PMID:25840602

  18. Microsporidian mitosomes retain elements of the general mitochondrial targeting system

    PubMed Central

    Burri, Lena; Williams, Bryony A. P.; Bursac, Dejan; Lithgow, Trevor; Keeling, Patrick J.

    2006-01-01

    Microsporidia are intracellular parasites that infect a variety of animals, including humans. As highly specialized parasites, they are characterized by a number of unusual adaptations, many of which are manifested as extreme reduction at the molecular, biochemical, and cellular levels. One interesting aspect of reduction is the mitochondrion. Microsporidia were long considered to be amitochondriate, but recently a tiny mitochondrion-derived organelle called the mitosome was detected. The molecular function of this organelle remains poorly understood. The mitosome has no genome, so it must import all its proteins from the cytosol. In other fungi, the mitochondrial protein import machinery consists of a network series of heterooligomeric translocases and peptidases, but in microsporidia, only a few subunits of some of these complexes have been identified to date. Here, we look at targeting sequences of the microsporidian mitosomal import system and show that mitosomes do in some cases still use N-terminal and internal targeting sequences that are recognizable by import systems of mitochondria in yeast. Furthermore, we have examined the function of the inner membrane peptidase processing enzyme and demonstrate that mitosomal substrates of this enzyme are processed to mature proteins in one species with a simplified processing complex, Antonospora locustae. However, in Encephalitozoon cuniculi, the processing complex is lost altogether, and the preprotein substrate functions with the targeting leader still attached. This report provides direct evidence for presequencing processing in mitosomes and also shows how a complex molecular system has continued to degenerate throughout the evolution of microsporidia. PMID:17043242

  19. Dissolution of Neptunium Oxide in Unirradiated Mark 53 Targets

    SciTech Connect

    Rudisill, T.S.

    2002-12-06

    Nine unirradiated Mark 53 targets currently stored at the K-Reactor must be dissolved to allow recovery of the neptunium content. The Mark 53 targets are an aluminum clad, neptunium oxide (NpO2)/aluminum metal cermet used for the production of plutonium-238. The targets will be dissolved in H-Canyon and blended with solutions generated from routine fuel dissolutions for purification by solvent extraction. The increased neptunium concentration should not have a significant effect on the neptunium decontamination factor achieved by the 1st cycle of solvent extraction; however, the neptunium content of the uranium product (1CU) will likely increase in proportion to the increase in the neptunium feed concentration. The recovered neptunium will be combined with the existing inventory of neptunium solution currently stored in H-Canyon. The combined inventory will undergo subsequent purification and conversion to an oxide for shipment to the Oak Ridge National Laboratory where plutonium- 238 will be manufactured using the High Flux Isotope Reactor.

  20. Adrenaline and noradrenaline: protectors against oxidative stress or molecular targets?

    PubMed

    Álvarez-Diduk, Ruslán; Galano, Annia

    2015-02-26

    Density functional theory was used to investigate the potential role of neurotransmitters adrenaline and noradrenaline regarding oxidative stress. It is predicted that they can be efficient as free radical scavengers both in lipid and aqueous media, with the main reaction mechanism being the hydrogen transfer and the sequential proton loss electron transfer, respectively. Despite the polarity of the environment, adrenaline and noradrenaline react with (•)OOH faster than Trolox, which suggests that they are better peroxyl radical scavengers than the reference compound. Both catecholamines are also proposed to be capable of efficiently inhibiting the oxidative stress induced by copper(II)-ascorbate mixtures, and the (•)OH production via Haber-Weiss reaction, albeit the effects on the later are only partial. They exert such beneficial effects by sequestering Cu(II) ions. In summary, these catecholamines can be capable of reducing oxidative stress, by scavenging free radicals and by sequestering metal ions. However, at the same time they might lose their functions in the process due to the associated structural modifications. Consequently, adrenaline and noradrenaline can be considered as both protectors and molecular targets of oxidative stress. Fortunately, under the proper conditions, both catecholamines can be regenerated to their original form so their functions are restored.

  1. Adrenaline and noradrenaline: protectors against oxidative stress or molecular targets?

    PubMed

    Álvarez-Diduk, Ruslán; Galano, Annia

    2015-02-26

    Density functional theory was used to investigate the potential role of neurotransmitters adrenaline and noradrenaline regarding oxidative stress. It is predicted that they can be efficient as free radical scavengers both in lipid and aqueous media, with the main reaction mechanism being the hydrogen transfer and the sequential proton loss electron transfer, respectively. Despite the polarity of the environment, adrenaline and noradrenaline react with (•)OOH faster than Trolox, which suggests that they are better peroxyl radical scavengers than the reference compound. Both catecholamines are also proposed to be capable of efficiently inhibiting the oxidative stress induced by copper(II)-ascorbate mixtures, and the (•)OH production via Haber-Weiss reaction, albeit the effects on the later are only partial. They exert such beneficial effects by sequestering Cu(II) ions. In summary, these catecholamines can be capable of reducing oxidative stress, by scavenging free radicals and by sequestering metal ions. However, at the same time they might lose their functions in the process due to the associated structural modifications. Consequently, adrenaline and noradrenaline can be considered as both protectors and molecular targets of oxidative stress. Fortunately, under the proper conditions, both catecholamines can be regenerated to their original form so their functions are restored. PMID:25646569

  2. Periodic Table Target: A Game that Introduces the Biological Significance of Chemical Element Periodicity

    ERIC Educational Resources Information Center

    Sevcik, Richard S.; McGinty, Ragan L.; Schultz, Linda D.; Alexander, Susan V.

    2008-01-01

    Periodic Table Target, a game for middle school or high school students, familiarizes students with the form of the periodic table and the biological significance of different elements. The Periodic Table Target game board is constructed as a class project, and the game is played to reinforce the content. Students are assigned several elements…

  3. Oxidative stress as a novel target in pediatric sepsis management.

    PubMed

    von Dessauer, Bettina; Bongain, Jazmina; Molina, Víctor; Quilodrán, Julio; Castillo, Rodrigo; Rodrigo, Ramón

    2011-02-01

    Sepsis with secondary multisystem organ dysfunction syndrome is the leading cause of death in the pediatric intensive care unit. Increased reactive oxygen species may influence circulating and endothelial cells, contributing to inflammatory tissue injury and explaining the tissue hypoxia paradigm based on microvascular dysfunction. An impaired mitochondrial cellular oxygen utilization, rather than inadequate oxygen delivery, was claimed to play a more important role in the development of multisystem organ dysfunction syndrome. Anyway, it seems plausible that reactive oxygen species can mediate the pathophysiologic processes occurring in sepsis. However, the consensus guidelines for the management of patients with these conditions do not include the enhancement of antioxidant potential. Therefore, further investigation is needed to support interventions aimed to attenuate the severity of the systemic compromise by abrogating the mechanism of oxidative damage. Antioxidant supplementation currently in use lacks a mechanistic support. Specific pharmacologic targets, such as mitochondria or Nicotinamide Adenine Dinucleotide Phosphate-Oxidase (NADPH) oxidase system, need to be explored. Furthermore, the early recognition of oxidative damage in these seriously ill patients and the usefulness of oxidative stress biomarkers to define a cut point for more successful therapeutic antioxidant interventions to be instituted would offer a new strategy to improve the outcome of critically ill children.

  4. [Element Sulfur Autotrophic Denitrification Combined Anaerobic Ammonia Oxidation].

    PubMed

    Zhou, Jian; Huang, Yong; Liu, Xin; Yuan, Yi; Li Xiang; Wangyan, De-qing; Ding, Liang; Shao, Jing-wei; Zhao, Rong

    2016-03-15

    A novel element sulfur autotrophic denitrification combined anaerobic ammonia oxidation process, reacted in CSTR, was used to investigate the sulfate production and alkalinity consumption during the whole process. The element sulfur dosage was 50 g · L⁻¹. The inoculation volume of ANAMMOX granular sludge was 100 g · L⁻¹. The agitation rate and environment reaction temperature of the CSTR were set to 120 r · min⁻¹ and 35°C ± 0.5°C, respectively. The pH of influent was maintained in range of 8. 0-8. 4. During the start-up stage of sulfur based autotrophic denitrification, the nitrogen removal loading rate could reach 0.56-0.71 kg · (m³ · d) ⁻¹ in the condition of 5.3 h hydrogen retention time and 200 mg · L⁻¹ nitrate nitrogen. After the addition of 60 mg · L⁻¹ ammonia nitrogen, Δn(SO₄²⁻):Δn(NO₃⁻) decreased from 1.21 ± 0.06 to 1.01 ± 0.10, Δ(IC): Δ(NO₃⁻-N) decreased from 0.72 ± 0.1 to 0.51 ± 0.11, and the effluent pH increased from 6.5 to 7.2. During the combined stage, the ammonia concentration of effluent was 10.1-19.2 mg · L⁻¹, and the nitrate-nitrogen removal loading rate could be maintained in range of 0.66-0.88 kg · (m³ · d)⁻¹. The Δn (NH₄⁺): Δn (NO₃⁻) ratio reached 0.43, and the NO₃⁻ removal rate was increased by 60% in the simultaneous ammonia and nitrate removal reaction under the condition of G(T) = 22-64 s⁻¹ and pH = 8.08, while improper conditions reduced the efficiency of simultaneous reaction.

  5. [Element Sulfur Autotrophic Denitrification Combined Anaerobic Ammonia Oxidation].

    PubMed

    Zhou, Jian; Huang, Yong; Liu, Xin; Yuan, Yi; Li Xiang; Wangyan, De-qing; Ding, Liang; Shao, Jing-wei; Zhao, Rong

    2016-03-15

    A novel element sulfur autotrophic denitrification combined anaerobic ammonia oxidation process, reacted in CSTR, was used to investigate the sulfate production and alkalinity consumption during the whole process. The element sulfur dosage was 50 g · L⁻¹. The inoculation volume of ANAMMOX granular sludge was 100 g · L⁻¹. The agitation rate and environment reaction temperature of the CSTR were set to 120 r · min⁻¹ and 35°C ± 0.5°C, respectively. The pH of influent was maintained in range of 8. 0-8. 4. During the start-up stage of sulfur based autotrophic denitrification, the nitrogen removal loading rate could reach 0.56-0.71 kg · (m³ · d) ⁻¹ in the condition of 5.3 h hydrogen retention time and 200 mg · L⁻¹ nitrate nitrogen. After the addition of 60 mg · L⁻¹ ammonia nitrogen, Δn(SO₄²⁻):Δn(NO₃⁻) decreased from 1.21 ± 0.06 to 1.01 ± 0.10, Δ(IC): Δ(NO₃⁻-N) decreased from 0.72 ± 0.1 to 0.51 ± 0.11, and the effluent pH increased from 6.5 to 7.2. During the combined stage, the ammonia concentration of effluent was 10.1-19.2 mg · L⁻¹, and the nitrate-nitrogen removal loading rate could be maintained in range of 0.66-0.88 kg · (m³ · d)⁻¹. The Δn (NH₄⁺): Δn (NO₃⁻) ratio reached 0.43, and the NO₃⁻ removal rate was increased by 60% in the simultaneous ammonia and nitrate removal reaction under the condition of G(T) = 22-64 s⁻¹ and pH = 8.08, while improper conditions reduced the efficiency of simultaneous reaction. PMID:27337901

  6. Modification of surface oxide layers of titanium targets for increasing lifetime of neutron tubes

    SciTech Connect

    Zakharov, A. M. Dvoichenkova, O. A.; Evsin, A. E.

    2015-12-15

    The peculiarities of interaction of hydrogen ions with a titanium target and its surface oxide layer were studied. Two ways of modification of the surface oxide layers of titanium targets for increasing the lifetime of neutron tubes were proposed: (1) deposition of an yttrium oxide barrier layer on the target surface; (2) implementation of neutron tube work regime in which the target is irradiated with ions with energies lower than 1000 eV between high-energy ion irradiation pulses.

  7. Oxidation of elemental sulfur, tetrathionate and ferrous iron by the psychrotolerant Acidithiobacillus strain SS3.

    PubMed

    Kupka, Daniel; Liljeqvist, Maria; Nurmi, Pauliina; Puhakka, Jaakko A; Tuovinen, Olli H; Dopson, Mark

    2009-12-01

    Mesophilic iron and sulfur-oxidizing acidophiles are readily found in acid mine drainage sites and bioleaching operations, but relatively little is known about their activities at suboptimal temperatures and in cold environments. The purpose of this work was to characterize the oxidation of elemental sulfur (S(0)), tetrathionate (S4O6(2-)) and ferrous iron (Fe2+) by the psychrotolerant Acidithiobacillus strain SS3. The rates of elemental sulfur and tetrathionate oxidation had temperature optima of 20 degrees and 25 degrees C, respectively, determined using a temperature gradient incubator that involved narrow (1.1 degrees C) incremental increases from 5 degrees to 30 degrees C. Activation energies calculated from the Arrhenius plots were 61 and 89 kJ mol(-1) for tetrathionate and 110 kJ mol(-1) for S(0) oxidation. The oxidation of elemental sulfur produced sulfuric acid at 5 degrees C and decreased the pH to approximately 1. The low pH inhibited further oxidation of the substrate. In media with both S(0) and Fe2+, oxidation of elemental sulfur did not commence until all available ferrous iron was oxidized. These data on sequential oxidation of the two substrates are in keeping with upregulation and downregulation of several proteins previously noted in the literature. Ferric iron was reduced to Fe2+ in parallel with elemental sulfur oxidation, indicating the presence of a sulfur:ferric iron reductase system in this bacterium. PMID:19782750

  8. Stoichiometry control of complex oxides by sequential pulsed-laser deposition from binary-oxide targets

    DOE PAGES

    Herklotz, A.; Dörr, Kathrin; Ward, T. Z.; Eres, G.; Christen, H. M.; Biegalski, Michael D.

    2015-04-03

    In this paper, to have precise atomic layer control over interfaces, we examine the growth of complex oxides through the sequential deposition from binary targets by pulsed laser deposition. In situ reflection high-energy electron diffraction (RHEED) is used to control the growth and achieve films with excellent structural quality. The growth from binary oxide targets is fundamentally different from single target growth modes and shows more similarities to shuttered growth by molecular beam epitaxy. The RHEED intensity oscillations of non-stoichiometric growth are consistent with a model of island growth and accumulation of excess material on the surface that can bemore » utilized to determine the correct stoichiometry for growth. Correct monolayer doses can be determined through an envelope frequency in the RHEED intensity oscillations. In order to demonstrate the ability of this growth technique to create complex heterostructures, the artificial n = 2 and 3 Sr n +1Ti n O3 n +1 Ruddlesden-Popper phases are grown with good long-range order. Finally, this method enables the precise unit-cell level control over the structure of perovskite-type oxides, and thus the growth of complex materials with improved structural quality and electronic functionality.« less

  9. Stoichiometry control of complex oxides by sequential pulsed-laser deposition from binary-oxide targets

    SciTech Connect

    Herklotz, A.; Dörr, Kathrin; Ward, T. Z.; Eres, G.; Christen, H. M.; Biegalski, Michael D.

    2015-04-03

    In this paper, to have precise atomic layer control over interfaces, we examine the growth of complex oxides through the sequential deposition from binary targets by pulsed laser deposition. In situ reflection high-energy electron diffraction (RHEED) is used to control the growth and achieve films with excellent structural quality. The growth from binary oxide targets is fundamentally different from single target growth modes and shows more similarities to shuttered growth by molecular beam epitaxy. The RHEED intensity oscillations of non-stoichiometric growth are consistent with a model of island growth and accumulation of excess material on the surface that can be utilized to determine the correct stoichiometry for growth. Correct monolayer doses can be determined through an envelope frequency in the RHEED intensity oscillations. In order to demonstrate the ability of this growth technique to create complex heterostructures, the artificial n = 2 and 3 Sr n +1Ti n O3 n +1 Ruddlesden-Popper phases are grown with good long-range order. Finally, this method enables the precise unit-cell level control over the structure of perovskite-type oxides, and thus the growth of complex materials with improved structural quality and electronic functionality.

  10. Stoichiometry control of complex oxides by sequential pulsed-laser deposition from binary-oxide targets

    NASA Astrophysics Data System (ADS)

    Herklotz, A.; Dörr, K.; Ward, T. Z.; Eres, G.; Christen, H. M.; Biegalski, M. D.

    2015-03-01

    To have precise atomic layer control over interfaces, we examine the growth of complex oxides through the sequential deposition from binary targets by pulsed laser deposition. In situ reflection high-energy electron diffraction (RHEED) is used to control the growth and achieve films with excellent structural quality. The growth from binary oxide targets is fundamentally different from single target growth modes and shows more similarities to shuttered growth by molecular beam epitaxy. The RHEED intensity oscillations of non-stoichiometric growth are consistent with a model of island growth and accumulation of excess material on the surface that can be utilized to determine the correct stoichiometry for growth. Correct monolayer doses can be determined through an envelope frequency in the RHEED intensity oscillations. In order to demonstrate the ability of this growth technique to create complex heterostructures, the artificial n = 2 and 3 Srn+1TinO3n+1 Ruddlesden-Popper phases are grown with good long-range order. This method enables the precise unit-cell level control over the structure of perovskite-type oxides, and thus the growth of complex materials with improved structural quality and electronic functionality.

  11. Stoichiometry control of complex oxides by sequential pulsed-laser deposition from binary-oxide targets

    SciTech Connect

    Herklotz, A.; Dörr, K.; Ward, T. Z.; Eres, G.; Christen, H. M.; Biegalski, M. D.

    2015-03-30

    To have precise atomic layer control over interfaces, we examine the growth of complex oxides through the sequential deposition from binary targets by pulsed laser deposition. In situ reflection high-energy electron diffraction (RHEED) is used to control the growth and achieve films with excellent structural quality. The growth from binary oxide targets is fundamentally different from single target growth modes and shows more similarities to shuttered growth by molecular beam epitaxy. The RHEED intensity oscillations of non-stoichiometric growth are consistent with a model of island growth and accumulation of excess material on the surface that can be utilized to determine the correct stoichiometry for growth. Correct monolayer doses can be determined through an envelope frequency in the RHEED intensity oscillations. In order to demonstrate the ability of this growth technique to create complex heterostructures, the artificial n = 2 and 3 Sr{sub n+1}Ti{sub n}O{sub 3n+1} Ruddlesden-Popper phases are grown with good long-range order. This method enables the precise unit-cell level control over the structure of perovskite-type oxides, and thus the growth of complex materials with improved structural quality and electronic functionality.

  12. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR

    SciTech Connect

    K.C. Kwon

    2002-02-01

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced Vision 21 plants that employ coal and natural gas and produce electric power and clean transportation fuels. These Vision 21 plants will require highly clean coal gas with H{sub 2}S below 1 ppm and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation Vision 21 plants. To this end, a novel process is now under development at Research Triangle Institute (RTI) in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The objective of this research is to support the near- and long-term DOE efforts to commercialize this direct oxidation technology. Specifically, we aim to: Measure the kinetics of direct oxidation of H{sub 2}S to elemental sulfur over selective catalysts in the presence of major

  13. Transposable Element Targeting by piRNAs in Laurasiatherians with Distinct Transposable Element Histories.

    PubMed

    Vandewege, Michael W; Platt, Roy N; Ray, David A; Hoffmann, Federico G

    2016-01-01

    PIWI proteins and PIWI-interacting RNAs (piRNAs) are part of a cellular pathway that has evolved to protect genomes against the proliferation of transposable elements (TEs). PIWIs and piRNAs assemble into complexes that are involved in epigenetic and post-transcriptional repression of TEs. Most of our understanding of the mechanisms of piRNA-mediated TE silencing comes from fruit fly and mouse models. However, even in these well-studied animals it is unclear how piRNA responses relate to variable TE expression and whether the strength of the piRNA response affects TE content over time. Here, we assessed the evolutionary interactions between TE and piRNAs in a statistical framework using three nonmodel laurasiatherian mammals as a study system: dog, horse, and a vesper bat. These three species diverged ∼80 million years ago and have distinct genomic TE contents. By comparing species with distinct TE landscapes, we aimed to identify clear relationships among TE content, expression, and piRNAs. We found that the TE subfamilies that are the most transcribed appear to elicit the strongest "ping-pong" response. This was most evident among long interspersed elements, but the relationships between expression and ping-pong pilRNA (piRNA-like) expression were more complex among SINEs. SINE transcripts were equally abundant in the dog and horse yet new SINE insertions were relatively rare in the horse genome, where we identified a stronger piRNA response. Our analyses suggest that the piRNA response can have a strong impact on the TE composition of a genome. However, our results also suggest that the presence of a robust piRNA response is apparently not sufficient to stop TE mobilization and accumulation. PMID:27060702

  14. Transposable Element Targeting by piRNAs in Laurasiatherians with Distinct Transposable Element Histories

    PubMed Central

    Vandewege, Michael W.; Platt, Roy N.; Ray, David A.; Hoffmann, Federico G.

    2016-01-01

    PIWI proteins and PIWI-interacting RNAs (piRNAs) are part of a cellular pathway that has evolved to protect genomes against the proliferation of transposable elements (TEs). PIWIs and piRNAs assemble into complexes that are involved in epigenetic and post-transcriptional repression of TEs. Most of our understanding of the mechanisms of piRNA-mediated TE silencing comes from fruit fly and mouse models. However, even in these well-studied animals it is unclear how piRNA responses relate to variable TE expression and whether the strength of the piRNA response affects TE content over time. Here, we assessed the evolutionary interactions between TE and piRNAs in a statistical framework using three nonmodel laurasiatherian mammals as a study system: dog, horse, and a vesper bat. These three species diverged ∼80 million years ago and have distinct genomic TE contents. By comparing species with distinct TE landscapes, we aimed to identify clear relationships among TE content, expression, and piRNAs. We found that the TE subfamilies that are the most transcribed appear to elicit the strongest “ping-pong” response. This was most evident among long interspersed elements, but the relationships between expression and ping-pong pilRNA (piRNA-like) expression were more complex among SINEs. SINE transcripts were equally abundant in the dog and horse yet new SINE insertions were relatively rare in the horse genome, where we identified a stronger piRNA response. Our analyses suggest that the piRNA response can have a strong impact on the TE composition of a genome. However, our results also suggest that the presence of a robust piRNA response is apparently not sufficient to stop TE mobilization and accumulation. PMID:27060702

  15. Selected attributes of polyphenols in targeting oxidative stress in cancer.

    PubMed

    Stepanic, Visnja; Gasparovic, Ana Cipak; Troselj, Koraljka Gall; Amic, Dragan; Zarkovic, Neven

    2015-01-01

    Various plant polyphenols have been recognized as redox active molecules. This review discusses some aspects of polyphenols' modes of redox action, corresponding structure-activity relationships and their potential to be applied as adjuvants to conventional cytostatic drugs. Polyphenols' antioxidative capacity has been discussed as the basis for targeting oxidative stress and, consequently, for their chemopreventive and anti-inflammatory activities, which may alleviate side-effects on normal cells arising from oxidative stress caused by cytostatics. Some polyphenols may scavenge various free radicals directly, and some of them are found to suppress free radical production through inhibiting NADPH oxidases and xanthine oxidase. Additionally, polyphenols may increase antioxidative defense in normal cells by increasing the activity of NRF2, transcription factor for many protective proteins. The activation of the NRF2-mediated signaling pathways in cancer cells results in chemoresistance. Luteolin, apigenin and chrysin reduce NRF2 expression and increase the chemosensitivity of cancer cells to cytostatic drugs. Their common 5,7-dihydroxy-4H-chromen-4-one moiety, may represent a starting pharmacophore model for designing novel, non-toxic compounds for overcoming chemoresistance. However, prooxidative activity of some polyphenols (quercetin, EGCG) may also provide a basis for their use as chemotherapeutic adjuvants since they may enhance cytotoxic effects of cytostatics selectively on cancer cells. However, considerable caution is needed in applying polyphenols to anticancer therapy, since their effects greatly depend on the applied dose, the cell type, exposure time and environmental conditions.

  16. Amplification of Distant Estrogen Response Elements Deregulates Target Genes Associated with Tamoxifen Resistance in Breast Cancer

    PubMed Central

    Hsu, Pei-Yin; Hsu, Hang-Kai; Lan, Xun; Juan, Liran; Yan, Pearlly S.; Labanowska, Jadwiga; Heerema, Nyla; Hsiao, Tzu-Hung; Chiu, Yu-Chiao; Chen, Yidong; Liu, Yunlong; Li, Lang; Li, Rong; Thompson, Ian M.; Nephew, Kenneth P.; Sharp, Zelton D.; Kirma, Nameer B.; Jin, Victor X.; Huang, Tim H.-M.

    2013-01-01

    SUMMARY A causal role of gene amplification in tumorigenesis is well-known, while amplification of DNA regulatory elements as an oncogenic driver remains unclear. In this study, we integrated next-generation sequencing approaches to map distant estrogen response elements (DEREs) that remotely control transcription of target genes through chromatin proximity. Two densely mapped DERE regions located on chromosomes 17q23 and 20q13 were frequently amplified in ERα-positive luminal breast cancer. These aberrantly amplified DEREs deregulated target gene expression potentially linked to cancer development and tamoxifen resistance. Progressive accumulation of DERE copies was observed in normal breast progenitor cells chronically exposed to estrogenic chemicals. These findings may extend to other DNA regulatory elements, the amplification of which can profoundly alter target transcriptome during tumorigenesis. PMID:23948299

  17. TRACE ELEMENT BINDING DURING STRUCTURAL TRANSFORMATION IN IRON OXIDES

    EPA Science Inventory

    Iron (hydr)oxides often control the mobility of inorganic contaminants in soils and sediments. A poorly ordered form of ferrihydrite is commonly produced during rapid oxidation of ferrous iron at sharp redox fronts encountered during discharge of anoxic/suboxic waters into terre...

  18. Oxidation of elemental sulfur by bacteria and fungi in soil.

    PubMed

    Czaban, J; Kobus, J

    2000-01-01

    Laboratory experiments were used to determine the effects of antibiotics, organic C and CaCO3 amendments of sterile reinoculated soil on S0 oxidation by bacteria and fungi. The rate of S0 oxidation in soil with nystatin added was higher than in soil amended with penicillin + streptomycin. This tells us that bacteria were more efficient than fungi in the S0 oxidation process. It was demonstrated that neutrophilic chemolithotrophs were more efficient in this process than heterotrophs. Glucose introduced to the soil had a negative effect and CaCO3 had a positive effect on S0 oxidation. In soil enriched with glucose the number of chemolithotrophs was very low in comparison with extremely numerous heterotrophic bacteria and fungi. It suggests that the role of heterotrophs in S0 oxidation could be important in habitats rich in organic C, e.g. rhizosphere. In soil containing S0, qualitative changes of fungal communities to genera with higher S0 oxidation ability was also noted. In the presented paper, after comparison of the own results with the data of others concerning the natural soils, the role of various microbial groups in S0 oxidation process in soils is discussed. PMID:11093676

  19. Kinetics of Direct Oxidation of H2S in Coal Gas to Elemental Sulfur

    SciTech Connect

    K.C. Kwon

    2005-11-01

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced Vision 21 plants that produce electric power and clean transportation fuels with coal and natural gas. These Vision 21 plants will require highly clean coal gas with H{sub 2}S below 1 ppm and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation Vision 21 plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The objectives of this research are to measure kinetics of direct

  20. Development of Low-Cost Manufacturing Processes for Planar, Multilayer Solid Oxide Fuel Cell Elements

    SciTech Connect

    Scott Swartz; Matthew Seabaugh; William Dawson; Tim Armstrong; Harlan Anderson; John Lannutti

    2001-09-30

    This report summarizes the results of Phase II of this program, 'Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'. The objective of the program is to develop advanced ceramic manufacturing technologies for making planar solid oxide fuel cell (SOFC) components that are more economical and reliable for a variety of applications. Phase II development work focused on three distinct manufacturing approaches (or tracks) for planar solid oxide fuel cell elements. Two development tracks, led by NexTech Materials and Oak Ridge National Laboratory, involved co-sintering of planar SOFC elements of cathode-supported and anode-supported variations. A third development track, led by the University of Missouri-Rolla, focused on a revolutionary approach for reducing operating temperature of SOFCs by using spin-coating to deposit ultra-thin, nano-crystalline YSZ electrolyte films. The work in Phase II was supported by characterization work at Ohio State University. The primary technical accomplishments within each of the three development tracks are summarized. Track 1--NexTech's targeted manufacturing process for planar SOFC elements involves tape casting of porous electrode substrates, colloidal-spray deposition of YSZ electrolyte films, co-sintering of bi-layer elements, and screen printing of opposite electrode coatings. The bulk of NexTech's work focused on making cathode-supported elements, although the processes developed at NexTech also were applied to the fabrication of anode-supported cells. Primary accomplishments within this track are summarized below: (1) Scale up of lanthanum strontium manganite (LSM) cathode powder production process; (2) Development and scale-up of tape casting methods for cathode and anode substrates; (3) Development of automated ultrasonic-spray process for depositing YSZ films; (4) Successful co-sintering of flat bi-layer elements (both cathode and anode supported); (5) Development of anode and cathode screen-printing processes; and (6

  1. Finite element analysis of monolithic solid oxide fuel cells

    SciTech Connect

    Saigal, A. . Dept. of Mechanical Engineering); Majumdar, S. )

    1992-01-01

    This paper investigates the stress and fracture behavior of a monolithic solid oxide fuel cell (MSOFC) currently under joint development by Allied Signal Corporation and Argonne National Laboratory. The MSOFC is an all-ceramic fuel cell capable of high power density and tolerant of a variety of hydrocarbon fuels, making it potentially attractive for stationary utility and mobile transportation systems. The monolithic design eliminates inactive structural supports, increases active surface area, and lowers voltage losses caused by internal resistance.

  2. Finite element analysis of monolithic solid oxide fuel cells

    SciTech Connect

    Saigal, A.; Majumdar, S.

    1992-04-01

    This paper investigates the stress and fracture behavior of a monolithic solid oxide fuel cell (MSOFC) currently under joint development by Allied Signal Corporation and Argonne National Laboratory. The MSOFC is an all-ceramic fuel cell capable of high power density and tolerant of a variety of hydrocarbon fuels, making it potentially attractive for stationary utility and mobile transportation systems. The monolithic design eliminates inactive structural supports, increases active surface area, and lowers voltage losses caused by internal resistance.

  3. Serum chemical elements and oxidative status in Alzheimer's disease, Parkinson disease and multiple sclerosis.

    PubMed

    Alimonti, Alessandro; Ristori, Giovanni; Giubilei, Franco; Stazi, Maria Antonia; Pino, Anna; Visconti, Andrea; Brescianini, Sonia; Sepe Monti, Micaela; Forte, Giovanni; Stanzione, Paolo; Bocca, Beatrice; Bomboi, Giuseppe; D'Ippolito, Cristina; Annibali, Viviana; Salvetti, Marco; Sancesario, Giuseppe

    2007-05-01

    The role of some chemical elements in neurodegeneration was suggested by various authors. To obtain a profile of chemical elements and oxidative status in complex neurological diseases, an unbiased "omics" approach, i.e., quantification of 26 elements and oxidative stress parameters (serum oxidative status (SOS) and serum anti-oxidant capacity (SAC)), combined with multivariate statistical procedures (forward discriminant analysis, FDA) to analyse the vast amount of data, was applied to four groups of subjects (53 patients with Alzheimer's disease (AD), 71 with Parkinson disease (PD), 60 with multiple sclerosis (MS) and 124 healthy individuals). Descriptive statistics revealed numerous differences between each disease and healthy status. A concordant imbalance (reduction in Fe, Zn and SAC, and increase in SOS) was shared by AD, PD and MS. The FDA yielded three significant discriminant functions based on age, SOS, Ca, Fe, Si, Sn, V, Zn and Zr, and identified disease-specific profiles of element imbalances, thus showing the appropriateness of the "omics" approach. It may help assess the contribution of chemical elements and oxidative stress to disease causation and may provide complex predictors of disease evolution or treatment response.

  4. Distribution and speciation of trace elements in iron and manganese oxide cave deposits

    NASA Astrophysics Data System (ADS)

    Frierdich, Andrew J.; Catalano, Jeffrey G.

    2012-08-01

    Fe and Mn oxide minerals control the distribution and speciation of heavy metals and trace elements in soils and aquatic systems through chemical mechanisms involving adsorption, incorporation, and electron transfer. The Pautler Cave System in Southwest Illinois, an analog to other temperate carbonate-hosted karst systems, contains Fe and Mn oxide minerals that form in multiple depositional environments and have high concentrations of associated trace elements. Synchrotron-based micro-scanning X-ray fluorescence (μ-SXRF) shows unique spatial distributions of Fe, Mn, and trace elements in mineral samples. Profile maps of Mn oxide cave stream pebble coatings show Fe- and As-rich laminations, indicating dynamic redox conditions in the cave stream. μ-SXRF maps demonstrate that Ni, Cu, and Zn correlate primarily with Mn whereas As correlates with both Mn and Fe; As is more enriched in the Fe phase. Zn is concentrated in the periphery of Mn oxide stream pebble coatings, and may be an indication of recent anthropogenic surface activity. X-ray absorption fine structure spectroscopy measurements reveal that As(V) occurs as surface complexes on Mn and Fe oxides whereas Zn(II) associated with Mn oxides is adsorbed to the basal planes of phyllomanganates in a tetrahedral coordination. Co(III) and Se(IV) are also observed to be associated with Mn oxides. The observation of Fe, Mn, and trace element banding in Mn oxide cave stream pebble coatings suggests that these materials are sensitive to and document aqueous redox conditions, similar to ferromanganese nodules in soils and in marine and freshwater sediments. Furthermore, speciation and distribution measurements indicate that these minerals scavenge trace elements and limit the transport of micronutrients and contaminants in karst aquifer systems while also potentially recording changes in anthropogenic surface activity and land-use.

  5. Distribution and speciation of trace elements in iron and manganese oxide cave deposits

    SciTech Connect

    Frierdich, Andrew J.; Catalano, Jeffrey G.

    2012-10-24

    Fe and Mn oxide minerals control the distribution and speciation of heavy metals and trace elements in soils and aquatic systems through chemical mechanisms involving adsorption, incorporation, and electron transfer. The Pautler Cave System in Southwest Illinois, an analog to other temperate carbonate-hosted karst systems, contains Fe and Mn oxide minerals that form in multiple depositional environments and have high concentrations of associated trace elements. Synchrotron-based micro-scanning X-ray fluorescence ({mu}-SXRF) shows unique spatial distributions of Fe, Mn, and trace elements in mineral samples. Profile maps of Mn oxide cave stream pebble coatings show Fe- and As-rich laminations, indicating dynamic redox conditions in the cave stream. {mu}-SXRF maps demonstrate that Ni, Cu, and Zn correlate primarily with Mn whereas As correlates with both Mn and Fe; As is more enriched in the Fe phase. Zn is concentrated in the periphery of Mn oxide stream pebble coatings, and may be an indication of recent anthropogenic surface activity. X-ray absorption fine structure spectroscopy measurements reveal that As(V) occurs as surface complexes on Mn and Fe oxides whereas Zn(II) associated with Mn oxides is adsorbed to the basal planes of phyllomanganates in a tetrahedral coordination. Co(III) and Se(IV) are also observed to be associated with Mn oxides. The observation of Fe, Mn, and trace element banding in Mn oxide cave stream pebble coatings suggests that these materials are sensitive to and document aqueous redox conditions, similar to ferromanganese nodules in soils and in marine and freshwater sediments. Furthermore, speciation and distribution measurements indicate that these minerals scavenge trace elements and limit the transport of micronutrients and contaminants in karst aquifer systems while also potentially recording changes in anthropogenic surface activity and land-use.

  6. Viral expression cassette elements to enhance transgene target specificity and expression in gene therapy.

    PubMed

    Powell, Sara Kathleen; Rivera-Soto, Ricardo; Gray, Steven James

    2015-01-01

    Over the last five years, the number of clinical trials involving AAV (adeno-associated virus) and lentiviral vectors continue to increase by about 150 trials each year. For continued success, AAV and lentiviral expression cassettes need to be designed to meet each disease's specific needs. This review discusses how viral vector expression cassettes can be engineered with elements to enhance target specificity and increase transgene expression. The key differences relating to target specificity between ubiquitous and tissue-specific promoters are discussed, as well as how endogenous miRNAs and their target sequences have been used to restrict transgene expression. Specifically, relevant studies indicating how cis-acting elements such as introns, WPRE, polyadenylation signals, and the CMV enhancer are highlighted to show their utility for enhancing transgene expression in gene therapy applications. All discussion bears in mind that expression cassettes have space constraints. In conclusion, this review can serve as a menu of vector genome design elements and their cost in terms of space to thoughtfully engineer viral vectors for gene therapy. PMID:25636961

  7. Viral Expression Cassette Elements to Enhance Transgene Target Specificity and Expression in Gene Therapy

    PubMed Central

    Powell, Sara Kathleen; Rivera-Soto, Ricardo; Gray, Steven James

    2015-01-01

    Over the last five years, the number of clinical trials involving AAV (adeno-associated virus) and lentiviral vectors continue to increase by about 150 trials each year. For continued success, AAV and lentiviral expression cassettes need to be designed to meet each disease's specific needs. This review discusses how viral vector expression cassettes can be engineered with elements to enhance target specificity and increase transgene expression. The key differences relating to target specificity between ubiquitous and tissue-specific promoters are discussed, as well as how endogenous miRNAs and their target sequences have been used to restrict transgene expression. Specifically, relevant studies indicating how cis-acting elements such as introns, WPRE, polyadenylation signals, and the CMV enhancer are highlighted to show their utility for enhancing transgene expression in gene therapy applications. All discussion bears in mind that expression cassettes have space constraints. In conclusion, this review can serve as a menu of vector genome design elements and their cost in terms of space to thoughtfully engineer viral vectors for gene therapy. PMID:25636961

  8. A fish-specific transposable element shapes the repertoire of p53 target genes in zebrafish.

    PubMed

    Micale, Lucia; Loviglio, Maria Nicla; Manzoni, Marta; Fusco, Carmela; Augello, Bartolomeo; Migliavacca, Eugenia; Cotugno, Grazia; Monti, Eugenio; Borsani, Giuseppe; Reymond, Alexandre; Merla, Giuseppe

    2012-01-01

    Transposable elements, as major components of most eukaryotic organisms' genomes, define their structural organization and plasticity. They supply host genomes with functional elements, for example, binding sites of the pleiotropic master transcription factor p53 were identified in LINE1, Alu and LTR repeats in the human genome. Similarly, in this report we reveal the role of zebrafish (Danio rerio) EnSpmN6_DR non-autonomous DNA transposon in shaping the repertoire of the p53 target genes. The multiple copies of EnSpmN6_DR and their embedded p53 responsive elements drive in several instances p53-dependent transcriptional modulation of the adjacent gene, whose human orthologs were frequently previously annotated as p53 targets. These transposons define predominantly a set of target genes whose human orthologs contribute to neuronal morphogenesis, axonogenesis, synaptic transmission and the regulation of programmed cell death. Consistent with these biological functions the orthologs of the EnSpmN6_DR-colonized loci are enriched for genes expressed in the amygdala, the hippocampus and the brain cortex. Our data pinpoint a remarkable example of convergent evolution: the exaptation of lineage-specific transposons to shape p53-regulated neuronal morphogenesis-related pathways in both a hominid and a teleost fish. PMID:23118857

  9. Hydrogen isotope and light element profiling in solid tritium targets used for neutron production

    NASA Astrophysics Data System (ADS)

    Earwaker, L. G.; England, J. B. A.; Goldie, D. J.

    1987-04-01

    Five targets consisting of titanium tritide layers on copper backings have been investigated using nuclear reaction analysis. As these targets are commonly used to produce monoenergetic neutrons via the T(p, n) 3 He and T(d, n) 4 He reactions, it is important to know of the presence of other elements which may produce neutrons at different energies. The thicknesses of the titanium tritide layers were measured by observing the T(p, n) 3 He threshold yield curve and also the energy spread of the neutrons using a 3He-filled gridded ion chamber. Elastic recoil analysis with a particle identifying system was used to measure the hydrogen, deuterium, tritium and 3He content, and elastic scattering was used to study the carbon and oxygen. Surprisingly high concentrations of both hydrogen and oxygen were found on all targets, including the three which had never been used. Also surprising was the 3He content which was approximately the same for targets of all ages and conditions of use. As expected, the carbon content increased strongly with use, originating no doubt, from vacuum pump oil. Up to 3% deuterium atoms were observed in unused targets with much higher contents being recorded in used targets.

  10. New insights into water oxidation reactions from photocatalysis, electrocatalysis to chemical catalysis: an example of iron-based oxides doped with foreign elements.

    PubMed

    Huang, Jingwei; Du, Xiaoqiang; Feng, YingYing; Zhao, Yukun; Ding, Yong

    2016-04-21

    We have examined the catalytic activity of four different iron-based oxides doped with foreign elements using three common driving forces. The data clearly demonstrate that their water oxidation catalytic activity differ widely under different driving forces.

  11. Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys

    NASA Astrophysics Data System (ADS)

    Platt, P.; Frankel, P.; Gass, M.; Howells, R.; Preuss, M.

    2014-11-01

    Corrosion is a key limiting factor in the degradation of zirconium alloys in light water reactors. Developing a mechanistic understanding of the corrosion process offers a route towards improving safety and efficiency as demand increases for higher burn-up of fuel. Oxides formed on zirconium alloys are composed of both monoclinic and meta-stable tetragonal phases, and are subject to a number of potential mechanical degradation mechanisms. The work presented investigates the link between the tetragonal to monoclinic oxide phase transformation and degradation of the protective character of the oxide layer. To achieve this, Abaqus finite element analysis of the oxide phase transformation has been carried out. Study of the change in transformation strain energy shows how relaxation of oxidation induced stress and fast fracture at the metal-oxide interface could destabilise the tetragonal phase. Central to this is the identification of the transformation variant most likely to form, and understanding why twinning of the transformed grain is likely to occur. Development of transformation strain tensors and analysis of the strain components allows some separation of dilatation and shear effects. Maximum principal stress is used as an indication of fracture in the surrounding oxide layer. Study of the stress distributions shows the way oxide fracture is likely to occur and the differing effects of dilatation and shape change. Comparison with literature provides qualitative validation of the finite element simulations.

  12. [The development of therapeutics targeting oxidative stress in prostate cancer].

    PubMed

    Shiota, Masaki; Yokomizo, Akira; Naito, Seiji

    2014-12-01

    Oxidative stress is caused by increased reactive-oxygen species (ROS) due to augmented ROS production and impaired anti-oxidative capacity. Recently, oxidative stress has been revealed to promote castration resistance via androgen receptor(AR)-dependent pathway such as AR overexpression, AR cofactor, and AR post-translational modification as well as AR-independent pathway, leading to the emergence of castration-resistant prostate cancer (CRPC). Therefore, antioxidants therapy using natural and chemical ROS scavengers and inhibitors of ROS production seems to be a promising therapy for CRPC as well as preventing castration resistance. However, at present, the application to therapeutics is limited. Therefore, further research on oxidative stress in prostate cancer, as well as on the development for clinical application would be needed.

  13. Potentially toxic element release by fenton oxidation of sewage sludge.

    PubMed

    Andrews, J P; Asaadi, M; Clarke, B; Ouki, S

    2006-01-01

    The presence, in sewage sludge, of excess levels of the potentially toxic elements (PTE) copper, zinc, chromium, cadmium, nickel, lead and mercury, could impact on our ability to recycle these residues in the future. Far stricter limits on the levels of PTEs are likely in proposed legislation. A method involving the dosing of Fenton's reagent, a mixture of ferrous iron and hydrogen peroxide, under acidic conditions was evaluated for its potential to reduce metal levels. The [Fe]:[H2O2] (w/w) ratio was found to give a good indication of the percentage copper and zinc elution obtainable. Sites with no iron dosing as part of wastewater treatment required extra iron to be added in order to initiate the Fenton's reaction. A significant reduction, in excess of 70%, of the copper and zinc was eluted from both raw primary and activated sludge solid fractions. Cadmium and nickel could be reduced to below detection limits but elution of mercury, lead and chromium was less than 40%. The iron catalyst concentration was found to be a crucial parameter. This process has the potential to reduce the heavy metal content of the sludge and allow the recycling of sludge to continue in a sustainable manner. PMID:17087386

  14. Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: possible therapeutic targets?

    PubMed

    Rochette, Luc; Lorin, Julie; Zeller, Marianne; Guilland, Jean-Claude; Lorgis, Luc; Cottin, Yves; Vergely, Catherine

    2013-12-01

    Nitric oxide (NO) is synthetized enzymatically from l-arginine (l-Arg) by three NO synthase isoforms, iNOS, eNOS and nNOS. The synthesis of NO is selectively inhibited by guanidino-substituted analogs of l-Arg or methylarginines such as asymmetric dimethylarginine (ADMA), which results from protein degradation in cells. Many disease states, including cardiovascular diseases and diabetes, are associated with increased plasma levels of ADMA. The N-terminal catalytic domain of these NOS isoforms binds the heme prosthetic group as well as the redox cofactor, tetrahydrobiopterin (BH(4)) associated with a regulatory protein, calmodulin (CaM). The enzymatic activity of NOS depends on substrate and cofactor availability. The importance of BH(4) as a critical regulator of eNOS function suggests that BH(4) may be a rational therapeutic target in vascular disease states. BH(4) oxidation appears to be a major contributor to vascular dysfunction associated with hypertension, ischemia/reperfusion injury, diabetes and other cardiovascular diseases as it leads to the increased formation of oxygen-derived radicals due to NOS uncoupling rather than NO. Accordingly, abnormalities in vascular NO production and transport result in endothelial dysfunction leading to various cardiovascular disorders. However, some disorders including a wide range of functions in the neuronal, immune and cardiovascular system were associated with the over-production of NO. Inhibition of the enzyme should be a useful approach to treat these pathologies. Therefore, it appears that both a lack and excess of NO production in diseases can have various important pathological implications. In this context, NOS modulators (exogenous and endogenous) and their therapeutic effects are discussed.

  15. Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: possible therapeutic targets?

    PubMed

    Rochette, Luc; Lorin, Julie; Zeller, Marianne; Guilland, Jean-Claude; Lorgis, Luc; Cottin, Yves; Vergely, Catherine

    2013-12-01

    Nitric oxide (NO) is synthetized enzymatically from l-arginine (l-Arg) by three NO synthase isoforms, iNOS, eNOS and nNOS. The synthesis of NO is selectively inhibited by guanidino-substituted analogs of l-Arg or methylarginines such as asymmetric dimethylarginine (ADMA), which results from protein degradation in cells. Many disease states, including cardiovascular diseases and diabetes, are associated with increased plasma levels of ADMA. The N-terminal catalytic domain of these NOS isoforms binds the heme prosthetic group as well as the redox cofactor, tetrahydrobiopterin (BH(4)) associated with a regulatory protein, calmodulin (CaM). The enzymatic activity of NOS depends on substrate and cofactor availability. The importance of BH(4) as a critical regulator of eNOS function suggests that BH(4) may be a rational therapeutic target in vascular disease states. BH(4) oxidation appears to be a major contributor to vascular dysfunction associated with hypertension, ischemia/reperfusion injury, diabetes and other cardiovascular diseases as it leads to the increased formation of oxygen-derived radicals due to NOS uncoupling rather than NO. Accordingly, abnormalities in vascular NO production and transport result in endothelial dysfunction leading to various cardiovascular disorders. However, some disorders including a wide range of functions in the neuronal, immune and cardiovascular system were associated with the over-production of NO. Inhibition of the enzyme should be a useful approach to treat these pathologies. Therefore, it appears that both a lack and excess of NO production in diseases can have various important pathological implications. In this context, NOS modulators (exogenous and endogenous) and their therapeutic effects are discussed. PMID:23859953

  16. Targeted iron oxide nanoparticles for the enhancement of radiation therapy.

    PubMed

    Hauser, Anastasia K; Mitov, Mihail I; Daley, Emily F; McGarry, Ronald C; Anderson, Kimberly W; Hilt, J Zach

    2016-10-01

    To increase the efficacy of radiation, iron oxide nanoparticles can be utilized for their ability to produce reactive oxygen species (ROS). Radiation therapy promotes leakage of electrons from the electron transport chain and leads to an increase in mitochondrial production of the superoxide anion which is converted to hydrogen peroxide by superoxide dismutase. Iron oxide nanoparticles can then catalyze the reaction from hydrogen peroxide to the highly reactive hydroxyl radical. Therefore, the overall aim of this project was to utilize iron oxide nanoparticles conjugated to a cell penetrating peptide, TAT, to escape lysosomal encapsulation after internalization by cancer cells and catalyze hydroxyl radical formation. It was determined that TAT functionalized iron oxide nanoparticles and uncoated iron oxide nanoparticles resulted in permeabilization of the lysosomal membranes. Additionally, mitochondrial integrity was compromised when A549 cells were treated with both TAT-functionalized nanoparticles and radiation. Pre-treatment with TAT-functionalized nanoparticles also significantly increased the ROS generation associated with radiation. A long term viability study showed that TAT-functionalized nanoparticles combined with radiation resulted in a synergistic combination treatment. This is likely due to the TAT-functionalized nanoparticles sensitizing the cells to subsequent radiation therapy, because the nanoparticles alone did not result in significant toxicities. PMID:27521615

  17. Morpholino antisense oligonucleotides targeting intronic repressor Element1 improve phenotype in SMA mouse models

    PubMed Central

    Osman, Erkan Y.; Miller, Madeline R.; Robbins, Kate L.; Lombardi, Abby M.; Atkinson, Arleigh K.; Brehm, Amanda J.; Lorson, Christian L.

    2014-01-01

    Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by the loss of Survival Motor Neuron-1 (SMN1). In all SMA patients, a nearly identical copy gene called SMN2 is present, which produces low levels of functional protein owing to an alternative splicing event. To prevent exon-skipping, we have targeted an intronic repressor, Element1 (E1), located upstream of SMN2 exon 7 using Morpholino-based antisense oligonucleotides (E1MO-ASOs). A single intracerebroventricular injection in the relatively severe mouse model of SMA (SMNΔ7 mouse model) elicited a robust induction of SMN protein, and mean life span was extended from an average survival of 13 to 54 days following a single dose, consistent with large weight gains and a correction of the neuronal pathology. Additionally, E1MO-ASO treatment in an intermediate SMA mouse (SMNRT mouse model) significantly extended life span by ∼700% and weight gain was comparable with the unaffected animals. While a number of experimental therapeutics have targeted the ISS-N1 element of SMN2 pre-mRNA, the development of E1 ASOs provides a new molecular target for SMA therapeutics that dramatically extends survival in two important pre-clinical models of disease. PMID:24781211

  18. Plant mitochondria: source and target for nitric oxide.

    PubMed

    Igamberdiev, Abir U; Ratcliffe, R George; Gupta, Kapuganti J

    2014-11-01

    Plant mitochondria generate nitric oxide (NO) under anoxia through the action of cytochrome c oxidase and other electron transport chain components on nitrite. This reductive mechanism operates under aerobic conditions at high electron transport rates. Indirect evidence also indicates that the oxidative pathway of NO production may be associated with mitochondria. We review the consequences of mitochondrial NO production, including the inhibition of oxygen uptake by cytochrome c oxidase, the inhibition of aconitase and succinate dehydrogenase, the induction of alternative oxidase, and the nitrosylation of several proteins, including glycine decarboxylase. The importance of these events in adaptation to abiotic and biotic stresses is discussed.

  19. Targeted site-specific cleavage of HIV-1 viral Rev responsive element by copper aminoglycosides.

    PubMed

    Sreedhara, A; Cowan, J A

    2001-02-01

    Site-specific cleavage of the HIV-1 viral Rev responsive element by copper aminoglycosides is reported under physiological conditions. This bubble and stem-loop RNA structure is efficiently targeted at micromolar concentrations of complex. The specificity of cleavage of structured viral RNA relative to a non-cognate tRNAPhe of well-defined secondary and tertiary structure is demonstrated. Cleavage products from simpler substrates [diribonucleotide (ApA) and 2',3'-cyclic monophosphate ester (cAMP)] were analyzed by 31P NMR and demonstrate a hydrolytic mechanism in the absence of external redox agents. These results demonstrate copper aminoglycosides to be highly efficient chemical nucleases with a targeting capability for viral RNA and suggest a novel methodology to counter RNA viruses.

  20. Alterations in trace elements and oxidative stress in uremic patients with dementia.

    PubMed

    Guo, Chih-Hung; Ko, Wang-Sheng; Chen, Pei-Chung; Hsu, Guoo-Shyng W; Lin, Chia-Yeh; Wang, Chia-Liang

    2009-10-01

    The present study was conducted to compare the trace elements and oxidative status between uremic patients with and without dementia. Chronic hemodialysis patients with dementia (n = 20) and without dementia (n = 25), and age-matched healthy volunteers (n = 20) were enrolled. The nutritional status, blood levels of trace elements aluminum (Al), zinc (Zn), copper (Cu), magnesium (Mg) and iron (Fe), malondialdehyde (MDA), and protein carbonyl production, antioxidant enzymes glutathione peroxidase (GPx), and glutathione reductase (GR) activities were measured. No significant difference in nutritional status or clinical characteristics was observed between nondementia and dementia patients. However, uremic patients with dementia have significantly higher Al, Cu, and Mg and lower Zn concentrations, as well as increased Cu/Zn ratio in comparison to nondementia patients. There were statistically significant increased MDA and carbonyl production and decreased GPx and GR activities in dementia patients. Furthermore, the significant associations of Al, Mg, and Cu/Zn ratio with oxidative status in patients with dementia were noted. The dementia may initially worsen with abnormal metabolism of trace elements and oxidative stress occurrence. Our results suggest that abnormalities in trace element levels are associated with oxidative stress and may be a major risk factor in the dementia development of uremic patients.

  1. Nickel oxide and molybdenum oxide thin films for infrared imaging prepared by biased target ion-beam deposition

    NASA Astrophysics Data System (ADS)

    Jin, Yao; Saint John, David; Jackson, Tom N.; Horn, Mark W.

    2014-06-01

    Vanadium oxide (VOx) thin films have been intensively used as sensing materials for microbolometers. VOx thin films have good bolometric properties such as low resistivity, high negative temperature coefficient of resistivity (TCR) and low 1/f noise. However, the processing controllability of VOx fabrication is difficult due to the multiple valence states of vanadium. In this study, metal oxides such as nickel oxide (NiOx) and molybdenum oxide (MoOx) thin films have been investigated as possible new microbolometer sensing materials with improved process controllability. Nickel oxide and molybdenum oxide thin films were prepared by reactive sputtering of nickel and molybdenum metal targets in a biased target ion beam deposition tool. In this deposition system, the Ar+ ion energy (typically lower than 25 eV) and the target bias voltage can be independently controlled since ions are remotely generated. A residual gas analyzer (RGA) is used to precisely control the oxygen partial pressure. A real-time spectroscopic ellipsometry is used to monitor the evolution of microstructure and properties of deposited oxides during growth and post-deposition. The properties of deposited oxide thin films depend on processing parameters. The resistivity of the NiOx thin films is in the range of 0.5 to approximately 100 ohm-cm with a TCR from -2%/K to -3.3%/K, where the resistivity of MoOx is between 3 and 2000 ohm-cm with TCR from -2.1%/K to -3.2%/K. We also report on the thermal stability of these deposited oxide thin films.

  2. Conformational toggling controls target site choice for the heteromeric transposase element Tn7.

    PubMed

    Shi, Qiaojuan; Straus, Marco R; Caron, Jeremy J; Wang, Huasheng; Chung, Yu Seon; Guarné, Alba; Peters, Joseph E

    2015-12-15

    The bacterial transposon Tn7 facilitates horizontal transfer by directing transposition into actively replicating DNA with the element-encoded protein TnsE. Structural analysis of the C-terminal domain of wild-type TnsE identified a novel protein fold including a central V-shaped loop that toggles between two distinct conformations. The structure of a robust TnsE gain-of-activity variant has this loop locked in a single conformation, suggesting that conformational flexibility regulates TnsE activity. Structure-based analysis of a series of TnsE mutants relates transposition activity to DNA binding stability. Wild-type TnsE appears to naturally form an unstable complex with a target DNA, whereas mutant combinations required for large changes in transposition frequency and targeting stabilized this interaction. Collectively, our work unveils a unique structural proofreading mechanism where toggling between two conformations regulates target commitment by limiting the stability of target DNA engagement until an appropriate insertion site is identified. PMID:26384427

  3. Conformational toggling controls target site choice for the heteromeric transposase element Tn7

    PubMed Central

    Shi, Qiaojuan; Straus, Marco R.; Caron, Jeremy J.; Wang, Huasheng; Chung, Yu Seon; Guarné, Alba; Peters, Joseph E.

    2015-01-01

    The bacterial transposon Tn7 facilitates horizontal transfer by directing transposition into actively replicating DNA with the element-encoded protein TnsE. Structural analysis of the C-terminal domain of wild-type TnsE identified a novel protein fold including a central V-shaped loop that toggles between two distinct conformations. The structure of a robust TnsE gain-of-activity variant has this loop locked in a single conformation, suggesting that conformational flexibility regulates TnsE activity. Structure-based analysis of a series of TnsE mutants relates transposition activity to DNA binding stability. Wild-type TnsE appears to naturally form an unstable complex with a target DNA, whereas mutant combinations required for large changes in transposition frequency and targeting stabilized this interaction. Collectively, our work unveils a unique structural proofreading mechanism where toggling between two conformations regulates target commitment by limiting the stability of target DNA engagement until an appropriate insertion site is identified. PMID:26384427

  4. NOMADSS Aircraft Observations Suggest Rapid Oxidation of Elemental Mercury in the Subtropical Free Troposphere

    NASA Astrophysics Data System (ADS)

    Shah, V.; Jaegle, L.; Gratz, L.; Ambrose, J. L., II; Jaffe, D. A.

    2014-12-01

    Oxidized mercury species constitute a small fraction of the total atmospheric burden of mercury, but play an important role in the cycling of mercury in the environment. They dominate the deposition flux of mercury from the atmosphere to the Earth's surfaces, because of their high solubility and low vapor pressure. Their primary source is in-situ oxidation of elemental mercury, but our understanding of these oxidation mechanisms is limited. The Nitrogen, Oxidants, Mercury, and Aerosol Distribution, Sources, and Sinks (NOMADSS) experiment was designed with the aim of addressing these limitations, using aircraft-based speicated measurements of mercury in the troposphere over the eastern US in the summer of 2013. We observed high concentrations of oxidized mercury in clean, dry pockets of air originating in the upper troposphere. We analyze these observations with the GEOS-Chem model, which simulates oxidation of mercury by bromine radicals. The modeled concentrations of oxidized mercury are found to be low, by up to a factor of ten, compared to the observations. This indicates that the oxidation rate of mercury is much faster than that calculated in the model. We perform two simulations to test the sensitivity of the modeled oxidation: (i) by increasing bromine radical concentrations by a factor of three in the 45°S-45°N latitude band, and (ii) by using an oxidation rate constant that is higher by a factor of five. We find that the model performance improves considerably in both these simulations. Here, we present a comparison of the standard and the sensitivity simulations to the NOMADSS and the surface-based Mercury Deposition Network (MDN) observations. We further discuss the potential implications of the faster oxidation on the global transport, distribution, and burden of oxidized mercury.

  5. Oxide formation and alloying elements enrichment on TRIP steel surface during inter-critical annealing.

    PubMed

    Gong, Y F; Birosca, S; Kim, H S; De Cooman, B C

    2008-06-01

    The gas atmosphere in continuous annealing and galvanizing lines alters both composition and microstructure of the surface and sub-surface of sheet steels. The alloying element enrichments and the oxide morphology on transformation-induced plasticity steel surfaces are strongly influenced by the dew point of the furnace atmosphere and annealing temperature. The formation of a thin oxide film and enrichment of the alloying elements during annealing may result in surface defects on galvanized sheet products. The present contribution reports on the use of microanalysis techniques such as electron backscatter diffraction, glow discharge optical emission spectroscopy and electron probe micro-analysis for the detailed surface analysis of inter-critically annealed transformation-induced plasticity steel such as oxide phase determination, microstructure and microtexture evolutions.

  6. Oxidation of alloys targeted for advanced steam turbines

    SciTech Connect

    Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.; Alman, D.E.

    2006-03-12

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines.

  7. The {alpha}-induced thick-target {gamma}-ray yield from light elements

    SciTech Connect

    Heaton, R.K. |

    1994-10-01

    The {alpha}-induced thick-target {gamma}-ray yield from light elements has been measured in the energy range 5.6 MeV {le} E{sub {alpha}} {le} 10 MeV. The {gamma}-ray yield for > 2.1 MeV from thick targets of beryllium, boron nitride, sodium fluoride, magnesium, aluminum and silicon were measured using the {alpha}-particle beam from the Lawrence Berkeley Laboratories 88 in. cyclotron. The elemental yields from this experiment were used to construct the {alpha}-induced direct production {gamma}-ray spectrum from materials in the SNO detector, a large volume ultra-low background neutrino detector located in the Creighton mine near Sudbury, Canada. This background source was an order of magnitude lower than predicted by previous calculations. These measurements are in good agreement with theoretical calculations of this spectrum based on a statistical nuclear model of the reaction, with the gross high energy spectrum structure being reproduced to within a factor of two. Detailed comparison of experimental and theoretical excitation population distribution of several residual nuclei indicate the same level of agreement within experimental uncertainties.

  8. Trace element cycling through iron oxide minerals during redox-driven dynamic recrystallization

    SciTech Connect

    Frierdich, Andrew J.; Luo, Yun; Catalano, Jeffrey G.

    2011-11-17

    Microbially driven iron redox cycling in soil and sedimentary systems, including during diagenesis and fluid migration, may activate secondary abiotic reactions between aqueous Fe(II) and solid Fe(III) oxides. These reactions catalyze dynamic recrystallization of iron oxide minerals through localized and simultaneous oxidative adsorption of Fe(II) and reductive dissolution of Fe(III). Redox-active trace elements undergo speciation changes during this process, but the impact redox-driven recrystallization has on redox-inactive trace elements associated with iron oxides is uncertain. Here we demonstrate that Ni is cycled through the minerals goethite and hematite during redox-driven recrystallization. X-ray absorption spectroscopy demonstrates that during this process adsorbed Ni becomes progressively incorporated into the minerals. Kinetic studies using batch reactors containing aqueous Fe(II) and Ni preincorporated into iron oxides display substantial release of Ni to solution. We conclude that iron oxide recrystallization activated by aqueous Fe(II) induces cycling of Ni through the mineral structure, with adsorbed Ni overgrown in regions of Fe(II) oxidative adsorption and incorporated Ni released in regions of reductive dissolution of structural Fe(III). The redistribution of Ni among the mineral bulk, mineral surface, and aqueous solution appears to be thermodynamically controlled and catalyzed by Fe(II). Our work suggests that important proxies for ocean composition on the early Earth may be invalid, identifies new processes controlling micronutrient availability in soil, sedimentary, and aquatic ecosystems, and points toward a mechanism for trace element mobilization during diagenesis and enrichment in geologic fluids.

  9. Bone as target organ for metals: the case of f-elements.

    PubMed

    Vidaud, Claude; Bourgeois, Damien; Meyer, Daniel

    2012-06-18

    The skeleton is a target organ for most metals. This leads to their bioaccumulation, either as storage of useful oligoelements or as a protection against damage by toxic elements. The different events leading to their accumulation in this organ, under constant remodeling, are not fully understood, nor the full subsequent impact on bone metabolism. This lack of knowledge is particularly true for lanthanides and actinides, whose use has been increasing over recent decades. These metals, known as f-elements, present chemical similarities and differences. After a comparison of the biologically relevant physicochemical properties of lanthanides and actinides, and a brief reminder of the main events of bone metabolism, this review considers the results published over the past decade regarding the interaction between bones and f-elements. Emphasis will be given to the molecular events, which constitute the basis of the most recent toxicological studies in this domain but still need further investigation. Ionic exchanges with the inorganic matrix, interactions with bone proteins, and cellular mechanism disturbances are mainly considered in this review.

  10. Effects of reactive element additions and sulfur removal on the oxidation behavior of FECRAL alloys

    SciTech Connect

    Stasik, M.C.; Pettit, F.S.; Meier, G.H. . Dept. of Materials Science and Engineering); Ashary, A. ); Smialek, J.L. )

    1994-12-15

    The results of this study have shown that desulfurization of FeCrAl alloys by hydrogen annealing can result in improvements in cyclic oxidation comparable to that achieved by doping with reactive elements. Moreover, specimens of substantial thicknesses can be effectively desulfurized because of the high diffusivity of sulfur in bcc iron alloys. The results have also shown that there is less stress generation during the cyclic oxidation of Y-doped FeCrAl compared to Ti-doped or desulfurized FeCrAl. This indicates that the growth mechanism, as well as the strength of the oxide/alloy interface, influences the ultimate oxidation morphology and stress state which will certainly affect the length of time the alumina remains protective.

  11. Microbially Induced Reductive Dissolution of Trace Element-Rich Lacustrine Iron-Oxides

    NASA Astrophysics Data System (ADS)

    Crowe, S. A.; Kulczykci, E.; O'Neill, A. H.; Roberts, J. A.; Fowle, D. A.

    2004-12-01

    Iron (oxy)hydroxides are ubiquitous components of surfacial materials and are often the dominant redox buffering solid phases in soils and sediments. As a result, the geochemical behavior of these minerals has a profound influence on the global biogeochemical cycling of trace elements, including heavy metals and arsenic (As), in addition to nutrients such as, sulfur (S), carbon (C), nitrogen (N), and phosphorus (P). Understanding the behavior of trace elements and nutrients during biological and abiotic processes that effect iron (Fe) mineral phase transformations is paramount for predicting their distribution, mobility, and bioavailability in the environment. To evaluate the impact of dissimilatory Fe-reduction (DIR) on trace element mobility we have conducted batch incubations of Fe-rich lateritic lacustrine sediments. In contrast to mid-latitude lakes where Fe (oxy)hydroxides constitute only a small fraction of the total sediment, tropical lake sediments have been known to comprise up to 40-60 wt. % Fe-oxides. Under suboxic and nonsulphidogenic conditions it is likely that DIR plays a prominent role in early diagenesis and therefore may exert control on the fate and distribution of many trace elements in this environment (e.g. Crowe et al. 2004). In batch incubations conducted in a minimal media of similar composition to typical freshwater the lacustrine Fe-oxides were reductively dissolved at a rate very similar to pure synthetic goethite of similar surface area (measured by N2-BET). This is in contrast to the slower rates previously observed for trace element substituted Fe-oxides. These slower rates have been attributed to surface passivation by secondary Al and Cr mineral precipitation. We propose that these passivation effects may be offset in minimal media incubations by enhanced microbial metabolism due the presence of nutrients (P, Co and other metals) in the lacustrine Fe-oxides. These nutrients became available with progressive reduction as the

  12. A versatile fluorescent biosensor based on target-responsive graphene oxide hydrogel for antibiotic detection.

    PubMed

    Tan, Bing; Zhao, Huimin; Du, Lei; Gan, Xiaorong; Quan, Xie

    2016-09-15

    A fluorescent sensing platform based on graphene oxide (GO) hydrogel was developed through a fast and facile gelation, immersion and fluorescence determination process, in which the adenosine and aptamer worked as the co-crosslinkers to connect the GO sheets and then form the three-dimensional (3D) macrostructures. The as-prepared hydrogel showed high mechanical strength and thermal stability. The optimal hydrogel had a linear response for oxytetracycline (OTC) of 25-1000μg/L and a limit of quantitation (LOQ) of 25μg/L. Moreover, together with the high affinity of the aptamer for its target, this assay exhibited excellent sensitivity and selectivity. According to its design principle, the as-designed hydrogel was also tested to possess the generic detection function for other molecules by simply replacing its recognition element, which is expected to lay a foundation to realize the assembly of functionalized hierarchical graphene-based materials for practical applications in analytical field. PMID:27132000

  13. Oxidation of dissolved elemental mercury by thiol compounds under anoxic conditions

    SciTech Connect

    Zheng, Wang; Lin, Hui; Mann, Benjamin F; Liang, Liyuan; Gu, Baohua

    2013-01-01

    Mercuric mercury, Hg(II), forms strong complexes with thiol compounds that commonly dominate Hg(II) speciation in natural freshwater. However, reactions between dissolved elemental Hg(0) and thiols are not well understood although these processes are likely to be important in determining Hg speciation and geochemical cycling in the environment. In this study, reaction rates and mechanisms between dissolved Hg(0) and a number of selected organic ligands with varying molecular structures and sulfur (S) oxidation states were determined to assess the role of these ligands in Hg(0) redox transformation. We found that all thiols caused oxidation of Hg(0) under anoxic conditions but, contrary to expectation, compounds with higher S-oxidation states (e.g., disulfide) than thiols exhibited little or no reactivity with Hg(0) at pH 7. The rate and extent of Hg(0) oxidation varied widely, with smaller aliphatic thiols showing the greatest degree of oxidation. The mechanism of the oxidation is attributed to a two-step process involving adsorption of Hg(0) to thiols followed by the charge transfer from Hg(0) to electron acceptors. These observations demonstrate a unique thiol-induced oxidation pathway of dissolved Hg(0), with important implications for the redox transformation, speciation, and bioavailability of Hg for microbial methylation in anoxic environments.

  14. Biodistribution of antibody-targeted and non-targeted iron oxide nanoparticles in a breast cancer mouse model

    NASA Astrophysics Data System (ADS)

    Tate, Jennifer A.; Kett, Warren; NDong, Christian; Griswold, Karl E.; Hoopes, P. Jack

    2013-02-01

    Iron oxide nanoparticle (IONP) hyperthermia is a novel therapeutic strategy currently under consideration for the treatment of various cancer types. Systemic delivery of IONP followed by non-invasive activation via a local alternating magnetic field (AMF) results in site-specific energy deposition in the IONP-containing tumor. Targeting IONP to the tumor using an antibody or antibody fragment conjugated to the surface may enhance the intratumoral deposition of IONP and is currently being pursued by many nanoparticle researchers. This strategy, however, is subject to a variety of restrictions in the in vivo environment, where other aspects of IONP design will strongly influence the biodistribution. In these studies, various targeted IONP are compared to non-targeted controls. IONP were injected into BT-474 tumor-bearing NSG mice and tissues harvested 24hrs post-injection. Results indicate no significant difference between the various targeted IONP and the non-targeted controls, suggesting the IONP were prohibitively-sized to incur tumor penetration. Additional strategies are currently being pursued in conjuncture with targeted particles to increase the intratumoral deposition.

  15. Lessons from Domestication: Targeting Cis-Regulatory Elements for Crop Improvement.

    PubMed

    Swinnen, Gwen; Goossens, Alain; Pauwels, Laurens

    2016-06-01

    Domestication of wild plant species has provided us with crops that serve our human nutritional needs. Advanced DNA sequencing has propelled the unveiling of underlying genetic changes associated with domestication. Interestingly, many changes reside in cis-regulatory elements (CREs) that control the expression of an unmodified coding sequence. Sequence variation in CREs can impact gene expression levels, but also developmental timing and tissue specificity of expression. When genes are involved in multiple pathways or active in several organs and developmental stages CRE modifications are favored in contrast to mutations in coding regions, due to the lack of detrimental pleiotropic effects. Therefore, learning from domestication, we propose that CREs are interesting targets for genome editing to create new alleles for plant breeding.

  16. MuTAnT: a family of Mutator-like transposable elements targeting TA microsatellites in Medicago truncatula.

    PubMed

    Stawujak, Krzysztof; Startek, Michał; Gambin, Anna; Grzebelus, Dariusz

    2015-08-01

    Transposable elements (TEs) are mobile DNA segments, abundant and dynamic in plant genomes. Because their mobility can be potentially deleterious to the host, a variety of mechanisms evolved limiting that negative impact, one of them being preference for a specific target insertion site. Here, we describe a family of Mutator-like DNA transposons in Medicago truncatula targeting TA microsatellites. We identified 218 copies of MuTAnTs and an element carrying a complete ORF encoding a mudrA-like transposase. Most insertion sites are flanked by a variable number of TA tandem repeats, indicating that MuTAnTs are specifically targeting TA microsatellites. Other TE families flanked by TA repeats (e.g. TAFT elements in maize) were described previously, however we identified the first putative autonomous element sharing that characteristics with a related group of short non-autonomous transposons.

  17. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR

    SciTech Connect

    K.C. Kwon

    2004-01-01

    The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and the hot-gas desulfurization using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process. The objective of this research is to support the near- and long-term process development efforts to commercialize this direct oxidation technology. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 160-{micro}m C-500-04 alumina catalyst particles and a micro bubble reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives, experiments on conversion of hydrogen sulfide into liquid elemental sulfur were carried out for the space time range of 1-6 milliseconds at 125-155 C to evaluate effects of reaction temperature, moisture concentration, reaction pressure on conversion of hydrogen sulfide into liquid elemental sulfur. Simulated coal gas mixtures consist of 70 v% hydrogen, 2,500-7,500-ppmv hydrogen sulfide, 1,250-3,750 ppmv sulfur dioxide, and 0-15 vol% moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to a micro bubble reactor are 100 cm{sup 3}/min at room temperature and atmospheric pressure. The temperature of the reactor is controlled in an oven at 125-155 C. The

  18. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR

    SciTech Connect

    K.C. Kwon

    2005-01-01

    The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and the hot-gas desulfurization using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process. The objective of this research is to support the near- and long-term process development efforts to commercialize this direct oxidation technology. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 160-{micro}m C-500-04 alumina catalyst particles and a micro bubble reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives, experiments on conversion of hydrogen sulfide into liquid elemental sulfur were carried out for the space time range of 0.059-0.87 seconds at 125-155 C to evaluate effects of reaction temperature, H{sub 2}S concentration, reaction pressure, and catalyst loading on conversion of hydrogen sulfide into liquid elemental sulfur. Simulated coal gas mixtures consist of 62-78 v% hydrogen, 3,000-7,000-ppmv hydrogen sulfide, 1,500-3,500 ppmv sulfur dioxide, and 10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to a micro bubble reactor are 50 cm{sup 3}/min at room temperature and atmospheric pressure. The temperature of the reactor is controlled in an

  19. Double-pulse laser-induced breakdown spectroscopy for trace element analysis in sintered iron oxide ceramics

    NASA Astrophysics Data System (ADS)

    Heilbrunner, H.; Huber, N.; Wolfmeir, H.; Arenholz, E.; Pedarnig, J. D.; Heitz, J.

    2012-01-01

    Double-pulse laser-induced breakdown spectroscopy (LIBS) is an emerging technique for accurate compositional analysis of many different materials. We present a systematic study of collinear double-pulse LIBS for analysis of the trace and side elements boron, manganese, copper, aluminum, titanium, silicon, chromium, nickel, potassium, and calcium in sintered iron oxide targets. The samples were ablated in air by single-pulse and double-pulse Nd:YAG laser radiation (6 ns pulse duration, laser wavelength of 532 nm) and spectra were recorded with an Echelle spectrometer equipped with an ICCD camera. We investigated the evolution of atomic and ionic line emission intensities for different interpulse delay times between the laser pulses (from 100 ns to 50 μs) and gate delays after the second laser pulse. We also varied the energy partition between the first and second laser pulse and the size of the irradiated spot at the sample surface. For the trace and side elements, we observed double-pulse LIBS signals that were enhanced as compared to single-pulse measurements depending on the interpulse delay time, the energy partition between the pulses, and the spot size. For the elements boron, copper, aluminum, titanium, chromium, potassium, and calcium limits of detection below 10 ppm were achieved.

  20. Oxidation of hydrogen halides to elemental halogens with catalytic molten salt mixtures

    DOEpatents

    Rohrmann, Charles A.

    1978-01-01

    A process for oxidizing hydrogen halides by means of a catalytically active molten salt is disclosed. The subject hydrogen halide is contacted with a molten salt containing an oxygen compound of vanadium and alkali metal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen. The reduced vanadium which remains after this contacting is regenerated to the active higher valence state by contacting the spent molten salt with a stream of oxygen-bearing gas.

  1. Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer

    PubMed Central

    Qu, Q; Zeng, F; Liu, X; Wang, Q J; Deng, F

    2016-01-01

    Tumor cells exhibit unique metabolic adaptations that are increasingly viewed as potential targets for novel and specific cancer therapies. Among these targets, the carnitine palmitoyltransferase system is responsible for delivering the long-chain fatty acid (FA) from cytoplasm into mitochondria for oxidation, where carnitine palmitoyltransferase I (CPTI) catalyzes the rate-limiting step of fatty acid oxidation (FAO). With increasing understanding of the crucial role had by fatty acid oxidation in cancer, CPTI has received renewed attention as a pivotal mediator in cancer metabolic mechanism. CPTI activates FAO and fuels cancer growth via ATP and NADPH production, constituting an essential part of cancer metabolism adaptation. Moreover, CPTI also functionally intertwines with other key pathways and factors to regulate gene expression and apoptosis of cancer cell. Here, we summarize recent findings and update the current understanding of FAO and CPTI in cancer and provide theoretical basis for this enzyme as an emerging potential molecular target in cancer therapeutic intervention. PMID:27195673

  2. Halbach arrays consisting of cubic elements optimised for high field gradients in magnetic drug targeting applications

    NASA Astrophysics Data System (ADS)

    Barnsley, Lester C.; Carugo, Dario; Owen, Joshua; Stride, Eleanor

    2015-11-01

    A key challenge in the development of magnetic drug targeting (MDT) as a clinically relevant technique is designing systems that can apply sufficient magnetic force to actuate magnetic drug carriers at useful tissue depths. In this study an optimisation routine was developed to generate designs of Halbach arrays consisting of multiple layers of high grade, cubic, permanent magnet elements, configured to deliver the maximum pull or push force at a position of interest between 5 and 50 mm from the array, resulting in arrays capable of delivering useful magnetic forces to depths past 20 mm. The optimisation routine utilises a numerical model of the magnetic field and force generated by an arbitrary configuration of magnetic elements. Simulated field and force profiles of optimised arrays were evaluated, also taking into account the forces required for assembling the array in practice. The resultant selection for the array, consisting of two layers, was then constructed and characterised to verify the simulations. Finally the array was utilised in a set of in vitro experiments to demonstrate its capacity to separate and retain microbubbles loaded with magnetic nanoparticles against a constant flow. The optimised designs are presented as light-weight, inexpensive options for applying high-gradient, external magnetic fields in MDT applications.

  3. Halbach arrays consisting of cubic elements optimised for high field gradients in magnetic drug targeting applications.

    PubMed

    Barnsley, Lester C; Carugo, Dario; Owen, Joshua; Stride, Eleanor

    2015-11-01

    A key challenge in the development of magnetic drug targeting (MDT) as a clinically relevant technique is designing systems that can apply sufficient magnetic force to actuate magnetic drug carriers at useful tissue depths. In this study an optimisation routine was developed to generate designs of Halbach arrays consisting of multiple layers of high grade, cubic, permanent magnet elements, configured to deliver the maximum pull or push force at a position of interest between 5 and 50 mm from the array, resulting in arrays capable of delivering useful magnetic forces to depths past 20 mm. The optimisation routine utilises a numerical model of the magnetic field and force generated by an arbitrary configuration of magnetic elements. Simulated field and force profiles of optimised arrays were evaluated, also taking into account the forces required for assembling the array in practice. The resultant selection for the array, consisting of two layers, was then constructed and characterised to verify the simulations. Finally the array was utilised in a set of in vitro experiments to demonstrate its capacity to separate and retain microbubbles loaded with magnetic nanoparticles against a constant flow. The optimised designs are presented as light-weight, inexpensive options for applying high-gradient, external magnetic fields in MDT applications. PMID:26458056

  4. Halbach arrays consisting of cubic elements optimised for high field gradients in magnetic drug targeting applications.

    PubMed

    Barnsley, Lester C; Carugo, Dario; Owen, Joshua; Stride, Eleanor

    2015-11-01

    A key challenge in the development of magnetic drug targeting (MDT) as a clinically relevant technique is designing systems that can apply sufficient magnetic force to actuate magnetic drug carriers at useful tissue depths. In this study an optimisation routine was developed to generate designs of Halbach arrays consisting of multiple layers of high grade, cubic, permanent magnet elements, configured to deliver the maximum pull or push force at a position of interest between 5 and 50 mm from the array, resulting in arrays capable of delivering useful magnetic forces to depths past 20 mm. The optimisation routine utilises a numerical model of the magnetic field and force generated by an arbitrary configuration of magnetic elements. Simulated field and force profiles of optimised arrays were evaluated, also taking into account the forces required for assembling the array in practice. The resultant selection for the array, consisting of two layers, was then constructed and characterised to verify the simulations. Finally the array was utilised in a set of in vitro experiments to demonstrate its capacity to separate and retain microbubbles loaded with magnetic nanoparticles against a constant flow. The optimised designs are presented as light-weight, inexpensive options for applying high-gradient, external magnetic fields in MDT applications.

  5. Metal Oxide Nanosensors Using Polymeric Membranes, Enzymes and Antibody Receptors as Ion and Molecular Recognition Elements

    PubMed Central

    Willander, Magnus; Khun, Kimleang; Ibupoto, Zafar Hussain

    2014-01-01

    The concept of recognition and biofunctionality has attracted increasing interest in the fields of chemistry and material sciences. Advances in the field of nanotechnology for the synthesis of desired metal oxide nanostructures have provided a solid platform for the integration of nanoelectronic devices. These nanoelectronics-based devices have the ability to recognize molecular species of living organisms, and they have created the possibility for advanced chemical sensing functionalities with low limits of detection in the nanomolar range. In this review, various metal oxides, such as ZnO-, CuO-, and NiO-based nanosensors, are described using different methods (receptors) of functionalization for molecular and ion recognition. These functionalized metal oxide surfaces with a specific receptor involve either a complex formation between the receptor and the analyte or an electrostatic interaction during the chemical sensing of analytes. Metal oxide nanostructures are considered revolutionary nanomaterials that have a specific surface for the immobilization of biomolecules with much needed orientation, good conformation and enhanced biological activity which further improve the sensing properties of nanosensors. Metal oxide nanostructures are associated with certain unique optical, electrical and molecular characteristics in addition to unique functionalities and surface charge features which shows attractive platforms for interfacing biorecognition elements with effective transducing properties for signal amplification. There is a great opportunity in the near future for metal oxide nanostructure-based miniaturization and the development of engineering sensor devices. PMID:24841244

  6. Dark oxidation of dissolved and liquid elemental mercury in aquatic environments.

    PubMed

    Amyot, Marc; Morel, François M M; Ariya, Parisa A

    2005-01-01

    Elemental mercury (Hg0) can be found in liquid or dissolved forms in aquatic systems. Whereas dissolved Hg0 is measured in virtually all aquatic systems, liquid Hg0 droplets are mainly observed at poorly lit sediment/water interfaces of ecosystems with local point sources such as hydro-thermal vents, gold extraction sites, and near industrial facilities. Here, we report that, in the dark, liquid and dissolved forms of Hg behave differently with respect to their oxidation. Liquid Hg0 is rapidly oxidized in oxygenated solution in the presence of chloride. Liquid Hg0 oxidation rates are positively correlated with chloride concentrations and droplet surface area. When liquid Hg is removed from solution, the oxidation stops even though the solution is still saturated with dissolved Hg0. Liquid Hg0 droplets in oxygenated marine or brackish environments should be oxidized and release Hg2+ to solution. In freshwaters or anoxic seawater, liquid Hg will dissolve releasing Hg(aq)0 which, itself, will slowly oxidize. PMID:15667083

  7. Exogenous Nitric Oxide Suppresses in Vivo X-ray-Induced Targeted and Non-Targeted Effects in Zebrafish Embryos

    PubMed Central

    Kong, E.Y.; Yeung, W.K.; Chan, T.K.Y.; Cheng, S.H.; Yu, K.N.

    2016-01-01

    The present paper studied the X-ray-induced targeted effect in irradiated zebrafish embryos (Danio rerio), as well as a non-targeted effect in bystander naïve embryos partnered with irradiated embryos, and examined the influence of exogenous nitric oxide (NO) on these targeted and non-targeted effects. The exogenous NO was generated using an NO donor, S-nitroso-N-acetylpenicillamine (SNAP). The targeted and non-targeted effects, as well as the toxicity of the SNAP, were assessed using the number of apoptotic events in the zebrafish embryos at 24 h post fertilization (hpf) revealed through acridine orange (AO) staining. SNAP with concentrations of 20 and 100 µM were first confirmed to have no significant toxicity on zebrafish embryos. The targeted effect was mitigated in zebrafish embryos if they were pretreated with 100 µM SNAP prior to irradiation with an X-ray dose of 75 mGy but was not alleviated in zebrafish embryos if they were pretreated with 20 µM SNAP. On the other hand, the non-targeted effect was eliminated in the bystander naïve zebrafish embryos if they were pretreated with 20 or 100 µM SNAP prior to partnering with zebrafish embryos having been subjected to irradiation with an X-ray dose of 75 mGy. These findings revealed the importance of NO in the protection against damages induced by ionizing radiations or by radiation-induced bystander signals, and could have important impacts on development of advanced cancer treatment strategies. PMID:27529238

  8. Exogenous Nitric Oxide Suppresses in Vivo X-ray-Induced Targeted and Non-Targeted Effects in Zebrafish Embryos.

    PubMed

    Kong, E Y; Yeung, W K; Chan, T K Y; Cheng, S H; Yu, K N

    2016-01-01

    The present paper studied the X-ray-induced targeted effect in irradiated zebrafish embryos (Danio rerio), as well as a non-targeted effect in bystander naïve embryos partnered with irradiated embryos, and examined the influence of exogenous nitric oxide (NO) on these targeted and non-targeted effects. The exogenous NO was generated using an NO donor, S-nitroso-N-acetylpenicillamine (SNAP). The targeted and non-targeted effects, as well as the toxicity of the SNAP, were assessed using the number of apoptotic events in the zebrafish embryos at 24 h post fertilization (hpf) revealed through acridine orange (AO) staining. SNAP with concentrations of 20 and 100 µM were first confirmed to have no significant toxicity on zebrafish embryos. The targeted effect was mitigated in zebrafish embryos if they were pretreated with 100 µM SNAP prior to irradiation with an X-ray dose of 75 mGy but was not alleviated in zebrafish embryos if they were pretreated with 20 µM SNAP. On the other hand, the non-targeted effect was eliminated in the bystander naïve zebrafish embryos if they were pretreated with 20 or 100 µM SNAP prior to partnering with zebrafish embryos having been subjected to irradiation with an X-ray dose of 75 mGy. These findings revealed the importance of NO in the protection against damages induced by ionizing radiations or by radiation-induced bystander signals, and could have important impacts on development of advanced cancer treatment strategies. PMID:27529238

  9. A P Element Chimera Containing Captured Genomic Sequences Was Recovered at the Vestigial Locus in Drosophila following Targeted Transposition

    PubMed Central

    Heslip, T. R.; Williams, J. A.; Bell, J. B.; Hodgetts, R. B.

    1992-01-01

    A P element carrying the Dopa decarboxylase gene, P[Ddc], was targeted into vg(21), a cryptic P element induced mutant allele of the vestigial (vg) locus. The resulting allele, vg(28w), contained the expected P[Ddc] plus an additional 9.5 kb of DNA, captured from elsewhere on chromosome II. Reversion of the vg(28w) mutant allele demonstrated that the entire insert can excise but cannot reinsert at an appreciable frequency. We explain the targeted transposition as the repair of a double stranded gap, created by the excision of the P element at vg(21), and suggest that the formation of chimeric elements may be an important component of P element dependent genomic instability. PMID:1325388

  10. Microbial oxidation of elemental selenium in soil slurries and bacterial cultures

    USGS Publications Warehouse

    Dowdle, P.R.; Oremland, R.S.

    1998-01-01

    The microbial oxidation of elemental selenium [Se(O)] was studied by employing 75Se(O) as a tracer. Live, oxic soil slurries demonstrated a linear production of mostly Se(IV), with the formation of smaller quantities of Se(VI). Production of both Se(IV) and Se(VI) was inhibited by autoclaving, formalin, antibiotics, azide, and 2,4-dinitrophenol, thereby indicating the involvement of microbes. Oxidation of Se(O) in slurries was enhanced by addition of acetate, glucose, or sulfide, which implied involvement of chemoheterotrophs as well as chemoautotrophic thiobacilli. Cultures of Thiobacillus ASN-1, Leptothrix MnB1, and a heterotrophic soil enrichment all oxidized Se(O) with Se(VI) observed as the major product rather than Se(IV). This indicated that microbial oxidation in soils is partly constrained by the adsorption of Se(IV) onto soil surfaces. Rate constants for unamended soil slurry Se(O) oxidation ranged from 0.0009 to 0.0117 day-1 which were 3-4 orders of magnitude lower than those reported for dissimilatory Se(VI) reduction in organic-rich, anoxic sediments.The microbial oxidation of elemental selenium [Se(0)] was studied by employing 75Se(0) as a tracer. Live, oxic soil slurries demonstrated a linear production of mostly Se(IV), with the formation of smaller quantities of Se(VI). Production of both Se(IV) and Se(VI) was inhibited by autoclaving, formalin, antibiotics, azide, and 2,4-dinitrophenol, thereby indicating the involvement of microbes. Oxidation of Se(O) in slurries was enhanced by addition of acetate, glucose, or sulfide, which implied involvement of chemoheterotrophs as well as chemoautotrophic thiobacilli. Cultures of Thiobacillus ASN-1, Leptothrix MnB1, and a heterotrophic soil enrichment all oxidized Se(O) with Se(VI) observed as the major product rather than Se(IV). This indicated that microbial oxidation in soils is partly constrained by the adsorption of Se(IV) onto soil surfaces. Rate constants for unamended soil slurry Se(O) oxidation

  11. Drug Targets for Oxidative Podocyte Injury in Diabetic Nephropathy

    PubMed Central

    Usman, Muhammad

    2015-01-01

    Diabetic nephropathy (DN) is one the most prevalent chronic complications of diabetes mellitus that affects as much as one-third of diabetic patients irrespective of the type of diabetes. Hyperglycemia is the key trigger for DN that initiates a number of microscopic and ultramicroscopic changes in kidney architecture. Microscopic changes include thickening of the glomerular basement membrane (GBM), tubular basement membrane (TBM), mesangial proliferation, arteriosclerosis, and glomerulotubular junction abnormalities (GTJA). Among the ultramicroscopic changes, effacement of podocytes and decrease in their density seem to be the centerpiece of DN pathogenesis. These changes in kidney architecture then produce functional deficits, such as microalbuminuria and decreased glomerular filtration rate (GFR). Among several mechanisms involved in inflicting damage to podocytes, injuries sustained by increased oxidative stress turns out to be the most important mechanism. Different variables that are included in increased production of reactive oxygen species (ROS) include a hyperglycemia-induced reduction in glutathione (GSH), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation via hyperglycemia, advanced glycation end products (AGEs), protein kinase C (PKC), and renin-angiotensin-aldosterone system (RAAS). Unfortunately, control of podocyte injury hasn’t received much attention as a treatment approach for DN. Therefore, this review article is mainly concerned with the exploration of various treatment options that might help in decreasing the podocyte injury, mainly by reducing the level of NADPH oxidase-mediated generation of ROS. This article concludes with a view that certain NADPH oxidase inhibitors, RAAS inhibitors, statins, antidiabetic drugs, and antioxidant vitamins might be useful in decreasing podocyte injury and resultant structural and functional kidney impairments in DN. PMID:26798569

  12. Target enrichment of ultraconserved elements from arthropods provides a genomic perspective on relationships among Hymenoptera

    PubMed Central

    Faircloth, Brant C; Branstetter, Michael G; White, Noor D; Brady, Seán G

    2015-01-01

    Gaining a genomic perspective on phylogeny requires the collection of data from many putatively independent loci across the genome. Among insects, an increasingly common approach to collecting this class of data involves transcriptome sequencing, because few insects have high-quality genome sequences available; assembling new genomes remains a limiting factor; the transcribed portion of the genome is a reasonable, reduced subset of the genome to target; and the data collected from transcribed portions of the genome are similar in composition to the types of data with which biologists have traditionally worked (e.g. exons). However, molecular techniques requiring RNA as a template, including transcriptome sequencing, are limited to using very high-quality source materials, which are often unavailable from a large proportion of biologically important insect samples. Recent research suggests that DNA-based target enrichment of conserved genomic elements offers another path to collecting phylogenomic data across insect taxa, provided that conserved elements are present in and can be collected from insect genomes. Here, we identify a large set (n = 1510) of ultraconserved elements (UCEs) shared among the insect order Hymenoptera. We used in silico analyses to show that these loci accurately reconstruct relationships among genome-enabled hymenoptera, and we designed a set of RNA baits (n = 2749) for enriching these loci that researchers can use with DNA templates extracted from a variety of sources. We used our UCE bait set to enrich an average of 721 UCE loci from 30 hymenopteran taxa, and we used these UCE loci to reconstruct phylogenetic relationships spanning very old (≥220 Ma) to very young (≤1 Ma) divergences among hymenopteran lineages. In contrast to a recent study addressing hymenopteran phylogeny using transcriptome data, we found ants to be sister to all remaining aculeate lineages with complete support, although this result could be explained by

  13. Target enrichment of ultraconserved elements from arthropods provides a genomic perspective on relationships among Hymenoptera.

    PubMed

    Faircloth, Brant C; Branstetter, Michael G; White, Noor D; Brady, Seán G

    2015-05-01

    Gaining a genomic perspective on phylogeny requires the collection of data from many putatively independent loci across the genome. Among insects, an increasingly common approach to collecting this class of data involves transcriptome sequencing, because few insects have high-quality genome sequences available; assembling new genomes remains a limiting factor; the transcribed portion of the genome is a reasonable, reduced subset of the genome to target; and the data collected from transcribed portions of the genome are similar in composition to the types of data with which biologists have traditionally worked (e.g. exons). However, molecular techniques requiring RNA as a template, including transcriptome sequencing, are limited to using very high-quality source materials, which are often unavailable from a large proportion of biologically important insect samples. Recent research suggests that DNA-based target enrichment of conserved genomic elements offers another path to collecting phylogenomic data across insect taxa, provided that conserved elements are present in and can be collected from insect genomes. Here, we identify a large set (n = 1510) of ultraconserved elements (UCEs) shared among the insect order Hymenoptera. We used in silico analyses to show that these loci accurately reconstruct relationships among genome-enabled hymenoptera, and we designed a set of RNA baits (n = 2749) for enriching these loci that researchers can use with DNA templates extracted from a variety of sources. We used our UCE bait set to enrich an average of 721 UCE loci from 30 hymenopteran taxa, and we used these UCE loci to reconstruct phylogenetic relationships spanning very old (≥220 Ma) to very young (≤1 Ma) divergences among hymenopteran lineages. In contrast to a recent study addressing hymenopteran phylogeny using transcriptome data, we found ants to be sister to all remaining aculeate lineages with complete support, although this result could be explained by

  14. Caesium in high oxidation states and as a p-block element.

    PubMed

    Miao, Mao-sheng

    2013-10-01

    The periodicity of the elements and the non-reactivity of the inner-shell electrons are two related principles of chemistry, rooted in the atomic shell structure. Within compounds, Group I elements, for example, invariably assume the +1 oxidation state, and their chemical properties differ completely from those of the p-block elements. These general rules govern our understanding of chemical structures and reactions. Here, first-principles calculations show that, under pressure, caesium atoms can share their 5p electrons to become formally oxidized beyond the +1 state. In the presence of fluorine and under pressure, the formation of CsF(n) (n > 1) compounds containing neutral or ionic molecules is predicted. Their geometry and bonding resemble that of isoelectronic XeF(n) molecules, showing a caesium atom that behaves chemically like a p-block element under these conditions. The calculated stability of the CsF(n) compounds shows that the inner-shell electrons can become the main components of chemical bonds.

  15. Deposition behavior of UO2 and noble-metal elements in oxide-electrowinning reprocessing

    NASA Astrophysics Data System (ADS)

    Kosugi, K.; Fukushima, M.; Myochin, M.; Mizuguchi, K.; Oomori, T.

    2005-02-01

    As a candidate process for future reprocessing technology of nuclear spent fuel, oxide-electrowinning method has been studied. In this method, the uranium is collected on the cathode in the form of UO2 by electrolysis in the molten chloride. Thereby, the noble metal (NM) elements accompany the uranium deposition, because of very close redox potential between NM elements and UO2. To clarify the electrolysis behavior of the uranium and NM elements in the low-current-density electrolysis, the laboratory scale experiments were performed under various conditions of cathode current density and solutes concentration in the chloride melt, and the separation efficiency and the morphology of the deposition were investigated. It was found that the separation of Pd from uranium was more difficult than that of Rh. The presence of U4+ greatly influenced current efficiency of the electrolysis process.

  16. Targeting oxidant-dependent mechanisms for the treatment of COPD and its comorbidities.

    PubMed

    Bernardo, Ivan; Bozinovski, Steven; Vlahos, Ross

    2015-11-01

    Chronic obstructive pulmonary disease (COPD) is an incurable global health burden and is characterised by progressive airflow limitation and loss of lung function. In addition to the pulmonary impact of the disease, COPD patients often develop comorbid diseases such as cardiovascular disease, skeletal muscle wasting, lung cancer and osteoporosis. One key feature of COPD, yet often underappreciated, is the contribution of oxidative stress in the onset and development of the disease. Patients experience an increased burden of oxidative stress due to the combined effects of excess reactive oxygen species (ROS) and nitrogen species (RNS) generation, antioxidant depletion and reduced antioxidant enzyme activity. Currently, there is a lack of effective treatments for COPD, and an even greater lack of research regarding interventions that treat both COPD and its comorbidities. Due to the involvement of oxidative stress in the pathogenesis of COPD and many of its comorbidities, a unique therapeutic opportunity arises where the treatment of a multitude of diseases may be possible with only one therapeutic target. In this review, oxidative stress and the roles of ROS/RNS in the context of COPD and comorbid cardiovascular disease, skeletal muscle wasting, lung cancer, and osteoporosis are discussed and the potential for therapeutic benefit of anti-oxidative treatment in these conditions is outlined. Because of the unique interplay between oxidative stress and these diseases, oxidative stress represents a novel target for the treatment of COPD and its comorbidities. PMID:26297673

  17. Suppressing iron oxide nanoparticle toxicity by vascular targeted antioxidant polymer nanoparticles.

    PubMed

    Cochran, David B; Wattamwar, Paritosh P; Wydra, Robert; Hilt, J Zach; Anderson, Kimberly W; Eitel, Richard E; Dziubla, Thomas D

    2013-12-01

    The biomedical use of superparamagnetic iron oxide nanoparticles has been of continued interest in the literature and clinic. Their ability to be used as contrast agents for imaging and/or responsive agents for remote actuation makes them exciting materials for a wide range of clinical applications. Recently, however, concern has arisen regarding the potential health effects of these particles. Iron oxide toxicity has been demonstrated in in vivo and in vitro models, with oxidative stress being implicated as playing a key role in this pathology. One of the key cell types implicated in this injury is the vascular endothelial cells. Here, we report on the development of a targeted polymeric antioxidant, poly(trolox ester), nanoparticle that can suppress oxidative damage. As the polymer undergoes enzymatic hydrolysis, active trolox is locally released, providing a long term protection against pro-oxidant agents. In this work, poly(trolox) nanoparticles are targeted to platelet endothelial cell adhesion molecules (PECAM-1), which are able to bind to and internalize in endothelial cells and provide localized protection against the cytotoxicity caused by iron oxide nanoparticles. These results indicate the potential of using poly(trolox ester) as a means of mitigating iron oxide toxicity, potentially expanding the clinical use and relevance of these exciting systems.

  18. Effects of working pressure on physical properties of tungsten-oxide thin films sputtered from oxide target

    SciTech Connect

    Riech, I.; Acosta, M.; Pena, J. L.; Bartolo-Perez, P.

    2010-03-15

    Tungsten-oxide films were deposited on glass substrates from a metal-oxide target by nonreactive radio-frequency sputtering. The authors have studied the effect that changing Ar gas pressure has on the electrical, optical, and chemical composition in the thin films. Resistivity of WO{sub 3} changed ten orders of magnitude with working gas pressure values from 20 to 80 mTorr. Thin films deposited at 20 mTorr of Ar sputtering pressure showed lower resistivity and optical transmittance. X-ray photoelectron spectroscopy (XPS) measurements revealed similar chemical composition for all samples irrespective of Ar pressure used. However, XPS analyses of the evolution of W 4f and O 1s peaks indicated a mixture of oxides dependent on the Ar pressure used during deposition.

  19. Microbial oxidation of elemental selenium in soil slurries and bacterial cultures

    SciTech Connect

    Dowdle, P.R.; Oremland, R.S.

    1998-12-01

    The microbial oxidation of elemental selenium [Se(0)] was studied by employing {sup 75}Se(0) as a tracer. Live, oxic soil slurries demonstrated a linear production of mostly Se(IV), with the formation of smaller quantities of Se(VI). Production of both Se(IV) and Se(VI) was inhibited by autoclaving, formalin, antibiotics, azide, and 2,4-dinitrophenol, thereby indicating the involvement of microbes. Oxidation of Se(0) in slurries was enhanced by addition of acetate, glucose, or sulfide, which implied involvement of chemoheterotrophs as well as chemoautotrophic thiobacilli. Cultures of Thiobacillus ASN-1, Leptothrix MnB1, and a heterotrophic soil enrichment all oxidized Se(0) with Se(VI) observed as the major product rather than Se(IV). This indicated that microbial oxidation in soils is partly constrained by the adsorption of Se(IV) onto soil surfaces. Rate constants for unamended soil slurry Se(0) oxidation ranged from 0.0009 to 0.0117 day{sup {minus}1} which were 3--4 orders of magnitude lower than those reported for dissimilatory Se(VI) reduction in organic-rich, anoxic sediments.

  20. Identification of the RNA recognition element of the RBPMS family of RNA-binding proteins and their transcriptome-wide mRNA targets.

    PubMed

    Farazi, Thalia A; Leonhardt, Carl S; Mukherjee, Neelanjan; Mihailovic, Aleksandra; Li, Song; Max, Klaas E A; Meyer, Cindy; Yamaji, Masashi; Cekan, Pavol; Jacobs, Nicholas C; Gerstberger, Stefanie; Bognanni, Claudia; Larsson, Erik; Ohler, Uwe; Tuschl, Thomas

    2014-07-01

    Recent studies implicated the RNA-binding protein with multiple splicing (RBPMS) family of proteins in oocyte, retinal ganglion cell, heart, and gastrointestinal smooth muscle development. These RNA-binding proteins contain a single RNA recognition motif (RRM), and their targets and molecular function have not yet been identified. We defined transcriptome-wide RNA targets using photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) in HEK293 cells, revealing exonic mature and intronic pre-mRNA binding sites, in agreement with the nuclear and cytoplasmic localization of the proteins. Computational and biochemical approaches defined the RNA recognition element (RRE) as a tandem CAC trinucleotide motif separated by a variable spacer region. Similar to other mRNA-binding proteins, RBPMS family of proteins relocalized to cytoplasmic stress granules under oxidative stress conditions suggestive of a support function for mRNA localization in large and/or multinucleated cells where it is preferentially expressed.

  1. Influence of HCl on oxidation of gaseous elemental mercury by dielectric barrier discharge process.

    PubMed

    Ko, Kyung Bo; Byun, Youngchul; Cho, Moohyun; Namkung, Won; Shin, Dong Nam; Koh, Dong Jun; Kim, Kyoung Tae

    2008-04-01

    The influence of HCl on the oxidation of gaseous elemental mercury (Hg0) has been investigated using a dielectric barrier discharge (DBD) plasma process, where the temperature of the plasma reactor and the composition of gas mixtures of HCl, H2O, NO, and O2 in N2 balance have been varied. We observe that Cl atoms and Cl2 molecules, created by the DBD process, play important roles in the oxidation of Hg0 to HgCl2. The addition of H2O to the gas mixture of HCl in N2 accelerates the oxidation of Hg0, although no appreciable effect of H2O alone on the oxidation of Hg0 has been observed. The increase of the reaction temperature in the presence of HCl results in the reduction of Hg0 oxidation efficiency probably due to the deterioration of the heterogeneous chemical reaction of Hg0 with chlorinated species on the reactor wall. The presence of NO shows an inhibitory effect on the oxidation of Hg0 under DBD of 16% O2 in N2, indicating that NO acts as an O and O3 scavenger. At the composition of Hg0 (280 microg m(-3)), HCl (25 ppm), NO (204 ppm), O2 (16%) and N2 (balance) and temperature 90 degrees C, we obtain the nearly complete oxidation of Hg0 at a specific energy density of 8 J l(-1). These results lead us to suggest that the DBD process can be viable for the treatment of mercury released from coal-fired power plants. PMID:18313101

  2. Conformational characterization of the intrinsically disordered protein Chibby: Interplay between structural elements in target recognition.

    PubMed

    Killoran, Ryan C; Sowole, Modupeola A; Halim, Mohammad A; Konermann, Lars; Choy, Wing-Yiu

    2016-08-01

    The protein Chibby (Cby) is an antagonist of the Wnt signaling pathway, where it inhibits the binding between the transcriptional coactivator β-catenin and the Tcf/Lef transcription factors. The 126 residue Cby is partially disordered; its N-terminal half is unstructured while its C-terminal half comprises a coiled-coil domain. Previous structural analyses of Cby using NMR spectroscopy suffered from severe line broadening for residues within the protein's C-terminal half, hindering detailed characterization of the coiled-coil domain. Here, we use hydrogen/deuterium exchange-mass spectrometry (HDX-MS) to examine Cby's C-terminal half. Results reveal that Cby is divided into three structural elements: a disordered N-terminal half, a coiled-coil domain, and a C-terminal unstructured extension consisting of the last ∼ 25 residues (which we term C-terminal extension). A series of truncation constructs were designed to assess the roles of individual structural elements in protein stability and Cby binding to TC-1, a positive regulator of the Wnt signaling pathway. CD and NMR data show that Cby maintains coiled-coil structure upon deletion of either disordered region. NMR and ITC binding experiments between Cby and TC-1 illustrate that the interaction is retained upon deletion of either Cby's N-terminal half or its C-terminal extension. Intriguingly, Cby's C-terminal half alone binds to TC-1 with significantly greater affinity compared to full-length Cby, implying that target binding of the coiled-coil domain is affected by the flanking disordered regions. PMID:27082063

  3. Targeting multiple types of tumors using NKG2D-coated iron oxide nanoparticles.

    PubMed

    Wu, Ming-Ru; Cook, W James; Zhang, Tong; Sentman, Charles L

    2014-11-28

    Iron oxide nanoparticles (IONPs) hold great potential for cancer therapy. Actively targeting IONPs to tumor cells can further increase therapeutic efficacy and decrease off-target side effects. To target tumor cells, a natural killer (NK) cell activating receptor, NKG2D, was utilized to develop pan-tumor targeting IONPs. NKG2D ligands are expressed on many tumor types and its ligands are not found on most normal tissues under steady state conditions. The data showed that mouse and human fragment crystallizable (Fc)-fusion NKG2D (Fc-NKG2D) coated IONPs (NKG2D/NPs) can target multiple NKG2D ligand positive tumor types in vitro in a dose dependent manner by magnetic cell sorting. Tumor targeting effect was robust even under a very low tumor cell to normal cell ratio and targeting efficiency correlated with NKG2D ligand expression level on tumor cells. Furthermore, the magnetic separation platform utilized to test NKG2D/NP specificity has the potential to be developed into high throughput screening strategies to identify ideal fusion proteins or antibodies for targeting IONPs. In conclusion, NKG2D/NPs can be used to target multiple tumor types and magnetic separation platform can facilitate the proof-of-concept phase of tumor targeting IONP development.

  4. Manganese-induced effects on cerebral trace element and nitric oxide of Hyline cocks.

    PubMed

    Liu, Xiaofei; Zuo, Nan; Guan, Huanan; Han, Chunran; Xu, Shi Wen

    2013-08-01

    Exposure to Manganese (Mn) is a common phenomenon due to its environmental pervasiveness. To investigate the Mn-induced toxicity on cerebral trace element levels and crucial nitric oxide parameters on brain of birds, 50-day-old male Hyline cocks were fed either a commercial diet or a Mn-supplemented diet containing 600, 900, 1,800 mg kg(-1). After being treated with Mn for 30, 60, and 90 days, the following were determined: the changes in contents of copper (Cu), iron (Fe), zinc (Zn), calcium (Ca), selenium (Se) in brain; inducible nitric oxide synthase-nitric oxide (iNOS-NO) system activity in brain; and histopathology and ultrastructure changes of cerebral cortex. The results showed that Mn was accumulated in brain and the content of Cu and Fe increased. However, the levels of Zn and Se decreased and the Ca content presented no obvious regularity. Exposure to Mn significantly elevated the content of NO and the expression of iNOS mRNA. Activity of total NO synthase (T NOS) and iNOS appeared with an increased tendency. These findings suggested that Mn exposure resulted in the imbalance of cerebral trace elements and influenced iNOS in the molecular level, which are possible underlying nervous system injury mechanisms induced by Mn exposure. PMID:23813426

  5. Chlorotoxin-conjugated graphene oxide for targeted delivery of an anticancer drug.

    PubMed

    Wang, Hao; Gu, Wei; Xiao, Ning; Ye, Ling; Xu, Qunyuan

    2014-01-01

    Current chemotherapy for glioma is rarely satisfactory due to low therapeutic efficiency and systemic side effects. We have developed a glioma-targeted drug delivery system based on graphene oxide. Targeted peptide chlorotoxin-conjugated graphene oxide (CTX-GO) sheets were successfully synthesized and characterized. Doxorubicin was loaded onto CTX-GO (CTX-GO/DOX) with high efficiency (570 mg doxorubicin per gram CTX-GO) via noncovalent interactions. Doxorubicin release was pH-dependent and showed sustained-release properties. Cytotoxicity experiments demonstrated that CTX-GO/DOX mediated the highest rate of death of glioma cells compared with free doxorubicin or graphene oxide loaded with doxorubicin only. Further, conjugation with chlorotoxin enhanced accumulation of doxorubicin within glioma cells. These findings indicate that CTX-GO is a promising platform for drug delivery and provide a rationale for developing a glioma-specific drug delivery system.

  6. microRNAs: Emerging Targets Regulating Oxidative Stress in the Models of Parkinson's Disease

    PubMed Central

    Xie, Yangmei; Chen, Yinghui

    2016-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder. This chronic, progressive disease is characterized by loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and the presence of cytoplasmic inclusions called Lewy bodies (LBs) in surviving neurons. PD is attributed to a combination of environment and genetic factors, but the precise underlying molecular mechanisms remain elusive. Oxidative stress is generally recognized as one of the main causes of PD, and excessive reactive oxygen species (ROS) can lead to DA neuron vulnerability and eventual death. Several studies have demonstrated that small non-coding RNAs termed microRNAs (miRNAs) can regulate oxidative stress in vitro and in vivo models of PD. Relevant miRNAs involved in oxidative stress can prevent ROS-mediated damage to DA neurons, suggesting that specific miRNAs may be putative targets for novel therapeutic targets in PD. PMID:27445669

  7. microRNAs: Emerging Targets Regulating Oxidative Stress in the Models of Parkinson's Disease.

    PubMed

    Xie, Yangmei; Chen, Yinghui

    2016-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder. This chronic, progressive disease is characterized by loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and the presence of cytoplasmic inclusions called Lewy bodies (LBs) in surviving neurons. PD is attributed to a combination of environment and genetic factors, but the precise underlying molecular mechanisms remain elusive. Oxidative stress is generally recognized as one of the main causes of PD, and excessive reactive oxygen species (ROS) can lead to DA neuron vulnerability and eventual death. Several studies have demonstrated that small non-coding RNAs termed microRNAs (miRNAs) can regulate oxidative stress in vitro and in vivo models of PD. Relevant miRNAs involved in oxidative stress can prevent ROS-mediated damage to DA neurons, suggesting that specific miRNAs may be putative targets for novel therapeutic targets in PD. PMID:27445669

  8. Induced Clustered Nanoconfinement of Superparamagnetic Iron Oxide in Biodegradable Nanoparticles Enhances Transverse Relaxivity for Targeted Theranostics

    PubMed Central

    Ragheb, Ragy R. T.; Kim, Dongin; Bandyopadhyay, Arunima; Chahboune, Halima; Bulutoglu, Beyza; Ezaldein, Harib; Criscione, Jason M.; Fahmy, Tarek M.

    2013-01-01

    Purpose Combined therapeutic and diagnostic agents, “theranostics” are emerging valuable tools for noninvasive imaging and drug delivery. Here, we report on a solid biodegradable multifunctional nanoparticle that combines both features. Methods Poly(lactide-co-glycolide) nanoparticles were engineered to confine superparamagnetic iron oxide contrast for magnetic resonance imaging while enabling controlled drug delivery and targeting to specific cells. To achieve this dual modality, fatty acids were used as anchors for surface ligands and for encapsulated iron oxide in the polymer matrix. Results We demonstrate that fatty acid modified iron oxide prolonged retention of the contrast agent in the polymer matrix during degradative release of drug. Antibody-fatty acid surface modification facilitated cellular targeting and subsequent internalization in cells while inducing clustering of encapsulated fatty-acid modified superparamagnetic iron oxide during particle formulation. This induced clustered confinement led to an aggregation within the nanoparticle and, hence, higher transverse relaxivity, r2, (294 mM−1 s−1) compared with nanoparticles without fatty-acid ligands (160 mM−1 s−1) and higher than commercially available superparamagnetic iron oxide nanoparticles (89 mM−1 s−1). Conclusion Clustering of superparamagnetic iron oxide in poly(lactide-co-glycolide) did not affect the controlled release of encapsulated drugs such as methotrexate or clodronate and their subsequent pharmacological activity, thus highlighting the full theranostic capability of our system. PMID:23401099

  9. Expression of the Arabidopsis transposable element Tag1 is targeted to developing gametophytes.

    PubMed Central

    Galli, Mary; Theriault, Angie; Liu, Dong; Crawford, Nigel M

    2003-01-01

    The Arabidopsis transposon Tag1 undergoes late excision during vegetative and germinal development in plants containing 35S-Tag1-GUS constructs. To determine if transcriptional regulation can account for the developmental control of Tag1 excision, the transcriptional activity of Tag1 promoter-GUS fusion constructs of various lengths was examined in transgenic plants. All constructs showed expression in the reproductive organs of developing flowers but no expression in leaves. Expression was restricted to developing gametophytes in both male and female lineages. Quantitative RT-PCR analysis confirmed that Tag1 expression predominates in the reproductive organs of flower buds. These results are consistent with late germinal excision of Tag1, but they cannot explain the vegetative excision activity of Tag1 observed with 35S-Tag1-GUS constructs. To resolve this issue, Tag1 excision was reexamined using elements with no adjacent 35S promoter sequences. Tag1 excision in this context is restricted to germinal events with no detectable vegetative excision. If a 35S enhancer sequence is placed next to Tag1, vegetative excision is restored. These results indicate that the intrinsic activity of Tag1 is restricted to germinal excision due to targeted expression of the Tag1 transposase to developing gametophytes and that this activity is altered by the presence of adjacent enhancers or promoters. PMID:14704189

  10. Method for removing sulfur oxide from waste gases and recovering elemental sulfur

    DOEpatents

    Moore, Raymond H.

    1977-01-01

    A continuous catalytic fused salt extraction process is described for removing sulfur oxides from gaseous streams. The gaseous stream is contacted with a molten potassium sulfate salt mixture having a dissolved catalyst to oxidize sulfur dioxide to sulfur trioxide and molten potassium normal sulfate to solvate the sulfur trioxide to remove the sulfur trioxide from the gaseous stream. A portion of the sulfur trioxide loaded salt mixture is then dissociated to produce sulfur trioxide gas and thereby regenerate potassium normal sulfate. The evolved sulfur trioxide is reacted with hydrogen sulfide as in a Claus reactor to produce elemental sulfur. The process may be advantageously used to clean waste stack gas from industrial plants, such as copper smelters, where a supply of hydrogen sulfide is readily available.

  11. Reactions of calcium orthosilicate and barium zirconate with oxides and sulfates of various elements

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1979-01-01

    Calcium orthosilicate and barium zirconate were evaluated as the insulation layer of thermal barrier coatings for air cooled gas turbine components. Their reactions with various oxides and sulfates were studied at 1100 C and 1300 C for times ranging up to 400 and 200 hours, respectively. These oxides and sulfates represent potential impurities or additives in gas turbine fuels and in turbine combustion air, as well as elements of potential bond coat alloys. The phase compositions of the reaction products were determined by X-ray diffraction analysis. BaZrO3 and 2CaO-SiO2 both reacted with P2O5, V2O5, Cr2O3, Al2O3, and SiO2. In addition, 2CaO-SiO2 reacted with Na2O, BaO, MgO, and CoO and BaZrO3 reacted with Fe2O3.

  12. Long circulating reduced graphene oxide-iron oxide nanoparticles for efficient tumor targeting and multimodality imaging

    NASA Astrophysics Data System (ADS)

    Xu, Cheng; Shi, Sixiang; Feng, Liangzhu; Chen, Feng; Graves, Stephen A.; Ehlerding, Emily B.; Goel, Shreya; Sun, Haiyan; England, Christopher G.; Nickles, Robert J.; Liu, Zhuang; Wang, Taihong; Cai, Weibo

    2016-06-01

    Polyethylene glycol (PEG) surface modification is one of the most widely used approaches to improve the solubility of inorganic nanoparticles, prevent their aggregation and prolong their in vivo blood circulation half-life. Herein, we developed double-PEGylated biocompatible reduced graphene oxide nanosheets anchored with iron oxide nanoparticles (RGO-IONP-1stPEG-2ndPEG). The nanoconjugates exhibited a prolonged blood circulation half-life (~27.7 h) and remarkable tumor accumulation (>11 %ID g-1) via an enhanced permeability and retention (EPR) effect. Due to the strong near-infrared absorbance and superparamagnetism of RGO-IONP-1stPEG-2ndPEG, multimodality imaging combining positron emission tomography (PET) imaging with magnetic resonance imaging (MRI) and photoacoustic (PA) imaging was successfully achieved. The promising results suggest the great potential of these nanoconjugates for multi-dimensional and more accurate tumor diagnosis and therapy in the future.

  13. Phase transitions via selective elemental vacancy engineering in complex oxide thin films

    PubMed Central

    Lee, Sang A.; Jeong, Hoidong; Woo, Sungmin; Hwang, Jae-Yeol; Choi, Si-Young; Kim, Sung-Dae; Choi, Minseok; Roh, Seulki; Yu, Hosung; Hwang, Jungseek; Kim, Sung Wng; Choi, Woo Seok

    2016-01-01

    Defect engineering has brought about a unique level of control for Si-based semiconductors, leading to the optimization of various opto-electronic properties and devices. With regard to perovskite transition metal oxides, O vacancies have been a key ingredient in defect engineering, as they play a central role in determining the crystal field and consequent electronic structure, leading to important electronic and magnetic phase transitions. Therefore, experimental approaches toward understanding the role of defects in complex oxides have been largely limited to controlling O vacancies. In this study, we report on the selective formation of different types of elemental vacancies and their individual roles in determining the atomic and electronic structures of perovskite SrTiO3 (STO) homoepitaxial thin films fabricated by pulsed laser epitaxy. Structural and electronic transitions have been achieved via selective control of the Sr and O vacancy concentrations, respectively, indicating a decoupling between the two phase transitions. In particular, O vacancies were responsible for metal-insulator transitions, but did not influence the Sr vacancy induced cubic-to-tetragonal structural transition in epitaxial STO thin film. The independent control of multiple phase transitions in complex oxides by exploiting selective vacancy engineering opens up an unprecedented opportunity toward understanding and customizing complex oxide thin films. PMID:27033718

  14. Alterations of Bio-elements, Oxidative, and Inflammatory Status in the Zinc Deficiency Model in Rats.

    PubMed

    Doboszewska, Urszula; Szewczyk, Bernadeta; Sowa-Kućma, Magdalena; Noworyta-Sokołowska, Karolina; Misztak, Paulina; Gołębiowska, Joanna; Młyniec, Katarzyna; Ostachowicz, Beata; Krośniak, Mirosław; Wojtanowska-Krośniak, Agnieszka; Gołembiowska, Krystyna; Lankosz, Marek; Piekoszewski, Wojciech; Nowak, Gabriel

    2016-01-01

    Our previous study showed that dietary zinc restriction induces depression-like behavior with concomitant up-regulation of the N-methyl-D-aspartate receptor (NMDAR). Because metal ions, oxidative stress, and inflammation are involved in depression/NMDAR function, in the present study, bio-elements (zinc, copper, iron, magnesium, and calcium), oxidative (thiobarbituric acid-reactive substances; protein carbonyl content), and inflammatory (IL-1α, IL-1β) factors were measured in serum, hippocampus (Hp), and prefrontal cortex (PFC) of male Sprague-Dawley rats subjected to a zinc-adequate (ZnA) (50 mg Zn/kg) or a zinc-deficient (ZnD) (3 mg Zn/kg) diet for 4 or 6 weeks. Both periods of dietary zinc restriction reduced serum zinc and increased serum iron levels. At 4 weeks, lowered zinc level in the PFC and Hp as well as lowered iron level in the PFC of the ZnD rats was observed. At 6 weeks, however, iron level was increased in the PFC of these rats. Although at 6 weeks zinc level in the PFC did not differ between the ZnA and ZnD rats, extracellular zinc concentration after 100 mM KCl stimulation was reduced in the PFC of the ZnD rats and was accompanied by increased extracellular iron and glutamate levels (as measured by the in vivo microdialysis). The examined oxidative and inflammatory parameters were generally enhanced in the tissue of the ZnD animals. The obtained data suggest dynamic redistribution of bio-elements and enhancement of oxidative/inflammatory parameters after dietary zinc restriction, which may have a link with depression-like behavior/NMDAR function/neurodegeneration.

  15. Oxidation resistance in LBE and air and tensile properties of ODS ferritic steels containing Al/Zr elements

    NASA Astrophysics Data System (ADS)

    Gao, R.; Xia, L. L.; Zhang, T.; Wang, X. P.; Fang, Q. F.; Liu, C. S.

    2014-12-01

    The effects of Al and Zr addition on improvement of oxidation resistance in lead-bismuth eutectic (LBE) and in air as well as the tensile properties were investigated for the oxide dispersion strengthened (ODS) steels. The 16Cr-4Al-0.8Zr-ODS steel samples were fabricated by a sol-gel method combining with spark plasma sintering technique. The tests in LBE at 600 °C for 1000 h indicate the good oxidation resistance comparing with the specimens without Zr/Al elements. The samples also exhibit superior oxidation resistance in air due to formation of dense and continuous aluminum oxide film. Minor Zr addition prevents the Al element induced coarsening of the oxide particles in ODS steels and significantly improves the ultimate tensile stress and total elongation of the samples.

  16. Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents.

    PubMed

    Xi, Lei; Grobmyer, Stephen R; Zhou, Guangyin; Qian, Weiping; Yang, Lily; Jiang, Huabei

    2014-06-01

    In this report, we present a breast imaging technique combining high-resolution near-infrared (NIR) light induced photoacoustic tomography (PAT) with NIR dye-labeled amino-terminal fragments of urokinase plasminogen activator receptor (uPAR) targeted magnetic iron oxide nanoparticles (NIR830-ATF-IONP) for breast cancer imaging using an orthotopic mouse mammary tumor model. We show that accumulation of the targeted nanoparticles in the tumor led to photoacoustic contrast enhancement due to the high absorption of iron oxide nanoparticles (IONP). NIR fluorescence images were used to validate specific delivery of NIR830-ATF-IONP to mouse mammary tumors. We found that systemic delivery of the targeted IONP produced 4- and 10-fold enhancement in photoacoustic signals in the tumor, compared to the tumor of the mice that received non-targeted IONP or control mice. The use of targeted nanoparticles allowed imaging of tumors located as deep as 3.1 cm beneath the normal tissues. Our study indicates the potential of the combination of photoacoustic tomography and receptor-targeted NIR830-ATF-IONP as a clinical tool that can provide improved specificity and sensitivity for breast cancer detection.

  17. Multiple Hits, Including Oxidative Stress, as Pathogenesis and Treatment Target in Non-Alcoholic Steatohepatitis (NASH)

    PubMed Central

    Takaki, Akinobu; Kawai, Daisuke; Yamamoto, Kazuhide

    2013-01-01

    Multiple parallel hits, including genetic differences, insulin resistance and intestinal microbiota, account for the progression of non-alcoholic steatohepatitis (NASH). Multiple hits induce adipokine secretion, endoplasmic reticulum (ER) and oxidative stress at the cellular level that subsequently induce hepatic steatosis, inflammation and fibrosis, among which oxidative stress is considered a key contributor to progression from simple fatty liver to NASH. Although several clinical trials have shown that anti-oxidative therapy can effectively control hepatitis activities in the short term, the long-term effect remains obscure. Several trials of long-term anti-oxidant protocols aimed at treating cerebrovascular diseases or cancer development have failed to produce a benefit. This might be explained by the non-selective anti-oxidative properties of these drugs. Molecular hydrogen is an effective antioxidant that reduces only cytotoxic reactive oxygen species (ROS) and several diseases associated with oxidative stress are sensitive to hydrogen. The progress of NASH to hepatocellular carcinoma can be controlled using hydrogen-rich water. Thus, targeting mitochondrial oxidative stress might be a good candidate for NASH treatment. Long term clinical intervention is needed to control this complex lifestyle-related disease. PMID:24132155

  18. Characterization of Niobium Oxide Films Deposited by High Target Utilization Sputter Sources

    SciTech Connect

    Chow, R; Ellis, A D; Loomis, G E; Rana, S I

    2007-01-29

    High quality, refractory metal, oxide coatings are required in a variety of applications such as laser optics, micro-electronic insulating layers, nano-device structures, electro-optic multilayers, sensors and corrosion barriers. A common oxide deposition technique is reactive sputtering because the kinetic mechanism vaporizes almost any solid material in vacuum. Also, the sputtered molecules have higher energies than those generated from thermal evaporation, and so the condensates are smoother and denser than those from thermally-evaporated films. In the typical sputtering system, target erosion is a factor that drives machine availability. In some situations such as nano-layered capacitors, where the device's performance characteristics depends on thick layers, target life becomes a limiting factor on the maximizing device functionality. The keen interest to increase target utilization in sputtering has been addressed in a variety of ways such as target geometry, rotating magnets, and/or shaped magnet arrays. Also, a recent sputtering system has been developed that generates a high density plasma, directs the plasma beam towards the target in a uniform fashion, and erodes the target in a uniform fashion. The purpose of this paper is to characterize and compare niobia films deposited by two types of high target utilization sputtering sources, a rotating magnetron and a high density plasma source. The oxide of interest in this study is niobia because of its high refractive index. The quality of the niobia films were characterized spectroscopically in optical transmission, ellipsometrically, and chemical stoichiometry with X-ray photo-electron spectroscopy. The refractive index, extinction coefficients, Cauchy constants were derived from the ellipsometric modeling. The mechanical properties of coating density and stress are also determined.

  19. MiR-25 protects cardiomyocytes against oxidative damage by targeting the mitochondrial calcium uniporter.

    PubMed

    Pan, Lei; Huang, Bi-Jun; Ma, Xiu-E; Wang, Shi-Yi; Feng, Jing; Lv, Fei; Liu, Yuan; Liu, Yi; Li, Chang-Ming; Liang, Dan-Dan; Li, Jun; Xu, Liang; Chen, Yi-Han

    2015-03-10

    MicroRNAs (miRNAs) are a class of small non-coding RNAs, whose expression levels vary in different cell types and tissues. Emerging evidence indicates that tissue-specific and -enriched miRNAs are closely associated with cellular development and stress responses in their tissues. MiR-25 has been documented to be abundant in cardiomyocytes, but its function in the heart remains unknown. Here, we report that miR-25 can protect cardiomyocytes against oxidative damage by down-regulating mitochondrial calcium uniporter (MCU). MiR-25 was markedly elevated in response to oxidative stimulation in cardiomyocytes. Further overexpression of miR-25 protected cardiomyocytes against oxidative damage by inactivating the mitochondrial apoptosis pathway. MCU was identified as a potential target of miR-25 by bioinformatical analysis. MCU mRNA level was reversely correlated with miR-25 under the exposure of H2O2, and MCU protein level was largely decreased by miR-25 overexpression. The luciferase reporter assay confirmed that miR-25 bound directly to the 3' untranslated region (UTR) of MCU mRNA. MiR-25 significantly decreased H2O2-induced elevation of mitochondrial Ca2+ concentration, which is likely to be the result of decreased activity of MCU. We conclude that miR-25 targets MCU to protect cardiomyocytes against oxidative damages. This finding provides novel insights into the involvement of miRNAs in oxidative stress in cardiomyocytes.

  20. Protective Effects of Melatonin and Mitochondria-targeted Antioxidants Against Oxidative Stress: A Review.

    PubMed

    Ramis, M R; Esteban, S; Miralles, A; Tan, Dun-Xian; Reiter, R J

    2015-01-01

    Oxidative damage is related to aging and a wide range of human disorders. Mitochondria are in large part responsible for free radical production and they are also main targets of the attack of these toxic molecules. The resulting deleterious effects of the damage to mitochondria can be prevented by antioxidants. Melatonin is an endogenously-produced indoleamine that modulates numerous functions, including mitochondria-related functions; this result from its capacity to penetrate all morphophysiological barriers and to enter all subcellular compartments due to its amphiphilic nature. Furthermore, this indoleamine and its metabolites are powerful antioxidants and scavengers of free radicals, protecting cellular membranes, the electron transport chain and mitochondrial DNA from oxidative damage. These properties may make melatonin a potent protector against a variety of free radical-related diseases. By comparison, other conventional antioxidants have less efficacy due to their limited access to the mitochondria. In recent years, research has focused on the advancement of mitochondria-targeted antioxidants, such as MitoQ (composed by the lipophilic triphenylphosphonium cation conjugated to the endogenous antioxidant coenzyme Q10) and MitoE (composed by the triphenylphosphonium cation attached to the antioxidant α-tocopherol). Mitochondria-targeted antioxidants accumulate in several hundred-fold greater concentrations within mitochondria and protect these critical organelles from oxidative damage. Melatonin also seems to be a mitochondria-targeted antioxidant and has similar protective actions as the synthetic antioxidants. Further work is required to determine the therapeutic properties of these antioxidants in ameliorating diseases related to mitochondrial dysfunction.

  1. Fabrication of self-supported oxide targets by cationic adsorption in cellulosic membranes and thermal decomposition

    SciTech Connect

    Quinby, T.C.

    1983-01-01

    Techniques for producing relatively durable oxide films of various elements will be described. Areal densities of films produced to date have ranged from 150 ..mu..g/cm/sup 2/ to 2.5 mg/cm/sup 2/, and are virtually transparent. Films produced by this technique were weighed directly and mounted on frames. General parameters for use of this technique will be described.

  2. Elemental Metals or Oxides Distributed on a Carbon Substrate or Self-Supported and the Manufacturing Process Using Graphite Oxide as Template

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    1999-01-01

    A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon, metal, chloride, and oxygen. This intermediary product can be further processed by direct exposure to carbonate-solutions to form a second intermediary product comprising carbon, metal carbonate, and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide; b) in an inert environment to produce metal oxide on carbon substrate; c) in a reducing environment to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.

  3. Testing of Cis-Regulatory Elements by Targeted Transgene Integration in Zebrafish Using PhiC31 Integrase.

    PubMed

    Hadzhiev, Yavor; Miguel-Escalada, Irene; Balciunas, Darius; Müller, Ferenc

    2016-01-01

    Herein we present several strategies for testing the function of cis-regulatory elements using the PhiC31 integrase system. Firstly, we present two different strategies to analyze the activity of candidate enhancer elements. Targeted integration of candidate enhancers into the same genomic location circumvents the variability-associated random integration and position effects. This method is suitable for testing of candidate enhancers identified through computational or other analyses a priori. Secondly, we present methodology for targeted integration of BACs into the same genomic location(s). By using additional reporters integrated into a BAC, this enables experimental testing whether cis-regulatory elements are functional in the sequence inserted in the BAC. PMID:27464802

  4. Identifying initial molecular targets of PDT: protein and lipid oxidation products

    NASA Astrophysics Data System (ADS)

    Oleinick, Nancy L.; Kim, Junhwan; Rodriguez, Myriam E.; Xue, Liang-yan; Kenney, Malcolm E.; Anderson, Vernon E.

    2009-06-01

    Photodynamic Therapy (PDT) generates singlet oxygen (1O2) which oxidizes biomolecules in the immediate vicinity of its formation. The phthalocyanine photosensitizer Pc 4 localizes to mitochondria and endoplasmic reticulum, and the primary targets of Pc 4-PDT are expected to be lipids and proteins of those membranes. The initial damage then causes apoptosis in cancer cells via the release of cytochrome c (Cyt-c) from mitochondria into the cytosol, followed by the activation of caspases. That damage also triggers the induction of autophagy, an attempt by the cells to eliminate damaged organelles, or when damage is too extensive, to promote cell death. Cyt-c is bound to the cytosolic side of the mitochondrial inner membrane through association with cardiolipin (CL), a phospholipid containing four unsaturated fatty acids and thus easily oxidized by 1O2 or by other oxidizing agents. Increasing evidence suggests that oxidation of CL loosens its association with Cyt-c, and that the peroxidase activity of Cyt-c can oxidize CL. In earlier studies of Cyt-c in homogeneous medium by MALDI-TOF-MS and LC-ESI-MS, we showed that 1O2 generated by Pc 4-PDT oxidized histidine, methionine, tryptophan, and unexpectedly phenylalanine but not tyrosine. Most of the oxidation products were known to be formed by other oxidizing agents, such as hydroxyl radical, superoxide radical anion, and peroxynitrite. However, two products of histidine were unique to 1O2 and may be useful for reporting the action of 1O2 in cells and tissues. These products, as well as CL oxidation products, have now been identified in liposomes and mitochondria after Pc 4-PDT. In mitochondria, the PDT dose-dependent oxidations can be related to specific changes in mitochondrial function, Bcl-2 photodamage, and Cyt-c release. Thus, the role of PDT-generated 1O2 in oxidizing Cyt-c and CL and the interplay between protein and lipid targets may be highly relevant to understanding one mechanism for cell killing by PDT.

  5. Heat-Shock Promoters: Targets for Evolution by P Transposable Elements in Drosophila

    PubMed Central

    Walser, Jean-Claude; Chen, Bing; Feder, Martin E

    2006-01-01

    Transposable elements are potent agents of genomic change during evolution, but require access to chromatin for insertion—and not all genes provide equivalent access. To test whether the regulatory features of heat-shock genes render their proximal promoters especially susceptible to the insertion of transposable elements in nature, we conducted an unbiased screen of the proximal promoters of 18 heat-shock genes in 48 natural populations of Drosophila. More than 200 distinctive transposable elements had inserted into these promoters; greater than 96% are P elements. By contrast, few or no P element insertions segregate in natural populations in a “negative control” set of proximal promoters lacking the distinctive regulatory features of heat-shock genes. P element transpositions into these same genes during laboratory mutagenesis recapitulate these findings. The natural P element insertions cluster in specific sites in the promoters, with up to eight populations exhibiting P element insertions at the same position; laboratory insertions are into similar sites. By contrast, a “positive control” set of promoters resembling heat-shock promoters in regulatory features harbors few P element insertions in nature, but many insertions after experimental transposition in the laboratory. We conclude that the distinctive regulatory features that typify heat-shock genes (in Drosophila) are especially prone to mutagenesis via P elements in nature. Thus in nature, P elements create significant and distinctive variation in heat-shock genes, upon which evolutionary processes may act. PMID:17029562

  6. Insertions of a Novel Class of Transposable Elements with a Strong Target Site Preference at the R Locus of Maize

    PubMed Central

    Walker, E. L.; Eggleston, W. B.; Demopulos, D.; Kermicle, J.; Dellaporta, S. L.

    1997-01-01

    The r locus of maize regulates anthocyanin synthesis in various tissues of maize through the production of helix-loop-helix DNA binding proteins capable of inducing expression of structural genes in the anthocyanin biosynthetic pathway. The complex r variant, R-r:standard (R-r), undergoes frequent mutation through a variety of mechanisms including displaced synapsis and crossing over, and intrachromosomal recombination. Here we report a new mechanism for mutation at the R-r complex: insertion of a novel family of transposable elements. Because the elements were first identified in the R-p gene of the R-r complex, they have been named P Instability Factor (PIF). Two different PIF elements were cloned and found to have identical sequences at their termini but divergent internal sequences. In addition, the PIF elements showed a marked specificity of insertion sites. Six out of seven PIF-containing derivatives examined had an element inserted at an identical location. Two different members of the PIF element family were identified at this position. The seventh PIF-containing derivative examined had the element inserted at a distinct position within r. Even at this location, however, the element inserted into a conserved target sequence. The timing of PIF excision is unusual. Germinal excision rates can range up to several percent of progeny. Yet somatic sectors are rare, even in lines exhibiting high germinal reversion rates. PMID:9178016

  7. Periodontitis in Rats Induces Systemic Oxidative Stress That Is Controlled by Bone-Targeted Antiresorptives

    PubMed Central

    Oktay, Sehkar; Chukkapalli, Sasanka S.; Rivera-Kweh, Mercedes F.; Velsko, Irina M.; Holliday, L. Shannon; Kesavalu, Lakshmyya

    2015-01-01

    Background Periodontitis is a chronic, polymicrobial inflammatory disease that degrades connective tissue and alveolar bone and results in tooth loss. Oxidative stress has been linked to the onset of periodontal tissue breakdown and systemic inflammation, and the success of antiresorptive treatments will rely on how effectively they can ameliorate periodontal disease–induced oxidative stress during oral infection. Methods Rats were infected with polybacterial inoculum consisting of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia, as an oral lavage every other week for 12 weeks. Daily subcutaneous injections of enoxacin, bisenoxacin, alendronate, or doxycycline were administered for 6 weeks after 6 weeks of polybacterial infection in rats. The serum levels of oxidative stress parameters and antioxidant enzymes, including glutathione peroxidase, superoxide dismutase, and catalase, were evaluated in each of the infected, treated, and sham-infected rats. Results Rats infected with the periodontal pathogens displayed a five-fold increase in the oxidative stress index compared with controls as a result of increased levels of serum oxidants and decreases in total antioxidant activity. The overall decrease in antioxidant activity occurred despite increases in three important antioxidant enzymes, suggesting an imbalance between antioxidant macromolecules/small molecules production and antioxidant enzyme levels. Surprisingly, the bone-targeted antiresorptives bis-enoxacin and alendronate inhibited increases in oxidative stress caused by periodontitis. Bis-enoxacin, which has both antiresorptive and antibiotic activities, was more effective than alendronate, which acts only as an antiresorptive. Conclusion To the best of the authors’ knowledge, this is the first study to demonstrate that the increased oxidative stress induced by periodontal infection in rats can be ameliorated by bone-targeted antiresorptives. PMID:25101489

  8. Reactions of yttria-stabilized zirconia with oxides and sulfates of various elements

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1978-01-01

    The reactions between partially stabilized zirconia, containing 8 weight-percent yttria, and oxides and sulfates of various elements were studied at 1200, 1300, and 1400 C for times to 800, 400, and 200 hours, respectively. These oxides and sulfates represent impurities and additives potentially present in gas turbine fuels or impurities in the turbine combustion air as well as the elements of the substrate alloys in contact with zirconia. Based on the results, these compounds can be classified in four groups: (1) compounds which did not react with zirconia (Na2SO4, K2SO4, Cr2O3, Al2O3 and NiO); (2) compounds that reached completely with both zirconia phases (CaO, BaO, and BaSO4); (3) compounds that reacted preferentially with monoclinic zirconia (Na2O, K2O, CoO, Fe2O3, MgO, SiO2, and ZnO); and (4) compounds that reacted preferentially with cubic zirconia (V2O5, P2O5).

  9. Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cells

    SciTech Connect

    Cai, Wenqing; Zhang, Baoxin; Duan, Dongzhu; Wu, Jincai; Fang, Jianguo

    2012-08-01

    The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH, is ubiquitous in all cells and involved in many redox-dependent signaling pathways. Curcumin, a naturally occurring pigment that gives a specific yellow color in curry food, is consumed in normal diet up to 100 mg per day. This molecule has also been used in traditional medicine for the treatment of a variety of diseases. Curcumin has numerous biological functions, and many of these functions are related to induction of oxidative stress. However, how curcumin elicits oxidative stress in cells is unclear. Our previous work has demonstrated the way by which curcumin interacts with recombinant TrxR1 and alters the antioxidant enzyme into a reactive oxygen species (ROS) generator in vitro. Herein we reported that curcumin can target the cytosolic/nuclear thioredoxin system to eventually elevate oxidative stress in HeLa cells. Curcumin-modified TrxR1 dose-dependently and quantitatively transfers electrons from NADPH to oxygen with the production of ROS. Also, curcumin can drastically down-regulate Trx1 protein level as well as its enzyme activity in HeLa cells, which in turn remarkably decreases intracellular free thiols, shifting the intracellular redox balance to a more oxidative state, and subsequently induces DNA oxidative damage. Furthermore, curcumin-pretreated HeLa cells are more sensitive to oxidative stress. Knockdown of TrxR1 sensitizes HeLa cells to curcumin cytotoxicity, highlighting the physiological significance of targeting TrxR1 by curcumin. Taken together, our data disclose a previously unrecognized prooxidant mechanism of curcumin in cells, and provide a deep insight in understanding how curcumin works in vivo. -- Highlights: ► Curcumin induces oxidative stress by targeting the thioredoxin system. ► Curcumin-modified TrxR quantitatively oxidizes NADPH to generate ROS. ► Knockdown of TrxR1 augments curcumin's cytotoxicity in HeLa cells. ► Curcumin

  10. Mitochondrial targeting of bilirubin regulatory enzymes: An adaptive response to oxidative stress

    SciTech Connect

    Muhsain, Siti Nur Fadzilah; Lang, Matti A.; Abu-Bakar, A'edah

    2015-01-01

    The intracellular level of bilirubin (BR), an endogenous antioxidant that is cytotoxic at high concentrations, is tightly controlled within the optimal therapeutic range. We have recently described a concerted intracellular BR regulation by two microsomal enzymes: heme oxygenase 1 (HMOX1), essential for BR production and cytochrome P450 2A5 (CYP2A5), a BR oxidase. Herein, we describe targeting of these enzymes to hepatic mitochondria during oxidative stress. The kinetics of microsomal and mitochondrial BR oxidation were compared. Treatment of DBA/2J mice with 200 mg pyrazole/kg/day for 3 days increased hepatic intracellular protein carbonyl content and induced nucleo-translocation of Nrf2. HMOX1 and CYP2A5 proteins and activities were elevated in microsomes and mitoplasts but not the UGT1A1, a catalyst of BR glucuronidation. A CYP2A5 antibody inhibited 75% of microsomal BR oxidation. The inhibition was absent in control mitoplasts but elevated to 50% after treatment. An adrenodoxin reductase antibody did not inhibit microsomal BR oxidation but inhibited 50% of mitochondrial BR oxidation. Ascorbic acid inhibited 5% and 22% of the reaction in control and treated microsomes, respectively. In control mitoplasts the inhibition was 100%, which was reduced to 50% after treatment. Bilirubin affinity to mitochondrial and microsomal CYP2A5 enzyme is equally high. Lastly, the treatment neither released cytochrome c into cytoplasm nor dissipated membrane potential, indicating the absence of mitochondrial membrane damage. Collectively, the observations suggest that BR regulatory enzymes are recruited to mitochondria during oxidative stress and BR oxidation by mitochondrial CYP2A5 is supported by mitochondrial mono-oxygenase system. The induced recruitment potentially confers membrane protection. - Highlights: • Pyrazole induces oxidative stress in the mouse liver. • Pyrazole-induced oxidative stress induces mitochondrial targeting of key bilirubin regulatory enzymes, HMOX1

  11. Arginase: The Emerging Therapeutic Target for Vascular Oxidative Stress and Inflammation

    PubMed Central

    Yang, Zhihong; Ming, Xiu-Fen

    2013-01-01

    Oxidative stress and inflammation in the vascular wall are essential mechanisms of atherosclerosis and vascular dysfunctions associated with risk factors such as metabolic diseases, aging, hypertension, etc. Evidence has been provided that activation of the vascular endothelial cells in the presence of the risk factors promotes oxidative stress and vascular inflammatory responses, leading to acceleration of atherosclerotic vascular disease. Increasing number of studies from recent years demonstrates that uncoupling of endothelial nitric oxide synthase (eNOS), whereby the enzyme eNOS produces detrimental amount of superoxide anion O2− instead the vasoprotective nitric oxide (NO⋅), plays a critical role in vascular dysfunction under various pathophysiological conditions and in aging. The mechanisms of eNOS-uncoupling seem multiple and complex. Recent research provides emerging evidence supporting an essential role of increased activity of arginases including arginase-I and arginase-II in causing eNOS-uncoupling, which results in vascular oxidative stress and inflammatory responses, and ultimately leading to vascular diseases. This review article will summarize the most recent findings on the functional roles of arginases in vascular diseases and/or dysfunctions and the underlying mechanisms in relation to oxidative stress and inflammations. Moreover, regulatory mechanisms of arginases in the vasculature are reviewed and the future perspectives of targeting arginases as therapeutic options in vascular diseases are discussed. PMID:23781221

  12. Investigation of processes controlling summertime gaseous elemental mercury oxidation at midlatitudinal marine, coastal, and inland sites

    NASA Astrophysics Data System (ADS)

    Ye, Zhuyun; Mao, Huiting; Lin, Che-Jen; Kim, Su Youn

    2016-07-01

    A box model incorporating a state-of-the-art chemical mechanism for atmospheric mercury (Hg) cycling was developed to investigate the oxidation of gaseous elemental mercury (GEM) at three locations in the northeastern United States: Appledore Island (AI; marine), Thompson Farm (TF; coastal, rural), and Pack Monadnock (PM; inland, rural, elevated). The chemical mechanism in this box model included the most up-to-date Hg and halogen chemistry. As a result, the box model was able to simulate reasonably the observed diurnal cycles of gaseous oxidized mercury (GOM) and chemical speciation bearing distinct differences between the three sites. In agreement with observations, simulated GOM diurnal cycles at AI and TF showed significant daytime peaks in the afternoon and nighttime minimums compared to flat GOM diurnal cycles at PM. Moreover, significant differences in the magnitude of GOM diurnal amplitude (AI > TF > PM) were captured in modeled results. At the coastal and inland sites, GEM oxidation was predominated by O3 and OH, contributing 80-99 % of total GOM production during daytime. H2O2-initiated GEM oxidation was significant (˜ 33 % of the total GOM) at the inland site during nighttime. In the marine boundary layer (MBL) atmosphere, Br and BrO became dominant GEM oxidants, with mixing ratios reaching 0.1 and 1 pptv, respectively, and contributing ˜ 70 % of the total GOM production during midday, while O3 dominated GEM oxidation (50-90 % of GOM production) over the remaining day when Br and BrO mixing ratios were diminished. The majority of HgBr produced from GEM+Br was oxidized by NO2 and HO2 to form brominated GOM species. Relative humidity and products of the CH3O2+BrO reaction possibly significantly affected the mixing ratios of Br or BrO radicals and subsequently GOM formation. Gas-particle partitioning could potentially be important in the production of GOM as well as Br and BrO at the marine site.

  13. Formation of Soluble Mercury Oxide Coatings: Transformation of Elemental Mercury in Soils.

    PubMed

    Miller, Carrie L; Watson, David B; Lester, Brian P; Howe, Jane Y; Phillips, Debra H; He, Feng; Liang, Liyuan; Pierce, Eric M

    2015-10-20

    The impact of mercury (Hg) on human and ecological health has been known for decades. Although a treaty signed in 2013 by 147 nations regulates future large-scale mercury emissions, legacy Hg contamination exists worldwide and small-scale releases will continue. The fate of elemental mercury, Hg(0), lost to the subsurface and its potential chemical transformation that can lead to changes in speciation and mobility are poorly understood. Here, we show that Hg(0) beads interact with soil or manganese oxide solids and X-ray spectroscopic analysis indicates that the soluble mercury coatings are HgO. Dissolution studies show that, after reacting with a composite soil, >20 times more Hg is released into water from the coated beads than from a pure liquid mercury bead. An even larger, >700 times, release occurs from coated Hg(0) beads that have been reacted with manganese oxide, suggesting that manganese oxides are involved in the transformation of the Hg(0) beads and creation of the soluble mercury coatings. Although the coatings may inhibit Hg(0) evaporation, the high solubility of the coatings can enhance Hg(II) migration away from the Hg(0)-spill site and result in potential changes in mercury speciation in the soil and increased mercury mobility.

  14. Formation of Soluble Mercury Oxide Coatings: Transformation of Elemental Mercury in Soils.

    PubMed

    Miller, Carrie L; Watson, David B; Lester, Brian P; Howe, Jane Y; Phillips, Debra H; He, Feng; Liang, Liyuan; Pierce, Eric M

    2015-10-20

    The impact of mercury (Hg) on human and ecological health has been known for decades. Although a treaty signed in 2013 by 147 nations regulates future large-scale mercury emissions, legacy Hg contamination exists worldwide and small-scale releases will continue. The fate of elemental mercury, Hg(0), lost to the subsurface and its potential chemical transformation that can lead to changes in speciation and mobility are poorly understood. Here, we show that Hg(0) beads interact with soil or manganese oxide solids and X-ray spectroscopic analysis indicates that the soluble mercury coatings are HgO. Dissolution studies show that, after reacting with a composite soil, >20 times more Hg is released into water from the coated beads than from a pure liquid mercury bead. An even larger, >700 times, release occurs from coated Hg(0) beads that have been reacted with manganese oxide, suggesting that manganese oxides are involved in the transformation of the Hg(0) beads and creation of the soluble mercury coatings. Although the coatings may inhibit Hg(0) evaporation, the high solubility of the coatings can enhance Hg(II) migration away from the Hg(0)-spill site and result in potential changes in mercury speciation in the soil and increased mercury mobility. PMID:26389816

  15. Mycobacteria Isolated from Angkor Monument Sandstones Grow Chemolithoautotrophically by Oxidizing Elemental Sulfur

    PubMed Central

    Kusumi, Asako; Li, Xian Shu; Katayama, Yoko

    2011-01-01

    To characterize sulfate-producing microorganisms from the deteriorated sandstones of Angkor monuments in Cambodia, strains of Mycobacterium spp. were isolated from most probable number-positive cultures. All five strains isolated were able to use both elemental sulfur (S0) for chemolithoautotrophic growth and organic substances for chemoorganoheterotrophic growth. Results of phylogenetic and phenotypic analyses indicated that all five isolates were rapid growers of the genus Mycobacterium and were most similar to Mycobacterium cosmeticum and Mycobacterium pallens. Chemolithoautotrophic growth was further examined in the representative strain THI503. When grown in mineral salts medium, strain THI503 oxidized S0 to thiosulfate and sulfate; oxidation was accompanied by a decrease in the pH of the medium from 4.7 to 3.6. The link between sulfur oxidation and energy metabolism was confirmed by an increase in ATP. Fluorescence microscopy of DAPI-stained cells revealed that strain THI503 adheres to and proliferates on the surface of sulfur particles. The flexible metabolic ability of facultative chemolithoautotrophs enables their survival in nutrient-limited sandstone environments. PMID:21747806

  16. Formation of soluble mercury oxide coatings: Transformation of elemental mercury in soils

    SciTech Connect

    Miller, Carrie L.; Watson, David B.; Lester, Brian P.; Howe, Jane Y.; Phillips, Debra H.; He, Feng; Liang, Liyuan; Pierce, Eric M.

    2015-09-21

    In this study, the impact of mercury (Hg) on human and ecological health has been known for decades. Although a treaty signed in 2013 by 147 nations regulates future large-scale mercury emissions, legacy Hg contamination exists worldwide and small-scale releases will continue. The fate of elemental mercury, Hg(0), lost to the subsurface and its potential chemical transformation that can lead to changes in speciation and mobility are poorly understood. Here, we show that Hg(0) beads interact with soil or manganese oxide solids and X-ray spectroscopic analysis indicates that the soluble mercury coatings are HgO. Dissolution studies show that, after reacting with a composite soil, >20 times more Hg is released into water from the coated beads than from a pure liquid mercury bead. An even larger, >700 times, release occurs from coated Hg(0) beads that have been reacted with manganese oxide, suggesting that manganese oxides are involved in the transformation of the Hg(0) beads and creation of the soluble mercury coatings. Although the coatings may inhibit Hg(0) evaporation, the high solubility of the coatings can enhance Hg(II) migration away from the Hg(0)-spill site and result in potential changes in mercury speciation in the soil and increased mercury mobility.

  17. Formation of soluble mercury oxide coatings: Transformation of elemental mercury in soils

    DOE PAGES

    Miller, Carrie L.; Watson, David B.; Lester, Brian P.; Howe, Jane Y.; Phillips, Debra H.; He, Feng; Liang, Liyuan; Pierce, Eric M.

    2015-09-21

    In this study, the impact of mercury (Hg) on human and ecological health has been known for decades. Although a treaty signed in 2013 by 147 nations regulates future large-scale mercury emissions, legacy Hg contamination exists worldwide and small-scale releases will continue. The fate of elemental mercury, Hg(0), lost to the subsurface and its potential chemical transformation that can lead to changes in speciation and mobility are poorly understood. Here, we show that Hg(0) beads interact with soil or manganese oxide solids and X-ray spectroscopic analysis indicates that the soluble mercury coatings are HgO. Dissolution studies show that, after reactingmore » with a composite soil, >20 times more Hg is released into water from the coated beads than from a pure liquid mercury bead. An even larger, >700 times, release occurs from coated Hg(0) beads that have been reacted with manganese oxide, suggesting that manganese oxides are involved in the transformation of the Hg(0) beads and creation of the soluble mercury coatings. Although the coatings may inhibit Hg(0) evaporation, the high solubility of the coatings can enhance Hg(II) migration away from the Hg(0)-spill site and result in potential changes in mercury speciation in the soil and increased mercury mobility.« less

  18. Photochemical Oxidation of Dissolved Elemental Mercury by Carbonate Radicals in Water

    DOE PAGES

    He, Feng; Zhao, Weirong; Liang, Liyuan; Gu, Baohua

    2014-11-11

    Photochemical oxidation of dissolved elemental mercury [Hg(0)] affects mercury chemical speciation and its transfer at the water-air interface in the aquatic environment. The mechanisms and factors that control Hg(0) photooxidation, however, are not completely understood, especially in natural freshwaters containing dissolved organic matter (DOM) and carbonate. Here, we evaluate Hg(0) photooxidation rates affected by various reactive ionic species [e.g., DOM, CO32-, NO3-] and free radicals in a creek water and a phosphate buffer solution (pH=8) under simulated solar irradiation. We report a high Hg(0) photooxidation rate (k = 1.44 h-1) in the presence of both HCO32- and NO3-, whereas HCO32-,more » NO3-, or DOM alone increased the oxidation rate slightly (k = 0.1 0.17 h-1). Using scavengers and enhancers for singlet oxygen (1O2) and hydroxyl (HO∙ ) radicals, as well as electron paramagnetic resonance spectroscopy, we identify that carbonate radicals (CO3 ∙-) primarily drive the Hg(0) photooxidation, whereas addition of DOM resulted in a 2-fold decrease in Hg(0) oxidation. This study identifies an unrecognized pathway of Hg(0) photooxidation by CO3 ∙- radicals and the inhibitory effect of DOM, which could be important in assessing Hg transformation and fate in water containing carbonate such as hard water and seawater.« less

  19. Daunomycin-loaded superparamagnetic iron oxide nanoparticles: Preparation, magnetic targeting, cell cytotoxicity, and protein delivery research.

    PubMed

    Liu, Min-Chao; Jin, Shu-Fang; Zheng, Min; Wang, Yan; Zhao, Peng-Liang; Tang, Ding-Tong; Chen, Jiong; Lin, Jia-Qi; Wang, Xia-Hong; Zhao, Ping

    2016-08-01

    The clinical use of daunomycin is restricted by dose-dependent toxicity and low specificity against cancer cells. In the present study, modified superparamagnetic iron oxide nanoparticles were employed to load daunomycin and the drug-loaded nanospheres exhibited satisfactory size and smart pH-responsive release. The cellular uptake efficiency, targeted cell accumulation, and cell cytotoxicity experimental results proved that the superparamagnetic iron oxide nanoparticle-loading process brings high drug targeting without decreasing the cytotoxicity of daunomycin. Moreover, a new concern for the evaluation of nanophase drug delivery's effects was considered, with monitoring the interactions between human serum albumin and the drug-loaded nanospheres. Results from the multispectroscopic techniques and molecular modeling calculation elucidate that the drug delivery has detectable deleterious effects on the frame conformation of protein, which may affect its physiological function. PMID:27288463

  20. 1,4-Dihydropyridine Derivatives: Dihydronicotinamide Analogues—Model Compounds Targeting Oxidative Stress

    PubMed Central

    Velena, Astrida; Zarkovic, Neven; Gall Troselj, Koraljka; Bisenieks, Egils; Krauze, Aivars; Poikans, Janis; Duburs, Gunars

    2016-01-01

    Many 1,4-dihydropyridines (DHPs) possess redox properties. In this review DHPs are surveyed as protectors against oxidative stress (OS) and related disorders, considering the DHPs as specific group of potential antioxidants with bioprotective capacities. They have several peculiarities related to antioxidant activity (AOA). Several commercially available calcium antagonist, 1,4-DHP drugs, their metabolites, and calcium agonists were shown to express AOA. Synthesis, hydrogen donor properties, AOA, and methods and approaches used to reveal biological activities of various groups of 1,4-DHPs are presented. Examples of DHPs antioxidant activities and protective effects of DHPs against OS induced damage in low density lipoproteins (LDL), mitochondria, microsomes, isolated cells, and cell cultures are highlighted. Comparison of the AOA of different DHPs and other antioxidants is also given. According to the data presented, the DHPs might be considered as bellwether among synthetic compounds targeting OS and potential pharmacological model compounds targeting oxidative stress important for medicinal chemistry. PMID:26881016

  1. The effect of ligand density on in vivo tumor targeting of nanographene oxide.

    PubMed

    Lee, Jong Hyun; Sahu, Abhishek; Jang, Cheol; Tae, Giyoong

    2015-07-10

    Recently, the application of nanographene oxide (nGO) as a drug delivery system has significantly increased. But, the rational engineering of nGO surface to improve its in vivo targeting and biodistribution remains mostly unexplored. In this study, we have prepared folic acid conjugated Pluronic for non-covalent functionalization of nanographene oxide (nGO) sheets and active tumor targeting. To modulate the ligand density on the nGO surface, different ratios of folate conjugated Pluronic and unmodified Pluronic were combined and used for coating nGO sheets. The surface density of targeting ligand linearly increased as the relative amount of folate conjugated Pluronic was increased. The association of functionalized nGOs with folate receptor overexpressing human epithelial mouth carcinoma cells (KB cells) was evaluated by flow cytometry. Cellular uptake of nGO by KB cells increased steadily with the increase in ligand density. In contrast, the in vivo experiment in mouse xenograft model did not show the steady increase in tumor targeting by increasing ligand density. Upon intravenous administration into KB tumor-bearing mice, tumor accumulation of nGO did not show a significant targeting effect up to 25% of ligand coating density. However, a strong and similar tumor accumulation of nGO was observed for both 50% and 100% folate coatings. Thus, a significant difference in tumor accumulation of nGO was observed between the low folate density groups and high folate density groups, suggesting the existence of a critical ligand density for tumor targeting. The significant difference of tumor targeting of nGO depending on ligand density also resulted in the dramatic change in photothermal tumor ablation by the irradiation of NIR laser. PMID:25937319

  2. Targeting Transporters: Promoting Blood-Brain Barrier Repair in Response to Oxidative Stress Injury

    PubMed Central

    Ronaldson, Patrick T.; Davis, Thomas P.

    2015-01-01

    The blood-brain barrier (BBB) is a physical and biochemical barrier that precisely regulates the ability of endogenous and exogenous substances to accumulate within brain tissue. It possesses structural and biochemical features (i.e., tight junction and adherens junction protein complexes, influx and efflux transporters) that work in concert to control solute permeation. Oxidative stress, a critical component of several diseases including cerebral hypoxia/ischemia and peripheral inflammatory pain, can cause considerable injury to the BBB and lead to significant CNS pathology. This suggests a critical need for novel therapeutic approaches that can protect the BBB in diseases with an oxidative stress component. Recent studies have identified molecular targets (i.e., endogenous transporters, intracellular signaling systems) that can be exploited for optimization of endothelial drug delivery or for control of transport of endogenous substrates such as the antioxidant glutathione (GSH). In particular, targeting transporters offers a unique approach to protect BBB integrity by promoting repair of cell-cell interactions at the level of the brain microvascular endothelium. This review summarizes current knowledge in this area and emphasizes those targets that present considerable opportunity for providing BBB protection and/or promoting BBB repair in the setting of oxidative stress. PMID:25796436

  3. Elevated copper and oxidative stress in cancer cells as a target for cancer treatment.

    PubMed

    Gupte, Anshul; Mumper, Russell J

    2009-02-01

    As we gain a better understanding of the factors affecting cancer etiology, we can design improved treatment strategies. Over the past three to four decades, there have been numerous successful efforts in recognizing important cellular proteins essential in cancer growth and therefore these proteins have been targeted for cancer treatment. However, studies have shown that targeting one or two proteins in the complex cancer cascade may not be sufficient in controlling and/or inhibiting cancer growth. Therefore, there is a need to examine features which are potentially involved in multiple facets of cancer development. In this review we discuss the targeting of the elevated copper (both in serum and tumor) and oxidative stress levels in cancer with the aid of a copper chelator d-penicillamine (d-pen) for potential cancer treatment. Numerous studies in the literature have reported that both the serum and tumor copper levels are elevated in a variety of malignancies, including both solid tumor and blood cancer. Further, the elevated copper levels have been shown to be directly correlated to cancer progression. Enhanced levels of intrinsic oxidative stress has been shown in variety of tumors, possibly due to the combination of factors such as elevated active metabolism, mitochondrial mutation, cytokines, and inflammation. The cancer cells under sustained ROS stress tend to heavily utilize adaptation mechanisms and may exhaust cellular ROS-buffering capacity. Therefore, the elevated copper levels and increased oxidative stress in cancer cells provide for a prospect of selective cancer treatment.

  4. Synthesis and Evaluation of Folate-Conjugated Phenanthraquinones for Tumor-Targeted Oxidative Chemotherapy

    PubMed Central

    Kumar, Ajay; Chelvam, Venkatesh; Sakkarapalayam, Mahalingam; Li, Guo; Sanchez-Cruz, Pedro; Piñero, Natasha S.; Low, Philip S.; Alegria, Antonio E.

    2016-01-01

    Almost all cells are easily killed by exposure to potent oxidants. Indeed, major pathogen defense mechanisms in both animal and plant kingdoms involve production of an oxidative burst, where host defense cells show an invading pathogen with reactive oxygen species (ROS). Although cancer cells can be similarly killed by ROS, development of oxidant-producing chemotherapies has been limited by their inherent nonspecificity and potential toxicity to healthy cells. In this paper, we describe the targeting of an ROS-generating molecule selectively to tumor cells using folate as the tumor-targeting ligand. For this purpose, we exploit the ability of 9,10-phenanthraquinone (PHQ) to enhance the continuous generation of H2O2 in the presence of ascorbic acid to establish a constitutive source of ROS within the tumor mass. We report here that incubation of folate receptor-expressing KB cells in culture with folate-PHQ plus ascorbate results in the death of the cancer cells with an IC50 of ~10 nM (folate-PHQ). We also demonstrate that a cleavable spacer linking folate to PHQ is significantly inferior to a noncleavable spacer, in contrast to most other folate-targeted therapeutic agents. Unfortunately, no evidence for folate-PHQ mediated tumor regression in murine tumor models is obtained, suggesting that unanticipated impediments to generation of cytotoxic quantities of ROS in vivo are encountered. Possible mechanisms and potential solutions to these unanticipated results are offered. PMID:27066312

  5. Pathogenesis of Target Organ Damage in Hypertension: Role of Mitochondrial Oxidative Stress

    PubMed Central

    Rubattu, Speranza; Pagliaro, Beniamino; Pierelli, Giorgia; Santolamazza, Caterina; Di Castro, Sara; Mennuni, Silvia; Volpe, Massimo

    2014-01-01

    Hypertension causes target organ damage (TOD) that involves vasculature, heart, brain and kidneys. Complex biochemical, hormonal and hemodynamic mechanisms are involved in the pathogenesis of TOD. Common to all these processes is an increased bioavailability of reactive oxygen species (ROS). Both in vitro and in vivo studies explored the role of mitochondrial oxidative stress as a mechanism involved in the pathogenesis of TOD in hypertension, especially focusing on atherosclerosis, heart disease, renal failure, cerebrovascular disease. Both dysfunction of mitochondrial proteins, such as uncoupling protein-2 (UCP2), superoxide dismutase (SOD) 2, peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α), calcium channels, and the interaction between mitochondria and other sources of ROS, such as NADPH oxidase, play an important role in the development of endothelial dysfunction, cardiac hypertrophy, renal and cerebral damage in hypertension. Commonly used anti-hypertensive drugs have shown protective effects against mitochondrial-dependent oxidative stress. Notably, few mitochondrial proteins can be considered therapeutic targets on their own. In fact, antioxidant therapies specifically targeted at mitochondria represent promising strategies to reduce mitochondrial dysfunction and related hypertensive TOD. In the present article, we discuss the role of mitochondrial oxidative stress as a contributing factor to hypertensive TOD development. We also provide an overview of mitochondria-based treatment strategies that may reveal useful to prevent TOD and reduce its progression. PMID:25561233

  6. Targeting Nitric Oxide with Natural Derived Compounds as a Therapeutic Strategy in Vascular Diseases.

    PubMed

    Forte, Maurizio; Conti, Valeria; Damato, Antonio; Ambrosio, Mariateresa; Puca, Annibale A; Sciarretta, Sebastiano; Frati, Giacomo; Vecchione, Carmine; Carrizzo, Albino

    2016-01-01

    Within the family of endogenous gasotransmitters, nitric oxide (NO) is the smallest gaseous intercellular messenger involved in the modulation of several processes, such as blood flow and platelet aggregation control, essential to maintain vascular homeostasis. NO is produced by nitric oxide synthases (NOS) and its effects are mediated by cGMP-dependent or cGMP-independent mechanisms. Growing evidence suggests a crosstalk between the NO signaling and the occurrence of oxidative stress in the onset and progression of vascular diseases, such as hypertension, heart failure, ischemia, and stroke. For these reasons, NO is considered as an emerging molecular target for developing therapeutic strategies for cardio- and cerebrovascular pathologies. Several natural derived compounds, such as polyphenols, are now proposed as modulators of NO-mediated pathways. The aim of this review is to highlight the experimental evidence on the involvement of nitric oxide in vascular homeostasis focusing on the therapeutic potential of targeting NO with some natural compounds in patients with vascular diseases. PMID:27651855

  7. Targeting Nitric Oxide with Natural Derived Compounds as a Therapeutic Strategy in Vascular Diseases

    PubMed Central

    Forte, Maurizio; Damato, Antonio; Ambrosio, Mariateresa; Puca, Annibale A.; Sciarretta, Sebastiano; Frati, Giacomo; Vecchione, Carmine

    2016-01-01

    Within the family of endogenous gasotransmitters, nitric oxide (NO) is the smallest gaseous intercellular messenger involved in the modulation of several processes, such as blood flow and platelet aggregation control, essential to maintain vascular homeostasis. NO is produced by nitric oxide synthases (NOS) and its effects are mediated by cGMP-dependent or cGMP-independent mechanisms. Growing evidence suggests a crosstalk between the NO signaling and the occurrence of oxidative stress in the onset and progression of vascular diseases, such as hypertension, heart failure, ischemia, and stroke. For these reasons, NO is considered as an emerging molecular target for developing therapeutic strategies for cardio- and cerebrovascular pathologies. Several natural derived compounds, such as polyphenols, are now proposed as modulators of NO-mediated pathways. The aim of this review is to highlight the experimental evidence on the involvement of nitric oxide in vascular homeostasis focusing on the therapeutic potential of targeting NO with some natural compounds in patients with vascular diseases. PMID:27651855

  8. Targeting Nitric Oxide with Natural Derived Compounds as a Therapeutic Strategy in Vascular Diseases

    PubMed Central

    Forte, Maurizio; Damato, Antonio; Ambrosio, Mariateresa; Puca, Annibale A.; Sciarretta, Sebastiano; Frati, Giacomo; Vecchione, Carmine

    2016-01-01

    Within the family of endogenous gasotransmitters, nitric oxide (NO) is the smallest gaseous intercellular messenger involved in the modulation of several processes, such as blood flow and platelet aggregation control, essential to maintain vascular homeostasis. NO is produced by nitric oxide synthases (NOS) and its effects are mediated by cGMP-dependent or cGMP-independent mechanisms. Growing evidence suggests a crosstalk between the NO signaling and the occurrence of oxidative stress in the onset and progression of vascular diseases, such as hypertension, heart failure, ischemia, and stroke. For these reasons, NO is considered as an emerging molecular target for developing therapeutic strategies for cardio- and cerebrovascular pathologies. Several natural derived compounds, such as polyphenols, are now proposed as modulators of NO-mediated pathways. The aim of this review is to highlight the experimental evidence on the involvement of nitric oxide in vascular homeostasis focusing on the therapeutic potential of targeting NO with some natural compounds in patients with vascular diseases.

  9. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR

    SciTech Connect

    K.C. Kwon

    2003-01-01

    The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The objective of this research is to support the near- and long-term DOE efforts to commercialize this direct oxidation technology. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 60-{micro}m C-500-04 alumina catalyst particles and a PFA differential fixed-bed micro reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. To achieve the above-mentioned objectives, experiments on conversion of hydrogen sulfide into elemental sulfur were carried out for the space time range of 0.01-0.047 seconds at 125-155 C to evaluate effects of reaction temperatures, moisture concentrations, reaction pressures on conversion of hydrogen sulfide into elemental sulfur. Simulated coal gas mixtures consist of 61-89 v% hydrogen, 2,300-9,200-ppmv hydrogen sulfide, 1,600-4,900 ppmv sulfur dioxide, and 2.6-13.7 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 100-110 cm{sup 3}/min at room temperature and atmospheric pressure (SCCM). The temperature of the reactor is controlled in an oven at 125-155 C. The pressure of the reactor is maintained at 28-127 psia. The following results were obtained based on experimental data generated from the differential reactor system, and their interpretations, (1) Concentration of moisture and concentrations of both H{sub 2}S and SO{sub 2} appear to affect slightly reaction

  10. Long interspersed nuclear element-1 hypomethylation and oxidative stress: correlation and bladder cancer diagnostic potential.

    PubMed

    Patchsung, Maturada; Boonla, Chanchai; Amnattrakul, Passakorn; Dissayabutra, Thasinas; Mutirangura, Apiwat; Tosukhowong, Piyaratana

    2012-01-01

    Although, increased oxidative stress and hypomethylation of long interspersed nuclear element-1 (LINE-1) associate with bladder cancer (BCa) development, the relationship between these alterations is unknown. We evaluated the oxidative stress and hypomethylation of the LINE-1 in 61 BCa patients and 45 normal individuals. To measure the methylation levels and to differentiate the LINE-1 loci into hypermethylated, partially methylated and hypomethylated, peripheral blood cells, urinary exfoliated cells and cancerous tissues were evaluated by combined bisulfite restriction analysis PCR. The urinary total antioxidant status (TAS) and plasma protein carbonyl content were determined. The LINE-1 methylation levels and patterns, especially hypomethylated loci, in the blood and urine cells of the BCa patients were different from the levels and patterns in the healthy controls. The urinary TAS was decreased, whereas the plasma protein carbonyl content was increased in the BCa patients relative to the controls. A positive correlation between the methylation of LINE-1 in the blood-derived DNA and urinary TAS was found in both the BCa and control groups. The urinary hypomethylated LINE-1 loci and the plasma protein carbonyl content provided the best diagnostic potential for BCa prediction. Based on post-diagnostic samples, the combination test improved the diagnostic power to a sensitivity of 96% and a specificity of 96%. In conclusion, decreased LINE-1 methylation is associated with increased oxidative stress both in healthy and BCa subjects across the various tissue types, implying a dose-response association. Increases in the LINE-1 hypomethylation levels and the number of hypomethylated loci in both the blood- and urine-derived cells and increase in the oxidative stress were found in the BCa patients. The combination test of the urinary hypomethylated LINE-1 loci and the plasma protein carbonyl content may be useful for BCa screening and monitoring of treatment.

  11. High conservation of a 5' element required for RNA editing of a C target in chloroplast psbE transcripts.

    PubMed

    Hayes, Michael L; Hanson, Maureen R

    2008-09-01

    C-to-U editing modifies 30-40 distinct nucleotides within higher-plant chloroplast transcripts. Many C targets are located at the same position in homologous genes from different plants; these either could have emerged independently or could share a common origin. The 5' sequence GCCGUU, required for editing of C214 in tobacco psbE in vitro, is one of the few identified editing cis-elements. We investigated psbE sequences from many plant species to determine in what lineage(s) editing of psbE C214 emerged and whether the cis-element identified in tobacco is conserved in plants with a C214. The GCCGUU sequence is present at a high frequency in plants that carry a C214 in psbE. However, Sciadopitys verticillata (Pinophyta) edits C214 despite the presence of nucleotide differences compared to the conserved cis-element. The C214 site in psbE genes is represented in members of four branches of spermatophytes but not in gnetophytes, resulting in the parsimonious prediction that editing of psbE C214 was present in the ancestor of spermatophytes. Extracts from chloroplasts from a species that has a difference in the motif and lacks the C target are incapable of editing tobacco psbE C214 substrates, implying that the critical trans-acting protein factors were not retained without a C target. Because noncoding sequences are less constrained than coding regions, we analyzed sequences 5' to two C editing targets located within coding regions to search for possible editing-related conserved elements. Putative editing cis-elements were uncovered in the 5' UTRs near editing sites psbL C2 and ndhD C2. PMID:18696032

  12. High conservation of a 5' element required for RNA editing of a C target in chloroplast psbE transcripts.

    PubMed

    Hayes, Michael L; Hanson, Maureen R

    2008-09-01

    C-to-U editing modifies 30-40 distinct nucleotides within higher-plant chloroplast transcripts. Many C targets are located at the same position in homologous genes from different plants; these either could have emerged independently or could share a common origin. The 5' sequence GCCGUU, required for editing of C214 in tobacco psbE in vitro, is one of the few identified editing cis-elements. We investigated psbE sequences from many plant species to determine in what lineage(s) editing of psbE C214 emerged and whether the cis-element identified in tobacco is conserved in plants with a C214. The GCCGUU sequence is present at a high frequency in plants that carry a C214 in psbE. However, Sciadopitys verticillata (Pinophyta) edits C214 despite the presence of nucleotide differences compared to the conserved cis-element. The C214 site in psbE genes is represented in members of four branches of spermatophytes but not in gnetophytes, resulting in the parsimonious prediction that editing of psbE C214 was present in the ancestor of spermatophytes. Extracts from chloroplasts from a species that has a difference in the motif and lacks the C target are incapable of editing tobacco psbE C214 substrates, implying that the critical trans-acting protein factors were not retained without a C target. Because noncoding sequences are less constrained than coding regions, we analyzed sequences 5' to two C editing targets located within coding regions to search for possible editing-related conserved elements. Putative editing cis-elements were uncovered in the 5' UTRs near editing sites psbL C2 and ndhD C2.

  13. Rotifer rDNA-specific R9 retrotransposable elements generate an exceptionally long target site duplication upon insertion.

    PubMed

    Gladyshev, Eugene A; Arkhipova, Irina R

    2009-12-15

    Ribosomal DNA genes in many eukaryotes contain insertions of non-LTR retrotransposable elements belonging to the R2 clade. These elements persist in the host genomes by inserting site-specifically into multicopy target sites, thereby avoiding random disruption of single-copy host genes. Here we describe R9 retrotransposons from the R2 clade in the 28S RNA genes of bdelloid rotifers, small freshwater invertebrate animals best known for their long-term asexuality and for their ability to survive repeated cycles of desiccation and rehydration. While the structural organization of R9 elements is highly similar to that of other members of the R2 clade, they are characterized by two distinct features: site-specific insertion into a previously unreported target sequence within the 28S gene, and an unusually long target site duplication of 126 bp. We discuss the implications of these findings in the context of bdelloid genome organization and the mechanisms of target-primed reverse transcription.

  14. Insulators, not Polycomb response elements, are required for long-range interactions between Polycomb targets in Drosophila melanogaster.

    PubMed

    Li, Hua-Bing; Müller, Martin; Bahechar, Ilham Anne; Kyrchanova, Olga; Ohno, Katsuhito; Georgiev, Pavel; Pirrotta, Vincenzo

    2011-02-01

    The genomic binding sites of Polycomb group (PcG) complexes have been found to cluster, forming Polycomb "bodies" or foci in mammalian or fly nuclei. These associations are thought to be driven by interactions between PcG complexes and result in enhanced repression. Here, we show that a Polycomb response element (PRE) with strong PcG binding and repressive activity cannot mediate trans interactions. In the case of the two best-studied interacting PcG targets in Drosophila, the Mcp and the Fab-7 regulatory elements, we find that these associations are not dependent on or caused by the Polycomb response elements they contain. Using functional assays and physical colocalization by in vivo fluorescence imaging or chromosome conformation capture (3C) methods, we show that the interactions between remote copies of Mcp or Fab-7 elements are dependent on the insulator activities present in these elements and not on their PREs. We conclude that insulator binding proteins rather than PcG complexes are likely to be the major determinants of the long-range higher-order organization of PcG targets in the nucleus. PMID:21135119

  15. Net Oxidation Rates of Gaseous Elemental Mercury in Simulated Urban Smog

    NASA Astrophysics Data System (ADS)

    Shakya, K. M.; Rutter, A. P.; Lehr, R. M.; Parman, A.; Schauer, J. J.; Griffin, R. J.

    2009-12-01

    Regulations to protect human health and ecosystem integrity from environmental mercury rely in part on an accurate scientific understanding of atmospheric processes that lead to its dry and wet deposition. One key process is the oxidation of gaseous elemental mercury (GEM) to reactive mercury (RM), which is more readily dry and wet deposited than GEM. Previous research provides reaction kinetics of GEM oxidation by ozone and the hydroxyl radical in homogeneous reaction systems propagated in small halocarbon coated reactors. In order to more closely represent complex atmospheric reaction systems, we conducted experiments in a 9-cubic-meter Teflon smog chamber irradiated with UV lights, generating both homogeneous and heterogeneous photochemical reaction systems consisting of volatile organic compounds (VOC), ozone, and hydroxyl radicals. The reaction kinetics of ozone and GEM (enriched in the 198 stable isotope) were measured to provide a consistency check with previous publications. VOCs were added to the chamber to study the impact of ozone and reactive photochemical intermediates produced by precursors such as propene, isoprene, alpha-pinene, and toluene. Propene was chosen as a VOC that would not lead to secondary organic aerosol (SOA) but would provide reactive organic intermediates and secondary hydroxyl radicals when reacted with ozone. The results from these experiments were compared to those in which SOA precursors (isoprene, alpha-pinene, toluene) were added to assess the effects of a partially oxygenated organic particle surface on the photochemical oxidation chemistry of GEM. Less than half of the GEM conversion to RM observed in the classically studied Hg-ozone reaction was observed when non-SOA and SOA forming VOCs were added the reaction chamber. This result likely indicates the presence of a reductive pathway when oxidized VOCs are present and supports recent findings by Si and Ariya (2008). A zero-dimensional model has been constructed and will be

  16. ICAM-1 targeted catalase encapsulated PLGA-b-PEG nanoparticles against vascular oxidative stress.

    PubMed

    Sari, Ece; Tunc-Sarisozen, Yeliz; Mutlu, Hulya; Shahbazi, Reza; Ucar, Gulberk; Ulubayram, Kezban

    2015-01-01

    Targeted delivery of therapeutics is the favourable idea, whereas it is possible to distribute the therapeutically active drug molecule only to the site of action. For this purpose, in this study, catalase encapsulated poly(D,L-lactide-co-glycolide)-block-poly(ethylene glycol) (PLGA-b-PEG) nanoparticles were developed and an endothelial target molecule (anti-ICAM-1) was conjugated to this carrier system in order to decrease the oxidative stress level in the target site. According to the enzymatic activity results, initial catalase activity of nanoparticles was increased from 27.39 U/mg to up to 45.66 U/mg by adding 5 mg/mL bovine serum albumin (BSA). After 4 h, initial catalase activity was preserved up to 46.98% while free catalase retained less than 4% of its activity in proteolytic environment. Furthermore, FITC labelled anti-ICAM-1 targeted catalase encapsulated nanoparticles (anti-ICAM-1/CatNPs) were rapidly taken up by cultured endothelial cells and concomitantly endothelial cells were resistant to H2O2 induced oxidative impairment.

  17. ICAM-1 targeted catalase encapsulated PLGA-b-PEG nanoparticles against vascular oxidative stress.

    PubMed

    Sari, Ece; Tunc-Sarisozen, Yeliz; Mutlu, Hulya; Shahbazi, Reza; Ucar, Gulberk; Ulubayram, Kezban

    2015-01-01

    Targeted delivery of therapeutics is the favourable idea, whereas it is possible to distribute the therapeutically active drug molecule only to the site of action. For this purpose, in this study, catalase encapsulated poly(D,L-lactide-co-glycolide)-block-poly(ethylene glycol) (PLGA-b-PEG) nanoparticles were developed and an endothelial target molecule (anti-ICAM-1) was conjugated to this carrier system in order to decrease the oxidative stress level in the target site. According to the enzymatic activity results, initial catalase activity of nanoparticles was increased from 27.39 U/mg to up to 45.66 U/mg by adding 5 mg/mL bovine serum albumin (BSA). After 4 h, initial catalase activity was preserved up to 46.98% while free catalase retained less than 4% of its activity in proteolytic environment. Furthermore, FITC labelled anti-ICAM-1 targeted catalase encapsulated nanoparticles (anti-ICAM-1/CatNPs) were rapidly taken up by cultured endothelial cells and concomitantly endothelial cells were resistant to H2O2 induced oxidative impairment. PMID:26471402

  18. Endothelial targeting of nanocarriers loaded with antioxidant enzymes for protection against vascular oxidative stress and inflammation

    PubMed Central

    Hood, Elizabeth D.; Chorny, Michael; Greineder, Colin F.; Alferiev, Ivan; Levy, Robert J.; Muzykantov, Vladimir R.

    2015-01-01

    Endothelial-targeted delivery of antioxidant enzymes, catalase and superoxide dismutase (SOD), is promising strategy for protecting organs and tissues from inflammation and oxidative stress. Here we describe Protective Antioxidant Carriers for Endothelial Targeting (PACkET), the first carriers capable of targeted endothelial delivery of both catalase and SOD. PACkET formed through controlled precipitation loaded ~30% enzyme and protected it from proteolytic degradation, whereas attachment of PECAM monoclonal antibodies to surface of the enzyme-loaded carriers, achieved without adversely affecting their stability and functionality, provided targeting. Isotope tracing and microscopy showed that PACkET exhibited specific endothelial binding and internalization in vitro. Endothelial targeting of PACkET was validated in vivo by specific (vs IgG-control) accumulation in the pulmonary vasculature after intravenous injection achieving 33% of injected dose at 30 min. Catalase loaded PACkET protects endothelial cells from killing by H2O2 and alleviated the pulmonary edema and leukocyte infiltration in mouse model of endotoxin-induced lung injury, whereas SOD-loaded PACkET mitigated cytokine-induced endothelial pro-inflammatory activation and endotoxin-induced lung inflammation. These studies indicate that PACkET offers a modular approach for vascular targeting of therapeutic enzymes. PMID:24480537

  19. Oxidative stress, DNA damage, and the telomeric complex as therapeutic targets in acute neurodegeneration

    PubMed Central

    Smith, Joshua A.; Park, Sookyoung; Krause, James S.; Banik, Naren L.

    2013-01-01

    Oxidative stress has been identified as an important contributor to neurodegeneration associated with acute CNS injuries and diseases such as spinal cord injury (SCI), traumatic brain injury (TBI), and ischemic stroke. In this review, we briefly detail the damaging effects of oxidative stress (lipid peroxidation, protein oxidation, etc.) with a particular emphasis on DNA damage. Evidence for DNA damage in acute CNS injuries is presented along with its downstream effects on neuronal viability. In particular, unchecked oxidative DNA damage initiates a series of signaling events (e.g. activation of p53 and PARP-1, cell cycle re-activation) which have been shown to promote neuronal loss following CNS injury. These findings suggest that preventing DNA damage might be an effective way to promote neuronal survival and enhance neurological recovery in these conditions. Finally, we identify the telomere and telomere-associated proteins (e.g. telomerase) as novel therapeutic targets in the treatment of neurodegeneration due to their ability to modulate the neuronal response to both oxidative stress and DNA damage. PMID:23422879

  20. Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans

    PubMed Central

    Chou, Meng-Yun; Fogelstrand, Linda; Hartvigsen, Karsten; Hansen, Lotte F.; Woelkers, Douglas; Shaw, Peter X.; Choi, Jeomil; Perkmann, Thomas; Bäckhed, Fredrik; Miller, Yury I.; Hörkkö, Sohvi; Corr, Maripat; Witztum, Joseph L.; Binder, Christoph J.

    2009-01-01

    Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of oxidized lipoproteins and apoptotic cells. Adaptive immune responses to various oxidation-specific epitopes play an important role in atherogenesis. However, accumulating evidence suggests that these epitopes are also recognized by innate receptors, such as scavenger receptors on macrophages, and plasma proteins, such as C-reactive protein (CRP). Here, we provide multiple lines of evidence that oxidation-specific epitopes constitute a dominant, previously unrecognized target of natural Abs (NAbs) in both mice and humans. Using reconstituted mice expressing solely IgM NAbs, we have shown that approximately 30% of all NAbs bound to model oxidation-specific epitopes, as well as to atherosclerotic lesions and apoptotic cells. Because oxidative processes are ubiquitous, we hypothesized that these epitopes exert selective pressure to expand NAbs, which in turn play an important role in mediating homeostatic functions consequent to inflammation and cell death, as demonstrated by their ability to facilitate apoptotic cell clearance. These findings provide novel insights into the functions of NAbs in mediating host homeostasis and into their roles in health and diseases, such as chronic inflammatory diseases and atherosclerosis. PMID:19363291

  1. Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans.

    PubMed

    Chou, Meng-Yun; Fogelstrand, Linda; Hartvigsen, Karsten; Hansen, Lotte F; Woelkers, Douglas; Shaw, Peter X; Choi, Jeomil; Perkmann, Thomas; Bäckhed, Fredrik; Miller, Yury I; Hörkkö, Sohvi; Corr, Maripat; Witztum, Joseph L; Binder, Christoph J

    2009-05-01

    Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of oxidized lipoproteins and apoptotic cells. Adaptive immune responses to various oxidation-specific epitopes play an important role in atherogenesis. However, accumulating evidence suggests that these epitopes are also recognized by innate receptors, such as scavenger receptors on macrophages, and plasma proteins, such as C-reactive protein (CRP). Here, we provide multiple lines of evidence that oxidation-specific epitopes constitute a dominant, previously unrecognized target of natural Abs (NAbs) in both mice and humans. Using reconstituted mice expressing solely IgM NAbs, we have shown that approximately 30% of all NAbs bound to model oxidation-specific epitopes, as well as to atherosclerotic lesions and apoptotic cells. Because oxidative processes are ubiquitous, we hypothesized that these epitopes exert selective pressure to expand NAbs, which in turn play an important role in mediating homeostatic functions consequent to inflammation and cell death, as demonstrated by their ability to facilitate apoptotic cell clearance. These findings provide novel insights into the functions of NAbs in mediating host homeostasis and into their roles in health and diseases, such as chronic inflammatory diseases and atherosclerosis.

  2. Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease.

    PubMed

    Ruiz, Stacey; Pergola, Pablo E; Zager, Richard A; Vaziri, Nosratola D

    2013-06-01

    Oxidative stress and inflammation are mediators in the development and progression of chronic kidney disease (CKD) and its complications, and they are inseparably linked as each begets and amplifies the other. CKD-associated oxidative stress is due to increased production of reactive oxygen species (ROS) and diminished antioxidant capacity. The latter is largely caused by impaired activation of Nrf2, the transcription factor that regulates genes encoding antioxidant and detoxifying molecules. Protective effects of Nrf2 are evidenced by amelioration of oxidative stress, inflammation, and kidney disease in response to natural Nrf2 activators in animal models, while Nrf2 deletion amplifies these pathogenic pathways and leads to autoimmune nephritis. Given the role of impaired Nrf2 activity in CKD-induced oxidative stress and inflammation, interventions aimed at restoring Nrf2 may be effective in retarding CKD progression. Clinical trials of the potent Nrf2 activator bardoxolone methyl showed significant improvement in renal function in CKD patients with type 2 diabetes. However, due to unforeseen complications the BEACON trial, which was designed to investigate the effect of this drug on time to end-stage renal disease or cardiovascular death in patients with advanced CKD, was prematurely terminated. This article provides an overview of the role of impaired Nrf2 activity in the pathogenesis of CKD-associated oxidative stress and inflammation and the potential utility of targeting Nrf2 in the treatment of CKD.

  3. Design and development of self-passivating biodegradable magnesium alloys using selective element oxidation

    NASA Astrophysics Data System (ADS)

    Brar, Harpreet Singh

    Metallic biomaterials such as stainless steels, titanium alloys, and cobalt-chromium alloys have been used as structural implant materials for many years. However, due to their limitations in temporary implant applications, there has been increased interest in the development of a biodegradable structural implant device. Magnesium (Mg) alloys have shown great potential as a material for biodegradable structural implant applications. However, low strength and high degradation rate of Mg under physiological conditions are major limitations, causing the implant to lose its structural integrity before the healing process is complete. The main aim of this work was to investigate the possibility of designing Mg-based alloys with ability to form selective protective oxides, thereby aiding in the reduction of the initial degradation rate. A thermodynamics-driven design was utilized to select three elements, namely Gadolinium (Gd), Scandium (Sc) and Yttrium (Y), due to the low enthalpy of formation associated with their oxide species. First, binary alloys were cast under inert atmosphere, solution treated and investigated for degradation rate in Hanks' solution. The Mg-Gd binary alloy showed the fastest degradation rate whereas the Mg-Sc binary alloy showed the slowest degradation rate. The degradation of Mg-Gd and Mg-Y was 18 and 5 times faster than Mg-Sc alloy, respectively. The microstructural analysis of the alloys was performed using X-ray Diffraction (XRD), Optical Microscopy (OM) and Scanning Electron Microscopy (SEM). It was observed that the grain size of Mg-Sc alloys is significantly smaller than Mg-Gd and Mg-Y alloys and can be a contributing factor to the reduction in degradation rate. The hardness behavior of the alloys was also investigated using Vickers microhardness Testing. To understand the oxidation behavior and kinetics, samples were oxidized in pure oxygen environment and investigated using microstructural and thermogravimetric analysis (TGA). Auger

  4. Identification of oxidatively modified proteins in salt-stressed Arabidopsis: a carbonyl-targeted proteomics approach.

    PubMed

    Mano, Jun'ichi; Nagata, Mitsuaki; Okamura, Shoutarou; Shiraya, Takeshi; Mitsui, Toshiaki

    2014-07-01

    In plants, environmental stresses cause an increase in the intracellular level of reactive oxygen species (ROS), leading to tissue injury. To obtain biochemical insights into this damage process, we investigated the protein carbonyls formed by ROS or by the lipid peroxide-derived α,β-unsaturated aldehydes and ketones (i.e. reactive carbonyl species, or RCS) in the leaves of Arabidopsis thaliana under salt stress. A. thaliana Col-0 plants that we treated with 300 mM NaCl for 72 h under continuous illumination suffered irreversible leaf damage. Several RCS such as 4-hydroxy-(E)-2-nonenal (HNE) were increased within 12 h of this salt treatment. Immunoblotting using distinct antibodies against five different RCS, i.e. HNE, 4-hydroxy-(E)-2-hexenal, acrolein, crotonaldehyde and malondialdehyde, revealed that RCS-modified proteins accumulated in leaves with the progress of the salt stress treatment. The band pattern of Western blotting suggested that these different RCS targeted a common set of proteins. To identify the RCS targets, we collected HNE-modified proteins via an anti-HNE antiserum affinity trap and performed an isobaric tag for relative and absolute quantitation, as a quantitative proteomics approach. Seventeen types of protein, modified by 2-fold more in the stressed plants than in the non-stressed plants, were identified as sensitive RCS targets. With aldehyde-reactive probe-based affinity trapping, we collected the oxidized proteins and identified 22 additional types of protein as sensitive ROS targets. These RCS and ROS target proteins were distributed in the cytosol and apoplast, as well as in the ROS-generating organelles the peroxisome, chloroplast and mitochondrion, suggesting the participation of plasma membrane oxidation in the cellular injury. Possible mechanisms by which these modified targets cause cell death are discussed.

  5. Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents

    PubMed Central

    Xi, Lei; Grobmyer, Stephen R.; Zhou, Guangyin; Qian, Weiping; Yang, Lily; Jiang, Huabei

    2013-01-01

    In this report, we present a breast imaging technique combining high-resolution near-infrared (NIR) light induced photoacoustic tomography (PAT) with NIR dyelabeled amino-terminal fragments of urokinase plasminogen activator receptor (uPAR) targeted magnetic iron oxide nanoparticles (NIR830-ATF-IONP) for breast cancer imaging using an orthotopic mouse mammary tumor model. We show that accumulation of the targeted nanoparticles in the tumor led to photoacoustic contrast enhancement due to the high absorption of iron oxide nanoparticles (IONP). NIR fluorescence images were used to validate specific delivery of NIR830-ATF-IONP to mouse mammary tumors. We found that systemic delivery of the targeted IONP produced 4- and 10-fold enhancement in photoacoustic signals in the tumor, compared to the tumor of the mice that received non-targeted IONP or control mice. The use of targeted nanoparticles allowed imaging of tumors located as deep as 3.1 cm beneath the normal tissues. Our study indicates the potential of the combination of photoacoustic tomography and receptor-targeted NIR830-ATF-IONP as a clinical tool that can provide improved specificity and sensitivity for breast cancer detection. In vivo photoacoustic MAP and fluorescence images before and after injection. Micrographs were merged with fluorescence images taken 24 hours post injection with indicated agent (a, e, i). Panels b thru 1. Photoacoustic MAP images were merged with images of blood vessels before injection (b, f, j), and at 5 hours (c, g, k) and 24 hours (d, h, l) post injection. PMID:23125139

  6. Mitochondrial targeting of bilirubin regulatory enzymes: An adaptive response to oxidative stress.

    PubMed

    Muhsain, Siti Nur Fadzilah; Lang, Matti A; Abu-Bakar, A'edah

    2015-01-01

    The intracellular level of bilirubin (BR), an endogenous antioxidant that is cytotoxic at high concentrations, is tightly controlled within the optimal therapeutic range. We have recently described a concerted intracellular BR regulation by two microsomal enzymes: heme oxygenase 1 (HMOX1), essential for BR production and cytochrome P450 2A5 (CYP2A5), a BR oxidase. Herein, we describe targeting of these enzymes to hepatic mitochondria during oxidative stress. The kinetics of microsomal and mitochondrial BR oxidation were compared. Treatment of DBA/2J mice with 200mgpyrazole/kg/day for 3days increased hepatic intracellular protein carbonyl content and induced nucleo-translocation of Nrf2. HMOX1 and CYP2A5 proteins and activities were elevated in microsomes and mitoplasts but not the UGT1A1, a catalyst of BR glucuronidation. A CYP2A5 antibody inhibited 75% of microsomal BR oxidation. The inhibition was absent in control mitoplasts but elevated to 50% after treatment. An adrenodoxin reductase antibody did not inhibit microsomal BR oxidation but inhibited 50% of mitochondrial BR oxidation. Ascorbic acid inhibited 5% and 22% of the reaction in control and treated microsomes, respectively. In control mitoplasts the inhibition was 100%, which was reduced to 50% after treatment. Bilirubin affinity to mitochondrial and microsomal CYP2A5 enzyme is equally high. Lastly, the treatment neither released cytochrome c into cytoplasm nor dissipated membrane potential, indicating the absence of mitochondrial membrane damage. Collectively, the observations suggest that BR regulatory enzymes are recruited to mitochondria during oxidative stress and BR oxidation by mitochondrial CYP2A5 is supported by mitochondrial mono-oxygenase system. The induced recruitment potentially confers membrane protection. PMID:25478736

  7. Matrix metalloproteinase gene expressions might be oxidative stress targets in gastric cancer cell lines

    PubMed Central

    Gencer, Salih; Cebeci, Anil

    2013-01-01

    Objective Oxidative stress is linked to increased risk of gastric cancer and matrix metalloproteinases (MMPs) are important in the invasion and metastasis of gastric cancer. We aimed to analyze the effect of the accumulation of oxidative stress in the gastric cancer MKN-45 and 23132/87 cells following hydrogen peroxide (H2O2) exposure on the expression patterns of MMP-1, MMP-3, MMP-7, MMP-9, MMP-10, MMP-11, MMP-12, MMP-14, MMP-15, MMP-17, MMP-23, MMP-28, and β-catenin genes. Methods The mRNA transcripts in the cells were determined by RT-PCR. Following H2O2 exposure, oxidative stress in the viable cells was analyzed by 2',7'-dichlorofluorescein diacetate (DCFH-DA). Caffeic acid phenethyl ester (CAPE) was used to eliminate oxidative stress and the consequence of H2O2 exposure and its removal on the expressions of the genes were evaluated by quantitative real-time PCR. Results The expressions of MMP-1, MMP-7, MMP-14, MMP-15, MMP-17 and β-catenin in MKN-45 cells and only the expression of MMP-15 in 23132/87 cells were increased. Removal of the oxidative stress resulted in decrease in the expressions of MMP genes of which the expressions were increased after H2O2 exposure. β-catenin, a transcription factor for many genes including MMPs, also displayed decreased levels of expression in both of the cell lines following CAPE treatment. Conclusions Our data suggest that there is a remarkable link between the accumulation of oxidative stress and the increased expressions of MMP genes in the gastric cancer cells and MMPs should be considered as potential targets of therapy in gastric cancers due to its continuous exposure to oxidative stress. PMID:23825909

  8. Mitochondrial targeting of bilirubin regulatory enzymes: An adaptive response to oxidative stress.

    PubMed

    Muhsain, Siti Nur Fadzilah; Lang, Matti A; Abu-Bakar, A'edah

    2015-01-01

    The intracellular level of bilirubin (BR), an endogenous antioxidant that is cytotoxic at high concentrations, is tightly controlled within the optimal therapeutic range. We have recently described a concerted intracellular BR regulation by two microsomal enzymes: heme oxygenase 1 (HMOX1), essential for BR production and cytochrome P450 2A5 (CYP2A5), a BR oxidase. Herein, we describe targeting of these enzymes to hepatic mitochondria during oxidative stress. The kinetics of microsomal and mitochondrial BR oxidation were compared. Treatment of DBA/2J mice with 200mgpyrazole/kg/day for 3days increased hepatic intracellular protein carbonyl content and induced nucleo-translocation of Nrf2. HMOX1 and CYP2A5 proteins and activities were elevated in microsomes and mitoplasts but not the UGT1A1, a catalyst of BR glucuronidation. A CYP2A5 antibody inhibited 75% of microsomal BR oxidation. The inhibition was absent in control mitoplasts but elevated to 50% after treatment. An adrenodoxin reductase antibody did not inhibit microsomal BR oxidation but inhibited 50% of mitochondrial BR oxidation. Ascorbic acid inhibited 5% and 22% of the reaction in control and treated microsomes, respectively. In control mitoplasts the inhibition was 100%, which was reduced to 50% after treatment. Bilirubin affinity to mitochondrial and microsomal CYP2A5 enzyme is equally high. Lastly, the treatment neither released cytochrome c into cytoplasm nor dissipated membrane potential, indicating the absence of mitochondrial membrane damage. Collectively, the observations suggest that BR regulatory enzymes are recruited to mitochondria during oxidative stress and BR oxidation by mitochondrial CYP2A5 is supported by mitochondrial mono-oxygenase system. The induced recruitment potentially confers membrane protection.

  9. Use of sulfur-oxidizing bacteria as recognition elements in hydrogen sulfide biosensing system.

    PubMed

    Janfada, Behdokht; Yazdian, Fatemeh; Amoabediny, Ghassem; Rahaie, Mahdi

    2015-01-01

    Four sulfur-oxidizing bacteria (Thiobacillus thioparus, Acidithiobacillus thiooxidans PTCC1717, Acidithiobacillus ferrooxidans PTCC1646, and Acidithiobacillus ferrooxidans PTCC1647) were used as biorecognition elements in a hydrogen sulfide biosensing system. All the experiments were performed in 0.1 M phosphate buffer solution containing 1-20 ppm H2S with optimum pH and temperature for each species. Although H2 S was applied to the biosensing system, the dissolved O2 content decreased. Dissolved O2 consumed by cells in both free and immobilized forms was measured using a dissolved oxygen sensor. Free bacterial cells exhibit fast response (<200 Sec). Immobilization of the cells on polyvinyl alcohol was optimized using an analytical software. Immobilized A. ferrooxidans and A. thiooxidans retained more than 50% of activity after 30 days of immobilization. According to the data, A. thiooxidans and A. ferrooxidans are appropriate species for hydrogen sulfide biosensor.

  10. Targeting NADPH Oxidase Decreases Oxidative Stress in the Transgenic Sickle Cell Mouse Penis

    PubMed Central

    Musicki, Biljana; Liu, Tongyun; Sezen, Sena F.; Burnett, Arthur L.

    2012-01-01

    Introduction Sickle cell disease (SCD) is a state of chronic vasculopathy characterized by endothelial dysfunction and increased oxidative stress, but the sources and mechanisms responsible for reactive oxygen species (ROS) production in the penis are unknown. Aims We evaluated whether SCD activates NADPH oxidase, induces endothelial nitric oxide synthase (eNOS) uncoupling, and decreases antioxidants in the SCD mouse penis. We further tested the hypothesis that targeting NADPH oxidase decreases oxidative stress in the SCD mouse penis. Methods SCD transgenic (sickle) mice were used as an animal model of SCD. Hemizygous (hemi) mice served as controls. Mice received an NADPH oxidase inhibitor apocynin (10 mM in drinking water) or vehicle. Penes were excised at baseline for molecular studies. Markers of oxidative stress (4-hydroxy-2-nonenal [HNE]), sources of ROS (eNOS uncoupling and NADPH oxidase subunits p67phox, p47phox, and gp91phox), and enzymatic antioxidants (superoxide dismutase [SOD]1, SOD2, catalase, and glutathione peroxidase-1 [GPx1]) were measured by Western blot in penes. Main Outcome Measures Sources of ROS, oxidative stress, and enzymatic antioxidants in the SCD penis. Results Relative to hemi mice, SCD increased (P < 0.05) protein expression of NADPH oxidase subunits p67phox, p47phox, and gp91phox, 4-HNE-modified proteins, induced eNOS uncoupling, and reduced Gpx1 expression in the penis. Apocynin treatment of sickle mice reversed (P < 0.05) the abnormalities in protein expressions of p47phox, gp91phox (but not p67phox) and 4-HNE, but only slightly (P > 0.05) prevented eNOS uncoupling in the penis. Apocynin treatment of hemi mice did not affect any of these parameters. Conclusion NADPH oxidase and eNOS uncoupling are sources of oxidative stress in the SCD penis; decreased GPx1 further contributes to oxidative stress. Inhibition of NADPH oxidase upregulation decreases oxidative stress, implying a major role for NADPH oxidase as a ROS source and a

  11. Research on target scene generation for hardware-in-the-loop simulation of four-element infrared seeker

    NASA Astrophysics Data System (ADS)

    Yu, Jinsong; Xu, Bo; Hao, Wangsong; Li, Xingshan

    2006-11-01

    To satisfy the need of hardware-in-the-loop simulation of four-element infrared seeker, a method of dynamic infrared scene generation based on "direct signal inject" is proposed. Infrared scene signals generated by model calculation are composed of target movement, disturbers launching and complex background of sky or ground. The signals are directly injects into the electrical cabin of seeker for verification and modification of the algorithms of tracking and anti-jamming, thus the complicated target simulator consisting of black body, turntable, and optical system is not required. The dynamic infrared scene generation techniques based on the four-element infrared guidance principle and the modeling of infrared scene are investigated in detail. Moreover, the implementation of the actual system is given to prove the feasibility of the method in practice.

  12. Mitochondria are targets for peroxisome-derived oxidative stress in cultured mammalian cells.

    PubMed

    Wang, Bo; Van Veldhoven, Paul P; Brees, Chantal; Rubio, Noemí; Nordgren, Marcus; Apanasets, Oksana; Kunze, Markus; Baes, Myriam; Agostinis, Patrizia; Fransen, Marc

    2013-12-01

    Many cellular processes are driven by spatially and temporally regulated redox-dependent signaling events. Although mounting evidence indicates that organelles such as the endoplasmic reticulum and mitochondria can function as signaling platforms for oxidative stress-regulated pathways, little is known about the role of peroxisomes in these processes. In this study, we employ targeted variants of the genetically encoded photosensitizer KillerRed to gain a better insight into the interplay between peroxisomes and cellular oxidative stress. We show that the phototoxic effects of peroxisomal KillerRed induce mitochondria-mediated cell death and that this process can be counteracted by targeted overexpression of a select set of antioxidant enzymes, including peroxisomal glutathione S-transferase kappa 1, superoxide dismutase 1, and mitochondrial catalase. We also present evidence that peroxisomal disease cell lines deficient in plasmalogen biosynthesis or peroxisome assembly are more sensitive to KillerRed-induced oxidative stress than control cells. Collectively, these findings confirm and extend previous observations suggesting that disturbances in peroxisomal redox control and metabolism can sensitize cells to oxidative stress. In addition, they lend strong support to the ideas that peroxisomes and mitochondria share a redox-sensitive relationship and that the redox communication between these organelles is not only mediated by diffusion of reactive oxygen species from one compartment to the other. Finally, these findings indicate that mitochondria may act as dynamic receivers, integrators, and transmitters of peroxisome-derived mediators of oxidative stress, and this may have profound implications for our views on cellular aging and age-related diseases.

  13. The impact of electrogenic sulfide oxidation on elemental cycling and solute fluxes in coastal sediment

    NASA Astrophysics Data System (ADS)

    Rao, Alexandra M. F.; Malkin, Sairah Y.; Hidalgo-Martinez, Silvia; Meysman, Filip J. R.

    2016-01-01

    Filamentous sulfide oxidizing cable bacteria are capable of linking the oxidation of free sulfide in deep anoxic layers of marine sediments to the reduction of oxygen or nitrate in surface sediments by conducting electrons over centimeter-scale distances. Previous studies have shown that this newly discovered microbial process, referred to as electrogenic sulfide oxidation (e-SOx), may alter elemental cycling in sediments, but the nature and rates of the resulting biogeochemical transformations and their influence on benthic-pelagic coupling remain largely unknown. Here we quantify changes in sediment geochemistry and solute fluxes at the sediment-water interface as e-SOx develops and declines over time in laboratory incubations of organic-rich sediments from a seasonally hypoxic coastal basin (Marine Lake Grevelingen, The Netherlands). Our results show that e-SOx enhanced sediment O2 consumption and acidified subsurface sediment, resulting in the dissolution of calcium carbonate and iron sulfide minerals in deeper sediment horizons and the associated accumulation of dissolved iron, manganese, and calcium in porewater. Remobilized Fe diffusing upward was reoxidized at the sediment-water interface, producing an amorphous Fe oxide crust, while dissolved Fe diffusing downward was reprecipitated in the form of FeS as it encountered the free sulfide horizon. The development of e-SOx enhanced the diffusive release of dissolved Mn at the sediment-water interface, capped the phosphate efflux, generated a buildup of organic matter in surface sediments, and strongly stimulated the release of alkalinity from the sediment. About 75% of this alkalinity production was associated with net CaCO3 dissolution, while the remaining 25% was attributed to a pumping mechanism that transfers alkalinity from anodic H2S oxidation (an alkalinity sink) in deeper sediments to cathodic O2 reduction (an alkalinity source) near the sediment-water interface. The resulting sediment alkalinity

  14. Targeted Nitric Oxide Delivery by Supramolecular Nanofibers for the Prevention of Restenosis After Arterial Injury

    PubMed Central

    Bahnson, Edward S.M.; Kassam, Hussein A.; Moyer, Tyson J.; Jiang, Wulin; Morgan, Courtney E.; Vercammen, Janet M.; Jiang, Qun; Flynn, Megan E.; Stupp, Samuel I.

    2016-01-01

    Abstract Aims: Cardiovascular interventions continue to fail as a result of arterial restenosis secondary to neointimal hyperplasia. We sought to develop and evaluate a systemically delivered nanostructure targeted to the site of arterial injury to prevent neointimal hyperplasia. Nanostructures were based on self-assembling biodegradable molecules known as peptide amphiphiles. The targeting motif was a collagen-binding peptide, and the therapeutic moiety was added by S-nitrosylation of cysteine residues. Results: Structure of the nanofibers was characterized by transmission electron microscopy and small-angle X-ray scattering. S-nitrosylation was confirmed by mass spectrometry, and nitric oxide (NO) release was assessed electrochemically and by chemiluminescent detection. The balloon carotid artery injury model was performed on 10-week-old male Sprague-Dawley rats. Immediately after injury, nanofibers were administered systemically via tail vein injection. S-nitrosylated (S-nitrosyl [SNO])-targeted nanofibers significantly reduced neointimal hyperplasia 2 weeks and 7 months following balloon angioplasty, with no change in inflammation. Innovation: This is the first time that an S-nitrosothiol (RSNO)-based therapeutic was shown to have targeted local effects after systemic administration. This approach, combining supramolecular nanostructures with a therapeutic NO-based payload and a targeting moiety, overcomes the limitations of delivering NO to a site of interest, avoiding undesirable systemic side effects. Conclusion: We successfully synthesized and characterized an RSNO-based therapy that when administered systemically, targets directly to the site of vascular injury. By integrating therapeutic and targeting chemistries, these targeted SNO nanofibers provided durable inhibition of neointimal hyperplasia in vivo and show great potential as a platform to treat cardiovascular diseases. Antioxid. Redox Signal. 27, 401–418. PMID:26593400

  15. A novel pre-oxidation method for elemental mercury removal utilizing a complex vaporized absorbent.

    PubMed

    Zhao, Yi; Hao, Runlong; Guo, Qing

    2014-09-15

    A novel semi-dry integrative method for elemental mercury (Hg(0)) removal has been proposed in this paper, in which Hg(0) was initially pre-oxidized by a vaporized liquid-phase complex absorbent (LCA) composed of a Fenton reagent, peracetic acid (CH3COOOH) and sodium chloride (NaCl), after which Hg(2+) was absorbed by the resultant Ca(OH)2. The experimental results indicated that CH3COOOH and NaCl were the best additives for Hg(0) oxidation. Among the influencing factors, the pH of the LCA and the adding rate of the LCA significantly affected the Hg(0) removal. The coexisting gases, SO2 and NO, were characterized as either increasing or inhibiting in the removal process, depending on their concentrations. Under optimal reaction conditions, the efficiency for the single removal of Hg(0) was 91%. Under identical conditions, the efficiencies of the simultaneous removal of SO2, NO and Hg(0) were 100%, 79.5% and 80.4%, respectively. Finally, the reaction mechanism for the simultaneous removal of SO2, NO and Hg(0) was proposed based on the characteristics of the removal products as determined by X-ray diffraction (XRD), atomic fluorescence spectrometry (AFS), the analysis of the electrode potentials, and through data from related research references. PMID:25146096

  16. Physiological and Pathological Role of Alpha-synuclein in Parkinson’s Disease Through Iron Mediated Oxidative Stress; The Role of a Putative Iron-responsive Element

    PubMed Central

    Olivares, David; Huang, Xudong; Branden, Lars; Greig, Nigel H.; Rogers, Jack T.

    2009-01-01

    Parkinson’s disease (PD) is the second most common progressive neurodegenerative disorder after Alzheimer’s disease (AD) and represents a large health burden to society. Genetic and oxidative risk factors have been proposed as possible causes, but their relative contribution remains unclear. Dysfunction of alpha-synuclein (α-syn) has been associated with PD due to its increased presence, together with iron, in Lewy bodies. Brain oxidative damage caused by iron may be partly mediated by α-syn oligomerization during PD pathology. Also, α-syn gene dosage can cause familial PD and inhibition of its gene expression by blocking translation via a newly identified Iron Responsive Element-like RNA sequence in its 5’-untranslated region may provide a new PD drug target. PMID:19399246

  17. Effects of nanoparticle zinc oxide on emotional behavior and trace elements homeostasis in rat brain.

    PubMed

    Amara, Salem; Slama, Imen Ben; Omri, Karim; El Ghoul, Jaber; El Mir, Lassaad; Rhouma, Khemais Ben; Abdelmelek, Hafedh; Sakly, Mohsen

    2015-12-01

    Over recent years, nanotoxicology and the potential effects on human body have grown in significance, the potential influences of nanosized materials on the central nervous system have received more attention. The aim of this study was to determine whether zinc oxide (ZnO) nanoparticles (NPs) exposure cause alterations in emotional behavior and trace elements homeostasis in rat brain. Rats were treated by intraperitoneal injection of ZnO NPs (20-30 nm) at a dose of 25 mg/kg body weight. Sub -: acute ZnO NPs treatment induced no significant increase in the zinc content in the homogenate brain. Statistically significant decreases in iron and calcium concentrations were found in rat brain tissue compared to control. However, sodium and potassium contents remained unchanged. Also, there were no significant changes in the body weight and the coefficient of brain. In the present study, the anxiety-related behavior was evaluated using the plus-maze test. ZnO NPs treatment modulates slightly the exploratory behaviors of rats. However, no significant differences were observed in the anxious index between ZnO NP-treated rats and the control group (p > 0.05). Interestingly, our results demonstrated minimal effects of ZnO NPs on emotional behavior of animals, but there was a possible alteration in trace elements homeostasis in rat brain.

  18. Oxidative stress and starvation in Dinoroseobacter shibae: the role of extrachromosomal elements

    PubMed Central

    Soora, Maya; Tomasch, Jürgen; Wang, Hui; Michael, Victoria; Petersen, Jörn; Engelen, Bert; Wagner-Döbler, Irene; Cypionka, Heribert

    2015-01-01

    Aerobic anoxygenic phototrophic bacteria (AAP) are abundant in the photic zone of the marine environment. Dinoroseobacter shibae, a representative of the Roseobacter group, converts light into additional energy that enhances its survival especially under starvation. However, light exposure results in the production of cytotoxic reactive oxygen species in AAPs. Here we investigated the response of D. shibae to starvation and oxidative stress, focusing on the role of extrachromosomal elements (ECRs). D. shibae possessing five ECRs (three plasmids and two chromids) was starved for 4 weeks either in the dark or under light/dark cycles and the survival was monitored. Transcriptomics showed that on the chromosome genes with a role in oxidative stress response and photosynthesis were differentially expressed during the light period. Most extrachromosomal genes in contrast showed a general loss of transcriptional activity, especially in dark-starved cells. The observed decrease of gene expression was not due to plasmid loss, as all five ECRs were maintained in the cells. Interestingly, the genes on the 72-kb chromid were the least downregulated, and one region with genes of the oxygen stress response and a light-dependent protochlorophyllide reductase of cyanobacterial origin was strongly activated under the light/dark cycle. A Δ72-kb curing mutant lost the ability to survive under starvation in a light/dark cycle demonstrating the essential role of this chromid for adaptation to starvation and oxidative stress. Our data moreover suggest that the other four ECRs of D. shibae have no vital function under the investigated conditions and therefore were transcriptionally silenced. PMID:25859246

  19. DEVELOPMENT OF LOW-COST MANUFACTURING PROCESSES FOR PLANAR, MULTILAYER SOLID OXIDE FUEL CELL ELEMENTS

    SciTech Connect

    Scott Swartz; Matthew Seabaugh; William Dawson; Harlan Anderson; Tim Armstrong; Michael Cobb; Kirby Meacham; James Stephan; Russell Bennett; Bob Remick; Chuck Sishtla; Scott Barnett; John Lannutti

    2004-06-12

    This report summarizes the results of a four-year project, entitled, ''Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'', jointly funded by the U.S. Department of Energy, the State of Ohio, and by project participants. The project was led by NexTech Materials, Ltd., with subcontracting support provided by University of Missouri-Rolla, Michael A. Cobb & Co., Advanced Materials Technologies, Inc., Edison Materials Technology Center, Gas Technology Institute, Northwestern University, and The Ohio State University. Oak Ridge National Laboratory, though not formally a subcontractor on the program, supported the effort with separate DOE funding. The objective of the program was to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. The program was carried out in three phases. In the Phase I effort, several manufacturing approaches were considered and subjected to detailed assessments of manufacturability and development risk. Estimated manufacturing costs for 5-kW stacks were in the range of $139/kW to $179/kW. The risk assessment identified a number of technical issues that would need to be considered during development. Phase II development work focused on development of planar solid oxide fuel cell elements, using a number of ceramic manufacturing methods, including tape casting, colloidal-spray deposition, screen printing, spin-coating, and sintering. Several processes were successfully established for fabrication of anode-supported, thin-film electrolyte cells, with performance levels at or near the state-of-the-art. The work in Phase III involved scale-up of cell manufacturing methods, development of non-destructive evaluation methods, and comprehensive electrical and electrochemical testing of solid oxide fuel cell materials and components.

  20. Photochemical Oxidation of Dissolved Elemental Mercury by Carbonate Radicals in Water

    SciTech Connect

    He, Feng; Zhao, Weirong; Liang, Liyuan; Gu, Baohua

    2014-11-11

    Photochemical oxidation of dissolved elemental mercury [Hg(0)] affects mercury chemical speciation and its transfer at the water-air interface in the aquatic environment. The mechanisms and factors that control Hg(0) photooxidation, however, are not completely understood, especially in natural freshwaters containing dissolved organic matter (DOM) and carbonate. Here, we evaluate Hg(0) photooxidation rates affected by various reactive ionic species [e.g., DOM, CO32-, NO3-] and free radicals in a creek water and a phosphate buffer solution (pH=8) under simulated solar irradiation. We report a high Hg(0) photooxidation rate (k = 1.44 h-1) in the presence of both HCO32- and NO3-, whereas HCO32-, NO3-, or DOM alone increased the oxidation rate slightly (k = 0.1 0.17 h-1). Using scavengers and enhancers for singlet oxygen (1O2) and hydroxyl (HO ) radicals, as well as electron paramagnetic resonance spectroscopy, we identify that carbonate radicals (CO3 ∙-) primarily drive the Hg(0) photooxidation, whereas addition of DOM resulted in a 2-fold decrease in Hg(0) oxidation. This study identifies an unrecognized pathway of Hg(0) photooxidation by CO3 ∙- radicals and the inhibitory effect of DOM, which could be important in assessing Hg transformation and fate in water containing carbonate such as hard water and seawater.

  1. Oxidative stress and starvation in Dinoroseobacter shibae: the role of extrachromosomal elements.

    PubMed

    Soora, Maya; Tomasch, Jürgen; Wang, Hui; Michael, Victoria; Petersen, Jörn; Engelen, Bert; Wagner-Döbler, Irene; Cypionka, Heribert

    2015-01-01

    Aerobic anoxygenic phototrophic bacteria (AAP) are abundant in the photic zone of the marine environment. Dinoroseobacter shibae, a representative of the Roseobacter group, converts light into additional energy that enhances its survival especially under starvation. However, light exposure results in the production of cytotoxic reactive oxygen species in AAPs. Here we investigated the response of D. shibae to starvation and oxidative stress, focusing on the role of extrachromosomal elements (ECRs). D. shibae possessing five ECRs (three plasmids and two chromids) was starved for 4 weeks either in the dark or under light/dark cycles and the survival was monitored. Transcriptomics showed that on the chromosome genes with a role in oxidative stress response and photosynthesis were differentially expressed during the light period. Most extrachromosomal genes in contrast showed a general loss of transcriptional activity, especially in dark-starved cells. The observed decrease of gene expression was not due to plasmid loss, as all five ECRs were maintained in the cells. Interestingly, the genes on the 72-kb chromid were the least downregulated, and one region with genes of the oxygen stress response and a light-dependent protochlorophyllide reductase of cyanobacterial origin was strongly activated under the light/dark cycle. A Δ72-kb curing mutant lost the ability to survive under starvation in a light/dark cycle demonstrating the essential role of this chromid for adaptation to starvation and oxidative stress. Our data moreover suggest that the other four ECRs of D. shibae have no vital function under the investigated conditions and therefore were transcriptionally silenced.

  2. Nrf2-ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases.

    PubMed

    Buendia, Izaskun; Michalska, Patrycja; Navarro, Elisa; Gameiro, Isabel; Egea, Javier; León, Rafael

    2016-01-01

    Neurodegenerative diseases (NDDs) are predicted to be the biggest health concern in this century and the second leading cause of death by 2050. The main risk factor of these diseases is aging, and as the aging population in Western societies is increasing, the prevalence of these diseases is augmenting exponentially. Despite the great efforts to find a cure, current treatments remain ineffective or have low efficacy. Increasing lines of evidence point to exacerbated oxidative stress, mitochondrial dysfunction and chronic neuroinflammation as common pathological mechanisms underlying neurodegeneration. We will address the role of the nuclear factor E2-related factor 2 (Nrf2) as a potential target for the treatment of NDDs. The Nrf2-ARE pathway is an intrinsic mechanism of defence against oxidative stress. Nrf2 is a transcription factor that induces the expression of a great number of cytoprotective and detoxificant genes. There are many evidences that highlight the protective role of the Nrf2-ARE pathway in neurodegenerative conditions, as it reduces oxidative stress and neuroinflammation. Therefore, the Nrf2 pathway is being increasingly considered a therapeutic target for NDDs. Herein we will review the deregulation of the Nrf2 pathway in different NDDs and the recent studies with Nrf2 inducers as "proof-of-concept" for the treatment of those devastating pathologies.

  3. Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging

    NASA Astrophysics Data System (ADS)

    Tomitaka, Asahi; Arami, Hamed; Gandhi, Sonu; Krishnan, Kannan M.

    2015-10-01

    Magnetic Particle Imaging (MPI) is a new real-time imaging modality, which promises high tracer mass sensitivity and spatial resolution directly generated from iron oxide nanoparticles. In this study, monodisperse iron oxide nanoparticles with median core diameters ranging from 14 to 26 nm were synthesized and their surface was conjugated with lactoferrin to convert them into brain glioma targeting agents. The conjugation was confirmed with the increase of the hydrodynamic diameters, change of zeta potential, and Bradford assay. Magnetic particle spectrometry (MPS), performed to evaluate the MPI performance of these nanoparticles, showed no change in signal after lactoferrin conjugation to nanoparticles for all core diameters, suggesting that the MPI signal is dominated by Néel relaxation and thus independent of hydrodynamic size difference or presence of coating molecules before and after conjugations. For this range of core sizes (14-26 nm), both MPS signal intensity and spatial resolution improved with increasing core diameter of nanoparticles. The lactoferrin conjugated iron oxide nanoparticles (Lf-IONPs) showed specific cellular internalization into C6 cells with a 5-fold increase in MPS signal compared to IONPs without lactoferrin, both after 24 h incubation. These results suggest that Lf-IONPs can be used as tracers for targeted brain glioma imaging using MPI.

  4. The protein targeting factor Get3 functions as ATP-independent chaperone under oxidative stress conditions.

    PubMed

    Voth, Wilhelm; Schick, Markus; Gates, Stephanie; Li, Sheng; Vilardi, Fabio; Gostimskaya, Irina; Southworth, Daniel R; Schwappach, Blanche; Jakob, Ursula

    2014-10-01

    Exposure of cells to reactive oxygen species (ROS) causes a rapid and significant drop in intracellular ATP levels. This energy depletion negatively affects ATP-dependent chaperone systems, making ROS-mediated protein unfolding and aggregation a potentially very challenging problem. Here we show that Get3, a protein involved in ATP-dependent targeting of tail-anchored (TA) proteins under nonstress conditions, turns into an effective ATP-independent chaperone when oxidized. Activation of Get3's chaperone function, which is a fully reversible process, involves disulfide bond formation, metal release, and its conversion into distinct, higher oligomeric structures. Mutational studies demonstrate that the chaperone activity of Get3 is functionally distinct from and likely mutually exclusive with its targeting function, and responsible for the oxidative stress-sensitive phenotype that has long been noted for yeast cells lacking functional Get3. These results provide convincing evidence that Get3 functions as a redox-regulated chaperone, effectively protecting eukaryotic cells against oxidative protein damage.

  5. Isorhamnetin protects against oxidative stress by activating Nrf2 and inducing the expression of its target genes

    SciTech Connect

    Yang, Ji Hye; Shin, Bo Yeon; Han, Jae Yun; Kim, Mi Gwang; Wi, Ji Eun; Kim, Young Woo; Cho, Il Je; Kim, Sang Chan; Shin, Sang Mi; Ki, Sung Hwan

    2014-01-15

    Isorhamentin is a 3′-O-methylated metabolite of quercetin, and has been reported to have anti-inflammatory and anti-proliferative effects. However, the effects of isorhamnetin on Nrf2 activation and on the expressions of its downstream genes in hepatocytes have not been elucidated. Here, we investigated whether isorhamnetin has the ability to activate Nrf2 and induce phase II antioxidant enzyme expression, and to determine the protective role of isorhamnetin on oxidative injury in hepatocytes. In HepG2 cells, isorhamnetin increased the nuclear translocation of Nrf2 in a dose- and time-dependent manner, and consistently, increased antioxidant response element (ARE) reporter gene activity and the protein levels of hemeoxygenase (HO-1) and of glutamate cysteine ligase (GCL), which resulted in intracellular GSH level increases. The specific role of Nrf2 in isorhamnetin-induced Nrf2 target gene expression was verified using an ARE-deletion mutant plasmid and Nrf2-knockout MEF cells. Deletion of the ARE in the promoter region of the sestrin2 gene, which is recently identified as the Nrf2 target gene by us, abolished the ability of isorhamnetin to increase luciferase activity. In addition, Nrf2 deficiency completely blocked the ability of isorhamnetin to induce HO-1 and GCL. Furthermore, isorhamnetin pretreatment blocked t-BHP-induced ROS production and reversed GSH depletion by t-BHP and consequently, due to reduced ROS levels, decreased t-BHP-induced cell death. In addition isorhamnetin increased ERK1/2, PKCδ and AMPK phosphorylation. Finally, we showed that Nrf2 deficiency blocked the ability of isorhamnetin to protect cells from injury induced by t-BHP. Taken together, our results demonstrate that isorhamnetin is efficacious in protecting hepatocytes against oxidative stress by Nrf2 activation and in inducing the expressions of its downstream genes. - Highlights: • We investigated the effect of isorhamnetin on Nrf2 activation. • Isorhamnetin increased Nrf2

  6. PSMA targeted docetaxel-loaded superparamagnetic iron oxide nanoparticles for prostate cancer.

    PubMed

    Nagesh, Prashanth K B; Johnson, Nia R; Boya, Vijaya K N; Chowdhury, Pallabita; Othman, Shadi F; Khalilzad-Sharghi, Vahid; Hafeez, Bilal B; Ganju, Aditya; Khan, Sheema; Behrman, Stephen W; Zafar, Nadeem; Chauhan, Subhash C; Jaggi, Meena; Yallapu, Murali M

    2016-08-01

    Docetaxel (Dtxl) is currently the most common therapeutic option for prostate cancer (PC). However, adverse side effects and problems associated with chemo-resistance limit its therapeutic outcome in clinical settings. A targeted nanoparticle system to improve its delivery to and activity at the tumor site could be an attractive strategy for PC therapy. Therefore, the objective of this study was to develop and determine the anti-cancer efficacy of a novel docetaxel loaded, prostate specific membrane antigen (PSMA) targeted superparamagnetic iron oxide nanoparticle (SPION) (J591-SPION-Dtxl) formulation for PC therapy. Our results showed the SPION-Dtxl formulation exhibits an optimal particle size and zeta potential, which can efficiently be internalized in PC cells. SPION-Dtxl exhibited potent anti-cancer efficacy via induction of the expression of apoptosis associated proteins, downregulation of anti-apoptotic proteins, and inhibition of chemo-resistance associated protein in PC cell lines. J591-SPION-Dtxl exhibited a profound uptake in C4-2 (PSMA(+)) cells compared to PC-3 (PSMA(-)) cells. A similar targeting potential was observed in ex-vivo studies in C4-2 tumors but not in PC-3 tumors, suggesting its tumor specific targeting. Overall, this study suggests that a PSMA antibody functionalized SPION-Dtxl formulation can be highly useful for targeted PC therapy. PMID:27058278

  7. Heavy-Ion Irradiation of Thulium(III) Oxide Targets Prepared by Polymer-Assisted Deposition

    SciTech Connect

    Garcia, Mitch A.; Ali, Mazhar N.; Chang, Noel N.; Parsons-Moss, Tashi; Ashby, Paul D.; Gates, Jacklyn M.; Stavsetra, Liv; Gregorich, Kenneth E.; Nitsche, Heino

    2008-09-15

    Thulium(III) oxide (Tm{sub 2}O{sub 3}) targets prepared by the polymer-assisted deposition (PAD) method were irradiated by heavy-ion beams to test the method's feasibility for nuclear science applications. Targets were prepared on silicon nitride backings (thickness of 1000 nm, 344 {micro}g/cm{sup 2}) and were irradiated with an {sup 40}Ar beam at laboratory frame energy of {approx}210 MeV (50 particle nA). The root mean squared (RMS) roughness prior to irradiation is 1.1 nm for a {approx}250 nm ({approx}220 {micro}g/cm{sup 2}) Tm{sub 2}O{sub 3} target, and an RMS roughness of 2.0 nm after irradiation was measured by atomic force microscopy (AFM). Scanning electron microscopy of the irradiated target reveals no significant differences in surface homogeneity when compared to imaging prior to irradiation. Target flaking was not observed from monitoring Rutherford scattered particles as a function of time.

  8. Refinement of adsorptive coatings for fluorescent riboflavin-receptor-targeted iron oxide nanoparticles.

    PubMed

    Tsvetkova, Yoanna; Beztsinna, Nataliia; Jayapaul, Jabadurai; Weiler, Marek; Arns, Susanne; Shi, Yang; Lammers, Twan; Kiessling, Fabian

    2016-01-01

    Flavin mononucleotide (FMN) is a riboflavin derivative that can be exploited to target the riboflavin transporters (RFTs) and the riboflavin carrier protein (RCP) in cells with high metabolic activity. In this study we present the synthesis of different FMN-coated ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) and their efficiency as targeting contrast agents. Since FMN alone cannot stabilize the nanoparticles, we used adenosine phosphates--AMP, ADP and ATP--as spacers to obtain colloidally stable nanoparticles. Nucleotides with di- and triphosphate groups were intended to increase the USPIO charge and thus improve zeta potential and stability. However, all nanoparticles formed negatively charged clusters with similar properties in terms of zeta potential (-28 ± 2 mV), relaxivity (228-259 mM(-1) s(-1) at 3 T) and hydrodynamic radius (53-85 nm). Molecules with a higher number of phosphate groups, such as ADP and ATP, have a higher adsorption affinity towards iron oxide, which, instead of providing more charge, led to partial desorption and replacement of FMN. Hence, we obtained USPIOs carrying different amounts of targeting agent, which significantly influenced the nanoparticles' uptake. The nanoparticles' uptake by different cancer cells and HUVECs was evaluated photometrically and with MR relaxometry, showing that the cellular uptake of the USPIOs increases with the FMN amount on their surface. Thus, for USPIOs targeted with riboflavin derivatives the use of spacers with increasing numbers of phosphate groups does not improve either zeta potential or the particles' stability, but rather detaches the targeting moieties from their surface, leading to lower cellular uptake.

  9. Linker-free conjugation and specific cell targeting of antibody functionalized iron-oxide nanoparticles

    PubMed Central

    Xu, Yaolin; Baiu, Dana C.; Sherwood, Jennifer A.; McElreath, Meghan R.; Qin, Ying; Lackey, Kimberly H.; Otto, Mario; Bao, Yuping

    2015-01-01

    Specific targeting is a key step to realize the full potential of iron oxide nanoparticles in biomedical applications, especially tumor-associated diagnosis and therapy. Here, we developed anti-GD2 antibody conjugated iron oxide nanoparticles for highly efficient neuroblastoma cell targeting. The antibody conjugation was achieved through an easy, linker-free method based on catechol reactions. The targeting efficiency and specificity of the antibody-conjugated nanoparticles to GD2-positive neuroblastoma cells were confirmed by flow cytometry, fluorescence microscopy, Prussian blue staining and transmission electron microscopy. These detailed studies indicated that the receptor-recognition capability of the antibody was fully retained after conjugation and the conjugated nanoparticles quickly attached to GD2-positive cells within four hours. Interestingly, longer treatment (12 h) led the cell membrane-bound nanoparticles to be internalized into cytosol, either by directly penetrating the cell membrane or escaping from the endosomes. Last but importantly, the uniquely designed functional surfaces of the nanoparticles allow easy conjugation of other bioactive molecules. PMID:26660881

  10. Vented target elements for use in an isotope-production reactor. [LMFBR

    DOEpatents

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium gas in a fast breeder reactor cooled with liquid metal. Lithium target material is placed in pins equipped with vents, and tritium gas is recovered from the coolant.

  11. Combining Hi-C data with phylogenetic correlation to predict the target genes of distal regulatory elements in human genome.

    PubMed

    Lu, Yulan; Zhou, Yuanpeng; Tian, Weidong

    2013-12-01

    Defining the target genes of distal regulatory elements (DREs), such as enhancer, repressors and insulators, is a challenging task. The recently developed Hi-C technology is designed to capture chromosome conformation structure by high-throughput sequencing, and can be potentially used to determine the target genes of DREs. However, Hi-C data are noisy, making it difficult to directly use Hi-C data to identify DRE-target gene relationships. In this study, we show that DREs-gene pairs that are confirmed by Hi-C data are strongly phylogenetic correlated, and have thus developed a method that combines Hi-C read counts with phylogenetic correlation to predict long-range DRE-target gene relationships. Analysis of predicted DRE-target gene pairs shows that genes regulated by large number of DREs tend to have essential functions, and genes regulated by the same DREs tend to be functionally related and co-expressed. In addition, we show with a couple of examples that the predicted target genes of DREs can help explain the causal roles of disease-associated single-nucleotide polymorphisms located in the DREs. As such, these predictions will be of importance not only for our understanding of the function of DREs but also for elucidating the causal roles of disease-associated noncoding single-nucleotide polymorphisms.

  12. Treatment-Resistant Major Depression: Rationale for NMDA Receptors as Targets and Nitrous Oxide as Therapy

    PubMed Central

    Zorumski, Charles F.; Nagele, Peter; Mennerick, Steven; Conway, Charles R.

    2015-01-01

    Major depressive disorder (MDD) remains a huge personal and societal encumbrance. Particularly burdensome is a virulent subtype of MDD, treatment resistant major depression (TMRD), which afflicts 15–30% of MDD patients. There has been recent interest in N-methyl-d-aspartate receptors (NMDARs) as targets for treatment of MDD and perhaps TMRD. To date, most pre-clinical and clinical studies have focused on ketamine, although psychotomimetic and other side effects may limit ketamine’s utility. These considerations prompted a recent promising pilot clinical trial of nitrous oxide, an NMDAR antagonist that acts through a mechanism distinct from that of ketamine, in patients with severe TRMD. In this paper, we review the clinical picture of TRMD as a subtype of MDD, the evolution of ketamine as a fast-acting antidepressant, and clinical and basic science studies supporting the possible use of nitrous oxide as a rapid antidepressant. PMID:26696909

  13. [Application and advancement of magnetic iron-oxide nanoparticles in tumor-targeted therapy].

    PubMed

    Chen, Yue; Chen, Bao-An

    2010-01-01

    Recently, nanometer-sized magnetic particles have been intensively concerned and investigated due to their particularly large surface-to-volume ratio, quantum-size effect, magnetic character as well as their potential application in the area of bioscience and medicine. The most promising nanoparticles are magnetic iron oxide nanoparticles with appropriate surface modification, which have been widely used experimentally for numerous in vivo applications such as magnetic resonance imaging contrast enhancement, tissue repair, immunoassay, detoxification of biological fluids, drug delivery, hyperthermia and cell separation. To focus on one of the most important and fascinating subjects in nanobiotechnology, this review describes the current situation and development of magnetic iron oxide nanoparticles and their applications in drug delivery and hyperthermia in tumor-targeted therapy. The possible perspectives and some challenges to further development of these nanoparticles are also analyzed and discussed. PMID:20038325

  14. Targeted delivery and controlled release of doxorubicin into cancer cells using a multifunctional graphene oxide.

    PubMed

    Lv, Yao; Tao, Lei; Annie Bligh, S W; Yang, Huihui; Pan, Qixia; Zhu, Limin

    2016-02-01

    We have synthesized a new multifunctional graphene oxide as a drug carrier targeting to hepatocarcinoma cells. Surface modified graphene oxide with polyethyleneimine (PEI) sequentially derivatised with fluorescein isothiocyanate (FI) and polyethylene glycol (PEG)-linked lactobionic acid (LA), and acetylation of remaining terminal amines of the PEI produced a new multifunctional graphene oxide drug carrier (GO/PEI.Ac-FI-PEG-LA). Doxorubicin (DOX), an anticancer drug, was encapsulated in GO/PEI.Ac-FI-PEG-LA to give GO/PEI.Ac-FI-PEG-LA/DOX, with a drug loading percentage of 85%. We showed that both GO/PEI.Ac-FI-PEG-LA and GO/PEI.Ac-FI-PEG-LA/DOX were water soluble and stable between pH 5.0 and 9.0. In vitro release studies indicated that the release rate of DOX from GO/PEI.Ac-FI-PEG-LA/DOX complexes were significantly higher at pH5.8 than that of the physiological pH. Another important feature of this carrier is its good cell viability in the tested concentration range (0-4μM), and the GO/PEI.Ac-FI-PEG-LA/DOX can specifically target cancer cells overexpressing asialoglycoprotein (ASGPR) receptors and exert growth inhibition effect to the cancer cells. The enhanced target specificity and the substantial improvement in pH responsive controlled release have made this new carrier a potential choice for non-covalent encapsulation of drugs in GO, and a delivery system for cancer therapy. PMID:26652419

  15. Mitochondria-targeted heme oxygenase-1 decreases oxidative stress in renal epithelial cells.

    PubMed

    Bolisetty, Subhashini; Traylor, Amie; Zarjou, Abolfazl; Johnson, Michelle S; Benavides, Gloria A; Ricart, Karina; Boddu, Ravindra; Moore, Ray D; Landar, Aimee; Barnes, Stephen; Darley-Usmar, Victor; Agarwal, Anupam

    2013-08-01

    Mitochondria are both a source and target of the actions of reactive oxygen species and possess a complex system of inter-related antioxidants that control redox signaling and protect against oxidative stress. Interestingly, the antioxidant enzyme heme oxygenase-1 (HO-1) is not present in the mitochondria despite the fact that the organelle is the site of heme synthesis and contains multiple heme proteins. Detoxification of heme is an important protective mechanism since the reaction of heme with hydrogen peroxide generates pro-oxidant ferryl species capable of propagating oxidative stress and ultimately cell death. We therefore hypothesized that a mitochondrially localized HO-1 would be cytoprotective. To test this, we generated a mitochondria-targeted HO-1 cell line by transfecting HEK293 cells with a plasmid construct containing the manganese superoxide dismutase mitochondria leader sequence fused to HO-1 cDNA (Mito-HO-1). Nontargeted HO-1-overexpressing cells were generated by transfecting HO-1 cDNA (HO-1) or empty vector (Vector). Mitochondrial localization of HO-1 with increased HO activity in the mitochondrial fraction of Mito-HO-1 cells was observed, but a significant decrease in the expression of heme-containing proteins occurred in these cells. Both cytosolic HO-1- and Mito-HO-1-expressing cells were protected against hypoxia-dependent cell death and loss of mitochondrial membrane potential, but these effects were more pronounced with Mito-HO-1. Furthermore, decrement in production of tricarboxylic acid cycle intermediates following hypoxia was significantly mitigated in Mito-HO-1 cells. These data suggest that specific mitochondrially targeted HO-1 under acute pathological conditions may have beneficial effects, but the selective advantage of long-term expression is constrained by a negative impact on the synthesis of heme-containing mitochondrial proteins.

  16. Study of seasonal variations of trace-element concentrations within tree rings by thick-target PIXE analyses

    NASA Astrophysics Data System (ADS)

    Harju, L.; Lill, J.-O.; Saarela, K.-E.; Heselius, S.-J.; Hernberg, F. J.; Lindroos, A.

    1996-04-01

    Thick-target PIXE has been used for the quantitative determination of trace elements in annual growth rings of different tree species. A scanning device was developed for the remote control of the sample and a video-camera system for the exact monitoring of the spot to be analyzed. The samples were analyzed in steps of 1 mm. The widths of the tree rings studied were in the range 2.5-8.0 mm. Samples of Norway spruce and Scots pine were collected from Harjavalta, a polluted area in southwestern Finland. The elements studied were S, Cl, Br, K, Ca, Mn, Fe, Zn, Cu, Ni, Pb, Rb and Sr. Large variations were observed in elemental concentrations within individual tree rings. The highest concentrations for most elements were obtained for earlywood in the beginning of the growth season and the lowest values for latewood thus reflecting the biological activity. The method was calibrated using international standard reference materials. For most elements the matrix effects were found to be negligible. The detection limits for most metals studied were in the range 1-5 ppm.

  17. Oxidation of element 102, nobelium, with flow electrolytic column chromatography on an atom-at-a-time scale.

    PubMed

    Toyoshima, Atsushi; Kasamatsu, Yoshitaka; Tsukada, Kazuaki; Asai, Masato; Kitatsuji, Yoshihiro; Ishii, Yasuo; Toume, Hayato; Nishinaka, Ichiro; Haba, Hiromitsu; Ooe, Kazuhiro; Sato, Wataru; Shinohara, Atsushi; Akiyama, Kazuhiko; Nagame, Yuichiro

    2009-07-01

    We report here on the successful oxidation of element 102, nobelium (No), on an atom-at-a-time scale in 0.1 M alpha-hydroxyisobutyric acid (alpha-HIB) solution using a newly developed technique, flow electrolytic column chromatography. It is found that the most stable ion, No(2+), is oxidized to No(3+) within 3 min and that the oxidized No complex with alpha-HIB holds the trivalent state in the column above an applied potential of 1.0 V.

  18. Oxidation of element 102, nobelium, with flow electrolytic column chromatography on an atom-at-a-time scale.

    PubMed

    Toyoshima, Atsushi; Kasamatsu, Yoshitaka; Tsukada, Kazuaki; Asai, Masato; Kitatsuji, Yoshihiro; Ishii, Yasuo; Toume, Hayato; Nishinaka, Ichiro; Haba, Hiromitsu; Ooe, Kazuhiro; Sato, Wataru; Shinohara, Atsushi; Akiyama, Kazuhiko; Nagame, Yuichiro

    2009-07-01

    We report here on the successful oxidation of element 102, nobelium (No), on an atom-at-a-time scale in 0.1 M alpha-hydroxyisobutyric acid (alpha-HIB) solution using a newly developed technique, flow electrolytic column chromatography. It is found that the most stable ion, No(2+), is oxidized to No(3+) within 3 min and that the oxidized No complex with alpha-HIB holds the trivalent state in the column above an applied potential of 1.0 V. PMID:19514720

  19. Dimethylarginine dimethylaminohydrolase: a new therapeutic target for the modulation of nitric oxide and angiogenesis.

    PubMed

    Singh, Jai Pal

    2007-09-01

    Nitric oxide (NO) has a key role in promoting angiogenesis by increasing vasodilation, vascular permeability, endothelial cell proliferation and migration, and by modifying the activities of angiogenic mediators. NO is also critical for the mobilization of endothelial progenitor cells from the bone marrow which promotes vasculogenesis and angiogenesis. Studies have shown that the enzymes catalyzing NO synthesis are inhibited by the endogenously generated inhibitor asymmetric dimethylarginine (ADMA). Pharmacological agents targeted to modulate dimethyl-arginine dimethylaminohydrolase, the key enzyme metabolizing ADMA, may offer a potential strategy for developing novel pro- and anti-angiogenic therapies. PMID:17729185

  20. Functionalized magnetic iron oxide/alginate core-shell nanoparticles for targeting hyperthermia.

    PubMed

    Liao, Shih-Hsiang; Liu, Chia-Hung; Bastakoti, Bishnu Prasad; Suzuki, Norihiro; Chang, Yung; Yamauchi, Yusuke; Lin, Feng-Huei; Wu, Kevin C-W

    2015-01-01

    Hyperthermia is one of the promising treatments for cancer therapy. However, the development of a magnetic fluid agent that can selectively target a tumor and efficiently elevate temperature while exhibiting excellent biocompatibility still remains challenging. Here a new core-shell nanostructure consisting of inorganic iron oxide (Fe3O4) nanoparticles as the core, organic alginate as the shell, and cell-targeting ligands (ie, D-galactosamine) decorated on the outer surface (denoted as Fe3O4@Alg-GA nanoparticles) was prepared using a combination of a pre-gel method and coprecipitation in aqueous solution. After treatment with an AC magnetic field, the results indicate that Fe3O4@Alg-GA nanoparticles had excellent hyperthermic efficacy in a human hepatocellular carcinoma cell line (HepG2) owing to enhanced cellular uptake, and show great potential as therapeutic agents for future in vivo drug delivery systems. PMID:26005343

  1. Laser plume spectroscopy. 2. Graphite yttrium-stabilised and zirconium oxide targets

    SciTech Connect

    Osipov, V V; Solomonov, V I; Platonov, V V; Snigireva, O A; Ivanov, M G; Lisenkov, V V

    2005-07-31

    Spectral and kinetic properties of a plume formed in the vicinity of a graphite and a pressed yttrium-stabilised zirconium oxide (YSZ) powder targets irradiated in air by a 10.6-{mu}m pulsed CO{sub 2} laser with a peak power of 1.5-9 kW at room temperature are studied. The plume propagated at right angles to the target surface and at an angle of 45{sup 0} to the laser radiation. The spectral and kinetic characteristics of its luminescence were measured discretely along the entire length of the plume. It is shown that the YSZ plume as well as the graphite plume is a flux of nonequilibrium gaseous plasma at a temperature of about 4.7-3.1 kK, in which a luminescence of YO and ZrO radicals is excited. (interaction of laser radiation with matter. laser plasma)

  2. Targeted diazeniumdiolates: localized nitric oxide release from glioma-specific peptides and proteins.

    PubMed

    Safdar, Shahana; Taite, Lakeshia J

    2012-01-17

    Nitric oxide (NO) is a small yet important biological messenger, which at sufficient concentrations has been shown to induce apoptosis as well as increase radiosensitization in tumor cells. However, the short half-life of NO gas itself has limited its utility as a therapeutic agent. The objective of this study was the development of targeted NO donors and we illustrate their utility as a potential therapeutic for treatment of glioblastoma multiforme, the most common and aggressive malignant primary brain tumor in adults. We have synthesized two diazeniumdiolate NO donors by reacting NO gas with glioma-specific targeting sequences, VTWTPQAWFQWVGGGSKKKKK (VTW) and chlorotoxin (CTX), and achieved repeatable NO release from both donors. FITC-labeled biomolecules, when incubated with glioma and control cells preferentially bound to the glioma cells and showed only minimal binding to the control cells. Additionally, tumor cell viability was significantly decreased when cells were incubated with the NO donors whereas control cell viability was not affected.

  3. Functionalized magnetic iron oxide/alginate core-shell nanoparticles for targeting hyperthermia

    PubMed Central

    Liao, Shih-Hsiang; Liu, Chia-Hung; Bastakoti, Bishnu Prasad; Suzuki, Norihiro; Chang, Yung; Yamauchi, Yusuke; Lin, Feng-Huei; Wu, Kevin C-W

    2015-01-01

    Hyperthermia is one of the promising treatments for cancer therapy. However, the development of a magnetic fluid agent that can selectively target a tumor and efficiently elevate temperature while exhibiting excellent biocompatibility still remains challenging. Here a new core-shell nanostructure consisting of inorganic iron oxide (Fe3O4) nanoparticles as the core, organic alginate as the shell, and cell-targeting ligands (ie, D-galactosamine) decorated on the outer surface (denoted as Fe3O4@Alg-GA nanoparticles) was prepared using a combination of a pre-gel method and coprecipitation in aqueous solution. After treatment with an AC magnetic field, the results indicate that Fe3O4@Alg-GA nanoparticles had excellent hyperthermic efficacy in a human hepatocellular carcinoma cell line (HepG2) owing to enhanced cellular uptake, and show great potential as therapeutic agents for future in vivo drug delivery systems. PMID:26005343

  4. A multi-element screening method to identify metal targets for blood biomonitoring in green sea turtles (Chelonia mydas).

    PubMed

    Villa, C A; Finlayson, S; Limpus, C; Gaus, C

    2015-04-15

    Biomonitoring of blood is commonly used to identify and quantify occupational or environmental exposure to chemical contaminants. Increasingly, this technique has been applied to wildlife contaminant monitoring, including for green turtles, allowing for the non-lethal evaluation of chemical exposure in their nearshore environment. The sources, composition, bioavailability and toxicity of metals in the marine environment are, however, often unknown and influenced by numerous biotic and abiotic factors. These factors can vary considerably across time and space making the selection of the most informative elements for biomonitoring challenging. This study aimed to validate an ICP-MS multi-element screening method for green turtle blood in order to identify and facilitate prioritisation of target metals for subsequent fully quantitative analysis. Multi-element screening provided semiquantitative results for 70 elements, 28 of which were also determined through fully quantitative analysis. Of the 28 comparable elements, 23 of the semiquantitative results had an accuracy between 67% and 112% relative to the fully quantified values. In lieu of any available turtle certified reference materials (CRMs), we evaluated the use of human blood CRMs as a matrix surrogate for quality control, and compared two commonly used sample preparation methods for matrix related effects. The results demonstrate that human blood provides an appropriate matrix for use as a quality control material in the fully quantitative analysis of metals in turtle blood. An example for the application of this screening method is provided by comparing screening results from blood of green turtles foraging in an urban and rural region in Queensland, Australia. Potential targets for future metal biomonitoring in these regions were identified by this approach.

  5. A multi-element screening method to identify metal targets for blood biomonitoring in green sea turtles (Chelonia mydas).

    PubMed

    Villa, C A; Finlayson, S; Limpus, C; Gaus, C

    2015-04-15

    Biomonitoring of blood is commonly used to identify and quantify occupational or environmental exposure to chemical contaminants. Increasingly, this technique has been applied to wildlife contaminant monitoring, including for green turtles, allowing for the non-lethal evaluation of chemical exposure in their nearshore environment. The sources, composition, bioavailability and toxicity of metals in the marine environment are, however, often unknown and influenced by numerous biotic and abiotic factors. These factors can vary considerably across time and space making the selection of the most informative elements for biomonitoring challenging. This study aimed to validate an ICP-MS multi-element screening method for green turtle blood in order to identify and facilitate prioritisation of target metals for subsequent fully quantitative analysis. Multi-element screening provided semiquantitative results for 70 elements, 28 of which were also determined through fully quantitative analysis. Of the 28 comparable elements, 23 of the semiquantitative results had an accuracy between 67% and 112% relative to the fully quantified values. In lieu of any available turtle certified reference materials (CRMs), we evaluated the use of human blood CRMs as a matrix surrogate for quality control, and compared two commonly used sample preparation methods for matrix related effects. The results demonstrate that human blood provides an appropriate matrix for use as a quality control material in the fully quantitative analysis of metals in turtle blood. An example for the application of this screening method is provided by comparing screening results from blood of green turtles foraging in an urban and rural region in Queensland, Australia. Potential targets for future metal biomonitoring in these regions were identified by this approach. PMID:25655987

  6. Facile synthesis and functionalization of manganese oxide nanoparticles for targeted T1-weighted tumor MR imaging.

    PubMed

    Luo, Yu; Yang, Jia; Li, Jingchao; Yu, Zhibo; Zhang, Guixiang; Shi, Xiangyang; Shen, Mingwu

    2015-12-01

    We report the polyethyleneimine (PEI)-enabled synthesis and functionalization of manganese oxide (Mn3O4) nanoparticles (NPs) for targeted tumor magnetic resonance (MR) imaging in vivo. In this work, monodispersed PEI-coated Mn3O4 NPs were formed by decomposition of acetylacetone manganese via a solvothermal approach. The Mn3O4 NPs with PEI coating were sequentially conjugated with fluorescein isothiocyanate, folic acid (FA)-linked polyethylene glycol (PEG), and PEG monomethyl ether. Followed by final acetylation of the remaining PEI surface amines, multifunctional Mn3O4 NPs were formed and well characterized. We show that the formed multifunctional Mn3O4 NPs with a mean diameter of 8.0 nm possess good water-dispersibility, colloidal stability, and cytocompatibility and hemocompatibility in the given concentration range. Flow cytometry and confocal microscopic observation reveal that the multifunctional Mn3O4 NPs are able to target FA receptor-overexpressing cancer cells in vitro. Importantly, the FA-targeted Mn3O4 NPs can be used as a nanoprobe for efficient T1-weighted MR imaging of cancer cells in vitro and the xenografted tumor model in vivo via an active FA-mediated targeting pathway. With the facile PEI-enabled formation and functionalization, the developed PEI-coated Mn3O4 NPs may be modified with other biomolecules for different biomedical imaging applications. PMID:26454057

  7. Targeted gold-coated iron oxide nanoparticles for CD163 detection in atherosclerosis by MRI

    PubMed Central

    Tarin, Carlos; Carril, Monica; Martin-Ventura, Jose Luis; Markuerkiaga, Irati; Padro, Daniel; Llamas-Granda, Patricia; Moreno, Juan Antonio; García, Isabel; Genicio, Nuria; Plaza-Garcia, Sandra; Blanco-Colio, Luis Miguel; Penades, Soledad; Egido, Jesus

    2015-01-01

    CD163 is a membrane receptor expressed by macrophage lineage. Studies performed in atherosclerosis have shown that CD163 expression is increased at inflammatory sites, pointing at the presence of intraplaque hemorrhagic sites or asymptomatic plaques. Hence, imaging of CD163 expressing macrophages is an interesting strategy in order to detect atherosclerotic plaques. We have prepared a targeted probe based on gold-coated iron oxide nanoparticles vectorized with an anti-CD163 antibody for the specific detection of CD163 by MRI. Firstly, the specificity of the targeted probe was validated in vitro by incubation of the probe with CD163(+) or (−) macrophages. The probe was able to selectively detect CD163(+) macrophages both in human and murine cells. Subsequently, the targeted probe was injected in 16 weeks old apoE deficient mice developing atherosclerotic lesions and the pararenal abdominal aorta was imaged by MRI. The accumulation of probe in the site of interest increased over time and the signal intensity decreased significantly 48 hours after the injection. Hence, we have developed a highly sensitive targeted probe capable of detecting CD163-expressing macrophages that could provide useful information about the state of the atheromatous lesions. PMID:26616677

  8. TARGeT: a web-based pipeline for retrieving and characterizing gene and transposable element families from genomic sequences.

    PubMed

    Han, Yujun; Burnette, James M; Wessler, Susan R

    2009-06-01

    Gene families compose a large proportion of eukaryotic genomes. The rapidly expanding genomic sequence database provides a good opportunity to study gene family evolution and function. However, most gene family identification programs are restricted to searching protein databases where data are often lagging behind the genomic sequence data. Here, we report a user-friendly web-based pipeline, named TARGeT (Tree Analysis of Related Genes and Transposons), which uses either a DNA or amino acid 'seed' query to: (i) automatically identify and retrieve gene family homologs from a genomic database, (ii) characterize gene structure and (iii) perform phylogenetic analysis. Due to its high speed, TARGeT is also able to characterize very large gene families, including transposable elements (TEs). We evaluated TARGeT using well-annotated datasets, including the ascorbate peroxidase gene family of rice, maize and sorghum and several TE families in rice. In all cases, TARGeT rapidly recapitulated the known homologs and predicted new ones. We also demonstrated that TARGeT outperforms similar pipelines and has functionality that is not offered elsewhere.

  9. The Thermodynamic Properties of the f-Elements and their Compounds. Part 2. The Lanthanide and Actinide Oxides

    SciTech Connect

    Konings, Rudy J. M. Beneš, Ondrej; Kovács, Attila; Manara, Dario; Sedmidubský, David; Gorokhov, Lev; Iorish, Vladimir S.; Yungman, Vladimir; Shenyavskaya, E.; Osina, E.

    2014-03-15

    A comprehensive review of the thermodynamic properties of the oxide compounds of the lanthanide and actinide elements is presented. The available literature data for the solid, liquid, and gaseous state have been analysed and recommended values are presented. In case experimental data are missing, estimates have been made based on the trends in the two series, which are extensively discussed.

  10. The Koshak section: Evidence for element fractionation and an oxidation event at the K/T boundary

    NASA Technical Reports Server (NTRS)

    Nazarov, M. A.; Badjukov, D. D.; Barsukova, L. D.; Kolesov, G. M.; Naidin, D. P.

    1993-01-01

    The Koshak site is a new K/T section located about 125 km EEN of the Fort Shevchenko city, Mangyshlak, Kazakhstan. In this paper, we report results of geochemical and mineralogical studies of this section which indicate a deep element fractionation and an oxidation event at the K/T boundary.

  11. Laser-based directed release of array elements for efficient collection into targeted microwells.

    PubMed

    Dobes, Nicholas C; Dhopeshwarkar, Rahul; Henley, W Hampton; Ramsey, J Michael; Sims, Christopher E; Allbritton, Nancy L

    2013-02-21

    A cell separation strategy capable of the systematic isolation and collection of moderate to large numbers (25-400) of single cells into a targeted microwell is demonstrated. An array of microfabricated, releasable, transparent micron-scale pedestals termed pallets and an array of microwells in poly(dimethylsiloxane) (PDMS) were mated to enable selective release and retrieval of individual cells. Cells cultured on a pallet array mounted on a custom designed stage permitted the array to be positioned independently of the microwell locations. Individual pallets containing cells were detached in a targeted fashion using a pulsed Nd:YAG laser. The location of the laser focal point was optimized to transfer individual pallets to designated microwells. In a large-scale sort (n = 401), the accuracy, defined as placing a pallet in the intended well, was 94% and the collection efficiency was 100%. Multiple pallets were observed in only 4% of the targeted wells. In cell sorting experiments, the technique provided a yield and purity of target cells identified by their fluorescence signature of 91% and 93%, respectively. Cell viability based on single-cell cloning efficiency at 72 h post collection was 77%.

  12. Laser-Based Directed Release of Array Elements for Efficient Collection into Targeted Microwells

    PubMed Central

    Dobes, Nicholas C.; Dhopeshwarkar, Rahul; Henley, W. Hampton; Ramsey, J. Michael; Sims, Christopher E.; Allbritton, Nancy L.

    2013-01-01

    A cell separation strategy capable of the systematic isolation and collection of moderate to large numbers (25–400) of single cells into a targeted microwell is demonstrated. An array of microfabricated, releasable, transparent micron-scale pedestals termed pallets and an array of microwells in poly(dimethylsiloxane) (PDMS) were mated to enable selective release and retrieval of individual cells. Cells cultured on a pallet array mounted on a custom designed stage permitted the array to be positioned independently of the microwell locations. Individual pallets containing cells were detached in a targeted fashion using a pulsed Nd:YAG laser. The location of the laser focal point was optimized to transfer individual pallets to designated microwells. In a large-scale sort (n = 401), the accuracy, defined as placing a pallet in the intended well, was 94% and the collection efficiency was 100%. Multiple pallets were observed in only 4% of the targeted wells. In cell sorting experiments, the technique provided a yield and purity of target cells identified by their fluorescence signature of 91% and 93%, respectively. Cell viability based on single-cell cloning efficiency at 72 h post collection was 77%. PMID:23223411

  13. Laser-based directed release of array elements for efficient collection into targeted microwells.

    PubMed

    Dobes, Nicholas C; Dhopeshwarkar, Rahul; Henley, W Hampton; Ramsey, J Michael; Sims, Christopher E; Allbritton, Nancy L

    2013-02-21

    A cell separation strategy capable of the systematic isolation and collection of moderate to large numbers (25-400) of single cells into a targeted microwell is demonstrated. An array of microfabricated, releasable, transparent micron-scale pedestals termed pallets and an array of microwells in poly(dimethylsiloxane) (PDMS) were mated to enable selective release and retrieval of individual cells. Cells cultured on a pallet array mounted on a custom designed stage permitted the array to be positioned independently of the microwell locations. Individual pallets containing cells were detached in a targeted fashion using a pulsed Nd:YAG laser. The location of the laser focal point was optimized to transfer individual pallets to designated microwells. In a large-scale sort (n = 401), the accuracy, defined as placing a pallet in the intended well, was 94% and the collection efficiency was 100%. Multiple pallets were observed in only 4% of the targeted wells. In cell sorting experiments, the technique provided a yield and purity of target cells identified by their fluorescence signature of 91% and 93%, respectively. Cell viability based on single-cell cloning efficiency at 72 h post collection was 77%. PMID:23223411

  14. Demystifying the secret mission of enhancers: linking distal regulatory elements to target genes

    PubMed Central

    Yao, Lijing; Berman, Benjamin P.; Farnham, Peggy J.

    2015-01-01

    Abstract Enhancers are short regulatory sequences bound by sequence-specific transcription factors and play a major role in the spatiotemporal specificity of gene expression patterns in development and disease. While it is now possible to identify enhancer regions genomewide in both cultured cells and primary tissues using epigenomic approaches, it has been more challenging to develop methods to understand the function of individual enhancers because enhancers are located far from the gene(s) that they regulate. However, it is essential to identify target genes of enhancers not only so that we can understand the role of enhancers in disease but also because this information will assist in the development of future therapeutic options. After reviewing models of enhancer function, we discuss recent methods for identifying target genes of enhancers. First, we describe chromatin structure-based approaches for directly mapping interactions between enhancers and promoters. Second, we describe the use of correlation-based approaches to link enhancer state with the activity of nearby promoters and/or gene expression. Third, we describe how to test the function of specific enhancers experimentally by perturbing enhancer–target relationships using high-throughput reporter assays and genome editing. Finally, we conclude by discussing as yet unanswered questions concerning how enhancers function, how target genes can be identified, and how to distinguish direct from indirect changes in gene expression mediated by individual enhancers. PMID:26446758

  15. Over Target Baseline: Lessons Learned from the NASA SLS Booster Element

    NASA Technical Reports Server (NTRS)

    Carroll, Truman J.

    2016-01-01

    Goal of the presentation is to teach, and then model, the steps necessary to implement an Over Target Baseline (OTB). More than a policy and procedure session, participants will learn from recent first hand experience the challenges and benefits that come from successfully executing an OTB.

  16. Demystifying the secret mission of enhancers: linking distal regulatory elements to target genes.

    PubMed

    Yao, Lijing; Berman, Benjamin P; Farnham, Peggy J

    2015-01-01

    Enhancers are short regulatory sequences bound by sequence-specific transcription factors and play a major role in the spatiotemporal specificity of gene expression patterns in development and disease. While it is now possible to identify enhancer regions genomewide in both cultured cells and primary tissues using epigenomic approaches, it has been more challenging to develop methods to understand the function of individual enhancers because enhancers are located far from the gene(s) that they regulate. However, it is essential to identify target genes of enhancers not only so that we can understand the role of enhancers in disease but also because this information will assist in the development of future therapeutic options. After reviewing models of enhancer function, we discuss recent methods for identifying target genes of enhancers. First, we describe chromatin structure-based approaches for directly mapping interactions between enhancers and promoters. Second, we describe the use of correlation-based approaches to link enhancer state with the activity of nearby promoters and/or gene expression. Third, we describe how to test the function of specific enhancers experimentally by perturbing enhancer-target relationships using high-throughput reporter assays and genome editing. Finally, we conclude by discussing as yet unanswered questions concerning how enhancers function, how target genes can be identified, and how to distinguish direct from indirect changes in gene expression mediated by individual enhancers. PMID:26446758

  17. Polyethylene Glycol Modified, Cross-Linked Starch Coated Iron Oxide Nanoparticles for Enhanced Magnetic Tumor Targeting

    PubMed Central

    Cole, Adam J.; David, Allan E.; Wang, Jianxin; Galbán, Craig J.; Hill, Hannah L.; Yang, Victor C.

    2010-01-01

    While successful magnetic tumor targeting of iron oxide nanoparticles has been achieved in a number of models, the rapid blood clearance of magnetically suitable particles by the reticuloendothelial system (RES) limits their availability for targeting. This work aimed to develop a long-circulating magnetic iron oxide nanoparticle (MNP) platform capable of sustained tumor exposure via the circulation and, thus, enhanced magnetic tumor targeting. Aminated, cross-linked starch (DN) and aminosilane (A) coated MNPs were successfully modified with 5 kDa (A5, D5) or 20 kDa (A20, D20) polyethylene glycol (PEG) chains using simple N-Hydroxysuccinimide (NHS) chemistry and characterized. Identical PEG-weight analogues between platforms (A5 & D5, A20 & D20) were similar in size (140–190 nm) and relative PEG labeling (1.5% of surface amines – A5/D5, 0.4% – A20/D20), with all PEG-MNPs possessing magnetization properties suitable for magnetic targeting. Candidate PEG-MNPs were studied in RES simulations in vitro to predict long-circulating character. D5 and D20 performed best showing sustained size stability in cell culture medium at 37°C and 7 (D20) to 10 (D5) fold less uptake in RAW264.7 macrophages when compared to previously targeted, unmodified starch MNPs (D). Observations in vitro were validated in vivo, with D5 (7.29 hr) and D20 (11.75 hr) showing much longer half-lives than D (0.12 hr). Improved plasma stability enhanced tumor MNP exposure 100 (D5) to 150 (D20) fold as measured by plasma AUC0-∞ Sustained tumor exposure over 24 hours was visually confirmed in a 9L-glioma rat model (12 mg Fe/kg) using magnetic resonance imaging (MRI). Findings indicate that both D5 and D20 are promising MNP platforms for enhanced magnetic tumor targeting, warranting further study in tumor models. PMID:21176955

  18. Study of uranium oxide milling in order to obtain nanostructured UCx target

    NASA Astrophysics Data System (ADS)

    Guillot, Julien; Tusseau-Nenez, Sandrine; Roussière, Brigitte; Barré-Boscher, Nicole; Brisset, François; Mhamed, Maher Cheikh; Lau, Christophe; Nowak, Sophie

    2016-05-01

    A R&D program is developed at the ALTO facility to provide new beams of exotic neutron-rich nuclei, as intense as possible. In the framework of European projects, it has been shown that the use of refractory targets with nanometric structure allows us to obtain beams of nuclei unreachable until now. The first parameter to be controlled in the processing to obtain targets with a homogeneous nanostructure is the grinding of uranium dioxide, down to 100 nm grain size. In this study, dry and wet grinding routes are studied and the powders are analyzed in terms of phase stabilization, specific surface area and grain morphology. It appears that the grinding, as well dry as wet, leads to the decrease of the particle size. The oxidation of UO2 is observed whatever the grinding. However, the dry grinding is the most efficient and leads to the oxidation of UO2 into U4O9 and U3O7 whose quantities increase with the grinding time while crystallite sizes decrease.

  19. Electrochemical and spectroscopic studies of some less stable oxidation states of selected lanthanide and actinide elements

    SciTech Connect

    Hobart, D. E.

    1981-06-01

    Simultaneous observation of electrochemical and spectroscopic properties (spectroelectrochemistry) at optically transparent electrodes (OTE's) was used to study some less stable oxidation states of selected lanthanide and actinide elements. Cyclic voltammetry at microelectrodes was used in conjunction with spectroelectrochemistry for the study of redox couples. Additional analytical techniques were used. The formal reduction potential (E/sup 0/') values of the M(III)/M(II) redox couples in 1 M KCl at pH 6 were -0.34 +- 0.01 V for Eu, -1.18 +- 0.01 V for Yb, and -1.50 +- 0.01 V for Sm. Spectropotentiostatic determination of E/sup 0/' for the Eu(III)/Eu(II) redox couple yielded a value of -0.391 +- 0.005 V. Spectropotentiostatic measurement of the Ce(IV)/Ce(III) redox couple in concentrated carbonate solution gave E/sup 0/' equal to 0.051 +- 0.005 V, which is about 1.7 V less positive than the E/sup 0/' value in noncomplexing solution. This same difference in potential was observed for the E/sup 0/' values of the Pr(IV)/Pr(III) and Tb(IV)/Tb(III) redox couples in carbonate solution, and thus Pr(IV) and Tb(IV) were stabilized in this medium. The U(VI)/U(V)/U(IV) and U(IV)/U(III) redox couples were studied in 1 M KCl at OTE's. Spectropotentiostatic measurement of the Np(VI)/Np(V) redox couple in 1 M HClO/sub 4/ gave an E/sup 0/' value of 1.140 +- 0.005 V. An E/sup 0/' value of 0.46 +- 0.01 V for the Np(VII)/Np(VI) couple was found by voltammetry. Oxidation of Am(III) was studied in concentrated carbonate solution, and a reversible cyclic voltammogram for the Am(IV)/Am(III) couple yielded E/sup 0/' = 0.92 +- 0.01 V in this medium; this value was used to estimate the standard reduction potential (E/sup 0/) of the couple as 2.62 +- 0.01 V. Attempts to oxidize Cm(III) in concentrated carbonate solution were not successful which suggests that the predicted E/sup 0/ value for the Cm(IV)/Cm(III) redox couple may be in error.

  20. Evaluation of BOC'S Lotox Process for the Oxidation of Elemental Mercury in Flue Gas from a Coal-Fired Boiler

    SciTech Connect

    Khalid Omar

    2008-04-30

    Linde's Low Temperature Oxidation (LoTOx{trademark}) process has been demonstrated successfully to remove more than 90% of the NOx emitted from coal-fired boilers. Preliminary findings have shown that the LoTOx{trademark} process can be as effective for mercury emissions control as well. In the LoTOx{trademark} system, ozone is injected into a reaction duct, where NO and NO{sub 2} in the flue gas are selectively oxidized at relatively low temperatures and converted to higher nitrogen oxides, which are highly water soluble. Elemental mercury in the flue gas also reacts with ozone to form oxidized mercury, which unlike elemental mercury is water-soluble. Nitrogen oxides and oxidized mercury in the reaction duct and residual ozone, if any, are effectively removed in a wet scrubber. Thus, LoTOx{trademark} appears to be a viable technology for multi-pollutant emission control. To prove the feasibility of mercury oxidation with ozone in support of marketing LoTOx{trademark} for multi-pollutant emission control, Linde has performed a series of bench-scale tests with simulated flue gas streams. However, in order to enable Linde to evaluate the performance of the process with a flue gas stream that is more representative of a coal-fired boiler; one of Linde's bench-scale LoTOx{trademark} units was installed at WRI's combustion test facility (CTF), where a slipstream of flue gas from the CTF was treated. The degree of mercury and NOx oxidation taking place in the LoTOx{trademark} unit was quantified as a function of ozone injection rates, reactor temperatures, residence time, and ranks of coals. The overall conclusions from these tests are: (1) over 80% reduction in elemental mercury and over 90% reduction of NOx can be achieved with an O{sub 3}/NO{sub X} molar ratio of less than two, (2) in most of the cases, a lower reactor temperature is preferred over a higher temperature due to ozone dissociation, however, the combination of both low residence time and high temperature

  1. Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts.

    PubMed Central

    Shen, B; Jensen, R G; Bohnert, H J

    1997-01-01

    To investigate the potential role of a polyol, mannitol, in oxidative stress protection, a bacterial mannitol-1-phosphate dehydrogenase gene was targeted to chloroplasts by the addition of an amino-terminal transit peptide. Transgenic tobacco (Nicotiana tabacum) lines accumulate mannitol at concentrations ranging from 2.5 to 7 mumol/g fresh weight. Line BS1-31 accumulated approximately 100 mM mannitol in chloroplasts and was identical to the wild type in phenotype and photosynthetic performance. The presence of mannitol in chloroplasts resulted in an increased resistance to methyl viologen (MV)-induced oxidative stress, documented by the increased retention of chlorophyll in transgenic leaf tissue following MV treatment. In the presence of MV, isolated mesophyll cells of BS1-31 exhibited higher CO2 fixation than the wild type. When the hydroxyl radical probe dimethyl sulfoxide was introduced into cells, the initial formation rate of methane sulfinic acid was significantly lower in cells containing mannitol in the chloroplast compartment than in wild-type cells, indicating an increased hydroxyl radical-scavenging capacity in BS1-31 tobacco. We suggest that the chloroplast location of mannitol can supplement endogenous radical-scavenging mechanisms and reduce oxidative damage of cells by hydroxyl radicals. PMID:9112772

  2. Mitochondrial metabolism contributes to oxidative stress and reveals therapeutic targets in chronic lymphocytic leukemia.

    PubMed

    Jitschin, Regina; Hofmann, Andreas D; Bruns, Heiko; Giessl, Andreas; Bricks, Juliane; Berger, Jana; Saul, Domenica; Eckart, Michael J; Mackensen, Andreas; Mougiakakos, Dimitrios

    2014-04-24

    Alterations of cellular metabolism represent a hallmark of cancer. Numerous metabolic changes are required for malignant transformation, and they render malignant cells more prone to disturbances in the metabolic framework. Despite the high incidence of chronic lymphocytic leukemia (CLL), metabolism of CLL cells remains a relatively unexplored area. The examined untreated CLL patients displayed a metabolic condition known as oxidative stress, which was linked to alterations in their lymphoid compartment. Our studies identified mitochondrial metabolism as the key source for abundant reactive oxygen species (ROS). Unlike in other malignant cells, we found increased oxidative phosphorylation in CLL cells but not increased aerobic glycolysis. Furthermore, CLL cells adapted to intrinsic oxidative stress by upregulating the stress-responsive heme-oxygenase-1 (HO-1). Our data implicate that HO-1 was, beyond its function as an antioxidant, involved in promoting mitochondrial biogenesis. Thus ROS, adaptation to ROS, and mitochondrial biogenesis appear to form a self-amplifying feedback loop in CLL cells. Taking advantage of the altered metabolic profile, we were able to selectively target CLL cells by PK11195. This benzodiazepine derivate blocks the mitochondrial F1F0-ATPase, leads to a surplus production of mitochondrial superoxide, and thereby induces cell death in CLL cells. Taken together, our findings depict how bioenergetics and redox characteristics could be therapeutically exploited in CLL.

  3. MicroRNAs: New players in cancer prevention targeting Nrf2, oxidative stress and inflammatory pathways

    PubMed Central

    Zhang, Chengyue; Shu, Limin; Kong, Ah-Ng Tony

    2015-01-01

    miRNAs are endogenous small non-coding RNAs of 20-22 nucleotides that repress gene expression at the post-transcriptional level. There is growing interest in the role of miRNAs in cancer chemoprevention, and several naturally occurring chemopreventive agents have been found to be modulators of miRNA expression both in vitro and in vivo. Moreover, these chemopreventive phytochemicals commonly possess anti-oxidative and/or anti-inflammatory properties, and Nrf2 has been extensively studied as a molecular target in cancer prevention. The crosstalk between miRNAs and the traditional cellular signaling pathways of chemoprevention remain to be fully elucidated. This review summarizes the data regarding the potential interactions between miRNAs and anti-oxidative and anti-inflammatory pathways. Cellular redox homeostasis can affect the biogenesis and processing of miRNAs, which in turn regulate the Nrf2 pathway of detoxifying/anti-oxidative genes. We also discuss the miRNA regulatory mechanisms in relation to inflammation-related cancer signaling pathways. PMID:26618104

  4. Experience with failed LMR oxide fuel element performance in European fast reactors

    NASA Astrophysics Data System (ADS)

    Plitz, H.; Crittenden, G. C.; Languille, A.

    1993-09-01

    The performance of failed fuel has great significance for the safe and economic operation of LMR's, and considerable experience has accrued from experimental defect pin irradiations and naturally occurring failures in European test and prototype reactors. To data 60 natural fuel element failures have been recorded in PFR, Phénix and KNK II, 41 with exposed fuel and 19 as gas leakers. The various failures occurred during all stages of pin lifetimes, i.e. at the very beginning (0.3 at% burn-up) as well as at medium and at very high burn-up. The present experience extends up to 190 GWd/t and up to 135 dpaNRT. Based on the experience we can state: (i) Even large defects at end-of-life pins resulted in limited fuel loss (ii) No pin-to-pin failure propagation has been observed (iii) The reaction produces formed by the chemical reaction sodium/mixed oxide and the kinetics act beneficially and may protect open cracks. For the European Fast Reactor (EFR) project additional work is being performed, with regard to the EFR requirements of pin design (covering normal operation and incidental events) and the behaviour of failed pins under storage conditions.

  5. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types

    NASA Astrophysics Data System (ADS)

    Dupuis, Céline; Beaudoin, Georges

    2011-04-01

    Magnetite and hematite are common minerals in a range of mineral deposit types. These minerals form partial to complete solid solutions with magnetite, chromite, and spinel series, and ulvospinel as a result of divalent, trivalent, and tetravalent cation substitutions. Electron microprobe analyses of minor and trace elements in magnetite and hematite from a range of mineral deposit types (iron oxide-copper-gold (IOCG), Kiruna apatite-magnetite, banded iron formation (BIF), porphyry Cu, Fe-Cu skarn, Fe-Ti, V, Cr, Ni-Cu-PGE, Cu-Zn-Pb volcanogenic massive sulfide (VMS) and Archean Au-Cu porphyry and Opemiska Cu veins) show compositional differences that can be related to deposit types, and are used to construct discriminant diagrams that separate different styles of mineralization. The Ni + Cr vs. Si + Mg diagram can be used to isolate Ni-Cu-PGE, and Cr deposits from other deposit types. Similarly, the Al/(Zn + Ca) vs. Cu/(Si + Ca) diagram can be used to separate Cu-Zn-Pb VMS deposits from other deposit types. Samples plotting outside the Ni-Cu-PGE and Cu-Zn-Pb VMS fields are discriminated using the Ni/(Cr + Mn) vs. Ti + V or Ca + Al + Mn vs. Ti + V diagrams that discriminate for IOCG, Kiruna, porphyry Cu, BIF, skarn, Fe-Ti, and V deposits.

  6. Targeted Iron-Oxide Nanoparticle for Photodynamic Therapy and Imaging of Head and Neck Cancer

    PubMed Central

    2015-01-01

    Photodynamic therapy (PDT) is a highly specific anticancer treatment modality for various cancers, particularly for recurrent cancers that no longer respond to conventional anticancer therapies. PDT has been under development for decades, but light-associated toxicity limits its clinical applications. To reduce the toxicity of PDT, we recently developed a targeted nanoparticle (NP) platform that combines a second-generation PDT drug, Pc 4, with a cancer targeting ligand, and iron oxide (IO) NPs. Carboxyl functionalized IO NPs were first conjugated with a fibronectin-mimetic peptide (Fmp), which binds integrin β1. Then the PDT drug Pc 4 was successfully encapsulated into the ligand-conjugated IO NPs to generate Fmp-IO-Pc 4. Our study indicated that both nontargeted IO-Pc 4 and targeted Fmp-IO-Pc 4 NPs accumulated in xenograft tumors with higher concentrations than nonformulated Pc 4. As expected, both IO-Pc 4 and Fmp-IO-Pc 4 reduced the size of HNSCC xenograft tumors more effectively than free Pc 4. Using a 10-fold lower dose of Pc 4 than that reported in the literature, the targeted Fmp-IO-Pc 4 NPs demonstrated significantly greater inhibition of tumor growth than nontargeted IO-Pc 4 NPs. These results suggest that the delivery of a PDT agent Pc 4 by IO NPs can enhance treatment efficacy and reduce PDT drug dose. The targeted IO-Pc 4 NPs have great potential to serve as both a magnetic resonance imaging (MRI) agent and PDT drug in the clinic. PMID:24923902

  7. Folatereceptor targeted, carboxymethyl chitosan functionalized iron oxide nanoparticles: a novel ultradispersed nanoconjugates for bimodal imaging

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Dipsikha; Das, Manasmita; Mishra, Debashis; Banerjee, Indranil; Sahu, Sumanta K.; Maiti, Tapas K.; Pramanik, Panchanan

    2011-04-01

    This article delineates the design and synthesis of a novel, bio-functionalized, magneto-fluorescent multifunctional nanoparticles suitable for cancer-specific targeting, detection and imaging. Biocompatible, hydrophilic, magneto-fluorescent nanoparticles with surface-pendant amine, carboxyl and aldehyde groups were designed using o-carboxymethyl chitosan (OCMC). The free aminegroups of OCMC stabilized magnetite nanoparticles on the surface allow for the covalent attachment of a fluorescent dye such as rhodamine isothiocyanate (RITC) with the aim to develop a magneto-fluorescent nanoprobe for optical imaging. In order to impart specific cancer cell targeting properties, folic acid and its aminated derivative was conjugated onto these magneto-fluorescent nanoparticles using different pendant groups (-NH2, -COOH, -CHO). These newly synthesized iron-oxide folate nanoconjugates (FA-RITC-OCMC-SPIONs) showed excellent dispersibility, biocompatibility and good hydrodynamic sizes under physiological conditions which were extensively studied by a variety of complementary techniques. The cellular internalization efficacy of these folate-targeted and its non-targeted counterparts were studied using a folate-overexpressed (HeLa) and a normal (L929fibroblast) cells by fluorescence microscopy and magnetically activated cell sorting (MACS). Cell-uptake behaviors of nanoparticles clearly demonstrate that cancer cells over-expressing the human folatereceptor internalized a higher level of these nanoparticle-folate conjugates than normal cells. These folate targeted nanoparticles possess specific magnetic properties in the presence of an external magnetic field and the potential of these nanoconjugates as T2-weighted negative contrast MR imaging agent were evaluated in folate-overexpressed HeLa and normal L929fibroblastcells.

  8. Parkinson-associated risk variant in enhancer element produces subtle effect on target gene expression

    PubMed Central

    Soldner, Frank; Stelzer, Yonatan; Shivalila, Chikdu S.; Abraham, Brian J.; Latourelle, Jeanne C.; Barrasa, M. Inmaculada; Goldmann, Johanna; Myers, Richard H.; Young, Richard A.; Jaenisch, Rudolf

    2016-01-01

    Genome-wide association studies (GWAS) have identified numerous genetic variants associated with complex diseases but mechanistic insights are impeded by the lack of understanding of how specific risk variants functionally contribute to the underlying pathogenesis1. It has been proposed that cis-acting effects of non-coding risk variants on gene expression are a major factor for phenotypic variation of complex traits and disease susceptibility. Recent genome-scale chromatin mapping studies have highlighted the enrichment of GWAS variants in regulatory DNA elements of disease-relevant cell types2–6. Furthermore, single nucleotide polymorphism (SNP)-specific changes in transcription factor (TF) binding are correlated with heritable alterations in chromatin state and considered a major mediator of sequence-dependent regulation of gene expression7–10. Here we describe a novel strategy to functionally dissect the cis-acting effect of genetic risk variants in regulatory elements on gene expression by combining genome-wide epigenetic information with clustered regularly-interspaced short palindromic repeats (CRISPR)/Cas9 genome editing in human pluripotent stem cells (hPSCs). By generating a genetically precisely controlled experimental system we identify a common Parkinson’s disease (PD)-associated risk variant in a non-coding distal enhancer element that regulates the expression of alpha-synuclein (SNCA), a key gene implicated in the pathogenesis of PD. Our data suggest that the transcriptional deregulation of SNCA is associated with sequence-dependent binding of the brain-specific TFs EMX2 and NKX6-1. This work establishes an experimental paradigm to functionally connect genetic variation with disease relevant phenotypes. PMID:27096366

  9. Autoregulation of fos: the dyad symmetry element as the major target of repression.

    PubMed Central

    König, H; Ponta, H; Rahmsdorf, U; Büscher, M; Schönthal, A; Rahmsdorf, H J; Herrlich, P

    1989-01-01

    Fos and Jun co-operatively repress the fos promoter. Removal of all putative Fos/Jun binding sites from the fos promoter neither obliterates the repression by Fos/Jun in transient cotransfection experiments in NIH3T3 cells nor the turn-off kinetics of serum-induced fos expression in stably transfected NIH3T3 cells. The dyad symmetry element (DSE) suffices to subject a promoter to this type of repression. However, one of the putative Fos/Jun binding sites (-292 to -299 and thus located immediately adjacent to the DSE), determines the very low level of basal expression. Images PMID:2511006

  10. Recent Advances in Superparamagnetic Iron Oxide Nanoparticles for Cellular Imaging and Targeted Therapy Research

    PubMed Central

    Wang, Yi-Xiang J.; Xuan, Shouhu; Port, Marc; Idee, Jean-Marc

    2013-01-01

    Advances of nanotechnology have led to the development of nanomaterials with both potential diagnostic and therapeutic applications. Among them, superparamagnetic iron oxide (SPIO) nanoparticles have received particular attention. Over the past decade, various SPIOs with unique physicochemical and biological properties have been designed by modifying the particle structure, size and coating. This article reviews the recent advances in preparing SPIOs with novel properties, the way these physicochemical properties of SPIOs influence their interaction with cells, and the development of SPIOs in liver and lymph nodes magnetic resonance imaging (MRI) contrast. Cellular uptake of SPIO can be exploited in a variety of potential clinical applications, including stem cell and inflammation cell tracking and intra-cellular drug delivery to cancerous cells which offers higher intra-cellular concentration. When SPIOs are used as carrier vehicle, additional advantages can be achieved including magnetic targeting and hyperthermia options, as well as monitoring with MRI. Other potential applications of SPIO include magnetofection and gene delivery, targeted retention of labeled stem cells, sentinel lymph nodes mapping, and magnetic force targeting and cell orientation for tissue engineering. PMID:23621536

  11. Phosphorylation-dependent targeting of cAMP response element binding protein to the ubiquitin/proteasome pathway in hypoxia

    PubMed Central

    Taylor, Cormac T.; Furuta, Glenn T.; Synnestvedt, Kristin; Colgan, Sean P.

    2000-01-01

    Hypoxia activates a number of gene products through degradation of the transcriptional coactivator cAMP response element binding protein (CREB). Other transcriptional regulators (e.g., β-catenin and NF-κB) are controlled through phosphorylation-targeted proteasomal degradation, and thus, we hypothesized a similar degradative pathway for CREB. Differential display analysis of mRNA derived from hypoxic epithelia revealed a specific and time-dependent repression of protein phosphatase 1 (PP1), a serine phosphatase important in CREB dephosphorylation. Subsequent studies identified a previously unappreciated proteasomal-targeting motif within the primary structure of CREB (DSVTDS), which functions as a substrate for PP1. Ambient hypoxia resulted in temporally sequential CREB serine phosphorylation, ubiquitination, and degradation (in vitro and in vivo). HIV-tat peptide-facilitated loading of intact epithelia with phosphopeptides corresponding to this proteasome targeting motif resulted in inhibition of CREB ubiquitination. Further studies revealed that PP1 inhibitors mimicked hypoxia-induced gene expression, whereas proteasome inhibitors reversed the hypoxic phenotype. Thus, hypoxia establishes conditions that target CREB to proteasomal degradation. These studies may provide unique insight into a general mechanism of transcriptional regulation by hypoxia. PMID:11035795

  12. Anti-HER2/neu peptide-conjugated iron oxide nanoparticles for targeted delivery of paclitaxel to breast cancer cells

    NASA Astrophysics Data System (ADS)

    Mu, Qingxin; Kievit, Forrest M.; Kant, Rajeev J.; Lin, Guanyou; Jeon, Mike; Zhang, Miqin

    2015-10-01

    Nanoparticles (NPs) for targeted therapy are required to have appropriate size, stability, drug loading and release profiles, and efficient targeting ligands. However, many of the existing NPs such as albumin, liposomes, polymers, gold NPs, etc. encounter size limit, toxicity and stability issues when loaded with drugs, fluorophores, and targeting ligands. Furthermore, antibodies are bulky and this can greatly affect the physicochemical properties of the NPs, whereas many small molecule-based targeting ligands lack specificity. Here, we report the utilization of biocompatible, biodegradable, small (~30 nm) and stable iron oxide NPs (IONPs) for targeted delivery of paclitaxel (PTX) to HER2/neu positive breast cancer cells using an anti-HER2/neu peptide (AHNP) targeting ligand. We demonstrate the uniform size and high stability of these NPs in biological medium, their effective tumour targeting in live mice, as well as their efficient cellular targeting and selective killing in human HER2/neu-positive breast cancer cells.Nanoparticles (NPs) for targeted therapy are required to have appropriate size, stability, drug loading and release profiles, and efficient targeting ligands. However, many of the existing NPs such as albumin, liposomes, polymers, gold NPs, etc. encounter size limit, toxicity and stability issues when loaded with drugs, fluorophores, and targeting ligands. Furthermore, antibodies are bulky and this can greatly affect the physicochemical properties of the NPs, whereas many small molecule-based targeting ligands lack specificity. Here, we report the utilization of biocompatible, biodegradable, small (~30 nm) and stable iron oxide NPs (IONPs) for targeted delivery of paclitaxel (PTX) to HER2/neu positive breast cancer cells using an anti-HER2/neu peptide (AHNP) targeting ligand. We demonstrate the uniform size and high stability of these NPs in biological medium, their effective tumour targeting in live mice, as well as their efficient cellular

  13. Major Element Analysis of the Target Rocks at Meteor Crater, Arizona

    NASA Technical Reports Server (NTRS)

    See, Thomas H.; Hoerz, Friedrich; Mittlefehldt, David W.; Varley, Laura; Mertzman, Stan; Roddy, David

    2002-01-01

    We collected approximately 400 rock chips in continuous vertical profile at Meteor Crater, Arizona, representing, from bottom to top, the Coconino, Toroweap, Kaibab, and Moenkopi Formations to support ongoing compositional analyses of the impact melts and their stratigraphic source depth(s) and other studies at Meteor Crater that depend on the composition of the target rocks. These rock chips were subsequently pooled into 23 samples for compositional analysis by XRF (x ray fluorescence) methods, each sample reflecting a specific stratigraphic "subsection" approximately 5-10 in thick. We determined the modal abundance of quartz, dolomite, and calcite for the entire Kaibab Formation at vertical resolutions of 1-2 meters. The Coconino Formation composes the lower half of the crater cavity. It is an exceptionally pure sandstone. The Toroweap is only two inches thick and compositionally similar to Coconino, therefore, it is not a good compositional marker horizon. The Kaibab Formation is approximately 80 in thick. XRD (x ray diffraction) studies show that the Kaibab Formation is dominated by dolomite and quartz, albeit in highly variable proportions; calcite is a minor phase at best. The Kaibab at Meteor Crater is therefore a sandy dolomite rather than a limestone, consistent with pronounced facies changes in the Permian of SE Arizona over short vertical and horizontal distances. The Moenkopi forms the 12 in thick cap rock and has the highest Al2O3 and FeO concentrations of all target rocks. With several examples, we illustrate how this systematic compositional and modal characterization of the target ideologies may contribute to an understanding of Meteor Crater, such as the depth of its melt zone, and to impact cratering in general, such as the liberation of CO2 from shocked carbonates.

  14. Critical assessment of finite element analysis applied to metal-oxide interface roughness in oxidising zirconium alloys

    NASA Astrophysics Data System (ADS)

    Platt, P.; Frankel, P.; Gass, M.; Preuss, M.

    2015-09-01

    As a nuclear fuel cladding material, zirconium alloys act as a barrier between the fuel and pressurised steam or lithiated water environment. Controlling degradation mechanisms such as oxidation is essential to extending the in-service lifetime of the fuel. At temperatures of ∼360 °C zirconium alloys are known to exhibit cyclical, approximately cubic corrosion kinetics. With acceleration in the oxidation kinetics occurring every ∼2 μm of oxide growth, and being associated with the formation of a network of lateral cracks. Finite element analysis has been used previously to explain the lateral crack formation by the development of localised out-of-plane tensile stresses at the metal-oxide interface. This work uses the Abaqus finite element code to assess critically current approaches to representing the oxidation of zirconium alloys, with relation to undulations at the metal-oxide interface and localised stress generation. This includes comparison of axisymmetric and 3D quartered modelling approaches, and investigates the effect of interface geometry and plasticity in the metal substrate. Particular focus is placed on the application of the anisotropic strain tensor used to represent the oxidation mechanism, which is typically applied with a fixed coordinate system. Assessment of the impact of the tensor showed that 99% of the localised tensile stresses originated from the out-of-plane component of the strain tensor, rather than the in-plane expansion as was previously thought. Discussion is given to the difficulties associated with this modelling approach and the requirements for future simulations of the oxidation of zirconium alloys.

  15. Mineralized iron oxidizing bacteria from hydrothermal vents: targeting biosignatures on Mars

    NASA Astrophysics Data System (ADS)

    Leveille, R. J.

    2010-12-01

    formation of an iron oxyhydroxide precipitate, either in direct association with the cells or within the growth medium, were observed. Preliminary analyses suggest that these precipitates are different from abiotic precipitates. Continuing work includes high-resolution TEM observations of cultured organisms and biogenic iron minerals, Raman and reflectance spectroscopy of precipitates, examination of seafloor incubation experiments, and bioreactor silicification experiments in order to better understand the Fe-Si fossilization process. Microaerophilic iron oxidation could have existed on the early Earth in environments containing small amounts of oxygen produced either by locally-concentrated photosynthetic microorganisms (e.g., cyanobacteria) or by chemical reactions. By analogy, similar subsurface or near-surface microaerophilic environments could have existed on Mars in the past, including in low-temperature hydrothermal systems. The distinctive morphologies and Fe-Si mineralization patterns of iron oxidizing bacteria could be a useful biosignature to search for on Mars. Deposits and features similar to those described here could be identified on Mars with existing technologies, and thus hydrothermal systems represent an attractive target for future surface and sample return missions.

  16. Behaviors of trace elements in Neoarchean and Paleoproterozoic paleosols: Implications for atmospheric oxygen evolution and continental oxidative weathering

    NASA Astrophysics Data System (ADS)

    Murakami, Takashi; Matsuura, Kei; Kanzaki, Yoshiki

    2016-11-01

    The behaviors of redox-sensitive and/or bio-essential trace elements in Neoarchean and Paleoproterozoic paleosols (ancient weathering profiles) were investigated to better understand atmospheric oxygen evolution. The loss or retention of individual trace elements in the paleosols can show how continental oxidative weathering, and thus atmospheric oxygen evolution, took place against age mainly due to their various redox potentials. The V, Cr, Ni, Cu, Zn and Mo concentrations of two Paleoproterozoic paleosols were measured by inductively coupled plasma optical emission spectrometry and mass spectrometry, and those, as well as Co, W and U concentrations, of nine Neoarchean and Paleoproterozoic paleosols were obtained from the literature. The trace element behaviors were constrained by their degrees of loss or retention in the paleosols. We applied two methods to the estimation: (i) retention fraction of element M (a mass ratio of element M of paleosol to parent rock using immobile elements such as Ti) and (ii) element-element (in particular, Si-element) correlations at different profile depths of a paleosol. There are two distinct groups in trace element behavior in the Neoarchean and Paleoproterozoic paleosols: Co, Ni, Zn and W were lost from weathering profiles until the early Paleoproterozoic but retained in the middle and late Paleoproterozoic, while V, Cr, Cu, Mo and U were retained in the profiles until the early Paleoproterozoic or slightly later but lost from the profiles in the middle and late Paleoproterozoic. More precisely, the timings of such loss and retention were different between trace elements during the Paleoproterozoic. The characteristics of these changes from retention to loss or from loss to retention indicate that the changes occurred and lasted throughout the Paleoproterozoic. The trace element behaviors, accordingly, suggest that continental weathering became oxidative progressively with age during almost the whole Paleoproterozoic, and thus

  17. Uranium and minor-element partitioning in Fe-Ti oxides and zircon from partially melted granodiorite, Crater Lake, Oregon

    SciTech Connect

    La Tourrette, T.Z.; Burnett, D.S. ); Bacon C.R. )

    1991-02-01

    Crystal-liquid partitioning in Fe-Ti oxides and zircon was studied in partially melted granodiorite blocks ejected during the climactic eruption of Mt. Mazama (Crater Lake), Oregon. The blocks, which contain up to 33% rhyolite glass (75 wt% SiO{sub 2}), are interpreted to be portions of the magma chamber walls that were torn off during eruption. The glass is clear and well homogenized for all measured elements except Zr. Results for Fe-Ti oxides give D{sub U}{sup oxide/liq} {approx} 0.1. Partitioning of Mg, Mn, Al, Si, V, and Cr in Fe-Ti oxides indicates that grains surrounded by glass are modestly well equilibrated with the melt for many of the minor elements, while those that are inclusions in relict plagioclase are not. Uranium and ytterbium inhomogeneities in zircons indicate that the zircons have only partially equilibrated with the melt and that uranium appears to have been diffusing out of the zircons have only partially equilibrated with the melt and that uranium appears to have been diffusing out of the zircons faster that the zircons were dissolving. Based on the authors measurements and given their low abundances in most rocks, Fe-Ti oxides probably do not play a major role in U-Th fractional during partial melting. The partial melts were undersaturated with zircon and apatite, but both phases are present in the authors samples. This demonstrates an actual case of nonequilibrium source retention of accessory phases, which in general could be an important trace element fractionation mechanism. Their results do not support the hypothesis that liquid structure is the dominant factor controlling trace-element partitioning in high-silica rhyolites.

  18. Optimization of substrate-target distance for pulsed laser deposition of tungsten oxide thin films using Langmuir probe

    NASA Astrophysics Data System (ADS)

    Panda, A. Kumar; Singh, A.; Thirumurugesan, R.; Kuppusami, P.; Mohandas, E.

    2015-09-01

    The paper investigates the spatial and temporal variation of laser produced plasma of tungsten oxide using a Langmuir probe. The plasma was produced by laser ablation of tungsten oxide target using an Excimer laser of wavelength 248 nm. Our experimental studies confirmed that oxygen partial pressure (P) of 2× 10-2 mbar is sufficient enough to get stoichiometric tungsten oxide thin films and the plume dynamics was diagnosed for their spatial and temporal behaviour at the above optimised oxygen pressure. Spatial distribution was recorded with the target to substrate distance (D) ranging from the target position to a distance of 75 mm away from the target, whereas the temporal variation was taken in the range of 0-50 μ S with an interval of 0.5 μ S. The average electron densities were found to be maximum at 30 mm from the target position. However, ion density was constant beyond the probe distance of 45 mm from the target. The plasma current was found to be maximum at 28 μ S. The target to substrate distance was optimized for homogenous adherent good quality thin films using plasma parameters such as ion density and average electron density obtained at different oxygen pressure. The target distance and background gas pressure were correlated as PD scaling law and fitted as PD3 in the model.

  19. Conjugation of iron oxide nanoparticles with RGD-modified dendrimers for targeted tumor MR imaging.

    PubMed

    Yang, Jia; Luo, Yu; Xu, Yanhong; Li, Jingchao; Zhang, Zaixian; Wang, Han; Shen, Mingwu; Shi, Xiangyang; Zhang, Guixiang

    2015-03-11

    This article reports a new approach for the synthesis of ultrasmall iron oxide nanoparticles (NPs) conjugated with Arg-Gly-Asp (RGD)-modified dendrimers (G5.NHAc-RGD-Fe3O4 NPs) as a platform for targeted magnetic resonance (MR) imaging of C6 glioma cells. Ultrasmall Fe3O4 NPs synthesized via a solvothermal route were conjugated with RGD peptide-modified generation-5 poly(amidoamine) dendrimers (G5.NH2-RGD). The final G5.NHAc-RGD-Fe3O4 NPs were formed following the acetylation of the remaining dendrimer terminal amines. The as-prepared multifunctional Fe3O4 NPs were characterized using various techniques. The results of a cell viability assay, cell morphological observation, and hemolysis assay indicated that the G5.NHAc-RGD-Fe3O4 NPs exhibit excellent cytocompatibility and hemocompatibility over the studied concentration range. In addition, RGD conjugated onto the Fe3O4 NPs allows for the efficient targeting of the particles to C6 cells that overexpress αvβ3 receptors, which was confirmed via in vitro cell MR imaging and cellular uptake. Finally, the G5.NHAc-RGD-Fe3O4 NPs were used in the targeted MR imaging of C6 glioma cells in mice. The results obtained from the current study indicate that the developed G5.NHAc-RGD-Fe3O4 NPs offer significant potential for use as contrast agents in the targeted MR imaging of different types of tumors.

  20. Receptor-targeted, drug-loaded, functionalized graphene oxides for chemotherapy and photothermal therapy

    PubMed Central

    Thapa, Raj Kumar; Choi, Ju Yeon; Poudel, Bijay Kumar; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2016-01-01

    Cancer is one of the leading causes of death worldwide. Although different chemotherapeutic agents have been developed to treat cancers, their use can be limited by low cellular uptake, drug resistance, and side effects. Hence, targeted drug delivery systems are continually being developed in order to improve the efficacy of chemotherapeutic agents. The main aim of this study was to prepare folic acid (FA)-conjugated polyvinyl pyrrolidone-functionalized graphene oxides (GO) (FA-GO) for targeted delivery of sorafenib (SF). GO were prepared using a modified Hummer’s method and subsequently altered to prepare FA-GO and SF-loaded FA-GO (FA-GO/SF). Characterization of GO derivatives was done using ultraviolet/visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, atomic force microscopy, zeta potential measurements, and determination of in vitro drug release. Hemolytic toxicity, in vitro cytotoxicity, cellular uptake, and apoptotic effects of FA-GO/SF were also investigated. The results revealed that GO was successfully synthesized and that further transformation to FA-GO improved the stability and SF drug-loading capacity. In addition, the enhanced SF release under acidic conditions suggested possible benefits for cancer treatment. Conjugation of FA within the FA-GO/SF delivery system enabled targeted delivery of SF to cancer cells expressing high levels of FA receptors, thus increasing the cellular uptake and apoptotic effects of SF. Furthermore, the photothermal effect achieved by exposure of GO to near-infrared irradiation enhanced the anticancer effects of FA-GO/SF. Taken together, FA-GO/SF is a potential carrier for targeted delivery of chemotherapeutic agents in cancer. PMID:27358565

  1. Receptor-targeted, drug-loaded, functionalized graphene oxides for chemotherapy and photothermal therapy.

    PubMed

    Thapa, Raj Kumar; Choi, Ju Yeon; Poudel, Bijay Kumar; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2016-01-01

    Cancer is one of the leading causes of death worldwide. Although different chemotherapeutic agents have been developed to treat cancers, their use can be limited by low cellular uptake, drug resistance, and side effects. Hence, targeted drug delivery systems are continually being developed in order to improve the efficacy of chemotherapeutic agents. The main aim of this study was to prepare folic acid (FA)-conjugated polyvinyl pyrrolidone-functionalized graphene oxides (GO) (FA-GO) for targeted delivery of sorafenib (SF). GO were prepared using a modified Hummer's method and subsequently altered to prepare FA-GO and SF-loaded FA-GO (FA-GO/SF). Characterization of GO derivatives was done using ultraviolet/visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, atomic force microscopy, zeta potential measurements, and determination of in vitro drug release. Hemolytic toxicity, in vitro cytotoxicity, cellular uptake, and apoptotic effects of FA-GO/SF were also investigated. The results revealed that GO was successfully synthesized and that further transformation to FA-GO improved the stability and SF drug-loading capacity. In addition, the enhanced SF release under acidic conditions suggested possible benefits for cancer treatment. Conjugation of FA within the FA-GO/SF delivery system enabled targeted delivery of SF to cancer cells expressing high levels of FA receptors, thus increasing the cellular uptake and apoptotic effects of SF. Furthermore, the photothermal effect achieved by exposure of GO to near-infrared irradiation enhanced the anticancer effects of FA-GO/SF. Taken together, FA-GO/SF is a potential carrier for targeted delivery of chemotherapeutic agents in cancer.

  2. Insight into the unique oxidation chemistry of elemental mercury by chlorine-containing species: experiment and simulation.

    PubMed

    Byun, Youngchul; Cho, Moohyun; Namkung, Won; Lee, Kiman; Koh, Dong Jun; Shin, Dong Nam

    2010-03-01

    This work investigated the oxidation chemistry of elemental mercury (Hg(0)) by chlorine-containing species produced indirectly through the gas-to-solid phase reaction between NO(x) gases and NaClO(2) powder (NaClO(2)(s)), where both experiment and simulation results were compared to clarify which species are responsible for the oxidation of Hg(0). At first, we introduced 30 ppm of NO(2) into the pack-bed reactor containing NaClO(2)(s) to produce OClO species and then injected NO and Hg(0) (260 microg/Nm(3)) to Mixer, where the concentration of NO was varied up to 180 ppm and the reaction temperature was set to 130 degrees C. We observed for the first time that the degree of Hg(0) oxidation is completely controlled by the introduced concentration of NO: for example, the oxidation efficiency of Hg(0) is drastically increased to become 100% at near 7 ppm NO, but further increasing NO concentration results in the oxidation efficiency of Hg(0) being gradually decreased. The simulation results indicated that such a propensity of Hg(0) oxidation efficiency to NO concentration can be attributed to the NO concentration-dependent Cl, ClO, and Cl(2) formation which plays a critical role in the oxidation of Hg(0). PMID:20131790

  3. Uranium and other trace elements' distribution in Korean granite: implications for the influence of iron oxides on uranium migration.

    PubMed

    Lee, Seung Yeop; Baik, Min Hoon

    2009-06-01

    To understand trace radionuclide (uranium) migration occurring in rocks, a granitic batholith located at the Korea Atomic Energy Research Institute (KAERI) site was selected and investigated. The rock samples obtained from this site were examined using mineralogical methods, including scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). The changes in the distribution pattern of uranium (U) and small amounts of trace elements, and the mineralogical textures affected by weathering, were examined. Based on the element distribution analyses, it was found that Fe2+ released from fresh biotite is oxidized in short geological time, forming amorphous iron oxides, such as ferrihydrite, around silicate minerals. In that case, the amorphous ferrihydrite does not show distinct adsorption for U. However, as it gradually crystallizes to goethite or hematite, the most U-rich phases were found to be associated with the secondary iron oxides having granular forms. This evidence suggests that the geological subsurface environment is favorable for the crystallized iron oxides to keep their structures more stable for a long time as compared with the amorphous phases. There is a possibility that the long residence of U which is in contact with the stable crystalline phases of iron may finally lead to the partial sequestration of U in their structure. Consequently, it seems that Fe-oxide crystallization can be a dominating mechanism for U uptake and controls long-term U transport in granites with low U contents.

  4. Scavenger receptor A gene regulatory elements target gene expression to macrophages and to foam cells of atherosclerotic lesions.

    PubMed Central

    Horvai, A; Palinski, W; Wu, H; Moulton, K S; Kalla, K; Glass, C K

    1995-01-01

    Transcription of the macrophage scavenger receptor A gene is markedly upregulated during monocyte to macrophage differentiation. In these studies, we demonstrate that 291 bp of the proximal scavenger receptor promoter, in concert with a 400-bp upstream enhancer element, is sufficient to direct macrophage-specific expression of a human growth hormone reporter in transgenic mice. These regulatory elements, which contain binding sites for PU.1, AP-1, and cooperating ets-domain transcription factors, are also sufficient to mediate regulation of transgene expression during the in vitro differentiation of bone marrow progenitor cells in response to macrophage colony-stimulating factor. Mutation of the PU.1 binding site within the scavenger receptor promoter severely impairs transgene expression, consistent with a crucial role of PU.1 in regulating the expression of the scavenger receptor gene. The ability of the scavenger receptor promoter and enhancer to target gene expression to macrophages in vivo, including foam cells of atherosclerotic lesions, suggests that these regulatory elements will be of general utility in the study of macrophage differentiation and function by permitting specific modifications of macrophage gene expression. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7777517

  5. Solvent-Free Click-Mechanochemistry for the Preparation of Cancer Cell Targeting Graphene Oxide

    PubMed Central

    2015-01-01

    Polyethylene glycol-functionalized nanographene oxide (PEGylated n-GO) was synthesized from alkyne-modified n-GO, using solvent-free click-mechanochemistry, i.e., copper(I)-catalyzed azide–alkyne cycloaddition (CuAAC). The modified n-GO was subsequently conjugated to a mucin 1 receptor immunoglobulin G antibody (anti-MUC1 IgG) via thiol–ene coupling reaction. n-GO derivatives were characterized with Fourier-transformed infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), Bradford assay, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and atomic force microscopy (AFM). Cell targeting was confirmed in vitro in MDA-MB-231 cells, either expressing or lacking MUC1 receptors, using flow cytometry, confocal laser scanning microscopy (CLSM) and multiphoton (MP) fluorescence microscopy. Biocompatibility was assessed using the modified lactate dehydrongenase (mLDH) assay. PMID:26278410

  6. Solvent-Free Click-Mechanochemistry for the Preparation of Cancer Cell Targeting Graphene Oxide.

    PubMed

    Rubio, Noelia; Mei, Kuo-Ching; Klippstein, Rebecca; Costa, Pedro M; Hodgins, Naomi; Wang, Julie Tzu-Wen; Festy, Frederic; Abbate, Vincenzo; Hider, Robert C; Chan, Ka Lung Andrew; Al-Jamal, Khuloud T

    2015-09-01

    Polyethylene glycol-functionalized nanographene oxide (PEGylated n-GO) was synthesized from alkyne-modified n-GO, using solvent-free click-mechanochemistry, i.e., copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The modified n-GO was subsequently conjugated to a mucin 1 receptor immunoglobulin G antibody (anti-MUC1 IgG) via thiol-ene coupling reaction. n-GO derivatives were characterized with Fourier-transformed infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), Bradford assay, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and atomic force microscopy (AFM). Cell targeting was confirmed in vitro in MDA-MB-231 cells, either expressing or lacking MUC1 receptors, using flow cytometry, confocal laser scanning microscopy (CLSM) and multiphoton (MP) fluorescence microscopy. Biocompatibility was assessed using the modified lactate dehydrongenase (mLDH) assay. PMID:26278410

  7. Pharmaceutical formulation of HSA hybrid coated iron oxide nanoparticles for magnetic drug targeting.

    PubMed

    Zaloga, Jan; Pöttler, Marina; Leitinger, Gerd; Friedrich, Ralf P; Almer, Gunter; Lyer, Stefan; Baum, Eva; Tietze, Rainer; Heimke-Brinck, Ralph; Mangge, Harald; Dörje, Frank; Lee, Geoffrey; Alexiou, Christoph

    2016-04-01

    In this work we present a new formulation of superparamagnetic iron oxide nanoparticles (SPIONs) for magnetic drug targeting. The particles were reproducibly synthesized from current good manufacturing practice (cGMP) - grade substances. They were surface coated using fatty acids as anchoring molecules for human serum albumin. We comprehensively characterized the physicochemical core-shell structure of the particles using sophisticated methods. We investigated biocompatibility and cellular uptake of the particles using an established flow cytometric method in combination with microwave-plasma assisted atomic emission spectroscopy (MP-AES). The cytotoxic drug mitoxantrone was adsorbed on the protein shell and we showed that even in complex media it is slowly released with a close to zero order kinetics. We also describe an in vitro proof-of-concept assay in which we clearly showed that local enrichment of this SPION-drug conjugate with a magnet allows site-specific therapeutic effects. PMID:26854862

  8. Water based suspensions of iron oxide obtained by laser target evaporation for biomedical applications

    NASA Astrophysics Data System (ADS)

    Novoselova, I. P.; Safronov, A. P.; Samatov, O. M.; Beketov, I. V.; Medvedev, A. I.; Kurlyandskaya, G. V.

    2016-10-01

    In this work spherical magnetic nanoparticles (MNPs) of iron oxide were obtained by laser target evaporation technique (LTE). Water based suspensions were prepared on the basis of obtained MNPs and their properties were also studied including inductive heat capacity. Their structure and properties were studied by a number of techniques including magnetometry and heat capacity measurements. Magnetic induction heating experiment show the specific loss power (SLP) value in the narrow range from 1.30 to 1.45 W/g for all samples under consideration when using alternating magnetic field of 1.7 kA/m and frequency of 210 kHz. These parameters insure that LTE MNPs are interesting materials promising for magnetic fluid hyperthermia.

  9. Targeting the (3.8-4.0 Ga) Impactors: Siderophile Element Signatures of Lunar Impact Melts

    NASA Astrophysics Data System (ADS)

    Bennett, V.; Norman, M.; Ryder, G.

    2001-12-01

    Significant gaps remain in our understanding of the early impact history of the Earth and Moon, and their influence on geologic and biologic development. Outstanding controversies include whether or not the Moon, and by inference the early Earth, was hit by an unusually heavy "terminal cataclysm" of collisions during the period 3.8 to 4.0 Ga, and the number of large impact events represented by lunar samples. Coincidentally or not, the large nearside lunar basins are almost identical in age with the oldest terrestrial rocks, and are therefore relevant for consideration of the possible role of impacts in shaping the terrestrial continents and early life environments. To improve our understanding of the impact history of the Moon and to provide new information about the types of planetesimals that were involved in the early impact history of the inner Solar System, we measured the concentrations of highly siderophile elements (HSE: Re, Ir, Pt, Pd, Ru) in a suite of Apollo 17 impact melt breccias using high precision ID-ICPMS methods. These breccias all have poikilitic textures, relatively mafic bulk compositions, and high levels of incompatible trace elements and all likely represent ejecta from the Serenitatis basin. Ar-Ar ages are consistent with the formation of these breccias in a single impact event at 3893 +/- 9 Ma. HSE from 11 representative samples have W-shaped patterns on CI-normalized diagrams, with enrichments in Re, Ru and Pd relative to Ir and Pt, and absolute abundances ranging from \\sim0.5 to 4% of CI reference values. Stronger depletions of Ir and Pt relative to Re, Ru, and Pd are correlated with decreasing HSE concentrations. The samples with the highest HSE concentrations have patterns that are identical to those of EH chondrites, but the patterns become increasingly less diagnostic of meteorite group with decreasing concentrations. The systematic variation of HSE patterns with decreasing concentration suggests that simple chemical fingerprints of

  10. Cuprous oxide nanoparticles inhibit the growth and metastasis of melanoma by targeting mitochondria

    PubMed Central

    Wang, Y; Yang, F; Zhang, H-X; Zi, X-Y; Pan, X-H; Chen, F; Luo, W-D; Li, J-X; Zhu, H-Y; Hu, Y-P

    2013-01-01

    Metal and its oxide nanoparticles show ideal pharmacological activity, especially in anti-tumor therapy. Our previous study demonstrated that cuprous oxide nanoparticles (CONPs) selectively induce apoptosis of tumor cells in vitro. To explore the anti-tumor properties of CONPs in vivo, we used the particles to treat mouse subcutaneous melanoma and metastatic lung tumors, based on B16-F10 mouse melanoma cells, by intratumoral and systemic injections, respectively. The results showed that CONPs significantly reduced the growth of melanoma, inhibited the metastasis of B16-F10 cells and increased the survival rate of tumor-bearing mice. Importantly, the results also indicated that CONPs were rapidly cleared from the organs and that these particles exhibited little systemic toxicity. Furthermore, we observed that CONPs targeted the mitochondria, which resulted in the release of cytochrome C from the mitochondria and the activation of caspase-3 and caspase-9 after the CONPs entered the cells. In conclusion, CONPs can induce the apoptosis of cancer cells through a mitochondrion-mediated apoptosis pathway, which raises the possibility that CONPs could be used to cure melanoma and other cancers. PMID:23990023

  11. Indazole, Pyrazole, and Oxazole Derivatives Targeting Nitric Oxide Synthases and Carbonic Anhydrases.

    PubMed

    Maccallini, Cristina; Di Matteo, Mauro; Vullo, Daniela; Ammazzalorso, Alessandra; Carradori, Simone; De Filippis, Barbara; Fantacuzzi, Marialuigia; Giampietro, Letizia; Pandolfi, Assunta; Supuran, Claudiu T; Amoroso, Rosa

    2016-08-19

    Nitric oxide (NO) is an essential endogenous mediator with a physiological role in the central nervous system as neurotransmitter and neuromodulator. A growing number of studies have demonstrated that abnormal nitrergic signaling is a crucial event in the development of neurodegeneration. In particular, the uncontrolled production of NO by neuronal nitric oxide synthase (nNOS) is observed in several neurodegenerative diseases. Moreover, it is well recognized that specific isoforms of human carbonic anhydrase (hCA) physiologically modulate crucial pathways of signal processing and that low expression of CA affects cognition, leading to mental retardation, Alzheimer's disease, and aging-related cognitive impairments. In light of this, dual agents that are able to target both NOS (inhibition) and CA (activation) could be useful drug candidates for the treatment of Alzheimer's disease, aging, and other neurodegenerative diseases. In the present work, we show the design, synthesis, and in vitro biological evaluation of new nitrogen-based heterocyclic compounds. Among the tested molecules, 2-amino-3-(4-hydroxyphenyl)-N-(1H-indazol-5-yl)propanamide hydrochloride (10 b) was revealed to be a potent dual agent, able to act as a selective nNOS inhibitor and activator of the hCA I isoform. PMID:27377568

  12. In vivo target bio-imaging of Alzheimer's disease by fluorescent zinc oxide nanoclusters.

    PubMed

    Lai, Lanmei; Zhao, Chunqiu; Su, Meina; Li, Xiaoqi; Liu, Xiaoli; Jiang, Hui; Amatore, Christian; Wang, Xuemei

    2016-07-21

    Alzheimer's disease (AD) is an irreversible neurodegenerative disease which is difficult to cure. When Alzheimer's disease occurs, the level of zinc ions in the brain changes, and the relevant amount of zinc ions continue decreasing in the cerebrospinal fluid and plasma of Alzheimer's patients with disease exacerbation. In view of these considerations, we have explored a new strategy for the in vivo rapid fluorescence imaging of Alzheimer's disease through target bio-labeling of zinc oxide nanoclusters which were biosynthesized in vivo in the Alzheimer's brain via intravenous injection of zinc gluconate solution. By using three-month-old and six-month-old Alzheimer's model mice as models, our observations demonstrate that biocompatible zinc ions could pass through the blood-brain barrier of the Alzheimer's disease mice and generate fluorescent zinc oxide nanoclusters (ZnO NCs) through biosynthesis, and then the bio-synthesized ZnO NCs could readily accumulate in situ on the hippocampus specific region for the in vivo fluorescent labeling of the affected sites. This study provides a new way for the rapid diagnosis of Alzheimer's disease and may have promising prospects in the effective diagnosis of Alzheimer's disease.

  13. Targeted Deletion of Nrf2 Impairs Lung Development and Oxidant Injury in Neonatal Mice

    PubMed Central

    van Houten, Bennett; Wang, Xuting; Miller-DeGraff, Laura; Fostel, Jennifer; Gladwell, Wesley; Perrow, Ligon; Panduri, Vijayalakshmi; Kobzik, Lester; Yamamoto, Masayuki; Bell, Douglas A.; Kleeberger, Steven R.

    2012-01-01

    Abstract Aims: Nrf2 is an essential transcription factor for protection against oxidant disorders. However, its role in organ development and neonatal disease has received little attention. Therapeutically administered oxygen has been considered to contribute to bronchopulmonary dysplasia (BPD) in prematurity. The current study was performed to determine Nrf2-mediated molecular events during saccular-to-alveolar lung maturation, and the role of Nrf2 in the pathogenesis of hyperoxic lung injury using newborn Nrf2-deficient (Nrf2−/−) and wild-type (Nrf2+/+) mice. Results: Pulmonary basal expression of cell cycle, redox balance, and lipid/carbohydrate metabolism genes was lower while lymphocyte immunity genes were more highly expressed in Nrf2−/− neonates than in Nrf2+/+ neonates. Hyperoxia-induced phenotypes, including mortality, arrest of saccular-to-alveolar transition, and lung edema, and inflammation accompanying DNA damage and tissue oxidation were significantly more severe in Nrf2−/− neonates than in Nrf2+/+ neonates. During lung injury pathogenesis, Nrf2 orchestrated expression of lung genes involved in organ injury and morphology, cellular growth/proliferation, vasculature development, immune response, and cell–cell interaction. Bioinformatic identification of Nrf2 binding motifs and augmented hyperoxia-induced inflammation in genetically deficient neonates supported Gpx2 and Marco as Nrf2 effectors. Innovation: This investigation used lung transcriptomics and gene targeted mice to identify novel molecular events during saccular-to-alveolar stage transition and to elucidate Nrf2 downstream mechanisms in protection from hyperoxia-induced injury in neonate mouse lungs. Conclusion: Nrf2 deficiency augmented lung injury and arrest of alveolarization caused by hyperoxia during the newborn period. Results suggest a therapeutic potential of specific Nrf2 activators for oxidative stress-associated neonatal disorders including BPD. Antioxid. Redox Signal

  14. Key Elements of and Materials Performance Targets for Highly Insulating Window Frames

    SciTech Connect

    Gustavsen, Arild; Grynning, Steinar; Arasteh, Dariush; Jelle, Bjorn Petter; Goudey, Howdy

    2011-03-28

    The thermal performance of windows is important for energy efficient buildings. Windows typically account for about 30-50 percent of the transmission losses though the building envelope, even if their area fraction of the envelope is far less. The reason for this can be found by comparing the thermal transmittance (U-factor) of windows to the U-factor of their opaque counterparts (wall, roof and floor constructions). In well insulated buildings the U-factor of walls, roofs an floors can be between 0.1-0.2 W/(m2K). The best windows have U-values of about 0.7-1.0. It is therefore obvious that the U-factor of windows needs to be reduced, even though looking at the whole energy balance for windows (i.e. solar gains minus transmission losses) makes the picture more complex.In high performance windows the frame design and material use is of utmost importance, as the frame performance is usually the limiting factor for reducing the total window U-factor further. This paper describes simulation studies analyzing the effects on frame and edge-of-glass U-factors of different surface emissivities as well as frame material and spacer conductivities. The goal of this work is to define materials research targets for window frame components that will result in better frame thermal performance than is exhibited by the best products available on the market today.

  15. Simulation and optimization of an organic-impurity oxidization reactor with a fixed porous bed and an electric heating element

    NASA Astrophysics Data System (ADS)

    Gnezdilov, N. N.; Dobrego, K. V.; Kozlov, I. M.; Shmelev, E. S.

    2006-09-01

    A reactor for oxidization of low-caloric-value organic impurities contained in the air has been simulated. It comprises a tube with a recuperator, filled with a porous carcass mix, and includes a heating element. The influence of the heating-element placement, the heat losses through the upper cover of the reactor, the flow rate of a gas mixture, and the power of the heater on the maximum temperatures of the porous carcass and the gas and on the concentration of the incompletely oxidized organic impurity at the output of the reactor has been investigated. It is shown that, to burn an impurity completely, it will suffice to heat the gas δTe to 300 K. It has been established that it is best to place a heater at the level of the upper cut of the inner tube of the reactor.

  16. Integrative conjugative element ICE-βox confers oxidative stress resistance to Legionella pneumophila in vitro and in macrophages.

    PubMed

    Flynn, Kaitlin J; Swanson, Michele S

    2014-01-01

    ABSTRACT Integrative conjugative elements (ICEs) are mobile blocks of DNA that can contribute to bacterial evolution by self-directed transmission of advantageous traits. Here, we analyze the activity of a putative 65-kb ICE harbored by Legionella pneumophila using molecular genetics, conjugation assays, a phenotype microarray screen, and macrophage infections. The element transferred to a naive L. pneumophila strain, integrated site-specifically, and conferred increased resistance to oxacillin, penicillin, hydrogen peroxide, and bleach. Furthermore, the element increased survival of L. pneumophila within restrictive mouse macrophages. In particular, this ICE protects L. pneumophila from phagocyte oxidase activity, since mutation of the macrophage NADPH oxidase eliminated the fitness difference between strains that carried and those that lacked the mobile element. Renamed ICE-βox (for β-lactam antibiotics and oxidative stress), this transposable element is predicted to contribute to the emergence of L. pneumophila strains that are more fit in natural and engineered water systems and in macrophages. IMPORTANCE Bacteria evolve rapidly by acquiring new traits via horizontal gene transfer. Integrative conjugative elements (ICEs) are mobile blocks of DNA that encode the machinery necessary to spread among bacterial populations. ICEs transfer antibiotic resistance and other bacterial survival factors as cargo genes carried within the element. Here, we show that Legionella pneumophila, the causative agent of Legionnaires' disease, carries ICE-βox, which enhances the resistance of this opportunistic pathogen to bleach and β-lactam antibiotics. Moreover, L. pneumophila strains encoding ICE-βox are more resistant to macrophages that carry phagocyte oxidase. Accordingly, ICE-βox is predicted to increase the fitness of L. pneumophila in natural and engineered waters and in humans. To our knowledge, this is the first description of an ICE that confers oxidative

  17. Hyaluronic Acid Modified Tantalum Oxide Nanoparticles Conjugating Doxorubicin for Targeted Cancer Theranostics.

    PubMed

    Jin, Yushen; Ma, Xibo; Feng, Shanshan; Liang, Xiao; Dai, Zhifei; Tian, Jie; Yue, Xiuli

    2015-12-16

    Theranostic tantalum oxide nanoparticles (TaOxNPs) of about 40 nm were successfully developed by conjugating functional molecules including polyethylene glycol (PEG), near-infrared (NIR) fluorescent dye, doxorubicin (DOX), and hyaluronic acid (HA) onto the surface of the nanoparticles (TaOx@Cy7-DOX-PEG-HA NPs) for actively targeting delivery, pH-responsive drug release, and NIR fluorescence/X-ray CT bimodal imaging. The obtained nanoagent exhibits good biocompatibility, high cumulative release rate in the acidic microenvironments, long blood circulation time, and superior tumor-targeting ability. Both in vitro and in vivo experiments show that it can serve as an excellent contrast agent to simultaneously enhance fluorescence imaging and CT imaging greatly. Most importantly, such a nanoagent could enhance the therapeutic efficacy of the tumor greatly and the tumor growth inhibition was evaluated to be 87.5%. In a word, multifunctional TaOx@Cy7-DOX-PEG-HA NPs can serve as a theranostic nanomedicine for fluorescence/X-ray CT bimodal imaging, remote-controlled therapeutics, enabling personalized detection, and treatment of cancer with high efficacy.

  18. Inhaled Cadmium Oxide Nanoparticles: Their in Vivo Fate and Effect on Target Organs

    PubMed Central

    Dumkova, Jana; Vrlikova, Lucie; Vecera, Zbynek; Putnova, Barbora; Docekal, Bohumil; Mikuska, Pavel; Fictum, Petr; Hampl, Ales; Buchtova, Marcela

    2016-01-01

    The increasing amount of heavy metals used in manufacturing equivalently increases hazards of environmental pollution by industrial products such as cadmium oxide (CdO) nanoparticles. Here, we aimed to unravel the CdO nanoparticle destiny upon their entry into lungs by inhalations, with the main focus on the ultrastructural changes that the nanoparticles may cause to tissues of the primary and secondary target organs. We indeed found the CdO nanoparticles to be transported from the lungs into secondary target organs by blood. In lungs, inhaled CdO nanoparticles caused significant alterations in parenchyma tissue including hyperemia, enlarged pulmonary septa, congested capillaries, alveolar emphysema and small areas of atelectasis. Nanoparticles were observed in the cytoplasm of cells lining bronchioles, in the alveolar spaces as well as inside the membranous pneumocytes and in phagosomes of lung macrophages. Nanoparticles even penetrated through the membrane into some organelles including mitochondria and they also accumulated in the cytoplasmic vesicles. In livers, inhalation caused periportal inflammation and local hepatic necrosis. Only minor changes such as diffusely thickened filtration membrane with intramembranous electron dense deposits were observed in kidney. Taken together, inhaled CdO nanoparticles not only accumulated in lungs but they were also transported to other organs causing serious damage at tissue as well as cellular level. PMID:27271611

  19. Superparamagnetic iron oxide nanoparticles conjugated with epidermal growth factor (SPION–EGF) for targeting brain tumors

    PubMed Central

    Shevtsov, Maxim A; Nikolaev, Boris P; Yakovleva, Ludmila Y; Marchenko, Yaroslav Y; Dobrodumov, Anatolii V; Mikhrina, Anastasiya L; Martynova, Marina G; Bystrova, Olga A; Yakovenko, Igor V; Ischenko, Alexander M

    2014-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) conjugated with recombinant human epidermal growth factor (SPION–EGF) were studied as a potential agent for magnetic resonance imaging contrast enhancement of malignant brain tumors. Synthesized conjugates were characterized by transmission electron microscopy, dynamic light scattering, and nuclear magnetic resonance relaxometry. The interaction of SPION–EGF conjugates with cells was analyzed in a C6 glioma cell culture. The distribution of the nanoparticles and their accumulation in tumors were assessed by magnetic resonance imaging in an orthotopic model of C6 gliomas. SPION–EGF nanosuspensions had the properties of a negative contrast agent with high coefficients of relaxation efficiency. In vitro studies of SPION–EGF nanoparticles showed high intracellular incorporation and the absence of a toxic influence on C6 cell viability and proliferation. Intravenous administration of SPION–EGF conjugates in animals provided receptor-mediated targeted delivery across the blood–brain barrier and tumor retention of the nanoparticles; this was more efficient than with unconjugated SPIONs. The accumulation of conjugates in the glioma was revealed as hypotensive zones on T2-weighted images with a twofold reduction in T2 relaxation time in comparison to unconjugated SPIONs (P<0.001). SPION–EGF conjugates provide targeted delivery and efficient magnetic resonance contrast enhancement of EGFR-overexpressing C6 gliomas. PMID:24421639

  20. Lactobionic acid and carboxymethyl chitosan functionalized graphene oxide nanocomposites as targeted anticancer drug delivery systems.

    PubMed

    Pan, Qixia; Lv, Yao; Williams, Gareth R; Tao, Lei; Yang, Huihui; Li, Heyu; Zhu, Limin

    2016-10-20

    In this work, we report a targeted drug delivery system built by functionalizing graphene oxide (GO) with carboxymethyl chitosan (CMC), fluorescein isothiocyanate and lactobionic acid (LA). Analogous systems without LA were prepared as controls. Doxorubicin (DOX) was loaded onto the composites through adsorption. The release behavior from both the LA-functionalized and the LA-free material is markedly pH sensitive. The modified GOs have high biocompatibility with the liver cancer cell line SMMC-7721, but can induce cell death after 24h incubation if loaded with DOX. Tests with shorter (2h) incubation times were undertaken to investigate the selectivity of the GO composites: under these conditions, neither DOX-loaded system was found to be toxic to the non-cancerous L929 cell line, but the LA-containing composite showed the ability to selectively induce cell death in cancerous (SMMC-7721) cells while the LA-free analogue was inactive here also. These findings show that the modified GO materials are strong potential candidates for targeted anticancer drug delivery systems. PMID:27474628

  1. A graphene oxide based smart drug delivery system for tumor mitochondria-targeting photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Wei, Yanchun; Zhou, Feifan; Zhang, Da; Chen, Qun; Xing, Da

    2016-02-01

    Subcellular organelles play critical roles in cell survival. In this work, a novel photodynamic therapy (PDT) drug delivery and phototoxicity on/off nano-system based on graphene oxide (NGO) as the carrier is developed to implement subcellular targeting and attacking. To construct the nanodrug (PPa-NGO-mAb), NGO is modified with the integrin αvβ3 monoclonal antibody (mAb) for tumor targeting. Pyropheophorbide-a (PPa) conjugated with polyethylene-glycol is used to cover the surface of the NGO to induce phototoxicity. Polyethylene-glycol phospholipid is loaded to enhance water solubility. The results show that the phototoxicity of PPa on NGO can be switched on and off in organic and aqueous environments, respectively. The PPa-NGO-mAb assembly is able to effectively target the αvβ3-positive tumor cells with surface ligand and receptor recognition; once endocytosized by the cells, they are observed escaping from lysosomes and subsequently transferring to the mitochondria. In the mitochondria, the `on' state PPa-NGO-mAb performs its effective phototoxicity to kill cells. The biological and physical dual selections and on/off control of PPa-NGO-mAb significantly enhance mitochondria-mediated apoptosis of PDT. This smart system offers a potential alternative to drug delivery systems for cancer therapy.Subcellular organelles play critical roles in cell survival. In this work, a novel photodynamic therapy (PDT) drug delivery and phototoxicity on/off nano-system based on graphene oxide (NGO) as the carrier is developed to implement subcellular targeting and attacking. To construct the nanodrug (PPa-NGO-mAb), NGO is modified with the integrin αvβ3 monoclonal antibody (mAb) for tumor targeting. Pyropheophorbide-a (PPa) conjugated with polyethylene-glycol is used to cover the surface of the NGO to induce phototoxicity. Polyethylene-glycol phospholipid is loaded to enhance water solubility. The results show that the phototoxicity of PPa on NGO can be switched on and off in

  2. Effect of various ions, pH, and osmotic pressure on oxidation of elemental sulfur by Thiobacillus thiooxidans

    SciTech Connect

    Suzuki, I.; Lee, D.; Mackay, B.; Harahuc, L.; Oh, J.K.

    1999-11-01

    The oxidation of elemental sulfur by Thiobacillus thiooxidans was studied at pH 2.3, 4.5, and 7.0 in the presence of different concentrations of various anions (sulfate, phosphate, chloride, nitrate, and fluoride) and cations (potassium, sodium, lithium, rubidium, and cesium). The results agree with the expected response of this acidophilic bacterium to charge neutralization of colloids by ions, pH-dependent membrane permeability of ions, and osmotic pressure.

  3. Effect of various ions, pH, and osmotic pressure on oxidation of elemental sulfur by Thiobacillus thiooxidans.

    PubMed

    Suzuki, I; Lee, D; Mackay, B; Harahuc, L; Oh, J K

    1999-11-01

    The oxidation of elemental sulfur by Thiobacillus thiooxidans was studied at pH 2.3, 4.5, and 7.0 in the presence of different concentrations of various anions (sulfate, phosphate, chloride, nitrate, and fluoride) and cations (potassium, sodium, lithium, rubidium, and cesium). The results agree with the expected response of this acidophilic bacterium to charge neutralization of colloids by ions, pH-dependent membrane permeability of ions, and osmotic pressure.

  4. Uranium and minor-element partitioning in Fe-Ti oxides and zircon from partially melted granodiorite, Crater Lake, Oregon

    USGS Publications Warehouse

    Tourrette, T.Z.L.; Burnett, D.S.; Bacon, C.R.

    1991-01-01

    Crystal-liquid partitioning in Fe-Ti oxides and zircon was studied in partially melted granodiorite blocks ejected during the climactic eruption of Mt. Mazama (Crater Lake), Oregon. The blocks, which contain up to 33% rhyolite glass (75 wt% SiO2), are interpreted to be portions of the magma chamber walls that were torn off during eruption. The glass is clear and well homogenized for all measured elements except Zr. Results for Fe-Ti oxides give DUoxide/liq ??? 0.1. Partitioning of Mg, Mn, Al, Si, V, and Cr in Fe-Ti oxides indicates that grains surrounded by glass are moderately well equilibrated with the melt for many of the minor elements, while those that are inclusions in relict plagioclase are not. Uranium and ytterbium inhomogeneities in zircons indicate that the zircons have only partially equilibrated with the melt and that uranium appears to have been diffusing out of the zircons faster than the zircons were dissolving. Minimum U, Y, and P concentrations in zircons give maximum DUzrc/liq = 13,DYzrc/liq = 23, and DPzrc/liq = 1, but these are considerably lower than reported by other workers for U and Y. Based on our measurements and given their low abundances in most rocks, Fe-Ti oxides probably do not play a major role in U-Th fractionation during partial melting. The partial melts were undersaturated with zircon and apatite, but both phases are present in our samples. This demonstrates an actual case of non-equilibrium source retention of accessory phases, which in general could be an important trace-element fractionation mechanism. Our results do not support the hypothesis that liquid structure is the dominant factor controlling trace-element partitioning in high-silica rhyolites. Rough calculations based on Zr gradients in the glass indicate that the samples could have been partially molten for 800 to 8000 years. ?? 1991.

  5. Effect of Element Diffusion Through Metallic Networks During Oxidation of Type 321 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Zeng, Z.; Natesan, K.; Cai, Z.; Gosztola, D.; Cook, R.; Hiller, J.

    2014-04-01

    A detailed study was conducted on localized oxidation on Type 321 stainless steel (321ss) using synchrotron x-ray nanobeam analysis along with Raman microscopy. The results showed the presence of metallic nanonetworks in the oxide scales, which plays an important role in the continued oxidation of the alloy at 750 °C. A mechanism is proposed to explain the rapid oxidation of 321ss in complex gaseous environments at elevated temperature. Neutral metal atoms could diffuse outward, and carbon atoms could diffuse inward through the metallic nanonetworks in oxide layers. Alternately, diffusion tunnels can dramatically affect the phase composition of the oxide scales. Since the diffusion rate of neutral metal and carbon atoms through the metallic nanonetworks can be much faster than the diffusion of cations through Cr2O3, the metallic nanonetwork provides a path through the protective Cr2O3 layer for the rapid outward diffusion of metallic chromium and iron atoms to the nonprotective spinel layer. This diffusion process affects the solid-state reaction near the alloy-oxide boundary, and a dense Cr2O3 protective layer does not form. The classic stable structure of the oxide scales, with a dense Cr2O3 layer at the bottom, is damaged by the rapid diffusion through the tunnel at the reaction front, resulting in locally accelerated oxidation. This process can subsequently lead to "breakaway" oxidation and catastrophic failure of the alloy.

  6. A transient forward targeting element for microneme regulated secretion in Toxoplasma gondii

    PubMed Central

    Brydges, Susannah D.; Harper, Jill M.; Parussini, Fabiola; Coppens, Isabelle; Carruthers, Vern B.

    2009-01-01

    Background information Accurate sorting of proteins to the three types of secretory granules in Toxoplasma gondii is crucial for successful cell invasion by this obligate intracellular parasite. As in other eukaryotic systems, propeptide sequences are a common yet poorly understood feature of proteins destined for regulated secretion, which for Toxoplasma occurs through two distinct invasion organelles, rhoptries and micronemes. Microneme discharged during parasite apical attachment plays a pivotal role in cell invasion by delivering adhesive proteins for host receptor engagement. Results We show here that the small micronemal proprotein MIC5 undergoes proteolytic maturation at a site beyond the Golgi and only the processed form of MIC5 is secreted via the micronemes. Proper cleavage of the MIC5 propeptide relies on an arginine residue in the P1′ position, though P1′ mutants are still cleaved to a lesser extent at an alternative site downstream of the primary site. Nonetheless, this aberrantly cleaved species still correctly traffics to the micronemes, indicating that correct cleavage is not necessary for micronemal targeting. In contrast, a deletion mutant lacking the propeptide was retained within the secretory system, principally in the endoplasmic reticulum. The MIC5 propeptide also supported correct trafficking when exchanged for the M2AP propeptide, which was recently shown to also be required for micronemal trafficking of the TgMIC2-M2AP complex (Harper et al., Mol Biol Cell (2006) 4551–63). Conclusion Our results illuminate common and unique features of micronemal propeptides in their role as trafficking facilitators. PMID:17995454

  7. Nitric Oxide Improves Molecular Imaging of Inflammatory Atheroma using Targeted Echogenic Immunoliposomes

    PubMed Central

    Kim, Hyunggun; Kee, Patrick H.; Rim, Yonghoon; Moody, Melanie R.; Klegerman, Melvin E.; Vela, Deborah; Huang, Shao-Ling; McPherson, David D.; Laing, Susan T.

    2013-01-01

    Objective: This study aimed to demonstrate whether pretreatment with nitric oxide (NO) loaded into echogenic immunoliposomes (ELIP) plus ultrasound, applied before injection of molecularly targeted ELIP can promote penetration of the targeted contrast agent and improve visualization of atheroma components. Methods: ELIP were prepared using the pressurization-freeze method. Atherosclerosis was induced in Yucatan miniswine by balloon denudation and a hyperlipidemic diet. The animals were randomized to receive anti-intercellular adhesion molecule-1 (ICAM-1) ELIP or immunoglobulin (IgG)-ELIP, and were subdivided to receive pretreatment with standard ELIP plus ultrasound, NO-loaded ELIP, or NO-loaded ELIP plus ultrasound. Intravascular ultrasound (IVUS) data were collected before and after treatment. Results: Pretreatment with standard ELIP plus ultrasound or NO-loaded ELIP without ultrasound resulted in 9.2 ± 0.7% and 9.2 ± 0.8% increase in mean gray scale values, respectively, compared to baseline (p<0.001 vs. control). Pretreatment with NO-loaded ELIP plus ultrasound activation resulted in a further increase in highlighting with a change in mean gray scale value to 14.7 ± 1.0% compared to baseline (p<0.001 vs. control). These differences were best appreciated when acoustic backscatter data values (RF signal) were used [22.7 ± 2.0% and 22.4 ± 2.2% increase in RF signals for pretreatment with standard ELIP plus ultrasound and NO-loaded ELIP without ultrasound respectively (p<0.001 vs. control), and 40.0 ± 2.9% increase in RF signal for pretreatment with NO-loaded ELIP plus ultrasound (p<0.001 vs. control)]. Conclusion: NO-loaded ELIP plus ultrasound activation can facilitate anti-ICAM-1 conjugated ELIP delivery to inflammatory components in the arterial wall. This NO pretreatment strategy has potential to improve targeted molecular imaging of atheroma for eventual true tailored and personalized management of cardiovascular diseases. PMID:24267236

  8. Kinetics of Cyclic Oxidation and Cracking and Finite Element Analysis of MA956 and Sapphire/MA956 Composite System

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.; Arya, Vinod K.; Halford, Gary R.; Barrett, Charles A.

    1996-01-01

    Sapphire fiber-reinforced MA956 composites hold promise for significant weight savings and increased high-temperature structural capability, as compared to unreinforced MA956. As part of an overall assessment of the high-temperature characteristics of this material system, cyclic oxidation behavior was studied at 1093 C and 1204 C. Initially, both sets of coupons exhibited parabolic oxidation kinetics. Later, monolithic MA956 exhibited spallation and a linear weight loss, whereas the composite showed a linear weight gain without spallation. Weight loss of the monolithic MA956 resulted from the linking of a multiplicity of randomly oriented and closely spaced surface cracks that facilitated ready spallation. By contrast, cracking of the composite's oxide layer was nonintersecting and aligned nominally parallel with the orientation of the subsurface reinforcing fibers. Oxidative lifetime of monolithic MA956 was projected from the observed oxidation kinetics. Linear elastic, finite element continuum, and micromechanics analyses were performed on coupons of the monolithic and composite materials. Results of the analyses qualitatively agreed well with the observed oxide cracking and spallation behavior of both the MA956 and the Sapphire/MA956 composite coupons.

  9. Comparative proteomic analysis of sulfur-oxidizing Acidithiobacillus ferrooxidans CCM 4253 cultures having lost the ability to couple anaerobic elemental sulfur oxidation with ferric iron reduction.

    PubMed

    Kucera, Jiri; Sedo, Ondrej; Potesil, David; Janiczek, Oldrich; Zdrahal, Zbynek; Mandl, Martin

    2016-09-01

    In extremely acidic environments, ferric iron can be a thermodynamically favorable electron acceptor during elemental sulfur oxidation by some Acidithiobacillus spp. under anoxic conditions. Quantitative 2D-PAGE proteomic analysis of a resting cell suspension of a sulfur-grown Acidithiobacillus ferrooxidans CCM 4253 subculture that had lost its iron-reducing activity revealed 147 protein spots that were downregulated relative to an iron-reducing resting cell suspension of the antecedent sulfur-oxidizing culture and 111 that were upregulated. Tandem mass spectrometric analysis of strongly downregulated spots identified several physiologically important proteins that apparently play roles in ferrous iron oxidation, including the outer membrane cytochrome Cyc2 and rusticyanin. Other strongly repressed proteins were associated with sulfur metabolism, including heterodisulfide reductase, thiosulfate:quinone oxidoreductase and sulfide:quinone reductase. Transcript-level analyses revealed additional downregulation of other respiratory genes. Components of the iron-oxidizing system thus apparently play central roles in anaerobic sulfur oxidation coupled with ferric iron reduction in the studied microbial strain. PMID:27394989

  10. Process and apparatus for generating elemental sulfur and re-usable metal oxide from spent metal sulfide sorbents

    DOEpatents

    Ayala, Raul E.; Gal, Eli

    1995-01-01

    A process and apparatus for generating elemental sulfur and re-usable metal oxide from spent metal-sulfur compound. Spent metal-sulfur compound is regenerated to re-usable metal oxide by moving a bed of spent metal-sulfur compound progressively through a single regeneration vessel having a first and second regeneration stage and a third cooling and purging stage. The regeneration is carried out and elemental sulfur is generated in the first stage by introducing a first gas of sulfur dioxide which contains oxygen at a concentration less than the stoichiometric amount required for complete oxidation of the spent metal-sulfur compound. A second gas containing sulfur dioxide and excess oxygen at a concentration sufficient for complete oxidation of the partially spent metal-sulfur compound, is introduced into the second regeneration stage. Gaseous sulfur formed in the first regeneration stage is removed prior to introducing the second gas into the second regeneration stage. An oxygen-containing gas is introduced into the third cooling and purging stage. Except for the gaseous sulfur removed from the first stage, the combined gases derived from the regeneration stages which are generally rich in sulfur dioxide and lean in oxygen, are removed from the regenerator as an off-gas and recycled as the first and second gas into the regenerator. Oxygen concentration is controlled by adding air, oxygen-enriched air or pure oxygen to the recycled off-gas.

  11. Rational Design of Iron Oxide Nanoparticles as Targeted Nanomedicines for Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Kievit, Forrest M.

    2011-07-01

    Nanotechnology provides a flexible platform for the development of effective therapeutic nanomaterials that can interact specifically with a target in a biological system and provoke a desired biological response. Of the nanomaterials studied, superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as one of top candidates for cancer therapy due to their intrinsic superparamagnetism that enables non-invasive magnetic resonance imaging (MRI) and biodegradability favorable for in vivo application. This dissertation is aimed at development of SPION-based nanomedicines to overcome the current limitations in cancer therapy. These limitations include non-specificity of therapy which can harm healthy tissue, the difficulty in delivering nucleic acids for gene therapy, the formation of drug resistance, and the inability to detect and treat micrometastases. First, a SPION-based non-viral gene delivery vehicle was developed through functionalization of the SPION core with a co-polymer designed to provide stable binding of DNA and low toxicity which showed excellent gene delivery in vitro and in vivo. This SPION-based non-viral gene delivery vehicle was then activated with a targeting agent to improve gene delivery throughout a xenograft tumor of brain cancer. It was found that targeting did not promote the accumulation of SPIONs at the tumor site, but rather improved the distribution of SPIONs throughout the tumor so a higher proportion of cells received treatment. Next, the high surface area of SPIONs was utilized for loading large amounts of drug which was shown to overcome the multidrug resistance acquired by many cancer cells. Drug bound to SPIONs showed significantly higher multidrug resistant cell uptake as compared to free drug which translated into improved cell kill. Also, an antibody activated SPION was developed and was shown to be able to target micrometastases in a transgenic animal model of metastatic breast cancer. These SPION-based nanomedicines

  12. A novel target-specific gene delivery system combining baculovirus and sequence-specific long interspersed nuclear elements.

    PubMed

    Kawashima, Tomoko; Osanai, Mizuko; Futahashi, Ryo; Kojima, Tetsuya; Fujiwara, Haruhiko

    2007-07-01

    Transposable elements are valuable for somatic and germ-line transformation. However, long interspersed nuclear elements (LINEs) have not been used because of poor information on the transposition mechanism. We have developed a novel gene delivery system combining baculovirus AcNPV and two silkworm LINEs, SART1 and R1, which integrate into specific sequences of telomeric repeats and 28S ribosomal DNA, respectively. When two LINEs containing the enhanced green fluorescent protein gene recombined into AcNPV were infected into fifth instar larvae of the silkworm, we observed target-specific retrotransposition of LINEs at 72h post-infection, using polymerase chain reaction amplification and sequencing. Telomere- and 28S rDNA-specific transposition occurred in all nine tissues tested, including the ovary and testis. This is the first demonstration of site-specific gene delivery in living larvae. Insertion efficiencies were dependent on the virus titer for injection and the host strains of Bombyx mori. Using this system, we successfully detected the intergeneration transmission of retrotransposed sequences. In addition, AcNPV-mediated SART1 also transposed into telomere of another lepidopteran, Orgyia recens, suggesting that this system is useful for a wide variety of AcNPV-infectious insects. Site-specific gene delivery by virus-mediated LINE will be a potential gene therapy tool to avoid harmful unexpected insertions.

  13. Targeted Identification of Short Interspersed Nuclear Element Families Shows Their Widespread Existence and Extreme Heterogeneity in Plant Genomes[W

    PubMed Central

    Wenke, Torsten; Döbel, Thomas; Sörensen, Thomas Rosleff; Junghans, Holger; Weisshaar, Bernd; Schmidt, Thomas

    2011-01-01

    Short interspersed nuclear elements (SINEs) are non-long terminal repeat retrotransposons that are highly abundant, heterogeneous, and mostly not annotated in eukaryotic genomes. We developed a tool designated SINE-Finder for the targeted discovery of tRNA-derived SINEs. We analyzed sequence data of 16 plant genomes, including 13 angiosperms and three gymnosperms and identified 17,829 full-length and truncated SINEs falling into 31 families showing the widespread occurrence of SINEs in higher plants. The investigation focused on potato (Solanum tuberosum), resulting in the detection of seven different SolS SINE families consisting of 1489 full-length and 870 5′ truncated copies. Consensus sequences of full-length members range in size from 106 to 244 bp depending on the SINE family. SolS SINEs populated related species and evolved separately, which led to some distinct subfamilies. Solanaceae SINEs are dispersed along chromosomes and distributed without clustering but with preferred integration into short A-rich motifs. They emerged more than 23 million years ago and were species specifically amplified during the radiation of potato, tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum). We show that tobacco TS retrotransposons are composite SINEs consisting of the 3′ end of a long interspersed nuclear element integrated downstream of a nonhomologous SINE family followed by successfully colonization of the genome. We propose an evolutionary scenario for the formation of TS as a spontaneous event, which could be typical for the emergence of SINE families. PMID:21908723

  14. The Influence of Copy-Number of Targeted Extrachromosomal Genetic Elements on the Outcome of CRISPR-Cas Defense.

    PubMed

    Severinov, Konstantin; Ispolatov, Iaroslav; Semenova, Ekaterina

    2016-01-01

    Prokaryotic type I CRISPR-Cas systems respond to the presence of mobile genetic elements such as plasmids and phages in two different ways. CRISPR interference efficiently destroys foreign DNA harboring protospacers fully matching CRISPR RNA spacers. In contrast, even a single mismatch between a spacer and a protospacer can render CRISPR interference ineffective but causes primed adaptation-efficient and specific acquisition of additional spacers from foreign DNA into the CRISPR array of the host. It has been proposed that the interference and primed adaptation pathways are mediated by structurally different complexes formed by the effector Cascade complex on matching and mismatched protospacers. Here, we present experimental evidence and present a simple mathematical model that shows that when plasmid copy number maintenance/phage genome replication is taken into account, the two apparently different outcomes of the CRISPR-Cas response can be accounted for by just one kind of effector complex on both targets. The results underscore the importance of consideration of targeted genome biology when considering consequences of CRISPR-Cas systems action. PMID:27630990

  15. Solution structures and characterization of human immunodeficiency virus Rev responsive element IIB RNA targeting zinc finger proteins.

    PubMed

    Mishra, Subrata H; Shelley, Christopher M; Barrow, Doyle J; Darby, Martyn K; Germann, Markus W

    2006-11-01

    The Rev responsive element (RRE), a part of unspliced human immunodeficiency virus (HIV) RNA, serves a crucial role in the production of infectious HIV virions. The viral protein Rev binds to RRE and facilitates transport of mRNA to the cytoplasm. Inhibition of the Rev-RRE interaction disrupts the viral life cycle. Using a phage display protocol, dual zinc finger proteins (ZNFs) were generated that bind specifically to RREIIB at the high affinity Rev binding site. These proteins were further shortened and simplified, and they still retained their RNA binding affinity. The solution structures of ZNF29 and a mutant, ZNF29G29R, have been determined by nuclear magnetic resonance (NMR) spectroscopy. Both proteins form C(2)H(2)-type zinc fingers with essentially identical structures. RNA protein interactions were evaluated quantitatively by isothermal titration calorimetry, which revealed dissociation constants (K(d)'s) in the nanomolar range. The interaction with the RNA is dependent upon the zinc finger structure; in the presence of EDTA, RNA binding is abolished. For both proteins, RNA binding is mediated by the alpha-helical portion of the zinc fingers and target the bulge region of RREIIB-TR. However, ZNF29G29R exhibits significantly stronger binding to the RNA target than ZNF29; this illustrates that the binding of the zinc finger scaffold is amenable to further improvements.

  16. The Influence of Copy-Number of Targeted Extrachromosomal Genetic Elements on the Outcome of CRISPR-Cas Defense

    PubMed Central

    Severinov, Konstantin; Ispolatov, Iaroslav; Semenova, Ekaterina

    2016-01-01

    Prokaryotic type I CRISPR-Cas systems respond to the presence of mobile genetic elements such as plasmids and phages in two different ways. CRISPR interference efficiently destroys foreign DNA harboring protospacers fully matching CRISPR RNA spacers. In contrast, even a single mismatch between a spacer and a protospacer can render CRISPR interference ineffective but causes primed adaptation—efficient and specific acquisition of additional spacers from foreign DNA into the CRISPR array of the host. It has been proposed that the interference and primed adaptation pathways are mediated by structurally different complexes formed by the effector Cascade complex on matching and mismatched protospacers. Here, we present experimental evidence and present a simple mathematical model that shows that when plasmid copy number maintenance/phage genome replication is taken into account, the two apparently different outcomes of the CRISPR-Cas response can be accounted for by just one kind of effector complex on both targets. The results underscore the importance of consideration of targeted genome biology when considering consequences of CRISPR-Cas systems action.

  17. The Influence of Copy-Number of Targeted Extrachromosomal Genetic Elements on the Outcome of CRISPR-Cas Defense

    PubMed Central

    Severinov, Konstantin; Ispolatov, Iaroslav; Semenova, Ekaterina

    2016-01-01

    Prokaryotic type I CRISPR-Cas systems respond to the presence of mobile genetic elements such as plasmids and phages in two different ways. CRISPR interference efficiently destroys foreign DNA harboring protospacers fully matching CRISPR RNA spacers. In contrast, even a single mismatch between a spacer and a protospacer can render CRISPR interference ineffective but causes primed adaptation—efficient and specific acquisition of additional spacers from foreign DNA into the CRISPR array of the host. It has been proposed that the interference and primed adaptation pathways are mediated by structurally different complexes formed by the effector Cascade complex on matching and mismatched protospacers. Here, we present experimental evidence and present a simple mathematical model that shows that when plasmid copy number maintenance/phage genome replication is taken into account, the two apparently different outcomes of the CRISPR-Cas response can be accounted for by just one kind of effector complex on both targets. The results underscore the importance of consideration of targeted genome biology when considering consequences of CRISPR-Cas systems action. PMID:27630990

  18. Increasing prevalence of ciprofloxacin-resistant food-borne Salmonella strains harboring multiple PMQR elements but not target gene mutations

    PubMed Central

    Lin, Dachuan; Chen, Kaichao; Wai-Chi Chan, Edward; Chen, Sheng

    2015-01-01

    Fluoroquinolone resistance in Salmonella has become increasingly prevalent in recent years. To probe the molecular basis of this phenomenon, the genetic and phenotypic features of fluoroquinolone resistant Salmonella strains isolated from food samples were characterized. Among the 82 Salmonella strains tested, resistance rate of the three front line antibiotics of ceftriaxone, ciprofloxacin and azithromycin was 10%, 39% and 25% respectively, which is significantly higher than that reported in other countries. Ciprofloxacin resistant strains typically exhibited cross-resistance to multiple antibiotics including ceftriaxone, primarily due to the presence of multiple PMQR genes and the blaCTX-M-65, blaCTX-M-55 blaCMY-2 and blaCMY-72 elements. The prevalence rate of the oqxAB and aac(6’)-Ib-cr genes were 91% and 75% respectively, followed by qnrS (66%), qnrB (16%) and qnrD (3%). The most common PMQR combination observable was aac(6’)-Ib-cr-oqxAB-qnrS2, which accounted for 50% of the ciprofloxacin resistant strains. Interestingly, such isolates contained either no target mutations or only a single gyrA mutation. Conjugation and hybridization experiments suggested that most PMQR genes were located either in the chromosome or a non-transferrable plasmid. To summarize, findings in this work suggested that PMQRs greatly facilitate development of fluoroquinolone resistance in Salmonella by abolishing the requirement of target gene mutations. PMID:26435519

  19. Photo-oxidation of Dissolved Organic Matter in River Water and its Effect on Trace Element Speciation

    NASA Astrophysics Data System (ADS)

    Shiller, A. M.; Duan, S.; van Erp, P.; Bianchi, T.

    2004-12-01

    Photochemical effects on the chemistry of fresh surface waters are now well established. One interesting contrast in the studies of photochemical effects on dissolved organic carbon (DOC) versus trace metals is the difference in time scales generally considered. For DOC studies, timescales of days to weeks are most common in experiments whereas for trace metals, it is the diel cycle that tends to be studied. We conducted a three-week incubation in natural light (with dark controls) of filtered water from the lower Pearl River (Mississippi) examining both the changes in DOC and changes in physical-chemical speciation of a suite of trace metals. During the incubation, DOC decreased in the light by about 20% while UV light absorbance decreased by nearly 40%. This implies both the photo-oxidation of the DOC as well as a shift to a proportionately less aromatic nature for the DOC. For the trace elements, a variety of behaviors were observed. Some elements showed no change in speciation; for instance, the alkali and alkaline earth metals as well as some oxyanions (e.g., Mo) and some other elements (e.g., Mn). Other elements, however, did show significant changes in the light. Fe, for example, is a key trace element in this system with a colloidal concentration over 2 μ M. There was a significant, continuous decrease in dissolved (<0.02 μ m) Fe in the light samples during the experiment. This is best explained by release of organically-complexed Fe during photo-oxidation of the low-to-medium molecular weight fraction of the DOC followed by subsequent precipitation of the released Fe as additional colloidal iron(III) oxyhydroxide. A number of other elements (Ce, Cu, Cr, Pb, V, and U) also showed decreases in the dissolved (<0.02 μ m) fraction with time, implying a release from low molecular weight complexes followed by sorption onto Fe colloids. All of these elements have been previously found to be associated with colloidal Fe in other systems. A number of these

  20. Performance evaluation of non-thermal plasma injection for elemental mercury oxidation in a simulated flue gas.

    PubMed

    An, Jiutao; Shang, Kefeng; Lu, Na; Jiang, Yuze; Wang, Tiecheng; Li, Jie; Wu, Yan

    2014-03-15

    The use of non-thermal plasma (NTP) injection approach to oxidize elemental mercury (Hg(0)) in simulated flue gas at 110°C was studied, where a surface discharge plasma reactor (SDPR) inserted in the simulated flue duct was used to generate and inject active species into the flue gas. Approximately 81% of the Hg(0) was oxidized and 20.5μgkJ(-1) of energy yield was obtained at a rate of 3.9JL(-1). A maximal Hg(0) oxidation efficiency was found with a change in the NTP injection air flow rate. A high Hg(0) oxidation efficiency was observed in the mixed flue gas that included O2, H2O, SO2, NO and HCl. Chemical and physical processes (e.g., ozone, N2 metastable states and UV-light) were found to contribute to Hg(0) oxidation, with ozone playing a dominant role. The deposited mercury species on the internal surface of the flue duct was analyzed using X-ray photoelectron spectroscopy (XPS) and electronic probe microanalysis (EPMA), and the deposit was identified as HgO. The mercury species is thought to primarily exist in the form of HgO(s) by adhering to the suspended aerosols in the gas-phase.

  1. Significance of RuO2 modified SCR catalyst for elemental mercury oxidation in coal-fired flue gas.

    PubMed

    Yan, Naiqiang; Chen, Wanmiao; Chen, Jie; Qu, Zan; Guo, Yongfu; Yang, Shijian; Jia, Jinping

    2011-07-01

    Catalytic conversion of elemental mercury (Hg(0)) to its oxidized form has been considered as an effective way to enhance mercury removal from coal-fired power plants. In order to make good use of the existing selective catalytic reduction of NO(x) (SCR) catalysts as a cobenefit of Hg(0) conversion at lower level HCl in flue gas, various catalysts supported on titanium dioxide (TiO(2)) and commercial SCR catalysts were investigated at various cases. Among the tested catalysts, ruthenium oxides (RuO(2)) not only showed rather high catalytic activity on Hg(0) oxidation by itself, but also appeared to be well cooperative with the commercial SCR catalyst for Hg(0) conversion. In addition, the modified SCR catalyst with RuO(2) displayed an excellent tolerance to SO(2) and ammonia without any distinct negative effects on NO(x) reduction and SO(2) conversion. The demanded HCl concentration for Hg(0) oxidation can be reduced dramatically, and Hg(0) oxidation efficiency over RuO(2) doped SCR catalyst was over 90% even at about 5 ppm HCl in the simulated gases. Ru modified SCR catalyst shows a promising prospect for the cobenefit of mercury emission control.

  2. Demethyleneberberine, a natural mitochondria-targeted antioxidant, inhibits mitochondrial dysfunction, oxidative stress, and steatosis in alcoholic liver disease mouse model.

    PubMed

    Zhang, Pengcheng; Qiang, Xiaoyan; Zhang, Miao; Ma, Dongshen; Zhao, Zheng; Zhou, Cuisong; Liu, Xie; Li, Ruiyan; Chen, Huan; Zhang, Yubin

    2015-01-01

    Excessive alcohol consumption induces oxidative stress and lipid accumulation in the liver. Mitochondria have long been recognized as the key target for alcoholic liver disease (ALD). Recently, the artificial mitochondria-targeted antioxidant MitoQ has been used to treat ALD effectively in mice. Here, we introduce the natural mitochondria-targeted antioxidant demethyleneberberine (DMB), which has been found in Chinese herb Cortex Phellodendri chinensis. The protective effect of DMB on ALD was evaluated with HepG2 cells and acutely/chronically ethanol-fed mice, mimicking two common patterns of drinking in human. The results showed that DMB, which is composed of a potential antioxidant structure, could penetrate the membrane of mitochondria and accumulate in mitochondria either in vitro or in vivo. Consequently, the acute drinking-caused oxidative stress and mitochondrial dysfunction were significantly ameliorated by DMB. Moreover, we also found that DMB suppressed CYP2E1, hypoxia inducible factor α, and inducible nitric oxide synthase, which contributed to oxidative stress and restored sirtuin 1/AMP-activated protein kinase/peroxisome proliferator-activated receptor-γ coactivator-1α pathway-associated fatty acid oxidation in chronic ethanol-fed mice, which in turn ameliorated lipid peroxidation and macrosteatosis in the liver. Taking these findings together, DMB could serve as a novel and potential therapy for ALD in human beings.

  3. Targeted fluorescence imaging enhanced by 2D materials: a comparison between 2D MoS2 and graphene oxide.

    PubMed

    Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng

    2016-08-01

    Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples.

  4. The lectin-like oxidized LDL receptor-1: a new potential molecular target in colorectal cancer.

    PubMed

    Murdocca, Michela; Mango, Ruggiero; Pucci, Sabina; Biocca, Silvia; Testa, Barbara; Capuano, Rosamaria; Paolesse, Roberto; Sanchez, Massimo; Orlandi, Augusto; di Natale, Corrado; Novelli, Giuseppe; Sangiuolo, Federica

    2016-03-22

    The identification of new biomarkers and targets for tailored therapy in human colorectal cancer (CRC) onset and progression is an interesting challenge. CRC tissue produces an excess of ox-LDL, suggesting a close correlation between lipid dysfunction and malignant transformation. Lectin-like oxidized LDL receptor-1 (LOX-1) is involved in several mechanisms closely linked to tumorigenesis. Here we report a tumor specific LOX-1 overexpression in human colon cancers: LOX-1 results strongly increased in the 72% of carcinomas (P<0.001), and strongly overexpressed in 90% of highly aggressive and metastatic tumours (P<0.001), as compared to normal mucosa. Moreover LOX-1 results modulated since the early stage of the disease (adenomas vs normal mucosa; P<0.001) suggesting an involvement in tumor insurgence and progression. The in vitro knockdown of LOX-1 in DLD-1 and HCT-8 colon cancer cells by siRNA and anti-LOX-1 antibody triggers to an impaired proliferation rate and affects the maintenance of cell growth and tumorigenicity. The wound-healing assay reveals an evident impairment in closing the scratch. Lastly knockdown of LOX-1 delineates a specific pattern of volatile compounds characterized by the presence of a butyrate derivative, suggesting a potential role of LOX-1 in tumor-specific epigenetic regulation in neoplastic cells. The role of LOX-1 as a novel biomarker and molecular target represents a concrete opportunity to improve current therapeutic strategies for CRC. In addition, the innovative application of a technology focused to the identification of LOX-1 driven volatiles specific to colorectal cancer provides a promising diagnostic tool for CRC screening and for monitoring the response to therapy. PMID:26895376

  5. The lectin-like oxidized LDL receptor-1: a new potential molecular target in colorectal cancer

    PubMed Central

    Murdocca, Michela; Mango, Ruggiero; Pucci, Sabina; Biocca, Silvia; Testa, Barbara; Capuano, Rosamaria; Paolesse, Roberto; Sanchez, Massimo; Orlandi, Augusto; di Natale, Corrado; Novelli, Giuseppe; Sangiuolo, Federica

    2016-01-01

    The identification of new biomarkers and targets for tailored therapy in human colorectal cancer (CRC) onset and progression is an interesting challenge. CRC tissue produces an excess of ox-LDL, suggesting a close correlation between lipid dysfunction and malignant transformation. Lectin-like oxidized LDL receptor-1 (LOX-1) is involved in several mechanisms closely linked to tumorigenesis. Here we report a tumor specific LOX-1 overexpression in human colon cancers: LOX-1 results strongly increased in the 72% of carcinomas (P<0.001), and strongly overexpressed in 90% of highly aggressive and metastatic tumours (P<0.001), as compared to normal mucosa. Moreover LOX-1 results modulated since the early stage of the disease (adenomas vs normal mucosa; P<0.001) suggesting an involvement in tumor insurgence and progression. The in vitro knockdown of LOX-1 in DLD-1 and HCT-8 colon cancer cells by siRNA and anti-LOX-1 antibody triggers to an impaired proliferation rate and affects the maintenance of cell growth and tumorigenicity. The wound-healing assay reveals an evident impairment in closing the scratch. Lastly knockdown of LOX-1 delineates a specific pattern of volatile compounds characterized by the presence of a butyrate derivative, suggesting a potential role of LOX-1 in tumor-specific epigenetic regulation in neoplastic cells. The role of LOX-1 as a novel biomarker and molecular target represents a concrete opportunity to improve current therapeutic strategies for CRC. In addition, the innovative application of a technology focused to the identification of LOX-1 driven volatiles specific to colorectal cancer provides a promising diagnostic tool for CRC screening and for monitoring the response to therapy. PMID:26895376

  6. Transcriptional activation of transposable elements in mouse zygotes is independent of Tet3-mediated 5-methylcytosine oxidation

    PubMed Central

    Inoue, Azusa; Matoba, Shogo; Zhang, Yi

    2012-01-01

    The methylation state of the paternal genome is rapidly reprogrammed shortly after fertilization. Recent studies have revealed that loss of 5-methylcytosine (5mC) in zygotes correlates with appearance of 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). This process is mediated by Tet3 and the 5mC oxidation products generated in zygotes are gradually lost during preimplantation development through a replication-dependent dilution process. Despite these findings, the biological significance of Tet3-mediated oxidation of 5mC to 5hmC/5fC/5caC in zygotes is unknown. DNA methylation plays an important role in silencing gene expression including the repression of transposable elements (TEs). Given that the activation of TEs during preimplantation development correlates with loss of DNA methylation, it is believed that paternal DNA demethylation may have an important role in TE activation. Here we examined this hypothesis and found that Tet3-mediated 5mC oxidation does not have a significant contribution to TE activation. We show that the expression of LINE-1 (long interspersed nucleotide element 1) and ERVL (endogenous retroviruses class III) are activated from both paternal and maternal genomes in zygotes. Inhibition of 5mC oxidation by siRNA-mediated depletion of Tet3 affected neither TE activation, nor global transcription in zygotes. Thus, our study provides the first evidence demonstrating that activation of both TEs and global transcription in zygotes are independent of Tet3-mediated 5mC oxidation. PMID:23184059

  7. Integrative Conjugative Element ICE-βox Confers Oxidative Stress Resistance to Legionella pneumophila In Vitro and in Macrophages

    PubMed Central

    Flynn, Kaitlin J.

    2014-01-01

    ABSTRACT Integrative conjugative elements (ICEs) are mobile blocks of DNA that can contribute to bacterial evolution by self-directed transmission of advantageous traits. Here, we analyze the activity of a putative 65-kb ICE harbored by Legionella pneumophila using molecular genetics, conjugation assays, a phenotype microarray screen, and macrophage infections. The element transferred to a naive L. pneumophila strain, integrated site-specifically, and conferred increased resistance to oxacillin, penicillin, hydrogen peroxide, and bleach. Furthermore, the element increased survival of L. pneumophila within restrictive mouse macrophages. In particular, this ICE protects L. pneumophila from phagocyte oxidase activity, since mutation of the macrophage NADPH oxidase eliminated the fitness difference between strains that carried and those that lacked the mobile element. Renamed ICE-βox (for β-lactam antibiotics and oxidative stress), this transposable element is predicted to contribute to the emergence of L. pneumophila strains that are more fit in natural and engineered water systems and in macrophages. PMID:24781744

  8. Glioma-targeted superparamagnetic iron oxide nanoparticles as drug-carrying vehicles for theranostic effects.

    PubMed

    Xu, He-Lin; Mao, Kai-Li; Huang, Yin-Ping; Yang, Jing-Jing; Xu, Jie; Chen, Pian-Pian; Fan, Zi-Liang; Zou, Shuang; Gao, Zheng-Zheng; Yin, Jia-Yu; Xiao, Jian; Lu, Cui-Tao; Zhang, Bao-Lin; Zhao, Ying-Zheng

    2016-08-01

    Multifunctional nanoparticles capable of the specific delivery of therapeutics to diseased cells and the real-time imaging of these sites have the potential to improve cancer treatment through personalized therapy. In this study, we have proposed a multifunctional nanoparticle that integrate magnetic targeting, drug-carrier functionality and real-time MRI imaging capabilities in one platform for the theranostic treatment of tumors. The multifunctional nanoparticle was designed with a superparamagnetic iron oxide core and a multifunctional shell composed of PEG/PEI/polysorbate 80 (Ps 80) and was used to encapsulate DOX. DOX-loaded multifunctional nanoparticles (DOX@Ps 80-SPIONs) with a Dh of 58.0 nm, a zeta potential of 28.0 mV, and a drug loading content of 29.3% presented superior superparamagnetic properties with a saturation magnetization (Ms) of 24.1 emu g(-1). The cellular uptake of DOX@Ps 80-SPIONs by C6 cells under a magnetic field was significantly enhanced over that of free DOX in solution, resulting in stronger in vitro cytotoxicity. The real-time therapeutic outcome of DOX@Ps 80-SPIONs was easily monitored by MRI. Furthermore, the negative contrast enhancement effect of the nanoparticles was confirmed in glioma-bearing rats. Prussian blue staining and ex vivo DOX fluorescence assays showed that the magnetic Ps 80-SPIONs and encapsulated DOX were delivered to gliomas by imposing external magnetic fields, indicating effective magnetic targeting. Due to magnetic targeting and Ps 80-mediated endocytosis, DOX@Ps 80-SPIONs in the presence of a magnetic field led to the complete suppression of glioma growth in vivo at 28 days after treatment. The therapeutic mechanism of DOX@Ps 80-SPIONs acted by inducing apoptosis through the caspase-3 pathway. Finally, DOX@Ps 80-SPIONs' safety at therapeutic dosage was verified using pathological HE assays of the heart, liver, spleen, lung and kidney. Multifunctional SPIONs could be used as potential carriers for the

  9. PEGylated fullerene/iron oxide nanocomposites for photodynamic therapy, targeted drug delivery and MR imaging.

    PubMed

    Shi, Jinjin; Yu, Xiaoyuan; Wang, Lei; Liu, Yan; Gao, Jun; Zhang, Jing; Ma, Rou; Liu, Ruiyuan; Zhang, Zhenzhong

    2013-12-01

    Recently, fullerene and fullerene derivatives owning to their highly enriched physical and chemical properties have been widely explored for applications in many different fields including biomedicine. In this study, iron oxide nanoparticles (IONPs) were decorated onto the surface of fullerene (C60), and then PEGylation was performed to improve the solubility and biocompatibility of C60-IONP, obtaining a multi-functional C60-IONP-PEG nanocomposite with strong superparamagnetism and powerful photodynamic therapy capacity. Hematoporphyrin monomethyl ether (HMME), a new photodynamic anti-cancer drug, was conjugated to C60-IONP-PEG, forming a C60-IONP-PEG/HMME drug delivery system, which demonstrated an excellent magnetic targeting ability in cancer therapy. Compared with free HMME, remarkably enhanced photodynamic cancer cell killing effect using C60-IONP-PEG/HMME was realized not only in a cultured B16-F10 cells in vitro but also in an in vivo murine tumor model due to 23-fold higher HMME uptake of tumor and strong photodynamic activity of C60-IONP-PEG. Moreover, C60-IONP-PEG could be further used as a T2-contrast agent for in vivo magnetic resonance imaging. Our work showed C60-IONP-PEG/HMME had a great potential for cancer theranostic applications.

  10. Review of transcranial photobiomodulation for major depressive disorder: targeting brain metabolism, inflammation, oxidative stress, and neurogenesis.

    PubMed

    Cassano, Paolo; Petrie, Samuel R; Hamblin, Michael R; Henderson, Theodore A; Iosifescu, Dan V

    2016-07-01

    We examined the use of near-infrared and red radiation (photobiomodulation, PBM) for treating major depressive disorder (MDD). While still experimental, preliminary data on the use of PBM for brain disorders are promising. PBM is low-cost with potential for wide dissemination; further research on PBM is sorely needed. We found clinical and preclinical studies via PubMed search (2015), using the following keywords: "near-infrared radiation," "NIR," "low-level light therapy," "low-level laser therapy," or "LLLT" plus "depression." We chose clinically focused studies and excluded studies involving near-infrared spectroscopy. In addition, we used PubMed to find articles that examine the link between PBM and relevant biological processes including metabolism, inflammation, oxidative stress, and neurogenesis. Studies suggest the processes aforementioned are potentially effective targets for PBM to treat depression. There is also clinical preliminary evidence suggesting the efficacy of PBM in treating MDD, and comorbid anxiety disorders, suicidal ideation, and traumatic brain injury. Based on the data collected to date, PBM appears to be a promising treatment for depression that is safe and well-tolerated. However, large randomized controlled trials are still needed to establish the safety and effectiveness of this new treatment for MDD.

  11. MiR-590-5p Inhibits Oxidized- LDL Induced Angiogenesis by Targeting LOX-1.

    PubMed

    Dai, Yao; Zhang, Zhigao; Cao, Yongxiang; Mehta, Jawahar L; Li, Jun

    2016-01-01

    Oxidized low-density lipoprotein (ox-LDL) is, at least in part, responsible for angiogenesis in atherosclerotic regions. This effect of ox-LDL has been shown to be mediated through a specific receptor LOX-1. Here we describe the effect of miR-590-5p on ox-LDL-mediated angiogenesis in in vitro and in vivo settings. Human umbilical vein endothelial cells (HUVECs) were transfected with miR-590-5p mimic or inhibitor followed by treatment with ox-LDL. In other experiments, Marigel plugs were inserted in the mice subcutaneous space. Both in vitro and in vivo studies showed that miR-590-5p mimic (100 nM) inhibited the ox-LDL-mediated angiogenesis (capillary tube formation, cell proliferation and migration as well as pro-angiogenic signals- ROS, MAPKs, pro-inflammatory cytokines and adhesion-related proteins). Of note, miR-590-5p inhibitor (200 nM) had the opposite effects. The inhibitory effect of miR-590-5p on angiogenesis was mediated by inhibition of LOX-1 at translational level. The inhibition of LOX-1 by miR-590-5p was confirmed by luciferase assay. In conclusion, we show that MiR-590-5p inhibits angiogenesis by targeting LOX-1 and suppressing redox-sensitive signals. PMID:26932825

  12. MiR-590-5p Inhibits Oxidized- LDL Induced Angiogenesis by Targeting LOX-1

    PubMed Central

    Dai, Yao; Zhang, Zhigao; Cao, Yongxiang; Mehta, Jawahar L.; Li, Jun

    2016-01-01

    Oxidized low-density lipoprotein (ox-LDL) is, at least in part, responsible for angiogenesis in atherosclerotic regions. This effect of ox-LDL has been shown to be mediated through a specific receptor LOX-1. Here we describe the effect of miR-590-5p on ox-LDL-mediated angiogenesis in in vitro and in vivo settings. Human umbilical vein endothelial cells (HUVECs) were transfected with miR-590-5p mimic or inhibitor followed by treatment with ox-LDL. In other experiments, Marigel plugs were inserted in the mice subcutaneous space. Both in vitro and in vivo studies showed that miR-590-5p mimic (100 nM) inhibited the ox-LDL-mediated angiogenesis (capillary tube formation, cell proliferation and migration as well as pro-angiogenic signals- ROS, MAPKs, pro-inflammatory cytokines and adhesion-related proteins). Of note, miR-590-5p inhibitor (200 nM) had the opposite effects. The inhibitory effect of miR-590-5p on angiogenesis was mediated by inhibition of LOX-1 at translational level. The inhibition of LOX-1 by miR-590-5p was confirmed by luciferase assay. In conclusion, we show that MiR-590-5p inhibits angiogenesis by targeting LOX-1 and suppressing redox-sensitive signals. PMID:26932825

  13. Female resistance to pneumonia identifies lung macrophage nitric oxide synthase-3 as a therapeutic target

    PubMed Central

    Yang, Zhiping; Huang, Yuh-Chin T; Koziel, Henry; de Crom, Rini; Ruetten, Hartmut; Wohlfart, Paulus; Thomsen, Reimar W; Kahlert, Johnny A; Sørensen, Henrik Toft; Jozefowski, Szczepan; Colby, Amy; Kobzik, Lester

    2014-01-01

    To identify new approaches to enhance innate immunity to bacterial pneumonia, we investigated the natural experiment of gender differences in resistance to infections. Female and estrogen-treated male mice show greater resistance to pneumococcal pneumonia, seen as greater bacterial clearance, diminished lung inflammation, and better survival. In vitro, lung macrophages from female mice and humans show better killing of ingested bacteria. Inhibitors and genetically altered mice identify a critical role for estrogen-mediated activation of lung macrophage nitric oxide synthase-3 (NOS3). Epidemiologic data show decreased hospitalization for pneumonia in women receiving estrogen or statins (known to activate NOS3). Pharmacologic targeting of NOS3 with statins or another small-molecule compound (AVE3085) enhanced macrophage bacterial killing, improved bacterial clearance, and increased host survival in both primary and secondary (post-influenza) pneumonia. The data identify a novel mechanism for host defense via NOS3 and suggest a potential therapeutic strategy to reduce secondary bacterial pneumonia after influenza. DOI: http://dx.doi.org/10.7554/eLife.03711.001 PMID:25317947

  14. Superparamagnetic Iron Oxide Nanoparticles Coated with Galactose-Carrying Polymer for Hepatocyte Targeting

    PubMed Central

    Yoo, Mi Kyong; Kim, In Yong; Kim, Eun Mi; Jeong, Hwan-Jeong; Lee, Chang-Moon; Jeong, Yong Yeon; Akaike, Toshihiro; Cho, Chong Su

    2007-01-01

    Our goal is to develop the functionalized superparamagnetic iron oxide nanoparticles (SPIONs) demonstrating the capacities to be delivered in liver specifically and to be dispersed in physiological environment stably. For this purpose, SPIONs were coated with polyvinylbenzyl-O-β-D-galactopyranosyl-D-gluconamide (PVLA) having galactose moieties to be recognized by asialoglycoprotein receptors (ASGP-R) on hepatocytes. For use as a control, we also prepared SPIONs coordinated with 2-pyrrolidone. The sizes, size distribution, structure, and coating of the nanoparticles were characterized by transmission electron microscopy (TEM), electrophoretic light scattering spectrophotometer (ELS), X-ray diffractometer (XRD), and Fourier transform infrared (FT-IR), respectively. Intracellular uptake of the PVLA-coated SPIONs was visualized by confocal laser scanning microscopy, and their hepatocyte-specific delivery was also investigated through magnetic resonance (MR) images of rat liver. MRI experimental results indicated that the PVLA-coated SPIONs possess the more specific accumulation property in liver compared with control, which suggests their potential utility as liver-targeting MRI contrast agent. PMID:18317519

  15. Magnetic Resonance Imaging of Atherosclerosis Using CD81-Targeted Microparticles of Iron Oxide in Mice

    PubMed Central

    Yan, Fei; Yang, Wei; Li, Xiang; Liu, Hongmei; Nan, Xiang; Xie, Lisi; Zhou, Dongliang; Xie, Guoxi; Wu, Junru; Qiu, Bensheng; Liu, Xin; Zheng, Hairong

    2015-01-01

    The goal of this study is to investigate the feasibility of using CD81- (Cluster of Differentiation 81 protein-) targeted microparticles of iron oxide (CD81-MPIO) for magnetic resonance imaging (MRI) of the murine atherosclerosis. CD81-MPIO and IgG- (Immunoglobulin G-) MPIO were prepared by covalently conjugating, respectively, with anti-CD81 monoclonal and IgG antibodies to the surface of the tosyl activated MPIO. The relevant binding capability of the MPIO was examined by incubating them with murine bEnd.3 cells stimulated with phenazine methosulfate (PMS) and its effect in shortening T2 relaxation time was also examined. MRI in apolipoprotein E-deficient mice was studied in vivo. Our results show that CD81-MPIO, but not IgG-MPIO, can bind to the PMS-stimulated bEnd.3 cells. The T2 relaxation time was significantly shortened for stimulated bEnd.3 cells when compared with IgG-MPIO. In vivo MRI in apolipoprotein E-deficient mice showed highly conspicuous areas of low signal after CD81-MPIO injection. Quantitative analysis of the area of CD81-MPIO contrast effects showed 8.96- and 6.98-fold increase in comparison with IgG-MPIO or plain MPIO, respectively (P < 0.01). Histological assay confirmed the expression of CD81 and CD81-MPIO binding onto atherosclerotic lesions. In conclusion, CD81-MPIO allows molecular assessment of murine atherosclerotic lesions by magnetic resonance imaging. PMID:26266263

  16. Facile synthesis of manganese ferrite/graphene oxide nanocomposites for controlled targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Wang, Guangshuo; Ma, Yingying; Zhang, Lina; Mu, Jingbo; Zhang, Zhixiao; Zhang, Xiaoliang; Che, Hongwei; Bai, Yongmei; Hou, Junxian

    2016-03-01

    In this study, manganese ferrite/graphene oxide (MnFe2O4/GO) nanocomposites as controlled targeted drug delivery were prepared by a facile sonochemical method. It was found that GO nanosheets were fully exfoliated and decorated with MnFe2O4 nanoparticles having diameters of 5-13 nm. The field-dependent magnetization curve indicated superparamagnetic behavior of the obtained MnFe2O4/GO with saturation magnetization of 34.9 emu/g at room temperature. The in vitro cytotoxicity testing exhibited negligible cytotoxicity of as-prepared MnFe2O4/GO even at the concentration as high as 150 μg/mL. Doxorubicin hydrochloride (DOX) as an anti-tumor model drug was utilized to explore the application potential of MnFe2O4/GO for controlled drug delivery. The drug loading capacity of this nanocarrier was as high as 0.97 mg/mg and the drug release behavior showed a sustained and pH-responsive way.

  17. Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery.

    PubMed

    Xu, Huan; Cheng, Liang; Wang, Chao; Ma, Xinxing; Li, Yonggang; Liu, Zhuang

    2011-12-01

    Multimodal imaging and imaging-guided therapies have become a new trend in the current development of cancer theranostics. In this work, we encapsulate hydrophobic upconversion nanoparticles (UCNPs) together with iron oxide nanoparticles (IONPs) by using an amphiphilic block copolymer, poly (styrene-block-allyl alcohol) (PS(16)-b-PAA(10)), via a microemulsion method, obtaining an UC-IO@Polymer multi-functional nanocomposite system. Fluorescent dye and anti-cancer drug molecules can be further loaded inside the UC-IO@Polymer nanocomposite for additional functionalities. Utilizing the Squaraine (SQ) dye loaded nanocomposite (UC-IO@Polymer-SQ), triple-modal upconversion luminescence (UCL)/down-conversion fluorescence (FL)/magnetic resonance (MR) imaging is demonstrated in vitro and in vivo, and also applied for in vivo cancer cell tracking in mice. On the other hand, a chemotherapy drug, doxorubicin, is also loaded into the nanocomposite, forming an UC-IO@Polymer-DOX complex, which enables novel imaging-guided and magnetic targeted drug delivery. Our work provides a method to fabricate a nanocomposite system with highly integrated functionalities for multimodal biomedical imaging and cancer therapy.

  18. Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy.

    PubMed

    Dilnawaz, Fahima; Singh, Abhalaxmi; Mohanty, Chandana; Sahoo, Sanjeeb K

    2010-05-01

    The primary inadequacy of chemotherapeutic drugs is their relative non-specificity and potential side effects to the healthy tissues. To overcome this, drug loaded multifunctional magnetic nanoparticles are conceptualized. We report here an aqueous based formulation of glycerol monooleate coated magnetic nanoparticles (GMO-MNPs) devoid of any surfactant capable of carrying high payload hydrophobic anticancer drugs. The biocompatibility was confirmed by tumor necrosis factor alpha assay, confocal microscopy. High entrapment efficiency approximately 95% and sustained release of encapsulated drugs for more than two weeks under in vitro conditions was achieved for different anticancer drugs (paclitaxel, rapamycin, alone or combination). Drug loaded GMO-MNPs did not affect the magnetization properties of the iron oxide core as confirmed by magnetization study. Additionally the MNPs were functionalized with carboxylic groups by coating with DMSA (Dimercaptosuccinic acid) for the supplementary conjugation of amines. For targeted therapy, HER2 antibody was conjugated to GMO-MNPs and showed enhanced uptake in human breast carcinoma cell line (MCF-7). The IC(50) doses revealed potential antiproliferative effect in MCF-7. Therefore, antibody conjugated GMO-MNPs could be used as potential drug carrier for the active therapeutic aspects in cancer therapy.

  19. Nitric oxide pretreatment enhances atheroma component highlighting in vivo with intercellular adhesion molecule-1-targeted echogenic liposomes.

    PubMed

    Kee, Patrick H; Kim, Hyunggun; Huang, Shaoling; Laing, Susan T; Moody, Melanie R; Vela, Deborah; Klegerman, Melvin E; McPherson, David D

    2014-06-01

    We present an ultrasound technique for the detection of inflammatory changes in developing atheromas. We used contrast-enhanced ultrasound imaging with (i) microbubbles targeted to intercellular adhesion molecule-1 (ICAM-1), a molecule of adhesion involved in inflammatory processes in lesions of atheromas in New Zealand White rabbits, and (ii) pretreatment with nitric oxide-loaded microbubbles and ultrasound activation at the site of the endothelium to enhance the permeability of the arterial wall and the penetration of ICAM-1-targeted microbubbles. This procedure increases acoustic enhancement 1.2-fold. Pretreatment with nitric oxide-loaded echogenic liposomes and ultrasound activation can potentially facilitate the subsequent penetration of targeted echogenic liposomes into the arterial wall, thus allowing improved detection of inflammatory changes in developing atheromas.

  20. Contrasts in spatial and temporal variability of oxidative capacity and elemental composition in moxibustion, indoor and outdoor environments in Beijing.

    PubMed

    Huang, Jian; Lim, Min Yee; Hwang, Chaxi; Zhao, Baixiao; Shao, Longyi

    2015-07-01

    Moxibustion is a traditional Chinese medicine therapy that burns moxa floss which produces a substantial amount of PM10 into the environment, thus spawning safety concerns about health impacts of the smoke. We compared the oxidative capacity and elemental composition of moxibustion-derived and ambient PM10 in summer and winter to provide a source-, spatial- and temporal-comparison of PM10 biological responses. The PM10 oxidative capacity was 2.04 and 1.45 fold lower, and dose-dependent slope gradient was 2.36 and 1.76 fold lower in moxibustion environment than indoor or outdoor. Oxidative damage was highly correlated with iron, cesium, aluminum and cobalt in indoor, but moxibustion environment displayed low associations. The total elemental concentration was also lower in moxibustion environment than indoor (2.28 fold) or outdoor (2.79 fold). The source-to-dose modeling and slope gradient analysis in this study can be used as a model for future source-, spatial- and temporal-related moxibustion safety evaluation studies. PMID:25818086

  1. A new biomarker of protein oxidation degree and site using angiotensin as the target by MS

    NASA Astrophysics Data System (ADS)

    Tian, Yanmin; Liu, Rutao; Zong, Wansong; Sun, Feng; Wang, Meijie; Zhang, Pengjun

    2010-02-01

    Hydroxyl radicals generated from Fenton reaction were used to damage the angiotensin. The oxidative damage degree and sites of peptides were measured by HPLC-MS and MS/MS. Experimental results proved that the oxidative damage degree increased with longer reaction time. The results also showed that the side chains of phenylalanine and tyrosine in angiotension can be attacked by hydroxyl radicals to form the oxidative products. A new strategy was established to monitor the oxidative degree and sites of peptides and laid the foundation for protein oxidation. This method can be used to investigate the mechanism of protein oxidative damage caused by oxidative stress which is induced by environmental pollutants and physiological activities. There will also be a wide application in the research of pathogenesis of some disease related to oxidative stress.

  2. Oxidative targets in the stratum corneum. A new basis for antioxidative strategies.

    PubMed

    Thiele, J J

    2001-01-01

    As the outermost layer of skin, the stratum corneum (SC) is continuously exposed to an oxidative environment, including air pollutants, ultraviolet radiation, chemical oxidants, and aerobic microorganisms. Human SC reveals characteristic antioxidant and protein oxidation gradients with increasing antioxidant depletion and protein oxidation towards the outer layers. SC antioxidants, lipids, and proteins are oxidatively modified upon treatments with ultraviolet A/ultraviolet B, ozone, and benzoyl peroxide. alpha-Tocopherol represents the predominating SC antioxidant with respect to its concentration and its unique susceptibility to the various oxidative challenges tested. In sites rich in sebaceous glands, alpha-tocopherol is physiologically delivered to the surface via secretion of sebum. Oxidative damage in the human SC represents an early pathophysiological event preceding barrier disruption and inflammation in environmentally challenged skin. Furthermore, oxidative gradients in SC proteins may have implications for the process of desquamation in human skin.

  3. Glioma-targeted superparamagnetic iron oxide nanoparticles as drug-carrying vehicles for theranostic effects

    NASA Astrophysics Data System (ADS)

    Xu, He-Lin; Mao, Kai-Li; Huang, Yin-Ping; Yang, Jing-Jing; Xu, Jie; Chen, Pian-Pian; Fan, Zi-Liang; Zou, Shuang; Gao, Zheng-Zheng; Yin, Jia-Yu; Xiao, Jian; Lu, Cui-Tao; Zhang, Bao-Lin; Zhao, Ying-Zheng

    2016-07-01

    Multifunctional nanoparticles capable of the specific delivery of therapeutics to diseased cells and the real-time imaging of these sites have the potential to improve cancer treatment through personalized therapy. In this study, we have proposed a multifunctional nanoparticle that integrate magnetic targeting, drug-carrier functionality and real-time MRI imaging capabilities in one platform for the theranostic treatment of tumors. The multifunctional nanoparticle was designed with a superparamagnetic iron oxide core and a multifunctional shell composed of PEG/PEI/polysorbate 80 (Ps 80) and was used to encapsulate DOX. DOX-loaded multifunctional nanoparticles (DOX@Ps 80-SPIONs) with a Dh of 58.0 nm, a zeta potential of 28.0 mV, and a drug loading content of 29.3% presented superior superparamagnetic properties with a saturation magnetization (Ms) of 24.1 emu g-1. The cellular uptake of DOX@Ps 80-SPIONs by C6 cells under a magnetic field was significantly enhanced over that of free DOX in solution, resulting in stronger in vitro cytotoxicity. The real-time therapeutic outcome of DOX@Ps 80-SPIONs was easily monitored by MRI. Furthermore, the negative contrast enhancement effect of the nanoparticles was confirmed in glioma-bearing rats. Prussian blue staining and ex vivo DOX fluorescence assays showed that the magnetic Ps 80-SPIONs and encapsulated DOX were delivered to gliomas by imposing external magnetic fields, indicating effective magnetic targeting. Due to magnetic targeting and Ps 80-mediated endocytosis, DOX@Ps 80-SPIONs in the presence of a magnetic field led to the complete suppression of glioma growth in vivo at 28 days after treatment. The therapeutic mechanism of DOX@Ps 80-SPIONs acted by inducing apoptosis through the caspase-3 pathway. Finally, DOX@Ps 80-SPIONs' safety at therapeutic dosage was verified using pathological HE assays of the heart, liver, spleen, lung and kidney. Multifunctional SPIONs could be used as potential carriers for the

  4. Glioma-targeted superparamagnetic iron oxide nanoparticles as drug-carrying vehicles for theranostic effects

    NASA Astrophysics Data System (ADS)

    Xu, He-Lin; Mao, Kai-Li; Huang, Yin-Ping; Yang, Jing-Jing; Xu, Jie; Chen, Pian-Pian; Fan, Zi-Liang; Zou, Shuang; Gao, Zheng-Zheng; Yin, Jia-Yu; Xiao, Jian; Lu, Cui-Tao; Zhang, Bao-Lin; Zhao, Ying-Zheng

    2016-07-01

    Multifunctional nanoparticles capable of the specific delivery of therapeutics to diseased cells and the real-time imaging of these sites have the potential to improve cancer treatment through personalized therapy. In this study, we have proposed a multifunctional nanoparticle that integrate magnetic targeting, drug-carrier functionality and real-time MRI imaging capabilities in one platform for the theranostic treatment of tumors. The multifunctional nanoparticle was designed with a superparamagnetic iron oxide core and a multifunctional shell composed of PEG/PEI/polysorbate 80 (Ps 80) and was used to encapsulate DOX. DOX-loaded multifunctional nanoparticles (DOX@Ps 80-SPIONs) with a Dh of 58.0 nm, a zeta potential of 28.0 mV, and a drug loading content of 29.3% presented superior superparamagnetic properties with a saturation magnetization (Ms) of 24.1 emu g-1. The cellular uptake of DOX@Ps 80-SPIONs by C6 cells under a magnetic field was significantly enhanced over that of free DOX in solution, resulting in stronger in vitro cytotoxicity. The real-time therapeutic outcome of DOX@Ps 80-SPIONs was easily monitored by MRI. Furthermore, the negative contrast enhancement effect of the nanoparticles was confirmed in glioma-bearing rats. Prussian blue staining and ex vivo DOX fluorescence assays showed that the magnetic Ps 80-SPIONs and encapsulated DOX were delivered to gliomas by imposing external magnetic fields, indicating effective magnetic targeting. Due to magnetic targeting and Ps 80-mediated endocytosis, DOX@Ps 80-SPIONs in the presence of a magnetic field led to the complete suppression of glioma growth in vivo at 28 days after treatment. The therapeutic mechanism of DOX@Ps 80-SPIONs acted by inducing apoptosis through the caspase-3 pathway. Finally, DOX@Ps 80-SPIONs' safety at therapeutic dosage was verified using pathological HE assays of the heart, liver, spleen, lung and kidney. Multifunctional SPIONs could be used as potential carriers for the

  5. CRISPR-Cas9 Genome Editing of a Single Regulatory Element Nearly Abolishes Target Gene Expression in Mice

    PubMed Central

    Han, Yu; Slivano, Orazio J.; Christie, Christine K.; Cheng, Albert W.; Miano, Joseph M.

    2014-01-01

    Objective To ascertain the importance of a single regulatory element in the control of Cnn1 expression using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) genome editing. Approach and Results The CRISPR/Cas9 system was used to produce 3/18 founder mice carrying point mutations in an intronic CArG box of the smooth muscle cell (SMC)-restricted Cnn1 gene. Each founder was bred for germ line transmission of the mutant CArG box and littermate interbreeding to generate homozygous mutant (Cnn1ΔCArG/ΔCArG) mice. Quantitative RT-PCR, Western blotting, and confocal immunofluorescence microscopy showed dramatic reductions in Cnn1 mRNA and CNN1 protein expression in Cnn1ΔCArG/ΔCArG mice with no change in other SMC-restricted genes and little evidence of off-target edits elsewhere in the genome. In vivo chromatin immunoprecipitation assay revealed a sharp decrease in binding of SRF to the mutant CArG box. Loss of CNN1 expression was coincident with an increase in Ki-67 positive cells in the normal vessel wall. Conclusion CRISPR/Cas9 genome editing of a single CArG box nearly abolishes Cnn1 expression in vivo and evokes increases in SMC DNA synthesis. This facile genome editing system paves the way for a new generation of studies designed to test the importance of individual regulatory elements in living animals, including regulatory variants in conserved sequence blocks linked to human disease. PMID:25538209

  6. Electronic devices containing switchably conductive silicon oxides as a switching element and methods for production and use thereof

    DOEpatents

    Tour, James M.; Yao, Jun; Natelson, Douglas; Zhong, Lin; He, Tao

    2015-09-08

    In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the gap region between the first electrical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.

  7. Electronic devices containing switchably conductive silicon oxides as a switching element and methods for production and use thereof

    DOEpatents

    Tour, James M; Yao, Jun; Natelson, Douglas; Zhong, Lin; He, Tao

    2013-11-26

    In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the the gap region between the first electical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.

  8. Monitoring of cholesterol oxidation in a lipid bilayer membrane using streptolysin O as a sensing and signal transduction element.

    PubMed

    Shoji, Atsushi; Ikeya, Kana; Aoyagi, Miki; Takatsuji, Ryutaro; Yanagida, Akio; Shibusawa, Yoichi; Sugawara, Masao

    2016-09-01

    Streptolysin O (SLO), which recognizes sterols and forms nanopores in lipid membranes, is proposed as a sensing element for monitoring cholesterol oxidation in a lipid bilayer. The structural requirements of eight sterols for forming nanopores by SLO confirmed that a free 3-OH group in the β-configuration of sterols is required for recognition by SLO in a lipid bilayer. The extent of nanopore formation by SLO in lipid bilayers increased in the order of cholestanoloxidation of cholesterol in a lipid bilayer. The potential of the SLO nanopore-based method for monitoring cholesterol oxidation in a lipid bilayer by other oxidative enzymes is also discussed.

  9. The cyclic oxidation resistance at 1200 C of beta-NiAl, FeAl, and CoAl alloys with selected third element additions

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.; Titran, R. H.

    1992-01-01

    The intermetallic compounds Beta-NiAl, FeAl, and CoAl were tested in cyclic oxidation with selected third element alloy additions. Tests in static air for 200 1-hr cycles at 1200 C indicated by specific weight change/time data and x-ray diffraction analysis that the 5 at percent alloy additions did not significantly improve the oxidation resistance over the alumina forming baseline alloys without the additions. Many of the alloy additions were actually deleterious. Ta and Nb were the only alloy additions that actually altered the nature of the oxide(s) formed and still maintained the oxidation resistance of the protective alumina scale.

  10. On the Highest Oxidation States of Metal Elements in MO4 Molecules (M = Fe, Ru, Os, Hs, Sm, and Pu).

    PubMed

    Huang, Wei; Xu, Wen-Hua; Schwarz, W H E; Li, Jun

    2016-05-01

    Metal tetraoxygen molecules (MO4, M = Fe, Ru, Os, Hs, Sm, Pu) of all metal atoms M with eight valence electrons are theoretically studied using density functional and correlated wave function approaches. The heavier d-block elements Ru, Os, Hs are confirmed to form stable tetraoxides of Td symmetry in (1)A1 electronic states with empty metal d(0) valence shell and closed-shell O(2-) ligands, while the 3d-, 4f-, and 5f-elements Fe, Sm, and Pu prefer partial occupation of their valence shells and peroxide or superoxide ligands at lower symmetry structures with various spin couplings. The different geometric and electronic structures and chemical bonding types of the six iso-stoichiometric species are explained in terms of atomic orbital energies and orbital radii. The variations found here contribute to our general understanding of the periodic trends of oxidation states across the periodic table.

  11. On the Highest Oxidation States of Metal Elements in MO4 Molecules (M = Fe, Ru, Os, Hs, Sm, and Pu).

    PubMed

    Huang, Wei; Xu, Wen-Hua; Schwarz, W H E; Li, Jun

    2016-05-01

    Metal tetraoxygen molecules (MO4, M = Fe, Ru, Os, Hs, Sm, Pu) of all metal atoms M with eight valence electrons are theoretically studied using density functional and correlated wave function approaches. The heavier d-block elements Ru, Os, Hs are confirmed to form stable tetraoxides of Td symmetry in (1)A1 electronic states with empty metal d(0) valence shell and closed-shell O(2-) ligands, while the 3d-, 4f-, and 5f-elements Fe, Sm, and Pu prefer partial occupation of their valence shells and peroxide or superoxide ligands at lower symmetry structures with various spin couplings. The different geometric and electronic structures and chemical bonding types of the six iso-stoichiometric species are explained in terms of atomic orbital energies and orbital radii. The variations found here contribute to our general understanding of the periodic trends of oxidation states across the periodic table. PMID:27074099

  12. Palladium-Catalyzed Oxidative Sulfenylation of Indoles and Related Electron-Rich Heteroarenes with Aryl Boronic Acids and Elemental Sulfur.

    PubMed

    Li, Jianxiao; Li, Chunsheng; Yang, Shaorong; An, Yanni; Wu, Wanqing; Jiang, Huanfeng

    2016-09-01

    An efficient and convenient palladium-catalyzed C-H bond oxidative sulfenylation of indoles and related electron-rich heteroarenes with aryl boronic acids and elemental sulfur has been described. This procedure provides a useful and direct approach for the assembly of a wide range of structurally diverse 3-sulfenylheteroarenes with moderate to excellent yields from simple and readily available starting materials. Moreover, this synthetic protocol is suitable for N-protected and unprotected indoles. Notably, the construction of two C-S bonds in one step was also achieved in this transformation. PMID:27500941

  13. Ion-enhanced oxidation of aluminum as a fundamental surface process during target poisoning in reactive magnetron sputtering

    SciTech Connect

    Kuschel, Thomas; Keudell, Achim von

    2010-05-15

    Plasma deposition of aluminum oxide by reactive magnetron sputtering (RMS) using an aluminum target and argon and oxygen as working gases is an important technological process. The undesired oxidation of the target itself, however, causes the so-called target poisoning, which leads to strong hysteresis effects during RMS operation. The oxidation occurs by chemisorption of oxygen atoms and molecules with a simultaneous ion bombardment being present. This heterogenous surface reaction is studied in a quantified particle beam experiment employing beams of oxygen molecules and argon ions impinging onto an aluminum-coated quartz microbalance. The oxidation and/or sputtering rates are measured with this microbalance and the resulting oxide layers are analyzed by x-ray photoelectron spectroscopy. The sticking coefficient of oxygen molecules is determined to 0.015 in the zero coverage limit. The sputtering yields of pure aluminum by argon ions are determined to 0.4, 0.62, and 0.8 at 200, 300, and 400 eV. The variation in the effective sticking coefficient and sputtering yield during the combined impact of argon ions and oxygen molecules is modeled with a set of rate equations. A good agreement is achieved if one postulates an ion-induced surface activation process, which facilitates oxygen chemisorption. This process may be identified with knock-on implantation of surface-bonded oxygen, with an electric-field-driven in-diffusion of oxygen or with an ion-enhanced surface activation process. Based on these fundamental processes, a robust set of balance equations is proposed to describe target poisoning effects in RMS.

  14. Diversity-Oriented Synthesis Probe Targets Plasmodium falciparum Cytochrome b Ubiquinone Reduction Site and Synergizes With Oxidation Site Inhibitors

    PubMed Central

    Lukens, Amanda K.; Heidebrecht, Richard W.; Mulrooney, Carol; Beaudoin, Jennifer A.; Comer, Eamon; Duvall, Jeremy R.; Fitzgerald, Mark E.; Masi, Daniela; Galinsky, Kevin; Scherer, Christina A.; Palmer, Michelle; Munoz, Benito; Foley, Michael; Schreiber, Stuart L.; Wiegand, Roger C.; Wirth, Dyann F.

    2015-01-01

    Background. The emergence and spread of drug resistance to current antimalarial therapies remains a pressing concern, escalating the need for compounds that demonstrate novel modes of action. Diversity-Oriented Synthesis (DOS) libraries bridge the gap between conventional small molecule and natural product libraries, allowing the interrogation of more diverse chemical space in efforts to identify probes of novel parasite pathways. Methods. We screened and optimized a probe from a DOS library using whole-cell phenotypic assays. Resistance selection and whole-genome sequencing approaches were employed to identify the cellular target of the compounds. Results. We identified a novel macrocyclic inhibitor of Plasmodium falciparum with nanomolar potency and identified the reduction site of cytochrome b as its cellular target. Combination experiments with reduction and oxidation site inhibitors showed synergistic inhibition of the parasite. Conclusions. The cytochrome b oxidation center is a validated antimalarial target. We show that the reduction site of cytochrome b is also a druggable target. Our results demonstrating a synergistic relationship between oxidation and reduction site inhibitors suggests a future strategy for new combination therapies in the treatment of malaria. PMID:25336726

  15. Trace elements profile is associated with insulin resistance syndrome and oxidative damage in thyroid disorders: Manganese and selenium interest in Algerian participants with dysthyroidism.

    PubMed

    Maouche, Naima; Meskine, Djamila; Alamir, Barkahoum; Koceir, Elhadj-Ahmed

    2015-10-01

    The relationship between dysthyroidism and antioxidant trace elements (ATE) status is very subtle during oxidative stress (OS). This relationship is mediated by thyroid hormone (TH) disorder, insulin resistance syndrome (IRS) and inflammation. The aim of this study was to investigate ATE such as selenium (Se), manganese (Mn), zinc (Zn) and copper (Cu) status on thyroid dysfunction, and their interaction with antioxidant enzyme activities, mainly, superoxide dismutase (SOD) and glutathione peroxidase (GPx), TH profile (TSH, T(3), T(4)) and IRS clusters. The study was undertaken on 220 Algerian adults (30-50 years), including 157 women and 63 men who were divided to 4 groups: subclinical hypothyroidism (n = 50), overt hypothyroidism (n = 60), Graves's disease hyperthyroidism (n = 60) and euthyroid controls (n = 50). The IRS was confirmed according to NCEP (National Cholesterol Education Program). Insulin resistance was evaluated by HOMA-IR model. Trace elements were determined by the Flame Atomic Absorption Spectrometry (Flame-AAS) technique. The antioxidant enzymes activity and metabolic parameters were determined by biochemical methods. The TH profile and anti-Thyroperoxidase Antibodies (anti-TPO-Ab) were evaluated by radioimmunoassay. Results showed that the plasma manganese levels were significantly increased in all dysthyroidism groups (p ≤ 0.01). However, the plasma copper and zinc concentrations were maintained normal or not very disturbed vs control group. In contrast, the plasma selenium levels were highly decreased (p ≤ 0.001) and positively correlated with depletion of glutathione peroxidase activity; and associated both with anti-TPO-Ab overexpression and fulminant HS-CRP levels. This study confirms the oxidative stress-inflammation relationship in the dysthyroidism. The thyroid follicles antioxidant protection appears preserved in the cytosol (Cu/Zn-SOD), while it is altered in the mitochondria (Mn-SOD), which gives this cell organelle, a status of

  16. Trace elements profile is associated with insulin resistance syndrome and oxidative damage in thyroid disorders: Manganese and selenium interest in Algerian participants with dysthyroidism.

    PubMed

    Maouche, Naima; Meskine, Djamila; Alamir, Barkahoum; Koceir, Elhadj-Ahmed

    2015-10-01

    The relationship between dysthyroidism and antioxidant trace elements (ATE) status is very subtle during oxidative stress (OS). This relationship is mediated by thyroid hormone (TH) disorder, insulin resistance syndrome (IRS) and inflammation. The aim of this study was to investigate ATE such as selenium (Se), manganese (Mn), zinc (Zn) and copper (Cu) status on thyroid dysfunction, and their interaction with antioxidant enzyme activities, mainly, superoxide dismutase (SOD) and glutathione peroxidase (GPx), TH profile (TSH, T(3), T(4)) and IRS clusters. The study was undertaken on 220 Algerian adults (30-50 years), including 157 women and 63 men who were divided to 4 groups: subclinical hypothyroidism (n = 50), overt hypothyroidism (n = 60), Graves's disease hyperthyroidism (n = 60) and euthyroid controls (n = 50). The IRS was confirmed according to NCEP (National Cholesterol Education Program). Insulin resistance was evaluated by HOMA-IR model. Trace elements were determined by the Flame Atomic Absorption Spectrometry (Flame-AAS) technique. The antioxidant enzymes activity and metabolic parameters were determined by biochemical methods. The TH profile and anti-Thyroperoxidase Antibodies (anti-TPO-Ab) were evaluated by radioimmunoassay. Results showed that the plasma manganese levels were significantly increased in all dysthyroidism groups (p ≤ 0.01). However, the plasma copper and zinc concentrations were maintained normal or not very disturbed vs control group. In contrast, the plasma selenium levels were highly decreased (p ≤ 0.001) and positively correlated with depletion of glutathione peroxidase activity; and associated both with anti-TPO-Ab overexpression and fulminant HS-CRP levels. This study confirms the oxidative stress-inflammation relationship in the dysthyroidism. The thyroid follicles antioxidant protection appears preserved in the cytosol (Cu/Zn-SOD), while it is altered in the mitochondria (Mn-SOD), which gives this cell organelle, a status of

  17. Volatile-refractory element reactions and breakdown of refractory oxides under conditions of a giant impact

    NASA Astrophysics Data System (ADS)

    Tschauner, O. D.; Ma, C.

    2015-12-01

    Whereas much or most of the highly volatile elements reside in atmosphere and oceans, understanding the global budget of these elements requires knowledge about their abundance in the Earth's interior. One piece of this puzzle is the early history of the Earth where large impacts, notably giant impacts, provided conditions where both volatile and refractory elements were mixed on atomic scale in extremely hot dense fluids. Carbides and nitrides that have recently been found in mantle rock are possible remnants of such large scale dynamic pressure-temperature conditions. In particular carbides and nitrides of lithophile refractory elements like Zr, Hf, Nb, Ta may remain in the mantle for extended time and contribute to the mantle geochemical budget of these elements as well as that of C and N. In a first step towards testing such a hypothesis, we conducted a series of shock experiments. Deflagration of C-N-O-H compounds was triggered by shockwaves. The resulting reaction wave front propagated into aggregates of refractory minerals like zircon, baddeleyite, rutile. This fluid-solid mix was subjected to shock compression to shock pressures of 20-50 GPa and temperatures in the range of 0.5-1.104 K by means of reverberating shock. Recovered sample material was analyzed by synchrotron X-ray diffraction and by EPMA.

  18. The synergistic effect of folate and RGD dual ligand of nanographene oxide on tumor targeting and photothermal therapy in vivo

    NASA Astrophysics Data System (ADS)

    Jang, Cheol; Lee, Jong Hyun; Sahu, Abhishek; Tae, Giyoong

    2015-11-01

    Effective delivery of nanoparticles to the target site is necessary for successful biomedical applications. Inefficient targeting is a major concern for nanomedicines in cancer therapy. Conjugation of multiple targeting ligands to the nanoparticle surface might further enhance the targeting efficiency by a co-operative effect of individual ligands. In this study, a dual ligand targeting nanographene oxide (nGO) was developed by non-covalent interaction with folate and cRGD functionalized pluronic, which allowed precise control of ligand number on the nGO surface and ensured stability under physiological conditions. The tumor targeting abilities of single and dual ligand decorated nGOs were evaluated in vitro by using KB cells, over-expressing folate and integrin αvβ3 receptors. In vitro cellular uptake analysis by flow cytometry and confocal laser scanning microscopy showed enhanced uptake of dual ligand modified nGO compared to any of the single ligand modified nGOs. The cellular uptake of dual targeted cRGD-FA-nGO was increased by 1.9 and 2.4 folds compared to single targeted cRGD-nGO or FA-nGO, respectively. The in vivo biodistribution experiment in a mouse xenograft model also confirmed the synergistic targeting effect of cRGD and folate dual functionalized nGO. A significantly higher tumor accumulation of cRGD-FA-nGO was observed compared to cRGD-nGO or FA-nGO. The higher tumor accumulation of dual targeted nGO resulted in complete ablation of tumor tissue through an enhanced photothermal effect by NIR laser irradiation. Therefore, co-functionalization of a nanoparticle by cRGD and folate is a potentially useful way to enhance the tumor targeting efficacy.Effective delivery of nanoparticles to the target site is necessary for successful biomedical applications. Inefficient targeting is a major concern for nanomedicines in cancer therapy. Conjugation of multiple targeting ligands to the nanoparticle surface might further enhance the targeting efficiency by a

  19. Tumor Cell Targeting by Iron Oxide Nanoparticles Is Dominated by Different Factors In Vitro versus In Vivo

    PubMed Central

    NDong, Christian; Tate, Jennifer A.; Kett, Warren C.; Batra, Jaya; Demidenko, Eugene; Lewis, Lionel D.; Hoopes, P. Jack; Gerngross, Tillman U.; Griswold, Karl E.

    2015-01-01

    Realizing the full potential of iron oxide nanoparticles (IONP) for cancer diagnosis and therapy requires selective tumor cell accumulation. Here, we report a systematic analysis of two key determinants for IONP homing to human breast cancers: (i) particle size and (ii) active vs passive targeting. In vitro, molecular targeting to the HER2 receptor was the dominant factor driving cancer cell association. In contrast, size was found to be the key determinant of tumor accumulation in vivo, where molecular targeting increased tumor tissue concentrations for 30 nm but not 100 nm IONP. Similar to the in vitro results, PEGylation did not influence in vivo IONP biodistribution. Thus, the results reported here indicate that the in vitro advantages of molecular targeting may not consistently extend to pre-clinical in vivo settings. These observations may have important implications for the design and clinical translation of advanced, multifunctional, IONP platforms. PMID:25695795

  20. Proceedings of transuranium elements

    SciTech Connect

    Not Available

    1992-01-01

    The identification of the first synthetic elements was established by chemical evidence. Conclusive proof of the synthesis of the first artificial element, technetium, was published in 1937 by Perrier and Segre. An essential aspect of their achievement was the prediction of the chemical properties of element 43, which had been missing from the periodic table and which was expected to have properties similar to those of manganese and rhenium. The discovery of other artificial elements, astatine and francium, was facilitated in 1939-1940 by the prediction of their chemical properties. A little more than 50 years ago, in the spring of 1940, Edwin McMillan and Philip Abelson synthesized element 93, neptunium, and confirmed its uniqueness by chemical means. On August 30, 1940, Glenn Seaborg, Arthur Wahl, and the late Joseph Kennedy began their neutron irradiations of uranium nitrate hexahydrate. A few months later they synthesized element 94, later named plutonium, by observing the alpha particles emitted from uranium oxide targets that had been bombarded with deuterons. Shortly thereafter they proved that is was the second transuranium element by establishing its unique oxidation-reduction behavior. The symposium honored the scientists and engineers whose vision and dedication led to the discovery of the transuranium elements and to the understanding of the influence of 5f electrons on their electronic structure and bonding. This volume represents a record of papers presented at the symposium.

  1. Synthesis of heterometallic compounds with uncommon combinations of elements for oxide nanomaterials using organometallics.

    PubMed

    John, Łukasz; Sobota, Piotr

    2014-02-18

    Oxide nanomaterials with interesting electronic and magnetic properties have applications including superconductors, magnetic core materials, high-frequency devices, and gas sensors. They can also serve as efficient oxide lattices for luminescent ions. Highly phase-pure BaHfO3 nanopowders are extremely desirable as matrices for luminescent doping, and barium hafnate is an attractive host lattice for new X-ray phosphors, which are much more effective than the phosphors currently used in radiology and computed tomography. This wide range of applications creates a strong impetus for novel and inexpensive methods for their synthesis. Classically, mixed-cation oxide ceramics are synthesized according to conventional solid-state reactions involving oxides, carbonates, or nitrates at relatively high temperatures (∼1500 °C). These procedures are inefficient and often lead to inhomogeneous by-products and poor control over the stoichiometry and phase purity. Among the new preparation techniques are those involving metal alkoxides and aryloxides with strictly defined metal stoichiometries at the molecular level. In this Account, we describe several structurally interesting heterometallic alkoxoorganometallic compounds prepared via reactions of organometallic compounds (MMe3 where M = Al, In, Ga) with group 2 alkoxides having additional protonated hydroxyl group(s) in the alcohol molecule present in the metal coordination sphere. Using lower temperatures than in the conventional solid-state thermal routes involving carbonate/oxide mixtures, we can easily transform these new complexes, with rarely found combinations of metallic precursors (Ba/In, Sr/Al, and Ba/Ga), into highly pure binary oxide materials that can be used, in a similar manner to perovskites and spinels, as host matrices for various lanthanide ions. Furthermore, our studies on titanium, zirconium, and hafnium metallocenes showed them to be attractive and cheap precursors for an extensive range of novel

  2. Intracellular repair of oxidation-damaged α-synuclein fails to target C-terminal modification sites

    PubMed Central

    Binolfi, Andres; Limatola, Antonio; Verzini, Silvia; Kosten, Jonas; Theillet, Francois-Xavier; May Rose, Honor; Bekei, Beata; Stuiver, Marchel; van Rossum, Marleen; Selenko, Philipp

    2016-01-01

    Cellular oxidative stress serves as a common denominator in many neurodegenerative disorders, including Parkinson's disease. Here we use in-cell NMR spectroscopy to study the fate of the oxidation-damaged Parkinson's disease protein alpha-synuclein (α-Syn) in non-neuronal and neuronal mammalian cells. Specifically, we deliver methionine-oxidized, isotope-enriched α-Syn into cultured cells and follow intracellular protein repair by endogenous enzymes at atomic resolution. We show that N-terminal α-Syn methionines Met1 and Met5 are processed in a stepwise manner, with Met5 being exclusively repaired before Met1. By contrast, C-terminal methionines Met116 and Met127 remain oxidized and are not targeted by cellular enzymes. In turn, persisting oxidative damage in the C-terminus of α-Syn diminishes phosphorylation of Tyr125 by Fyn kinase, which ablates the necessary priming event for Ser129 modification by CK1. These results establish that oxidative stress can lead to the accumulation of chemically and functionally altered α-Syn in cells. PMID:26807843

  3. Effects of shock waves on oxidative stress and some trace element levels of rat liver and diaphragm muscles.

    PubMed

    Gecit, İlhan; Kavak, Servet; Meral, Ismail; Güneş, Mustafa; Pirinççi, Necip; Sayir, Fuat; Demir, Halit; Ceylan, Kadir

    2012-06-01

    This study was designed to investigate whether the short-term extracorporeal shockwave lithotripsy (ESWL) exposure to kidney produces an oxidative stress and a change in some trace element levels in liver and diaphragm muscles of rats. Twelve male Wistar albino rats were divided randomly into two groups, each consisting of six rats. The animals in the first group did not receive any treatment and served as control group. The right-side kidneys of animals in group 2 were treated with two-thousand 18 kV shock waves while anesthetized with 50 mg kg(-1) ketamine. The localization of the right kidney was achieved after contrast medium injection through a tail vein under fluoroscopy control. The animals were killed 72 h after the ESWL treatment, and liver and diaphragm muscles were harvested for the determination of tissue oxidative stress and trace element levels. Although the malondialdehyde level increased, superoxide dismutase and glutathione peroxidase enzyme activities decreased in the livers and diaphragm muscles of ESWL-treated rats. Although glutathione level increased in liver, it decreased in diaphragm muscles of ESWL-treated animals. Fe, Mg and Mn levels decreased, and Cu and Pb levels increased in the livers of ESWL-treated animals. Fe and Cu levels increased, and Mg, Pb, Mn and Zn levels decreased in the diaphragm muscles of ESWL-treated animals. It also causes a decrease or increase in many mineral levels in liver and diaphragm muscles, which is an undesirable condition for the normal physiological function of tissues.

  4. Nitric oxide as a target of complementary and alternative medicines to prevent and treat inflammation and cancer

    PubMed Central

    Hofseth, Lorne J.

    2009-01-01

    Nitric oxide (NO) and associated reactive nitrogen species (RNS) are involved in many physiological functions. There has been an ongoing debate to whether RNS can inhibit or perpetuate chronic inflammation and associated carcinogenesis. Although the final outcome depends on the genetic make-up of its target, the surrounding microenvironment, the activity and localization of nitric oxide synthase (NOS) isoforms, and overall levels of NO/RNS, evidence is accumulating that in general, RNS drive inflammation and cancers associated with inflammation. To this end, many complementary and alternative medicines (CAMs) that work in chemoprevention associated with chronic inflammation, are inhibitors of excessive NO observed in inflammatory conditions. Here we review recent literature outlining a role of NO/RNS in chronic inflammation and cancer, and point toward NO as one of several targets for the success of CAMs in treating chronic inflammation and cancer associated with this inflammation. PMID:18440130

  5. Cardiac-Oxidized Antigens Are Targets of Immune Recognition by Antibodies and Potential Molecular Determinants in Chagas Disease Pathogenesis

    PubMed Central

    Dhiman, Monisha; Zago, Maria Paola; Nunez, Sonia; Amoroso, Alejandro; Rementeria, Hugo; Dousset, Pierre; Burgos, Federico Nunez; Garg, Nisha Jain

    2012-01-01

    Trypanosoma cruzi elicits reactive oxygen species (ROS) of inflammatory and mitochondrial origin in infected hosts. In this study, we examined ROS-induced oxidative modifications in the heart and determined whether the resultant oxidized cardiac proteins are targets of immune response and of pathological significance in Chagas disease. Heart biopsies from chagasic mice, rats and human patients exhibited, when compared to those from normal controls, a substantial increase in protein 4-hydroxynonenal (4-HNE), malondialdehyde (MDA), carbonyl, and 3-nitrotyrosine (3-NT) adducts. To evaluate whether oxidized proteins gain antigenic properties, heart homogenates or isolated cardiomyocytes were oxidized in vitro and one- or two-dimensional gel electrophoresis (2D-GE)/Western blotting (WB) was performed to investigate the proteomic oxidative changes and recognition of oxidized proteins by sera antibodies in chagasic rodents (mice, rats) and human patients. Human cardiomyocytes exhibited LD50 sensitivity to 30 µM 4-HNE and 100 µM H2O2 at 6 h and 12 h, respectively. In vitro oxidation with 4-HNE or H2O2 resulted in a substantial increase in 4-HNE- and carbonyl-modified proteins that correlated with increased recognition of cardiac (cardiomyocytes) proteins by sera antibodies of chagasic rodents and human patients. 2D-GE/Western blotting followed by MALDI-TOF-MS/MS analysis to identify cardiac proteins that were oxidized and recognized by human chagasic sera yielded 82 unique proteins. We validated the 2D-GE results by enzyme-linked immunosorbent assay (ELISA) and WB and demonstrated that oxidation of recombinant titin enhanced its immunogenicity and recognition by sera antibodies from chagasic hosts (rats and humans). Treatment of infected rats with phenyl-α-tert-butyl nitrone (PBN, antioxidant) resulted in normalized immune detection of cardiac proteins associated with control of cardiac pathology and preservation of heart contractile function in chagasic rats. We

  6. Oxidation of elemental mercury by chlorine: Gas phase, Surface,and Photo-induced reaction pathways

    SciTech Connect

    Yan, Nai-Qiang; Liu, Shou-Heng; Chang, Shih-Ger

    2004-10-22

    Accurate oxidation rate constants of mercury gas are needed for determining its dispersion and lifetime in the atmosphere. They would also help in developing a technology for the control of mercury emissions from coal-fired power plants. However, it is difficult to establish the accurate rate constants primarily due to the fact that mercury easily adsorbs on solid surface and its reactions can be catalyzed by the surface. We have demonstrated a procedure that allows the determination of gas phase, surface-induced, and photo-induced contributions in the kinetic study of the oxidation of mercury by chlorine gas. The kinetics was studied using reactors with various surface to volume ratios. The effect of the surface and the photo irradiation on the reaction was taken into consideration. The pressure dependent study revealed that the gas phase oxidation was a three-body collision process. The third order rate constant was determined to be 7.5({+-}0.2) x 10{sup -39} mL{sup 2} molecules{sup -2}s{sup -1} with N{sub 2} as the third body at 297 {+-} 1 K. The surface induced reaction on quartz window was second order and the rate constant was 2.7 x 10{sup -17} mL{sup 2} molecules{sup -1} cm{sup -2} sec. Meanwhile, the 253.7 nm photon employed for mercury detection was found to accelerate the reaction. The utilization efficiency of 253.7 nm photon for Hg{sup 0} oxidation was 6.7 x 10{sup -4} molecules photon{sup -1} under the conditions employed in this study.

  7. Can the Isolated-Elements Strategy Be Improved by Targeting Points of High Cognitive Load for Additional Practice?

    ERIC Educational Resources Information Center

    Ayres, Paul

    2013-01-01

    Reducing problem complexity by isolating elements has been shown to be an effective instructional strategy. Novices, in particular, benefit from learning from worked examples that contain partially interacting elements rather than worked examples that provide full interacting elements. This study investigated whether the isolating-elements…

  8. Multiplet splitting for the XPS of heavy elements: Dependence on oxidation state

    NASA Astrophysics Data System (ADS)

    Bagus, Paul S.; Nelin, Connie J.; Al-Salik, Yahya; Ilton, Eugene S.; Idriss, Hicham

    2016-01-01

    Multiplet splittings in X-ray Photo-electron Spectroscopy, XPS, are a means of distinguishing different open shell occupations, or different oxidation states, in a material being studied. Indeed, especially for 3d transition metal complexes, they have provided fingerprints of the metal oxidation state. The present work provides theoretical and experimental evidence that it may also be possible to use multiplets to characterize the oxidation state of heavy metal, lanthanide and actinide, cations in complexes. However, it is important to make a proper choice of the XPS region to study in order to obtain large multiplet splittings. We identify a low binding energy, BE, peak that had been observed for Ce(III) in CeOx as a high spin coupled multiplet. Furthermore, we show that a low BE feature with reasonable intensity is characteristic of other XPS regions and of other metals. This feature arises from a high spin multiplet and serves as a fingerprint to distinguish closed shell from open shell cations. Evidence is presented that it may also be possible to distinguish different open shell occupations.

  9. Mechanism Profiling of Hepatotoxicity Caused by Oxidative Stress Using Antioxidant Response Element Reporter Gene Assay Models and Big Data

    PubMed Central

    Kim, Marlene Thai; Huang, Ruili; Sedykh, Alexander; Wang, Wenyi; Xia, Menghang; Zhu, Hao

    2015-01-01

    Background: Hepatotoxicity accounts for a substantial number of drugs being withdrawn from the market. Using traditional animal models to detect hepatotoxicity is expensive and time-consuming. Alternative in vitro methods, in particular cell-based high-throughput screening (HTS) studies, have provided the research community with a large amount of data from toxicity assays. Among the various assays used to screen potential toxicants is the antioxidant response element beta lactamase reporter gene assay (ARE-bla), which identifies chemicals that have the potential to induce oxidative stress and was used to test > 10,000 compounds from the Tox21 program. Objective: The ARE-bla computational model and HTS data from a big data source (PubChem) were used to profile environmental and pharmaceutical compounds with hepatotoxicity data. Methods: Quantitative structure–activity relationship (QSAR) models were developed based on ARE-bla data. The models predicted the potential oxidative stress response for known liver toxicants when no ARE-bla data were available. Liver toxicants were used as probe compounds to search PubChem Bioassay and generate a response profile, which contained thousands of bioassays (> 10 million data points). By ranking the in vitro–in vivo correlations (IVIVCs), the most relevant bioassay(s) related to hepatotoxicity were identified. Results: The liver toxicants profile contained the ARE-bla and relevant PubChem assays. Potential toxicophores for well-known toxicants were created by identifying chemical features that existed only in compounds with high IVIVCs. Conclusion: Profiling chemical IVIVCs created an opportunity to fully explore the source-to-outcome continuum of modern experimental toxicology using cheminformatics approaches and big data sources. Citation: Kim MT, Huang R, Sedykh A, Wang W, Xia M, Zhu H. 2016. Mechanism profiling of hepatotoxicity caused by oxidative stress using antioxidant response element reporter gene assay models and

  10. Lung endothelial HO-1 targeting in vivo using lentiviral miRNA regulates apoptosis and autophagy during oxidant injury

    PubMed Central

    Zhang, Yi; Jiang, Ge; Sauler, Maor; Lee, Patty J.

    2013-01-01

    The lung endothelium is a major target for inflammatory and oxidative stress. Heme oxygenase-1 (HO-1) induction is a crucial defense mechanism during oxidant challenges, such as hyperoxia. The role of lung endothelial HO-1during hyperoxia in vivo is not well defined. We engineered lentiviral vectors with microRNA (miRNA) sequences controlled by vascular endothelium cadherin (VE-cad) to study the specific role of lung endothelial HO-1. Wild-type (WT) murine lung endothelial cells (MLECs) or WT mice were treated with lentivirus and exposed to hyperoxia (95% oxygen). We detected HO-1 knockdown (∼55%) specifically in the lung endothelium. MLECs and lungs showed approximately a 2-fold increase in apoptosis and ROS generation after HO-1 silencing. We also demonstrate for the first time that silencing endothelial HO-1 has the same effect on lung injury and survival as silencing HO-1 in multiple lung cell types and that HO-1 regulates caspase 3 activation and autophagy in endothelium during hyperoxia. These studies demonstrate the utility of endothelial-targeted gene silencing in vivo using lentiviral miRNA constructs to assess gene function and that endothelial HO-1 is an important determinant of survival during hyperoxia.—Zhang, Y., Jiang, G., Sauler, M., Lee, P. J. Lung endothelial HO-1 targeting in vivo using lentiviral miRNA regulates apoptosis and autophagy during oxidant injury. PMID:23771928

  11. Synthesis and f-element ligation properties of NCMPO-decorated pyridine N-oxide platforms

    SciTech Connect

    Ouizem, Sabrina; Rosario-Amorin, Daniel; Dickie, D. A.; Paine, Robert T.; De Bettencourt-Dias, Ana; Hay, Benjamin; Podair, Julien; Delmau, Laetitia Helene

    2014-01-01

    Stepwise syntheses of 2-{[2-(diphenylphosphoryl)acetamido]methyl}pyridine 1-oxide, 2-[Ph2P(O)CH2C(O)N(H)CH2]C5H4NO (6), 2-{[2-(diphenylphosphoryl)acetamido]methyl}-6-[(diphenylphosphoryl)methyl]pyridine 1-oxide, 2-[Ph2P(O)CH2C(O)N(H)CH2]-6-[Ph2P(O)CH2]C5H3NO (7) and 2,6-bis{[2-(diphenylphosphoryl)acetamido]methyl}pyridine 1-oxide, 2,6-[Ph2P(O)CH2C(O)N(H)CH2]2C5H3NO (8), are reported along with spectroscopic characterization data and single crystal X-ray diffraction structure determination for 6 2H2O, 7 and 2,6-[Ph2P(O)CH2C(O)N(H)CH2]2C5H3N MeOH 18 MeOH, the pyridine precursor of 8. Molecular mechanics computations indicate that 6, 7 and 8 should experience minimal steric hindrance to donor group reorganization that would permit tridentate, tetradentate and pentadentate docking structures for the respective ligands on lanthanide cations. However, crystal structure determination for the lanthanide complexes, {[Yb(6)(NO3)3] (MeOH)}n, {[Lu(6)(NO3)3] (MeOH)}n, [Er(6)2(H2O)2](NO3)3 (H2O)4}n, {[La(13)(NO3)3(MeOH)] (MeOH)}n, {[Eu(7)(NO3)2(EtOAc)0.5(H2O)0.5](NO3)}2 MeOH and [Dy3(7)4(NO3)4(H2O)2](NO3)5 (MeOH)5 (H2O)2 reveal solid-state structures with mixed chelating/bridging ligand:Ln(III) interactions that employ lower than the maximal denticity. The binding of 6 and 7 with Eu(III) in the solid state and in MeOH solutions is also accessed by emission spectroscopy. The acid dependence for solvent extractions with 6 and 7 in 1,2-dichloroethane for Eu(III) and Am(III) in nitric acid solutions is described and compared with the behavior of n-octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (OPhDiBCMPO, 1b) and 2-[(diphenyl)phosphinoylmethyl]pyridine N-oxide (DPhNOPO, 4a).

  12. Trace element and isotope studies in oxide/phosphate/silicate inclusions of iron meteorites

    NASA Technical Reports Server (NTRS)

    Olsen, Edward J.

    1996-01-01

    Under the above grant research was funded in the following areas: 1. Pallasites: Rare earth element measurements in phosphates to determine if all pallasites fit into only two trace element groups. This work has been completed. 2. HIAB irons: To complete work on the only known silicate inclusion in a IIIAB iron meteorite. This work has been completed. 3. IIIAB irons: To continue the search for Cr-53 excesses in IIIAB iron meteorite phosphates. A part of this work has been completed 4. IIIAB irons: To complete the identification of the phosphate minerals in IIIAB iron meteorites and try to determine the phase relations and chemical history of trace element distributions during the core formation process. Work on this has been largely completed and preliminary results have been reported. The final work is being assessed prior to preparation of a manuscript for publication. 5. IIE irons: To complete work on the unique silicate assemblage in the IIE iron meteorite. Work on this was completed and a paper published. 6. Ungrouped irons: A partially devitrified silicate glass inclusion has been found in the ungrouped iron meteorite. Preliminary work on this has been reported. All the work on this has been now completed and a manuscript has been prepared and submitted for publication.

  13. Modular elements of the TPR domain in the Mps1 N terminus differentially target Mps1 to the centrosome and kinetochore.

    PubMed

    Marquardt, Joseph R; Perkins, Jennifer L; Beuoy, Kyle J; Fisk, Harold A

    2016-07-12

    Faithful segregation of chromosomes to two daughter cells is regulated by the formation of a bipolar mitotic spindle and the spindle assembly checkpoint, ensuring proper spindle function. Here we show that the proper localization of the kinase Mps1 (monopolar spindle 1) is critical to both these processes. Separate elements in the Mps1 N-terminal extension (NTE) and tetratricopeptide repeat (TPR) domains govern localization to either the kinetochore or the centrosome. The third TPR (TPR3) and the TPR-capping helix (C-helix) are each sufficient to target Mps1 to the centrosome. TPR3 binds to voltage-dependent anion channel 3, but although this is sufficient for centrosome targeting of Mps1, it is not necessary because of the presence of the C-helix. A version of Mps1 lacking both elements cannot localize to or function at the centrosome, but maintains kinetochore localization and spindle assembly checkpoint function, indicating that TPR3 and the C-helix define a bipartite localization determinant that is both necessary and sufficient to target Mps1 to the centrosome but dispensable for kinetochore targeting. In contrast, elements required for kinetochore targeting (the NTE and first two TPRs) are dispensable for centrosomal localization and function. These data are consistent with a separation of Mps1 function based on localization determinants within the N terminus.

  14. Magnetic Targeting of Novel Heparinized Iron Oxide Nanoparticles Evaluated in a 9L-glioma mouse model

    PubMed Central

    Zhang, Jian; Shin, Meong Cheol; Yang, Victor C.

    2013-01-01

    Purpose A novel PEGylated and heparinized magnetic iron oxide nano-platform (DNPH) was synthesized for simultaneous magnetic resonance imaging (MRI) and tumor targeting. Methods Starch-coated magnetic iron oxide nanoparticles (“D”) were crosslinked, aminated (DN) and then simultaneously PEGylated and heparinized with different feed ratios of PEG and heparin (DNPH1-4). DNPH products were characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and superconducting quantum interference device (SQUID). The magentic targeting of DNPH3, with appropriate amounts of conjugated PEG and heparin, in a mouse 9L-glioma subcutaneous tumor model was confirmed by magnetic resonance imaging (MRI)/electron spin resonance (ESR). Results DNPH3 showed long circulating properties in vivo (half-life > 8 h, more than 60-fold longer than that of parent D) and low reticuloendothelial system (RES) recognition in liver and spleen. Protamine, a model cationic protein, was efficiently loaded onto DNPH3 with a maxium loading content of 26.4 μg/mg Fe. Magnetic capture of DNPH3 in tumor site with optimized conditions (I.D. of 12 mg/kg, targeting time of 45 min) was up to 29.42 μg Fe/g tissue (12.26% I.D./g tissue). Conclusion DNPH3 showed the potential to be used as a platform for cationic proteins for simultaneous tumor targeting and imaging. PMID:24065589

  15. Superparamagnetic iron oxide nanoparticles for MR imaging of pancreatic cancer: Potential for early diagnosis through targeted strategies.

    PubMed

    Zhang, Chongjie; Yan, Yuzhong; Zou, Qi; Chen, Jie; Li, Chunsheng

    2016-03-01

    Superparamagnetic iron oxide nanoparticles (SPION)-based magnetic resonance imaging is a powerful, noninvasive tool in biomedical imaging. The recent embedding of SPIO in nanoencapsulations that had different controllable surface properties has now made it possible to use SPIO in the imaging of metabolic processes. The two major issues to realize maximized and selective SPIO cancer targeting are the minimization of macrophage uptake and the preferential binding to cancerous cells over healthy neighbor cells. The utility of SPIO has been shown in clinical applications using a series of marketed SPION-based contrast agents. Applications have ranged from detecting inflammatory diseases to the specific identification of cell surface markers expressed on tumors. This review focuses on iron-oxide-based nanoparticles, to include the physiochemical properties of SPION surface engineering and its synthetic methods as well as SPIO imaging applications and specifically targeted SPIO conjugates (e.g. targeted probes) for labeling cancerous, cell-surface molecules. As a specific application of this technology, we discuss its use in the imaging of pancreatic duct adenocarcinoma in addition to its potential for use in early diagnosis through targeted strategies. PMID:26663873

  16. Analysis of cellular responses of macrophages to zinc ions and zinc oxide nanoparticles: a combined targeted and proteomic approach

    NASA Astrophysics Data System (ADS)

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Gerdil, Adèle; Diemer, Hélène; Proamer, Fabienne; Collin-Faure, Véronique; Habert, Aurélie; Strub, Jean-Marc; Hanau, Daniel; Herlin, Nathalie; Carrière, Marie; van Dorsselaer, Alain; Rabilloud, Thierry

    2014-05-01

    Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate catabolism and proteasome are critical determinants of sensitivity to zinc, which also induces DNA damage. Conversely, glutathione levels and phagocytosis appear unaffected at moderately toxic zinc concentrations.Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate

  17. Photoexcited Individual Nanowires: Key Elements in Room Temperature Detection of Oxidizing Gases

    SciTech Connect

    Prades, J. D.; Jimenez-Diaz, R.; Manzanares, M.; Andreu, T.; Cirera, A.; Romano-Rodriguez, A.; Morante, J. R.

    2009-05-23

    Illuminating metal oxide semiconductors with ultra-violet light is a feasible alternative to activate chemical reactions at their surface and thus, using them as gas sensors without the necessity of heating them. Here, the response at room temperature of individual single-crystalline SnO{sub 2} nanowires towards NO{sub 2} is studied in detail. The results reveal that similar responses to those obtained with thermally activated sensors can be achieved by choosing the optimal illumination conditions. This finding paves the way to the development of conductometric gas sensors operated at room temperature. The power consumption in these devices is in range with conventional micromachined sensors.

  18. Melanin as a target for melanoma chemotherapy: pro-oxidant effect of oxygen and metals on melanoma viability.

    PubMed

    Farmer, Patrick J; Gidanian, Shirley; Shahandeh, Babbak; Di Bilio, Angel J; Tohidian, Nilou; Meyskens, Frank L

    2003-06-01

    Melanoma cells have a poor ability to mediate oxidative stress, which may be attributed to constitutive abnormalities in their melanosomes. We hypothesize that disorganization of the melanosomes will allow chemical targeting of the melanin within. Chemical studies show that under oxidative conditions, synthetic melanins demonstrate increased metal affinity and a susceptibility to redox cycling with oxygen to form reactive oxygen species. The electron paramagnetic resonance (EPR)-active 5,5'-dimethyl-pyrollidine N-oxide spin adduct was used to show that binding of divalent Zn or Cu to melanin induces a pro-oxidant response under oxygen, generating superoxide and hydroxyl radicals. A similar pro-oxidant behaviour is seen in melanoma cell lines under external peroxide stress. Melanoma cultures grown under 95% O2/5% CO2 atmospheres show markedly reduced viability as compared with normal melanocytes. Cu- and Zn-dithiocarbamate complexes, which induce passive uptake of the metal ions into cells, show significant antimelanoma activity. The antimelanoma effect of metal- and oxygen-induced stress appears additive rather than synergistic; both treatments are shown to be significantly less toxic to melanocytes.

  19. Supported transition-metal oxide catalysts for reduction of sulfur dioxide with hydrogen to elemental sulfur.

    PubMed

    Chen, Chun-Liang; Wang, Ching-Huei; Weng, Hung-Shan

    2004-08-01

    This work is for the purpose to find a high performance catalyst for the catalytic reduction of SO2 with H2 as a reducing agent. NiO/gamma-Al2O3 catalyst was found to be the most active catalyst among the seven gamma-Al2O3-supported metal-oxide catalysts tested. With NiO as the active species, of the supports tested, gamma-Al2O3 was the most suitable one and the optimal Ni content was 16 wt%. Using this NiO/gamma-Al2O3 catalyst, we found that the optimal feed ratio of H2/SO2 is 2:1 and the catalyst presulfided with H2 + H2S exhibits a higher performance than that pretreated with H2 or He. XRD patterns reveal that the nickel oxide experienced a transformation to Ni3S2 and NiS, and then to NiS2, the most active nickel sulfide, during the reaction process. The reason for the highest catalyst activity of 16 wt% Ni was attributed to the largest amount of NiS2. Water vapor in the feed gas reactant caused inhibition of catalyst activity, whereas H2S promoted the reduction of SO2. These phenomena were rationalized with the aid of Claus reaction. PMID:15212907

  20. The rationale for preventing cancer cachexia: targeting excessive fatty acid oxidation.

    PubMed

    Qian, Chao-Nan

    2016-07-21

    Cachexia commonly occurs at the terminal stage of cancer and has largely unclear molecular mechanisms. A recent study published in Nature Medicine, entitled "Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia," reveals that cachectic cancer cells can secrete multiple cytokines that induce excessive fatty acid oxidation, which is responsible for muscle loss in cancer cachexia. Inhibition of fatty acid oxidation using etomoxir can increase muscle mass and body weight in cancer cachexia animal models. The usage of stable cachexia animal models is also discussed in this research highlight.

  1. Health Risks of Space Exploration: Targeted and Nontargeted Oxidative Injury by High-Charge and High-Energy Particles

    PubMed Central

    Li, Min; Gonon, Géraldine; Buonanno, Manuela; Autsavapromporn, Narongchai; de Toledo, Sonia M.; Pain, Debkumar

    2014-01-01

    Abstract Significance: During deep space travel, astronauts are often exposed to high atomic number (Z) and high-energy (E) (high charge and high energy [HZE]) particles. On interaction with cells, these particles cause severe oxidative injury and result in unique biological responses. When cell populations are exposed to low fluences of HZE particles, a significant fraction of the cells are not traversed by a primary radiation track, and yet, oxidative stress induced in the targeted cells may spread to nearby bystander cells. The long-term effects are more complex because the oxidative effects persist in progeny of the targeted and affected bystander cells, which promote genomic instability and may increase the risk of age-related cancer and degenerative diseases. Recent Advances: Greater understanding of the spatial and temporal features of reactive oxygen species bursts along the tracks of HZE particles, and the availability of facilities that can simulate exposure to space radiations have supported the characterization of oxidative stress from targeted and nontargeted effects. Critical Issues: The significance of secondary radiations generated from the interaction of the primary HZE particles with biological material and the mitigating effects of antioxidants on various cellular injuries are central to understanding nontargeted effects and alleviating tissue injury. Future Directions: Elucidation of the mechanisms underlying the cellular responses to HZE particles, particularly under reduced gravity and situations of exposure to additional radiations, such as protons, should be useful in reducing the uncertainty associated with current models for predicting long-term health risks of space radiation. These studies are also relevant to hadron therapy of cancer. Antioxid. Redox Signal. 20, 1501–1523. PMID:24111926

  2. How great was the Great Oxidation Event? Observations from the behavior of redox-sensitive elements in Precambrian glacial tillites

    NASA Astrophysics Data System (ADS)

    Gaschnig, R. M.; Rudnick, R. L.; McDonough, W. F.

    2013-12-01

    The Great Oxidation Event (GOE) is considered a watershed event in the development of the Earth's biosphere, in which global atmospheric oxygen levels exceeded ~2 ppmv for the first time. This event occurred during the early Paleoproterozoic Huronian glacial interval and is defined by the disappearance of mass independent sulfur isotope fractionation. In the Huronian Supergroup in Ontario, this sulfur isotopic marker occurs between the lower two of the three glacial tillites present (Papineau et al., 2007). This implies that the youngest Huronian tillite (the Gowganda Formation) was deposited in a distinctively more oxic Earth surface environment. Here, we present data for redox sensitive transition metals in Precambrian glacial tillites, which indicate that oxic weathering of the continents remained insignificant in the immediate aftermath of the GOE, during the second half of the Huronian glaciation. Glacial tillites deposited around the world by continental ice sheets during the Mesoarchean (~2.9 Ga), Paleoproterozoic (~2.4-2.2 Ga), Neoproterozoic (~0.7-0.6 Ga), and Paleozoic (~0.3 Ga) were analyzed for their trace element compositions (n = 120). Mesoarchean and Paleoproterozoic tillites show significant differences from younger tillites in both absolute abundances of redox sensitive transition metals and abundances relative to elements with similar compatibilities. Transition metal abundances in all Mesoarchean and Paleoproterozoic tillites are either similar to or are higher than those in the average upper continental crust, whereas these elements are depleted in Neoproterozoic and younger tillites. Moreover, Mo, V and Cr are preferentially enriched in Mesoarchean and Paleoproterozoic tillites relative to elements of similar incompatibility, whereas a complementary depletion is seen in Neoproterozoic and younger tillites. We attribute these depletions of Mo, V, and Cr to their significantly enhanced solubility during weathering in the presence of an oxic

  3. Oxidative stress-induced posttranslational modification of proteins as a target of functional food.

    PubMed

    Naito, Yuji; Yoshikawa, Toshikazu

    2009-01-01

    In lifestyle-related diseases including metabolic syndrome, atherosclerosis, and cancer, oxidative stress is indicated by several markers, among which are lipid peroxides, aldehydes, and nitrotyrosine. We hypothesized that identification of proteins that are posttranslationally modified due to oxidative stress would lead to a greater understanding of some of the potential molecular mechanisms involved in degeneration and inflammation in these disorders. Proteomics is an emerging method for identification of proteins and their modification residues, and its application to food factor science is just beginning. Especially, we can obtain several monoclonal antibodies to detect specifically oxidized proteins, which can be applied to analysis by immunostaining or immunoblot. In this review, we present the use of these monoclonal antibodies in several diseases, from which new insights have emerged into mechanisms of metabolism and inflammation in these disorders that are associated with oxidative stress.

  4. Methods for both coating a substrate with aluminum oxide and infusing the substrate with elemental aluminum

    DOEpatents

    Choi, Jung-Pyung; Weil, Kenneth Scott

    2016-11-01

    Methods of aluminizing the surface of a metal substrate. The methods of the present invention do not require establishment of a vacuum or a reducing atmosphere, as is typically necessary. Accordingly, aluminization can occur in the presence of oxygen, which greatly simplifies and reduces processing costs by allowing deposition of the aluminum coating to be performed, for example, in air. Embodiments of the present invention can be characterized by applying a slurry that includes a binder and powder granules containing aluminum to the metal substrate surface. Then, in a combined step, a portion of the aluminum is diffused into the substrate and a portion of the aluminum is oxidized by heating the slurry to a temperature greater than the melting point of the aluminum in an oxygen-containing atmosphere.

  5. Probing the density of states of two-level tunneling systems in silicon oxide films using superconducting lumped element resonators

    SciTech Connect

    Skacel, S. T.; Kaiser, Ch.; Wuensch, S.; Siegel, M.; Rotzinger, H.; Lukashenko, A.; Jerger, M.; Weiss, G.; Ustinov, A. V.

    2015-01-12

    We have investigated dielectric losses in amorphous silicon oxide (a-SiO) thin films under operating conditions of superconducting qubits (mK temperatures and low microwave powers). For this purpose, we have developed a broadband measurement setup employing multiplexed lumped element resonators using a broadband power combiner and a low-noise amplifier. The measured temperature and power dependences of the dielectric losses are in good agreement with those predicted for atomic two-level tunneling systems (TLS). By measuring the losses at different frequencies, we found that the TLS density of states is energy dependent. This had not been seen previously in loss measurements. These results contribute to a better understanding of decoherence effects in superconducting qubits and suggest a possibility to minimize TLS-related decoherence by reducing the qubit operation frequency.

  6. Physical model construction for electrical anisotropy of single crystal zinc oxide micro/nanobelt using finite element method

    SciTech Connect

    Yu, Guangbin; Tang, Chaolong; Song, Jinhui E-mail: wqlu@cigit.ac.cn; Lu, Wenqiang E-mail: wqlu@cigit.ac.cn

    2014-04-14

    Based on conductivity characterization of single crystal zinc oxide (ZnO) micro/nanobelt (MB/NB), we further investigate the physical mechanism of nonlinear intrinsic resistance-length characteristic using finite element method. By taking the same parameters used in experiment, a model of nonlinear anisotropic resistance change with single crystal MB/NB has been deduced, which matched the experiment characterization well. The nonlinear resistance-length comes from the different electron moving speed in various crystal planes. As the direct outcome, crystallography of the anisotropic semiconducting MB/NB has been identified, which could serve as a simple but effective method to identify crystal growth direction of single crystal semiconducting or conductive nanomaterial.

  7. rapid separation of higher actinide elements by cocrystallization using lower oxidation states

    SciTech Connect

    Kamenskaya, A.N.; Konovalova, N.A.; Kulyukhin, S.A.; Mikheev, N.B.

    1986-07-01

    An express method has been developed for the separation of higher actinides based on their cocrystallization with alkali metal halides. By carrying out reduction with the dichlorides of europium, ytterbium, and samarium it was possible to separate mendelevium from fermium, einsteinium, and californium, fermium from einsteinium and californium, and californium with einsteinium from trivalent actinides in turn. A practically complete purification from lanthanides was achieved in this way. Separation was carried in aqueous ethanol solutions by cocrystallization with NaCl resulting from salting out with ethanol. The purification coefficient of actinides from accompanying elements was 10/sup 3/ to 10/sup 4/. The yield on separation was about 90%. The duration of the separation process was 3-5 min.

  8. LMFBR operational and experimental local-fault experience, primarily with oxide fuel elements

    SciTech Connect

    Warinner, D.K.

    1980-01-01

    Case-by-case reviews of selective world experience with severe local faults, particularly fuel failure and fuel degradation, are reviewed for two sodium-cooled thermal reactors, several LMFBRs, and LMFBR-fuels experiments. The review summarizes fuel-failure frequency and illustrates the results of the most damaging LMFBR local-fault experiences of the last 20 years beginning with BR-5 and including DFR, BOR-60, BR2's MFBS- and Mol-loops experiments, Fermi, KNK, Rapsodie, EBR-II, and TREAT-D2. Local-fault accommodation is demonstrated and a need to more thoroughly investigate delayed-neutron and gaseous-fission-product signals is highlighted in view of uranate formation, observed blockages, and slow fuel-element failure-propagation.

  9. Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived Fuel Gases

    SciTech Connect

    Gardner, Todd H.; Berry, David A.; Lyons, K. David; Beer, Stephen K.; Monahan, Michael J.

    2001-11-06

    The development of low cost, highly efficient, desulfurization technology with integrated sulfur recovery remains a principle barrier issue for Vision 21 integrated gasification combined cycle (IGCC) power generation plants. In this plan, the U. S. Department of Energy will construct ultra-clean, modular, co-production IGCC power plants each with chemical products tailored to meet the demands of specific regional markets. The catalysts employed in these co-production modules, for example water-gas-shift and Fischer-Tropsch catalysts, are readily poisoned by hydrogen sulfide (H{sub 2}S), a sulfur contaminant, present in the coal-derived fuel gases. To prevent poisoning of these catalysts, the removal of H{sub 2}S down to the parts-per-billion level is necessary. Historically, research into the purification of coal-derived fuel gases has focused on dry technologies that offer the prospect of higher combined cycle efficiencies as well as improved thermal integration with co-production modules. Primarily, these concepts rely on a highly selective process separation step to remove low concentrations of H{sub 2}S present in the fuel gases and produce a concentrated stream of sulfur bearing effluent. This effluent must then undergo further processing to be converted to its final form, usually elemental sulfur. Ultimately, desulfurization of coal-derived fuel gases may cost as much as 15% of the total fixed capital investment (Chen et al., 1992). It is, therefore, desirable to develop new technology that can accomplish H{sub 2}S separation and direct conversion to elemental sulfur more efficiently and with a lower initial fixed capital investment.

  10. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas.

    PubMed

    Li, Hailong; Wu, Chang-Yu; Li, Ying; Zhang, Junying

    2011-09-01

    CeO(2)-TiO(2) (CeTi) catalysts synthesized by an ultrasound-assisted impregnation method were employed to oxidize elemental mercury (Hg(0)) in simulated low-rank (sub-bituminous and lignite) coal combustion flue gas. The CeTi catalysts with a CeO(2)/TiO(2) weight ratio of 1-2 exhibited high Hg(0) oxidation activity from 150 to 250 °C. The high concentrations of surface cerium and oxygen were responsible for their superior performance. Hg(0) oxidation over CeTi catalysts was proposed to follow the Langmuir-Hinshelwood mechanism whereby reactive species from adsorbed flue gas components react with adjacently adsorbed Hg(0). In the presence of O(2), a promotional effect of HCl, NO, and SO(2) on Hg(0) oxidation was observed. Without O(2), HCl and NO still promoted Hg(0) oxidation due to the surface oxygen, while SO(2) inhibited Hg(0) adsorption and subsequent oxidation. Water vapor also inhibited Hg(0) oxidation. HCl was the most effective flue gas component responsible for Hg(0) oxidation. However, the combination of SO(2) and NO without HCl also resulted in high Hg(0) oxidation efficiency. This superior oxidation capability is advantageous to Hg(0) oxidation in low-rank coal combustion flue gas with low HCl concentration.

  11. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas.

    PubMed

    Li, Hailong; Wu, Chang-Yu; Li, Ying; Zhang, Junying

    2011-09-01

    CeO(2)-TiO(2) (CeTi) catalysts synthesized by an ultrasound-assisted impregnation method were employed to oxidize elemental mercury (Hg(0)) in simulated low-rank (sub-bituminous and lignite) coal combustion flue gas. The CeTi catalysts with a CeO(2)/TiO(2) weight ratio of 1-2 exhibited high Hg(0) oxidation activity from 150 to 250 °C. The high concentrations of surface cerium and oxygen were responsible for their superior performance. Hg(0) oxidation over CeTi catalysts was proposed to follow the Langmuir-Hinshelwood mechanism whereby reactive species from adsorbed flue gas components react with adjacently adsorbed Hg(0). In the presence of O(2), a promotional effect of HCl, NO, and SO(2) on Hg(0) oxidation was observed. Without O(2), HCl and NO still promoted Hg(0) oxidation due to the surface oxygen, while SO(2) inhibited Hg(0) adsorption and subsequent oxidation. Water vapor also inhibited Hg(0) oxidation. HCl was the most effective flue gas component responsible for Hg(0) oxidation. However, the combination of SO(2) and NO without HCl also resulted in high Hg(0) oxidation efficiency. This superior oxidation capability is advantageous to Hg(0) oxidation in low-rank coal combustion flue gas with low HCl concentration. PMID:21770402

  12. Analysis of cellular responses of macrophages to zinc ions and zinc oxide nanoparticles: a combined targeted and proteomic approach.

    PubMed

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Gerdil, Adèle; Diemer, Hélène; Proamer, Fabienne; Collin-Faure, Véronique; Habert, Aurélie; Strub, Jean-Marc; Hanau, Daniel; Herlin, Nathalie; Carrière, Marie; Van Dorsselaer, Alain; Rabilloud, Thierry

    2014-06-01

    Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate catabolism and proteasome are critical determinants of sensitivity to zinc, which also induces DNA damage. Conversely, glutathione levels and phagocytosis appear unaffected at moderately toxic zinc concentrations.

  13. Targeted mass spectrometry methods for detecting oxidative post-translational modifications.

    PubMed

    Tveen-Jensen, Karina; Reis, Ana; Spickett, Corinne M; Pitt, Andrew R

    2014-10-01

    Oxidative post-translational modifications (oxPTMs) can alter the function of proteins, and are important in the redox regulation of cell behaviour. The most informative technique to detect and locate oxPTMs within proteins is mass spectrometry (MS). However, proteomic MS data are usually searched against theoretical databases using statistical search engines, and the occurrence of unspecified or multiple modifications, or other unexpected features, can lead to failure to detect the modifications and erroneous identifications of oxPTMs. We have developed a new approach for mining data from accurate mass instruments that allows multiple modifications to be examined. Accurate mass extracted ion chromatograms (XIC) for specific reporter ions from peptides containing oxPTMs were generated from standard LC-MSMS data acquired on a rapid-scanning high-resolution mass spectrometer (ABSciex 5600 Triple TOF). The method was tested using proteins from human plasma or isolated LDL. A variety of modifications including chlorotyrosine, nitrotyrosine, kynurenine, oxidation of lysine, and oxidized phospholipid adducts were detected. For example, the use of a reporter ion at 184.074Da/e, corresponding to phosphocholine, was used to identify for the first time intact oxidized phosphatidylcholine adducts on LDL. In all cases the modifications were confirmed by manual sequencing. ApoB-100 containing oxidized lipid adducts was detected even in healthy human samples, as well as LDL from patients with chronic kidney disease. The accurate mass XIC method gave a lower false positive rate than normal database searching using statistical search engines, and identified more oxidatively modified peptides. A major advantage was that additional modifications could be searched after data collection, and multiple modifications on a single peptide identified. The oxPTMs present on albumin and ApoB-100 have potential as indicators of oxidative damage in ageing or inflammatory diseases. PMID:26461406

  14. Immunohistochemical Study of Nrf2-Antioxidant Response Element as Indicator of Oxidative Stress Induced by Cadmium in Developing Rats

    PubMed Central

    Montes, Sergio; Juárez-Rebollar, Daniel; Nava-Ruíz, Concepción; Sánchez-García, Aurora; Heras-Romero, Yesica; Rios, Camilo; Méndez-Armenta, Marisela

    2015-01-01

    In developing animals, Cadmium (Cd) induces toxicity to many organs including brain. Reactive oxygen species (ROS) are often implicated in Cd-inducedtoxicity and it has been clearly demonstrated that oxidative stress interferes with the expression of genes as well as transcriptional factors such as Nrf2-dependent Antioxidant Response Element (Nrf2-ARE). Cd-generated oxidative stress and elevated Nrf2 activity have been reported in vitro and in situ cells. In this study we evaluated the morphological changes and the expression pattern of Nrf2 and correlated them with the Cd concentrations in different ages of developing rats in heart, lung, kidney, liver, and brain. The Cd content in different organs of rats treated with the metal was increased in all ages assayed. Comparatively, lower Cd brain levels were found in rats intoxicated at the age of 12 days, then pups treated at 5, 10, or 15 days old, at the same metal dose. No evident changes, as a consequence of cadmium exposure, were evident in the morphological analysis in any of the ages assayed. However, Nrf2-ARE immunoreactivity was observed in 15-day-old rats exposed to Cd. Our results support that fully developed blood-brain barrier is an important protector against Cd entrance to brain and that Nrf2 increased expression is a part of protective mechanism against cadmium-induced toxicity. PMID:26101558

  15. heterogeneous equilibration between solid and liquid phases in research on the lower oxidation states of the actinide elements

    SciTech Connect

    Mikheev, N.B.; Kamenskaya, A.N.; Konovalova, N.A.; Kulyukhin, S.A.; Rumer, I.A.

    1986-07-01

    Measurements have been made on the cocrystallization of Fe/sup 2 +/ and Md/sup +/ with NaCl and KCl in water-ethanol solutions in the presence of divalent lanthanides. A thermodynamic consideration showed that mendelevium is reduced to the 1+ oxidation state at the Eu/sup 2 +/ potential and cocrystallizes with KCl and NaCl isomorphously. Fermium in the same medium is reduced by Sm/sup 2 +/ only to the 2/sup +/ oxidation state and forms anomalous mixed crystals AMC with KCl, with the cocrystallization coefficient increasing linearly with (Cl/sup -/). These relationships show that Md/sup +/ and Fm/sup 2 +/ do not form stable chloride, complexes, and in that respect they are analogs of the alkali and alkaline-earth elements. The cocrystallization of Md/sup +/ with SmF/sub 2/ and YbF/sub 2/ shows that AMC are formed as when Ag/sup +/ cocrystallizes with SrF/sub 2/.

  16. Cyanex 923 as the extractant in a rare earth element impurity analysis of high-purity cerium oxide.

    PubMed

    Duan, Taicheng; Li, Hongfei; Kang, JianZhen; Chen, Hangting

    2004-06-01

    In this work, the feasibility of employing Cyanex 923 as an extractant into the non-cerium REE (rare earth elements) impurity analysis of high-purity cerium oxide was investigated. Through investigations on the choice of the extraction medium, the optimium extraction acidity, matrix Ce4+ effect on the non-cerium REE ion extraction, the optimium extractant concentration and suitable extracting time, and oscillation strengh, it was found that when the phase ratio was at 1:1 and the acicidity was about 2% H2SO4, by gently shaking by hand for about 2 min, 10 mL of 30% Cyanex 923 could not extract even for a 20 ng amount of non-cerium REE3+ ions. However, the extraction efficiency for Ce4+ of 100 mg total amount under the same conditions was about 96%, indicating that a 25-fold preconcentration factor could be achieved. Thus, it was concluded that Cyanex 923 could be used in a REE impurity analysis of 99.9999% or so pure cerium oxide for primary sepapation to elimilate matrix-induced interferences encountered in an ICP-MS (inductively coupled plasma mass spectroscopy) determination.

  17. Nitric acid passivation of Ti6Al4V reduces thickness of surface oxide layer and increases trace element release.

    PubMed

    Callen, B W; Lowenberg, B F; Lugowski, S; Sodhi, R N; Davies, J E

    1995-03-01

    Passivation of Ti6Al4V and cpTi implants using methods based on the ASTM-F86 nitric acid protocol are used with the intention of reducing their surface reactivity, and consequently the corrosion potential, in the highly corrosive biologic milieu. The ASTM-F86 passivation protocol was originally developed for surgical implants made of stainless steel and chrome cobalt alloy. Using X-ray photoelectron spectroscopy (XPS) to examine the effect of nitric acid passivation on the surface oxide layer of mill-annealed Ti6Al4V and cpTi, we have found that such treatment actually reduced the oxide thickness on the alloy while having no significant effect on the pure metal. These results correlated with observations obtained using graphite furnace atomic absorption spectrophotometry (GFAAS) to detect trace element release from solid, mill-annealed, Ti6Al4V and cpTi into serum-containing culture medium. We detected significantly greater levels of Ti, Al, and V in the presence of passivated compared to nonpassivated Ti6Al4V. In contrast, nitric acid passivation did not influence Ti release from mill-annealed cpTi. These results, derived from two mill-annealed Ti-based metals, would indicate that re-examination of ASTM-F86-based passivation protocols with respect to Ti6Al4V should be considered in view of the widespread use of this alloy for biomedical devices. PMID:7615579

  18. Inhibition of nitric oxide is a good therapeutic target for bladder tumors that express iNOS.

    PubMed

    Belgorosky, Denise; Langle, Yanina; Prack Mc Cormick, Bárbara; Colombo, Lucas; Sandes, Eduardo; Eiján, Ana María

    2014-01-30

    Bladder cancer is the second cause of death for urological tumors in man. When the tumor is nonmuscle invasive, transurethral resection is curative. On the other hand, radical cystectomy is the treatment chosen for patients with invasive tumors, but still under treatment, these patients have high risk of dying, by the development of metastatic disease within 5 years. It is therefore important to identify a new therapeutic target to avoid tumor recurrences and tumor progression. Nitric oxide (NO) is an important biological messenger known to influence several types of cancers. In bladder cancer, production of NO and expression and activity of inducible NO synthase was associated to recurrence and progression. The objective of this work was to analyze if inhibition of nitric oxide production could be considered a therapeutic target for bladder tumors expressing iNOS. Using a bladder cancer murine model with different invasiveness grade we have demonstrated that NO inhibition was able to inhibit growth of bladder tumors expressing iNOS. Furthermore, invasive properties of MB49-I orthotopic growth was inhibited using NO inhibitors. This paper also shows that levels of NO in urine can be correlated with tumor size. In conclusion, inhibition of NO could be considered as a therapeutic target that prevents tumor growth and progression. Also, urine NO levels may be useful for measuring tumor growth.

  19. Methodology for use of mitochondria-targeted cations in the field of oxidative stress-related research.

    PubMed

    Vyssokikh, Mikhail Y; Antonenko, Yury N; Lyamzaev, Konstantin G; Rokitskaya, Tatyana I; Skulachev, Vladimir P

    2015-01-01

    For many pathological conditions, reactive oxygen species (ROS) generated in mitochondria are considered to have a role as a trigger. When mitochondrial ROS (mROS) are formed in the inner mitochondrial membrane, they initiate free radical-mediated chain reactions of lipid peroxidation and are thus especially damaging. The consequences of membrane damage are decreased electrical resistance of the membrane, oxidative damage to cardiolipin (a mitochondria specific lipid essential for functioning of respiratory chain proteins and H(+)-ATP synthase), and damage to mitochondrial DNA localized in close vicinity to the inner membrane, with consequent mitochondrial dysfunction and induction of apoptotic cascade and cell death. To target the starting point of such undesirable events, antioxidants conjugated with mitochondria-targeted, membrane-penetrating cations can be used to scavenge ROS inside mitochondria. The most demonstrative indications favoring this conclusion originate from recent discoveries of the in vivo effects of such cations belonging to the MitoQ and SkQ groups. Here we describe some essential methodological aspects of the application of mitochondria-targeted cations promising in treating oxidative stress-related pathologies.

  20. Transition metal-mediated donor-acceptor coordination of low-oxidation state Group 14 element halides.

    PubMed

    Swarnakar, Anindya K; Ferguson, Michael J; McDonald, Robert; Rivard, Eric

    2016-04-14

    The reactivity of tungsten carbonyl adducts of Group 14 element (Ge, Sn and Pb) dihalides towards the metal-based donors (η(5)-C5H5)Rh(PMe2Ph)2 and Pt(PCy3)2 was examined. When (η(5)-C5H5)Rh(PMe2Ph)2 was treated with the Lewis acid supported Ge(ii) complex, THF·GeCl2·W(CO)5, cyclopentadienyl ring activation occurred, whereas the analogous Lewis acidic units SnCl2·W(CO)5 and PbCl2 form direct adducts with the Rh complex to yield Rh-Sn and Rh-Pb dative bonds. Attempts to prepare metal coordinated element(ii) hydrides by adding hydride sources to the above mentioned rhodium-E(ii) halide complexes were unsuccessful; in each case insoluble products were formed along with regeneration of free (η(5)-C5H5)Rh(PMe2Ph)2. In a parallel study, ECl2·W(CO)5 (E = Ge or Sn) groups were shown to participate in E-Cl oxidation addition chemistry with (Cy3P)2Pt to give the formal Pt(ii) complexes ClPt(PCy3)2ECl·W(CO)5.

  1. An aptamer-targeting photoresponsive drug delivery system using ``off-on'' graphene oxide wrapped mesoporous silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Tang, Yuxia; Hu, Hao; Zhang, Molly Gu; Song, Jibin; Nie, Liming; Wang, Shouju; Niu, Gang; Huang, Peng; Lu, Guangming; Chen, Xiaoyuan

    2015-03-01

    We have developed a novel aptamer-targeting photoresponsive drug delivery system by non-covalent assembly of a Cy5.5-AS1411 aptamer conjugate on the surface of graphene oxide wrapped doxorubicin (Dox)-loaded mesoporous silica nanoparticles (MSN-Dox@GO-Apt) for light-mediated drug release and aptamer-targeted cancer therapy. The two ``off-on'' switches of the MSN-Dox@GO-Apt were controlled by aptamer targeting and light triggering, respectively. The Cy5.5-AS1411 ligand provides MSN-Dox@GO-Apt with nucleolin specific targeting and real-time indicator abilities by ``off-on'' Cy5.5 fluorescence recovery. The GO acts as a gatekeeper to prevent the loaded Dox from leaking in the absence of laser irradiation, and to control the Dox release in response to laser irradiation. When the GO wrapping falls off upon laser irradiation, the ``off-on'' photoresponsive drug delivery system is activated, thus inducing chemotherapy. Interestingly, with an increase in laser power, the synergism of chemotherapy and photothermal therapy in a single MSN-Dox@GO-Apt platform led to much more effective cancer cell killing than monotherapies, providing a new approach for treatment against cancer.We have developed a novel aptamer-targeting photoresponsive drug delivery system by non-covalent assembly of a Cy5.5-AS1411 aptamer conjugate on the surface of graphene oxide wrapped doxorubicin (Dox)-loaded mesoporous silica nanoparticles (MSN-Dox@GO-Apt) for light-mediated drug release and aptamer-targeted cancer therapy. The two ``off-on'' switches of the MSN-Dox@GO-Apt were controlled by aptamer targeting and light triggering, respectively. The Cy5.5-AS1411 ligand provides MSN-Dox@GO-Apt with nucleolin specific targeting and real-time indicator abilities by ``off-on'' Cy5.5 fluorescence recovery. The GO acts as a gatekeeper to prevent the loaded Dox from leaking in the absence of laser irradiation, and to control the Dox release in response to laser irradiation. When the GO wrapping falls off upon

  2. Crystal structures of human Ero1α reveal the mechanisms of regulated and targeted oxidation of PDI

    PubMed Central

    Inaba, Kenji; Masui, Shoji; Iida, Hiroka; Vavassori, Stefano; Sitia, Roberto; Suzuki, Mamoru

    2010-01-01

    In the endoplasmic reticulum (ER) of eukaryotic cells, Ero1 flavoenzymes promote oxidative protein folding through protein disulphide isomerase (PDI), generating reactive oxygen species (hydrogen peroxide) as byproducts. Therefore, Ero1 activity must be strictly regulated to avoid futile oxidation cycles in the ER. Although regulatory mechanisms restraining Ero1α activity ensure that not all PDIs are oxidized, its specificity towards PDI could allow other resident oxidoreductases to remain reduced and competent to carry out isomerization and reduction of protein substrates. In this study, crystal structures of human Ero1α were solved in its hyperactive and inactive forms. Our findings reveal that human Ero1α modulates its oxidative activity by properly positioning regulatory cysteines within an intrinsically flexible loop, and by fine-tuning the electron shuttle ability of the loop through disulphide rearrangements. Specific PDI targeting is guaranteed by electrostatic and hydrophobic interactions of Ero1α with the PDI b′-domain through its substrate-binding pocket. These results reveal the molecular basis of the regulation and specificity of protein disulphide formation in human cells. PMID:20834232

  3. The Mitochondrial Permeability Transition Pore Regulates Nitric Oxide-Mediated Apoptosis of Neurons Induced by Target Deprivation

    PubMed Central

    Martin, Lee J.; Adams, Neal A.; Pan, Yan; Price, Ann; Wong, Margaret

    2011-01-01

    Ablation of mouse occipital cortex induces precisely timed and uniform p53-modulated and Bax-dependent apoptosis of thalamocortical projection neurons in the dorsal lateral geniculate nucleus (LGN) by 7 days postlesion. We tested the hypothesis that this neuronal apoptosis is initiated by oxidative stress and the mitochondrial permeability transition pore (mPTP). Pre-apoptotic LGN neurons accumulate mitochondria, Zn2+ and Ca2+, and generate higher levels of reactive oxygen species (ROS), including superoxide, nitric oxide (NO) and peroxynitrite, than LGN neurons with an intact cortical target. Pre-apoptosis of LGN neurons is associated with increased formation of protein carbonyls, protein nitration, and protein S-nitrosylation. Genetic deletion of nitric oxide synthase 1 (nos1) and inhibition of NOS1 with nitroindazole protected LGN neurons from apoptosis, revealing NO as a mediator. Putative components of the mPTP are expressed in mouse LGN, including the voltage-dependent anion channel (VDAC), adenine nucleotide translocator (ANT), and cyclophilin D (CyPD). Nitration of CyPD and ANT in LGN mitochondria occurs by 2 days after cortical injury. Chemical cross-linking showed that LGN neuron pre-apoptosis is associated with formation of CyPD and VDAC oligomers, consistent with mPTP formation. Mice without CyPD are rescued from neuron apoptosis as are mice treated with the mPTP inhibitors TRO-19622 and TAT-Bcl-XL-BH4. Manipulation of the mPTP markedly attenuated the early pre-apoptotic production of reactive oxygen/nitrogen species in target-deprived neurons. Our results demonstrate in adult mouse brain neurons that the mPTP functions to enhance ROS production and the mPTP and NO trigger apoptosis; thus, the mPTP is a target for neuroprotection in vivo. PMID:21209222

  4. VEGF-loaded graphene oxide as theranostics for multi-modality imaging-monitored targeting therapeutic angiogenesis of ischemic muscle

    NASA Astrophysics Data System (ADS)

    Sun, Zhongchan; Huang, Peng; Tong, Guang; Lin, Jing; Jin, Albert; Rong, Pengfei; Zhu, Lei; Nie, Liming; Niu, Gang; Cao, Feng; Chen, Xiaoyuan

    2013-07-01

    Herein we report the design and synthesis of multifunctional VEGF-loaded IR800-conjugated graphene oxide (GO-IR800-VEGF) for multi-modality imaging-monitored therapeutic angiogenesis of ischemic muscle. The as-prepared GO-IR800-VEGF positively targets VEGF receptors, maintains an elevated level of VEGF in ischemic tissues for a prolonged time, and finally leads to remarkable therapeutic angiogenesis of ischemic muscle. Although more efforts are required to further understand the in vivo behaviors and the long-term toxicology of GO, our work demonstrates the success of using GO for efficient VEGF delivery in vivo by intravenous administration and suggests the great promise of using graphene oxide in theranostic applications for treating ischemic disease.Herein we report the design and synthesis of multifunctional VEGF-loaded IR800-conjugated graphene oxide (GO-IR800-VEGF) for multi-modality imaging-monitored therapeutic angiogenesis of ischemic muscle. The as-prepared GO-IR800-VEGF positively targets VEGF receptors, maintains an elevated level of VEGF in ischemic tissues for a prolonged time, and finally leads to remarkable therapeutic angiogenesis of ischemic muscle. Although more efforts are required to further understand the in vivo behaviors and the long-term toxicology of GO, our work demonstrates the success of using GO for efficient VEGF delivery in vivo by intravenous administration and suggests the great promise of using graphene oxide in theranostic applications for treating ischemic disease. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01573d

  5. Oxadiazole 2-oxides are toxic to the human hookworm, Ancylostoma ceylanicum, however glutathione reductase is not the primary target

    PubMed Central

    Treger, Rebecca S.; Cook, Aaron; Rai, Ganesha; Maloney, David J.; Simeonov, Anton; Jadhav, Ajit; Thomas, Craig J.; Williams, David L.; Cappello, Michael; Vermeire, Jon J.

    2012-01-01

    Hookworm disease, characterized by severe anemia and cognitive and growth delays, currently affects an estimated 740 million people worldwide. Despite the prevalence of this parasitic disease, few effective drug therapies are in use today, and the heavy reliance upon benzimidazoles highlights the need for the development of novel chemotherapies. Recent work with the trematode parasite Schistosoma mansoni has identified oxadiazole 2-oxides as effective antischistosomal compounds that function by targeting and inhibiting the antioxidant enzyme, thioredoxin glutathione reductase. In this study, a related enzyme, glutathione reductase, from the human hookworm Ancylostoma ceylanicum was identified and characterized, and its in vitro activity in the presence of the oxadiazole 2-oxides was analyzed. Ex vivo worm killing assays were also conducted to establish the relationship between a given compound’s effect upon worm survival and inhibition of recombinant glutathione reductase (rAceGR). Finally, the in vivo anthelminthic efficacy of furoxan (Fx) was assessed in the hamster model of hookworm infection. The predicted amino acid sequence of AceGR contained a prototypical glutathione reductase active site sequence, but no thioredoxin reductase consensus sequences, suggesting that the glutathione and thioredoxin pathways of A. ceylanicum are distinct. Although 10 of the 42 oxadiazole 2-oxides tested inhibited rAceGR activity by at least 50%, and 15 compounds were toxic to parasites ex vivo, little overlap existed between these two results. We therefore suggest that AceGR is not the primary target of the oxadiazole 2-oxides in effecting parasite death. Lastly, oral treatment of A. ceylanicum infected hamsters with furoxan resulted in significantly improved weight gains and reduced intestinal worm burdens compared to vehicle treated controls, supporting continued development of this molecule as a novel anthelminthic. PMID:22844653

  6. Highly efficient colorimetric detection of target cancer cells utilizing superior catalytic activity of graphene oxide-magnetic-platinum nanohybrids

    NASA Astrophysics Data System (ADS)

    Kim, Moon Il; Kim, Min Su; Woo, Min-Ah; Ye, Youngjin; Kang, Kyoung Suk; Lee, Jinwoo; Park, Hyun Gyu

    2014-01-01

    Enzyme-linked immunosorbent assays (ELISAs) have most widely been applied in immunoassays for several decades. However, several unavoidable limitations (e.g., instability caused by structural unfolding) of natural enzymes have hindered their widespread applications. Here, we describe a new nanohybrid consisting of Fe3O4 magnetic nanoparticles (MNPs) and platinum nanoparticles (Pt NPs), simultaneously immobilized on the surface of graphene oxide (GO). By synergistically integrating highly catalytically active Pt NPs and MNPs on GO whose frameworks possess high substrate affinity, the nanohybrid is able to achieve up to a 30-fold higher maximal reaction velocity (Vmax) compared to that of free GO for the colorimetric reaction of the peroxidase substrate, 3,3',5,5'-tetramethylbenzidine (TMB), and enable rapid detection of target cancer cells. Specifically, using this new assay system, clinically important breast cancer cells are detected in a 5 min time period at room temperature with high specificity and sensitivity. The remarkably high capability to catalyze oxidation reactions could allow the nanohybrid to replace conventional peroxidase-based immunoassay systems as part of new, rapid, robust and convenient assay systems which can be widely utilized for the identification of important target molecules.Enzyme-linked immunosorbent assays (ELISAs) have most widely been applied in immunoassays for several decades. However, several unavoidable limitations (e.g., instability caused by structural unfolding) of natural enzymes have hindered their widespread applications. Here, we describe a new nanohybrid consisting of Fe3O4 magnetic nanoparticles (MNPs) and platinum nanoparticles (Pt NPs), simultaneously immobilized on the surface of graphene oxide (GO). By synergistically integrating highly catalytically active Pt NPs and MNPs on GO whose frameworks possess high substrate affinity, the nanohybrid is able to achieve up to a 30-fold higher maximal reaction velocity (Vmax

  7. Divergent targets of glycolysis and oxidative phosphorylation result in additive effects of metformin and starvation in colon and breast cancer.

    PubMed

    Marini, Cecilia; Bianchi, Giovanna; Buschiazzo, Ambra; Ravera, Silvia; Martella, Roberto; Bottoni, Gianluca; Petretto, Andrea; Emionite, Laura; Monteverde, Elena; Capitanio, Selene; Inglese, Elvira; Fabbi, Marina; Bongioanni, Francesca; Garaboldi, Lucia; Bruzzi, Paolo; Orengo, Anna Maria; Raffaghello, Lizzia; Sambuceti, Gianmario

    2016-01-01

    Emerging evidence demonstrates that targeting energy metabolism is a promising strategy to fight cancer. Here we show that combining metformin and short-term starvation markedly impairs metabolism and growth of colon and breast cancer. The impairment in glycolytic flux caused by starvation is enhanced by metformin through its interference with hexokinase II activity, as documented by measurement of 18F-fluorodeoxyglycose uptake. Oxidative phosphorylation is additively compromised by combined treatment: metformin virtually abolishes Complex I function; starvation determines an uncoupled status of OXPHOS and amplifies the activity of respiratory Complexes II and IV thus combining a massive ATP depletion with a significant increase in reactive oxygen species. More importantly, the combined treatment profoundly impairs cancer glucose metabolism and virtually abolishes lesion growth in experimental models of breast and colon carcinoma. Our results strongly suggest that energy metabolism is a promising target to reduce cancer progression. PMID:26794854

  8. A Method to Site-Specifically Identify and Quantitate Carbonyl End Products of Protein Oxidation Using Oxidation-Dependent Element Coded Affinity Tags (O-ECAT) and NanoLiquid Chromatography Fourier Transform Mass Spectrometry

    SciTech Connect

    Lee, S; Young, N L; Whetstone, P A; Cheal, S M; Benner, W H; Lebrilla, C B; Meares, C F

    2005-08-25

    Protein oxidation is linked to cellular stress, aging, and disease. Protein oxidations that result in reactive species are of particular interest, since these reactive oxidation products may react with other proteins or biomolecules in an unmediated and irreversible fashion, providing a potential marker for a variety of disease mechanisms. We have developed a novel system to identify and quantitate, relative to other states, the sites of oxidation on a given protein. A specially designed Oxidation-dependent carbonyl-specific Element-Coded Affinity Mass Tag (O-ECAT), AOD, ((S)-2-(4-(2-aminooxy)-acetamido)-benzyl)-1, 4, 7, 10-tetraazacyclododecane-N, N', N'', N'''-tetraacetic acid, is used to covalently tag the residues of a protein oxidized to aldehyde or keto end products. After proteolysis, the resulting AOD-tagged peptides are affinity purified, and analyzed by nanoLC-FTICR-MS, which provides high specificity in extracting co-eluting AOD mass pairs with a unique mass difference and affords relative quantitation based on isotopic ratios. Using this methodology, we have mapped the surface oxidation sites on a model protein, recombinant human serum albumin (rHSA) in its native form (as purchased) and after FeEDTA oxidation. A variety of modified amino acid residues including lysine, arginine, proline, histidine, threonine, aspartic and glutamic acids, were found to be oxidized to aldehyde and keto end products. The sensitivity of this methodology is shown by the number of peptides identified, twenty peptides on the native protein and twenty-nine after surface oxidation using FeEDTA and ascorbate. All identified peptides map to the surface of the HSA crystal structure validating this method for identifying oxidized amino acids on protein surfaces. In relative quantitation experiments between FeEDTA oxidation and native protein oxidation, identified sites showed different relative propensities towards oxidation independent of amino acid residue. We expect to extend

  9. International Experience with Key Program Elements of IndustrialEnergy Efficiency or Greenhouse Gas Emissions Reduction Target-SettingPrograms

    SciTech Connect

    Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

    2008-02-02

    Target-setting agreements, also known as voluntary ornegotiated agreements, have been used by a number of governments as amechanism for promoting energy efficiency within the industrial sector. Arecent survey of such target-setting agreement programs identified 23energy efficiency or GHG emissions reduction voluntary agreement programsin 18 countries. International best practice related to target-settingagreement programs calls for establishment of a coordinated set ofpolicies that provide strong economic incentives as well as technical andfinancial support to participating industries. The key program elementsof a target-setting program are the target-setting process,identification of energy-saving technologies and measures usingenergy-energy efficiency guidebooks and benchmarking as well as byconducting energy-efficiency audits, development of an energy-savingsaction plan, development and implementation of energy managementprotocols, development of incentives and supporting policies, monitoringprogress toward targets, and program evaluation. This report firstprovides a description of three key target-setting agreement programs andthen describes international experience with the key program elementsthat comprise such programs using information from the three keytarget-setting programs as well as from other international programsrelated to industrial energy efficiency or GHG emissionsreductions.

  10. Inducible nitric oxide synthase-vascular endothelial growth factor axis: a potential target to inhibit tumor angiogenesis by dietary agents.

    PubMed

    Singh, Rana P; Agarwal, Rajesh

    2007-08-01

    Human solid tumors remain latent in the absence of angiogenesis since it is a critical process for their further growth and progression. Experimental evidence suggests that targeting tumor angiogenesis may be a novel strategy to check tumor growth and metastases. Recent studies suggest that several bioactive food components can suppress tumor growth by inhibiting angiogenesis. This suppression occurs because of a direct effect on the tumor, as well as a direct effect on vascular endothelial cells. These food components can target epigenetic processes and thereby suppress the pro-angiogenic tumor microenvironment. One likely epigenetic target is inducible nitric oxide synthase (iNOS). iNOS is known to regulate vascular endothelial growth factor (VEGF) expression, and thereby tumor angiogenesis. The ability of food components to influence the inducible form of cyclooxygenase, COX-2 may also contribute to their impact on tumor growth and angiogenesis. This review focuses on recent developments related to the angiogenic role of the iNOS-VEGF axis and how dietary components may target this axis. Overall, studies suggest that the anti-angiogenic potential of physiologically concentrations of relevant food components could be used as a practical approach for cancer prevention and intervention. PMID:17691907

  11. Modulation of Methuselah Expression Targeted to Drosophila Insulin-producing Cells Extends Life and Enhances Oxidative Stress Resistance

    PubMed Central

    Gimenez, Luis E. D.; Ghildyal, Parakashtha; Fischer, Kathleen E.; Hu, Hongxiang; Ja, William W.; Eaton, Benjamin A.; Wu, Yimin; Austad, Steven N.; Ranjan, Ravi

    2013-01-01

    Ubiquitously reduced signaling via Methuselah (MTH), a G-protein coupled receptor (GPCR) required for neurosecretion, has previously been reported to extend life and enhance stress resistance in flies. Whether these effects are due to reduced MTH signaling only in specific tissue(s) and through with signaling effects reduced MTH might produce these phenotypes remains unknown. We determined that reduced expression of mth targeted only to the insulin-producing cells (IPCs) of the fly brain was sufficient to extend life and enhance oxidative stress resistance. Paradoxically, we discovered that overexpression of mth targeted to the same cells has similar phenotypic effects to reduced expression due to MTH’s interaction with β-arrestin, which uncouples GPCRs from their G-proteins. We confirmed the functional relationship between MTH and β-arrestin by finding that IPC-targeted overexpression of β-arrestin alone mimics the longevity phenotype of reduced MTH signaling. As reduced MTH signaling also inhibits insulin secretion from the IPCs, the most parsimonious mechanistic explanation for its longevity and stress resistance enhancement might be through reduced insulin/IGF signaling (IIS). However, examination of phenotypic features of long-lived IPC-mth modulated flies as well as several downstream IIS targets implicates enhanced activity of the JNK stress resistance pathway more directly than insulin signaling in the longevity and stress resistance phenotypes. PMID:23121290

  12. piRNA pathway targets active LINE1 elements to establish the repressive H3K9me3 mark in germ cells.

    PubMed

    Pezic, Dubravka; Manakov, Sergei A; Sachidanandam, Ravi; Aravin, Alexei A

    2014-07-01

    Transposable elements (TEs) occupy a large fraction of metazoan genomes and pose a constant threat to genomic integrity. This threat is particularly critical in germ cells, as changes in the genome that are induced by TEs will be transmitted to the next generation. Small noncoding piwi-interacting RNAs (piRNAs) recognize and silence a diverse set of TEs in germ cells. In mice, piRNA-guided transposon repression correlates with establishment of CpG DNA methylation on their sequences, yet the mechanism and the spectrum of genomic targets of piRNA silencing are unknown. Here we show that in addition to DNA methylation, the piRNA pathway is required to maintain a high level of the repressive H3K9me3 histone modification on long interspersed nuclear elements (LINEs) in germ cells. piRNA-dependent chromatin repression targets exclusively full-length elements of actively transposing LINE families, demonstrating the remarkable ability of the piRNA pathway to recognize active elements among the large number of genomic transposon fragments.

  13. Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces cerevisiae.

    PubMed Central

    Shenton, Daniel; Grant, Chris M

    2003-01-01

    The irreversible oxidation of cysteine residues can be prevented by protein S-thiolation, a process by which protein SH groups form mixed disulphides with low-molecular-mass thiols such as glutathione. We report here the target proteins which are modified in yeast cells in response to H(2)O(2). In particular, a range of glycolytic and related enzymes (Tdh3, Eno2, Adh1, Tpi1, Ald6 and Fba1), as well as translation factors (Tef2, Tef5, Nip1 and Rps5) are identified. The oxidative stress conditions used to induce S-thiolation are shown to inhibit GAPDH (glyceraldehyde-3-phosphate dehydrogenase), enolase and alcohol dehydrogenase activities, whereas they have no effect on aldolase, triose phosphate isomerase or aldehyde dehydrogenase activities. The inhibition of GAPDH, enolase and alcohol dehydrogenase is readily reversible once the oxidant is removed. In addition, we show that peroxide stress has little or no effect on glucose-6-phosphate dehydrogenase or 6-phosphogluconate dehydrogenase, the enzymes that catalyse NADPH production via the pentose phosphate pathway. Thus the inhibition of glycolytic flux is proposed to result in glucose equivalents entering the pentose phosphate pathway for the generation of NADPH. Radiolabelling is used to confirm that peroxide stress results in a rapid and reversible inhibition of protein synthesis. Furthermore, we show that glycolytic enzyme activities and protein synthesis are irreversibly inhibited in a mutant that lacks glutathione, and hence cannot modify proteins by S-thiolation. In summary, protein S-thiolation appears to serve an adaptive function during exposure to an oxidative stress by reprogramming metabolism and protecting protein synthesis against irreversible oxidation. PMID:12755685

  14. Protective efficacy of mitochondrial targeted antioxidant MitoQ against dichlorvos induced oxidative stress and cell death in rat brain.

    PubMed

    Wani, Willayat Yousuf; Gudup, Satish; Sunkaria, Aditya; Bal, Amanjit; Singh, Parvinder Pal; Kandimalla, Ramesh J L; Sharma, Deep Raj; Gill, Kiran Dip

    2011-12-01

    Dichlorvos is a synthetic insecticide that belongs to the family of chemically related organophosphate (OP) pesticides. It can be released into the environment as a major degradation product of other OPs, such as trichlorfon, naled, and metrifonate. Dichlorvos exerts its toxic effects in humans and animals by inhibiting neural acetylcholinesterase. Chronic low-level exposure to dichlorvos has been shown to result in inhibition of the mitochondrial complex I and cytochrome oxidase in rat brain, resulting in generation of reactive oxygen species (ROS). Enhanced ROS production leads to disruption of cellular antioxidant defense systems and release of cytochrome c (cyt c) from mitochondria to cytosol resulting in apoptotic cell death. MitoQ is an antioxidant, selectively targeted to mitochondria and protects it from oxidative damage and has been shown to decrease mitochondrial damage in various animal models of oxidative stress. We hypothesized that if oxidative damage to mitochondria does play a significant role in dichlorvos induced neurodegeneration, then MitoQ should ameliorate neuronal apoptosis. Administration of MitoQ (100 μmol/kg body wt/day) reduced dichlorvos (6 mg/kg body wt/day) induced oxidative stress (decreased ROS production, increased MnSOD activity and glutathione levels) with decreased lipid peroxidation, protein and DNA oxidation. In addition, MitoQ also suppressed DNA fragmentation, cyt c release and caspase-3 activity in dichlorvos treated rats compared to the control group. Further electron microscopic studies revealed that MitoQ attenuates dichlorvos induced mitochondrial swelling, loss of cristae and chromatin condensation. These results indicate that MitoQ may be beneficial against OP (dichlorvos) induced neurodegeneration. PMID:21784090

  15. Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy.

    PubMed

    Chourpa, Igor; Douziech-Eyrolles, Laurence; Ngaboni-Okassa, Lazare; Fouquenet, Jean-François; Cohen-Jonathan, Simone; Soucé, Martin; Marchais, Hervé; Dubois, Pierre

    2005-10-01

    The chemical and structural properties of ferrite-based nanoparticles, precursors for magnetic drug targeting, have been studied by Raman confocal multispectral imaging. The nanoparticles were synthesised as aqueous magnetic fluids by co-precipitation of ferrous and ferric salts. Dehydrated particles corresponding to co-precipitation (CP) and oxidation (OX) steps of the magnetic fluid preparation have been compared in order to establish oxidation-related Raman features. These are discussed in correlation with the spectra of bulk iron oxides (magnetite, maghemite and hematite) recorded under the same experimental conditions. Considering a risk of laser-induced conversion of magnetite into hematite, this reaction was studied as a function of laser power and exposure to oxygen. Under hematite-free conditions, the Raman data indicated that nanoparticles consisted of magnetite and maghemite, and no oxyhydroxide species were detected. The relative maghemite/magnetite spectral contributions were quantified via fitting of their characteristic bands with Lorentzian profiles. Another quality parameter, contamination of the samples with carbon-related species, was assessed via a broad Raman band at 1580 cm(-1). The optimised Raman parameters permitted assessment of the homogeneity and stability of the solid phase of prepared magnetic fluids using chemical imaging by Raman multispectral mapping. These data were statistically averaged over each image and over six independently prepared lots of each of the CP and OX nanoparticles. The reproducibility of oxidation rates of the particles was satisfactory: the maghemite spectral fraction varied from 27.8 +/- 3.6% for the CP to 43.5 +/- 5.6% for the OX samples. These values were used to speculate about the layered structure of isolated particles. Our data were in agreement with a model with maghemite core and magnetite nucleus. The overall oxidation state of the particles remained nearly unchanged for at least one month.

  16. Rare earths and other trace elements in minerals from skarn assemblages, Hillside iron oxide-copper-gold deposit, Yorke Peninsula, South Australia

    NASA Astrophysics Data System (ADS)

    Ismail, Roniza; Ciobanu, Cristiana L.; Cook, Nigel J.; Teale, Graham S.; Giles, David; Mumm, Andreas Schmidt; Wade, Benjamin

    2014-01-01

    The Hillside Cu-(Au) deposit, Yorke Peninsula, South Australia, is a recently-discovered ore system within the 1.6 Ga World-class Olympic iron oxide-copper-gold (IOCG) Province. The deposit is characterized by a skarn-style alteration zone. Analyses of feldspar, calcite, skarn minerals (garnet, pyroxene, clinozoisite and actinolite) and accessories (titanite, apatite and allanite), and grain-scale element mapping by laser-ablation inductively-coupled plasma mass spectrometry are used to assess the distributions of rare earth element (REE), incompatible and ore-forming elements in host rocks, prograde and retrograde skarn.

  17. The impact of oxidative stress in thiamine deficiency: a multifactorial targeting issue.

    PubMed

    Hazell, Alan S; Faim, Samantha; Wertheimer, Guilherme; Silva, Vinicius R; Marques, Cleiton S

    2013-04-01

    Thiamine (vitamin B1) deficiency, the underlying cause of Wernicke-Korsakoff syndrome, is associated with the development of focal neuronal loss in vulnerable areas of the brain. Although the actual mechanism(s) that lead to the selective histological lesions characteristic of this disorder remain unresolved, oxidative stress has been shown to play a major role in its pathophysiology. In this review, the multifactorial influence of oxidative stress on a variety of processes known to take part in the development of structural lesions in TD including excitotoxicity, neuroinflammation, blood-brain barrier integrity, mitochondrial integrity, apoptosis, nucleic acid function, and neural stem cells will be discussed, and therapeutic strategies undertaken for treating neurodegeneration examined which may have an impact on the future treatment of this important vitamin deficiency.

  18. Metabotropic glutamate receptors as targets of neuromodulatory influence of nitric oxide.

    PubMed

    Ryzhova, I V; Nozdrachev, A D; Tobias, T V; Orlov, I V; Chikhman, V N; Solnushkin, S D

    2016-07-01

    A possible effect of nitric oxide (NO) on metabotropic glutamate receptor (mGluR) function in the amino acid afferent synapse was investigated in the isolated labyrinth of the frog Rana temporaria. The modification of the amplitude of responses of metabotropic glutamate receptor agonist trans-ACPD was analyzed during bath applied NO donor S-nitroso-N-acetyl-DL-penicillamine SNAP (0.1-100 μM) or nitric oxide synthase inhibitor L-NAME. It was shown that NO donor SNAP (1 μM) inhibited mGluR induced responses, and the inhibitor of NO-synthase L-NAME (100 μM) increased the amplitude of trans-ACPD evoked answers. The results suggest that NO can depress mGluR function due to modulation of functions of the endoplasmic reticulum channels. PMID:27595818

  19. Oxidation of elemental mercury by modified spent TiO2-based SCR-DeNOx catalysts in simulated coal-fired flue gas.

    PubMed

    Zhao, Lingkui; Li, Caiting; Zhang, Xunan; Zeng, Guangming; Zhang, Jie; Xie, Yin'e

    2016-01-01

    In order to reduce the costs, the recycle of spent TiO2-based SCR-DeNOx catalysts were employed as a potential catalytic support material for elemental mercury (Hg(0)) oxidation in simulated coal-fired flue gas. The catalytic mechanism for simultaneous removal of Hg(0) and NO was also investigated. The catalysts were characterized by Brunauer-Emmett-Teller (BET), scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) method. Results indicated that spent TiO2-based SCR-DeNOx catalyst supported Ce-Mn mixed oxides catalyst (CeMn/SCR1) was highly active for Hg(0) oxidation at low temperatures. The Ce1.00Mn/SCR1 performed the best catalytic activities, and approximately 92.80% mercury oxidation efficiency was obtained at 150 °C. The inhibition effect of NH3 on Hg(0) oxidation was confirmed in that NH3 consumed the surface oxygen. Moreover, H2O inhibited Hg(0) oxidation while SO2 had a promotional effect with the aid of O2. The XPS results illustrated that the surface oxygen was responsible for Hg(0) oxidation and NO conversion. Besides, the Hg(0) oxidation and NO conversion were thought to be aided by synergistic effect between the manganese and cerium oxides. PMID:26370819

  20. Effects of Alloying Elements on High-Temperature Oxidation and Sticking Occurring During Hot Rolling of Modified Ferritic STS430J1L Stainless Steels

    NASA Astrophysics Data System (ADS)

    Ha, Dae Jin; Lee, Jong Seog; Kim, Nack J.; Lee, Sunghak

    2012-01-01

    In the present study, mechanisms of sticking that occurs during hot rolling of modified STS430J1L ferritic stainless steels were investigated by using a pilot-plant-scale rolling machine, and the effects of alloying elements on sticking were analyzed by the high-temperature oxidation behavior. The hot-rolling test results indicated that the Cr oxide layer formed in a heating furnace was broken off and infiltrated the steel, thereby forming Cr oxides on the rolled steel surface. Because the surface region without oxides underwent a reduction in hardness rather than the surface region with oxides, the thickness of the surface oxide layer favorably affected the resistance to sticking. The addition of Zr, Cu, and Ni to the ferritic stainless steels worked in favor of the decreased sticking, but the Si addition negatively affected the resistance to sticking. In the Si-rich steel, Si oxides were continuously formed along the interfacial area between the Cr oxide layer and the base steel, and interrupted the formation and growth of the Cr oxide layer. Because the Si addition played a role in increasing sticking, the reduction in Si content was desirable for preventing sticking.

  1. Oxidation of elemental mercury by modified spent TiO2-based SCR-DeNOx catalysts in simulated coal-fired flue gas.

    PubMed

    Zhao, Lingkui; Li, Caiting; Zhang, Xunan; Zeng, Guangming; Zhang, Jie; Xie, Yin'e

    2016-01-01

    In order to reduce the costs, the recycle of spent TiO2-based SCR-DeNOx catalysts were employed as a potential catalytic support material for elemental mercury (Hg(0)) oxidation in simulated coal-fired flue gas. The catalytic mechanism for simultaneous removal of Hg(0) and NO was also investigated. The catalysts were characterized by Brunauer-Emmett-Teller (BET), scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) method. Results indicated that spent TiO2-based SCR-DeNOx catalyst supported Ce-Mn mixed oxides catalyst (CeMn/SCR1) was highly active for Hg(0) oxidation at low temperatures. The Ce1.00Mn/SCR1 performed the best catalytic activities, and approximately 92.80% mercury oxidation efficiency was obtained at 150 °C. The inhibition effect of NH3 on Hg(0) oxidation was confirmed in that NH3 consumed the surface oxygen. Moreover, H2O inhibited Hg(0) oxidation while SO2 had a promotional effect with the aid of O2. The XPS results illustrated that the surface oxygen was responsible for Hg(0) oxidation and NO conversion. Besides, the Hg(0) oxidation and NO conversion were thought to be aided by synergistic effect between the manganese and cerium oxides.

  2. Cerebral Small Vessel Disease: Targeting Oxidative Stress as a Novel Therapeutic Strategy?

    PubMed Central

    De Silva, T. Michael; Miller, Alyson A.

    2016-01-01

    Cerebral small vessel disease (SVD) is a major contributor to stroke, and a leading cause of cognitive impairment and dementia. Despite the devastating effects of cerebral SVD, the pathogenesis of cerebral SVD is still not completely understood. Moreover, there are no specific pharmacological strategies for its prevention or treatment. Cerebral SVD is characterized by marked functional and structural abnormalities of the cerebral microcirculation. The clinical manifestations of these pathological changes include lacunar infarcts, white matter hyperintensities, and cerebral microbleeds. The main purpose of this review is to discuss evidence implicating oxidative stress in the arteriopathy of both non-amyloid and amyloid (cerebral amyloid angiopathy) forms of cerebral SVD and its most important risk factors (hypertension and aging), as well as its contribution to cerebral SVD-related brain injury and cognitive impairment. We also highlight current evidence of the involvement of the NADPH oxidases in the development of oxidative stress, enzymes that are a major source of reactive oxygen species in the cerebral vasculature. Lastly, we discuss potential pharmacological strategies for oxidative stress in cerebral SVD, including some of the historical and emerging NADPH oxidase inhibitors. PMID:27014073

  3. Oxidative Stress Is a Central Target for Physical Exercise Neuroprotection Against Pathological Brain Aging.

    PubMed

    García-Mesa, Yoelvis; Colie, Sandra; Corpas, Rubén; Cristòfol, Rosa; Comellas, Francesc; Nebreda, Angel R; Giménez-Llort, Lydia; Sanfeliu, Coral

    2016-01-01

    Physical exercise is suggested for preventing or delaying senescence and Alzheimer's disease (AD). We have examined its therapeutic value in the advanced stage of AD-like pathology in 3xTg-AD female mice through voluntary wheel running from 12 to 15 months of age. Mice submitted to exercise showed improved body fitness, immunorejuvenation, improvement of behavior and cognition, and reduced amyloid and tau pathology. Brain tissue analysis of aged 3xTg-AD mice showed high levels of oxidative damage. However, this damage was decreased by physical exercise through regulation of redox homeostasis. Network analyses showed that oxidative stress was a central event, which correlated with AD-like pathology and the AD-related behaviors of anxiety, apathy, and cognitive loss. This study corroborates the importance of redox mechanisms in the neuroprotective effect of physical exercise, and supports the theory of the crucial role of oxidative stress in the switch from normal brain aging to pathological aging and AD.

  4. Chronic bladder ischemia and oxidative stress: new pharmacotherapeutic targets for lower urinary tract symptoms.

    PubMed

    Nomiya, Masanori; Andersson, Karl-Erik; Yamaguchi, Osamu

    2015-01-01

    Chronic bladder ischemia is potentially a common cause of lower urinary tract symptoms in the elderly. Epidemiological studies have shown a close association between lower urinary tract symptoms and vascular risk factors for atherosclerosis, and investigations using transrectal color Doppler ultrasonography have shown a negative correlation between decreased lower urinary tract perfusion and International Prostate Symptom Score in elderly patients with lower urinary tract symptoms. Bladder blood flow is also known to decrease in men with bladder outlet obstruction as a result of benign prostatic hyperplasia. Studies in animal models suggest that chronic bladder ischemia and repeated ischemia/reperfusion during a micturition cycle might produce oxidative stress, leading to denervation of the bladder and the expression of tissue-damaging molecules in the bladder wall, which could be responsible for the development of bladder hyperactivity progressing to bladder underactivity. The effects of drugs with different mechanisms of action; for example, α1-adrenoceptor antagonists, phosphodiesterase type 5 inhibitors, free radical scavengers and β3-adrenoceptor agonist, have been studied in animal models of chronic bladder ischemia. The drugs, representing different treatment principles for increasing blood flow and decreasing oxidative stress, showed protective effects not only on urodynamic parameters, but also on negative effects on muscle contractility and on detrimental structural bladder wall changes. Improvement of lower urinary tract perfusion and control of oxidative stress can be considered new therapeutic strategies for treatment of bladder dysfunction induced by chronic ischemia.

  5. Protein Phosphatase 2A Holoenzyme Is Targeted to Peroxisomes by Piggybacking and Positively Affects Peroxisomal β-Oxidation1[OPEN

    PubMed Central

    Kataya, Amr R.A.; Heidari, Behzad; Hagen, Lars; Kommedal, Roald; Slupphaug, Geir; Lillo, Cathrine

    2015-01-01

    The eukaryotic, highly conserved serine (Ser)/threonine-specific protein phosphatase 2A (PP2A) functions as a heterotrimeric complex composed of a catalytic (C), scaffolding (A), and regulatory (B) subunit. In Arabidopsis (Arabidopsis thaliana), five, three, and 17 genes encode different C, A, and B subunits, respectively. We previously found that a B subunit, B′θ, localized to peroxisomes due to its C-terminal targeting signal Ser-Ser-leucine. This work shows that PP2A C2, C5, andA2 subunits interact and colocalize with B′θ in peroxisomes. C and A subunits lack peroxisomal targeting signals, and their peroxisomal import depends on B′θ and appears to occur by piggybacking transport. B′θ knockout mutants were impaired in peroxisomal β-oxidation as shown by developmental arrest of seedlings germinated without sucrose, accumulation of eicosenoic acid, and resistance to protoauxins indole-butyric acid and 2,4-dichlorophenoxybutyric acid. All of these observations strongly substantiate that a full PP2A complex is present in peroxisomes and positively affects β-oxidation of fatty acids and protoauxins. PMID:25489022

  6. Interaction of periodate-oxidized target cells and cytolytic T lymphocytes: a model system of "polyclonal MHC recognition".

    PubMed

    Keren, Z; Berke, G

    1986-09-01

    In oxidation-dependent cytotoxicity (ODCC), cytolytic T lymphocytes (CTL) non-specifically recognize, bind to and lyse oxidized target cells (O-TC) but the precise mechanism whereby CTL react with O-TC is far from clear (Berke, G., Immunol. Rev. 1983. 72:5). Here we present evidence that CTL/O-TC interactions are blocked by aldehyde-reactive reagents such as hydroxylamine, adipic acid dihydrazide and thiocarbohydrazide and that preformed CTL/O-TC conjugates dissociate upon reduction with NaBH4, suggesting that active aldehyde groups of O-TC rather than intercellular Schiff bases are involved in the recognition and lysis of O-TC by CTL in ODCC. The aldehydes are bound to trypsin-sensitive, non-H-2 glycoproteins that appear to be different and unique in the three different target cell lines so far examined (EL4, L1210, R1.1). In view of these and previous findings we would like to suggest that in ODCC, active aldehydes react with adjacent major histocompatibility complex and perhaps other cell-surface molecules to create a multitude of modified conformations, responsible for the "polyclonal" (nonspecific) MHC recognition and lysis of O-TC by CTL, as well as for an altered pattern of H-2 antibody binding to O-TC. PMID:3019706

  7. Highly efficient colorimetric detection of target cancer cells utilizing superior catalytic activity of graphene oxide-magnetic-platinum nanohybrids.

    PubMed

    Kim, Moon Il; Kim, Min Su; Woo, Min-Ah; Ye, Youngjin; Kang, Kyoung Suk; Lee, Jinwoo; Park, Hyun Gyu

    2014-01-01

    Enzyme-linked immunosorbent assays (ELISAs) have most widely been applied in immunoassays for several decades. However, several unavoidable limitations (e.g., instability caused by structural unfolding) of natural enzymes have hindered their widespread applications. Here, we describe a new nanohybrid consisting of Fe₃O₄ magnetic nanoparticles (MNPs) and platinum nanoparticles (Pt NPs), simultaneously immobilized on the surface of graphene oxide (GO). By synergistically integrating highly catalytically active Pt NPs and MNPs on GO whose frameworks possess high substrate affinity, the nanohybrid is able to achieve up to a 30-fold higher maximal reaction velocity (V(max)) compared to that of free GO for the colorimetric reaction of the peroxidase substrate, 3,3',5,5'-tetramethylbenzidine (TMB), and enable rapid detection of target cancer cells. Specifically, using this new assay system, clinically important breast cancer cells are detected in a 5 min time period at room temperature with high specificity and sensitivity. The remarkably high capability to catalyze oxidation reactions could allow the nanohybrid to replace conventional peroxidase-based immunoassay systems as part of new, rapid, robust and convenient assay systems which can be widely utilized for the identification of important target molecules.

  8. Facing-target mid-frequency magnetron reactive sputtered hafnium oxide film: Morphology and electrical properties

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Xu, Jun; Wang, You-Nian; Choi, Chi Kyu; Zhou, Da-Yu

    2016-03-01

    Amorphous hafnium dioxide (HfO2) film was prepared on Si (100) by facing-target mid-frequency reactive magnetron sputtering under different oxygen/argon gas ratio at room temperature with high purity Hf target. 3D surface profiler results showed that the deposition rates of HfO2 thin film under different O2/Ar gas ratio remain unchanged, indicating that the facing target midfrequency magnetron sputtering system provides effective approach to eliminate target poisoning phenomenon which is generally occurred in reactive sputtering procedure. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) demonstrated that the gradual reduction of oxygen vacancy concentration and the densification of deposited film structure with the increase of oxygen/argon (O2/Ar) gas flow ratio. Atomic force microscopy (AFM) analysis suggested that the surface of the as-deposited HfO2 thin film tends to be smoother, the root-meansquare roughness (RMS) reduced from 0.876 nm to 0.333 nm while O2/Ar gas flow ratio increased from 1/4 to 1/1. Current-Voltage measurements of MOS capacitor based on Au/HfO2/Si structure indicated that the leakage current density of HfO2 thin films decreased by increasing of oxygen partial pressure, which resulted in the variations of pore size and oxygen vacancy concentration in deposited thin films. Based on the above characterization results the leakage current mechanism for all samples was discussed systematically.

  9. Förster resonance energy transfer-based sensor targeting endoplasmic reticulum reveals highly oxidative environment

    PubMed Central

    Kolossov, Vladimir L; Leslie, Matthew T; Chatterjee, Abhishek; Sheehan, Bridget M; Kenis, Paul J A; Gaskins, H Rex

    2012-01-01

    The glutathione thiol/disulfide couple is the major redox buffer in the endoplasmic reticulum (ER); however, mechanisms by which it contributes to the tightly regulated redox environment of this intracellular organelle are poorly understood. The recent development of genetically encoded, ratiometric, single green fluorescent protein-based redox-sensitive (roGFP) sensors adjusted for more oxidative environments enables non-invasive measurement of the ER redox environment in living cells. In turn, Förster resonance energy transfer (FRET) sensors based on two fluorophore probes represent an alternative strategy for ratiometric signal acquisition. In previous work, we described the FRET-based redox sensor CY-RL7 with a relatively high midpoint redox potential of −143 mV, which is required for monitoring glutathione potentials in the comparatively high oxidative environment of the ER. Here, the efficacy of the CY-RL7 probe was ascertained in the cytosol and ER of live cells with fluorescence microscopy and flow cytometry. The sensor was found to be fully reduced at steady state in the cytosol and became fully oxidized in response to treatment with 1-chloro-2,4-dinitrobenzene, a depletor of reduced glutathione (GSH). In contrast, the probe was strongly oxidized (88%) upon expression in the ER of cultured cells. We also examined the responsiveness of the ER sensor to perturbations in cellular glutathione homeostasis. We observed that the reductive level of the FRET sensor was increased two-fold to about 28% in cells pretreated with N-acetylcysteine, a substrate for GSH synthesis. Finally, we evaluated the responsiveness of CY-RL7 and roGFP1-iL to various perturbations of cellular glutathione homeostasis to address the divergence in the specificity of these two probes. Together, the present data generated with genetically encoded green fluorescent protein (GFP)-based glutathione probes highlight the complexity of the ER redox environment and indicate that the ER

  10. Neodymium isotopic study of rare earth element sources and mobility in hydrothermal Fe oxide (Fe-P-REE) systems

    SciTech Connect

    Gleason, J.D.; Marikos, M.A.; Barton, M.D.; Johnson, D.A.

    2000-03-01

    Rare earth element (REE)-enriched, igneous-related hydrothermal Fe-oxide hosted (Fe-P-REE) systems from four areas in North America have been analyzed for their neodymium iosotopic composition to constrain REE sources and mobility in these systems. The Nd isotopic results evidence a common pattern of REE concentration from igneous sources despite large differences in age (Proterozoic to Tertiary), tectonic setting (subduction vs. intraplate), and magmatic style (mafic vs. felsic). In the Middle Proterozoic St. Francois Mountains terrane of southeastern Missouri, {epsilon}{sub Nd} for Fe-P-REE (apatite, monazite, xenotime) deposits ranges from +3.5 to +5.1, similar to associated felsic to intermediate igneous rocks of the same age ({epsilon}{sub Nd} = +2.6 to +6.2). At the mid-Jurassic Humboldt mafic complex in western Nevada, {epsilon}{sub Nd} for Fe-P-REE (apatite) mineralization varies between +1.1 and +2.4, similar to associated mafic igneous rocks ({minus}1.0 to +3.5). In the nearby Cortez Mountains in central Nevada, mid-Jurassic felsic volcanic and plutonic rocks ({epsilon}{sub Nd} = {minus}2.0 to {minus}4.4) are associated with Fe-P-REE (apatite-monazite) mineralization having similar {epsilon}{sub Nd}({minus}1.7 to {minus}2.4). At Cerro de Mercado, Durango, Mexico, all assemblages analyzed in this Tertiary rhyolite-hosted Fe oxide deposit have identical isotopic compositions with {epsilon}{sub Nd} = {minus}2.5. These data are consistent with coeval igneous host rocks being the primary source of REE in all four regions, and are inconsistent with a significant contribution of REE from other sources. Interpretations of the origin of these hydrothermal systems and their concomitant REE mobility must account for nonspecialized igneous sources and varied tectonic settings.

  11. Evaluation of trace elements, oxidant/antioxidant status, vitamin C and β-carotene in dogs with dermatophytosis.

    PubMed

    Beigh, S A; Soodan, J S; Singh, R; Khan, A M; Dar, M A

    2014-06-01

    The aim of the study was to determine zinc, copper and iron levels, erythrocyte oxidant/antioxidant status, vitamin C and β-carotene in dogs with dermatophytosis. A total of 23 dogs with clinically established diagnosis of dermatophytosis by trichogram and positive fungal culture and six dogs as control were included in this study. On cultural examination 52.17% fungal isolates were found to be Microsporum canis, 30.43% were Trichophyton mentagrophytes and 17.39% were M. gypseum. In comparison to healthy control, the dogs with dermatophytosis had significantly lower levels of zinc (P < 0.01), copper (P < 0.05), β-carotene and vitamin C levels (P < 0.05) and activities of superoxide dismutase (SOD) (P < 0.05) and catalase (P < 0.01), whereas the iron (P < 0.05) and malondialdehyde (MDA) (P < 0.01) levels were significantly increased. On correlation analysis, SOD activity was observed to be positively correlated (P < 0.05) with zinc and copper in both healthy and dermatophytosis affected dogs. In dermatophytosis affected dogs the MDA levels were negatively correlated (P < 0.05) with iron, β-carotene levels and the activities of antioxidant enzymes; SOD and catalase. Our results demonstrated that dermatophytosis in dogs is associated with significant alteration in oxidant/antioxidant balance and trace elements. It might be secondary consequence of dermatophytosis infection or contributing factor in its pathogenesis.

  12. Neodymium isotopic study of rare earth element sources and mobility in hydrothermal Fe-oxide (Fe-P-REE) systems

    NASA Astrophysics Data System (ADS)

    Gleason, James D.; Marikos, Mark A.; Barton, Mark D.; Johnson, David A.

    2000-03-01

    Rare earth element (REE)-enriched, igneous-related hydrothermal Fe-oxide hosted (Fe-P-REE) systems from four areas in North America have been analyzed for their neodymium isotopic composition to constrain REE sources and mobility in these systems. The Nd isotopic results evidence a common pattern of REE concentration from igneous sources despite large differences in age (Proterozoic to Tertiary), tectonic setting (subduction vs. intraplate), and magmatic style (mafic vs. felsic). In the Middle Proterozoic St. Francois Mountains terrane of southeastern Missouri, ɛ Nd for Fe-P-REE (apatite, monazite, xenotime) deposits ranges from +3.5 to +5.1, similar to associated felsic to intermediate igneous rocks of the same age (ɛ Nd = +2.6 to +6.2). At the mid-Jurassic Humboldt mafic complex in western Nevada, ɛ Nd for Fe-P-REE (apatite) mineralization varies between +1.1 and +2.4, similar to associated mafic igneous rocks (-1.0 to +3.5). In the nearby Cortez Mountains in central Nevada, mid-Jurassic felsic volcanic and plutonic rocks (ɛ Nd = -2.0 to -4.4) are associated with Fe-P-REE (apatite-monazite) mineralization having similar ɛ Nd (-1.7 to -2.4). At Cerro de Mercado, Durango, Mexico, all assemblages analyzed in this Tertiary rhyolite-hosted Fe oxide deposit have identical isotopic compositions with ɛ Nd = -2.5. These data are consistent with coeval igneous host rocks being the primary source of REE in all four regions, and are inconsistent with a significant contribution of REE from other sources. Interpretations of the origin of these hydrothermal systems and their concomitant REE mobility must account for nonspecialized igneous sources and varied tectonic settings.

  13. Ultrasmall cationic superparamagnetic iron oxide nanoparticles as nontoxic and efficient MRI contrast agent and magnetic-targeting tool.

    PubMed

    Uchiyama, Mayara Klimuk; Toma, Sergio Hiroshi; Rodrigues, Stephen Fernandes de Paula; Shimada, Ana Lucia Borges; Loiola, Rodrigo Azevedo; Cervantes Rodríguez, Hernán Joel; Oliveira, Pedro Vitoriano; Luz, Maciel Santos; Rabbani, Said Rahnamaye; Toma, Henrique Eisi; Poliselli Farsky, Sandra Helena; Araki, Koiti

    2015-01-01

    Fully dispersible, cationic ultrasmall (7 nm diameter) superparamagnetic iron oxide nanoparticles, exhibiting high relaxivity (178 mM(-1)s(-1) in 0.47 T) and no acute or subchronic toxicity in Wistar rats, were studied and their suitability as contrast agents for magnetic resonance imaging and material for development of new diagnostic and treatment tools demonstrated. After intravenous injection (10 mg/kg body weight), they circulated throughout the vascular system causing no microhemorrhage or thrombus, neither inflammatory processes at the mesentery vascular bed and hepatic sinusoids (leukocyte rolling, adhesion, or migration as evaluated by intravital microscopy), but having been spontaneously concentrated in the liver, spleen, and kidneys, they caused strong negative contrast. The nanoparticles are cleared from kidneys and bladder in few days, whereas the complete elimination from liver and spleen occurred only after 4 weeks. Ex vivo studies demonstrated that cationic ultrasmall superparamagnetic iron oxide nanoparticles caused no effects on hepatic and renal enzymes dosage as well as on leukocyte count. In addition, they were readily concentrated in rat thigh by a magnet showing its potential as magnetically targeted carriers of therapeutic and diagnostic agents. Summarizing, cationic ultrasmall superparamagnetic iron oxide nanoparticles are nontoxic and efficient magnetic resonance imaging contrast agents useful as platform for the development of new materials for application in theranostics.

  14. Imaging of oxidation-specific epitopes with targeted nanoparticles to detect high-risk atherosclerotic lesions: progress and future directions.

    PubMed

    Briley-Saebo, Karen; Yeang, Calvin; Witztum, Joseph L; Tsimikas, Sotirios

    2014-11-01

    Oxidation-specific epitopes (OSE) within developing atherosclerotic lesions are key antigens that drive innate and adaptive immune responses in atherosclerosis, leading to chronic inflammation. Oxidized phospholipids and malondialdehyde-lysine epitopes are well-characterized OSE present in human atherosclerotic lesions, particularly in pathologically defined vulnerable plaques. Using murine and human OSE-specific antibodies as targeting agents, we have developed radionuclide and magnetic resonance based nanoparticles, containing gadolinium, manganese or lipid-coated ultrasmall superparamagnetic iron oxide, to non-invasively image OSE within experimental atherosclerotic lesions. These methods quantitate plaque burden, allow detection of lesion progression and regression, plaque stabilization, and accumulation of OSE within macrophage-rich areas of the artery wall, suggesting they detect the most active lesions. Future studies will focus on using "natural" antibodies, lipopeptides, and mimotopes for imaging applications. These approaches should enhance the clinical translation of this technique to image, monitor, evaluate efficacy of novel therapeutic agents, and guide optimal therapy of high-risk atherosclerotic lesions. PMID:25297940

  15. Ultrasmall cationic superparamagnetic iron oxide nanoparticles as nontoxic and efficient MRI contrast agent and magnetic-targeting tool

    PubMed Central

    Uchiyama, Mayara Klimuk; Toma, Sergio Hiroshi; Rodrigues, Stephen Fernandes; Shimada, Ana Lucia Borges; Loiola, Rodrigo Azevedo; Cervantes Rodríguez, Hernán Joel; Oliveira, Pedro Vitoriano; Luz, Maciel Santos; Rabbani, Said Rahnamaye; Toma, Henrique Eisi; Poliselli Farsky, Sandra Helena; Araki, Koiti

    2015-01-01

    Fully dispersible, cationic ultrasmall (7 nm diameter) superparamagnetic iron oxide nanoparticles, exhibiting high relaxivity (178 mM−1s−1 in 0.47 T) and no acute or subchronic toxicity in Wistar rats, were studied and their suitability as contrast agents for magnetic resonance imaging and material for development of new diagnostic and treatment tools demonstrated. After intravenous injection (10 mg/kg body weight), they circulated throughout the vascular system causing no microhemorrhage or thrombus, neither inflammatory processes at the mesentery vascular bed and hepatic sinusoids (leukocyte rolling, adhesion, or migration as evaluated by intravital microscopy), but having been spontaneously concentrated in the liver, spleen, and kidneys, they caused strong negative contrast. The nanoparticles are cleared from kidneys and bladder in few days, whereas the complete elimination from liver and spleen occurred only after 4 weeks. Ex vivo studies demonstrated that cationic ultrasmall superparamagnetic iron oxide nanoparticles caused no effects on hepatic and renal enzymes dosage as well as on leukocyte count. In addition, they were readily concentrated in rat thigh by a magnet showing its potential as magnetically targeted carriers of therapeutic and diagnostic agents. Summarizing, cationic ultrasmall superparamagnetic iron oxide nanoparticles are nontoxic and efficient magnetic resonance imaging contrast agents useful as platform for the development of new materials for application in theranostics. PMID:26251595

  16. Shotgun redox proteomics in sub-proteomes trapped on functionalised beads: Identification of proteins targeted by oxidative stress.

    PubMed

    Hu, Wentao; Tedesco, Sara; McDonagh, Brian; Sheehan, David

    2010-01-01

    If reactive oxygen species (ROS) levels exceed antioxidant defences, oxidative stress occurs; a common response to environmental pollutants. Proteins absorb ∼70% of ROS, altering amino acid side-chains. Cys (-SH) oxidises to sulphenic (-SOH), sulphinic (-SO(2)H), cysteic (-SO(3)H) acids and disulphide bridges (-S-S-). Two-dimensional electrophoresis (2DE) under-selects certain protein categories (e.g. extreme pI, small proteins) so activated thiol sepharose (ATS) was used to select sub-proteomes of thiol-containing proteins in menadione-exposed Escherichia coli. ATS bound thiol-containing proteins (but not oxidised thiols) via mixed disulphides. Tryptic digestion of bead-bound proteins was followed by LC-tandem MS. Many proteins were identified in controls with significantly fewer in menadione-treated cells (e.g. chaperonins, transcription/translation-related and ribosomal proteins; aminoacyl tRNA synthetases and metabolic enzymes. Non-denaturing ATS capture (followed by reduction) demonstrated lower specific activities of key enzymes which is attributed to thiol oxidation. This method may be generally useful in ecotoxicology for identification of oxidative stress targets.

  17. Production of transuranium elements

    SciTech Connect

    Wham, R.M.; Chattin, F.R.; Knauer, J.B.

    1993-12-31

    The Radiochemical Engineering Development Center (REDC) has the programmatic responsibility for the Department of Energy`s Transuranium Element Program. Principle elements from the program are einsteinium, berkelium, and fermium. Targets containing curium oxide mixed with aluminum powder are fabricated by the REDC and irradiated in the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor. Following an irradiation period of 6-12 months, targets are returned to the REDC for chemical processing. Processing operations consists of aluminum dejacketing in a caustic-nitrate solution, filtration, acid dissolution, solvent extraction, anion exchange, and finally a cation exchange to recover the actinides. The processing operations take place in heavily shielded hot cell facilities and all operations are carried out remotely. The chemistry for the separations has been well established over the 26-yr. operating life of the facility.

  18. Influence of Minor Alloying Elements on Selective Oxidation and Reactive Wetting of CMnSi TRIP Steel during Hot Dip Galvanizing

    NASA Astrophysics Data System (ADS)

    Cho, Lawrence; Kim, Myung Soo; Kim, Young Ha; De Cooman, Bruno C.

    2014-09-01

    The influence of the addition of minor alloying elements on the selective oxidation and the reactive wetting of CMnSi transformation-induced plasticity (TRIP) steels was studied by means of galvanizing simulator tests. Five TRIP steels containing small alloying additions of Cr, Ni, Ti, Cu, and Sn were investigated. After intercritical annealing (IA) at 1093 K (820 °C) in a N2 + 5 pct H2 gas atmosphere with a dew point of 213 K (-60 °C), two types of oxides were formed on the strip surface: Mn-rich xMnO·SiO2 ( x > 1.5) and Si-rich xMnO·SiO2 ( x < 0.3) oxides. The addition of the minor alloying elements changed the morphology of the Si-rich oxides from a continuous film to discrete islands and this improved the wettability by molten Zn. The improved wetting effect of the minor alloying elements was attributed to an increased area fraction of the surface where the oxides were thinner, enabling a direct unhindered reaction between Fe and the Al in the liquid Zn and the formation of the inhibition layer during the hot dip galvanizing. The addition of a small amount of Sn is shown to significantly decrease the density of Zn-coating defects on CMnSi TRIP steels.

  19. Arsenite Targets the Zinc Finger Domains of Tet Proteins and Inhibits Tet-Mediated Oxidation of 5-Methylcytosine.

    PubMed

    Liu, Shuo; Jiang, Ji; Li, Lin; Amato, Nicholas J; Wang, Zi; Wang, Yinsheng

    2015-10-01

    Arsenic toxicity is a serious public health problem worldwide that brings more than 100 million people into the risk of arsenic exposure from groundwater and food contamination. Although there is accumulating evidence linking arsenic exposure with aberrant cytosine methylation in the global genome or at specific genomic loci, very few have investigated the impact of arsenic on the oxidation of 5-methylcytosine (5-mC) mediated by the Ten-eleven translocation (Tet) family of proteins. Owing to the high binding affinity of As(III) toward cysteine residues, we reasoned that the highly conserved C3H-type zinc fingers situated in Tet proteins may constitute potential targets for arsenic binding. Herein, we found that arsenite could bind directly to the zinc fingers of Tet proteins in vitro and in cells, and this interaction substantially impaired the catalytic efficiency of Tet proteins in oxidizing 5-mC to 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-foC), and 5-carboxylcytosine (5-caC). Treatments with arsenite also led to a dose-dependent decrease in the level of 5-hmC, but not 5-mC, in DNA isolated from HEK293T cells overexpressing the catalytic domain of any of the three Tet proteins and from mouse embryonic stem cells. Together, our study unveiled, for the first time, that arsenite could alter epigenetic signaling by targeting the zinc fingers of Tet proteins and perturbing the Tet-mediated oxidation of 5-mC in vitro and in cells. Our results offer important mechanistic understanding of arsenic epigenotoxicity and carcinogenesis in mammalian systems and may lead to novel approaches for the chemoprevention of arsenic toxicity.

  20. Elemental and Isotopic Analysis of Uranium Oxide an NIST Glass Standards by FEMTOSECOND-LA-ICP-MIC-MS

    SciTech Connect

    Ebert, Chris; Zamzow, Daniel S.; McBay, Eddie H.; Bostick, Debra A.; Bajic, Stanley J.; Baldwin, David P.; Houk, R.S.

    2009-06-01

    The objective of this work was to test and demonstrate the analytical figures of merit of a femtosecond-laser ablation (fs-LA) system coupled with an inductively coupled plasma-multi-ion collector-mass spectrometer (ICP-MIC-MS). The mobile fs-LA sampling system was designed and assembled at Ames Laboratory and shipped to Oak Ridge National Laboratory (ORNL), where it was integrated with an ICP-MIC-MS. The test period of the integrated systems was February 2-6, 2009. Spatially-resolved analysis of particulate samples is accomplished by 100-shot laser ablation using a fs-pulsewidth laser and monitoring selected isotopes in the resulting ICP-MS transient signal. The capability of performing high sensitivity, spatially resolved, isotopic analyses with high accuracy and precision and with virtually no sample preparation makes fs-LA-ICP-MIC-MS valuable for the measurement of actinide isotopes at low concentrations in very small samples for nonproliferation purposes. Femtosecond-LA has been shown to generate particles from the sample that are more representative of the bulk composition, thereby minimizing weaknesses encountered in previous work using nanosecond-LA (ns-LA). The improvement of fs- over ns-LA sampling arises from the different mechanisms for transfer of energy into the sample in these two laser pulse-length regimes. The shorter duration fs-LA pulses induce less heating and cause less damage to the sample than the longer ns pulses. This results in better stoichiometric sampling (i.e., a closer correlation between the composition of the ablated particles and that of the original solid sample), which improves accuracy for both intra- and inter-elemental analysis. The primary samples analyzed in this work are (a) solid uranium oxide powdered samples having different {sup 235}U to {sup 238}U concentration ratios, and (b) glass reference materials (NIST 610, 612, 614, and 616). Solid uranium oxide samples containing {sup 235}U in depleted, natural, and enriched

  1. Oxidative stress indicators and trace elements in the blue shark (Prionace glauca) off the east coast of the Mexican Pacific Ocean.

    PubMed

    Barrera-García, Angélica; O'Hara, Todd; Galván-Magaña, Felipe; Méndez-Rodríguez, Lía C; Castellini, J Margaret; Zenteno-Savín, Tania

    2012-08-01

    Trace element concentrations and oxidative stress indicators (including production of reactive oxygen species (ROS), antioxidant enzyme activities and oxidative damage) were measured in muscle of blue sharks collected along the west coast of Baja California Sur to determine potential differences by sex and maturity cohorts. Mercury (Hg) concentration in muscle samples from larger sharks (>200 cm LT) exceeded the permissible limit (>1 ppm wet weight) for human consumption set by numerous international agencies. Significant differences were found in Hg concentrations (mature>immature; males>females), and in protein carbonyl concentrations (male>female); however, except for carbonyl protein levels, no significant differences by sex or maturity stage were found in the oxidative stress indicators. Differences between sexes and maturity stages in trace element concentration and carbonyl protein levels in blue shark muscle may be related to variations in diet within different cohorts.

  2. RGD-functionalized ultrasmall iron oxide nanoparticles for targeted T1-weighted MR imaging of gliomas

    NASA Astrophysics Data System (ADS)

    Luo, Yu; Yang, Jia; Yan, Yu; Li, Jingchao; Shen, Mingwu; Zhang, Guixiang; Mignani, Serge; Shi, Xiangyang

    2015-08-01

    We report a convenient approach to prepare ultrasmall Fe3O4 nanoparticles (NPs) functionalized with an arginylglycylaspartic acid (RGD) peptide for in vitro and in vivo magnetic resonance (MR) imaging of gliomas. In our work, stable sodium citrate-stabilized Fe3O4 NPs were prepared by a solvothermal route. Then, the carboxylated Fe3O4 NPs stabilized with sodium citrate were conjugated with polyethylene glycol (PEG)-linked RGD. The formed ultrasmall RGD-functionalized nanoprobe (Fe3O4-PEG-RGD) was fully characterized using different techniques. We show that these Fe3O4-PEG-RGD particles with a size of 2.7 nm are water-dispersible, stable, cytocompatible and hemocompatible in a given concentration range, and display targeting specificity to glioma cells overexpressing αvβ3 integrin in vitro. With the relatively high r1 relaxivity (r1 = 1.4 mM-1 s-1), the Fe3O4-PEG-RGD particles can be used as an efficient nanoprobe for targeted T1-weighted positive MR imaging of glioma cells in vitro and the xenografted tumor model in vivo via an active RGD-mediated targeting pathway. The developed RGD-functionalized Fe3O4 NPs may hold great promise to be used as a nanoprobe for targeted T1-weighted MR imaging of different αvβ3 integrin-overexpressing cancer cells or biological systems.We report a convenient approach to prepare ultrasmall Fe3O4 nanoparticles (NPs) functionalized with an arginylglycylaspartic acid (RGD) peptide for in vitro and in vivo magnetic resonance (MR) imaging of gliomas. In our work, stable sodium citrate-stabilized Fe3O4 NPs were prepared by a solvothermal route. Then, the carboxylated Fe3O4 NPs stabilized with sodium citrate were conjugated with polyethylene glycol (PEG)-linked RGD. The formed ultrasmall RGD-functionalized nanoprobe (Fe3O4-PEG-RGD) was fully characterized using different techniques. We show that these Fe3O4-PEG-RGD particles with a size of 2.7 nm are water-dispersible, stable, cytocompatible and hemocompatible in a given concentration

  3. What controls the oxidative ratio of UK peats? A multi-site study of elemental CHNO concentrations in peat cores

    NASA Astrophysics Data System (ADS)

    Clay, Gareth; Worrall, Fred; Masiello, Carrie

    2013-04-01

    The oxidative ratio (OR) is the amount of CO2 sequestered in the terrestrial biosphere for each mol of O2 produced. The OR governs the effectiveness of a terrestrial biome to mitigate the impact of anthropogenic CO2 emissions and it has been used to calculate the balance of terrestrial and oceanic carbon sinks across the globe. However, few studies have investigated the controls of the variability in OR. What factors affect OR - climate? Soil type? Vegetation type? N deposition? Land use? Land use change? Small shifts in OR could have important implications in the global partitioning of CO2 between the atmosphere, biosphere, and oceans. This study looks at peat soils from a series of sites representing a climatic transect across the UK. Duplicate peat cores were taken, along with samples of above-ground vegetation and litter, from sites in northern Scotland (Forsinard), southern Scotland (Auchencorth), northern England (Moor House; Thorne Moor) through the Welsh borders (Whixhall Moss) and Somerset levels (Westhay Moor) to Dartmoor and Bodmin Moor in the south west of England. Sub-samples of the cores were analysed for their CHNO concentrations using a Costech ECS 4010 Elemental combustion system. Using the method of Masiello et al. (2008), OR values could be calculated from these elemental concentrations. Results show that OR values of UK peats varied between 0.82 and 1.27 with a median value of 1.08 which is within the range of world soils. There were significant differences in OR of the peat between sites with the data falling into two broad groupings - Group 1: Forsinard, Auchencorth, Dartmoor and Bodmin Moor; Group 2: Moor House, Thorne Moor, Westhay Moor, Whixhall Moss. Whilst there were significant changes (p < 0.05) in elemental ratios with increasing peat depth (increasing C:N ratio and decreasing O:C ratio) there was no significant difference overall in OR with depth. This paper will explore some of the possible controlling factors on these ratios. Local

  4. High temperature oxidation behavior of gamma-nickel+gamma'-nickel aluminum alloys and coatings modified with platinum and reactive elements

    NASA Astrophysics Data System (ADS)

    Mu, Nan

    Materials for high-pressure turbine blades must be able to operate in the high-temperature gases (above 1000°C) emerging from the combustion chamber. Accordingly, the development of nickel-based superalloys has been constantly motivated by the need to have improved engine efficiency, reliability and service lifetime under the harsh conditions imposed by the turbine environment. However, the melting point of nickel (1455°C) provides a natural ceiling for the temperature capability of nickel-based superalloys. Thus, surface-engineered turbine components with modified diffusion coatings and overlay coatings are used. Theses coatings are capable of forming a compact and adherent oxide scale, which greatly impedes the further transport of reactants between the high-temperature gases and the underlying metal and thus reducing attack by the atmosphere. Typically, these coatings contain beta-NiAl as a principal constituent phase in order to have sufficient aluminum content to form an Al2O3 scale at elevated temperatures. The drawbacks to the currently-used beta-based coatings, such as phase instabilities, associated stresses induced by such phase instabilities, and extensive coating/substrate interdiffusion, are major motivations in this study to seek next-generation coatings. The high-temperature oxidation resistance of novel Pt+Hf-modified gamma-Ni+gamma'-Ni 3Al-based alloys and coatings were investigated in this study. Both early-stage and 4-days isothermal oxidation behavior of single-phase gamma-Ni and gamma'-Ni3Al alloys were assessed by examining the weight changes, oxide-scale structures, and elemental concentration profiles through the scales and subsurface alloy regions. It was found that Pt promotes Al 2O3 formation by suppressing the NiO growth on both gamma-Ni and gamma'-Ni3Al single-phase alloys. This effect increases with increasing Pt content. Moreover, Pt exhibits this effect even at lower temperatures (˜970°C) in the very early stage of oxidation. It

  5. Role of oxidative stress in disrupting the function of negative glucocorticoid response element in daily amphetamine-treated rats.

    PubMed

    Chu, Shu-Chen; Yu, Ching-Han; Chen, Pei-Ni; Hsieh, Yih-Shou; Kuo, Dong-Yih

    2016-09-01

    Amphetamine (AMPH)-induced appetite suppression is associated with changes in hypothalamic reactive oxygen species (ROS), antioxidants, neuropeptides, and plasma glucocorticoid. This study explored whether ROS and glucocorticoid response element (GRE), which is the promoter site of corticotropin-releasing hormone (CRH) gene, participated in neuropeptides-mediated appetite control. Rats were treated daily with AMPH for four days, and changes in food intake, plasma glucocorticoid and expression levels of hypothalamic neuropeptide Y (NPY), proopiomelanocortin (POMC), superoxide dismutase (SOD), CRH, and glucocorticoid receptor (GR) were examined and compared. Results showed that food intake decreased and NPY gene down-regulated, while POMC, SOD, and CRH gene up-regulated during AMPH treatment. GR and GRE-DNA bindings were disrupted on Day 1 and Day 2 when glucocorticoid levels were still high. Pretreatment with GR inhibitor or ROS scavenger modulated mRNA levels in NPY, POMC, SOD and CRH in AMPH-treated rats. We suggest that disruptions of negative GRE (nGRE) on Day 1 and Day 2 are associated with an increase in oxidative stress during the regulation of NPY/POMC-mediated appetite control in AMPH-treated rats. These results advance the understanding of molecular mechanism in regulating AMPH-mediated appetite suppression. PMID:27235634

  6. Oxidation of gaseous elemental mercury to gaseous divalent mercury during 2003 polar sunrise at Ny-Alesund.

    PubMed

    Sprovieri, Francesca; Pirrone, Nicola; Landis, Matthew S; Stevens, Robert K

    2005-12-01

    The springtime phenomenon, termed as the mercury depletion event (MDE), during which elemental gaseous mercury (Hg0) may be converted to a reactive form that accumulates in polar ecosystems, first noted in the Arctic, has now been observed at both poles and results in an important removal pathway for atmospheric mercury. An intensive international springtime mercury experiment was performed at Ny-Alesund, Spitsbergen, from 19 April to 13 May 2003 to study the atmospheric mercury chemistry in the Arctic environment and, in particular, the MDEs which occurred in the arctic boundary layer after polar sunrise. Automated ambient measurements of Hg0, divalent reactive gaseous mercury (RGM) and fine particulate mercury (<2.5 microm) (Hg(p)) were made at the Zeppelin Mountain Station (ZMS). During the experiment mercury concentrations in the lower atmosphere varied in synchrony with ozone levels throughout the Spring. Hg0 concentrations ranged from background levels (approximately 1.6 ng m(-3)) to undetectable values (<0.1 ng m(-3)) during the first and major MDE, while RGM data showed an opposite trend during the sampling period with concentrations increasing dramatically to a peak of 230 pg m(-3), synchronous with the depletion of Hg0. The results of a meteorological transport analysis indicate the MDEs observed at ZMS were primarily due to air masses being transported in from open water areas in the Arctic Ocean that were already depleted of Hg0 when they arrived and not due to in-situ oxidation mechanisms.

  7. Highly conductive indium zinc oxide prepared by reactive magnetron cosputtering technique using indium and zinc metallic targets

    SciTech Connect

    Tsai, T. K.; Chen, H. C.; Lee, J. H.; Huang, Y. Y.; Fang, J. S.

    2010-05-15

    Zn-doped In{sub 2}O{sub 3} film is frequently deposited from an oxide target; but the use of metallic target is increasingly expected as preparing the film with comparable properties. This work aimed to prepare a highly conductive and transparent Zn-doped In{sub 2}O{sub 3} thin film on Corning Eagle{sup 2000} glass substrate by magnetron cosputtering method using indium and zinc targets. Structural characterization was performed using x-ray diffraction and x-ray photoelectron spectroscopy. The film had an amorphous structure when the film was prepared on an unheated substrate, but had an In{sub 2}O{sub 3} polycrystalline structure when the film was deposited on 150 and 300 deg. C substrates. The electrical properties of the film were greatly affected by annealing; the Zn-doped In{sub 2}O{sub 3} film had a low resistivity of 6.1x10{sup -4} {Omega} cm and an average transmittance of 81.7% when the film was deposited without substrate heating and followed a 600 deg. C annealing.

  8. Remote magnetic targeting of iron oxide nanoparticles for cardiovascular diagnosis and therapeutic drug delivery: where are we now?

    PubMed Central

    Bietenbeck, Michael; Florian, Anca; Faber, Cornelius; Sechtem, Udo; Yilmaz, Ali

    2016-01-01

    Magnetic resonance imaging (MRI) allows for an accurate assessment of both functional and structural cardiac parameters, and thereby appropriate diagnosis and validation of cardiovascular diseases. The diagnostic yield of cardiovascular MRI examinations is often increased by the use of contrast agents that are almost exclusively based on gadolinium compounds. Another clinically approved contrast medium is composed of superparamagnetic iron oxide nanoparticles (IONs). These particles may expand the field of contrast-enhanced cardiovascular MRI as recently shown in clinical studies focusing on acute myocardial infarction (AMI) and atherosclerosis. Furthermore, IONs open up new research opportunities such as remote magnetic drug targeting (MDT). The approach of MDT relies on the coupling of bioactive molecules and magnetic nanoparticles to form an injectable complex. This complex, in turn, can be attracted to and retained at a desired target inside the body with the help of applied magnetic fields. In comparison to common systemic drug applications, MDT techniques promise both higher concentrations at the target site and lower concentrations elsewhere in the body. Moreover, concurrent or subsequent MRI can be used for noninvasive monitoring of drug distribution and successful delivery to the desired organ in vivo. This review does not only illustrate the basic conceptual and biophysical principles of IONs, but also focuses on new research activities and achievements in the cardiovascular field, mainly in the management of AMI. Based on the presentation of successful MDT applications in preclinical models of AMI, novel approaches and the translational potential of MDT are discussed. PMID:27486321

  9. Deposition and characterization of titania-silica optical multilayers by asymmetric bipolar pulsed dc sputtering of oxide targets

    NASA Astrophysics Data System (ADS)

    Sagdeo, P. R.; Shinde, D. D.; Misal, J. S.; Kamble, N. M.; Tokas, R. B.; Biswas, A.; Poswal, A. K.; Thakur, S.; Bhattacharyya, D.; Sahoo, N. K.; Sabharwal, S. C.

    2010-02-01

    Titania-silica (TiO2/SiO2) optical multilayer structures have been conventionally deposited by reactive sputtering of metallic targets. In order to overcome the problems of arcing, target poisoning and low deposition rates encountered there, the application of oxide targets was investigated in this work with asymmetric bipolar pulsed dc magnetron sputtering. In order to evaluate the usefulness of this deposition methodology, an electric field optimized Fabry Perot mirror for He-Cd laser (λ = 441.6 nm) spectroscopy was deposited and characterized. For comparison, this mirror was also deposited by the reactive electron beam (EB) evaporation technique. The mirrors developed by the two complementary techniques were investigated for their microstructural and optical reflection properties invoking atomic force microscopy, ellipsometry, grazing incidence reflectometry and spectrophotometry. From these measurements the layer geometry, optical constants, mass density, topography, surface and interface roughness and disorder parameters were evaluated. The microstructural properties and spectral functional characteristics of the pulsed dc sputtered multilayer mirror were found to be distinctively superior to the EB deposited mirror. The knowledge gathered during this study has been utilized to develop a 21-layer high-pass edge filter for radio photoluminescence dosimetry.

  10. Design of multifunctional magnetic iron oxide nanoparticles/mitoxantrone-loaded liposomes for both magnetic resonance imaging and targeted cancer therapy

    PubMed Central

    He, Yingna; Zhang, Linhua; Zhu, Dunwan; Song, Cunxian

    2014-01-01

    Tumor-targeting multifunctional liposomes simultaneously loaded with magnetic iron oxide nanoparticles (MIONs) as a magnetic resonance imaging (MRI) contrast agent and anticancer drug, mitoxantrone (Mit), were developed for targeted cancer therapy and ultrasensitive MRI. The gonadorelin-functionalized MION/Mit-loaded liposome (Mit-GML) showed significantly increased uptake in luteinizing hormone–releasing hormone (LHRH) receptor overexpressing MCF-7 (Michigan Cancer Foundation-7) breast cancer cells over a gonadorelin-free MION/Mit-loaded liposome (Mit-ML) control, as well as in an LHRH receptor low-expressing Sloan-Kettering HER2 3+ Ovarian Cancer (SK-OV-3) cell control, thereby leading to high cytotoxicity against the MCF-7 human breast tumor cell line. The Mit-GML formulation was more effective and less toxic than equimolar doses of free Mit or Mit-ML in the treatment of LHRH receptors overexpressing MCF-7 breast cancer xenografts in mice. Furthermore, the Mit-GML demonstrated much higher T2 enhancement than did Mit-ML controls in vivo. Collectively, the study indicates that the integrated diagnostic and therapeutic design of Mit-GML nanomedicine potentially allows for the image-guided, target-specific treatment of cancer. PMID:25187709

  11. High molecular weight chitosan derivative polymeric micelles encapsulating superparamagnetic iron oxide for tumor-targeted magnetic resonance imaging

    PubMed Central

    Xiao, Yunbin; Lin, Zuan Tao; Chen, Yanmei; Wang, He; Deng, Ya Li; Le, D Elizabeth; Bin, Jianguo; Li, Meiyu; Liao, Yulin; Liu, Yili; Jiang, Gangbiao; Bin, Jianping

    2015-01-01

    Magnetic resonance imaging (MRI) contrast agents based on chitosan derivatives have great potential for diagnosing diseases. However, stable tumor-targeted MRI contrast agents using micelles prepared from high molecular weight chitosan derivatives are seldom reported. In this study, we developed a novel tumor-targeted MRI vehicle via superparamagnetic iron oxide nanoparticles (SPIONs) encapsulated in self-aggregating polymeric folate-conjugated N-palmitoyl chitosan (FAPLCS) micelles. The tumor-targeting ability of FAPLCS/SPIONs was demonstrated in vitro and in vivo. The results of dynamic light scattering experiments showed that the micelles had a relatively narrow size distribution (136.60±3.90 nm) and excellent stability. FAPLCS/SPIONs showed low cytotoxicity and excellent biocompatibility in cellular toxicity tests. Both in vitro and in vivo studies demonstrated that FAPLCS/SPIONs bound specifically to folate receptor-positive HeLa cells, and that FAPLCS/SPIONs accumulated predominantly in established HeLa-derived tumors in mice. The signal intensities of T2-weighted images in established HeLa-derived tumors were reduced dramatically after intravenous micelle administration. Our study indicates that FAPLCS/SPION micelles can potentially serve as safe and effective MRI contrast agents for detecting tumors that overexpress folate receptors. PMID:25709439

  12. Nanoimmunoliposome Delivery of Superparamagnetic Iron Oxide Markedly Enhances Targeting and Uptake in Human Cancer Cells In Vitro and In Vivo

    PubMed Central

    Yang, Chengli; Rait, Antonina; Pirollo, Kathleen F.; Dagata, John A.; Farkas, Natalia; Chang, Esther H.

    2008-01-01

    To circumvent the problem of reduction of the supermagnetic properties of superparamagnetic iron oxide (SPIO) nanoparticles after chemical modification to conjugate targeting molecules, we have adapted a tumor-targeting nanoimmunoliposome platform technology (scL) to encapsulate and deliver SPIO (scL-SPIO) in vitro and in vivo without chemical modification. Scanning probe microscopy, confocal microscopy, and Prussian blue staining were employed to analyze the scL-SPIO nanoparticles and assess intracellular uptake and distribution of SPIO in vitro. In vivo targeting and tumor-specific uptake of scL-SPIO was examined using fluorescent-labeled SPIO. We demonstrated that SPIO encapsulation in the scL complex results in approximately an 11 fold increase in SPIO uptake in human cancer cells in vitro, with distribution to cytoplasm and nucleus. Moreover, the scL nanocomplex specifically and efficiently delivered SPIO into tumor cells after systemic administration, demonstrating the potential of this approach to enhance local tumor concentration and the utility of SPIO for clinical applications. PMID:18676207

  13. Targets of red grapes: oxidative damage of DNA and leukaemia cells.

    PubMed

    Anter, Jaouad; de Abreu-Abreu, Noriluz; Fernández-Bedmar, Zahira; Villatoro-Pulido, Myriam; Alonso-Moraga, Angeles; Muñoz-Serrano, Andrés

    2011-01-01

    Vitis vinifera is a widespread crop all over the world. The biophenols present in grapes have a remarkable influence on wine quality and also confer potential health-protecting properties to this fruit. The aim of the present work was to assess the beneficial properties of skin, seeds and pulp of red table grapes (RTG) (Vitis vinifera, Palieri Cadiz variety). Two potential beneficial activities of red table grapes (RTG) were analyzed: (i) The maintenance of genomic stability studying their genotoxic/antigenotoxic effects, and (ii) the in vitro cytotoxic effect against tumor cells of RTG components. The genotoxic and/or antigenotoxic effect was measured applying the somatic mutation and recombination test on wing imaginal discs of Drosophila melanogaster. The cytotoxic effect was monitored using the HL60 human leukemia model to evaluate the antiproliferative potential of the different parts of RTG. The three major parts (skin, seeds and pulp) are not genotoxic. When antigenotoxicity assays were performed using hydrogen peroxide as the oxidative genotoxin, skin, seed and pulp exerted a desmutagenic effect, with seeds and skin showing the most potent effect. The cytotoxicity tests using HL60 cells indicated that only skin and pulp fractions are able to inhibit the tumor growth, with skin having the lowest IC50 (1.8 mg/mL versus 8 mg/mL of pulp). These results suggest that RTG are potent anti-mutagens that protect DNA from oxidative damage as well as being cytotoxic toward the HL60 tumor cell line. PMID:21366047

  14. Magnetic tumor targeting of β-glucosidase immobilized iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhou, Jie; Zhang, Jian; David, Allan E.; Yang, Victor C.

    2013-09-01

    Directed enzyme/prodrug therapy (DEPT) has promising application for cancer therapy. However, most current DEPT strategies face shortcomings such as the loss of enzyme activity during preparation, low delivery and transduction efficiency in vivo and difficultly of monitoring. In this study, a novel magnetic directed enzyme/prodrug therapy (MDEPT) was set up by conjugating β-glucosidase (β-Glu) to aminated, starch-coated, iron oxide magnetic iron oxide nanoparticles (MNPs), abbreviated as β-Glu-MNP, using glutaraldehyde as the crosslinker. This β-Glu-MNP was then characterized in detail by size distribution, zeta potential, FTIR spectra, TEM, SQUID and magnetophoretic mobility analysis. Compared to free enzyme, the conjugated β-Glu on MNPs retained 85.54% ± 6.9% relative activity and showed much better temperature stability. The animal study results showed that β-Glu-MNP displays preferable pharmacokinetics characteristics in relation to MNPs. With an adscititious magnetic field on the surface of a tumor, a significant quantity of β-Glu-MNP was selectively delivered into a subcutaneous tumor of a glioma-bearing mouse. Remarkably, the enzyme activity of the delivered β-Glu in tumor lesions showed as high as 20.123±5.022 mU g-1 tissue with 2.14 of tumor/non-tumor β-Glu activity.

  15. Silibinin inhibits aberrant lipid metabolism, proliferation and emergence of androgen-independence in prostate cancer cells via primarily targeting the sterol response element binding protein 1

    PubMed Central

    Nambiar, Dhanya K.; Deep, Gagan; Singh, Rana P.; Agarwal, Chapla; Agarwal, Rajesh

    2014-01-01

    Prostate cancer (PCA) kills thousands of men every year, demanding additional approaches to better understand and target this malignancy. Recently, critical role of aberrant lipogenesis is highlighted in prostate carcinogenesis, offering a unique opportunity to target it to reduce PCA. Here, we evaluated efficacy and associated mechanisms of silibinin in inhibiting lipid metabolism in PCA cells. At physiologically achievable levels in human, silibinin strongly reduced lipid and cholesterol accumulation specifically in human PCA cells but not in non-neoplastic prostate epithelial PWR-1E cells. Silibinin also decreased nuclear protein levels of sterol regulatory element binding protein 1 and 2 (SREBP1/2) and their target genes only in PCA cells. Mechanistically, silibinin activated AMPK, thereby increasing SREBP1 phosphorylation and inhibiting its nuclear translocation; AMPK inhibition reversed silibinin-mediated decrease in nuclear SREBP1 and lipid accumulation. Additionally, specific SREBP inhibitor fatostatin and stable overexpression of SREBP1 further confirmed the central role of SREBP1 in silibinin-mediated inhibition of PCA cell proliferation and lipid accumulation and cell cycle arrest. Importantly, silibinin also inhibited synthetic androgen R1881-induced lipid accumulation and completely abrogated the development of androgen-independent LNCaP cell clones via targeting SREBP1/2. Together, these mechanistic studies suggest that silibinin would be effective against PCA by targeting critical aberrant lipogenesis. PMID:25294820

  16. CstF-64 and 3'-UTR cis-element determine Star-PAP specificity for target mRNA selection by excluding PAPα.

    PubMed

    Kandala, Divya T; Mohan, Nimmy; A, Vivekanand; A P, Sudheesh; G, Reshmi; Laishram, Rakesh S

    2016-01-29

    Almost all eukaryotic mRNAs have a poly (A) tail at the 3'-end. Canonical PAPs (PAPα/γ) polyadenylate nuclear pre-mRNAs. The recent identification of the non-canonical Star-PAP revealed specificity of nuclear PAPs for pre-mRNAs, yet the mechanism how Star-PAP selects mRNA targets is still elusive. Moreover, how Star-PAP target mRNAs having canonical AAUAAA signal are not regulated by PAPα is unclear. We investigate specificity mechanisms of Star-PAP that selects pre-mRNA targets for polyadenylation. Star-PAP assembles distinct 3'-end processing complex and controls pre-mRNAs independent of PAPα. We identified a Star-PAP recognition nucleotide motif and showed that suboptimal DSE on Star-PAP target pre-mRNA 3'-UTRs inhibit CstF-64 binding, thus preventing PAPα recruitment onto it. Altering 3'-UTR cis-elements on a Star-PAP target pre-mRNA can switch the regulatory PAP from Star-PAP to PAPα. Our results suggest a mechanism of poly (A) site selection that has potential implication on the regulation of alternative polyadenylation.

  17. CstF-64 and 3′-UTR cis-element determine Star-PAP specificity for target mRNA selection by excluding PAPα

    PubMed Central

    Kandala, Divya T.; Mohan, Nimmy; A, Vivekanand; AP, Sudheesh; G, Reshmi; Laishram, Rakesh S.

    2016-01-01

    Almost all eukaryotic mRNAs have a poly (A) tail at the 3′-end. Canonical PAPs (PAPα/γ) polyadenylate nuclear pre-mRNAs. The recent identification of the non-canonical Star-PAP revealed specificity of nuclear PAPs for pre-mRNAs, yet the mechanism how Star-PAP selects mRNA targets is still elusive. Moreover, how Star-PAP target mRNAs having canonical AAUAAA signal are not regulated by PAPα is unclear. We investigate specificity mechanisms of Star-PAP that selects pre-mRNA targets for polyadenylation. Star-PAP assembles distinct 3′-end processing complex and controls pre-mRNAs independent of PAPα. We identified a Star-PAP recognition nucleotide motif and showed that suboptimal DSE on Star-PAP target pre-mRNA 3′-UTRs inhibit CstF-64 binding, thus preventing PAPα recruitment onto it. Altering 3′-UTR cis-elements on a Star-PAP target pre-mRNA can switch the regulatory PAP from Star-PAP to PAPα. Our results suggest a mechanism of poly (A) site selection that has potential implication on the regulation of alternative polyadenylation. PMID:26496945

  18. In vivo targeting of metastatic breast cancer via tumor vasculature-specific nano-graphene oxide.

    PubMed

    Yang, Dongzhi; Feng, Liangzhu; Dougherty, Casey A; Luker, Kathryn E; Chen, Daiqin; Cauble, Meagan A; Banaszak Holl, Mark M; Luker, Gary D; Ross, Brian D; Liu, Zhuang; Hong, Hao

    2016-10-01

    Angiogenesis, i.e. the formation of neovasculatures, is a critical process during cancer initiation, progression, and metastasis. Targeting of angiogenic markers on the tumor vasculature can result in more efficient delivery of nanomaterials into tumor since no extravasation is required. Herein we demonstrated efficient targeting of breast cancer metastasis in an experimental murine model with nano-graphene oxide (GO), which was conjugated to a monoclonal antibody (mAb) against follicle-stimulating hormone receptor (FSHR). FSHR has been confirmed to be a highly selective tumor vasculature marker, which is abundant in both primary and metastatic tumors. These functionalized GO nano-conjugates had diameters of ∼120 nm based on atomic force microscopy (AFM), TEM, and dynamic laser scattering (DLS) measurement. (64)Cu was incorporated as a radiolabel which enabled the visualization of these GO conjugates by positron emission tomography (PET) imaging. Breast cancer lung metastasis model was established by intravenous injection of click beetle green luciferase-transfected MDA-MB-231 (denoted as cbgLuc-MDA-MB-231) breast cancer cells into female nude mice and the tumor growth was monitored by bioluminescence imaging (BLI). Systematic in vitro and in vivo studies have been performed to investigate the stability, targeting efficacy and specificity, and tissue distribution of GO conjugates. Flow cytometry and fluorescence microscopy examination confirmed the targeting specificity of FSHR-mAb attached GO conjugates against cellular FSHR. More potent and persistent uptake of (64)Cu-NOTA-GO-FSHR-mAb in cbgLuc-MDA-MB-231 nodules inside the lung was witnessed when compared with that of non-targeted GO conjugates ((64)Cu-NOTA-GO). Histology evaluation also confirmed the vasculature accumulation of GO-FSHR-mAb conjugates in tumor at early time points while they were non-specifically captured in liver and spleen. In addition, these GO conjugates can serve as good drug carriers

  19. In vivo targeting of metastatic breast cancer via tumor vasculature-specific nano-graphene oxide.

    PubMed

    Yang, Dongzhi; Feng, Liangzhu; Dougherty, Casey A; Luker, Kathryn E; Chen, Daiqin; Cauble, Meagan A; Banaszak Holl, Mark M; Luker, Gary D; Ross, Brian D; Liu, Zhuang; Hong, Hao

    2016-10-01

    Angiogenesis, i.e. the formation of neovasculatures, is a critical process during cancer initiation, progression, and metastasis. Targeting of angiogenic markers on the tumor vasculature can result in more efficient delivery of nanomaterials into tumor since no extravasation is required. Herein we demonstrated efficient targeting of breast cancer metastasis in an experimental murine model with nano-graphene oxide (GO), which was conjugated to a monoclonal antibody (mAb) against follicle-stimulating hormone receptor (FSHR). FSHR has been confirmed to be a highly selective tumor vasculature marker, which is abundant in both primary and metastatic tumors. These functionalized GO nano-conjugates had diameters of ∼120 nm based on atomic force microscopy (AFM), TEM, and dynamic laser scattering (DLS) measurement. (64)Cu was incorporated as a radiolabel which enabled the visualization of these GO conjugates by positron emission tomography (PET) imaging. Breast cancer lung metastasis model was established by intravenous injection of click beetle green luciferase-transfected MDA-MB-231 (denoted as cbgLuc-MDA-MB-231) breast cancer cells into female nude mice and the tumor growth was monitored by bioluminescence imaging (BLI). Systematic in vitro and in vivo studies have been performed to investigate the stability, targeting efficacy and specificity, and tissue distribution of GO conjugates. Flow cytometry and fluorescence microscopy examination confirmed the targeting specificity of FSHR-mAb attached GO conjugates against cellular FSHR. More potent and persistent uptake of (64)Cu-NOTA-GO-FSHR-mAb in cbgLuc-MDA-MB-231 nodules inside the lung was witnessed when compared with that of non-targeted GO conjugates ((64)Cu-NOTA-GO). Histology evaluation also confirmed the vasculature accumulation of GO-FSHR-mAb conjugates in tumor at early time points while they were non-specifically captured in liver and spleen. In addition, these GO conjugates can serve as good drug carriers

  20. Antisense targeting of 3' end elements involved in DUX4 mRNA processing is an efficient therapeutic strategy for facioscapulohumeral dystrophy: a new gene-silencing approach.

    PubMed

    Marsollier, Anne-Charlotte; Ciszewski, Lukasz; Mariot, Virginie; Popplewell, Linda; Voit, Thomas; Dickson, George; Dumonceaux, Julie

    2016-04-15

    Defects in mRNA 3'end formation have been described to alter transcription termination, transport of the mRNA from the nucleus to the cytoplasm, stability of the mRNA and translation efficiency. Therefore, inhibition of polyadenylation may lead to gene silencing. Here, we choose facioscapulohumeral dystrophy (FSHD) as a model to determine whether or not targeting key 3' end elements involved in mRNA processing using antisense oligonucleotide drugs can be used as a strategy for gene silencing within a potentially therapeutic context. FSHD is a gain-of-function disease characterized by the aberrant expression of the Double homeobox 4 (DUX4) transcription factor leading to altered pathogenic deregulation of multiple genes in muscles. Here, we demonstrate that targeting either the mRNA polyadenylation signal and/or cleavage site is an efficient strategy to down-regulate DUX4 expression and to decrease the abnormally high-pathological expression of genes downstream of DUX4. We conclude that targeting key functional 3' end elements involved in pre-mRNA to mRNA maturation with antisense drugs can lead to efficient gene silencing and is thus a potentially effective therapeutic strategy for at least FSHD. Moreover, polyadenylation is a crucial step in the maturation of almost all eukaryotic mRNAs, and thus all mRNAs are virtually eligible for this antisense-mediated knockdown strategy. PMID:26787513

  1. Binary and ternary NiTi-based shape memory films deposited by simultaneous sputter deposition from elemental targets

    SciTech Connect

    Sanjabi, S.; Cao, Y.Z.; Sadrnezhaad, S.K.; Barber, Z.H.

    2005-09-15

    The most challenging requirement for depositing NiTi-based shape memory thin films is the control of film composition because a small deviation can strongly shift the transformation temperatures. This article presents a technique to control film composition via adjustment of the power supplied to the targets during simultaneous sputter deposition from separate Ni, Ti, and X (e.g., Hf) targets. After optimization of sputter parameters such as working gas pressure, target-substrate distance, and target power ratio, binary Ni{sub 100-x}Ti{sub x} thin films were fabricated and characterized by energy dispersive x-ray spectroscopy in a scanning electron microscope (to measure the film composition and uniformity), in situ x-ray diffraction (to identify the phase structures), and differential scanning calorimetry (to indicate the transformation and crystallization temperatures). To explore the possibility of depositing ternary shape memory NiTi-based thin films with a high temperature transformation >100 deg. C, a Hf target was added to the NiTi deposition system. Annealing was carried out in a high vacuum furnace slightly above the films' crystallization temperatures (500 and 550 deg. C for NiTi and NiTiHf films, respectively). Differential scanning calorimetry (DSC) results of free-standing films illustrated the dependence of transformation temperatures on film composition: Ap and Mp (referring to the austenitic and martensitic peaks in the DSC curve) were above room temperature in near equiatomic NiTi and Ti-rich films, but below it in Ni-rich films. In NiTiHf films, the transformation temperatures were a function of Hf content, reaching as high as 414 deg. C (Ap) at a Hf content of 24.4 at. %. Atomic force microscopy revealed nanostructure surface morphology of both NiTi and NiTiHf films. Detailed characterization showed that the film properties were comparable with those of NiTi and NiTiHf bulk alloys.

  2. Features of the synthesis of nanocolloid oxides by laser ablation of bulk metal targets in solutions

    NASA Astrophysics Data System (ADS)

    Lapin, Ivan N.; Svetlichnyi, Valery A.

    2015-12-01

    Laser ablation of bulk targets in a fluid -- a promising new method for the synthesis of "pure" nanocolloids. Nanocrystalline materials produced by laser ablation are widely used in biology, medicine, and catalysis. High local temperature during ablation and large surface area of the particles promote chemical reactions and the formation of a complex composition of nanoparticles. In this paper the characteristics of the process of ablation and the obtaining of nanoparticles in a liquid by laser ablation of active materials (Zn, Ce, Ti, Si) were studied. Ways of increasing the productivity of laser ablation were discussed. Characterization of nanocolloids and nanocrystalline powders were performed.

  3. Oxidative and nitrosative stress in ADHD: possible causes and the potential of antioxidant-targeted therapies.

    PubMed

    Lopresti, Adrian L

    2015-12-01

    Attention deficit hyperactivity disorder (ADHD) has a complex aetiology although theories associated with disturbances in dopaminergic and noradrenergic activity are most commonly cited. The importance of these catecholamines in ADHD is supported by its effective treatment utilising stimulant and non-stimulant medications that modify their activity. Recently, there has been interest in oxidative and nitrosative stress (O&NS) in ADHD and its potential to contribute to this condition. In this article, research investigating O&NS in ADHD is reviewed and its impact on catecholaminergic activity and neurological structure is discussed. Lifestyle, environmental, psychological and nutritional influences on O&NS in people with ADHD are reviewed, and evidence for the therapeutic efficacy of antioxidant-related therapies is assessed. A selection of interventions with antioxidant mechanisms is presented as potential options for the treatment of ADHD. However, further research is required to help elucidate the role of O&NS and antioxidants for the prevention and management of ADHD.

  4. Targets of nitric oxide in a mouse model of liver inflammation by Corynebacterium parvum.

    PubMed

    Chamulitrat, W; Jordan, S J; Mason, R P; Litton, A L; Wilson, J G; Wood, E R; Wolberg, G; Molina y Vedia, L

    1995-01-10

    Treatment of mice with Corynebacterium parvum induces chronic inflammation. This treatment followed by an injection of lipopolysaccharide (LPS) produces hepatic necrosis and death. We examined liver tissue by using electron paramagnetic resonance (EPR) spectroscopy and found that, in addition to the previously reported nonheme nitrosyl complexes, heme nitrosyl complexes were also formed. Hemoglobin nitrosyl complexes measured in the whole blood of mice treated with C. parvum were not increased after additional LPS treatment. However, this treatment significantly increased the heme nitrosyl complexes in the liver, whereas the nonheme nitrosyl complex concentration was unaffected. EPR signals from whole blood and liver tissues from mice treated with C. parvum and C. parvum + LPS were inhibited by prolonged treatment with NG-monomethyl-L-arginine (L-NMA). Nitric oxide (.NO) is known to bind to cytochrome P450 heme, and we consistently found a suppression of EPR signals attributable to ferric low-spin cytochrome P450/P420 peaks in the livers of mice treated with C. parvum and C. parvum + LPS. By performing analyses of EPR spectra obtained from hepatocytes exposed to .NO, we were able to unambiguously identify EPR signals attributable to cytochrome P420 and nonheme nitrosyl complexes in the livers of both treatments. Deconvolution of the composite in vivo EPR spectra indicated that hemoglobin nitrosyl complexes contributed weakly in the C. parvum livers, but threefold more in the C. parvum + LPS livers, suggesting that hemorrhage may have occurred. Experiments with L-NMA treatment revealed that this additional .NO production did not correlate with hepatic necrosis and onset of death. Immunoprecipitation of liver cytosols from C. parvum- and (C. parvum + LPS)-treated mice using an antibody against mouse inducible nitric oxide synthase showed that this enzyme was indeed present in the cytosolic fractions and was absent in those from control livers. Our novel detection of

  5. Facile synthesis of RGD peptide-modified iron oxide nanoparticles with ultrahigh relaxivity for targeted MR imaging of tumors.

    PubMed

    Hu, Yong; Li, Jingchao; Yang, Jia; Wei, Ping; Luo, Yu; Ding, Ling; Sun, Wenjie; Zhang, Guixiang; Shi, Xiangyang; Shen, Mingwu

    2015-05-01

    We report the facile synthesis of arginine-glycine-aspartic acid (RGD) peptide-targeted iron oxide (Fe3O4) nanoparticles (NPs) with ultrahigh relaxivity for in vivo tumor magnetic resonance (MR) imaging. In this study, stable polyethyleneimine (PEI)-coated Fe3O4 NPs were first prepared by a mild reduction route. The formed aminated Fe3O4 NPs with PEI coating were sequentially conjugated with fluorescein isothiocyanate (FI) and polyethylene glycol (PEG)-RGD segment, followed by acetylation of the remaining PEI surface amines. The thus-formed Fe3O4@PEI·NHAc-FI-PEG-RGD NPs were characterized via different techniques. We show that the multifunctional RGD-targeted Fe3O4 NPs with a mean size of 9.1 nm are water-dispersible, colloidally stable, and hemocompatible and cytocompatible in the given concentration range. With the displayed ultrahigh r2 relaxivity (550.04 mM(-1) s(-1)) and RGD-mediated targeting specificity to αvβ3 integrin-overexpressing cancer cells as confirmed by flow cytometry and confocal microscopy, the developed multifunctional Fe3O4@PEI·NHAc-FI-PEG-RGD NPs are able to be used as a highly efficient nanoprobe for targeted MR imaging of αvβ3 integrin-overexpressing cancer cells in vitro and the xenografted tumor model in vivo. Given the versatile PEI amine-enabled conjugation chemistry, the developed PEI-coated Fe3O4 NPs may be functionalized with other biological ligands or drugs for various biomedical applications, in particular, the diagnosis and therapy of different types of cancer. PMID:26222591

  6. Hyaluronic acid-decorated graphene oxide nanohybrids as nanocarriers for targeted and pH-responsive anticancer drug delivery.

    PubMed

    Song, Erqun; Han, Weiye; Li, Cheng; Cheng, Dan; Li, Lingrui; Liu, Lichao; Zhu, Guizhi; Song, Yang; Tan, Weihong

    2014-08-13

    A novel nanohybrid of hyaluronic acid (HA)-decorated graphene oxide (GO) was fabricated as a targeted and pH-responsive drug delivery system for controlling the release of anticancer drug doxorubicin (DOX) for tumor therapy. For the preparation, DOX was first loaded onto GO nanocarriers via π-π stacking and hydrogen-bonding interactions, and then it was decorated with HA to produce HA-GO-DOX nanohybrids via H-bonding interactions. In this strategy, HA served as both a targeting moiety and a hydrophilic group, making the as-prepared nanohybrids targeting, stable, and disperse. A high loading efficiency (42.9%) of DOX on the nanohybrids was also obtained. Cumulative DOX release from HA-GO-DOX was faster in pH 5.3 phosphate-buffered saline solution than that in pH 7.4, providing the basis for pH-response DOX release in the slightly acidic environment of tumor cells, while the much-slower DOX release from HA-GO-DOX than DOX showed the sustained drug-release capability of the nanohybrids. Fluorescent images of cellular uptake and cell viability analysis studies illustrated that these HA-GO-DOX nanohybrids significantly enhanced DOX accumulation in HA-targeted HepG2 cancer cells compared to HA-nontargeted RBMEC cells and subsequently induced selective cytotoxicity to HepG2 cells. In vivo antitumor efficiency of HA-GO-DOX nanohybrids showed obviously enhanced tumor inhibition rate for H22 hepatic cancer cell-bearing mice compared with free DOX and the GO-DOX formulation. These studies suggest that the HA-GO-DOX nanohybrids have potential clinical applications for anticancer drug delivery.

  7. Species Differences in Microsomal Oxidation and Glucuronidation of 4-Ipomeanol: Relationship to Target Organ Toxicity.

    PubMed

    Parkinson, Oliver T; Teitelbaum, Aaron M; Whittington, Dale; Kelly, Edward J; Rettie, Allan E

    2016-10-01

    4-Ipomeanol (IPO) is a model pulmonary toxicant that undergoes P450-mediated metabolism to reactive electrophilic intermediates that bind to tissue macromolecules and can be trapped in vitro as the NAC/NAL adduct. Pronounced species and tissue differences in IPO toxicity are well documented, as is the enzymological component of phase I bioactivation. However, IPO also undergoes phase II glucuronidation, which may compete with bioactivation in target tissues. To better understand the organ toxicity of IPO, we synthesized IPO-glucuronide and developed a new quantitative mass spectrometry-based assay for IPO glucuronidation. Microsomal rates of glucuronidation and P450-dependent NAC/NAL adduct formation were compared in lung, kidney, and liver microsomes from seven species with different target organ toxicities to IPO. Bioactivation rates were highest in pulmonary and renal microsomes from all animal species (except dog) known to be highly susceptible to the extrahepatic toxicities induced by IPO. In a complementary fashion, pulmonary and renal IPO glucuronidation rates were uniformly low in all experimental animals and primates, but hepatic glucuronidation rates were high, as expected. Therefore, with the exception of the dog, the balance between microsomal NAC/NAL adduct and glucuronide formation correlate well with the risk for IPO-induced pulmonary, renal, and hepatic toxicities across species. PMID:27468999

  8. Species Differences in Microsomal Oxidation and Glucuronidation of 4-Ipomeanol: Relationship to Target Organ Toxicity.

    PubMed

    Parkinson, Oliver T; Teitelbaum, Aaron M; Whittington, Dale; Kelly, Edward J; Rettie, Allan E

    2016-10-01

    4-Ipomeanol (IPO) is a model pulmonary toxicant that undergoes P450-mediated metabolism to reactive electrophilic intermediates that bind to tissue macromolecules and can be trapped in vitro as the NAC/NAL adduct. Pronounced species and tissue differences in IPO toxicity are well documented, as is the enzymological component of phase I bioactivation. However, IPO also undergoes phase II glucuronidation, which may compete with bioactivation in target tissues. To better understand the organ toxicity of IPO, we synthesized IPO-glucuronide and developed a new quantitative mass spectrometry-based assay for IPO glucuronidation. Microsomal rates of glucuronidation and P450-dependent NAC/NAL adduct formation were compared in lung, kidney, and liver microsomes from seven species with different target organ toxicities to IPO. Bioactivation rates were highest in pulmonary and renal microsomes from all animal species (except dog) known to be highly susceptible to the extrahepatic toxicities induced by IPO. In a complementary fashion, pulmonary and renal IPO glucuronidation rates were uniformly low in all experimental animals and primates, but hepatic glucuronidation rates were high, as expected. Therefore, with the exception of the dog, the balance between microsomal NAC/NAL adduct and glucuronide formation correlate well with the risk for IPO-induced pulmonary, renal, and hepatic toxicities across species.

  9. Fragmentation cross sections of 290 and 400 MeV/nucleon C12 beams on elemental targets

    NASA Astrophysics Data System (ADS)

    Zeitlin, C.; Guetersloh, S.; Heilbronn, L.; Miller, J.; Fukumura, A.; Iwata, Y.; Murakami, T.

    2007-07-01

    Charge-changing and fragment production cross sections at 0° have been obtained for interactions of 290 and 400 MeV/nucleon carbon beams with C, CH2, Al, Cu, Sn, and Pb targets. These beams are relevant to cancer therapy, space radiation, and the production of radioactive beams. We compare these results against previously published results using C and CH2 targets at similar beam energies. Because of ambiguities arising from the presence of multiple fragments on many events, the previous publications reported only cross sections for B and Be fragments. In this work, we have extracted cross sections for all fragment species, using data obtained at three distinct values of angular acceptance, supplemented by data taken with the detector stack placed off the beam axis. A simulation of the experiment with the particle and heavy ion transport system (PHITS) Monte Carlo model shows fair agreement with the data obtained with the large-acceptance detectors, but agreement is poor at small acceptance. The measured cross sections are also compared with the predictions of the one-dimensional cross section models EPAX2 and NUCFRG2; the latter is presently used in NASA's space radiation transport calculations. Though PHITS and NUCFRG2 reproduce the charge-changing cross sections with reasonable accuracy, none of the models is able to accurately predict the fragment cross sections for all fragment species and target materials.

  10. Target-Independent EphrinA/EphA-Mediated Axon-Axon Repulsion as a Novel Element in Retinocollicular Mapping

    PubMed Central

    Suetterlin, Philipp; Drescher, Uwe

    2014-01-01

    Summary EphrinAs and EphAs play critical roles during topographic map formation in the retinocollicular projection; however, their complex expression patterns in both the retina and superior colliculus (SC) have made it difficult to uncover their precise mechanisms of action. We demonstrate here that growth cones of temporal axons collapse when contacting nasal axons in vitro, and removing ephrinAs from axonal membranes by PI-PLC treatment abolishes this response. In conditional knockout mice, temporal axons display no major targeting defects when ephrinA5 is removed only from the SC, but substantial mapping defects were observed when ephrinA5 expression was removed from both the SC and from the retina, with temporal axons invading the target areas of nasal axons. Together, these data indicate that ephrinA5 drives repellent interactions between temporal and nasal axons within the SC, and demonstrates for the first time that target-independent mechanisms play an essential role in retinocollicular map formation in vivo. PMID:25451192

  11. Iron oxide core oil-in-water emulsions as a multifunctional nanoparticle platform for tumor targeting and imaging

    PubMed Central

    Jarzyna, Peter A.; Skajaa, Torjus; Gianella, Anita; Cormode, David P.; Samber, Dan D.; Dickson, Stephen D.; Chen, Wei; Griffioen, Arjan W.; Fayad, Zahi A.; Mulder, Willem J. M.

    2009-01-01

    Nanoemulsions are increasingly investigated for the delivery of hydrophobic drugs to improve their bioavailability or make their administration possible. In the current study, oil-in-water emulsions with three different mean diameters (30, 60, and 95 nm) were developed as a new multimodality nanoparticle platform for tumor targeting and imaging. To that aim, hydrophobically coated iron oxide particles were included in the soybean oil core of the nanoemulsions to enable their detection with magnetic resonance imaging (MRI), while the conjugation of a near infrared fluorophore allowed optical imaging. The accumulation of this novel nanocomposite in subcutaneous human tumors in nude mice was demonstrated with MRI and fluorescence imaging in vivo, and with Perl’s staining of histological tumor sections ex vivo. PMID:19783295

  12. Core-shell composite particles composed of biodegradable polymer particles and magnetic iron oxide nanoparticles for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Oka, Chiemi; Ushimaru, Kazunori; Horiishi, Nanao; Tsuge, Takeharu; Kitamoto, Yoshitaka

    2015-05-01

    Core-shell composite particles with biodegradability and superparamagnetic behavior were prepared using a Pickering emulsion for targeted drug delivery based on magnetic guidance. The composite particles were composed of a core of biodegradable polymer and a shell of assembled magnetic iron oxide nanoparticles. It was found that the dispersibility of the nanoparticles is crucial for controlling the core-shell structure. The addition of a small amount of dispersant into the nanoparticle's suspension could improve the dispersibility and led to the formation of composite particles with a thin magnetic shell covering a polymeric core. The composite particles were also fabricated with a model drug loaded into the core, which was released via hydrolysis of the core under strong alkaline conditions. Because the core can also be biodegraded by lipase, this result suggests that the slow release of the drug from the composite particles should occur inside the body.

  13. Bimodal-hybrid heterocyclic amine targeting oxidative pathways and copper mis-regulation in Alzheimer’s disease

    PubMed Central

    Gonzalez, Paulina; da Costa, Viviana C.P.; Hyde, Kimberly; Wu, Qiong; Annunziata, Onofrio; Rizo, Josep; Akkaraju, Giridhar; Green, Kayla N.

    2014-01-01

    Oxidative stress resulting from metal-ion misregulation plays a role in the development of Alzheimer’s disease (AD). This process includes the production of tissue-damaging reactive oxygen species and amyloid aggregates. Herein we describe the synthesis, characterization and protective capacity of the small molecule, lipoic cyclen, which has been designed to target molecular features of AD. This construct utilizes the biologically compatible and naturally occurring lipoic acid as a foundation for engendering low cellular toxicity in multiple cell lines, radical scavenging capacity, tuning the metal affinity of the parent cyclen, and results in an unexpected affinity for amyloid without inducing aggregation. The hybrid construct thereby shows protection against cell death induced by amyloid aggregates and copper ions. These results provide evidence for the rational design methods used to produce this fused molecule as a potential strategy for the development of lead compounds for the treatment of neurodegenerative disorders. PMID:25144522

  14. Simulation of CNT-AFM tip based on finite element analysis for targeted probe of the biological cell

    NASA Astrophysics Data System (ADS)

    Yousefi, Amin Termeh; Mahmood, Mohamad Rusop; Miyake, Mikio; Ikeda, Shoichiro

    2016-07-01

    Carbon nanotubes (CNTs) are potentially ideal tips for atomic force microscopy (AFM) due to the robust mechanical properties, nano scale diameter and also their ability to be functionalized by chemical and biological components at the tip ends. This contribution develops the idea of using CNTs as an AFM tip in computational analysis of the biological cell's. Finite element analysis employed for each section and displacement of the nodes located in the contact area was monitored by using an output database (ODB). This reliable integration of CNT-AFM tip process provides a new class of high performance nanoprobes for single biological cell analysis.

  15. Multifunctional nanosheets based on folic acid modified manganese oxide for tumor-targeting theranostic application

    NASA Astrophysics Data System (ADS)

    Hao, Yongwei; Wang, Lei; Zhang, Bingxiang; Zhao, Hongjuan; Niu, Mengya; Hu, Yujie; Zheng, Cuixia; Zhang, Hongling; Chang, Junbiao; Zhang, Zhenzhong; Zhang, Yun

    2016-01-01

    It is highly desirable to develop smart nanocarriers with stimuli-responsive drug-releasing and diagnostic-imaging functions for cancer theranostics. Herein, we develop a reduction and pH dual-responsive tumor theranostic platform based on degradable manganese dioxide (MnO2) nanosheets. The MnO2 nanosheets with a size of 20-60 nm were first synthesized and modified with (3-Aminopropyl) trimethoxysilane (APTMS) to get amine-functionalized MnO2, and then functionalized by NH2-PEG2000-COOH (PEG). The tumor-targeting group, folic acid (FA), was finally conjugated with the PEGylated MnO2 nanosheets. Then, doxorubicin (DOX), a chemotherapeutic agent, was loaded onto the modified nanosheets through a physical adsorption, which was designated as MnO2-PEG-FA/DOX. The prepared MnO2-PEG-FA/DOX nanosheets with good biocompatibility can not only efficiently deliver DOX to tumor cells in vitro and in vivo, leading to enhanced anti-tumor efficiency, but can also respond to a slightly acidic environment and high concentration of reduced glutathione (GSH), which caused degradation of MnO2 into manganese ions enabling magnetic resonance imaging (MRI). The longitudinal relaxation rate r 1 was 2.26 mM-1 s-1 at pH 5.0 containing 2 mM GSH. These reduction and pH dual-responsive biodegradable nanosheets combining efficient MRI and chemotherapy provide a novel and promising platform for tumor-targeting theranostic application.

  16. Reduction of Matrix-Induced Oxide Interferences on Rare Earth Elements and Platinum Using a Desolvating Nebulizer System with Quadrupole Inductively Coupled Plasma Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Smith, F.

    2013-12-01

    This paper will examine the use of a specialized low-flow desolvating nebulizer system for reduction of oxide mass spectral interferences that can occur in quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS). This nebulizer system uses an inert low-flow nebulizer (100 microliters/min) coupled to an inert, heated membrane desolvator for efficient water vapor removal before sample aerosol injection to the Q-ICP-MS instrument. Water vapor from conventional nebulizer / spray chamber systems used with Q-ICP-MS can cause numerous mass spectral interferences. One general example is metal oxides formed from the combination of oxygen (from injected water) with sample matrix components. Two specific examples of metal oxide interferences will be investigated with and without membrane desolvation: Ba and Ce oxides on several low-mass rare earth elements (Sm, Eu, and Gd) and Hf oxides on platinum. Rare earth elements are critically important components of modern electronics (ex. magnets, lasers, cell phones, computers) and platinum is a widely used catalyst. Figures of merit for both a conventional nebulizer/spray chamber and the desolvating nebulizer systems will include operating conditions, interference intensities and reduction factors, background equivalent concentrations (BECs), and instrument detection limits (IDLs).

  17. NRF2 Is a Key Target for Prevention of Noise-Induced Hearing Loss by Reducing Oxidative Damage of Cochlea

    PubMed Central

    Honkura, Yohei; Matsuo, Hirotaka; Murakami, Shohei; Sakiyama, Masayuki; Mizutari, Kunio; Shiotani, Akihiro; Yamamoto, Masayuki; Morita, Ichiro; Shinomiya, Nariyoshi; Kawase, Tetsuaki; Katori, Yukio; Motohashi, Hozumi

    2016-01-01

    Noise-induced hearing loss (NIHL) is one of the most common sensorineural hearing deficits. Recent studies have demonstrated that the pathogenesis of NIHL is closely related to ischemia-reperfusion injury of cochlea, which is caused by blood flow decrease and free radical production due to excessive noise. This suggests that protecting the cochlea from oxidative stress is an effective therapeutic approach for NIHL. NRF2 is a transcriptional activator playing an essential role in the defense mechanism against oxidative stress. To clarify the contribution of NRF2 to cochlear protection, we examined Nrf2–/– mice for susceptibility to NIHL. Threshold shifts of the auditory brainstem response at 7 days post-exposure were significantly larger in Nrf2–/– mice than wild-type mice. Treatment with CDDO-Im, a potent NRF2-activating drug, before but not after the noise exposure preserved the integrity of hair cells and improved post-exposure hearing levels in wild-type mice, but not in Nrf2–/– mice. Therefore, NRF2 activation is effective for NIHL prevention. Consistently, a human NRF2 SNP was significantly associated with impaired sensorineural hearing levels in a cohort subjected to occupational noise exposure. Thus, high NRF2 activity is advantageous for cochlear protection from noise-induced injury, and NRF2 is a promising target for NIHL prevention. PMID:26776972

  18. The Magnetophoretic Mobility and Superparamagnetism of Core-Shell Iron Oxide Nanoparticles with Dual Targeting and Imaging Functionality

    PubMed Central

    Yu, Faquan; Zhang, Lei; Huang, Yongzhuo; Sun, Kai; David, Allan E.; Yang, Victor C.

    2010-01-01

    With the goal to achieve highly efficacious MRI-monitored magnetic targeting, a novel drug carrier with dual nature of superior magnetophoretic mobility and superparamagnetism was synthesized. This carrier was specially designed in a core-shell structure. The core was achieved by utilizing a strategy of self-assembly of oppositely charged ultrafine superparamagnetic iron oxide nanoparticles previously prepared. The final particles were formed by coating such cores with carboxymethyldextran (CMD) polymer. By exclusion of non-magnetic materials from the interior part of the particles, this structure maximized the amount of magnetic material and thus yielded a superior magnetophoretic mobility. Such a strategy avoids the challenge of superparamagnetism loss, which would be caused by cores exceeding a critical domain size. Coating the self-assembled core enables the magnetic carrier to be stable upon usage and storage and to be readily linked with drug molecules for therapeutic applications. In vitro characterization showed that these nanoparticles displayed a 3- to 4-fold enhancement in magnetophoretic mobility, and a markedly improved stability when stored in 50% serum as a comparison of conventional iron oxide-based magnetic nanoparticles. Preliminary in vivo studies revealed that the nanoparticles alsofunction well as a contrast enhancer for MR imaging of brain glioma. This technology could lead to the development of a new paradigm of magnetic carriers that meet with the needs of various clinical applications. PMID:20434209

  19. NRF2 Is a Key Target for Prevention of Noise-Induced Hearing Loss by Reducing Oxidative Damage of Cochlea.

    PubMed

    Honkura, Yohei; Matsuo, Hirotaka; Murakami, Shohei; Sakiyama, Masayuki; Mizutari, Kunio; Shiotani, Akihiro; Yamamoto, Masayuki; Morita, Ichiro; Shinomiya, Nariyoshi; Kawase, Tetsuaki; Katori, Yukio; Motohashi, Hozumi

    2016-01-18

    Noise-induced hearing loss (NIHL) is one of the most common sensorineural hearing deficits. Recent studies have demonstrated that the pathogenesis of NIHL is closely related to ischemia-reperfusion injury of cochlea, which is caused by blood flow decrease and free radical production due to excessive noise. This suggests that protecting the cochlea from oxidative stress is an effective therapeutic approach for NIHL. NRF2 is a transcriptional activator playing an essential role in the defense mechanism against oxidative stress. To clarify the contribution of NRF2 to cochlear protection, we examined Nrf2(-/-) mice for susceptibility to NIHL. Threshold shifts of the auditory brainstem response at 7 days post-exposure were significantly larger in Nrf2(-/-) mice than wild-type mice. Treatment with CDDO-Im, a potent NRF2-activating drug, before but not after the noise exposure preserved the integrity of hair cells and improved post-exposure hearing levels in wild-type mice, but not in Nrf2(-/-) mice. Therefore, NRF2 activation is effective for NIHL prevention. Consistently, a human NRF2 SNP was significantly associated with impaired sensorineural hearing levels in a cohort subjected to occupational noise exposure. Thus, high NRF2 activity is advantageous for cochlear protection from noise-induced injury, and NRF2 is a promising target for NIHL prevention.

  20. Structure-based Design Targeted at LOX-1, a Receptor for Oxidized Low-Density Lipoprotein.

    PubMed

    Thakkar, Shraddha; Wang, Xianwei; Khaidakov, Magomed; Dai, Yao; Gokulan, Kuppan; Mehta, Jawahar L; Varughese, Kottayil I

    2015-01-01

    Atherosclerosis related cardiovascular diseases continue to be the primary cause of mortality in developed countries. The elevated level of low density lipoprotein (LDL) is generally considered to be the driver of atherosclerosis, but recent years have seen a shift in this perception in that the vascular plaque buildup is mainly caused by oxidized LDL (ox-LDL) rather than native-LDL. The scavenger receptor LOX-1 found in endothelial cells binds and internalizes ox-LDL which leads to the initiation of plaque formation in arteries. Using virtual screening techniques, we identified a few potential small molecule inhibitors of LOX-1 and tested their inhibitory potential using differential scanning fluorimetry and various cellular assays. Two of these molecules significantly reduced the uptake of ox-LDL by human endothelial cells, LOX-1 transcription and the activation of ERK1/2 and p38 MAPKs in human endothelial cells. In addition, these molecules suppressed ox-LDL-induced VCAM-1 expression and monocyte adhesion onto human endothelial cells demonstrating their therapeutic potential. PMID:26578342

  1. Oxidative and nitrosative stress in ADHD: possible causes and the potential of antioxidant-targeted therapies.

    PubMed

    Lopresti, Adrian L

    2015-12-01

    Attention deficit hyperactivity disorder (ADHD) has a complex aetiology although theories associated with disturbances in dopaminergic and noradrenergic activity are most commonly cited. The importance of these catecholamines in ADHD is supported by its effective treatment utilising stimulant and non-stimulant medications that modify their activity. Recently, there has been interest in oxidative and nitrosative stress (O&NS) in ADHD and its potential to contribute to this condition. In this article, research investigating O&NS in ADHD is reviewed and its impact on catecholaminergic activity and neurological structure is discussed. Lifestyle, environmental, psychological and nutritional influences on O&NS in people with ADHD are reviewed, and evidence for the therapeutic efficacy of antioxidant-related therapies is assessed. A selection of interventions with antioxidant mechanisms is presented as potential options for the treatment of ADHD. However, further research is required to help elucidate the role of O&NS and antioxidants for the prevention and management of ADHD. PMID:25894292

  2. Structure-based Design Targeted at LOX-1, a Receptor for Oxidized Low-Density Lipoprotein.

    PubMed

    Thakkar, Shraddha; Wang, Xianwei; Khaidakov, Magomed; Dai, Yao; Gokulan, Kuppan; Mehta, Jawahar L; Varughese, Kottayil I

    2015-11-18

    Atherosclerosis related cardiovascular diseases continue to be the primary cause of mortality in developed countries. The elevated level of low density lipoprotein (LDL) is generally considered to be the driver of atherosclerosis, but recent years have seen a shift in this perception in that the vascular plaque buildup is mainly caused by oxidized LDL (ox-LDL) rather than native-LDL. The scavenger receptor LOX-1 found in endothelial cells binds and internalizes ox-LDL which leads to the initiation of plaque formation in arteries. Using virtual screening techniques, we identified a few potential small molecule inhibitors of LOX-1 and tested their inhibitory potential using differential scanning fluorimetry and various cellular assays. Two of these molecules significantly reduced the uptake of ox-LDL by human endothelial cells, LOX-1 transcription and the activation of ERK1/2 and p38 MAPKs in human endothelial cells. In addition, these molecules suppressed ox-LDL-induced VCAM-1 expression and monocyte adhesion onto human endothelial cells demonstrating their therapeutic potential.

  3. Structure-based Design Targeted at LOX-1, a Receptor for Oxidized Low-Density Lipoprotein

    NASA Astrophysics Data System (ADS)

    Thakkar, Shraddha; Wang, Xianwei; Khaidakov, Magomed; Dai, Yao; Gokulan, Kuppan; Mehta, Jawahar L.; Varughese, Kottayil I.

    2015-11-01

    Atherosclerosis related cardiovascular diseases continue to be the primary cause of mortality in developed countries. The elevated level of low density lipoprotein (LDL) is generally considered to be the driver of atherosclerosis, but recent years have seen a shift in this perception in that the vascular plaque buildup is mainly caused by oxidized LDL (ox-LDL) rather than native-LDL. The scavenger receptor LOX-1 found in endothelial cells binds and internalizes ox-LDL which leads to the initiation of plaque formation in arteries. Using virtual screening techniques, we identified a few potential small molecule inhibitors of LOX-1 and tested their inhibitory potential using differential scanning fluorimetry and various cellular assays. Two of these molecules significantly reduced the uptake of ox-LDL by human endothelial cells, LOX-1 transcription and the activation of ERK1/2 and p38 MAPKs in human endothelial cells. In addition, these molecules suppressed ox-LDL-induced VCAM-1 expression and monocyte adhesion onto human endothelial cells demonstrating their therapeutic potential.

  4. One-pot synthesis of dextran decorated reduced graphene oxide nanoparticles for targeted photo-chemotherapy.

    PubMed

    Hu, Yanfang; He, Liang; Ding, Jianxun; Sun, Diankui; Chen, Li; Chen, Xuesi

    2016-06-25

    Graphene-based nanocarriers show great potential in photo-chemotherapy, however, to prepare desired reduced graphene oxide (rGO) nanoparticles in a facile way is still a challenge. Herein, a novel strategy has been presented to prepare rGO nanoparticle using dextran (Dex) as a reducing agent. In this strategy, Dex was directly conjugated on rGO by hydrogen bond and then self-assemble to form rGO/Dex nanoparticles. After decorated by dextran, rGO-based nanoparticles not only show excellent biocompatibility but also can load anticancer drug for photo-chemotherapy. The data of fourier transform infrared (FT-IR) analysis, Raman spectrum analysis, thermos-gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), the transmission electron microscope (TEM) image and dynamic light scattering (DLS) measurements powerfully proved that the stable rGO-based nanoparticles with desired nanosize have been successfully prepared. To verify the photo-chemotherapy, anticancer drug, doxorubicin (DOX), has been loaded on rGO/Dex nanoparticles (rGO/DOX/Dex). And RGD, a kind of oligopeptide which can improve the intracellular uptake by αvβ3 recognition, also has been introduced (rGO/DOX/RDex). Compared with single chemotherapy, rGO/DOX/Dex and rGO/DOX/RDex combining the local specific chemotherapy and external near-infrared (NIR) photo-thermal therapy show higher therapeutic efficacy, endowing the desired rGO-based nanoparticle with great potential for cancer treatments. PMID:27083812

  5. Oxidative Stress and Mitochondrial Dysfunction across Broad-Ranging Pathologies: Toward Mitochondria-Targeted Clinical Strategies

    PubMed Central

    d'Ischia, Marco; Gadaleta, Maria Nicola; Pallardó, Federico V.; Petrović, Sandra; Tiano, Luca; Zatterale, Adriana

    2014-01-01

    Beyond the disorders recognized as mitochondrial diseases, abnormalities in function and/or ultrastructure of mitochondria have been reported in several unrelated pathologies. These encompass ageing, malformations, and a number of genetic or acquired diseases, as diabetes and cardiologic, haematologic, organ-specific (e.g., eye or liver), neurologic and psychiatric, autoimmune, and dermatologic disorders. The mechanistic grounds for mitochondrial dysfunction (MDF) along with the occurrence of oxidative stress (OS) have been investigated within the pathogenesis of individual disorders or in groups of interrelated disorders. We attempt to review broad-ranging pathologies that involve mitochondrial-specific deficiencies or rely on cytosol-derived prooxidant states or on autoimmune-induced mitochondrial damage. The established knowledge in these subjects warrants studies aimed at elucidating several open questions that are highlighted in the present review. The relevance of OS and MDF in different pathologies may establish the grounds for chemoprevention trials aimed at compensating OS/MDF by means of antioxidants and mitochondrial nutrients. PMID:24876913

  6. One-pot synthesis of dextran decorated reduced graphene oxide nanoparticles for targeted photo-chemotherapy.

    PubMed

    Hu, Yanfang; He, Liang; Ding, Jianxun; Sun, Diankui; Chen, Li; Chen, Xuesi

    2016-06-25

    Graphene-based nanocarriers show great potential in photo-chemotherapy, however, to prepare desired reduced graphene oxide (rGO) nanoparticles in a facile way is still a challenge. Herein, a novel strategy has been presented to prepare rGO nanoparticle using dextran (Dex) as a reducing agent. In this strategy, Dex was directly conjugated on rGO by hydrogen bond and then self-assemble to form rGO/Dex nanoparticles. After decorated by dextran, rGO-based nanoparticles not only show excellent biocompatibility but also can load anticancer drug for photo-chemotherapy. The data of fourier transform infrared (FT-IR) analysis, Raman spectrum analysis, thermos-gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), the transmission electron microscope (TEM) image and dynamic light scattering (DLS) measurements powerfully proved that the stable rGO-based nanoparticles with desired nanosize have been successfully prepared. To verify the photo-chemotherapy, anticancer drug, doxorubicin (DOX), has been loaded on rGO/Dex nanoparticles (rGO/DOX/Dex). And RGD, a kind of oligopeptide which can improve the intracellular uptake by αvβ3 recognition, also has been introduced (rGO/DOX/RDex). Compared with single chemotherapy, rGO/DOX/Dex and rGO/DOX/RDex combining the local specific chemotherapy and external near-infrared (NIR) photo-thermal therapy show higher therapeutic efficacy, endowing the desired rGO-based nanoparticle with great potential for cancer treatments.

  7. PCR and magnetic bead-mediated target capture for the isolation of short interspersed nucleotide elements in fishes.

    PubMed

    Liu, Dong; Zhu, Guoli; Tang, Wenqiao; Yang, Jinquan; Guo, Hongyi

    2012-01-01

    Short interspersed nucleotide elements (SINEs), a type of retrotransposon, are widely distributed in various genomes with multiple copies arranged in different orientations, and cause changes to genes and genomes during evolutionary history. This can provide the basis for determining genome diversity, genetic variation and molecular phylogeny, etc. SINE DNA is transcribed into RNA by polymerase III from an internal promoter, which is composed of two conserved boxes, box A and box B. Here we present an approach to isolate novel SINEs based on these promoter elements. Box A of a SINE is obtained via PCR with only one primer identical to box B (B-PCR). Box B and its downstream sequence are acquired by PCR with one primer corresponding to box A (A-PCR). The SINE clone produced by A-PCR is selected as a template to label a probe with biotin. The full-length SINEs are isolated from the genomic pool through complex capture using the biotinylated probe bound to magnetic particles. Using this approach, a novel SINE family, Cn-SINE, from the genomes of Coilia nasus, was isolated. The members are 180-360 bp long. Sequence homology suggests that Cn-SINEs evolved from a leucine tRNA gene. This is the first report of a tRNA(Leu)-related SINE obtained without the use of a genomic library or inverse PCR. These results provide new insights into the origin of SINEs. PMID:22408437

  8. Targeted Herceptin-dextran iron oxide nanoparticles for noninvasive imaging of HER2/neu receptors using MRI.

    PubMed

    Chen, Ting-Jung; Cheng, Tsan-Hwang; Chen, Chiao-Yun; Hsu, Sodio C N; Cheng, Tian-Lu; Liu, Gin-Chung; Wang, Yun-Ming

    2009-02-01

    A novel magnetic resonance imaging (MRI) contrast agent containing Herceptin is reported. The surfaces of superparamagnetic iron oxide nanoparticles were modified with dextran and conjugated with Herceptin (Herceptin-nanoparticles) to improve their dispersion, magnetization, and targeting of the specific receptors on cells. From analytical results, we found that Herceptin-nanoparticles were well dispersed in solutions of various pH range, and had no hysteresis, high saturation magnetization (80 emu/g), and low cytotoxicity to a variety of cells. Notably, the magnetic resonance enhancements for the different breast cancer cell lines (BT-474, SKBR-3, MDA-MB-231, and MCF-7) are proportional to the HER2/neu expression level in vitro. When Herceptin-nanoparticles were administered to mice bearing breast tumor allograft by intravenous injection, the tumor site was detected in T (2)-weighted magnetic resonance images as a 45% enhancement drop, indicating a high level of accumulation of the contrast agent within the tumor sites. Therefore, targeting of cancer cells was observed by in vitro and in vivo MRI studies using Herceptin-nanoparticles contrast agent. In addition, Herceptin-nanoparticles enhancing the magnetic resonance signal intensity were sufficient to detect the cell lines with a low level of HER2/neu expression.

  9. Nanostructured europium oxide thin films deposited by pulsed laser ablation of a metallic target in a He buffer atmosphere

    SciTech Connect

    Luna, H.; Franceschini, D. F.; Prioli, R.; Guimaraes, R. B.; Sanchez, C. M.; Canal, G. P.; Barbosa, M. D. L.; Galvao, R. M. O.

    2010-09-15

    Nanostrucured europium oxide and hydroxide films were obtained by pulsed Nd:YAG (532 nm) laser ablation of a europium metallic target, in the presence of a 1 mbar helium buffer atmosphere. Both the produced film and the ambient plasma were characterized. The plasma was monitored by an electrostatic probe, for plume expansion in vacuum or in the presence of the buffer atmosphere. The time evolution of the ion saturation current was obtained for several probe to substrate distances. The results show the splitting of the plume into two velocity groups, being the lower velocity profile associated with metal cluster formation within the plume. The films were obtained in the presence of helium atmosphere, for several target-to-substrate distances. They were analyzed by Rutherford backscattering spectrometry, x-ray diffraction, and atomic force microscopy, for as-deposited and 600 deg. C treated-in-air samples. The results show that the as-deposited samples are amorphous and have chemical composition compatible with europium hydroxide. The thermally treated samples show x-ray diffraction peaks of Eu{sub 2}O{sub 3}, with chemical composition showing excess oxygen. Film nanostructuring was shown to be strongly correlated with cluster formation, as shown by velocity splitting in probe current versus time plots.

  10. Underestimation of ammonia-oxidizing bacteria abundance by amplification bias in amoA-targeted qPCR.

    PubMed

    Dechesne, Arnaud; Musovic, Sanin; Palomo, Alejandro; Diwan, Vaibhav; Smets, Barth F

    2016-07-01

    Molecular methods to investigate functional groups in microbial communities rely on the specificity and selectivity of the primer set towards the target. Here, using rapid sand filters for drinking water production as model environment, we investigated the consistency of two commonly used quantitative PCR methods to enumerate ammonia-oxidizing bacteria (AOB): one targeting the phylogenetic gene 16S rRNA and the other, the functional gene amoA. Cloning-sequencing with both primer sets on DNA from two waterworks revealed contrasting images of AOB diversity. The amoA-based approach preferentially recovered sequences belonging to Nitrosomonas Cluster 7 over Cluster 6A ones, while the 16S rRNA one yielded more diverse sequences belonging to three AOB clusters, but also a few non-AOB sequences, suggesting broader, but partly unspecific, primer coverage. This was confirmed by an in silico coverage analysis against sequences of AOB (both isolates and high-quality environmental sequences). The difference in primer coverage significantly impacted the estimation of AOB abundance at the waterworks with high Cluster 6A prevalence, with estimates up to 50-fold smaller for amoA than for 16S rRNA. In contrast, both approaches performed very similarly at waterworks with high Cluster 7 prevalence. Our results highlight that caution is warranted when comparing AOB abundances obtained using different qPCR primer sets. PMID:27166579

  11. Targeted Mesoporous Iron Oxide Nanoparticles-Encapsulated Perfluorohexane and a Hydrophobic Drug for Deep Tumor Penetration and Therapy

    PubMed Central

    Su, Yu-Lin; Fang, Jen-Hung; Liao, Chia-Ying; Lin, Chein-Ting; Li, Yun-Ting; Hu, Shang-Hsiu

    2015-01-01

    A magneto-responsive energy/drug carrier that enhances deep tumor penetration with a porous nano-composite is constructed by using a tumor-targeted lactoferrin (Lf) bio-gate as a cap on mesoporous iron oxide nanoparticles (MIONs). With a large payload of a gas-generated molecule, perfluorohexane (PFH), and a hydrophobic anti-cancer drug, paclitaxel (PTX), Lf-MIONs can simultaneously perform bursting gas generation and on-demand drug release upon high-frequency magnetic field (MF) exposure. Biocompatible PFH was chosen and encapsulated in MIONs due to its favorable phase transition temperature (56 °C) and its hydrophobicity. After a short-duration MF treatment induces heat generation, the local pressure increase via the gasifying of the PFH embedded in MION can substantially rupture the three-dimensional tumor spheroids in vitro as well as enhance drug and carrier penetration. As the MF treatment duration increases, Lf-MIONs entering the tumor spheroids provide an intense heat and burst-like drug release, leading to superior drug delivery and deep tumor thermo-chemo-therapy. With their high efficiency for targeting tumors, Lf-MIONs/PTX-PFH suppressed subcutaneous tumors in 16 days after a single MF exposure. This work presents the first study of using MF-induced PFH gasification as a deep tumor-penetrating agent for drug delivery. PMID:26379789

  12. LNA/DNA chimeric oligomers mimic RNA aptamers targeted to the TAR RNA element of HIV-1.

    PubMed

    Darfeuille, Fabien; Hansen, Jens Bo; Orum, Henrik; Di Primo, Carmelo; Toulmé, Jean-Jacques

    2004-01-01

    One of the major limitations of the use of phosphodiester oligonucleotides in cells is their rapid degradation by nucleases. To date, several chemical modifications have been employed to overcome this issue but insufficient efficacy and/or specificity have limited their in vivo usefulness. In this work conformationally