Science.gov

Sample records for oxide thin-film transistors

  1. Review of solution-processed oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Si Joon; Yoon, Seokhyun; Kim, Hyun Jae

    2014-02-01

    In this review, we summarize solution-processed oxide thin-film transistors (TFTs) researches based on our fulfillments. We describe the fundamental studies of precursor composition effects at the beginning in order to figure out the role of each component in oxide semiconductors, and then present low temperature process for the adoption of flexible devices. Moreover, channel engineering for high performance and reliability of solution-processed oxide TFTs and various coating methods: spin-coating, inkjet printing, and gravure printing are also presented. The last topic of this review is an overview of multi-functional solution-processed oxide TFTs for various applications such as photodetector, biosensor, and memory.

  2. Review paper: Transparent amorphous oxide semiconductor thin film transistor

    NASA Astrophysics Data System (ADS)

    Kwon, Jang-Yeon; Lee, Do-Joong; Kim, Ki-Bum

    2011-03-01

    Thin film transistors (TFTs) with oxide semiconductors have drawn great attention in the last few years, especially for large area electronic applications, such as high resolution active matrix liquid crystal displays (AMLCDs) and active matrix organic light-emitting diodes (AMOLEDs), because of their high electron mobility and spatial uniform property. This paper reviews and summarizes recent emerging reports that include potential applications, oxide semiconductor materials, and the impact of the fabrication process on electrical performance. We also address the stability behavior of such devices under bias/illumination stress and critical factors related to reliability, such as the gate insulator, the ambient and the device structure.

  3. Amorphous nickel incorporated tin oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Yang, Jianwen; Ren, Jinhua; Lin, Dong; Han, Yanbing; Qu, Mingyue; Pi, Shubin; Fu, Ruofan; Zhang, Qun

    2017-09-01

    Nickel as a dopant has been proposed to suppress excess carrier concentration in n-type tin oxide based thin film transistors (TFTs). The influences of Ni content on nickel doped tin oxide (TNO) thin films and their corresponding TFTs were investigated with experimental results showing that the TNO thin films are amorphous. Through the comparison of the transfer characteristic curves of the TNO TFTs with different Ni contents, it was observed that Ni doping is useful to improve the performance of SnO2-based TFTs by suppressing the off-state current and shifting the threshold voltage to 0 V. The amorphous TNO TFT with 3.3 at.% Ni content shows optimum performance, with field effect mobility of 8.4 cm2 V-1 s-1, saturation mobility of 6.8 cm2 V-1 s-1, subthreshold swing value of 0.8 V/decade, and an on-off current ratio of 2.1  ×  107. Nevertheless, the bias stress stability of SnO2-based TFTs deteriorate.

  4. P-channel thin film transistors using reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Resmi, A. N.; Renuka Devi, P.; Jinesh, K. B.

    2017-04-01

    Chemically reduced graphene oxide (rGO) samples with various degrees of reduction were prepared using hydrazine hydrate as the reducing agent. Scanning tunnelling microscope imaging shows that rGO contains rows of randomly distributed patches of epoxy groups. The local density of states of the rGO samples were mapped with scanning tunnelling spectroscopy, which shows that the bandgap in rGO originates from the epoxide regions itself. The Fermi level of the epoxide regions is shifted towards the valence band, making rGO locally p-type and a range of bandgaps from 0-2.2 eV was observed in these regions. Thin film transistors were fabricated using rGO as the channel layer. The devices show excellent output characteristics with clear saturation and gate dependence. The transfer characteristics show that rGO behaves as a p-type semiconductor; the devices exhibit an on/off ratio of 104, with a low-bias hole mobility of 3.9 cm2 V-1 s-1.

  5. P-channel thin film transistors using reduced graphene oxide.

    PubMed

    Chakraborty, S; Resmi, A N; Devi, P Renuka; Jinesh, K B

    2017-04-18

    Chemically reduced graphene oxide (rGO) samples with various degrees of reduction were prepared using hydrazine hydrate as the reducing agent. Scanning tunnelling microscope imaging shows that rGO contains rows of randomly distributed patches of epoxy groups. The local density of states of the rGO samples were mapped with scanning tunnelling spectroscopy, which shows that the bandgap in rGO originates from the epoxide regions itself. The Fermi level of the epoxide regions is shifted towards the valence band, making rGO locally p-type and a range of bandgaps from 0-2.2 eV was observed in these regions. Thin film transistors were fabricated using rGO as the channel layer. The devices show excellent output characteristics with clear saturation and gate dependence. The transfer characteristics show that rGO behaves as a p-type semiconductor; the devices exhibit an on/off ratio of 10(4), with a low-bias hole mobility of 3.9 cm(2) V(-1) s(-1).

  6. Novel Low Temperature Processing for Enhanced Properties of Ion Implanted Thin Films and Amorphous Mixed Oxide Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Vemuri, Rajitha

    This research emphasizes the use of low energy and low temperature post processing to improve the performance and lifetime of thin films and thin film transistors, by applying the fundamentals of interaction of materials with conductive heating and electromagnetic radiation. Single frequency microwave anneal is used to rapidly recrystallize the damage induced during ion implantation in Si substrates. Volumetric heating of the sample in the presence of the microwave field facilitates quick absorption of radiation to promote recrystallization at the amorphous-crystalline interface, apart from electrical activation of the dopants due to relocation to the substitutional sites. Structural and electrical characterization confirm recrystallization of heavily implanted Si within 40 seconds anneal time with minimum dopant diffusion compared to rapid thermal annealed samples. The use of microwave anneal to improve performance of multilayer thin film devices, e.g. thin film transistors (TFTs) requires extensive study of interaction of individual layers with electromagnetic radiation. This issue has been addressed by developing detail understanding of thin films and interfaces in TFTs by studying reliability and failure mechanisms upon extensive stress test. Electrical and ambient stresses such as illumination, thermal, and mechanical stresses are inflicted on the mixed oxide based thin film transistors, which are explored due to high mobilities of the mixed oxide (indium zinc oxide, indium gallium zinc oxide) channel layer material. Semiconductor parameter analyzer is employed to extract transfer characteristics, useful to derive mobility, subthreshold, and threshold voltage parameters of the transistors. Low temperature post processing anneals compatible with polymer substrates are performed in several ambients (oxygen, forming gas and vacuum) at 150 °C as a preliminary step. The analysis of the results pre and post low temperature anneals using device physics fundamentals

  7. Flexible Electronics Powered by Mixed Metal Oxide Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Marrs, Michael

    A low temperature amorphous oxide thin film transistor (TFT) and amorphous silicon PIN diode backplane technology for large area flexible digital x-ray detectors has been developed to create 7.9-in. diagonal backplanes. The critical steps in the evolution of the backplane process include the qualification and optimization of the low temperature (200 °C) metal oxide TFT and a-Si PIN photodiode process, the stability of the devices under forward and reverse bias stress, the transfer of the process to flexible plastic substrates, and the fabrication and assembly of the flexible detectors. Mixed oxide semiconductor TFTs on flexible plastic substrates suffer from performance and stability issues related to the maximum processing temperature limitation of the polymer. A novel device architecture based upon a dual active layer improves both the performance and stability. Devices are directly fabricated below 200 ºC on a polyethylene naphthalate (PEN) substrate using mixed metal oxides of either zinc indium oxide (ZIO) or indium gallium zinc oxide (IGZO) as the active semiconductor. The dual active layer architecture allows for adjustment to the saturation mobility and threshold voltage stability without the requirement of high temperature annealing, which is not compatible with flexible plastic substrates like PEN. The device performance and stability is strongly dependent upon the composition of the mixed metal oxide; this dependency provides a simple route to improving the threshold voltage stability and drive performance. By switching from a single to a dual active layer, the saturation mobility increases from 1.2 cm2/V-s to 18.0 cm2/V-s, while the rate of the threshold voltage shift decreases by an order of magnitude. This approach could assist in enabling the production of devices on flexible substrates using amorphous oxide semiconductors. Low temperature (200°C) processed amorphous silicon photodiodes were developed successfully by balancing the tradeoffs

  8. Metal oxide semiconductor thin-film transistors for flexible electronics

    SciTech Connect

    Petti, Luisa; Vogt, Christian; Büthe, Lars; Cantarella, Giuseppe; Tröster, Gerhard; Münzenrieder, Niko; Faber, Hendrik; Bottacchi, Francesca; Anthopoulos, Thomas D.

    2016-06-15

    The field of flexible electronics has rapidly expanded over the last decades, pioneering novel applications, such as wearable and textile integrated devices, seamless and embedded patch-like systems, soft electronic skins, as well as imperceptible and transient implants. The possibility to revolutionize our daily life with such disruptive appliances has fueled the quest for electronic devices which yield good electrical and mechanical performance and are at the same time light-weight, transparent, conformable, stretchable, and even biodegradable. Flexible metal oxide semiconductor thin-film transistors (TFTs) can fulfill all these requirements and are therefore considered the most promising technology for tomorrow's electronics. This review reflects the establishment of flexible metal oxide semiconductor TFTs, from the development of single devices, large-area circuits, up to entirely integrated systems. First, an introduction on metal oxide semiconductor TFTs is given, where the history of the field is revisited, the TFT configurations and operating principles are presented, and the main issues and technological challenges faced in the area are analyzed. Then, the recent advances achieved for flexible n-type metal oxide semiconductor TFTs manufactured by physical vapor deposition methods and solution-processing techniques are summarized. In particular, the ability of flexible metal oxide semiconductor TFTs to combine low temperature fabrication, high carrier mobility, large frequency operation, extreme mechanical bendability, together with transparency, conformability, stretchability, and water dissolubility is shown. Afterward, a detailed analysis of the most promising metal oxide semiconducting materials developed to realize the state-of-the-art flexible p-type TFTs is given. Next, the recent progresses obtained for flexible metal oxide semiconductor-based electronic circuits, realized with both unipolar and complementary technology, are reported. In particular

  9. Metal oxide semiconductor thin-film transistors for flexible electronics

    NASA Astrophysics Data System (ADS)

    Petti, Luisa; Münzenrieder, Niko; Vogt, Christian; Faber, Hendrik; Büthe, Lars; Cantarella, Giuseppe; Bottacchi, Francesca; Anthopoulos, Thomas D.; Tröster, Gerhard

    2016-06-01

    The field of flexible electronics has rapidly expanded over the last decades, pioneering novel applications, such as wearable and textile integrated devices, seamless and embedded patch-like systems, soft electronic skins, as well as imperceptible and transient implants. The possibility to revolutionize our daily life with such disruptive appliances has fueled the quest for electronic devices which yield good electrical and mechanical performance and are at the same time light-weight, transparent, conformable, stretchable, and even biodegradable. Flexible metal oxide semiconductor thin-film transistors (TFTs) can fulfill all these requirements and are therefore considered the most promising technology for tomorrow's electronics. This review reflects the establishment of flexible metal oxide semiconductor TFTs, from the development of single devices, large-area circuits, up to entirely integrated systems. First, an introduction on metal oxide semiconductor TFTs is given, where the history of the field is revisited, the TFT configurations and operating principles are presented, and the main issues and technological challenges faced in the area are analyzed. Then, the recent advances achieved for flexible n-type metal oxide semiconductor TFTs manufactured by physical vapor deposition methods and solution-processing techniques are summarized. In particular, the ability of flexible metal oxide semiconductor TFTs to combine low temperature fabrication, high carrier mobility, large frequency operation, extreme mechanical bendability, together with transparency, conformability, stretchability, and water dissolubility is shown. Afterward, a detailed analysis of the most promising metal oxide semiconducting materials developed to realize the state-of-the-art flexible p-type TFTs is given. Next, the recent progresses obtained for flexible metal oxide semiconductor-based electronic circuits, realized with both unipolar and complementary technology, are reported. In particular

  10. Self-formed copper oxide contact interlayer for high-performance oxide thin film transistors

    SciTech Connect

    Gao, Xu E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Aikawa, Shinya; Mitoma, Nobuhiko; Lin, Meng-Fang; Kizu, Takio; Tsukagoshi, Kazuhito E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Nabatame, Toshihide

    2014-07-14

    Oxide thin film transistor employing copper source/drain electrodes shows a small turn on voltage and reduced hysteresis. Cross-sectional high-resolution transmission electron microscopy image confirmed the formation of ∼4 nm CuO{sub x} related interlayer. The lower bond-dissociation energy of Cu-O compared to Si-O and In-O suggests that the interlayer was formed by adsorbing oxygen molecules from surrounding environment instead of getting oxygen atoms from the semiconductor film. The formation of CuO{sub x} interlayer acting as an acceptor could suppress the carrier concentration in the transistor channel, which would be utilized to control the turn on voltage shifts in oxide thin film transistors.

  11. Naphthacene Based Organic Thin Film Transistor With Rare Earth Oxide

    SciTech Connect

    Konwar, K.; Baishya, B.

    2010-12-01

    Naphthacene based organic thin film transistors (OTFTs) have been fabricated using La{sub 2}O{sub 3}, as the gate insulator. All the OTFTs have been fabricated by the process of thermal evaporation in vacuum on perfectly cleaned glass substrates with aluminium as source-drain and gate electrodes. The naphthacene film morphology on the glass substrate has been studied by XRD and found to be polycrystalline in nature. The field effect mobility, output resistance, amplification factor, transconductance and gain bandwidth product of the OTFTs have been calculated by using theoretical TFT model. The highest value of field effect mobility is found to be 0.07x10{sup -3} cm{sup 2}V{sup -1}s{sup -1} for the devices annealed in vacuum at 90 deg. C for 5 hours.

  12. Toward an Understanding of Thin-Film Transistor Performance in Solution-Processed Amorphous Zinc Tin Oxide (ZTO) Thin Films.

    PubMed

    Sanctis, Shawn; Koslowski, Nico; Hoffmann, Rudolf; Guhl, Conrad; Erdem, Emre; Weber, Stefan; Schneider, Jörg J

    2017-06-28

    Amorphous zinc tin oxide (ZTO) thin films are accessible by a molecular precursor approach using mononuclear zinc(II) and tin(II) compounds with methoxyiminopropionic acid ligands. Solution processing of two precursor solutions containing a mixture of zinc and tin(II)-methoxyiminopropinato complexes results in the formation of smooth homogeneous thin films, which upon calcination are converted into the desired semiconducting amorphous ZTO thin films. ZTO films integrated within a field-effect transistor (FET) device exhibit an active semiconducting behavior in the temperature range between 250 and 400 °C, giving an increased performance, with mobility values between μ = 0.03 and 5.5 cm(2)/V s, with on/off ratios increasing from 10(5) to 10(8) when going from 250 to 400 °C. Herein, our main emphasis, however, was on an improved understanding of the material transformation pathway from weak to high performance of the semiconductor in a solution-processed FET as a function of the processing temperature. We have correlated this with the chemical composition and defects states within the microstructure of the obtained ZTO thin film via photoelectron spectroscopy (X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy), Auger electron spectroscopy, electron paramagnetic resonance spectroscopy, atomic force microscopy, and photoluminescence investigations. The critical factor observed for the improved performance within this ZTO material could be attributed to a higher tin concentration, wherein the contributions of point defects arising from the tin oxide within the final amorphous ZTO material play the dominant role in governing the transistor performance.

  13. Molybdenum as a contact material in zinc tin oxide thin film transistors

    SciTech Connect

    Hu, W.; Peterson, R. L.

    2014-05-12

    Amorphous oxide semiconductors are of increasing interest for a variety of thin film electronics applications. Here, the contact properties of different source/drain electrode materials to solution-processed amorphous zinc tin oxide (ZTO) thin-film transistors are studied using the transmission line method. The width-normalized contact resistance between ZTO and sputtered molybdenum is measured to be 8.7 Ω-cm, which is 10, 20, and 600 times smaller than that of gold/titanium, indium tin oxide, and evaporated molybdenum electrodes, respectively. The superior contact formed using sputtered molybdenum is due to a favorable work function lineup, an insulator-free interface, bombardment of ZTO during molybdenum sputtering, and trap-assisted tunneling. The transfer length of the sputtered molybdenum/ZTO contact is 0.34 μm, opening the door to future radio-frequency sub-micron molybdenum/ZTO thin film transistors.

  14. Characterization of Zinc Oxide and Pentacene Thin Film Transistors for CMOS Inverters

    NASA Astrophysics Data System (ADS)

    Iechi, Hiroyuki; Watanabe, Yasuyuki; Yamauchi, Hiroshi; Kudo, Kazuhiro

    We fabricated both thin film transistors (TFTs) and diodes using zinc oxide (ZnO) and pentacene, and investigated their basic characteristics. We found that field-effect mobility is influenced by the interface state between the semiconductor and dielectric layers. Furthermore, the complementary metal oxide semiconductor (CMOS) inverter using a p-channel pentacene field-effect transistor (FET) and an n-channel ZnO FET showed a relatively high voltage gain (8 - 12) by optimizing the device structure. The hybrid complementary inverters described here are expected for application in flexible displays, radio frequency identification cards (RFID) tags, and others.

  15. p-Channel oxide thin film transistors using solution-processed copper oxide.

    PubMed

    Kim, Sang Yun; Ahn, Cheol Hyoun; Lee, Ju Ho; Kwon, Yong Hun; Hwang, Sooyeon; Lee, Jeong Yong; Cho, Hyung Koun

    2013-04-10

    Cu2O thin films were synthesized on Si (100) substrate with thermally grown 200-nm SiO2 by sol-gel spin coating method and postannealing under different oxygen partial pressure (0.04, 0.2, and 0.9 Torr). The morphology of Cu2O thin films was improved through N2 postannealing before O2 annealing. Under relatively high oxygen partial pressure of 0.9 Torr, the roughness of synthesized films was increased with the formation of CuO phase. Bottom-gated copper oxide (CuxO) thin film transistors (TFTs) were fabricated via conventional photolithography, and the electrical properties of the fabricated TFTs were measured. The resulting Cu2O TFTs exhibited p-channel operation, and field effect mobility of 0.16 cm2/(V s) and on-to-off drain current ratio of ∼1×10(2) were observed in the TFT device annealed at PO2 of 0.04 Torr. This study presented the potential of the solution-based process of the Cu2O TFT with p-channel characteristics for the first time.

  16. Zinc oxide integrated area efficient high output low power wavy channel thin film transistor

    SciTech Connect

    Hanna, A. N.; Ghoneim, M. T.; Bahabry, R. R.; Hussain, A. M.; Hussain, M. M.

    2013-11-25

    We report an atomic layer deposition based zinc oxide channel material integrated thin film transistor using wavy channel architecture allowing expansion of the transistor width in the vertical direction using the fin type features. The experimental devices show area efficiency, higher normalized output current, and relatively lower power consumption compared to the planar architecture. This performance gain is attributed to the increased device width and an enhanced applied electric field due to the architecture when compared to a back gated planar device with the same process conditions.

  17. High Mobility Thin Film Transistors Based on Amorphous Indium Zinc Tin Oxide.

    PubMed

    Noviyana, Imas; Lestari, Annisa Dwi; Putri, Maryane; Won, Mi-Sook; Bae, Jong-Seong; Heo, Young-Woo; Lee, Hee Young

    2017-06-26

    Top-contact bottom-gate thin film transistors (TFTs) with zinc-rich indium zinc tin oxide (IZTO) active layer were prepared at room temperature by radio frequency magnetron sputtering. Sintered ceramic target was prepared and used for deposition from oxide powder mixture having the molar ratio of In2O3:ZnO:SnO2 = 2:5:1. Annealing treatment was carried out for as-deposited films at various temperatures to investigate its effect on TFT performances. It was found that annealing treatment at 350 °C for 30 min in air atmosphere yielded the best result, with the high field effect mobility value of 34 cm2/Vs and the minimum subthreshold swing value of 0.12 V/dec. All IZTO thin films were amorphous, even after annealing treatment of up to 350 °C.

  18. High Mobility Thin Film Transistors Based on Amorphous Indium Zinc Tin Oxide

    PubMed Central

    Noviyana, Imas; Lestari, Annisa Dwi; Putri, Maryane; Won, Mi-Sook; Bae, Jong-Seong; Heo, Young-Woo; Lee, Hee Young

    2017-01-01

    Top-contact bottom-gate thin film transistors (TFTs) with zinc-rich indium zinc tin oxide (IZTO) active layer were prepared at room temperature by radio frequency magnetron sputtering. Sintered ceramic target was prepared and used for deposition from oxide powder mixture having the molar ratio of In2O3:ZnO:SnO2 = 2:5:1. Annealing treatment was carried out for as-deposited films at various temperatures to investigate its effect on TFT performances. It was found that annealing treatment at 350 °C for 30 min in air atmosphere yielded the best result, with the high field effect mobility value of 34 cm2/Vs and the minimum subthreshold swing value of 0.12 V/dec. All IZTO thin films were amorphous, even after annealing treatment of up to 350 °C. PMID:28773058

  19. Influence of annealing atmospheres and synthetic air treatment on solution processed zinc oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Busch, C.; Schierning, G.; Theissmann, R.; Schmechel, R.

    2012-08-01

    Thin film transistors (TFTs) based on active layers of zinc oxide prepared from a solution process were fabricated under different annealing conditions. The influence of the annealing gas as well as the influence of a subsequent exposure to synthetic air to the device properties is considered. Annealing under N2 or H2 atmosphere leads to a strong negative threshold voltage shift. With respect to known defect states in ZnO, two different donor states are suggested to be responsible for the negative threshold voltage. A subsequent synthetic air treatment causes in general a positive threshold voltage shift. However, transistors annealed under H2 degrade very fast under synthetic air in contrast to transistors annealed under N2. In order to obtain more information about the density of states (DOS) distribution, a transistor model for thin film transistors in the hopping transport regime (Vissenberg model) was utilized. For positive threshold voltages, the DOS distribution is independent from the gas treatment and the threshold voltage within the experimental accuracy. This indicates a shift of the Fermi-level within an exponentially decaying DOS. The change in the charge carrier density is either due to shallow donors or due to a charge transfer with acceptors at the surface. In contrast, for negative threshold voltages, the DOS distribution parameter rises, indicating a flatter DOS distribution. We suggest that the difference is due to the change from accumulation mode to the depletion mode of the device.

  20. Oxide Thin-Film Transistors Fabricated Using Biodegradable Gate Dielectric Layer of Chicken Albumen

    NASA Astrophysics Data System (ADS)

    Jeon, Da-Bin; Bak, Jun-Yong; Yoon, Sung-Min

    2013-12-01

    An oxide thin-film transistor (TFT) using chicken albumen as gate dielectric on paper substrate was demonstrated. Chicken albumen, which was directly extracted from chicken egg white, was deposited as gate dielectric layer. An In-Ga-Zn-O was chosen as an active channel. The TFT feasibilities were successfully confirmed, in which channel mobility and subthreshold slope of the TFT were 6.48 cm2 V-1 s-1 and 1.28 V/s, respectively. This is the first report on the device configuration combining the biodegradable gate insulator and oxide semiconducting channel.

  1. Significant electrical control of amorphous oxide thin film transistors by an ultrathin Ti surface polarity modifier

    SciTech Connect

    Cho, Byungsu; Choi, Yonghyuk; Shin, Seokyoon; Jeon, Heeyoung; Seo, Hyungtak; Jeon, Hyeongtag

    2014-01-27

    We demonstrate an enhanced electrical stability through a Ti oxide (TiO{sub x}) layer on the amorphous InGaZnO (a-IGZO) back-channel; this layer acts as a surface polarity modifier. Ultrathin Ti deposited on the a-IGZO existed as a TiO{sub x} thin film, resulting in oxygen cross-binding with a-IGZO surface. The electrical properties of a-IGZO thin film transistors (TFTs) with TiO{sub x} depend on the surface polarity change and electronic band structure evolution. This result indicates that TiO{sub x} on the back-channel serves as not only a passivation layer protecting the channel from ambient molecules or process variables but also a control layer of TFT device parameters.

  2. UV-Mediated Photochemical Treatment for Low-Temperature Oxide-Based Thin-Film Transistors.

    PubMed

    Carlos, Emanuel; Branquinho, Rita; Kiazadeh, Asal; Barquinha, Pedro; Martins, Rodrigo; Fortunato, Elvira

    2016-11-16

    Solution processing of amorphous metal oxides has lately been used as an option to implement in flexible electronics, allowing a reduction of the associated costs and high performance. However, the research has focused more on the semiconductor layer rather than on the insulator layer, which is related to the stability and performance of the devices. This work aims to evaluate amorphous aluminum oxide thin films produced by combustion synthesis and the influence of far-ultraviolet (FUV) irradiation on the properties of the insulator on thin-film transistors (TFTs) using different semiconductors, in order to have compatibility with flexible substrates. An optimized dielectric layer was obtained for an annealing of 30 min assisted by FUV exposure. These thin films were applied in gallium-indium-zinc oxide TFTs as dielectrics showing the best results for TFTs annealed at 180 °C with FUV irradiation: good reproducibility with a subthreshold slope of 0.11 ± 0.01 V dec (-1) and a turn-on voltage of -0.12 ± 0.05 V, low operating voltage, and good stability over time. Finally, the dielectric layer was applied in solution-processed indium oxide (In2O3) TFTs at low temperature, 180 °C, with a short processing time being compatible with flexible electronic applications.

  3. Heterojunction oxide thin-film transistors with unprecedented electron mobility grown from solution

    PubMed Central

    Faber, Hendrik; Das, Satyajit; Lin, Yen-Hung; Pliatsikas, Nikos; Zhao, Kui; Kehagias, Thomas; Dimitrakopulos, George; Amassian, Aram; Patsalas, Panos A.; Anthopoulos, Thomas D.

    2017-01-01

    Thin-film transistors made of solution-processed metal oxide semiconductors hold great promise for application in the emerging sector of large-area electronics. However, further advancement of the technology is hindered by limitations associated with the extrinsic electron transport properties of the often defect-prone oxides. We overcome this limitation by replacing the single-layer semiconductor channel with a low-dimensional, solution-grown In2O3/ZnO heterojunction. We find that In2O3/ZnO transistors exhibit band-like electron transport, with mobility values significantly higher than single-layer In2O3 and ZnO devices by a factor of 2 to 100. This marked improvement is shown to originate from the presence of free electrons confined on the plane of the atomically sharp heterointerface induced by the large conduction band offset between In2O3 and ZnO. Our finding underscores engineering of solution-grown metal oxide heterointerfaces as an alternative strategy to thin-film transistor development and has the potential for widespread technological applications. PMID:28435867

  4. Electric field modulation of thermopower for transparent amorphous oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Koide, Hirotaka; Nagao, Yuki; Koumoto, Kunihito; Takasaki, Yuka; Umemura, Tomonari; Kato, Takeharu; Ikuhara, Yuichi; Ohta, Hiromichi

    2010-11-01

    To clarify the electronic density of states (DOS) around the conduction band bottom for state of the art transparent amorphous oxide semiconductors (TAOSs), InGaZnO4 and In2MgO4, we fabricated TAOS-based transparent thin film transistors (TTFTs) and measured their gate voltage dependence of thermopower (S). TAOS-based TTFTs exhibit an unusual S behavior. The |S|-value abruptly increases but then gradually decreases as Vg increases, clearly suggesting the antiparabolic shaped DOS is hybridized with the original parabolic shaped DOS around the conduction band bottom.

  5. Fluorine and oxygen plasma influence on nanoparticle formation and aggregation in metal oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    MÄ dzik, Mateusz; Elamurugu, Elangovan; Viegas, Jaime

    2017-03-01

    Despite recent advances in metal oxide thin-film transistor technology, there are no foundry processes available yet for large-scale deployment of metal oxide electronics and photonics, in a similar way as found for silicon based electronics and photonics. One of the biggest challenges of the metal oxide platform is the stability of the fabricated devices. Also, there is wide dispersion on the measured specifications of fabricated TFT, from lot-to-lot and from different research groups. This can be partially explained by the importance of the deposition method and its parameters, which determine thin film microstructure and thus its electrical properties. Furthermore, substrate pretreatment is an important factor, as it may act as a template for material growth. Not so often mentioned, plasma processes can also affect the morphology of deposited films on further deposition steps, such as inducing nanoparticle formation, which strongly impact the conduction mechanism in the channel layer of the TFT. In this study, molybdenum doped indium oxide is sputtered onto ALD deposited HfO2 with or without pattering, and etched by RIE chlorine based processing. Nanoparticle formation is observed when photoresist is removed by oxygen plasma ashing. HfO2 etching in CF4/Ar plasma prior to resist stripping in oxygen plasma promotes the aggregation of nanoparticles into nanosized branched structures. Such nanostructuring is absent when oxygen plasma steps are replaced by chemical wet processing with acetone. Finally, in order to understand the electronic transport effect of the nanoparticles on metal oxide thin film transistors, TFT have been fabricated and electrically characterized.

  6. Performance of Indium Gallium Zinc Oxide Thin-Film Transistors in Saline Solution

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Lacour, S. P.

    2016-06-01

    Transistors are often envisioned as alternative transducing devices to microelectrodes to communicate with the nervous system. Independently of the selected technology, the transistors should have reliable performance when exposed to physiological conditions (37°C, 5% CO2). Here, we report on the reliable performance of parylene encapsulated indium gallium zinc oxide (IGZO) based thin-film transistors (TFTs) after prolonged exposure to phosphate buffer saline solution in an incubator. The encapsulated IGZO TFTs (W/L = 500 μm/20 μm) have an ON/OFF current ratio of 107 and field effect mobility of 8.05 ± 0.78 cm2/Vs. The transistors operate within 4 V; their threshold voltages and subthreshold slope are ~1.9 V and 200 mV/decade, respectively. After weeks immersed in saline solution and at 37°C, we did not observe any significant deterioration in the transistors' performance. The long-term stability of IGZO transistors at physiological conditions is a promising result in the direction of metal oxide bioelectronics.

  7. Inkjet-Printed In-Ga-Zn Oxide Thin-Film Transistors with Laser Spike Annealing

    NASA Astrophysics Data System (ADS)

    Huang, Hang; Hu, Hailong; Zhu, Jingguang; Guo, Tailiang

    2017-07-01

    Inkjet-printed In-Ga-Zn oxide (IGZO) thin-film transistors (TFTs) have been fabricated at low temperature using laser spike annealing (LSA) treatment. Coffee-ring effects during the printing process were eliminated to form uniform IGZO films by simply increasing the concentration of solute in the ink. The impact of LSA on the TFT performance was studied. The field-effect mobility, threshold voltage, and on/off current ratio were greatly influenced by the LSA treatment. With laser scanning at 1 mm/s for 40 times, the 30-nm-thick IGZO TFT baked at 200°C showed mobility of 1.5 cm2/V s, threshold voltage of -8.5 V, and on/off current ratio >106. Our findings demonstrate the feasibility of rapid LSA treatment of low-temperature inkjet-printed oxide semiconductor transistors, being comparable to those obtained by conventional high-temperature annealing.

  8. An oxidation-last annealing for enhancing the reliability of indium-gallium-zinc oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Li, Jiapeng; Lu, Lei; Feng, Zhuoqun; Kwok, Hoi Sing; Wong, Man

    2017-04-01

    The dependence of device reliability against a variety of stress conditions on the annealing atmosphere was studied using a single metal-oxide thin-film transistor with thermally induced source/drain regions. A cyclical switch between an oxidizing and a non-oxidizing atmosphere induced a regular change in the stress-induced shift of the turn-on voltage, with the magnitude of the shift being consistently smaller after annealing in an oxidizing atmosphere. The observed behavior is discussed in terms of the dependence of the population of oxygen vacancies on the annealing atmosphere, and it is recommended the last of the sequence of thermal processes applied to a metal-oxide thin-film transistor be executed in an oxidizing atmosphere.

  9. Fully transparent flexible tin-doped zinc oxide thin film transistors fabricated on plastic substrate

    NASA Astrophysics Data System (ADS)

    Han, Dedong; Zhang, Yi; Cong, Yingying; Yu, Wen; Zhang, Xing; Wang, Yi

    2016-12-01

    In this work, we have successfully fabricated bottom gate fully transparent tin-doped zinc oxide thin film transistors (TZO TFTs) fabricated on flexible plastic substrate at low temperature by RF magnetron sputtering. The effect of O2/Ar gas flow ratio during channel deposition on the electrical properties of TZO TFTs was investigated, and we found that the O2/Ar gas flow ratio have a great influence on the electrical properties. TZO TFTs on flexible substrate has very nice electrical characteristics with a low off-state current (Ioff) of 3 pA, a high on/off current ratio of 2 × 107, a high saturation mobility (μsat) of 66.7 cm2/V•s, a steep subthreshold slope (SS) of 333 mV/decade and a threshold voltage (Vth) of 1.2 V. Root-Mean-Square (RMS) roughness of TZO thin film is about 0.52 nm. The transmittance of TZO thin film is about 98%. These results highlight that the excellent device performance can be realized in TZO film and TZO TFT can be a promising candidate for flexible displays.

  10. Fully transparent flexible tin-doped zinc oxide thin film transistors fabricated on plastic substrate.

    PubMed

    Han, Dedong; Zhang, Yi; Cong, Yingying; Yu, Wen; Zhang, Xing; Wang, Yi

    2016-12-12

    In this work, we have successfully fabricated bottom gate fully transparent tin-doped zinc oxide thin film transistors (TZO TFTs) fabricated on flexible plastic substrate at low temperature by RF magnetron sputtering. The effect of O2/Ar gas flow ratio during channel deposition on the electrical properties of TZO TFTs was investigated, and we found that the O2/Ar gas flow ratio have a great influence on the electrical properties. TZO TFTs on flexible substrate has very nice electrical characteristics with a low off-state current (Ioff) of 3 pA, a high on/off current ratio of 2 × 10(7), a high saturation mobility (μsat) of 66.7 cm(2)/V•s, a steep subthreshold slope (SS) of 333 mV/decade and a threshold voltage (Vth) of 1.2 V. Root-Mean-Square (RMS) roughness of TZO thin film is about 0.52 nm. The transmittance of TZO thin film is about 98%. These results highlight that the excellent device performance can be realized in TZO film and TZO TFT can be a promising candidate for flexible displays.

  11. Fully transparent flexible tin-doped zinc oxide thin film transistors fabricated on plastic substrate

    PubMed Central

    Han, Dedong; Zhang, Yi; Cong, Yingying; Yu, Wen; Zhang, Xing; Wang, Yi

    2016-01-01

    In this work, we have successfully fabricated bottom gate fully transparent tin-doped zinc oxide thin film transistors (TZO TFTs) fabricated on flexible plastic substrate at low temperature by RF magnetron sputtering. The effect of O2/Ar gas flow ratio during channel deposition on the electrical properties of TZO TFTs was investigated, and we found that the O2/Ar gas flow ratio have a great influence on the electrical properties. TZO TFTs on flexible substrate has very nice electrical characteristics with a low off-state current (Ioff) of 3 pA, a high on/off current ratio of 2 × 107, a high saturation mobility (μsat) of 66.7 cm2/V•s, a steep subthreshold slope (SS) of 333 mV/decade and a threshold voltage (Vth) of 1.2 V. Root-Mean-Square (RMS) roughness of TZO thin film is about 0.52 nm. The transmittance of TZO thin film is about 98%. These results highlight that the excellent device performance can be realized in TZO film and TZO TFT can be a promising candidate for flexible displays. PMID:27941915

  12. Low-Temperature UV-Assisted Fabrication of Metal Oxide Thin Film Transistor

    NASA Astrophysics Data System (ADS)

    Zhu, Shuanglin

    Solution processed metal oxide semiconductors have attracted intensive attention in the last several decades and have emerged as a promising candidate for the application of thin film transistor (TFT) due to their nature of transparency, flexibility, high mobility, simple processing technique and potential low manufacturing cost. However, metal oxide thin film fabricated by solution process usually requires a high temperature (over 300 °C), which is above the glass transition temperature of some conventional polymer substrates. In order to fabricate the flexible electronic device on polymer substrates, it is necessary to find a facile approach to lower the fabrication temperature and minimize defects in metal oxide thin film. In this thesis, the electrical properties dependency on temperature is discussed and an UV-assisted annealing method incorporating Deep ultraviolet (DUV)-decomposable additives is demonstrated, which can effectively improve electrical properties solution processed metal oxide semiconductors processed at temperature as low as 220 °C. By studying a widely used indium oxide (In2O3) TFT as a model system, it is worth noted that compared with the sample without UV treatment, the linear mobility and saturation mobility of UV-annealing sample are improved by 56% and 40% respectively. Meanwhile, the subthreshold swing is decreased by 32%, indicating UV-treated device could turn on and off more efficiently. In addition to pure In2O3 film, the similar phenomena have also been observed in indium oxide based Indium-Gallium-Zinc Oxide (IGZO) system. These finding presented in this thesis suggest that the UV assisted annealing process open a new route to fabricate high performance metal oxide semiconductors under low temperatures.

  13. Competing weak localization and weak antilocalization in amorphous indium-gallium-zinc-oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Hsiang; Lyu, Syue-Ru; Heredia, Elica; Liu, Shu-Hao; Jiang, Pei-hsun; Liao, Po-Yung; Chang, Ting-Chang; Chen, Hua-Mao

    2017-01-01

    We have investigated the gate-voltage dependence and the temperature dependence of the magnetoconductivity of amorphous indium-gallium-zinc-oxide thin-film transistors. A weak-localization feature is observed at small magnetic fields on top of an overall negative magnetoconductivity at higher fields. An intriguing controllable competition between weak localization and weak antilocalization is observed by tuning the gate voltage or by varying the temperature. Our findings reflect controllable quantum interference competition in the electron systems in amorphous indium-gallium-zinc-oxide thin-film transistors.

  14. Thin-film transistors with a channel composed of semiconducting metal oxide nanoparticles deposited from the gas phase

    NASA Astrophysics Data System (ADS)

    Busch, C.; Schierning, G.; Theissmann, R.; Nedic, A.; Kruis, F. E.; Schmechel, R.

    2012-06-01

    The fabrication of semiconducting functional layers using low-temperature processes is of high interest for flexible printable electronics applications. Here, the one-step deposition of semiconducting nanoparticles from the gas phase for an active layer within a thin-film transistor is described. Layers of semiconducting nanoparticles with a particle size between 10 and 25 nm were prepared by the use of a simple aerosol deposition system, excluding potentially unwanted technological procedures like substrate heating or the use of solvents. The nanoparticles were deposited directly onto standard thin-film transistor test devices, using thermally grown silicon oxide as gate dielectric. Proof-of-principle experiments were done deploying two different wide-band gap semiconducting oxides, tin oxide, SnO x , and indium oxide, In2O3. The tin oxide spots prepared from the gas phase were too conducting to be used as channel material in thin-film transistors, most probably due to a high concentration of oxygen defects. Using indium oxide nanoparticles, thin-film transistor devices with significant field effect were obtained. Even though the electron mobility of the investigated devices was only in the range of 10-6 cm2 V-1 s-1, the operability of this method for the fabrication of transistors was demonstrated. With respect to the possibilities to control the particle size and layer morphology in situ during deposition, improvements are expected.

  15. Patterned oxide semiconductor by electrohydrodynamic jet printing for transparent thin film transistors

    NASA Astrophysics Data System (ADS)

    Lee, Sangkyu; Kim, Jeonghyun; Choi, Junghyun; Park, Hyunjung; Ha, Jaehwan; Kim, Yongkwan; Rogers, John A.; Paik, Ungyu

    2012-03-01

    This paper explores transport in transparent thin film transistors formed using a liquid precursor to indium zinc oxide, delivered to target substrates by electrohydrodynamic jet (e-jet) printing. Under optimized conditions, we observe field effect mobilities as high as 32 cm2V-1s-1, with on/off current ratios of 103 and threshold voltages of 2 V. These results provide evidence that material manipulated in fine-jet, electric field induced liquid flows can yield semiconductor devices without any adverse effects of residual charge or unintentional doping. E-jet printing methods provide levels of resolution (˜1.5 μm) that provide a path to printed transistors with small critical dimensions.

  16. Demonstration of high-performance p-type tin oxide thin-film transistors using argon-plasma surface treatments

    NASA Astrophysics Data System (ADS)

    Bae, Sang-Dae; Kwon, Soo-Hun; Jeong, Hwan-Seok; Kwon, Hyuck-In

    2017-07-01

    In this work, we investigated the effects of low-temperature argon (Ar)-plasma surface treatments on the physical and chemical structures of p-type tin oxide thin-films and the electrical performance of p-type tin oxide thin-film transistors (TFTs). From the x-ray photoelectron spectroscopy measurement, we found that SnO was the dominant phase in the deposited tin oxide thin-film, and the Ar-plasma treatment partially transformed the tin oxide phase from SnO to SnO2 by oxidation. The resistivity of the tin oxide thin-film increased with the plasma-treatment time because of the reduced hole concentration. In addition, the root-mean-square roughness of the tin oxide thin-film decreased as the plasma-treatment time increased. The p-type oxide TFT with an Ar-plasma-treated tin oxide thin-film exhibited excellent electrical performance with a high current on-off ratio (5.2 × 106) and a low off-current (1.2 × 10-12 A), which demonstrates that the low-temperature Ar-plasma treatment is a simple and effective method for improving the electrical performance of p-type tin oxide TFTs.

  17. Thin Film Transistors On Plastic Substrates

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.; Sigmon, Thomas W.; Aceves, Randy C.

    2004-01-20

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.

  18. Subtractive Plasma-Assisted-Etch Process for Developing High Performance Nanocrystalline Zinc-Oxide Thin-Film-Transistors

    DTIC Science & Technology

    2015-03-26

    SUBTRACTIVE PLASMA -ASSISTED- ETCH PROCESS FOR DEVELOPING HIGH PERFORMANCE NANOCRYSTALLINE ZINC-OXIDE...Government and is not subject to copyright protection in the United States. AFIT-ENG-MS-15-M-027 SUBTRACTIVE PLASMA -ASSISTED- ETCH PROCESS FOR...15-M-027 SUBTRACTIVE PLASMA -ASSISTED- ETCH PROCESS FOR DEVELOPING HIGH PERFORMANCE NANOCRYSTALLINE ZINC-OXIDE THIN-FILM-TRANSISTORS Thomas

  19. Controllable film densification and interface flatness for high-performance amorphous indium oxide based thin film transistors

    SciTech Connect

    Ou-Yang, Wei E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Kizu, Takio; Gao, Xu; Lin, Meng-Fang; Tsukagoshi, Kazuhito E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Nabatame, Toshihide

    2014-10-20

    To avoid the problem of air sensitive and wet-etched Zn and/or Ga contained amorphous oxide transistors, we propose an alternative amorphous semiconductor of indium silicon tungsten oxide as the channel material for thin film transistors. In this study, we employ the material to reveal the relation between the active thin film and the transistor performance with aid of x-ray reflectivity study. By adjusting the pre-annealing temperature, we find that the film densification and interface flatness between the film and gate insulator are crucial for achieving controllable high-performance transistors. The material and findings in the study are believed helpful for realizing controllable high-performance stable transistors.

  20. Ultra-Flexible, Invisible Thin-Film Transistors Enabled by Amorphous Metal Oxide/Polymer Channel Layer Blends

    DTIC Science & Technology

    2015-02-25

    2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim2390 wileyonlinelibrary.com C O M M U N IC A TI O N Ultra-Flexible, “ Invisible ” Thin-Film...enable fully trans- parent thin-fi lm transistors (TFTs), which are essential for the fabrication of “ invisible ” circuits and to increase the...4. TITLE AND SUBTITLE Ultra-Flexible, ’ Invisible ’ Thin-Film Transistors Enabled by Amorphous Metal Oxide/Polymer Channel Layer Blends 5a. CONTRACT

  1. Self-heating induced instability of oxide thin film transistors under dynamic stress

    NASA Astrophysics Data System (ADS)

    Kise, Kahori; Fujii, Mami N.; Urakawa, Satoshi; Yamazaki, Haruka; Kawashima, Emi; Tomai, Shigekazu; Yano, Koki; Wang, Dapeng; Furuta, Mamoru; Ishikawa, Yasuaki; Uraoka, Yukiharu

    2016-01-01

    Degradation caused by Joule heating of transparent amorphous oxide semiconductor thin-film transistors (TFTs) is an important issue for display technology. Deep understanding of the mechanism of self-heating degradation generated by driving pulse voltage will pave the way for the development of highly reliable flexible displays. In this work, by using a pseudo interval measurement method, we examined the relationship of the highest and the lowest heating temperature in pulse 1 cycle and frequency. These self-heating converged to a constant temperature under pulse voltage applied at 1 kHz. Moreover, the long-term reliability under positive-bias stress voltage at 1 kHz of low converged temperature condition was improved relative to that of the stress voltage at 10 Hz of dynamic temperature change condition. We discussed the degradation mechanism of oxide TFTs generated by pulse voltage, and clarified that the degradation was accelerated by thermionic emission which occurred at low frequency.

  2. Remarkably high mobility ultra-thin-film metal-oxide transistor with strongly overlapped orbitals

    PubMed Central

    Wei Shih, Chen; Chin, Albert; Fu Lu, Chun; Fang Su, Wei

    2016-01-01

    High mobility channel thin-film-transistor (TFT) is crucial for both display and future generation integrated circuit. We report a new metal-oxide TFT that has an ultra-thin 4.5 nm SnO2 thickness for both active channel and source-drain regions, very high 147 cm2/Vs field-effect mobility, high ION/IOFF of 2.3 × 107, small 110 mV/dec sub-threshold slope, and a low VD of 2.5 V for low power operation. This mobility is already better than chemical-vapor-deposition grown multi-layers MoS2 TFT. From first principle quantum-mechanical calculation, the high mobility TFT is due to strongly overlapped orbitals. PMID:26744240

  3. Numerical simulation of offset-drain amorphous oxide-based thin-film transistors

    NASA Astrophysics Data System (ADS)

    Jeong, Jaewook

    2016-11-01

    In this study, we analyzed the electrical characteristics of amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) with an offset-drain structure by technology computer aided design (TCAD) simulation. When operating in a linear region, an enhancement-type TFT shows poor field-effect mobility because most conduction electrons are trapped in acceptor-like defects in an offset region when the offset length (L off) exceeds 0.5 µm, whereas a depletion-type TFT shows superior field-effect mobility owing to the high free electron density in the offset region compared with the trapped electron density. When operating in the saturation region, both types of TFTs show good field-effect mobility comparable to that of a reference TFT with a large gate overlap. The underlying physics of the depletion and enhancement types of offset-drain TFTs are systematically analyzed.

  4. Contact resistance improvement using interfacial silver nanoparticles in amorphous indium-zinc-oxide thin film transistors

    SciTech Connect

    Xu, Rui; He, Jian; Song, Yang; Li, Wei; Zaslavsky, A.; Paine, D. C.

    2014-09-01

    We describe an approach to reduce the contact resistance at compositional conducting/semiconducting indium-zinc-oxide (IZO) homojunctions used for contacts in thin film transistors (TFTs). By introducing silver nanoparticles (Ag NPs) at the homojunction interface between the conducting IZO electrodes and the amorphous IZO channel, we reduce the specific contact resistance, obtained by transmission line model measurements, down to ∼10{sup −2 }Ω cm{sup 2}, ∼3 orders of magnitude lower than either NP-free homojunction contacts or solid Ag metal contacts. The resulting back-gated TFTs with Ag NP contacts exhibit good field effect mobility of ∼27 cm{sup 2}/V s and an on/off ratio >10{sup 7}. We attribute the improved contact resistance to electric field concentration by the Ag NPs.

  5. Improved Stability Of Amorphous Zinc Tin Oxide Thin Film Transistors Using Molecular Passivation

    SciTech Connect

    Rajachidambaram, Meena Suhanya; Pandey, Archana; Vilayur Ganapathy, Subramanian; Nachimuthu, Ponnusamy; Thevuthasan, Suntharampillai; Herman, Gregory S.

    2013-10-21

    The role of back channel surface chemistry on amorphous zinc tin oxide (ZTO) bottom gate thin film transistors (TFT) have been characterized by positive bias-stress measurements and x-ray photoelectron spectroscopy. Positive bias-stress turn-on voltage shifts for ZTO-TFTs were significantly reduced by passivation of back channel surfaces with self-assembled monolayers of n-hexylphosphonic acid (n-HPA) when compared to ZTO-TFTs with no passivation. These results indicate that adsorption of molecular species on exposed back channel of ZTO-TFTs strongly influence observed turn-on voltage shifts, as opposed to charge injection into the dielectric or trapping due to oxygen vacancies.

  6. Review of flexible and transparent thin-film transistors based on zinc oxide and related materials

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Hui; Mei, Zeng-Xia; Liang, Hui-Li; Du, Xiao-Long

    2017-04-01

    Flexible and transparent electronics enters into a new era of electronic technologies. Ubiquitous applications involve wearable electronics, biosensors, flexible transparent displays, radio-frequency identifications (RFIDs), etc. Zinc oxide (ZnO) and relevant materials are the most commonly used inorganic semiconductors in flexible and transparent devices, owing to their high electrical performances, together with low processing temperatures and good optical transparencies. In this paper, we review recent advances in flexible and transparent thin-film transistors (TFTs) based on ZnO and relevant materials. After a brief introduction, the main progress of the preparation of each component (substrate, electrodes, channel and dielectrics) is summarized and discussed. Then, the effect of mechanical bending on electrical performance is highlighted. Finally, we suggest the challenges and opportunities in future investigations. Project supported by the National Natural Science Foundation of China (Grants Nos. 61306011, 11274366, 51272280, 11674405, and 11675280).

  7. Water-soluble thin film transistors and circuits based on amorphous indium-gallium-zinc oxide.

    PubMed

    Jin, Sung Hun; Kang, Seung-Kyun; Cho, In-Tak; Han, Sang Youn; Chung, Ha Uk; Lee, Dong Joon; Shin, Jongmin; Baek, Geun Woo; Kim, Tae-il; Lee, Jong-Ho; Rogers, John A

    2015-04-22

    This paper presents device designs, circuit demonstrations, and dissolution kinetics for amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) comprised completely of water-soluble materials, including SiNx, SiOx, molybdenum, and poly(vinyl alcohol) (PVA). Collections of these types of physically transient a-IGZO TFTs and 5-stage ring oscillators (ROs), constructed with them, show field effect mobilities (∼10 cm2/Vs), on/off ratios (∼2×10(6)), subthreshold slopes (∼220 mV/dec), Ohmic contact properties, and oscillation frequency of 5.67 kHz at supply voltages of 19 V, all comparable to otherwise similar devices constructed in conventional ways with standard, nontransient materials. Studies of dissolution kinetics for a-IGZO films in deionized water, bovine serum, and phosphate buffer saline solution provide data of relevance for the potential use of these materials and this technology in temporary biomedical implants.

  8. High-mobility thin film transistors with neodymium-substituted indium oxide active layer

    SciTech Connect

    Lin, Zhenguo; Lan, Linfeng Xiao, Peng; Sun, Sheng; Li, Yuzhi; Song, Wei; Gao, Peixiong; Wang, Lei; Ning, Honglong; Peng, Junbiao

    2015-09-14

    Thin-film transistors (TFTs) with neodymium-substituted indium oxide (InNdO) channel layer were demonstrated. The structural properties of the InNdO films as a function of annealing temperature have been analyzed using X-ray diffraction and transmission electron microscopy. The InNdO thin films showed polycrystalline nature when annealed at 450 °C with a lattice parameter (cubic cell) of 10.255 Å, which is larger than the cubic In{sub 2}O{sub 3} film (10.117 Å). The high-resolution transmission electron microscopy and energy dispersive X-ray spectroscopy showed that no Nd{sub 2}O{sub 3} clusters were found in the InNdO film, implying that Nd was incorporated into the In{sub 2}O{sub 3} lattice. The InNdO TFTs annealed at 450 °C exhibited more excellent electrical properties with a high mobility of 20.4 cm{sup 2} V{sup −1} s{sup −1} and better electric bias stability compared to those annealed at 300 °C, which was attributed to the reduction of the scattering centers and/or charge traps due to the decrease of the |Nd3d{sub 5/2}{sup 5}4f{sup 4}O2p{sup −1}〉 electron configuration.

  9. Solution-processed high-k magnesium oxide dielectrics for low-voltage oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Jiang, Guixia; Liu, Ao; Liu, Guoxia; Zhu, Chundan; Meng, You; Shin, Byoungchul; Fortunato, Elvira; Martins, Rodrigo; Shan, Fukai

    2016-10-01

    Solution-processed metal-oxide thin films with high dielectric constants (k) have been extensively studied for low-cost and high-performance thin-film transistors (TFTs). In this report, MgO dielectric films were fabricated using the spin-coating method. The MgO dielectric films annealed at various temperatures (300, 400, 500, and 600 °C) were characterized by using thermogravimetric analysis, optical spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and atomic-force microscopy. The electrical measurements indicate that the insulating properties of MgO thin films are improved with an increase in annealing temperature. In order to clarify the potential application of MgO thin films as gate dielectrics in TFTs, solution-derived In2O3 channel layers were separately fabricated on various MgO dielectric layers. The optimized In2O3/MgO TFT exhibited an electron mobility of 5.48 cm2/V s, an on/off current ratio of 107, and a subthreshold swing of 0.33 V/dec at a low operation voltage of 6 V. This work represents a great step toward the development of portable and low-power consumption electronics.

  10. A review on the recent developments of solution processes for oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Du Ahn, Byung; Jeon, Hye-Ji; Sheng, Jiazhen; Park, Jozeph; Park, Jin-Seong

    2015-06-01

    This review article introduces the recent advances in the development of oxide semiconductor materials based on solution processes and their potential applications. In the early stage, thin film transistors based on oxide semiconductors fabricated by solution processes used to face critical problems such as high annealing temperatures (>400 °C) required to obtain reasonable film quality, and the relatively low field effect mobility (<5 cm2 V-1 s-1) compared to devices fabricated by conventional vacuum-based techniques. In order to overcome such hurdles, the proper selection of high mobility amorphous oxide semiconductor materials is addressed first. The latter involves the combination of high mobility compounds and multilayered active stacks. Ensuing overviews are provided on the selection of optimum precursors and alternative annealing methods that enable the growth of high quality films at relatively low process temperatures (<200 °C). Reasonably high field effect mobility values (~10 cm2 V-1 s-1) could thus be obtained by optimizing the above process parameters. Finally, potential applications of solution processed oxide semiconductor devices are summarized, involving, for instance, flexible displays, biosensors, and non-volatile memory devices. As such, further innovations in the solution process methods of oxide semiconductor devices are anticipated to allow the realization of cost effective, large area electronics in the near future.

  11. Low-Temperature, Solution-Processed, Transparent Zinc Oxide-Based Thin-Film Transistors for Sensing Various Solvents.

    PubMed

    You, Hsin-Chiang; Wang, Cheng-Jyun

    2017-02-26

    A low temperature solution-processed thin-film transistor (TFT) using zinc oxide (ZnO) film as an exposed sensing semiconductor channel was fabricated to detect and identify various solution solvents. The TFT devices would offer applications for low-cost, rapid and highly compatible water-soluble detection and could replace conventional silicon field effect transistors (FETs) as bio-sensors. In this work, we demonstrate the utility of the TFT ZnO channel to sense various liquids, such as polar solvents (ethanol), non-polar solvents (toluene) and deionized (DI) water, which were dropped and adsorbed onto the channel. It is discussed how different dielectric constants of polar/non-polar solvents and DI water were associated with various charge transport properties, demonstrating the main detection mechanisms of the thin-film transistor.

  12. Electrical characterization of reduced graphene oxide (rGO) on organic thin film transistor (OTFT)

    NASA Astrophysics Data System (ADS)

    Musa, Nurhazwani; Halim, Nurul Farhanah Ab.; Ahmad, Mohd Noor; Zakaria, Zulkhairi; Hashim, Uda

    2017-03-01

    A green method and eco-friendly solution were used to chemically reduce graphene oxide (GO) to graphene using green reductant. In this study, graphene oxide (GO) were prepared by using Tours method. Then, reduced graphene oxides (rGO) were prepared by using three typical reduction agents: L-ascorbic acid (L-AA), formamidinesulfinic acid (FAS) and sodium sulfite (Na2SO3). The reduced materials were characterized by Fourier transform infrared spectroscopy (FTIR), Thermo gravimetric analysis (TGA) and X-ray diffraction (XRD). Graphene based organic thin film transistor (G-OTFT) was prepared by a spin coating and thermal evaporation technique. The electrical characterization of G-OTFT was analyzed by using semiconductor parameter analyzer (SPA). The G-OTFT devices show p-type semiconducting behaviour. This article focuses on the synthesis and reduction of graphene oxide using three different reductants in order to maximise its electrical conductivity. The rGO product demonstrated a good electrical conductivity performance with highly sensitivity sensor.

  13. Codoping of zinc and tungsten for practical high-performance amorphous indium-based oxide thin film transistors

    SciTech Connect

    Kizu, Takio E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Tsukagoshi, Kazuhito E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Miyanaga, Miki; Awata, Hideaki; Nabatame, Toshihide

    2015-09-28

    Using practical high-density sputtering targets, we investigated the effect of Zn and W codoping on the thermal stability of the amorphous film and the electrical characteristics in thin film transistors. zinc oxide is a potentially conductive component while W oxide is an oxygen vacancy suppressor in oxide films. The oxygen vacancy from In-O and Zn-O was suppressed by the W additive because of the high oxygen bond dissociation energy. With controlled codoping of W and Zn, we demonstrated a high mobility with a maximum mobility of 40 cm{sup 2}/V s with good stability under a negative bias stress in InWZnO thin film transistors.

  14. Fabrication and characterization of oxide-based thin film transistors, and process development for oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Lim, Wantae

    2009-12-01

    This dissertation is focused on the development of thin film transistors (TFTs) using oxide materials composed of post-transitional cations with (n-1)d 10ns0 (n≥4). The goal is to achieve high performance oxide-based TFTs fabricated at low processing temperature on either glass or flexible substrates for next generation display applications. In addition, etching mechanism and Ohmic contact formation for oxide heterostructure (ZnO/CuCrO 2) system is demonstrated. The deposition and characterization of oxide semiconductors (In 2O3-ZnO, and InGaZnO4) using a RF-magnetron sputtering system are studied. The main influence on the resistivity of the films is found to be the oxygen partial pressure in the sputtering ambient. The films remained amorphous and transparent (> 70%) at all process conditions. These films showed good transmittance at suitable conductivity for transistor fabrication. The electrical characteristics of both top- and bottom-gate type Indium Zinc Oxide (InZnO) and Indium Gallium Zinc Oxide (InGaZnO4)-based TFTs are reported. The InZnO films were favorable for depletion-mode TFTs due to their tendency to form oxygen vacancies, while enhancement-mode devices were realized with InGaZnO4 films. The InGaZnO4-based TFTs fabricated on either glass or plastic substrates at low temperature (<100°C) exhibit good electrical properties: the saturation mobility of 5--12 cm2.V-1.s-1 and threshold voltage of 0.5--2.5V. The devices are also examined as a function of aging time in order to verify long-term stability in air. The effect of gate dielectric materials on electrical properties of InGaZnO 4-based TFTs was investigated. The use of SiNx film as a gate dielectric reduces the trap density and the roughness at the channel/gate dielectric interface compared to SiO2 gate dielectric, resulting in an improvement of device parameters by reducing scattering of trapped charges at the interface. The quality of interface is shown to have large effect on TFT performance

  15. High Performance, Low Temperature Solution-Processed Barium and Strontium Doped Oxide Thin Film Transistors

    PubMed Central

    2013-01-01

    Amorphous mixed metal oxides are emerging as high performance semiconductors for thin film transistor (TFT) applications, with indium gallium zinc oxide, InGaZnO (IGZO), being one of the most widely studied and best performing systems. Here, we investigate alkaline earth (barium or strontium) doped InBa(Sr)ZnO as alternative, semiconducting channel layers and compare their performance of the electrical stress stability with IGZO. In films fabricated by solution-processing from metal alkoxide precursors and annealed to 450 °C we achieve high field-effect electron mobility up to 26 cm2 V–1 s–1. We show that it is possible to solution-process these materials at low process temperature (225–200 °C yielding mobilities up to 4.4 cm2 V–1 s–1) and demonstrate a facile “ink-on-demand” process for these materials which utilizes the alcoholysis reaction of alkyl metal precursors to negate the need for complex synthesis and purification protocols. Electrical bias stress measurements which can serve as a figure of merit for performance stability for a TFT device reveal Sr- and Ba-doped semiconductors to exhibit enhanced electrical stability and reduced threshold voltage shift compared to IGZO irrespective of the process temperature and preparation method. This enhancement in stability can be attributed to the higher Gibbs energy of oxidation of barium and strontium compared to gallium. PMID:24511184

  16. Stability of Indium Gallium Zinc Aluminum Oxide Thin-Film Transistors with Treatment Processes

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Hao; Lee, Ching-Ting

    2017-02-01

    The indium-gallium-zinc-aluminum-oxide (IGZAO) channel layer of the bottom-gate-type thin-film transistors (TFTs) was deposited on indium tin oxide-coated glass substrates using a magnetron radio frequency co-sputtering system with dual targets of indium gallium zinc oxide and Al. The 3 s orbital of Al cations provided an extra transport pathway and widened the bottom of the conduction band, thus increasing the electron mobility in the IGZAO films. The Al-O bonds could sustain the stability of oxygen of the IGZAO films. The IGZAO TFTs were processed by O2 plasma and post-annealing treatments. Hysteresis analysis was carried out in order to study the stability of the resulting IGZAO TFTs, the positive bias temperature stress (PBTS) performance, and the hot carrier effect were also measured. For the IGZAO TFTs, the threshold voltage shift of the PBTS performance and the hot carrier effect were 0.1 V and 0.06 V, respectively. Overall, the IGZAO TFTs exhibited good stability in this study.

  17. Optimisation of amorphous zinc tin oxide thin film transistors by remote-plasma reactive sputtering

    NASA Astrophysics Data System (ADS)

    Niang, K. M.; Cho, J.; Heffernan, S.; Milne, W. I.; Flewitt, A. J.

    2016-08-01

    The influence of the stoichiometry of amorphous zinc tin oxide (a-ZTO) thin films used as the semiconducting channel in thin film transistors (TFTs) is investigated. A-ZTO has been deposited using remote-plasma reactive sputtering from zinc:tin metal alloy targets with 10%, 33%, and 50% Sn at. %. Optimisations of thin films are performed by varying the oxygen flow, which is used as the reactive gas. The structural, optical, and electrical properties are investigated for the optimised films, which, after a post-deposition annealing at 500 °C in air, are also incorporated as the channel layer in TFTs. The optical band gap of a-ZTO films slightly increases from 3.5 to 3.8 eV with increasing tin content, with an average transmission ˜90% in the visible range. The surface roughness and crystallographic properties of the films are very similar before and after annealing. An a-ZTO TFT produced from the 10% Sn target shows a threshold voltage of 8 V, a switching ratio of 108, a sub-threshold slope of 0.55 V dec-1, and a field effect mobility of 15 cm2 V-1 s-1, which is a sharp increase from 0.8 cm2 V-1 s-1 obtained in a reference ZnO TFT. For TFTs produced from the 33% Sn target, the mobility is further increased to 21 cm2 V-1 s-1, but the sub-threshold slope is slightly deteriorated to 0.65 V dec-1. For TFTs produced from the 50% Sn target, the devices can no longer be switched off (i.e., there is no channel depletion). The effect of tin content on the TFT electrical performance is explained in the light of preferential sputtering encountered in reactive sputtering, which resulted in films sputtered from 10% and 33% Sn to be stoichiometrically close to the common Zn2SnO4 and ZnSnO3 phases.

  18. Impact of soft annealing on the performance of solution-processed amorphous zinc tin oxide thin-film transistors.

    PubMed

    Nayak, Pradipta K; Hedhili, Mohamed N; Cha, Dongkyu; Alshareef, H N

    2013-05-01

    It is demonstrated that soft annealing duration strongly affects the performance of solution-processed amorphous zinc tin oxide thin-film transistors. Prolonged soft annealing times are found to induce two important changes in the device: (i) a decrease in zinc tin oxide film thickness, and (ii) an increase in oxygen vacancy concentration. The devices prepared without soft annealing exhibited inferior transistor performances, in comparison to devices in which the active channel layer (zinc tin oxide) was subjected to soft annealing. The highest saturation field-effect mobility-5.6 cm(2) V(-1) s(-1) with a drain-to-source on-off current ratio (Ion/Ioff) of 2 × 10(8)-was achieved in the case of devices with 10-min soft-annealed zinc tin oxide thin films as the channel layer. The findings of this work identify soft annealing as a critical parameter for the processing of chemically derived thin-film transistors, and it correlates device performance to the changes in material structure induced by soft annealing.

  19. Laser direct patterning of indium tin oxide for defining a channel of thin film transistor.

    PubMed

    Wang, Jian-Xun; Kwon, Sang Jik; Han, Jae-Hee; Cho, Eou Sik

    2013-11-01

    In this work, using a Q-switched diode-pumped neodymium-doped yttrium vanadate (Nd:YVO4, lambda = 1064 nm) laser, a direct patterning of indium tin oxide (ITO) channel was realized on glass substrates and the results were compared and analyzed in terms of the effect of repetition rate, scanning speed on etching characteristics. The results showed that the laser conditions of 40 kHz repetition rate with a scanning speed of 500 mm/s were appropriate for the channeling of ITO electrodes. The length of laser-patterned channel was maintained at about 55 microm. However, residual spikes (about 50 nm in height) of ITO were found to be formed at the edges of the laser ablated area and a few ITO residues remained on the glass substrate after laser scanning. By dipping the laser-ablated ITO film in ITO diluted etchant (ITO etchant/DI water: 1/10) at 50 degrees C for 3 min, the spikes and residual ITO were effectively removed. At last, using the laser direct patterning, a bottom-source-drain indium gallium zinc oxide thin film transistor (IGZO-TFT) was fabricated. It is successfully demonstrated that the laser direct patterning can be utilized instead of photolithography to simplify the fabrication process of TFT channel, resulting in the increase of productivity and reduction of cost.

  20. Temporal and voltage stress stability of high performance indium-zinc-oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Song, Yang; Katsman, Alexander; Butcher, Amy L.; Paine, David C.; Zaslavsky, Alexander

    2017-10-01

    Thin film transistors (TFTs) based on transparent oxide semiconductors, such as indium zinc oxide (IZO), are of interest due to their improved characteristics compared to traditional a-Si TFTs. Previously, we reported on top-gated IZO TFTs with an in-situ formed HfO2 gate insulator and IZO active channel, showing high performance: on/off ratio of ∼107, threshold voltage VT near zero, extracted low-field mobility μ0 = 95 cm2/V·s, and near-perfect subthreshold slope at 62 mV/decade. Since device stability is essential for technological applications, in this paper we report on the temporal and voltage stress stability of IZO TFTs. Our devices exhibit a small negative VT shift as they age, consistent with an increasing carrier density resulting from an increasing oxygen vacancy concentration in the channel. Under gate bias stress, freshly annealed TFTs show a negative VT shift during negative VG gate bias stress, while aged (>1 week) TFTs show a positive VT shift during negative VG stress. This indicates two competing mechanisms, which we identify as the field-enhanced generation of oxygen vacancies and the field-assisted migration of oxygen vacancies, respectively. A simplified kinetic model of the vacancy concentration evolution in the IZO channel under electrical stress is provided.

  1. An All Oxide-Based Imperceptible Thin-Film Transistor with Humidity Sensing Properties.

    PubMed

    Kim, Kyung Su; Ahn, Cheol Hyoun; Kang, Won Jun; Cho, Sung Woon; Jung, Sung Hyeon; Yoon, Dae Ho; Cho, Hyung Koun

    2017-05-13

    We have examined the effects of oxygen content and thickness in sputtered InSnO (ITO) electrodes, especially for the application of imperceptible amorphous-InGaZnO (a-IGZO) thin-film transistors (TFTs) in humidity sensors. The imperceptible a-IGZO TFT with 50-nm ITO electrodes deposited at Ar:O₂ = 29:0.3 exhibited good electrical performances with Vth of -0.23 V, SS of 0.34 V/dec, µFE of 7.86 cm²/V∙s, on/off ratio of 8.8 × 10⁷, and has no degradation for bending stress up to a 3.5-mm curvature. The imperceptible oxide TFT sensors showed the highest sensitivity for the low and wide gate bias of -1~2 V under a wide range of relative humidity (40-90%) at drain voltage 1 V, resulting in low power consumption by the sensors. Exposure to water vapor led to a negative shift in the threshold voltage (or current enhancement), and an increase in relative humidity induced continuous threshold voltage shift. In particular, compared to conventional resistor-type sensors, the imperceptible oxide TFT sensors exhibited extremely high sensitivity from a current amplification of >10³.

  2. An All Oxide-Based Imperceptible Thin-Film Transistor with Humidity Sensing Properties

    PubMed Central

    Kim, Kyung Su; Ahn, Cheol Hyoun; Kang, Won Jun; Cho, Sung Woon; Jung, Sung Hyeon; Yoon, Dae Ho; Cho, Hyung Koun

    2017-01-01

    We have examined the effects of oxygen content and thickness in sputtered InSnO (ITO) electrodes, especially for the application of imperceptible amorphous-InGaZnO (a-IGZO) thin-film transistors (TFTs) in humidity sensors. The imperceptible a-IGZO TFT with 50-nm ITO electrodes deposited at Ar:O2 = 29:0.3 exhibited good electrical performances with Vth of −0.23 V, SS of 0.34 V/dec, µFE of 7.86 cm2/V∙s, on/off ratio of 8.8 × 107, and has no degradation for bending stress up to a 3.5-mm curvature. The imperceptible oxide TFT sensors showed the highest sensitivity for the low and wide gate bias of −1~2 V under a wide range of relative humidity (40–90%) at drain voltage 1 V, resulting in low power consumption by the sensors. Exposure to water vapor led to a negative shift in the threshold voltage (or current enhancement), and an increase in relative humidity induced continuous threshold voltage shift. In particular, compared to conventional resistor-type sensors, the imperceptible oxide TFT sensors exhibited extremely high sensitivity from a current amplification of >103. PMID:28772888

  3. Reduced graphene oxide/molecular imprinted polymer-organic thin film transistor for amino acid detection

    NASA Astrophysics Data System (ADS)

    Halim, Nurul Farhanah AB.; Musa, Nur Hazwani; Zakaria, Zulkhairi; Von Schleusingen, Mubaraq; Ahmad, Mohd Noor; Derman, Nazree; Shakaff, Ali Yeon Md.

    2017-03-01

    This works reports the electrical performance of reduced graphene oxide (RGO)/Molecular imprinted polymer (MIP)- organic thin film transistor (OTFT) for amino-acid detection, serine. These biomimetic sensors consider MIP as man-tailored biomimetic recognition sites that play an important role in signal transduction. MIP provides recognition sites compatible with serine molecules was developed by dispersing serine with methylacrylate acid (MAA) as functional monomer and Ethylene glycol dimethylacrylate (EGDMA) as cross-linker. The imprinted polymeric were mixed with reduced graphene oxide to produced sensing layer for the sensor. RGO-MIP layer was introduced between source and drain of OTFT via spin coating as a detecting layer for serine molecules. RGO was introduced into MIP, to allow a highly conductive sensing material thus enhanced selectivity and sensitivity of the sensor. By analyzing the electrical performance of the sensors, the performances of OTFT sensor enhanced with RGO/MIP interlayer and OTFT sensor with MIP interlayer when exposed to serine analyte were obtained. The results showed that there were remarkable shifts of drain current (ID) obtained from OTFT sensor with RGO/MIP interlayer after exposed to serine analyte. Moreover, the sensitivity of OTFT sensor with RGO/MIP interlayer was nearly higher than the OTFT sensor with MIP interlayer. Hence, it proved that RGO successfully enhanced the sensing performance of OTFT sensor.

  4. All-amorphous-oxide transparent, flexible thin-film transistors. Efficacy of bilayer gate dielectrics.

    PubMed

    Liu, Jun; Buchholz, D Bruce; Hennek, Jonathan W; Chang, Robert P H; Facchetti, Antonio; Marks, Tobin J

    2010-09-01

    Optically transparent and mechanically flexible thin-film transistors (TF-TFTs) composed exclusively of amorphous metal oxide films are fabricated on plastic substrates by combining an amorphous Ta(2)O(5)/SiO(x) bilayer transparent oxide insulator (TOI) gate dielectric with an amorphous zinc-indium-tin oxide (a-ZITO) transparent oxide semiconductor (TOS) channel and a-ZITO transparent oxide conductor (TOC) electrodes. The bilayer gate dielectric is fabricated by the post-cross-linking of vapor-deposited hexachlorodisiloxane-derived films to form thin SiO(x) layers (v-SiO(x)) on amorphous Ta(2)O(5) (a-Ta(2)O(5)) films grown by ion-assisted deposition at room temperature. The a-Ta(2)O(5)/v-SiO(x) bilayer TOI dielectric integrates the large capacitance of the high dielectric constant a-Ta(2)O(5) layer with the excellent dielectric/semiconductor interfacial compatibility of the v-SiO(x) layer in a-ZITO TOS-based TF-TFTs. These all-amorphous-oxide TF-TFTs, having a channel length and width of 100 and 2000 microm, respectively, perform far better than a-Ta(2)O(5)-only devices and exhibit saturation-regime field-effect mobilities of approximately 20 cm(2)/V x s, on-currents >10(-4) A, and current on-off ratios >10(5). These TFTs operate at low voltages (approximately 4.0 V) and exhibit good visible-region optical transparency and excellent mechanical flexibility.

  5. Oxide semiconductor thin-film transistors: a review of recent advances.

    PubMed

    Fortunato, E; Barquinha, P; Martins, R

    2012-06-12

    Transparent electronics is today one of the most advanced topics for a wide range of device applications. The key components are wide bandgap semiconductors, where oxides of different origins play an important role, not only as passive component but also as active component, similar to what is observed in conventional semiconductors like silicon. Transparent electronics has gained special attention during the last few years and is today established as one of the most promising technologies for leading the next generation of flat panel display due to its excellent electronic performance. In this paper the recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed and p-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed. After a short introduction where the main advantages of these semiconductors are presented, as well as the industry expectations, the beautiful history of TFTs is revisited, including the main landmarks in the last 80 years, finishing by referring to some papers that have played an important role in shaping transparent electronics. Then, an overview is presented of state of the art n-type TFTs processed by physical vapour deposition methods, and finally one of the most exciting, promising, and low cost but powerful technologies is discussed: solution-processed oxide TFTs. Moreover, a more detailed focus analysis will be given concerning p-type oxide TFTs, mainly centred on two of the most promising semiconductor candidates: copper oxide and tin oxide. The most recent data related to the production of complementary metal oxide semiconductor (CMOS) devices based on n- and p-type oxide TFT is also be presented. The last topic of this review is devoted to some emerging applications, finalizing with the main conclusions. Related work that originated at CENIMAT|I3N during the last six years is included in more detail, which

  6. High mobility indium zinc oxide thin film field-effect transistors by semiconductor layer engineering.

    PubMed

    Walker, Daniel E; Major, Marton; Yazdi, Mehrdad Baghaie; Klyszcz, Andreas; Haeming, Marc; Bonrad, Klaus; Melzer, Christian; Donner, Wolfgang; von Seggern, Heinz

    2012-12-01

    Indium zinc oxide thin-film transistors are fabricated via a precursor in solution route on silicon substrates with silicon dioxide gate dielectric. It is found that the extracted mobility rises, peaks, and then decreases with increasing precursor concentration instead of rising and saturating. Investigation with scanning probe techniques reveals full thickness variations within the film which are assumed to adversely affect charge transport. Additional layers are coated, and the extracted mobility is observed to increase up to 19.7 cm(2) V(-1) s(-1). The reasons for this are examined in detail by direct imaging with scanning tunneling microscopy and extracting electron density profiles from X-ray reflection measurements. It is found that the optimal concentration for single layer films is suboptimal when coating multiple layers and in fact using many layers of very low concentrations of precursor in the solution, leading to a dense, defect and void free film, affording the highest mobilities. A consistent qualitative model of layer formation is developed explaining how the morphology of the film develops as the concentration of precursor in the initial solution is varied.

  7. Investigation of solution combustion-processed nickel oxide p-channel thin film transistors

    NASA Astrophysics Data System (ADS)

    Li, Ya; Liu, Chuan; Wang, Gang; Pei, Yanli

    2017-08-01

    In this work, p-channel thin film transistors (TFTs) with a nickel oxide (NiO) active layer have been synthesized by a solution combustion process. The effect of synthesis parameters was investigated. It was revealed that the metal-acetylacetone complexes and metal-ammine complexes coexist in the solution precursor. The combustion of metal-acetylacetone complexes is dominant in the redox reaction, while the combustion of metal-ammine complexes completes the reaction of residual organic matter. The proportion of both complexes in the solution precursor is key for NiO synthesis, which is tunable by the precursor aging time. The annealing temperature is another key parameter. X-ray photoelectron spectroscopy analysis indicates that organic residues exist in the film annealed at low temperature. In contrast, with the increase in annealing temperature, the Ni3+-related components decreased while the intensity of Ni2+ in the film increased. This results in a decrease in the hole concentration and the degradation of device performance. The p-channel NiO TFTs with a field-effect mobility of 0.015 cm2 V-1 s-1 have been achieved via systemically optimizing precursor aging time and post-annealing temperature. This study successfully demonstrates the potential of combustion solution-processed NiO TFTs with p-channel characteristics.

  8. A physics-based model of threshold voltage for amorphous oxide semiconductor thin-film transistors

    NASA Astrophysics Data System (ADS)

    Chen, Chi-Le; Chen, Wei-Feng; Zhou, Lei; Wu, Wei-Jing; Xu, Miao; Wang, Lei; Peng, Jun-Biao

    2016-03-01

    In the application of the Lambert W function, the surface potential for amorphous oxide semiconductor thin-film transistors (AOS TFTs) under the subthreshold region is approximated by an asymptotic equation only considering the tail states. While the surface potential under the above-threshold region is approximated by another asymptotic equation only considering the free carriers. The intersection point between these two asymptotic equations represents the transition from the weak accumulation to the strong accumulation. Therefore, the gate voltage corresponding to the intersection point is defined as threshold voltage of AOS TFTs. As a result, an analytical expression for the threshold voltage is derived from this novel definition. It is shown that the threshold voltage achieved by the proposed physics-based model is agreeable with that extracted by the conventional linear extrapolation method. Furthermore, we find that the free charge per unit area in the channel starts increasing sharply from the threshold voltage point, where the concentration of the free carriers is a little larger than that of the localized carriers. The proposed model for the threshold voltage of AOS TFTs is not only physically meaningful but also mathematically convenient, so it is expected to be useful for characterizing and modeling AOS TFTs.

  9. Electrical properties of magnesium incorporated zinc tin oxide thin film transistors by solution process.

    PubMed

    Jeon, In Young; Lee, Ji Yoon; Yoon, Dae Ho

    2013-03-01

    Zinc tin oxide (ZTO) films were fabricated on SiO2/Si substrate as a function of Mg concentration (the ratio of 3 to 10 atomic%) using a spin-coating process. For the characterization of thin film transistors (TFTs), Zn0.3Sn0.70 channel TFT exhibited a higher on/off ratio compared to Zn0.5 Sn.0.5O channel TFT because the higher Sn concentration can induce more charge carriers. 3 atomic% Mg incorporated Zn0.3Sn0.7O channel TFTs showed stable electrical performances such as I(on/off) - 1 x 10(7), micro(sat) = 1.40 cm2 V(-1) s(-1), and S = 0.39 V/decade. However, 10 atomic% Mg incorporated Zn0.3Sn0.7O channel TFTs deteriorated their electrical performances due to Mg segregation. The Mg incorporated Zn0.3Sn0.7O channel TFTs effectively suppress off-current and threshold voltage change during positive gate bias stress due to their strong bonding with oxygen.

  10. Solution-processed zinc oxide nanoparticles/single-walled carbon nanotubes hybrid thin-film transistors

    NASA Astrophysics Data System (ADS)

    Liu, Fangmei; Sun, Jia; Qian, Chuan; Hu, Xiaotao; Wu, Han; Huang, Yulan; Yang, Junliang

    2016-09-01

    Solution-processed thin-film transistors (TFTs) are the essential building blocks for manufacturing the low-cost and large-area consumptive electronics. Herein, solution-processed TFTs based on the composites of zinc oxide (ZnO) nanoparticles and single-walled carbon nanotubes (SWCNTs) were fabricated by the methods of spin-coating and doctor-blading. Through controlling the weight of SWCNTs, the ZnO/SWCNTs TFTs fabricated by spin-coating demonstrated a field-effect mobility of 4.7 cm2/Vs and a low threshold voltage of 0.8 V, while the TFTs devices fabricated by doctor-blading technique showed reasonable electrical performance with a mobility of 0.22 cm2/Vs. Furthermore, the ion-gel was used as an efficient electrochemical gate dielectric because of its large electric double-layer capacitance. The operating voltage of all the TFTs devices is as low as 4.0 V. The research suggests that ZnO/SWCNTs TFTs have the potential applications in low-cost, large-area and flexible consumptive electronics, such as chemical-biological sensors and smart label.

  11. Characteristics of flexographic printed indium-zinc-oxide thin films as an active semiconductor layer in thin film field-effect transistors

    NASA Astrophysics Data System (ADS)

    Dilfer, Stefan; Hoffmann, Rudolf C.; Dörsam, Edgar

    2014-11-01

    Characteristics of oxide semiconductor thin film transistors prepared by flexographic printing technique have been studied. The device was a field-effect transistor substrate (15 mm × 15 mm, n-doped silicon, 90 nm SiO2 layer) with pre-structured gold electrodes and a printed active layer. The active layer was printed with a indium-zinc-oxide precursor solution and then annealed at 450 °C for 4 min on a hotplate. Influences of typographical parameters, i.e. printing pressure, anilox roller pressure, ink supply rate, printing velocity and printing plate (cliché) properties were studied. Reference active layers were produced by spin coating. The printed IZO ceramic layer with a dry film thickness between 3 and 8 nm, deposited onto the substrate for field-effect transistors provided a good performance with charge carrier mobilities (μ) up to 2.4 cm2 V-1 s-1, on/off current ratios (Ion/off ratio) up to 5.2 × 107 and mean threshold voltages (Vth) of +4 V. The characterization of the printed and annealed IZO layer by AFM revealed the amorphous nature of the printed active layer films with a root-mean square roughness of 0.8 nm.

  12. The effect of annealing temperature on the stability of gallium tin zinc oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Nguyen, Ngoc; McCall, Briana; Alston, Robert; Collis, Ward; Iyer, Shanthi

    2015-10-01

    With the growing need for large area display technology and the push for a faster and cheaper alternative to the current amorphous indium gallium zinc oxide (a-IGZO) as the active channel layer for pixel-driven thin film transistors (TFTs) display applications, gallium tin zinc oxide (GSZO) has shown to be a promising candidate due to the similar electronic configuration of Sn4+ and In3+. In this work TFTs of GSZO sputtered films with only a few atomic % of Ga and Sn have been fabricated. A systematic and detailed comparison has been made of the properties of the GSZO films annealed at two temperatures: 140 °C and 450 °C. The electrical and optical stabilities of the respective devices have been studied to gain more insight into the degradation mechanism and are correlated with the initial TFT performance prior to the application of stress. Post deposition annealing at 450 °C of the films in air was found to lead to a higher atomic concentration of Sn4+ in these films and a superior quality of the film, as attested by the higher film density and less surface and interface roughness in comparison to the lower annealed temperature device. These result in significantly reduced shallow and deep interface traps with improved performance of the device exhibiting VON of -3.5 V, ION/IOFF of 108, field-effect mobility (μFE) of 4.46 cm2 V-1s-1, and sub-threshold swing of 0.38 V dec-1. The device is stable under both electrical and optical bias for wavelengths of 550 nm and above. Thus, this work demonstrates GSZO-based TFTs as a promising viable option to the IGZO TFTs by further tailoring the film composition and relevant processing temperatures.

  13. High Electron Mobility Thin-Film Transistors Based on Solution-Processed Semiconducting Metal Oxide Heterojunctions and Quasi-Superlattices.

    PubMed

    Lin, Yen-Hung; Faber, Hendrik; Labram, John G; Stratakis, Emmanuel; Sygellou, Labrini; Kymakis, Emmanuel; Hastas, Nikolaos A; Li, Ruipeng; Zhao, Kui; Amassian, Aram; Treat, Neil D; McLachlan, Martyn; Anthopoulos, Thomas D

    2015-07-01

    High mobility thin-film transistor technologies that can be implemented using simple and inexpensive fabrication methods are in great demand because of their applicability in a wide range of emerging optoelectronics. Here, a novel concept of thin-film transistors is reported that exploits the enhanced electron transport properties of low-dimensional polycrystalline heterojunctions and quasi-superlattices (QSLs) consisting of alternating layers of In2O3, Ga2O3, and ZnO grown by sequential spin casting of different precursors in air at low temperatures (180-200 °C). Optimized prototype QSL transistors exhibit band-like transport with electron mobilities approximately a tenfold greater (25-45 cm(2) V(-1) s(-1)) than single oxide devices (typically 2-5 cm(2) V(-1) s(-1)). Based on temperature-dependent electron transport and capacitance-voltage measurements, it is argued that the enhanced performance arises from the presence of quasi 2D electron gas-like systems formed at the carefully engineered oxide heterointerfaces. The QSL transistor concept proposed here can in principle extend to a range of other oxide material systems and deposition methods (sputtering, atomic layer deposition, spray pyrolysis, roll-to-roll, etc.) and can be seen as an extremely promising technology for application in next-generation large area optoelectronics such as ultrahigh definition optical displays and large-area microelectronics where high performance is a key requirement.

  14. Solution-processed gadolinium doped indium-oxide thin-film transistors with oxide passivation

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Hun; Kim, Taehun; Lee, Jihun; Avis, Christophe; Jang, Jin

    2017-03-01

    We studied the effect of Gd doping on the structural properties of solution processed, crystalline In2O3 for thin-film transistor (TFT) application. With increasing Gd in In2O3 up to 20%, the material structure changes into amorphous phase, and the oxygen vacancy concentration decreases from 15.4 to 8.4%, and M-OH bonds from 33.5 to 23.7%. The field-effect mobility for the Gd doped In2O3 TFTs decreases and threshold voltage shifts to the positive voltage with increasing Gd concentration. In addition, the stability of the solution processed TFTs can also be improved by increasing Gd concentration. As a result, the optimum Gd concentration is found to be ˜5% in In2O3 and the 5% Gd doped In2O3 TFTs with the Y2O3 passivation layer exhibit the linear mobility of 9.74 cm2/V s, the threshold voltage of -0.27 V, the subthreshold swing of 79 mV/dec., and excellent bias stability.

  15. Hole mobility modulation of solution-processed nickel oxide thin-film transistor based on high-k dielectric

    SciTech Connect

    Liu, Ao; Liu, Guoxia E-mail: fukaishan@yahoo.com; Zhu, Huihui; Shan, Fukai E-mail: fukaishan@yahoo.com; Shin, Byoungchul; Fortunato, Elvira; Martins, Rodrigo

    2016-06-06

    Solution-processed p-type oxide semiconductors have recently attracted increasing interests for the applications in low-cost optoelectronic devices and low-power consumption complementary metal-oxide-semiconductor circuits. In this work, p-type nickel oxide (NiO{sub x}) thin films were prepared using low-temperature solution process and integrated as the channel layer in thin-film transistors (TFTs). The electrical properties of NiO{sub x} TFTs, together with the characteristics of NiO{sub x} thin films, were systematically investigated as a function of annealing temperature. By introducing aqueous high-k aluminum oxide (Al{sub 2}O{sub 3}) gate dielectric, the electrical performance of NiO{sub x} TFT was improved significantly compared with those based on SiO{sub 2} dielectric. Particularly, the hole mobility was found to be 60 times enhancement, quantitatively from 0.07 to 4.4 cm{sup 2}/V s, which is mainly beneficial from the high areal capacitance of the Al{sub 2}O{sub 3} dielectric and high-quality NiO{sub x}/Al{sub 2}O{sub 3} interface. This simple solution-based method for producing p-type oxide TFTs is promising for next-generation oxide-based electronic applications.

  16. Hole mobility modulation of solution-processed nickel oxide thin-film transistor based on high-k dielectric

    NASA Astrophysics Data System (ADS)

    Liu, Ao; Liu, Guoxia; Zhu, Huihui; Shin, Byoungchul; Fortunato, Elvira; Martins, Rodrigo; Shan, Fukai

    2016-06-01

    Solution-processed p-type oxide semiconductors have recently attracted increasing interests for the applications in low-cost optoelectronic devices and low-power consumption complementary metal-oxide-semiconductor circuits. In this work, p-type nickel oxide (NiOx) thin films were prepared using low-temperature solution process and integrated as the channel layer in thin-film transistors (TFTs). The electrical properties of NiOx TFTs, together with the characteristics of NiOx thin films, were systematically investigated as a function of annealing temperature. By introducing aqueous high-k aluminum oxide (Al2O3) gate dielectric, the electrical performance of NiOx TFT was improved significantly compared with those based on SiO2 dielectric. Particularly, the hole mobility was found to be 60 times enhancement, quantitatively from 0.07 to 4.4 cm2/V s, which is mainly beneficial from the high areal capacitance of the Al2O3 dielectric and high-quality NiOx/Al2O3 interface. This simple solution-based method for producing p-type oxide TFTs is promising for next-generation oxide-based electronic applications.

  17. Characteristics of Reduced Graphene Oxide Quantum Dots for a Flexible Memory Thin Film Transistor.

    PubMed

    Kim, Yo-Han; Lee, Eun Yeol; Lee, Hyun Ho; Seo, Tae Seok

    2017-05-17

    Reduced graphene oxide quantum dot (rGOQD) devices in formats of capacitor and thin film transistor (TFT) were demonstrated and examined as the first trial to achieve nonambipolar channel property. In addition, through a gold nanoparticle (Au NP) layer embedded between the rGOQD active channel and dielectric layer, memory capacitor and TFT performances were realized by capacitance-voltage (C-V) hysteresis and gate program, erase, and reprogram biases. First, capacitor structure of the rGOQD memory device was constructed to examine memory charging effect featured in hysteretic C-V behavior with a 30 nm dielectric layer of cross-linked poly(vinyl alcohol). For the intervening Au NP charging layer, self-assembled monolayer (SAM) formation of the Au NP was executed to utilize electrostatic interaction by a dip-coating process under ambient environments with a conformal fabrication uniformity. Second, the rGOQD memory TFT device was also constructed in the same format of the Au NPs SAMs on a flexible substrate. Characteristics of the rGOQD TFT output showed novel saturation curves unlike typical graphene-based TFTs. However, The rGOQD TFT device reveals relatively low on/off ratio of 10(1) and mobility of 5.005 cm(2)/V·s. For the memory capacitor, the flat-band voltage shift (ΔVFB) was measured as 3.74 V for ±10 V sweep, and for the memory TFT, the threshold voltage shift (ΔVth) by the Au NP charging was detected as 7.84 V. In summary, it was concluded that the rGOQD memory device could accomplish an ideal graphene-based memory performance, which could have provided a wide memory window and saturated output characteristics.

  18. Proton induced multilevel storage capability in self-assembled indium-zinc-oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Guo, Li Qiang; Jin Wan, Chang; Qiang Zhu, Li; Wan, Qing

    2013-09-01

    Multilevel memory capability of self-assembled indium-zinc-oxide (IZO) electric-double-layer (EDL) thin-film transistors gated by nanogranular SiO2 proton conducting electrolytes is investigated. More than four distinct memory states are obtained by programming gate voltage. The observed multilevel storage behavior is mainly due to the controlled interfacial electrochemical doping of IZO channel by penetrated protons under programmed gate voltages. In addition, such IZO-based EDL transistor multilevel memory exhibits good characteristics of programming/erasing endurance and data retention. Such oxide-based EDL transistors with proton-induced multilevel memory behavior are interesting for low-cost memory and neuromorphic system applications after further properties and size optimization.

  19. Nonhydrolytic alkyl halide elimination reaction and its application in solution-processed zinc tin oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Yoo, Young Bum; Park, Jee Ho; Baik, Hong Koo; Song, Kie Moon

    2014-04-01

    In this study, we fabricated zinc tin oxide (ZTO) thin-film transistors (TFTs) using a sol-gel solution at an annealing temperature of 350 °C. We used a precursor combination of alkoxide and metal chloride to utilize the alkyl halide elimination reaction. Compared with transistor using chloride-only precursors, the resulting ZTO transistor showed improved performance. Solution-processed ZTO-TFTs prepared at 350 °C using an alkoxide-chloride precursor combination showed a field-effect mobility of 4.17 cm2 V-1 s-1, whereas that prepared using a chloride-only solution showed a mobility of 0.98 cm2 V-1 s-1. Thermal analysis showed that the alkoxide-chloride precursor was decomposed well at a given annealing temperature and formed oxide with few residual impurities compared with chloride-only precursors.

  20. Bio-sorbable, liquid electrolyte gated thin-film transistor based on a solution-processed zinc oxide layer.

    PubMed

    Singh, Mandeep; Palazzo, Gerardo; Romanazzi, Giuseppe; Suranna, Gian Paolo; Ditaranto, Nicoletta; Di Franco, Cinzia; Santacroce, Maria Vittoria; Mulla, Mohammad Yusuf; Magliulo, Maria; Manoli, Kyriaki; Torsi, Luisa

    2014-01-01

    Among the metal oxide semiconductors, ZnO has been widely investigated as a channel material in thin-film transistors (TFTs) due to its excellent electrical properties, optical transparency and simple fabrication via solution-processed techniques. Herein, we report a solution-processable ZnO-based thin-film transistor gated through a liquid electrolyte with an ionic strength comparable to that of a physiological fluid. The surface morphology and chemical composition of the ZnO films upon exposure to water and phosphate-buffered saline (PBS) are discussed in terms of the operation stability and electrical performance of the ZnO TFT devices. The improved device characteristics upon exposure to PBS are associated with the enhancement of the oxygen vacancies in the ZnO lattice due to Na(+) doping. Moreover, the dissolution kinetics of the ZnO thin film in a liquid electrolyte opens the possible applicability of these devices as an active element in "transient" implantable systems.

  1. Suppression of photo-bias induced instability for amorphous indium tungsten oxide thin film transistors with bi-layer structure

    SciTech Connect

    Liu, Po-Tsun Chang, Chih-Hsiang; Chang, Chih-Jui

    2016-06-27

    This study investigates the instability induced by bias temperature illumination stress (NBTIS) for an amorphous indium-tungsten-oxide thin film transistor (a-IWO TFT) with SiO{sub 2} backchannel passivation layer (BPL). It is found that this electrical degradation phenomenon can be attributed to the generation of defect states during the BPL process, which deteriorates the photo-bias stability of a-IWO TFTs. A method proposed by adding an oxygen-rich a-IWO thin film upon the a-IWO active channel layer could effectively suppress the plasma damage to channel layer during BPL deposition process. The bi-layer a-IWO TFT structure with an oxygen-rich back channel exhibits superior electrical reliability of device under NBTIS.

  2. Oxygen Partial Pressure Impact on Characteristics of Indium Titanium Zinc Oxide Thin Film Transistor Fabricated via RF Sputtering.

    PubMed

    Hsu, Ming-Hung; Chang, Sheng-Po; Chang, Shoou-Jinn; Wu, Wei-Ting; Li, Jyun-Yi

    2017-06-26

    Indium titanium zinc oxide (InTiZnO) as the channel layer in thin film transistor (TFT) grown by RF sputtering system is proposed in this work. Optical and electrical properties were investigated. By changing the oxygen flow ratio, we can suppress excess and undesirable oxygen-related defects to some extent, making it possible to fabricate the optimized device. XPS patterns for O 1s of InTiZnO thin films indicated that the amount of oxygen vacancy was apparently declined with the increasing oxygen flow ratio. The fabricated TFTs showed a threshold voltage of -0.9 V, mobility of 0.884 cm²/Vs, on-off ratio of 5.5 × 10⁵, and subthreshold swing of 0.41 V/dec.

  3. Accelerated formation of metal oxide thin film at 200 °C using oxygen supplied by a nitric acid additive and residual organic suction vacuum annealing for thin-film transistor applications.

    PubMed

    Jeong, Woong Hee; Kim, Dong Lim; Kim, Hyun Jae

    2013-09-25

    Oxide semiconductors have gradually replaced amorphous and polycrystalline silicon for thin-film transistor (TFT) because of their high mobility and large-area uniformity. Especially, the oxide semiconductors have also achieved the low-cost manufacturing using a solution process. However, because the solution-processed oxide semiconductors require a high thermal energy to form the oxide thin film, the additional solution synthesis and annealing process are needed for low-temperature solution process. Because the conventional solution-processed oxide thin films have low oxidation level and high residual organic concentration at low annealing temperature, we propose the novel solution process that includes the nitric acid additive and the vacuum ambient annealing as an oxidizing agent and a residual organic suction, respectively. Therefore, we have successfully developed the simple oxide solution process and the soluble InZnO TFT with high field-effect mobility of 3.38 cm(2)/(V s) at 200 °C.

  4. Fabrication of Amorphous Indium Gallium Zinc Oxide Thin Film Transistor by using Focused Ion Beam

    NASA Astrophysics Data System (ADS)

    Zhu, Wencong

    Compared with other transparent semiconductors, amorphous indium gallium zinc oxide (a-IGZO) has both good uniformity and high electron mobility, which make it as a good candidate for displays or large-scale transparent circuit. The goal of this research is to fabricate alpha-IGZO thin film transistor (TFT) with channel milled by focused ion beam (FIB). TFTs with different channel geometries can be achieved by applying different milling strategies, which facilitate modifying complex circuit. Technology Computer-Aided Design (TCAD) was also introduced to understand the effect of trapped charges on the device performance. The investigation of the trapped charge at IGZO/SiO2 interface was performed on the IGZO TFT on p-Silicon substrate with thermally grown SiO2 as dielectric. The subgap density-of-state model was used for the simulation, which includes conduction band-tail trap states and donor-like state in the subgap. The result shows that the de-trapping and donor-state ionization determine the interface trapped charge density at various gate biases. Simulation of IGZO TFT with FIB defined channel on the same substrate was also applied. The drain and source were connected intentionally during metal deposition and separated by FIB milling. Based on the simulation, the Ga ions in SiO2 introduced by the ion beam was drifted by gate bias and affects the saturation drain current. Both side channel and direct channel transparent IGZO TFTs were fabricated on the glass substrate with coated ITO. Higher ion energy (30 keV) was used to etch through the substrate between drain and source and form side channels at the corner of milled trench. Lower ion energy (16 keV) was applied to stop the milling inside IGZO thin film and direct channel between drain and source was created. Annealing after FIB milling removed the residual Ga ions and the devices show switch feature. Direct channel shows higher saturation drain current (~10-6 A) compared with side channel (~10-7 A) because

  5. Homo-junction ferroelectric field-effect-transistor memory device using solution-processed lithium-doped zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Bhansali, Unnat. S.; Alshareef, H. N.

    2012-06-01

    High performance homo-junction field-effect transistor memory devices were prepared using solution processed transparent lithium-doped zinc oxide thin films for both the ferroelectric and semiconducting active layers. A highest field-effect mobility of 8.7 cm2/Vs was obtained along with an Ion/Ioff ratio of 106. The ferroelectric thin film transistors showed a low sub-threshold swing value of 0.19 V/dec and a significantly reduced device operating voltage (±4 V) compared to the reported hetero-junction ferroelectric transistors, which is very promising for low-power non-volatile memory applications.

  6. High-Quality Solution-Processed Silicon Oxide Gate Dielectric Applied on Indium Oxide Based Thin-Film Transistors.

    PubMed

    Jaehnike, Felix; Pham, Duy Vu; Anselmann, Ralf; Bock, Claudia; Kunze, Ulrich

    2015-07-01

    A silicon oxide gate dielectric was synthesized by a facile sol-gel reaction and applied to solution-processed indium oxide based thin-film transistors (TFTs). The SiOx sol-gel was spin-coated on highly doped silicon substrates and converted to a dense dielectric film with a smooth surface at a maximum processing temperature of T = 350 °C. The synthesis was systematically improved, so that the solution-processed silicon oxide finally achieved comparable break downfield strength (7 MV/cm) and leakage current densities (<10 nA/cm(2) at 1 MV/cm) to thermally grown silicon dioxide (SiO2). The good quality of the dielectric layer was successfully proven in bottom-gate, bottom-contact metal oxide TFTs and compared to reference TFTs with thermally grown SiO2. Both transistor types have field-effect mobility values as high as 28 cm(2)/(Vs) with an on/off current ratio of 10(8), subthreshold swings of 0.30 and 0.37 V/dec, respectively, and a threshold voltage close to zero. The good device performance could be attributed to the smooth dielectric/semiconductor interface and low interface trap density. Thus, the sol-gel-derived SiO2 is a promising candidate for a high-quality dielectric layer on many substrates and high-performance large-area applications.

  7. Development of Liquid Crystal Display Panel Integrated with Drivers Using Amorphous In-Ga-Zn-Oxide Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Takeshi Osada,; Kengo Akimoto,; Takehisa Sato,; Masataka Ikeda,; Masashi Tsubuku,; Junichiro Sakata,; Jun Koyama,; Tadashi Serikawa,; Shunpei Yamazaki,

    2010-03-01

    We designed, prototyped, and evaluated a liquid crystal panel integrated with a gate driver and a source driver using amorphous In-Ga-Zn-oxide thin film transistors (TFTs). Using bottom-gate bottom-contact (BGBC) thin film transistors, superior characteristics could be obtained. We obtained TFT characteristics with little variation even when the thickness of the gate insulator (GI) film was reduced owing to etching of source/drain (S/D) wiring, which is a typical process for the BGBC TFT. Moreover, a favorable ON-state current was obtained even when an In-Ga-Zn-oxide layer was formed over the S/D electrode. Since the upper portion of the In-Ga-Zn-oxide layer is not etched, the BGBC structure is predicted to be effective in thinning the In-Ga-Zn-oxide layer in the future. Upon evaluation, we found that the prototyped liquid crystal panel integrated with the gate and source drivers using the TFTs with improved characteristics had stable drive.

  8. Effects of solution temperature on solution-processed high-performance metal oxide thin-film transistors.

    PubMed

    Lee, Keun Ho; Park, Jee Ho; Yoo, Young Bum; Jang, Woo Soon; Oh, Jin Young; Chae, Soo Sang; Moon, Kyeong Ju; Myoung, Jae Min; Baik, Hong Koo

    2013-04-10

    Herein, we report a novel and easy strategy for fabricating solution-processed metal oxide thin-film transistors by controlling the dielectric constant of H2O through manipulation of the metal precursor solution temperature. As a result, indium zinc oxide (IZO) thin-film transistors (TFTs) fabricated from IZO solution at 4 °C can be operated after annealing at low temperatures (∼250 °C). In contrast, IZO TFTs fabricated from IZO solutions at 25 and 60 °C must be annealed at 275 and 300 °C, respectively. We also found that IZO TFTs fabricated from the IZO precursor solution at 4 °C had the highest mobility of 12.65 cm2/(V s), whereas the IZO TFTs fabricated from IZO precursor solutions at 25 and 60 °C had field-effect mobility of 5.39 and 4.51 cm2/(V s), respectively, after annealing at 350 °C. When the IZO precursor solution is at 4 °C, metal cations such as indium (In3+) and zinc ions (Zn2+) can be fully surrounded by H2O molecules, because of the higher dielectric constant of H2O at lower temperatures. These chemical complexes in the IZO precursor solution at 4 °C are advantageous for thermal hydrolysis and condensation reactions yielding a metal oxide lattice, because of their high potential energies. The IZO TFTs fabricated from the IZO precursor solution at 4 °C had the highest mobility because of the formation of many metal-oxygen-metal (M-O-M) bonds under these conditions. In these bonds, the ns-orbitals of the metal cations overlap each other and form electron conduction pathways. Thus, the formation of a high proportion of M-O-M bonds in the IZO thin films is advantageous for electron conduction, because oxide lattices allow electrons to travel easily through the IZO.

  9. Effect of mesa structure formation on the electrical properties of zinc oxide thin film transistors.

    PubMed

    Singh, Shaivalini; Chakrabarti, P

    2014-05-01

    ZnO based bottom-gate thin film transistor (TFT) with SiO2 as insulating layer has been fabricated with two different structures. The effect of formation of mesa structure on the electrical characteristics of the TFTs has been studied. The formation of mesa structure of ZnO channel region can definitely result in better control over channel region and enhance value of channel mobility of ZnO TFT. As a result, by fabricating a mesa structured TFT, a better value of mobility and on-state current are achieved at low voltages. A typical saturation current of 1.85 x 10(-7) A under a gate bias of 50 V is obtained for non mesa structure TFT while for mesa structured TFT saturation current of 5 x 10(-5) A can be obtained at comparatively very low gate bias of 6.4 V.

  10. Analysis of amorphous indium-gallium-zinc-oxide thin-film transistor contact metal using Pilling-Bedworth theory and a variable capacitance diode model

    NASA Astrophysics Data System (ADS)

    Kiani, Ahmed; Hasko, David G.; Milne, William I.; Flewitt, Andrew J.

    2013-04-01

    It is widely reported that threshold voltage and on-state current of amorphous indium-gallium-zinc-oxide bottom-gate thin-film transistors are strongly influenced by the choice of source/drain contact metal. Electrical characterisation of thin-film transistors indicates that the electrical properties depend on the type and thickness of the metal(s) used. Electron transport mechanisms and possibilities for control of the defect state density are discussed. Pilling-Bedworth theory for metal oxidation explains the interaction between contact metal and amorphous indium-gallium-zinc-oxide, which leads to significant trap formation. Charge trapping within these states leads to variable capacitance diode-like behavior and is shown to explain the thin-film transistor operation.

  11. High-performance calcium-doped zinc oxide thin-film transistors fabricated on glass at low temperature

    NASA Astrophysics Data System (ADS)

    Yu, Wen; Han, Dedong; Cui, Guodong; Cong, Yingying; Dong, Junchen; Zhang, Xiaomi; Zhang, Xing; Wang, Yi; Zhang, Shengdong

    2016-04-01

    High-performance calcium-doped zinc oxide thin-film transistors (Ca-ZnO TFTs) have been successfully fabricated on transparent glass at low temperature by RF magnetron sputtering. To study the effects of calcium doping on zinc oxide thin-film transistors, the characteristics of Ca-ZnO TFTs and ZnO TFTs are compared and analyzed in detail from different perspectives, including electrical performance, surface morphology, and crystal structure of the material. The results suggest that the incorporation of calcium element can decrease the root-mean-square roughness of the material, suppress growth of a columnar structure, and improve device performance. The TFTs with Ca-ZnO active layer exhibit excellent electrical properties with the saturation mobility (μsat) of 147.1 cm2 V-1 s-1, threshold voltage (V t) of 2.91 V, subthreshold slope (SS) of 0.271 V/dec, and I on/I off ratio of 2.34 × 108. In addition, we also study the uniformity of the devices. The experimental results show that the Ca-ZnO TFTs possess good uniformity, which is important for large-area application.

  12. Metal-oxide thin-film transistor-based pH sensor with a silver nanowire top gate electrode

    NASA Astrophysics Data System (ADS)

    Yoo, Tae-Hee; Sang, Byoung-In; Wang, Byung-Yong; Lim, Dae-Soon; Kang, Hyun Wook; Choi, Won Kook; Lee, Young Tack; Oh, Young-Jei; Hwang, Do Kyung

    2016-04-01

    Amorphous InGaZnO (IGZO) metal-oxide-semiconductor thin-film transistors (TFTs) are one of the most promising technologies to replace amorphous and polycrystalline Si TFTs. Recently, TFT-based sensing platforms have been gaining significant interests. Here, we report on IGZO transistor-based pH sensors in aqueous medium. In order to achieve stable operation in aqueous environment and enhance sensitivity, we used Al2O3 grown by using atomic layer deposition (ALD) and a porous Ag nanowire (NW) mesh as the top gate dielectric and electrode layers, respectively. Such devices with a Ag NW mesh at the top gate electrode rapidly respond to the pH of solutions by shifting the turn-on voltage. Furthermore, the output voltage signals induced by the voltage shifts can be directly extracted by implantation of a resistive load inverter.

  13. Artificial semiconductor/insulator superlattice channel structure for high-performance oxide thin-film transistors

    PubMed Central

    Ahn, Cheol Hyoun; Senthil, Karuppanan; Cho, Hyung Koun; Lee, Sang Yeol

    2013-01-01

    High-performance thin-film transistors (TFTs) are the fundamental building blocks in realizing the potential applications of the next-generation displays. Atomically controlled superlattice structures are expected to induce advanced electric and optical performance due to two-dimensional electron gas system, resulting in high-electron mobility transistors. Here, we have utilized a semiconductor/insulator superlattice channel structure comprising of ZnO/Al2O3 layers to realize high-performance TFTs. The TFT with ZnO (5 nm)/Al2O3 (3.6 nm) superlattice channel structure exhibited high field effect mobility of 27.8 cm2/Vs, and threshold voltage shift of only < 0.5 V under positive/negative gate bias stress test during 2 hours. These properties showed extremely improved TFT performance, compared to ZnO TFTs. The enhanced field effect mobility and stability obtained for the superlattice TFT devices were explained on the basis of layer-by-layer growth mode, improved crystalline nature of the channel layers, and passivation effect of Al2O3 layers. PMID:24061388

  14. Physical/chemical properties of tin oxide thin film transistors prepared using plasma-enhanced atomic layer deposition

    SciTech Connect

    Lee, Byung Kook; Jung, Eunae; Kim, Seok Hwan; Moon, Dae Chul; Lee, Sun Sook; Park, Bo Keun; Hwang, Jin Ha; Chung, Taek-Mo; Kim, Chang Gyoun; An, Ki-Seok

    2012-10-15

    Thin film transistors (TFTs) with tin oxide films as the channel layer were fabricated by means of plasma enhanced atomic layer deposition (PE-ALD). The as-deposited tin oxide films show n-type conductivity and a nano-crystalline structure of SnO{sub 2}. Notwithstanding the relatively low deposition temperatures of 70, 100, and 130 °C, the bottom gate tin oxide TFTs show an on/off drain current ratio of 10{sup 6} while the device mobility values were increased from 2.31 cm{sup 2}/V s to 6.24 cm{sup 2}/V s upon increasing the deposition temperature of the tin oxide films.

  15. Toward Active-Matrix Lab-On-A-Chip: Programmable Electrofluidic control Enaled by Arrayed Oxide Thin Film Transistors

    SciTech Connect

    Noh, Joo Hyon; Noh, Jiyong; Kreit, Eric; Heikenfeld, Jason; Rack, Philip D

    2012-01-01

    Agile micro- and nano-fluidic control is critical to numerous life science and chemical science synthesis as well as kinetic and thermodynamic studies. To this end, we have demonstrated the use of thin film transistor arrays as an active matrix addressing method to control an electrofluidic array. Because the active matrix method minimizes the number of control lines necessary (m + n lines for the m x n element array), the active matrix addressing method integrated with an electrofluidic platform can be a significant breakthrough for complex electrofluidic arrays (increased size or resolution) with enhanced function, agility and programmability. An amorphous indium gallium zinc oxide (a-IGZO) semiconductor active layer is used because of its high mobility of 1-15 cm{sup 2} V{sup -1} s{sup -1}, low-temperature processing and transparency for potential spectroscopy and imaging. Several electrofluidic functionalities are demonstrated using a simple 2 x 5 electrode array connected to a 2 x 5 IGZO thin film transistor array with the semiconductor channel width of 50 {mu}m and mobility of 6.3 cm{sup 2} V{sup -1} s{sup -1}. Additionally, using the TFT device characteristics, active matrix addressing schemes are discussed as the geometry of the electrode array can be tailored to act as a storage capacitor element. Finally, requisite material and device parameters are discussed in context with a VGA scale active matrix addressed electrofluidic platform.

  16. High stability mechanisms of quinary indium gallium zinc aluminum oxide multicomponent oxide films and thin film transistors

    SciTech Connect

    Lee, Ching-Ting Lin, Yung-Hao; Lin, Jhong-Ham

    2015-01-28

    Quinary indium gallium zinc aluminum oxide (IGZAO) multicomponent oxide films were deposited using indium gallium zinc oxide (IGZO) target and Al target by radio frequency magnetron cosputtering system. An extra carrier transport pathway could be provided by the 3 s orbitals of Al cations to improve the electrical properties of the IGZO films, and the oxygen instability could be stabilized by the strong Al-O bonds in the IGZAO films. The electron concentration change and the electron mobility change of the IGZAO films for aging time of 10 days under an air environment at 40 °C and 75% humidity were 20.1% and 2.4%, respectively. The experimental results verified the performance stability of the IGZAO films. Compared with the thin film transistors (TFTs) using conventional IGZO channel layer, in conducting the stability of TFTs with IGZAO channel layer, the transconductance g{sub m} change, threshold voltage V{sub T} change, and the subthreshold swing S value change under the same aging condition were improved to 7.9%, 10.5%, and 14.8%, respectively. Furthermore, the stable performances of the IGZAO TFTs were also verified by the positive gate bias stress. In this research, the quinary IGZAO multicomponent oxide films and that applied in TFTs were the first studied in the literature.

  17. Wrinkle-free graphene electrodes in zinc tin oxide thin-film transistors for large area applications

    NASA Astrophysics Data System (ADS)

    Lee, Se-Hee; Kim, Jae-Hee; Park, Byeong-Ju; Park, Jozeph; Kim, Hyun-Suk; Yoon, Soon-Gil

    2017-02-01

    Wrinkle-free graphene was used to form the source-drain electrodes in thin film transistors based on a zinc tin oxide (ZTO) semiconductor. A 10 nm thick titanium adhesion layer was applied prior to transferring a conductive graphene film on top of it by chemical detachment. The formation of an interlayer oxide between titanium and graphene allows the achievement of uniform surface roughness over the entire substrate area. The resulting devices were thermally treated in ambient air, and a substantial decrease in field effect mobility is observed with increasing annealing temperature. The increase in electrical resistivity of the graphene film at higher annealing temperatures may have some influence, however the growth of the oxide interlayer at the ZTO/Ti boundary is suggested to be most influential, thereby inducing relatively high contact resistance.

  18. Wrinkle-free graphene electrodes in zinc tin oxide thin-film transistors for large area applications.

    PubMed

    Lee, Se-Hee; Kim, Jae-Hee; Park, Byeong-Ju; Park, Jozeph; Kim, Hyun-Suk; Yoon, Soon-Gil

    2017-02-17

    Wrinkle-free graphene was used to form the source-drain electrodes in thin film transistors based on a zinc tin oxide (ZTO) semiconductor. A 10 nm thick titanium adhesion layer was applied prior to transferring a conductive graphene film on top of it by chemical detachment. The formation of an interlayer oxide between titanium and graphene allows the achievement of uniform surface roughness over the entire substrate area. The resulting devices were thermally treated in ambient air, and a substantial decrease in field effect mobility is observed with increasing annealing temperature. The increase in electrical resistivity of the graphene film at higher annealing temperatures may have some influence, however the growth of the oxide interlayer at the ZTO/Ti boundary is suggested to be most influential, thereby inducing relatively high contact resistance.

  19. A mixed solution-processed gate dielectric for zinc-tin oxide thin-film transistor and its MIS capacitance

    PubMed Central

    Kim, Hunho; Kwack, Young-Jin; Yun, Eui-Jung; Choi, Woon-Seop

    2016-01-01

    Solution-processed gate dielectrics were fabricated with the combined ZrO2 and Al2O3 (ZAO) in the form of mixed and stacked types for oxide thin film transistors (TFTs). ZAO thin films prepared with double coatings for solid gate dielectrics were characterized by analytical tools. For the first time, the capacitance of the oxide semiconductor was extracted from the capacitance-voltage properties of the zinc-tin oxide (ZTO) TFTs with the combined ZAO dielectrics by using the proposed metal-insulator-semiconductor (MIS) structure model. The capacitance evolution of the semiconductor from the TFT model structure described well the threshold voltage shift observed in the ZTO TFT with the ZAO (1:2) gate dielectric. The electrical properties of the ZTO TFT with a ZAO (1:2) gate dielectric showed low voltage driving with a field effect mobility of 37.01 cm2/Vs, a threshold voltage of 2.00 V, an on-to-off current ratio of 1.46 × 105, and a subthreshold slope of 0.10 V/dec. PMID:27641430

  20. Electric Field-aided Selective Activation for Indium-Gallium-Zinc-Oxide Thin Film Transistors

    PubMed Central

    Lee, Heesoo; Chang, Ki Soo; Tak, Young Jun; Jung, Tae Soo; Park, Jeong Woo; Kim, Won-Gi; Chung, Jusung; Jeong, Chan Bae; Kim, Hyun Jae

    2016-01-01

    A new technique is proposed for the activation of low temperature amorphous InGaZnO thin film transistor (a-IGZO TFT) backplanes through application of a bias voltage and annealing at 130 °C simultaneously. In this ‘electrical activation’, the effects of annealing under bias are selectively focused in the channel region. Therefore, electrical activation can be an effective method for lower backplane processing temperatures from 280 °C to 130 °C. Devices fabricated with this method exhibit equivalent electrical properties to those of conventionally-fabricated samples. These results are analyzed electrically and thermodynamically using infrared microthermography. Various bias voltages are applied to the gate, source, and drain electrodes while samples are annealed at 130 °C for 1 hour. Without conventional high temperature annealing or electrical activation, current-voltage curves do not show transfer characteristics. However, electrically activated a-IGZO TFTs show superior electrical characteristics, comparable to the reference TFTs annealed at 280 °C for 1 hour. This effect is a result of the lower activation energy, and efficient transfer of electrical and thermal energy to a-IGZO TFTs. With this approach, superior low-temperature a-IGZO TFTs are fabricated successfully. PMID:27725695

  1. Electric Field-aided Selective Activation for Indium-Gallium-Zinc-Oxide Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Lee, Heesoo; Chang, Ki Soo; Tak, Young Jun; Jung, Tae Soo; Park, Jeong Woo; Kim, Won-Gi; Chung, Jusung; Jeong, Chan Bae; Kim, Hyun Jae

    2016-10-01

    A new technique is proposed for the activation of low temperature amorphous InGaZnO thin film transistor (a-IGZO TFT) backplanes through application of a bias voltage and annealing at 130 °C simultaneously. In this ‘electrical activation’, the effects of annealing under bias are selectively focused in the channel region. Therefore, electrical activation can be an effective method for lower backplane processing temperatures from 280 °C to 130 °C. Devices fabricated with this method exhibit equivalent electrical properties to those of conventionally-fabricated samples. These results are analyzed electrically and thermodynamically using infrared microthermography. Various bias voltages are applied to the gate, source, and drain electrodes while samples are annealed at 130 °C for 1 hour. Without conventional high temperature annealing or electrical activation, current-voltage curves do not show transfer characteristics. However, electrically activated a-IGZO TFTs show superior electrical characteristics, comparable to the reference TFTs annealed at 280 °C for 1 hour. This effect is a result of the lower activation energy, and efficient transfer of electrical and thermal energy to a-IGZO TFTs. With this approach, superior low-temperature a-IGZO TFTs are fabricated successfully.

  2. Solution processed lanthanum aluminate gate dielectrics for use in metal oxide-based thin film transistors

    SciTech Connect

    Esro, M.; Adamopoulos, G.; Mazzocco, R.; Kolosov, O.; Krier, A.; Vourlias, G.; Milne, W. I.

    2015-05-18

    We report on ZnO-based thin-film transistors (TFTs) employing lanthanum aluminate gate dielectrics (La{sub x}Al{sub 1−x}O{sub y}) grown by spray pyrolysis in ambient atmosphere at 440 °C. The structural, electronic, optical, morphological, and electrical properties of the La{sub x}Al{sub 1−x}O{sub y} films and devices as a function of the lanthanum to aluminium atomic ratio were investigated using a wide range of characterization techniques such as UV-visible absorption spectroscopy, impedance spectroscopy, spectroscopic ellipsometry, atomic force microscopy, x-ray diffraction, and field-effect measurements. As-deposited LaAlO{sub y} dielectrics exhibit a wide band gap (∼6.18 eV), high dielectric constant (k ∼ 16), low roughness (∼1.9 nm), and very low leakage currents (<3 nA/cm{sup 2}). TFTs employing solution processed LaAlO{sub y} gate dielectrics and ZnO semiconducting channels exhibit excellent electron transport characteristics with hysteresis-free operation, low operation voltages (∼10 V), high on/off current modulation ratio of >10{sup 6}, subthreshold swing of ∼650 mV dec{sup −1}, and electron mobility of ∼12 cm{sup 2} V{sup −1} s{sup −1}.

  3. High-density carrier-accumulated and electrically stable oxide thin-film transistors from ion-gel gate dielectric

    NASA Astrophysics Data System (ADS)

    Fujii, Mami N.; Ishikawa, Yasuaki; Miwa, Kazumoto; Okada, Hiromi; Uraoka, Yukiharu; Ono, Shimpei

    2015-12-01

    The use of indium-gallium-zinc oxide (IGZO) has paved the way for high-resolution uniform displays or integrated circuits with transparent and flexible devices. However, achieving highly reliable devices that use IGZO for low-temperature processes remains a technological challenge. We propose the use of IGZO thin-film transistors (TFTs) with an ionic-liquid gate dielectric in order to achieve high-density carrier-accumulated IGZO TFTs with high reliability, and we discuss a distinctive mechanism for the degradation of this organic-inorganic hybrid device under long-term electrical stress. Our results demonstrated that an ionic liquid or gel gate dielectric provides highly reliable and low-voltage operation with IGZO TFTs. Furthermore, high-density carrier accumulation helps improve the TFT characteristics and reliability, and it is highly relevant to the electronic phase control of oxide materials and the degradation mechanism for organic-inorganic hybrid devices.

  4. High-density carrier-accumulated and electrically stable oxide thin-film transistors from ion-gel gate dielectric

    PubMed Central

    Fujii, Mami N.; Ishikawa, Yasuaki; Miwa, Kazumoto; Okada, Hiromi; Uraoka, Yukiharu; Ono, Shimpei

    2015-01-01

    The use of indium–gallium–zinc oxide (IGZO) has paved the way for high-resolution uniform displays or integrated circuits with transparent and flexible devices. However, achieving highly reliable devices that use IGZO for low-temperature processes remains a technological challenge. We propose the use of IGZO thin-film transistors (TFTs) with an ionic-liquid gate dielectric in order to achieve high-density carrier-accumulated IGZO TFTs with high reliability, and we discuss a distinctive mechanism for the degradation of this organic–inorganic hybrid device under long-term electrical stress. Our results demonstrated that an ionic liquid or gel gate dielectric provides highly reliable and low-voltage operation with IGZO TFTs. Furthermore, high-density carrier accumulation helps improve the TFT characteristics and reliability, and it is highly relevant to the electronic phase control of oxide materials and the degradation mechanism for organic–inorganic hybrid devices. PMID:26677773

  5. Low-temperature metal-oxide thin-film transistors formed by directly photopatternable and combustible solution synthesis.

    PubMed

    Rim, You Seung; Lim, Hyun Soo; Kim, Hyun Jae

    2013-05-01

    We investigated the formation of ultraviolet (UV)-assisted directly patternable solution-processed oxide semiconductor films and successfully fabricated thin-film transistors (TFTs) based on these films. An InGaZnO (IGZO) solution that was modified chemically with benzoylacetone (BzAc), whose chelate rings decomposed via a π-π* transition as result of UV irradiation, was used for the direct patterning. A TFT was fabricated using the directly patterned IGZO film, and it had better electrical characteristics than those of conventional photoresist (PR)-patterned TFTs. In addition, the nitric acid (HNO3) and acetylacetone (AcAc) modified In2O3 (NAc-In2O3) solution exhibited both strong UV absorption and high exothermic reaction. This method not only resulted in the formation of a low-energy path because of the combustion of the chemically modified metal-oxide solution but also allowed for photoreaction-induced direct patterning at low temperatures.

  6. Photoresist-Free Fully Self-Patterned Transparent Amorphous Oxide Thin-Film Transistors Obtained by Sol-Gel Process

    NASA Astrophysics Data System (ADS)

    Lim, Hyun Soo; Rim, You Seung; Kim, Hyun Jae

    2014-04-01

    We demonstrated self-patterned solution-processed amorphous oxide semiconductor thin-film transistors (TFTs) using photosensitive sol-gels. The photosensitive sol-gels were synthesized by adding β-diketone compounds, i.e., benzoylacetone and acetylacetone, to sol-gels. The chemically modified photosensitive sol-gels showed a high optical absorption at specific wavelengths due to the formation of metal chelate bonds. Photoreactions of the modified solutions enabled a photoresist-free process. Moreover, Zn-Sn-O with a high Sn ratio, which is hard to wet-etch using conventional photolithography due to its chemical durability, was easily patterned via the self-patterning process. Finally, we fabricated a solution-processed oxide TFT that included fully self-patterned electrodes and an active layer.

  7. Low-temperature spray-deposited indium oxide for flexible thin-film transistors and integrated circuits

    SciTech Connect

    Petti, Luisa; Faber, Hendrik; Anthopoulos, Thomas D.; Münzenrieder, Niko; Cantarella, Giuseppe; Tröster, Gerhard; Patsalas, Panos A.

    2015-03-02

    Indium oxide (In{sub 2}O{sub 3}) films were deposited by ultrasonic spray pyrolysis in ambient air and incorporated into bottom-gate coplanar and staggered thin-film transistors. As-fabricated devices exhibited electron-transporting characteristics with mobility values of 1 cm{sup 2}V{sup −1}s{sup −1} and 16 cm{sup 2}V{sup −1}s{sup −1} for coplanar and staggered architectures, respectively. Integration of In{sub 2}O{sub 3} transistors enabled realization of unipolar inverters with high gain (5.3 V/V) and low-voltage operation. The low temperature deposition (≤250 °C) of In{sub 2}O{sub 3} also allowed transistor fabrication on free-standing 50 μm-thick polyimide foils. The resulting flexible In{sub 2}O{sub 3} transistors exhibit good characteristics and remain fully functional even when bent to tensile radii of 4 mm.

  8. Multifunctional Organic-Semiconductor Interfacial Layers for Solution-Processed Oxide-Semiconductor Thin-Film Transistor.

    PubMed

    Kwon, Guhyun; Kim, Keetae; Choi, Byung Doo; Roh, Jeongkyun; Lee, Changhee; Noh, Yong-Young; Seo, SungYong; Kim, Myung-Gil; Kim, Choongik

    2017-06-01

    The stabilization and control of the electrical properties in solution-processed amorphous-oxide semiconductors (AOSs) is crucial for the realization of cost-effective, high-performance, large-area electronics. In particular, impurity diffusion, electrical instability, and the lack of a general substitutional doping strategy for the active layer hinder the industrial implementation of copper electrodes and the fine tuning of the electrical parameters of AOS-based thin-film transistors (TFTs). In this study, the authors employ a multifunctional organic-semiconductor (OSC) interlayer as a solution-processed thin-film passivation layer and a charge-transfer dopant. As an electrically active impurity blocking layer, the OSC interlayer enhances the electrical stability of AOS TFTs by suppressing the adsorption of environmental gas species and copper-ion diffusion. Moreover, charge transfer between the organic interlayer and the AOS allows the fine tuning of the electrical properties and the passivation of the electrical defects in the AOS TFTs. The development of a multifunctional solution-processed organic interlayer enables the production of low-cost, high-performance oxide semiconductor-based circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Strong Influence of Humidity on Low-Temperature Thin-Film Fabrication via Metal Aqua Complex for High Performance Oxide Semiconductor Thin-Film Transistors.

    PubMed

    Lim, Keon-Hee; Huh, Jae-Eun; Lee, Jinwon; Cho, Nam-Kwang; Park, Jun-Woo; Nam, Bu-Il; Lee, Eungkyu; Kim, Youn Sang

    2017-01-11

    Oxide semiconductors thin film transistors (OS TFTs) with good transparency and electrical performance have great potential for future display technology. In particular, solution-processed OS TFTs have been attracted much attention due to many advantages such as continuous, large scale, and low cost processability. Recently, OS TFTs fabricated with a metal aqua complex have been focused because they have low temperature processability for deposition on flexible substrate as well as high field-effect mobility for application of advanced display. However, despite some remarkable results, important factors to optimize their electrical performance with reproducibility and uniformity have not yet been achieved. Here, we newly introduce the strong effects of humidity to enhance the electrical performance of OS TFTs fabricated with the metal aqua complex. Through humidity control during the spin-coating process and annealing process, we successfully demonstrate solution-processed InOx/SiO2 TFTs with a good electrical uniformity of ∼5% standard deviation, showing high average field-effect mobility of 2.76 cm(2)V(-1)s(-1) and 15.28 cm(2)V(-1)s(-1) fabricated at 200 and 250 °C, respectively. Also, on the basis of the systematic analyses, we demonstrate the mechanism for the change in electrical properties of InOx TFTs depending on the humidity control. Finally, on the basis of the mechanism, we extended the humidity control to the fabrication of the AlOx insulator. Subsequently, we successfully achieved humidity-controlled InOx/AlOx TFTs fabricated at 200 °C showing high average field-effect mobility of 9.5 cm(2)V(-1)s(-1).

  10. Nanocomposites of polyimide and mixed oxide nanoparticles for high performance nanohybrid gate dielectrics in flexible thin film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Ju Hyun; Hwang, Byeong-Ung; Kim, Do-Il; Kim, Jin Soo; Seol, Young Gug; Kim, Tae Woong; Lee, Nae-Eung

    2017-05-01

    Organic gate dielectrics in thin film transistors (TFTs) for flexible display have advantages of high flexibility yet have the disadvantage of low dielectric constant (low- k). To supplement low- k characteristics of organic gate dielectrics, an organic/inorganic nanocomposite insulator loaded with high- k inorganic oxide nanoparticles (NPs) has been investigated but high loading of high- k NPs in polymer matrix is essential. Herein, compositing of over-coated polyimide (PI) on self-assembled (SA) layer of mixed HfO2 and ZrO2 NPs as inorganic fillers was used to make dielectric constant higher and leakage characteristics lower. A flexible TFT with lower the threshold voltage and high current on/off ratio could be fabricated by using the hybrid gate dielectric structure of the nanocomposite with SA layer of mixed NPs on ultrathin atomic-layer deposited Al2O3. [Figure not available: see fulltext.

  11. A compact model and direct parameters extraction techniques For amorphous gallium-indium-zinc-oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Moldovan, Oana; Castro-Carranza, Alejandra; Cerdeira, Antonio; Estrada, Magali; Barquinha, Pedro; Martins, Rodrigo; Fortunato, Elvira; Miljakovic, Slobodan; Iñiguez, Benjamin

    2016-12-01

    An advanced compact and analytical drain current model for the amorphous gallium indium zinc oxide (GIZO) thin film transistors (TFTs) is proposed. Its output saturation behavior is improved by introducing a new asymptotic function. All model parameters were extracted using an adapted version of the Universal Method and Extraction Procedure (UMEM) applied for the first time for GIZO devices in a simple and direct form. We demonstrate the correct behavior of the model for negative VDS, a necessity for a complete compact model. In this way we prove the symmetry of source and drain electrodes and extend the range of applications to both signs of VDS. The model, in Verilog-A code, is implemented in Electronic Design Automation (EDA) tools, such as Smart Spice, and compared with measurements of TFTs. It describes accurately the experimental characteristics in the whole range of GIZO TFTs operation, making the model suitable for the design of circuits using these types of devices.

  12. Top-gate zinc tin oxide thin-film transistors with high bias and environmental stress stability

    SciTech Connect

    Fakhri, M.; Theisen, M.; Behrendt, A.; Görrn, P.; Riedl, T.

    2014-06-23

    Top gated metal-oxide thin-film transistors (TFTs) provide two benefits compared to their conventional bottom-gate counterparts: (i) The gate dielectric may concomitantly serve as encapsulation layer for the TFT channel. (ii) Damage of the dielectric due to high-energetic particles during channel deposition can be avoided. In our work, the top-gate dielectric is prepared by ozone based atomic layer deposition at low temperatures. For ultra-low gas permeation rates, we introduce nano-laminates of Al{sub 2}O{sub 3}/ZrO{sub 2} as dielectrics. The resulting TFTs show a superior environmental stability even at elevated temperatures. Their outstanding stability vs. bias stress is benchmarked against bottom-gate devices with encapsulation.

  13. Effect of UV-light illumination on oxide-based electric-double-layer thin-film transistors

    NASA Astrophysics Data System (ADS)

    Zhou, Jumei; Hu, Yunping

    2017-01-01

    Indium-tin-oxide (ITO)-based thin-film transistors (TFTs) were fabricated using porous SiO2 deposited by plasma-enhanced chemical vapor deposition and Al2O3 deposited by atomic layer deposition as dielectrics. The results showed that the porous SiO2 film exhibited a high electric-double-layer (EDL) capacitance. Devices gated by the EDL dielectric exhibited a high drain current on/off ratio of >106 and a low operation voltage of <2.0 V in the dark. When illuminated by 254 nm UV light, ITO-based EDL TFTs gated by a single SiO2 dielectric displayed weak photo-responses. However, devices gated by a stacked Al2O3/EDL dielectric displayed a high photo responsivity of more than 104 with a gate bias of -0.5 V (depletion state).

  14. Enhanced stability against bias-stress of metal-oxide thin film transistors deposited at elevated temperatures

    SciTech Connect

    Fakhri, M.; Goerrn, P.; Riedl, T.; Weimann, T.; Hinze, P.

    2011-09-19

    Transparent zinc-tin-oxide (ZTO) thin film transistors (TFTs) have been prepared by DC magnetron sputtering. Compared to reference devices with a channel deposited at room temperature and subsequently annealing at 400 deg. C, a substantially enhanced stability against bias stress is evidenced for devices with in-situ substrate heating during deposition (400 deg. C). A reduced density of sub-gap defect states in TFT channels prepared with in-situ substrate heating is found. Concomitantly, a reduced sensitivity to the adsorption of ambient gases is evidenced for the in-situ heated devices. This finding is of particular importance for an application as driver electronics for organic light emitting diode displays.

  15. Crystalline-like temperature dependence of the electrical characteristics in amorphous Indium-Gallium-Zinc-Oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Estrada, M.; Hernandez-Barrios, Y.; Cerdeira, A.; Ávila-Herrera, F.; Tinoco, J.; Moldovan, O.; Lime, F.; Iñiguez, B.

    2017-09-01

    A crystalline-like temperature dependence of the electrical characteristics of amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) thin film transistors (TFTs) is reported, in which the drain current reduces as the temperature is increased. This behavior appears for values of drain and gate voltages above which a change in the predominant conduction mechanism occurs. After studying the possible conduction mechanisms, it was determined that, for gate and drain voltages below these values, hopping is the predominant mechanism with the current increasing with temperature, while for values above, the predominant conduction mechanism becomes percolation in the conduction band or band conduction and IDS reduces as the temperature increases. It was determined that this behavior appears, when the effect of trapping is reduced, either by varying the density of states, their characteristic energy or both. Simulations were used to further confirm the causes of the observed behavior.

  16. Nanocomposites of polyimide and mixed oxide nanoparticles for high performance nanohybrid gate dielectrics in flexible thin film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Ju Hyun; Hwang, Byeong-Ung; Kim, Do-Il; Kim, Jin Soo; Seol, Young Gug; Kim, Tae Woong; Lee, Nae-Eung

    2017-01-01

    Organic gate dielectrics in thin film transistors (TFTs) for flexible display have advantages of high flexibility yet have the disadvantage of low dielectric constant (low-k). To supplement low-k characteristics of organic gate dielectrics, an organic/inorganic nanocomposite insulator loaded with high-k inorganic oxide nanoparticles (NPs) has been investigated but high loading of high-k NPs in polymer matrix is essential. Herein, compositing of over-coated polyimide (PI) on self-assembled (SA) layer of mixed HfO2 and ZrO2 NPs as inorganic fillers was used to make dielectric constant higher and leakage characteristics lower. A flexible TFT with lower the threshold voltage and high current on/off ratio could be fabricated by using the hybrid gate dielectric structure of the nanocomposite with SA layer of mixed NPs on ultrathin atomic-layer deposited Al2O3.

  17. Light-induced hysteresis and recovery behaviors in photochemically activated solution-processed metal-oxide thin-film transistors

    SciTech Connect

    Jo, Jeong-Wan; Park, Sung Kyu E-mail: skpark@cau.ac.kr; Kim, Yong-Hoon E-mail: skpark@cau.ac.kr

    2014-07-28

    In this report, photo-induced hysteresis, threshold voltage (V{sub T}) shift, and recovery behaviors in photochemically activated solution-processed indium-gallium-zinc oxide (IGZO) thin-film transistors (TFTs) are investigated. It was observed that a white light illumination caused negative V{sub T} shift along with creation of clockwise hysteresis in electrical characteristics which can be attributed to photo-generated doubly ionized oxygen vacancies at the semiconductor/gate dielectric interface. More importantly, the photochemically activated IGZO TFTs showed much reduced overall V{sub T} shift compared to thermally annealed TFTs. Reduced number of donor-like interface states creation under light illumination and more facile neutralization of ionized oxygen vacancies by electron capture under positive gate potential are claimed to be the origin of the less V{sub T} shift in photochemically activated TFTs.

  18. Defect generation in amorphous-indium-gallium-zinc-oxide thin-film transistors by positive bias stress at elevated temperature

    SciTech Connect

    Um, Jae Gwang; Mativenga, Mallory; Jang, Jin; Migliorato, Piero

    2014-04-07

    We report on the generation and characterization of a hump in the transfer characteristics of amorphous indium gallium zinc-oxide thin-film transistors by positive bias temperature stress. The hump depends strongly on the gate bias stress at 100 °C. Due to the hump, the positive shift of the transfer characteristic in deep depletion is always smaller that in accumulation. Since, the latter shift is twice the former, with very good correlation, we conclude that the effect is due to creation of a double acceptor, likely to be a cation vacancy. Our results indicate that these defects are located near the gate insulator/active layer interface, rather than in the bulk. Migration of donor defects from the interface towards the bulk may also occur under PBST at 100 °C.

  19. Metal-induced crystallization of amorphous zinc tin oxide semiconductors for high mobility thin-film transistors

    SciTech Connect

    Hwang, Ah Young; Ji, Hyuk; Kim, Sang Tae; Shin, Yeonwoo; Jeong, Jae Kyeong

    2016-04-11

    Transition tantalum induced crystallization of amorphous zinc tin oxide (a-ZTO) was observed at low temperature annealing of 300 °C. Thin-film transistors (TFTs) with an a-ZTO channel layer exhibited a reasonable field-effect mobility of 12.4 cm{sup 2}/V s, subthreshold swing (SS) of 0.39 V/decade, threshold voltage (V{sub TH}) of 1.5 V, and I{sub ON/OFF} ratio of ∼10{sup 7}. A significant improvement in the field-effect mobility (up to ∼33.5 cm{sup 2}/V s) was achieved for crystallized ZTO TFTs: this improvement was accomplished without compromising the SS, V{sub TH}, or I{sub ON/OFF} ratio due to the presence of a highly ordered microstructure.

  20. Recovery from ultraviolet-induced threshold voltage shift in indium gallium zinc oxide thin film transistors by positive gate bias

    SciTech Connect

    Liu, P.; Chen, T. P.; Li, X. D.; Wong, J. I.; Liu, Z.; Liu, Y.; Leong, K. C.

    2013-11-11

    The effect of short-duration ultraviolet (UV) exposure on the threshold voltage (V{sub th}) of amorphous indium gallium zinc oxide thin film transistors (TFTs) and its recovery characteristics were investigated. The V{sub th} exhibited a significant negative shift after UV exposure. The V{sub th} instability caused by UV illumination is attributed to the positive charge trapping in the dielectric layer and/or at the channel/dielectric interface. The illuminated devices showed a slow recovery in threshold voltage without external bias. However, an instant recovery can be achieved by the application of positive gate pulses, which is due to the elimination of the positive trapped charges as a result of the presence of a large amount of field-induced electrons in the interface region.

  1. Electrothermal Annealing (ETA) Method to Enhance the Electrical Performance of Amorphous-Oxide-Semiconductor (AOS) Thin-Film Transistors (TFTs).

    PubMed

    Kim, Choong-Ki; Kim, Eungtaek; Lee, Myung Keun; Park, Jun-Young; Seol, Myeong-Lok; Bae, Hagyoul; Bang, Tewook; Jeon, Seung-Bae; Jun, Sungwoo; Park, Sang-Hee K; Choi, Kyung Cheol; Choi, Yang-Kyu

    2016-09-14

    An electro-thermal annealing (ETA) method, which uses an electrical pulse of less than 100 ns, was developed to improve the electrical performance of array-level amorphous-oxide-semiconductor (AOS) thin-film transistors (TFTs). The practicality of the ETA method was experimentally demonstrated with transparent amorphous In-Ga-Zn-O (a-IGZO) TFTs. The overall electrical performance metrics were boosted by the proposed method: up to 205% for the trans-conductance (gm), 158% for the linear current (Ilinear), and 206% for the subthreshold swing (SS). The performance enhancement were interpreted by X-ray photoelectron microscopy (XPS), showing a reduction of oxygen vacancies in a-IGZO after the ETA. Furthermore, by virtue of the extremely short operation time (80 ns) of ETA, which neither provokes a delay of the mandatory TFTs operation such as addressing operation for the display refresh nor demands extra physical treatment, the semipermanent use of displays can be realized.

  2. A Sputtered Silicon Oxide Electrolyte for High-Performance Thin-Film Transistors.

    PubMed

    Ma, Xiaochen; Zhang, Jiawei; Cai, Wensi; Wang, Hanbin; Wilson, Joshua; Wang, Qingpu; Xin, Qian; Song, Aimin

    2017-04-11

    Low operating voltages have been long desired for thin-film transistors (TFTs). However, it is still challenging to realise 1-V operation by using conventional dielectrics due to their low gate capacitances and low breakdown voltages. Recently, electric double layers (EDLs) have been regarded as a promising candidate for low-power electronics due to their high capacitance. In this work, we present the first sputtered SiO2 solid-state electrolyte. In order to demonstrate EDL behaviour, a sputtered 200 nm-thick SiO2 electrolyte was incorporated into InGaZnO TFTs as the gate dielectric. The devices exhibited an operating voltage of 1 V, a threshold voltage of 0.06 V, a subthreshold swing of 83 mV dec(-1) and an on/off ratio higher than 10(5). The specific capacitance was 0.45 µF cm(-2) at 20 Hz, which is around 26 times higher than the value obtained from thermally oxidised SiO2 films with the same thickness. Analysis of the microstructure and mass density of the sputtered SiO2 films under different deposition conditions indicates that such high capacitance might be attributed to mobile protons donated by atmospheric water. The InGaZnO TFTs with the optimised SiO2 electrolyte also showed good air stability. This work provides a new pathway to the realisation of high-yield low-power electronics.

  3. Facile Routes To Improve Performance of Solution-Processed Amorphous Metal Oxide Thin Film Transistors by Water Vapor Annealing.

    PubMed

    Park, Won-Tae; Son, Inyoung; Park, Hyun-Woo; Chung, Kwun-Bum; Xu, Yong; Lee, Taegweon; Noh, Yong-Young

    2015-06-24

    Here, we report on a simple and high-rate oxidization method for producing solution-based compound mixtures of indium zinc oxide (IZO) and indium gallium zinc oxide (IGZO) metal-oxide semiconductors (MOS) for thin-film transistor (TFT) applications. One of the issues for solution-based MOS fabrication is how to sufficiently oxidize the precursor in order to achieve high performance. As the oxidation rate of solution processing is lower than vacuum-based deposition such as sputtering, devices using solution-processed MOS exhibit relatively poorer performance. Therefore, we propose a method to prepare the metal-oxide precursor upon exposure to saturated water vapor in a closed volume for increasing the oxidization efficiency without requiring additional oxidizing agent. We found that the hydroxide rate of the MOS film exposed to water vapor is lower than when unexposed (≤18%). Hence, we successfully fabricated oxide TFTs with high electron mobility (27.9 cm(2)/V·s) and established a rapid process (annealing at 400 °C for 5 min) that is much shorter than the conventional as-deposited long-duration annealing (at 400 °C for 1 h) whose corresponding mobility is even lower (19.2 cm(2)/V·s).

  4. High Stability Performance of Quinary Indium Gallium Zinc Aluminum Oxide Films and Thin-Film Transistors Deposited Using Vapor Cooling Condensation Method

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Hao; Lee, Ching-Ting

    2017-08-01

    High-quality indium gallium zinc aluminum oxide (IGZAO) thin films with various Al contents have been deposited using the vapor cooling condensation method. The electron mobility of the IGZAO films was improved by 89.4% on adding Al cation to IGZO film. The change in the electron concentration and mobility of the IGZAO films was 7.3% and 7.0%, respectively, when the temperature was changed from 300 K to 225 K. These experimental results confirm the high performance and stability of the IGZAO films. The performance stability mechanisms of IGZAO thin-film transistors (TFTs) were investigated in comparison with IGZO TFTs.

  5. Organic thin-film transistors.

    PubMed

    Klauk, Hagen

    2010-07-01

    Over the past 20 years, organic transistors have developed from a laboratory curiosity to a commercially viable technology. This critical review provides a short summary of several important aspects of organic transistors, including materials, microstructure, carrier transport, manufacturing, electrical properties, and performance limitations (200 references).

  6. Temperature-dependent bias-stress-induced electrical instability of amorphous indium-gallium-zinc-oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Qian, Hui-Min; Yu, Guang; Lu, Hai; Wu, Chen-Fei; Tang, Lan-Feng; Zhou, Dong; Ren, Fang-Fang; Zhang, Rong; Zheng, You-Liao; Huang, Xiao-Ming

    2015-07-01

    The time and temperature dependence of threshold voltage shift under positive-bias stress (PBS) and the following recovery process are investigated in amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors. It is found that the time dependence of threshold voltage shift can be well described by a stretched exponential equation in which the time constant τ is found to be temperature dependent. Based on Arrhenius plots, an average effective energy barrier Eτstress = 0.72 eV for the PBS process and an average effective energy barrier Eτrecovery = 0.58 eV for the recovery process are extracted respectively. A charge trapping/detrapping model is used to explain the threshold voltage shift in both the PBS and the recovery process. The influence of gate bias stress on transistor performance is one of the most critical issues for practical device development. Project supported by the National Basic Research Program of China (Grant Nos. 2011CB301900 and 2011CB922100) and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China

  7. 3.4-Inch Quarter High Definition Flexible Active Matrix Organic Light Emitting Display with Oxide Thin Film Transistor

    NASA Astrophysics Data System (ADS)

    Hatano, Kaoru; Chida, Akihiro; Okano, Tatsuya; Sugisawa, Nozomu; Inoue, Tatsunori; Seo, Satoshi; Suzuki, Kunihiko; Oikawa, Yoshiaki; Miyake, Hiroyuki; Koyama, Jun; Yamazaki, Shunpei; Eguchi, Shingo; Katayama, Masahiro; Sakakura, Masayuki

    2011-03-01

    In this paper, we report a 3.4-in. flexible active matrix organic light emitting display (AMOLED) display with remarkably high definition (quarter high definition: QHD) in which oxide thin film transistors (TFTs) are used. We have developed a transfer technology in which a TFT array formed on a glass substrate is separated from the substrate by physical force and then attached to a flexible plastic substrate. Unlike a normal process in which a TFT array is directly fabricated on a thin plastic substrate, our transfer technology permits a high integration of high performance TFTs, such as low-temperature polycrystalline silicon TFTs (LTPS TFTs) and oxide TFTs, on a plastic substrate, because a flat, rigid, and thermally-stable glass substrate can be used in the TFT fabrication process in our transfer technology. As a result, this technology realized an oxide TFT array for an AMOLED on a plastic substrate. Furthermore, in order to achieve a high-definition AMOLED, color filters were incorporated in the TFT array and a white organic light-emitting diode (OLED) was combined. One of the features of this device is that the whole body of the device can be bent freely because a source driver and a gate driver can be integrated on the substrate due to the high mobility of an oxide TFT. This feature means “true” flexibility.

  8. Determination of intrinsic mobility of a bilayer oxide thin-film transistor by pulsed I-V method.

    PubMed

    Woo, Hyunsuk; Kim, Taeho; Hur, Jihyun; Jeon, Sanghun

    2017-04-28

    Amorphous oxide semiconductor thin-film transistors (TFT) have been considered as outstanding switch devices owing to their high mobility. However, because of their amorphous channel material with a certain level of density of states, a fast transient charging effect in an oxide TFT occurs, leading to an underestimation of the mobility value. In this paper, the effects of the fast charging of high-performance bilayer oxide semiconductor TFTs on mobility are examined in order to determine an accurate mobility extraction method. In addition, an approach based on a pulse I D -V G measurement method is proposed to determine the intrinsic mobility value. Even with the short pulse I D -V G measurement, a certain level of fast transient charge trapping cannot be avoided as long as the charge-trap start time is shorter than the pulse rising time. Using a pulse-amplitude-dependent threshold voltage characterization method, we estimated a correction factor for the apparent mobility, thus allowing us to determine the intrinsic mobility.

  9. Recent progress in high performance and reliable n-type transition metal oxide-based thin film transistors

    NASA Astrophysics Data System (ADS)

    Kwon, Jang Yeon; Kyeong Jeong, Jae

    2015-02-01

    This review gives an overview of the recent progress in vacuum-based n-type transition metal oxide (TMO) thin film transistors (TFTs). Several excellent review papers regarding metal oxide TFTs in terms of fundamental electron structure, device process and reliability have been published. In particular, the required field-effect mobility of TMO TFTs has been increasing rapidly to meet the demands of the ultra-high-resolution, large panel size and three dimensional visual effects as a megatrend of flat panel displays, such as liquid crystal displays, organic light emitting diodes and flexible displays. In this regard, the effects of the TMO composition on the performance of the resulting oxide TFTs has been reviewed, and classified into binary, ternary and quaternary composition systems. In addition, the new strategic approaches including zinc oxynitride materials, double channel structures, and composite structures have been proposed recently, and were not covered in detail in previous review papers. Special attention is given to the advanced device architecture of TMO TFTs, such as back-channel-etch and self-aligned coplanar structure, which is a key technology because of their advantages including low cost fabrication, high driving speed and unwanted visual artifact-free high quality imaging. The integration process and related issues, such as etching, post treatment, low ohmic contact and Cu interconnection, required for realizing these advanced architectures are also discussed.

  10. Label-free attomolar detection of lactate based on radio frequency sputtered of nickel oxide thin film field effect transistor.

    PubMed

    Mansouri Majd, Samira; Salimi, Abdollah; Astinchap, Bandar

    2017-06-15

    The radio frequency sputtered nickel oxide thin film nanostrtablucture deposited on glass substrate was used as a potential matrix for the realization of highly sensitive and selective field effect transistor-type lactate biosensor. Firstly, NiO-FET was tested for NADH detection showing a linear concentration range 1aM to 1nM and a low detection limit of 0.2aM. Then, NiO surface modified with chitosan and functionalized with glutaraldehyde and lactate dehydrogenase enzyme was immobilized on the aldehyde terminal. The biosensor is found to exhibit highly efficient sensing response characteristics with good linearity of 1aM to 1pM and low limit of detection of 0.5aM. The biosensor shows high stability without interferences from commonly interfering compounds in biological fluids, including uric acid, ascorbic acid, glucose and acetaminophen. Furthermore, the application of the proposed biosensor for analysis of lactate in artificial serum samples was evaluated with good satisfactory results. This protocol can be used to develop of disposable, low cost, and portable various types of dehydrogenase based biosensor devices using metal oxide nanomaterials.

  11. Indium oxide thin-film transistors processed at low temperature via ultrasonic spray pyrolysis.

    PubMed

    Faber, Hendrik; Lin, Yen-Hung; Thomas, Stuart R; Zhao, Kui; Pliatsikas, Nikos; McLachlan, Martyn A; Amassian, Aram; Patsalas, Panos A; Anthopoulos, Thomas D

    2015-01-14

    The use of ultrasonic spray pyrolysis is demonstrated for the growth of polycrystalline, highly uniform indium oxide films at temperatures in the range of 200-300 °C in air using an aqueous In(NO3)3 precursor solution. Electrical characterization of as-deposited films by field-effect measurements reveals a strong dependence of the electron mobility on deposition temperature. Transistors fabricated at ∼250 °C exhibit optimum performance with maximum electron mobility values in the range of 15-20 cm(2) V (-1) s(-1) and current on/off ratio in excess of 10(6). Structural and compositional analysis of as-grown films by means of X-ray diffraction, diffuse scattering, and X-ray photoelectron spectroscopy reveal that layers deposited at 250 °C are denser and contain a reduced amount of hydroxyl groups as compared to films grown at either lower or higher temperatures. Microstructural analysis of semiconducting films deposited at 250 °C by high resolution cross-sectional transmission electron microscopy reveals that as-grown layers are extremely thin (∼7 nm) and composed of laterally large (30-60 nm) highly crystalline In2O3 domains. These unique characteristics of the In2O3 films are believed to be responsible for the high electron mobilities obtained from transistors fabricated at 250 °C. Our work demonstrates the ability to grow high quality low-dimensional In2O3 films and devices via ultrasonic spray pyrolysis over large area substrates while at the same time it provides guidelines for further material and device improvements.

  12. Anion control as a strategy to achieve high-mobility and high-stability oxide thin-film transistors

    PubMed Central

    Kim, Hyun-Suk; Jeon, Sang Ho; Park, Joon Seok; Kim, Tae Sang; Son, Kyoung Seok; Seon, Jong-Baek; Seo, Seok-Jun; Kim, Sun-Jae; Lee, Eunha; Chung, Jae Gwan; Lee, Hyungik; Han, Seungwu; Ryu, Myungkwan; Lee, Sang Yoon; Kim, Kinam

    2013-01-01

    Ultra-definition, large-area displays with three-dimensional visual effects represent megatrend in the current/future display industry. On the hardware level, such a “dream” display requires faster pixel switching and higher driving current, which in turn necessitate thin-film transistors (TFTs) with high mobility. Amorphous oxide semiconductors (AOS) such as In-Ga-Zn-O are poised to enable such TFTs, but the trade-off between device performance and stability under illumination critically limits their usability, which is related to the hampered electron-hole recombination caused by the oxygen vacancies. Here we have improved the illumination stability by substituting oxygen with nitrogen in ZnO, which may deactivate oxygen vacancies by raising valence bands above the defect levels. Indeed, the stability under illumination and electrical bias is superior to that of previous AOS-based TFTs. By achieving both mobility and stability, it is highly expected that the present ZnON TFTs will be extensively deployed in next-generation flat-panel displays. PMID:23492854

  13. Inert gas annealing effect in solution-processed amorphous indium-gallium-zinc-oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Lee, Seungwoon; Jeong, Jaewook

    2017-08-01

    In this paper, the annealing effect of solution-processed amorphous indium-gallium-zinc-oxide thin-film transistors (a-IGZO TFTs), under ambient He (He-device), is systematically analyzed by comparison with those under ambient O2 (O2-device) and N2 (N2-device), respectively. The He-device shows high field-effect mobility and low subthreshold slope owing to the minimization of the ambient effect. The degradation of the O2- and N2-device performances originate from their respective deep acceptor-like and shallow donor-like characteristics, which can be verified by comparison with the He-device. However, the three devices show similar threshold voltage instability under prolonged positive bias stress due to the effect of excess oxygen. Therefore, annealing in ambient He is the most suitable method for the fabrication of reference TFTs to study the various effects of the ambient during the annealing process in solution-processed a-IGZO TFTs.

  14. Improvement in gate bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors using microwave irradiation

    SciTech Connect

    Jo, Kwang-Won; Cho, Won-Ju

    2014-11-24

    In this study, we evaluated the effects of microwave irradiation (MWI) post-deposition-annealing (PDA) treatment on the gate bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs) and compared the results with a conventional thermal annealing PDA treatment. The MWI-PDA-treated a-IGZO TFTs exhibited enhanced electrical performance as well as improved long-term stability with increasing microwave power. The positive turn-on voltage shift (ΔV{sub ON}) as a function of stress time with positive bias and varying temperature was precisely modeled on a stretched-exponential equation, suggesting that charge trapping is a dominant mechanism in the instability of MWI-PDA-treated a-IGZO TFTs. The characteristic trapping time and average effective barrier height for electron transport indicate that the MWI-PDA treatment effectively reduces the defects in a-IGZO TFTs, resulting in a superior resistance against gate bias stress.

  15. The effects of deposition conditions and annealing temperature on the performance of gallium tin zinc oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Bradley, Tanina; Iyer, Shanthi; Alston, Robert; Collis, Ward; Lewis, Jay; Cunningham, Garry; Forsythe, Eric

    2013-03-01

    In this work the performance of bottom gate thin film transistors (TFTs) with transparent amorphous gallium tin zinc oxide (GSZO) active layers fabricated by radio frequency sputter deposition using a single GSZO target on SiO2/Si wafers will be presented. Trap density and its energetic distribution, and oxygen chemisorption were found to play a critical role in determining the operational characteristics of the device, all of which can be controlled by the oxygen incorporation and substrate temperature during deposition, along with the post-deposition annealing. In addition device instability, with respect to the electrical stress and optical illumination, can be suppressed by suitably tailoring these parameters. TFTs exhibiting a drain current (ID) of 10-6 A and on/off current ratio (Ion/off ) of 106 was achieved. A stable TFT has been achieved under electrical stress for 2% oxygen flow exhibiting ΔVT as low as ~0.5 V for 3hr stress under a gate bias of 1.2 and 12 V, with good optical stability.

  16. Contact resistance asymmetry of amorphous indium-gallium-zinc-oxide thin-film transistors by scanning Kelvin probe microscopy

    NASA Astrophysics Data System (ADS)

    Chen-Fei, Wu; Yun-Feng, Chen; Hai, Lu; Xiao-Ming, Huang; Fang-Fang, Ren; Dun-Jun, Chen; Rong, Zhang; You-Dou, Zheng

    2016-05-01

    In this work, a method based on scanning Kelvin probe microscopy is proposed to separately extract source/drain (S/D) series resistance in operating amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors. The asymmetry behavior of S/D contact resistance is deduced and the underlying physics is discussed. The present results suggest that the asymmetry of S/D contact resistance is caused by the difference in bias conditions of the Schottky-like junction at the contact interface induced by the parasitic reaction between contact metal and a-IGZO. The overall contact resistance should be determined by both the bulk channel resistance of the contact region and the interface properties of the metal-semiconductor junction. Project supported by the Key Industrial R&D Program of Jiangsu Province, China (Grant No. BE2015155), the Priority Academic Program Development of Higher Education Institutions of Jiangsu Province, China, and the Fundamental Research Funds for the Central Universities, China (Grant No. 021014380033).

  17. Semiconductor to metallic transition in bulk accumulated amorphous indium-gallium-zinc-oxide dual gate thin-film transistor

    SciTech Connect

    Chun, Minkyu; Chowdhury, Md Delwar Hossain; Jang, Jin

    2015-05-15

    We investigated the effects of top gate voltage (V{sub TG}) and temperature (in the range of 25 to 70 {sup o}C) on dual-gate (DG) back-channel-etched (BCE) amorphous-indium-gallium-zinc-oxide (a-IGZO) thin film transistors (TFTs) characteristics. The increment of V{sub TG} from -20V to +20V, decreases the threshold voltage (V{sub TH}) from 19.6V to 3.8V and increases the electron density to 8.8 x 10{sup 18}cm{sup −3}. Temperature dependent field-effect mobility in saturation regime, extracted from bottom gate sweep, show a critical dependency on V{sub TG}. At V{sub TG} of 20V, the mobility decreases from 19.1 to 15.4 cm{sup 2}/V ⋅ s with increasing temperature, showing a metallic conduction. On the other hand, at V{sub TG} of - 20V, the mobility increases from 6.4 to 7.5cm{sup 2}/V ⋅ s with increasing temperature. Since the top gate bias controls the position of Fermi level, the temperature dependent mobility shows metallic conduction when the Fermi level is above the conduction band edge, by applying high positive bias to the top gate.

  18. Channel length dependence of negative-bias-illumination-stress in amorphous-indium-gallium-zinc-oxide thin-film transistors

    SciTech Connect

    Um, Jae Gwang; Mativenga, Mallory; Jang, Jin; Migliorato, Piero

    2015-06-21

    We have investigated the dependence of Negative-Bias-illumination-Stress (NBIS) upon channel length, in amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs). The negative shift of the transfer characteristic associated with NBIS decreases for increasing channel length and is practically suppressed in devices with L = 100-μm. The effect is consistent with creation of donor defects, mainly in the channel regions adjacent to source and drain contacts. Excellent agreement with experiment has been obtained by an analytical treatment, approximating the distribution of donors in the active layer by a double exponential with characteristic length L{sub D} ∼ L{sub n} ∼ 10-μm, the latter being the electron diffusion length. The model also shows that a device with a non-uniform doping distribution along the active layer is in all equivalent, at low drain voltages, to a device with the same doping averaged over the active layer length. These results highlight a new aspect of the NBIS mechanism, that is, the dependence of the effect upon the relative magnitude of photogenerated holes and electrons, which is controlled by the device potential/band profile. They may also provide the basis for device design solutions to minimize NBIS.

  19. Achieving high carrier mobility exceeding 70 cm2/Vs in amorphous zinc tin oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Sang Tae; Shin, Yeonwoo; Yun, Pil Sang; Bae, Jong Uk; Chung, In Jae; Jeong, Jae Kyeong

    2017-09-01

    This paper proposes a new defect engineering concept for low-cost In- and Ga-free zinc tin oxide (ZTO) thin-film transistors (TFTs). This concept is comprised of capping ZTO films with tantalum (Ta) and a subsequent modest thermal annealing treatment at 200 °C. The Ta-capped ZTO TFTs exhibited a remarkably high carrier mobility of 70.8 cm2/Vs, low subthreshold gate swing of 0.18 V/decade, threshold voltage of -1.3 V, and excellent ION/OFF ratio of 2 × 108. The improvement (> two-fold) in the carrier mobility compared to the uncapped ZTO TFT can be attributed to the effective reduction of the number of adverse tailing trap states, such as hydroxyl groups or oxygen interstitial defects, which stems from the scavenging effect of the Ta capping layer on the ZTO channel layer. Furthermore, the Ta-capped ZTO TFTs showed excellent positive and negative gate bias stress stabilities. [Figure not available: see fulltext.

  20. Anion control as a strategy to achieve high-mobility and high-stability oxide thin-film transistors.

    PubMed

    Kim, Hyun-Suk; Jeon, Sang Ho; Park, Joon Seok; Kim, Tae Sang; Son, Kyoung Seok; Seon, Jong-Baek; Seo, Seok-Jun; Kim, Sun-Jae; Lee, Eunha; Chung, Jae Gwan; Lee, Hyungik; Han, Seungwu; Ryu, Myungkwan; Lee, Sang Yoon; Kim, Kinam

    2013-01-01

    Ultra-definition, large-area displays with three-dimensional visual effects represent megatrend in the current/future display industry. On the hardware level, such a "dream" display requires faster pixel switching and higher driving current, which in turn necessitate thin-film transistors (TFTs) with high mobility. Amorphous oxide semiconductors (AOS) such as In-Ga-Zn-O are poised to enable such TFTs, but the trade-off between device performance and stability under illumination critically limits their usability, which is related to the hampered electron-hole recombination caused by the oxygen vacancies. Here we have improved the illumination stability by substituting oxygen with nitrogen in ZnO, which may deactivate oxygen vacancies by raising valence bands above the defect levels. Indeed, the stability under illumination and electrical bias is superior to that of previous AOS-based TFTs. By achieving both mobility and stability, it is highly expected that the present ZnON TFTs will be extensively deployed in next-generation flat-panel displays.

  1. Oxide Semiconductor-Based Flexible Organic/Inorganic Hybrid Thin-Film Transistors Fabricated on Polydimethylsiloxane Elastomer.

    PubMed

    Jung, Soon-Won; Choi, Jeong-Seon; Park, Jung Ho; Koo, Jae Bon; Park, Chan Woo; Na, Bock Soon; Oh, Ji-Young; Lim, Sang Chul; Lee, Sang Seok; Chu, Hye Yong

    2016-03-01

    We demonstrate flexible organic/inorganic hybrid thin-film transistors (TFTs) on a polydimethysilox- ane (PDMS) elastomer substrate. The active channel and gate insulator of the hybrid TFT are composed of In-Ga-Zn-O (IGZO) and blends of poly(vinylidene fluoride-trifluoroethylene) [P(VDF- TrFE)] with poly(methyl methacrylate) (PMMA), respectively. It has been confirmed that the fabri- cated TFT display excellent characteristics: the recorded field-effect mobility, sub-threshold voltage swing, and I(on)/I(off) ratio were approximately 0.35 cm2 V(-1) s(-1), 1.5 V/decade, and 10(4), respectively. These characteristics did not experience any degradation at a bending radius of 15 mm. These results correspond to the first demonstration of a hybrid-type TFT using an organic gate insulator/oxide semiconducting active channel structure fabricated on PDMS elastomer, and demonstrate the feasibility of a promising device in a flexible electronic system.

  2. Metal-oxide assisted surface treatment of polyimide gate insulators for high-performance organic thin-film transistors.

    PubMed

    Kim, Sohee; Ha, Taewook; Yoo, Sungmi; Ka, Jae-Won; Kim, Jinsoo; Won, Jong Chan; Choi, Dong Hoon; Jang, Kwang-Suk; Kim, Yun Ho

    2017-06-14

    We developed a facile method for treating polyimide-based organic gate insulator (OGI) surfaces with self-assembled monolayers (SAMs) by introducing metal-oxide interlayers, called the metal-oxide assisted SAM treatment (MAST). To create sites for surface modification with SAM materials on polyimide-based OGI (KPI) surfaces, the metal-oxide interlayer, here amorphous alumina (α-Al2O3), was deposited on the KPI gate insulator using spin-coating via a rapid sol-gel reaction, providing an excellent template for the formation of a high-quality SAM with phosphonic acid anchor groups. The SAM of octadecylphosphonic acid (ODPA) was successfully treated by spin-coating onto the α-Al2O3-deposited KPI film. After the surface treatment by ODPA/α-Al2O3, the surface energy of the KPI thin film was remarkably decreased and the molecular compatibility of the film with an organic semiconductor (OSC), 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-C10), was increased. Ph-BTBT-C10 molecules were uniformly deposited on the treated gate insulator surface and grown with high crystallinity, as confirmed by atomic force microscopy (AFM) and X-ray diffraction (XRD) analysis. The mobility of Ph-BTBT-C10 thin-film transistors (TFTs) was approximately doubled, from 0.56 ± 0.05 cm(2) V(-1) s(-1) to 1.26 ± 0.06 cm(2) V(-1) s(-1), after the surface treatment. The surface treatment of α-Al2O3 and ODPA significantly decreased the threshold voltage from -21.2 V to -8.3 V by reducing the trap sites in the OGI and improving the interfacial properties with the OSC. We suggest that the MAST method for OGIs can be applied to various OGI materials lacking reactive sites using SAMs. It may provide a new platform for the surface treatment of OGIs, similar to that of conventional SiO2 gate insulators.

  3. Rapid low-temperature processing of metal-oxide thin film transistors with combined far ultraviolet and thermal annealing

    SciTech Connect

    Leppäniemi, J. Ojanperä, K.; Kololuoma, T.; Huttunen, O.-H.; Majumdar, H.; Alastalo, A.; Dahl, J.; Tuominen, M.; Laukkanen, P.

    2014-09-15

    We propose a combined far ultraviolet (FUV) and thermal annealing method of metal-nitrate-based precursor solutions that allows efficient conversion of the precursor to metal-oxide semiconductor (indium zinc oxide, IZO, and indium oxide, In{sub 2}O{sub 3}) both at low-temperature and in short processing time. The combined annealing method enables a reduction of more than 100 °C in annealing temperature when compared to thermally annealed reference thin-film transistor (TFT) devices of similar performance. Amorphous IZO films annealed at 250 °C with FUV for 5 min yield enhancement-mode TFTs with saturation mobility of ∼1 cm{sup 2}/(V·s). Amorphous In{sub 2}O{sub 3} films annealed for 15 min with FUV at temperatures of 180 °C and 200 °C yield TFTs with low-hysteresis and saturation mobility of 3.2 cm{sup 2}/(V·s) and 7.5 cm{sup 2}/(V·s), respectively. The precursor condensation process is clarified with x-ray photoelectron spectroscopy measurements. Introducing the FUV irradiation at 160 nm expedites the condensation process via in situ hydroxyl radical generation that results in the rapid formation of a continuous metal-oxygen-metal structure in the film. The results of this paper are relevant in order to upscale printed electronics fabrication to production-scale roll-to-roll environments.

  4. Investigation on the negative bias illumination stress-induced instability of amorphous indium-tin-zinc-oxide thin film transistors

    SciTech Connect

    Jang, Jaeman; Kim, Dae Geun; Kim, Dong Myong; Choi, Sung-Jin; Kim, Dae Hwan E-mail: drlife@kookmin.ac.kr; Lim, Jun-Hyung; Lee, Je-Hun; Ahn, Byung Du E-mail: drlife@kookmin.ac.kr; Kim, Yong-Sung

    2014-10-13

    The quantitative analysis of mechanism on negative bias illumination stress (NBIS)-induced instability of amorphous indium-tin-zinc-oxide thin-film transistor (TFT) was suggested along with the effect of equivalent oxide thickness (EOT) of gate insulator. The analysis was implemented through combining the experimentally extracted density of subgap states and the device simulation. During NBIS, it was observed that the thicker EOT causes increase in both the shift of threshold voltage and the variation of subthreshold swing as well as the hump-like feature in a transfer curve. We found that the EOT-dependence of NBIS instability can be clearly explicated with the donor creation model, in which a larger amount of valence band tail states is transformed into either the ionized oxygen vacancy V{sub O}{sup 2+} or peroxide O{sub 2}{sup 2−} with the increase of EOT. It was also found that the V{sub O}{sup 2+}-related extrinsic factor accounts for 80%–92% of the total donor creation taking place in the valence band tail states while the rest is taken by the O{sub 2}{sup 2–} related intrinsic factor. The ratio of extrinsic factor compared to the total donor creation also increased with the increase of EOT, which could be explained by more prominent oxygen deficiency. The key founding of our work certainly represents that the established model should be considered very effective for analyzing the instability of the post-indium-gallium-zinc-oxide (IGZO) ZnO-based compound semiconductor TFTs with the mobility, which is much higher than those of a-IGZO TFTs.

  5. The effect of annealing ambient on the characteristics of an indium-gallium-zinc oxide thin film transistor.

    PubMed

    Park, Soyeon; Bang, Seokhwan; Lee, Seungjun; Park, Joohyun; Ko, Youngbin; Jeon, Hyeongtag

    2011-07-01

    In this study, the effects of different annealing conditions (air, O2, N2, vacuum) on the chemical and electrical characteristics of amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFT) were investigated. The contact resistance and interface properties between the IGZO film and the gate dielectric improved after an annealing treatment. However, the chemical bonds in the IGZO bulk changed under various annealing atmospheres, which, in turn, altered the characteristics of the TFTs. The TFTs annealed in vacuum and N2 ambients exhibited undesired switching properties due to the high carrier concentration (>10(17) cm(-3)) of the IGZO active layer. In contrast, the IGZO TFTs annealed in air and oxygen ambients displayed clear transfer characteristics due to an adequately adjusted carrier concentration in the operating range of the TFT. Such an optimal carrier concentration arose through the stabilization of unstable chemical bonds in the IGZO film. With regard to device performance, the TFTs annealed in O2 and air exhibited saturation mobility values of 8.29 and 7.54 cm2/Vs, on-off ratios of 7.34 x 10(8) and 3.95 x 10(8), and subthreshold swing (SS) values of 0.23 and 0.19 V/decade, respectively. Therefore, proper annealing ambients contributed to internal modifications in the IGZO structure and led to an enhancement in the oxidation state of the metal. As a result, defects such as oxygen vacancies were eliminated. Oxygen annealing is thus effective for controlling the carrier concentration of the active layer, decreasing electron traps, and enhancing TFT performance.

  6. Enhanced electrical properties of oxide semiconductor thin-film transistors with high conductivity thin layer insertion for the channel region

    NASA Astrophysics Data System (ADS)

    Nguyen, Cam Phu Thi; Raja, Jayapal; Kim, Sunbo; Jang, Kyungsoo; Le, Anh Huy Tuan; Lee, Youn-Jung; Yi, Junsin

    2017-02-01

    This study examined the performance and the stability of indium tin zinc oxide (ITZO) thin film transistors (TFTs) by inserting an ultra-thin indium tin oxide (ITO) layer at the active/insulator interface. The electrical properties of the double channel device (ITO thickness of 5 nm) were improved in comparison with the single channel ITZO or ITO devices. The TFT characteristics of the device with an ITO thickness of less than 5 nm were degraded due to the formation of an island-like morphology and the carriers scattering at the active/insulator interface. The 5 nm-thick ITO inserted ITZO TFTs (optimal condition) exhibited a superior field effect mobility (∼95 cm2/V·s) compared with the ITZO-only TFTs (∼34 cm2/V·s). The best characteristics of the TFT devices with double channel layer are due to the lowest surface roughness (0.14 nm) and contact angle (50.1°) that result in the highest hydrophicility, and the most effective adhesion at the surface. Furthermore, the threshold voltage shifts for the ITO/ITZO double layer device decreased to 0.80 and -2.39 V compared with 6.10 and -6.79 V (for the ITZO only device) under positive and negative bias stress, respectively. The falling rates of EA were 0.38 eV/V and 0.54 eV/V for the ITZO and ITO/ITZO bi-layer devices, respectively. The faster falling rate of the double channel devices suggests that the trap density, including interface trap and semiconductor bulk trap, can be decreased by the ion insertion of a very thin ITO film into the ITZO/SiO2 reference device. These results demonstrate that the double active layer TFT can potentially be applied to the flat panel display.

  7. Study of the improvements in the electrical performance of solution-processed metal oxide thin-film transistors using self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Park, Jin-Woo; Kim, Hyungjoong; Kim, Dae Hwan; Lee, Mijung

    2014-10-01

    Thin-film transistors (TFTs) of a metal oxide semiconductor typically are transparent and have high mobility to be paid attention for back plane of displays. One of the most actively studied fabrication methods of metal oxide semiconductors is the solution processing (sol-gel) method, owing to its low-cost, simple and fast steps that ensure good product uniformity, and applicability to roll-to-roll processing. Our study focused on probing the electronic properties of solution-processed metal oxide TFTs. We have calculated the density of state (DOS) with monochromatic photonic capacitance-voltage (MPCV) measurements. Improvements in device are proved by electronic and photo-electronic methods.

  8. Thin film transistors for flexible electronics: contacts, dielectrics and semiconductors.

    PubMed

    Quevedo-Lopez, M A; Wondmagegn, W T; Alshareef, H N; Ramirez-Bon, R; Gnade, B E

    2011-06-01

    The development of low temperature, thin film transistor processes that have enabled flexible displays also present opportunities for flexible electronics and flexible integrated systems. Of particular interest are possible applications in flexible sensor systems for unattended ground sensors, smart medical bandages, electronic ID tags for geo-location, conformal antennas, radiation detectors, etc. In this paper, we review the impact of gate dielectrics, contacts and semiconductor materials on thin film transistors for flexible electronics applications. We present our recent results to fully integrate hybrid complementary metal oxide semiconductors comprising inorganic and organic-based materials. In particular, we demonstrate novel gate dielectric stacks and semiconducting materials. The impact of source and drain contacts on device performance is also discussed.

  9. Exploring Two-Dimensional Transport Phenomena in Metal Oxide Heterointerfaces for Next-Generation, High-Performance, Thin-Film Transistor Technologies.

    PubMed

    Labram, John G; Lin, Yen-Hung; Anthopoulos, Thomas D

    2015-11-04

    In the last decade, metal oxides have emerged as a fascinating class of electronic material, exhibiting a wide range of unique and technologically relevant characteristics. For example, thin-film transistors formed from amorphous or polycrystalline metal oxide semiconductors offer the promise of low-cost, large-area, and flexible electronics, exhibiting performances comparable to or in excess of incumbent silicon-based technologies. Atomically flat interfaces between otherwise insulating or semiconducting complex oxides, are also found to be highly conducting, displaying 2-dimensional (2D) charge transport properties, strong correlations, and even superconductivity. Field-effect devices employing such carefully engineered interfaces are hoped to one day compete with traditional group IV or III-V semiconductors for use in the next-generation of high-performance electronics. In this Concept article we provide an overview of the different metal oxide transistor technologies and potential future research directions. In particular, we look at the recent reports of multilayer oxide thin-film transistors and the possibility of 2D electron transport in these disordered/polycrystalline systems and discuss the potential of the technology for applications in large-area electronics.

  10. Role of oxygen vacancies on the bias illumination stress stability of solution-processed zinc tin oxide thin film transistors

    SciTech Connect

    Liu, Li-Chih; Chen, Jen-Sue E-mail: jsjeng@mail.nutn.edu.tw; Jeng, Jiann-Shing E-mail: jsjeng@mail.nutn.edu.tw

    2014-07-14

    Solution-processed ultra-thin (∼3 nm) zinc tin oxide (ZTO) thin film transistors (TFTs) with a mobility of 8 cm{sup 2}/Vs are obtained with post spin-coating annealing at only 350 °C. The effect of light illumination (at wavelengths of 405 nm or 532 nm) on the stability of TFT transfer characteristics under various gate bias stress conditions (zero, positive, and negative) is investigated. It is found that the ΔV{sub th} (V{sub th}{sup stress} {sup 3400} {sup s − stress} {sup 0} {sup s}) window is significantly positive when ZTO TFTs are under positive bias stress (PBS, ΔV{sub th} = 9.98 V) and positive bias illumination stress (λ = 405 nm and ΔV{sub th} = 6.96 V), but ΔV{sub th} is slightly negative under only light illumination stress (λ = 405 nm and ΔV{sub th} = −2.02 V) or negative bias stress (ΔV{sub th} = −2.27 V). However, the ΔV{sub th} of ZTO TFT under negative bias illumination stress is substantial, and it will efficiently recover the ΔV{sub th} caused by PBS. The result is attributed to the photo-ionization and subsequent transition of electronic states of oxygen vacancies (i.e., V{sub o}, V{sub o}{sup +}, and V{sub o}{sup ++}) in ZTO. A detailed mechanism is discussed to better understand the bias stress stability of solution processed ZTO TFTs.

  11. Effect of Chloride Precursors on the Stability of Solution-Processed Indium Zinc Oxide Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Lee, Dong Hee; Park, Sung Min; Yang, Jung Il; Cho, Dong Kyu; Woo, Sang Hyun; Lim, Yoo Sung; Kuk Kim, Dae; Yi, Moonsuk

    2013-10-01

    In this experiment, solution-processed indium zinc oxide (IZO) films were prepared by spin-coating the films as an active layer in thin-film transistors (TFTs). These films were coated with nitrate and a mixture of acetate- and chloride-based precursors to allow the IZO films to contain indium and zinc components. The solution-processed IZO-based TFT fabricated using a zinc acetate precursor for the IZO films exhibited a mobility of 2.83 cm2 V-1 s-1, an on/off current ratio of ˜1×105, and a subthreshold swing value of 2.48 V/dec. The IZO-TFT with the zinc chloride precursor exhibited a mobility of 4.37 cm2 V-1 s-1, an on/off current ratio of ˜1×103, and a subthreshold swing value of 6.44 V/dec. In comparison, the IZO-TFT with a mixture of zinc acetate and chloride precursors exhibited a mobility of 1.45 cm2 V-1 s-1, an on/off current ratio of ˜1×105, and a subthreshold swing value of 1.83 V/dec. The first two devices suffered from a large threshold voltage (Vth) shift, >7 and >6 V, respectively, after a gate voltage of 20 V was applied for 2 h. In contrast, the device fabricated using the mixed precursors showed a higher stability, shifting about 1.7 V under the same stress conditions.

  12. Charge transport at high temperatures in solution-processed zinc-tin-oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Yu, Kyeong Min; Bae, Byung Seong; Jung, Myunghee; Yun, Eui-Jung

    2014-07-01

    We report charge transport studies at temperatures in the range of 303-402 K for solutiondeposited amorphous zinc-tin-oxide (a-ZTO) thin-film transistors (TFTs) operating in the subthreshold region. The developed TFTs, which had a non-patterned bottom gate and top contact structure, employed a heavily-doped Si wafer and a SiO2 as a gate electrode and a gate insulator layer, respectively. In a-ZTO, the trap activation energy ( E TAC ) was estimated using the Maxwell-Boltzmann approximation. The decreasing E TAC with increasing gate-voltage-induced sheet carrier density (n s ) in the a-ZTO channel can be understood as being due to a shift of the Fermi level ( E F ) toward the conduction band edge ( E C ) with increasing gate voltage. Samples with low n s , which exhibited thermally-activated behavior, revealed multiple trap and release phenomena. In samples with high n s , on the other hand, we observed decreasing mobility/conductivity with increasing temperature at temperatures higher than 348 K. This suggests that the E TAC can drop to zero, implying a shift of E F beyond E C , where the crossover from the thermal activation to band transport is observed. The temperature-dependent characteristics also revealed that the density of subgap trap states at E F exhibited thermally-activated behavior with an activation energy of 0.7 eV, suggesting that subgap trap states existed near 0.7 eV below the E C .

  13. Reduction of the interfacial trap density of indium-oxide thin film transistors by incorporation of hafnium and annealing process

    SciTech Connect

    Lin, Meng-Fang E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Gao, Xu; Mitoma, Nobuhiko; Kizu, Takio; Ou-Yang, Wei; Tsukagoshi, Kazuhito E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Aikawa, Shinya; Nabatame, Toshihide

    2015-01-15

    The stable operation of transistors under a positive bias stress (PBS) is achieved using Hf incorporated into InO{sub x}-based thin films processed at relatively low temperatures (150 to 250 °C). The mobilities of the Hf-InO{sub x} thin-film transistors (TFTs) are higher than 8 cm{sup 2}/Vs. The TFTs not only have negligible degradation in the mobility and a small shift in the threshold voltage under PBS for 60 h, but they are also thermally stable at 85 °C in air, without the need for a passivation layer. The Hf-InO{sub x} TFT can be stable even annealed at 150 °C for positive bias temperature stability (PBTS). A higher stability is achieved by annealing the TFTs at 250 °C, originating from a reduction in the trap density at the Hf-InO{sub x}/gate insulator interface. The knowledge obtained here will aid in the realization of stable TFTs processed at low temperatures.

  14. A room temperature strategy towards enhanced performance and bias stability of oxide thin film transistor with a sandwich structure channel layer

    NASA Astrophysics Data System (ADS)

    Zeng, Yong; Ning, Honglong; Zheng, Zeke; Zhang, Hongke; Fang, Zhiqiang; Yao, Rihui; Xu, Miao; Wang, Lei; Lan, Linfeng; Peng, Junbiao; Lu, Xubing

    2017-04-01

    Thermal annealing is a conventional and effective way to improve the bias stress stability of oxide thin film transistors (TFT) on solid substrates. However, it is still a challenge for enhancing the bias stress stability of oxide TFTs on flexible substrates by high-temperature post-treatment due to the thermal sensitivity of flexible substrates. Here, a room temperature strategy is presented towards enhanced performance and bias stability of oxide TFTs by intentionally engineering a sandwich structure channel layer consisting of a superlattice with aluminum doped zinc oxide (AZO) and Al2O3 thin films. The Al2O3/AZO/Al2O3-TFTs not only exhibit a saturation mobility of 9.27 cm2 V-1 s-1 and a linear mobility of 11.38 cm2 V-1 s-1 but also demonstrate a better bias stress stability than AZO/Al2O3-TFT. Moreover, the underlying mechanism of this enhanced electrical performance of TFTs with a sandwich structure channel layer is that the bottom Al2O3 thin films can obviously improve the crystalline phase of AZO films while decreasing electrical trapping centers and adsorption sites for undesirable molecules such as water and oxygen.

  15. Effect of morphology on organic thin film transistor sensors.

    PubMed

    Locklin, Jason; Bao, Zhenan

    2006-01-01

    This review provides a general introduction to organic field-effect transistors and their application as chemical sensors. Thin film transistor device performance is greatly affected by the molecular structure and morphology of the organic semiconductor layer. Various methods for organic semiconductor deposition are surveyed. Recent progress in the fabrication of organic thin film transistor sensors as well as the correlation between morphology and analyte response is discussed.

  16. Solution-Processed Flexible Fluorine-doped Indium Zinc Oxide Thin-Film Transistors Fabricated on Plastic Film at Low Temperature

    PubMed Central

    Seo, Jin-Suk; Jeon, Jun-Hyuck; Hwang, Young Hwan; Park, Hyungjin; Ryu, Minki; Park, Sang-Hee Ko; Bae, Byeong-Soo

    2013-01-01

    Transparent flexible fluorine-doped indium zinc oxide (IZO:F) thin-film transistors (TFTs) were demonstrated using the spin-coating method of the metal fluoride precursor aqueous solution with annealing at 200°C for 2 hrs on polyethylene naphthalate films. The proposed thermal evolution mechanism of metal fluoride aqueous precursor solution examined by thermogravimetric analysis and Raman spectroscopy can easily explain oxide formation. The chemical composition analysed by XPS confirms that the fluorine was doped in the thin films annealed below 250°C. In the IZO:F thin films, a doped fluorine atom substitutes for an oxygen atom generating a free electron or occupies an oxygen vacancy site eliminating an electron trap site. These dual roles of the doped fluorine can enhance the mobility and improve the gate bias stability of the TFTs. Therefore, the transparent flexible IZO:F TFT shows a high mobility of up to 4.1 cm2/V·s and stable characteristics under the various gate bias and temperature stresses. PMID:23803977

  17. Contact Resistance and Stability Analysis of Oxide-Based Thin Film Transistors

    DTIC Science & Technology

    2006-09-19

    layer (~ 50 nm) is deposited via RF magnetron sputtering from a 2 inch target (Cerac, Inc.; ZnO and IGO (1:1 molar ratio of In2O3: Ga2O3 )) at a pressure...10.2 600 ~ 50 IGO (1:1, In2O3: Ga2O3 ) 90%/10% 5 ~ 3.7 ~ 10.2 600 ~ 50 Table 4.1: Summary of process parameters for TFTs fabricated on thermal silicon...oxide and furnace annealed. Channel Material Wet Etch Etch Rate ZnO ~ 0.01 M HCl ~ 17.5 Å/s IGO (1:1, In2O3: Ga2O3 ) ~ 2 M HCl ~ 6.3 Å/s

  18. Metal-semiconductor hybrid thin films in field-effect transistors

    SciTech Connect

    Okamura, Koshi Dehm, Simone; Hahn, Horst

    2013-12-16

    Metal-semiconductor hybrid thin films consisting of an amorphous oxide semiconductor and a number of aluminum dots in different diameters and arrangements are formed by electron beam lithography and employed for thin-film transistors (TFTs). Experimental and computational demonstrations systematically reveal that the field-effect mobility of the TFTs enhances but levels off as the dot density increases, which originates from variations of the effective channel length that strongly depends on the electric field distribution in a transistor channel.

  19. Performance improvement of tin-doped zinc oxide thin-film transistor by novel channel modulation layer of indium tin oxide/tin zinc oxide

    NASA Astrophysics Data System (ADS)

    Chen, Zhuofa; Han, Dedong; Zhao, Nannan; Wu, Jing; Cong, Yingying; Dong, Junchen; Zhao, Feilong; Zhang, Shengdong; Zhang, Xing; Wang, Yi; Liu, Lifeng

    2015-04-01

    By applying a novel active modulation layer of indium tin oxide/tin zinc oxide (ITO/TZO), we have successfully fabricated high-performance bottom-gate-type dual-active-layer thin-film transistors (TFTs) on a glass substrate at a low temperature by a simple process. The as-fabricated dual-active-layer ITO/TZO TFTs exhibited excellent electrical properties compared with single-active-layer TZO TFTs. We found that the dual-layer ITO/TZO TFT with an optimized stack structure of ITO (5 nm)/TZO (45 nm) as the channel layer exhibits excellent properties, namely, a high saturation mobility of 204 cm2 V-1 s-1, a steep subthreshold slope of 219 mV/dec, a low threshold voltage of 0.8 V, and a high on-off current ratio of 4.3 × 107. A physical mechanism for the electrical improvement is also deduced. Owing to its advantages, namely, a low processing temperature, a high electrical performance, a simple process, and a low cost, this novel active modulation layer is highly promising for the manufacture of oxide semiconductor TFT and transparent displays.

  20. Origin of Degradation Phenomenon under Drain Bias Stress for Oxide Thin Film Transistors using IGZO and IGO Channel Layers

    PubMed Central

    Bak, Jun Yong; Kang, Youngho; Yang, Shinhyuk; Ryu, Ho-Jun; Hwang, Chi-Sun; Han, Seungwu; Yoon, Sung-Min

    2015-01-01

    Top-gate structured thin film transistors (TFTs) using In-Ga-Zn-O (IGZO) and In-Ga-O (IGO) channel compositions were investigated to reveal a feasible origin for degradation phenomenon under drain bias stress (DBS). DBS-driven instability in terms of VTH shift, deviation of the SS value, and increase in the on-state current were detected only for the IGZO-TFT, in contrast to the IGO-TFT, which did not demonstrate VTH shift. These behaviors were visually confirmed via nanoscale transmission electron microscopy and energy-dispersive x-ray spectroscopy observations. To understand the degradation mechanism, we performed ab initio molecular dynamic simulations on the liquid phases of IGZO and IGO. The diffusivities of Ga and In atoms were enhanced in IGZO, confirming the degradation mechanism to be increased atomic diffusion. PMID:25601183

  1. Polycrystalline silicon conductivity modulated thin film transistors

    NASA Astrophysics Data System (ADS)

    Anish, Kumar K. P.

    1997-09-01

    Polycrystalline silicon (poly-Si) thin-film transistors (TFTs) on glass has received significant attention for use in large area microelectronic applications. These applications include both niche and large volume applications such as printer drivers, image scanners, active-matrix liquid crystal displays (AMLCDs), electro-luminescent displays, plasma assisted displays, etc. Currently, the leading technology for these applications is amorphous-Si (a-Si) TFT. However, as the information content increases, a-Si technology encounters severe challenges due to its inherent low mobility, high parasitic capacitance, low aperture ratio, and non-compatibility to CMOS process. On the other hand, poly-Si technology offers high mobility, low parasitic capacitance, small size, CMOS compatibility, good stability, and uses the infrastructure of silicon science and technology. Thus, a simple low temperature poly-Si technology which allows large area system integration on panel will be in great demand for future high definition displays. However, it was found that poly-Si material properties vary with its method of preparation, its grain size, its surface roughness, and the nature and distribution of the inter-granular and bulk defects. Therefore, extensive studies are needed to optimize the key parameters such as the off-current, on-current, and breakdown voltage of the devices. These parameters can be optimized by means of material preparation as well as innovative device designs. In this thesis, three TFT structures were invented and fabricated using a simple low temperature poly-Si technology. With these novel structures, pixels, pixel drivers, and analog and digital peripheral circuits can all be built on the same glass substrate. This allows the ultimate goal of display systems on glass to be much more closer to reality. First, a high voltage transistor called the Conductivity Modulated Thin Film Transistor (CMTFT) is presented. Using this structure, the fundamental current

  2. Influence of molybdenum source/drain electrode contact resistance in amorphous zinc–tin-oxide (a-ZTO) thin film transistors

    SciTech Connect

    Han, Dong-Suk; Kang, Yu-Jin; Park, Jae-Hyung; Jeon, Hyung-Tag; Park, Jong-Wan

    2014-10-15

    Highlights: • We developed and investigated source/drain electrodes in oxide TFTs. • The Mo S/D electrodes showed good output characteristics. • Intrinsic TFT parameters were calculated by the transmission line method. - Abstract: This paper investigates the feasibility of a low-resistivity electrode material (Mo) for source/drain (S/D) electrodes in thin film transistors (TFTs). The effective resistances between Mo source/drain electrodes and amorphous zinc–tin-oxide (a-ZTO) thin film transistors were studied. Intrinsic TFT parameters were calculated by the transmission line method (TLM) using a series of TFTs with different channel lengths measured at a low source/drain voltage. The TFTs fabricated with Mo source/drain electrodes showed good transfer characteristics with a field-effect mobility of 10.23 cm{sup 2}/V s. In spite of slight current crowding effects, the Mo source/drain electrodes showed good output characteristics with a steep rise in the low drain-to-source voltage (V{sub DS}) region.

  3. Investigation of the effects of deposition parameters on indium-free transparent amorphous oxide semiconductor thin-film transistors fabricated at low temperatures for flexible electronic applications

    NASA Astrophysics Data System (ADS)

    Alston, Robert; Iyer, Shanthi; Bradley, Tanina; Lewis, Jay; Cunningham, Garry; Forsythe, Eric

    2014-02-01

    Low temperature gallium tin zinc oxide (GSZO) based thin film transistors fabricated on silicon has been investigated as a potential indium free transparent amorphous oxide semiconductor thin film transistor (TAOS TFT) with potential device applications on plastic substrates. A comprehensive and detailed study on the performance of GSZO TFTs has been carried out by studying the effects of processing parameters such as deposition temperature and annealing temperature/duration, as well as the channel thickness with all temperatures held below 150 °C. Variety of characterization techniques, namely Rutherford backscattering (RBS), x-ray photoelectron spectroscopy (XPS) and x-ray reflectivity (XRR) in addition to I-V and C-V measurements were employed to determine the effects of the above parameters on the composition and quality of the channel. Optimized TFT characteristics of ID=3×10-7 A, ION/OFF =2×106, VON ~ -2 V, SS ~ 1 V/dec and μFE = 0.14 cm2/V· s with a ΔVON of 3.3 V under 3 hours electrical stress were produced.

  4. Back-channel-etch amorphous indium-gallium-zinc oxide thin-film transistors: The impact of source/drain metal etch and final passivation

    NASA Astrophysics Data System (ADS)

    Nag, Manoj; Bhoolokam, Ajay; Steudel, Soeren; Chasin, Adrian; Myny, Kris; Maas, Joris; Groeseneken, Guido; Heremans, Paul

    2014-11-01

    We report on the impact of source/drain (S/D) metal (molybdenum) etch and the final passivation (SiO2) layer on the bias-stress stability of back-channel-etch (BCE) configuration based amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). It is observed that the BCE configurations TFTs suffer poor bias-stability in comparison to etch-stop-layer (ESL) TFTs. By analysis with transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS), as well as by a comparative analysis of contacts formed by other metals, we infer that this poor bias-stability for BCE transistors having Mo S/D contacts is associated with contamination of the back channel interface, which occurs by Mo-containing deposits on the back channel during the final plasma process of the physical vapor deposited SiO2 passivation.

  5. Thin-film transistors based on p-type Cu{sub 2}O thin films produced at room temperature

    SciTech Connect

    Fortunato, Elvira; Figueiredo, Vitor; Barquinha, Pedro; Elamurugu, Elangovan; Goncalves, Goncalo; Martins, Rodrigo; Park, Sang-Hee Ko; Hwang, Chi-Sun

    2010-05-10

    Copper oxide (Cu{sub 2}O) thin films were used to produce bottom gate p-type transparent thin-film transistors (TFTs). Cu{sub 2}O was deposited by reactive rf magnetron sputtering at room temperature and the films exhibit a polycrystalline structure with a strongest orientation along (111) plane. The TFTs exhibit improved electrical performance such as a field-effect mobility of 3.9 cm{sup 2}/V s and an on/off ratio of 2x10{sup 2}.

  6. Li-Assisted Low-Temperature Phase Transitions in Solution-Processed Indium Oxide Films for High-Performance Thin Film Transistor

    PubMed Central

    Nguyen, Manh-Cuong; Jang, Mi; Lee, Dong-Hwi; Bang, Hyun-Jun; Lee, Minjung; Jeong, Jae Kyeong; Yang, Hoichang; Choi, Rino

    2016-01-01

    Lithium (Li)-assisted indium oxide (In2O3) thin films with ordered structures were prepared on solution-processed zirconium oxide (ZrO2) gate dielectrics by spin-casting and thermally annealing hydrated indium nitrate solutions with different Li nitrate loadings. It was found that the Li-assisted In precursor films on ZrO2 dielectrics could form crystalline structures even at processing temperatures (T) below 200 °C. Different In oxidation states were observed in the Li-doped films, and the development of such states was significantly affected by both temperature and the mol% of Li cations, [Li+]/([In3+] + [Li+]), in the precursor solutions. Upon annealing the Li-assisted precursor films below 200 °C, metastable indium hydroxide and/or indium oxyhydroxide phases were formed. These phases were subsequently transformed into crystalline In2O3 nanostructures after thermal dehydration and oxidation. Finally, an In2O3 film doped with 13.5 mol% Li+ and annealed at 250 °C for 1 h exhibited the highest electron mobility of 60 cm2 V−1 s−1 and an on/off current ratio above 108 when utilized in a thin film transistor. PMID:27121951

  7. Electrical instability of InGaZnO thin-film transistors with and without titanium sub-oxide layer under light illumination

    NASA Astrophysics Data System (ADS)

    Chiu, Y. C.; Zheng, Z. W.; Cheng, C. H.; Chen, P. C.; Yen, S. S.; Fan, C. C.; Hsu, H. H.; Kao, H. L.; Chang, C. Y.

    2017-03-01

    The electrical instability behaviors of amorphous indium-gallium-zinc oxide thin-film transistors with and without titanium sub-oxide passivation layer were investigated under light illumination in this study. For the unpassivated IGZO TFT device, in contrast with the dark case, a noticeable increase of the sub-threshold swing was observed when under the illumination environment, which can be attributed to the generation of ionized oxygen vacancies within the α-IGZO active layer by high energy photons. For the passivated TFT device, the much smaller SS of 70 mV/dec and high device mobility of >100 cm2/Vs at a drive voltage of 3 V with negligible degradation under light illumination are achieved due to the passivation effect of n-type titanium sub-oxide semiconductor, which may create potential application for high-performance display.

  8. All Inkjet-Printed Metal-Oxide Thin-Film Transistor Array with Good Stability and Uniformity Using Surface-Energy Patterns.

    PubMed

    Li, Yuzhi; Lan, Linfeng; Sun, Sheng; Lin, Zhenguo; Gao, Peixiong; Song, Wei; Song, Erlong; Zhang, Peng; Peng, Junbiao

    2017-03-08

    An array of inkjet-printed metal-oxide thin-film transistors (TFTs) is demonstrated for the first time with the assistance of surface-energy patterns prepared by printing pure solvent to etch the ultrathin hydrophobic layer. The surface-energy patterns not only restrained the spreading of inks but also provided a facile way to regulate the morphology of metal oxide films without optimizing ink formulation. The fully printed InGaO TFT devices in the array exhibited excellent electron transport characteristics with a maximum mobility of 11.7 cm(2) V(-1) s(-1), negligible hysteresis, good uniformity, and good stability under bias stress. The new route lights a general way toward fully inkjet-printed metal-oxide TFT arrays.

  9. Dopant selection for control of charge carrier density and mobility in amorphous indium oxide thin-film transistors: Comparison between Si- and W-dopants

    SciTech Connect

    Mitoma, Nobuhiko E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Kizu, Takio; Lin, Meng-Fang; Tsukagoshi, Kazuhito E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Aikawa, Shinya; Ou-Yang, Wei; Gao, Xu; Fujiwara, Akihiko

    2015-01-26

    The dependence of oxygen vacancy suppression on dopant species in amorphous indium oxide (a-InO{sub x}) thin film transistors (TFTs) is reported. In a-InO{sub x} TFTs incorporating equivalent atom densities of Si- and W-dopants, absorption of oxygen in the host a-InO{sub x} matrix was found to depend on difference of Gibbs free energy of the dopants for oxidation. For fully oxidized films, the extracted channel conductivity was higher in the a-InO{sub x} TFTs containing dopants of small ionic radius. This can be explained by a reduction in the ionic scattering cross sectional area caused by charge screening effects.

  10. Chemical Gated Field Effect Transistor by Hybrid Integration of One-Dimensional Silicon Nanowire and Two-Dimensional Tin Oxide Thin Film for Low Power Gas Sensor.

    PubMed

    Han, Jin-Woo; Rim, Taiuk; Baek, Chang-Ki; Meyyappan, M

    2015-09-30

    Gas sensors based on metal-oxide-semiconductor transistor with the polysilicon gate replaced by a gas sensitive thin film have been around for over 50 years. These are not suitable for the emerging mobile and wearable sensor platforms due to operating voltages and powers far exceeding the supply capability of batteries. Here we present a novel approach to decouple the chemically sensitive region from the conducting channel for reducing the drive voltage and increasing reliability. This chemically gated field effect transistor uses silicon nanowire for the current conduction channel with a tin oxide film on top of the nanowire serving as the gas sensitive medium. The potential change induced by the molecular adsorption and desorption allows the electrically floating tin oxide film to gate the silicon channel. As the device is designed to be normally off, the power is consumed only during the gas sensing event. This feature is attractive for the battery operated sensor and wearable electronics. In addition, the decoupling of the chemical reaction and the current conduction regions allows the gas sensitive material to be free from electrical stress, thus increasing reliability. The device shows excellent gas sensitivity to the tested analytes relative to conventional metal oxide transistors and resistive sensors.

  11. Atomic-layer-deposition-assisted ZnO nanoparticles for oxide charge-trap memory thin-film transistors

    NASA Astrophysics Data System (ADS)

    Seo, Gi Ho; Yun, Da Jeong; Lee, Won Ho; Yoon, Sung Min

    2017-02-01

    ZnO nanoparticles (NPs) with monolayer structures were prepared by atomic layer deposition (ALD) to use for a charge-trap layer (CTL) for nonvolatile memory thin-film transistors (MTFTs). The optimum ALD temperature of the NP formation was demonstrated to be 160 °C. The size and areal density of the ZnO NPs was estimated to be approximately 33 nm and 4.8 × 109 cm-2, respectively, when the number of ALD cycles was controlled to be 20. The fabricated MTFTs using a ZnO-NP CTL exhibited typical memory window properties, which are generated by charge-trap/de-trap processes, in their transfer characteristics and the width of the memory window (MW) increased from 0.6 to 18.0 V when the number of ALD cycles increased from 5 to 30. The program characteristics of the MTFT were markedly enhanced by the post-annealing process performed at 180 °C in an oxygen ambient due to the improvements in the interface and bulk qualities of the ZnO NPs. The program/erase (P/E) speed was estimated to be 10 ms at P/E voltages of -14 and 17 V. The memory margin showed no degradation with the lapse in retention time for 2 × 104 s and after the repetitive P/E operations of 7 × 103 cycles.

  12. Electrical dependence on the chemical composition of the gate dielectric in indium gallium zinc oxide thin-film transistors

    SciTech Connect

    Tari, Alireza Lee, Czang-Ho; Wong, William S.

    2015-07-13

    Bottom-gate thin-film transistors were fabricated by depositing a 50 nm InGaZnO (IGZO) channel layer at 150 °C on three separate gate dielectric films: (1) thermal SiO{sub 2}, (2) plasma-enhanced chemical-vapor deposition (PECVD) SiN{sub x}, and (3) a PECVD SiO{sub x}/SiN{sub x} dual-dielectric. X-ray photoelectron and photoluminescence spectroscopy showed the V{sub o} concentration was dependent on the hydrogen concentration of the underlying dielectric film. IGZO films on SiN{sub x} (high V{sub o}) and SiO{sub 2} (low V{sub o}) had the highest and lowest conductivity, respectively. A PECVD SiO{sub x}/SiN{sub x} dual-dielectric layer was effective in suppressing hydrogen diffusion from the nitride layer into the IGZO and resulted in higher resistivity films.

  13. Homogeneous double-layer amorphous Si-doped indium oxide thin-film transistors for control of turn-on voltage

    NASA Astrophysics Data System (ADS)

    Kizu, Takio; Aikawa, Shinya; Nabatame, Toshihide; Fujiwara, Akihiko; Ito, Kazuhiro; Takahashi, Makoto; Tsukagoshi, Kazuhito

    2016-07-01

    We fabricated homogeneous double-layer amorphous Si-doped indium oxide (ISO) thin-film transistors (TFTs) with an insulating ISO cap layer on top of a semiconducting ISO bottom channel layer. The homogeneously stacked ISO TFT exhibited high mobility (19.6 cm2/V s) and normally-off characteristics after annealing in air. It exhibited normally-off characteristics because the ISO insulator suppressed oxygen desorption, which suppressed the formation of oxygen vacancies (VO) in the semiconducting ISO. Furthermore, we investigated the recovery of the double-layer ISO TFT, after a large negative shift in turn-on voltage caused by hydrogen annealing, by treating it with annealing in ozone. The recovery in turn-on voltage indicates that the dense VO in the semiconducting ISO can be partially filled through the insulator ISO. Controlling molecule penetration in the homogeneous double layer is useful for adjusting the properties of TFTs in advanced oxide electronics.

  14. Surface modification of a polyimide gate insulator with an yttrium oxide interlayer for aqueous-solution-processed ZnO thin-film transistors.

    PubMed

    Jang, Kwang-Suk; Wee, Duyoung; Kim, Yun Ho; Kim, Jinsoo; Ahn, Taek; Ka, Jae-Won; Yi, Mi Hye

    2013-06-11

    We report a simple approach to modify the surface of a polyimide gate insulator with an yttrium oxide interlayer for aqueous-solution-processed ZnO thin-film transistors. It is expected that the yttrium oxide interlayer will provide a surface that is more chemically compatible with the ZnO semiconductor than is bare polyimde. The field-effect mobility and the on/off current ratio of the ZnO TFT with the YOx/polyimide gate insulator were 0.456 cm(2)/V·s and 2.12 × 10(6), respectively, whereas the ZnO TFT with the polyimide gate insulator was inactive.

  15. Effects of annealing conditions on the dielectric properties of solution-processed Al2O3 layers for indium-zinc-tin-oxide thin-film transistors.

    PubMed

    Kim, Yong-Hoon; Kim, Kwang-Ho; Park, Sung Kyu

    2013-11-01

    In this paper, the effects of annealing conditions on the dielectric properties of solution-processed aluminum oxide (Al2O3) layers for indium-zinc-tin-oxide (IZTO) thin-film transistors (TFTs) have been investigated. The dielectric properties of Al2O3 layers such as leakage current density and dielectric strength were largely affected by their annealing conditions. In particular, oxygen partial pressure in rapid thermal annealing, and the temperature profile of hot plate annealing had profound effects on the dielectric properties. From a refractive index analysis, the enhanced dielectric properties of Al2O3 gate dielectrics can be attributed to higher film density depending on the annealing conditions. With the low-temperature-annealed Al2O3 gate dielectric at 350 degrees C, solution-processed IZTO TFTs with a field-effect mobility of approximately 2.2 cm2/Vs were successfully fabricated.

  16. Ultralow-Voltage Electric-Double-Layer Oxide-Based Thin-Film Transistors with Faster Switching Response on Flexible Substrates

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Wu, Guo-Dong

    2014-07-01

    Phosphosilicate glass (PSG) electrolyte films are deposited by improving the content of phosphorus doping during plasma-enhanced chemical vapor deposition, and a fast electric-double-layer (EDL) polarization response of 100 kHz is measured. The mechanism of the fast polarization response and EDL formation are investigated in detail. By using PSG electrolyte films as gate dielectrics, indium-zinc-oxide (IZO) thin-film transistors (TFTs) are fabricated on flexible plastic substrates. Due to the huge EDL gate capacitance, such TFTs show only 0.8 V operation and excellent electrical performances with a large current on/off ratio of 107, low subthreshold swing of 72 mV/decade and high field-effect mobility of 16.76 cm2/V·s. More importantly, the devices exhibit a fast switching response above 100 Hz. Our results demonstrate that such PSG gated TFTs take a great step for low-power flexible oxide electronics application.

  17. Synergistic effects of water addition and step heating on the formation of solution-processed zinc tin oxide thin films: towards high-mobility polycrystalline transistors

    NASA Astrophysics Data System (ADS)

    Huang, Genmao; Duan, Lian; Zhao, Yunlong; Zhang, Yunge; Dong, Guifang; Zhang, Deqiang; Qiu, Yong

    2016-11-01

    Thin-film transistors (TFTs) with high mobility and good uniformity are attractive for next-generation flat panel displays. In this work, solution-processed polycrystalline zinc tin oxide (ZTO) thin film with well-ordered microstructure is prepared, thanks to the synergistic effect of water addition and step heating. The step heating treatment other than direct annealing induces crystallization, while adequate water added to precursor solution further facilitates alloying and densification process. The optimal polycrystalline ZTO film is free of hierarchical sublayers, and featured with an increased amount of ternary phases, as well as a decreased fraction of oxygen vacancies and hydroxides. TFT devices based on such an active layer exhibit a remarkable field-effect mobility of 52.5 cm2 V-1 s-1, a current on/off ratio of 2 × 105, a threshold voltage of 2.32 V, and a subthreshold swing of 0.36 V dec-1. Our work offers a facile method towards high-performance solution-processed polycrystalline metal oxide TFTs.

  18. Synergistic effects of water addition and step heating on the formation of solution-processed zinc tin oxide thin films: towards high-mobility polycrystalline transistors.

    PubMed

    Huang, Genmao; Duan, Lian; Zhao, Yunlong; Zhang, Yunge; Dong, Guifang; Zhang, Deqiang; Qiu, Yong

    2016-11-18

    Thin-film transistors (TFTs) with high mobility and good uniformity are attractive for next-generation flat panel displays. In this work, solution-processed polycrystalline zinc tin oxide (ZTO) thin film with well-ordered microstructure is prepared, thanks to the synergistic effect of water addition and step heating. The step heating treatment other than direct annealing induces crystallization, while adequate water added to precursor solution further facilitates alloying and densification process. The optimal polycrystalline ZTO film is free of hierarchical sublayers, and featured with an increased amount of ternary phases, as well as a decreased fraction of oxygen vacancies and hydroxides. TFT devices based on such an active layer exhibit a remarkable field-effect mobility of 52.5 cm(2) V(-1) s(-1), a current on/off ratio of 2 × 10(5), a threshold voltage of 2.32 V, and a subthreshold swing of 0.36 V dec(-1). Our work offers a facile method towards high-performance solution-processed polycrystalline metal oxide TFTs.

  19. Method for double-sided processing of thin film transistors

    DOEpatents

    Yuan, Hao-Chih; Wang, Guogong; Eriksson, Mark A.; Evans, Paul G.; Lagally, Max G.; Ma, Zhenqiang

    2008-04-08

    This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  20. Fabrication and evaluation of solution-processed reduced graphene oxide electrodes for p- and n-channel bottom-contact organic thin-film transistors.

    PubMed

    Becerril, Hector A; Stoltenberg, Randall M; Tang, Ming Lee; Roberts, Mark E; Liu, Zunfeng; Chen, Yongsheng; Kim, Do Hwan; Lee, Bang-Lin; Lee, Sangyoon; Bao, Zhenan

    2010-11-23

    Reduced graphene oxide (RGO) is an electrically conductive carbon-based nanomaterial that has recently attracted attention as a potential electrode for organic electronics. Here we evaluate several solution-based methods for fabricating RGO bottom-contact (BC) electrodes for organic thin-film transistors (OTFTs), demonstrate functional p- and n-channel devices with such electrodes, and compare their electrical performance with analogous devices containing gold electrodes. We show that the morphology of organic semiconductor films deposited on RGO electrodes is similar to that observed in the channel region of the devices and that devices fabricated with RGO electrodes have lower contact resistances compared to those fabricated with gold contacts. Although the conductivity of RGO is poor compared to that of gold, RGO is still an enticing electrode material for organic electronic devices possibly owing to the retention of desirable morphological features, lower contact resistance, lower cost, and solution processability.

  1. Boosting the mobility and bias stability of oxide-based thin-film transistors with ultra-thin nanocrystalline InSnO:Zr layer

    NASA Astrophysics Data System (ADS)

    Raja, Jayapal; Jang, Kyungsoo; Hussain, Shahzada Qamar; Balaji, Nagarajan; Chatterjee, Somenath; Velumani, S.; Yi, Junsin

    2015-01-01

    Extensive attention on high-definition flat panel displays is the driving force to fabricate high-performance thin-film transistors (TFTs). A hybrid oxide TFTs fabricated using an interfacial layer of nanocrystalline Zr-doped InSnO (nc-ITO:Zr) and an amorphous InSnZnO films as an active channel is reported here. Due to the presence of nc-ITO:Zr layer, an improvement of the field-effect mobility (86.4 cm2/V.s) and threshold voltage (0.43 V) values for TFTs are observed. Positive gate bias stress study indicates the role of nc-ITO:Zr layer in fabricated TFTs through the suppression of charge trapping capability between the channel and insulating layer.

  2. Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Park, Jin-Seong; Kim, Tae-Woong; Stryakhilev, Denis; Lee, Jae-Sup; An, Sung-Guk; Pyo, Yong-Shin; Lee, Dong-Bum; Mo, Yeon Gon; Jin, Dong-Un; Chung, Ho Kyoon

    2009-07-01

    We have fabricated 6.5 in. flexible full-color top-emission active matrix organic light-emitting diode display on a polyimide (PI) substrate driven amorphous indium gallium zinc oxide thin-film transistors (a-IGZO TFTs). The a-IGZO TFTs exhibited field-effect mobility (μFE) of 15.1 cm2/V s, subthreshold slope of 0.25 V/dec, threshold voltage (VTH) of 0.9 V. The electrical characteristics of TFTs on PI substrate, including a bias-stress instability after 1 h long gate bias at 15 V, were indistinguishable from those on glass substrate and showed high degree of spatial uniformity. TFT samples on 10 μm thick PI substrate withstood bending down to R =3 mm under tension and compression without any performance degradation.

  3. Alumina nanoparticle/polymer nanocomposite dielectric for flexible amorphous indium-gallium-zinc oxide thin film transistors on plastic substrate with superior stability

    SciTech Connect

    Lai, Hsin-Cheng; Pei, Zingway; Jian, Jyun-Ruri; Tzeng, Bo-Jie

    2014-07-21

    In this study, the Al{sub 2}O{sub 3} nanoparticles were incorporated into polymer as a nono-composite dielectric for used in a flexible amorphous Indium-Gallium-Zinc Oxide (a-IGZO) thin-film transistor (TFT) on a polyethylene naphthalate substrate by solution process. The process temperature was well below 100 °C. The a-IGZO TFT exhibit a mobility of 5.13 cm{sup 2}/V s on the flexible substrate. After bending at a radius of 4 mm (strain = 1.56%) for more than 100 times, the performance of this a-IGZO TFT was nearly unchanged. In addition, the electrical characteristics are less altered after positive gate bias stress at 10 V for 1500 s. Thus, this technology is suitable for use in flexible displays.

  4. Alumina nanoparticle/polymer nanocomposite dielectric for flexible amorphous indium-gallium-zinc oxide thin film transistors on plastic substrate with superior stability

    NASA Astrophysics Data System (ADS)

    Lai, Hsin-Cheng; Pei, Zingway; Jian, Jyun-Ruri; Tzeng, Bo-Jie

    2014-07-01

    In this study, the Al2O3 nanoparticles were incorporated into polymer as a nono-composite dielectric for used in a flexible amorphous Indium-Gallium-Zinc Oxide (a-IGZO) thin-film transistor (TFT) on a polyethylene naphthalate substrate by solution process. The process temperature was well below 100 °C. The a-IGZO TFT exhibit a mobility of 5.13 cm2/V s on the flexible substrate. After bending at a radius of 4 mm (strain = 1.56%) for more than 100 times, the performance of this a-IGZO TFT was nearly unchanged. In addition, the electrical characteristics are less altered after positive gate bias stress at 10 V for 1500 s. Thus, this technology is suitable for use in flexible displays.

  5. A thermalization energy analysis of the threshold voltage shift in amorphous indium gallium zinc oxide thin film transistors under positive gate bias stress

    SciTech Connect

    Niang, K. M.; Flewitt, A. J.; Barquinha, P. M. C.; Martins, R. F. P.

    2016-02-29

    Thin film transistors (TFTs) employing an amorphous indium gallium zinc oxide (a-IGZO) channel layer exhibit a positive shift in the threshold voltage under the application of positive gate bias stress (PBS). The time and temperature dependence of the threshold voltage shift was measured and analysed using the thermalization energy concept. The peak energy barrier to defect conversion is extracted to be 0.75 eV and the attempt-to-escape frequency is extracted to be 10{sup 7} s{sup −1}. These values are in remarkable agreement with measurements in a-IGZO TFTs under negative gate bias illumination stress (NBIS) reported recently (Flewitt and Powell, J. Appl. Phys. 115, 134501 (2014)). This suggests that the same physical process is responsible for both PBS and NBIS, and supports the oxygen vacancy defect migration model that the authors have previously proposed.

  6. Effects of low-temperature (120 °C) annealing on the carrier concentration and trap density in amorphous indium gallium zinc oxide thin film transistors

    SciTech Connect

    Kim, Jae-sung; Piao, Mingxing; Jang, Ho-Kyun; Kim, Gyu-Tae; Oh, Byung Su; Joo, Min-Kyu; Ahn, Seung-Eon

    2014-12-28

    We report an investigation of the effects of low-temperature annealing on the electrical properties of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs). X-ray photoelectron spectroscopy was used to characterize the charge carrier concentration, which is related to the density of oxygen vacancies. The field-effect mobility was found to decrease as a function of the charge carrier concentration, owing to the presence of band-tail states. By employing the transmission line method, we show that the contact resistance did not significantly contribute to the changes in device performance after annealing. In addition, using low-frequency noise analyses, we found that the trap density decreased by a factor of 10 following annealing at 120 °C. The switching operation and on/off ratio of the a-IGZO TFTs improved considerably after low-temperature annealing.

  7. Optimization of a Solution-Processed SiO2 Gate Insulator by Plasma Treatment for Zinc Oxide Thin Film Transistors.

    PubMed

    Jeong, Yesul; Pearson, Christopher; Kim, Hyun-Gwan; Park, Man-Young; Kim, Hongdoo; Do, Lee-Mi; Petty, Michael C

    2016-01-27

    We report on the optimization of the plasma treatment conditions for a solution-processed silicon dioxide gate insulator for application in zinc oxide thin film transistors (TFTs). The SiO2 layer was formed by spin coating a perhydropolysilazane (PHPS) precursor. This thin film was subsequently thermally annealed, followed by exposure to an oxygen plasma, to form an insulating (leakage current density of ∼10(-7) A/cm(2)) SiO2 layer. Optimized ZnO TFTs (40 W plasma treatment of the gate insulator for 10 s) possessed a carrier mobility of 3.2 cm(2)/(V s), an on/off ratio of ∼10(7), a threshold voltage of -1.3 V, and a subthreshold swing of 0.2 V/decade. In addition, long-term exposure (150 min) of the pre-annealed PHPS to the oxygen plasma enabled the maximum processing temperature to be reduced from 180 to 150 °C. The resulting ZnO TFT exhibited a carrier mobility of 1.3 cm(2)/(V s) and on/off ratio of ∼10(7).

  8. High-mobility solution-processed tin oxide thin-film transistors with high-κ alumina dielectric working in enhancement mode.

    PubMed

    Huang, Genmao; Duan, Lian; Dong, Guifang; Zhang, Deqiang; Qiu, Yong

    2014-12-10

    Solution-processed metal oxide thin-film transistors (TFTs) operating in enhancement mode are promising for the next-generation flat panel displays. In this work, we report high-mobility TFTs based on SnO2 active layer derived from a soluble tin(II) 2-ethylhexanoate precursor. Densely packed polycrystalline SnO2 thin films with moderate oxygen vacancies and only a few hydroxides are obtained via systemically optimizing precursor concentrations and processing conditions. The utilization of a solution-processed high-κ Al2O3 insulating layer could generate a coherent dielectric/semiconductor interface, hence further improving the device performance. TFT devices with an average field-effect mobility of 96.4 cm(2) V(-1) s(-1), a current on/off ratio of 2.2 × 10(6), a threshold voltage of 1.72 V, and a subthreshold swing of 0.26 V dec(-1) have been achieved, and the driving capability is demonstrated by implementing a single SnO2 TFT device to tune the brightness of an organic light-emitting diode. It is worth noting that these TFTs work in enhancement mode at low voltages less than 4 V, which sheds light on their potential application to the next-generation low-cost active matrix flat panel displays.

  9. Reduction of defect formation in amorphous indium-gallium-zinc-oxide thin film transistors by N{sub 2}O plasma treatment

    SciTech Connect

    Jhu, Jhe-Ciou; Chang, Ting-Chang; Chang, Geng-Wei; Tai, Ya-Hsiang; Tsai, Wu-Wei; Chiang, Wen-Jen; Yan, Jing-Yi

    2013-11-28

    An abnormal sub-threshold leakage current is observed at high temperature in amorphous indium-gallium-zinc-oxide thin film transistors (a-IGZO TFTs). This phenomenon occurs due to a reduced number of defects in the device's a-IGZO active layer after the device has undergone N{sub 2}O plasma treatment. Experimental verification shows that the N{sub 2}O plasma treatment enhances the thin film bonding strength, thereby suppressing the formation of temperature-dependent holes, which are generated above 400 K by oxygen atoms leaving their original sites. The N{sub 2}O plasma treatment devices have better stability performance than as-fabricated devices. The results suggest that the density of defects for a-IGZO TFTs with N{sub 2}O plasma treatment is much lower than that in as-fabricated devices. The N{sub 2}O plasma treatment repairs the defects and suppresses temperature-dependent sub-threshold leakage current.

  10. Atomic-layer-deposition-assisted ZnO nanoparticles for oxide charge-trap memory thin-film transistors.

    PubMed

    Seo, Gi Ho; Yun, Da Jeong; Lee, Won Ho; Yoon, Sung Min

    2017-02-17

    ZnO nanoparticles (NPs) with monolayer structures were prepared by atomic layer deposition (ALD) to use for a charge-trap layer (CTL) for nonvolatile memory thin-film transistors (MTFTs). The optimum ALD temperature of the NP formation was demonstrated to be 160 °C. The size and areal density of the ZnO NPs was estimated to be approximately 33 nm and 4.8 × 10(9) cm(-2), respectively, when the number of ALD cycles was controlled to be 20. The fabricated MTFTs using a ZnO-NP CTL exhibited typical memory window properties, which are generated by charge-trap/de-trap processes, in their transfer characteristics and the width of the memory window (MW) increased from 0.6 to 18.0 V when the number of ALD cycles increased from 5 to 30. The program characteristics of the MTFT were markedly enhanced by the post-annealing process performed at 180 °C in an oxygen ambient due to the improvements in the interface and bulk qualities of the ZnO NPs. The program/erase (P/E) speed was estimated to be 10 ms at P/E voltages of -14 and 17 V. The memory margin showed no degradation with the lapse in retention time for 2 × 10(4) s and after the repetitive P/E operations of 7 × 10(3) cycles.

  11. Highly stable thin film transistors using multilayer channel structure

    SciTech Connect

    Nayak, Pradipta K.; Wang, Zhenwei; Anjum, D. H.; Hedhili, M. N.; Alshareef, H. N.

    2015-03-09

    We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO{sub 2}) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured at room temperature and at 60 °C. A tremendous improvement in gate-bias stress stability was obtained in case of the TFT with multiple layers of ZnO embedded between HfO{sub 2} layers compared to the TFT with a single layer of ZnO as the semiconductor. The ultra-thin HfO{sub 2} layers act as passivation layers, which prevent the adsorption of oxygen and water molecules in the ZnO layer and hence significantly improve the gate-bias stress stability of ZnO TFTs.

  12. Bistability in doped organic thin film transistors.

    PubMed

    Stricker, Jeffery T; Gudmundsdóttir, Anna D; Smith, Adam P; Taylor, Barney E; Durstock, Michael F

    2007-09-06

    Organic thin film transitors (TFTs) with the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid), PEDOT:PSS, as the active layer and cross-linked, layer-by-layer assembled poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) multilayers as the gate dielectric layer were investigated. A combination of spectroscopic data and device performance characteristics was used to study the behavior of these TFT devices under a variety of controlled environmental test conditions. It was shown that depletion and recovery of the device can be induced to occur by a means that is consistent with the electrochemical oxidation and reduction of water contained in the film. In addition to acting as a reactant, moisture also acts as a plasticizer to control the mobility of other species contained in the film and thereby permits bistable operation of these devices. Raman spectroscopy was used to show that the observed device switching behavior is due to a change in the PEDOT doping level.

  13. Lateral protonic/electronic hybrid oxide thin-film transistor gated by SiO{sub 2} nanogranular films

    SciTech Connect

    Zhu, Li Qiang Chao, Jin Yu; Xiao, Hui

    2014-12-15

    Ionic/electronic interaction offers an additional dimension in the recent advancements of condensed materials. Here, lateral gate control of conductivities of indium-zinc-oxide (IZO) films is reported. An electric-double-layer (EDL) transistor configuration was utilized with a phosphorous-doped SiO{sub 2} nanogranular film to provide a strong lateral electric field. Due to the strong lateral protonic/electronic interfacial coupling effect, the IZO EDL transistor could operate at a low-voltage of 1 V. A resistor-loaded inverter is built, showing a high voltage gain of ∼8 at a low supply voltage of 1 V. The lateral ionic/electronic coupling effects are interesting for bioelectronics and portable electronics.

  14. Contact resistance and overlapping capacitance in flexible sub-micron long oxide thin-film transistors for above 100 MHz operation

    NASA Astrophysics Data System (ADS)

    Münzenrieder, Niko; Salvatore, Giovanni A.; Petti, Luisa; Zysset, Christoph; Büthe, Lars; Vogt, Christian; Cantarella, Giuseppe; Tröster, Gerhard

    2014-12-01

    In recent years new forms of electronic devices such as electronic papers, flexible displays, epidermal sensors, and smart textiles have become reality. Thin-film transistors (TFTs) are the basic blocks of the circuits used in such devices and need to operate above 100 MHz to efficiently treat signals in RF systems and address pixels in high resolution displays. Beyond the choice of the semiconductor, i.e., silicon, graphene, organics, or amorphous oxides, the junctionless nature of TFTs and its geometry imply some limitations which become evident and important in devices with scaled channel length. Furthermore, the mechanical instability of flexible substrates limits the feature size of flexible TFTs. Contact resistance and overlapping capacitance are two parasitic effects which limit the transit frequency of transistors. They are often considered independent, while a deeper analysis of TFTs geometry imposes to handle them together; in fact, they both depend on the overlapping length (LOV) between source/drain and the gate contacts. Here, we conduct a quantitative analysis based on a large number of flexible ultra-scaled IGZO TFTs. Devices with three different values of overlap length and channel length down to 0.5 μm are fabricated to experimentally investigate the scaling behavior of the transit frequency. Contact resistance and overlapping capacitance depend in opposite ways on LOV. These findings establish routes for the optimization of the dimension of source/drain contact pads and suggest design guidelines to achieve megahertz operation in flexible IGZO TFTs and circuits.

  15. Detection of chemical substances in water using an oxide nanowire transistor covered with a hydrophobic nanoparticle thin film as a liquid-vapour separation filter

    NASA Astrophysics Data System (ADS)

    Lim, Taekyung; Lee, Jonghun; Ju, Sanghyun

    2016-08-01

    We have developed a method to detect the presence of small amounts of chemical substances in water, using a Al2O3 nanoparticle thin film covered with phosphonic acid (HDF-PA) self-assembled monolayer. The HDF-PA self-assembled Al2O3 nanoparticle thin film acts as a liquid-vapour separation filter, allowing the passage of chemical vapour while blocking liquids. Prevention of the liquid from contacting the SnO2 nanowire and source-drain electrodes is required in order to avoid abnormal operation. Using this characteristic, the concentration of chemical substances in water could be evaluated by measuring the current changes in the SnO2 nanowire transistor covered with the HDF-PA self-assembled Al2O3 nanoparticle thin film.

  16. Low-temperature, solution-processed indium-oxide thin-film transistors fabricated by using an ultraviolet-ozone treatment

    NASA Astrophysics Data System (ADS)

    Kim, Hoon; Kang, Chan-mo; Oh, Yeon-Wha; Ryu, Jin Hwa; Baek, Kyu-Ha; Do, Lee-Mi

    2016-04-01

    For the fabrication of low-temperature solution-processed metal-oxide thin-film transistors (TFTs), alternative annealing processes have recently been studied for reduced fabrication cost and applications to flexible devices. Indium nitrate solution has been proposed as a precursor for the low-temperature solution-processed TFTs. However, due to its high decomposition temperature, achieving a high-performance indium-oxide (In2O3) TFT at temperatures below 200°C is still difficult. In this study, for improved metal-oxide formation in low-temperature solution-processed In2O3 TFT, indium nitrate film was exposed to UV-ozone for 30 min before annealing at 200°C. The smooth scanning electron microscopy (SEM) image of the UV-ozone treated film implies that the indium nitrates are condensed after treatment. In addition, X-ray photoemission spectroscopy (XPS) data suggest that UV-ozone decreases the number of oxygen vacancies and increases the number of metal-oxygen-metal bonds in the indium-oxide films. As a result, high electrical device performance was achieved with an improved Ion/off ratio (˜107) and mobility (1.25 cm2V -1s -1).

  17. A review of carbon nanotube- and graphene-based flexible thin-film transistors.

    PubMed

    Sun, Dong-Ming; Liu, Chang; Ren, Wen-Cai; Cheng, Hui-Ming

    2013-04-22

    Carbon nanotubes (CNTs) and graphene have attracted great attention for numerous applications for future flexible electronics, owing to their supreme properties including exceptionally high electronic conductivity and mechanical strength. Here, the progress of CNT- and graphene-based flexible thin-film transistors from material preparation, device fabrication techniques to transistor performance control is reviewed. State-of-the-art fabrication techniques of thin-film transistors are divided into three categories: solid-phase, liquid-phase, and gas-phase techniques, and possible scale-up approaches to achieve realistic production of flexible nanocarbon-based transistors are discussed. In particular, the recent progress in flexible all-carbon nanomaterial transistor research is highlighted, and this all-carbon strategy opens up a perspective to realize extremely flexible, stretchable, and transparent electronics with a relatively low-cost and fast fabrication technique, compared to traditional rigid silicon, metal and metal oxide electronics.

  18. Improvement in performance and reliability with CF4 plasma pretreatment on the buffer oxide layer for low-temperature polysilicon thin-film transistor

    NASA Astrophysics Data System (ADS)

    Fan, Ching-Lin; Lin, Yi-Yan; Yang, Chun-Chieh

    2012-03-01

    This study applies CF4 plasma pretreatment to a buffer oxide layer to improve the performance of low-temperature polysilicon thin-film transistors (LTPS TFTs). Results show that the fluorine atoms piled up at the interface between the bulk channel and buffer oxide layer and accumulated in the bulk channel. The reduction of the trap states density by fluorine passivation can improve the electrical characteristics of the LTPS TFTs. It is found that the threshold voltage reduced from 4.32 to 3.03 V and the field-effect mobility increased from 29.71 to 45.65 cm2 V-1 S-1. In addition, the on current degradation and threshold voltage shift after stressing were significantly improved about 31% and 70%, respectively. We believe that the proposed CF4 plasma pretreatment on the buffer oxide layer can passivate the trap states and avoid the plasma induced damage on the polysilicon channel surface, resulting in the improvement in performance and reliability for LTPS-TFT mass production application on AMOLED displays with critical reliability requirement.

  19. Thin Film Transistor Gas Sensors Incorporating High-Mobility Diketopyrrolopyrole-Based Polymeric Semiconductor Doped with Graphene Oxide.

    PubMed

    Cheon, Kwang Hee; Cho, Jangwhan; Kim, Yun-Hi; Chung, Dae Sung

    2015-07-01

    In this work, we fabricated a diketopyrrolopyrole-based donor-acceptor copolymer composite film. This is a high-mobility semiconductor component with a functionalized-graphene-oxide (GO) gas-adsorbing dopant, used as an active layer in gas-sensing organic-field-effect transistor (OFET) devices. The GO content of the composite film was carefully controlled so that the crystalline orientation of the semiconducting polymer could be conserved, without compromising its gas-adsorbing ability. The resulting optimized device exhibited high mobility (>1 cm(2) V(-1) s(-1)) and revealed sensitive response during programmed exposure to various polar organic molecules (i.e., ethanol, acetone, and acetonitrile). This can be attributed to the high mobility of polymeric semiconductors, and also to their high surface-to-volume ratio of GO. The operating mechanism of the gas sensing GO-OFET is fully discussed in conjunction with charge-carrier trap theory. It was found that each transistor parameter (e.g., mobility, threshold voltage), responds independently to each gas molecule, which enables high selectivity of GO-OFETs for various gases. Furthermore, we also demonstrated practical GO-OFET devices that operated at low voltage (<1.5 V), and which successfully responded to gas exposure.

  20. Operational stability of solution based zinc tin oxide/SiO2 thin film transistors under gate bias stress

    NASA Astrophysics Data System (ADS)

    Kiazadeh, Asal; Salgueiro, Daniela; Branquinho, Rita; Pinto, Joana; Gomes, Henrique L.; Barquinha, Pedro; Martins, Rodrigo; Fortunato, Elvira

    2015-06-01

    In this study, we report solution-processed amorphous zinc tin oxide transistors exhibiting high operational stability under positive gate bias stress, translated by a recoverable threshold voltage shift of about 20% of total applied stress voltage. Under vacuum condition, the threshold voltage shift saturates showing that the gate-bias stress is limited by trap exhaustion or balance between trap filling and emptying mechanism. In ambient atmosphere, the threshold voltage shift no longer saturates, stability is degraded and the recovering process is impeded. We suggest that the trapping time during the stress and detrapping time in recovering are affected by oxygen adsorption/desorption processes. The time constants extracted from stretched exponential fitting curves are ≈106 s and 105 s in vacuum and air, respectively.

  1. Homogeneous double-layer amorphous Si-doped indium oxide thin-film transistors for control of turn-on voltage

    SciTech Connect

    Kizu, Takio E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Tsukagoshi, Kazuhito E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Aikawa, Shinya; Nabatame, Toshihide; Fujiwara, Akihiko; Ito, Kazuhiro; Takahashi, Makoto

    2016-07-28

    We fabricated homogeneous double-layer amorphous Si-doped indium oxide (ISO) thin-film transistors (TFTs) with an insulating ISO cap layer on top of a semiconducting ISO bottom channel layer. The homogeneously stacked ISO TFT exhibited high mobility (19.6 cm{sup 2}/V s) and normally-off characteristics after annealing in air. It exhibited normally-off characteristics because the ISO insulator suppressed oxygen desorption, which suppressed the formation of oxygen vacancies (V{sub O}) in the semiconducting ISO. Furthermore, we investigated the recovery of the double-layer ISO TFT, after a large negative shift in turn-on voltage caused by hydrogen annealing, by treating it with annealing in ozone. The recovery in turn-on voltage indicates that the dense V{sub O} in the semiconducting ISO can be partially filled through the insulator ISO. Controlling molecule penetration in the homogeneous double layer is useful for adjusting the properties of TFTs in advanced oxide electronics.

  2. High-pressure Gas Activation for Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistors at 100 °C

    NASA Astrophysics Data System (ADS)

    Kim, Won-Gi; Tak, Young Jun; Du Ahn, Byung; Jung, Tae Soo; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-03-01

    We investigated the use of high-pressure gases as an activation energy source for amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistors (TFTs). High-pressure annealing (HPA) in nitrogen (N2) and oxygen (O2) gases was applied to activate a-IGZO TFTs at 100 °C at pressures in the range from 0.5 to 4 MPa. Activation of the a-IGZO TFTs during HPA is attributed to the effect of the high-pressure environment, so that the activation energy is supplied from the kinetic energy of the gas molecules. We reduced the activation temperature from 300 °C to 100 °C via the use of HPA. The electrical characteristics of a-IGZO TFTs annealed in O2 at 2 MPa were superior to those annealed in N2 at 4 MPa, despite the lower pressure. For O2 HPA under 2 MPa at 100 °C, the field effect mobility and the threshold voltage shift under positive bias stress were improved by 9.00 to 10.58 cm2/V.s and 3.89 to 2.64 V, respectively. This is attributed to not only the effects of the pressurizing effect but also the metal-oxide construction effect which assists to facilitate the formation of channel layer and reduces oxygen vacancies, served as electron trap sites.

  3. Flexible Zinc-Tin Oxide Thin Film Transistors Operating at 1 kV for Integrated Switching of Dielectric Elastomer Actuators Arrays.

    PubMed

    Marette, Alexis; Poulin, Alexandre; Besse, Nadine; Rosset, Samuel; Briand, Danick; Shea, Herbert

    2017-08-01

    Flexible high-voltage thin-film transistors (HVTFTs) operating at more than 1 kV are integrated with compliant dielectric elastomer actuators (DEA) to create a flexible array of 16 independent actuators. To allow for high-voltage operation, the HVTFT implements a zinc-tin oxide channel, a thick dielectric stack, and an offset gate. At a source-drain bias of 1 kV, the HVTFT has a 20 µA on-current at a gate voltage bias of 30 V. Their electrical characteristics enable the switching of DEAs which require drive voltages of over 1 kV, making control of an array simpler in comparison to the use of external high-voltage switching. These HVTFTs are integrated in a flexible haptic display consisting of a 4 × 4 matrix of DEAs and HVTFTs. Using a single 1.4 kV supply, each DEA is independently switched by its associated HVTFT, requiring only a 30 V gate voltage for full DEA deflection. The 4 × 4 display operates well even when bent to a 5 mm radius of curvature. By enabling DEA switching at low voltages, flexible metal-oxide HVTFTs enable complex flexible systems with dozens to hundreds of independent DEAs for applications in haptics, Braille displays, and soft robotics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Amorphous indium-tin-zinc oxide films deposited by magnetron sputtering with various reactive gases: Spatial distribution of thin film transistor performance

    SciTech Connect

    Jia, Junjun; Torigoshi, Yoshifumi; Shigesato, Yuzo; Kawashima, Emi; Utsuno, Futoshi; Yano, Koki

    2015-01-12

    This work presents the spatial distribution of electrical characteristics of amorphous indium-tin-zinc oxide film (a-ITZO), and how they depend on the magnetron sputtering conditions using O{sub 2}, H{sub 2}O, and N{sub 2}O as the reactive gases. Experimental results show that the electrical properties of the N{sub 2}O incorporated a-ITZO film has a weak dependence on the deposition location, which cannot be explained by the bombardment effect of high energy particles, and may be attributed to the difference in the spatial distribution of both the amount and the activity of the reactive gas reaching the substrate surface. The measurement for the performance of a-ITZO thin film transistor (TFT) also suggests that the electrical performance and device uniformity of a-ITZO TFTs can be improved significantly by the N{sub 2}O introduction into the deposition process, where the field mobility reach to 30.8 cm{sup 2} V{sup –1} s{sup –1}, which is approximately two times higher than that of the amorphous indium-gallium-zinc oxide TFT.

  5. Frequency-Stable Ionic-Type Hybrid Gate Dielectrics for High Mobility Solution-Processed Metal-Oxide Thin-Film Transistors

    PubMed Central

    Heo, Jae Sang; Choi, Seungbeom; Jo, Jeong-Wan; Kang, Jingu; Park, Ho-Hyun; Kim, Yong-Hoon; Park, Sung Kyu

    2017-01-01

    In this paper, we demonstrate high mobility solution-processed metal-oxide thin-film transistors (TFTs) by using a high-frequency-stable ionic-type hybrid gate dielectric (HGD). The HGD gate dielectric, a blend of sol-gel aluminum oxide (AlOx) and poly(4-vinylphenol) (PVP), exhibited high dielectric constant (ε~8.15) and high-frequency-stable characteristics (1 MHz). Using the ionic-type HGD as a gate dielectric layer, an minimal electron-double-layer (EDL) can be formed at the gate dielectric/InOx interface, enhancing the field-effect mobility of the TFTs. Particularly, using the ionic-type HGD gate dielectrics annealed at 350 °C, InOx TFTs having an average field-effect mobility of 16.1 cm2/Vs were achieved (maximum mobility of 24 cm2/Vs). Furthermore, the ionic-type HGD gate dielectrics can be processed at a low temperature of 150 °C, which may enable their applications in low-thermal-budget plastic and elastomeric substrates. In addition, we systematically studied the operational stability of the InOx TFTs using the HGD gate dielectric, and it was observed that the HGD gate dielectric effectively suppressed the negative threshold voltage shift during the negative-illumination-bias stress possibly owing to the recombination of hole carriers injected in the gate dielectric with the negatively charged ionic species in the HGD gate dielectric. PMID:28772972

  6. Carbon Nanotube Thin Film Transistors for Flat Panel Display Application.

    PubMed

    Liang, Xuelei; Xia, Jiye; Dong, Guodong; Tian, Boyuan; Peng, Lianmao

    2016-12-01

    Carbon nanotubes (CNTs) are promising materials for both high performance transistors for high speed computing and thin film transistors for macroelectronics, which can provide more functions at low cost. Among macroelectronics applications, carbon nanotube thin film transistors (CNT-TFT) are expected to be used soon for backplanes in flat panel displays (FPDs) due to their superior performance. In this paper, we review the challenges of CNT-TFT technology for FPD applications. The device performance of state-of-the-art CNT-TFTs are compared with the requirements of TFTs for FPDs. Compatibility of the fabrication processes of CNT-TFTs and current TFT technologies are critically examined. Though CNT-TFT technology is not yet ready for backplane production line of FPDs, the challenges can be overcome by close collaboration between research institutes and FPD manufacturers in the short term.

  7. Thin film hydrous metal oxide catalysts

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.

    1995-01-01

    Thin film (<100 nm) hydrous metal oxide catalysts are prepared by 1) synthesis of a hydrous metal oxide, 2) deposition of the hydrous metal oxide upon an inert support surface, 3) ion exchange with catalytically active metals, and 4) activating the hydrous metal oxide catalysts.

  8. Effect of top gate bias on photocurrent and negative bias illumination stress instability in dual gate amorphous indium-gallium-zinc oxide thin-film transistor

    NASA Astrophysics Data System (ADS)

    Lee, Eunji; Chowdhury, Md Delwar Hossain; Park, Min Sang; Jang, Jin

    2015-12-01

    We have studied the effect of top gate bias (VTG) on the generation of photocurrent and the decay of photocurrent for back channel etched inverted staggered dual gate structure amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film-transistors. Upon 5 min of exposure of 365 nm wavelength and 0.7 mW/cm2 intensity light with negative bottom gate bias, the maximum photocurrent increases from 3.29 to 322 pA with increasing the VTG from -15 to +15 V. By changing VTG from negative to positive, the Fermi level (EF) shifts toward conduction band edge (EC), which substantially controls the conversion of neutral vacancy to charged one (VO → VO+/VO2+ + e-/2e-), peroxide (O22-) formation or conversion of ionized interstitial (Oi2-) to neutral interstitial (Oi), thus electron concentration at conduction band. With increasing the exposure time, more carriers are generated, and thus, maximum photocurrent increases until being saturated. After negative bias illumination stress, the transfer curve shows -2.7 V shift at VTG = -15 V, which gradually decreases to -0.42 V shift at VTG = +15 V. It clearly reveals that the position of electron quasi-Fermi level controls the formation of donor defects (VO+/VO2+/O22-/Oi) and/or hole trapping in the a-IGZO /interfaces.

  9. Effect of top gate potential on bias-stress for dual gate amorphous indium-gallium-zinc-oxide thin film transistor

    SciTech Connect

    Chun, Minkyu; Um, Jae Gwang; Park, Min Sang; Chowdhury, Md Delwar Hossain; Jang, Jin

    2016-07-15

    We report the abnormal behavior of the threshold voltage (V{sub TH}) shift under positive bias Temperature stress (PBTS) and negative bias temperature stress (NBTS) at top/bottom gate in dual gate amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs). It is found that the PBTS at top gate shows negative transfer shift and NBTS shows positive transfer shift for both top and bottom gate sweep. The shift of bottom/top gate sweep is dominated by top gate bias (V{sub TG}), while bottom gate bias (V{sub BG}) is less effect than V{sub TG}. The X-ray photoelectron spectroscopy (XPS) depth profile provides the evidence of In metal diffusion to the top SiO{sub 2}/a-IGZO and also the existence of large amount of In{sup +} under positive top gate bias around top interfaces, thus negative transfer shift is observed. On the other hand, the formation of OH{sup −} at top interfaces under the stress of negative top gate bias shows negative transfer shift. The domination of V{sub TG} both on bottom/top gate sweep after PBTS/NBTS is obviously occurred due to thin active layer.

  10. Effect of top gate potential on bias-stress for dual gate amorphous indium-gallium-zinc-oxide thin film transistor

    NASA Astrophysics Data System (ADS)

    Chun, Minkyu; Um, Jae Gwang; Park, Min Sang; Chowdhury, Md Delwar Hossain; Jang, Jin

    2016-07-01

    We report the abnormal behavior of the threshold voltage (VTH) shift under positive bias Temperature stress (PBTS) and negative bias temperature stress (NBTS) at top/bottom gate in dual gate amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs). It is found that the PBTS at top gate shows negative transfer shift and NBTS shows positive transfer shift for both top and bottom gate sweep. The shift of bottom/top gate sweep is dominated by top gate bias (VTG), while bottom gate bias (VBG) is less effect than VTG. The X-ray photoelectron spectroscopy (XPS) depth profile provides the evidence of In metal diffusion to the top SiO2/a-IGZO and also the existence of large amount of In+ under positive top gate bias around top interfaces, thus negative transfer shift is observed. On the other hand, the formation of OH- at top interfaces under the stress of negative top gate bias shows negative transfer shift. The domination of VTG both on bottom/top gate sweep after PBTS/NBTS is obviously occurred due to thin active layer.

  11. Contact resistance and overlapping capacitance in flexible sub-micron long oxide thin-film transistors for above 100 MHz operation

    SciTech Connect

    Münzenrieder, Niko Salvatore, Giovanni A.; Petti, Luisa; Zysset, Christoph; Büthe, Lars; Vogt, Christian; Cantarella, Giuseppe; Tröster, Gerhard

    2014-12-29

    In recent years new forms of electronic devices such as electronic papers, flexible displays, epidermal sensors, and smart textiles have become reality. Thin-film transistors (TFTs) are the basic blocks of the circuits used in such devices and need to operate above 100 MHz to efficiently treat signals in RF systems and address pixels in high resolution displays. Beyond the choice of the semiconductor, i.e., silicon, graphene, organics, or amorphous oxides, the junctionless nature of TFTs and its geometry imply some limitations which become evident and important in devices with scaled channel length. Furthermore, the mechanical instability of flexible substrates limits the feature size of flexible TFTs. Contact resistance and overlapping capacitance are two parasitic effects which limit the transit frequency of transistors. They are often considered independent, while a deeper analysis of TFTs geometry imposes to handle them together; in fact, they both depend on the overlapping length (L{sub OV}) between source/drain and the gate contacts. Here, we conduct a quantitative analysis based on a large number of flexible ultra-scaled IGZO TFTs. Devices with three different values of overlap length and channel length down to 0.5 μm are fabricated to experimentally investigate the scaling behavior of the transit frequency. Contact resistance and overlapping capacitance depend in opposite ways on L{sub OV}. These findings establish routes for the optimization of the dimension of source/drain contact pads and suggest design guidelines to achieve megahertz operation in flexible IGZO TFTs and circuits.

  12. Multifunctional Hybrid Multilayer Gate Dielectrics with Tunable Surface Energy for Ultralow-Power Organic and Amorphous Oxide Thin-Film Transistors.

    PubMed

    Byun, Hye-Ran; You, Eun-Ah; Ha, Young-Geun

    2017-03-01

    For large-area, printable, and flexible electronic applications using advanced semiconductors, novel dielectric materials with excellent capacitance, insulating property, thermal stability, and mechanical flexibility need to be developed to achieve high-performance, ultralow-voltage operation of thin-film transistors (TFTs). In this work, we first report on the facile fabrication of multifunctional hybrid multilayer gate dielectrics with tunable surface energy via a low-temperature solution-process to produce ultralow-voltage organic and amorphous oxide TFTs. The hybrid multilayer dielectric materials are constructed by iteratively stacking bifunctional phosphonic acid-based self-assembled monolayers combined with ultrathin high-k oxide layers. The nanoscopic thickness-controllable hybrid dielectrics exhibit the superior capacitance (up to 970 nF/cm(2)), insulating property (leakage current densities <10(-7) A/cm(2)), and thermal stability (up to 300 °C) as well as smooth surfaces (root-mean-square roughness <0.35 nm). In addition, the surface energy of the hybrid multilayer dielectrics are easily changed by switching between mono- and bifunctional phosphonic acid-based self-assembled monolayers for compatible fabrication with both organic and amorphous oxide semiconductors. Consequently, the hybrid multilayer dielectrics integrated into TFTs reveal their excellent dielectric functions to achieve high-performance, ultralow-voltage operation (< ± 2 V) for both organic and amorphous oxide TFTs. Because of the easily tunable surface energy, the multifunctional hybrid multilayer dielectrics can also be adapted for various organic and inorganic semiconductors, and metal gates in other device configurations, thus allowing diverse advanced electronic applications including ultralow-power and large-area electronic devices.

  13. All 2D, high mobility, flexible, transparent thin film transistor

    DOEpatents

    Das, Saptarshi; Sumant, Anirudha V.; Roelofs, Andreas

    2017-01-17

    A two-dimensional thin film transistor and a method for manufacturing a two-dimensional thin film transistor includes layering a semiconducting channel material on a substrate, providing a first electrode material on top of the semiconducting channel material, patterning a source metal electrode and a drain metal electrode at opposite ends of the semiconducting channel material from the first electrode material, opening a window between the source metal electrode and the drain metal electrode, removing the first electrode material from the window located above the semiconducting channel material providing a gate dielectric above the semiconducting channel material, and providing a top gate above the gate dielectric, the top gate formed from a second electrode material. The semiconducting channel material is made of tungsten diselenide, the first electrode material and the second electrode material are made of graphene, and the gate dielectric is made of hexagonal boron nitride.

  14. Method for formation of thin film transistors on plastic substrates

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.; Sigmon, Thomas W.; Aceves, Randy C.

    1998-10-06

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics.

  15. Method for formation of thin film transistors on plastic substrates

    DOEpatents

    Carey, P.G.; Smith, P.M.; Sigmon, T.W.; Aceves, R.C.

    1998-10-06

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics. 5 figs.

  16. Graphene-based flexible and stretchable thin film transistors

    NASA Astrophysics Data System (ADS)

    Yan, Chao; Cho, Jeong Ho; Ahn, Jong-Hyun

    2012-07-01

    Graphene has been attracting wide attention owing to its superb electronic, thermal and mechanical properties. These properties allow great applications in the next generation of optoelectronics, where flexibility and stretchability are essential. In this context, the recent development of graphene growth/transfer and its applications in field-effect transistors are involved. In particular, we provide a detailed review on the state-of-the-art of graphene-based flexible and stretchable thin film transistors. We address the principles of fabricating high-speed graphene analog transistors and the key issues of producing an array of graphene-based transistors on flexible and stretchable substrates. It provides a platform for future work to focus on understanding and realizing high-performance graphene-based transistors.

  17. Graphene-based flexible and stretchable thin film transistors.

    PubMed

    Yan, Chao; Cho, Jeong Ho; Ahn, Jong-Hyun

    2012-08-21

    Graphene has been attracting wide attention owing to its superb electronic, thermal and mechanical properties. These properties allow great applications in the next generation of optoelectronics, where flexibility and stretchability are essential. In this context, the recent development of graphene growth/transfer and its applications in field-effect transistors are involved. In particular, we provide a detailed review on the state-of-the-art of graphene-based flexible and stretchable thin film transistors. We address the principles of fabricating high-speed graphene analog transistors and the key issues of producing an array of graphene-based transistors on flexible and stretchable substrates. It provides a platform for future work to focus on understanding and realizing high-performance graphene-based transistors.

  18. Low-Temperature Growth of Indium Oxide Thin Film by Plasma-Enhanced Atomic Layer Deposition Using Liquid Dimethyl(N-ethoxy-2,2-dimethylpropanamido)indium for High-Mobility Thin Film Transistor Application.

    PubMed

    Kim, Hyo Yeon; Jung, Eun Ae; Mun, Geumbi; Agbenyeke, Raphael E; Park, Bo Keun; Park, Jin-Seong; Son, Seung Uk; Jeon, Dong Ju; Park, Sang-Hee Ko; Chung, Taek-Mo; Han, Jeong Hwan

    2016-10-12

    Low-temperature growth of In2O3 films was demonstrated at 70-250 °C by plasma-enhanced atomic layer deposition (PEALD) using a newly synthesized liquid indium precursor, dimethyl(N-ethoxy-2,2-dimethylcarboxylicpropanamide)indium (Me2In(EDPA)), and O2 plasma for application to high-mobility thin film transistors. Self-limiting In2O3 PEALD growth was observed with a saturated growth rate of approximately 0.053 nm/cycle in an ALD temperature window of 90-180 °C. As-deposited In2O3 films showed negligible residual impurity, film densities as high as 6.64-7.16 g/cm(3), smooth surface morphology with a root-mean-square (RMS) roughness of approximately 0.2 nm, and semiconducting level carrier concentrations of 10(17)-10(18) cm(-3). Ultrathin In2O3 channel-based thin film transistors (TFTs) were fabricated in a coplanar bottom gate structure, and their electrical performances were evaluated. Because of the excellent quality of In2O3 films, superior electronic switching performances were achieved with high field effect mobilities of 28-30 and 16-19 cm(2)/V·s in the linear and saturation regimes, respectively. Furthermore, the fabricated TFTs showed excellent gate control characteristics in terms of subthreshold swing, hysteresis, and on/off current ratio. The low-temperature PEALD process for high-quality In2O3 films using the developed novel In precursor can be widely used in a variety of applications such as microelectronics, displays, energy devices, and sensors, especially at temperatures compatible with organic substrates.

  19. Complex oxide thin films for microelectronics

    NASA Astrophysics Data System (ADS)

    Suvorova, Natalya

    The rapid scaling of the device dimensions, namely in metal oxide semiconductor field effect transistor (MOSFET), is reaching its fundamental limit which includes the increase in allowable leakage current due to direct tunneling with decrease of physical thickness of SiO2 gate dielectric. The significantly higher relative dielectric constant (in the range 9--25) of the gate dielectric beyond the 3.9 value of silicon dioxide will allow increasing the physical thickness. Among the choices for the high dielectric constant (K) materials for future generation MOSFET application, barium strontium titanate (BST) and strontium titanate (STO) possess one of the highest attainable K values making them the promising candidates for alternative gate oxide. However, the gate stack engineering does not imply the simple replacement of the SiO2 with the new dielectric. Several requirements should be met for successful integration of a new material. The major one is a production of high level of interface states (Dit) compared to that of SiO 2 on Si. An insertion of a thin SiO2 layer prior the growth of high-K thin film is a simple solution that helps to limit reaction with Si substrate and attains a high quality interface. However, the combination of two thin films reduces the overall K of the dielectric stack. An optimization of the SiO2 underlayer in order to maintain the interface quality yet minimize the effect on K is the focus of this work. The results from our study are presented with emphasis on the key process parameters that improve the dielectric film stack. For in-situ growth characterization of BST and STO films sputter deposited on thermally oxidized Si substrates spectroscopic ellipsometry in combination with time of flight ion scattering and recoil spectrometry have been employed. Studies of material properties have been complemented with analytical electron microscopy. To evaluate the interface quality the electrical characterization has been employed using

  20. Facile and environmentally friendly solution-processed aluminum oxide dielectric for low-temperature, high-performance oxide thin-film transistors.

    PubMed

    Xu, Wangying; Wang, Han; Xie, Fangyan; Chen, Jian; Cao, Hongtao; Xu, Jian-Bin

    2015-03-18

    We developed a facile and environmentally friendly solution-processed method for aluminum oxide (AlOx) dielectrics. The formation and properties of AlOx thin films under various annealing temperatures were intensively investigated by thermogravimetric analysis-differential scanning calorimetry (TGA-DSC), X-ray diffraction (XRD), spectroscopic ellipsometry, atomic force microscopy (AFM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), impedance spectroscopy, and leakage current measurements. The sol-gel-derived AlOx thin film undergoes the decomposition of organic residuals and nitrate groups, as well as conversion of aluminum hydroxides to form aluminum oxide, as the annealing temperature increases. Finally, the AlOx film is used as gate dielectric for a variety of low-temperature solution-processed oxide TFTs. Above all, the In2O3 and InZnO TFTs exhibited high average mobilities of 57.2 cm(2) V(-1) s(-1) and 10.1 cm(2) V(-1) s(-1), as well as an on/off current ratio of ∼10(5) and low operating voltages of 4 V at a maximum processing temperature of 300 °C. Therefore, the solution-processable AlOx could be a promising candidate dielectric for low-cost, low-temperature, and high-performance oxide electronics.

  1. Mechanical force sensors using organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Darlinski, Grzegorz; Böttger, Ulrich; Waser, Rainer; Klauk, Hagen; Halik, Marcus; Zschieschang, Ute; Schmid, Günter; Dehm, Christine

    2005-05-01

    The pressure dependence of pentacene (C22H14) transistors with solution-processed polyvinylphenol gate dielectric on glass substrates is investigated by applying uniaxial mechanical pressure with a needle. We found that organic thin-film transistors are sensitive to applied pressure inherently. The measurements reveal a reversible current dependence of the transfer characteristics where the drain current is switching between two states. Experimental and simulation results suggest that switch-on voltage and interface resistance are affected. The change takes seconds, hinting at trap states being responsible for the effect.

  2. Organic Thin-Film Transistors with Enhanced Sensing Capabilities

    NASA Astrophysics Data System (ADS)

    Angione, M. Daniela; Marinelli, Francesco; Dell'Aquila, Antonio; Luzio, Alessandro; Pignataro, Bruno; Torsi, Luisa

    Organic thin-film transistors, used as sensing devices, have been attracting quite a considerable interest lately as they offer advantages such as multi parameter behaviour and possibility to be quite easily molecularly tuned for the detection of specific analytes. Here, a study on the dependences of the devices responses on important parameters such as the active layer thickness and its morphology as well as on the transistor channel length is presented. To introduce the least number of variables the system chosen for this study is quite a simple and well assessed one being based on a thiophene oligomer active layer exposed to 1-butanol vapours.

  3. All-Aluminum Thin Film Transistor Fabrication at Room Temperature.

    PubMed

    Yao, Rihui; Zheng, Zeke; Zeng, Yong; Liu, Xianzhe; Ning, Honglong; Hu, Shiben; Tao, Ruiqiang; Chen, Jianqiu; Cai, Wei; Xu, Miao; Wang, Lei; Lan, Linfeng; Peng, Junbiao

    2017-02-23

    Bottom-gate all-aluminum thin film transistors with multi conductor/insulator nanometer heterojunction were investigated in this article. Alumina (Al₂O₃) insulating layer was deposited on the surface of aluminum doping zinc oxide (AZO) conductive layer, as one AZO/Al₂O₃ heterojunction unit. The measurements of transmittance electronic microscopy (TEM) and X-ray reflectivity (XRR) revealed the smooth interfaces between ~2.2-nm-thick Al₂O₃ layers and ~2.7-nm-thick AZO layers. The devices were entirely composited by aluminiferous materials, that is, their gate and source/drain electrodes were respectively fabricated by aluminum neodymium alloy (Al:Nd) and pure Al, with Al₂O₃/AZO multilayered channel and AlOx:Nd gate dielectric layer. As a result, the all-aluminum TFT with two Al₂O₃/AZO heterojunction units exhibited a mobility of 2.47 cm²/V·s and an Ion/Ioff ratio of 10⁶. All processes were carried out at room temperature, which created new possibilities for green displays industry by allowing for the devices fabricated on plastic-like substrates or papers, mainly using no toxic/rare materials.

  4. All-Aluminum Thin Film Transistor Fabrication at Room Temperature

    PubMed Central

    Yao, Rihui; Zheng, Zeke; Zeng, Yong; Liu, Xianzhe; Ning, Honglong; Hu, Shiben; Tao, Ruiqiang; Chen, Jianqiu; Cai, Wei; Xu, Miao; Wang, Lei; Lan, Linfeng; Peng, Junbiao

    2017-01-01

    Bottom-gate all-aluminum thin film transistors with multi conductor/insulator nanometer heterojunction were investigated in this article. Alumina (Al2O3) insulating layer was deposited on the surface of aluminum doping zinc oxide (AZO) conductive layer, as one AZO/Al2O3 heterojunction unit. The measurements of transmittance electronic microscopy (TEM) and X-ray reflectivity (XRR) revealed the smooth interfaces between ~2.2-nm-thick Al2O3 layers and ~2.7-nm-thick AZO layers. The devices were entirely composited by aluminiferous materials, that is, their gate and source/drain electrodes were respectively fabricated by aluminum neodymium alloy (Al:Nd) and pure Al, with Al2O3/AZO multilayered channel and AlOx:Nd gate dielectric layer. As a result, the all-aluminum TFT with two Al2O3/AZO heterojunction units exhibited a mobility of 2.47 cm2/V·s and an Ion/Ioff ratio of 106. All processes were carried out at room temperature, which created new possibilities for green displays industry by allowing for the devices fabricated on plastic-like substrates or papers, mainly using no toxic/rare materials. PMID:28772579

  5. Carbon Nanotubes, Semiconductor Nanowires and Graphene for Thin Film Transistor and Circuit Applications

    NASA Astrophysics Data System (ADS)

    Pribat, Didier; Cojocaru, Costel-Sorin

    2011-03-01

    In this paper, we briefly review the use of carbon nanotubes and semiconductor nanowires, which represent a new class of nanomaterials actively studied for thin film transistors and electronics applications. Although these nanomaterials are usually synthesised at moderate to high temperatures, they can be transferred to any kind of substrate after growth, paving the way for the fabrication of flexible displays and large area electronics systems on plastic. Over the past few years, the field has progressed well beyond the realisation of elementary devices, since active matrix displays driven by nanowire thin film transistors have been demonstrated, as well as the fabrication of medium scale integrated circuits based on random arrays of carbon nanotubes. Also, graphene, a new nanomaterial has appeared in the landscape; although it is a zero gap semiconductor, it can still be used to make transistors, provided narrow ribbons or bilayers are used. Graphene is also a serious contender for the replacement of oxide-based transparent conducting films.

  6. Thiophene polymer semiconductors for organic thin-film transistors.

    PubMed

    Ong, Beng S; Wu, Yiliang; Li, Yuning; Liu, Ping; Pan, Hualong

    2008-01-01

    Printed organic thin-film transistors (OTFTs) have received great interests as potentially low-cost alternative to silicon technology for application in large-area, flexible, and ultra-low-cost electronics. One of the critical materials for TFTs is semiconductor, which has a dominant impact on the transistor properties. We review here the structural studies and design of thiophene-based polymer semiconductors with respect to solution processability, ambient stability, molecular self-organization, and field-effect transistor properties for OTFT applications. We show that through judicial monomer design, delicately controlled pi-conjugation, and strategically positioned pendant side-chain distribution, novel solution-processable thiophene polymer semiconductors with excellent self-organization ability to form extended lamellar pi-stacking orders can be developed. OTFTs using semiconductors of this nature processed in ambient conditions have provided excellent field-effect transistor properties.

  7. Nonvolatile memory thin-film transistors using biodegradable chicken albumen gate insulator and oxide semiconductor channel on eco-friendly paper substrate.

    PubMed

    Kim, So-Jung; Jeon, Da-Bin; Park, Jung-Ho; Ryu, Min-Ki; Yang, Jong-Heon; Hwang, Chi-Sun; Kim, Gi-Heon; Yoon, Sung-Min

    2015-03-04

    Nonvolatile memory thin-film transistors (TFTs) fabricated on paper substrates were proposed as one of the eco-friendly electronic devices. The gate stack was composed of chicken albumen gate insulator and In-Ga-Zn-O semiconducting channel layers. All the fabrication processes were performed below 120 °C. To improve the process compatibility of the synthethic paper substrate, an Al2O3 thin film was introduced as adhesion and barrier layers by atomic layer deposition. The dielectric properties of biomaterial albumen gate insulator were also enhanced by the preparation of Al2O3 capping layer. The nonvolatile bistabilities were realized by the switching phenomena of residual polarization within the albumen thin film. The fabricated device exhibited a counterclockwise hysteresis with a memory window of 11.8 V, high on/off ratio of approximately 1.1 × 10(6), and high saturation mobility (μsat) of 11.5 cm(2)/(V s). Furthermore, these device characteristics were not markedly degraded even after the delamination and under the bending situration. When the curvature radius was set as 5.3 cm, the ION/IOFF ratio and μsat were obtained to be 5.9 × 10(6) and 7.9 cm(2)/(V s), respectively.

  8. Heterotermetallic indium lithium halostannates: low-temperature single-source precursors for tin-rich indium tin oxides and their application for thin-film transistors.

    PubMed

    Samedov, Kerim; Aksu, Yilmaz; Driess, Matthias

    2012-06-18

    The syntheses and structural elucidation of dimeric [Sn(OCyHex)(2)] (1), its corresponding (cyclohexoxy)alkalistannates(II) [{M(OCyHex)(3)Sn}(2)] (M = Li (2), Na (3), K (4)), and of the first heteroleptic heterotermetallic Li/In/Sn-haloalkoxide clusters [X(2)In{LiSn(2)(OCyHex)(6)}] (X = Br (5), Cl (6)) with a double seco-norcubane core are reported. They represent suitable precursors for new amorphous indium tin oxide (ITO) materials as transparent conducting oxides with drastically reduced concentrations of expensive indium, while maintaining their high electrical performance. In fact, compounds 5 and 6 were successfully degraded under dry synthetic air at relatively low temperature, resulting in new semiconducting tin-rich ITOs homogeneously dispersed in a tin oxide/lithium oxide matrix. The obtained particles were investigated and characterised by different analytical techniques, such as powder XRD, IR spectroscopy, SEM, TEM and energy-dispersive X-ray spectroscopy (EDX). The analytical data confirm that the final materials consist of tin-containing indium oxide embedded in an amorphous tin oxide matrix. The typical broadening and shift of the observed indium oxide reflections to higher 2θ values in the powder XRD pattern clearly indicated that tin centres were successfully incorporated into the In(2)O(3) lattice and partially occupied In(3+) sites. Investigations by EDX mapping proved that Sn was homogeneously distributed in the final materials. Thin-film field-effect transistors (FETs) were fabricated by spin-coating of silicon wafers with solutions of 5 in toluene and subsequent calcination under dry air (25-700 °C). The FETs prepared with precursor 5 exhibited excellent performances, as shown by a charge-carrier mobility of 6.36×10(-1)  cm(2)  V(-1)  s (calcination at 250 °C) and an on/off current ratio of 10(6). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Influence of source and drain contacts on the properties of indium-gallium-zinc-oxide thin-film transistors based on amorphous carbon nanofilm as barrier layer.

    PubMed

    Luo, Dongxiang; Xu, Hua; Zhao, Mingjie; Li, Min; Xu, Miao; Zou, Jianhua; Tao, Hong; Wang, Lei; Peng, Junbiao

    2015-02-18

    Amorphous indium-gallium-zinc-oxide thin film transistors (α-IGZO TFTs) with damage-free back channel wet-etch (BCE) process were achieved by introducing a carbon nanofilm as a barrier layer. We investigate the effects of different source-and-drain (S/D) materials on TFT performance. We find the TFT with Ti/C S/D electrodes exhibits a superior performance with higher output current, lower threshold voltage, and higher effective electron mobility compared to that of Mo/C S/D electrodes. Transmittance electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) are employed to analysis the interfacial interaction between S/D metal/C/α-IGZO layers. The results indicate that the better performance of TFTs with Ti/C electrodes should be attributed to the formations of Ti-C and Ti-O at the Ti/C-contact regions, which lead to a lower contact resistance, whereas Mo film is relatively stable and does not react easily with C nanofilm, resulting in a nonohmic contact behavior between Mo/C and α-IGZO layer. However, both kinds of α-IGZO TFTs show good stability under thermal bias stress, indicating that the inserted C nanofilms could avoid the impact on the α-IGZO channel regions during S/D electrodes formation. Finally, we successfully fabricated a high-definition active-matrix organic lighting emitting diode prototype driven by α-IGZO TFTs with Ti/C electrodes in a pilot line.

  10. Effect of top gate bias on photocurrent and negative bias illumination stress instability in dual gate amorphous indium-gallium-zinc oxide thin-film transistor

    SciTech Connect

    Lee, Eunji; Chowdhury, Md Delwar Hossain; Park, Min Sang; Jang, Jin

    2015-12-07

    We have studied the effect of top gate bias (V{sub TG}) on the generation of photocurrent and the decay of photocurrent for back channel etched inverted staggered dual gate structure amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film-transistors. Upon 5 min of exposure of 365 nm wavelength and 0.7 mW/cm{sup 2} intensity light with negative bottom gate bias, the maximum photocurrent increases from 3.29 to 322 pA with increasing the V{sub TG} from −15 to +15 V. By changing V{sub TG} from negative to positive, the Fermi level (E{sub F}) shifts toward conduction band edge (E{sub C}), which substantially controls the conversion of neutral vacancy to charged one (V{sub O} → V{sub O}{sup +}/V{sub O}{sup 2+} + e{sup −}/2e{sup −}), peroxide (O{sub 2}{sup 2−}) formation or conversion of ionized interstitial (O{sub i}{sup 2−}) to neutral interstitial (O{sub i}), thus electron concentration at conduction band. With increasing the exposure time, more carriers are generated, and thus, maximum photocurrent increases until being saturated. After negative bias illumination stress, the transfer curve shows −2.7 V shift at V{sub TG} = −15 V, which gradually decreases to −0.42 V shift at V{sub TG} = +15 V. It clearly reveals that the position of electron quasi-Fermi level controls the formation of donor defects (V{sub O}{sup +}/V{sub O}{sup 2+}/O{sub 2}{sup 2−}/O{sub i}) and/or hole trapping in the a-IGZO /interfaces.

  11. Effects of Ga:N addition on the electrical performance of zinc tin oxide thin film transistor by solution-processing.

    PubMed

    Ahn, Byung Du; Jeon, Hye Ji; Park, Jin-Seong

    2014-06-25

    This paper addressed the effect of gallium nitrate hydrate addition on thin film transistor (TFT) performance and positive bias stability of amorphous zinc tin oxide (ZTO) TFTs by solution processing, Further, the mechanisms responsible for chemical properties and electronic band structure are explored. A broad exothermic peak accompanied by weight loss appeared in the range from about 350 to 570 °C for the ZTO solution; the thermal reaction of the Ga-ZTO:N solution was completed at 520 °C. This is because the gallium nitrate hydrate precursor promoted the decomposition and dehydroxylation reaction for Zn(CH3COO)2·2H2O and/or SnCl2·2H2O precursors. The concentrations of carbon and chloride in gallium nitrate hydrate added ZTO films annealed at 400 °C have a lower value (C 0.65, Cl 0.65 at. %) compared with those of ZTO films (C 3.15, Cl 0.82 at. %). Absorption bands at 416, 1550, and 1350 cm(-1) for GaZTO:N films indicated the presence of ZnGa2O4, N-H, and N═O groups by Fourier transform infrared spectroscopy measurement, respectively. As a result, an inverted staggered Ga-ZTO:N TFT exhibited a mobility of 4.84 cm(2) V(-1) s(-1) in the saturation region, a subthreshold swing of 0.35 V/decade, and a threshold gate voltage (Vth) of 0.04 V. In addition, the instability of Vth values of the ZTO TFTs under positive bias stress conditions was suppressed by adding Ga and N from 13.6 to 3.17 V, which caused a reduction in the oxygen-related defects located near the conduction band.

  12. Pentacene Organic Thin-Film Transistors on Flexible Paper and Glass Substrates

    DTIC Science & Technology

    2014-02-12

    including organic light emit- ting diodes (OLEDs), organic photovoltaic (OPV) devices and organic thin - film transistors (OTFTs). Most organic electron- ics...FEB 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Pentacene organic thin - film transistors on flexible...Nanotechnology 25 (2014) 094005 (7pp) doi:10.1088/0957-4484/25/9/094005 Pentacene organic thin - film transistors on flexible paper and glass substrates Adam T

  13. Thin-Film Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Chen, Xin; Wu, Nai-Juan; Ignatiev, Alex

    2009-01-01

    The development of thin-film solid oxide fuel cells (TFSOFCs) and a method of fabricating them have progressed to the prototype stage. This can result in the reduction of mass, volume, and the cost of materials for a given power level.

  14. The Influence of Hafnium Doping on Density of States in Zinc Oxide Thin-Film Transistors Deposited via Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Ding, Xingwei; Qin, Cunping; Song, Jiantao; Zhang, Jianhua; Jiang, Xueyin; Zhang, Zhilin

    2017-01-01

    Thin-film transistors (TFTs) with atomic layer deposition (ALD) HfZnO (HZO) as channel layer and Al2O3 as gate insulator were successfully fabricated. Compared with ZnO-TFT, the stability of HZO-TFT was obviously improved as Hf doping can suppress the generation of oxygen related defects. The transfer characteristics of TFTs at different temperatures were also investigated, and temperature stability enhancement was observed for the TFT with Hf doping. The density of states (DOS) was calculated based on the experimentally obtained E a, which can explain the experimental observation. A high-field effect mobility of 9.4 cm2/Vs, a suitable turn-on voltage of 0.26 V, a high on/off ratio of over 107 and a steep sub-threshold swing of 0.3 V/decade were obtained in HZO-TFT. The results showed that temperature stability enhancement in HfZnO thin-film transistors are attributed to the smaller DOS.

  15. The Influence of Hafnium Doping on Density of States in Zinc Oxide Thin-Film Transistors Deposited via Atomic Layer Deposition.

    PubMed

    Ding, Xingwei; Qin, Cunping; Song, Jiantao; Zhang, Jianhua; Jiang, Xueyin; Zhang, Zhilin

    2017-12-01

    Thin-film transistors (TFTs) with atomic layer deposition (ALD) HfZnO (HZO) as channel layer and Al2O3 as gate insulator were successfully fabricated. Compared with ZnO-TFT, the stability of HZO-TFT was obviously improved as Hf doping can suppress the generation of oxygen related defects. The transfer characteristics of TFTs at different temperatures were also investigated, and temperature stability enhancement was observed for the TFT with Hf doping. The density of states (DOS) was calculated based on the experimentally obtained E a, which can explain the experimental observation. A high-field effect mobility of 9.4 cm(2)/Vs, a suitable turn-on voltage of 0.26 V, a high on/off ratio of over 10(7) and a steep sub-threshold swing of 0.3 V/decade were obtained in HZO-TFT. The results showed that temperature stability enhancement in HfZnO thin-film transistors are attributed to the smaller DOS.

  16. Molecular orientation dependence of hole-injection barrier in pentacene thin film on the Au surface in organic thin film transistor

    NASA Astrophysics Data System (ADS)

    Ihm, Kyuwook; Kim, Bongsoo; Kang, Tai-Hee; Kim, Ki-Jeong; Joo, Min Ho; Kim, Tae Hyeong; Yoon, Sang Soo; Chung, Sukmin

    2006-07-01

    We have investigated the effects of a buffer layer insertion on the performance of the pentacene based thin film transistor with a bottom contact structure. When the pentacene molecules have a standing up coordination on the Au surface that is modified by the benzenethiol or methanethiol, the transition region in the pentacene thin film is removed along the boundary between the Au and silicon oxide region, and the hole-injection barrier decreases by 0.4eV. Pentacene on various surfaces showed that the highly occupied molecular level is 0.2-0.4eV lower in the standing up coordination than in the lying down coordination.

  17. Organic thin-film transistors for chemical and biological sensing.

    PubMed

    Lin, Peng; Yan, Feng

    2012-01-03

    Organic thin-film transistors (OTFTs) show promising applications in various chemical and biological sensors. The advantages of OTFT-based sensors include high sensitivity, low cost, easy fabrication, flexibility and biocompatibility. In this paper, we review the chemical sensors and biosensors based on two types of OTFTs, including organic field-effect transistors (OFETs) and organic electrochemical transistors (OECTs), mainly focusing on the papers published in the past 10 years. Various types of OTFT-based sensors, including pH, ion, glucose, DNA, enzyme, antibody-antigen, cell-based sensors, dopamine sensor, etc., are classified and described in the paper in sequence. The sensing mechanisms and the detection limits of the devices are described in details. It is expected that OTFTs may have more important applications in chemical and biological sensing with the development of organic electronics.

  18. Modeling of organic thin film transistors: Effect of contact resistances

    NASA Astrophysics Data System (ADS)

    Natali, Dario; Fumagalli, Luca; Sampietro, Marco

    2007-01-01

    Field effect transistors require an Ohmic source contact and an Ohmic drain contact for ideal operation. In many real situations, however, and specifically in organic devices, the injection of charge carriers from metals into semiconductors can be an inefficient process that is non-Ohmic. This has an adverse impact on the performance of thin film transistors and makes the analysis of electrical measurements a complex task because contact effects need to be disentangled from transistor properties. This paper deals with the effects of non-Ohmic contacts on the modeling of organic transistors and gives specific rules on how to extract the real transistor parameters (mobility, threshold voltage, and contact resistances) using only electrical measurements. The method consists of a differential analysis of the transfer characteristic curves (current versus gate voltage) and exploits the different functional dependences of current on gate voltage which is induced by the presence of contact resistances. This paper fully covers the situations from constant carrier mobility to power law gate-voltage-dependent mobility, from constant contact resistance to gate-voltage-dependent contact resistance, and in the linear and in the saturation regime of the operation of the transistor. It also gives important criteria for the validation of the extracted parameters to assess whether the conditions for the application of the method are fulfilled. Examples of application to organic transistors showing various behaviors are given and discussed.

  19. Fabrication of Organic Thin Film Transistors Using Layer-By-Layer Assembly (Preprint)

    DTIC Science & Technology

    2007-03-01

    thin-film transistors (TFTs) have received considerable attention as a low- cost, light-weight, flexible alternative to traditional amorphous silicon ...as the cathode at which the oxidized PEDOT + molecules are reduced back to their neutral species (i.e. de-doped). The protons generated at the...bias results in a faster depletion rate and a larger Ion/off ratio due to a larger driving force for ion migration and PEDOT de-doping. Similarly

  20. Control of trap density in channel layer for the higher stability of oxide thin film transistors under gate bias stress

    NASA Astrophysics Data System (ADS)

    Moon, Y. K.; Kim, W. S.; Kim, K. T.; Han, D. S.; Shin, S. Y.; Park, J. W.

    2011-12-01

    In this study, we investigated turn-on voltage (VON) stability of oxide-based TFTs under constant voltage stress for the TFTs including intrinsic ZnO, Hf-doped ZnO, and Hf-Zn-Sn-O channel layer. Also, to verify the effects of interfacial trap density on the TFTs stability, we employed SiNX and SiO2/SiNX as gate insulator, respectively. We found that the low trap density of the TFTs, including the interfacial trap density between channel and gate insulator, and oxide semiconductor bulk trap density is intimately related to excellent gate bias and temperature stability.

  1. Effect of direct current sputtering power on the behavior of amorphous indium-gallium-zinc-oxide thin-film transistors under negative bias illumination stress: A combination of experimental analyses and device simulation

    SciTech Connect

    Jang, Jun Tae; Kim, Dong Myong; Choi, Sung-Jin; Kim, Dae Hwan E-mail: drlife@kookmin.ac.kr; Park, Jozeph; Ahn, Byung Du; Kim, Hyun-Suk E-mail: drlife@kookmin.ac.kr

    2015-03-23

    The effect of direct current sputtering power of indium-gallium-zinc-oxide (IGZO) on the performance and stability of the corresponding thin-film transistor devices was studied. The field effect mobility increases as the IGZO sputter power increases, at the expense of device reliability under negative bias illumination stress (NBIS). Device simulation based on the extracted sub-gap density of states indicates that the field effect mobility is improved as a result of the number of acceptor-like states decreasing. The degradation by NBIS is suggested to be induced by the formation of peroxides in IGZO rather than charge trapping.

  2. Characterization of novel BaZnSnO thin films by solution process and applications in thin film transistors

    SciTech Connect

    Li, Jun; Huang, Chuan-Xin; Zhang, Jian-Hua; Zhu, Wen-Qing; Jiang, Xue-Yin; Zhang, Zhi-Lin

    2015-08-15

    Graphical abstract: This work reports the Ba content on thin film transistor based on a novel BaZnSnO semiconductor using solution process. - Highlights: • No reports about BaZnSnO thin film using solution process. • BaZnSnO thin film transistor (TFT) was firstly fabricated. • BaZnSnO-TFT shows a acceptable performace. • Influence of Ba content on BaZnSnO-TFT. - Abstract: A novel BaZnSnO semiconductor is fabricated using solution process and the influence of Ba addition on the structure, the chemical state of oxygen and electrical performance of BaZnSnO thin films are investigated. A high performance BaZnSnO-based thin film transistor with 15 mol% Ba is obtained, showing a saturation mobility of 1.94 cm{sup 2}/V s, a threshold voltage of 3.6 V, an on/off current ratio of 6.2 × 10{sup 6}, a subthreshold swing of 0.94 V/decade, and a good bias stability. Transistors with solution processed BaZnSnO films are promising candidates for the development of future large-area, low-cost and high-performance electronic devices.

  3. Correlation between microstructure, electronic properties and flicker noise in organic thin film transistors

    NASA Astrophysics Data System (ADS)

    Jurchescu, Oana D.; Hamadani, Behrang H.; Xiong, Hao D.; Park, Sungkyu K.; Subramanian, Sankar; Zimmerman, Neil M.; Anthony, John E.; Jackson, Thomas N.; Gundlach, David J.

    2008-03-01

    We report on observations of a correlation between the microstructure of organic thin films and their electronic properties when incorporated in field-effect transistors. We present a simple method to induce enhanced grain growth in solution-processed thin film transistors by chemical modification of the source-drain contacts. This leads to improved device performance and gives a unique thin film microstructure for fundamental studies concerning the effect of structural order on the charge transport. We demonstrate that the 1/f flicker noise is sensitive to organic semiconductor thin film microstructure changes in the transistor channel.

  4. Luminescent sulfides and solution-deposited oxide thin films

    NASA Astrophysics Data System (ADS)

    Anderson, Jeremy T.

    Solid state luminescent sulfides are prepared as powders in order to elucidate the relationship between structure and light emission. While the sulfides studied in this dissertation are known phosphors, materials are investigated in a variety of new ways. Elementary properties and structures of MgS are reviewed, and preparation of MgS is described with sufficient detail that it may be reproduced in laboratories worldwide. Luminescence of MgS:Eu is evaluated, primarily by interpretation of published work. Solid pellets of MgS:Eu are created for the purpose of depositing thin-film layers by physical vapor deposition, and incorporating the phosphor layer within ACTFEL structures. Fabricated devices are found to exhibit bright ACTFEL luminescence--the brightest known for MgS. Similarly, MgS films are doped with a variety of lanthanide atoms to investigate the hot-electron distribution in MgS layers during device operation. The system BaGa2S4--SrGa 2S4 is evaluated for mutual solid phase solubility. Addition of Eu2+ causes each of these phases to photoluminescence. The emission energies (and therefore colors) are adjusted according to composition. Thin-film oxides are deposited from solution sources. Solution-deposited ZnO serves as the semiconductor layer in transparent thin-film transistor devices. A new class of dielectric material is also developed by solution methods. HafSOx and ZircSOx films, and derivative compositions, are evaluated in simple capacitor structures and demonstrated in functioning transistor devices. High-resolution nanolaminate structures are also constructed from this class of materials. From the knowledge and experience of developing oxide thin-films, more general chemical strategies are expressed.

  5. Improvement in the electrical performance and bias-stress stability of dual-active-layered silicon zinc oxide/zinc oxide thin-film transistor

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Rong; Zhao, Gao-Wei; Lai, Pai-To; Yao, Ruo-He

    2016-08-01

    Si-doped zinc oxide (SZO) thin films are deposited by using a co-sputtering method, and used as the channel active layers of ZnO-based TFTs with single and dual active layer structures. The effects of silicon content on the optical transmittance of the SZO thin film and electrical properties of the SZO TFT are investigated. Moreover, the electrical performances and bias-stress stabilities of the single- and dual-active-layer TFTs are investigated and compared to reveal the effects of the Si doping and dual-active-layer structure. The average transmittances of all the SZO films are about 90% in the visible light region of 400 nm-800 nm, and the optical band gap of the SZO film gradually increases with increasing Si content. The Si-doping can effectively suppress the grain growth of ZnO, revealed by atomic force microscope analysis. Compared with that of the undoped ZnO TFT, the off-state current of the SZO TFT is reduced by more than two orders of magnitude and it is 1.5 × 10-12 A, and thus the on/off current ratio is increased by more than two orders of magnitude. In summary, the SZO/ZnO TFT with dual-active-layer structure exhibits a high on/off current ratio of 4.0 × 106 and superior stability under gate-bias and drain-bias stress. Projected supported by the National Natural Science Foundation of China (Grant Nos. 61076113 and 61274085), the Natural Science Foundation of Guangdong Province (Grant No. 2016A030313474), and the University Development Fund (Nanotechnology Research Institute, Grant No. 00600009) of the University of Hong Kong, China.

  6. Correlation between active layer thickness and ambient gas stability in IGZO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Gao, Xu; Lin, Meng-Fang; Mao, Bao-Hua; Shimizu, Maki; Mitoma, Nobuhiko; Kizu, Takio; Ou-Yang, Wei; Nabatame, Toshihide; Liu, Zhi; Tsukagoshi, Kazuhito; Wang, Sui-Dong

    2017-01-01

    Decreasing the active layer thickness has been recently reported as an alternative way to achieve fully depleted oxide thin-film transistors for the realization of low-voltage operations. However, the correlation between the active layer thickness and device resistivity to environmental changes is still unclear, which is important for the optimized design of oxide thin-film transistors. In this work, the ambient gas stability of IGZO thin-film transistors is found to be strongly correlated to the IGZO thickness. The TFT with the thinnest IGZO layer shows the highest intrinsic electron mobility in a vacuum, which is greatly reduced after exposure to O2/air. The device with a thick IGZO layer shows similar electron mobility in O2/air, whereas the mobility variation measured in the vacuum is absent. The thickness dependent ambient gas stability is attributed to a high-mobility region in the IGZO surface vicinity with less sputtering-induced damage, which will become electron depleted in O2/air due to the electron transfer to adsorbed gas molecules. The O2 adsorption and deduced IGZO surface band bending is demonstrated by the ambient-pressure x-ray photoemission spectroscopy results.

  7. Ferroelectric/Dielectric Double Gate Insulator Spin-Coated Using Barium Titanate Nanocrystals for an Indium Oxide Nanocrystal-Based Thin-Film Transistor.

    PubMed

    Pham, Hien Thu; Yang, Jin Ho; Lee, Don-Sung; Lee, Byoung Hun; Jeong, Hyun-Dam

    2016-03-23

    Barium titanate nanocrystals (BT NCs) were prepared under solvothermal conditions at 200 °C for 24 h. The shape of the BT NCs was tuned from nanodot to nanocube upon changing the polarity of the alcohol solvent, varying the nanosize in the range of 14-22 nm. Oleic acid-passivated NCs showed good solubility in a nonpolar solvent. The effect of size and shape of the BT NCs on the ferroelectric properties was also studied. The maximum polarization value of 7.2 μC/cm(2) was obtained for the BT-5 NC thin film. Dielectric measurements of the films showed comparable dielectric constant values of BT NCs over 1-100 kHz without significant loss. Furthermore, the bottom gate In2O3 NC thin film transistors exhibited outstanding device performance with a field-effect mobility of 11.1 cm(2) V(-1) s(-1) at a low applied gate voltage with BT-5 NC/SiO2 as the gate dielectric. The low-density trapped state was observed at the interface between the In2O3 NC semiconductor and the BT-5 NCs/SiO2 dielectric film. Furthermore, compensation of the applied gate field by an electric dipole-induced dipole field within the BT-5 NC film was also observed.

  8. A thermalization energy analysis of the threshold voltage shift in amorphous indium gallium zinc oxide thin film transistors under simultaneous negative gate bias and illumination

    NASA Astrophysics Data System (ADS)

    Flewitt, A. J.; Powell, M. J.

    2014-04-01

    It has been previously observed that thin film transistors (TFTs) utilizing an amorphous indium gallium zinc oxide (a-IGZO) semiconducting channel suffer from a threshold voltage shift when subjected to a negative gate bias and light illumination simultaneously. In this work, a thermalization energy analysis has been applied to previously published data on negative bias under illumination stress (NBIS) in a-IGZO TFTs. A barrier to defect conversion of 0.65-0.75 eV is extracted, which is consistent with reported energies of oxygen vacancy migration. The attempt-to-escape frequency is extracted to be 106-107 s-1, which suggests a weak localization of carriers in band tail states over a 20-40 nm distance. Models for the NBIS mechanism based on charge trapping are reviewed and a defect pool model is proposed in which two distinct distributions of defect states exist in the a-IGZO band gap: these are associated with states that are formed as neutrally charged and 2+ charged oxygen vacancies at the time of film formation. In this model, threshold voltage shift is not due to a defect creation process, but to a change in the energy distribution of states in the band gap upon defect migration as this allows a state formed as a neutrally charged vacancy to be converted into one formed as a 2+ charged vacancy and vice versa. Carrier localization close to the defect migration site is necessary for the conversion process to take place, and such defect migration sites are associated with conduction and valence band tail states. Under negative gate bias stressing, the conduction band tail is depleted of carriers, but the bias is insufficient to accumulate holes in the valence band tail states, and so no threshold voltage shift results. It is only under illumination that the quasi Fermi level for holes is sufficiently lowered to allow occupation of valence band tail states. The resulting charge localization then allows a negative threshold voltage shift, but only under conditions

  9. Detection of saliva-range glucose concentrations using organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Elkington, D.; Belcher, W. J.; Dastoor, P. C.; Zhou, X. J.

    2014-07-01

    We describe the development of a glucose sensor through direct incorporation of an enzyme (glucose oxidase) into the gate of an organic thin film transistor (OTFT). We show that glucose diffusion is the key determinant of the device response time and present a mechanism of glucose sensing in these devices that involves protonic doping of the transistor channel via enzymatic oxidation of glucose. The integrated OTFT sensor is sensitive across 4 decades of glucose concentration; a range that encompasses both the blood and salivary glucose concentration levels. As such, this work acts as a proof-of-concept for low-cost printed biosensors for salivary glucose.

  10. Detection of saliva-range glucose concentrations using organic thin-film transistors

    SciTech Connect

    Elkington, D.; Belcher, W. J.; Dastoor, P. C.; Zhou, X. J.

    2014-07-28

    We describe the development of a glucose sensor through direct incorporation of an enzyme (glucose oxidase) into the gate of an organic thin film transistor (OTFT). We show that glucose diffusion is the key determinant of the device response time and present a mechanism of glucose sensing in these devices that involves protonic doping of the transistor channel via enzymatic oxidation of glucose. The integrated OTFT sensor is sensitive across 4 decades of glucose concentration; a range that encompasses both the blood and salivary glucose concentration levels. As such, this work acts as a proof-of-concept for low-cost printed biosensors for salivary glucose.

  11. Process Condition Considered Preparation and Characterization of Plasma Polymerized Methyl Methacrylate Thin Films for Organic Thin Film Transistor Application

    NASA Astrophysics Data System (ADS)

    Lee, Se-Hyun; Lee, Boong-Joo; Lim, Young-Taek; Lim, Jae-Sung; Lee, Sunwoo; Ochiai, Shizuyasu; Yi, Jun-Sin; Shin, Paik-Kyun

    2012-02-01

    Plasma polymerized methyl methaclylate (ppMMA) thin films were prepared with various process conditions such as inductively coupled plasma (ICP) power, substrate bias power, working pressure, substrate heating temperature, substrate position, and monomer flow rate. Thickness, surface morphology, dielectric constant, and leakage current of the ppMMA thin films were investigated for application to organic thin film transistor as gate dielectric. Deposition rate of over 8.6 nm/min, dielectric constant of 3.4, and leakage current density of 8.9 ×10-9 A/cm-2 at electric field of 1 MV/cm were achieved for the ppMMA thin film prepared at the optimized process condition: plasma power of RF 100 W; Ar flow rate of 20 sccm; working pressure of 5 mTorr; substrate temperature of 100 °C substrate position of 100 mm. The ppMMA thin film was then applied to pentacene based organic thin film transistor (OTFT) device fabrication. The OTFT device with 80 nm thick pentacene semiconductor layer showed field effect mobility of 0.144 cm2 V-1 s-1 and threshold voltage of -1.72 V.

  12. Organic Thin-Film Transistor from a Pentacene Photoprecursor

    NASA Astrophysics Data System (ADS)

    Masumoto, Akane; Yamashita, Yuko; Go, Shintetsu; Kikuchi, Toshihiro; Yamada, Hiroko; Okujima, Tetsuo; Ono, Noboru; Uno, Hidemitsu

    2009-05-01

    Organic thin-film transistors were successfully fabricated by the spin-coating method using a photo-precursor of pentacene, 6,13-dihydro-6,13-ethanopentacene-15,16-dione. After spin coating the soluble precursor, irradiation with visible light gave a pentacene film. A good mobility of 0.34 cm2 V-1 s-1 and a high on/off ratio of 2.0×106 were achieved by treatment of the insulator surface with methyl silsesquioxane and by deposition of pentacene from the precursor with visible light irradiation (>300 nm) and mild heat treatment (110-120 °C). In this case, small grains of pentacene crystals existed in the loosely ordered pentacene mesophase, in which pentacene molecules aligned vertically. Not only the grains of pentacene crystals but also the loosely packed pentacene phase played an important role in the field-effect transistor (FET) performance.

  13. Electrical stability enhancement of GeInGaO thin-film transistors by solution-processed Li-doped yttrium oxide passivation

    NASA Astrophysics Data System (ADS)

    Choi, U. H.; Yoon, S.; Yoon, D. H.; Tak, Y. J.; Kim, Y.-G.; Ahn, B. D.; Park, J.; Kim, H. J.

    2016-07-01

    In this study, we investigated a method of enhancing the electrical stability of GeInGaO thin-film transistors (TFTs) using a Li-doped Y2O3 (YO) passivation layer (PVL). Li reduced metal hydroxide groups in the PVL, and diffused into the channel layer and reduced the oxygen vacancy at the top surface of the channel layer, which is the origin of the defect state and electrical instability. In addition, the negative-bias temperature stress (NBTS) for 3600 s improved for Li-doped YO (LYO) PVL. The threshold voltage shift decreased from  -10.3 V for the YO PVL to  -4.8 V for the LYO PVL, a 54% improvement.

  14. Thin films for micro solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Beckel, D.; Bieberle-Hütter, A.; Harvey, A.; Infortuna, A.; Muecke, U. P.; Prestat, M.; Rupp, J. L. M.; Gauckler, L. J.

    Thin film deposition as applied to micro solid oxide fuel cell (μSOFC) fabrication is an emerging and highly active field of research that is attracting greater attention. This paper reviews thin film (thickness ≤1 μm) deposition techniques and components relevant to SOFCs including current research on nanocrystalline thin film electrolyte and thin-film-based model electrodes. Calculations showing the geometric limits of μSOFCs and first results towards fabrication of μSOFCs are also discussed.

  15. Sprayed lanthanum doped zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Bouznit, Y.; Beggah, Y.; Ynineb, F.

    2012-01-01

    Lanthanum doped zinc oxide thin films were deposited on soda-lime glass substrates using a pneumatic spray pyrolysis technique. The films were prepared using different lanthanum concentrations at optimum deposition parameters. We studied the variations in structural, morphological and optical properties of the samples due to the change of doping concentration in precursor solutions. X-ray diffraction (XRD) patterns show that pure and La-doped ZnO thin films are highly textured along c-axis perpendicular to the surface of the substrate. Scanning electron micrographs show that surface morphology of ZnO films undergoes a significant change according to lanthanum doping. All films exhibit a transmittance higher than 80% in the visible region.

  16. Air-stable conversion of separated carbon nanotube thin-film transistors from p-type to n-type using atomic layer deposition of high-κ oxide and its application in CMOS logic circuits.

    PubMed

    Zhang, Jialu; Wang, Chuan; Fu, Yue; Che, Yuchi; Zhou, Chongwu

    2011-04-26

    Due to extraordinary electrical properties, preseparated, high purity semiconducting carbon nanotubes hold great potential for thin-film transistors (TFTs) and integrated circuit applications. One of the main challenges it still faces is the fabrication of air-stable n-type nanotube TFTs with industry-compatible techniques. Here in this paper, we report a novel and highly reliable method of converting the as-made p-type TFTs using preseparated semiconducting nanotubes into air-stable n-type transistors by adding a high-κ oxide passivation layer using atomic layer deposition (ALD). The n-type devices exhibit symmetric electrical performance compared with the p-type devices in terms of on-current, on/off ratio, and device mobility. Various factors affecting the conversion process, including ALD temperature, metal contact material, and channel length, have also been systematically studied by a series of designed experiments. A complementary metal-oxide-semiconductor (CMOS) inverter with rail-to-rail output, symmetric input/output behavior, and large noise margin has been further demonstrated. The excellent performance gives us the feasibility of cascading multiple stages of logic blocks and larger scale integration. Our approach can serve as the critical foundation for future nanotube-based thin-film macroelectronics.

  17. Room-temperature fabrication of light-emitting thin films based on amorphous oxide semiconductor

    SciTech Connect

    Kim, Junghwan Miyokawa, Norihiko; Ide, Keisuke; Toda, Yoshitake; Hiramatsu, Hidenori; Hosono, Hideo; Kamiya, Toshio

    2016-01-15

    We propose a light-emitting thin film using an amorphous oxide semiconductor (AOS) because AOS has low defect density even fabricated at room temperature. Eu-doped amorphous In-Ga-Zn-O thin films fabricated at room temperature emitted intense red emission at 614 nm. It is achieved by precise control of oxygen pressure so as to suppress oxygen-deficiency/excess-related defects and free carriers. An electronic structure model is proposed, suggesting that non-radiative process is enhanced mainly by defects near the excited states. AOS would be a promising host for a thin film phosphor applicable to flexible displays as well as to light-emitting transistors.

  18. Doping in zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Yang, Zheng

    Doping in zinc oxide (ZnO) thin films is discussed in this dissertation. The optimizations of undoped ZnO thin film growth using molecular-beam epitaxy (MBE) are discussed. The effect of the oxygen ECR plasma power on the growth rate, structural, electrical, and optical properties of the ZnO thin films were studied. It was found that larger ECR power leads to higher growth rate, better crystallinity, lower electron carrier concentration, larger resistivity, and smaller density of non-radiative luminescence centers in the ZnO thin films. Low-temperature photoluminescence (PL) measurements were carried out in undoped and Ga-doped ZnO thin films grown by molecular-beam epitaxy. As the carrier concentration increases from 1.8 x 1018 to 1.8 x 1020 cm-3, the dominant PL line at 9 K changes from I1 (3.368--3.371 eV), to IDA (3.317--3.321 eV), and finally to I8 (3.359 eV). The dominance of I1, due to ionized-donor bound excitons, is unexpected in n-type samples, but is shown to be consistent with the temperature-dependent Hall fitting results. We also show that IDA has characteristics of a donor-acceptor-pair transition, and use a detailed, quantitative analysis to argue that it arises from GaZn donors paired with Zn-vacancy (VZn) acceptors. In this analysis, the GaZn0/+ energy is well-known from two-electron satellite transitions, and the VZn0/- energy is taken from a recent theoretical calculation. Typical behaviors of Sb-doped p-type ZnO are presented. The Sb doping mechanisms and preference in ZnO are discussed. Diluted magnetic semiconducting ZnO:Co thin films with above room-temperature TC were prepared. Transmission electron microscopy and x-ray diffraction studies indicate the ZnO:Co thin films are free of secondary phases. The magnetization of the ZnO:Co thin films shows a free electron carrier concentration dependence, which increases dramatically when the free electron carrier concentration exceeds ˜1019 cm -3, indicating a carrier-mediated mechanism for

  19. Graphene as tunable contact for high performance thin film transistor

    NASA Astrophysics Data System (ADS)

    Liu, Yuan

    performance and mechanical robustness. By using the graphene as a work-function tunable contact for amorphous indium gallium zinc oxide (IGZO) thin film, the vertical current flow across the graphene-IGZO junction can be effectively modulated by an external gate potential to enable VTFTs with a highest on-off ratio exceeding 105. The unique vertical transistor architecture can readily enable ultrashort channel devices with very high delivering current and exceptional mechanical flexibility. Furthermore, I will, demonstrate a new design strategy for vertical OTFT with ultra-short channel length without using conventional high-resolution lithography process. They can deliver a high current density over 1.8 A/ cm2 and thus enable a high cutoff frequency devices (~ 0.4 MHz) comparable with the ultra-short channel organic transistors. Importantly, with unique vertical architecture, the entire organic channel material is sandwiched between the source and drain electrodes and is thus naturally protected to ensure excellent air-stability. Finally I will present a new strategy by using graphene as the back electrodes to achieve Ohmic contact to MoS2. With a finite density of states, the Fermi level of graphene can be readily tuned by a gate potential to enable a nearly perfect band alignment with MoS2. For the first time, a transparent contact to MoS2 is demonstrated with zero contact barrier and linear output behaviour at cryogenic temperatures (down to 1.9 K) for both monolayer and multilayer MoS2. Benefiting from the barrier-free transparent contacts, we show that a metal-insulator-transition (MIT) can be observed in a two-terminal MoS2 device, a phenomenon that could be easily masked by Schottky barriers found in conventional metal-contacted MoS2 devices. With further passivation by boron nitride (BN) encapsulation, we demonstrate a record-high extrinsic (two-terminal) field effect mobility up to 1300 cm2/V s in MoS2 at low temperature. These findings can open up exciting new

  20. Highly improved photo-induced bias stability of sandwiched triple layer structure in sol-gel processed fluorine-doped indium zinc oxide thin film transistor

    SciTech Connect

    Kim, Dongha; Park, Hyungjin; Bae, Byeong-Soo

    2016-03-15

    In order to improve the reliability of TFT, an Al{sub 2}O{sub 3} insulating layer is inserted between active fluorine doped indium zinc oxide (IZO:F) thin films to form a sandwiched triple layer. All the thin films were fabricated via low-cost sol-gel process. Due to its large energy bandgap and high bonding energy with oxygen atoms, the Al{sub 2}O{sub 3} layer acts as a photo-induced positive charge blocking layer that effectively blocks the migration of both holes and V {sub o}{sup 2+} toward the interface between the gate insulator and the semiconductor. The inserted Al{sub 2}O{sub 3} triple layer exhibits a noticeably low turn on voltage shift of −0.7 V under NBIS as well as the good TFT performance with a mobility of 10.9 cm{sup 2}/V ⋅ s. We anticipate that this approach can be used to solve the stability issues such as NBIS, which is caused by inescapable oxygen vacancies.

  1. Low-temperature, solution-processed ZrO2:B thin film: a bifunctional inorganic/organic interfacial glue for flexible thin-film transistors.

    PubMed

    Park, Jee Ho; Oh, Jin Young; Han, Sun Woong; Lee, Tae Il; Baik, Hong Koo

    2015-03-04

    A solution-processed boron-doped peroxo-zirconium oxide (ZrO2:B) thin film has been found to have multifunctional characteristics, providing both hydrophobic surface modification and a chemical glue layer. Specifically, a ZrO2:B thin film deposited on a hydrophobic layer becomes superhydrophilic following ultraviolet-ozone (UVO) treatment, whereas the same treatment has no effect on the hydrophobicity of the hydrophobic layer alone. Investigation of the ZrO2:B/hydrophobic interface layer using angle-resolved X-ray photoelectron spectroscopy (AR XPS) confirmed it to be chemically bonded like glue. Using the multifunctional nature of the ZrO2:B thin film, flexible amorphous indium oxide (In2O3) thin-film transistors (TFTs) were subsequently fabricated on a polyimide substrate along with a ZrO2:B/poly-4-vinylphenol (PVP) dielectric. An aqueous In2O3 solution was successfully coated onto the ZrO2:B/PVP dielectric, and the surface and chemical properties of the PVP and ZrO2:B thin films were analyzed by contact angle measurement, atomic force microscopy (AFM), Fourier transform infrared (FT-IR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The surface-engineered PVP dielectric was found to have a lower leakage current density (Jleak) of 4.38 × 10(-8) A/cm(2) at 1 MV/cm, with no breakdown behavior observed up to a bending radius of 5 mm. In contrast, the electrical characteristics of the flexible amorphous In2O3 TFT such as on/off current ratio (Ion/off) and electron mobility remained similar up to 10 mm of bending without degradation, with the device being nonactivated at a bending radius of 5 mm. These results suggest that ZrO2:B thin films could be used for low-temperature, solution-processed surface-modified flexible devices.

  2. Rare-metal-free high-performance Ga-Sn-O thin film transistor.

    PubMed

    Matsuda, Tokiyoshi; Umeda, Kenta; Kato, Yuta; Nishimoto, Daiki; Furuta, Mamoru; Kimura, Mutsumi

    2017-03-14

    Oxide semiconductors have been investigated as channel layers for thin film transistors (TFTs) which enable next-generation devices such as high-resolution liquid crystal displays (LCDs), organic light emitting diode (OLED) displays, flexible electronics, and innovative devices. Here, high-performance and stable Ga-Sn-O (GTO) TFTs were demonstrated for the first time without the use of rare metals such as In. The GTO thin films were deposited using radiofrequency (RF) magnetron sputtering. A high field effect mobility of 25.6 cm(2)/Vs was achieved, because the orbital structure of Sn was similar to that of In. The stability of the GTO TFTs was examined under bias, temperature, and light illumination conditions. The electrical behaviour of the GTO TFTs was more stable than that of In-Ga-Zn-O (IGZO) TFTs, which was attributed to the elimination of weak Zn-O bonds.

  3. Rare-metal-free high-performance Ga-Sn-O thin film transistor

    PubMed Central

    Matsuda, Tokiyoshi; Umeda, Kenta; Kato, Yuta; Nishimoto, Daiki; Furuta, Mamoru; Kimura, Mutsumi

    2017-01-01

    Oxide semiconductors have been investigated as channel layers for thin film transistors (TFTs) which enable next-generation devices such as high-resolution liquid crystal displays (LCDs), organic light emitting diode (OLED) displays, flexible electronics, and innovative devices. Here, high-performance and stable Ga-Sn-O (GTO) TFTs were demonstrated for the first time without the use of rare metals such as In. The GTO thin films were deposited using radiofrequency (RF) magnetron sputtering. A high field effect mobility of 25.6 cm2/Vs was achieved, because the orbital structure of Sn was similar to that of In. The stability of the GTO TFTs was examined under bias, temperature, and light illumination conditions. The electrical behaviour of the GTO TFTs was more stable than that of In-Ga-Zn-O (IGZO) TFTs, which was attributed to the elimination of weak Zn-O bonds. PMID:28290547

  4. Rare-metal-free high-performance Ga-Sn-O thin film transistor

    NASA Astrophysics Data System (ADS)

    Matsuda, Tokiyoshi; Umeda, Kenta; Kato, Yuta; Nishimoto, Daiki; Furuta, Mamoru; Kimura, Mutsumi

    2017-03-01

    Oxide semiconductors have been investigated as channel layers for thin film transistors (TFTs) which enable next-generation devices such as high-resolution liquid crystal displays (LCDs), organic light emitting diode (OLED) displays, flexible electronics, and innovative devices. Here, high-performance and stable Ga-Sn-O (GTO) TFTs were demonstrated for the first time without the use of rare metals such as In. The GTO thin films were deposited using radiofrequency (RF) magnetron sputtering. A high field effect mobility of 25.6 cm2/Vs was achieved, because the orbital structure of Sn was similar to that of In. The stability of the GTO TFTs was examined under bias, temperature, and light illumination conditions. The electrical behaviour of the GTO TFTs was more stable than that of In-Ga-Zn-O (IGZO) TFTs, which was attributed to the elimination of weak Zn-O bonds.

  5. Chemical and biological sensing with organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Mabeck, Jeffrey Todd

    Organic thin-film transistors (OTFTs) offer a great deal of promise for applications in chemical and biological sensing where there is a demand for small, portable, and inexpensive sensors. OTFTs have many advantages over other types of sensors, including low-cost fabrication, straightforward miniaturization, simple instrumentation, and inherent signal amplification. This dissertation examines two distinct types of OTFTs: organic field-effect transistors (OFETs) based on pentacene, and organic electrochemical transistors (OECTs) based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). The bulk of the previous work on sensing with OFETs has focused on gas sensing, and this dissertation contributes to this body of work by briefly treating the large, reversible response of pentacene OFETs to humidity. However, there are many applications where the analyte of interest must be detected in an aqueous environment rather than a gaseous environment, and very little work has been done in this area for OFETs. Therefore, the integration of pentacene OFETs with microfluidics is treated in detail. Using poly(dimethylsiloxane) (PDMS) microfluidic channels to confine aqueous solutions over the active region of pentacene transistors, it is demonstrated that the current-voltage characteristics remain stable under aqueous flow with a decrease in mobility of ˜30% compared to its value when dry. The operation of PEDOT:PSS transistors is also treated in detail. It is demonstrated that their transistor behavior cannot be attributed solely to a field effect and that ion motion is key to the switching mechanism. It is also demonstrated that simple glucose sensors based on PEDOT:PSS OECTs are sensitive to low glucose concentrations below 1 mM, therefore showing promise for potential application in the field of noninvasive glucose monitoring for diabetic patients using saliva rather than blood samples. Furthermore, a novel microfluidic gating technique has been

  6. Influence of impurities and structural properties on the device stability of pentacene thin film transistors

    NASA Astrophysics Data System (ADS)

    Knipp, D.; Benor, A.; Wagner, V.; Muck, T.

    2007-02-01

    The influence of environmental conditions on the electronic transport and the device stability of polycrystalline pentacene transistors were investigated. Electrical in situ and ex situ measurements of pentacene thin film transistors were carried out to study the influence of dry oxygen and moisture on the device operation. The staggered thin film transistors were fabricated by organic molecular beam deposition on thermal oxide dielectrics. Exposing the pentacene films to oxygen leads to the creation of acceptorlike states in the band gap. The acceptorlike states cause a shift of the onset of the drain current towards positive gate voltages. A simple analytical model will be presented which directly correlates the onset voltage of the transistors with the acceptor concentration in the pentacene film. Exposing the pentacene film to moisture causes a drop of the charge carrier mobility, a reduction of the threshold voltage, and a shift of the onset voltage. Besides the creation of acceptorlike states in the pentacene film the interface between the drain and source electrodes and the pentacene film is affected by moisture. The injection of holes in the highest occupied molecular orbital level of the pentacene film is inhibited, which causes an apparent drop of the charge carrier mobility and a reduction of the threshold voltage.

  7. Examination of the ambient effects on the stability of amorphous indium-gallium-zinc oxide thin film transistors using a laser-glass-sealing technology

    SciTech Connect

    Yamada, Kazuo; Takeda, Satoshi; Nomura, Kenji; Abe, Katsumi; Hosono, Hideo

    2014-09-29

    The effect of an ambient atmosphere with a positive bias constant current stress (CCS) and a negative bias illumination stress (NBIS) on the stability of amorphous In-Ga-Zn-O thin film transistors (TFTs) is examined by utilizing a glass-hermetic-sealant with a moisture permeability of less than 10{sup −6} g/m{sup 2} · day. In the CCS test, the threshold voltage shift (ΔV{sub th}) was remarkably suppressed in the glass-sealed TFTs. The unsealed and resin-sealed TFTs exhibited large ΔV{sub th} values. During the NBIS tests, the glass-sealed TFTs had almost the same negative ΔV{sub th} as the unsealed and resin sealed TFTs. Among the different TFTs, no significant differences were observed in the threshold voltage, the subthreshold swing and the saturation mobility as a function of the photon energy. It is concluded that ambient molecules were the primary origin of the instability of the ΔV{sub th}, induced by a CCS, but they were not related to the NBIS instability. The major role of the effective passivation layers in the NBIS test was not to simply block out the ambient effects, but to reduce the extra density of states at/near the surface of the back channel.

  8. Amorphous Indium Gallium Zinc Oxide Semiconductor Thin Film Transistors Using O2 Plasma Treatment on the SiNx Gate Insulator

    NASA Astrophysics Data System (ADS)

    Kim, Woong-Sun; Moon, Yeon-Keon; Lee, Sih; Kang, Byung-Woo; Kim, Kyung-Taek; Lee, Je-Hun; Kim, Joo-Han; Ahn, Byung-Du; Park, Jong-Wan

    2010-08-01

    In this study, we investigated the role of processing parameters on the electrical characteristics of amorphous In-Ga-Zn-O (a-IGZO) thin film transistors (TFTs) fabricated using DC magnetron sputtering at room temperature. Processing parameters including the oxygen partial pressure, annealing temperature, and channel thickness have a great influence on TFT performance and better devices are obtained at a low oxygen partial pressure, annealing at 200 °C, and a low channel thickness. We attempted to improve the a-IGZO TFT performance and stability under a gate bias stress using O2 plasma treatment. With an O2 plasma treated gate insulator, remarkable properties including excellent bias stability as well as a field effect mobility (µFE) of 11.5 cm2 V-1 s-1, a subthreshold swing (S) of 0.59 V/decade, a turn-on voltage (VON) of -1.3 V, and an on/off current ratio (ION/IOFF) of 105 were achieved.

  9. Transparent Oxide Thin-Film Transistors Using n-(In2O3)0.9(SnO2)0.1/InGaZnO4 Modulation-Doped Heterostructures

    NASA Astrophysics Data System (ADS)

    Taniguchi, Satoshi; Yokozeki, Mikihiro; Ikeda, Masao; Suzuki, Toshi-kazu

    2011-04-01

    We investigated transparent oxide thin-film transistors (TFTs) using n-(In2O3)0.9(SnO2)0.1/InGaZnO4 (n-ITO/IGZO) modulation-doped heterostructures, which are effective in achieving high carrier mobilities. From transmittance measurements and UV photoemission spectroscopy, n-ITO/IGZO modulation-doped heterostructures are expected to realize the type-II energy band lineup, in which both the conduction band minimum and the valence band maximum of n-ITO are higher in energy than those of IGZO. Van der Pauw Hall measurements revealed Hall mobility enhancement and two-dimensional behavior of electrons at the n-ITO/IGZO interface. Using the n-ITO/IGZO modulation-doped heterostructures, we obtained TFTs with higher electron mobility than that of IGZO TFTs. We consider that modulation doping is a promising method for performance improvements of TFTs using transparent oxide semiconductors.

  10. Subthreshold Schottky-barrier thin-film transistors with ultralow power and high intrinsic gain

    NASA Astrophysics Data System (ADS)

    Lee, Sungsik; Nathan, Arokia

    2016-10-01

    The quest for low power becomes highly compelling in newly emerging application areas related to wearable devices in the Internet of Things. Here, we report on a Schottky-barrier indium-gallium-zinc-oxide thin-film transistor operating in the deep subthreshold regime (i.e., near the OFF state) at low supply voltages (<1 volt) and ultralow power (<1 nanowatt). By using a Schottky-barrier at the source and drain contacts, the current-voltage characteristics of the transistor were virtually channel-length independent with an infinite output resistance. It exhibited high intrinsic gain (>400) that was both bias and geometry independent. The transistor reported here is useful for sensor interface circuits in wearable devices where high current sensitivity and ultralow power are vital for battery-less operation.

  11. All printed thin film transistors for flexible electronics

    NASA Astrophysics Data System (ADS)

    Arias, Ana C.; Daniel, Jurgen; Sambandan, Sanjiv; Ng, Tse Nga; Russo, Beverly; Krusor, Brent; Street, Robert A.

    2008-08-01

    Methods used to deposit and integrate solution-processed materials to fabricate thin film transistors by ink-jet printing are presented. We demonstrate successful integration of a complete additive process with the fabrication of simple prototype TFT backplanes on glass and on flexible plastic substrates, and we discuss the factors that make the process possible. Surface energy control of the gate dielectric layer allows printing of the metal source-drain contacts with gaps as small as 10 um as well as the polymer semiconductor whose electronic properties are very sensitive to surface energy. Silver nanoparticles are used as gate and data metals, and a polythiophene derivative (PQT-12) is used as the semiconducting layer, and the gate dielectric is a polymer. The maximum processing temperature used is 150°C, making the process compatible with flexible substrates. The ION/IOFF ratio is 105-106, and TFT mobilities of 0.05 cm2/Vs were obtained. The electrical stability of the all-printed transistors was compared to conventional fabrication methods and it is shown to be acceptable for array operation. Here we discuss the yield of the printing process and show arrays that are integrated with E-ink media to form flexible paper-like displays.

  12. Low-temperature processed Schottky-gated field-effect transistors based on amorphous gallium-indium-zinc-oxide thin films

    NASA Astrophysics Data System (ADS)

    Lorenz, M.; Lajn, A.; Frenzel, H.; v. Wenckstern, H.; Grundmann, M.; Barquinha, P.; Martins, R.; Fortunato, E.

    2010-12-01

    We have investigated the electrical properties of metal-semiconductor field-effect transistors (MESFET) based on amorphous oxide semiconductor channels. All functional parts of the devices were sputter-deposited at room temperature. The influence on the electrical properties of a 150 °C annealing step of the gallium-indium-zinc-oxide channel is investigated. The MESFET technology offers a simple route for processing of the transistors with excellent electrical properties such as low subthreshold swing of 112 mV/decade, gate sweep voltages of 2.5 V, and channel mobilities up to 15 cm2/V s.

  13. Hydrogen-induced improvements in electrical characteristics of a-IGZO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Tsao, S. W.; Chang, T. C.; Huang, S. Y.; Chen, M. C.; Chen, S. C.; Tsai, C. T.; Kuo, Y. J.; Chen, Y. C.; Wu, W. C.

    2010-12-01

    This study investigates the effect of hydrogen incorporation on amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs). The threshold voltage ( Vth) and subthreshold swing ( SS) of hydrogen-incorporated a-IGZO TFTs were improved, and the threshold voltage shift (Δ Vth) in hysteresis loop was also suppressed from 4 V to 2 V. The physical property and chemical composition of a-IGZO films were analyzed by X-ray diffraction and X-ray photoelectron spectroscopy, respectively. Experimental results show that the hydrogen-induced passivation of the interface trap states between active layer and dielectric is responsible for the improvement of SS and Vth.

  14. Printed organic thin-film transistor-based integrated circuits

    NASA Astrophysics Data System (ADS)

    Mandal, Saumen; Noh, Yong-Young

    2015-06-01

    Organic electronics is moving ahead on its journey towards reality. However, this technology will only be possible when it is able to meet specific criteria including flexibility, transparency, disposability and low cost. Printing is one of the conventional techniques to deposit thin films from solution-based ink. It is used worldwide for visual modes of information, and it is now poised to enter into the manufacturing processes of various consumer electronics. The continuous progress made in the field of functional organic semiconductors has achieved high solubility in common solvents as well as high charge carrier mobility, which offers ample opportunity for organic-based printed integrated circuits. In this paper, we present a comprehensive review of all-printed organic thin-film transistor-based integrated circuits, mainly ring oscillators. First, the necessity of all-printed organic integrated circuits is discussed; we consider how the gap between printed electronics and real applications can be bridged. Next, various materials for printed organic integrated circuits are discussed. The features of these circuits and their suitability for electronics using different printing and coating techniques follow. Interconnection technology is equally important to make this product industrially viable; much attention in this review is placed here. For high-frequency operation, channel length should be sufficiently small; this could be achievable with a combination of surface treatment-assisted printing or laser writing. Registration is also an important issue related to printing; the printed gate should be perfectly aligned with the source and drain to minimize parasitic capacitances. All-printed organic inverters and ring oscillators are discussed here, along with their importance. Finally, future applications of all-printed organic integrated circuits are highlighted.

  15. Silicon thin-film transistor backplanes on flexible substrates

    NASA Astrophysics Data System (ADS)

    Kattamis, Alexis Z.

    Flexible large area electronics, especially for displays, is a rapidly growing field. Since hydrogenated amorphous silicon thin-film transistors (a-Si:H TFTs) have become the industry standard for liquid crystal displays, it makes sense that they be used in any transition from glass substrates to flexible substrates. The goal of this thesis work was to implement a-Si:H backplane technology on stainless steel and clear plastic substrates, with minimal recipe changes to ensure high device quality. When fabricating TFTs on flexible substrates many new issues arise, from thin-film fracture to overlay alignment errors. Our approach was to maintain elevated deposition temperatures (˜300°C) and engineer methods to minimize these problems, rather than reducing deposition temperatures. The resulting TFTs exhibit more stable operation than their low temperature counterparts and are therefore similar to the TFTs produced on glass. Two display projects using a-Si:H TFTs will be discussed in detail. They are an active-matrix organic light emitting display (AMOLED) on stainless steel and an active-matrix electrophoretic display (AMEPD) on clear plastic, with TFTs deposited at 250°C-280°C. Achieving quality a-Si:H TFTs on these substrates required addressing a host of technical challenges, including surface roughness and feature misalignment. Nanocrystalline silicon (nc-Si) was also implemented on a clear plastic substrate as a possible alternative to a-Si:H. nc-Si:H TFTs can be deposited using the same techniques as a-Si:H but yield carrier mobilities one order of magnitude greater. Their large mobilities could enable high resolution OLED displays and system-on-panel electronics.

  16. Mechanical and Electronic Properties of Thin-Film Transistors on Plastic, and Their Integration in Flexible Electronic Applications.

    PubMed

    Heremans, Paul; Tripathi, Ashutosh K; de Jamblinne de Meux, Albert; Smits, Edsger C P; Hou, Bo; Pourtois, Geoffrey; Gelinck, Gerwin H

    2016-06-01

    The increasing interest in flexible electronics and flexible displays raises questions regarding the inherent mechanical properties of the electronic materials used. Here, the mechanical behavior of thin-film transistors used in active-matrix displays is considered. The change of electrical performance of thin-film semiconductor materials under mechanical stress is studied, including amorphous oxide semiconductors. This study comprises an experimental part, in which transistor structures are characterized under different mechanical loads, as well as a theoretical part, in which the changes in energy band structures in the presence of stress and strain are investigated. The performance of amorphous oxide semiconductors are compared to reported results on organic semiconductors and covalent semiconductors, i.e., amorphous silicon and polysilicon. In order to compare the semiconductor materials, it is required to include the influence of the other transistor layers on the strain profile. The bending limits are investigated, and shown to be due to failures in the gate dielectric and/or the contacts. Design rules are proposed to minimize strain in transistor stacks and in transistor arrays. Finally, an overview of the present and future applications of flexible thin-film transistors is given, and the suitability of the different material classes for those applications is assessed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Electrochromism: from oxide thin films to devices

    NASA Astrophysics Data System (ADS)

    Rougier, A.; Danine, A.; Faure, C.; Buffière, S.

    2014-03-01

    In respect of their adaptability and performance, electrochromic devices, ECDs, which are able to change their optical properties under an applied voltage, have received significant attention. Target applications are multifold both in the visible region (automotive sunroofs, smart windows, ophthalmic lenses, and domestic appliances (oven, fridge…)) and in the infrared region (Satellites Thermal Control, IR furtivity). In our group, focusing on oxide thin films grown preferentially at room temperature, optimization of ECDs performances have been achieved by tuning the microstructure, the stoichiometry and the cationic composition of the various layers. Herein, our approach for optimized ECDs is illustrated through the example of WO3 electrochromic layer in the visible and in the IR domain as well as ZnO based transparent conducting oxide layer. Targeting the field of printed electronics, simplification of the device architecture for low power ECDs is also reported.

  18. Black Phosphorus Flexible Thin Film Transistors at Gighertz Frequencies.

    PubMed

    Zhu, Weinan; Park, Saungeun; Yogeesh, Maruthi N; McNicholas, Kyle M; Bank, Seth R; Akinwande, Deji

    2016-04-13

    Black phosphorus (BP) has attracted rapidly growing attention for high speed and low power nanoelectronics owing to its compelling combination of tunable bandgap (0.3 to 2 eV) and high carrier mobility (up to ∼1000 cm(2)/V·s) at room temperature. In this work, we report the first radio frequency (RF) flexible top-gated (TG) BP thin-film transistors on highly bendable polyimide substrate for GHz nanoelectronic applications. Enhanced p-type charge transport with low-field mobility ∼233 cm(2)/V·s and current density of ∼100 μA/μm at VDS = -2 V were obtained from flexible BP transistor at a channel length L = 0.5 μm. Importantly, with optimized dielectric coating for air-stability during microfabrication, flexible BP RF transistors afforded intrinsic maximum oscillation frequency fMAX ∼ 14.5 GHz and unity current gain cutoff frequency fT ∼ 17.5 GHz at a channel length of 0.5 μm. Notably, the experimental fT achieved here is at least 45% higher than prior results on rigid substrate, which is attributed to the improved air-stability of fabricated BP devices. In addition, the high-frequency performance was investigated through mechanical bending test up to ∼1.5% tensile strain, which is ultimately limited by the inorganic dielectric film rather than the 2D material. Comparison of BP RF devices to other 2D semiconductors clearly indicates that BP offers the highest saturation velocity, an important metric for high-speed and RF flexible nanosystems.

  19. High-Performance Thin-Film Transistors Using Ni Silicide for Liquid-Crystal Displays

    DTIC Science & Technology

    2000-07-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO 11297 TITLE: High-Performance Thin-Film Transistors Using Ni Silicide ...report: ADP011297 thru ADP011332 UNCLASSIFIED Invited Paper High-performance thin-film transistors using Ni silicide for liquid- crystal displays Jin...Jang, Jai I1 Ryu, and Kyu Sik Cho Department of Physics, Kyung Hee University, Dongdaemoon-ku, Seoul 130-701, Korea ABSTRACT The Ni- silicide of a

  20. Two-stage unified stretched-exponential model for time-dependence of threshold voltage shift under positive-bias-stresses in amorphous indium-gallium-zinc oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Jeong, Chan-Yong; Kim, Hee-Joong; Hong, Sae-Young; Song, Sang-Hun; Kwon, Hyuck-In

    2017-08-01

    In this study, we show that the two-stage unified stretched-exponential model can more exactly describe the time-dependence of threshold voltage shift (ΔV TH) under long-term positive-bias-stresses compared to the traditional stretched-exponential model in amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). ΔV TH is mainly dominated by electron trapping at short stress times, and the contribution of trap state generation becomes significant with an increase in the stress time. The two-stage unified stretched-exponential model can provide useful information not only for evaluating the long-term electrical stability and lifetime of the a-IGZO TFT but also for understanding the stress-induced degradation mechanism in a-IGZO TFTs.

  1. DEVICE TECHNOLOGY. Nanomaterials in transistors: From high-performance to thin-film applications.

    PubMed

    Franklin, Aaron D

    2015-08-14

    For more than 50 years, silicon transistors have been continuously shrunk to meet the projections of Moore's law but are now reaching fundamental limits on speed and power use. With these limits at hand, nanomaterials offer great promise for improving transistor performance and adding new applications through the coming decades. With different transistors needed in everything from high-performance servers to thin-film display backplanes, it is important to understand the targeted application needs when considering new material options. Here the distinction between high-performance and thin-film transistors is reviewed, along with the benefits and challenges to using nanomaterials in such transistors. In particular, progress on carbon nanotubes, as well as graphene and related materials (including transition metal dichalcogenides and X-enes), outlines the advances and further research needed to enable their use in transistors for high-performance computing, thin films, or completely new technologies such as flexible and transparent devices.

  2. Thin Film Transistors Using Wafer-Scale Low-Temperature MOCVD WSe2

    NASA Astrophysics Data System (ADS)

    Gong, Yiyang; Zhang, Xiaotian; Redwing, Joan M.; Jackson, Thomas N.

    2016-12-01

    We report on thin film transistors using continuous WSe2 thin films synthesized by metal organic chemical vapor deposition at 400°C. O2 plasma etching is used to provide precise thickness modification of the WSe2 thin film with an etch rate ˜0.25 nm/min. Device performance is found to vary with the thickness of the WSe2 films. P-channel thin film transistors with plasma-thinned 3 nm WSe2 channels have mobility ˜0.01 cm2/Vs and current on-off ratio greater than 104. Our results suggest that plasma etching may provide an approach for post-growth modification of the electrical properties of two-dimensional transition metal dichalcogenide thin films.

  3. Structural characterization of impurified zinc oxide thin films

    SciTech Connect

    Trinca, L. M.; Galca, A. C. Stancu, V. Chirila, C. Pintilie, L.

    2014-11-05

    Europium doped zinc oxide (Eu:ZnO) thin films have been obtained by pulsed laser deposition (PLD). 002 textured thin films were achieved on glass and silicon substrates, while hetero-epilayers and homo-epilayers have been attained on single crystal SrTiO{sub 3} and ZnO, respectively. X-ray Diffraction (XRD) was employed to characterize the Eu:ZnO thin films. Extended XRD studies confirmed the different thin film structural properties as function of chosen substrates.

  4. High mobility solution processed organic thin film transistors

    NASA Astrophysics Data System (ADS)

    Park, Sung Kyu

    To date, most high mobility organic thin film transistors (OTFTs) have used vapor-deposited organic semiconductors as the active material. The OTFT fabrication processes for vapor deposited organic materials are not so different from conventional inorganic TFT fabrication. Therefore they are constrained by similar production costs with some savings related to reduced processing temperatures and low cost substrates. Solution-processed OTFTs are of interest because of their compatibility with roll-to-roll processing which may allow simplified device fabrication and further reduced processing costs. In the project outlined for this thesis, high performance solution processed small molecule OTFTs were developed for their application in integrated circuits and flat panel displays. 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) and fluorinated 5,11-bis(triethylsilylethynyl) anthradithiophene (F-TES ADT) were used as high performance solution processible small molecules. Using TIPS-pentacene and F-TES ADT in combination with a variety of device fabrication techniques, mobilities greater than 1.2 cm2/V·s and 3 cm2/V·s respectively have been obtained. These devices were made using a drop casting process and represent the best mobility for solution processed OTFTs to date. Additionally, using the F-TES ADT, spin cast OTFTs which show mobilities of greater than 1.0 cm2/V·s with relatively good film uniformity have been obtained. Film growth which is considerably more ordered on pentafluorobenzene (PFBT) treated Au surfaces, and on samples with patterned PFBT-Au structures grains appear to grow out from the PFBT-Au areas into the oxide areas were observed. This results in a substantial variation in field effect mobility with gate length as grains growing from the source and drain electrodes meet and overlap. Spun F-TES ADT OTFTs fabricated with films deposited on PFBT-treated Au electrodes show mobilities of 0.1--0.5 cm2/V·s from a toluene solution and 0

  5. Zinc Oxide Thin Films Fabricated with Direct Current Magnetron Sputtering Deposition Technique

    SciTech Connect

    Hoon, Jian-Wei; Chan, Kah-Yoong; Krishnasamy, Jegenathan; Tou, Teck-Yong

    2011-03-30

    Zinc oxide (ZnO) is a very promising material for emerging large area electronic applications including thin-film sensors, transistors and solar cells. We fabricated ZnO thin films by employing direct current (DC) magnetron sputtering deposition technique. ZnO films with different thicknesses ranging from 100 nm to 1020 nm were deposited on silicon (Si) substrate. The deposition pressure was varied from 12 mTorr to 25 mTorr. The influences of the film thickness and the deposition pressure on structural properties of the ZnO films were investigated using Mahr surface profilometer and atomic force microscopy (AFM). The experimental results reveal that the film thickness and the deposition pressure play significant role in the structural formation of the deposited ZnO thin films. ZnO films deposited on Si substrates are promising for variety of thin-film sensor applications.

  6. High-Mobility Ambipolar Organic Thin-Film Transistor Processed From a Nonchlorinated Solvent.

    PubMed

    Sonar, Prashant; Chang, Jingjing; Kim, Jae H; Ong, Kok-Haw; Gann, Eliot; Manzhos, Sergei; Wu, Jishan; McNeill, Christopher R

    2016-09-21

    Polymer semiconductor PDPPF-DFT, which combines furan-substituted diketopyrrolopyrrole (DPP) and a 3,4-difluorothiophene base, has been designed and synthesized. PDPPF-DFT polymer semiconductor thin film processed from nonchlorinated hexane is used as an active layer in thin-film transistors. As a result, balanced hole and electron mobilities of 0.26 and 0.12 cm(2)/(V s) are achieved for PDPPF-DFT. This is the first report of using nonchlorinated hexane solvent for fabricating high-performance ambipolar thin-film transistor devices.

  7. Review of Zinc Oxide Thin Films

    DTIC Science & Technology

    2014-12-23

    Laboratory Air Force Materiel Command   a. REPORT U   b. ABSTRACT U   c. THIS PAGE U REPORT DOCUMENTATION PAGE Form ApprovedOMB No. 0704-0188 The public...PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 1.  REPORT DATE (DD-MM-YYYY)      18-12-2014 2.  REPORT TYPE      Final Performance 3.  DATES...Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 1    Review of Zinc Oxide Thin Films   Abstract  The present review paper reports on the

  8. Temperature Dependence of Field-Effect Mobility in Organic Thin-Film Transistors: Similarity to Inorganic Transistors.

    PubMed

    Okada, Jun; Nagase, Takashi; Kobayashi, Takashi; Naito, Hiroyoshi

    2016-04-01

    Carrier transport in solution-processed organic thin-film transistors (OTFTs) based on dioctylbenzothienobenzothiophene (C8-BTBT) has been investigated in a wide temperature range from 296 to 10 K. The field-effect mobility shows thermally activated behavior whose activation energy becomes smaller with decreasing temperature. The temperature dependence of field-effect mobility found in C8-BTBT is similar to that of others materials: organic semiconducting polymers, amorphous oxide semiconductors and hydrogenated amorphous silicon. These results indicate that hopping transport between isoenergetic localized states becomes dominated in a low temperature regime in these materials.

  9. Thin film transistors of single-walled carbon nanotubes grown directly on glass substrates.

    PubMed

    Bae, Eun Ju; Min, Yo-Sep; Kim, Un Jeong; Park, Wanjun

    2007-12-12

    We report a transistor of randomly networked single-walled carbon nanotubes on a glass substrate. The carbon nanotube networks acting as the active components of the thin film transistor were selectively formed on the transistor channel areas that were previously patterned with catalysts to avoid the etching process for isolating nanotubes. The nanotube density was more than 50 microm(-2), which is much larger than the percolation threshold. Transistors were successfully fabricated with a conducting and transparent ZnO for the back-side gate and the top-side gate. This allows the transparent electronics or suggests thin film applications of nanotubes for future opto-electronics.

  10. Pentacene-based organic thin film transistors, integrated circuits, and active matrix displays on polymeric substrates

    NASA Astrophysics Data System (ADS)

    Sheraw, Christopher Duncan

    2003-10-01

    low as 38 musec and clocked digital circuits that operated at 1.1 kHz. These are the fastest photolithographically patterned organic TFT circuits on polymeric substrates reported to date. Finally, 16 x 16 pentacene TFT pixel arrays were fabricated on polymeric substrates and integrated with polymer dispersed liquid crystal to build an AMLCD. The pixel arrays showed good optical response to changing data signals when standard quarter-VGA display waveforms were applied. This result marks the first organic TFT-driven active matrix liquid crystal display ever reported as well as the first active matrix liquid crystal display on a flexible polymeric substrate. Lastly, functionalized pentacene derivatives were used as the active layer in organic thin film transistor materials. Functional groups were added to the pentacene molecule to influence the molecular ordering so that the amount of pi-orbital overlap would be increased allowing the potential for improved field-effect mobility. The functionalization of these materials also improves solubility allowing for the possibility of solution-processed devices and increased oxidative stability. Organic thin film transistors were fabricated using five different functionalized pentacene active layers. Devices based on the pentacene derivative triisopropylsilyl pentacene were found to have the best performance with field-effect mobility as large as 0.4 cm 2/V-s.

  11. Electrochromism in copper oxide thin films

    SciTech Connect

    Richardson, T.J.; Slack, J.L.; Rubin, M.D.

    2000-08-15

    Transparent thin films of copper(I) oxide prepared on conductive SnO2:F glass substrates by anodic oxidation of sputtered copper films or by direct electrodeposition of Cu2O transformed reversibly to opaque metallic copper films when reduced in alkaline electrolyte. In addition, the same Cu2O films transform reversibly to black copper(II) oxide when cycled at more anodic potentials. Copper oxide-to-copper switching covered a large dynamic range, from 85% and 10% photopic transmittance, with a coloration efficiency of about 32 cm2/C. Gradual deterioration of the switching range occurred over 20 to 100 cycles. This is tentatively ascribed to coarsening of the film and contact degradation caused by the 65% volume change on conversion of Cu to Cu2O. Switching between the two copper oxides (which have similar volumes) was more stable and more efficient (CE = 60 cm2/C), but covered a smaller transmittance range (60% to 44% T). Due to their large electrochemical storage capacity and tolerance for alkaline electrolytes, these cathodically coloring films may be useful as counter electrodes for anodically coloring electrode films such as nickel oxide or metal hydrides.

  12. Ambipolar charge transport in microcrystalline silicon thin-film transistors

    SciTech Connect

    Knipp, Dietmar; Marinkovic, M.; Chan, Kah-Yoong; Gordijn, Aad; Stiebig, Helmut

    2011-01-15

    Hydrogenated microcrystalline silicon ({mu}c-Si:H) is a promising candidate for thin-film transistors (TFTs) in large-area electronics due to high electron and hole charge carrier mobilities. We report on ambipolar TFTs based on {mu}c-Si:H prepared by plasma-enhanced chemical vapor deposition at temperatures compatible with flexible substrates. Electrons and holes are directly injected into the {mu}c-Si:H channel via chromium drain and source contacts. The TFTs exhibit electron and hole charge carrier mobilities of 30-50 cm{sup 2}/V s and 10-15 cm{sup 2}/V s, respectively. In this work, the electrical characteristics of the ambipolar {mu}c-Si:H TFTs are described by a simple analytical model that takes the ambipolar charge transport into account. The analytical expressions are used to model the transfer curves, the potential and the net surface charge along the channel of the TFTs. The electrical model provides insights into the electronic transport of ambipolar {mu}c-Si:H TFTs.

  13. Electron and hole transport in ambipolar, thin film pentacene transistors

    SciTech Connect

    Saudari, Sangameshwar R.; Kagan, Cherie R.

    2015-01-21

    Solution-processed, ambipolar, thin-film pentacene field-effect transistors were employed to study both electron and hole transport simultaneously in a single, organic solid-state device. Electron and hole mobilities were extracted from the respective unipolar saturation regimes and show thermally activated behavior and gate voltage dependence. We fit the gate voltage dependent saturation mobility to a power law to extract the characteristic Meyer-Neldel (MN) energy, a measure of the width of the exponential distribution of localized states extending into the energy gap of the organic semiconductor. The MN energy is ∼78 and ∼28 meV for electrons and holes, respectively, which reflects a greater density of localized tail states for electrons than holes. This is consistent with the lower measured electron than hole mobility. For holes, the well-behaved linear regime allows for four-point probe measurement of the contact resistance independent mobility and separate characterization of the width of the localized density of states, yielding a consistent MN energy of 28 meV.

  14. Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays

    PubMed Central

    Xu, Wei-Zong; Ren, Fang-Fang; Ye, Jiandong; Lu, Hai; Liang, Lanju; Huang, Xiaoming; Liu, Mingkai; Shadrivov, Ilya V.; Powell, David A.; Yu, Guang; Jin, Biaobing; Zhang, Rong; Zheng, Youdou; Tan, Hark Hoe; Jagadish, Chennupati

    2016-01-01

    Engineering metamaterials with tunable resonances are of great importance for improving the functionality and flexibility of terahertz (THz) systems. An ongoing challenge in THz science and technology is to create large-area active metamaterials as building blocks to enable efficient and precise control of THz signals. Here, an active metamaterial device based on enhancement-mode transparent amorphous oxide thin-film transistor arrays for THz modulation is demonstrated. Analytical modelling based on full-wave techniques and multipole theory exhibits excellent consistent with the experimental observations and reveals that the intrinsic resonance mode at 0.75 THz is dominated by an electric response. The resonant behavior can be effectively tuned by controlling the channel conductivity through an external bias. Such metal/oxide thin-film transistor based controllable metamaterials are energy saving, low cost, large area and ready for mass-production, which are expected to be widely used in future THz imaging, sensing, communications and other applications. PMID:27000419

  15. Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays

    NASA Astrophysics Data System (ADS)

    Xu, Wei-Zong; Ren, Fang-Fang; Ye, Jiandong; Lu, Hai; Liang, Lanju; Huang, Xiaoming; Liu, Mingkai; Shadrivov, Ilya V.; Powell, David A.; Yu, Guang; Jin, Biaobing; Zhang, Rong; Zheng, Youdou; Tan, Hark Hoe; Jagadish, Chennupati

    2016-03-01

    Engineering metamaterials with tunable resonances are of great importance for improving the functionality and flexibility of terahertz (THz) systems. An ongoing challenge in THz science and technology is to create large-area active metamaterials as building blocks to enable efficient and precise control of THz signals. Here, an active metamaterial device based on enhancement-mode transparent amorphous oxide thin-film transistor arrays for THz modulation is demonstrated. Analytical modelling based on full-wave techniques and multipole theory exhibits excellent consistent with the experimental observations and reveals that the intrinsic resonance mode at 0.75 THz is dominated by an electric response. The resonant behavior can be effectively tuned by controlling the channel conductivity through an external bias. Such metal/oxide thin-film transistor based controllable metamaterials are energy saving, low cost, large area and ready for mass-production, which are expected to be widely used in future THz imaging, sensing, communications and other applications.

  16. Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays.

    PubMed

    Xu, Wei-Zong; Ren, Fang-Fang; Ye, Jiandong; Lu, Hai; Liang, Lanju; Huang, Xiaoming; Liu, Mingkai; Shadrivov, Ilya V; Powell, David A; Yu, Guang; Jin, Biaobing; Zhang, Rong; Zheng, Youdou; Tan, Hark Hoe; Jagadish, Chennupati

    2016-03-22

    Engineering metamaterials with tunable resonances are of great importance for improving the functionality and flexibility of terahertz (THz) systems. An ongoing challenge in THz science and technology is to create large-area active metamaterials as building blocks to enable efficient and precise control of THz signals. Here, an active metamaterial device based on enhancement-mode transparent amorphous oxide thin-film transistor arrays for THz modulation is demonstrated. Analytical modelling based on full-wave techniques and multipole theory exhibits excellent consistent with the experimental observations and reveals that the intrinsic resonance mode at 0.75 THz is dominated by an electric response. The resonant behavior can be effectively tuned by controlling the channel conductivity through an external bias. Such metal/oxide thin-film transistor based controllable metamaterials are energy saving, low cost, large area and ready for mass-production, which are expected to be widely used in future THz imaging, sensing, communications and other applications.

  17. Highly conductive grain boundaries in copper oxide thin films

    NASA Astrophysics Data System (ADS)

    Deuermeier, Jonas; Wardenga, Hans F.; Morasch, Jan; Siol, Sebastian; Nandy, Suman; Calmeiro, Tomás; Martins, Rodrigo; Klein, Andreas; Fortunato, Elvira

    2016-06-01

    High conductivity in the off-state and low field-effect mobility compared to bulk properties is widely observed in the p-type thin-film transistors of Cu2O, especially when processed at moderate temperature. This work presents results from in situ conductance measurements at thicknesses from sub-nm to around 250 nm with parallel X-ray photoelectron spectroscopy. An enhanced conductivity at low thickness is explained by the occurrence of Cu(II), which is segregated in the grain boundary and locally causes a conductivity similar to CuO, although the surface of the thick film has Cu2O stoichiometry. Since grains grow with an increasing film thickness, the effect of an apparent oxygen excess is most pronounced in vicinity to the substrate interface. Electrical properties of Cu2O grains are at least partially short-circuited by this effect. The study focuses on properties inherent to copper oxide, although interface effects cannot be ruled out. This non-destructive, bottom-up analysis reveals phenomena which are commonly not observable after device fabrication, but clearly dominate electrical properties of polycrystalline thin films.

  18. Highly conductive grain boundaries in copper oxide thin films

    SciTech Connect

    Deuermeier, Jonas; Wardenga, Hans F.; Morasch, Jan; Siol, Sebastian; Klein, Andreas; Nandy, Suman; Calmeiro, Tomás; Martins, Rodrigo; Fortunato, Elvira

    2016-06-21

    High conductivity in the off-state and low field-effect mobility compared to bulk properties is widely observed in the p-type thin-film transistors of Cu{sub 2}O, especially when processed at moderate temperature. This work presents results from in situ conductance measurements at thicknesses from sub-nm to around 250 nm with parallel X-ray photoelectron spectroscopy. An enhanced conductivity at low thickness is explained by the occurrence of Cu(II), which is segregated in the grain boundary and locally causes a conductivity similar to CuO, although the surface of the thick film has Cu{sub 2}O stoichiometry. Since grains grow with an increasing film thickness, the effect of an apparent oxygen excess is most pronounced in vicinity to the substrate interface. Electrical properties of Cu{sub 2}O grains are at least partially short-circuited by this effect. The study focuses on properties inherent to copper oxide, although interface effects cannot be ruled out. This non-destructive, bottom-up analysis reveals phenomena which are commonly not observable after device fabrication, but clearly dominate electrical properties of polycrystalline thin films.

  19. Thin-Film Transistor and Ultra-Large Scale Integrated Circuit: Competition or Collaboration

    NASA Astrophysics Data System (ADS)

    Kuo, Yue

    2008-03-01

    Thin-film transistor (TFT) and ultra-large scale integrated circuit (ULSIC) have been compared and discussed with respect to the development history, technology trends, and applications. Detailed issues on materials, processes, and devices in the large-area TFT array fabrication and nano-size metal-oxide-semiconductor field effect transistors (MOSFETs) composed ULSIC on large wafers were also examined. The TFT fabrication processes were originally derived from ULSIC. However, there are many unique large-area processes and theories developed during the study of the TFT array fabrication, which can greatly benefit the future large wafer ULSIC production process. Although their future applications will be in different areas, there are opportunities that TFTs can be integrated into ULSIC products to enhance the functions and performance.

  20. High-performance flexible thin-film transistors exfoliated from bulk wafer.

    PubMed

    Zhai, Yujia; Mathew, Leo; Rao, Rajesh; Xu, Dewei; Banerjee, Sanjay K

    2012-11-14

    Mechanically flexible integrated circuits (ICs) have gained increasing attention in recent years with emerging markets in portable electronics. Although a number of thin-film-transistor (TFT) IC solutions have been reported, challenges still remain for the fabrication of inexpensive, high-performance flexible devices. We report a simple and straightforward solution: mechanically exfoliating a thin Si film containing ICs. Transistors and circuits can be prefabricated on bulk silicon wafer with the conventional complementary metal-oxide-semiconductor (CMOS) process flow without additional temperature or process limitations. The short channel MOSFETs exhibit similar electrical performance before and after exfoliation. This exfoliation process also provides a fast and economical approach to producing thinned silicon wafers, which is a key enabler for three-dimensional (3D) silicon integration based on Through Silicon Vias (TSVs).

  1. Remarkable changes in interface O vacancy and metal-oxide bonds in amorphous indium-gallium-zinc-oxide thin-film transistors by long time annealing at 250 °C

    SciTech Connect

    Chowdhury, Md Delwar Hossain; Um, Jae Gwang; Jang, Jin

    2014-12-08

    We have studied the effect of long time post-fabrication annealing on negative bias illumination stress (NBIS) of amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film-transistors. Annealing for 100 h at 250 °C increased the field effect mobility from 14.7 cm{sup 2}/V s to 17.9 cm{sup 2}/V s and reduced the NBIS instability remarkably. Using X-ray photoelectron spectroscopy, the oxygen vacancy and OH were found to exist at the interfaces of a-IGZO with top and bottom SiO{sub 2}. Long time annealing helps to decrease the vacancy concentration and increase the metal-oxygen bonds at the interfaces; this leads to increase in the free carrier concentrations in a-IGZO and field-effect mobility. X-ray reflectivity measurement indicated the increment of a-IGZO film density of 5.63 g cm{sup −3} to 5.83 g cm{sup −3} (3.4% increase) by 100 h annealing at 250 °C. The increase in film density reveals the decrease of O vacancy concentration and reduction of weak metal-oxygen bonds in a-IGZO, which substantially helps to improve the NBIS stability.

  2. Transparent metal oxide nanowire transistors

    NASA Astrophysics Data System (ADS)

    Chen, Di; Liu, Zhe; Liang, Bo; Wang, Xianfu; Shen, Guozhen

    2012-05-01

    With the features of high mobility, a high electric on/off ratio and excellent transparency, metal oxide nanowires are excellent candidates for transparent thin-film transistors, which is one of the key technologies to realize transparent electronics. This article provides a comprehensive review of the state-of-the-art research activities that focus on transparent metal oxide nanowire transistors. It begins with the brief introduction to the synthetic methods for high quality metal oxide nanowires, and the typical nanowire transfer and printing techniques with emphasis on the simple contact printing methodology. High performance transparent transistors built on both single nanowires and nanowire thin films are then highlighted. The final section deals with the applications of transparent metal oxide nanowire transistors in the field of transparent displays and concludes with an outlook on the current perspectives and future directions of transparent metal oxide nanowire transistors.

  3. Transparent metal oxide nanowire transistors.

    PubMed

    Chen, Di; Liu, Zhe; Liang, Bo; Wang, Xianfu; Shen, Guozhen

    2012-05-21

    With the features of high mobility, a high electric on/off ratio and excellent transparency, metal oxide nanowires are excellent candidates for transparent thin-film transistors, which is one of the key technologies to realize transparent electronics. This article provides a comprehensive review of the state-of-the-art research activities that focus on transparent metal oxide nanowire transistors. It begins with the brief introduction to the synthetic methods for high quality metal oxide nanowires, and the typical nanowire transfer and printing techniques with emphasis on the simple contact printing methodology. High performance transparent transistors built on both single nanowires and nanowire thin films are then highlighted. The final section deals with the applications of transparent metal oxide nanowire transistors in the field of transparent displays and concludes with an outlook on the current perspectives and future directions of transparent metal oxide nanowire transistors.

  4. Restorative effect of oxygen annealing on device performance in HfIZO thin-film transistors

    SciTech Connect

    Ha, Tae-Jun

    2015-03-15

    Metal-oxide based thin-film transistors (oxide-TFTs) are very promising for use in next generation electronics such as transparent displays requiring high switching and driving performance. In this study, we demonstrate an optimized process to secure excellent device performance with a favorable shift of the threshold voltage toward 0V in amorphous hafnium-indium-zinc-oxide (a-HfIZO) TFTs by using post-treatment with oxygen annealing. This enhancement results from the improved interfacial characteristics between gate dielectric and semiconductor layers due to the reduction in the density of interfacial states related to oxygen vacancies afforded by oxygen annealing. The device statistics confirm the improvement in the device-to-device and run-to-run uniformity. We also report on the photo-induced stability in such oxide-TFTs against long-term UV irradiation, which is significant for transparent displays.

  5. Restorative effect of oxygen annealing on device performance in HfIZO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Ha, Tae-Jun

    2015-03-01

    Metal-oxide based thin-film transistors (oxide-TFTs) are very promising for use in next generation electronics such as transparent displays requiring high switching and driving performance. In this study, we demonstrate an optimized process to secure excellent device performance with a favorable shift of the threshold voltage toward 0V in amorphous hafnium-indium-zinc-oxide (a-HfIZO) TFTs by using post-treatment with oxygen annealing. This enhancement results from the improved interfacial characteristics between gate dielectric and semiconductor layers due to the reduction in the density of interfacial states related to oxygen vacancies afforded by oxygen annealing. The device statistics confirm the improvement in the device-to-device and run-to-run uniformity. We also report on the photo-induced stability in such oxide-TFTs against long-term UV irradiation, which is significant for transparent displays.

  6. Method of producing solution-derived metal oxide thin films

    SciTech Connect

    Boyle, T.J.; Ingersoll, D.

    2000-07-11

    A method is described for preparing metal oxide thin films by a solution method. A {beta}-metal {beta}-diketonate or carboxylate compound, where the metal is selected from groups 8, 9, 10, 11, and 12 of the Periodic Table, is solubilized in a strong Lewis base to form a homogeneous solution. This precursor solution forms within minutes and can be deposited on a substrate in a single layer or a multiple layers to form a metal oxide thin film. The substrate with the deposited thin film is heated to change the film from an amorphous phase to a ceramic metal oxide and cooled.

  7. Method of producing solution-derived metal oxide thin films

    DOEpatents

    Boyle, Timothy J.; Ingersoll, David

    2000-01-01

    A method of preparing metal oxide thin films by a solution method. A .beta.-metal .beta.-diketonate or carboxylate compound, where the metal is selected from groups 8, 9, 10, 11, and 12 of the Periodic Table, is solubilized in a strong Lewis base to form a homogeneous solution. This precursor solution forms within minutes and can be deposited on a substrate in a single layer or a multiple layers to form a metal oxide thin film. The substrate with the deposited thin film is heated to change the film from an amorphous phase to a ceramic metal oxide and cooled.

  8. Thin film transistors with anodic gate dielectrics and chemical bath deposited active layers

    NASA Astrophysics Data System (ADS)

    Gan, Feng Yuan; Shih, Ishiang

    2002-07-01

    Thin film transistors (TFTs) with an anodic dielectric layer and chemical bath deposited active layer have been fabricated on glass substrates. The effects of anodization conditions on the quality of the anodic dielectric were investigated by measuring the breakdown electric field and leakage current density of the metal-insulator-metal capacitors fabricated. Using the anodic gate dielectric, preliminary thin film transistors with CdS and CdSe films formed by a chemical bath deposition method were fabricated and evaluated. Results of electrical measurements carried out on the CdSe-TFTs with Al2O3 and Ta2O5 gate dielectrics showed field effect mobilities of 3.4 and 0.67 cm2/V s and threshold voltages of 3.2 and 8.2 V, respectively. Field effect mobilities of 0.2 and 2 cm2/V s and threshold voltages of 4.3 and 5.2 V were observed for CdS-TFTs, again with Al2O3 and Ta2O5 gate dielectrics. The mobilities obtained from the present TFTs fabricated on glass substrates are smaller than that on similar TFTs fabricated on thermally grown gate oxides on Si substrates in our previous work. copyright 2002 American Vacuum Society.

  9. In situ preparation, electrical and surface analytical characterization of pentacene thin film transistors.

    PubMed

    Lassnig, R; Striedinger, B; Hollerer, M; Fian, A; Stadlober, B; Winkler, A

    2014-09-21

    The fabrication of organic thin film transistors with highly reproducible characteristics presents a very challenging task. We have prepared and analyzed model pentacene thin film transistors under ultra-high vacuum conditions, employing surface analytical tools and methods. Intentionally contaminating the gold contacts and SiO2 channel area with carbon through repeated adsorption, dissociation, and desorption of pentacene proved to be very advantageous in the creation of devices with stable and reproducible parameters. We mainly focused on the device properties, such as mobility and threshold voltage, as a function of film morphology and preparation temperature. At 300 K, pentacene displays Stranski-Krastanov growth, whereas at 200 K fine-grained, layer-like film growth takes place, which predominantly influences the threshold voltage. Temperature dependent mobility measurements demonstrate good agreement with the established multiple trapping and release model, which in turn indicates a predominant concentration of shallow traps in the crystal grains and at the oxide-semiconductor interface. Mobility and threshold voltage measurements as a function of coverage reveal that up to four full monolayers contribute to the overall charge transport. A significant influence on the effective mobility also stems from the access resistance at the gold contact-semiconductor interface, which is again strongly influenced by the temperature dependent, characteristic film growth mode.

  10. In situ preparation, electrical and surface analytical characterization of pentacene thin film transistors

    PubMed Central

    Lassnig, R.; Striedinger, B.; Hollerer, M.; Fian, A.; Stadlober, B.; Winkler, A.

    2015-01-01

    The fabrication of organic thin film transistors with highly reproducible characteristics presents a very challenging task. We have prepared and analyzed model pentacene thin film transistors under ultra-high vacuum conditions, employing surface analytical tools and methods. Intentionally contaminating the gold contacts and SiO2 channel area with carbon through repeated adsorption, dissociation, and desorption of pentacene proved to be very advantageous in the creation of devices with stable and reproducible parameters. We mainly focused on the device properties, such as mobility and threshold voltage, as a function of film morphology and preparation temperature. At 300 K, pentacene displays Stranski-Krastanov growth, whereas at 200 K fine-grained, layer-like film growth takes place, which predominantly influences the threshold voltage. Temperature dependent mobility measurements demonstrate good agreement with the established multiple trapping and release model, which in turn indicates a predominant concentration of shallow traps in the crystal grains and at the oxide-semiconductor interface. Mobility and threshold voltage measurements as a function of coverage reveal that up to four full monolayers contribute to the overall charge transport. A significant influence on the effective mobility also stems from the access resistance at the gold contact-semiconductor interface, which is again strongly influenced by the temperature dependent, characteristic film growth mode. PMID:25814770

  11. Demonstration of flexible thin film transistors with GaN channels

    NASA Astrophysics Data System (ADS)

    Bolat, S.; Sisman, Z.; Okyay, A. K.

    2016-12-01

    We report on the thin film transistors (TFTs) with Gallium Nitride (GaN) channels directly fabricated on flexible substrates. GaN thin films are grown by hollow cathode plasma assisted atomic layer deposition (HCPA-ALD) at 200 °C. TFTs exhibit 103 on-to-off current ratios and are shown to exhibit proper transistor saturation behavior in their output characteristics. Gate bias stress tests reveal that flexible GaN TFTs have extremely stable electrical characteristics. Overall fabrication thermal budget is below 200 °C, the lowest reported for the GaN based transistors so far.

  12. Highly stable amorphous zinc tin oxynitride thin film transistors under positive bias stress

    NASA Astrophysics Data System (ADS)

    Niang, K. M.; Bayer, B. C.; Meyer, J. C.; Flewitt, A. J.

    2017-09-01

    The stability of amorphous zinc tin oxynitride thin film transistors (a-ZTON TFTs) under positive bias stress (PBS) is investigated. Thin films are deposited by remote plasma reactive sputtering and are annealed at 300 °C in air for 1 h, after which films are confirmed to be highly amorphous by transmission electron microscopy. Typical a-ZTON TFTs exhibit a threshold voltage of 2.5 V, a field effect mobility of 3.3 cm2 V-1 s-1, a sub-threshold slope of 0.55 V dec-1, and a switching ratio over 106. Using a thermalization energy analysis, the threshold voltage shift under PBS is analysed. A maximum energy barrier to defect conversion up to 0.91 eV is found, which is significantly greater than that of the ˜0.75 eV energy barrier for amorphous indium gallium zinc oxide and amorphous zinc tin oxide TFTs previously reported. The improved stability of these oxynitride TFTs over amorphous oxide TFTs is explained by the elimination of less stable oxygen vacancies due to the passivation of oxygen vacancies with nitrogen. The higher attempt-to-escape frequency of 108 to 109 s-1 in a-ZTON TFTs compared with 107 s-1 in amorphous oxide semiconductor TFTs, on the other hand, is attributed to the high homogeneity of the amorphous film leading to strong carrier localization in the band tails.

  13. Characterization of reliability of printed indium tin oxide thin films.

    PubMed

    Hong, Sung-Jei; Kim, Jong-Woong; Jung, Seung-Boo

    2013-11-01

    Recently, decreasing the amount of indium (In) element in the indium tin oxide (ITO) used for transparent conductive oxide (TCO) thin film has become necessary for cost reduction. One possible approach to this problem is using printed ITO thin film instead of sputtered. Previous studies showed potential for printed ITO thin films as the TCO layer. However, nothing has been reported on the reliability of printed ITO thin films. Therefore, in this study, the reliability of printed ITO thin films was characterized. ITO nanoparticle ink was fabricated and printed onto a glass substrate followed by heating at 400 degrees C. After measurement of the initial values of sheet resistance and optical transmittance of the printed ITO thin films, their reliabilities were characterized with an isothermal-isohumidity test for 500 hours at 85 degrees C and 85% RH, a thermal shock test for 1,000 cycles between 125 degrees C and -40 degrees C, and a high temperature storage test for 500 hours at 125 degrees C. The same properties were investigated after the tests. Printed ITO thin films showed stable properties despite extremely thermal and humid conditions. Sheet resistances of the printed ITO thin films changed slightly from 435 omega/square to 735 omega/square 507 omega/square and 442 omega/square after the tests, respectively. Optical transmittances of the printed ITO thin films were slightly changed from 84.74% to 81.86%, 88.03% and 88.26% after the tests, respectively. These test results suggest the stability of printed ITO thin film despite extreme environments.

  14. Molecular doping for control of gate bias stress in organic thin film transistors

    NASA Astrophysics Data System (ADS)

    Hein, Moritz P.; Zakhidov, Alexander A.; Lüssem, Björn; Jankowski, Jens; Tietze, Max L.; Riede, Moritz K.; Leo, Karl

    2014-01-01

    The key active devices of future organic electronic circuits are organic thin film transistors (OTFTs). Reliability of OTFTs remains one of the most challenging obstacles to be overcome for broad commercial applications. In particular, bias stress was identified as the key instability under operation for numerous OTFT devices and interfaces. Despite a multitude of experimental observations, a comprehensive mechanism describing this behavior is still missing. Furthermore, controlled methods to overcome these instabilities are so far lacking. Here, we present the approach to control and significantly alleviate the bias stress effect by using molecular doping at low concentrations. For pentacene and silicon oxide as gate oxide, we are able to reduce the time constant of degradation by three orders of magnitude. The effect of molecular doping on the bias stress behavior is explained in terms of the shift of Fermi Level and, thus, exponentially reduced proton generation at the pentacene/oxide interface.

  15. Charge carrier transport in polycrystalline organic thin film based field effect transistors

    NASA Astrophysics Data System (ADS)

    Rani, Varsha; Sharma, Akanksha; Ghosh, Subhasis

    2016-05-01

    The charge carrier transport mechanism in polycrystalline thin film based organic field effect transistors (OFETs) has been explained using two competing models, multiple trapping and releases (MTR) model and percolation model. It has been shown that MTR model is most suitable for explaining charge carrier transport in grainy polycrystalline organic thin films. The energetic distribution of traps determined independently using Mayer-Neldel rule (MNR) is in excellent agreement with the values obtained by MTR model for copper phthalocyanine and pentacene based OFETs.

  16. Organic nanodielectrics for low voltage carbon nanotube thin film transistors and complementary logic gates.

    PubMed

    Hur, Seung-Hyun; Yoon, Myung-Han; Gaur, Anshu; Shim, Moonsub; Facchetti, Antonio; Marks, Tobin J; Rogers, John A

    2005-10-12

    We report the implementation of three dimensionally cross-linked, organic nanodielectric multilayers as ultrathin gate dielectrics for a type of thin film transistor device that uses networks of single-walled carbon nanotubes as effective semiconductor thin films. Unipolar n- and p-channel devices are demonstrated by use of polymer coatings to control the behavior of the networks. Monolithically integrating these devices yields complementary logic gates. The organic multilayers provide exceptionally good gate dielectrics for these systems and allow for low voltage, low hysteresis operation. The excellent performance characteristics suggest that organic dielectrics of this general type could provide a promising path to SWNT-based thin film electronics.

  17. Organic ferroelectric gate field-effect transistor memory using high-mobility rubrene thin film

    NASA Astrophysics Data System (ADS)

    Kanashima, Takeshi; Katsura, Yuu; Okuyama, Masanori

    2014-01-01

    An organic ferroelectric gate field-effect transistor (FET) memory has been fabricated using an organic semiconductor of rubrene thin film with a high mobility and a gate insulating layer of poly(vinylidene fluoride-tetrafluoroethylene) [P(VDF-TeFE)] thin film. A rubrene thin-film sheet was grown by physical vapor transport (PVT), and placed onto a spin-coated P(VDF-TeFE) thin-film layer, and Au source and drain electrodes were formed on this rubrene thin film. A hysteresis loop of the drain current-gate voltage (ID-VG) characteristic has been clearly observed in the ferroelectric gate FET, and is caused by the ferroelectricity. The maximum drain current is 1.5 × 10-6 A, which is about two orders of magnitude larger than that of the P(VDF-TeFE) gate FET using a pentacene thin film. Moreover, the mobility of this organic ferroelectric gate FET using rubrene thin film is 0.71 cm2 V-1 s-1, which is 35 times larger than that of the FET with pentacene thin film.

  18. Fabrication and Characterization of Fully Transparent ZnO Thin-Film Transistors and Self-Switching Nano-Diodes

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Ashida, K.; Sasaki, S.; Koyama, M.; Maemoto, T.; Sasa, S.; Kasai, S.; Iñiguez-de-la-Torre, I.; González, T.

    2015-10-01

    Fully transparent zinc oxide (ZnO) based thin-film transistors (TFTs) and a new type of rectifiers calls self-switching nano-diodes (SSDs) were fabricated on glass substrates at room temperature by using low resistivity and transparent conducting Al- doped ZnO (AZO) thin-films. The deposition conditions of AZO thin-films were optimized with pulsed laser deposition (PLD). AZO thin-films on glass substrates were characterized and the transparency of 80% and resistivity with 1.6*10-3 Ωcm were obtained of 50 nm thickness. Transparent ZnO-TFTs were fabricated on glass substrates by using AZO thin-films as electrodes. A ZnO-TFT with 2 μm long gate device exhibits a transconductance of 400 μS/mm and an ON/OFF ratio of 2.8*107. Transparent ZnO-SSDs were also fabricated by using ZnO based materials and clear diode-like characteristics were observed.

  19. Analytical approximation of the InGaZnO thin-film transistors surface potential

    NASA Astrophysics Data System (ADS)

    Colalongo, Luigi

    2016-10-01

    Surface-potential-based mathematical models are among the most accurate and physically based compact models of thin-film transistors, and in turn of indium gallium zinc oxide TFTs, available today. However, the need of iterative computations of the surface potential limits their computational efficiency and diffusion in CAD applications. The existing closed-form approximations of the surface potential are based on regional approximations and empirical smoothing functions that could result not accurate enough in particular to model transconductances and transcapacitances. In this work we present an extremely accurate (in the range of nV) and computationally efficient non-iterative approximation of the surface potential that can serve as a basis for advanced surface-potential-based indium gallium zinc oxide TFTs models.

  20. Analysis of the contact resistance in amorphous InGaZnO thin film transistors

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Ling; Lu, Congyan; Liu, Yu; Lv, Hangbing; Xu, Guangwei; Ji, Zhuoyu; Liu, Ming

    2015-08-01

    Contact resistance has great impact on the performance of oxide thin film transistors (TFTs) and their applications. In this letter, temperature, gate voltage, and electrode dependences of the contact resistance were investigated in amorphous InGaZnO (a-IGZO) TFTs. We found that gate voltage dependent contact resistance made a large contribution to or even dominated the "field effect" of oxide TFTs. After separating the influence of contact resistance, the intrinsic temperature dependent field effect mobility of the a-IGZO TFTs was obtained. Furthermore, the experimental data of the contact resistance can be well described by an optimized transmission line model, and the height of the Schottky barrier in the interface between the metal electrode and a-IGZO semiconductor was found to be related to the gate voltage and account for the contact resistance's dependence on the gate voltage.

  1. Suppression of excess oxygen for environmentally stable amorphous In-Si-O thin-film transistors

    SciTech Connect

    Aikawa, Shinya E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Kizu, Takio; Tsukagoshi, Kazuhito E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Nabatame, Toshihide

    2015-05-11

    We discuss the environmental instability of amorphous indium oxide (InO{sub x})-based thin-film transistors (TFTs) in terms of the excess oxygen in the semiconductor films. A comparison between amorphous InO{sub x} doped with low and high concentrations of oxygen binder (SiO{sub 2}) showed that out-diffusion of oxygen molecules causes drastic changes in the film conductivity and TFT turn-on voltages. Incorporation of sufficient SiO{sub 2} could suppress fluctuations in excess oxygen because of the high oxygen bond-dissociation energy and low Gibbs free energy. Consequently, the TFT operation became rather stable. The results would be useful for the design of reliable oxide TFTs with stable electrical properties.

  2. Improvement of bias-stability in amorphous-indium-gallium-zinc-oxide thin-film transistors by using solution-processed Y{sub 2}O{sub 3} passivation

    SciTech Connect

    An, Sungjin; Mativenga, Mallory; Kim, Youngoo; Jang, Jin

    2014-08-04

    We demonstrate back channel improvement of back-channel-etch amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors by using solution-processed yttrium oxide (Y{sub 2}O{sub 3}) passivation. Two different solvents, which are acetonitrile (35%) + ethylene glycol (65%), solvent A and deionized water, solvent B are investigated for the spin-on process of the Y{sub 2}O{sub 3} passivation—performed after patterning source/drain (S/D) Mo electrodes by a conventional HNO{sub 3}-based wet-etch process. Both solvents yield devices with good performance but those passivated by using solvent B exhibit better light and bias stability. Presence of yttrium at the a-IGZO back interface, where it occupies metal vacancy sites, is confirmed by X-ray photoelectron spectroscopy. The passivation effect of yttrium is more significant when solvent A is used because of the existence of more metal vacancies, given that the alcohol (65% ethylene glycol) in solvent A may dissolve the metal oxide (a-IGZO) through the formation of alkoxides and water.

  3. Selective Conversion from p-Type to n-Type of Printed Bottom-Gate Carbon Nanotube Thin-Film Transistors and Application in Complementary Metal-Oxide-Semiconductor Inverters.

    PubMed

    Xu, Qiqi; Zhao, Jianwen; Pecunia, Vincenzo; Xu, Wenya; Zhou, Chunshan; Dou, Junyan; Gu, Weibing; Lin, Jian; Mo, Lixin; Zhao, Yanfei; Cui, Zheng

    2017-04-12

    The fabrication of printed high-performance and environmentally stable n-type single-walled carbon nanotube (SWCNT) transistors and their integration into complementary (i.e., complementary metal-oxide-semiconductor, CMOS) circuits are widely recognized as key to achieving the full potential of carbon nanotube electronics. Here, we report a simple, efficient, and robust method to convert the polarity of SWCNT thin-film transistors (TFTs) using cheap and readily available ethanolamine as an electron doping agent. Printed p-type bottom-gate SWCNT TFTs can be selectively converted into n-type by deposition of ethanolamine inks on the transistor active region via aerosol jet printing. Resulted n-type TFTs show excellent electrical properties with an on/off ratio of 10(6), effective mobility up to 30 cm(2) V(-1) s(-1), small hysteresis, and small subthreshold swing (90-140 mV dec(-1)), which are superior compared to the original p-type SWCNT devices. The n-type SWCNT TFTs also show good stability in air, and any deterioration of performance due to shelf storage can be fully recovered by a short low-temperature annealing. The easy polarity conversion process allows construction of CMOS circuitry. As an example, CMOS inverters were fabricated using printed p-type and n-type TFTs and exhibited a large noise margin (50 and 103% of 1/2 Vdd = 1 V) and a voltage gain as high as 30 (at Vdd = 1 V). Additionally, the CMOS inverters show full rail-to-rail output voltage swing and low power dissipation (0.1 μW at Vdd = 1 V). The new method paves the way to construct fully functional complex CMOS circuitry by printed TFTs.

  4. Correlations between structural and electrical properties of nitrided SiOx thin films used as power metal oxide semiconductor field effect transistor gate dielectric

    NASA Astrophysics Data System (ADS)

    Fazio, E.; Neri, F.; Camalleri, G. Curró M.; Calí, D.

    2008-11-01

    Correlations between the interface states and trap densities, in particular, the defect types that may be more or less strongly involved in power vertically diffused metal oxide semiconductor reliability performances, and the fine interface chemistry of the Ox-N-Siy bonds have been studied. The oxide preparation process is extracted from an STMicroelectronics proprietary standard for low voltage vertically diffused power metal oxide semiconductor field effect transistors with logic level gate driving. The oxynitride films were grown in N2O environment at temperatures equal to or higher than 900 °C and optionally subjected to a 1000 °C short annealing. Informations about the sample stoichiometry and the nitrogen bonding configurations were obtained by means of x-ray photoelectron spectroscopy. The results show that some peculiar linear and antilinear correlations exist between carrier traps across the oxide or at its interface and the amount of specific nitrogen bonding configurations. In particular, the role of the substitutional N(-SiO3)x bond as a marker of the electrical quality of Si/SiO2 interface is highlighted.

  5. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Growth Related Carrier Mobility Enhancement of Pentacene Thin-Film Transistors with High-k Oxide Gate Dielectric

    NASA Astrophysics Data System (ADS)

    Yu, Ai-Fang; Qi, Qiong; Jiang, Peng; Jiang, Chao

    2009-07-01

    Carrier mobility enhancement from 0.09 to 0.59 cm2/Vs is achieved for pentacene-based thin-film transistors (TFTs) by modifying the HfO2 gate dielectric with a polystyrene (PS) thin film. The improvement of the transistor's performance is found to be strongly related to the initial film morphologies of pentacene on the dielectrics. In contrast to the three-dimensional island-like growth mode on the HfO2 surface, the Stranski-Krastanov growth mode on the smooth and nonpolar PS/HfO2 surface is believed to be the origin of the excellent carrier mobility of the TFTs. A large well-connected first monolayer with fewer boundaries is formed via the Stranski-Krastanov growth mode, which facilitates a charge transport parallel to the substrate and promotes higher carrier mobility.

  6. Oxidation Temperature Effects on ZnO Thin Films Prepared from Zn Thin Films on Quartz Substrates.

    PubMed

    Park, Seonhee; Kim, Younggyu; Leem, Jae-Young

    2015-11-01

    We investigated the structural and optical properties of the ZnO thin films formed by oxidation of Zn thin films. Zn thin films were deposited by thermal evaporation and were then annealed from 300 to 800 degrees C to prepare ZnO thin films. We found that ZnO thin films were formed by thermal oxidation of Zn thin films at oxidation temperatures over 400 degrees C. The grain size of ZnO thin films increased with the oxidation temperature and the highest ZnO (002) intensity was obtained at 600 degrees C. In the PL spectra, the intensity of the near-band-edge peak increased with the oxidation temperatures until 400 degrees C. However, these values gradually decreased with a further increase in the oxidation temperatures over 400 degrees C. The transmittance of the ZnO thin films was more than 90% for the visible wavelength region, and the optical band gap was red-shifted with increase in the oxidation temperature.

  7. A room temperature process for the fabrication of amorphous indium gallium zinc oxide thin-film transistors with co-sputtered Zr x Si1- x O2 Gate dielectric and improved electrical and hysteresis performance

    NASA Astrophysics Data System (ADS)

    Hung, Chien-Hsiung; Wang, Shui-Jinn; Liu, Pang-Yi; Wu, Chien-Hung; Wu, Nai-Sheng; Yan, Hao-Ping; Lin, Tseng-Hsing

    2017-04-01

    The use of co-sputtered zirconium silicon oxide (Zr x Si1- x O2) gate dielectrics to improve the gate controllability of amorphous indium gallium zinc oxide (α-IGZO) thin-film transistors (TFTs) through a room-temperature fabrication process is proposed and demonstrated. With the sputtering power of the SiO2 target in the range of 0-150 W and with that of the ZrO2 target kept at 100 W, a dielectric constant ranging from approximately 28.1 to 7.8 is obtained. The poly-structure formation immunity of the Zr x Si1- x O2 dielectrics, reduction of the interface trap density suppression, and gate leakage current are examined. Our experimental results reveal that the Zr0.85Si0.15O2 gate dielectric can lead to significantly improved TFT subthreshold swing performance (103 mV/dec) and field effect mobility (33.76 cm2 V-1 s-1).

  8. Influence of the charge trap density distribution in a gate insulator on the positive-bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Eungtaek; Kim, Choong-Ki; Lee, Myung Keun; Bang, Tewook; Choi, Yang-Kyu; Park, Sang-Hee Ko; Choi, Kyung Cheol

    2016-05-01

    We investigated the positive-bias stress (PBS) instability of thin film transistors (TFTs) composed of different types of first-gate insulators, which serve as a protection layer of the active surface. Two different deposition methods, i.e., the thermal atomic layer deposition (THALD) and plasma-enhanced ALD (PEALD) of Al2O3, were applied for the deposition of the first GI. When THALD was used to deposit the GI, amorphous indium-gallium-zinc oxide (a-IGZO) TFTs showed superior stability characteristics under PBS. For example, the threshold voltage shift (ΔVth) was 0 V even after a PBS time (tstress) of 3000 s under a gate voltage (VG) condition of 5 V (with an electrical field of 1.25 MV/cm). On the other hand, when the first GI was deposited by PEALD, the ΔVth value of a-IGZO TFTs was 0.82 V after undergoing an identical amount of PBS. In order to interpret the disparate ΔVth values resulting from PBS quantitatively, the average oxide charge trap density (NT) in the GI and its spatial distribution were investigated through low-frequency noise characterizations. A higher NT resulted during in the PEALD type GI than in the THALD case. Specifically, the PEALD process on a-IGZO layer surface led to an increasing trend of NT near the GI/a-IGZO interface compared to bulk GI owing to oxygen plasma damage on the a-IGZO surface.

  9. Organic thin-film transistors as transducers for (bio)analytical applications.

    PubMed

    Bartic, Carmen; Borghs, Gustaaf

    2006-01-01

    The use of organic thin-film transistors (OTFTs) in sensorics is relatively new. Although electronic noses, electronic textiles and disposable biochemical sensors appear to be viable applications for this type of devices, the benefits of the technology still have to be proven. This paper aims to provide a review of the recent advances in the area of chemically sensitive field-effect devices based on organic thin-film transistors (OTFTs), with emphasis on bioanalytical applications. Detection principle, device configuration, materials and fabrication processes as well as sensor performances will be discussed, with emphasis on the potential for implementation in real applications and the important challenges ahead.

  10. Ti-doped indium tin oxide thin films for transparent field-effect transistors: control of charge-carrier density and crystalline structure.

    PubMed

    Kim, Ji-In; Ji, Kwang Hwan; Jang, Mi; Yang, Hoichang; Choi, Rino; Jeong, Jae Kyeong

    2011-07-01

    Indium tin oxide (ITO) films are representative transparent conducting oxide media for organic light-emitting diodes, liquid crystal displays, and solar cell applications. Extending the utility of ITO films from passive electrodes to active channel layers in transparent field-effect transistors (FETs), however, has been largely limited because of the materials' high carrier density (>1 × 10(20) cm(-3)), wide band gap, and polycrystalline structure. Here, we demonstrate that control over the cation composition in ITO-based oxide films via solid doping of titanium (Ti) can optimize the carrier concentration and suppress film crystallization. On 120 nm thick SiO(2)/Mo (200 nm)/glass substrates, transparent n-type FETs prepared with 4 at % Ti-doped ITO films and fabricated via the cosputtering of ITO and TiO(2) exhibited high electron mobilities of 13.4 cm(2) V(-1) s(-1), a low subthreshold gate swing of 0.25 V decade(-1), and a high I(on/)I(off) ratio of >1 × 10(8).

  11. Carrier trapping anisotropy in ambipolar SnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Luo, Hao; Liang, Lingyan; Cao, Hongtao

    2017-03-01

    The anisotropic carrier trapping behaviors was demonstrated for ambipolar tin monoxide (SnO) thin-film transistors (TFTs). On one hand, the TFTs exhibited good stability with almost no changes in transfer characteristics under negative gate-bias stress (NGBS). On the other, under positive gate-bias stress (PGBS), the transfer curves presented parallel and positive shift with no degradation in field-effect mobility and subthreshold voltage swing. The stress-time evolution of the turn-on voltage shift, induced by different positive stress voltages and temperatures, could be described by the stretched exponential model. The relaxation time was extracted to be 1.6 × 104 s at room temperature with activation energy of 0.43 eV, indicating that the ambipolar SnO TFTs under PGBS approach the stability of amorphous indium-gallium-zinc oxide based TFTs.

  12. Room-temperature fabrication of a Ga-Sn-O thin-film transistor

    NASA Astrophysics Data System (ADS)

    Matsuda, Tokiyoshi; Takagi, Ryo; Umeda, Kenta; Kimura, Mutsumi

    2017-08-01

    We have succeeded in forming a Ga-Sn-O (GTO) film for a thin-film transistor (TFT) using radio-frequency (RF) magnetron sputtering at room temperature without annealing process. It is achieved that the field-effect mobility is 0.83 cm2 V-1 s-1 and the on/off ratio is roughly 106. A critical process parameter is the deposition pressure during the RF magnetron sputtering, which determines a balance between competing mechanisms of sputtering damages and chemical reactions, because the film quality has to be enhanced solely during the sputtering deposition. This result suggests a possibility of rare-metal free amorphous metal-oxide semiconductors.

  13. Hydrogen passivation of electron trap in amorphous In-Ga-Zn-O thin-film transistors

    NASA Astrophysics Data System (ADS)

    Hanyu, Yuichiro; Domen, Kay; Nomura, Kenji; Hiramatsu, Hidenori; Kumomi, Hideya; Hosono, Hideo; Kamiya, Toshio

    2013-11-01

    We report an experimental evidence that some hydrogens passivate electron traps in an amorphous oxide semiconductor, a-In-Ga-Zn-O (a-IGZO). The a-IGZO thin-film transistors (TFTs) annealed at 300 °C exhibit good operation characteristics; while those annealed at ≥400 °C show deteriorated ones. Thermal desorption spectra (TDS) of H2O indicate that this threshold annealing temperature corresponds to depletion of H2O desorption from the a-IGZO layer. Hydrogen re-doping by wet oxygen annealing recovers the good TFT characteristic. The hydrogens responsible for this passivation have specific binding energies corresponding to the desorption temperatures of 300-430 °C. A plausible structural model is suggested.

  14. Hydrogen passivation of electron trap in amorphous In-Ga-Zn-O thin-film transistors

    SciTech Connect

    Hanyu, Yuichiro Domen, Kay; Nomura, Kenji; Hiramatsu, Hidenori; Kamiya, Toshio; Kumomi, Hideya; Hosono, Hideo

    2013-11-11

    We report an experimental evidence that some hydrogens passivate electron traps in an amorphous oxide semiconductor, a-In-Ga-Zn-O (a-IGZO). The a-IGZO thin-film transistors (TFTs) annealed at 300 °C exhibit good operation characteristics; while those annealed at ≥400 °C show deteriorated ones. Thermal desorption spectra (TDS) of H{sub 2}O indicate that this threshold annealing temperature corresponds to depletion of H{sub 2}O desorption from the a-IGZO layer. Hydrogen re-doping by wet oxygen annealing recovers the good TFT characteristic. The hydrogens responsible for this passivation have specific binding energies corresponding to the desorption temperatures of 300–430 °C. A plausible structural model is suggested.

  15. ZnO thin film transistor immunosensor with high sensitivity and selectivity

    NASA Astrophysics Data System (ADS)

    Reyes, Pavel Ivanoff; Ku, Chieh-Jen; Duan, Ziqing; Lu, Yicheng; Solanki, Aniruddh; Lee, Ki-Bum

    2011-04-01

    A zinc oxide thin film transistor-based immunosensor (ZnO-bioTFT) is presented. The back-gate TFT has an on-off ratio of 108 and a threshold voltage of 4.25 V. The ZnO channel surface is biofunctionalized with primary monoclonal antibodies that selectively bind with epidermal growth factor receptor (EGFR). Detection of the antibody-antigen reaction is achieved through channel carrier modulation via pseudo double-gating field effect caused by the biochemical reaction. The sensitivity of 10 fM detection of pure EGFR proteins is achieved. The ZnO-bioTFT immunosensor also enables selectively detecting 10 fM of EGFR in a 5 mg/ml goat serum solution containing various other proteins.

  16. Morphological and crystalline characterization of pulsed laser deposited pentacene thin films for organic transistor applications

    NASA Astrophysics Data System (ADS)

    Pereira, Antonio; Bonhommeau, Sébastien; Sirotkin, Sergey; Desplanche, Sarah; Kaba, Mamadouba; Constantinescu, Catalin; Diallo, Abdou Karim; Talaga, David; Penuelas, Jose; Videlot-Ackermann, Christine; Alloncle, Anne-Patricia; Delaporte, Philippe; Rodriguez, Vincent

    2017-10-01

    We show that high-quality pentacene (P5) thin films of high crystallinity and low surface roughness can be produced by pulsed laser deposition (PLD) without inducing chemical degradation of the molecules. By using Raman spectroscopy and X-ray diffraction measurements, we also demonstrate that the deposition of P5 on Au layers result in highly disordered P5 thin films. While the P5 molecules arrange within the well-documented 1.54-nm thin-film phase on high-purity fused silica substrates, this ordering is indeed destroyed upon introducing an Au interlayer. This observation may be one explanation for the low electrical performances measured in P5-based organic thin film transistors (OTFTs) deposited by laser-induced forward transfer (LIFT).

  17. Fabrication and characterization of low temperature polycrystalline silicon thin film transistors

    NASA Astrophysics Data System (ADS)

    Krishnan, Anand Thiruvengadathan

    2000-10-01

    The proliferation of devices with built-in displays, such as personal digital assistants and cellular phones has created a demand for rugged light-weight displays. Polymeric substrates could be suited for these applications, and they offer the possibility of flexible displays also. However, driver circuitry needs to be integrated in the display if the cost is to be reduced. Low temperature (<350°C) polycrystalline silicon (poly-Si) thin film transistors, if developed, offer driver circuitry integration during pixel transistor fabrication on top of flexible substrates. This thesis addresses several issues related to the fabrication of thin film transistors at low temperatures on glass substrates. A high-density plasma (electron cyclotron resonance (ECR)) based approach was adopted for deposition of thin films. A process for deposition of n-type doped silicon (n-type doped Si) at T < 350°C and having resistivity <1 ohm/cm has been developed. Intrinsic poly-Si was deposited under different conditions of microwave power, RF bias and deposition times. The properties of n-type doped Si and intrinsic poly-Si were correlated with the structure and the deposition conditions. A novel TFT structure has been proposed and implemented in this work. This top gate TFT structure uses n-type doped Si and utilizes only two masks and one alignment step. There are no critical etch steps and good interface quality could be obtained even without post-processing hydrogenation as the poly-Si surface was not exposed to air before deposition of the gate dielectric. TFTs using this top gate structure were fabricated with no process step exceeding 340°C electrode temperature (surface temperature <300°C). These TFTs show ON/OFF ratios in excess of 105. Their sub-threshold swing is ˜0.5 V/decade and mobility is 1--10 cm2/V-s. Several TFTs were also fabricated using alternative dielectrics such as oxide deposited from tetramethyl silane in an RFPECVD chamber and silicon nitride deposited in

  18. Investigation of electrodeposited cuprous oxide thin films

    NASA Astrophysics Data System (ADS)

    Mortensen, Emma L.

    This dissertation focuses on improvements to electrodeposited cuprous oxide as a candidate for the absorber layer for a thin film solar cell that could be integrated into a mechanical solar cell stack. Cuprous oxide (Cu2O) is an earth abundant material that has a bandgap of 2 eV with absorption coefficients around 102-106 cm-1. This bandgap is not optimized for use as a single-junction solar cell, but could be ideal for use in a tandem solar cell device. The theoretical efficiency of a material with a bandgap of 2.0 eV is 20%. The greatest actual efficiency that has been achieved for a Cu2O solar cell is only 8.1%. For the present work the primary focus has been on improving the microstructure of the absorber layer film. The Cu2O films were fabricated using electrodeposition. A seeding layer was developed using gold (Au); which was manipulated into nano-islands and used as the substrate for the Cu2O electrodeposition. The films were characterized and compared to determine the growth mechanism of each film using scanning electron microscopy (SEM). X-ray diffraction (XRD) was used to establish and compare the chemical phases that were present in each of the films. The crystal structure of the Cu2O film grown on gold was explored using transmission electron microscopy (TEM), and this helped confirm the effect that the gold had on the growth of Cu2O. The Tauc method was then used to determine the bandgap of the films of Cu2O grown on both substrates and this showed that the Au based Cu2O film was a superior film. Electrical tests were also completed using a solar simulator and this established that the film grown on gold exhibited photoconductivity that was not seen on the film without gold. In addition, for this thesis, a method for depositing an n-type Cu2O film, based on a Cu-metal solution-boiling process, was investigated. Three forms of copper were tested: a sheet of copper, electrodeposited copper, and sputtered copper. The chemical phases were observed using

  19. High-K Lanthanum Zirconium Oxide Thin Film Dielectrics from Aqueous Solution Precursors.

    PubMed

    Woods, Keenan Navarre; Chiang, Tsung-Han; Plassmeyer, Paul N; Kast, Matthew G; Lygo, Alexander C; Grealish, Aidan K; Boettcher, Shannon W; Page, Catherine J

    2017-03-06

    Metal oxide thin films are critical in modern electronic applications. In particular, high-κ dielectrics are of interest for reducing power consumption in metal-insulator-semiconductor (MIS) field-effect transistors. Although thin-film materials are typically produced via vacuum-based methods, solution deposition offers a scalable and cost-efficient alternative. We report an all-inorganic aqueous solution route to amorphous lanthanum zirconium oxide (La2Zr2O7, "LZO") dielectric thin films. LZO films were spin-cast from aqueous solutions of metal nitrates and annealed at temperatures between 300 and 600 °C to produce dense, defect-free, and smooth films with sub-nm roughness. Dielectric constants of 12.2 to 16.4 and loss tangents < 0.6% were obtained for MIS devices utilizing LZO as the dielectric layer (1 kHz). Leakage currents < 10-7 A cm-2 at 4 MV cm-1 were measured for samples annealed at 600 °C. The excellent surface morphology, high dielectric constants, and low leakage current densities makes these LZO dielectrics promising candidates for thin-film transistor devices.

  20. High-performance low-cost back-channel-etch amorphous gallium-indium-zinc oxide thin-film transistors by curing and passivation of the damaged back channel.

    PubMed

    Park, Jae Chul; Ahn, Seung-Eon; Lee, Ho-Nyeon

    2013-12-11

    High-performance, low-cost amorphous gallium-indium-zinc oxide (a-GIZO) thin-film-transistor (TFT) technology is required for the next generation of active-matrix organic light-emitting diodes. A back-channel-etch structure is the most appropriate device structure for high-performance, low-cost a-GIZO TFT technology. However, channel damage due to source/drain etching and passivation-layer deposition has been a critical issue. To solve this problem, the present work focuses on overall back-channel processes, such as back-channel N2O plasma treatment, SiOx passivation deposition, and final thermal annealing. This work has revealed the dependence of a-GIZO TFT characteristics on the N2O plasma radio-frequency (RF) power and frequency, the SiH4 flow rate in the SiOx deposition process, and the final annealing temperature. On the basis of these results, a high-performance a-GIZO TFT with a field-effect mobility of 35.7 cm(2) V(-1) s(-1), a subthreshold swing of 185 mV dec(-1), a switching ratio exceeding 10(7), and a satisfactory reliability was successfully fabricated. The technology developed in this work can be realized using the existing facilities of active-matrix liquid-crystal display industries.

  1. A study on the high temperature-dependence of the electrical properties in a solution-deposited zinc-tin-oxide thin-film transistor operated in the saturation region

    NASA Astrophysics Data System (ADS)

    Yu, Kyeong Min; Bae, Byung Seong; Jung, Myunghee; Yun, Eui-Jung

    2016-06-01

    We investigate the effects of high temperatures in the range of 292 - 393 K on the electrical properties of solution-processed amorphous zinc-tin-oxide (a-ZTO) thin-film transistors (TFTs) operated in the saturation region. The fabricated a-ZTO TFTs have a non-patterned bottom gate and top contact structure, and they use a heavily-doped Si wafer and SiO2 as a gate electrode and a gate insulator layer, respectively. In a-ZTO TFTs, the trap release energy ( E TR ) was deduced by using Maxwell-Boltzmann statistics. The decreasing E TR toward zero with increasing gate voltage (the density of trap states ( n s )) in the a-ZTO active layer can be attributed to a shift of the Fermi level toward the mobility edge with increasing gate voltage. The TFTs with low gate voltage (low n s ) exhibit multiple trap and release characteristics and show thermally-activated behavior. In TFTs with a high gate voltage (high n s ), however, we observe decreasing mobility and conductivity with increasing temperature at temperatures ranging from 303 to 363 K. This confirms that the E TR can drop to zero, indicating a shift of the Fermi level beyond the mobility edge. Hence, the mobility edge is detected at the cusp between thermally-activated transport and band transport.

  2. Unidirectional oxide hetero-interface thin-film diode

    SciTech Connect

    Park, Youngmin; Lee, Eungkyu; Lee, Jinwon; Lim, Keon-Hee; Kim, Youn Sang

    2015-10-05

    The unidirectional thin-film diode based on oxide hetero-interface, which is well compatible with conventional thin-film fabrication process, is presented. With the metal anode/electron-transporting oxide (ETO)/electron-injecting oxide (EIO)/metal cathode structure, it exhibits that electrical currents ohmically flow at the ETO/EIO hetero-interfaces for only positive voltages showing current density (J)-rectifying ratio of ∼10{sup 5} at 5 V. The electrical properties (ex, current levels, and working device yields) of the thin-film diode (TFD) are systematically controlled by changing oxide layer thickness. Moreover, we show that the oxide hetero-interface TFD clearly rectifies an AC input within frequency (f) range of 10{sup 2} Hz < f < 10{sup 6} Hz, providing a high feasibility for practical applications.

  3. Multiferroic oxide thin films and heterostructures

    NASA Astrophysics Data System (ADS)

    Lu, Chengliang; Hu, Weijin; Tian, Yufeng; Wu, Tom

    2015-06-01

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  4. Multiferroic oxide thin films and heterostructures

    SciTech Connect

    Lu, Chengliang E-mail: Tao.Wu@kaust.edu.sa; Hu, Weijin; Wu, Tom E-mail: Tao.Wu@kaust.edu.sa; Tian, Yufeng

    2015-06-15

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  5. Sigma-pi molecular dielectric multilayers for low-voltage organic thin-film transistors.

    PubMed

    Yoon, Myung-Han; Facchetti, Antonio; Marks, Tobin J

    2005-03-29

    Very thin (2.3-5.5 nm) self-assembled organic dielectric multilayers have been integrated into organic thin-film transistor structures to achieve sub-1-V operating characteristics. These new dielectrics are fabricated by means of layer-by-layer solution phase deposition of molecular silicon precursors, resulting in smooth, nanostructurally well defined, strongly adherent, thermally stable, virtually pinhole-free, organosiloxane thin films having exceptionally large electrical capacitances (up to approximately 2,500 nF.cm(-2)), excellent insulating properties (leakage current densities as low as 10(-9) A.cm(-2)), and single-layer dielectric constant (k)of approximately 16. These 3D self-assembled multilayers enable organic thin-film transistor function at very low source-drain, gate, and threshold voltages (<1 V) and are compatible with a broad variety of vapor- or solution-deposited p- and n-channel organic semiconductors.

  6. Memristive Properties of Thin Film Cuprous Oxide

    DTIC Science & Technology

    2011-03-01

    switches, namely solid state transistors , have revolutionized the world by providing us with cheap and fast methods of data processing. However... transistors as they are currently designed are approaching some physical and theoretical limits of size. As the transistor has approached the nanometer...Another area of concern with current solid state transistors is their volatile nature, namely they require power to maintain their state of memory

  7. Pulsed photonic fabrication of nanostructured metal oxide thin films

    NASA Astrophysics Data System (ADS)

    Bourgeois, Briley B.; Luo, Sijun; Riggs, Brian C.; Adireddy, Shiva; Chrisey, Douglas B.

    2017-09-01

    Nanostructured metal oxide thin films with a large specific surface area are preferable for practical device applications in energy conversion and storage. Herein, we report instantaneous (milliseconds) photonic synthesis of three-dimensional (3-D) nanostructured metal oxide thin films through the pulsed photoinitiated pyrolysis of organometallic precursor films made by chemical solution deposition. High wall-plug efficiency-pulsed photonic irradiation (xenon flash lamp, pulse width of 1.93 ms, fluence of 7.7 J/cm2 and frequency of 1.2 Hz) is used for scalable photonic processing. The photothermal effect of subsequent pulses rapidly improves the crystalline quality of nanocrystalline metal oxide thin films in minutes. The following paper highlights pulsed photonic fabrication of 3-D nanostructured TiO2, Co3O4, and Fe2O3 thin films, exemplifying a promising new method for the low-cost and high-throughput manufacturing of nanostructured metal oxide thin films for energy applications.

  8. Discrepancy in mobility extracted from transfer and output characteristics of organic thin film transistors

    NASA Astrophysics Data System (ADS)

    Lin, Yow-Jon; Tsai, Chia-Lung; Huang, Bo-Chieh

    2010-11-01

    The discrepancy in mobility extracted from transfer and output characteristics of organic thin film transistors was studied. The extraction from transfer characteristics demonstrates higher mobility, compared to the extraction from output characteristics. It is shown that the contribution of capacitance variation may lead to an increased drain current, thus overestimating mobility.

  9. High-performance carbon nanotube thin-film transistors on flexible paper substrates

    SciTech Connect

    Liu, Na; Yun, Ki Nam; Yu, Hyun-Yong; Lee, Cheol Jin; Shim, Joon Hyung

    2015-03-09

    Single-walled carbon nanotubes (SWCNTs) are promising materials as active channels for flexible transistors owing to their excellent electrical and mechanical properties. However, flexible SWCNT transistors have never been realized on paper substrates, which are widely used, inexpensive, and recyclable. In this study, we fabricated SWCNT thin-film transistors on photo paper substrates. The devices exhibited a high on/off current ratio of more than 10{sup 6} and a field-effect mobility of approximately 3 cm{sup 2}/V·s. The proof-of-concept demonstration indicates that SWCNT transistors on flexible paper substrates could be applied as low-cost and recyclable flexible electronics.

  10. Solution-Processed Rare-Earth Oxide Thin Films for Alternative Gate Dielectric Application.

    PubMed

    Zhuang, Jiaqing; Sun, Qi-Jun; Zhou, Ye; Han, Su-Ting; Zhou, Li; Yan, Yan; Peng, Haiyan; Venkatesh, Shishir; Wu, Wei; Li, Robert K Y; Roy, V A L

    2016-11-16

    Previous investigations on rare-earth oxides (REOs) reveal their high possibility as dielectric films in electronic devices, while complicated physical methods impede their developments and applications. Herein, we report a facile route to fabricate 16 REOs thin insulating films through a general solution process and their applications in low-voltage thin-film transistors as dielectrics. The formation and properties of REOs thin films are analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD), spectroscopic ellipsometry, water contact angle measurement, X-ray photoemission spectroscopy (XPS), and electrical characterizations, respectively. Ultrasmooth, amorphous, and hydrophilic REO films with thickness around 10 nm have been obtained through a combined spin-coating and postannealing method. The compositional analysis results reveal the formation of RE hydrocarbonates on the surface and silicates at the interface of REOs films annealed on Si substrate. The dielectric properties of REO films are investigated by characterizing capacitors with a Si/Ln2O3/Au (Ln = La, Gd, and Er) structure. The observed low leakage current densities and large areal capacitances indicate these REO films can be employed as alternative gate dielectrics in transistors. Thus, we have successfully fabricated a series of low-voltage organic thin-film transistors based on such sol-gel derived REO films to demonstrate their application in electronics. The optimization of REOs dielectrics in transistors through further surface modification has also been studied. The current study provides a simple solution process approach to fabricate varieties of REOs insulating films, and the results reveal their promising applications as alternative gate dielectrics in thin-film transistors.

  11. Photosensitivity of InZnO thin-film transistors using a solution process

    NASA Astrophysics Data System (ADS)

    Choi, Jongwon; Park, Junghak; Lim, Keon-Hee; Cho, Nam-kwang; Lee, Jinwon; Jeon, Sanghun; Kim, Youn Sang

    2016-09-01

    Oxide semiconductor devices play a role in both switches and photo-sensors in interactive displays. During the fabrication of oxide semiconductor devices, the sol-gel solution process that is used to form an oxide semiconductor has various merits, including its simplicity and low cost as well as its good composition controllability. Here, we present the photosensitivity characteristics of an oxide photo thin-film transistor (TFT) created using the InZnO (IZO) sol-gel process. Upon exposure to light, photocurrent (Iphoto) in the negative gate bias regime is significantly increased with a negligible threshold voltage shift. The photosensitivity is modulated by geometrical factors and by the IZO material composition. We observed a significant effect of the channel thickness and IZO composition on the photosensitivity, which was attributed to the screening effect of optically ionized oxygen vacancies (Vo++). In particular, the optimized bi-layered oxide photo-TFT presents a good Iphoto/Idark photosensitivity value of 3 × 104 and a subthreshold slope of 0.96 V/decade. In addition, the persistent photoconductivity of the oxide photo-TFT was removed by applying positive gate voltage, resulting in good high-speed operation. These results taken together demonstrate that the IZO photo-TFT produced by the sol-gel process can be workable when applied to interactive displays.

  12. Ln polyoxocations: yttrium oxide solution speciation & solution deposited thin films.

    PubMed

    Marsh, David A; Goberna-Ferrón, Sara; Baumeister, Mary K; Zakharov, Lev N; Nyman, May; Johnson, Darren W

    2017-01-17

    Rare earth oxide materials, including thin film coatings, are critically important in magnetic, luminescent and microelectric devices, and few substitutes have been discovered with comparable performance. Thin film coatings from solution are almost unknown for rare earth oxides, likely due to their high activity towards hydrolysis which yields poor quality thin films. The hexamer [Ln6(O)(OH)8(H2O)12(NO3)6](2+) is a rare example of a metal-oxo cluster isolated and stabilized without additional supporting organic ligands. Herein we report a new method for both the preparation and stabilization in non-aqueous media, which makes these clusters valuable precursors for solution-processed thin films. Solution characterization (NMR, small-angle X-ray scattering and Raman spectroscopy) in wet organic solvents indicated that the clusters evolve via a fragmentation and reaggregation process. This is especially true for hexamers of the smaller Ln(3+)-ions: the higher charge density yields higher hydration rates. This process produced an entirely new hexadecameric cluster formulated Y16O3(OH)24(NO3)18(OSMe2)16(OCMe2)2(H2O)4. The new structure represents an intermediate hydrolysis product on the pathway from hexanuclear clusters to metal oxyhydroxide bulk solid. DMSO solvent ligands displace aqua ligands on the cluster and likely explain the additional stability observed for these clusters in organic solvents. The enhanced cluster stability in DMF and DMSO also enables solution-processing methods to create high quality thin films.

  13. Altering properties of cerium oxide thin films by Rh doping

    SciTech Connect

    Ševčíková, Klára; Nehasil, Václav; Vorokhta, Mykhailo; Haviar, Stanislav; Matolín, Vladimír; and others

    2015-07-15

    Highlights: • Thin films of ceria doped by rhodium deposited by RF magnetron sputtering. • Concentration of rhodium has great impact on properties of Rh–CeO{sub x} thin films. • Intensive oxygen migration in films with low concentration of rhodium. • Oxygen migration suppressed in films with high amount of Rh dopants. - Abstract: Ceria containing highly dispersed ions of rhodium is a promising material for catalytic applications. The Rh–CeO{sub x} thin films with different concentrations of rhodium were deposited by RF magnetron sputtering and were studied by soft and hard X-ray photoelectron spectroscopies, Temperature programmed reaction and X-ray powder diffraction techniques. The sputtered films consist of rhodium–cerium mixed oxide where cerium exhibits a mixed valency of Ce{sup 4+} and Ce{sup 3+} and rhodium occurs in two oxidation states, Rh{sup 3+} and Rh{sup n+}. We show that the concentration of rhodium has a great influence on the chemical composition, structure and reducibility of the Rh–CeO{sub x} thin films. The films with low concentrations of rhodium are polycrystalline, while the films with higher amount of Rh dopants are amorphous. The morphology of the films strongly influences the mobility of oxygen in the material. Therefore, varying the concentration of rhodium in Rh–CeO{sub x} thin films leads to preparing materials with different properties.

  14. Low-temperature Amorphous and Nanocrystalline Silicon Materials and Thin-film Transistors

    NASA Astrophysics Data System (ADS)

    Sazonov, Andrei; Striakhilev, Denis; Nathan, Arokia

    Low-temperature processing and characterization of amorphous silicon (a-Si:H) and nanocrystalline silicon (nc-Si) materials and devices are reviewed. An overview of silicon-based low-temperature thin-film dielectrics is given in the context of thin-film transistor (TFT) device operation. The low-temperature growth and synthesis of these materials are also presented and compared to conventionally fabricated high-temperature processed devices. The effect of using nc-Si contacts on a-Si:H TFTs and the stability of nc-Si TFTs is reviewed.

  15. High-performance printed carbon nanotube thin-film transistors array fabricated by a nonlithography technique using hafnium oxide passivation layer and mask.

    PubMed

    Pillai, Suresh Kumar Raman; Chan-Park, Mary B

    2012-12-01

    The large-scale application of semiconducting single-walled carbon nanotubes (s-SWCNTs) for printed electronics requires scalable, repeateable, as well as noncontaminating assembly techniques. Previously explored nanotube deposition methods include serial methods such as inkjet printing and parallel methods such as spin-coating with photolithography. The serial methods are usually slow, whereas the photolithography-related parallel methods result in contamination of the nanotubes. In this paper, we report a reliable clean parallel method for fabrication of arrays of carbon nanotube-based field effect transistors (CNTFETs) involving shadow mask patterning of a passivating layer of Hafnium oxide (HfO(2)) over the nanotube (CNT) active channel regions and plasma etching of the unprotected nanotubes. Pure (99%) semiconducting SWCNTs are first sprayed over the entire surface of a wafer substrate followed by a two-step shadow masking procedure to first deposit metal electrodes and then a HfO(2) isolation/passivation layer over the device channel region. The exposed SWCNT network outside the HfO(2) protected area is removed with oxygen plasma etching. The HfO(2) thus serves as both the device isolation mask during the plasma etching and as a protective passivating layer in subsequent use. The fabricated devices on SiO(2)/Si substrate exhibit good device performance metrics, with on/off ratio ranging from 1 × 10(1) to 3 × 10(5) and mobilities of 4 to 23 cm(2)/(V s). The HfO(2)/Si devices show excellent performance with on/off ratios of 1 × 10(2) to 2 × 10(4) and mobilities of 8 to 56 cm(2)/(V s). The optimum devices (on HfO(2)/Si) have an on/off ratio of 1 × 10(4) and mobility as high as 46 cm(2)/(V s). This HfO(2)-based patterning method enables large scale fabrication of CNTFETs with no resist residue or other contamination on the device channel. Further, shadow masking circumvents the need for expensive and area-limited lithography patterning process. The device

  16. Influence of the charge trap density distribution in a gate insulator on the positive-bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors

    SciTech Connect

    Kim, Eungtaek; Kim, Choong-Ki; Lee, Myung Keun; Bang, Tewook; Choi, Yang-Kyu; Choi, Kyung Cheol E-mail: kyungcc@kaist.ac.kr; Park, Sang-Hee Ko E-mail: kyungcc@kaist.ac.kr

    2016-05-02

    We investigated the positive-bias stress (PBS) instability of thin film transistors (TFTs) composed of different types of first-gate insulators, which serve as a protection layer of the active surface. Two different deposition methods, i.e., the thermal atomic layer deposition (THALD) and plasma-enhanced ALD (PEALD) of Al{sub 2}O{sub 3}, were applied for the deposition of the first GI. When THALD was used to deposit the GI, amorphous indium-gallium-zinc oxide (a-IGZO) TFTs showed superior stability characteristics under PBS. For example, the threshold voltage shift (ΔV{sub th}) was 0 V even after a PBS time (t{sub stress}) of 3000 s under a gate voltage (V{sub G}) condition of 5 V (with an electrical field of 1.25 MV/cm). On the other hand, when the first GI was deposited by PEALD, the ΔV{sub th} value of a-IGZO TFTs was 0.82 V after undergoing an identical amount of PBS. In order to interpret the disparate ΔV{sub th} values resulting from PBS quantitatively, the average oxide charge trap density (N{sub T}) in the GI and its spatial distribution were investigated through low-frequency noise characterizations. A higher N{sub T} resulted during in the PEALD type GI than in the THALD case. Specifically, the PEALD process on a-IGZO layer surface led to an increasing trend of N{sub T} near the GI/a-IGZO interface compared to bulk GI owing to oxygen plasma damage on the a-IGZO surface.

  17. Bi-layer channel structure-based oxide thin-film transistors consisting of ZnO and Al-doped ZnO with different Al compositions and stacking sequences

    NASA Astrophysics Data System (ADS)

    Cho, Sung Woon; Yun, Myeong Gu; Ahn, Cheol Hyoun; Kim, So Hee; Cho, Hyung Koun

    2015-03-01

    Zinc oxide (ZnO)-based bi-layers, consisting of ZnO and Al-doped ZnO (AZO) layers grown by atomic layer deposition, were utilized as the channels of oxide thin-film transistors (TFTs). Thin AZO layers (5 nm) with different Al compositions (5 and 14 at. %) were deposited on top of and beneath the ZnO layers in a bi-layer channel structure. All of the bi-layer channel TFTs that included the AZO layers showed enhanced stability (Δ V Th ≤ 3.2 V) under a positive bias stress compared to the ZnO single-layer channel TFT (Δ V Th = 4.0 V). However, the AZO/ZnO bi-layer channel TFTs with an AZO interlayer between the gate dielectric and the ZnO showed a degraded field effect mobility (0.3 cm2/V·s for 5 at. % and 1.8 cm2/V·s for 14 at. %) compared to the ZnO single-layer channel TFT (5.5 cm2/V·s) due to increased scattering caused by Al-related impurities near the gate dielectric/channel interface. In contrast, the ZnO/AZO bi-layer channel TFTs with an AZO layer on top of the ZnO layer exhibited an improved field effect mobility (7.8 cm2/V·s for 14 at. %) and better stability. [Figure not available: see fulltext.

  18. Electrical properties of solution-deposited ZnO thin-film transistors by low-temperature annealing.

    PubMed

    Lim, Chul; Oh, Ji Young; Koo, Jae Bon; Park, Chan Woo; Jung, Soon-Won; Na, Bock Soon; Chu, Hye Yong

    2014-11-01

    Flexible oxide thin-film transistors (Oxide-TFTs) have emerged as next generation transistors because of their applicability in electronic device. In particular, the major driving force behind solution-processed zinc oxide film research is its prospective use in printing for electronics. A low-temperature process to improve the performance of solution-processed n-channel ZnO thin-film transistors (TFTs) fabricated via spin-coating and inkjet-printing is introduced here. ZnO nanoparticles were synthesized using a facile sonochemical method that was slightly modified based on a previously reported method. The influence of the annealing atmosphere on both nanoparticle-based TFT devices fabricated via spin-coating and those created via inkjet printing was investigated. For the inkjet-printed TFTs, the characteristics were improved significantly at an annealing temperature of 150 degrees C. The field effect mobility, V(th), and the on/off current ratios were 3.03 cm2/Vs, -3.3 V, and 10(4), respectively. These results indicate that annealing at 150 degrees C 1 h is sufficient to obtain a mobility (μ(sat)) as high as 3.03 cm2/Vs. Also, the active layer of the solution-based ZnO nanoparticles allowed the production of high-performance TFTs for low-cost, large-area electronics and flexible devices.

  19. Compositional tuning of atomic layer deposited MgZnO for thin film transistors

    SciTech Connect

    Wrench, J. S.; Brunell, I. F.; Chalker, P. R.; Jin, J. D.; Shaw, A.; Mitrovic, I. Z.; Hall, S.

    2014-11-17

    Thin film transistors (TFTs) have been fabricated using magnesium zinc oxide (MgZnO) layers deposited by atomic layer deposition at 200 °C. The composition of the MgZnO is systematically modified by varying the ratio of MgO and ZnO deposition cycles. A blue-shift of the near band-edge photoluminescence after post-deposition annealing at 300 °C indicates significant activation of the Mg dopant. A 7:1 ratio of ZnO:MgO deposition cycles was used to fabricate a device with a TFT channel width of 2000 μm and a channel length of 60 μm. This transistor yielded an effective saturation mobility of 4 cm{sup 2}/V s and a threshold voltage of 7.1 V, respectively. The on/off ratio was 1.6×10{sup 6} and the maximum interface state density at the ZnO/SiO{sub 2} interface is ∼6.5×10{sup 12} cm{sup −2}.

  20. Electrical properties of vanadium tungsten oxide thin films

    SciTech Connect

    Nam, Sung-Pill; Noh, Hyun-Ji; Lee, Sung-Gap; Lee, Young-Hie

    2010-03-15

    The vanadium tungsten oxide thin films deposited on Pt/Ti/SiO{sub 2}/Si substrates by RF sputtering exhibited good TCR and dielectric properties. The dependence of crystallization and electrical properties are related to the grain size of V{sub 1.85}W{sub 0.15}O{sub 5} thin films with different annealing temperatures. It was found that the dielectric properties and TCR properties of V{sub 1.85}W{sub 0.15}O{sub 5} thin films were strongly dependent upon the annealing temperature. The dielectric constants of the V{sub 1.85}W{sub 0.15}O{sub 5} thin films annealed at 400 {sup o}C were 44, with a dielectric loss of 0.83%. The TCR values of the V{sub 1.85}W{sub 0.15}O{sub 5} thin films annealed at 400 {sup o}C were about -3.45%/K.

  1. Chemical and biological sensors based on organic thin-film transistors.

    PubMed

    Mabeck, Jeffrey T; Malliaras, George G

    2006-01-01

    The application of organic thin-film transistors (OTFTs) to chemical and biological sensing is reviewed. This review covers transistors that are based on the modulation of current through thin organic semiconducting films, and includes both field-effect and electrochemical transistors. The advantages of using OTFTs as sensors (including high sensitivity and selectivity) are described, and results are presented for sensing analytes in both gaseous and aqueous environments. The primary emphasis is on the major developments in the field of OTFT sensing over the last 5-10 years, but some earlier work is discussed briefly to provide a foundation.

  2. Electrical instability of high-mobility zinc oxynitride thin-film transistors upon water exposure

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hwan; Jeong, Hwan-Seok; Kwon, Hyuck-In

    2017-03-01

    We investigate the effects of water absorption on the electrical performance and stability in high-mobility zinc oxynitride (ZnON) thin-film transistors (TFTs). The ZnON TFT exhibits a smaller field-effect mobility, lower turn-on voltage, and higher subthreshold slope with a deteriorated electrical stability under positive gate bias stresses after being exposed to water. From the Hall measurements, an increase of the electron concentration and a decrease of the Hall mobility are observed in the ZnON thin film after water absorption. The observed phenomena are mainly attributed to the water molecule-induced increase of the defective ZnXNY bond and the oxygen vacancy inside the ZnON thin film based on the x-ray photoelectron spectroscopy analysis.

  3. Solvent-Free Toner Printing of Organic Semiconductor Layer in Flexible Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Sakai, Masatoshi; Koh, Tokuyuki; Toyoshima, Kenji; Nakamori, Kouta; Okada, Yugo; Yamauchi, Hiroshi; Sadamitsu, Yuichi; Shinamura, Shoji; Kudo, Kazuhiro

    2017-07-01

    A solvent-free printing process for printed electronics is successfully developed using toner-type patterning of organic semiconductor toner particles and the subsequent thin-film formation. These processes use the same principle as that used for laser printing. The organic thin-film transistors are prepared by electrically distributing the charged toner onto a Au electrode on a substrate film, followed by thermal lamination. The thermal lamination is effective for obtaining an oriented and crystalline thin film. Toner printing is environmentally friendly compared with other printing technologies because it is solvent free, saves materials, and enables easy recycling. In addition, this technology simultaneously enables both wide-area and high-resolution printing.

  4. Electrical instability of high-mobility zinc oxynitride thin-film transistors upon water exposure.

    PubMed

    Kim, Dae-Hwan; Jeong, Hwan-Seok; Kwon, Hyuck-In

    2017-03-03

    We investigate the effects of water absorption on the electrical performance and stability in high-mobility zinc oxynitride (ZnON) thin-film transistors (TFTs). The ZnON TFT exhibits a smaller field-effect mobility, lower turn-on voltage, and higher subthreshold slope with a deteriorated electrical stability under positive gate bias stresses after being exposed to water. From the Hall measurements, an increase of the electron concentration and a decrease of the Hall mobility are observed in the ZnON thin film after water absorption. The observed phenomena are mainly attributed to the water molecule-induced increase of the defective ZnXNY bond and the oxygen vacancy inside the ZnON thin film based on the x-ray photoelectron spectroscopy analysis.

  5. Performance improvement in polymeric thin film transistors using chemically modified both silver bottom contacts and dielectric surfaces

    NASA Astrophysics Data System (ADS)

    Xie, Ying-Tao; Ouyang, Shi-Hong; Wang, Dong-Ping; Zhu, Da-Long; Xu, Xin; Tan, Te; Fong, Hon-Hang

    2015-09-01

    An efficient interface modification is introduced to improve the performance of polymeric thin film transistors. This efficient interface modification is first achieved by 4-fluorothiophenol (4-FTP) self-assembled monolayers (SAM) to chemically treat the silver source-drain (S/D) contacts while the silicon oxide (SiO2) dielectric interface is further primed by either hexamethyldisilazane (HMDS) or octyltrichlorosilane (OTS-C8). Results show that contact resistance is the dominant factor that limits the field effect mobility of the PTDPPTFT4 transistors. With proper surface modification applied to both the dielectric surface and the bottom contacts, the field effect mobilities of the bottom-gate bottom-contact PTDPPTFT4 transistors were significantly improved from 0.15 cm2·V-1·s-1 to 0.91 cm2·V-1·s-1. Project supported by the National Basic Research Program of China (Grant No. 2013CB328803).

  6. Complex Oxide Thin Film Metamaterial Structures for THz applications

    NASA Astrophysics Data System (ADS)

    Shreiber, D.; Cravey, R.; Cole, M. W.

    2013-03-01

    Metamaterials operating in the frequency range of 0.1-1.5 THz are of a special interest for multiple Army applications such as communications, NDE of materials, and detection of chem./bio hazards. Recently proposed dielectric metamaterials present an intriguing venue for the developments in this field due to their low propagation losses and ease of fabrication. These dielectric metamaterials were implemented in bulk and in thick films. Tunability of ferroelectric complex oxides is achieved by applied bias voltage and constitutes an additional benefit for multiple applications. However, real-life applications require usage of relatively low bias voltage which is achievable only by using a ferroelectric complex oxide thin-film. Although the physical dimensions of the thin film metamaterial structures suggest their usage in IR-optical spectrum, their very high dielectric constant provides a rare opportunity to lower their resonant frequency to the frequency range of interest. This presentation will discuss the opportunities and challenges associated with the metamaterial complex oxide thin film structures including numerical investigations of the resonant frequency shift as a function of the complex oxide thin film dielectric constant and thickness.

  7. High-mobility pyrene-based semiconductor for organic thin-film transistors.

    PubMed

    Cho, Hyunduck; Lee, Sunyoung; Cho, Nam Sung; Jabbour, Ghassan E; Kwak, Jeonghun; Hwang, Do-Hoon; Lee, Changhee

    2013-05-01

    Numerous conjugated oligoacenes and polythiophenes are being heavily studied in the search for high-mobility organic semiconductors. Although many researchers have designed fused aromatic compounds as organic semiconductors for organic thin-film transistors (OTFTs), pyrene-based organic semiconductors with high mobilities and on-off current ratios have not yet been reported. Here, we introduce a new pyrene-based p-type organic semiconductor showing liquid crystal behavior. The thin film characteristics of this material are investigated by varying the substrate temperature during the deposition and the gate dielectric condition using the surface modification with a self-assembled monolayer, and systematically studied in correlation with the performances of transistor devices with this compound. OTFT fabricated under the optimum deposition conditions of this compound, namely, 1,6-bis(5'-octyl-2,2'-bithiophen-5-yl)pyrene (BOBTP) shows a high-performance transistor behavior with a field-effect mobility of 2.1 cm(2) V(-1) s(-1) and an on-off current ratio of 7.6 × 10(6) and enhanced long-term stability compared to the pentacene thin-film transistor.

  8. Effective mobility enhancement of amorphous In-Ga-Zn-O thin-film transistors by holographically generated periodic conductor

    SciTech Connect

    Jeong, Jaewook; Kim, Joonwoo; Jeong, Soon Moon; Kim, Donghyun; Hong, Yongtaek; Jeon, Heonsu

    2016-08-15

    In this study, we demonstrate a mobility enhancement structure for fully transparent amorphous indium-gallium-zinc-oxide thin-film transistors (a-IGZO TFTs) by embedding a holographically generated periodic nano-conductor in the back-channel regions. The intrinsic field-effect mobility was enhanced up to 2 times compared to that of a reference sample. The enhancement originated from a decrease in the effective channel length due to the highly conductive nano-conductor region. By combining conventional and holographic lithography, the performance of the a-IGZO TFT can be effectively improved without varying the composition of the channel layer.

  9. Al-doped ZnO thin-film transistor embedded micro-cantilever as a piezoresistive sensor

    NASA Astrophysics Data System (ADS)

    Ray, Prasenjit; Ramgopal Rao, V.

    2013-02-01

    In this work, an aluminium-doped zinc oxide (AZO) thin film transistor, embedded in a polymer micro-cantilever, is demonstrated for nano-mechanical sensing applications. This device senses the surface stress due to a change in the carrier mobility of the semi-conducting layer. Due to the low Young's modulus and high strain sensitivity of the AZO layer, this micro-cantilever shows a deflection sensitivity of 116 ppm per nanometer of deflection. Also, mechanical characterization of these devices shows that the resonance frequency is in the range of a few tens of kilohertz which is suitable for sensor applications.

  10. Low-Voltage InGaZnO Thin Film Transistors with Small Sub-Threshold Swing.

    PubMed

    Cheng, C H; Chou, K I; Hsu, H H

    2015-02-01

    We demonstrate a low-voltage driven, indium-gallium-zinc oxide thin-film transistor using high-κ LaAlO3 gate dielectric. A low VT of 0.42 V, very small sub-threshold swing of 68 mV/dec, field-effect mobility of 4.1 cm2/Ns and low operation voltage of 1.4 V were reached simultaneously in LaAlO3/IGZO TFT device. This low-power and small SS TFT has the potential for fast switching speed and low power applications.

  11. Scanned Probe Characterization of Atmospheric Effects on diF TESADT Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Bougher, Cortney; Huston, Shawn; Ward, Jeremy; Obaid, Abdul; Loth, Marsha; Anthony, John; Jurchescu, Oana; Conrad, Brad

    2014-03-01

    Single crystal organic semiconductors have been shown to exhibit carrier mobilities comparable to the silicon currently used in photovoltaics. However, during solution deposition of common organic semiconducting materials the resultant thin-film is often polycrystalline. Device performance and electrical properties of organic thin-film transistors are highly dependent on crystal structure and molecular packing. In polycrystalline thin-films, boundary regions between crystal grains can affect the overall performance of devices, as crystal structure and packing may differ from that of the surrounding crystal regions. These boundary regions may also serve as defect sites, allowing environmental factors, such as oxygen content and humidity, to alter local charge transport through devices. We utilize Kelvin Probe Force Microscopy (KPFM) to characterize how grain boundaries alter local conductivity and device performance as a function of doping in 2,8-difluoro-5,11-triethysilylethynyl anthradithiophene (diF TESADT) thin-film transistor surfaces. Device voltage drops at grain boundaries are characterized as a function of both atmospheric dopants and transition time between dopants. NC Space Grant Consortium, Appalachian State University Office of Student Research, Ralph E Powe Junior Faculty Enhancement Award.

  12. Active Oxygen Generator by Silent Discharge and Oxidation Power in Formation of Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Tanaka, Masaaki; Kawagoe, Yasuyuki; Tsukazaki, Hisashi; Yamanishi, Kenichiro

    We have studied the low pressure silent discharge type active oxygen generator in terms of the application to the formation of oxide thin films. In this paper the oxidation power of active oxygen in the oxide thin film formation is compared with that of oxygen and ozone by forming silicon oxide thin films. It was confirmed that the oxidation power is in turn of active oxygen > ozone > oxygen from the experimental result of the number of x in SiOx thin film. Furthermore we applied active oxygen to the formation of the thin film high temperature super conductor and active oxygen was found to be effective to the formation of the thin film with high performance.

  13. Flexible thin-film transistors on plastic substrate at room temperature.

    PubMed

    Han, Dedong; Wang, Wei; Cai, Jian; Wang, Liangliang; Ren, Yicheng; Wang, Yi; Zhang, Shengdong

    2013-07-01

    We have fabricated flexible thin-film transistors (TFTs) on plastic substrates using Aluminum-doped ZnO (AZO) as an active channel layer at room temperature. The AZO-TFTs showed n-channel device characteristics and operated in enhancement mode. The device shows a threshold voltage of 1.3 V, an on/off ratio of 2.7 x 10(7), a field effect mobility of 21.3 cm2/V x s, a subthreshold swing of 0.23 V/decade, and the off current of less than 10(-12) A at room temperature. Recently, the flexible displays have become a very hot topic. Flexible thin film transistors are key devices for realizing flexible displays. We have investigated AZO-TFT on flexible plastic substrate, and high performance flexible TFTs have been obtained.

  14. Recent progress in high-mobility thin-film transistors based on multilayer 2D materials

    NASA Astrophysics Data System (ADS)

    Hong, Young Ki; Liu, Na; Yin, Demin; Hong, Seongin; Kim, Dong Hak; Kim, Sunkook; Choi, Woong; Yoon, Youngki

    2017-04-01

    Two-dimensional (2D) layered semiconductors are emerging as promising candidates for next-generation thin-film electronics because of their high mobility, relatively large bandgap, low-power switching, and the availability of large-area growth methods. Thin-film transistors (TFTs) based on multilayer transition metal dichalcogenides or black phosphorus offer unique opportunities for next-generation electronic and optoelectronic devices. Here, we review recent progress in high-mobility transistors based on multilayer 2D semiconductors. We describe the theoretical background on characterizing methods of TFT performance and material properties, followed by their applications in flexible, transparent, and optoelectronic devices. Finally, we highlight some of the methods used in metal-semiconductor contacts, hybrid structures, heterostructures, and chemical doping to improve device performance.

  15. Reduction of persistent photoconductivity in ZnO thin film transistor-based UV photodetector

    NASA Astrophysics Data System (ADS)

    Ivanoff Reyes, Pavel; Ku, Chieh-Jen; Duan, Ziqing; Xu, Yi; Garfunkel, Eric; Lu, Yicheng

    2012-07-01

    We report a ZnO-based thin film transistor UV photodetector with a back gate configuration. The thin-film transistor (TFT) aspect ratio W/L is 150 μm/5 μm and has a current on-off ratio of 1010. The detector shows UV-visible rejection ratio of 104 and cut-off wavelength of 376 nm. The device has low dark current of 5 × 10-14 A. The persistent photoconductivity is suppressed through oxygen plasma treatment of the channel surface which significantly reduces the density of oxygen vacancy confirmed by XPS measurements. The proper gate bias-control further reduces recovery time. The UV-TFT configuration is particularly suitable for making large-area imaging arrays.

  16. Nanometer-scale organic thin film transistors from self-assembled monolayers.

    PubMed

    Vuillaume, Dominique

    2002-01-01

    A survey of the most interesting results on nanometer-scale organic thin film transistors (nano-OTFT) is presented. Additionally, we discuss our recent results on the properties of end-group functionalized organic self-assembled monolayers and on their use in the fabrication of nanometer-scale field-effect transistors. Nanometer-scale organic transistors (channel length 30 nm) were fabricated, with a self-assembled monolayer as gate insulator. The carrier transport in these transistors, as a function of the channel length, was investigated, and a transition from a dispersive to a ballistic transport at a channel length of 200 nm was observed. On a molecular scale, alkyl monolayers functionalized at their omega-ends by aromatic moieties were prepared. A high anisotropic conductivity in molecular insulator/semiconductor heterostructures of monolayer thickness was observed. These molecular architectures provide a basis for the building blocks of molecular transistors.

  17. All diamond self-aligned thin film transistor

    DOEpatents

    Gerbi, Jennifer [Champaign, IL

    2008-07-01

    A substantially all diamond transistor with an electrically insulating substrate, an electrically conductive diamond layer on the substrate, and a source and a drain contact on the electrically conductive diamond layer. An electrically insulating diamond layer is in contact with the electrically conductive diamond layer, and a gate contact is on the electrically insulating diamond layer. The diamond layers may be homoepitaxial, polycrystalline, nanocrystalline or ultrananocrystalline in various combinations.A method of making a substantially all diamond self-aligned gate transistor is disclosed in which seeding and patterning can be avoided or minimized, if desired.

  18. Enhanced photocurrent of Ge-doped InGaO thin film transistors with quantum dots

    SciTech Connect

    Lee, Sang Moo; Park, Si Jin; Kang, Seong Jun; Lee, Kwang Ho; Park, Jin-Seong; Park, Soohyung; Yi, Yeonjin

    2015-01-19

    The photocurrent of germanium-doped indium-gallium oxide (GIGO) thin film transistors (TFTs) can be observed when the device is exposed to a ultra-violet light because GIGO is a wide band gap semiconducting material. Therefore, we decorated cadmium selenide (CdSe) quantum-dots (QDs) on the surface of GIGO to increase the photocurrent for low-energy light, i.e., visible light. A 10 nm GIGO film was deposited on the SiO{sub 2}/Si substrate by a radio frequency sputter system. Also, we prepared CdSe QDs with sizes of ∼6.3 nm, which can absorb red visible light. QDs were spin-coated onto the GIGO film, and post-annealing was done to provide cross-linking between QDs. The prepared devices showed a 231% increase in photocurrent when exposed to 650 nm light due to the QDs on the GIGO surface. Measurements to construct an energy level diagram were made using ultraviolet photoelectron spectroscopy to determine the origin of the photocurrent, and we found that the small band gap of CdSe QDs enables the increase in photocurrent in the GIGO TFTs. This result is relevant for developing highly transparent photosensors based on oxide semiconductors and QDs.

  19. Enhanced photocurrent of Ge-doped InGaO thin film transistors with quantum dots

    NASA Astrophysics Data System (ADS)

    Lee, Sang Moo; Park, Si Jin; Lee, Kwang Ho; Park, Jin-Seong; Park, Soohyung; Yi, Yeonjin; Kang, Seong Jun

    2015-01-01

    The photocurrent of germanium-doped indium-gallium oxide (GIGO) thin film transistors (TFTs) can be observed when the device is exposed to a ultra-violet light because GIGO is a wide band gap semiconducting material. Therefore, we decorated cadmium selenide (CdSe) quantum-dots (QDs) on the surface of GIGO to increase the photocurrent for low-energy light, i.e., visible light. A 10 nm GIGO film was deposited on the SiO2/Si substrate by a radio frequency sputter system. Also, we prepared CdSe QDs with sizes of ˜6.3 nm, which can absorb red visible light. QDs were spin-coated onto the GIGO film, and post-annealing was done to provide cross-linking between QDs. The prepared devices showed a 231% increase in photocurrent when exposed to 650 nm light due to the QDs on the GIGO surface. Measurements to construct an energy level diagram were made using ultraviolet photoelectron spectroscopy to determine the origin of the photocurrent, and we found that the small band gap of CdSe QDs enables the increase in photocurrent in the GIGO TFTs. This result is relevant for developing highly transparent photosensors based on oxide semiconductors and QDs.

  20. Photosensor application of amorphous InZnO-based thin film transistor

    NASA Astrophysics Data System (ADS)

    Liu, Po-Tsun; Chou, Yi-Teh; Teng, Li-Feng

    2010-03-01

    Thin film transistor (TFT) device structure with transparent conductive oxide semiconductor is proposed for the photosensor application. The adoption of TFT-based photosensor device also is promising to be integrated with pixel-array circuits in a flat panel display and realize the system-on-panel (SoP) concept. The photosensitive TFT device can be applied to sense the ambient light brightness and then give the feedback to the backlight system adjusting the backlight intensity for the power-saving green displays. In this work, we studied the photosensitivity of amorphous indium zinc oxide (a-IZO) TFT to ultraviolet light. The a-IZO-based semiconductors have been paid much attention due to their uniform amorphous phase and high field-effect carrier mobility characteristics. The obvious threshold voltage shift was observed after light illumination, and exhibited slow recovery while returning to initial status after removing the light source. This mechanism for the photoreaction is well explained by the dynamic equilibrium of charge exchange reaction between O2(g) and O2- in the backchannel region of IZO-based films. An electrical trigger using charge pumping method is used to confirm the proposed mechanism and accelerate photoreaction recoverability for the first time. Using knowledge of photoreaction behavior, an operation scheme of photosensing elements consist of a-IZO TFTs is also demonstrated in this paper.

  1. Design of step composition gradient thin film transistor channel layers grown by atomic layer deposition

    SciTech Connect

    Ahn, Cheol Hyoun; Hee Kim, So; Gu Yun, Myeong; Koun Cho, Hyung

    2014-12-01

    In this study, we proposed the artificially designed channel structure in oxide thin-film transistors (TFTs) called a “step-composition gradient channel.” We demonstrated Al step-composition gradient Al-Zn-O (AZO) channel structures consisting of three AZO layers with different Al contents. The effects of stacking sequence in the step-composition gradient channel on performance and electrical stability of bottom-gate TFT devices were investigated with two channels of inverse stacking order (ascending/descending step-composition). The TFT with ascending step-composition channel structure (5 → 10 → 14 at. % Al composition) showed relatively negative threshold voltage (−3.7 V) and good instability characteristics with a reduced threshold voltage shift (Δ 1.4 V), which was related to the alignment of the conduction band off-set within the channel layer depending on the Al contents. Finally, the reduced Al composition in the initial layer of ascending step-composition channel resulted in the best field effect mobility of 4.5 cm{sup 2}/V s. We presented a unique active layer of the “step-composition gradient channel” in the oxide TFTs and explained the mechanism of adequate channel design.

  2. Design of step composition gradient thin film transistor channel layers grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Ahn, Cheol Hyoun; Hee Kim, So; Gu Yun, Myeong; Koun Cho, Hyung

    2014-12-01

    In this study, we proposed the artificially designed channel structure in oxide thin-film transistors (TFTs) called a "step-composition gradient channel." We demonstrated Al step-composition gradient Al-Zn-O (AZO) channel structures consisting of three AZO layers with different Al contents. The effects of stacking sequence in the step-composition gradient channel on performance and electrical stability of bottom-gate TFT devices were investigated with two channels of inverse stacking order (ascending/descending step-composition). The TFT with ascending step-composition channel structure (5 → 10 → 14 at. % Al composition) showed relatively negative threshold voltage (-3.7 V) and good instability characteristics with a reduced threshold voltage shift ( Δ 1.4 V), which was related to the alignment of the conduction band off-set within the channel layer depending on the Al contents. Finally, the reduced Al composition in the initial layer of ascending step-composition channel resulted in the best field effect mobility of 4.5 cm2/V s. We presented a unique active layer of the "step-composition gradient channel" in the oxide TFTs and explained the mechanism of adequate channel design.

  3. Thin film transistors on plastic substrates with reflective coatings for radiation protection

    DOEpatents

    Wolfe, Jesse D.; Theiss, Steven D.; Carey, Paul G.; Smith, Patrick M.; Wickboldt, Paul

    2003-11-04

    Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.

  4. Thin film transistors on plastic substrates with reflective coatings for radiation protection

    DOEpatents

    Wolfe, Jesse D.; Theiss, Steven D.; Carey, Paul G.; Smith, Patrick M.; Wickbold, Paul

    2006-09-26

    Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.

  5. Persistent photoconductivity in Hf-In-Zn-O thin film transistors

    NASA Astrophysics Data System (ADS)

    Ghaffarzadeh, Khashayar; Nathan, Arokia; Robertson, John; Kim, Sangwook; Jeon, Sanghun; Kim, Changjung; Chung, U.-In; Lee, Je-Hun

    2010-10-01

    Passivated Hf-In-Zn-O (HIZO) thin film transistors suffer from a negative threshold voltage shift under visible light stress due to persistent photoconductivity (PPC). Ionization of oxygen vacancy sites is identified as the origin of the PPC following observations of its temperature- and wavelength-dependence. This is further corroborated by the photoluminescence spectrum of the HIZO. We also show that the gate voltage can control the decay of PPC in the dark, giving rise to a memory action.

  6. Carbon nanotube network thin-film transistors on flexible/stretchable substrates

    DOEpatents

    Takei, Kuniharu; Takahashi, Toshitake; Javey, Ali

    2016-03-29

    This disclosure provides systems, methods, and apparatus for flexible thin-film transistors. In one aspect, a device includes a polymer substrate, a gate electrode disposed on the polymer substrate, a dielectric layer disposed on the gate electrode and on exposed portions of the polymer substrate, a carbon nanotube network disposed on the dielectric layer, and a source electrode and a drain electrode disposed on the carbon nanotube network.

  7. Mechanisms for the operation of thin film transistors on ferroelectrics

    SciTech Connect

    Seager, C.H.; McIntyre, D.; Tuttle, B.A.; Evans, J.

    1993-12-31

    The electric field emanating from the surface of a poled ferroelectric can control the conduction properties of an overlaying semiconducting film, this combination of materials can thus serve as a non-destructive readout, non-volatile memory device. Here the authors will describe a variety of experimental studies of these devices designed to probe the physics of their operation. The experimental systems included sputtered, n-type semiconductor (SC) films of In{sub 2}O{sub 3} and ZnO deposited on bulk PLZT ferroelectrics (FE) and thin PZT FE films. Two distinctly different types of device response were measured in this study; in the first, the change in SC film conductance observed in the remanent FE state is in the direction expected from the remanent polarization vector in the ferroelectric. In the second, typically seen in the thin film FE devices, the opposite behavior is observed. They find that these two general cases of behavior, including the observed variations of the SC film conductances and carrier mobilities, can be described by a general model which takes into account not only the FE displacement vector, but also charge injected from the semiconductor into the ferroelectric during biasing of the gate.

  8. Synthesis and characterization of polystyrene brushes for organic thin film transistors.

    PubMed

    Hwang, Do-Hoon; Nomura, Akihiro; Kim, Jeongsik; Kim, Ji-Hoon; Cho, Hyunduck; Lee, Changhee; Ohno, Kohji; Tsujii, Yoshinobu

    2012-05-01

    We synthesized and characterized polystyrene brushes on a silicon wafer using surface-initiated atom transfer radical polymerization. The thickness of the polymer brush was controlled by adjusting the reaction time. We investigated monomer conversion as well as the molecular weight and density of the polymer brushes. When the monomer conversion reached 100%, the number-average molecular weight and film thickness reached 135,000 and 113 nm, respectively. The estimated densities of the synthesized polystyrene brushes were in the range 0.34-0.54 chains/nm2, high enough to be categorized in the "concentrated brush" regime. The synthesized polymer brush was used as an insulating layer in an organic thin-film transistor. Organic thin-film transistors were fabricated using pentacene as an active p-type organic semiconductor and a polystyrene brush on a SiO2 layer as a gate dielectric. The pentacene based organic thin-film transistor with the polystyrene brush exhibited a field-effect mobility microFET of 0.099 cm2/(V x s).

  9. Al/CdSe/GaSe/C resonant tunneling thin film transistors

    NASA Astrophysics Data System (ADS)

    Qasrawi, A. F.; Kayed, T. S.; Elsayed, Khaled A.

    2017-02-01

    An Al/CdSe/GaSe/C thin film transistor device was prepared by the physical vapor deposition technique at a vacuum pressure of 10-5 mbar. The x-ray diffraction measurements demonstrated the polycrystalline nature of the surface of the device. The dc current-voltage characteristics recorded for the Al/CdSe/C and Al/CdSe/GaSe/C channels displayed a resonant tunneling diode features during the forward and reverse voltage biasing, respectively. In addition, the switching current ratio of the Al/CdSe/C increased from 18.6 to 9.62×103 as a result of the GaSe deposition on the CdSe surface. Moreover, the alternating electrical signal analyses in the frequency range of 1.0 MHz to 1.8 GHz, showed some remarkable properties of negative resistance and negative capacitance spectra of the Al/CdSe/GaSe/C thin film transistors. Two distinct resonance-antiresonance phenomena in the resistance spectra and one in the capacitance spectra were observed at 0.53, 1.04 and 1.40 GHz for the Al/CdSe/C channel, respectively. The respective resonating peak positions of the resistance spectra shift to 0.38 and 0.95 GHz when GaSe is interfaced with CdSe. These features of the thin film transistors are promising for use in high quality microwave filtering circuits and also for use as ultrafast switches.

  10. Method of fabrication of display pixels driven by silicon thin film transistors

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.

    1999-01-01

    Display pixels driven by silicon thin film transistors are fabricated on plastic substrates for use in active matrix displays, such as flat panel displays. The process for forming the pixels involves a prior method for forming individual silicon thin film transistors on low-temperature plastic substrates. Low-temperature substrates are generally considered as being incapable of withstanding sustained processing temperatures greater than about 200.degree. C. The pixel formation process results in a complete pixel and active matrix pixel array. A pixel (or picture element) in an active matrix display consists of a silicon thin film transistor (TFT) and a large electrode, which may control a liquid crystal light valve, an emissive material (such as a light emitting diode or LED), or some other light emitting or attenuating material. The pixels can be connected in arrays wherein rows of pixels contain common gate electrodes and columns of pixels contain common drain electrodes. The source electrode of each pixel TFT is connected to its pixel electrode, and is electrically isolated from every other circuit element in the pixel array.

  11. High temperature coefficient of resistance molybdenum oxide and nickel oxide thin films for microbolometer applications

    NASA Astrophysics Data System (ADS)

    Jin, Yao O.; John, David Saint; Podraza, Nikolas J.; Jackson, Thomas N.; Horn, Mark W.

    2015-03-01

    Molybdenum oxide (MoOx) and nickel oxide (NiOx) thin films were deposited by reactive biased target ion beam deposition. MoOx thin film resistivity varied from 3 to 2000 Ω.cm with a temperature coefficient of resistance (TCR) from -1.7% to -3.2%/K, and NiOx thin film resistivity varied from 1 to 300 Ω.cm with a TCR from -2.2% to -3.3%/K, both easily controlled by varying the oxygen partial pressure. Biased target ion beam deposited high TCR MoOx and NiOx thin films are polycrystalline semiconductors and have good stability in air. Compared with commonly used vanadium oxide thin films, MoOx or NiOx thin films offer improved process control for resistive temperature sensors.

  12. Effect of the gate metal work function on water-gated ZnO thin-film transistor performance

    NASA Astrophysics Data System (ADS)

    Singh, Mandeep; Yusuf Mulla, Mohammad; Vittoria Santacroce, Maria; Magliulo, Maria; Di Franco, Cinzia; Manoli, Kyriaki; Altamura, Davide; Giannini, Cinzia; Cioffi, Nicola; Palazzo, Gerardo; Scamarcio, Gaetano; Torsi, Luisa

    2016-07-01

    ZnO thin films, prepared using a printing-compatible sol-gel method involving a thermal treatment below 400 °C, are proposed as active layers in water-gated thin-film transistors (WG-TFTs). The thin-film structure and surface morphology reveal the presence of contiguous ZnO crystalline (hexagonal wurtzite) with isotropic nano-grains as large as 10 nm characterized by a preferential orientation along the a-axis. The TFT devices are gated through a droplet of deionized water by means of electrodes characterized by different work functions. The high capacitance of the electrolyte allowed operation below 0.5 V. While the Ni, Pd, Au and Pt gate electrodes are electrochemically stable in the inspected potential range, electrochemical activity is revealed for the W one. Such an occurrence leads to an increase of capacitance (and current), which is ascribed to a high output current from the dissolution of a lower capacitance W-oxide layer. The environmental stability of the ZnO WG-TFTs is quite good over a period of five months.

  13. Low reflectance sputtered vanadium oxide thin films on silicon

    NASA Astrophysics Data System (ADS)

    Esther, A. Carmel Mary; Dey, Arjun; Rangappa, Dinesh; Sharma, Anand Kumar

    2016-07-01

    Vanadium oxide thin films on silicon (Si) substrate are grown by pulsed radio frequency (RF) magnetron sputtering technique at RF power in the range of 100-700 W at room temperature. Deposited thin films are characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques to investigate microstructural, phase, electronic structure and oxide state characteristics. The reflectance and transmittance spectra of the films and the Si substrate are recorded at the solar region (200-2300 nm) of the spectral window. Substantial reduction in reflectance and increase in transmittance is observed for the films grown beyond 200 W. Further, optical constants viz. absorption coefficient, refractive index and extinction coefficient of the deposited vanadium oxide films are evaluated.

  14. Thin-Film Transistor-Based Biosensors for Determining Stoichiometry of Biochemical Reactions

    PubMed Central

    Wang, Yi-Wen; Chen, Ting-Yang; Yang, Tsung-Han; Chang, Cheng-Chung; Yang, Tsung-Lin; Lo, Yu-Hwa

    2016-01-01

    The enzyme kinetic in a biochemical reaction is critical to scientific research and drug discovery but can hardly be determined experimentally from enzyme assays. In this work, a charge-current transducer (a transistor) is proposed to evaluate the status of biochemical reaction by monitoring the electrical charge changes. Using the malate-aspartate shuttle as an example, a thin-film transistor (TFT)-based biosensor with an extended gold pad is demonstrated to detect the biochemical reaction between NADH and NAD+. The drain current change indicates the status of chemical equilibrium and stoichiometry. PMID:28033412

  15. Thin-Film Transistor-Based Biosensors for Determining Stoichiometry of Biochemical Reactions.

    PubMed

    Wang, Yi-Wen; Chen, Ting-Yang; Yang, Tsung-Han; Chang, Cheng-Chung; Yang, Tsung-Lin; Lo, Yu-Hwa; Huang, Jian-Jang

    2016-01-01

    The enzyme kinetic in a biochemical reaction is critical to scientific research and drug discovery but can hardly be determined experimentally from enzyme assays. In this work, a charge-current transducer (a transistor) is proposed to evaluate the status of biochemical reaction by monitoring the electrical charge changes. Using the malate-aspartate shuttle as an example, a thin-film transistor (TFT)-based biosensor with an extended gold pad is demonstrated to detect the biochemical reaction between NADH and NAD+. The drain current change indicates the status of chemical equilibrium and stoichiometry.

  16. Organic thin film transistor by using polymer electrolyte to modulate the conductivity of conjugated polymer

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Ju; Li, Yu-Chang; Yeh, Chih-Chieh; Chung, Sheng-Feng; Huang, Li-Ming; Wen, Ten-Chin; Wang, Yeong-Her

    2006-11-01

    This work presents an organic thin film transistor using double polymer layers, polymer electrolyte/conjugated polymer, i.e., poly(diallyldimethylammonium chloride) (PDDA)/poly(diphenylamine) (PDPA) structure. The single mobile anions (Cl-) pending on the PDDA are stuffed into the conjugated polymer to dope the nitrogen atoms (imine) by applying the gate bias, resulting a higher drain current under the same source-drain voltage. The PDDA/PDPA polymer structure working in the enhancement mode which operates under atmospheric conditions as a typical p-channel transistor is demonstrated.

  17. Nitrogen doped zinc oxide thin film

    SciTech Connect

    Li, Sonny Xiao-zhe

    2003-01-01

    To summarize, polycrystalline ZnO thin films were grown by reactive sputtering. Nitrogen was introduced into the films by reactive sputtering in an NO2 plasma or by N+ implantation. All ZnO films grown show n-type conductivity. In unintentionally doped ZnO films, the n-type conductivities are attributed to Zni, a native shallow donor. In NO2-grown ZnO films, the n-type conductivity is attributed to (N2)O, a shallow double donor. In NO2-grown ZnO films, 0.3 atomic % nitrogen was found to exist in the form of N2O and N2. Upon annealing, N2O decomposes into N2 and O2. In furnace-annealed samples N2 redistributes diffusively and forms gaseous N2 bubbles in the films. Unintentionally doped ZnO films were grown at different oxygen partial pressures. Zni was found to form even at oxygen-rich condition and led to n-type conductivity. N+ implantation into unintentionally doped ZnO film deteriorates the crystallinity and optical properties and leads to higher electron concentration. The free electrons in the implanted films are attributed to the defects introduced by implantation and formation of (N2)O and Zni. Although today there is still no reliable means to produce good quality, stable p-type ZnO material, ZnO remains an attractive material with potential for high performance short wavelength optoelectronic devices. One may argue that gallium nitride was in a similar situation a decade ago. Although we did not obtain any p-type conductivity, we hope our research will provide a valuable reference to the literature.

  18. Study of Ferromagnetic and Field Effect Properties of Zinc Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Xia, Daxue

    Spintronics (spin transport electronics), in which both spm and charge of carriers are utilized for information processing, is perceived to be a candidate to extend and possibly to become the next-generation electronics. Its advantages include nonvolatility (data retention without electrical power), lower energy consumption, faster processing speed, and higher integration densities in comparison with the current semiconductor devices relying solely on electron charge. To realize a spin-field effect transistor, two respects are prerequisite. On the one hand, the mechanism of ferromagnetism should be addressed before one could prepare magnetic semiconductor films in a controllable way. On the other hand, excellent field effect properties should be sought through a convenient and low-cost strategy for manufacturing future nano-scale spintronic devices. This thesis is comprised of two parts. Firstly, it deals with the synthesis, characterization, and magnetism of transition-metal-doped or un-doped zinc oxide (ZnO) thin films. Secondly, it focuses on the field effect properties of solution processable ZnO thin films, which are not only of great interest for current charge-carrier based thin film transistors, but also of fundamental importance in future spin-based transistors. A facile spin-coating technique has been developed to fabricate ZnO thin films. Even without magnetic element doping, the film is found to show room temperature ferromagnetism. A broad series of advanced microscopic and spectroscopic techniques are utilized to characterize the thin films properties. Oxygen vacancy defects are tentatively attributed to the observed ferromagnetism. Following the similar method, Ga doped or Ga, Co co-doped ZnO thin films are prepared. The ferromagnetism is enhanced with Ga doping, providing more carriers. It is discovered that room temperature ferromagnetism can exist in both highly conductive regime and the less conductive or near insulating regime. Transition metal

  19. Pulse Thermal Processing for Low Thermal Budget Integration of IGZO Thin Film Transistors

    DOE PAGES

    Noh, Joo Hyon; Joshi, Pooran C.; Kuruganti, Teja; ...

    2014-11-26

    Pulse thermal processing (PTP) has been explored for low thermal budget integration of indium gallium zinc oxide (IGZO) thin film transistors (TFTs). The IGZO TFTs are exposed to a broadband (0.2-1.4 m) arc lamp radiation spectrum with 100 pulses of 1 msec pulse width. The impact of radiant exposure power on the TFT performance was analyzed in terms of the switching characteristics and bias stress reliability characteristics, respectively. The PTP treated IGZO TFTs with power density of 3.95 kW/cm2 and 0.1 sec total irradiation time showed comparable switching properties, at significantly lower thermal budget, to furnace annealed IGZO TFT. Themore » typical field effect mobility FE, threshold voltage VT, and sub-threshold gate swing S.S were calculated to be 7.8 cm2/ V s, 8.1 V, and 0.22 V/ decade, respectively. The observed performance shows promise for low thermal budget TFT integration on flexible substrates exploiting the large-area, scalable PTP technology.« less

  20. Photomodulation of InGaZnO thin film transistors with interfacial silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Yu, Jiin; Cho, Jae Eun; Lee, Hyeon-Mo; Park, Jin-Seong; Kang, Seong Jun

    2016-11-01

    Silver nanoparticles (Ag NPs) were inserted between indium gallium zinc oxide (IGZO) and a gate insulator to enhance the generation of plasmonic photocurrent with the illumination of visible light. Ag NPs were formed on a silicon dioxide gate insulator using a thermal evaporator and a post-annealing process. Then, an amorphous IGZO active channel layer was deposited on the Ag NPs using a sputter system. The prepared Ag NPs effectively absorbed a wide wavelength range of visible light due to plasmon effects. The IGZO thin film transistors (TFTs) with interfacial Ag NPs showed a large photocurrent due to the strong coupling between localized plasmons and electrical carriers in the active channel region of the TFTs. The prepared device showed good modulation behavior under visible light even though IGZO has a wide band gap. The results indicate that interfacial Ag NPs enabled the photomodulation of IGZO TFTs when exposed to a periodic signal of low-energy visible light. This work demonstrates a useful way to develop visible-light phototransistors based on a wide band gap semiconductor and plasmonic Ag NPs.

  1. Atomic layer deposition of Nb-doped ZnO for thin film transistors

    NASA Astrophysics Data System (ADS)

    Shaw, A.; Wrench, J. S.; Jin, J. D.; Whittles, T. J.; Mitrovic, I. Z.; Raja, M.; Dhanak, V. R.; Chalker, P. R.; Hall, S.

    2016-11-01

    We present physical and electrical characterization of niobium-doped zinc oxide (NbZnO) for thin film transistor (TFT) applications. The NbZnO films were deposited using atomic layer deposition. X-ray diffraction measurements indicate that the crystallinity of the NbZnO films reduces with an increase in the Nb content and lower deposition temperature. It was confirmed using X-ray photoelectron spectroscopy that Nb5+ is present within the NbZnO matrix. Furthermore, photoluminescence indicates that the band gap of the ZnO increases with a higher Nb content, which is explained by the Burstein-Moss effect. For TFT applications, a growth temperature of 175 °C for 3.8% NbZnO provided the best TFT characteristics with a saturation mobility of 7.9 cm2/Vs, the current On/Off ratio of 1 × 108, and the subthreshold swing of 0.34 V/decade. The transport is seen to follow a multiple-trap and release mechanism at lower gate voltages and percolation thereafter.

  2. Remarkably High Mobility Thin-Film Transistor on Flexible Substrate by Novel Passivation Material.

    PubMed

    Shih, Cheng Wei; Chin, Albert

    2017-04-25

    High mobility thin-film transistor (TFT) is crucial for future high resolution and fast response flexible display. Remarkably high performance TFT, made at room temperature on flexible substrate, is achieved with record high field-effect mobility (μ FE ) of 345 cm(2)/Vs, small sub-threshold slope (SS) of 103 mV/dec, high on-current/off-current (I ON /I OFF ) of 7 × 10(6), and a low drain-voltage (VD) of 2 V for low power operation. The achieved mobility is the best reported data among flexible electronic devices, which is reached by novel HfLaO passivation material on nano-crystalline zinc-oxide (ZnO) TFT to improve both I ON and I OFF . From X-ray photoelectron spectroscopy (XPS) analysis, the non-passivated device has high OH-bonding intensity in nano-crystalline ZnO, which damage the crystallinity, create charged scattering centers, and form potential barriers to degrade mobility.

  3. Pulse Thermal Processing for Low Thermal Budget Integration of IGZO Thin Film Transistors

    SciTech Connect

    Noh, Joo Hyon; Joshi, Pooran C.; Kuruganti, Teja; Rack, Philip D.

    2014-11-26

    Pulse thermal processing (PTP) has been explored for low thermal budget integration of indium gallium zinc oxide (IGZO) thin film transistors (TFTs). The IGZO TFTs are exposed to a broadband (0.2-1.4 m) arc lamp radiation spectrum with 100 pulses of 1 msec pulse width. The impact of radiant exposure power on the TFT performance was analyzed in terms of the switching characteristics and bias stress reliability characteristics, respectively. The PTP treated IGZO TFTs with power density of 3.95 kW/cm2 and 0.1 sec total irradiation time showed comparable switching properties, at significantly lower thermal budget, to furnace annealed IGZO TFT. The typical field effect mobility FE, threshold voltage VT, and sub-threshold gate swing S.S were calculated to be 7.8 cm2/ V s, 8.1 V, and 0.22 V/ decade, respectively. The observed performance shows promise for low thermal budget TFT integration on flexible substrates exploiting the large-area, scalable PTP technology.

  4. Active Matrix Driving Organic Light-Emitting Diode Panel Using Organic Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Ohta, Satoru; Chuman, Takashi; Miyaguchi, Satoshi; Satoh, Hideo; Tanabe, Takahisa; Okuda, Yoshiyuki; Tsuchida, Masami

    2005-06-01

    We developed an active matrix driving organic light-emitting diode (OLED) panel on a glass substrate using two organic thin-film transistors (OTFTs) per pixel, a switching OTFT and a driving OTFT. The OTFTs are bottom contact structures with the high-dielectric constant gate insulator tantalum oxide (Ta2O5, relative dielectric constant of 23) produced by anodization in ammonium adipate solution and with pentacene as the active layer. The W/L (where W and L are the OTFTs channel width and length, respectively) was 400 μm/10 μm for the switching OTFTs and 680 μm/10 μm for the driving OTFTs. The characteristics of the OTFTs were improved by treating the Ta2O5 surface with hexamethyldisilazane (HMDS), so that the field-effect mobility was 2.0× 10-1 cm2 V-1 s-1 and the current on/off ratio was 105. A green phosphorescent dopant, tris(2-phenylpyridine)iridium [Ir(ppy)3], was used for the OLED layer. The panel had 8× 8 pixels and the aperture ratio was 27%. We confirmed a 16-gray-scale representation and a luminance of 400 cd/m2.

  5. Wireless thin film transistor based on micro magnetic induction coupling antenna

    NASA Astrophysics Data System (ADS)

    Jun, Byoung Ok; Lee, Gwang Jun; Kang, Jong Gu; Kim, Seunguk; Choi, Ji-Woong; Cha, Seung Nam; Sohn, Jung Inn; Jang, Jae Eun

    2015-12-01

    A wireless thin film transistor (TFT) structure in which a source/drain or a gate is connected directly to a micro antenna to receive or transmit signals or power can be an important building block, acting as an electrical switch, a rectifier or an amplifier, for various electronics as well as microelectronics, since it allows simple connection with other devices, unlike conventional wire connections. An amorphous indium gallium zinc oxide (α-IGZO) TFT with magnetic antenna structure was fabricated and studied for this purpose. To enhance the induction coupling efficiency while maintaining the same small antenna size, a magnetic core structure consisting of Ni and nanowires was formed under the antenna. With the micro-antenna connected to a source/drain or a gate of the TFT, working electrical signals were well controlled. The results demonstrated the device as an alternative solution to existing wire connections which cause a number of problems in various fields such as flexible/wearable devices, body implanted devices, micro/nano robots, and sensors for the ‘internet of things’ (IoT).

  6. Wireless thin film transistor based on micro magnetic induction coupling antenna.

    PubMed

    Jun, Byoung Ok; Lee, Gwang Jun; Kang, Jong Gu; Kim, Seunguk; Choi, Ji-Woong; Cha, Seung Nam; Sohn, Jung Inn; Jang, Jae Eun

    2015-12-22

    A wireless thin film transistor (TFT) structure in which a source/drain or a gate is connected directly to a micro antenna to receive or transmit signals or power can be an important building block, acting as an electrical switch, a rectifier or an amplifier, for various electronics as well as microelectronics, since it allows simple connection with other devices, unlike conventional wire connections. An amorphous indium gallium zinc oxide (α-IGZO) TFT with magnetic antenna structure was fabricated and studied for this purpose. To enhance the induction coupling efficiency while maintaining the same small antenna size, a magnetic core structure consisting of Ni and nanowires was formed under the antenna. With the micro-antenna connected to a source/drain or a gate of the TFT, working electrical signals were well controlled. The results demonstrated the device as an alternative solution to existing wire connections which cause a number of problems in various fields such as flexible/wearable devices, body implanted devices, micro/nano robots, and sensors for the 'internet of things' (IoT).

  7. Wireless thin film transistor based on micro magnetic induction coupling antenna

    PubMed Central

    Jun, Byoung Ok; Lee, Gwang Jun; Kang, Jong Gu; Kim, Seunguk; Choi, Ji-Woong; Cha, Seung Nam; Sohn, Jung Inn; Jang, Jae Eun

    2015-01-01

    A wireless thin film transistor (TFT) structure in which a source/drain or a gate is connected directly to a micro antenna to receive or transmit signals or power can be an important building block, acting as an electrical switch, a rectifier or an amplifier, for various electronics as well as microelectronics, since it allows simple connection with other devices, unlike conventional wire connections. An amorphous indium gallium zinc oxide (α-IGZO) TFT with magnetic antenna structure was fabricated and studied for this purpose. To enhance the induction coupling efficiency while maintaining the same small antenna size, a magnetic core structure consisting of Ni and nanowires was formed under the antenna. With the micro-antenna connected to a source/drain or a gate of the TFT, working electrical signals were well controlled. The results demonstrated the device as an alternative solution to existing wire connections which cause a number of problems in various fields such as flexible/wearable devices, body implanted devices, micro/nano robots, and sensors for the ‘internet of things’ (IoT). PMID:26691929

  8. Ar plasma treated ZnON transistor for future thin film electronics

    SciTech Connect

    Lee, Eunha E-mail: jeonsh@korea.ac.kr; Benayad, Anass; Kim, HeeGoo; Park, Gyeong-Su; Kim, Taeho; Jeon, Sanghun E-mail: jeonsh@korea.ac.kr

    2015-09-21

    To achieve high-mobility and high-reliability oxide thin film transistors (TFTs), ZnON has been investigated following an anion control strategy based on the substitution of oxygen with nitrogen in ZnO. However, as nitrogen possesses, compared to oxygen, a low reactivity with Zn, the chemical composition of ZnON changes easily, causing in turn a degradation of both the performance and the stability. Here, we have solved the issues of long-time stability and composition non-uniformity while maintaining a high channel mobility by adopting the argon plasma process, which can delay the reaction of oxygen with Zn–O–N; as a result, owing to the formation of very fine nano-crystalline structure in stable glassy phase without changes in the chemical composition, the material properties and stability under e-radiation have significantly improved. In particular, the channel mobility of the ZnON TFTs extracted from the pulsed I−V method was measured to be 138 cm{sup 2}/V s.

  9. The synthesis and characterization of multifunctional oxide thin films

    NASA Astrophysics Data System (ADS)

    Kharel, Parashu Ram

    2008-10-01

    Multifunctional materials offer a number of very interesting properties for developing new generation novel devices. Motivated by this fact, we concentrated our research efforts on investigating two different class of multifunctional materials namely: Diluted Magnetic Semiconducting Oxides (DMSO) and Multiferroic Oxides. The primary goal of this study was to determine how to resolve the controversy concerning the origin of room temperature ferromagnetic order in DMSO and to demonstrate the theoretically predicted coupling between ferroelectric and magnetic order parameters in multiferroic oxides. We chose several materials of current interest such as TiO2, ZnOand In2O3 (DMSO) and Ni3V2O8 and BiFeO 3 (multiferroic oxides) as the experimental specimens. We synthesized thin film samples of these materials using metal organic decomposition by spin coating and RF magnetron sputtering techniques. We succeeded in growing single phase polycrystalline thin films using both of the techniques with the sputter deposited samples showing highly preferred orientations. We did not observe any secondary phases and accidental impurities leading to robust ferromagnetic order in our samples within the detection limit of XRD, Raman spectroscopy and TEM. We have demonstrated that the lattice defects such as oxygen vacancies and cation vacancies play crucial role in the development of ferromagnetic order in DMSO materials. Based on the investigation carried out on TiO 2, ZnO and In2O3, we conclude that ferromagnetism can be developed in oxygen deficient DMSO thin films without the subbstitution of any external magnetic impurities but the incorporation of magnetic impurities may help in stabilizing the observed ferromagnetic order. Most importantly, we demonstrated with the direct measurement of spin polarization in In 2O3 and Cr doped In2O3 thin films that the charge carriers responsible for the ferromagnetic order are spin polarized. We have successfully demonstrated that the low

  10. Photo-modulated thin film transistor based on dynamic charge transfer within quantum-dots-InGaZnO interface

    SciTech Connect

    Liu, Xiang; Yang, Xiaoxia; Liu, Mingju; Tao, Zhi; Wei, Lei Li, Chi Zhang, Xiaobing; Wang, Baoping; Dai, Qing; Nathan, Arokia

    2014-03-17

    The temporal development of next-generation photo-induced transistor across semiconductor quantum dots and Zn-related oxide thin film is reported in this paper. Through the dynamic charge transfer in the interface between these two key components, the responsibility of photocurrent can be amplified for scales of times (∼10{sup 4} A/W 450 nm) by the electron injection from excited quantum dots to InGaZnO thin film. And this photo-transistor has a broader waveband (from ultraviolet to visible light) optical sensitivity compared with other Zn-related oxide photoelectric device. Moreover, persistent photoconductivity effect can be diminished in visible waveband which lead to a significant improvement in the device's relaxation time from visible illuminated to dark state due to the ultrafast quenching of quantum dots. With other inherent properties such as integrated circuit compatible, low off-state current and high external quantum efficiency resolution, it has a great potential in the photoelectric device application, such as photodetector, phototransistor, and sensor array.

  11. F2-Laser-Induced Modification of Aluminum Thin Films into Transparent Aluminum Oxide

    NASA Astrophysics Data System (ADS)

    Okoshi, Masayuki; Iwai, Kazufumi; Nojiri, Hidetoshi; Inoue, Narumi

    2012-12-01

    A vacuum-UV F2 laser of 157 nm wavelength induced strong oxidation of 10-nm-thick Al thin films, forming transparent Al2O3 on silica glass. The laser-induced modification occurred at the surface of Al thin films; consequently, the thickness of the formed Al2O3 thin films increased linearly with increasing number of F2 laser photons. The formation of equivalent-phase Al2O3 thin films was confirmed by X-ray photoelectron spectroscopy. The oxidation reaction in the laser-induced modification of 10-nm-thick Al thin films was slower than that for 20- and 60-nm-thick Al thin films. Morphological changes leading to the crystallization of the Al2O3 thin films were also observed when the thickness of Al thin films increased from 10 to 20 and 60 nm.

  12. Thin film zinc oxide deposited by CVD and PVD

    NASA Astrophysics Data System (ADS)

    Hamelmann, Frank U.

    2016-10-01

    Zinc oxide is known as a mineral since 1810, but it came to scientific interest after its optoelectronic properties found to be tuneable by p-type doping. Since the late 1980’s the number of publications increased exponentially. All thin film deposition technologies, including sol-gel and spray pyrolysis, are able to produce ZnO films. However, for outstanding properties and specific doping, only chemical vapor deposition and physical vapor deposition have shown so far satisfying results in terms of high conductivity and high transparency. In this paper the different possibilities for doping will be discussed, some important applications of doped ZnO thin films will be presented. The deposition technologies used for industrial applications are shown in this paper. Especially sputtering of aluminium doped Zinc Oxide (ZnO:Al or AZO) and LPCVD of boron doped Zinc Oxide (ZnO:B or BZO) are used for the commercial production of transparent conductive oxide films on glass used for thin film photovoltaic cells. For this special application the typical process development for large area deposition is presented, with the important trade-off between optical properties (transparency and ability for light scattering) and electrical properties (conductivity). Also, the long term stability of doped ZnO films is important for applications, humidity in the ambient is often the reason for degradation of the films. The differences between the mentioned materials are presented.

  13. High Mobility Flexible Amorphous IGZO Thin-Film Transistors with a Low Thermal Budget Ultra-Violet Pulsed Light Process.

    PubMed

    Benwadih, M; Coppard, R; Bonrad, K; Klyszcz, A; Vuillaume, D

    2016-12-21

    Amorphous, sol-gel processed, indium gallium zinc oxide (IGZO) transistors on plastic substrate with a printable gate dielectric and an electron mobility of 4.5 cm(2)/(V s), as well as a mobility of 7 cm(2)/(V s) on solid substrate (Si/SiO2) are reported. These performances are obtained using a low temperature pulsed light annealing technique. Ultraviolet (UV) pulsed light system is an innovative technique compared to conventional (furnace or hot-plate) annealing process that we successfully implemented on sol-gel IGZO thin film transistors (TFTs) made on plastic substrate. The photonic annealing treatment has been optimized to obtain IGZO TFTs with significant electrical properties. Organic gate dielectric layers deposited on this pulsed UV light annealed films have also been optimized. This technique is very promising for the development of amorphous IGZO TFTs on plastic substrates.

  14. UV-visible spectroscopic analysis of electrical properties in alkali metal-doped amorphous zinc tin oxide thin-film transistors.

    PubMed

    Lim, Keon-Hee; Kim, Kyongjun; Kim, Seonjo; Park, Si Yun; Kim, Hyungjun; Kim, Youn Sang

    2013-06-04

    Solution-processed and alkali metals, such as Li and Na, are introduced in doped amorphous zinc tin oxide (ZTO) semiconductor TFTs, which show better electrical performance, such as improved field effect mobility, than intrinsic amorphous ZTO semiconductor TFTs. Furthermore, by using spectroscopic UV-visible analysis we propose a comprehensive technique for monitoring the improved electrical performance induced by alkali metal doping in terms of the change in optical properties. The change in the optical bandgap supported by the Burstein-Moss theory could successfully show a mobility increase that is related to interstitial doping of alkali metal in ZTO semiconductors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Improvement in interfacial characteristics of low-voltage carbon nanotube thin-film transistors with solution-processed boron nitride thin films

    NASA Astrophysics Data System (ADS)

    Jeon, Jun-Young; Ha, Tae-Jun

    2017-08-01

    In this article, we demonstrate the potential of solution-processed boron nitride (BN) thin films for high performance single-walled carbon nanotube thin-film transistors (SWCNT-TFTs) with low-voltage operation. The use of BN thin films between solution-processed high-k dielectric layers improved the interfacial characteristics of metal-insulator-metal devices, thereby reducing the current density by three orders of magnitude. We also investigated the origin of improved device performance in SWCNT-TFTs by employing solution-processed BN thin films as an encapsulation layer. The BN encapsulation layer improves the electrical characteristics of SWCNT-TFTs, which includes the device key metrics of linear field-effect mobility, sub-threshold swing, and threshold voltage as well as the long-term stability against the aging effect in air. Such improvements can be achieved by reduced interaction of interfacial localized states with charge carriers. We believe that this work can open up a promising route to demonstrate the potential of solution-processed BN thin films on nanoelectronics.

  16. Air-Flow Navigated Crystal Growth for TIPS Pentacene-Based Organic Thin-Film Transistors

    SciTech Connect

    He, Zhengran; Chen, Jihua; Sun, Zhenzhong; Szulczewski, Greg; Li, Dawen

    2012-01-01

    6,13-bis(triisopropylsilylethynyl)pentacene (TIPS pentacene) is a promising active channel material of organic thin-film transistors (OTFTs) due to its solubility, stability, and high mobility. However, the growth of TIPS pentacene crystals is intrinsically anisotropic and thus leads to significant variation in the performance of OTFTs. In this paper, air flow is utilized to effectively reduce the TIPS pentacene crystal anisotropy and enhance performance consistency in OTFTs, and the resulted films are examined with optical microscopy, grazing-incidence X-ray diffraction, and thin-film transistor measurements. Under air-flow navigation (AFN), TIPS pentacene drop-cast from toluene solution has been observed to form thin films with improved crystal orientation and increased areal coverage on substrates, which subsequently lead to a four-fold increase of average hole mobility and one order of magnitude enhancement in performance consistency defined by the ratio of average mobility to the standard deviation of the field-effect mobilities.

  17. High angular sensitivity thin film tin oxide sensor

    NASA Astrophysics Data System (ADS)

    Kaur, Davinder; Madaan, Divya; Sharma, V. K.; Kapoor, A.

    2016-05-01

    We present theoretical anlaysis of a thin film SnO2 (Tin Oxide) sensor for the measurement of variation in the refractive index of the bulk media. It is based on lossy mode resonance between the absorbing thin film lossy modes and the evanescent wave. Also the addition of low index dielectric matching layer between the prism and the lossy waveguiding layer future increase the angular sensitivity and produce an efficient refractive index sensor. The angular interrogation is done and obtained sensitivity is 110 degree/RIU. Theoretical analysis of the proposed sensor based on Fresnel reflection coefficients is presented. This enhanced sensitivity will further improve the monitoring of biomolecular interactions and the higher sensitivity of the proposed configurations makes it to be a much better option to be employed for biosensing applications.

  18. Ionic liquid versus SiO2 gated a-IGZO thin film transistors: A direct comparison

    SciTech Connect

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony T.; Haglund, Amanda V.; Dai, Sheng; Ward, Thomas Zac; Mandrus, David; Rack, Philip D.

    2015-08-12

    Here, ionic liquid gated field effect transistors have been extensively studied due to their low operation voltage, ease of processing and the realization of high electric fields at low bias voltages. Here, we report ionic liquid (IL) gated thin film transistors (TFTs) based on amorphous Indium Gallium Zinc Oxide (a-IGZO) active layers and directly compare the characteristics with a standard SiO2 gated device. The transport measurements of the top IL gated device revealed the n-channel property of the IGZO thin film with a current ON/OFF ratio ~105, a promising field effect mobility of 14.20 cm2V–1s–1, and a threshold voltage of 0.5 V. Comparable measurements on the bottom SiO2 gate insulator revealed a current ON/OFF ratio >108, a field effect mobility of 13.89 cm2V–1s–1 and a threshold voltage of 2.5 V. Furthermore, temperature-dependent measurements revealed that the ionic liquid electric double layer can be “frozen-in” by cooling below the glass transition temperature with an applied electrical bias. Positive and negative freezing bias locks-in the IGZO TFT “ON” and “OFF” state, respectively, which could lead to new switching and possibly non-volatile memory applications.

  19. Ionic liquid versus SiO2 gated a-IGZO thin film transistors: A direct comparison

    DOE PAGES

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony T.; ...

    2015-08-12

    Here, ionic liquid gated field effect transistors have been extensively studied due to their low operation voltage, ease of processing and the realization of high electric fields at low bias voltages. Here, we report ionic liquid (IL) gated thin film transistors (TFTs) based on amorphous Indium Gallium Zinc Oxide (a-IGZO) active layers and directly compare the characteristics with a standard SiO2 gated device. The transport measurements of the top IL gated device revealed the n-channel property of the IGZO thin film with a current ON/OFF ratio ~105, a promising field effect mobility of 14.20 cm2V–1s–1, and a threshold voltage ofmore » 0.5 V. Comparable measurements on the bottom SiO2 gate insulator revealed a current ON/OFF ratio >108, a field effect mobility of 13.89 cm2V–1s–1 and a threshold voltage of 2.5 V. Furthermore, temperature-dependent measurements revealed that the ionic liquid electric double layer can be “frozen-in” by cooling below the glass transition temperature with an applied electrical bias. Positive and negative freezing bias locks-in the IGZO TFT “ON” and “OFF” state, respectively, which could lead to new switching and possibly non-volatile memory applications.« less

  20. Fabrication of InGaN thin-film transistors using pulsed sputtering deposition

    PubMed Central

    Itoh, Takeki; Kobayashi, Atsushi; Ueno, Kohei; Ohta, Jitsuo; Fujioka, Hiroshi

    2016-01-01

    We report the first demonstration of operational InGaN-based thin-film transistors (TFTs) on glass substrates. The key to our success was coating the glass substrate with a thin amorphous layer of HfO2, which enabled a highly c-axis-oriented growth of InGaN films using pulsed sputtering deposition. The electrical characteristics of the thin films were controlled easily by varying their In content. The optimized InGaN-TFTs exhibited a high on/off ratio of ~108, a field-effect mobility of ~22 cm2 V−1 s−1, and a maximum current density of ~30 mA/mm. These results lay the foundation for developing high-performance electronic devices on glass substrates using group III nitride semiconductors. PMID:27383148

  1. Understanding charge transport in lead iodide perovskite thin-film field-effect transistors

    PubMed Central

    Senanayak, Satyaprasad P.; Yang, Bingyan; Thomas, Tudor H.; Giesbrecht, Nadja; Huang, Wenchao; Gann, Eliot; Nair, Bhaskaran; Goedel, Karl; Guha, Suchi; Moya, Xavier; McNeill, Christopher R.; Docampo, Pablo; Sadhanala, Aditya; Friend, Richard H.; Sirringhaus, Henning

    2017-01-01

    Fundamental understanding of the charge transport physics of hybrid lead halide perovskite semiconductors is important for advancing their use in high-performance optoelectronics. We use field-effect transistors (FETs) to probe the charge transport mechanism in thin films of methylammonium lead iodide (MAPbI3). We show that through optimization of thin-film microstructure and source-drain contact modifications, it is possible to significantly minimize instability and hysteresis in FET characteristics and demonstrate an electron field-effect mobility (μFET) of 0.5 cm2/Vs at room temperature. Temperature-dependent transport studies revealed a negative coefficient of mobility with three different temperature regimes. On the basis of electrical and spectroscopic studies, we attribute the three different regimes to transport limited by ion migration due to point defects associated with grain boundaries, polarization disorder of the MA+ cations, and thermal vibrations of the lead halide inorganic cages. PMID:28138550

  2. Critical issues in plasma deposition of microcrystalline silicon for thin film transistors

    NASA Astrophysics Data System (ADS)

    Roca i Cabarrocas, Pere; Djeridane, Yassine; Bui, V. D.; Bonnassieux, Yvan; Abramov, Alexey

    2008-03-01

    After more than 20 years of research and despite improved transport properties with respect to amorphous silicon, microcrystalline silicon thin film transistors (TFTs) are not yet ready for industrial production. We review here the progress made in the understanding of the growth of this material with particular emphasis on industry relevant aspects such as deposition rate and uniformity. We show that the synthesis of silicon nanocrystals in the plasma offers unique advantages with respect to deposition rate and film properties. In particular, this allows the production of films which are similar to polycrystalline thin films produced by furnace and laser crystallization. The growth process is also discussed with respect to TFT design: top gate or bottom gate. Results on bottom gate TFTs meeting all the necessary requirements in terms of mobility, ON/OFF ratio and stability required for AMOLED applications are also reported.

  3. Recent progress in n-channel organic thin-film transistors.

    PubMed

    Wen, Yugeng; Liu, Yunqi

    2010-03-26

    Particular attention has been focused on n-channel organic thin-film transistors (OTFTs) during the last few years, and the potentially cost-effective circuitry-based applications in flexible electronics, such as flexible radiofrequency identity tags, smart labels, and simple displays, will benefit from this fast development. This article reviews recent progress in performance and molecular design of n-channel semiconductors in the past five years, and limitations and practicable solutions for n-channel OTFTs are dealt with from the viewpoint of OTFT constitution and geometry, molecular design, and thin-film growth conditions. Strategy methodology is especially highlighted with an aim to investigate basic issues in this field.

  4. The effect of thermal annealing on pentacene thin film transistor with micro contact printing.

    PubMed

    Shin, Hong-Sik; Yun, Ho-Jin; Baek, Kyu-Ha; Ham, Yong-Hyun; Park, Kun-Sik; Kim, Dong-Pyo; Lee, Ga-Won; Lee, Hi-Deok; Lee, Kijun; Do, Lee-Mi

    2012-07-01

    We used micro contact printing (micro-CP) to fabricate inverted coplanar pentacene thin film transistors (TFTs) with 1-microm channels. The patterning of micro-scale source/drain electrodes without etch process was successfully achieved using Polydimethylsiloxane (PDMS) elastomer stamp. We used the Ag nano particle ink as an electrode material, and the sheet resistance and surface roughness of the Ag electrodes were effectively reduced with the 2-step thermal annealing on a hotplate, which improved the mobility, the on-off ratio, and the subthreshold slope (SS) of the pentacene TFTs. In addition, the device annealing on a hotplate in a N2 atmosphere for 30 sec can enhance the off-current and the mobility properties of OTFTs without damaging the pentacene thin films and increase the adhesion between pentacene and dielectric layer (SiO2), which was investigated with the pentacene films phase change of the XRD spectrum after device annealing.

  5. Nanostructured silicon based thin film transistors processed in the plasma dark region.

    PubMed

    Pereira, L; Aguas, H; Gomes, L; Barquinha, P; Fortunato, E; Martins, R

    2010-04-01

    Nanostructured silicon (na-Si:H) thin films were fabricated using plasma enhanced chemical vapour deposition (PECVD) technique under high silane hydrogen dilution and a discharge frequency of 27 MHz, where the substrate was located in the dark region of the plasma, protected by a grounded metal grid. By not exposing the growth surface directly to the plasma we avoid the silicon growth surface to sustain a high ion bombardment leading to a less defective surface and highly compact films. The intrinsic films grown under these conditions were used to produce the channel region of thin film transistors (TFTs) with a bottom gate staggered configuration, integrating different dielectric layers. The devices produced exhibit a field effect mobility close to 1.84 cm2 V(-1) s(-1), threshold voltage around 2 V, on/off ratio above 10(7) and sub-threshold slope below 0.5 V/decade, depending on the dielectric used.

  6. Fabrication of InGaN thin-film transistors using pulsed sputtering deposition

    NASA Astrophysics Data System (ADS)

    Itoh, Takeki; Kobayashi, Atsushi; Ueno, Kohei; Ohta, Jitsuo; Fujioka, Hiroshi

    2016-07-01

    We report the first demonstration of operational InGaN-based thin-film transistors (TFTs) on glass substrates. The key to our success was coating the glass substrate with a thin amorphous layer of HfO2, which enabled a highly c-axis-oriented growth of InGaN films using pulsed sputtering deposition. The electrical characteristics of the thin films were controlled easily by varying their In content. The optimized InGaN-TFTs exhibited a high on/off ratio of ~108, a field-effect mobility of ~22 cm2 V‑1 s‑1, and a maximum current density of ~30 mA/mm. These results lay the foundation for developing high-performance electronic devices on glass substrates using group III nitride semiconductors.

  7. Understanding charge transport in lead iodide perovskite thin-film field-effect transistors.

    PubMed

    Senanayak, Satyaprasad P; Yang, Bingyan; Thomas, Tudor H; Giesbrecht, Nadja; Huang, Wenchao; Gann, Eliot; Nair, Bhaskaran; Goedel, Karl; Guha, Suchi; Moya, Xavier; McNeill, Christopher R; Docampo, Pablo; Sadhanala, Aditya; Friend, Richard H; Sirringhaus, Henning

    2017-01-01

    Fundamental understanding of the charge transport physics of hybrid lead halide perovskite semiconductors is important for advancing their use in high-performance optoelectronics. We use field-effect transistors (FETs) to probe the charge transport mechanism in thin films of methylammonium lead iodide (MAPbI3). We show that through optimization of thin-film microstructure and source-drain contact modifications, it is possible to significantly minimize instability and hysteresis in FET characteristics and demonstrate an electron field-effect mobility (μFET) of 0.5 cm(2)/Vs at room temperature. Temperature-dependent transport studies revealed a negative coefficient of mobility with three different temperature regimes. On the basis of electrical and spectroscopic studies, we attribute the three different regimes to transport limited by ion migration due to point defects associated with grain boundaries, polarization disorder of the MA(+) cations, and thermal vibrations of the lead halide inorganic cages.

  8. Germanium and Silicon Nanocrystal Thin-Film Field-Effect Transistors from Solution

    SciTech Connect

    Holman, Zachary C.; Liu, Chin-Yi; Kortshagen, Uwe R.

    2010-07-09

    Germanium and silicon have lagged behind more popular II-VI and IV-VI semiconductor materials in the emerging field of semiconductor nanocrystal thin film devices. We report germanium and silicon nanocrystal field-effect transistors fabricated by synthesizing nanocrystals in a plasma, transferring them into solution, and casting thin films. Germanium devices show n-type, ambipolar, or p-type behavior depending on annealing temperature with electron and hole mobilities as large as 0.02 and 0.006 cm2 V-1 s-1, respectively. Silicon devices exhibit n-type behavior without any postdeposition treatment, but are plagued by poor film morphology.

  9. Fabrication of amorphous InGaZnO thin-film transistor-driven flexible thermal and pressure sensors

    NASA Astrophysics Data System (ADS)

    Park, Ick-Joon; Jeong, Chan-Yong; Cho, In-Tak; Lee, Jong-Ho; Cho, Eou-Sik; Kwon, Sang Jik; Kim, Bosul; Cheong, Woo-Seok; Song, Sang-Hun; Kwon, Hyuck-In

    2012-10-01

    In this work, we present the results concerning the use of amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) as a driving transistor of the flexible thermal and pressure sensors which are applicable to artificial skin systems. Although the a-IGZO TFT has been attracting much attention as a driving transistor of the next-generation flat panel displays, no study has been performed about the application of this new device to the driving transistor of the flexible sensors yet. The proposed thermal sensor pixel is composed of the series-connected a-IGZO TFT and ZnO-based thermistor fabricated on a polished metal foil, and the ZnO-based thermistor is replaced by the pressure sensitive rubber in the pressure sensor pixel. In both sensor pixels, the a-IGZO TFT acts as the driving transistor and the temperature/pressure-dependent resistance of the ZnO-based thermistor/pressure-sensitive rubber mainly determines the magnitude of the output currents. The fabricated a-IGZO TFT-driven flexible thermal sensor shows around a seven times increase in the output current as the temperature increases from 20 °C to 100 °C, and the a-IGZO TFT-driven flexible pressure sensors also exhibit high sensitivity under various pressure environments.

  10. High quality transparent conducting oxide thin films

    DOEpatents

    Gessert, Timothy A.; Duenow, Joel N.; Barnes, Teresa; Coutts, Timothy J.

    2012-08-28

    A transparent conducting oxide (TCO) film comprising: a TCO layer, and dopants selected from the elements consisting of Vanadium, Molybdenum, Tantalum, Niobium, Antimony, Titanium, Zirconium, and Hafnium, wherein the elements are n-type dopants; and wherein the transparent conducting oxide is characterized by an improved electron mobility of about 42 cm.sup.2/V-sec while simultaneously maintaining a high carrier density of .about.4.4e.times.10.sup.20 cm.sup.-3.

  11. Determination of oxygen diffusion kinetics during thin film ruthenium oxidation

    SciTech Connect

    Coloma Ribera, R. Kruijs, R. W. E. van de; Yakshin, A. E.; Bijkerk, F.

    2015-08-07

    In situ X-ray reflectivity was used to reveal oxygen diffusion kinetics for thermal oxidation of polycrystalline ruthenium thin films and accurate determination of activation energies for this process. Diffusion rates in nanometer thin RuO{sub 2} films were found to show Arrhenius behaviour. However, a gradual decrease in diffusion rates was observed with oxide growth, with the activation energy increasing from about 2.1 to 2.4 eV. Further exploration of the Arrhenius pre-exponential factor for diffusion process revealed that oxidation of polycrystalline ruthenium joins the class of materials that obey the Meyer-Neldel rule.

  12. Electrochemical characterization of thin film electrodes toward developing a DNA transistor.

    PubMed

    Harrer, Stefan; Ahmed, Shafaat; Afzali-Ardakani, Ali; Luan, Binquan; Waggoner, Philip S; Shao, Xiaoyan; Peng, Hongbo; Goldfarb, Dario L; Martyna, Glenn J; Rossnagel, Stephen M; Deligianni, Lili; Stolovitzky, Gustavo A

    2010-12-21

    The DNA-Transistor is a device designed to control the translocation of single-stranded DNA through a solid-state nanopore. Functionality of the device is enabled by three electrodes exposed to the DNA-containing electrolyte solution within the pore and the application of a dynamic electrostatic potential well between the electrodes to temporarily trap a DNA molecule. Optimizing the surface chemistry and electrochemical behavior of the device is a necessary (but by no means sufficient) step toward the development of a functional device. In particular, effects to be eliminated are (i) electrochemically induced surface alteration through corrosion or reduction of the electrode surface and (ii) formation of hydrogen or oxygen bubbles inside the pore through water decomposition. Even though our motivation is to solve problems encountered in DNA transistor technology, in this paper we report on generic surface chemistry results. We investigated a variety of electrode-electrolyte-solvent systems with respect to their capability of suppressing water decomposition and maintaining surface integrity. We employed cyclic voltammetry and long-term amperometry as electrochemical test schemes, X-ray photoelectron spectroscopy, atomic force microscopy, and scanning, as well as transmission electron microscopy as analytical tools. Characterized electrode materials include thin films of Ru, Pt, nonstoichiometric TiN, and nonstoichiometric TiN carrying a custom-developed titanium oxide layer, as well as custom-oxidized nonstoichiometric TiN coated with a monolayer of hexadecylphosphonic acid (HDPA). We used distilled water as well as aqueous solutions of poly(ethylene glycol) (PEG-300) and glycerol as solvents. One millimolar KCl was employed as electrolyte in all solutions. Our results show that the HDPA-coated custom-developed titanium oxide layer effectively passivates the underlying TiN layer, eliminating any surface alterations through corrosion or reduction within a voltage

  13. Lateral solid-phase epitaxy of oxide thin films on glass substrate seeded with oxide nanosheets.

    PubMed

    Taira, Kenji; Hirose, Yasushi; Nakao, Shoichiro; Yamada, Naoomi; Kogure, Toshihiro; Shibata, Tatsuo; Sasaki, Takayoshi; Hasegawa, Tetsuya

    2014-06-24

    We developed a technique to fabricate oxide thin films with uniaxially controlled crystallographic orientation and lateral size of more than micrometers on amorphous substrates. This technique is lateral solid-phase epitaxy, where epitaxial crystallization of amorphous precursor is seeded with ultrathin oxide nanosheets sparsely (≈10% coverage) deposited on the substrate. Transparent conducting Nb-doped anatase TiO2 thin films were fabricated on glass substrates by this technique. Perfect (001) orientation and large grains with lateral sizes up to 10 μm were confirmed by X-ray diffraction, atomic force microscopy, and electron beam backscattering diffraction measurements. As a consequence of these features, the obtained film exhibited excellent electrical transport properties comparable to those of epitaxial thin films on single-crystalline substrates. This technique is a versatile method for fabricating high-quality oxide thin films other than anatase TiO2 and would increase the possible applications of oxide-based thin film devices.

  14. Nano-crystallization in ZnO-doped In{sub 2}O{sub 3} thin films via excimer laser annealing for thin-film transistors

    SciTech Connect

    Fujii, Mami N. Ishikawa, Yasuaki; Bermundo, Juan Paolo Soria; Uraoka, Yukiharu; Ishihara, Ryoichi; Cingel, Johan van der; Mofrad, Mohammad R. T.; Kawashima, Emi; Tomai, Shigekazu; Yano, Koki

    2016-06-15

    In a previous work, we reported the high field effect mobility of ZnO-doped In{sub 2}O{sub 3} (IZO) thin film transistors (TFTs) irradiated by excimer laser annealing (ELA) [M. Fujii et al., Appl. Phys. Lett. 102, 122107 (2013)]. However, a deeper understanding of the effect of ELA on the IZO film characteristics based on crystallinity, carrier concentrations, and optical properties is needed to control localized carrier concentrations for fabricating self-aligned structures in the same oxide film and to adequately explain the physical characteristics. In the case of as-deposited IZO film used as the channel, a high carrier concentration due to a high density of oxygen vacancies was observed; such a film does not show the required TFT characteristics but can act as a conductive film. We achieved a decrease in the carrier concentration of IZO films by crystallization using ELA. This means that ELA can form localized conductive or semi-conductive areas on the IZO film. We confirmed that the reason for the carrier concentration decrease was the decrease of oxygen-deficient regions and film crystallization. The annealed IZO films showed nano-crystalline phase, and the temperature at the substrate was substantially less than the temperature limit for flexible films such as plastic, which is 50°C. This paves the way for the formation of self-aligned structures and separately formed conductive and semi-conductive regions in the same oxide film.

  15. Nano-crystallization in ZnO-doped In2O3 thin films via excimer laser annealing for thin-film transistors

    NASA Astrophysics Data System (ADS)

    Fujii, Mami N.; Ishikawa, Yasuaki; Ishihara, Ryoichi; van der Cingel, Johan; Mofrad, Mohammad R. T.; Bermundo, Juan Paolo Soria; Kawashima, Emi; Tomai, Shigekazu; Yano, Koki; Uraoka, Yukiharu

    2016-06-01

    In a previous work, we reported the high field effect mobility of ZnO-doped In2O3 (IZO) thin film transistors (TFTs) irradiated by excimer laser annealing (ELA) [M. Fujii et al., Appl. Phys. Lett. 102, 122107 (2013)]. However, a deeper understanding of the effect of ELA on the IZO film characteristics based on crystallinity, carrier concentrations, and optical properties is needed to control localized carrier concentrations for fabricating self-aligned structures in the same oxide film and to adequately explain the physical characteristics. In the case of as-deposited IZO film used as the channel, a high carrier concentration due to a high density of oxygen vacancies was observed; such a film does not show the required TFT characteristics but can act as a conductive film. We achieved a decrease in the carrier concentration of IZO films by crystallization using ELA. This means that ELA can form localized conductive or semi-conductive areas on the IZO film. We confirmed that the reason for the carrier concentration decrease was the decrease of oxygen-deficient regions and film crystallization. The annealed IZO films showed nano-crystalline phase, and the temperature at the substrate was substantially less than the temperature limit for flexible films such as plastic, which is 50°C. This paves the way for the formation of self-aligned structures and separately formed conductive and semi-conductive regions in the same oxide film.

  16. Testing of flexible InGaZnO-based thin-film transistors under mechanical strain

    NASA Astrophysics Data System (ADS)

    Münzenrieder, N. S.; Cherenack, K. H.; Tröster, G.

    2011-08-01

    Thin-film transistors (TFTs) fabricated on flexible plastic substrates are an integral part of future flexible large-area electronic devices like displays and smart textiles. Devices for such applications require stable electrical performance under electrical stress and also during applied mechanical stress induced by bending of the flexible substrate. Mechanical stress can be tensile or compressive strain depending on whether the TFT is located outside or inside of the bending plane. Especially the impact of compressive bending on TFT performance is hard to measure, because the device is covered with the substrate in this case. We present a method which allows us to continuously measure the electrical performance parameters of amorphous Indium-Gallium-Zinc Oxide (a-IGZO) based TFTs exposed to arbitrary compressive and tensile bending radii. To measure the influence of strain on a TFT it is attached and electrically connected to a flexible carrier foil, which afterwards is fastened to two plates in our bending tester. The bending radius can be adjusted by changing the distance between these plates. Thus it is possible to apply bending radii in the range between a totally flat substrate and ≈1 mm, corresponding to a strain of ≈3.5%. The tested bottom-gate TFTs are especially designed for use with our bending tester and fabricated on 50 μm thick flexible Kapton® E polyimide substrates. To show the different application areas of our bending method we characterized our TFTs while they are bent to different tensile and compressive bending radii. These measurements show that the field effect mobilities and threshold voltages of the tested a-IGZO TFTs are nearly, but not absolutely, stable under applied strain, compared to the initial values the mobilities shift by ≈3.5% in the tensile case and ≈-1.5% in the compressive one, at a bending radius of 8 mm. We also measured the influence of repeated bending (2500 cycles over ≈70 h), where a shift of the

  17. Microcrystalline silicon thin-film transistors operating at very high frequencies

    NASA Astrophysics Data System (ADS)

    Marinkovic, Marko; Hashem, Elias; Chan, Kah-Yoong; Gordijn, Aad; Stiebig, Helmut; Knipp, Dietmar

    2010-08-01

    The switching behavior of hydrogenated microcrystalline silicon thin-film transistors (TFTs) was examined and switching frequencies exceeding 20 MHz were measured for short channel devices. The microcrystalline silicon TFTs were prepared by plasma-enhanced chemical vapor deposition at temperatures compatible with plastic substrates. The realized microcrystalline silicon transistors exhibit high electron charge carrier mobilities of 130 cm2/V s. The switching frequency is limited by the contact resistances and overlap capacitances between the gate and the drain/source electrodes. Switching frequencies larger than 20 MHz were measured for transistors with a channel length of 5 μm. The high switching frequencies facilitate the realization of radio-frequency identification tags operating at 13.56 MHz.

  18. Low temperature oxidation mechanisms of nanocrystalline magnetite thin film

    SciTech Connect

    Bourgeois, F.; Gergaud, P.; Feuillet, G.; Renevier, H.; Leclere, C.

    2013-01-07

    A detailed investigation of the mechanisms related to the low temperature oxidation of nanocrystalline magnetite thin films into maghemite is presented. Despite strong differences in the functional properties of these two phases, structural similarities make it difficult to distinguish between them, and to quantify the oxidation process, particularly in the case of nanostructured polycrystalline layers. Contrary to the case of bulk materials or monocrystalline films and particles, the oxidation processes in nanocrystalline thin film have only scarcely been studied. In this work, structural and optical techniques, including X-ray diffraction (XRD), EXAFS/X-ray absorption near edge structure, FTIR, and Raman scattering, have been used to estimate the oxidation rate of magnetite. The overall oxidation reaction rates are discussed in the framework of two limiting cases corresponding to intra grain diffusion and to grain boundary diffusion. SIMS profiling and electrical measurements were also carried out to better assess the oxidation quantification in order to conclude on the predominant oxidation mechanisms in this heterogeneous material. We propose a qualitative model for the structure, in terms of insulating zone distribution, for partially oxidized films.

  19. Studies of tetracene- and pentacene-based organic thin-film transistors fabricated by the neutral cluster beam deposition method.

    PubMed

    Abthagir, P Syed; Ha, Young-Geun; You, Eun-Ah; Jeong, Seon-Hwa; Seo, Hoon-Seok; Choi, Jong-Ho

    2005-12-22

    The neutral cluster beam deposition (NCBD) method has been applied to produce and characterize organic thin-film transistors (OTFTs) based upon tetracene and pentacene molecules as active layers. Organic thin films were prepared by the NCBD method on hexamethyldisilazane (HMDS)-untreated and -pretreated silicon dioxide (SiO2) substrates at room temperature. The surface morphology and structures for the tetracene and pentacene thin films were examined by atomic force microscopy (AFM) and X-ray diffraction (XRD). The measurements demonstrate that the weakly bound and highly directional neutral cluster beams are efficient in producing high-quality single-crystalline thin films with uniform, smooth surfaces and that SiO2 surface treatment with HMDS enhances the crystallinity of the pentacene thin-film phase. Tetracene- and pentacene-based OTFTs with the top-contact structure showed typical source-drain current modulation behavior with different gate voltages. Device parameters such as hole carrier mobility, current on/off ratio, threshold voltage, and subthreshold slope have been derived from the current-voltage characteristics together with the effects of surface treatment with HMDS. In particular, the high field-effect room-temperature mobilities for the HMDS-untreated OTFTs are found to be comparable to the most widely reported values for the respective untreated tetracene and pentacene thin-film transistors. The device performance strongly correlates with the surface morphology, and the structural properties of the organic thin films are discussed.

  20. Vanadium oxide thin film with improved sheet resistance uniformity

    NASA Astrophysics Data System (ADS)

    Généreux, Francis; Provençal, Francis; Tremblay, Bruno; Boucher, Marc-André; Julien, Christian; Alain, Christine

    2014-06-01

    This paper reports on the deposition of vanadium oxide thin films with sheet resistance uniformity better than 2.5% over a 150 mm wafer. The resistance uniformity within the array is estimated to be less than 1%, which is comparable with the value reported for amorphous silicon-based microbolometer arrays. In addition, this paper also shows that the resistivity of vanadium oxide, like amorphous silicon, can be modeled by Arrhenius' equation. This result is expected to significantly ease the computation of the correction table required for TEC-less operation of VOx-based microbolometer arrays.

  1. Tips pentacene crystal alignment for improving performance of solution processed organic thin film transistors

    NASA Astrophysics Data System (ADS)

    He, Zhengran

    A newly-developed p-type organic semiconductor 6,13-bis (triisopropylsilylethynyl) pentacene (TIPS pentacene) demonstrates various advantages such as high mobility, air stability and solution processibility, but at the same time its application is restricted by major issues, such as crystal misorientation and performance variation of organic thin-film transistors (OTFTs). This dissertation demonstrates several different approaches to address these issues. As a result, both crystal orientation and areal coverage can be effectively improved, leading to an enhancement of average mobility and performance consistency of OTFTs. Chapter 1 presents an introduction and background of this dissertation. Chapter 2 explores the usage of inorganic silica nanoparticles to manipulate the morphology of TIPS pentacene thin films and the performance of solution-processed organic OTFTs. The resultant drop-cast films yield improved morphological uniformity at ~10% SiO2 loading, which also leads to a 3-fold increase in average mobility and nearly 4-times reduction in the ratio of standard deviation of mobility (μStdev) to average mobility (μAvg). The experimental results suggest that the SiO2 nanoparticles mostly aggregate at TIPS pentacene grain boundaries, and that 10% nanoparticle concentration effectively reduces the undesirable crystal misorientation without considerably compromising TIPS pentacene crystallinity. Chapter 3 discusses the utilization of air flow to effectively reduce the TIPS pentacene crystal anisotropy and enhance performance consistency in OTFTs. Under air-flow navigation (AFN), TIPS pentacene forms thin films with improved crystal orientation and increased areal coverage, which subsequently lead to a four-fold increase of average hole mobility and one order of magnitude enhancement in performance consistency. Chapter 4 investigates the critical roles of lateral and vertical phase separation in the performance of the next-generation organic and hybrid electronic

  2. Design of Novel Organic Thin Film Transistors for Wearable Electronics

    DTIC Science & Technology

    2012-08-01

    OF ANATASE HIGH DIELECTRIC CONSTANT TITANIA 12 5.0 NANOCOMPOSITE LEAD SULPHIDE EMBEDDED IN PHTHALOCYANINE MATRIX 13 6.0 SCOPE OF...public release; distribution is unlimited. 12 4.0 CATHODIC ELECTRODEPOSITION OF ANATASE HIGH DİELECTRIC CONSTANT TITANIA Polycrystalline... titania (TiO2) films were prepared on the indium tin oxide glass substrate on high temperature annealing of TiO2 hydrates electrodeposited from the

  3. Bistability in Doped Organic Thin Film Transistors (Preprint)

    DTIC Science & Technology

    2007-03-01

    acid) (PAH/PAA) multilayers as the gate dielectric layer were investigated. A combination of spectroscopic data and device performance characteristics...were used to study the behavior of these TFT devices under a variety of controlled environmental test conditions. It was shown that depletion and...recovery of the device can be induced to occur in a means that is consistent with the electrochemical oxidation and reduction of water contained in

  4. Electrical stress in CdS thin film transistors using HfO2 gate dielectric

    NASA Astrophysics Data System (ADS)

    García, R.; Mejia, I.; Molinar-Solis, J. E.; Salas-Villasenor, A. L.; Morales, A.; García, B.; Quevedo-Lopez, M. A.; Alemán, M.

    2013-05-01

    During thin film transistor (TFT) operation, gate dielectric is under a bias stress condition. In this work, bias stress effect for CdS TFT using HfO2 as gate dielectric is analyzed. Threshold voltage, Ion/Ioff ratio, and subthreshold slope were studied in order to understand changes produced at the dielectric semiconductor interface. We observed that threshold voltage shift is related with negative charge trapping in the dielectric/semiconductor interface and for this phenomenon we propose a trapping charge model. Finally, the TFT output characteristic was modeled considering a shift in the threshold voltage for each gate voltage curve.

  5. Self-aligned imprint lithography for top-gate amorphous silicon thin-film transistor fabrication

    NASA Astrophysics Data System (ADS)

    Lausecker, E.; Huang, Y.; Fromherz, T.; Sturm, J. C.; Wagner, S.

    2010-06-01

    We developed self-aligned imprint lithography (SAIL) for top-gate amorphous silicon (a-Si) thin-film transistors (TFTs). Our SAIL process enables a device pattern definition in a single imprint step that uses a three-level mold. The various levels of the mold are defined by a stepwise opening of a chromium hardmask and subsequent dry-etching. For TFT fabrication we imprint, and consecutively etch the imprint resist levels and device layers. The imprinted top-gate a-Si TFTs have nickel silicide source/drain self-aligned to the gate with mobilities of ˜0.4 cm2/V s.

  6. All solution processed organic thin film transistor-backplane with printing technology for electrophoretic display

    USGS Publications Warehouse

    Lee, Myung W.; Song, C.K.

    2012-01-01

    In this study, solution processes were developed for backplane using an organic thin film transistor (OTFT) as a driving device for an electrophoretic display (EPD) panel. The processes covered not only the key device of OTFTs but also interlayer and pixel electrodes. The various materials and printing processes were adopted to achieve the requirements of devices and functioning layers. The performance of OTFT of the backplane was sufficient to drive EPD sheet by producing a mobility of 0.12 cm2/v x sec and on/off current ratio of 10(5).

  7. Understanding mobility degeneration mechanism in organic thin-film transistors (OTFT)

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Wang, Long; Xu, Guangwei; Gao, Nan; Wang, Lingfei; Ji, Zhuoyu; Lu, Congyan; Lu, Nianduan; Li, Ling; Liu, Miwng

    2017-08-01

    Mobility degradation at high gate bias is often observed in organic thin film transistors. We propose a mechanism for this confusing phenomenon, based on the percolation theory with the presence of disordered energy landscape with an exponential density of states. Within a simple model we show how the surface states at insulator/organic interface trap a portion of channel carriers, and result in decrease of mobility as well as source/drain current with gate voltage. Depending on the competition between the carrier accumulation and surface trapping effect, two different carrier density dependences of mobility are obtained, in excellent agreement with experiment data.

  8. Critical invisible defect detection system of thin film transistor panels using Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Park, Yonmook; Heo, Keun

    2016-07-01

    In this paper, a novel method that can perform measurements of the contact potential difference (CPD) between a tip and a thin film transistor (TFT) panel using the Kelvin probe force microscopy (KPFM) is proposed for inspection of critical invisible defects on TFT panels. In this application, the surface potential of a TFT panel is inferred from the electrostatic interaction force between a tip and a TFT panel induced by the electric field. The experimental results are given to illustrate that the KPFM provides a novel and feasible way to detect the most critical invisible defects on TFT panels.

  9. Ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory

    SciTech Connect

    Han, Jinhua; Wang, Wei Ying, Jun; Xie, Wenfa

    2014-01-06

    An ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory was demonstrated, with discrete distributed gold nanoparticles, tetratetracontane (TTC), pentacene as the floating-gate layer, tunneling layer, and active layer, respectively. The electron traps at the TTC/pentacene interface were significantly suppressed, which resulted in an ambipolar operation in present memory. As both electrons and holes were supplied in the channel and trapped in the floating-gate by programming/erasing operations, respectively, i.e., one type of charge carriers was used to overwrite the other, trapped, one, a large memory window, extending on both sides of the initial threshold voltage, was realized.

  10. Technological Innovation of Thin-Film Transistors: Technology Development, History, and Future

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yoshitaka

    2012-06-01

    The scale of the liquid crystal display industry has expanded rapidly, driven by technological innovations for thin-film transistors (TFTs). The TFT technology, which started from amorphous silicon (a-Si), has produced large TVs, and low-temperature polycrystalline silicon (poly-Si) has become a core technology for small displays, such as mobile phones. Recently, various TFT technological seeds have been realized, indicating that new information appliances that match new lifestyles and information infrastructures will be available in the near future. In this article, I review the history of TFT technology and discuss the future of TFT technological development from the technological innovation viewpoint.

  11. Mechanical Fatigue Behavior of Flexible Printed Organic Thin-Film Transistors under Applied Strain

    PubMed Central

    Sekine, Tomohito; Kumaki, Daisuke; Tokito, Shizuo

    2016-01-01

    We report on the mechanical fatigue behavior of printed, organic, thin-film transistors (OTFTs) based on a polymer semiconductor, investigated by repeatedly applying strain to the flexible OTFT devices and assessing their electrical characteristics after 60,000 bending cycles. As part of our investigation, we established that the rates of reduction in source/drain currents in the OTFT device depended on bending directions. Our improved understanding of the mechanical fatigue behavior of the flexible printed OTFT devices provides valuable insights into their employment in practical flexible electronics applications. PMID:28772377

  12. Integration of Peptides into Organic Thin Film Transistor (OTFT)-based Printable Sensors

    DTIC Science & Technology

    2017-02-10

    Figure 6: Operation and structure of enzyme‐based glucose sensors  developed  at the Centre of  Organic  Electronics  (COE),  University  of...AFRL-AFOSR-JP-TR-2017-0009 Integration of Peptides into Organic Thin Film Transistor (OTFT)-based Printable Sensors Paul Dastoor UNIVERSITY OF...collection of information   if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION . 1

  13. Dithienocoronenediimide-based copolymers as novel ambipolar semiconductors for organic thin-film transistors.

    PubMed

    Usta, Hakan; Newman, Christopher; Chen, Zhihua; Facchetti, Antonio

    2012-07-17

    A new class of ambipolar donor-acceptor π-conjugated polymers based on a dithienocoronenediimide core is presented. Solution-processed top-gate/bottom-contact thin film transistors (TFTs) exhibit electron and hole mobilities of up to 0.30 cm(2)/V·s and 0.04 cm(2)/V·s, respectively, which are the highest reported to date for an ambipolar polymer in ambient conditions. The polymers presented here are the first examples of coronenediimide-based semiconductors showing high organic TFT performances. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Determination of the surface potential in thin-film transistors from C{endash}V measurements

    SciTech Connect

    Migliorato, P.; Tam, S. W.-B.; Lui, O. K. B.; Shimoda, T.

    2001-06-01

    In this article we present a method for the determination of the gate voltage versus surface potential (V{sub GS}{minus}{psi}{sub S}) relationship in thin-film transistors (TFTs), from low frequency capacitance{endash}voltage (C{endash}V) characteristics. This information is very important for device design, process characterization, and modeling of TFTs and provides the basis for extracting the gap density of states. The accuracy of the method is demonstrated by applying it to the analysis of C{endash}V data generated by two-dimensional simulations. Its application to laser recrystallized polysilicon TFTs is presented. {copyright} 2001 American Institute of Physics.

  15. Grain Boundary Induced Bias Instability in Soluble Acene-Based Thin-Film Transistors

    PubMed Central

    Nguyen, Ky V.; Payne, Marcia M.; Anthony, John E.; Lee, Jung Hun; Song, Eunjoo; Kang, Boseok; Cho, Kilwon; Lee, Wi Hyoung

    2016-01-01

    Since the grain boundaries (GBs) within the semiconductor layer of organic field-effect transistors (OFETs) have a strong influence on device performance, a substantial number of studies have been devoted to controlling the crystallization characteristics of organic semiconductors. We studied the intrinsic effects of GBs within 5,11-bis(triethylsilylethynyl) anthradithiophene (TES-ADT) thin films on the electrical properties of OFETs. The GB density was easily changed by controlling nulceation event in TES-ADT thin films. When the mixing time was increased, the number of aggregates in as-spun TES-ADT thin films were increased and subsequent exposure of the films to 1,2-dichloroethane vapor led to a significant increase in the number of nuleation sites, thereby increasing the GB density of TES-ADT spherulites. The density of GBs strongly influences the angular spread and crystallographic orientation of TES-ADT spherulites. Accordingly, the FETs with higher GB densities showed much poorer electrical characteristics than devices with lower GB density. Especially, GBs provide charge trapping sites which are responsible for bias-stress driven electrical instability. Dielectric surface treatment with a polystyrene brush layer clarified the GB-induced charge trapping by reducing charge trapping at the semiconductor-dielectric interface. Our study provides an understanding on GB induced bias instability for the development of high performance OFETs. PMID:27615358

  16. Fabrication of high performance thin-film transistors via pressure-induced nucleation.

    PubMed

    Kang, Myung-Koo; Kim, Si Joon; Kim, Hyun Jae

    2014-10-31

    We report a method to improve the performance of polycrystalline Si (poly-Si) thin-film transistors (TFTs) via pressure-induced nucleation (PIN). During the PIN process, spatial variation in the local solidification temperature occurs because of a non-uniform pressure distribution during laser irradiation of the amorphous Si layer, which is capped with an SiO2 layer. This leads to a four-fold increase in the grain size of the poly-Si thin-films formed using the PIN process, compared with those formed using conventional excimer laser annealing. We find that thin films with optimal electrical properties can be achieved with a reduction in the number of laser irradiations from 20 to 6, as well as the preservation of the interface between the poly-Si and the SiO2 gate insulator. This interface preservation becomes possible to remove the cleaning process prior to gate insulator deposition, and we report devices with a field-effect mobility greater than 160 cm(2)/Vs.

  17. Enhanced Performance Consistency in Nanoparticle/TIPS Pentacene-Based Organic Thin Film Transistors

    SciTech Connect

    He, Zhengran; Xiao, Kai; Durant, William Mark; Anthony, John E.; Kilbey, II, S Michael; Chen, Jihua; Li, Dawen

    2011-01-01

    In this study, inorganic silica nanoparticles are used to manipulate the morphology of 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS pentacene) thin films and the performance of solution-processed organic thin-film transistors (OTFTs). This approach is taken to control crystal anisotropy, which is the origin of poor consistency in TIPS pentacene based OTFT devices. Thin film active layers are produced by drop-casting mixtures of SiO{sub 2} nanoparticles and TIPS pentacene. The resultant drop-cast films yield improved morphological uniformity at {approx}10% SiO{sub 2} loading, which also leads to a 3-fold increase in average mobility and nearly 4 times reduction in the ratio of measured mobility standard deviation ({mu}{sub Stdev}) to average mobility ({mu}{sub Avg}). Grazing-incidence X-ray diffraction, scanning and transmission electron microscopy as well as polarized optical microscopy are used to investigate the nanoparticle-mediated TIPS pentacene crystallization. The experimental results suggest that the SiO{sub 2} nanoparticles mostly aggregate at TIPS pentacene grain boundaries, and 10% nanoparticle concentration effectively reduces the undesirable crystal misorientation without considerably compromising TIPS pentacene crystallinity.

  18. Present status of amorphous In–Ga–Zn–O thin-film transistors

    PubMed Central

    Kamiya, Toshio; Nomura, Kenji; Hosono, Hideo

    2010-01-01

    The present status and recent research results on amorphous oxide semiconductors (AOSs) and their thin-film transistors (TFTs) are reviewed. AOSs represented by amorphous In–Ga–Zn–O (a-IGZO) are expected to be the channel material of TFTs in next-generation flat-panel displays because a-IGZO TFTs satisfy almost all the requirements for organic light-emitting-diode displays, large and fast liquid crystal and three-dimensional (3D) displays, which cannot be satisfied using conventional silicon and organic TFTs. The major insights of this review are summarized as follows. (i) Most device issues, such as uniformity, long-term stability against bias stress and TFT performance, are solved for a-IGZO TFTs. (ii) A sixth-generation (6G) process is demonstrated for 32″ and 37″ displays. (iii) An 8G sputtering apparatus and a sputtering target have been developed. (iv) The important effect of deep subgap states on illumination instability is revealed. (v) Illumination instability under negative bias has been intensively studied, and some mechanisms are proposed. (vi) Degradation mechanisms are classified into back-channel effects, the creation of traps at an interface and in the gate insulator, and the creation of donor states in annealed a-IGZO TFTs by the Joule heating; the creation of bulk defects should also be considered in the case of unannealed a-IGZO TFTs. (vii) Dense passivation layers improve the stability and photoresponse and are necessary for practical applications. (viii) Sufficient knowledge of electronic structures and electron transport in a-IGZO has been accumulated to construct device simulation models. PMID:27877346

  19. Present status of amorphous In-Ga-Zn-O thin-film transistors.

    PubMed

    Kamiya, Toshio; Nomura, Kenji; Hosono, Hideo

    2010-08-01

    The present status and recent research results on amorphous oxide semiconductors (AOSs) and their thin-film transistors (TFTs) are reviewed. AOSs represented by amorphous In-Ga-Zn-O (a-IGZO) are expected to be the channel material of TFTs in next-generation flat-panel displays because a-IGZO TFTs satisfy almost all the requirements for organic light-emitting-diode displays, large and fast liquid crystal and three-dimensional (3D) displays, which cannot be satisfied using conventional silicon and organic TFTs. The major insights of this review are summarized as follows. (i) Most device issues, such as uniformity, long-term stability against bias stress and TFT performance, are solved for a-IGZO TFTs. (ii) A sixth-generation (6G) process is demonstrated for 32″ and 37″ displays. (iii) An 8G sputtering apparatus and a sputtering target have been developed. (iv) The important effect of deep subgap states on illumination instability is revealed. (v) Illumination instability under negative bias has been intensively studied, and some mechanisms are proposed. (vi) Degradation mechanisms are classified into back-channel effects, the creation of traps at an interface and in the gate insulator, and the creation of donor states in annealed a-IGZO TFTs by the Joule heating; the creation of bulk defects should also be considered in the case of unannealed a-IGZO TFTs. (vii) Dense passivation layers improve the stability and photoresponse and are necessary for practical applications. (viii) Sufficient knowledge of electronic structures and electron transport in a-IGZO has been accumulated to construct device simulation models.

  20. TOPICAL REVIEW: Present status of amorphous In-Ga-Zn-O thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kamiya, Toshio; Nomura, Kenji; Hosono, Hideo

    2010-08-01

    The present status and recent research results on amorphous oxide semiconductors (AOSs) and their thin-film transistors (TFTs) are reviewed. AOSs represented by amorphous In-Ga-Zn-O (a-IGZO) are expected to be the channel material of TFTs in next-generation flat-panel displays because a-IGZO TFTs satisfy almost all the requirements for organic light-emitting-diode displays, large and fast liquid crystal and three-dimensional (3D) displays, which cannot be satisfied using conventional silicon and organic TFTs. The major insights of this review are summarized as follows. (i) Most device issues, such as uniformity, long-term stability against bias stress and TFT performance, are solved for a-IGZO TFTs. (ii) A sixth-generation (6G) process is demonstrated for 32'' and 37'' displays. (iii) An 8G sputtering apparatus and a sputtering target have been developed. (iv) The important effect of deep subgap states on illumination instability is revealed. (v) Illumination instability under negative bias has been intensively studied, and some mechanisms are proposed. (vi) Degradation mechanisms are classified into back-channel effects, the creation of traps at an interface and in the gate insulator, and the creation of donor states in annealed a-IGZO TFTs by the Joule heating; the creation of bulk defects should also be considered in the case of unannealed a-IGZO TFTs. (vii) Dense passivation layers improve the stability and photoresponse and are necessary for practical applications. (viii) Sufficient knowledge of electronic structures and electron transport in a-IGZO has been accumulated to construct device simulation models.

  1. Bismuth ferrite based thin films, nanofibers, and field effect transistor devices

    NASA Astrophysics Data System (ADS)

    Rivera-Beltran, Rut

    In this research an attempt has been made to explore bismuth ferrite thin films with low leakage current and nanofibers with high photoconductivity. Thin films were deposited with pulsed laser deposition (PLD) method. An attempt has been made to develop thin films under different deposition parameters with following target compositions: i) 0.6BiFeO3-0.4(Bi0.5 K0.5)TiO3 (BFO-BKT) and ii) bi-layered 0.88Bi 0.5Na0.5TiO3-0.08Bi0.5K0.5TiO 3-0.04BaTiO3/BiFeO3 (BNT-BKT-BT/BFO). BFO-BKT thin film shows suppressed leakage current by about four orders of magnitude which in turn improve the ferroelectric and dielectric properties of the films. The optimum remnant polarization is 19 muC.cm-2 at the oxygen partial pressure of 300 mtorr. The BNT-BKT-BT/BFO bi-layered thin films exhibited ferroelectric behavior as: Pr = 22.0 muC.cm-2, Ec = 100 kV.cm-1 and epsilonr = 140. The leakage current of bi-layered thin films have been reduced two orders of magnitude compare to un-doped bismuth ferrite. Bismuth ferrite nanofibers were developed by electrospinning technique and its electronic properties such as photoconductivity and field effect transistor performance were investigated extensively. Nanofibers were deposited by electrospinning of sol-gel solution on SiO2/Si substrate at driving voltage of 10 kV followed by heat treatment at 550 °C for 2 hours. The composition analysis through energy dispersive detector and electron energy loss spectroscopy revealed the heterogeneous nature of the composition with Bi rich and Fe deficient regions. X-ray photoelectron spectroscopy results confirmed the combination of Fe3+ and Fe2+ valence state in the fibers. The photoresponse result is almost hundred times higher for a fiber of 40 nm diameter compared to a fiber with 100 nm diameter. This effect is described by a size dependent surface recombination mechanism. A single and multiple BFO nanofibers field effect transistors devices were fabricated and characterized. Bismuth ferrite FET behaves

  2. Modelling the structure of disordered cerium oxide thin films

    NASA Astrophysics Data System (ADS)

    Peña Leal, José Juan; Barrio, Rafael A.

    2017-10-01

    Cerium oxide is an interesting mixed valence compound of great technological importance. We model the growth of thin films of this substance by describing the statistical nucleation of atomic units containing Ce3+ and Ce4+. The theoretical results are compared with available experimental values of the magnetic susceptibility of the material, which is related to the proportion of magnetic atoms in the solid. The model is able to predict the composition of the final solid under different preparation conditions, namely the oxygen content of the precursor and the temperature of the substrate.

  3. Linking Precursor Alterations to Nanoscale Structure and Optical Transparency in Polymer Assisted Fast-Rate Dip-Coating of Vanadium Oxide Thin Films

    PubMed Central

    Glynn, Colm; Creedon, Donal; Geaney, Hugh; Armstrong, Eileen; Collins, Timothy; Morris, Michael A.; Dwyer, Colm O’

    2015-01-01

    Solution processed metal oxide thin films are important for modern optoelectronic devices ranging from thin film transistors to photovoltaics and for functional optical coatings. Solution processed techniques such as dip-coating, allow thin films to be rapidly deposited over a large range of surfaces including curved, flexible or plastic substrates without extensive processing of comparative vapour or physical deposition methods. To increase the effectiveness and versatility of dip-coated thin films, alterations to commonly used precursors can be made that facilitate controlled thin film deposition. The effects of polymer assisted deposition and changes in solvent-alkoxide dilution on the morphology, structure, optoelectronic properties and crystallinity of vanadium pentoxide thin films was studied using a dip-coating method using a substrate withdrawal speed within the fast-rate draining regime. The formation of sub-100 nm thin films could be achieved rapidly from dilute alkoxide based precursor solutions with high optical transmission in the visible, linked to the phase and film structure. The effects of the polymer addition was shown to change the crystallized vanadium pentoxide thin films from a granular surface structure to a polycrystalline structure composed of a high density of smaller in-plane grains, resulting in a uniform surface morphology with lower thickness and roughness. PMID:26123117

  4. Linking Precursor Alterations to Nanoscale Structure and Optical Transparency in Polymer Assisted Fast-Rate Dip-Coating of Vanadium Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Glynn, Colm; Creedon, Donal; Geaney, Hugh; Armstrong, Eileen; Collins, Timothy; Morris, Michael A.; Dwyer, Colm O.'

    2015-06-01

    Solution processed metal oxide thin films are important for modern optoelectronic devices ranging from thin film transistors to photovoltaics and for functional optical coatings. Solution processed techniques such as dip-coating, allow thin films to be rapidly deposited over a large range of surfaces including curved, flexible or plastic substrates without extensive processing of comparative vapour or physical deposition methods. To increase the effectiveness and versatility of dip-coated thin films, alterations to commonly used precursors can be made that facilitate controlled thin film deposition. The effects of polymer assisted deposition and changes in solvent-alkoxide dilution on the morphology, structure, optoelectronic properties and crystallinity of vanadium pentoxide thin films was studied using a dip-coating method using a substrate withdrawal speed within the fast-rate draining regime. The formation of sub-100 nm thin films could be achieved rapidly from dilute alkoxide based precursor solutions with high optical transmission in the visible, linked to the phase and film structure. The effects of the polymer addition was shown to change the crystallized vanadium pentoxide thin films from a granular surface structure to a polycrystalline structure composed of a high density of smaller in-plane grains, resulting in a uniform surface morphology with lower thickness and roughness.

  5. Linking Precursor Alterations to Nanoscale Structure and Optical Transparency in Polymer Assisted Fast-Rate Dip-Coating of Vanadium Oxide Thin Films.

    PubMed

    Glynn, Colm; Creedon, Donal; Geaney, Hugh; Armstrong, Eileen; Collins, Timothy; Morris, Michael A; O'Dwyer, Colm

    2015-06-30

    Solution processed metal oxide thin films are important for modern optoelectronic devices ranging from thin film transistors to photovoltaics and for functional optical coatings. Solution processed techniques such as dip-coating, allow thin films to be rapidly deposited over a large range of surfaces including curved, flexible or plastic substrates without extensive processing of comparative vapour or physical deposition methods. To increase the effectiveness and versatility of dip-coated thin films, alterations to commonly used precursors can be made that facilitate controlled thin film deposition. The effects of polymer assisted deposition and changes in solvent-alkoxide dilution on the morphology, structure, optoelectronic properties and crystallinity of vanadium pentoxide thin films was studied using a dip-coating method using a substrate withdrawal speed within the fast-rate draining regime. The formation of sub-100 nm thin films could be achieved rapidly from dilute alkoxide based precursor solutions with high optical transmission in the visible, linked to the phase and film structure. The effects of the polymer addition was shown to change the crystallized vanadium pentoxide thin films from a granular surface structure to a polycrystalline structure composed of a high density of smaller in-plane grains, resulting in a uniform surface morphology with lower thickness and roughness.

  6. Transparent ambipolar organic thin film transistors based on multilayer transparent source-drain electrodes

    SciTech Connect

    Zhang, Nan; Hu, Yongsheng E-mail: liuxy@ciomp.ac.cn; Lin, Jie; Li, Yantao; Liu, Xingyuan E-mail: liuxy@ciomp.ac.cn

    2016-08-08

    A fabrication method for transparent ambipolar organic thin film transistors with transparent Sb{sub 2}O{sub 3}/Ag/Sb{sub 2}O{sub 3} (SAS) source and drain electrodes has been developed. A pentacene/N,N′-ditridecylperylene-3,4,9,10-tetracarboxylic di-imide (PTCDI-C13) bilayer heterojunction is used as the active semiconductor. The electrodes are deposited by room temperature electron beam evaporation. The devices are fabricated without damaging the active layers. The SAS electrodes have high transmittance (82.5%) and low sheet resistance (8 Ω/sq). High performance devices with hole and electron mobilities of 0.3 cm{sup 2}/V s and 0.027 cm{sup 2}/V s, respectively, and average visible range transmittance of 72% were obtained. These transistors have potential for transparent logic integrated circuit applications.

  7. Organic Thin-Film Transistors Fabricated on Plastic Substrates with a Polymeric Gate Dielectrics

    NASA Astrophysics Data System (ADS)

    Lee, Jung Hun; Kim, Seong Hyun; Kim, Gi Heon; Lim, Sang Chul; Jang, Jin; Zyung, Taehyoung

    2003-05-01

    An organic thin-film transistor using pentacene as an active layer was fabricated on plastic substrate. An organic layer such as thermal curable polymer (JSS-362, Japan Synthetic Rubber (JSR)) was used as the gate dielectrics. The JSS-362 may act not only as a dielectric layer but also as a surface smoothing layer. From the electrical measurement, typical ID-VD characteristics of the field-effect transistor (FET) were observed. The field effect mobility μ was calculated to be 0.12 cm2\\cdotV-1\\cdots-1, while the threshold voltage VT was approximately -15 V. The on/off ratio was above 104 when VG was scanned from -75 V to +0 V.

  8. Memory operation devices based on light-illumination ambipolar carbon-nanotube thin-film-transistors

    SciTech Connect

    Aïssa, B.; Nedil, M.; Kroeger, J.; Haddad, T.; Rosei, F.

    2015-09-28

    We report the memory operation behavior of a light illumination ambipolar single-walled carbon nanotube thin film field-effect transistors devices. In addition to the high electronic-performance, such an on/off transistor-switching ratio of 10{sup 4} and an on-conductance of 18 μS, these memory devices have shown a high retention time of both hole and electron-trapping modes, reaching 2.8 × 10{sup 4} s at room temperature. The memory characteristics confirm that light illumination and electrical field can act as an independent programming/erasing operation method. This could be a fundamental step toward achieving high performance and stable operating nanoelectronic memory devices.

  9. Dual-gate thin-film transistors, integrated circuits and sensors.

    PubMed

    Spijkman, Mark-Jan; Myny, Kris; Smits, Edsger C P; Heremans, Paul; Blom, Paul W M; de Leeuw, Dago M

    2011-08-02

    The first dual-gate thin-film transistor (DGTFT) was reported in 1981 with CdSe as the semiconductor. Other TFT technologies such as a-Si:H and organic semiconductors have led to additional ways of making DGTFTs. DGTFTs contain a second gate dielectric with a second gate positioned opposite of the first gate. The main advantage is that the threshold voltage can be set as a function of the applied second gate bias. The shift depends on the ratio of the capacitances of the two gate dielectrics. Here we review the fast growing field of DGTFTs. We summarize the reported operational mechanisms, and the application in logic gates and integrated circuits. The second emerging application of DGTFTs is sensitivity enhancement of existing ion-sensitive field-effect transistors (ISFET). The reported sensing mechanism is discussed and an outlook is presented.

  10. Transparent ambipolar organic thin film transistors based on multilayer transparent source-drain electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Hu, Yongsheng; Lin, Jie; Li, Yantao; Liu, Xingyuan

    2016-08-01

    A fabrication method for transparent ambipolar organic thin film transistors with transparent Sb2O3/Ag/Sb2O3 (SAS) source and drain electrodes has been developed. A pentacene/N,N'-ditridecylperylene-3,4,9,10-tetracarboxylic di-imide (PTCDI-C13) bilayer heterojunction is used as the active semiconductor. The electrodes are deposited by room temperature electron beam evaporation. The devices are fabricated without damaging the active layers. The SAS electrodes have high transmittance (82.5%) and low sheet resistance (8 Ω/sq). High performance devices with hole and electron mobilities of 0.3 cm2/V s and 0.027 cm2/V s, respectively, and average visible range transmittance of 72% were obtained. These transistors have potential for transparent logic integrated circuit applications.

  11. Reactive pulsed magnetron-sputtered tantalum oxide thin films

    NASA Astrophysics Data System (ADS)

    Nielsen, Matthew Christian

    Current high speed, advanced packaging applications require the use of integrated capacitors. Tantalum oxide is one material currently being considered for use in the capacitors; however, the deposition technique used to make the thin film dielectric can alter its performance. Pulsed magnetron reactive sputtering was investigated in this thesis as it offers a robust, clean, and low temperature deposition alternative. This is a new deposition technique created to control the negative effects of target poisoning; however, to understand the relationships between the deposition variables and the resultant film properties a thorough investigation is needed. The instantaneous voltage at the target was captured using a high speed digital oscilloscope. Three target oxidation states were imaged and identified to be that of the metallic and oxidized states with an abrupt transition region separating the two. Using high resolution X-ray photoelectron spectroscopy the bonding present in the deposited films was correlated to the oxidation state of the target. While operating the target in the metallic mode, a mix of oxidized, sub-oxide and metallic states were discovered. Alternatively, the bonding present in the films deposited when the target was in the oxidized state were that of fully oxidized tantalum pentoxide. The films deposited above the critical partial pressure demonstrated excellent leakage current densities. The exact magnitude of the leakage current density inversely scaled to the relative amount of oxygen included into the sputtering atmosphere. Detailed plot analysis showed that there were two different conduction mechanisms controlling the current flow in the capacitors. High frequency test vehicles were measured up to 10 GHz in order to determine the frequency response of the dielectric material. A circuit equivalent model describing the testing system and samples was created and utilized to fit the collected data. Overall, the technique of pulsed magnetron

  12. MgZnO High Voltage Thin Film Transistors on Glass for Inverters in Building Integrated Photovoltaics

    SciTech Connect

    Hong, Wen-Chiang; Ku, Chieh-Jen; Li, Rui; Abbaslou, Siamak; Reyes, Pavel; Wang, Szu-Ying; Li, Guangyuan; Lu, Ming; Sheng, Kuang; Lu, Yicheng

    2016-10-10

    Building integrated photovoltaics (BIPV) have attracted considerable interests because of its aesthetically attractive appearance and overall low cost. In BIPV, system integration on a glass substrate like windows is essential to cover a large area of a building with low cost. But, the conventional high voltage devices in inverters have to be built on the specially selected single crystal substrates, limiting its application for large area electronic systems, such as the BIPV. We demonstrate a Magnesium Zinc Oxide (MZO) based high voltage thin film transistor (HVTFT) built on a transparent glass substrate. We designed devices with unique ring-type structures and use modulated Mg doping in the channel - gate dielectric interface, resulting in a blocking voltage of over 600 V. In addition to BIPV, the MZO HVTFT based inverter technology also creates new opportunities for emerging self-powered smart glass.

  13. MgZnO High Voltage Thin Film Transistors on Glass for Inverters in Building Integrated Photovoltaics

    DOE PAGES

    Hong, Wen-Chiang; Ku, Chieh-Jen; Li, Rui; ...

    2016-10-10

    Building integrated photovoltaics (BIPV) have attracted considerable interests because of its aesthetically attractive appearance and overall low cost. In BIPV, system integration on a glass substrate like windows is essential to cover a large area of a building with low cost. But, the conventional high voltage devices in inverters have to be built on the specially selected single crystal substrates, limiting its application for large area electronic systems, such as the BIPV. We demonstrate a Magnesium Zinc Oxide (MZO) based high voltage thin film transistor (HVTFT) built on a transparent glass substrate. We designed devices with unique ring-type structures andmore » use modulated Mg doping in the channel - gate dielectric interface, resulting in a blocking voltage of over 600 V. In addition to BIPV, the MZO HVTFT based inverter technology also creates new opportunities for emerging self-powered smart glass.« less

  14. Thickness dependent low-frequency noise characteristics of a-InZnO thin-film transistors under light illumination

    SciTech Connect

    Choi, Hyun-Sik; Jeon, Sanghun

    2014-01-13

    The influence of illumination on the electrical characteristics of amorphous indium–zinc oxide (a-IZO) thin-film transistors (TFTs) has been investigated. The electrical properties are found to depend significantly on the active thickness (T{sub IZO}) of the a-IZO TFT. The active thickness is seen to play a major role in the carrier transport mechanism. Based on the carrier fluctuation model, the low-frequency noise (LFN) characteristics of a-IZO devices of varying thicknesses were evaluated before as well as after illumination. Similar to the results of DC and capacitance–voltage (C–V) measurements, the LFN characteristics too show that the light-induced carrier transport becomes significantly enhanced for relatively thick (T{sub IZO} ≥ 60 nm) a-IZO devices.

  15. MgZnO High Voltage Thin Film Transistors on Glass for Inverters in Building Integrated Photovoltaics.

    PubMed

    Hong, Wen-Chiang; Ku, Chieh-Jen; Li, Rui; Abbaslou, Siamak; Reyes, Pavel; Wang, Szu-Ying; Li, Guangyuan; Lu, Ming; Sheng, Kuang; Lu, Yicheng

    2016-10-10

    Building integrated photovoltaics (BIPV) have attracted considerable interests because of its aesthetically attractive appearance and overall low cost. In BIPV, system integration on a glass substrate like windows is essential to cover a large area of a building with low cost. However, the conventional high voltage devices in inverters have to be built on the specially selected single crystal substrates, limiting its application for large area electronic systems, such as the BIPV. We demonstrate a Magnesium Zinc Oxide (MZO) based high voltage thin film transistor (HVTFT) built on a transparent glass substrate. The devices are designed with unique ring-type structures and use modulated Mg doping in the channel - gate dielectric interface, resulting in a blocking voltage of over 600 V. In addition to BIPV, the MZO HVTFT based inverter technology also creates new opportunities for emerging self-powered smart glass.

  16. Nano-Floating Gate Memory Devices Composed of ZnO Thin-Film Transistors on Flexible Plastics.

    PubMed

    Park, Byoungjun; Cho, Kyoungah; Kim, Sungsu; Kim, Sangsig

    2011-12-01

    Nano-floating gate memory devices were fabricated on a flexible plastic substrate by a low-temperature fabrication process. The memory characteristics of ZnO-based thin-film transistors with Al nanoparticles embedded in the gate oxides were investigated in this study. Their electron mobility was found to be 0.18 cm(2)/V·s and their on/off ratio was in the range of 10(4)-10(5). The threshold voltages of the programmed and erased states were negligibly changed up to 10(3) cycles. The flexibility, memory properties, and low-temperature fabrication of the nano-floating gate memory devices described herein suggest that they have potential applications for future flexible integrated electronics.

  17. The effect of Ta doping in polycrystalline TiO{sub x} and the associated thin film transistor properties

    SciTech Connect

    Ok, Kyung-Chul Park, Yoseb Park, Jin-Seong E-mail: jsparklime@hanyang.ac.kr; Chung, Kwun-Bum E-mail: jsparklime@hanyang.ac.kr

    2013-11-18

    Tantalum (Ta) is suggested to act as an electron donor and crystal phase stabilizer in titanium oxide (TiO{sub x}). A transition occurs from an amorphous state to a crystalline phase at an annealing temperature above 300 °C in a vacuum ambient. As the annealing temperature increases from 300 °C to 450 °C, the mobility increases drastically from 0.07 cm{sup 2}/Vs to 0.61 cm{sup 2}/Vs. The remarkable enhancement of thin film transistor performance is suggested to be due to the splitting of Ti 3d band orbitals as well as the increase in Ta{sup 5+} ions that can act as electron donors.

  18. MgZnO High Voltage Thin Film Transistors on Glass for Inverters in Building Integrated Photovoltaics

    NASA Astrophysics Data System (ADS)

    Hong, Wen-Chiang; Ku, Chieh-Jen; Li, Rui; Abbaslou, Siamak; Reyes, Pavel; Wang, Szu-Ying; Li, Guangyuan; Lu, Ming; Sheng, Kuang; Lu, Yicheng

    2016-10-01

    Building integrated photovoltaics (BIPV) have attracted considerable interests because of its aesthetically attractive appearance and overall low cost. In BIPV, system integration on a glass substrate like windows is essential to cover a large area of a building with low cost. However, the conventional high voltage devices in inverters have to be built on the specially selected single crystal substrates, limiting its application for large area electronic systems, such as the BIPV. We demonstrate a Magnesium Zinc Oxide (MZO) based high voltage thin film transistor (HVTFT) built on a transparent glass substrate. The devices are designed with unique ring-type structures and use modulated Mg doping in the channel - gate dielectric interface, resulting in a blocking voltage of over 600 V. In addition to BIPV, the MZO HVTFT based inverter technology also creates new opportunities for emerging self-powered smart glass.

  19. MgZnO High Voltage Thin Film Transistors on Glass for Inverters in Building Integrated Photovoltaics

    PubMed Central

    Hong, Wen-Chiang; Ku, Chieh-Jen; Li, Rui; Abbaslou, Siamak; Reyes, Pavel; Wang, Szu-Ying; Li, Guangyuan; Lu, Ming; Sheng, Kuang; Lu, Yicheng

    2016-01-01

    Building integrated photovoltaics (BIPV) have attracted considerable interests because of its aesthetically attractive appearance and overall low cost. In BIPV, system integration on a glass substrate like windows is essential to cover a large area of a building with low cost. However, the conventional high voltage devices in inverters have to be built on the specially selected single crystal substrates, limiting its application for large area electronic systems, such as the BIPV. We demonstrate a Magnesium Zinc Oxide (MZO) based high voltage thin film transistor (HVTFT) built on a transparent glass substrate. The devices are designed with unique ring-type structures and use modulated Mg doping in the channel - gate dielectric interface, resulting in a blocking voltage of over 600 V. In addition to BIPV, the MZO HVTFT based inverter technology also creates new opportunities for emerging self-powered smart glass. PMID:27721484

  20. Conducting glasses recovered from thin film transistor liquid crystal display wastes for dye-sensitized solar cell cathodes.

    PubMed

    Chen, C-C; Chang, F-C; Peng, C Y; Wang, H Paul

    2015-01-01

    Transparent conductive glasses such as thin film transistor (TFT) array and colour filter glasses were recovered from the TFT-liquid crystal display panel wastes by dismantling and sonic cleaning. Noble metals (i.e. platinum (Pt)) and indium tin oxide (ITO) are generally used in the cathode of a dye-sensitized solar cell (DSSC). To reduce the DSSC cost, Pt was replaced with nano nickel-encapsulated carbon-shell (Ni@C) nanoparticles, which were prepared by carbonization of Ni²⁺-β-cyclodextrin at 673 K for 2 h. The recovered conductive glasses were used in the DSSC electrodes in the substitution of relatively expensive ITO. Interestingly, the efficiency of the DSSC having the Ni@C-coated cathode is as high as 2.54%. Moreover, the cost of the DSSC using the recovered materials can be reduced by at least 24%.

  1. Rational Design of ZnO:H/ZnO Bilayer Structure for High-Performance Thin-Film Transistors.

    PubMed

    Abliz, Ablat; Huang, Chun-Wei; Wang, Jingli; Xu, Lei; Liao, Lei; Xiao, Xiangheng; Wu, Wen-Wei; Fan, Zhiyong; Jiang, Changzhong; Li, Jinchai; Guo, Shishang; Liu, Chuansheng; Guo, Tailiang

    2016-03-01

    The intriguing properties of zinc oxide-based semiconductors are being extensively studied as they are attractive alternatives to current silicon-based semiconductors for applications in transparent and flexible electronics. Although they have promising properties, significant improvements on performance and electrical reliability of ZnO-based thin film transistors (TFTs) should be achieved before they can be applied widely in practical applications. This work demonstrates a rational and elegant design of TFT, composed of poly crystalline ZnO:H/ZnO bilayer structure without using other metal elements for doping. The field-effect mobility and gate bias stability of the bilayer structured devices have been improved. In this device structure, the hydrogenated ultrathin ZnO:H active layer (∼3 nm) could provide suitable carrier concentration and decrease the interface trap density, while thick pure-ZnO layer could control channel conductance. Based on this novel structure, a high field-effect mobility of 42.6 cm(2) V(-1) s(-1), a high on/off current ratio of 10(8) and a small subthreshold swing of 0.13 V dec(-1) have been achieved. Additionally, the bias stress stability of the bilayer structured devices is enhanced compared to the simple single channel layer ZnO device. These results suggest that the bilayer ZnO:H/ZnO TFTs have a great potential for low-cost thin-film electronics.

  2. 7-Octenyltrichrolosilane/trimethyaluminum hybrid dielectrics fabricated by molecular-atomic layer deposition on ZnO thin film transistors

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Lee, Mingun; Lucero, Antonio T.; Cheng, Lanxia; Ha, Min-Woo; Kim, Jiyoung

    2016-06-01

    We demonstrate the fabrication of 7-octenytrichlorosilane (7-OTS)/trimethylaluminum (TMA) organic-inorganic hybrid films using molecular-atomic layer deposition (MALD). The properties of 7-OTS/TMA hybrid films are extensively investigated using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and electrical measurements. Our results suggest that uniform and smooth amorphous hybrid thin films with excellent insulating properties are obtained using the MALD process. Films have a relatively high dielectric constant of approximately 5.0 and low leakage current density. We fabricate zinc oxide (ZnO) based thin film transistors (TFTs) using 7-OTS/TMA hybrid material as a back gate dielectric with the top ZnO channel layer deposited in-situ via MALD. The ZnO TFTs exhibit a field effect mobility of approximately 0.43 cm2 V-1 s-1, a threshold voltage of approximately 1 V, and an on/off ratio of approximately 103 under low voltage operation (from -3 to 9 V). This work demonstrates an organic-inorganic hybrid gate dielectric material potentially useful in flexible electronics application.

  3. Thin film bismuth iron oxides useful for piezoelectric devices

    DOEpatents

    Zeches, Robert J.; Martin, Lane W.; Ramesh, Ramamoorthy

    2016-05-31

    The present invention provides for a composition comprising a thin film of BiFeO.sub.3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO.sub.3 thin film, and a second electrode in contact with the BiFeO.sub.3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.

  4. Fabrication of water-stable organic transistors using crystalline rubrene thin-film and polymer-treated dielectric (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Kim, Jaejoon; Lee, Hyoek Moo; Cho, Sung Oh

    2015-10-01

    For the real application of organic electronics, stable operation of electronic devices in humid or aqueous condition is essential and desirable. However, most of organic semiconductors were very weak to the oxygen or water and especially, cannot be operated well in aqueous condition without an encapsulation. Here, we present water-stable organic thin-film transistors with highly crystallized rubrene and polymer-treated dielectrics. These high water-stability could be achieved by two factors. First, rubrene, a well-known p-type semiconducting material, showed high air and water stability after the crystallization of `abrupt heating'. By the fabrication and aqueous operation of rubrene thin film transistor, we could show the water stability of crystallized thin-film rubrene. Such high environmental stability is attributed to the fact that rubrene has comparatively low HOMO level of -5.4 eV and large bandgap energy of 3.2 eV and that the rubrene thin-film is composed of well-interconnected orthorhombic rubrene crystals. Second, the polymer-treatment of dielectrics can enhance long-term water stability of fabricated rubrene thin-film transistor. By the complete immersion test of transistors, we could characterize the increase of water-stability after the treatment of dielectrics with cross-linked polymer. For this purpose, polystyrene is cross-linked by electron irradiation and the water penetration into semiconductor/dielectric interface was decreased due to the decreased surface energy of polymer dielectric compared to the SiO₂. The fabricated rubrene thin-film transistors showed a field-effect mobility of ~0.5 cm2V-1s-1 and long-term stability under ambient and aqueous conditions. Also, we investigated their potential applications in chemical or bio sensors.

  5. Amorphous indium-gallium-zinc-oxide thin-film transistors using organic-inorganic hybrid films deposited by low-temperature plasma-enhanced chemical vapor deposition for all dielectric layers

    NASA Astrophysics Data System (ADS)

    Hsu, Chao-Jui; Chang, Ching-Hsiang; Chang, Kuei-Ming; Wu, Chung-Chih

    2017-01-01

    We investigated the deposition of high-performance organic-inorganic hybrid dielectric films by low-temperature (close to room temperature) inductively coupled plasma chemical vapor deposition (ICP-CVD) with hexamethyldisiloxane (HMDSO)/O2 precursor gas. The hybrid films exhibited low leakage currents and high breakdown fields, suitable for thin-film transistor (TFT) applications. They were successfully integrated into the gate insulator, the etch-stop layer, and the passivation layer for bottom-gate staggered amorphous In-Ga-Zn-O (a-IGZO) TFTs having the etch-stop configuration. With the double-active-layer configuration having a buffer a-IGZO back-channel layer grown in oxygen-rich atmosphere for better immunity against plasma damage, the etch-stop-type bottom-gate staggered a-IGZO TFTs with good TFT characteristics were successfully demonstrated. The TFTs showed good field-effect mobility (μFE), threshold voltage (V th), subthreshold swing (SS), and on/off ratio (I on/off) of 7.5 cm2 V-1 s-1, 2.38 V, 0.38 V/decade, and 2.2 × 108, respectively, manifesting their usefulness for a-IGZO TFTs.

  6. Low-temperature (330 °C) crystallization and dopant activation of Ge thin films via AgSb-induced layer exchange: Operation of an n-channel polycrystalline Ge thin-film transistor

    NASA Astrophysics Data System (ADS)

    Suzuki, Tatsuya; Mutunga Joseph, Benedict; Fukai, Misato; Kamiko, Masao; Kyuno, Kentaro

    2017-09-01

    Ge thin films have been prepared by layer-exchange metal-induced crystallization using AgSb alloy as a catalyst. Not only the crystallization of Ge, but also the incorporation of Sb atoms into the crystalline Ge layer and their activation have been realized during the process at a temperature as low as 330 °C. Thin-film transistors have been fabricated using the Ge thin films as channel layers and the operation of an n-channel transistor with an on/off ratio of over 300 has been demonstrated.

  7. Electronic properties of organic thin film transistors with nanoscale tapered electrodes

    NASA Astrophysics Data System (ADS)

    Park, Jeongwon

    2008-10-01

    Organic thin-film transistors (OTFTs) have received increasing attention because of their potential applications in displays, optoelectronics, logic circuits, and sensors. Ultrathin OTFTs are of technical interest as a possible route toward reduced bias stress in standard OTFTs and enhanced sensitivity in chemical field-effect transistors (ChemFETs). ChemFETs are OTFTs whose output characteristics are sensitive to the presence of analytes via changes in the channel mobility and/or threshold voltage induced by analyte chemisorption onto the channel materials. The fundamental understanding of charge transport properties of organic thin-films is critical for the applications. OTFT has been demonstrated by many groups; however, there has been much less progress towards more reliable contact structure between organic materials and electrodes. This thesis investigates the electrical properties of metal phthalocyanine thin-film devices. In chapter 1, the basic electrical properties in OTFTs are reviewed. In chapter 2, we have investigated the microfabrication process of OTFTs to control the contact morphology and the charge transport properties of phthalocyanine thin-film devices. In chapter 3, the channel thickness dependence of the mobility was investigated in bottom-contact copper phthalocyanine (CuPc) OTFTs. The current-voltage characteristics of bottom contact CuPc OTFTs with low contact resistance fabricated by the bilayer photoresist lift-off process were analyzed to determine the mobility, threshold voltage and contact resistance. The independence of measured electronic properties from channel thickness is due to the contact resistance being negligible for all channel thicknesses. For practical applications, the aging and recovery process in CuPc OTFTs were investigated in chapter 4. An origin of the aging process on CuPc OTFTs has been investigated based on the responses of thick 1000ML CuPc OTFTs under a controlled atmosphere. The recovery process under 30

  8. Thin film synthesis of novel electrode materials for solid-oxide fuel cells

    SciTech Connect

    Jankowski, A.F.; Morse, J.D.

    1997-12-01

    Electrode materials for solid-oxide fuel cells are developed using sputter deposition. A thin film anode is formed by co-deposition of nickel and yttria-stabilized zirconia. This approach is suitable for composition grading and the provision of a mixed-conducting interracial layer to the electrolyte layer. Similarly, synthesis of a thin film cathode proceeds by co-deposition of silver and yttria- stabilized zirconia. The sputter deposition of a thin film solid- oxide fuel cell is next demonstrated. The thin film fuel cell microstructure is examined using scanning electron microscopy whereas the cell performance is characterized through current-voltage measurement and corresponding impedance spectroscopy.

  9. A flexible organic active matrix circuit fabricated using novel organic thin film transistors and organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Heredia, G.; González, L. A.; Alshareef, H. N.; Gnade, B. E.; Quevedo-López, M.

    2010-11-01

    We present an active matrix circuit fabricated on plastic (polyethylene naphthalene, PEN) and glass substrates using organic thin film transistors and organic capacitors to control organic light-emitting diodes (OLEDs). The basic circuit is fabricated using two pentacene-based transistors and a capacitor using a novel aluminum oxide/parylene stack (Al2O3/parylene) as the dielectric for both the transistor and the capacitor. We report that our circuit can deliver up to 15 µA to each OLED pixel. To achieve 200 cd m-2 of brightness a 10 µA current is needed; therefore, our approach can initially deliver 1.5× the required current to drive a single pixel. In contrast to parylene-only devices, the Al2O3/parylene stack does not fail after stressing at a field of 1.7 MV cm-1 for >10 000 s, whereas 'parylene only' devices show breakdown at approximately 1000 s. Details of the integration scheme are presented.

  10. Chemical Strain Engineering of Magnetism in Oxide Thin Films.

    PubMed

    Copie, Olivier; Varignon, Julien; Rotella, Hélène; Steciuk, Gwladys; Boullay, Philippe; Pautrat, Alain; David, Adrian; Mercey, Bernard; Ghosez, Philippe; Prellier, Wilfrid

    2017-04-03

    Transition metal oxides having a perovskite structure form a wide and technologically important class of compounds. In these systems, ferroelectric, ferromagnetic, ferroelastic, or even orbital and charge orderings can develop and eventually coexist. These orderings can be tuned by external electric, magnetic, or stress field, and the cross-couplings between them enable important multifunctional properties, such as piezoelectricity, magneto-electricity, or magneto-elasticity. Recently, it has been proposed that additional to typical fields, the chemical potential that controls the concentration of ion vacancies in these systems may reveal an efficient alternative parameter to further tune their properties and achieve new functionalities. In this study, concretizing this proposal, the authors show that the control of the content of oxygen vacancies in perovskite thin films can indeed be used to tune their magnetic properties. Growing PrVO3 thin films epitaxially on an SrTiO3 substrate, the authors reveal a concrete pathway to achieve this effect. The authors demonstrate that monitoring the concentration of oxygen vacancies through the oxygen partial pressure or the growth temperature can produce a substantial macroscopic tensile strain of a few percent. In turn, this strain affects the exchange interactions, producing a nontrivial evolution of Néel temperature in a range of 30 K.

  11. Nickel oxide thin film from electrodeposited nickel sulfide thin film: peroxide sensing and photo-decomposition of phenol.

    PubMed

    Jana, Sumanta; Samai, Subhasis; Mitra, Bibhas C; Bera, Pulakesh; Mondal, Anup

    2014-09-14

    A novel non-enzymatic peroxide sensor has been constructed by using nickel oxide (NiO) thin films as sensing material, which were prepared by a two-step process: (i) electrodeposition of nickel sulfide (NiS) and (ii) thermal air oxidation of as-deposited NiS to NiO. The resultant material is highly porous and comprises interconnected nanofibers. UV-Vis spectroscopy, FTIR spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM) were used for a complete characterization of nanostructured NiO thin films. Cyclic voltammetry study shows that NiO/ITO electrode facilitates the oxidation of hydrogen peroxide and exhibits excellent catalytic activity towards its sensing. The amperometric study of NiO/ITO was carried out to determine the sensitivity, linear range, detection limit of the proposed sensor. The sensor exhibits prominent electrocatalytic activity toward the oxidation of H2O2 with a wide linear range and a low detection limit. The possible use of the synthesized NiO thin films as an effective photocatalyst for the decomposition of phenol is also discussed.

  12. Enhanced electrochromism in cerium doped molybdenum oxide thin films

    SciTech Connect

    Dhanasankar, M.; Purushothaman, K.K.; Muralidharan, G.

    2010-12-15

    Cerium (5-15% by weight) doped molybdenum oxide thin films have been prepared on FTO coated glass substrate at 250 {sup o}C using sol-gel dip coating method. The structural and morphological changes were observed with the help of XRD, SEM and EDS analysis. The amorphous structure of the Ce doped samples, favours easy intercalation and deintercalation processes. Mo oxide films with 10 wt.% of Ce exhibit maximum anodic diffusion coefficient of 24.99 x 10{sup -11} cm{sup 2}/s and the change in optical transmittance of ({Delta}T at 550 nm) of 79.28% between coloured and bleached state with the optical density of ({Delta}OD) 1.15.

  13. A study of PZT thin films and ferroelectric field effect transistors

    NASA Astrophysics Data System (ADS)

    Abdul Basit, Nasir

    Lead zirconate titanate (Pb(Zr,Ti)Osb3 or PZT) is a well known ferroelectric material for its high polarization values, dielectric constant, and resistivity. We have studied PZT films, and ferroelectric field effect transistors (FEFETs) incorporating PZT films. One of the primary factors in synthesis and crystallization of PZT films is the proper control of the lead content of the films. We obtained highly oriented and ferroelectric PZT thin films by RF magnetron sputtering. The stoichiometric PZT target with Zr/Ti ratio of 53/47 was used. No excess lead was used either during sputtering or during post-deposition annealing. Films deposited at 200sp°C or below crystallize into a perovskite phase on receiving anneal treatment at 590sp°C or above. The annealing study, carried out using a conventional furnace, also revealed that the perovskite formation completes during the first 5 minutes of annealing. The annealed films are highly (100) oriented on (111)-Pt coated oxidized Si substrates. Maximum polarization of 36 muC/cmsp2, remanent polarization of 20 muC/cmsp2, and coercive field of 22 kV/cm were obtained with excellent fatigue resistance. This suggests that the low thermal-budget process, low-temperature deposition and short-time anneal in a conventional furnace, with a stoichiometric target may be appropriate as a reliable, simple, and economical method of preparing PZT films. Depositions at 500sp°C or higher, however, resulted in TisbxOsby or ZrTiOsb4 films suggesting that lead was significantly lost during deposition. FEFETs provide a nonvolatile memory with a nondestructive read-out. FEFETs have been fabricated by incorporating a ferroelectric layer in the gate structure of a MOSFET but the interface problems have resulted in devices with poor characteristics. We used an MgO buffer layer between PZT film and Si substrate. A thin oxide layer was grown on Si before MgO deposition to provide a clean channel between source and drain. The devices fabricated in

  14. Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic.

    PubMed

    Cho, Jeong Ho; Lee, Jiyoul; Xia, Yu; Kim, BongSoo; He, Yiyong; Renn, Michael J; Lodge, Timothy P; Frisbie, C Daniel

    2008-11-01

    An important strategy for realizing flexible electronics is to use solution-processable materials that can be directly printed and integrated into high-performance electronic components on plastic. Although examples of functional inks based on metallic, semiconducting and insulating materials have been developed, enhanced printability and performance is still a challenge. Printable high-capacitance dielectrics that serve as gate insulators in organic thin-film transistors are a particular priority. Solid polymer electrolytes (a salt dissolved in a polymer matrix) have been investigated for this purpose, but they suffer from slow polarization response, limiting transistor speed to less than 100 Hz. Here, we demonstrate that an emerging class of polymer electrolytes known as ion gels can serve as printable, high-capacitance gate insulators in organic thin-film transistors. The specific capacitance exceeds that of conventional ceramic or polymeric gate dielectrics, enabling transistor operation at low voltages with kilohertz switching frequencies.

  15. Improving Contact Interfaces in Fully Printed Carbon Nanotube Thin-Film Transistors.

    PubMed

    Cao, Changyong; Andrews, Joseph B; Kumar, Abhinay; Franklin, Aaron D

    2016-05-24

    Single-walled carbon nanotubes (CNTs) printed into thin films have been shown to yield high mobility, thermal conductivity, mechanical flexibility, and chemical stability as semiconducting channels in field-effect, thin-film transistors (TFTs). Printed CNT-TFTs of many varieties have been studied; however, there has been limited effort toward improving overall CNT-TFT performance. In particular, contact resistance plays a dominant role in determining the performance and degree of variability in the TFTs, especially in fully printed devices where the contacts and channel are both printed. In this work, we have systematically investigated the contact resistance and overall performance of fully printed CNT-TFTs employing three different printed contact materials-Ag nanoparticles, Au nanoparticles, and metallic CNTs-each in the following distinct contact geometries: top, bottom, and double. The active channel for each device was printed from the dispersion of high-purity (>99%) semiconducting CNTs, and all printing was carried out using an aerosol jet printer. Hundreds of devices with different channel lengths (from 20 to 500 μm) were fabricated for extracting contact resistance and determining related contact effects. Printed bottom contacts are shown to be advantageous compared to the more common top contacts, regardless of contact material. Further, compared to single (top or bottom) contacts, double contacts offer a significant decrease (>35%) in contact resistance for all types of contact materials, with the metallic CNTs yielding the best overall performance. These findings underscore the impact of printed contact materials and structures when interfacing with CNT thin films, providing key guidance for the further development of printed nanomaterial electronics.

  16. Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric.

    PubMed

    Liang, Jiajie; Li, Lu; Chen, Dustin; Hajagos, Tibor; Ren, Zhi; Chou, Shu-Yu; Hu, Wei; Pei, Qibing

    2015-07-15

    Thin-film field-effect transistor is a fundamental component behind various mordern electronics. The development of stretchable electronics poses fundamental challenges in developing new electronic materials for stretchable thin-film transistors that are mechanically compliant and solution processable. Here we report the fabrication of transparent thin-film transistors that behave like an elastomer film. The entire fabrication is carried out by solution-based techniques, and the resulting devices exhibit a mobility of ∼30 cm(2) V(-1) s(-1), on/off ratio of 10(3)-10(4), switching current >100 μA, transconductance >50 μS and relative low operating voltages. The devices can be stretched by up to 50% strain and subjected to 500 cycles of repeated stretching to 20% strain without significant loss in electrical property. The thin-film transistors are also used to drive organic light-emitting diodes. The approach and results represent an important progress toward the development of stretchable active-matrix displays.

  17. Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric

    PubMed Central

    Liang, Jiajie; Li, Lu; Chen, Dustin; Hajagos, Tibor; Ren, Zhi; Chou, Shu-Yu; Hu, Wei; Pei, Qibing

    2015-01-01

    Thin-film field-effect transistor is a fundamental component behind various mordern electronics. The development of stretchable electronics poses fundamental challenges in developing new electronic materials for stretchable thin-film transistors that are mechanically compliant and solution processable. Here we report the fabrication of transparent thin-film transistors that behave like an elastomer film. The entire fabrication is carried out by solution-based techniques, and the resulting devices exhibit a mobility of ∼30 cm2 V−1 s−1, on/off ratio of 103–104, switching current >100 μA, transconductance >50 μS and relative low operating voltages. The devices can be stretched by up to 50% strain and subjected to 500 cycles of repeated stretching to 20% strain without significant loss in electrical property. The thin-film transistors are also used to drive organic light-emitting diodes. The approach and results represent an important progress toward the development of stretchable active-matrix displays. PMID:26173436

  18. Noise Characterization of Polycrystalline Silicon Thin Film Transistors for X-ray Imagers Based on Active Pixel Architectures.

    PubMed

    Antonuk, L E; Koniczek, M; McDonald, J; El-Mohri, Y; Zhao, Q; Behravan, M

    2008-01-01

    An examination of the noise of polycrystalline silicon thin film transistors, in the context of flat panel x-ray imager development, is reported. The study was conducted in the spirit of exploring how the 1/f, shot and thermal noise components of poly-Si TFTs, determined from current noise power spectral density measurements, as well as through calculation, can be used to assist in the development of imagers incorporating pixel amplification circuits based on such transistors.

  19. Strain-induced phenomenon in complex oxide thin films

    NASA Astrophysics Data System (ADS)

    Haislmaier, Ryan

    Complex oxide materials wield an immense spectrum of functional properties such as ferroelectricity, ferromagnetism, magnetoelectricity, optoelectricity, optomechanical, magnetoresistance, superconductivity, etc. The rich coupling between charge, spin, strain, and orbital degrees of freedom makes this material class extremely desirable and relevant for next generation electronic devices and technologies which are trending towards nanoscale dimensions. Development of complex oxide thin film materials is essential for realizing their integration into nanoscale electronic devices, where theoretically predicted multifunctional capabilities of oxides could add tremendous value. Employing thin film growth strategies such as epitaxial strain and heterostructure interface engineering can greatly enhance and even unlock novel material properties in complex oxides, which will be the main focus of this work. However, physically incorporating oxide materials into devices remains a challenge. While advancements in molecular beam epitaxy (MBE) of thin film oxide materials has led to the ability to grow oxide materials with atomic layer precision, there are still major limitations such as controlling stoichiometric compositions during growth as well as creating abrupt interfaces in multi-component layered oxide structures. The work done in this thesis addresses ways to overcome these limitations in order to harness intrinsic material phenomena. The development of adsorption-controlled stoichiometric growth windows of CaTiO3 and SrTiO3 thin film materials grown by hybrid MBE where Ti is supplied using metal-organic titanium tetraisopropoxide material is thoroughly outlined. These growth windows enable superior epitaxial strain-induced ferroelectric and dielectric properties to be accessed as demonstrated by chemical, structural, electrical, and optical characterization techniques. For tensile strained CaTiO3 and compressive strained SrTiO 3 films, the critical effects of

  20. Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays.

    PubMed

    Engel, Michael; Small, Joshua P; Steiner, Mathias; Freitag, Marcus; Green, Alexander A; Hersam, Mark C; Avouris, Phaedon

    2008-12-23

    Thin film transistors (TFTs) are now poised to revolutionize the display, sensor, and flexible electronics markets. However, there is a limited choice of channel materials compatible with low-temperature processing. This has inhibited the fabrication of high electrical performance TFTs. Single-walled carbon nanotubes (CNTs) have very high mobilities and can be solution-processed, making thin film CNT-based TFTs a natural direction for exploration. The two main challenges facing CNT-TFTs are the difficulty of placing and aligning CNTs over large areas and low on/off current ratios due to admixture of metallic nanotubes. Here, we report the self-assembly and self-alignment of CNTs from solution into micron-wide strips that form regular arrays of dense and highly aligned CNT films covering the entire chip, which is ideally suitable for device fabrication. The films are formed from pre-separated, 99% purely semiconducting CNTs and, as a result, the CNT-TFTs exhibit simultaneously high drive currents and large on/off current ratios. Moreover, they deliver strong photocurrents and are also both photo- and electroluminescent.