Sample records for oxide-based heterostructure junctions

  1. High Performance Amplifier Element Realization via MoS2/GaTe Heterostructures.

    PubMed

    Yan, Xiao; Zhang, David Wei; Liu, Chunsen; Bao, Wenzhong; Wang, Shuiyuan; Ding, Shijin; Zheng, Gengfeng; Zhou, Peng

    2018-04-01

    2D layered materials (2DLMs), together with their heterostructures, have been attracting tremendous research interest in recent years because of their unique physical and electrical properties. A variety of circuit elements have been made using mechanically exfoliated 2DLMs recently, including hard drives, detectors, sensors, and complementary metal oxide semiconductor field-effect transistors. However, 2DLM-based amplifier circuit elements are rarely studied. Here, the integration of 2DLMs with 3D bulk materials to fabricate vertical junction transistors with current amplification based on a MoS 2 /GaTe heterostructure is reported. Vertical junction transistors exhibit the typical current amplification characteristics of conventional bulk bipolar junction transistors while having good current transmission coefficients (α ∼ 0.95) and current gain coefficient (β ∼ 7) at room temperature. The devices provide new attractive prospects in the investigation of 2DLM-based integrated circuits based on amplifier circuits.

  2. High Performance Amplifier Element Realization via MoS2/GaTe Heterostructures

    PubMed Central

    Yan, Xiao; Zhang, David Wei; Liu, Chunsen; Bao, Wenzhong; Wang, Shuiyuan; Ding, Shijin; Zheng, Gengfeng

    2018-01-01

    Abstract 2D layered materials (2DLMs), together with their heterostructures, have been attracting tremendous research interest in recent years because of their unique physical and electrical properties. A variety of circuit elements have been made using mechanically exfoliated 2DLMs recently, including hard drives, detectors, sensors, and complementary metal oxide semiconductor field‐effect transistors. However, 2DLM‐based amplifier circuit elements are rarely studied. Here, the integration of 2DLMs with 3D bulk materials to fabricate vertical junction transistors with current amplification based on a MoS2/GaTe heterostructure is reported. Vertical junction transistors exhibit the typical current amplification characteristics of conventional bulk bipolar junction transistors while having good current transmission coefficients (α ∼ 0.95) and current gain coefficient (β ∼ 7) at room temperature. The devices provide new attractive prospects in the investigation of 2DLM‐based integrated circuits based on amplifier circuits. PMID:29721428

  3. Charge transfer in rectifying oxide heterostructures and oxide access elements in ReRAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefanovich, G. B.; Pergament, A. L.; Boriskov, P. P.

    2016-05-15

    The main aspects of the synthesis and experimental research of oxide diode heterostructures are discussed with respect to their use as selector diodes, i.e., access elements in oxide resistive memory. It is shown that charge transfer in these materials differs significantly from the conduction mechanism in p–n junctions based on conventional semiconductors (Si, Ge, A{sup III}–B{sup V}), and the model should take into account the electronic properties of oxides, primarily the low carrier drift mobility. It is found that an increase in the forward current requires an oxide with a small band gap (<1.3 eV) in the heterostructure composition. Heterostructuresmore » with Zn, In–Zn (IZO), Ti, Ni, and Cu oxides are studied; it is found that the CuO–IZO heterojunction has the highest forward current density (10{sup 4} A/cm{sup 2}).« less

  4. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy

    NASA Astrophysics Data System (ADS)

    Sahoo, Prasana K.; Memaran, Shahriar; Xin, Yan; Balicas, Luis; Gutiérrez, Humberto R.

    2018-01-01

    Two-dimensional heterojunctions of transition-metal dichalcogenides have great potential for application in low-power, high-performance and flexible electro-optical devices, such as tunnelling transistors, light-emitting diodes, photodetectors and photovoltaic cells. Although complex heterostructures have been fabricated via the van der Waals stacking of different two-dimensional materials, the in situ fabrication of high-quality lateral heterostructures with multiple junctions remains a challenge. Transition-metal-dichalcogenide lateral heterostructures have been synthesized via single-step, two-step or multi-step growth processes. However, these methods lack the flexibility to control, in situ, the growth of individual domains. In situ synthesis of multi-junction lateral heterostructures does not require multiple exchanges of sources or reactors, a limitation in previous approaches as it exposes the edges to ambient contamination, compromises the homogeneity of domain size in periodic structures, and results in long processing times. Here we report a one-pot synthetic approach, using a single heterogeneous solid source, for the continuous fabrication of lateral multi-junction heterostructures consisting of monolayers of transition-metal dichalcogenides. The sequential formation of heterojunctions is achieved solely by changing the composition of the reactive gas environment in the presence of water vapour. This enables selective control of the water-induced oxidation and volatilization of each transition-metal precursor, as well as its nucleation on the substrate, leading to sequential edge-epitaxy of distinct transition-metal dichalcogenides. Photoluminescence maps confirm the sequential spatial modulation of the bandgap, and atomic-resolution images reveal defect-free lateral connectivity between the different transition-metal-dichalcogenide domains within a single crystal structure. Electrical transport measurements revealed diode-like responses across the junctions. Our new approach offers greater flexibility and control than previous methods for continuous growth of transition-metal-dichalcogenide-based multi-junction lateral heterostructures. These findings could be extended to other families of two-dimensional materials, and establish a foundation for the development of complex and atomically thin in-plane superlattices, devices and integrated circuits.

  5. n-VO2/p-GaN based nitride-oxide heterostructure with various thickness of VO2 layer grown by MBE

    NASA Astrophysics Data System (ADS)

    Wang, Minhuan; Bian, Jiming; Sun, Hongjun; Liu, Weifeng; Zhang, Yuzhi; Luo, Yingmin

    2016-12-01

    High quality VO2 films with precisely controlled thickness were grown on p-GaN/sapphire substrates by oxide molecular beam epitaxy (O-MBE). Results indicated that a distinct reversible semiconductor-to-metal (SMT) phase transition was observed for all the samples in the temperature dependent electrical resistance measurement, and the influence of VO2 layer thickness on the SMT properties of the as-grown n-VO2/p-GaN based nitride-oxide heterostructure was investigated. Meanwhile, the clear rectifying transport characteristics originated from the n-VO2/p-GaN interface were demonstrated before and after SMT of the VO2 over layer, which were attributed to the p-n junction behavior and Schottky contact character, respectively. Moreover, the X-ray photoelectron spectroscopy (XPS) analyses confirmed the valence state of vanadium (V) in VO2 films was principally composed of V4+ with trace amount of V5+. The design and modulation of the n-VO2/p-GaN based heterostructure devices will benefit significantly from these achievements.

  6. Graphitic carbon nitride based nanocomposites: a review

    NASA Astrophysics Data System (ADS)

    Zhao, Zaiwang; Sun, Yanjuan; Dong, Fan

    2014-11-01

    Graphitic carbon nitride (g-C3N4), as an intriguing earth-abundant visible light photocatalyst, possesses a unique two-dimensional structure, excellent chemical stability and tunable electronic structure. Pure g-C3N4 suffers from rapid recombination of photo-generated electron-hole pairs resulting in low photocatalytic activity. Because of the unique electronic structure, the g-C3N4 could act as an eminent candidate for coupling with various functional materials to enhance the performance. According to the discrepancies in the photocatalytic mechanism and process, six primary systems of g-C3N4-based nanocomposites can be classified and summarized: namely, the g-C3N4 based metal-free heterojunction, the g-C3N4/single metal oxide (metal sulfide) heterojunction, g-C3N4/composite oxide, the g-C3N4/halide heterojunction, g-C3N4/noble metal heterostructures, and the g-C3N4 based complex system. Apart from the depiction of the fabrication methods, heterojunction structure and multifunctional application of the g-C3N4-based nanocomposites, we emphasize and elaborate on the underlying mechanisms in the photocatalytic activity enhancement of g-C3N4-based nanocomposites. The unique functions of the p-n junction (semiconductor/semiconductor heterostructures), the Schottky junction (metal/semiconductor heterostructures), the surface plasmon resonance (SPR) effect, photosensitization, superconductivity, etc. are utilized in the photocatalytic processes. Furthermore, the enhanced performance of g-C3N4-based nanocomposites has been widely employed in environmental and energetic applications such as photocatalytic degradation of pollutants, photocatalytic hydrogen generation, carbon dioxide reduction, disinfection, and supercapacitors. This critical review ends with a summary and some perspectives on the challenges and new directions in exploring g-C3N4-based advanced nanomaterials.

  7. Van der Waals MoS2/VO2 heterostructure junction with tunable rectifier behavior and efficient photoresponse.

    PubMed

    Oliva, Nicoló; Casu, Emanuele Andrea; Yan, Chen; Krammer, Anna; Rosca, Teodor; Magrez, Arnaud; Stolichnov, Igor; Schueler, Andreas; Martin, Olivier J F; Ionescu, Adrian Mihai

    2017-10-27

    Junctions between n-type semiconductors of different electron affinity show rectification if the junction is abrupt enough. With the advent of 2D materials, we are able to realize thin van der Waals (vdW) heterostructures based on a large diversity of materials. In parallel, strongly correlated functional oxides have emerged, having the ability to show reversible insulator-to-metal (IMT) phase transition by collapsing their electronic bandgap under a certain external stimulus. Here, we report for the first time the electronic and optoelectronic characterization of ultra-thin n-n heterojunctions fabricated using deterministic assembly of multilayer molybdenum disulphide (MoS 2 ) on a phase transition material, vanadium dioxide (VO 2 ). The vdW MoS 2 /VO 2 heterojunction combines the excellent blocking capability of an n-n junction with a high conductivity in on-state, and it can be turned into a Schottky rectifier at high applied voltage or at temperatures higher than 68 °C, exploiting the metal state of VO 2 . We report tunable diode-like current rectification with a good diode ideality factor of 1.75 and excellent conductance swing of 120 mV/dec. Finally, we demonstrate unique tunable photosensitivity and excellent junction photoresponse in the 500/650 nm wavelength range.

  8. Electrostatics of Nanowire Radial p-n Heterojunctions

    NASA Astrophysics Data System (ADS)

    Borblik, Vitalii

    2018-04-01

    The electrostatics of a nanowire radial heterostructure p-n junction is considered theoretically. It is shown that when the radius of the core-shell interface decreases, depletion width of the core increases, but depletion width of the shell, on the contrary, decreases. This is the consequence of cylindrical symmetry of the structure. Thereby, the relative contribution from the constituent materials into performance characteristics of the devices, which use a heterostructure p-n junction, changes substantially. Values of the depletion widths in the heterostructure p-n junction prove to be intermediate between those in radial homostructure p-n junctions made of the constituent materials at the same doping levels. An analogous situation takes place for a barrier capacitance of the radial heterostructure p-n junction.

  9. Insight into spin transport in oxide heterostructures from interface-resolved magnetic mapping

    DOE PAGES

    Bruno, F. Y.; Grisolia, M. N.; Visani, C.; ...

    2015-02-17

    At interfaces between complex oxides, electronic, orbital and magnetic reconstructions may produce states of matter absent from the materials involved, offering novel possibilities for electronic and spintronic devices. Here we show that magnetic reconstruction has a strong influence on the interfacial spin selectivity, a key parameter controlling spin transport in magnetic tunnel junctions. In epitaxial heterostructures combining layers of antiferromagnetic LaFeO 3 (LFO) and ferromagnetic La 0.7Sr 0.3MnO 3 (LSMO), we find that a net magnetic moment is induced in the first few unit planes of LFO near the interface with LSMO. Using X-ray photoemission electron microscopy, we show thatmore » the ferromagnetic domain structure of the manganite electrodes is imprinted into the antiferromagnetic tunnel barrier, endowing it with spin selectivity. Finally, we find that the spin arrangement resulting from coexisting ferromagnetic and antiferromagnetic interactions strongly influences the tunnel magnetoresistance of LSMO/LFO/LSMO junctions through competing spin-polarization and spin-filtering effects.« less

  10. Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction.

    PubMed

    Ross, Jason S; Rivera, Pasqual; Schaibley, John; Lee-Wong, Eric; Yu, Hongyi; Taniguchi, Takashi; Watanabe, Kenji; Yan, Jiaqiang; Mandrus, David; Cobden, David; Yao, Wang; Xu, Xiaodong

    2017-02-08

    Semiconductor heterostructures are backbones for solid-state-based optoelectronic devices. Recent advances in assembly techniques for van der Waals heterostructures have enabled the band engineering of semiconductor heterojunctions for atomically thin optoelectronic devices. In two-dimensional heterostructures with type II band alignment, interlayer excitons, where Coulomb bound electrons and holes are confined to opposite layers, have shown promising properties for novel excitonic devices, including a large binding energy, micron-scale in-plane drift-diffusion, and a long population and valley polarization lifetime. Here, we demonstrate interlayer exciton optoelectronics based on electrostatically defined lateral p-n junctions in a MoSe 2 -WSe 2 heterobilayer. Applying a forward bias enables the first observation of electroluminescence from interlayer excitons. At zero bias, the p-n junction functions as a highly sensitive photodetector, where the wavelength-dependent photocurrent measurement allows the direct observation of resonant optical excitation of the interlayer exciton. The resulting photocurrent amplitude from the interlayer exciton is about 200 times smaller than the resonant excitation of intralayer exciton. This implies that the interlayer exciton oscillator strength is 2 orders of magnitude smaller than that of the intralayer exciton due to the spatial separation of electron and hole to the opposite layers. These results lay the foundation for exploiting the interlayer exciton in future 2D heterostructure optoelectronic devices.

  11. Fabrication and Gas-Sensing Properties of Ni-Silicide/Si Nanowires.

    PubMed

    Hsu, Hsun-Feng; Chen, Chun-An; Liu, Shang-Wu; Tang, Chun-Kai

    2017-12-01

    Ni-silicide/Si nanowires were fabricated by atomic force microscope nano-oxidation on silicon-on-insulator substrates, selective wet etching, and reactive deposition epitaxy. Ni-silicide nanocrystal-modified Si nanowire and Ni-silicide/Si heterostructure multi-stacked nanowire were formed by low- and high-coverage depositions of Ni, respectively. The Ni-silicide/Si Schottky junction and Ni-silicide region were attributed high- and low-resistance parts of nanowire, respectively, causing the resistance of the Ni-silicide nanocrystal-modified Si nanowire and the Ni-silicide/Si heterostructure multi-stacked nanowire to be a little higher and much lower than that of Si nanowire. An O 2 sensing device was formed from a nanowire that was mounted on Pt electrodes. When the nanowires exposed to O 2 , the increase in current in the Ni-silicide/Si heterostructure multi-stacked nanowire was much larger than that in the other nanowires. The Ni-silicide nanocrystal-modified Si nanowire device had the highest sensitivity. The phenomenon can be explained by the formation of a Schottky junction at the Ni-silicide/Si interface in these two types of Ni-Silicide/Si nanowire and the formation of a hole channel at the silicon nanowire/native oxide interface after exposing the nanowires to O 2 .

  12. Interlayer exciton optoelectronics in a 2D heterostructure p–n junction

    DOE PAGES

    Ross, Jason S.; Rivera, Pasqual; Schaibley, John; ...

    2016-12-22

    Semiconductor heterostructures are backbones for solid-state-based optoelectronic devices. Recent advances in assembly techniques for van der Waals heterostructures have enabled the band engineering of semiconductor heterojunctions for atomically thin optoelectronic devices. In two-dimensional heterostructures with type II band alignment, interlayer excitons, where Coulomb bound electrons and holes are confined to opposite layers, have shown promising properties for novel excitonic devices, including a large binding energy, micron-scale in-plane drift-diffusion, and a long population and valley polarization lifetime. Here, we demonstrate interlayer exciton optoelectronics based on electrostatically defined lateral p–n junctions in a MoSe 2–WSe 2 heterobilayer. Applying a forward bias enablesmore » the first observation of electroluminescence from interlayer excitons. At zero bias, the p–n junction functions as a highly sensitive photodetector, where the wavelength-dependent photocurrent measurement allows the direct observation of resonant optical excitation of the interlayer exciton. The resulting photocurrent amplitude from the interlayer exciton is about 200 times smaller than the resonant excitation of intralayer exciton. This implies that the interlayer exciton oscillator strength is 2 orders of magnitude smaller than that of the intralayer exciton due to the spatial separation of electron and hole to the opposite layers. Lastly, these results lay the foundation for exploiting the interlayer exciton in future 2D heterostructure optoelectronic devices.« less

  13. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Relationship between the p-n junction position and the threshold current of stripe lasers emitting in the 1.3-μm range

    NASA Astrophysics Data System (ADS)

    Walachová, J.; Zelinka, J.

    1988-11-01

    The method of profiling with a probe was used to determine the p-n junction position in the active layer InP/GaInAsP double heterostructure lasers designed for operation in the region of 1.3 μm. Double heterostructures with different Zn concentrations in the upper GaInAsP layer were investigated. An explanation was provided of the shift or lack of shift of the p-n junction in different heterostructure lasers. The average threshold current was correlated with the p-n junction position.

  14. Band-pass Fabry-Pèrot magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Sharma, Abhishek; Tulapurkar, Ashwin. A.; Muralidharan, Bhaskaran

    2018-05-01

    We propose a high-performance magnetic tunnel junction by making electronic analogs of optical phenomena such as anti-reflections and Fabry-Pèrot resonances. The devices we propose feature anti-reflection enabled superlattice heterostructures sandwiched between the fixed and the free ferromagnets of the magnetic tunnel junction structure. Our predictions are based on non-equilibrium Green's function spin transport formalism coupled self-consistently with the Landau-Lifshitz-Gilbert-Slonczewski equation. Owing to the physics of bandpass spin filtering in the bandpass Fabry-Pèrot magnetic tunnel junction device, we demonstrate an ultra-high boost in the tunnel magneto-resistance (≈5 × 104%) and nearly 1200% suppression of spin transfer torque switching bias in comparison to a traditional trilayer magnetic tunnel junction device. The proof of concepts presented here can lead to next-generation spintronic device design harvesting the rich physics of superlattice heterostructures and exploiting spintronic analogs of optical phenomena.

  15. Ruddlesden-Popper interface in correlated manganite heterostructures induces magnetic decoupling and dead layer reduction

    NASA Astrophysics Data System (ADS)

    Belenchuk, A.; Shapoval, O.; Roddatis, V.; Bruchmann-Bamberg, V.; Samwer, K.; Moshnyaga, V.

    2016-12-01

    We report on the interface engineering in correlated manganite heterostructures by octahedral decoupling using embedded stacks of atomic layers that form the Ruddlesden-Popper structure. A room temperature magnetic decoupling was achieved through deposition of a (SrO)2-TiO2-(SrO)2 sequence of atomic layers at the interface between La0.7Sr0.3MnO3 and La0.7Sr0.3Mn0.9Ru0.1O3 films. Moreover, the narrowing of the interfacial dead layer in ultrathin La0.7Sr0.3MnO3 films was demonstrated by insertion of a single (SrO)2 rock-salt layer at the interface with the SrTiO3(100) substrate. The obtained results are discussed based on the symmetry breaking and disconnection of the MnO6 octahedra network at the interface that may lead to the improved performance of all-oxide magnetic tunnel junctions. We suggest that octahedral decoupling realized by formation of Ruddlesden-Popper interfaces is an effective structural mechanism to control functionalities of correlated perovskite heterostructures.

  16. Complementary junction heterostructure field-effect transistor

    DOEpatents

    Baca, Albert G.; Drummond, Timothy J.; Robertson, Perry J.; Zipperian, Thomas E.

    1995-01-01

    A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits.

  17. Complementary junction heterostructure field-effect transistor

    DOEpatents

    Baca, A.G.; Drummond, T.J.; Robertson, P.J.; Zipperian, T.E.

    1995-12-26

    A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits. 10 figs.

  18. Superthin Solar Cells Based on AIIIBV/Ge Heterostructures

    NASA Astrophysics Data System (ADS)

    Pakhanov, N. A.; Pchelyakov, O. P.; Vladimirov, V. M.

    2017-11-01

    A comparative analysis of the prospects of creating superthin, light-weight, and highly efficient solar cells based on AIIIBV/InGaAs and AIIIBV/Ge heterostructures is performed. Technological problems and prospects of each variant are discussed. A method of thinning of AIIIBV/Ge heterostructures with the use of an effective temporary carrier is proposed. The method allows the process to be performed almost with no risk of heterostructure fracture, thinning of the Ge junction down to several tens of micrometers (or even several micrometers), significant enhancement of the yield of good structures, and also convenient and reliable transfer of thinned solar cells to an arbitrary light and flexible substrate. Such a technology offers a possibility of creating high-efficiency thin and light solar cells for space vehicles on the basis of mass-produced AIIIBV/Ge heterostructures.

  19. Vertical versus Lateral Two-Dimensional Heterostructures: On the Topic of Atomically Abrupt p/n-Junctions.

    PubMed

    Zhou, Ruiping; Ostwal, Vaibhav; Appenzeller, Joerg

    2017-08-09

    The key appeal of two-dimensional (2D) materials such as graphene, transition metal dichalcogenides (TMDs), or phosphorene for electronic applications certainly lies in their atomically thin nature that offers opportunities for devices beyond conventional transistors. It is also this property that makes them naturally suited for a type of integration that is not possible with any three-dimensional (3D) material, that is, forming heterostructures by stacking dissimilar 2D materials together. Recently, a number of research groups have reported on the formation of atomically sharp p/n-junctions in various 2D heterostructures that show strong diode-type rectification. In this article, we will show that truly vertical heterostructures do exhibit much smaller rectification ratios and that the reported results on atomically sharp p/n-junctions can be readily understood within the framework of the gate and drain voltage response of Schottky barriers that are involved in the lateral transport.

  20. Study of electrochemical reduced graphene oxide and MnO2 heterostructure for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Jana, S. K.; Rao, V. P.; Banerjee, S.

    2013-02-01

    In this paper we have shown enhanced supercapacitive property of electrochemically reduced graphene oxide (ERGO) and manganese dioxide (MnO2) based heterostructure over single MnO2 thin film grown by electrochemical deposition on indium tin oxide (ITO). ERGO improves the electrical conduction leading to decrease of the internal resistance of the heterostructure.

  1. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions.

    PubMed

    Yang, Tiefeng; Zheng, Biyuan; Wang, Zhen; Xu, Tao; Pan, Chen; Zou, Juan; Zhang, Xuehong; Qi, Zhaoyang; Liu, Hongjun; Feng, Yexin; Hu, Weida; Miao, Feng; Sun, Litao; Duan, Xiangfeng; Pan, Anlian

    2017-12-04

    High-quality two-dimensional atomic layered p-n heterostructures are essential for high-performance integrated optoelectronics. The studies to date have been largely limited to exfoliated and restacked flakes, and the controlled growth of such heterostructures remains a significant challenge. Here we report the direct van der Waals epitaxial growth of large-scale WSe 2 /SnS 2 vertical bilayer p-n junctions on SiO 2 /Si substrates, with the lateral sizes reaching up to millimeter scale. Multi-electrode field-effect transistors have been integrated on a single heterostructure bilayer. Electrical transport measurements indicate that the field-effect transistors of the junction show an ultra-low off-state leakage current of 10 -14 A and a highest on-off ratio of up to 10 7 . Optoelectronic characterizations show prominent photoresponse, with a fast response time of 500 μs, faster than all the directly grown vertical 2D heterostructures. The direct growth of high-quality van der Waals junctions marks an important step toward high-performance integrated optoelectronic devices and systems.

  2. Electric-Field Control of Oxygen Vacancies and Magnetic Phase Transition in a Cobaltite/Manganite Bilayer

    NASA Astrophysics Data System (ADS)

    Cui, B.; Song, C.; Li, F.; Zhong, X. Y.; Wang, Z. C.; Werner, P.; Gu, Y. D.; Wu, H. Q.; Saleem, M. S.; Parkin, S. S. P.; Pan, F.

    2017-10-01

    Manipulation of oxygen vacancies (VO ) in single oxide layers by varying the electric field can result in significant modulation of the ground state. However, in many oxide multilayers with strong application potentials, e.g., ferroelectric tunnel junctions and solid-oxide fuel cells, understanding VO behavior in various layers under an applied electric field remains a challenge, owing to complex VO transport between different layers. By sweeping the external voltage, a reversible manipulation of VO and a corresponding fixed magnetic phase transition sequence in cobaltite/manganite (SrCoO3 -x/La0.45Sr0.55MnO3 -y ) heterostructures are reported. The magnetic phase transition sequence confirms that the priority of electric-field-induced VO formation or annihilation in the complex bilayer system is mainly determined by the VO formation energies and Gibbs free-energy differences, which is supported by theoretical analysis. We not only realize a reversible manipulation of the magnetic phase transition in an oxide bilayer but also provide insight into the electric-field control of VO engineering in heterostructures.

  3. Fabrication and Characterization of N-Type Zinc Oxide/P-Type Boron Doped Diamond Heterojunction

    NASA Astrophysics Data System (ADS)

    Marton, Marián; Mikolášek, Miroslav; Bruncko, Jaroslav; Novotný, Ivan; Ižák, Tibor; Vojs, Marian; Kozak, Halyna; Varga, Marián; Artemenko, Anna; Kromka, Alexander

    2015-09-01

    Diamond and ZnO are very promising wide-bandgap materials for electronic, photovoltaic and sensor applications because of their excellent electrical, optical, physical and electrochemical properties and biocompatibility. In this contribution we show that the combination of these two materials opens up the potential for fabrication of bipolar heterojunctions. Semiconducting boron doped diamond (BDD) thin films were grown on Si and UV grade silica glass substrates by HFCVD method with various boron concentration in the gas mixture. Doped zinc oxide (ZnO:Al, ZnO:Ge) thin layers were deposited by diode sputtering and pulsed lased deposition as the second semiconducting layer on the diamond films. The amount of dopants within the films was varied to obtain optimal semiconducting properties to form a bipolar p-n junction. Finally, different ZnO/BDD heterostructures were prepared and analyzed. Raman spectroscopy, SEM, Hall constant and I-V measurements were used to investigate the quality, structural and electrical properties of deposited heterostructures, respectively. I-V measurements of ZnO/BDD diodes show a rectifying ratio of 55 at ±4 V. We found that only very low dopant concentrations for both semiconducting materials enabled us to fabricate a functional p-n junction. Obtained results are promising for fabrication of optically transparent ZnO/BDD bipolar heterojunction.

  4. Vibrational Properties of h-BN and h-BN-Graphene Heterostructures Probed by Inelastic Electron Tunneling Spectroscopy

    PubMed Central

    Jung, Suyong; Park, Minkyu; Park, Jaesung; Jeong, Tae-Young; Kim, Ho-Jong; Watanabe, Kenji; Taniguchi, Takashi; Ha, Dong Han; Hwang, Chanyong; Kim, Yong-Sung

    2015-01-01

    Inelastic electron tunneling spectroscopy is a powerful technique for investigating lattice dynamics of nanoscale systems including graphene and small molecules, but establishing a stable tunnel junction is considered as a major hurdle in expanding the scope of tunneling experiments. Hexagonal boron nitride is a pivotal component in two-dimensional Van der Waals heterostructures as a high-quality insulating material due to its large energy gap and chemical-mechanical stability. Here we present planar graphene/h-BN-heterostructure tunneling devices utilizing thin h-BN as a tunneling insulator. With much improved h-BN-tunneling-junction stability, we are able to probe all possible phonon modes of h-BN and graphite/graphene at Γ and K high symmetry points by inelastic tunneling spectroscopy. Additionally, we observe that low-frequency out-of-plane vibrations of h-BN and graphene lattices are significantly modified at heterostructure interfaces. Equipped with an external back gate, we can also detect high-order coupling phenomena between phonons and plasmons, demonstrating that h-BN-based tunneling device is a wonderful playground for investigating electron-phonon couplings in low-dimensional systems. PMID:26563740

  5. Vibrational Properties of h-BN and h-BN-Graphene Heterostructures Probed by Inelastic Electron Tunneling Spectroscopy.

    PubMed

    Jung, Suyong; Park, Minkyu; Park, Jaesung; Jeong, Tae-Young; Kim, Ho-Jong; Watanabe, Kenji; Taniguchi, Takashi; Ha, Dong Han; Hwang, Chanyong; Kim, Yong-Sung

    2015-11-13

    Inelastic electron tunneling spectroscopy is a powerful technique for investigating lattice dynamics of nanoscale systems including graphene and small molecules, but establishing a stable tunnel junction is considered as a major hurdle in expanding the scope of tunneling experiments. Hexagonal boron nitride is a pivotal component in two-dimensional Van der Waals heterostructures as a high-quality insulating material due to its large energy gap and chemical-mechanical stability. Here we present planar graphene/h-BN-heterostructure tunneling devices utilizing thin h-BN as a tunneling insulator. With much improved h-BN-tunneling-junction stability, we are able to probe all possible phonon modes of h-BN and graphite/graphene at Γ and K high symmetry points by inelastic tunneling spectroscopy. Additionally, we observe that low-frequency out-of-plane vibrations of h-BN and graphene lattices are significantly modified at heterostructure interfaces. Equipped with an external back gate, we can also detect high-order coupling phenomena between phonons and plasmons, demonstrating that h-BN-based tunneling device is a wonderful playground for investigating electron-phonon couplings in low-dimensional systems.

  6. Fabrication of n-ZnO/ p-Si (100) and n-ZnO:Al/ p-Si (100) Heterostructures and Study of Current-Voltage, Capacitance-Voltage and Room-Temperature Photoluminescence

    NASA Astrophysics Data System (ADS)

    Shah, M. A. H.; Khan, M. K. R.; Tanveer Karim, A. M. M.; Rahman, M. M.; Kamruzzaman, M.

    2018-01-01

    Heterojunction diodes of n-ZnO/ p-Si (100) and n-ZnO:Al/ p-Si (100) were fabricated by spray pyrolysis technique. X-ray diffraction (XRD), energy dispersive x-ray spectroscopy (EDX), and field emission scanning electron microscopy (FESEM) were used to characterize the as-prepared samples. The XRD pattern indicates the hexagonal wurzite structure of zinc oxide (ZnO) and Al-doped ZnO (AZO) thin films grown on Si (100) substrate. The compositional analysis by EDX indicates the presence of Al in the AZO structure. The FESEM image indicates the smooth and compact surface of the heterostructures. The current-voltage characteristics of the heterojunction confirm the rectifying diode behavior at different temperatures and illumination intensities. For low forward bias voltage, the ideality factors were determined to be 1.24 and 1.38 for un-doped and Al-doped heterostructures at room temperature (RT), respectively, which indicates the good diode characteristics. The capacitance-voltage response of the heterojunctions was studied for different oscillation frequencies. From the 1/ C 2- V plot, the junction built-in potentials were found 0.30 V and 0.40 V for un-doped and Al-doped junctions at RT, respectively. The differences in built-in potential for different heterojunctions indicate the different interface state densities of the junctions. From the RT photoluminescence (PL) spectrum of the n-ZnO/ p-Si (100) heterostructure, an intense main peak at near band edge (NBE) 378 nm (3.28 eV) and weak deep-level emissions (DLE) centered at 436 nm (2.84 eV) and 412 nm (3.00 eV) were observed. The NBE emission is attributed to the radiative recombination of the free and bound excitons and the DLE results from the radiative recombination through deep level defects.

  7. High-Performance Photovoltaic Detector Based on MoTe2 /MoS2 Van der Waals Heterostructure.

    PubMed

    Chen, Yan; Wang, Xudong; Wu, Guangjian; Wang, Zhen; Fang, Hehai; Lin, Tie; Sun, Shuo; Shen, Hong; Hu, Weida; Wang, Jianlu; Sun, Jinglan; Meng, Xiangjian; Chu, Junhao

    2018-03-01

    Van der Waals heterostructures based on 2D layered materials have received wide attention for their multiple applications in optoelectronic devices, such as solar cells, light-emitting devices, and photodiodes. In this work, high-performance photovoltaic photodetectors based on MoTe 2 /MoS 2 vertical heterojunctions are demonstrated by exfoliating-restacking approach. The fundamental electric properties and band structures of the junction are revealed and analyzed. It is shown that this kind of photodetectors can operate under zero bias with high on/off ratio (>10 5 ) and ultralow dark current (≈3 pA). Moreover, a fast response time of 60 µs and high photoresponsivity of 46 mA W -1 are also attained at room temperature. The junctions based on 2D materials are expected to constitute the ultimate functional elements of nanoscale electronic and optoelectronic applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Kelvin probe imaging of photo-injected electrons in metal oxide nanosheets from metal sulfide quantum dots under remote photochromic coloration

    NASA Astrophysics Data System (ADS)

    Kondo, A.; Yin, G.; Srinivasan, N.; Atarashi, D.; Sakai, E.; Miyauchi, M.

    2015-07-01

    Metal oxide and quantum dot (QD) heterostructures have attracted considerable recent attention as materials for developing efficient solar cells, photocatalysts, and display devices, thus nanoscale imaging of trapped electrons in these heterostructures provides important insight for developing efficient devices. In the present study, Kelvin probe force microscopy (KPFM) of CdS quantum dot (QD)-grafted Cs4W11O362- nanosheets was performed before and after visible-light irradiation. After visible-light excitation of the CdS QDs, the Cs4W11O362- nanosheet surface exhibited a decreased work function in the vicinity of the junction with CdS QDs, even though the Cs4W11O362- nanosheet did not absorb visible light. X-ray photoelectron spectroscopy revealed that W5+ species were formed in the nanosheet after visible-light irradiation. These results demonstrated that excited electrons in the CdS QDs were injected and trapped in the Cs4W11O362- nanosheet to form color centers. Further, the CdS QDs and Cs4W11O362- nanosheet composite films exhibited efficient remote photochromic coloration, which was attributed to the quantum nanostructure of the film. Notably, the responsive wavelength of the material is tunable by adjusting the size of QDs, and the decoloration rate is highly efficient, as the required length for trapped electrons to diffuse into the nanosheet surface is very short owing to its nanoscale thickness. The unique properties of this photochromic device make it suitable for display or memory applications. In addition, the methodology described in the present study for nanoscale imaging is expected to aid in the understanding of electron transport and trapping processes in metal oxide and metal chalcogenide heterostructure, which are crucial phenomena in QD-based solar cells and/or photocatalytic water-splitting systems.Metal oxide and quantum dot (QD) heterostructures have attracted considerable recent attention as materials for developing efficient solar cells, photocatalysts, and display devices, thus nanoscale imaging of trapped electrons in these heterostructures provides important insight for developing efficient devices. In the present study, Kelvin probe force microscopy (KPFM) of CdS quantum dot (QD)-grafted Cs4W11O362- nanosheets was performed before and after visible-light irradiation. After visible-light excitation of the CdS QDs, the Cs4W11O362- nanosheet surface exhibited a decreased work function in the vicinity of the junction with CdS QDs, even though the Cs4W11O362- nanosheet did not absorb visible light. X-ray photoelectron spectroscopy revealed that W5+ species were formed in the nanosheet after visible-light irradiation. These results demonstrated that excited electrons in the CdS QDs were injected and trapped in the Cs4W11O362- nanosheet to form color centers. Further, the CdS QDs and Cs4W11O362- nanosheet composite films exhibited efficient remote photochromic coloration, which was attributed to the quantum nanostructure of the film. Notably, the responsive wavelength of the material is tunable by adjusting the size of QDs, and the decoloration rate is highly efficient, as the required length for trapped electrons to diffuse into the nanosheet surface is very short owing to its nanoscale thickness. The unique properties of this photochromic device make it suitable for display or memory applications. In addition, the methodology described in the present study for nanoscale imaging is expected to aid in the understanding of electron transport and trapping processes in metal oxide and metal chalcogenide heterostructure, which are crucial phenomena in QD-based solar cells and/or photocatalytic water-splitting systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02405f

  9. Effect of low and staggered gap quantum wells inserted in GaAs tunnel junctions

    NASA Astrophysics Data System (ADS)

    Louarn, K.; Claveau, Y.; Marigo-Lombart, L.; Fontaine, C.; Arnoult, A.; Piquemal, F.; Bounouh, A.; Cavassilas, N.; Almuneau, G.

    2018-04-01

    In this article, we investigate the impact of the insertion of either a type I InGaAs or a type II InGaAs/GaAsSb quantum well on the performances of MBE-grown GaAs tunnel junctions (TJs). The devices are designed and simulated using a quantum transport model based on the non-equilibrium Green’s function formalism and a 6-band k.p Hamiltonian. We experimentally observe significant improvements of the peak tunneling current density on both heterostructures with a 460-fold increase for a moderately doped GaAs TJ when the InGaAs QW is inserted at the junction interface, and a 3-fold improvement on a highly doped GaAs TJ integrating a type II InGaAs/GaAsSb QW. Thus, the simple insertion of staggered band lineup heterostructures enables us to reach a tunneling current well above the kA cm‑2 range, equivalent to the best achieved results for Si-doped GaAs TJs, implying very interesting potential for TJ-based components, such as multi-junction solar cells, vertical cavity surface emitting lasers and tunnel-field effect transistors.

  10. Millimeter-wave and optoelectronic applications of heterostructure integrated circuits

    NASA Technical Reports Server (NTRS)

    Pavlidis, Dimitris

    1991-01-01

    The properties are reviewed of heterostructure devices for microwave-monolithic-integrated circuits (MMICs) and optoelectronic integrated circuits (OICs). Specific devices examined include lattice-matched and pseudomorphic InAlAs/InGaAs high-electron mobility transistors (HEMTs), mixer/multiplier diodes, and heterojunction bipolar transistors (HBTs) developed with a number of materials. MMICs are reviewed that can be employed for amplification, mixing, and signal generation, and receiver/transmitter applications are set forth for OICs based on GaAs and InP heterostructure designs. HEMTs, HBTs, and junction-FETs can be utilized in combination with PIN, MSM, and laser diodes to develop novel communication systems based on technologies that combine microwave and photonic capabilities.

  11. Millimeter-wave and optoelectronic applications of heterostructure integrated circuits

    NASA Astrophysics Data System (ADS)

    Pavlidis, Dimitris

    1991-02-01

    The properties are reviewed of heterostructure devices for microwave-monolithic-integrated circuits (MMICs) and optoelectronic integrated circuits (OICs). Specific devices examined include lattice-matched and pseudomorphic InAlAs/InGaAs high-electron mobility transistors (HEMTs), mixer/multiplier diodes, and heterojunction bipolar transistors (HBTs) developed with a number of materials. MMICs are reviewed that can be employed for amplification, mixing, and signal generation, and receiver/transmitter applications are set forth for OICs based on GaAs and InP heterostructure designs. HEMTs, HBTs, and junction-FETs can be utilized in combination with PIN, MSM, and laser diodes to develop novel communication systems based on technologies that combine microwave and photonic capabilities.

  12. Enhancement of Spin-transfer torque switching via resonant tunneling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterji, Niladri; Tulapurkar, Ashwin A.; Muralidharan, Bhaskaran

    We propose the use of resonant tunneling as a route to enhance the spin-transfer torque switching characteristics of magnetic tunnel junctions. The proposed device structure is a resonant tunneling magnetic tunnel junction based on a MgO-semiconductor heterostructure sandwiched between a fixed magnet and a free magnet. Using the non-equilibrium Green's function formalism coupled self consistently with the Landau-Lifshitz-Gilbert-Slonczewski equation, we demonstrate enhanced tunnel magneto-resistance characteristics as well as lower switching voltages in comparison with traditional trilayer devices. Two device designs based on MgO based heterostructures are presented, where the physics of resonant tunneling leads to an enhanced spin transfer torquemore » thereby reducing the critical switching voltage by up to 44%. It is envisioned that the proof-of-concept presented here may lead to practical device designs via rigorous materials and interface studies.« less

  13. Ultraviolet GaN photodetectors on Si via oxide buffer heterostructures with integrated short period oxide-based distributed Bragg reflectors and leakage suppressing metal-oxide-semiconductor contacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szyszka, A., E-mail: szyszka@ihp-microelectronics.com, E-mail: adam.szyszka@pwr.wroc.pl; Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wroclaw; Lupina, L.

    2014-08-28

    Based on a novel double step oxide buffer heterostructure approach for GaN integration on Si, we present an optimized Metal-Semiconductor-Metal (MSM)-based Ultraviolet (UV) GaN photodetector system with integrated short-period (oxide/Si) Distributed Bragg Reflector (DBR) and leakage suppressing Metal-Oxide-Semiconductor (MOS) electrode contacts. In terms of structural properties, it is demonstrated by in-situ reflection high energy electron diffraction and transmission electron microscopy-energy dispersive x-ray studies that the DBR heterostructure layers grow with high thickness homogeneity and sharp interface structures sufficient for UV applications; only minor Si diffusion into the Y{sub 2}O{sub 3} films is detected under the applied thermal growth budget. Asmore » revealed by comparative high resolution x-ray diffraction studies on GaN/oxide buffer/Si systems with and without DBR systems, the final GaN layer structure quality is not significantly influenced by the growth of the integrated DBR heterostructure. In terms of optoelectronic properties, it is demonstrated that—with respect to the basic GaN/oxide/Si system without DBR—the insertion of (a) the DBR heterostructures and (b) dark current suppressing MOS contacts enhances the photoresponsivity below the GaN band-gap related UV cut-off energy by almost up to two orders of magnitude. Given the in-situ oxide passivation capability of grown GaN surfaces and the one order of magnitude lower number of superlattice layers in case of higher refractive index contrast (oxide/Si) systems with respect to classical III-N DBR superlattices, virtual GaN substrates on Si via functional oxide buffer systems are thus a promising robust approach for future GaN-based UV detector technologies.« less

  14. Controllable synthesis of metal selenide heterostructures mediated by Ag2Se nanocrystals acting as catalysts

    NASA Astrophysics Data System (ADS)

    Zhou, Jiangcong; Huang, Feng; Xu, Ju; Wang, Yuansheng

    2013-09-01

    Ag2Se nanocrystals were demonstrated to be novel semiconductor mediators, or in other word catalysts, for the growth of semiconductor heterostructures in solution. This is a result of the unique feature of Ag2Se as a fast ion conductor, allowing foreign cations to dissolve and then to heterogrow the second phase. Using Ag2Se nanocrystals as catalysts, dimeric metal selenide heterostructures such as Ag2Se-CdSe and Ag2Se-ZnSe, and even multi-segment heterostructures such as Ag2Se-CdSe-ZnSe and Ag2Se-ZnSe-CdSe, were successfully synthesized. Several interesting features were found in the Ag2Se based heterogrowth. At the initial stage of heterogrowth, a layer of the second phase forms on the surface of an Ag2Se nanosphere, with a curved junction interface between the two phases. With further growth of the second phase, the Ag2Se nanosphere tends to flatten the junction surface by modifying its shape from sphere to hemisphere in order to minimize the conjunct area and thus the interfacial energy. Notably, the crystallographic relationship of the two phases in the heterostructure varies with the lattice parameters of the second phase, in order to reduce the lattice mismatch at the interface. Furthermore, a small lattice mismatch at the interface results in a straight rod-like second phase, while a large lattice mismatch would induce a tortuous product. The reported results may provide a new route for developing novel selenide semiconductor heterostructures which are potentially applicable in optoelectronic, biomedical, photovoltaic and catalytic fields.Ag2Se nanocrystals were demonstrated to be novel semiconductor mediators, or in other word catalysts, for the growth of semiconductor heterostructures in solution. This is a result of the unique feature of Ag2Se as a fast ion conductor, allowing foreign cations to dissolve and then to heterogrow the second phase. Using Ag2Se nanocrystals as catalysts, dimeric metal selenide heterostructures such as Ag2Se-CdSe and Ag2Se-ZnSe, and even multi-segment heterostructures such as Ag2Se-CdSe-ZnSe and Ag2Se-ZnSe-CdSe, were successfully synthesized. Several interesting features were found in the Ag2Se based heterogrowth. At the initial stage of heterogrowth, a layer of the second phase forms on the surface of an Ag2Se nanosphere, with a curved junction interface between the two phases. With further growth of the second phase, the Ag2Se nanosphere tends to flatten the junction surface by modifying its shape from sphere to hemisphere in order to minimize the conjunct area and thus the interfacial energy. Notably, the crystallographic relationship of the two phases in the heterostructure varies with the lattice parameters of the second phase, in order to reduce the lattice mismatch at the interface. Furthermore, a small lattice mismatch at the interface results in a straight rod-like second phase, while a large lattice mismatch would induce a tortuous product. The reported results may provide a new route for developing novel selenide semiconductor heterostructures which are potentially applicable in optoelectronic, biomedical, photovoltaic and catalytic fields. Electronic supplementary information (ESI) available: Fig. S1-S8 and Table S1. See DOI: 10.1039/c3nr03601d

  15. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures

    NASA Astrophysics Data System (ADS)

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-03-01

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices.

  16. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures.

    PubMed

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-03-08

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices.

  17. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures

    PubMed Central

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-01-01

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices. PMID:26954833

  18. Exfoliation and van der Waals heterostructure assembly of intercalated ferromagnet Cr1/3TaS2

    NASA Astrophysics Data System (ADS)

    Yamasaki, Yuji; Moriya, Rai; Arai, Miho; Masubuchi, Satoru; Pyon, Sunseng; Tamegai, Tsuyoshi; Ueno, Keiji; Machida, Tomoki

    2017-12-01

    Ferromagnetic van der Waals (vdW) materials are in demand for spintronic devices with all-two-dimensional-materials heterostructures. Here, we demonstrate mechanical exfoliation of magnetic-atom-intercalated transition metal dichalcogenide Cr1/3TaS2 from its bulk crystal; previously such intercalated materials were thought difficult to exfoliate. Magnetotransport in exfoliated tens-of-nanometres-thick flakes revealed ferromagnetic ordering below its Curie temperature T C ~ 110 K as well as strong in-plane magnetic anisotropy; these are identical to its bulk properties. Further, van der Waals heterostructure assembly of Cr1/3TaS2 with another intercalated ferromagnet Fe1/4TaS2 is demonstrated using a dry-transfer method. The fabricated heterojunction composed of Cr1/3TaS2 and Fe1/4TaS2 with a native Ta2O5 oxide tunnel barrier in between exhibits tunnel magnetoresistance (TMR), revealing possible spin injection and detection with these exfoliatable ferromagnetic materials through the vdW junction.

  19. Impact of semiconducting electrodes on the electroresistance of ferroelectric tunnel junctions

    NASA Astrophysics Data System (ADS)

    Asa, M.; Bertacco, R.

    2018-02-01

    Ferroelectric tunnel junctions are promising candidates for the realization of energy-efficient digital memories and analog memcomputing devices. In this work, we investigate the impact of a semiconducting layer in series to the junction on the sign of electroresistance. To this scope, we compare tunnel junctions fabricated out of Pt/BaTiO3/La1/3Sr2/3MnO3 (LSMO) and Pt/BaTiO3/Nb:SrTiO3 (Nb:STO) heterostructures, displaying an opposite sign of the electroresistance. By capacitance-voltage profiling, we observe a behavior typical of Metal-Oxide-Semiconductor tunnel devices in both cases but compatible with the opposite sign of charge carriers in the semiconducting layer. While Nb:STO displays the expected n-type semiconducting character, metallic LSMO develops an interfacial p-type semiconducting layer. The different types of carriers at the semiconducting interfaces and the modulation of the depleted region by the ferroelectric charge have a deep impact on electroresistance, possibly accounting for the different sign observed in the two systems.

  20. Specific features of electroluminescence in heterostructures with InSb quantum dots in an InAs matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkhomenko, Ya. A.; Ivanov, E. V.; Moiseev, K. D., E-mail: mkd@iropt2.ioffe.rssi.ru

    2013-11-15

    The electrical and electroluminescence properties of a single narrow-gap heterostructure based on a p-n junction in indium arsenide, containing a single layer of InSb quantum dots in the InAs matrix, are studied. The presence of quantum dots has a significant effect on the shape of the reverse branch of the current-voltage characteristic of the heterostructure. Under reverse bias, the room-temperature electroluminescence spectra of the heterostructure with quantum dots, in addition to a negative-luminescence band with a maximum at the wavelength {lambda} = 3.5 {mu}m, contained a positive-luminescence emission band at 3.8 {mu}m, caused by radiative transitions involving localized states ofmore » quantum dots at the type-II InSb/InAs heterointerface.« less

  1. A Facile Route for Patterned Growth of Metal-Insulator Carbon Lateral Junction through One-Pot Synthesis.

    PubMed

    Park, Beomjin; Park, Jaesung; Son, Jin Gyeong; Kim, Yong-Jin; Yu, Seong Uk; Park, Hyo Ju; Chae, Dong-Hun; Byun, Jinseok; Jeon, Gumhye; Huh, Sung; Lee, Seoung-Ki; Mishchenko, Artem; Hyun, Seung; Lee, Tae Geol; Han, Sang Woo; Ahn, Jong-Hyun; Lee, Zonghoon; Hwang, Chanyong; Novoselov, Konstantin S; Kim, Kwang S; Hong, Byung Hee; Kim, Jin Kon

    2015-08-25

    Precise graphene patterning is of critical importance for tailor-made and sophisticated two-dimensional nanoelectronic and optical devices. However, graphene-based heterostructures have been grown by delicate multistep chemical vapor deposition methods, limiting preparation of versatile heterostructures. Here, we report one-pot synthesis of graphene/amorphous carbon (a-C) heterostructures from a solid source of polystyrene via selective photo-cross-linking process. Graphene is successfully grown from neat polystyrene regions, while patterned cross-linked polystyrene regions turn into a-C because of a large difference in their thermal stability. Since the electrical resistance of a-C is at least 2 orders of magnitude higher than that for graphene, the charge transport in graphene/a-C heterostructure occurs through the graphene region. Measurement of the quantum Hall effect in graphene/a-C lateral heterostructures clearly confirms the reliable quality of graphene and well-defined graphene/a-C interface. The direct synthesis of patterned graphene from polymer pattern could be further exploited to prepare versatile heterostructures.

  2. Controllable synthesis of metal selenide heterostructures mediated by Ag2Se nanocrystals acting as catalysts.

    PubMed

    Zhou, Jiangcong; Huang, Feng; Xu, Ju; Wang, Yuansheng

    2013-10-21

    Ag2Se nanocrystals were demonstrated to be novel semiconductor mediators, or in other word catalysts, for the growth of semiconductor heterostructures in solution. This is a result of the unique feature of Ag2Se as a fast ion conductor, allowing foreign cations to dissolve and then to heterogrow the second phase. Using Ag2Se nanocrystals as catalysts, dimeric metal selenide heterostructures such as Ag2Se-CdSe and Ag2Se-ZnSe, and even multi-segment heterostructures such as Ag2Se-CdSe-ZnSe and Ag2Se-ZnSe-CdSe, were successfully synthesized. Several interesting features were found in the Ag2Se based heterogrowth. At the initial stage of heterogrowth, a layer of the second phase forms on the surface of an Ag2Se nanosphere, with a curved junction interface between the two phases. With further growth of the second phase, the Ag2Se nanosphere tends to flatten the junction surface by modifying its shape from sphere to hemisphere in order to minimize the conjunct area and thus the interfacial energy. Notably, the crystallographic relationship of the two phases in the heterostructure varies with the lattice parameters of the second phase, in order to reduce the lattice mismatch at the interface. Furthermore, a small lattice mismatch at the interface results in a straight rod-like second phase, while a large lattice mismatch would induce a tortuous product. The reported results may provide a new route for developing novel selenide semiconductor heterostructures which are potentially applicable in optoelectronic, biomedical, photovoltaic and catalytic fields.

  3. Hybrid tunnel junction contacts to III-nitride light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Young, Erin C.; Yonkee, Benjamin P.; Wu, Feng; Oh, Sang Ho; DenBaars, Steven P.; Nakamura, Shuji; Speck, James S.

    2016-02-01

    In this work, we demonstrate highly doped GaN p-n tunnel junction (TJ) contacts on III-nitride heterostructures where the active region of the device and the top p-GaN layers were grown by metal organic chemical vapor deposition and highly doped n-GaN was grown by NH3 molecular beam epitaxy to form the TJ. The regrowth interface in these hybrid devices was found to have a high concentration of oxygen, which likely enhanced tunneling through the diode. For optimized regrowth, the best tunnel junction device had a total differential resistivity of 1.5 × 10-4 Ω cm2, including contact resistance. As a demonstration, a blue-light-emitting diode on a (20\\bar{2}\\bar{1}) GaN substrate with a hybrid tunnel junction and an n-GaN current spreading layer was fabricated and compared with a reference sample with a transparent conducting oxide (TCO) layer. The tunnel junction LED showed a lower forward operating voltage and a higher efficiency at a low current density than the TCO LED.

  4. Charge Transport in Low-Temperature Processed Thin-Film Transistors Based on Indium Oxide/Zinc Oxide Heterostructures.

    PubMed

    Krausmann, Jan; Sanctis, Shawn; Engstler, Jörg; Luysberg, Martina; Bruns, Michael; Schneider, Jörg J

    2018-06-20

    The influence of the composition within multilayered heterostructure oxide semiconductors has a critical impact on the performance of thin-film transistor (TFT) devices. The heterostructures, comprising alternating polycrystalline indium oxide and zinc oxide layers, are fabricated by a facile atomic layer deposition (ALD) process, enabling the tuning of its electrical properties by precisely controlling the thickness of the individual layers. This subsequently results in enhanced TFT performance for the optimized stacked architecture after mild thermal annealing at temperatures as low as 200 °C. Superior transistor characteristics, resulting in an average field-effect mobility (μ sat. ) of 9.3 cm 2 V -1 s -1 ( W/ L = 500), an on/off ratio ( I on / I off ) of 5.3 × 10 9 , and a subthreshold swing of 162 mV dec -1 , combined with excellent long-term and bias stress stability are thus demonstrated. Moreover, the inherent semiconducting mechanism in such multilayered heterostructures can be conveniently tuned by controlling the thickness of the individual layers. Herein, devices comprising a higher In 2 O 3 /ZnO ratio, based on individual layer thicknesses, are predominantly governed by percolation conduction with temperature-independent charge carrier mobility. Careful adjustment of the individual oxide layer thicknesses in devices composed of stacked layers plays a vital role in the reduction of trap states, both interfacial and bulk, which consequently deteriorates the overall device performance. The findings enable an improved understanding of the correlation between TFT performance and the respective thin-film composition in ALD-based heterostructure oxides.

  5. Interface designed MoS2/GaAs heterostructure solar cell with sandwich stacked hexagonal boron nitride

    PubMed Central

    Lin, Shisheng; Li, Xiaoqiang; Wang, Peng; Xu, Zhijuan; Zhang, Shengjiao; Zhong, Huikai; Wu, Zhiqian; Xu, Wenli; Chen, Hongsheng

    2015-01-01

    MoS2 is a layered two-dimensional semiconductor with a direct band gap of 1.8 eV. The MoS2/bulk semiconductor system offers a new platform for solar cell device design. Different from the conventional bulk p-n junctions, in the MoS2/bulk semiconductor heterostructure, static charge transfer shifts the Fermi level of MoS2 toward that of bulk semiconductor, lowering the barrier height of the formed junction. Herein, we introduce hexagonal boron nitride (h-BN) into MoS2/GaAs heterostructure to suppress the static charge transfer, and the obtained MoS2/h-BN/GaAs solar cell exhibits an improved power conversion efficiency of 5.42%. More importantly, the sandwiched h-BN makes the Fermi level tuning of MoS2 more effective. By employing chemical doping and electrical gating into the solar cell device, PCE of 9.03% is achieved, which is the highest among all the reported monolayer transition metal dichalcogenide based solar cells. PMID:26458358

  6. Short Ballistic Josephson Coupling in Planar Graphene Junctions with Inhomogeneous Carrier Doping

    NASA Astrophysics Data System (ADS)

    Park, Jinho; Lee, Jae Hyeong; Lee, Gil-Ho; Takane, Yositake; Imura, Ken-Ichiro; Taniguchi, Takashi; Watanabe, Kenji; Lee, Hu-Jong

    2018-02-01

    We report on short ballistic (SB) Josephson coupling in junctions embedded in a planar heterostructure of graphene. Ballistic Josephson coupling is confirmed by the Fabry-Perot-type interference of the junction critical current Ic . The product of Ic and the normal-state junction resistance RN , normalized by the zero-temperature gap energy Δ0 of the superconducting electrodes, turns out to be exceptionally large close to 2, an indication of strong Josephson coupling in the SB junction limit. However, Ic shows a temperature dependence that is inconsistent with the conventional short-junction-like behavior based on the standard Kulik-Omel'yanchuk prediction. We argue that this feature stems from the effects of inhomogeneous carrier doping in graphene near the superconducting contacts, although the junction is in fact in the short-junction limit.

  7. Zinc-oxide-based nanostructured materials for heterostructure solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobkov, A. A.; Maximov, A. I.; Moshnikov, V. A., E-mail: vamoshnikov@mail.ru

    Results obtained in the deposition of nanostructured zinc-oxide layers by hydrothermal synthesis as the basic method are presented. The possibility of controlling the structure and morphology of the layers is demonstrated. The important role of the procedure employed to form the nucleating layer is noted. The faceted hexagonal nanoprisms obtained are promising for the fabrication of solar cells based on oxide heterostructures, and aluminum-doped zinc-oxide layers with petal morphology, for the deposition of an antireflection layer. The results are compatible and promising for application in flexible electronics.

  8. High-Current-Density Vertical-Tunneling Transistors from Graphene/Highly Doped Silicon Heterostructures.

    PubMed

    Liu, Yuan; Sheng, Jiming; Wu, Hao; He, Qiyuan; Cheng, Hung-Chieh; Shakir, Muhammad Imran; Huang, Yu; Duan, Xiangfeng

    2016-06-01

    Scalable fabrication of vertical-tunneling transistors is presented based on heterostructures formed between graphene, highly doped silicon, and its native oxide. Benefiting from the large density of states of highly doped silicon, the tunneling transistors can deliver a current density over 20 A cm(-2) . This study demonstrates that the interfacial native oxide plays a crucial role in governing the carrier transport in graphene-silicon heterostructures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. p -n Junction Rectifying Characteristics of Purely n -Type GaN-Based Structures

    NASA Astrophysics Data System (ADS)

    Zuo, P.; Jiang, Y.; Ma, Z. G.; Wang, L.; Zhao, B.; Li, Y. F.; Yue, G.; Wu, H. Y.; Yan, H. J.; Jia, H. Q.; Wang, W. X.; Zhou, J. M.; Sun, Q.; Liu, W. M.; Ji, An-Chun; Chen, H.

    2017-08-01

    The GaN-based p -n junction rectifications are important in the development of high-power electronics. Here, we demonstrate that p -n junction rectifying characteristics can be realized with pure n -type structures by inserting an (In,Ga)N quantum well into the GaN /(Al ,Ga )N /GaN double heterostructures. Unlike the usual barriers, the insertion of an (In,Ga)N quantum well, which has an opposite polarization field to that of the (Al,Ga)N barrier, tailors significantly the energy bands of the system. The lifted energy level of the GaN spacer and the formation of the (In ,Ga )N /GaN interface barrier can improve the reverse threshold voltage and reduce the forward threshold voltage simultaneously, forming the p -n junction rectifying characteristics.

  10. Interface exciton at lateral heterojunction of monolayer semiconductors

    NASA Astrophysics Data System (ADS)

    Lau, Ka Wai; Gong, Zhirui; Yu, Hongyi; Yao, Wang

    Heterostructures based on 2D transition metal dichalcogenides (TMDs) have attracted extensive research interest recently due to the appealing physical properties of TMDs and new geometries for forming heterostructures. One such heterostructure is the lateral heterojunctions seamlessly formed in a monolayer crystal between two different types of TMDs, e.g. WSe2 and MoSe2. Such heterojunction exhibits a type II band alignment, with electrons (holes) having lower energy on the MoSe2 (WSe2) region. Here we present the study of an interface exciton at the 1D lateral junction of monolayer TMDs. With the distance dependent screening, we find that the interface exciton can have strong binding even though the electron-hole separation is much larger compare to the 2D excitons in TMDs. Neutral excitons are studied using two different approaches: the solution based on a real-space tight binding model, and the perturbation expansion in a hydrogen-like basis in an effective mass model. We have also used the latter method to study charged excitons at a MoSe2-WSe2-MoSe2 nanoscale junction. The work is supported by the Research Grant Council of Hong Kong (HKU705513P, HKU9/CRF/13G), the Croucher Foundation, and the HKU OYRA.

  11. Spin valve-like magnetic tunnel diode exhibiting giant positive junction magnetoresistance at low temperature in Co2MnSi/SiO2/p-Si heterostructure

    NASA Astrophysics Data System (ADS)

    Maji, Nilay; Kar, Uddipta; Nath, T. K.

    2018-02-01

    The rectifying magnetic tunnel diode has been fabricated by growing Co2MnSi (CMS) Heusler alloy film carefully on a properly cleaned p-Si (100) substrate with the help of electron beam physical vapor deposition technique and its structural, electrical and magnetic properties have been experimentally investigated in details. The electronic- and magneto-transport properties at various isothermal conditions have been studied in the temperature regime of 78-300 K. The current-voltage ( I- V) characteristics of the junction show an excellent rectifying magnetic tunnel diode-like behavior throughout that temperature regime. The current ( I) across the junction has been found to decrease with the application of a magnetic field parallel to the plane of the CMS film clearly indicating positive junction magnetoresistance (JMR) of the heterostructure. When forward dc bias is applied to the heterostructure, the I- V characteristics are highly influenced on turning on the field B = 0.5 T at 78 K, and the forward current reduces abruptly (99.2% current reduction at 3 V) which is nearly equal to the order of the magnitude of the current observed in the reverse bias. Hence, our Co2MnSi/SiO2/p-Si heterostructure can perform in off ( I off)/on ( I on) states with the application of non-zero/zero magnetic field like a spin valve at low temperature (78 K).

  12. Tuning Light Emission of a Pressure-Sensitive Silicon/ZnO Nanowires Heterostructure Matrix through Piezo-phototronic Effects.

    PubMed

    Chen, Mengxiao; Pan, Caofeng; Zhang, Taiping; Li, Xiaoyi; Liang, Renrong; Wang, Zhong Lin

    2016-06-28

    Based on white light emission at silicon (Si)/ZnO hetrerojunction, a pressure-sensitive Si/ZnO nanowires heterostructure matrix light emitting diode (LED) array is developed. The light emission intensity of a single heterostructure LED is tuned by external strain: when the applied stress keeps increasing, the emission intensity first increases and then decreases with a maximum value at a compressive strain of 0.15-0.2%. This result is attributed to the piezo-phototronic effect, which can efficiently modulate the LED emission intensity by utilizing the strain-induced piezo-polarization charges. It could tune the energy band diagrams at the junction area and regulate the optoelectronic processes such as charge carriers generation, separation, recombination, and transport. This study achieves tuning silicon based devices through piezo-phototronic effect.

  13. Tuning Carrier Tunneling in van der Waals Heterostructures for Ultrahigh Detectivity.

    PubMed

    Vu, Quoc An; Lee, Jin Hee; Nguyen, Van Luan; Shin, Yong Seon; Lim, Seong Chu; Lee, Kiyoung; Heo, Jinseong; Park, Seongjun; Kim, Kunnyun; Lee, Young Hee; Yu, Woo Jong

    2017-01-11

    Semiconducting transition metal dichalcogenides (TMDs) are promising materials for photodetection over a wide range of visible wavelengths. Photodetection is generally realized via a phototransistor, photoconductor, p-n junction photovoltaic device, and thermoelectric device. The photodetectivity, which is a primary parameter in photodetector design, is often limited by either low photoresponsivity or a high dark current in TMDs materials. Here, we demonstrated a highly sensitive photodetector with a MoS 2 /h-BN/graphene heterostructure, by inserting a h-BN insulating layer between graphene electrode and MoS 2 photoabsorber, the dark-carriers were highly suppressed by the large electron barrier (2.7 eV) at the graphene/h-BN junction while the photocarriers were effectively tunneled through small hole barrier (1.2 eV) at the MoS 2 /h-BN junction. With both high photocurrent/dark current ratio (>10 5 ) and high photoresponsivity (180 AW -1 ), ultrahigh photodetectivity of 2.6 × 10 13 Jones was obtained at 7 nm thick h-BN, about 100-1000 times higher than that of previously reported MoS 2 -based devices.

  14. Proximity coupling in superconductor-graphene heterostructures.

    PubMed

    Lee, Gil-Ho; Lee, Hu-Jong

    2018-05-01

    This review discusses the electronic properties and the prospective research directions of superconductor-graphene heterostructures. The basic electronic properties of graphene are introduced to highlight the unique possibility of combining two seemingly unrelated physics, superconductivity and relativity. We then focus on graphene-based Josephson junctions, one of the most versatile superconducting quantum devices. The various theoretical methods that have been developed to describe graphene Josephson junctions are examined, together with their advantages and limitations, followed by a discussion on the advances in device fabrication and the relevant length scales. The phase-sensitive properties and phase-particle dynamics of graphene Josephson junctions are examined to provide an understanding of the underlying mechanisms of Josephson coupling via graphene. Thereafter, microscopic transport of correlated quasiparticles produced by Andreev reflections at superconducting interfaces and their phase-coherent behaviors are discussed. Quantum phase transitions studied with graphene as an electrostatically tunable 2D platform are reviewed. The interplay between proximity-induced superconductivity and the quantum-Hall phase is discussed as a possible route to study topological superconductivity and non-Abelian physics. Finally, a brief summary on the prospective future research directions is given.

  15. Proximity coupling in superconductor-graphene heterostructures

    NASA Astrophysics Data System (ADS)

    Lee, Gil-Ho; Lee, Hu-Jong

    2018-05-01

    This review discusses the electronic properties and the prospective research directions of superconductor-graphene heterostructures. The basic electronic properties of graphene are introduced to highlight the unique possibility of combining two seemingly unrelated physics, superconductivity and relativity. We then focus on graphene-based Josephson junctions, one of the most versatile superconducting quantum devices. The various theoretical methods that have been developed to describe graphene Josephson junctions are examined, together with their advantages and limitations, followed by a discussion on the advances in device fabrication and the relevant length scales. The phase-sensitive properties and phase-particle dynamics of graphene Josephson junctions are examined to provide an understanding of the underlying mechanisms of Josephson coupling via graphene. Thereafter, microscopic transport of correlated quasiparticles produced by Andreev reflections at superconducting interfaces and their phase-coherent behaviors are discussed. Quantum phase transitions studied with graphene as an electrostatically tunable 2D platform are reviewed. The interplay between proximity-induced superconductivity and the quantum-Hall phase is discussed as a possible route to study topological superconductivity and non-Abelian physics. Finally, a brief summary on the prospective future research directions is given.

  16. Graphene oxide/graphene vertical heterostructure electrodes for highly efficient and flexible organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Jia, S.; Sun, H. D.; Du, J. H.; Zhang, Z. K.; Zhang, D. D.; Ma, L. P.; Chen, J. S.; Ma, D. G.; Cheng, H. M.; Ren, W. C.

    2016-05-01

    The relatively high sheet resistance, low work function and poor compatibility with hole injection layers (HILs) seriously limit the applications of graphene as transparent conductive electrodes (TCEs) for organic light emitting diodes (OLEDs). Here, a graphene oxide/graphene (GO/G) vertical heterostructure is developed as TCEs for high-performance OLEDs, by directly oxidizing the top layer of three-layer graphene films with ozone treatment. Such GO/G heterostructure electrodes show greatly improved optical transmittance, a large work function, high stability, and good compatibility with HIL materials (MoO3 in this work). Moreover, the conductivity of the heterostructure is not sacrificed compared to the pristine three-layer graphene electrodes, but is significantly higher than that of pristine two-layer graphene films. In addition to high flexibility, OLEDs with different emission colors based on the GO/G heterostructure TCEs show much better performance than those based on indium tin oxide (ITO) anodes. Green OLEDs with GO/G heterostructure electrodes have the maximum current efficiency and power efficiency, as high as 82.0 cd A-1 and 98.2 lm W-1, respectively, which are 36.7% (14.8%) and 59.2% (15.0%) higher than those with pristine graphene (ITO) anodes. These findings open up the possibility of using graphene for next generation high-performance flexible and wearable optoelectronics with high stability.The relatively high sheet resistance, low work function and poor compatibility with hole injection layers (HILs) seriously limit the applications of graphene as transparent conductive electrodes (TCEs) for organic light emitting diodes (OLEDs). Here, a graphene oxide/graphene (GO/G) vertical heterostructure is developed as TCEs for high-performance OLEDs, by directly oxidizing the top layer of three-layer graphene films with ozone treatment. Such GO/G heterostructure electrodes show greatly improved optical transmittance, a large work function, high stability, and good compatibility with HIL materials (MoO3 in this work). Moreover, the conductivity of the heterostructure is not sacrificed compared to the pristine three-layer graphene electrodes, but is significantly higher than that of pristine two-layer graphene films. In addition to high flexibility, OLEDs with different emission colors based on the GO/G heterostructure TCEs show much better performance than those based on indium tin oxide (ITO) anodes. Green OLEDs with GO/G heterostructure electrodes have the maximum current efficiency and power efficiency, as high as 82.0 cd A-1 and 98.2 lm W-1, respectively, which are 36.7% (14.8%) and 59.2% (15.0%) higher than those with pristine graphene (ITO) anodes. These findings open up the possibility of using graphene for next generation high-performance flexible and wearable optoelectronics with high stability. Electronic supplementary information (ESI) available: XPS spectra, Raman spectra, sheet resistance and transmittance of graphene films with different numbers of layers and different ozone treatment times, doping effect of MoO3 on graphene and GO/G electrodes, performance of green OLEDs with different graphene anodes, a movie showing the flexibility of device. See DOI: 10.1039/c6nr01649a

  17. Surface- and interface-engineered heterostructures for solar hydrogen generation

    NASA Astrophysics Data System (ADS)

    Chen, Xiangyan; Li, Yanrui; Shen, Shaohua

    2018-04-01

    Photoelectrochemical (PEC) water splitting based on semiconductor photoelectrodes provides a promising platform for reducing environmental pollution and solving the energy crisis by developing clean, sustainable and environmentally friendly hydrogen energy. In this context, metal oxides with their advantages including low cost, good chemical stability and environmental friendliness, have attracted extensive attention among the investigated candidates. However, the large bandgap, poor charge transfer ability and high charge recombination rate limit the PEC performance of metal oxides as photoelectrodes. To solve this limitation, many approaches toward enhanced PEC water splitting performance, which focus on surface and interface engineering, have been presented. In this topical review, we concentrate on the heterostructure design of some typical metal oxides with narrow bandgaps (e.g. Fe2O3, WO3, BiVO4 and Cu2O) as photoelectrodes. An overview of the surface- and interface-engineered heterostructures, including semiconductor heterojunctions, surface protection, surface passivation and cocatalyst decoration, will be given to introduce the recent advances in metal oxide heterostructures for PEC water splitting. This article aims to provide fundamental references and principles for designing metal oxide heterostructures with high activity and stability as photoelectrodes for PEC solar hydrogen generation.

  18. Formation and characterization of Ta2O5/TaOx films formed by O ion implantation

    NASA Astrophysics Data System (ADS)

    Ruffell, S.; Kurunczi, P.; England, J.; Erokhin, Y.; Hautala, J.; Elliman, R. G.

    2013-07-01

    Ta2O5/TaOx (oxide/suboxide) heterostructures are fabricated by high fluence O ion-implantation into deposited Ta films. The resultant films are characterized by depth profiling X-ray photoelectron spectroscopy (XPS), cross-sectional transmission electron microscopy (XTEM), four-point probe, and current-voltage and capacitance-voltage measurements. The measurements show that Ta2O5/TaOx oxide/suboxide heterostructures can be fabricated with the relative thicknesses of the layers controlled by implantation energy and fluence. Electrical measurements show that this approach has promise for high volume manufacturing of resistive switching memory devices based on oxide/suboxide heterostructures.

  19. Engineering p-n junctions and bandgap tuning of InSe nanolayers by controlled oxidation

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Nilanthy; Kudrynskyi, Zakhar R.; Smith, Emily F.; Fay, Michael W.; Makarovsky, Oleg; Kovalyuk, Zakhar D.; Eaves, Laurence; Beton, Peter H.; Patanè, Amalia

    2017-06-01

    Exploitation of two-dimensional (2D) van der Waals (vdW) crystals can be hindered by the deterioration of the crystal surface over time due to oxidation. On the other hand, the existence of a stable oxide at room temperature can offer prospects for several applications. Here we report on the chemical reactivity of γ-InSe, a recent addition to the family of 2D vdW crystals. We demonstrate that, unlike other 2D materials, InSe nanolayers can be chemically stable under ambient conditions. However, both thermal- and photo-annealing in air induces the oxidation of the InSe surface, which converts a few surface layers of InSe into In2O3, thus forming an InSe/In2O3 heterostructure with distinct and interesting electronic properties. The oxidation can be activated in selected areas of the flake by laser writing or prevented by capping the InSe surface with an exfoliated flake of hexagonal boron nitride. We exploit the controlled oxidation of p-InSe to fabricate p-InSe/n-In2O3 junction diodes with room temperature electroluminescence and spectral response from the near-infrared to the visible and near-ultraviolet ranges. These findings reveal the limits and potential of thermal- and photo-oxidation of InSe in future technologies.

  20. Fabrication and characterization of copper oxide (CuO)–gold (Au)–titania (TiO{sub 2}) and copper oxide (CuO)–gold (Au)–indium tin oxide (ITO) nanowire heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, Nitin, E-mail: nchopra@eng.ua.edu; Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487; Shi, Wenwu

    2014-10-15

    Nanoscale heterostructures composed of standing copper oxide nanowires decorated with Au nanoparticles and shells of titania and indium tin oxide were fabricated. The fabrication process involved surfactant-free and wet-chemical nucleation of gold nanoparticles on copper oxide nanowires followed by a line-of-sight sputtering of titania or indium tin oxide. The heterostructures were characterized using high resolution electron microscopy, diffraction, and energy dispersive spectroscopy. The interfaces, morphologies, crystallinity, phases, and chemical compositions were analyzed. The process of direct nucleation of gold nanoparticles on copper oxide nanoparticles resulted in low energy interface with aligned lattice for both the components. Coatings of polycrystalline titaniamore » or amorphous indium tin oxide were deposited on standing copper oxide nanowire–gold nanoparticle heterostructures. Self-shadowing effect due to standing nanowire heterostructures was observed for line-of-sight sputter deposition of titania or indium tin oxide coatings. Finally, the heterostructures were studied using Raman spectroscopy and ultraviolet–visible spectroscopy, including band gap energy analysis. Tailing in the band gap energy at longer wavelengths (or lower energies) was observed for the nanowire heterostructures. - Highlights: • Heterostructures comprised of CuO nanowires coated with Au nanoparticles. • Au nanoparticles exhibited nearly flat and low energy interface with nanowire. • Heterostructures were further sputter-coated with oxide shell of TiO{sub 2} or ITO. • The process resulted in coating of polycrystalline TiO{sub 2} and amorphous ITO shell.« less

  1. Challenges and opportunities of ZnO-related single crystalline heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozuka, Y.; Tsukazaki, A.; PRESTO, Japan Science and Technology Agency

    2014-03-15

    Recent technological advancement in ZnO heterostructures has expanded the possibility of device functionalities to various kinds of applications. In order to extract novel device functionalities in the heterostructures, one needs to fabricate high quality films and interfaces with minimal impurities, defects, and disorder. With employing molecular-beam epitaxy and single crystal ZnO substrates, the density of residual impurities and defects can be drastically reduced and the optical and electrical properties have been dramatically improved for the ZnO films and heterostructures with Mg{sub x}Zn{sub 1-x}O. Here, we overview such recent technological advancement from various aspects of application. Towards optoelectronic devices such asmore » a light emitter and a photodetector in an ultraviolet region, the development of p-type ZnO and the fabrication of excellent Schottky contact, respectively, have been subjected to intensive studies for years. For the former, the fine tuning of the growth conditions to make Mg{sub x}Zn{sub 1-x}O as intrinsic as possible has opened the possibilities of making p-type Mg{sub x}Zn{sub 1-x}O through NH{sub 3} doping method. For the latter, conducting and transparent polymer films spin-coated on Mg{sub x}Zn{sub 1-x}O was shown to give almost ideal Schottky junctions. The wavelength-selective detection can be realized with varying the Mg content. From the viewpoint of electronic devices, two-dimensional electrons confined at the Mg{sub x}Zn{sub 1-x}O/ZnO interfaces are promising candidate for quantum devices because of high electron mobility and strong electron-electron correlation effect. These wonderful features and tremendous opportunities in ZnO-based heterostructures make this system unique and promising in oxide electronics and will lead to new quantum functionalities in optoelectronic devices and electronic applications with lower energy consumption and high performance.« less

  2. Structural “ δ Doping” to Control Local Magnetization in Isovalent Oxide Heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, E. J.; He, Q.; Ghosh, S.

    Modulation and δ-doping strategies, in which atomically thin layers of charged dopants are precisely deposited within a heterostructure, have played enabling roles in the discovery of new physical behavior in electronic materials. Here in this paper, we demonstrate a purely structural “δ-doping” strategy in complex oxide heterostructures, in which atomically thin manganite layers are inserted into an isovalent manganite host, thereby modifying the local rotations of corner-connected MnO 6 octahedra. Combining scanning transmission electron microscopy, polarized neutron reflectometry, and density functional theory, we reveal how local magnetic exchange interactions are enhanced within the spatially confined regions of suppressed octahedral rotations.more » Finally, the combined experimental and theoretical results illustrate the potential to utilize noncharge-based approaches to “doping” in order to enhance or suppress functional properties within spatially confined regions of oxide heterostructures.« less

  3. Structural “ δ Doping” to Control Local Magnetization in Isovalent Oxide Heterostructures

    DOE PAGES

    Moon, E. J.; He, Q.; Ghosh, S.; ...

    2017-11-08

    Modulation and δ-doping strategies, in which atomically thin layers of charged dopants are precisely deposited within a heterostructure, have played enabling roles in the discovery of new physical behavior in electronic materials. Here in this paper, we demonstrate a purely structural “δ-doping” strategy in complex oxide heterostructures, in which atomically thin manganite layers are inserted into an isovalent manganite host, thereby modifying the local rotations of corner-connected MnO 6 octahedra. Combining scanning transmission electron microscopy, polarized neutron reflectometry, and density functional theory, we reveal how local magnetic exchange interactions are enhanced within the spatially confined regions of suppressed octahedral rotations.more » Finally, the combined experimental and theoretical results illustrate the potential to utilize noncharge-based approaches to “doping” in order to enhance or suppress functional properties within spatially confined regions of oxide heterostructures.« less

  4. State-of-the-art Architectures and Technologies of High-Efficiency Solar Cells Based on III-V Heterostructures for Space and Terrestrial Applications

    NASA Astrophysics Data System (ADS)

    Pakhanov, N. A.; Andreev, V. M.; Shvarts, M. Z.; Pchelyakov, O. P.

    2018-03-01

    Multi-junction solar cells based on III-V compounds are the most efficient converters of solar energy to electricity and are widely used in space solar arrays and terrestrial photovoltaic modules with sunlight concentrators. All modern high-efficiency III-V solar cells are based on the long-developed triple-junction III-V GaInP/GaInAs/Ge heterostructure and have an almost limiting efficiency for a given architecture — 30 and 41.6% for space and terrestrial concentrated radiations, respectively. Currently, an increase in efficiency is achieved by converting from the 3-junction to the more efficient 4-, 5-, and even 6-junction III-V architectures: growth technologies and methods of post-growth treatment of structures have been developed, new materials with optimal bandgaps have been designed, and crystallographic parameters have been improved. In this review, we consider recent achievements and prospects for the main directions of research and improvement of architectures, technologies, and materials used in laboratories to develop solar cells with the best conversion efficiency: 35.8% for space, 38.8% for terrestrial, and 46.1% for concentrated sunlight. It is supposed that by 2020, the efficiency will approach 40% for direct space radiation and 50% for concentrated terrestrial solar radiation. This review considers the architecture and technologies of solar cells with record-breaking efficiency for terrestrial and space applications. It should be noted that in terrestrial power plants, the use of III-V SCs is economically advantageous in systems with sunlight concentrators.

  5. Observation of Switchable Photoresponse of a Monolayer WSe2-MoS2 Lateral Heterostructure via Photocurrent Spectral Atomic Force Microscopic Imaging.

    PubMed

    Son, Youngwoo; Li, Ming-Yang; Cheng, Chia-Chin; Wei, Kung-Hwa; Liu, Pingwei; Wang, Qing Hua; Li, Lain-Jong; Strano, Michael S

    2016-06-08

    In the pursuit of two-dimensional (2D) materials beyond graphene, enormous advances have been made in exploring the exciting and useful properties of transition metal dichalcogenides (TMDCs), such as a permanent band gap in the visible range and the transition from indirect to direct band gap due to 2D quantum confinement, and their potential for a wide range of device applications. In particular, recent success in the synthesis of seamless monolayer lateral heterostructures of different TMDCs via chemical vapor deposition methods has provided an effective solution to producing an in-plane p-n junction, which is a critical component in electronic and optoelectronic device applications. However, spatial variation of the electronic and optoelectonic properties of the synthesized heterojunction crystals throughout the homogeneous as well as the lateral junction region and the charge carrier transport behavior at their nanoscale junctions with metals remain unaddressed. In this work, we use photocurrent spectral atomic force microscopy to image the current and photocurrent generated between a biased PtIr tip and a monolayer WSe2-MoS2 lateral heterostructure. Current measurements in the dark in both forward and reverse bias reveal an opposite characteristic diode behavior for WSe2 and MoS2, owing to the formation of a Schottky barrier of dissimilar properties. Notably, by changing the polarity and magnitude of the tip voltage applied, pixels that show the photoresponse of the heterostructure are observed to be selectively switched on and off, allowing for the realization of a hyper-resolution array of the switchable photodiode pixels. This experimental approach has significant implications toward the development of novel optoelectronic technologies for regioselective photodetection and imaging at nanoscale resolutions. Comparative 2D Fourier analysis of physical height and current images shows high spatial frequency variations in substrate/MoS2 (or WSe2) contact that exceed the frequencies imposed by the underlying substrates. These results should provide important insights in the design and understanding of electronic and optoelectronic devices based on quantum confined atomically thin 2D lateral heterostructures.

  6. Origin of the magnetoresistance in oxide tunnel junctions determined through electric polarization control of the interface

    DOE PAGES

    Inoue, Hisashi; Swartz, Adrian G.; Harmon, Nicholas J.; ...

    2015-11-11

    The observed magnetoresistance (MR) in three-terminal (3T) ferromagnet-nonmagnet (FM-NM) tunnel junctions has historically been assigned to ensemble dephasing (Hanle effect) of a spin accumulation, thus offering a powerful approach for characterizing the spin lifetime of candidate materials for spintronics applications. However, due to crucial discrepancies of the extracted spin parameters with known materials properties, this interpretation has come under intense scrutiny. By employing epitaxial artificial dipoles as the tunnel barrier in oxide heterostructures, the band alignments between the FM and NM channels can be controllably engineered, providing an experimental platform for testing the predictions of the various spin accumulation models.more » Using this approach, we have been able to definitively rule out spin accumulation as the origin of the 3T MR. Instead, we assign the origin of the magnetoresistance to spin-dependent hopping through defect states in the barrier, a fundamental phenomenon seen across diverse systems. In conclusion, a theoretical framework is developed that can account for the signal amplitude, linewidth, and anisotropy.« less

  7. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials

    PubMed Central

    Yu, Woo Jong; Liu, Yuan; Zhou, Hailong; Yin, Anxiang; Li, Zheng; Huang, Yu

    2014-01-01

    Layered materials of graphene and MoS2, for example, have recently emerged as an exciting material system for future electronics and optoelectronics. Vertical integration of layered materials can enable the design of novel electronic and photonic devices. Here, we report highly efficient photocurrent generation from vertical heterostructures of layered materials. We show that vertically stacked graphene–MoS2–graphene and graphene–MoS2–metal junctions can be created with a broad junction area for efficient photon harvesting. The weak electrostatic screening effect of graphene allows the integration of single or dual gates under and/or above the vertical heterostructure to tune the band slope and photocurrent generation. We demonstrate that the amplitude and polarity of the photocurrent in the gated vertical heterostructures can be readily modulated by the electric field of an external gate to achieve a maximum external quantum efficiency of 55% and internal quantum efficiency up to 85%. Our study establishes a method to control photocarrier generation, separation and transport processes using an external electric field. PMID:24162001

  8. New connecting elements for cascade photoelectric converters based on InP

    NASA Astrophysics Data System (ADS)

    Marichev, A. E.; Pushnyi, B. V.; Levin, R. V.; Lebedeva, N. M.; Prasolov, N. D.; Kontrosh, E. V.

    2018-03-01

    In this paper, we report on the initial studies of connecting elements for cascade photodetectors. The heterostructures used in this work are based on InP. As a connecting element, it is proposed to use nanocrystalline inclusions instead of the tunnel junction. GaP nanocrystals are most suitable for this purpose because this material does not cause absorption of the incident radiation.

  9. Catalyst-free fabrication of novel ZnO/CuO core-Shell nanowires heterojunction: Controlled growth, structural and optoelectronic properties

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Arif; Wahab, Yussof; Muhammad, Rosnita; Tahir, Muhammad; Sakrani, Samsudi

    2018-03-01

    Development of controlled growth and vertically aligned ZnO/CuO core-shell heterojunction nanowires (NWs) with large area by a catalyst free vapor deposition and oxidation approach has been investigated. Structural characterization reveals successful fabrication of a core ZnO nanowire having single crystalline hexagonal wurtzite structure along [002] direction and CuO nanostructure shell with thickness (8-10 nm) having polycrystalline monoclinic structure. The optical property analysis suggests that the reflectance spectrum of ZnO/CuO heterostructure nanowires is decreased by 18% in the visible range, which correspondingly shows high absorption in this region as compared to pristine ZnO nanowires. The current-voltage (I-V) characteristics of core-shell heterojunction nanowires measured by conductive atomic force microscopy (C-AFM) shows excellent rectifying behavior, which indicates the characteristics of a good p-n junction. The high-resolution transmission electron microscopy (HRTEM) has confirmed the sharp junction interface between the core-shell heterojunction nanowire arrays. The valence band offset and conduction band offset at ZnO/CuO heterointerfaces are measured to be 2.4 ± 0.05 and 0.23 ± 0.005 eV respectively, using X-ray photoelectron spectroscopy (XPS) and a type-II band alignment structure is found. The results of this study contribute to the development of new advanced device heterostructures for solar energy conversion and optoelectronics applications.

  10. High-temperature microelectromechanical pressure sensors based on a SOI heterostructure for an electronic automatic aircraft engine control system

    NASA Astrophysics Data System (ADS)

    Sokolov, Leonid V.

    2010-08-01

    There is a need of measuring distributed pressure on the aircraft engine inlet with high precision within a wide operating temperature range in the severe environment to improve the efficiency of aircraft engine control. The basic solutions and principles of designing high-temperature (to 523K) microelectromechanical pressure sensors based on a membrane-type SOI heterostructure with a monolithic integral tensoframe (MEMS-SOIMT) are proposed in accordance with the developed concept, which excludes the use of electric p-n junctions in semiconductor microelectromechanical sensors. The MEMS-SOIMT technology relies on the group processes of microelectronics and micromechanics for high-precision microprofiling of a three-dimension micromechanical structure, which exclude high-temperature silicon doping processes.

  11. Atomically thin p-n junctions with van der Waals heterointerfaces.

    PubMed

    Lee, Chul-Ho; Lee, Gwan-Hyoung; van der Zande, Arend M; Chen, Wenchao; Li, Yilei; Han, Minyong; Cui, Xu; Arefe, Ghidewon; Nuckolls, Colin; Heinz, Tony F; Guo, Jing; Hone, James; Kim, Philip

    2014-09-01

    Semiconductor p-n junctions are essential building blocks for electronic and optoelectronic devices. In conventional p-n junctions, regions depleted of free charge carriers form on either side of the junction, generating built-in potentials associated with uncompensated dopant atoms. Carrier transport across the junction occurs by diffusion and drift processes influenced by the spatial extent of this depletion region. With the advent of atomically thin van der Waals materials and their heterostructures, it is now possible to realize a p-n junction at the ultimate thickness limit. Van der Waals junctions composed of p- and n-type semiconductors--each just one unit cell thick--are predicted to exhibit completely different charge transport characteristics than bulk heterojunctions. Here, we report the characterization of the electronic and optoelectronic properties of atomically thin p-n heterojunctions fabricated using van der Waals assembly of transition-metal dichalcogenides. We observe gate-tunable diode-like current rectification and a photovoltaic response across the p-n interface. We find that the tunnelling-assisted interlayer recombination of the majority carriers is responsible for the tunability of the electronic and optoelectronic processes. Sandwiching an atomic p-n junction between graphene layers enhances the collection of the photoexcited carriers. The atomically scaled van der Waals p-n heterostructures presented here constitute the ultimate functional unit for nanoscale electronic and optoelectronic devices.

  12. Current rectifying and resistive switching in high density BiFeO3 nanocapacitor arrays on Nb-SrTiO3 substrates

    PubMed Central

    Zhao, Lina; Lu, Zengxing; Zhang, Fengyuan; Tian, Guo; Song, Xiao; Li, Zhongwen; Huang, Kangrong; Zhang, Zhang; Qin, Minghui; SujuanWu; Lu, Xubing; Zeng, Min; Gao, Xingsen; Dai, Jiyan; Liu, Jun-Ming

    2015-01-01

    Ultrahigh density well-registered oxide nanocapacitors are very essential for large scale integrated microelectronic devices. We report the fabrication of well-ordered multiferroic BiFeO3 nanocapacitor arrays by a combination of pulsed laser deposition (PLD) method and anodic aluminum oxide (AAO) template method. The capacitor cells consist of BiFeO3/SrRuO3 (BFO/SRO) heterostructural nanodots on conductive Nb-doped SrTiO3 (Nb-STO) substrates with a lateral size of ~60 nm. These capacitors also show reversible polarization domain structures, and well-established piezoresponse hysteresis loops. Moreover, apparent current-rectification and resistive switching behaviors were identified in these nanocapacitor cells using conductive-AFM technique, which are attributed to the polarization modulated p-n junctions. These make it possible to utilize these nanocapacitors in high-density (>100 Gbit/inch2) nonvolatile memories and other oxide nanoelectronic devices. PMID:25853937

  13. Rectifying magnetic tunnel diode like behavior in Co2MnSi/ZnO/p-Si heterostructure

    NASA Astrophysics Data System (ADS)

    Maji, Nilay; Nath, T. K.

    2018-04-01

    The rectifying magnetic tunnel diode like behavior has been observed in Co2MnSi/ZnO/p-Si heterostructure. At first an ultra thin layer of ZnO has been deposited on p-Si (100) substrate with the help of pulsed laser deposition (PLD). After that a highly spin-polarized Heusler alloy Co2MnSi (CMS) film (250 nm) has been grown on ZnO/p-Si using electron beam physical vapor deposition technique. The phase purity of the sample has been confirmed through high resolution X-Ray diffraction technique. The electrical transport properties have been investigated at various isothermal conditions in the temperature range of 77-300 K. The current-voltage characteristics exhibit an excellent rectifying tunnel diode like behavior throughout the temperature regime. The current (I) across the junction has been found to decrease with the application of an external magnetic field parallel to the plane of the CMS film clearly indicating positive junction magnetoresistance (JMR) of the heterostructure. The magnetic field dependent JMR behavior of our heterostructure has been investigated in the same temperature range. Our heterostructure clearly demonstrates a giant positive JMR at 78 K (˜264%) and it starts decreasing with increasing temperature. If we compare our results with earlier reported results on other heterostructures, it can be seen that the JMR value for our heterojunction saturates at a much lower external magnetic field, thus creating it a better alternative for spin tunnel diodes in upcoming spintronics device applications.

  14. Tunneling Diode Based on WSe2 /SnS2 Heterostructure Incorporating High Detectivity and Responsivity.

    PubMed

    Zhou, Xing; Hu, Xiaozong; Zhou, Shasha; Song, Hongyue; Zhang, Qi; Pi, Lejing; Li, Liang; Li, Huiqiao; Lü, Jingtao; Zhai, Tianyou

    2018-02-01

    van der Waals (vdW) heterostructures based on atomically thin 2D materials have led to a new era in next-generation optoelectronics due to their tailored energy band alignments and ultrathin morphological features, especially in photodetectors. However, these photodetectors often show an inevitable compromise between photodetectivity and photoresponsivity with one high and the other low. Herein, a highly sensitive WSe 2 /SnS 2 photodiode is constructed on BN thin film by exfoliating each material and manually stacking them. The WSe 2 /SnS 2 vdW heterostructure shows ultralow dark currents resulting from the depletion region at the junction and high direct tunneling current when illuminated, which is confirmed by the energy band structures and electrical characteristics fitted with direct tunneling. Thus, the distinctive WSe 2 /SnS 2 vdW heterostructure exhibits both ultrahigh photodetectivity of 1.29 × 10 13 Jones (I ph /I dark ratio of ≈10 6 ) and photoresponsivity of 244 A W -1 at a reverse bias under the illumination of 550 nm light (3.77 mW cm -2 ). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Physics of SrTiO3-based heterostructures and nanostructures: a review.

    PubMed

    Pai, Yun-Yi; Tylan-Tyler, Anthony; Irvin, Patrick; Levy, Jeremy

    2018-02-09

    This review provides a summary of the rich physics expressed within SrTiO 3 -based heterostructures and nanostructures. The intended audience is researchers who are working in the field of oxides, but also those with different backgrounds (e.g., semiconductor nanostructures). After reviewing the relevant properties of SrTiO 3 itself, we will then discuss the basics of SrTiO 3 -based heterostructures, how they can be grown, and how devices are typically fabricated. Next, we will cover the physics of these heterostructures, including their phase diagram and coupling between the various degrees of freedom. Finally, we will review the rich landscape of quantum transport phenomena, as well as the devices that elicit them.

  16. Noble-metal-free NiO@Ni-ZnO/reduced graphene oxide/CdS heterostructure for efficient photocatalytic hydrogen generation

    NASA Astrophysics Data System (ADS)

    Chen, Fayun; Zhang, Laijun; Wang, Xuewen; Zhang, Rongbin

    2017-11-01

    Noble-metal-free semiconductor materials are widely used for photocatalytic hydrogen generation because of their low cost. ZnO-based heterostructures with synergistic effects exhibit an effective photocatalytic activity. In this work, NiO@Ni-ZnO/reduced graphene oxide (rGO)/CdS heterostructures are synthesized by a multi-step method. rGO nanosheets and CdS nanoparticles were introduced into the heterostructures via a redox reaction and light-assisted growth, respectively. A novel Ni-induced electrochemical growth method was developed to prepare ZnO rods from Zn powder. NiO@Ni-ZnO/rGO/CdS heterostructures with a wide visible-light absorption range exhibited highly photocatalytic hydrogen generation rates under UV-vis and visible light irradiation. The enhanced photocatalytic activity is attributed to the Ni nanoparticles that act as cocatalysts for capturing photoexcited electrons and the improved synergistic effect between ZnO and CdS due to the rGO nanosheets acting as photoexcited carrier transport channels.

  17. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics.

    PubMed

    Yu, Lili; Lee, Yi-Hsien; Ling, Xi; Santos, Elton J G; Shin, Yong Cheol; Lin, Yuxuan; Dubey, Madan; Kaxiras, Efthimios; Kong, Jing; Wang, Han; Palacios, Tomás

    2014-06-11

    Two-dimensional (2D) materials have generated great interest in the past few years as a new toolbox for electronics. This family of materials includes, among others, metallic graphene, semiconducting transition metal dichalcogenides (such as MoS2), and insulating boron nitride. These materials and their heterostructures offer excellent mechanical flexibility, optical transparency, and favorable transport properties for realizing electronic, sensing, and optical systems on arbitrary surfaces. In this paper, we demonstrate a novel technology for constructing large-scale electronic systems based on graphene/molybdenum disulfide (MoS2) heterostructures grown by chemical vapor deposition. We have fabricated high-performance devices and circuits based on this heterostructure, where MoS2 is used as the transistor channel and graphene as contact electrodes and circuit interconnects. We provide a systematic comparison of the graphene/MoS2 heterojunction contact to more traditional MoS2-metal junctions, as well as a theoretical investigation, using density functional theory, of the origin of the Schottky barrier height. The tunability of the graphene work function with electrostatic doping significantly improves the ohmic contact to MoS2. These high-performance large-scale devices and circuits based on this 2D heterostructure pave the way for practical flexible transparent electronics.

  18. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures

    DOE PAGES

    Song, Tiancheng; Cai, Xinghan; Tu, Matisse Wei-Yuan; ...

    2018-05-03

    Magnetic multilayer devices that exploit magnetoresistance are the backbone of magnetic sensing and data storage technologies. Here, we report multiple-spin-filter magnetic tunnel junctions (sf-MTJs) based on van der Waals (vdW) heterostructures in which atomically thin chromium triiodide (CrI3) acts as a spin-filter tunnel barrier sandwiched between graphene contacts. We demonstrate tunneling magnetoresistance which is drastically enhanced with increasing CrI 3 layer thickness, reaching a record 19,000% for magnetic multilayer structures using four-layer sf-MTJs at low temperatures. Using magnetic circular dichroism measurements, we attribute these effects to the intrinsic layer-by-layer antiferromagnetic ordering of the atomically thin CrI 3. In conclusion, ourmore » work reveals the possibility to push magnetic information storage to the atomically thin limit and highlights CrI 3 as a superlative magnetic tunnel barrier for vdW heterostructure spintronic devices.« less

  19. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Tiancheng; Cai, Xinghan; Tu, Matisse Wei-Yuan

    Magnetic multilayer devices that exploit magnetoresistance are the backbone of magnetic sensing and data storage technologies. Here, we report multiple-spin-filter magnetic tunnel junctions (sf-MTJs) based on van der Waals (vdW) heterostructures in which atomically thin chromium triiodide (CrI3) acts as a spin-filter tunnel barrier sandwiched between graphene contacts. We demonstrate tunneling magnetoresistance which is drastically enhanced with increasing CrI 3 layer thickness, reaching a record 19,000% for magnetic multilayer structures using four-layer sf-MTJs at low temperatures. Using magnetic circular dichroism measurements, we attribute these effects to the intrinsic layer-by-layer antiferromagnetic ordering of the atomically thin CrI 3. In conclusion, ourmore » work reveals the possibility to push magnetic information storage to the atomically thin limit and highlights CrI 3 as a superlative magnetic tunnel barrier for vdW heterostructure spintronic devices.« less

  20. Single n-GaN microwire/p-Silicon thin film heterojunction light-emitting diode.

    PubMed

    Ahn, Jaehui; Mastro, Michael A; Klein, Paul B; Hite, Jennifer K; Feigelson, Boris; Eddy, Charles R; Kim, Jihyun

    2011-10-24

    The emission and waveguiding properties of individual GaN microwires as well as devices based on an n-GaN microwire/p-Si (100) junction were studied for relevance in optoelectronics and optical circuits. Pulsed photoluminescence of the GaN microwire excited in the transverse or longitudinal direction demonstrated gain. These n-type GaN microwires were positioned mechanically or by dielectrophoretic force onto pre-patterned electrodes on a p-type Si (100) substrate. Electroluminescence from this p-n point junction was characteristic of a heterostructure light-emitting diode. Additionally, waveguiding was observed along the length of the microwire for light originating from photoluminescence as well as from electroluminescence generated at the p-n junction. © 2011 Optical Society of America

  1. Electrical properties of thermoelectric cobalt Ca3Co4O9 epitaxial heterostructures

    NASA Astrophysics Data System (ADS)

    Guo, Haizhong; Wang, Shufang; Wang, Le; Jin, Kui-juan; Chen, Shanshan; Fu, Guangsheng; Ge, Chen; Lu, Huibin; Wang, Can; He, Meng; Yang, Guozhen

    2013-03-01

    Heterostructures fabricated from layered cobalt oxides offer substantial advantages for thermoelectric applications. C-axis-oriented Ca3Co4O9 (CCO) thin films on SrTiO3 substrates and Ca3Co4O9/SrTi0.993Nb0.007O3 p-n heterojunctions were fabricated by pulsed laser deposition. The measurements of in-plane resistivity, thermopower, and magnetic properties performed on the Ca3Co4O9 thin films were found to be comparable to ab-plane those of the single crystals due to good orientation of the films. The temperature dependence of the electrical transport properties of Ca3Co4O9/SrTi0.993Nb0.007O3 p-n heterojunction was also investigated. The junction shows two distinctive transport mechanisms at different temperature regimes under forward bias: tunneling across the Schottky barrier in the temperature range of 100-380 K, and tunneling mechanism at low bias and thermal emission mechanism at high bias between 10 and 100 K. However, for the case of low reverse bias, the trap assisted tunneling process should be considered for the leakage current. Negative magnetoresistance effect is observed at low temperatures, related to the electron spin-dependent scattering and the interface resistance of the heterostructures.

  2. Semiconductor to Metal Transition Characteristics of VO2/NiO Epitaxial Heterostructures Integrated with Si(100)

    NASA Astrophysics Data System (ADS)

    Molaei, Roya

    The novel functionalities of Vanadium dioxide (VO2), such as, several orders of magnitude transition in resistivity and IR transmittance, provide the exciting opportunity for the development of next generation memory, sensor, and field-effect based devices. A critical issue in the development of practical devices based on metal oxides is the integration of high quality epitaxial oxide thin films with the existing silicon technology which is based on silicon (100) substrates. However, silicon is not suitable for epitaxial growth of oxides owing to its tendency to readily form an amorphous oxide layer or silicide at the film-substrate interface. The oxide films deposited directly on silicon exhibit poor crystallinity and are not suitable for device applications. To overcome this challenge, appropriate substrate templates must be developed for the growth of oxide thin films on silicon substrates. The primary objective of this dissertation was to develop an integration methodology of VO2 with Si (100) substrates so they could be used in "smart" sensor type of devices along with other multifunctional devices on the same silicon chip. This was achieved by using a NiO/c- YSZ template layer deposited in situ. It will be shown that if the deposition conditions are controlled properly. This approach was used to integrate VO 2 thin films with Si (100) substrates using pulsed laser deposition (PLD) technique. The deposition methodology of integrating VO2 thin films on silicon using various other template layers will also be discussed. Detailed epitaxial relationship of NiO/c-YSZ/Si(100) heterostructures as a template to growth of VO2 as well as were studied. We also were able to create a p-n junction within a single NiO epilayer through subsequent nanosecond laser annealing, as well as established a structure-property correlation in NiO/c-YSZ/Si(100) thin film epitaxial heterostructures with especial emphasis on the stoichiometry and crystallographic characteristics. NiO/c-YSZ/Si(100) heterostructures were used as template to grow fully relaxed VO2 thin films. The detailed x-ray diffraction, transmission electron microscopy (TEM), electrical characterization results for the deposited films will be presented. In the framework on domain matching epitaxy, epitaxial growth of VO2 (tetragonal crystal structure at growth temperature) on NiO has been explained. Our detailed phi-scan X-ray diffraction measurements corroborate our understanding of the epitaxial growth and in-plane atomic arrangements at the interface. It was observed that the transition characteristics (sharpness, over which electrical property changes are completed, amplitude, transition temperature, and hysteresis) are a strong function of microstructure, strain, and stoichiometry. We have shown that by the choosing the right template layer, strain in the VO2 thin films can be fully relaxed and near-bulk VO2 transition temperatures can be achieved. Finally, I will present my research work on modification of semiconductor-to-metal transition characteristics and effect on room temperature magnetic properties of VO2 thin films upon laser annealing. While the microstructure (epitaxy, crystalline quality etc.) and phase were preserved, we envisage these changes to occur as a result of introduction of oxygen vacancies upon laser treatment.

  3. Vertical field effect tunneling transistor based on graphene-ultrathin Si nanomembrane heterostructures

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy; Jang, Houk; Bok Lee, Jae; Chu, Hyunwoo; Kim, Seong Dae; Ahn, Jong-Hyun

    2015-12-01

    Graphene-based heterostructured vertical transistors have attracted a great deal of research interest. Herein we propose a Si-based technology platform for creating graphene/ultrathin semiconductor/metal (GSM) junctions, which can be applied to large-scale and low-power electronics compatible with a variety of substrates. We fabricated graphene/Si nanomembrane (NM)/metal vertical heterostructures by using a dry transfer technique to transfer Si NMs onto chemical vapor deposition-grown graphene layers. The resulting van der Waals interfaces between graphene and p-Si NMs exhibited nearly ideal Schottky barrier behavior. Due to the low density of states of graphene, the graphene/Si NM Schottky barrier height can be modulated by modulating the band profile in the channel region, yielding well-defined current modulation. We obtained a maximum current on/off ratio (Ion/Ioff) of up to ˜103, with a current density of 102 A cm-2. We also observed significant dependence of Schottky barrier height Δφb on the thickness of the Si NMs. We confirmed that the transport in these devices is dominated by the effects of the graphene/Si NM Schottky barrier.

  4. Carbon-Nanotube-Confined Vertical Heterostructures with Asymmetric Contacts.

    PubMed

    Zhang, Jin; Zhang, Kenan; Xia, Bingyu; Wei, Yang; Li, Dongqi; Zhang, Ke; Zhang, Zhixing; Wu, Yang; Liu, Peng; Duan, Xidong; Xu, Yong; Duan, Wenhui; Fan, Shoushan; Jiang, Kaili

    2017-10-01

    Van der Waals (vdW) heterostructures have received intense attention for their efficient stacking methodology with 2D nanomaterials in vertical dimension. However, it is still a challenge to scale down the lateral size of vdW heterostructures to the nanometer and make proper contacts to achieve optimized performances. Here, a carbon-nanotube-confined vertical heterostructure (CCVH) is employed to address this challenge, in which 2D semiconductors are asymmetrically sandwiched by an individual metallic single-walled carbon nanotube (SWCNT) and a metal electrode. By using WSe 2 and MoS 2 , the CCVH can be made into p-type and n-type field effect transistors with high on/off ratios even when the channel length is 3.3 nm. A complementary inverter was further built with them, indicating their potential in logic circuits with a high integration level. Furthermore, the Fermi level of SWCNTs can be efficiently modulated by the gate voltage, making it competent for both electron and hole injection in the CCVHs. This unique property is shown by the transition of WSe 2 CCVH from unipolar to bipolar, and the transition of WSe 2 /MoS 2 from p-n junction to n-n junction under proper source-drain biases and gate voltages. Therefore, the CCVH, as a member of 1D/2D mixed heterostructures, shows great potentials in future nanoelectronics and nano-optoelectronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Ferroelectricity-induced resistive switching in Pb(Zr0.52Ti0.48)O3/Pr0.7Ca0.3MnO3/Nb-doped SrTiO3 epitaxial heterostructure

    NASA Astrophysics Data System (ADS)

    Md. Sadaf, Sharif; Mostafa Bourim, El; Liu, Xinjun; Hasan Choudhury, Sakeb; Kim, Dong-Wook; Hwang, Hyunsang

    2012-03-01

    We investigated the effect of a ferroelectric Pb(Zr0.52Ti0.48)O3 (PZT) thin film on the generation of resistive switching in a stacked Pr0.7Ca0.3MnO3 (PCMO)/Nb-doped SrTiO3 (Nb:STO) heterostructure forming a p-n junction. To promote the ferroelectric effect, the thin PZT active layer was deposited on an epitaxially grown p-type PCMO film on a lattice-matched n-type Nb:STO single crystal. It was concluded that the observed resistive switching behavior in the all-perovskite Pt/PZT/PCMO/Nb:STO heterostructure was related to the modulation of PCMO/Nb:STO p-n junction's depletion width, which was caused either by the PZT ferroelectric polarization field effect, the electrochemical drift of oxygen ions under an electric field, or both simultaneously.

  6. Synthesis of Metal-Oxide/Carbon-Fiber Heterostructures and Their Properties for Organic Dye Removal and High-Temperature CO2 Adsorption

    NASA Astrophysics Data System (ADS)

    Shao, Liangzhi; Nie, Shibin; Shao, Xiankun; Zhang, LinLin; Li, Benxia

    2018-03-01

    One-dimensional metal-oxide/carbon-fiber (MO/CF) heterostructures were prepared by a facile two-step method using the natural cotton as a carbon source the low-cost commercial metal salts as precursors. The metal oxide nanostructures were first grown on the cotton fibers by a solution chemical deposition, and the metal-oxide/cotton heterostructures were then calcined and carbonized in nitrogen atmosphere. Three typical MO/CF heterostructures of TiO2/CF, ZnO/CF, and Fe2O3/CF were prepared and characterized. The loading amount of the metal oxide nanostructures on carbon fibers can be tuned by controlling the concentration of metal salt in the chemical deposition process. Finally, the performance of the as-obtained MO/CF heterostructures for organic dye removal from water was tested by the photocatalytic degradation under a simulated sunlight, and their properties of high-temperature CO2 adsorption were predicted by the temperature programmed desorption. The present study would provide a desirable strategy for the synthesis of MO/CF heterostructures for various applications.

  7. InGaAlAsPN: A Materials System for Silicon Based Optoelectronics and Heterostructure Device Technologies

    NASA Technical Reports Server (NTRS)

    Broekaert, T. P. E.; Tang, S.; Wallace, R. M.; Beam, E. A., III; Duncan, W. M.; Kao, Y. -C.; Liu, H. -Y.

    1995-01-01

    A new material system is proposed for silicon based opto-electronic and heterostructure devices; the silicon lattice matched compositions of the (In,Ga,Al)-(As,P)N 3-5 compounds. In this nitride alloy material system, the bandgap is expected to be direct at the silicon lattice matched compositions with a bandgap range most likely to be in the infrared to visible. At lattice constants ranging between those of silicon carbide and silicon, a wider bandgap range is expected to be available and the high quality material obtained through lattice matching could enable applications such as monolithic color displays, high efficiency multi-junction solar cells, opto-electronic integrated circuits for fiber communications, and the transfer of existing 3-5 technology to silicon.

  8. Ballistic Graphene Josephson Junctions from the Short to the Long Junction Regimes.

    PubMed

    Borzenets, I V; Amet, F; Ke, C T; Draelos, A W; Wei, M T; Seredinski, A; Watanabe, K; Taniguchi, T; Bomze, Y; Yamamoto, M; Tarucha, S; Finkelstein, G

    2016-12-02

    We investigate the critical current I_{C} of ballistic Josephson junctions made of encapsulated graphene-boron-nitride heterostructures. We observe a crossover from the short to the long junction regimes as the length of the device increases. In long ballistic junctions, I_{C} is found to scale as ∝exp(-k_{B}T/δE). The extracted energies δE are independent of the carrier density and proportional to the level spacing of the ballistic cavity. As T→0 the critical current of a long (or short) junction saturates at a level determined by the product of δE (or Δ) and the number of the junction's transversal modes.

  9. Theoretical performance of mid wavelength HgCdTe(1 0 0) heterostructure infrared detectors

    NASA Astrophysics Data System (ADS)

    Kopytko, M.

    2017-11-01

    The paper presents a theoretical study of the p+BpnN+ design based on HgCdTe(1 0 0) layers, which significantly improves the performance of detectors optimized for the mid-wave infrared spectral range. p+BpnN+ design combines the concept of a high impedance photoconductor with double layer hetero-junction device. Zero valence band offset approximation throughout the p+Bpn heterostructure allows flow of only minority holes generated in the absorber, what in a combination with n-N+ exclusion junction provides the Auger suppression. Modeling shows that by applying a low doping active layer, it is possible to achieve an order of magnitude lower dark current densities than those determined by ;Rule 07;. A key to its success is a reduction of Shockley-Read-Hall centers associated with native defects, residual impurities and misfit dislocations. Reduction of metal site vacancies below 1012 cm-3 and dislocation density to 105 cm-2 allow to achieve a background limited performance at 250 K. If the background radiation can be reduced, operation with a three- or four-stage thermo-electric-cooler may be possible.

  10. Ferroelectricity in Covalently functionalized Two-dimensional Materials: Integration of High-mobility Semiconductors and Nonvolatile Memory.

    PubMed

    Wu, Menghao; Dong, Shuai; Yao, Kailun; Liu, Junming; Zeng, Xiao Cheng

    2016-11-09

    Realization of ferroelectric semiconductors by conjoining ferroelectricity with semiconductors remains a challenging task because most present-day ferroelectric materials are unsuitable for such a combination due to their wide bandgaps. Herein, we show first-principles evidence toward the realization of a new class of two-dimensional (2D) ferroelectric semiconductors through covalent functionalization of many prevailing 2D materials. Members in this new class of 2D ferroelectric semiconductors include covalently functionalized germanene, and stanene (Nat. Commun. 2014, 5, 3389), as well as MoS 2 monolayer (Nat. Chem. 2015, 7, 45), covalent functionalization of the surface of bulk semiconductors such as silicon (111) (J. Phys. Chem. B 2006, 110 , 23898), and the substrates of oxides such as silica with self-assembly monolayers (Nano Lett. 2014, 14, 1354). The newly predicted 2D ferroelectric semiconductors possess high mobility, modest bandgaps, and distinct ferroelectricity that can be exploited for developing various heterostructural devices with desired functionalities. For example, we propose applications of the 2D materials as 2D ferroelectric field-effect transistors with ultrahigh on/off ratio, topological transistors with Dirac Fermions switchable between holes and electrons, ferroelectric junctions with ultrahigh electro-resistance, and multiferroic junctions for controlling spin by electric fields. All these heterostructural devices take advantage of the combination of high-mobility semiconductors with fast writing and nondestructive reading capability of nonvolatile memory, thereby holding great potential for the development of future multifunctional devices.

  11. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures.

    PubMed

    Lin, Yu-Chuan; Ghosh, Ram Krishna; Addou, Rafik; Lu, Ning; Eichfeld, Sarah M; Zhu, Hui; Li, Ming-Yang; Peng, Xin; Kim, Moon J; Li, Lain-Jong; Wallace, Robert M; Datta, Suman; Robinson, Joshua A

    2015-06-19

    Vertical integration of two-dimensional van der Waals materials is predicted to lead to novel electronic and optical properties not found in the constituent layers. Here, we present the direct synthesis of two unique, atomically thin, multi-junction heterostructures by combining graphene with the monolayer transition-metal dichalcogenides: molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2). The realization of MoS2-WSe2-graphene and WSe2-MoS2-graphene heterostructures leads to resonant tunnelling in an atomically thin stack with spectrally narrow, room temperature negative differential resistance characteristics.

  12. Chemical changes in carbon Nanotube-Nickel/Nickel Oxide Core/Shell nanoparticle heterostructures treated at high temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, Nitin, E-mail: nchopra@eng.ua.edu; McWhinney, Hylton G.; Shi Wenwu

    2011-06-15

    Heterostructures composed of carbon nanotube (CNT) coated with Ni/NiO core/shell nanoparticles (denoted as CNC heterostructures) were synthesized in a wet-chemistry and single-step synthesis route involving direct nucleation of nanoparticles on CNT surface. Two different aspects of CNC heterostructures were studied here. First, it was observed that the nanoparticle coatings were more uniform on the as-produced and non-purified CNTs compared to purified (or acid treated) CNTs. These heterostructures were characterized using electron microscopy, Raman spectroscopy, and energy dispersive spectroscopy. Second, thermal stability of CNC heterostructures was studied by annealing them in N{sub 2}-rich (O{sub 2}-lean) environment between 125 and 750 deg.more » C for 1 h. A detailed X-ray photoelectron spectroscopy and Raman spectroscopy analysis was performed to evaluate the effects of annealing temperatures on chemical composition, phases, and stability of the heterostructures. It was observed that the CNTs present in the heterostructures completely decomposed and core Ni nanoparticle oxidized significantly between 600 and 750 deg. C. - Research Highlights: {yields} Heterostructures composed of CNTs coated with Ni/NiO core/shell nanoparticles. {yields} Poor nanoparticle coverage on purified CNT surface compared to non-purified CNTs. {yields} CNTs in heterostructures decompose between 600 and 750 deg. C in N{sub 2}-rich atmosphere. {yields} Metallic species in heterostructures were oxidized at higher temperatures.« less

  13. Solid State Research, 1975:4

    DTIC Science & Technology

    1975-11-15

    2.8kA/cm for broad- area devices, has been achieved for Ga. In As, _ P /inP double-heterostructure 1 -x x 1 -y y diode lasers emitting ... LIGHT (b) reverse-biasing the p -n~ junction). This should facilitate the fabrication of modulators and switches using electroabsorption and...temperature operation of Ga In As, P /inP double-heterostructure (DH) diode lasers has been achieved. Broad-area devices emitting at 1.1

  14. InGaAs nano-photodetectors based on photonic crystal waveguide including ultracompact buried heterostructure.

    PubMed

    Nozaki, Kengo; Matsuo, Shinji; Takeda, Koji; Sato, Tomonari; Kuramochi, Eiichi; Notomi, Masaya

    2013-08-12

    Ultrasmall InGaAs photodetectors based on a photonic crystal waveguide with a buried heterostructure (BH) were demonstrated for the first time. A sufficiently high DC responsivity of ~1 A/W was achieved for the 3.4-μm-long detector. The dynamic response revealed a 3-dB bandwidth of 6 GHz and a 10-Gb/s eye pattern. These results were thanks to the strong confinement of both photons and carriers in a small BH and will pave the way for unprecedented nano-photodetectors with a high quantum efficiency and small capacitance. Our device potentially has an ultrasmall junction capacitance of much less than 1 fF and may enable us to eliminate electrical amplifiers for future optical receivers and subsequent ultralow-power optical links on a chip.

  15. Effect of annealing on microstructure evolution in CoFeB/MgO/CoFeB heterostructures by positron annihilation

    NASA Astrophysics Data System (ADS)

    Zhao, Chong-Jun; Lu, Xiang-An; Zhao, Zhi-Duo; Li, Ming-Hua; Zhang, Peng; Wang, Bao-Yi; Cao, Xing-Zhong; Zhang, Jing-Yan; Yu, Guang-Hua

    2013-09-01

    As one of the most powerful tools for investigation of defects of materials, positron annihilation spectroscopy was employed to explore the thermal effects on the film microstructure evolution in CoFeB/MgO/CoFeB heterostructures. It is found that high annealing temperature can drive vacancy defects agglomeration and ordering acceleration in the MgO barrier. Meanwhile, another important type of defects, vacancy clusters, which are formed via the agglomeration of vacancy defects in the MgO barrier after annealing, still exists inside the MgO barrier. All these behaviors in the MgO barrier could potentially impact the overall performance in MgO based magnetic tunnel junctions.

  16. Toward the Design of a Hierarchical Perovskite Support: Ultra-Sintering-Resistant Gold Nanocatalysts for CO Oxidation

    DOE PAGES

    Tian, Chengcheng; Zhu, Xiang; Abney, Carter W.; ...

    2017-04-12

    An ultrastable Au nanocatalyst based on a heterostructured perovskite support with high surface area and uniform LaFeO3 nanocoatings was successfully synthesized and tested for CO oxidation. Strikingly, small Au nanoparticles (4-6 nm) are obtained after calcination in air at 700 °C and under reaction conditions. The designed Au catalyst not only possessed extreme sintering resistance but also showed high catalytic activity and stability because of the strong interfacial interaction between Au and the heterostructured perovskite support.

  17. Electrical transport across nanometric SrTiO3 and BaTiO3 barriers in conducting/insulator/conducting junctions

    NASA Astrophysics Data System (ADS)

    Navarro, H.; Sirena, M.; González Sutter, J.; Troiani, H. E.; del Corro, P. G.; Granell, P.; Golmar, F.; Haberkorn, N.

    2018-01-01

    We report the electrical transport properties of conducting/insulator/conducting heterostructures by studying current-voltage IV curves at room temperature. The measurements were obtained on tunnel junctions with different areas (900, 400 and 100 μm2) using a conducting atomic force microscope. Trilayers with GdBa2Cu3O7 (GBCO) as the bottom electrode, SrTiO3 or BaTiO3 (thicknesses between 1.6 and 4 nm) as the insulator barrier, and GBCO or Nb as the top electrode were grown by DC sputtering on (100) SrTiO3 substrates For SrTiO3 and BaTiO3 barriers, asymmetric IV curves at positive and negative polarization can be obtained using electrodes with different work function. In addition, hysteretic IV curves are obtained for BaTiO3 barriers, which can be ascribed to a combined effect of the FE reversal switching polarization and an oxygen vacancy migration. For GBCO/BaTiO3/GBCO heterostructures, the IV curves correspond to that expected for asymmetric interfaces, which indicates that the disorder affects differently the properties at the bottom and top interfaces. Our results show the role of the interface disorder on the electrical transport of conducting/insulator/conduction heterostructures, which is relevant for different applications, going from resistive switching memories (at room temperature) to Josephson junctions (at low temperatures).

  18. Induced Superconductivity and Engineered Josephson Tunneling Devices in Epitaxial (111)-Oriented Gold/Vanadium Heterostructures.

    PubMed

    Wei, Peng; Katmis, Ferhat; Chang, Cui-Zu; Moodera, Jagadeesh S

    2016-04-13

    We report a unique experimental approach to create topological superconductors by inducing superconductivity into epitaxial metallic thin film with strong spin-orbit coupling. Utilizing molecular beam epitaxy technique under ultrahigh vacuum conditions, we are able to achieve (111) oriented single phase of gold (Au) thin film grown on a well-oriented vanadium (V) s-wave superconductor film with clean interface. We obtained atomically smooth Au thin films with thicknesses even down to below a nanometer showing near-ideal surface quality. The as-grown V/Au bilayer heterostructure exhibits superconducting transition at around 3.9 K. Clear Josephson tunneling and Andreev reflection are observed in S-I-S tunnel junctions fabricated from the epitaxial bilayers. The barrier thickness dependent tunneling and the associated subharmonic gap structures (SGS) confirmed the induced superconductivity in Au (111), paving the way for engineering thin film heterostructures based on p-wave superconductivity and nano devices exploiting Majorana Fermions for quantum computing.

  19. A dewetting route to grow heterostructured nanoparticles based on thin film heterojunctions.

    PubMed

    Li, Junjie; Yin, Deqiang; Li, Qiang; Chen, Chunlin; Huang, Sumei; Wang, Zhongchang

    2015-12-21

    Heterostructured nanoparticles have received considerable attention for their various applications due to their unique and tunable functionalities with respect to their individual bulk constituents. However, the current wet chemical synthesis of multicomponent heterostructured nanoparticles is rather complicated. Here, we report a simple and quick method to fabricate Co-Au dumbbell arrays by dewetting Co/Au heterojunctions on a Si substrate and demonstrate that the Co-Au dumbbells vary in size from 2 to 28 nm. We further show by chemical mapping that Co bells are covered by a pseudomorphic Au wetting layer of ∼4 Å, preventing the bells from oxidation. By controlling the thickness of metal heterojunctions and the annealing time, the morphology of the Co-Au nanoparticle is found to be transformed from the dumbbell to the core shell. This facile route is demonstrated to be useful for fabricating other metal-metal and metal-oxide heterostructures and hence holds technological promise for functional applications.

  20. Odd-frequency pairing in superconducting heterostructures .

    NASA Astrophysics Data System (ADS)

    Golubov, A. A.; Tanaka, Y.; Yokoyama, T.; Asano, Y.

    2007-03-01

    We present a general theory of the proximity effect in junctions between unconventional superconductors and diffusive normal metals (DN) or ferromagnets (DF). We consider all possible symmetry classes in a superconductor allowed by the Pauli principle: even-frequency spin-singlet even-parity state, even-frequency spin-triplet odd-parity state, odd-frequency spin-triplet even-parity state and odd-frequency spin-singlet odd-parity state. For each of the above states, symmetry and spectral properties of the induced pair amplitude in the DN (DF) are determined. The cases of junctions with spin-singlet s- and d-wave superconductors and spin-triplet p-wave superconductors are adressed in detail. We discuss the interplay between the proximity effect and midgap Andreev bound states arising at interfaces in unconventional (d- or p-wave) junctions. The most striking property is the odd-frequency symmetry of the pairing amplitude induced in DN (DF) in contacts with p-wave superconductors. This leads to zero-energy singularity in the density of states and to anomalous screening of an external magnetic field. Peculiarities of Josephson effect in d- or p-wave junctions are discussed. Experiments are suggested to detect an order parameter symmetry using heterostructures with unconventional superconductors.

  1. An AlGaN Core-Shell Tunnel Junction Nanowire Light-Emitting Diode Operating in the Ultraviolet-C Band.

    PubMed

    Sadaf, S M; Zhao, S; Wu, Y; Ra, Y-H; Liu, X; Vanka, S; Mi, Z

    2017-02-08

    To date, semiconductor light emitting diodes (LEDs) operating in the deep ultraviolet (UV) spectral range exhibit very low efficiency due to the presence of large densities of defects and extremely inefficient p-type conduction of conventional AlGaN quantum well heterostructures. We have demonstrated that such critical issues can be potentially addressed by using nearly defect-free AlGaN tunnel junction core-shell nanowire heterostructures. The core-shell nanowire arrays exhibit high photoluminescence efficiency (∼80%) in the UV-C band at room temperature. With the incorporation of an epitaxial Al tunnel junction, the p-(Al)GaN contact-free nanowire deep UV LEDs showed nearly one order of magnitude reduction in the device resistance, compared to the conventional nanowire p-i-n device. The unpackaged Al tunnel junction deep UV LEDs exhibit an output power >8 mW and a peak external quantum efficiency ∼0.4%, which are nearly one to two orders of magnitude higher than previously reported AlGaN nanowire devices. Detailed studies further suggest that the maximum achievable efficiency is limited by electron overflow and poor light extraction efficiency due to the TM polarized emission.

  2. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures

    PubMed Central

    Lin, Yu-Chuan; Ghosh, Ram Krishna; Addou, Rafik; Lu, Ning; Eichfeld, Sarah M.; Zhu, Hui; Li, Ming-Yang; Peng, Xin; Kim, Moon J.; Li, Lain-Jong; Wallace, Robert M.; Datta, Suman; Robinson, Joshua A.

    2015-01-01

    Vertical integration of two-dimensional van der Waals materials is predicted to lead to novel electronic and optical properties not found in the constituent layers. Here, we present the direct synthesis of two unique, atomically thin, multi-junction heterostructures by combining graphene with the monolayer transition-metal dichalcogenides: molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2). The realization of MoS2–WSe2–graphene and WSe2–MoS2–graphene heterostructures leads to resonant tunnelling in an atomically thin stack with spectrally narrow, room temperature negative differential resistance characteristics. PMID:26088295

  3. Fabrication and properties of nanoscale multiferroic heterostructures for application in magneto-electric random access memory (MERAM) devices

    NASA Astrophysics Data System (ADS)

    Kim, Gunwoo

    Magnetoelectric random access memory (MERAM) has emerged as a promising new class of non-volatile solid-state memory device. It offers nondestructive reading along with low power consumption during the write operation. A common implementation of MERAM involves use of multiferroic tunneling junctions (MFTJs), which besides offering non-volatility are both electrically and magnetically tunable. Fundamentally, a MFTJ consists of a heterostructure of an ultrathin multiferroic or ferroelectric material as the active tunneling barrier sandwiched between ferromagnetic electrodes. Thereby, the MFTJ exhibits both tunnel electroresistance (TER) and tunnel magnetoresistance (TMR) effects with application of an electric and magnetic field, respectively. In this thesis work, we have developed two-dimensional (2D) thin-film multiferroic heterostructure METJ prototypes consisting of ultrathin ferroelectric BaTiO3 (BTO) layer and a conducting ferromagnetic La0.67Sr 0.33MnO3 (LSMO) electrode. The heteroepitaxial films are grown using the pulsed laser deposition (PLD) technique. This oxide heterostructure offers the opportunity to study the nano-scale details of the tunnel electroresistance (TER) effect using scanning probe microscopy techniques. We performed the measurements using the MFP-3D (Asylum Research) scanning probe microscope. The ultrathin BTO films (1.2-2.0 nm) grown on LSMO electrodes display both ferro- and piezo-electric properties and exhibit large tunnel resistance effect. We have explored the growth and properties of one-dimensional (1D) heterostructures, referred to as multiferoric nanowire (NW) heterostructures. The ferromagnetic/ferroelectric composite heterostructures are grown as sheath layers using PLD on lattice-matched template NWs, e.g. MgO, that are deposited by chemical vapor deposition utilizing the vapor-liquid-solid (VLS) mechanism. The one-dimensional geometry can substantially overcome the clamping effect of the substrate present in two-dimensional structures because of the reduced volume of the template. This leads to minimum constraint of displacements at the interface and thereby significantly enhances the magnetoelectric (ME) effect. We characterized the nanostructures using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results of our studies utilizing multiferroic 2-D thin films and 1-D NW architectures clearly demonstrate the potential of these heterostructures for future device applications, such as in MERAM, data storage, magneto-electric field sensors, etc.

  4. Achieving tunable doping of MoSe2 based devices using GO@MoSe2 heterostructure

    NASA Astrophysics Data System (ADS)

    Maji, Tuhin Kumar; Tiwary, Krishna Kanhaiya; Karmakar, Debjani

    2017-05-01

    Doping nature of MoSe2, one of the promising Graphene analogous device material, can be tuned by controlling the concentration of functional groups in Graphene oxide (GO)@MoSe2 heterostructure. In this study, by first-principles simulation, we have observed that GO can be used as a carrier injection layer for MoSe2, where n or p type carriers are introduced within MoSe2 layer depending on the type and concentration of functional moieties in it. Both n and p-type Schottky barrier height modulations are investigated for different modeled configurations of the heterostructure. This combinatorial heterostructure can be a promising material for future electronic device application.

  5. Highly insulating ferromagnetic cobaltite heterostructures

    DOE PAGES

    Choi, Woo Seok; Kang, Kyeong Tae; Jeen, Hyoungjeen; ...

    2017-04-02

    Ferromagnetic insulators are rather rare but possess great technological potential in, for example, spintronics. Individual control of ferromagnetic properties and electronic transport provides a useful design concept of multifunctional oxide heterostructures. We studied the close correlation among the magnetism, atomic structure, and electronic structure of oxide heterostructures composed of the ferromagnetic perovskite LaCoO 3 and the antiferromagnetic brownmillerite SrCoO 2.5 epitaxial thin film layers. By reversing the stacking sequence of the two layers, we could individually modify the electric resistance and saturation magnetic moment. Lastly, the ferromagnetic insulating behavior in the heterostructures was understood in terms of the electronic reconstructionmore » at the oxide surface/interfaces and crystalline quality of the constituent layers.« less

  6. Highly insulating ferromagnetic cobaltite heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Woo Seok; Kang, Kyeong Tae; Jeen, Hyoungjeen

    Ferromagnetic insulators are rather rare but possess great technological potential in, for example, spintronics. Individual control of ferromagnetic properties and electronic transport provides a useful design concept of multifunctional oxide heterostructures. We studied the close correlation among the magnetism, atomic structure, and electronic structure of oxide heterostructures composed of the ferromagnetic perovskite LaCoO 3 and the antiferromagnetic brownmillerite SrCoO 2.5 epitaxial thin film layers. By reversing the stacking sequence of the two layers, we could individually modify the electric resistance and saturation magnetic moment. Lastly, the ferromagnetic insulating behavior in the heterostructures was understood in terms of the electronic reconstructionmore » at the oxide surface/interfaces and crystalline quality of the constituent layers.« less

  7. High performance broadband photodetector based on MoS2/porous silicon heterojunction

    NASA Astrophysics Data System (ADS)

    Dhyani, Veerendra; Dwivedi, Priyanka; Dhanekar, Saakshi; Das, Samaresh

    2017-11-01

    A high speed efficient broadband photodetector based on a vertical n-MoS2/p-porous silicon heterostructure has been demonstrated. Large area MoS2 on electrochemical etched porous silicon was grown by sulphurization of a sputtered MoO3 thin film. A maximum responsivity of 9 A/W (550-850 nm) with a very high detectivity of ˜1014 Jones is observed. Transient measurements show a fast response time of ˜9 μs and is competent to work at high frequencies (˜50 kHz). The enhanced photodetection performance of the heterojunction made on porous silicon over that made on planar silicon is explained in terms of higher interfacial barrier height, superior light trapping property, and larger junction area in the MoS2/porous silicon junction.

  8. Controlled fabrication of photoactive copper oxide-cobalt oxide nanowire heterostructures for efficient phenol photodegradation.

    PubMed

    Shi, Wenwu; Chopra, Nitin

    2012-10-24

    Fabrication of oxide nanowire heterostructures with controlled morphology, interface, and phase purity is critical for high-efficiency and low-cost photocatalysis. Here, we have studied the formation of copper oxide-cobalt nanowire heterostructures by sputtering and subsequent air annealing to result in cobalt oxide (Co(3)O(4))-coated CuO nanowires. This approach allowed fabrication of standing nanowire heterostructures with tunable compositions and morphologies. The vertically standing CuO nanowires were synthesized in a thermal growth method. The shell growth kinetics of Co and Co(3)O(4) on CuO nanowires, morphological evolution of the shell, and nanowire self-shadowing effects were found to be strongly dependent on sputtering duration, air-annealing conditions, and alignment of CuO nanowires. Finite element method (FEM) analysis indicated that alignment and stiffness of CuO-Co nanowire heterostructures greatly influenced the nanomechanical aspects such as von Mises equivalent stress distribution and bending of nanowire heterostructures during the Co deposition process. This fundamental knowledge was critical for the morphological control of Co and Co(3)O(4) on CuO nanowires with desired interfaces and a uniform coating. Band gap energies and phenol photodegradation capability of CuO-Co(3)O(4) nanowire heterostructures were studied as a function of Co(3)O(4) morphology. Multiple absorption edges and band gap tailings were observed for these heterostructures, indicating photoactivity from visible to UV range. A polycrystalline Co(3)O(4) shell on CuO nanowires showed the best photodegradation performance (efficiency ~50-90%) in a low-powered UV or visible light illumination with a sacrificial agent (H(2)O(2)). An anomalously high efficiency (~67.5%) observed under visible light without sacrificial agent for CuO nanowires coated with thin (∼5.6 nm) Co(3)O(4) shell and nanoparticles was especially interesting. Such photoactive heterostructures demonstrate unique sacrificial agent-free, robust, and efficient photocatalysts promising for organic decontamination and environmental remediation.

  9. Probing the structural flexibility of MOFs by constructing metal oxide@MOF-based heterostructures for size-selective photoelectrochemical response

    NASA Astrophysics Data System (ADS)

    Zhan, Wenwen; He, Yue; Guo, Jiangbin; Chen, Luning; Kong, Xiangjian; Zhao, Haixia; Kuang, Qin; Xie, Zhaoxiong; Zheng, Lansun

    2016-07-01

    It is becoming a challenge to achieve simpler characterization and wider application of flexible metal organic frameworks (MOFs) exhibiting the gate-opening or breathing behavior. Herein, we designed an intelligent MOF-based system where the gate-opening or breathing behavior of MOFs can be facially visualized in solution. Two types of metal oxide@MOF core-shell heterostructures, ZnO@ZIF-7 and ZnO@ZIF-71, were prepared using ZnO nanorods as self-sacrificial templates. The structural flexibility of both the MOFs can be easily judged from the distinct molecular-size-related formation modes and photoelectrochemical performances between the two ZnO@ZIF heterostructures. Moreover, the rotational dynamics of the flexible parts of ZIF-7 were studied by analyzing the intrinsic physical properties, such as dielectric constants, of the structure. The present work reminds us to pay particular attention to the influences of the structural flexibility of MOFs on the structure and properties of MOF-involved heterostructures in future studies.It is becoming a challenge to achieve simpler characterization and wider application of flexible metal organic frameworks (MOFs) exhibiting the gate-opening or breathing behavior. Herein, we designed an intelligent MOF-based system where the gate-opening or breathing behavior of MOFs can be facially visualized in solution. Two types of metal oxide@MOF core-shell heterostructures, ZnO@ZIF-7 and ZnO@ZIF-71, were prepared using ZnO nanorods as self-sacrificial templates. The structural flexibility of both the MOFs can be easily judged from the distinct molecular-size-related formation modes and photoelectrochemical performances between the two ZnO@ZIF heterostructures. Moreover, the rotational dynamics of the flexible parts of ZIF-7 were studied by analyzing the intrinsic physical properties, such as dielectric constants, of the structure. The present work reminds us to pay particular attention to the influences of the structural flexibility of MOFs on the structure and properties of MOF-involved heterostructures in future studies. Electronic supplementary information (ESI) available: Experimental details, XRD patterns and SEM images of products in other reactions, concentration-dependent photocurrent responses, and supplementary data of dielectric measurements. See DOI: 10.1039/c6nr02257j

  10. Atomic-scaled characterization of graphene PN junctions

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaodong; Wang, Dennis; Dadgar, Ali; Agnihotri, Pratik; Lee, Ji Ung; Reuter, Mark C.; Ross, Frances M.; Pasupathy, Abhay N.

    Graphene p-n junctions are essential devices for studying relativistic Klein tunneling and the Veselago lensing effect in graphene. We have successfully fabricated graphene p-n junctions using both lithographically pre-patterned substrates and the stacking of vertical heterostructures. We then use our 4-probe STM system to characterize the junctions. The ability to carry out scanning electron microscopy (SEM) in our STM instrument is essential for us to locate and measure the junction interface. We obtain both the topography and dI/dV spectra at the junction area, from which we track the shift of the graphene chemical potential with position across the junction interface. This allows us to directly measure the spatial width and roughness of the junction and its potential barrier height. We will compare the junction properties of devices fabricated by the aforementioned two methods and discuss their effects on the performance as a Veselago lens.

  11. Novel engineered compound semiconductor heterostructures for advanced electronics applications

    NASA Astrophysics Data System (ADS)

    Stillman, Gregory E.; Holonyak, Nick, Jr.; Coleman, James J.

    1992-06-01

    To provide the technology base that will enable SDIO capitalization on the performance advantages offered through novel engineered multiple-lavered compound semiconductor structures, this project has focussed on three specific areas: (1) carbon doping of AlGaAs/GaAs and InP/InGaAs materials for reliable high frequency heterojunction bipolar transistors; (2) impurity induced layer disordering and the environmental degradation of AlxGal-xAs-GaAs quantum-well heterostructures and the native oxide stabilization of AlxGal-xAs-GaAs quantum well heterostructure lasers; and (3) non-planar and strained-layer quantum well heterostructure lasers and laser arrays. The accomplishments in this three year research are reported in fifty-six publications and the abstracts included in this report.

  12. Enhanced numerical analysis of three-color HgCdTe detectors

    NASA Astrophysics Data System (ADS)

    Jóźwikowski, K.; Rogalski, A.

    2007-04-01

    The performance of three-color HgCdTe photovoltaic heterostructure detector is examined theoretically. In comparison with two-color detectors with two back-to-back junctions, three-color structure contain an absorber of intermediate wavelength placed between two junctions, and electronic barriers are used to isolate this intermediate region. This structure was first proposed by British workers. Enhanced original computer programs are applied to solve the system of non-linear continuity equations for carriers and Poisson equations. In addition, the numerical analysis includes the dependence of absorption coefficient on Burstein effect as well as interference effects in heterostructure with metallic electrical contacts. Three detector structures with different localizations of separating barriers are analyzed. The calculations results are presented in the form of spatial distributions of bandgap energy and quantum efficiency. It is shown that the performance of the detector is critically dependent on the barrier's doping level and position in relation to the junction. This behavior is serious disadvantage of the considered three color detector. A small shift of the barrier location and doping level causes serious changes in spectral responsivity.

  13. Numerical analysis of three-colour HgCdTe detectors

    NASA Astrophysics Data System (ADS)

    Jóźwikowski, K.; Rogalski, A.

    2007-12-01

    The performance of three-colour HgCdTe photovoltaic heterostructure detector is examined theoretically. In comparison with two-colour detectors with two back-to-back junctions, three-colour structure contains an absorber of intermediate wavelength placed between two junctions and electronic barriers are used to isolate this intermediate region. This structure was first proposed by British workers. Three-detector structures with different localizations of separating barriers are analyzed. The calculation results are presented in the form of spatial distributions of bandgap energy and quantum efficiency. Enhanced original computer programs are applied to solve the system of non-linear continuity equations for carriers and Poisson equations. In addition, the numerical analysis includes the dependence of absorption coefficient on Burstein effect as well as interference effects in heterostructure with metallic electrical contacts. It is shown that the performance of the detector is critically dependent on the barrier’s doping level and position in relation to the junction. This behaviour is serious disadvantage of the considered three-colour detector. A small shift of the barrier location and doping level causes serious changes in spectral responsivity.

  14. Understanding the interfacial properties of graphene-based materials/BiOI heterostructures by DFT calculations

    NASA Astrophysics Data System (ADS)

    Dai, Wen-Wu; Zhao, Zong-Yan

    2017-06-01

    Heterostructure constructing is a feasible and powerful strategy to enhance the performance of photocatalysts, because they can be tailored to have desirable photo-electronics properties and couple distinct advantageous of components. As a novel layered photocatalyst, the main drawback of BiOI is the low edge position of the conduction band. To address this problem, it is meaningful to find materials that possess suitable band gap, proper band edge position, and high mobility of carrier to combine with BiOI to form hetertrostructure. In this study, graphene-based materials (including: graphene, graphene oxide, and g-C3N4) were chosen as candidates to achieve this purpose. The charge transfer, interface interaction, and band offsets are focused on and analyzed in detail by DFT calculations. Results indicated that graphene-based materials and BiOI were in contact and formed van der Waals heterostructures. The valence and conduction band edge positions of graphene oxide, g-C3N4 and BiOI changed with the Fermi level and formed the standard type-II heterojunction. In addition, the overall analysis of charge density difference, Mulliken population, and band offsets indicated that the internal electric field is facilitate for the separation of photo-generated electron-hole pairs, which means these heterostructures can enhance the photocatalytic efficiency of BiOI. Thus, BiOI combines with 2D materials to construct heterostructure not only make use of the unique high electron mobility, but also can adjust the position of energy bands and promote the separation of photo-generated carriers, which provide useful hints for the applications in photocatalysis.

  15. Interfacial Magnetism in Complex Oxide Heterostructures Probed by Neutrons and X-rays

    DOE PAGES

    Liu, Yaohua; Ke, Xianglin

    2015-09-02

    Magnetic complex-oxide heterostructures are of keen interest because a wealth of phenomena at the interface of dissimilar materials can give rise to fundamentally new physics and potentially valuable functionalities. Altered magnetization, novel magnetic coupling and emergent interfacial magnetism at the epitaxial layered-oxide interfaces have all been intensively investigated, which shapes our understanding on how to utilize those materials, particularly for spintronics. Neutron and x-ray based techniques have played a decisive role in characterizing interfacial magnetic structures and clarifying the underlying physics in this rapidly developing field. Here we review some recent experimental results, with an emphasis on those studied viamore » polarized neutron reflectometery and polarized x-ray absorption spectroscopy. We conclude with some perspectives.« less

  16. Interfacial magnetism in complex oxide heterostructures probed by neutrons and x-rays.

    PubMed

    Liu, Yaohua; Ke, Xianglin

    2015-09-23

    Magnetic complex-oxide heterostructures are of keen interest because a wealth of phenomena at the interface of dissimilar materials can give rise to fundamentally new physics and potentially valuable functionalities. Altered magnetization, novel magnetic coupling and emergent interfacial magnetism at the epitaxial layered-oxide interfaces are under intensive investigation, which shapes our understanding on how to utilize those materials, particularly for spintronics. Neutron and x-ray based techniques have played a decisive role in characterizing interfacial magnetic structures and clarifying the underlying physics in this rapidly developing field. Here we review some recent experimental results, with an emphasis on those studied via polarized neutron reflectometery and polarized x-ray absorption spectroscopy. We conclude with some perspectives.

  17. Engineering Pt/Pd Interfacial Electronic Structures for Highly Efficient Hydrogen Evolution and Alcohol Oxidation.

    PubMed

    Fan, Jinchang; Qi, Kun; Zhang, Lei; Zhang, Haiyan; Yu, Shansheng; Cui, Xiaoqiang

    2017-05-31

    Tailoring the interfacial structure of Pt-based catalysts has emerged as an effective strategy to improve catalytic activity. However, little attention has been focused on investigating the relationship between the interfacial facets and their catalytic activity. Here, we design and implement Pd-Pt interfaces with controlled heterostructure features by epitaxially growing Pt nanoparticles on Pd nanosheets. On the basis of both density functional theory calculation and experimental results, we demonstrate that charge transfer from Pd to Pt is highly dependent on the interfacial facets of Pd substrates. Therefore, the Pd-Pt heterostructure with Pd(100)-Pt interface exhibits excellent activity and long-term stability for hydrogen evolution and methanol/ethanol oxidation reactions in alkaline medium, much better than that with Pd (111)-Pt interface or commercial Pt/C. Interfacial crystal facet-dependent electronic structural modulation sheds a light on the design and investigation of new heterostructures for high-activity catalysts.

  18. Effect of interleaved Si layer on the magnetotransport and semiconducting properties of n-Si/Fe Schottky junctions

    NASA Astrophysics Data System (ADS)

    Das, Sudhansu Sekhar; Kumar, M. Senthil

    2017-12-01

    Heterostructure films of the form n-Si/Si(tSi)/Fe(800 Å) were prepared by DC magnetron sputtering. In these films, the Si and Fe (800 Å) films were deposited onto n-Si(100) substrates. Substrates with different doping concentration ND were used. The thickness tSi of the interleaved Si layer is varied. For tSi = 0, the heterostructures form n-Si/Fe Schottky junctions. Structural studies on the samples as performed through XRD indicate the polycrystalline nature of the films. The magnetization data showed that the samples have in-plane easy axis of magnetization. The coercivity of the samples is of the order of 90 Oe. The I-V measurements on the samples showed nonlinear behavior. The diode ideality factor η = 2.6 is observed for the junction with ND = 1018 cm-3. The leakage current I0 increases with the increase of ND. Magnetic field has less effect on the electrical properties of the junctions. A positive magnetoresistance in the range 1 - 10 % was observed for the Si/Fe Schottky junctions in the presence of magnetic field of strength 2 T. The origin of the MR is analyzed using a model where the ratio of the currents across the junctions with and without the applied magnetic field, IH=2T/IH=0 is studied as a function of the bias voltage Vbias. The ratio IH=2T/IH=0 shows a decreasing trend with the Vbias, suggesting that the contribution to the MR in our n-Si/Fe Schottky junctions due to the spin dependent scattering is very less as compared to that due to the suppression of the impact ionization process.

  19. A novel reduced symmetry oxide (Mg3B2O6) for magnetic tunnel junctions based on FeCo or Fe leads

    NASA Astrophysics Data System (ADS)

    Stewart, Derek

    2010-03-01

    Magnetic tunnel junctions with high TMR values, such as FeMgOFe, capitalize on spin filtering in the oxide due to the band symmetry of incident electrons. However, these structures rely on magnetic leads and oxide regions of the same cubic symmetry class. This raises the question of whether reducing the oxide symmetry can enhance spin filtering. A new magnetic tunnel junction (FeCoMg3B2O6FeCo) is presented that uses a reduced symmetry oxide region (orthorhombic) to filter spins between two cubic magnetic leads. Symmetry analysis of coupling between states in the cubic leads and the orthorhombic oxide indicates that majority carrier tunneling through the oxide should be favored over minority carriers. Complex band structure analysis of Mg3B2O6 shows that the relevant evanescent states in the band gap are due to boron p states and that there is sufficient difference in the decay rates of the imaginary bands for spin filtering to occur. Electronic transport calculations through a FeMg3B2O6Fe magnetic tunnel junction are also performed to address the possible influence of interface states. Some recent experimental studies of FeCoBMgOFeCoB junctions, with B diffusion into the MgO region, indicate that this new type of junction may have already been fabricated. The prospect of developing a general class of magnetic tunnel junctions based on reduced symmetry oxides is also examined.

  20. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy.

    PubMed

    Li, Xufan; Lin, Ming-Wei; Lin, Junhao; Huang, Bing; Puretzky, Alexander A; Ma, Cheng; Wang, Kai; Zhou, Wu; Pantelides, Sokrates T; Chi, Miaofang; Kravchenko, Ivan; Fowlkes, Jason; Rouleau, Christopher M; Geohegan, David B; Xiao, Kai

    2016-04-01

    Two-dimensional (2D) heterostructures hold the promise for future atomically thin electronics and optoelectronics because of their diverse functionalities. Although heterostructures consisting of different 2D materials with well-matched lattices and novel physical properties have been successfully fabricated via van der Waals (vdW) epitaxy, constructing heterostructures from layered semiconductors with large lattice misfits remains challenging. We report the growth of 2D GaSe/MoSe2 heterostructures with a large lattice misfit using two-step chemical vapor deposition (CVD). Both vertically stacked and lateral heterostructures are demonstrated. The vertically stacked GaSe/MoSe2 heterostructures exhibit vdW epitaxy with well-aligned lattice orientation between the two layers, forming a periodic superlattice. However, the lateral heterostructures exhibit no lateral epitaxial alignment at the interface between GaSe and MoSe2 crystalline domains. Instead of a direct lateral connection at the boundary region where the same lattice orientation is observed between GaSe and MoSe2 monolayer domains in lateral GaSe/MoSe2 heterostructures, GaSe monolayers are found to overgrow MoSe2 during CVD, forming a stripe of vertically stacked vdW heterostructures at the crystal interface. Such vertically stacked vdW GaSe/MoSe2 heterostructures are shown to form p-n junctions with effective transport and separation of photogenerated charge carriers between layers, resulting in a gate-tunable photovoltaic response. These GaSe/MoSe2 vdW heterostructures should have applications as gate-tunable field-effect transistors, photodetectors, and solar cells.

  1. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy

    PubMed Central

    Li, Xufan; Lin, Ming-Wei; Lin, Junhao; Huang, Bing; Puretzky, Alexander A.; Ma, Cheng; Wang, Kai; Zhou, Wu; Pantelides, Sokrates T.; Chi, Miaofang; Kravchenko, Ivan; Fowlkes, Jason; Rouleau, Christopher M.; Geohegan, David B.; Xiao, Kai

    2016-01-01

    Two-dimensional (2D) heterostructures hold the promise for future atomically thin electronics and optoelectronics because of their diverse functionalities. Although heterostructures consisting of different 2D materials with well-matched lattices and novel physical properties have been successfully fabricated via van der Waals (vdW) epitaxy, constructing heterostructures from layered semiconductors with large lattice misfits remains challenging. We report the growth of 2D GaSe/MoSe2 heterostructures with a large lattice misfit using two-step chemical vapor deposition (CVD). Both vertically stacked and lateral heterostructures are demonstrated. The vertically stacked GaSe/MoSe2 heterostructures exhibit vdW epitaxy with well-aligned lattice orientation between the two layers, forming a periodic superlattice. However, the lateral heterostructures exhibit no lateral epitaxial alignment at the interface between GaSe and MoSe2 crystalline domains. Instead of a direct lateral connection at the boundary region where the same lattice orientation is observed between GaSe and MoSe2 monolayer domains in lateral GaSe/MoSe2 heterostructures, GaSe monolayers are found to overgrow MoSe2 during CVD, forming a stripe of vertically stacked vdW heterostructures at the crystal interface. Such vertically stacked vdW GaSe/MoSe2 heterostructures are shown to form p-n junctions with effective transport and separation of photogenerated charge carriers between layers, resulting in a gate-tunable photovoltaic response. These GaSe/MoSe2 vdW heterostructures should have applications as gate-tunable field-effect transistors, photodetectors, and solar cells. PMID:27152356

  2. Superconductivity in interacting interfaces of cuprate-based heterostructures

    NASA Astrophysics Data System (ADS)

    Di Castro, Daniele; Balestrino, Giuseppe

    2018-07-01

    Low dimensional superconducting systems have been the subject of numerous studies in the recent past, with the aim of achieving a higher and higher critical temperature (T c ). The recent improvement in film deposition techniques has allowed the realization of artificial heterostructures, with atomically flat surfaces and interfaces, where novel properties appear that are not present in the single constituent. For instance, quasi-2D superconductivity was found at the interface between different oxides. In this review we analyze, in particular, the quasi-2D superconductivity occurring at the interface between two non-superconducting oxides, mostly cuprates. Throughout a comparison of the superconducting properties of different oxide heterostructures and superlattices, we propose a phenomenological explanation of the behavior of the T c as a function of the number of conducting CuO2 planes. This is achieved by introducing two different interactions between the superconducting 2D sheets. This interpretation is finally extended also to standard high T c cuprates, contributing to the solution of the long-standing question of the dependence of T c on the number of CuO2 planes in these systems.

  3. ZnO/p-GaN heterostructure for solar cells and the effect of ZnGa2O4 interlayer on their performance.

    PubMed

    Nam, Seung Yong; Choi, Yong Seok; Lee, Ju Ho; Park, Seong Ju; Lee, Jeong Yong; Lee, Dong Seon

    2013-01-01

    We report the usage of ZnO material as an alternative for n-GaN for realizing III-nitride based solar cell. The fabricated solar cell shows large turn-on voltage of around 8 volts and a rapid decrease of photocurrent at low bias voltage under darkness and 1-sun illumination conditions, respectively. This phenomenon can be attributed to the formation of high-resistive ultra-thin layers at the ZnO/ p-GaN junction interface during high temperature deposition. Transmission electron microscopy (TEM) studies carried out on the grown samples reveals that the ultra-thin layer consists of ZnGa2O4. It is found that the presence of insulating ZnGa2O4 film is detrimental in the performance of proposed heterostructure for solar cells.

  4. Local switching of two-dimensional superconductivity using the ferroelectric field effect

    NASA Astrophysics Data System (ADS)

    Takahashi, K. S.; Gabay, M.; Jaccard, D.; Shibuya, K.; Ohnishi, T.; Lippmaa, M.; Triscone, J.-M.

    2006-05-01

    Correlated oxides display a variety of extraordinary physical properties including high-temperature superconductivity and colossal magnetoresistance. In these materials, strong electronic correlations often lead to competing ground states that are sensitive to many parameters-in particular the doping level-so that complex phase diagrams are observed. A flexible way to explore the role of doping is to tune the electron or hole concentration with electric fields, as is done in standard semiconductor field effect transistors. Here we demonstrate a model oxide system based on high-quality heterostructures in which the ferroelectric field effect approach can be studied. We use a single-crystal film of the perovskite superconductor Nb-doped SrTiO3 as the superconducting channel and ferroelectric Pb(Zr,Ti)O3 as the gate oxide. Atomic force microscopy is used to locally reverse the ferroelectric polarization, thus inducing large resistivity and carrier modulations, resulting in a clear shift in the superconducting critical temperature. Field-induced switching from the normal state to the (zero resistance) superconducting state was achieved at a well-defined temperature. This unique system could lead to a field of research in which devices are realized by locally defining in the same material superconducting and normal regions with `perfect' interfaces, the interface being purely electronic. Using this approach, one could potentially design one-dimensional superconducting wires, superconducting rings and junctions, superconducting quantum interference devices (SQUIDs) or arrays of pinning centres.

  5. Phononic properties of superlattices and multi quantum well heterostructures (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wagner, Markus R.; Reparaz, Juan Sebastian; Callsen, Gordon; Nippert, Felix; Kure, Thomas; Hoffmann, Axel; Hugues, Maxime; Teysseire, Monique; Damilano, Benjamin; Chauveau, Jean-Michel

    2017-03-01

    We address the electronic, phononic, and thermal properties of oxide based superlattices and multi quantum well heterostructures. In the first part, we review the present understanding of phonon coupling and phonon propagation in superlattices and elucidate current research aspects of phonon coherence in these structure. Subsequently, we focus on the experimental study of MBE grown ZnO/ZnMgO multi quantum well heterostructures with varying Mg content, barrier thickness, quantum well thickness, and number of periods. In particular, we discuss how the controlled variation of these parameters affect the phonon dispersion relation and phonon propagation and their impact on the thermal properties.

  6. Two-dimensional GaSe/MoSe 2 misfit bilayer heterojunctions by van der Waals epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xufan; Lin, Ming-Wei; Lin, Junhao

    Two-dimensional (2D) heterostructures hold the promise for future atomically-thin electronics and optoelectronics due to their diverse functionalities. While heterostructures consisting of different transition metal dichacolgenide monolayers with well-matched lattices and novel physical properties have been successfully fabricated via van der Waals (vdW) or edge epitaxy, constructing heterostructures from monolayers of layered semiconductors with large lattice misfits still remains challenging. Here, we report the growth of monolayer GaSe/MoSe 2 heterostructures with large lattice misfit by two-step chemical vapor deposition (CVD). Both vertically stacked and lateral heterostructures are demonstrated. The vertically stacked GaSe/MoSe 2 heterostructures exhibit vdW epitaxy with well-aligned lattice orientationmore » between the two layers, forming an incommensurate vdW heterostructure. However, the lateral heterostructures exhibit no lateral epitaxial alignment at the interface between GaSe and MoSe 2 crystalline domains. Instead of a direct lateral connection at the boundary region where the same lattice orientation is observed between GaSe and MoSe 2 monolayer domains in lateral GaSe/MoSe 2 heterostructures, GaSe monolayers are found to overgrow MoSe 2 during CVD, forming a stripe of vertically stacked vdW heterostructure at the crystal interface. Such vertically-stacked vdW GaSe/MoSe 2 heterostructures are shown to form p-n junctions with effective transport and separation of photo-generated charge carriers between layers, resulting in a gate-tunable photovoltaic response. In conclusion, these GaSe/MoSe 2 vdW heterostructures should have applications as gate-tunable field-effect transistors, photodetectors, and solar cells.« less

  7. Two-dimensional GaSe/MoSe 2 misfit bilayer heterojunctions by van der Waals epitaxy

    DOE PAGES

    Li, Xufan; Lin, Ming-Wei; Lin, Junhao; ...

    2016-04-01

    Two-dimensional (2D) heterostructures hold the promise for future atomically-thin electronics and optoelectronics due to their diverse functionalities. While heterostructures consisting of different transition metal dichacolgenide monolayers with well-matched lattices and novel physical properties have been successfully fabricated via van der Waals (vdW) or edge epitaxy, constructing heterostructures from monolayers of layered semiconductors with large lattice misfits still remains challenging. Here, we report the growth of monolayer GaSe/MoSe 2 heterostructures with large lattice misfit by two-step chemical vapor deposition (CVD). Both vertically stacked and lateral heterostructures are demonstrated. The vertically stacked GaSe/MoSe 2 heterostructures exhibit vdW epitaxy with well-aligned lattice orientationmore » between the two layers, forming an incommensurate vdW heterostructure. However, the lateral heterostructures exhibit no lateral epitaxial alignment at the interface between GaSe and MoSe 2 crystalline domains. Instead of a direct lateral connection at the boundary region where the same lattice orientation is observed between GaSe and MoSe 2 monolayer domains in lateral GaSe/MoSe 2 heterostructures, GaSe monolayers are found to overgrow MoSe 2 during CVD, forming a stripe of vertically stacked vdW heterostructure at the crystal interface. Such vertically-stacked vdW GaSe/MoSe 2 heterostructures are shown to form p-n junctions with effective transport and separation of photo-generated charge carriers between layers, resulting in a gate-tunable photovoltaic response. In conclusion, these GaSe/MoSe 2 vdW heterostructures should have applications as gate-tunable field-effect transistors, photodetectors, and solar cells.« less

  8. Ultrathin epitaxial barrier layer to avoid thermally induced phase transformation in oxide heterostructures

    DOE PAGES

    Baek, David J.; Lu, Di; Hikita, Yasuyuki; ...

    2016-12-22

    Incorporating oxides with radically different physical and chemical properties into heterostructures offers tantalizing possibilities to derive new functions and structures. Recently, we have fabricated freestanding 2D oxide membranes using the water-soluble perovskite Sr 3Al 2O 6 as a sacrificial buffer layer. Here, with atomic-resolution spectroscopic imaging, we observe that direct growth of oxide thin films on Sr 3Al 2O 6 can cause complete phase transformation of the buffer layer, rendering it water-insoluble. More importantly, we demonstrate that an ultrathin SrTiO 3 layer can be employed as an effective barrier to preserve Sr 3Al 2O 6 during subsequent growth, thus allowingmore » its integration in a wider range of oxide heterostructures.« less

  9. Narrow Band Filter at 1550 nm Based on Quasi-One-Dimensional Photonic Crystal with a Mirror-Symmetric Heterostructure.

    PubMed

    Wang, Fang; Cheng, Yong Zhi; Wang, Xian; Zhang, Yi Nan; Nie, Yan; Gong, Rong Zhou

    2018-06-27

    In this paper, we present a high-efficiency narrow band filter (NBF) based on quasi-one-dimensional photonic crystal (PC) with a mirror symmetric heterostructure. Similarly to the Fabry-Perot-like resonance cavity, the alternately-arranged dielectric layers on both sides act as the high reflectance and the junction layers used as the defect mode of the quasi-one-dimensional PC, which can be designed as a NBF. The critical conditions for the narrow pass band with high transmittance are demonstrated and analyzed by simulation and experiment. The simulation results indicate that the transmission peak of the quasi-one-dimensional PC-based NBF is up to 95.99% at the telecommunication wavelength of 1550 nm, which agrees well with the experiment. Furthermore, the influences of the periodicity and thickness of dielectric layers on the transmission properties of the PC-based NBF also have been studied numerically. Due to its favorable properties of PC-based NBF, it is can be found to have many potential applications, such as detection, sensing, and communication.

  10. Colloquium : Emergent properties in plane view: Strong correlations at oxide interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakhalian, Jak; Freeland, John W.; Millis, Andrew J.

    2014-10-01

    Finding new collective electronic states in materials is one of the fundamental goals of condensed matter physics. Atomic-scale superlattices formed from transition metal oxides are a particularly appealing hunting ground for new physics. In bulk form, transition metal oxides exhibit a remarkable range of magnetic, superconducting, and multiferroic phases that are of great scientific interest and are potentially capable of providing innovative energy, security, electronics, and medical technology platforms. In superlattices new states may emerge at the interfaces where dissimilar materials meet. This Colloquium illustrates the essential features that make transition metal oxide-based heterostructures an appealing discovery platform for emergentmore » properties with a few selected examples, showing how charge redistributes, magnetism and orbital polarization arises, and ferroelectric order emerges from heterostructures comprised of oxide components with nominally contradictory behavior with the aim providing insight into the creation and control of novel behavior at oxide interfaces by suitable mechanical, electrical, or optical boundary conditions and excitations.« less

  11. MoRe-based tunnel junctions and their characteristics

    NASA Astrophysics Data System (ADS)

    Shaternik, V.; Larkin, S.; Noskov, V.; Chubatyy, V.; Sizontov, V.; Miroshnikov, A.; Karmazin, A.

    2008-02-01

    Perspective Josephson Mo-Re alloy-oxide-Pb, Mo-Re alloy-normal metal-oxide-Pb and Mo-Re alloy-normal metal-oxide-normal metal-Mo-Re alloy junctions have been fabricated and investigated. Thin (~50-100 nm) MoRe superconducting films are deposited on Al2O3 substrates by using a dc magnetron sputtering of MoRe target. Normal metal (Sn, Al) thin films are deposited on the MoRe films surfaces by thermal evaporation of metals in vacuum and oxidized to fabricate junctions oxide barriers. Quasiparticle I-V curves of the fabricated junctions were measured in wide range of voltages. To investigate a transparency spread for the fabricated junctions barriers the computer simulation of the measured quasiparticle I-V curves have been done in framework of the model of multiple Andreev reflections in double-barrier junction interfaces. It's demonstrated the investigated junctions can be described as highly asymmetric double-barrier Josephson junctions with great difference between the two barrier transparencies. The result of the comparison of experimental quasiparticle I-V curves and calculated ones is proposed and discussed. Also I-V curves of the fabricated junctions have been measured under microwave irradiation with 60 GHz frequency, clear Shapiro steps in the measured I-V curves were observed and discussed.

  12. Symmetry Mismatched Heterostructures: New Routes to Bandwidth Control in Oxides

    DTIC Science & Technology

    2015-08-11

    SECURITY CLASSIFICATION OF: This project aims to discover novel physical phenomena in correlated ABO3 oxide heterostructures by using interfacial...to properties at oxide interfaces, and provides insight into the length scale associated with interfacial 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...in oxides The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department

  13. Planar heterostructures of single-layer transition metal dichalcogenides: Composite structures, Schottky junctions, tunneling barriers, and half metals

    NASA Astrophysics Data System (ADS)

    Aras, Mehmet; Kılıç, ćetin; Ciraci, S.

    2017-02-01

    Planar composite structures formed from the stripes of transition metal dichalcogenides joined commensurately along their zigzag or armchair edges can attain different states in a two-dimensional (2D), single-layer, such as a half metal, 2D or one-dimensional (1D) nonmagnetic metal and semiconductor. Widening of stripes induces metal-insulator transition through the confinements of electronic states to adjacent stripes, that results in the metal-semiconductor junction with a well-defined band lineup. Linear bending of the band edges of the semiconductor to form a Schottky barrier at the boundary between the metal and semiconductor is revealed. Unexpectedly, strictly 1D metallic states develop in a 2D system along the boundaries between stripes, which pins the Fermi level. Through the δ doping of a narrow metallic stripe one attains a nanowire in the 2D semiconducting sheet or narrow band semiconductor. A diverse combination of constituent stripes in either periodically repeating or finite-size heterostructures can acquire critical fundamental features and offer device capacities, such as Schottky junctions, nanocapacitors, resonant tunneling double barriers, and spin valves. These predictions are obtained from first-principles calculations performed in the framework of density functional theory.

  14. Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton.

    PubMed

    Shi, Jinwei; Lin, Meng-Hsien; Chen, I-Tung; Mohammadi Estakhri, Nasim; Zhang, Xin-Quan; Wang, Yanrong; Chen, Hung-Ying; Chen, Chun-An; Shih, Chih-Kang; Alù, Andrea; Li, Xiaoqin; Lee, Yi-Hsien; Gwo, Shangjr

    2017-06-26

    Atomically thin lateral heterostructures based on transition metal dichalcogenides have recently been demonstrated. In monolayer transition metal dichalcogenides, exciton energy transfer is typically limited to a short range (~1 μm), and additional losses may be incurred at the interfacial regions of a lateral heterostructure. To overcome these challenges, here we experimentally implement a planar metal-oxide-semiconductor structure by placing a WS 2 /MoS 2 monolayer heterostructure on top of an Al 2 O 3 -capped Ag single-crystalline plate. We find that the exciton energy transfer range can be extended to tens of microns in the hybrid structure mediated by an exciton-surface plasmon polariton-exciton conversion mechanism, allowing cascaded exciton energy transfer from one transition metal dichalcogenides region supporting high-energy exciton resonance to a different transition metal dichalcogenides region in the lateral heterostructure with low-energy exciton resonance. The realized planar hybrid structure combines two-dimensional light-emitting materials with planar plasmonic waveguides and offers great potential for developing integrated photonic and plasmonic devices.Exciton energy transfer in monolayer transition metal dichalcogenides is limited to short distances. Here, Shi et al. fabricate a planar metal-oxide-semiconductor structure and show that exciton energy transfer can be extended to tens of microns, mediated by an exciton-surface-plasmon-polariton-exciton conversion mechanism.

  15. Gallium Nitride Nanowires and Heterostructures: Toward Color-Tunable and White-Light Sources.

    PubMed

    Kuykendall, Tevye R; Schwartzberg, Adam M; Aloni, Shaul

    2015-10-14

    Gallium-nitride-based light-emitting diodes have enabled the commercialization of efficient solid-state lighting devices. Nonplanar nanomaterial architectures, such as nanowires and nanowire-based heterostructures, have the potential to significantly improve the performance of light-emitting devices through defect reduction, strain relaxation, and increased junction area. In addition, relaxation of internal strain caused by indium incorporation will facilitate pushing the emission wavelength into the red. This could eliminate inefficient phosphor conversion and enable color-tunable emission or white-light emission by combining blue, green, and red sources. Utilizing the waveguiding modes of the individual nanowires will further enhance light emission, and the properties of photonic structures formed by nanowire arrays can be implemented to improve light extraction. Recent advances in synthetic methods leading to better control over GaN and InGaN nanowire synthesis are described along with new concept devices leading to efficient white-light emission. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Low-temperature Spin Spray Deposited Ferrite/piezoelectric Thin Film Magnetoelectric Heterostructures with Strong Magnetoelectric Coupling

    DTIC Science & Technology

    2014-01-08

    more energy efficient, lightweight, compact, and less noisy. Studies on ME heterostructures are mostly based on complex oxide piezoelectric ceramic or...except for a recent demonstration of a spin spray deposited ZnO films [17, 18]. ZnO is a typical piezoelectric material , which makes it a good...erties which makes it applicable in a wide variety of electron, optoelectronic, spintronics and nanodevices [17, 18]. The piezoelectric properties of

  17. Controlled synthesis of magnetic iron oxides@SnO2 quasi-hollow core-shell heterostructures: formation mechanism, and enhanced photocatalytic activity.

    PubMed

    Wu, Wei; Zhang, Shaofeng; Ren, Feng; Xiao, Xiangheng; Zhou, Juan; Jiang, Changzhong

    2011-11-01

    Iron oxide/SnO(2) magnetic semiconductor core-shell heterostructures with high purity were synthesized by a low-cost, surfactant-free and environmentally friendly hydrothermal strategy via a seed-mediated method. The morphology and structure of the hybrid nanostructures were characterized by means of high-resolution transmission electron microscopy and X-ray diffraction. The morphology evolution investigations reveal that the Kirkendall effect directs the diffusion and causes the formation of iron oxide/SnO(2) quasi-hollow particles. Significantly, the as-obtained iron oxides/SnO(2) core-shell heterostructures exhibited enhanced visible light or UV photocatalytic abilities, remarkably superior to as-used α-Fe(2)O(3) seeds and commercial SnO(2) products, mainly owing to the effective electron hole separation at the iron oxides/SnO(2) interfaces.

  18. P-Channel InGaN/GaN heterostructure metal-oxide-semiconductor field effect transistor based on polarization-induced two-dimensional hole gas

    PubMed Central

    Zhang, Kexiong; Sumiya, Masatomo; Liao, Meiyong; Koide, Yasuo; Sang, Liwen

    2016-01-01

    The concept of p-channel InGaN/GaN heterostructure field effect transistor (FET) using a two-dimensional hole gas (2DHG) induced by polarization effect is demonstrated. The existence of 2DHG near the lower interface of InGaN/GaN heterostructure is verified by theoretical simulation and capacitance-voltage profiling. The metal-oxide-semiconductor FET (MOSFET) with Al2O3 gate dielectric shows a drain-source current density of 0.51 mA/mm at the gate voltage of −2 V and drain bias of −15 V, an ON/OFF ratio of two orders of magnitude and effective hole mobility of 10 cm2/Vs at room temperature. The normal operation of MOSFET without freeze-out at 8 K further proves that the p-channel behavior is originated from the polarization-induced 2DHG. PMID:27021054

  19. Novel p-n heterojunction copper phosphide/cuprous oxide photocathode for solar hydrogen production.

    PubMed

    Chen, Ying-Chu; Chen, Zhong-Bo; Hsu, Yu-Kuei

    2018-08-01

    A Copper phosphide (Cu 3 P) micro-rod (MR) array, with coverage by an n-Cu 2 O thin layer by electrodeposition as a photocathode, has been directly fabricated on copper foil via simple electro-oxidation and phosphidation for photoelectrochemical (PEC) hydrogen production. The morphology, structure, and composition of the Cu 3 P/Cu 2 O heterostructure are systematically analyzed using a scanning electron microscope (SEM), X-ray diffraction and X-ray photoelectron spectra. The PEC measurements corroborate that the p-Cu 3 P/n-Cu 2 O heterostructural photocathode illustrates efficient charge separation and low charge transfer resistance to achieve the highest photocurrent of 430 μA cm -2 that is greater than other transition metal phosphide materials. In addition, a detailed energy diagram of the p-Cu 3 P/n-Cu 2 O heterostructure was investigated using Mott-Schottky analysis. Our study paves the way to explore phosphide-based materials in a new class for solar energy applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Preface

    NASA Astrophysics Data System (ADS)

    Craciun, Valentin; Sánchez, Florencio

    2016-09-01

    The present issue contains a collection of representative papers presented in the Symposium L, "Towards Oxide-Based Electronics: growth and applications of oxide thin films and heterostructures", organized during the E-MRS Fall Meeting, 15-18 September 2015 in Warsaw, Poland. The Symposium L was organised and sponsored by the COST Action MP1308 "Towards oxide-based electronics" (TO-BE), a four-year EU project that started in June 2014. Over 100 participants from different countries all over the world presented new results on oxide thin films epitaxial growth, on emergent functionalities at oxide interfaces, and on applications of oxides in the fields on nanoelectronics, energy, sensing and actuation.

  1. A high density two-dimensional electron gas in an oxide heterostructure on Si (001)

    NASA Astrophysics Data System (ADS)

    Jin, E. N.; Kornblum, L.; Kumah, D. P.; Zou, K.; Broadbridge, C. C.; Ngai, J. H.; Ahn, C. H.; Walker, F. J.

    2014-11-01

    We present the growth and characterization of layered heterostructures comprised of LaTiO3 and SrTiO3 epitaxially grown on Si (001). Magnetotransport measurements show that the sheet carrier densities of the heterostructures scale with the number of LaTiO3/SrTiO3 interfaces, consistent with the presence of an interfacial 2-dimensional electron gas (2DEG) at each interface. Sheet carrier densities of 8.9 × 1014 cm-2 per interface are observed. Integration of such high density oxide 2DEGs on silicon provides a bridge between the exceptional properties and functionalities of oxide 2DEGs and microelectronic technologies.

  2. Semiconductor Lasers and Their Application in Optical Fiber Communication.

    ERIC Educational Resources Information Center

    Agrawal, Govind P.

    1985-01-01

    Working principles and operating characteristics of the extremely compact and highly efficient semiconductor lasers are explained. Topics include: the p-n junction; Fabry-Perot cavity; heterostructure semiconductor lasers; materials; emission characteristics; and single-frequency semiconductor lasers. Applications for semiconductor lasers include…

  3. Oxidation of ultrathin GaSe

    DOE PAGES

    Thomas Edwin Beechem; McDonald, Anthony E.; Ohta, Taisuke; ...

    2015-10-26

    Oxidation of exfoliated gallium selenide (GaSe) is investigated through Raman, photoluminescence, Auger, and X-ray photoelectron spectroscopies. Photoluminescence and Raman intensity reductions associated with spectral features of GaSe are shown to coincide with the emergence of signatures emanating from the by-products of the oxidation reaction, namely, Ga 2Se 3 and amorphous Se. Furthermore, photoinduced oxidation is initiated over a portion of a flake highlighting the potential for laser based patterning of two-dimensional heterostructures via selective oxidation.

  4. Controlled synthesis of magnetic iron oxides@SnO2 quasi-hollow core-shell heterostructures: formation mechanism, and enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Zhang, Shaofeng; Ren, Feng; Xiao, Xiangheng; Zhou, Juan; Jiang, Changzhong

    2011-11-01

    Iron oxide/SnO2 magnetic semiconductor core-shell heterostructures with high purity were synthesized by a low-cost, surfactant-free and environmentally friendly hydrothermal strategy via a seed-mediated method. The morphology and structure of the hybrid nanostructures were characterized by means of high-resolution transmission electron microscopy and X-ray diffraction. The morphology evolution investigations reveal that the Kirkendall effect directs the diffusion and causes the formation of iron oxide/SnO2 quasi-hollow particles. Significantly, the as-obtained iron oxides/SnO2 core-shell heterostructures exhibited enhanced visible light or UV photocatalytic abilities, remarkably superior to as-used α-Fe2O3 seeds and commercial SnO2 products, mainly owing to the effective electron hole separation at the iron oxides/SnO2 interfaces.Iron oxide/SnO2 magnetic semiconductor core-shell heterostructures with high purity were synthesized by a low-cost, surfactant-free and environmentally friendly hydrothermal strategy via a seed-mediated method. The morphology and structure of the hybrid nanostructures were characterized by means of high-resolution transmission electron microscopy and X-ray diffraction. The morphology evolution investigations reveal that the Kirkendall effect directs the diffusion and causes the formation of iron oxide/SnO2 quasi-hollow particles. Significantly, the as-obtained iron oxides/SnO2 core-shell heterostructures exhibited enhanced visible light or UV photocatalytic abilities, remarkably superior to as-used α-Fe2O3 seeds and commercial SnO2 products, mainly owing to the effective electron hole separation at the iron oxides/SnO2 interfaces. Electronic supplementary information (ESI) available: TEM and HRTEM images of hematite seeds and iron oxide/SnO2 (12 h and 36 h). See DOI: 10.1039/c1nr10728c

  5. Spatial nonuniformity of current flow and its consideration in determination of characteristics of surface illuminated InAsSbP/InAs-based photodiodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zotova, N. V.; Karandashev, S. A.; Matveev, B. A., E-mail: Bmat@iropt3.ioffe.ru

    Current-voltage characteristics of surface-irradiated photodiodes based on the InAsSbP/InAs structures are analyzed using experimental data on the distribution of electroluminescence intensity over the diode surface and taking into account thickening the current streamlines near the contacts. The influence of the potential barrier associated with the N-InAsSbP/n-InAs junction in double heterostructures on the differential resistance of diodes under zero bias, the value of the reverse current, and spreading of the forward current is discussed.

  6. Carrier and photon dynamics in a topological insulator Bi{sub 2}Te{sub 3}/GaN type II staggered heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaturvedi, P.; Chouksey, S.; Banerjee, D.

    2015-11-09

    We have demonstrated a type-II band-aligned heterostructure between pulsed laser deposited topological insulator bismuth telluride and metal organic-chemical-vapour deposited GaN on a sapphire substrate. The heterostructure shows a large valence band-offset of 3.27 eV as determined from x-ray photoelectron spectroscopy, which is close to the bandgap of GaN (3.4 eV). Further investigation using x-ray diffraction, Raman spectroscopy, and energy-dispersive x-ray spectrum reveals the stoichiometric and material properties of bismuth telluride on GaN. Steady state photon emission from GaN is found to be modulated by the charge transfer process due to diffusion across the junction. The time constant involved with the charge transfermore » process is found to be 0.6 ns by transient absorption spectroscopy. The heterostructure can be used for designing devices with different functionalities and improving the performance of the existing devices on GaN.« less

  7. Photoinduced doping in heterostructures of graphene and boron nitride.

    PubMed

    Ju, L; Velasco, J; Huang, E; Kahn, S; Nosiglia, C; Tsai, Hsin-Zon; Yang, W; Taniguchi, T; Watanabe, K; Zhang, Y; Zhang, G; Crommie, M; Zettl, A; Wang, F

    2014-05-01

    The design of stacks of layered materials in which adjacent layers interact by van der Waals forces has enabled the combination of various two-dimensional crystals with different electrical, optical and mechanical properties as well as the emergence of novel physical phenomena and device functionality. Here, we report photoinduced doping in van der Waals heterostructures consisting of graphene and boron nitride layers. It enables flexible and repeatable writing and erasing of charge doping in graphene with visible light. We demonstrate that this photoinduced doping maintains the high carrier mobility of the graphene/boron nitride heterostructure, thus resembling the modulation doping technique used in semiconductor heterojunctions, and can be used to generate spatially varying doping profiles such as p-n junctions. We show that this photoinduced doping arises from microscopically coupled optical and electrical responses of graphene/boron nitride heterostructures, including optical excitation of defect transitions in boron nitride, electrical transport in graphene, and charge transfer between boron nitride and graphene.

  8. Interface Physics in Complex Oxide Heterostructures

    NASA Astrophysics Data System (ADS)

    Zubko, Pavlo; Gariglio, Stefano; Gabay, Marc; Ghosez, Philippe; Triscone, Jean-Marc

    2011-03-01

    Complex transition metal oxides span a wide range of crystalline structures and play host to an incredible variety of physical phenomena. High dielectric permittivities, piezo-, pyro-, and ferroelectricity are just a few of the functionalities offered by this class of materials, while the potential for applications of the more exotic properties like high temperature superconductivity and colossal magnetoresistance is still waiting to be fully exploited. With recent advances in deposition techniques, the structural quality of oxide heterostructures now rivals that of the best conventional semiconductors, taking oxide electronics to a new level. Such heterostructures have enabled the fabrication of artificial multifunctional materials. At the same time they have exposed a wealth of phenomena at the boundaries where compounds with different structural instabilities and electronic properties meet, giving unprecedented access to new physics emerging at oxide interfaces. Here we highlight some of these exciting new interface phenomena.

  9. Reliable wet-chemical cleaning of natively oxidized high-efficiency Cu(In,Ga)Se{sub 2} thin-film solar cell absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, Jascha; Potsdam Institute for Climate Impact Research; Lehmann, Sebastian, E-mail: sebastian.lehmann@ftf.lth.se

    2014-12-21

    Currently, Cu-containing chalcopyrite-based solar cells provide the highest conversion efficiencies among all thin-film photovoltaic (PV) technologies. They have reached efficiency values above 20%, the same performance level as multi-crystalline silicon-wafer technology that dominates the commercial PV market. Chalcopyrite thin-film heterostructures consist of a layer stack with a variety of interfaces between different materials. It is the chalcopyrite/buffer region (forming the p-n junction), which is of crucial importance and therefore frequently investigated using surface and interface science tools, such as photoelectron spectroscopy and scanning probe microscopy. To ensure comparability and validity of the results, a general preparation guide for “realistic” surfacesmore » of polycrystalline chalcopyrite thin films is highly desirable. We present results on wet-chemical cleaning procedures of polycrystalline Cu(In{sub 1-x}Ga{sub x})Se{sub 2} thin films with an average x = [Ga]/([In] + [Ga]) = 0.29, which were exposed to ambient conditions for different times. The hence natively oxidized sample surfaces were etched in KCN- or NH{sub 3}-based aqueous solutions. By x-ray photoelectron spectroscopy, we find that the KCN treatment results in a chemical surface structure which is – apart from a slight change in surface composition – identical to a pristine as-received sample surface. Additionally, we discover a different oxidation behavior of In and Ga, in agreement with thermodynamic reference data, and we find indications for the segregation and removal of copper selenide surface phases from the polycrystalline material.« less

  10. Heterostructure of ferromagnetic and ferroelectric materials with magneto-optic and electro-optic effects

    NASA Technical Reports Server (NTRS)

    Zou, Yingyin Kevin (Inventor); Jiang, Hua (Inventor); Li, Kewen Kevin (Inventor); Guo, Xiaomei (Inventor)

    2012-01-01

    A heterostructure of multiferroics or magnetoelectrics (ME) was disclosed. The film has both ferromagnetic and ferroelectric properties, as well as magneto-optic (MO) and electro-optic (EO) properties. Oxide buffer layers were employed to allow grown a cracking-free heterostructure a solution coating method.

  11. An Emergent Spin-Filter at the interface between Ferromagnetic and Insulating Layered Oxides

    NASA Astrophysics Data System (ADS)

    Liu, Yaohua

    2014-03-01

    Complex oxide heterostructures are of keen interest because modified bonding at the interfaces can give rise to fundamentally new phenomena and valuable functionalities. Particularly, an induced magnetization is widely observed at epitaxial interfaces between layered transition-metal oxides; however, much less effort has been spent on investigating how it affects the charge transport properties. To this end, we have studied magnetic tunneling junctions consisting of ferromagnetic manganite La0.7Ca0.3MnO3 (LCMO) and insulating cuprate PrBa2Cu3O7 (PBCO). Contrary to the typically observed steady increase of the tunnel magnetoresistance with decreasing temperature, this system exhibits an anomalous decrease at low temperatures. Polarized neutron reflectometry (PNR) and x-ray magnetic circular dichroism (XMCD) studies on LCMO/PBCO/LCMO trilayers show that the saturation magnetization of the LCMO contacts increase as the temperature decreases. In other words, degradation of the ferromagnetic contacts is ruled out as a cause. Interestingly, there exists induced net Cu moments, which indicates that the spin degeneracy of the conduction band of the PBCO barrier is lifted and thus the barrier becomes spin selective. Our calculations, within the Wentzel-Kramers-Brillouin approximation, show that the complex temperature dependence can arise from a competition between the high positive spin polarization of the manganite electrodes and a negative spin-filter effect from the interfacial Cu magnetization. This work illustrates that the interface-induced magnetization in layered oxide heterostructures can have non-trivial effects on the macroscopic transport properties. Work performed in collaboration with FA Cuellar, Z Sefrioui, C Leon, J Santamaria (Universidad Complutense de Madrid), JW Freeland, SGE te Velthuis (ANL) and MR Fitzsimmons (LANL). Work at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Sciences under contract no. DE-AC02-06CH11357.

  12. Identifying suitable substrates for high-quality graphene-based heterostructures

    NASA Astrophysics Data System (ADS)

    Banszerus, L.; Janssen, H.; Otto, M.; Epping, A.; Taniguchi, T.; Watanabe, K.; Beschoten, B.; Neumaier, D.; Stampfer, C.

    2017-06-01

    We report on a scanning confocal Raman spectroscopy study investigating the strain-uniformity and the overall strain and doping of high-quality chemical vapour deposited (CVD) graphene-based heterostuctures on a large number of different substrate materials, including hexagonal boron nitride (hBN), transition metal dichalcogenides, silicon, different oxides and nitrides, as well as polymers. By applying a hBN-assisted, contamination free, dry transfer process for CVD graphene, high-quality heterostructures with low doping densities and low strain variations are assembled. The Raman spectra of these pristine heterostructures are sensitive to substrate-induced doping and strain variations and are thus used to probe the suitability of the substrate material for potential high-quality graphene devices. We find that the flatness of the substrate material is a key figure for gaining, or preserving high-quality graphene.

  13. Two dimensional graphene nanogenerator by coulomb dragging: Moving van der Waals heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Huikai; Li, Xiaoqiang; Wu, Zhiqian

    2015-06-15

    Harvesting energy from environment is the current focus of scientific community. Here, we demonstrate a graphene nanogenerator, which is based on moving van der Waals heterostructure formed between graphene and two dimensional (2D) graphene oxide (GO). This nanogenerator can convert mechanical energy into electricity with a voltage output of around 10 mV. Systematic experiments reveal the generated electricity originates from the coulomb interaction induced momentum transfer between 2D GO and holes in graphene. 2D boron nitride was also demonstrated to be effective in the framework of moving van der Waals heterostructure nanogenerator. This investigation of nanogenerator based on the interaction betweenmore » 2D macromolecule materials will be important to understand the origin of the flow-induced potential in nanomaterials and may have great potential in practical applications.« less

  14. Superconductivity-induced magnetization depletion in a ferromagnet through an insulator in a ferromagnet-insulator-superconductor hybrid oxide heterostructure.

    PubMed

    Prajapat, C L; Singh, Surendra; Paul, Amitesh; Bhattacharya, D; Singh, M R; Mattauch, S; Ravikumar, G; Basu, S

    2016-05-21

    Coupling between superconducting and ferromagnetic states in hybrid oxide heterostructures is presently a topic of intense research. Such a coupling is due to the leakage of the Cooper pairs into the ferromagnet. However, tunneling of the Cooper pairs though an insulator was never considered plausible. Using depth sensitive polarized neutron reflectivity we demonstrate the coupling between superconductor and magnetic layers in epitaxial La2/3Ca1/3MnO3 (LCMO)/SrTiO3/YBa2Cu3O7-δ (YBCO) hybrid heterostructures, with SrTiO3 as an intervening oxide insulator layer between the ferromagnet and the superconductor. Measurements above and below the superconducting transition temperature (TSC) of YBCO demonstrate a large modulation of magnetization in the ferromagnetic layer below the TSC of YBCO in these heterostructures. This work highlights a unique tunneling phenomenon between the epitaxial layers of an oxide superconductor (YBCO) and a magnetic layer (LCMO) through an insulating layer. Our work would inspire further investigations on the fundamental aspect of a long range order of the triplet spin-pairing in hybrid structures.

  15. Near-Unity Absorption in van der Waals Semiconductors for Ultrathin Optoelectronics.

    PubMed

    Jariwala, Deep; Davoyan, Artur R; Tagliabue, Giulia; Sherrott, Michelle C; Wong, Joeson; Atwater, Harry A

    2016-09-14

    We demonstrate near-unity, broadband absorbing optoelectronic devices using sub-15 nm thick transition metal dichalcogenides (TMDCs) of molybdenum and tungsten as van der Waals semiconductor active layers. Specifically, we report that near-unity light absorption is possible in extremely thin (<15 nm) van der Waals semiconductor structures by coupling to strongly damped optical modes of semiconductor/metal heterostructures. We further fabricate Schottky junction devices using these highly absorbing heterostructures and characterize their optoelectronic performance. Our work addresses one of the key criteria to enable TMDCs as potential candidates to achieve high optoelectronic efficiency.

  16. Electric polarization switching in an atomically thin binary rock salt structure

    NASA Astrophysics Data System (ADS)

    Martinez-Castro, Jose; Piantek, Marten; Schubert, Sonja; Persson, Mats; Serrate, David; Hirjibehedin, Cyrus F.

    2018-01-01

    Inducing and controlling electric dipoles is hindered in the ultrathin limit by the finite screening length of surface charges at metal-insulator junctions1-3, although this effect can be circumvented by specially designed interfaces4. Heterostructures of insulating materials hold great promise, as confirmed by perovskite oxide superlattices with compositional substitution to artificially break the structural inversion symmetry5-8. Bringing this concept to the ultrathin limit would substantially broaden the range of materials and functionalities that could be exploited in novel nanoscale device designs. Here, we report that non-zero electric polarization can be induced and reversed in a hysteretic manner in bilayers made of ultrathin insulators whose electric polarization cannot be switched individually. In particular, we explore the interface between ionic rock salt alkali halides such as NaCl or KBr and polar insulating Cu2N terminating bulk copper. The strong compositional asymmetry between the polar Cu2N and the vacuum gap breaks inversion symmetry in the alkali halide layer, inducing out-of-plane dipoles that are stabilized in one orientation (self-poling). The dipole orientation can be reversed by a critical electric field, producing sharp switching of the tunnel current passing through the junction.

  17. Coherent quantum transport in hybrid Nb-InGaAs-Nb Josephson junctions

    NASA Astrophysics Data System (ADS)

    Delfanazari, Kaveh; Puddy, R.; Ma, P.; Cao, M.; Yi, T.; Gul, Y.; Farrer, I.; Ritchie, D.; Joyce, H.; Kelly, M.; Smith, C.

    Because of the recently reported detection of Majorana fermions states at the superconductor-semiconductor (S-Sm) interface in InAs nanowire devices, the study of hybrid structures has received renewed interest. In this paper we present experimental results on proximity induced superconductivity in a high-mobility two-dimensional electron gas in InGaAs heterostructures. Eight symmetric S-Sm-S Josephson junctions were fabricated on a single InGaAs chip and each junction was measured individually using a lock-in measurement technique. The superconducting electrodes were made of Niobium (Nb). The measurements were carried out in a dilution fridge with a base temperature of 40 mK, and the quantum transport of junctions were measured below 800 mK. Owing to Andreev reflections at the S-Sm interfaces, the differential resistance (dV/dI) versus V curve shows the well-known subharmonic energy gap structure (SGS) at V = 2ΔNb/ne. The SGS features suppressed significantly with increasing temperature and magnetic field, leading to a shift of the SGSs toward zero bias. Our result paves the way for development of highly transparent hybrid S-Sm-S junctions and coherent circuits for quantum devices capable of performing quantum logic and processing functions.

  18. Voltage control of magnetic anisotropy in epitaxial Ru/Co2FeAl/MgO heterostructures

    NASA Astrophysics Data System (ADS)

    Wen, Zhenchao; Sukegawa, Hiroaki; Seki, Takeshi; Kubota, Takahide; Takanashi, Koki; Mitani, Seiji

    2017-03-01

    Voltage control of magnetic anisotropy (VCMA) in magnetic heterostructures is a key technology for achieving energy-efficiency electronic devices with ultralow power consumption. Here, we report the first demonstration of the VCMA effect in novel epitaxial Ru/Co2FeAl(CFA)/MgO heterostructures with interfacial perpendicular magnetic anisotropy (PMA). Perpendicularly magnetized tunnel junctions with the structure of Ru/CFA/MgO were fabricated and exhibited an effective voltage control on switching fields for the CFA free layer. Large VCMA coefficients of 108 and 139 fJ/Vm for the CFA film were achieved at room temperature and 4 K, respectively. The interfacial stability in the heterostructure was confirmed by repeating measurements. Temperature dependences of both the interfacial PMA and the VCMA effect were also investigated. It is found that the temperature dependences follow power laws of the saturation magnetization with an exponent of ~2, where the latter is definitely weaker than that of conventional Ta/CoFeB/MgO. The significant VCMA effect observed in this work indicates that the Ru/CFA/MgO heterostructure could be one of the promising candidates for spintronic devices with voltage control.

  19. Differential conductance (dI/dV) imaging of a heterojunction-nanorod

    NASA Astrophysics Data System (ADS)

    Kundu, Biswajit; Bera, Abhijit; Pal, Amlan J.

    2017-03-01

    Through scanning tunneling spectroscopy, we envisage imaging a heterostructure, namely a junction formed in a single nanorod. While the differential conductance spectrum provides location of conduction and valence band edges, dI/dV images record energy levels of materials. Such dI/dV images at different voltages allowed us to view p- and n-sections of heterojunction nanorods and more importantly the depletion region in such a junction that has a type-II band alignment. Viewing of selective sections in a heterojunction occurred due to band-bending in the junction and is correlated to the density of states spectrum of the individual semiconductors. The dI/dV images recorded at different voltages could be used to generate a band diagram of a pn junction.

  20. Strongly enhanced Rashba splittings in an oxide heterostructure: A tantalate monolayer on BaHfO 3

    DOE PAGES

    Kim, Minsung; Ihm, Jisoon; Chung, Suk Bum

    2016-09-22

    In the two-dimensional electron gas emerging at the transition metal oxide surface and interface, various exotic electronic ordering and topological phases can become experimentally more accessible with the stronger Rashba spin-orbit interaction. Here, we present a promising route to realize significant Rashba-type band splitting using a thin film heterostructure. Based on first-principles methods and analytic model analyses, a tantalate monolayer on BaHfO 3 is shown to host two-dimensional bands originating from Ta t 2g states with strong Rashba spin splittings, nearly 10% of the bandwidth, at both the band minima and saddle points. An important factor in this enhanced splittingmore » is the significant t 2g–e g interband coupling, which can generically arise when the inversion symmetry is maximally broken due to the strong confinement of the 2DEG on a transition metal oxide surface. Here, our results could be useful in realizing topological superconductivity at oxide surfaces.« less

  1. Perspective: Oxide molecular-beam epitaxy rocks!

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlom, Darrell G., E-mail: schlom@cornell.edu

    2015-06-01

    Molecular-beam epitaxy (MBE) is the “gold standard” synthesis technique for preparing semiconductor heterostructures with high purity, high mobility, and exquisite control of layer thickness at the atomic-layer level. Its use for the growth of multicomponent oxides got off to a rocky start 30 yr ago, but in the ensuing decades, it has become the definitive method for the preparation of oxide heterostructures too, particularly when it is desired to explore their intrinsic properties. Examples illustrating the unparalleled achievements of oxide MBE are given; these motivate its expanding use for exploring the potentially revolutionary states of matter possessed by oxide systems.

  2. Pressure sensing element based on the BN-graphene-BN heterostructure

    NASA Astrophysics Data System (ADS)

    Li, Mengwei; Wu, Chenggen; Zhao, Shiliang; Deng, Tao; Wang, Junqiang; Liu, Zewen; Wang, Li; Wang, Gao

    2018-04-01

    In this letter, we report a pressure sensing element based on the graphene-boron nitride (BN) heterostructure. The heterostructure consists of monolayer graphene sandwiched between two layers of vertically stacked dielectric BN nanofilms. The BN layers were used to protect the graphene layer from oxidation and pollution. Pressure tests were performed to investigate the characteristics of the BN-graphene-BN pressure sensing element. A sensitivity of 24.85 μV/V/mmHg is achieved in the pressure range of 130-180 kPa. After exposing the BN-graphene-BN pressure sensing element to the ambient environment for 7 days, the relative resistance change in the pressure sensing element is only 3.1%, while that of the reference open-faced graphene device without the BN protection layers is 15.7%. Thus, this strategy is promising for fabricating practical graphene pressure sensors with improved performance and stability.

  3. Dynamics of electronic transitions and frequency dependence of negative capacitance in semiconductor diodes under high forward bias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, Kanika; Datta, Shouvik; Henini, Mohamed

    2014-09-22

    We observed qualitatively dissimilar frequency dependence of negative capacitance under high charge injection in two sets of functionally different junction diodes: III-V based light emitting and Si-based non-light emitting diodes. Using an advanced approach based on bias activated differential capacitance, we developed a generalized understanding of negative capacitance phenomenon which can be extended to any diode based device structure. We explained the observations as the mutual competition of fast and slow electronic transition rates which are different in different devices. This study can be useful in understanding the interfacial effects in semiconductor heterostructures and may lead to superior device functionality.

  4. IZO deposited by PLD on flexible substrate for organic heterostructures

    NASA Astrophysics Data System (ADS)

    Socol, M.; Preda, N.; Stanculescu, A.; Breazu, C.; Florica, C.; Rasoga, O.; Stanculescu, F.; Socol, G.

    2017-05-01

    In:ZnO (IZO) thin films were deposited on flexible plastic substrates by pulsed laser deposition (PLD) method. The obtained layers present adequate optical and electrical properties competitive with those based on indium tin oxide (ITO). The figure of merit (9 × 10-3 Ω-1) calculated for IZO layers demonstrates that high quality coatings can be prepared by this deposition technique. A thermal annealing (150 °C for 1 h) or an oxygen plasma etching (6 mbar for 10 min.) were applied to the IZO layers to evaluate the influence of these treatments on the properties of the transparent coatings. Using vacuum evaporation, organic heterostructures based on cooper phthalocyanine (CuPc) and 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) were deposited on the untreated and treated IZO layers. The optical and electrical properties of the heterostructures were investigated by UV-Vis, FTIR and current-voltage ( I- V) measurements. For the heterostructure fabricated on IZO treated in oxygen plasma, an improvement in the current value with at least one order of magnitude was evidenced in the I- V characteristics recorded in dark conditions. Also, an increase in the current value for the heterostructure deposited on untreated IZO layer can be achieved by adding an organic layer such as tris-8-hydroxyquinoline aluminium (Alq3).

  5. nomalous Interface and Surface Strontium Segregation in (La 1-ySr y) 2CoO 4 /La 1-xSr xCoO 3- Heterostructured Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Zhenxing; Yacoby, Yuzhak; Gadre, Milind

    2014-01-01

    Heterostructured materials have shown unusual physiochemical properties at the interfaces such as two dimensional electron gas systems, high-temperature superconductivity, and enhanced catalysis. Here we report the first atomic-scale evidence of the microscopic structure of a perovskite/Ruddlesden-Popper heterostructure (having La1-xSrxCoO3- /(La1-ySry)2CoO4 ), and anomalous strontium segregation at the interface and in the Ruddlesden-Popper structure using direct X-ray methods combined with ab initio calculations. The remarkably enhanced activity of such heterostructured surfaces relative to bulk perovskite and Ruddlesden-Popper oxides previously shown for oxygen electrocatalysis at elevated temperatures can be attributed to reduced thermodynamic penalty of oxygen vacancies in the oxide structure associatedmore » with Sr segregation observed in the heterostructure. Our findings provide insights for the design of highly active catalysts for energy conversion and storage applications.« less

  6. GaN MOSFET with Boron Trichloride-Based Dry Recess Process

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Wang, Q. P.; Tamai, K.; Miyashita, T.; Motoyama, S.; Wang, D. J.; Ao, J. P.; Ohno, Y.

    2013-06-01

    The dry recessed-gate GaN metal-oxide-semiconductor field-effect transistors (MOSFETs) on AlGaN/GaN heterostructure using boron trichloride (BCl3) as etching gas were fabricated and characterized. Etching with different etching power was conducted. Devices with silicon tetrachloride (SiCl4) etching gas were also prepared for comparison. Field-effect mobility and interface state density were extracted from current-voltage (I-V) characteristics. GaN MOSFETs on AlGaN/GaN heterostructure with BCl3 based dry recess achieved a high maximum electron mobility of 141.5 cm2V-1s-1 and a low interface state density.

  7. The effect of a Ta oxygen scavenger layer on HfO 2-based resistive switching behavior: Thermodynamic stability, electronic structure, and low-bias transport

    DOE PAGES

    Zhong, Xiaoliang; Rungger, Ivan; Zapol, Peter; ...

    2016-02-15

    Reversible resistive switching between high-resistance and low-resistance states in metal-oxide-metal heterostructures makes them very interesting for applications in random access memories. While recent experimental work has shown that inserting a metallic "oxygen scavenger layer'' between the positive electrode and oxide improves device performance, the fundamental understanding of how the scavenger layer modifies the heterostructure properties is lacking. We use density functional theory to calculate thermodynamic properties and conductance of TiN/HfO 2/TiN heterostructures with and without a Ta scavenger layer. First, we show that Ta insertion lowers the formation energy of low-resistance states. Second, while the Ta scavenger layer reduces themore » Schottky barrier height in the high-resistance state by modifying the interface charge at the oxide-electrode interface, the heterostructure maintains a high resistance ratio between high-and low-resistance states. Lastly, we show that the low-bias conductance of device on-states becomes much less sensitive to the spatial distribution of oxygen removed from the HfO 2 in the presence of the Ta layer. By providing a fundamental understanding of the observed improvements with scavenger layers, we open a path to engineer interfaces with oxygen scavenger layers to control and enhance device performance. In turn, this may enable the realization of a non-volatile low-power memory technology with concomitant reduction in energy consumption by consumer electronics and offering significant benefits to society.« less

  8. Single-fabrication-step Ge nanosphere/SiO2/SiGe heterostructures: a key enabler for realizing Ge MOS devices

    NASA Astrophysics Data System (ADS)

    Liao, P. H.; Peng, K. P.; Lin, H. C.; George, T.; Li, P. W.

    2018-05-01

    We report channel and strain engineering of self-organized, gate-stacking heterostructures comprising Ge-nanosphere gate/SiO2/SiGe-channels. An exquisitely-controlled dynamic balance between the concentrations of oxygen, Si, and Ge interstitials was effectively exploited to simultaneously create these heterostructures in a single oxidation step. Process-controlled tunability of the channel length (5–95 nm diameters for the Ge-nanospheres), gate oxide thickness (2.5–4.8 nm), as well as crystal orientation, chemical composition and strain engineering of the SiGe-channel was achieved. Single-crystalline (100) Si1‑x Ge x shells with Ge content as high as x = 0.85 and with a compressive strain of 3%, as well as (110) Si1‑x Ge x shells with Ge content of x = 0.35 and corresponding compressive strain of 1.5% were achieved. For each crystal orientation, our high Ge-content, highly-stressed SiGe shells feature a high degree of crystallinity and thus, provide a core ‘building block’ required for the fabrication of Ge-based MOS devices.

  9. Single-fabrication-step Ge nanosphere/SiO2/SiGe heterostructures: a key enabler for realizing Ge MOS devices.

    PubMed

    Liao, P H; Peng, K P; Lin, H C; George, T; Li, P W

    2018-05-18

    We report channel and strain engineering of self-organized, gate-stacking heterostructures comprising Ge-nanosphere gate/SiO 2 /SiGe-channels. An exquisitely-controlled dynamic balance between the concentrations of oxygen, Si, and Ge interstitials was effectively exploited to simultaneously create these heterostructures in a single oxidation step. Process-controlled tunability of the channel length (5-95 nm diameters for the Ge-nanospheres), gate oxide thickness (2.5-4.8 nm), as well as crystal orientation, chemical composition and strain engineering of the SiGe-channel was achieved. Single-crystalline (100) Si 1-x Ge x shells with Ge content as high as x = 0.85 and with a compressive strain of 3%, as well as (110) Si 1-x Ge x shells with Ge content of x = 0.35 and corresponding compressive strain of 1.5% were achieved. For each crystal orientation, our high Ge-content, highly-stressed SiGe shells feature a high degree of crystallinity and thus, provide a core 'building block' required for the fabrication of Ge-based MOS devices.

  10. Band gap and mobility of epitaxial perovskite BaSn1 -xHfxO3 thin films

    NASA Astrophysics Data System (ADS)

    Shin, Juyeon; Lim, Jinyoung; Ha, Taewoo; Kim, Young Mo; Park, Chulkwon; Yu, Jaejun; Kim, Jae Hoon; Char, Kookrin

    2018-02-01

    A wide band-gap perovskite oxide BaSn O3 is attracting much attention due to its high electron mobility and oxygen stability. On the other hand, BaHf O3 was recently reported to be an effective high-k gate oxide. Here, we investigate the band gap and mobility of solid solutions of BaS n1 -xH fxO3 (x =0 -1 ) (BSHO) as a basis to build advanced perovskite oxide heterostructures. All the films were epitaxially grown on MgO substrates using pulsed laser deposition. Density functional theory calculations confirmed that Hf substitution does not create midgap states while increasing the band gap. From x-ray diffraction and optical transmittance measurements, the lattice constants and the band-gap values are significantly modified by Hf substitution. We also measured the transport properties of n -type La-doped BSHO films [(Ba ,La ) (Sn ,Hf ) O3 ] , investigating the feasibility of modulation doping in the BaSn O3/BSHO heterostructures. The Hall measurement data revealed that, as the Hf content increases, the activation rate of the La dopant decreases and the scattering rate of the electrons sharply increases. These properties of BSHO films may be useful for applications in various heterostructures based on the BaSn O3 system.

  11. Electric polarization control of magnetoresistance in complex oxide heterojunctions

    NASA Astrophysics Data System (ADS)

    Swartz, Adrian G.; Inoue, Hisashi; Hwang, Harold Y.

    2016-10-01

    Lorentzian magnetoresistance (L-MR) has been widely observed in three-terminal ferromagnet-nonmagnet (FM-NM) tunnel junctions. One possible explanation for this behavior is ensemble dephasing (Hanle effect) of a spin accumulation, potentially offering a powerful approach for characterizing the spin lifetime of emerging spintronics materials. However, discrepancies between the extracted spin parameters with known materials properties has cast doubt on this interpretation for most implementations. Here, we have developed a method to control band alignments in perovskite oxide heterostructures through the use of epitaxial interface dipoles, providing a highly effective method for manipulating the Schottky barrier height and contact resistance. Using these atomically engineered heterojunctions, we are able to tune key parameters relevant to various spin accumulation models, providing an experimental platform which can test their applicability. We find that the observed L-MR is inconsistent with an interpretation of spin accumulation in either the NM material or in interface states. Rather, we consider a mechanism analogous to Coulomb blockade in quantum dots, where spin-dependent tunneling through an ensemble of interfacial defect states is controlled by local and external magnetic fields.

  12. All-Metallic Vertical Transistors Based on Stacked Dirac Materials

    NASA Astrophysics Data System (ADS)

    Wang, Yangyang; Ni, Zeyuan; Liu, Qihang; Quhe, Ruge; Zheng, Jiaxin; Ye, Meng; Yu, Dapeng; Shi, Junjie; Yang, Jinbo; Li, Ju; Lu, Jing; Collaborative Innovation Center of Quantum Matter, Beijing Collaboration

    2015-03-01

    All metallic transistor can be fabricated from pristine semimetallic Dirac materials (such as graphene, silicene, and germanene), but the on/off current ratio is very low. In a vertical heterostructure composed by two Dirac materials, the Dirac cones of the two materials survive the weak interlayer van der Waals interaction based on density functional theory method, and electron transport from the Dirac cone of one material to the one of the other material is therefore forbidden without assistance of phonon because of momentum mismatch. First-principles quantum transport simulations of the all-metallic vertical Dirac material heterostructure devices confirm the existence of a transport gap of over 0.4 eV, accompanied by a switching ratio of over 104. Such a striking behavior is robust against the relative rotation between the two Dirac materials and can be extended to twisted bilayer graphene. Therefore, all-metallic junction can be a semiconductor and novel avenue is opened up for Dirac material vertical structures in high-performance devices without opening their band gaps. A visiting student in MIT now.

  13. Thermal oxidation of Si/SiGe heterostructures for use in quantum dot qubits

    NASA Astrophysics Data System (ADS)

    Neyens, Samuel F.; Foote, Ryan H.; Knapp, T. J.; McJunkin, Thomas; Savage, D. E.; Lagally, M. G.; Coppersmith, S. N.; Eriksson, M. A.

    Here we demonstrate dry thermal oxidation of a Si/SiGe heterostructure at 700°C and use a Hall bar device to measure the mobility after oxidation to be 43,000 cm2V-1s-1 at a carrier density of 4.1 ×1011 cm-2. Surprisingly, we find no significant reduction in mobility compared with an Al2O3 device made with atomic layer deposition on the same heterostructure, indicating thermal oxidation can be used to process Si/SiGe quantum dot devices. This result provides a path for investigating improvements to the gate oxide in Si/SiGe qubit devices, whose performance is believed to be limited by charge noise in the oxide layer. This work was supported in part by ARO (W911NF-12-0607) and NSF (DMR-1206915 and PHY-1104660). Development and maintenance of the growth facilities used for fabricating samples is supported by DOE (DE-FG02-03ER46028). This research utilized NSF-supported shared facilities at the University of Wisconsin-Madison.

  14. Charge and spin transport in metal-graphene-metal vertical junctions

    NASA Astrophysics Data System (ADS)

    Cobas, Enrique; van't Erve, Olaf; Cheng, Shu-Fan; Culbertson, James; Jernigan, Glenn; Bussman, Konrad; Jonker, Berry

    We observe negative magnetoresistance(MR) in metallic NiFe(111)|multi-layer graphene|Fe heterostructures consistent with minority spin filtering. The MR is -5 percent at room temperature and -12 percent at 10 K. The transport properties and temperature dependence are metallic. We further investigate the out-of-plane (c-axis) resistivity and magnetoresistance of multi-layer graphene between metal surfaces. We fabricate various metal-graphene-metal vertical heterostructures via chemical vapor deposition directly on lattice-matched crystalline metal films including NiFe(111) and Co(0002) and in-situ electron beam evaporation of NiFe, Co, Ni, Fe, Cu and Au.

  15. Controllable growth of layered selenide and telluride heterostructures and superlattices using molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishwanath, Suresh; Liu, Xinyu; Rouvimov, Sergei

    2016-01-06

    Layered materials are an actively pursued area of research for realizing highly scaled technologies involving both traditional device structures as well as new physics. Lately, non-equilibrium growth of 2D materials using molecular beam epitaxy (MBE) is gathering traction in the scientific community and here we aim to highlight one of its strengths, growth of abrupt heterostructures, and superlattices (SLs). In this work we present several of the firsts: first growth of MoTe 2 by MBE, MoSe 2 on Bi 2Se 3 SLs, transition metal dichalcogenide (TMD) SLs, and lateral junction between a quintuple atomic layer of Bi 2Te 3 andmore » a triple atomic layer of MoTe 2. In conclusion, reflected high electron energy diffraction oscillations presented during the growth of TMD SLs strengthen our claim that ultrathin heterostructures with monolayer layer control is within reach.« less

  16. Nanoscale deformation and friction characteristics of atomically thin WSe2 and heterostructure using nanoscratch and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Manimunda, P.; Nakanishi, Y.; Jaques, Y. M.; Susarla, S.; Woellner, C. F.; Bhowmick, S.; Asif, S. A. S.; Galvão, D. S.; Tiwary, C. S.; Ajayan, P. M.

    2017-12-01

    2D transition metals di-selenides are attracting a lot of attention due to their interesting optical, chemical and electronics properties. Here, the deformation characteristics of monolayer, multi- layer WSe2 and its heterostructure with MoSe2 were investigated using a new technique that combines nanoscratch and Raman spectroscopy. The 2D monolayer WSe2 showed anisotropy in deformation. Effect of number of WSe2 layers on friction characteristics were explored in detail. Experimental observations were further supported by MD simulations. Raman spectra recorded from the scratched regions showed strain induced degeneracy splitting. Further nano-scale scratch tests were extended to MoSe2-WSe2 lateral heterostructures. Effect of deformation on lateral hetero junctions were further analysed using PL and Raman spectroscopy. This new technique is completely general and can be applied to study other 2D materials.

  17. La2/3Sr1/3MnO3-La0.1Bi0.9MnO3 heterostructures for spin filtering

    NASA Astrophysics Data System (ADS)

    Gajek, M.; Bibes, M.; Varela, M.; Fontcuberta, J.; Herranz, G.; Fusil, S.; Bouzehouane, K.; Barthélémy, A.; Fert, A.

    2006-04-01

    We have grown heterostructures associating half-metallic La2/3Sr1/3MnO3 (LSMO) bottom electrodes and ferromagnetic La0.1Bi0.9MnO3 (LBMO) tunnel barriers. The layers in the heterostructures have good structural properties and top LBMO films (4 nm thick) have a very low roughness when deposited onto LSMO/SrTiO3(1.6 nm) templates. The LBMO films show an insulating behavior and a ferromagnetic character that are both preserved down to very low thicknesses. They are thus suitable for being used as tunnel barriers. Spin-dependent transport measurements performed on tunnel junctions defined from LSMO/SrTiO3/LBMO/Au samples show a magnetoresistance of up to ~90% at low temperature and bias. This evidences a spin-filtering effect by the LBMO layer, with a spin-filtering efficiency of ~35%.

  18. Solar photocatalytic water oxidation over Ag3PO4/g-C3N4 composite materials mediated by metallic Ag and graphene

    NASA Astrophysics Data System (ADS)

    Cui, Xingkai; Tian, Lin; Xian, Xiaozhai; Tang, Hua; Yang, Xiaofei

    2018-02-01

    Solar-driven water splitting over semiconductor-based photocatalysts provides direct conversion of solar energy to chemical energy, in which electron-hole separation and charge transport are critical for enhancing the photocatalytic activity of semiconducting materials. Moreover, the search for active photocatalysts that efficiently oxidize water remains a challenging task. Here, we demonstrate that a series of Ag3PO4/Ag/graphene/graphitic carbon nitride (g-C3N4) heterostructured materials can drive photocatalytic water oxidation efficiently under LED illumination. The water oxidation behavior of as-prepared composite photocatalysts in relation to the added amount of g-C3N4 and the roles of electron mediators was investigated in detail. Based on the illuminated Z-scheme photocatalytic mechanism, the photogenerated electrons and holes can be separated effectively and the electron-hole recombination of bulk material is suppressed. The reduced metallic Ag nanoparticles were found to function as the center for the accumulation of electrons from Ag3PO4 and holes from g-C3N4. By exploiting the proper addition of g-C3N4 into the composite, photocatalytic oxygen evolution performance over the heterostructured materials could be suitably tuned, which resulted in highly efficient water oxidation.

  19. Integration of strained and relaxed silicon thin films on silicon wafers via engineered oxide heterostructures: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Seifarth, O.; Dietrich, B.; Zaumseil, P.; Giussani, A.; Storck, P.; Schroeder, T.

    2010-10-01

    Strained and relaxed single crystalline Si on insulator systems is an important materials science approach for future Si-based nanoelectronics. Layer transfer techniques are the dominating global integration approach over the whole wafer system but are difficult to scale down for local integration purposes limited to the area of the future device. In this respect, the heteroepitaxy approach by two simple subsequent epitaxial deposition steps of the oxide and the Si thin film is a promising way. We introduce tailored (Pr2O3)1-x(Y2O3)x oxide heterostructures on Si(111) as flexible heteroepitaxy concept for the integration of either strained or fully relaxed single crystalline Si thin films. Two different buffer concepts are explored by a combined experimental and theoretical study. First, the growth of fully relaxed single crystalline Si films is achieved by the growth of mixed PrYO3 insulators on Si(111) whose lattice constant is matched to Si. Second, isomorphic oxide-on-oxide epitaxy is exploited to grow strained Si films on lattice mismatched Y2O3/Pr2O3/Si(111) support systems. A thickness dependent multilayer model, based on Matthew's approach for strain relaxation by misfit dislocations, is presented to describe the experimental data.

  20. Methods for the fabrication of thermally stable magnetic tunnel junctions

    DOEpatents

    Chang, Y Austin [Middleton, WI; Yang, Jianhua J [Madison, WI; Ladwig, Peter F [Hutchinson, MN

    2009-08-25

    Magnetic tunnel junctions and method for making the magnetic tunnel junctions are provided. The magnetic tunnel junctions are characterized by a tunnel barrier oxide layer sandwiched between two ferromagnetic layers. The methods used to fabricate the magnetic tunnel junctions are capable of completely and selectively oxidizing a tunnel junction precursor material using an oxidizing gas containing a mixture of gases to provide a tunnel junction oxide without oxidizing the adjacent ferromagnetic materials. In some embodiments the gas mixture is a mixture of CO and CO.sub.2 or a mixture of H.sub.2 and H.sub.2O.

  1. Resistive switching mechanism in the one diode-one resistor memory based on p+-Si/n-ZnO heterostructure revealed by in-situ TEM

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Zhu, Liang; Li, Xiaomei; Xu, Zhi; Wang, Wenlong; Bai, Xuedong

    2017-03-01

    One diode-one resistor (1D1R) memory is an effective architecture to suppress the crosstalk interference, realizing the crossbar network integration of resistive random access memory (RRAM). Herein, we designed a p+-Si/n-ZnO heterostructure with 1D1R function. Compared with the conventional multilayer 1D1R devices, the structure and fabrication technique can be largely simplified. The real-time imaging of formation/rupture process of conductive filament (CF) process demonstrated the RS mechanism by in-situ transmission electron microscopy (TEM). Meanwhile, we observed that the formed CF is only confined to the outside of depletion region of Si/ZnO pn junction, and the formation of CF does not degrade the diode performance, which allows the coexistence of RS and rectifying behaviors, revealing the 1D1R switching model. Furthermore, it has been confirmed that the CF is consisting of the oxygen vacancy by in-situ TEM characterization.

  2. Combined flame and solution synthesis of nanoscale tungsten-oxide and zinc/tin-oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Dong, Zhizhong; Huo, Di; Kear, Bernard H.; Tse, Stephen D.

    2015-12-01

    Heterostructures of tungsten-oxide nanowires decorated with zinc/tin-oxide nanostructures are synthesized via a combined flame and solution synthesis approach. Vertically well-aligned tungsten-oxide nanowires are grown on a tungsten substrate by a flame synthesis method. Here, tetragonal WO2.9 nanowires (diameters of 20-50 nm, lengths >10 μm, and coverage density of 109-1010 cm-2) are produced by the vapor-solid mechanism at 1720 K. Various kinds of Zn/Sn-oxide nanostructures are grown or deposited on the WO2.9 nanowires by adjusting the Sn2+ : Zn2+ molar ratio in an aqueous ethylenediamine solution at 65 °C. With WO2.9 nanowires serving as the base structures, sequential growth or deposition on them of hexagonal ZnO nanoplates, Zn2SnO4 nanocubes, and SnO2 nanoparticles are attained for Sn2+ : Zn2+ ratios of 0 : 1, 1 : 10, and 10 : 1, respectively, along with different saturation conditions. High-resolution transmission electron microscopy of the interfaces at the nanoheterojunctions shows abrupt interfaces for ZnO/WO2.9 and Zn2SnO4/WO2.9, despite lattice mismatches of >20%.

  3. Scanning Probe Microscopy and Electrical Transport Studies of Ferroelectric Thin Films and 2D van der Waals Materials

    NASA Astrophysics Data System (ADS)

    Xiao, Zhiyong

    In this dissertation, I present the scanning microscopy and electrical transport studies of ferroelectric thin films and ferroic/2D van der Waals heterostructures. Based on the conducting probe atomic force microscopy and piezo-response force microscopy (PFM) studies of the static and dynamic behavior of ferroelectric domain walls (DW), we found that the ferroelectric polymer poly(vinylidene-fluoride-trifluorethylene) P(VDF-TrFE) is composed of two-dimensional (2D) ferroelectric monolayers (MLs) that are weakly coupled to each other. We also observed polarization asymmetry in epitaxial thin films of ferroelectric Pb(Zr,Ti)O3, which is attributed to the screening properties of the underlying conducting oxide. PFM studies also reveal ferroelectric relaxor-type behavior in ultrathin Sr(Zr,Ti)O3 films epitaxially deposited on Ge. We exploited scanning-probe-controlled domain patterning in a P(VDF-TrFE) top layer to induce nonvolatile modulation of the conduction characteristic of ML molybdenum disulfide (MoS2) between a transistor and a junction state. In the presence of a DW, MoS2 exhibits rectified Ids-Vds (IV) characteristics that are well described by the thermionic emission model. This approach can be applied to a wide range of van der Waals materials to design various functional homojunctions and nanostructures. We also studied the interfacial charge transfer effect between graphene and magnetoelectric Cr2O3 via electrostatic force microscopy and Kelvin probe force microscopy, which reveal p-type doping with up to 150 meV shift of the Fermi level. The graphene/Cr2O3 heterostructure is promising for developing magnetoelectric graphene transistors for spintronic applications.

  4. Electrical properties of graphene tunnel junctions with high-κ metal-oxide barriers

    NASA Astrophysics Data System (ADS)

    Feng, Ying; Trainer, Daniel J.; Chen, Ke

    2017-04-01

    An insulating barrier is one of the key components in electronic devices that makes use of quantum tunneling principles. Many metal-oxides have been used as a good barrier material in a tunnel junction for their large band gap, stable chemical properties and superb properties for forming a thin and pin-hole-free insulating layer. The reduced dimensions of transistors have led to the need for alternative, high dielectric constant (high-κ) oxides to replace conventional silicon-based dielectrics to reduce the leaking current induced by electron tunneling. On the other hand, a tunnel junction with one or both electrodes made of graphene may lead to novel applications due to the massless Dirac fermions from the graphene. Here we have fabricated sandwich-type graphene tunnel junctions with high-κ metal-oxides as barriers, including Al2O3, HfO2, ZrO2, and TiO2. Tunneling properties are investigated by observing the temperature and time dependences of the tunneling spectra. Our results show the potential for applications of high-κ oxides in graphene tunnel junctions and bringing new opportunities for memory and logic electronic devices.

  5. Resistive and Capacitive Memory Effects in Oxide Insulator/ Oxide Conductor Hetero-Structures

    NASA Astrophysics Data System (ADS)

    Meyer, Rene; Miao, Maosheng; Wu, Jian; Chevallier, Christophe

    2013-03-01

    We report resistive and capacitive memory effects observed in oxide insulator/ oxide conductor hetero-structures. Electronic transport properties of Pt/ZrO2/PCMO/Pt structures with ZrO2 thicknesses ranging from 20A to 40A are studied before and after applying short voltage pulses of positive and negative polarity for set and reset operation. As processed devices display a non-linear IV characteristic which we attribute to trap assisted tunneling through the ZrO2 tunnel oxide. Current scaling with electrode area and tunnel oxide thickness confirms uniform conduction. The set/reset operation cause an up/down shift of the IV characteristic indicating that the conduction mechanism of both states is still dominated by tunneling. A change in the resistance is associated with a capacitance change of the device. An exponential relation between program voltages and set times is found. A model based on electric field mediated non-linear transport of oxygen ions across the ZrO2/PCMO interface is proposed. The change in the tunnel current is explained by ionic charge transfer between tunnel oxide and conductive metal oxide changing both tunnel barrier height and PCMO conductivity. DFT techniques are employed to explain the conductivity change in the PCMO interfacial layer observed through capacitance measurements.

  6. Phase coherent transport in hybrid superconductor-topological insulator devices

    NASA Astrophysics Data System (ADS)

    Finck, Aaron

    2015-03-01

    Heterostructures of superconductors and topological insulators are predicted to host unusual zero energy bound states known as Majorana fermions, which can robustly store and process quantum information. Here, I will discuss our studies of such heterostructures through phase-coherent transport, which can act as a unique probe of Majorana fermions. We have extensively explored topological insulator Josephson junctions through SQUID and single-junction diffraction patterns, whose unusual behavior give evidence for low-energy Andreev bound states. In topological insulator devices with closely spaced normal and superconducting leads, we observe prominent Fabry-Perot oscillations, signifying gate-tunable, quasi-ballistic transport that can elegantly interact with Andreev reflection. Superconducting disks deposited on the surface of a topological insulator generate Aharonov-Bohm-like oscillations, giving evidence for unusual states lying near the interface between the superconductor and topological insulator surface. Our results point the way towards sophisticated interferometers that can detect and read out the state of Majorana fermions in topological systems. This work was done in collaboration with Cihan Kurter, Yew San Hor, and Dale Van Harlingen. We acknowledge funding from Microsoft Project Q.

  7. Ag-bridged Ag2O nanowire network/TiO2 nanotube array p-n heterojunction as a highly efficient and stable visible light photocatalyst.

    PubMed

    Liu, Chengbin; Cao, Chenghao; Luo, Xubiao; Luo, Shenglian

    2015-03-21

    A unique Ag-bridged Ag2O nanowire network/TiO2 nanotube array p-n heterojunction (Ag-Ag2O/TiO2 NT) was fabricated by simple electrochemical method. Ag nanoparticles were firstly electrochemically deposited onto the surface of TiO2 NT and then were partly oxidized to Ag2O nanowires while the rest of Ag mother nanoparticles were located at the junctions of Ag2O nanowire network. The Ag-Ag2O/TiO2 NT heterostructure exhibited strong visible-light response, effective separation of photogenerated carriers, and high adsorption capacity. The integration of Ag-Ag2O self-stability structure and p-n heterojunction permitted high and stable photocatalytic activity of Ag-Ag2O/TiO2 NT heterostructure photocatalyst. Under 140-min visible light irradiation, the photocatalytic removal efficiency of both dye acid orange 7 (AO7) and industrial chemical p-nitrophenol (PNP) over Ag-Ag2O/TiO2 NT reached nearly 100% much higher than 17% for AO7 or 13% for PNP over bare TiO2 NT. After 5 successive cycles under 600-min simulated solar light irradiation, Ag-Ag2O/TiO2 NT remained highly stable photocatalytic activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Fabrication of Coaxial Si1−xGex Heterostructure Nanowires by O2 Flow-Induced Bifurcate Reactions

    PubMed Central

    2010-01-01

    We report on bifurcate reactions on the surface of well-aligned Si1−xGex nanowires that enable fabrication of two different coaxial heterostructure nanowires. The Si1−xGex nanowires were grown in a chemical vapor transport process using SiCl4 gas and Ge powder as a source. After the growth of nanowires, SiCl4 flow was terminated while O2 gas flow was introduced under vacuum. On the surface of nanowires was deposited Ge by the vapor from the Ge powder or oxidized into SiO2 by the O2 gas. The transition from deposition to oxidation occurred abruptly at 2 torr of O2 pressure without any intermediate region and enables selectively fabricated Ge/Si1−xGex or SiO2/Si1−xGex coaxial heterostructure nanowires. The rate of deposition and oxidation was dominated by interfacial reaction and diffusion of oxygen through the oxide layer, respectively. PMID:21076699

  9. Fabrication of Coaxial Si1- x Ge x Heterostructure Nanowires by O2 Flow-Induced Bifurcate Reactions

    NASA Astrophysics Data System (ADS)

    Kim, Ilsoo; Lee, Ki-Young; Kim, Ungkil; Park, Yong-Hee; Park, Tae-Eon; Choi, Heon-Jin

    2010-10-01

    We report on bifurcate reactions on the surface of well-aligned Si1- x Ge x nanowires that enable fabrication of two different coaxial heterostructure nanowires. The Si1- x Ge x nanowires were grown in a chemical vapor transport process using SiCl4 gas and Ge powder as a source. After the growth of nanowires, SiCl4 flow was terminated while O2 gas flow was introduced under vacuum. On the surface of nanowires was deposited Ge by the vapor from the Ge powder or oxidized into SiO2 by the O2 gas. The transition from deposition to oxidation occurred abruptly at 2 torr of O2 pressure without any intermediate region and enables selectively fabricated Ge/Si1- x Ge x or SiO2/Si1- x Ge x coaxial heterostructure nanowires. The rate of deposition and oxidation was dominated by interfacial reaction and diffusion of oxygen through the oxide layer, respectively.

  10. Fabrication of Coaxial Si(1-x)Ge(x) Heterostructure Nanowires by O(2) Flow-Induced Bifurcate Reactions.

    PubMed

    Kim, Ilsoo; Lee, Ki-Young; Kim, Ungkil; Park, Yong-Hee; Park, Tae-Eon; Choi, Heon-Jin

    2010-06-17

    We report on bifurcate reactions on the surface of well-aligned Si(1-x)Ge(x) nanowires that enable fabrication of two different coaxial heterostructure nanowires. The Si(1-x)Ge(x) nanowires were grown in a chemical vapor transport process using SiCl(4) gas and Ge powder as a source. After the growth of nanowires, SiCl(4) flow was terminated while O(2) gas flow was introduced under vacuum. On the surface of nanowires was deposited Ge by the vapor from the Ge powder or oxidized into SiO(2) by the O(2) gas. The transition from deposition to oxidation occurred abruptly at 2 torr of O(2) pressure without any intermediate region and enables selectively fabricated Ge/Si(1-x)Ge(x) or SiO(2)/Si(1-x)Ge(x) coaxial heterostructure nanowires. The rate of deposition and oxidation was dominated by interfacial reaction and diffusion of oxygen through the oxide layer, respectively.

  11. Control of Interfacial Phenomena in Artificial Oxide Heterostructures

    DTIC Science & Technology

    2015-09-01

    heterostructures using the field effect to control superconductivity, magnetism, and metal‐insulator transitions. We also identify the existence of double TiO2 ...double TiO2 layers play a crucial role in determining the superconducting states of monolayer FeSe/SrTiO3. 15. SUBJECT TERMS Thin films, conductor...development of oxide‐based electronic devices.  We also identify the existence of double  TiO2   layers at the surface of SrTiO3 in the recently

  12. Tuning of optical and electrical properties of wide band gap Fe:SnO2/Li:NiO p- n junctions using 80 MeV oxygen ion beam

    NASA Astrophysics Data System (ADS)

    Mistry, Bhaumik V.; Avasthi, D. K.; Joshi, U. S.

    2016-12-01

    Electrical and optical properties of pristine and swift heavy ion (SHI) irradiated p- n junction diode have been investigated for advanced electronics application. Fe:SnO2/Li:NiO p- n junction was fabricated by using pulsed laser deposition on c-sapphire substrate. The optical band gaps of Fe:SnO2 and Li:NiO films were obtained to be 3.88 and 3.37 eV, respectively. The current-voltage characteristics of the oxide-based p- n junction showed a rectifying behaviour with turn-on voltage of 0.95 V. The oxide-based p- n junction diode was irradiated to 80 MeV O+6 ions with 1 × 1012 ions/cm2 fluence. Decrease in grain size due to SHI irradiation is confirmed by the grazing angle X-ray diffraction and atomic force microscopy. In comparison with the pristine p- n junction diode, O+6 ion irradiated p-n junction diode shows the increase of surface roughness and decrease of percentage transmittance in visible region. For irradiated p- n junction diode, current-voltage curve has still rectifying behaviour but exhibits lower turn-on voltage than that of virgin p- n junction diode.

  13. Improving the beam quality of high-power laser diodes by introducing lateral periodicity into waveguides

    NASA Astrophysics Data System (ADS)

    Sobczak, Grzegorz; DÄ browska, ElŻbieta; Teodorczyk, Marian; Kalbarczyk, Joanna; MalÄ g, Andrzej

    2013-01-01

    Low quality of the optical beam emitted by high-power laser diodes is the main disadvantage of these devices. The two most important reasons are highly non-Gaussian beam profile with relatively wide divergence in the junction plane and the filamentation effect. Designing laser diode as an array of narrow, close to each other single-mode waveguides is one of the solutions to this problem. In such devices called phase locked arrays (PLA) there is no room for filaments formation. The consequence of optical coupling of many single-mode waveguides is the device emission in the form of few almost diffraction limited beams. Because of losses in regions between active stripes the PLA devices have, however, somewhat higher threshold current and lower slope efficiencies compared to wide-stripe devices of similar geometry. In this work the concept of the high-power laser diode resonator consisted of joined PLA and wide stripe segments is proposed. Resulting changes of electro-optical characteristics of PLA are discussed. The devices are based on the asymmetric heterostructure designed for improvement of the catastrophic optical damage threshold as well as thermal and electrical resistances. Due to reduced distance from the active layer to surface in this heterostructure, better stability of current (and gain) distribution with changing drive level is expected. This could lead to better stability of optical field distribution and supermodes control. The beam divergence reduction in the direction perpendicular of the junction plane has been also achieved.

  14. Facile synthesis of uniform MoO2/Mo2CTx heteromicrospheres as high-performance anode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Min, Jie; Wang, Kangyan; Liu, Jun; Yao, Yang; Wang, Wenjun; Yang, Linyu; Zhang, Ruizhi; Lei, Ming

    2017-09-01

    Uniform nano/micro-spherical MoO2/Mo2CTx (T = O) heterostructures have been synthesized through a heterocatalytic reaction with subsequent facile calcinations. Given the high activity of HxMoO3/C precursors, this strategy opens a low-temperature route to realize the fabrication of nanocrystalline MoO2/Mo2CTx heterostructures, leading to achieve rapidly activated conversion reaction and extrinsic pseudocapacitive behaviour. Rather than carbon, highly conductive Mo2CTx decreases the charge transfer resistance in MoO2 and maintains its structural stability upon lithiation/delithiation, ensuring the heterostructures with excellent cyclability (e.g., up to 833 mA h g-1 at 100 mA g-1 for 160 cycles with 95% capacity retention) and high rate capability (e.g., 665 mA h g-1 at 1 A g-1). Additionally, owing to the carbon-free characteristic, the secondary nano/microstructure feature and the suppressed surface oxidation trait, MoO2/Mo2CTx heterostructures, therefore, can deliver an improved initial Coulombic efficiency (e.g., up to 78% at 100 mA g-1). The present oxycarbide transformation and hybridization strategies are facile but effective, and they are very promising to be applied to converting other oxides-carbon composites into oxides/carbides heterostructures towards achieving higher electrochemical performance.

  15. Piezoelectric nanogenerators based on ZnO and M13 Bacteriophage nanostructures (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shin, Dong-Myeong; Kim, Kyujungg; Hong, Suck Won; Oh, Jin-Woo; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2016-09-01

    Recently, the portable and wearable electronic devices, operated in the power range of microwatt to miliwatt, become available thank to the nanotechnology development and become an essential element for a comfortable life. Our recent research interest mainly focuses on the fabrication of piezoelectric nanogenerators based on smart nanomaterials such as zinc oxide novel nanostructure, M13 bacteriophage. In this talk, we present a simple strategy for fabricating the freestanding ZnO nanorods/graphene/ZnO nanorods double sided heterostructures. The characterization of the double sided heterostructures by using SEM, and Raman scattering spectroscopy reveals the key process and working mechanism of a formation of the heterostructure. The mechanism is discussed in detail in term of the decomposed seed layer and the vacancy defect of graphene. The approach consists of a facile one-step fabrication process and could achieve ZnO coverage with a higher number density than that of the epitaxial single heterostructure. The resulting improvement in the number density of nanorods has a direct beneficial effect on the double side heterostructured nanogenerator performance. The total output voltage and current density are improved up to 2 times compared to those of a single heterostructure due to the coupling of the piezoelectric effects from both upward and downward grown nanorods. The facile one-step fabrication process suggests that double sided heterostructures would improve the performance of electrical and optoelectrical device, such as touch pad, pressure sensor, biosensor and dye-sensitized solar cells. Further, ioinspired nanogenerators based on vertically aligned phage nanopillars are inceptively demonstrated. Vertically aligned phage nanopillars enable not only a high piezoelectric response but also a tuneable piezoelectricity. Piezoelectricity is also modulated by tuning of the protein's dipoles in each phage. The sufficient electrical power from phage nanopillars thus holds promise for the development of self-powered implantable and wearable electronics.

  16. Graphene-Molybdenum Disulfide-Graphene Tunneling Junctions with Large-Area Synthesized Materials.

    PubMed

    Joiner, Corey A; Campbell, Philip M; Tarasov, Alexey A; Beatty, Brian R; Perini, Chris J; Tsai, Meng-Yen; Ready, William J; Vogel, Eric M

    2016-04-06

    Tunneling devices based on vertical heterostructures of graphene and other 2D materials can overcome the low on-off ratios typically observed in planar graphene field-effect transistors. This study addresses the impact of processing conditions on two-dimensional materials in a fully integrated heterostructure device fabrication process. In this paper, graphene-molybdenum disulfide-graphene tunneling heterostructures were fabricated using only large-area synthesized materials, unlike previous studies that used small exfoliated flakes. The MoS2 tunneling barrier is either synthesized on a sacrificial substrate and transferred to the bottom-layer graphene or synthesized directly on CVD graphene. The presence of graphene was shown to have no impact on the quality of the grown MoS2. The thickness uniformity of MoS2 grown on graphene and SiO2 was found to be 1.8 ± 0.22 nm. XPS and Raman spectroscopy are used to show how the MoS2 synthesis process introduces defects into the graphene structure by incorporating sulfur into the graphene. The incorporation of sulfur was shown to be greatly reduced in the absence of molybdenum suggesting molybdenum acts as a catalyst for sulfur incorporation. Tunneling simulations based on the Bardeen transfer Hamiltonian were performed and compared to the experimental tunneling results. The simulations show the use of MoS2 as a tunneling barrier suppresses contributions to the tunneling current from the conduction band. This is a result of the observed reduction of electron conduction within the graphene sheets.

  17. Tunneling in BP-MoS2 heterostructure

    NASA Astrophysics Data System (ADS)

    Liu, Xiaochi; Qu, Deshun; Kim, Changsik; Ahmed, Faisal; Yoo, Won Jong

    Tunnel field effect transistor (TFET) is considered to be a leading option for achieving SS <60 mV/dec. In this work, black phosphorus (BP) and molybdenum disulfide (MoS2) heterojunction devices are fabricated. We find that thin BP flake and MoS2 form normal p-n junctions, tunneling phenomena can be observed when BP thickness increases to certain level. PEO:CsClO4 is applied on the surface of the device together with a side gate electrode patterned together with source and drain electrodes. The Fermi level of MoS2 on top of BP layer can be modulated by the side gating, and this enables to vary the MoS2-BP tunnel diode property from off-state to on-state. Since tunneling is the working mechanism of MoS2-BP junction, and PEO:CsClO4\\ possesses ultra high dielectric constant and small equivalent oxide thickness (EOT), a low SS of 55 mV/dec is obtained from MoS2-BP TFET. This work was supported by the Global Research Laboratory and Global Frontier R&D Programs at the Center for Hybrid Interface Materials, both funded by the Ministry of Science, ICT & Future Planning via the National Research Foundation of Korea (NRF).

  18. Enhancement of SOFC Cathode Electrochemical Performance Using Multi-Phase Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Dane

    2015-09-30

    This work explored the use of oxide heterostructures for enhancing the catalytic and degradation properties of solid oxide fuel cell (SOFC) cathode electrodes. We focused on heterostructures of Ruddlesden-Popper and perovskite phases. Building on previous work showing enhancement of the Ruddlesden-Popper (La,Sr) 2CoO 4 / perovskite (La,Sr)CoO 3 heterostructure compared to pure (La,Sr)CoO 3 we explored the application of related heterostructures of Ruddlesden-Popper phases on perovskite (La,Sr)(Co,Fe)O 3. Our approaches included thin-film electrodes, physical and electrochemical characterization, elementary reaction kinetics modeling, and ab initio simulations. We demonstrated that Sr segregation to surfaces is likely playing a critical role in themore » performance of (La,Sr)CoO 3 and (La,Sr)(Co,Fe)O 3 and that modification of this Sr segregation may be the mechanism by which Ruddlesden-Popper coatings enhance performances. We determined that (La,Sr)(Co,Fe)O 3 could be enhanced in thin films by about 10× by forming a heterostructure simultaneously with (La,Sr) 2CoO 4 and (La,Sr)CoO 3. We hope that future work will develop this heterostructure for use as a bulk porous electrode.« less

  19. Interfacial control of oxygen vacancy doping and electrical conduction in thin film oxide heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veal, Boyd W.; Kim, Seong Keun; Zapol, Peter

    2016-06-10

    Oxygen vacancies in proximity to surfaces and heterointerfaces in oxide thin film heterostructures have major effects on properties, resulting, for example, in emergent conduction behaviour, large changes in metal-insulator transition temperatures or enhanced catalytic activity. Here we report the discovery of a means of reversibly controlling the oxygen vacancy concentration and distribution in oxide heterostructures consisting of electronically conducting In2O3 films grown on ionically conducting Y2O3-stabilized ZrO2 substrates. Oxygen ion redistribution across the heterointerface is induced using an applied electric field oriented in the plane of the interface, resulting in controlled oxygen vacancy (and hence electron) doping of the filmmore » and possible orders-of-magnitude enhancement of the film's electrical conduction. The reversible modified behaviour is dependent on interface properties and is attained without cation doping or changes in the gas environment.« less

  20. Interfacial control of oxygen vacancy doping and electrical conduction in thin film oxide heterostructures

    DOE PAGES

    Veal, Boyd W.; Kim, Seong Keun; Zapol, Peter; ...

    2016-06-10

    Oxygen vacancies in proximity to surfaces and heterointerfaces in oxide thin film heterostructures have major effects on properties, resulting, for example, in emergent conduction behavior, large changes in metal-insulator transition temperatures, or enhanced catalytic activity. Here in this paper, we report the discovery of a means of reversibly controlling the oxygen vacancy concentration and distribution in oxide heterostructures consisting of electronically conducting In 2O 3 films grown on ionically conducting Y 2O 3-stabilized ZrO 2 substrates. Oxygen ion redistribution across the heterointerface is induced using an applied electric field oriented in the plane of the interface, resulting in controlled oxygenmore » vacancy (and hence electron) doping of the film and possible orders-of-magnitude enhancement of the film's electrical conduction. The reversible modified behavior is dependent on interface properties and is attained without cation doping or changes in the gas environment.« less

  1. Low-bandgap double-heterostructure InAsP/GaInAs photovoltaic converters

    DOEpatents

    Wanlass, Mark W.

    2001-01-01

    A low-bandgap, double-heterostructure PV device is provided, including in optical alignment a first InP.sub.1-y As.sub.y n-layer formed with an n-type dopant, an Ga.sub.x In.sub.1-x As absorber layer, the absorber layer having an n-region formed with an n-type dopant and an p-region formed with a p-type dopant to form a single pn-junction, and a second InP.sub.1-y As.sub.y p-layer formed with a p-type dopant, wherein the first and second layers are used for passivation and minority carrier confinement of the absorber layers.

  2. Dynamic defect correlations dominate activated electronic transport in SrTiO3

    PubMed Central

    Snijders, Paul C.; Şen, Cengiz; McConnell, Michael P.; Ma, Ying-Zhong; May, Andrew F.; Herklotz, Andreas; Wong, Anthony T.; Ward, T. Zac

    2016-01-01

    Strontium titanate (SrTiO3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. We present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. The results show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. These results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides. PMID:27443503

  3. Dynamic defect correlations dominate activated electronic transport in SrTiO 3

    DOE PAGES

    Snijders, Paul C.; Sen, Cengiz; McConnell, Michael P.; ...

    2016-07-22

    Strontium titanate (SrTiO 3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. In this paper, we present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. Themore » results show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. In conclusion, these results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides.« less

  4. Spin State Control using Oxide Interfaces in LaCoO3-based Heterostructures

    NASA Astrophysics Data System (ADS)

    Lee, Sangjae; Disa, Ankit; Walker, Frederick; Ahn, Charles

    The flexibility of the spin degree of freedom of the Co 3d orbitals in LaCoO3 suggests that they can be changed through careful design of oxide heterostructures. Interfacial coupling and dimensional confinement can be used to control the magnetic exchange, crystal fields, and Hund's coupling, through orbital and charge reconstructions. These parameters control the balance between multiple spin configurations, thereby modifying the magnetic ordering of LaCoO3. We study (LaCoO3)m /(LaTiO3)2 heterostructures grown by molecular beam epitaxy, which allow interfacial charge transfer from Ti to Co, in addition to structural and dimensional constraints. The electronic polarization at the interface and consequent structural distortions suppress the ferromagnetism in the LaCoO3 layers. This effect extends well beyond the interface, with ferromagnetic order absent up to LaCoO3 layer thickness of m =10. We compare the properties of the LaCoO3/LaTiO3heterostructureswithLaCoO3/SrTiO3, to untangle how charge transfer and structural modifications control the spin and magnetic configuration in cobaltates.

  5. Characterization of the Aluminum-Oxide - Interface in Organic-Based Photoconductors by Electron Tunneling Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Outzourhit, Abdelkader

    In this study both the structure of the native oxide of the aluminum substrate and its electrical properties were investigated using electron tunneling spectroscopy which uses aluminum/aluminum oxide/lead tunnel junctions. It is found that the structure of the oxide as well as the barrier heights vary as a function of the preparation conditions. Room temperature oxidation in air or in the presence of small amounts of water vapor results in a disordered oxide, while glow discharge oxidation in an oxygen plasma leads to a more ordered oxide as evidenced by a sharp Al-O band in the inelastic electron tunneling (IET) spectra of as-grown tunnel junctions. In addition, the thermally oxidized junctions show a large barrier asymmetry (6.1 eV), which decrease as the humidity level is increased. These observations can be correlated with a change in the concentration, charge, and environment of the chemically adsorbed hydroxyl on the surface of the aluminum oxide. Tunneling studies of Hydroxy Squarylium (OHSq)- and PNDMA-doped tunnel junctions reveal the lowering of the effective barrier for electron tunneling as well as the barrier asymmetry in accordance with the modification of the charged hydroxyl groups at the surface of the oxide. IET spectra of these junctions support the Lewis-acid/Lewis-base type of interaction between the oxide surface and the adsorbed molecules. The ionization energy of the OHSq aggregates was measured to be 5.0 eV using the valence band XPS. This parameter was also evaluated from a simple Huckel molecular orbital theory applied to the dye molecule after taking into account the polarization energy. High dark decay rates are associated with low barrier for hole injection into the OHSq aggregates. Schottky emission is the primary cause of the dark decay at low voltages, while the Frenkel -Poole mechanism dominates the dark decay at higher voltages. The Lewis-acid/Lewis-base mechanism for the dark decay is not ruled out. Structural studies reveal the existence of silicon- and sodium-rich protrusions in the samples which show unacceptable dark decay rates. The protrusions can enhance the electric field within the photoconductor and thus lead to higher dark decay rates. (Abstract shortened with permission of author.).

  6. Hierarchically assembled 3D nanoflowers and 0D nanoparticles of nickel sulfides on reduced graphene oxide with excellent lithium storage performances

    NASA Astrophysics Data System (ADS)

    Tronganh, Nguyen; Gao, Yang; Jiang, Wei; Tao, Haihua; Wang, Shanshan; Zhao, Bing; Jiang, Yong; Chen, Zhiwen; Jiao, Zheng

    2018-05-01

    Constructing heterostructure can endow composites with many novel physical and electrochemical properties due to the built-in specific charge transfer dynamics. However, controllable fabrication route to heterostructures is still a great challenge up to now. In this work, a SiO2-assisted hydrothermal method is developed to fabricate heterostructured nickel sulfides/reduced graphene oxide (NiSx/rGO) composite. The SiO2 particles hydrolyzed from tetraethyl orthosilicate could assist the surface controllable co-growth of 3D nanoflowers and 0D nanoparticles of Ni3S2/NiS decorated on reduced graphene oxide, and the possible co-growth mechanism is discussed in detail. In this composite, the heterostructured nanocomposite with different morphologies, chemical compositions and crystal structures, along with varied electronic states and band structure, can promote the interface charge transfer kinetics and lead to excellent lithium storage performances. Electrochemical measurements reveal that the NiSx/rGO composite presents 1187.0 mA h g-1 at 100 mA g-1 and achieves a highly stable capacity of 561.2 mA h g-1 even when the current density is up to 5 A g-1.

  7. Controllable synthesis, magnetic properties, and enhanced photocatalytic activity of spindlelike mesoporous α-Fe(2)O(3)/ZnO core-shell heterostructures.

    PubMed

    Wu, Wei; Zhang, Shaofeng; Xiao, Xiangheng; Zhou, Juan; Ren, Feng; Sun, Lingling; Jiang, Changzhong

    2012-07-25

    Mesoporous spindlelike iron oxide/ZnO core-shell heterostructures are successfully fabricated by a low-cost, surfactant-free, and environmentally friendly seed-mediate strategy with the help of postannealing treatment. The material composition and stoichiometry, as well as these magnetic and optical properties, have been examined and verified by means of high-resolution transmission electron microscopy and X-ray diffraction, the thickness of ZnO layer can be simply tailored by the concentration of zinc precursor. Considering that both α-Fe2O3 and ZnO are good photocatalytic materials, we have investigated the photodegradation performances of the core-shell heterostructures using organic dyes Rhodamin B (RhB). It is interesting to find that the as-obtained iron oxides/ZnO core-shell heterostructures exhibited enhanced visible light or UV photocatalytic abilities, remarkably superior to the as-used α-Fe2O3 seeds and commercial TiO2 products (P25), mainly owing to the synergistic effect between the narrow and wide bandgap semiconductors and effective electron-hole separation at the interfaces of iron oxides/ZnO.

  8. Non-Fermi liquids in oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Stemmer, Susanne; Allen, S. James

    2018-06-01

    Understanding the anomalous transport properties of strongly correlated materials is one of the most formidable challenges in condensed matter physics. For example, one encounters metal-insulator transitions, deviations from Landau Fermi liquid behavior, longitudinal and Hall scattering rate separation, a pseudogap phase, and bad metal behavior. These properties have been studied extensively in bulk materials, such as the unconventional superconductors and heavy fermion systems. Oxide heterostructures have recently emerged as new platforms to probe, control, and understand strong correlation phenomena. This article focuses on unconventional transport phenomena in oxide thin film systems. We use specific systems as examples, namely charge carriers in SrTiO3 layers and interfaces with SrTiO3, and strained rare earth nickelate thin films. While doped SrTiO3 layers appear to be a well behaved, though complex, electron gas or Fermi liquid, the rare earth nickelates are a highly correlated electron system that may be classified as a non-Fermi liquid. We discuss insights into the underlying physics that can be gained from studying the emergence of non-Fermi liquid behavior as a function of the heterostructure parameters. We also discuss the role of lattice symmetry and disorder in phenomena such as metal-insulator transitions in strongly correlated heterostructures.

  9. Atomic-scale visualization of oxide thin-film surfaces.

    PubMed

    Iwaya, Katsuya; Ohsawa, Takeo; Shimizu, Ryota; Okada, Yoshinori; Hitosugi, Taro

    2018-01-01

    The interfaces of complex oxide heterostructures exhibit intriguing phenomena not observed in their constituent materials. The oxide thin-film growth of such heterostructures has been successfully controlled with unit-cell precision; however, atomic-scale understandings of oxide thin-film surfaces and interfaces have remained insufficient. We examined, with atomic precision, the surface and electronic structures of oxide thin films and their growth processes using low-temperature scanning tunneling microscopy. Our results reveal that oxide thin-film surface structures are complicated in contrast to the general perception and that atomically ordered surfaces can be achieved with careful attention to the surface preparation. Such atomically ordered oxide thin-film surfaces offer great opportunities not only for investigating the microscopic origins of interfacial phenomena but also for exploring new surface phenomena and for studying the electronic states of complex oxides that are inaccessible using bulk samples.

  10. MoS2 /Rubrene van der Waals Heterostructure: Toward Ambipolar Field-Effect Transistors and Inverter Circuits.

    PubMed

    He, Xuexia; Chow, WaiLeong; Liu, Fucai; Tay, BengKang; Liu, Zheng

    2017-01-01

    2D transition metal dichalcogenides are promising channel materials for the next-generation electronic device. Here, vertically 2D heterostructures, so called van der Waals solids, are constructed using inorganic molybdenum sulfide (MoS 2 ) few layers and organic crystal - 5,6,11,12-tetraphenylnaphthacene (rubrene). In this work, ambipolar field-effect transistors are successfully achieved based on MoS 2 and rubrene crystals with the well balanced electron and hole mobilities of 1.27 and 0.36 cm 2 V -1 s -1 , respectively. The ambipolar behavior is explained based on the band alignment of MoS 2 and rubrene. Furthermore, being a building block, the MoS 2 /rubrene ambipolar transistors are used to fabricate CMOS (complementary metal oxide semiconductor) inverters that show good performance with a gain of 2.3 at a switching threshold voltage of -26 V. This work paves a way to the novel organic/inorganic ultrathin heterostructure based flexible electronics and optoelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Insights into the photocatalytic mechanism of mediator-free direct Z-scheme g-C3N4/Bi2MoO6(010) and g-C3N4/Bi2WO6(010) heterostructures: A hybrid density functional theory study

    NASA Astrophysics Data System (ADS)

    Opoku, Francis; Govender, Krishna Kuben; Sittert, Cornelia Gertina Catharina Elizabeth van; Govender, Penny Poomani

    2018-01-01

    Graphite-like carbon nitride (g-C3N4)-based heterostructures have received much attention due to their prominent photocatalytic activity. The g-C3N4/Bi2WO6 and g-C3N4/Bi2MoO6 heterostructures, which follow a typical hetero-junction charge transfer mechanisms show a weak potential for hydrogen evolution and reactive radical generation under visible light irradiation. A mediator-free Z-scheme g-C3N4/Bi2MoO6(010) and g-C3N4/Bi2WO6(010) heterostructures photocatalyst are designed for the first time using first-principles studies. Moreover, theoretical understanding of the underlying mechanism, the effects of interfacial composition and the role the interface play in the overall photoactivity is still unexplained. The calculated band gap of the heterostructures is reduced compared to the bulk Bi2WO6 and Bi2MoO6. In this study, we systematically calculated energy band structure, optical properties and charge transfer of the g-C3N4/Bi2MoO6(010) and g-C3N4/Bi2WO6(010) heterostructures using the hybrid density functional theory approach. The results show that the charge transfer at the interface of the heterostructures induces a built-in potential, which benefits the separation of photogenerated charge carriers. The g-C3N4/Bi2MoO6(010) heterostructure with more negative adhesion energy (-1.10 eVA-2) is predicted to have a better adsorptive ability and can form more easily compared to the g-C3N4/Bi2WO6(010) interface (-1.16 eVA-2). Therefore, our results show that the g-C3N4 interaction with Bi2MoO6 is stronger than Bi2WO6, which is also verified by the smaller vertical separation (3.25 Å) between Bi2MoO6 and g-C3N4 compared to the g-C3N4/Bi2WO6(010) interface (3.36 Å). The optical absorption verifies that these proposed Z-scheme heterostructures are excellent visible light harvesting semiconductor photocatalyst materials. This enhancement is ascribed to the role of g-C3N4 monolayer as an electron acceptor and the direct Z-scheme charge carrier transfer at the interface of the heterostructures. This work is useful for designing new types of Z-scheme photocatalyst and offers new insight into Z-scheme charge transfer mechanism for applications in the field of solar energy conversion.

  12. Band offsets in ITO/Ga2O3 heterostructures

    NASA Astrophysics Data System (ADS)

    Carey, Patrick H.; Ren, F.; Hays, David C.; Gila, B. P.; Pearton, S. J.; Jang, Soohwan; Kuramata, Akito

    2017-11-01

    The valence band offsets in rf-sputtered Indium Tin Oxide (ITO)/single crystal β-Ga2O3 (ITO/Ga2O3) heterostructures were measured with X-Ray Photoelectron Spectroscopy using the Kraut method. The bandgaps of the component materials in the heterostructure were determined by Reflection Electron Energy Loss Spectroscopy as 4.6 eV for Ga2O3 and 3.5 eV for ITO. The valence band offset was determined to be -0.78 ± 0.30 eV, while the conduction band offset was determined to be -0.32 ± 0.13 eV. The ITO/Ga2O3 system has a nested gap (type I) alignment. The use of a thin layer of ITO between a metal and the Ga2O3 is an attractive approach for reducing contact resistance on Ga2O3-based power electronic devices and solar-blind photodetectors.

  13. Transparent indium-tin oxide/indium-gallium-zinc oxide Schottky diodes formed by gradient oxygen doping

    NASA Astrophysics Data System (ADS)

    Ho, Szuheng; Yu, Hyeonggeun; So, Franky

    2017-11-01

    Amorphous InGaZnO (a-IGZO) is promising for transparent electronics due to its high carrier mobility and optical transparency. However, most metal/a-IGZO junctions are ohmic due to the Fermi-level pinning at the interface, restricting their device applications. Here, we report that indium-tin oxide/a-IGZO Schottky diodes can be formed by gradient oxygen doping in the a-IGZO layer that would otherwise form an ohmic contact. Making use of back-to-back a-IGZO Schottky junctions, a transparent IGZO permeable metal-base transistor is also demonstrated with a high common-base gain.

  14. Giant switchable Rashba effect in oxide heterostructures

    DOE PAGES

    Zhong, Zhicheng; Si, Liang; Zhang, Qinfang; ...

    2015-03-01

    One of the most fundamental phenomena and a reminder of the electron’s relativistic nature is the Rashba spin splitting for broken inversion symmetry. Usually this splitting is a tiny relativistic correction. Interfacing ferroelectric BaTiO₃ and a 5d (or 4d) transition metal oxide with a large spin-orbit coupling, Ba(Os,Ir,Ru)O₃, we show that giant Rashba spin splittings are indeed possible and even controllable by an external electric field. Based on density functional theory and a microscopic tight binding understanding, we conclude that the electric field is amplified and stored as a ferroelectric Ti-O distortion which, through the network of oxygen octahedra, inducesmore » a large (Os,Ir,Ru)-O distortion. The BaTiO₃/Ba(Os,Ru,Ir)O₃ heterostructure is hence the ideal test station for switching and studying the Rashba effect and allows applications at room temperature.« less

  15. Reduced TiO2-Graphene Oxide Heterostructure As Broad Spectrum-Driven Efficient Water-Splitting Photocatalysts.

    PubMed

    Li, Lihua; Yu, Lili; Lin, Zhaoyong; Yang, Guowei

    2016-04-06

    The reduced TiO2-graphene oxide heterostructure as an alternative broad spectrum-driven efficient water splitting photocatalyst has become a really interesting topic, however, its syntheses has many flaws, e.g., tedious experimental steps, time-consuming, small scale production, and requirement of various additives, for example, hydrazine hydrate is widely used as reductant to the reduction of graphene oxide, which is high toxicity and easy to cause the second pollution. For these issues, herein, we reported the synthesis of the reduced TiO2-graphene oxide heterostructure by a facile chemical reduction agent-free one-step laser ablation in liquid (LAL) method, which achieves extended optical response range from ultraviolet to visible and composites TiO(2-x) (reduced TiO2) nanoparticle and graphene oxide for promoting charge conducting. 30.64% Ti(3+) content in the reduced TiO2 nanoparticles induces the electronic reconstruction of TiO2, which results in 0.87 eV decrease of the band gap for the visible light absorption. TiO(2-x)-graphene oxide heterostructure achieved drastically increased photocatalytic H2 production rate, up to 23 times with respect to the blank experiment. Furthermore, a maximum H2 production rate was measured to be 16 mmol/h/g using Pt as a cocatalyst under the simulated sunlight irradiation (AM 1.5G, 135 mW/cm(2)), the quantum efficiencies were measured to be 5.15% for wavelength λ = 365 ± 10 nm and 1.84% for λ = 405 ± 10 nm, and overall solar energy conversion efficiency was measured to be 14.3%. These findings provided new insights into the broad applicability of this methodology for accessing fascinate photocatalysts.

  16. Approach to Multifunctional Device Platform with Epitaxial Graphene on Transition Metal Oxide (Postprint)

    DTIC Science & Technology

    2015-09-23

    with a metal oxide ( TiO2 ). Our novel direct synthesis of graphene/ TiO2 heterostructure is achieved by C60 deposition on transition Ti metal surface...of TiO2 and C 2p orbitals in the conduction band of graphene enabled by Coulomb interactions at the interface. In addition, this heterostructure...provides a platform for realization of bottom gated graphene field effect devices with graphene and TiO2 playing the roles of channel and gate dielectric

  17. Electronic components embedded in a single graphene nanoribbon.

    PubMed

    Jacobse, P H; Kimouche, A; Gebraad, T; Ervasti, M M; Thijssen, J M; Liljeroth, P; Swart, I

    2017-07-25

    The use of graphene in electronic devices requires a band gap, which can be achieved by creating nanostructures such as graphene nanoribbons. A wide variety of atomically precise graphene nanoribbons can be prepared through on-surface synthesis, bringing the concept of graphene nanoribbon electronics closer to reality. For future applications it is beneficial to integrate contacts and more functionality directly into single ribbons by using heterostructures. Here, we use the on-surface synthesis approach to fabricate a metal-semiconductor junction and a tunnel barrier in a single graphene nanoribbon consisting of 5- and 7-atom wide segments. We characterize the atomic scale geometry and electronic structure by combined atomic force microscopy, scanning tunneling microscopy, and conductance measurements complemented by density functional theory and transport calculations. These junctions are relevant for developing contacts in all-graphene nanoribbon devices and creating diodes and transistors, and act as a first step toward complete electronic devices built into a single graphene nanoribbon.Adding functional electronic components to graphene nanoribbons requires precise control over their atomic structure. Here, the authors use a bottom-up approach to build a metal-semiconductor junction and a tunnel barrier directly into a single graphene nanoribbon, an exciting development for graphene-based electronic devices.

  18. Graphene and thin-film semiconductor heterojunction transistors integrated on wafer scale for low-power electronics.

    PubMed

    Heo, Jinseong; Byun, Kyung-Eun; Lee, Jaeho; Chung, Hyun-Jong; Jeon, Sanghun; Park, Seongjun; Hwang, Sungwoo

    2013-01-01

    Graphene heterostructures in which graphene is combined with semiconductors or other layered 2D materials are of considerable interest, as a new class of electronic devices has been realized. Here we propose a technology platform based on graphene-thin-film-semiconductor-metal (GSM) junctions, which can be applied to large-scale and power-efficient electronics compatible with a variety of substrates. We demonstrate wafer-scale integration of vertical field-effect transistors (VFETs) based on graphene-In-Ga-Zn-O (IGZO)-metal asymmetric junctions on a transparent 150 × 150 mm(2) glass. In this system, a triangular energy barrier between the graphene and metal is designed by selecting a metal with a proper work function. We obtain a maximum current on/off ratio (Ion/Ioff) up to 10(6) with an average of 3010 over 2000 devices under ambient conditions. For low-power logic applications, an inverter that combines complementary n-type (IGZO) and p-type (Ge) devices is demonstrated to operate at a bias of only 0.5 V.

  19. Ultrafast Spectroscopic Noninvasive Probe of Vertical Carrier Transport in Heterostructure Devices

    DTIC Science & Technology

    2016-03-01

    where barriers, tunneling , scattering, strong polarization-induced fields, or carrier localization due to Type I or Type II quantum-well structures can... tunneling across junctions, scattering at heterointerfaces, and internal fields. For light-emitting devices, poor charge transport across multilayer...localization of holes and rapid electron tunneling .5 However, direct transport properties were Approved for public release; distribution is

  20. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions

    NASA Astrophysics Data System (ADS)

    Wen, Zheng; Li, Chen; Wu, Di; Li, Aidong; Ming, Naiben

    2013-07-01

    Ferroelectric tunnel junctions (FTJs), composed of two metal electrodes separated by an ultrathin ferroelectric barrier, have attracted much attention as promising candidates for non-volatile resistive memories. Theoretical and experimental works have revealed that the tunnelling resistance switching in FTJs originates mainly from a ferroelectric modulation on the barrier height. However, in these devices, modulation on the barrier width is very limited, although the tunnelling transmittance depends on it exponentially as well. Here we propose a novel tunnelling heterostructure by replacing one of the metal electrodes in a normal FTJ with a heavily doped semiconductor. In these metal/ferroelectric/semiconductor FTJs, not only the height but also the width of the barrier can be electrically modulated as a result of a ferroelectric field effect, leading to a greatly enhanced tunnelling electroresistance. This idea is implemented in Pt/BaTiO3/Nb:SrTiO3 heterostructures, in which an ON/OFF conductance ratio above 104, about one to two orders greater than those reported in normal FTJs, can be achieved at room temperature. The giant tunnelling electroresistance, reliable switching reproducibility and long data retention observed in these metal/ferroelectric/semiconductor FTJs suggest their great potential in non-destructive readout non-volatile memories.

  1. Signatures of Phonon and Defect-Assisted Tunneling in Planar Metal-Hexagonal Boron Nitride-Graphene Junctions.

    PubMed

    Chandni, U; Watanabe, K; Taniguchi, T; Eisenstein, J P

    2016-12-14

    Electron tunneling spectroscopy measurements on van der Waals heterostructures consisting of metal and graphene (or graphite) electrodes separated by atomically thin hexagonal boron nitride tunnel barriers are reported. The tunneling conductance, dI/dV, at low voltages is relatively weak, with a strong enhancement reproducibly observed to occur at around |V| ≈ 50 mV. While the weak tunneling at low energies is attributed to the absence of substantial overlap, in momentum space, of the metal and graphene Fermi surfaces, the enhancement at higher energies signals the onset of inelastic processes in which phonons in the heterostructure provide the momentum necessary to link the Fermi surfaces. Pronounced peaks in the second derivative of the tunnel current, d 2 I/dV 2 , are observed at voltages where known phonon modes in the tunnel junction have a high density of states. In addition, features in the tunneling conductance attributed to single electron charging of nanometer-scale defects in the boron nitride are also observed in these devices. The small electronic density of states of graphene allows the charging spectra of these defect states to be electrostatically tuned, leading to "Coulomb diamonds" in the tunneling conductance.

  2. Pinhole mediated electrical transport across LaTiO3/SrTiO3 and LaAlO3/SrTiO3 oxide hetero-structures

    NASA Astrophysics Data System (ADS)

    Kumar, Pramod; Dogra, Anjana; Toutam, Vijaykumar

    2013-11-01

    Metal-insulator-metal configuration of LaTiO3/SrTiO3 and LaAlO3/SrTiO3 hetero-structures between two dimensional electron gas formed at the interface and different area top electrodes is employed for Conductive Atomic force microscopy (CAFM) imaging, Current-Voltage (I-V), and Capacitance-Voltage (C-V) spectroscopy. Electrode area dependent I-V characteristics are observed for these oxide hetero-structures. With small area electrodes, rectifying I-V characteristics are observed, compared to, both tunneling and leakage current characteristics for large area electrodes. CAFM mapping confirmed the presence of pinholes on both surfaces. Resultant I-V characteristics have a contribution from both tunneling and leakage due to pinholes.

  3. h-BN/graphene van der Waals vertical heterostructure: a fully spin-polarized photocurrent generator.

    PubMed

    Tao, Xixi; Zhang, Lei; Zheng, Xiaohong; Hao, Hua; Wang, Xianlong; Song, Lingling; Zeng, Zhi; Guo, Hong

    2017-12-21

    By constructing transport junctions using graphene-based van der Waals (vdW) heterostructures in which a zigzag-edged graphene nanoribbon (ZGNR) is sandwiched between two hexagonal boron-nitride sheets, we computationally demonstrate a new scheme for generating perfect spin-polarized quantum transport in ZGNRs by light irradiation. The mechanism lies in the lift of spin degeneracy of ZGNR induced by the stagger potential it receives from the BN sheets and the subsequent possibility of single spin excitation of electrons from the valence band to the conduction band by properly tuning the photon energy. This scheme is rather robust in that we always achieve desirable results irrespective of whether we decrease or increase the interlayer distance by applying compressive or tensile strain vertically to the sheets or shift the BN sheets in-plane relative to the graphene nanoribbons. More importantly, this scheme overcomes the long-standing difficulties in traditional ways of using solely electrical field or chemical modification for obtaining half-metallic transport in ZGNRs and thus paves a more feasible way for their application in spintronics.

  4. Synthesis of chemicals using solar energy with stable photoelectrochemically active heterostructures.

    PubMed

    Mubeen, Syed; Singh, Nirala; Lee, Joun; Stucky, Galen D; Moskovits, Martin; McFarland, Eric W

    2013-05-08

    Efficient and cost-effective conversion of solar energy to useful chemicals and fuels could lead to a significant reduction in fossil hydrocarbon use. Artificial systems that use solar energy to produce chemicals have been reported for more than a century. However the most efficient devices demonstrated, based on traditionally fabricated compound semiconductors, have extremely short working lifetimes due to photocorrosion by the electrolyte. Here we report a stable, scalable design and molecular level fabrication strategy to create photoelectrochemically active heterostructure (PAH) units consisting of an efficient semiconductor light absorber in contact with oxidation and reduction electrocatalysts and otherwise protected by alumina. The functional heterostructures are fabricated by layer-by-layer, template-directed, electrochemical synthesis in porous anodic aluminum oxide membranes to produce high density arrays of electronically autonomous, nanostructured, corrosion resistant, photoactive units (~10(9)-10(10) PAHs per cm(2)). Each PAH unit is isolated from its neighbor by the transparent electrically insulating oxide cellular enclosure that makes the overall assembly fault tolerant. When illuminated with visible light, the free floating devices have been demonstrated to produce hydrogen at a stable rate for over 24 h in corrosive hydroiodic acid electrolyte with light as the only input. The quantum efficiency (averaged over the solar spectrum) for absorbed photons-to-hydrogen conversion was 7.4% and solar-to-hydrogen energy efficiency of incident light was 0.9%. The fabrication approach is scalable for commercial manufacturing and readily adaptable to a variety of earth abundant semiconductors which might otherwise be unstable as photoelectrocatalysts.

  5. Electrically coupling complex oxides to semiconductors: A route to novel material functionalities

    DOE PAGES

    Ngai, J. H.; Ahmadi-Majlan, K.; Moghadam, J.; ...

    2017-01-12

    Complex oxides and semiconductors exhibit distinct yet complementary properties owing to their respective ionic and covalent natures. By electrically coupling complex oxides to traditional semiconductors within epitaxial heterostructures, enhanced or novel functionalities beyond those of the constituent materials can potentially be realized. Essential to electrically coupling complex oxides to semiconductors is control of the physical structure of the epitaxially grown oxide, as well as the electronic structure of the interface. In this paper, we discuss how composition of the perovskite A- and B-site cations can be manipulated to control the physical and electronic structure of semiconductor—complex oxide heterostructures. Two prototypicalmore » heterostructures, Ba 1-xSr xTiO 3/Ge and SrZr xTi 1-xO 3/Ge, will be discussed. In the case of Ba 1-xSr xTiO 3/Ge, we discuss how strain can be engineered through A-site composition to enable the re-orientable ferroelectric polarization of the former to be coupled to carriers in the semiconductor. In the case of SrZr xTi 1-xO 3/Ge we discuss how B-site composition can be exploited to control the band offset at the interface. Finally, analogous to heterojunctions between compound semiconducting materials, control of band offsets, i.e., band-gap engineering, provides a pathway to electrically couple complex oxides to semiconductors to realize a host of functionalities.« less

  6. Electrically coupling complex oxides to semiconductors: A route to novel material functionalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngai, J. H.; Ahmadi-Majlan, K.; Moghadam, J.

    Complex oxides and semiconductors exhibit distinct yet complementary properties owing to their respective ionic and covalent natures. By electrically coupling complex oxides to traditional semiconductors within epitaxial heterostructures, enhanced or novel functionalities beyond those of the constituent materials can potentially be realized. Essential to electrically coupling complex oxides to semiconductors is control of the physical structure of the epitaxially grown oxide, as well as the electronic structure of the interface. In this paper, we discuss how composition of the perovskite A- and B-site cations can be manipulated to control the physical and electronic structure of semiconductor—complex oxide heterostructures. Two prototypicalmore » heterostructures, Ba 1-xSr xTiO 3/Ge and SrZr xTi 1-xO 3/Ge, will be discussed. In the case of Ba 1-xSr xTiO 3/Ge, we discuss how strain can be engineered through A-site composition to enable the re-orientable ferroelectric polarization of the former to be coupled to carriers in the semiconductor. In the case of SrZr xTi 1-xO 3/Ge we discuss how B-site composition can be exploited to control the band offset at the interface. Finally, analogous to heterojunctions between compound semiconducting materials, control of band offsets, i.e., band-gap engineering, provides a pathway to electrically couple complex oxides to semiconductors to realize a host of functionalities.« less

  7. Reduced Graphene Oxide-Ag3PO4 Heterostructure: A Direct Z-Scheme Photocatalyst for Augmented Photoreactivity and Stability.

    PubMed

    Samal, Alaka; Das, D P; Nanda, K K; Mishra, B K; Das, J; Dash, A

    2016-02-18

    A visible light driven, direct Z-scheme reduced graphene oxide-Ag3PO4 (RGO-Ag3 PO4 ) heterostructure was synthesized by means of a simple one-pot photoreduction route by varying the amount of RGO under visible light illumination. The reduction of graphene oxide (GO) and growth of Ag3PO4 took place simultaneously. The effect of the amount of RGO on the textural properties and photocatalytic activity of the heterostructure was investigated under visible light illumination. Furthermore, total organic carbon (TOC) analysis confirmed 97.1 % mineralization of organic dyes over RGO-Ag3PO4 in just five minutes under visible-light illumination. The use of different quenchers in the photomineralization suggested the presence of hydroxyl radicals ((.)OH), superoxide radicals ((.)O2 (-)), and holes (h(+)), which play a significant role in the mineralization of organic dyes. In addition to that, clean hydrogen fuel generation was also observed with excellent reusability. The 4 RGO-Ag3PO4 heterostructure has a high H2 evolution rate of 3690 μmol h(-1)  g(-1), which is 6.15 times higher than that of RGO. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. High-Energy Faceted SnO₂-Coated TiO₂ Nanobelt Heterostructure for Near-Ambient Temperature-Responsive Ethanol Sensor.

    PubMed

    Chen, Guohui; Ji, Shaozheng; Li, Haidong; Kang, Xueliang; Chang, Sujie; Wang, Yana; Yu, Guangwei; Lu, Jianren; Claverie, Jerome; Sang, Yuanhua; Liu, Hong

    2015-11-11

    A SnO2 gas sensor was prepared by a two-step oxidation process whereby a Sn(II) precursor was partially oxidized by a hydrothermal process and the resulting Sn3O4 nanoplates were thermally oxidized to yield SnO2 nanoplates. The SnO2 sensor was selective and responsive toward ethanol at a temperature as low as 43 °C. This low sensing temperature stems from the rapid charge transport within SnO2 and from the presence of high-energy (001) facets available for oxygen chemisorption. SnO2/TiO2 nanobelt heterostructures were fabricated by a similar two-step process in which TiO2 nanobelts acted as support for the epitaxial growth of intermediate Sn3O4. At temperatures ranging from 43 to 276 °C, the response of these branched nanobelts is more than double the response of SnO2 for ethanol detection. Our observations demonstrate the potential of low-cost SnO2-based sensors with controlled morphology and reactive facets for detecting gases around room temperature.

  9. pn junctions based on a single transparent perovskite semiconductor BaSnO3

    NASA Astrophysics Data System (ADS)

    Kim, Hoon Min; Kim, Useong; Park, Chulkwon; Kwon, Hyukwoo; Lee, Woongjae; Kim, Tai Hoon; Kim, Kee Hoon; Char, Kookrin; Mdpl, Department Of Physics; Astronomy Team; Censcmr, Department Of Physics; Astronomy Team

    2014-03-01

    Successful p doping of transparent oxide semiconductor will further increase its potential, especially in the area of optoelectronic applications. We will report our efforts to dope the BaSnO3 (BSO) with K by pulsed laser deposition. Although the K doped BSO exhibits rather high resistivity at room temperature, its conductivity increases dramatically at higher temperatures. Furthermore, the conductivity decreases when a small amount of oxygen was removed from the film, consistent with the behavior of p type doped oxides. We have fabricated pn junctions by using K doped BSO as a p type and La doped BSO as an n type material. I_V characteristics of these devices show the typical rectifying behavior of pn junctions. We will present the analysis of the junction properties from the temperature dependent measurement of their electrical properties, which shows that the I_V characteristics are consistent with the material parameters such as the carrier concentration, the mobility, and the bandgap. Our demonstration of pn junctions based on a single transparent perovskite semiconductor further enhances the potential of BSO system with high mobility and stability.

  10. Planar-type ferromagnetic tunnel junctions fabricated by SPM local oxidation

    NASA Astrophysics Data System (ADS)

    Tomoda, Y.; Kayashima, S.; Ogino, T.; Motoyama, M.; Takemura, Y.; Shirakashi, J.

    Nanometer-scale oxide wires were fabricated by local oxidation nanolithography using scanning probe microscope (SPM). This technique was applied to the fabrication of planar-type Ni/Ni oxide/Ni ferromagnetic tunnel junctions. In order to induce magnetic shape anisotropy, asymmetrical channel structure was patterned by conventional photolithography and wet etching processes. The magnetoresistance (MR) characteristics were clearly shown in the planar-type Ni/Ni oxide/Ni ferromagnetic tunnel junctions. MR ratio of above 100% was obtained at 17 K. This result suggests that the local oxidation nanolithography using SPM is useful for the application to planar-type ferromagnetic tunnel junctions.

  11. Band alignments in Fe/graphene/Si(001) junctions studied by x-ray photoemission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Breton, J.-C., E-mail: jean-christophe.lebreton@univ-rennes1.fr; Tricot, S.; Delhaye, G.

    2016-08-01

    The control of tunnel contact resistance is of primary importance for semiconductor-based spintronic devices. This control is hardly achieved with conventional oxide-based tunnel barriers due to deposition-induced interface states. Manipulation of single 2D atomic crystals (such as graphene sheets) weakly interacting with their substrate might represent an alternative and efficient way to design new heterostructures for a variety of different purposes including spin injection into semiconductors. In the present paper, we study by x-ray photoemission spectroscopy the band alignments and interface chemistry of iron–graphene-hydrogenated passivated silicon (001) surfaces for a low and a high n-doping concentration. We find that themore » hydrogen passivation of the Si(001) surface remains efficient even with a graphene sheet on the Si(001) surface. For both doping concentrations, the semiconductor is close to flat-band conditions which indicates that the Fermi level is unpinned on the semiconductor side of the Graphene/Si(001):H interface. When iron is deposited on the graphene/Si(001):H structures, the Schottky barrier height remains mainly unaffected by the metallic overlayer with a very low barrier height for electrons, a sought-after property in semiconductor based spintronic devices. Finally, we demonstrate that the graphene layer intercalated between the metal and semiconductor also serves as a protection against iron-silicide formation even at elevated temperatures preventing from the formation of a Si-based magnetic dead layer.« less

  12. Band alignments in Fe/graphene/Si(001) junctions studied by x-ray photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Le Breton, J.-C.; Tricot, S.; Delhaye, G.; Lépine, B.; Turban, P.; Schieffer, P.

    2016-08-01

    The control of tunnel contact resistance is of primary importance for semiconductor-based spintronic devices. This control is hardly achieved with conventional oxide-based tunnel barriers due to deposition-induced interface states. Manipulation of single 2D atomic crystals (such as graphene sheets) weakly interacting with their substrate might represent an alternative and efficient way to design new heterostructures for a variety of different purposes including spin injection into semiconductors. In the present paper, we study by x-ray photoemission spectroscopy the band alignments and interface chemistry of iron-graphene-hydrogenated passivated silicon (001) surfaces for a low and a high n-doping concentration. We find that the hydrogen passivation of the Si(001) surface remains efficient even with a graphene sheet on the Si(001) surface. For both doping concentrations, the semiconductor is close to flat-band conditions which indicates that the Fermi level is unpinned on the semiconductor side of the Graphene/Si(001):H interface. When iron is deposited on the graphene/Si(001):H structures, the Schottky barrier height remains mainly unaffected by the metallic overlayer with a very low barrier height for electrons, a sought-after property in semiconductor based spintronic devices. Finally, we demonstrate that the graphene layer intercalated between the metal and semiconductor also serves as a protection against iron-silicide formation even at elevated temperatures preventing from the formation of a Si-based magnetic dead layer.

  13. Degradation of 2DEG transport properties in GaN-capped AlGaN/GaN heterostructures at 600 °C in oxidizing and inert environments

    NASA Astrophysics Data System (ADS)

    Hou, Minmin; Jain, Sambhav R.; So, Hongyun; Heuser, Thomas A.; Xu, Xiaoqing; Suria, Ateeq J.; Senesky, Debbie G.

    2017-11-01

    In this paper, the electron mobility and sheet density of the two-dimensional electron gas (2DEG) in both air and argon environments at 600 °C were measured intermittently over a 5 h duration using unpassivated and Al2O3-passivated AlGaN/GaN (with 3 nm GaN cap) van der Pauw test structures. The unpassivated AlGaN/GaN heterostructures annealed in air showed the smallest decrease (˜8%) in 2DEG electron mobility while Al2O3-passivated samples annealed in argon displayed the largest drop (˜70%) based on the Hall measurements. Photoluminescence and atomic force microscopy showed that minimal strain relaxation and surface roughness changes have occurred in the unpassivated samples annealed in air, while those with Al2O3 passivation annealed in argon showed significant microstructural degradations. This suggests that cracks developed in the samples annealed in air were healed by oxidation reactions. To further confirm this, Auger electron spectroscopy was conducted on the unpassivated samples after the anneal in air and results showed that extra surface oxides have been generated, which could act as a dislocation pinning layer to suppress the strain relaxation in AlGaN. On the other hand, similar 2DEG sheet densities were observed in passivated and unpassivated AlGaN/GaN samples at the end of the 5-h anneal in air or argon due to the combined impact of strain relaxation and changes in the ionized electronic states. The results support the use of unpassivated GaN-capped AlGaN/GaN heterostructures as the material platform for high-temperature electronics and sensors used in oxidizing environmental conditions.

  14. Tunable one-dimensional electron gas carrier densities at nanostructured oxide interfaces

    DOE PAGES

    Zhang, Lipeng; Xu, Haixuan; Kent, Paul R. C.; ...

    2016-05-06

    The emergence of two-dimensional metallic states at the LaAlO 3/SrTiO 3 (LAO/STO) heterostructure interface is known to occur at a critical thickness of four LAO over layers. This insulator-to-metal transition can be explained through the polar catastrophe mechanism arising from the divergence of the electrostatic potential at the LAO surface. Here, we demonstrate that nanostructuring can be effective in reducing or eliminating this critical thickness. Employing a modified polar catastrophe" model, we demonstrate that the nanowire heterostructure electrostatic potential diverges more rapidly as a function of layer thickness than in a regular heterostructure. Our first principles calculations indicate that formore » nanowire heterostructure geometries a one-dimensional electron gas (1DEG) can be induced, consistent with recent experimental observations of 1D conductivity in LAO/STO steps. Similar to LAO/STO 2DEGs, we predict that the 1D charge density will decay laterally within a few unit cells away from the nanowire; thus providing a mechanism for tuning the carrier behavior between 1D and 2D conductivity. Furthermore, our work provides insight into the creation and manipulation of charge density at an oxide heterostructure interface and therefore may be beneficial for future nanoelectronic devices and for the engineering of novel quantum phases.« less

  15. High-Performance Dye-Sensitized Solar Cells Based on Morphology-Controllable Synthesis of ZnO–ZnS Heterostructure Nanocone Photoanodes

    PubMed Central

    Rouhi, Jalal; Mamat, Mohamad Hafiz; Ooi, C. H. Raymond; Mahmud, Shahrom; Mahmood, Mohamad Rusop

    2015-01-01

    High-density and well-aligned ZnO–ZnS core–shell nanocone arrays were synthesized on fluorine-doped tin oxide glass substrate using a facile and cost-effective two-step approach. In this synthetic process, the ZnO nanocones act as the template and provide Zn2+ ions for the ZnS shell formation. The photoluminescence spectrum indicates remarkably enhanced luminescence intensity and a small redshift in the UV region, which can be associated with the strain caused by the lattice mismatch between ZnO and ZnS. The obtained diffuse reflectance spectra show that the nanocone-based heterostructure reduces the light reflection in a broad spectral range and is much more effective than the bare ZnO nanocone and nanorod structures. Dye-sensitized solar cells based on the heterostructure ZnO–ZnS nanocones are assembled, and high conversion efficiency (η) of approximately 4.07% is obtained. The η improvement can be attributed primarily to the morphology effect of ZnO nanocones on light-trapping and effectively passivating the interface surface recombination sites of ZnO nanocones by coating with a ZnS shell layer. PMID:25875377

  16. Solution processed integrated pixel element for an imaging device

    NASA Astrophysics Data System (ADS)

    Swathi, K.; Narayan, K. S.

    2016-09-01

    We demonstrate the implementation of a solid state circuit/structure comprising of a high performing polymer field effect transistor (PFET) utilizing an oxide layer in conjunction with a self-assembled monolayer (SAM) as the dielectric and a bulk-heterostructure based organic photodiode as a CMOS-like pixel element for an imaging sensor. Practical usage of functional organic photon detectors requires on chip components for image capture and signal transfer as in the CMOS/CCD architecture rather than simple photodiode arrays in order to increase speed and sensitivity of the sensor. The availability of high performing PFETs with low operating voltage and photodiodes with high sensitivity provides the necessary prerequisite to implement a CMOS type image sensing device structure based on organic electronic devices. Solution processing routes in organic electronics offers relatively facile procedures to integrate these components, combined with unique features of large-area, form factor and multiple optical attributes. We utilize the inherent property of a binary mixture in a blend to phase-separate vertically and create a graded junction for effective photocurrent response. The implemented design enables photocharge generation along with on chip charge to voltage conversion with performance parameters comparable to traditional counterparts. Charge integration analysis for the passive pixel element using 2D TCAD simulations is also presented to evaluate the different processes that take place in the monolithic structure.

  17. Comparison of trap characteristics between AlGaN/GaN and AlGaN/InGaN/GaN heterostructure by frequency dependent conductance measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Apurba, E-mail: apurba.chakraborty86@gmail.com; Biswas, Dhrubes; Advanced Technology Development Centre, IIT Kharagpur, Kharagpur 721302

    2015-02-23

    Frequency dependent conductance measurement is carried out to observe the trapping effect in AlGaN/InGaN/GaN double heterostructure and compared that with conventional AlGaN/GaN single heterostructure. It is found that the AlGaN/InGaN/GaN diode structure does not show any trapping effect, whereas single heterostructure AlGaN/GaN diode suffers from two kinds of trap energy states in near depletion to higher negative voltage bias region. This conductance behaviour of AlGaN/InGaN/GaN heterostructure is owing to more Fermi energy level shift from trap energy states at AlGaN/InGaN junction compare to single AlGaN/GaN heterostructure and eliminates the trapping effects. Analysis yielded interface trap energy state in AlGaN/GaN ismore » to be with time constant of (33.8–76.5) μs and trap density of (2.38–0.656) × 10{sup 12 }eV{sup −1} cm{sup −2} in −3.2 to −4.8 V bias region, whereas for AlGaN/InGaN/GaN structure no interface energy states are found and the extracted surface trap energy concentrations and time constants are (5.87–4.39) ×10{sup 10} eV{sup −1} cm{sup −2} and (17.8–11.3) μs, respectively, in bias range of −0.8–0.0 V.« less

  18. Solar photochemical and thermochemical splitting of water.

    PubMed

    Rao, C N R; Lingampalli, S R; Dey, Sunita; Roy, Anand

    2016-02-28

    Artificial photosynthesis to carry out both the oxidation and the reduction of water has emerged to be an exciting area of research. It has been possible to photochemically generate oxygen by using a scheme similar to the Z-scheme, by using suitable catalysts in place of water-oxidation catalyst in the Z-scheme in natural photosynthesis. The best oxidation catalysts are found to be Co and Mn oxides with the e(1) g configuration. The more important aspects investigated pertain to the visible-light-induced generation of hydrogen by using semiconductor heterostructures of the type ZnO/Pt/Cd1-xZnxS and dye-sensitized semiconductors. In the case of heterostructures, good yields of H2 have been obtained. Modifications of the heterostructures, wherein Pt is replaced by NiO, and the oxide is substituted with different anions are discussed. MoS2 and MoSe2 in the 1T form yield high quantities of H2 when sensitized by Eosin Y. Two-step thermochemical splitting of H2O using metal oxide redox pairs provides a strategy to produce H2 and CO. Performance of the Ln0.5A0.5MnO3 (Ln = rare earth ion, A = Ca, Sr) family of perovskites is found to be promising in this context. The best results to date are found with Y0.5Sr0.5MnO3. © 2016 The Author(s).

  19. Andreev reflection without Fermi surface alignment in high- T c van der Waals heterostructures

    DOE PAGES

    Zareapour, Parisa; Hayat, Alex; Zhao, Shu Yang F.; ...

    2017-04-05

    We address the controversy over the proximity effect between topological materials and high-T c superconductors. Junctions are produced between Bi 2Sr 2CaCu 2Omore » $${}_{8+\\delta }$$ and materials with different Fermi surfaces (Bi 2Te 3 and graphite). Both cases reveal tunneling spectra that are consistent with Andreev reflection. This is confirmed by a magnetic field that shifts features via the Doppler effect. This is modeled with a single parameter that accounts for tunneling into a screening supercurrent. Thus the tunneling involves Cooper pairs crossing the heterostructure, showing that the Fermi surface mismatch does not hinder the ability to form transparent interfaces, which is accounted for by the extended Brillouin zone and different lattice symmetries.« less

  20. Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction

    PubMed Central

    2014-01-01

    Semiconductor heterostructures form the cornerstone of many electronic and optoelectronic devices and are traditionally fabricated using epitaxial growth techniques. More recently, heterostructures have also been obtained by vertical stacking of two-dimensional crystals, such as graphene and related two-dimensional materials. These layered designer materials are held together by van der Waals forces and contain atomically sharp interfaces. Here, we report on a type-II van der Waals heterojunction made of molybdenum disulfide and tungsten diselenide monolayers. The junction is electrically tunable, and under appropriate gate bias an atomically thin diode is realized. Upon optical illumination, charge transfer occurs across the planar interface and the device exhibits a photovoltaic effect. Advances in large-scale production of two-dimensional crystals could thus lead to a new photovoltaic solar technology. PMID:25057817

  1. Origin of fieldlike spin-orbit torques in heavy metal/ferromagnet/oxide thin film heterostructures

    NASA Astrophysics Data System (ADS)

    Ou, Yongxi; Pai, Chi-Feng; Shi, Shengjie; Ralph, D. C.; Buhrman, R. A.

    2016-10-01

    We report measurements of the thickness and temperature (T ) dependencies of current-induced spin-orbit torques, especially the fieldlike (FL) component, in various heavy metal (HM)/normal metal (NM) spacer/ferromagnet (FM)/oxide (MgO and Hf Ox/MgO ) heterostructures. The FL torque in these samples originates from spin current generated by the spin Hall effect in the HM. For a FM layer sufficiently thin that a substantial portion of this spin current can reach the FM/oxide interface, T-dependent spin scattering there can yield a strong FL torque that is, in some cases, opposite in sign to that exerted at the NM/FM interface.

  2. Four-junction AlGaAs/GaAs laser power converter

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Sun, Yurun; Zhao, Yongming; Yu, Shuzhen; Dong, Jianrong; Xue, Jiping; Xue, Chi; Wang, Jin; Lu, Yunqing; Ding, Yanwen

    2018-04-01

    Four-junction AlGaAs/GaAs laser power converters (LPCs) with n+-GaAs/p+-Al0.37Ga0.63As heterostructure tunnel junctions (TJs) have been designed and grown by metal-organic chemical vapor deposition (MOCVD) for converting the power of 808 nm lasers. A maximum conversion efficiency η c of 56.9% ± 4% is obtained for cells with an aperture of 3.14 mm2 at an input laser power of 0.2 W, while dropping to 43.3% at 1.5 W. Measured current–voltage (I–V) characteristics indicate that the performance of the LPC can be further improved by increasing the tunneling current density of TJs and optimizing the thicknesses of sub-cells to achieve current matching in LPC. Project financially supported by the National Natural Science Foundation of China (No. 61376065) and Zhongtian Technology Group Co. Ltd.

  3. Experimental verification of electrostatic boundary conditions in gate-patterned quantum devices

    NASA Astrophysics Data System (ADS)

    Hou, H.; Chung, Y.; Rughoobur, G.; Hsiao, T. K.; Nasir, A.; Flewitt, A. J.; Griffiths, J. P.; Farrer, I.; Ritchie, D. A.; Ford, C. J. B.

    2018-06-01

    In a model of a gate-patterned quantum device, it is important to choose the correct electrostatic boundary conditions (BCs) in order to match experiment. In this study, we model gated-patterned devices in doped and undoped GaAs heterostructures for a variety of BCs. The best match is obtained for an unconstrained surface between the gates, with a dielectric region above it and a frozen layer of surface charge, together with a very deep back boundary. Experimentally, we find a  ∼0.2 V offset in pinch-off characteristics of 1D channels in a doped heterostructure before and after etching off a ZnO overlayer, as predicted by the model. Also, we observe a clear quantised current driven by a surface acoustic wave through a lateral induced n-i-n junction in an undoped heterostructure. In the model, the ability to pump electrons in this type of device is highly sensitive to the back BC. Using the improved boundary conditions, it is straightforward to model quantum devices quite accurately using standard software.

  4. Optically Tunable Resistive-Switching Memory in Multiferroic Heterostructures

    NASA Astrophysics Data System (ADS)

    Zheng, Ming; Ni, Hao; Xu, Xiaoke; Qi, Yaping; Li, Xiaomin; Gao, Ju

    2018-04-01

    Electronic phase separation has been used to realize exotic functionalities in complex oxides with external stimuli, such as magnetic field, electric field, current, light, strain, etc. Using the Nd0.7Sr0.3MnO3/0.7 Pb (Mg1 /3Nb2 /3)O3-0 .3 PbTiO3 multiferroic heterostructure as a model system, we investigate the electric field and light cocontrol of phase separation in resistive switching. The electric-field-induced nonvolatile electroresistance response is achieved at room temperature using reversible ferroelastic domain switching, which can be robustly modified on illumination of light. Moreover, the electrically controlled ferroelastic strain can effectively enhance the visible-light-induced photoresistance effect. These findings demonstrate that the electric-field- and light-induced effects strongly correlate with each other and are essentially driven by electronic phase separation. Our work opens a gate to design electrically tunable multifunctional storage devices based on multiferroic heterostructures by adding light as an extra control parameter.

  5. Surface Plasmon Polariton-Assisted Long-Range Exciton Transport in Monolayer Semiconductor Lateral Heterostructure

    NASA Astrophysics Data System (ADS)

    Shi, Jinwei; Lin, Meng-Hsien; Chen, Yi-Tong; Estakhri, Nasim Mohammadi; Tseng, Guo-Wei; Wang, Yanrong; Chen, Hung-Ying; Chen, Chun-An; Shih, Chih-Kang; Alã¹, Andrea; Li, Xiaoqin; Lee, Yi-Hsien; Gwo, Shangjr

    Recently, two-dimensional (2D) semiconductor heterostructures, i.e., atomically thin lateral heterostructures (LHSs) based on transition metal dichalcogenides (TMDs) have been demonstrated. In an optically excited LHS, exciton transport is typically limited to a rather short spatial range ( 1 micron). Furthermore, additional losses may occur at the lateral interfacial regions. Here, to overcome these challenges, we experimentally implement a planar metal-oxide-semiconductor (MOS) structure by placing a monolayer of WS2/MoS2 LHS on top of an Al2O3 capped Ag single-crystalline plate. We found that the exciton transport range can be extended to tens of microns. The process of long-range exciton transport in the MOS structure is confirmed to be mediated by an exciton-surface plasmon polariton-exciton conversion mechanism, which allows a cascaded energy transfer process. Thus, the planar MOS structure provides a platform seamlessly combining 2D light-emitting materials with plasmonic planar waveguides, offering great potential for developing integrated photonic/plasmonic functionalities.

  6. Quasi-Two-Dimensional h-BN/β-Ga2O3 Heterostructure Metal-Insulator-Semiconductor Field-Effect Transistor.

    PubMed

    Kim, Janghyuk; Mastro, Michael A; Tadjer, Marko J; Kim, Jihyun

    2017-06-28

    β-gallium oxide (β-Ga 2 O 3 ) and hexagonal boron nitride (h-BN) heterostructure-based quasi-two-dimensional metal-insulator-semiconductor field-effect transistors (MISFETs) were demonstrated by integrating mechanical exfoliation of (quasi)-two-dimensional materials with a dry transfer process, wherein nanothin flakes of β-Ga 2 O 3 and h-BN were utilized as the channel and gate dielectric, respectively, of the MISFET. The h-BN dielectric, which has an extraordinarily flat and clean surface, provides a minimal density of charged impurities on the interface between β-Ga 2 O 3 and h-BN, resulting in superior device performances (maximum transconductance, on/off ratio, subthreshold swing, and threshold voltage) compared to those of the conventional back-gated configurations. Also, double-gating of the fabricated device was demonstrated by biasing both top and bottom gates, achieving the modulation of the threshold voltage. This heterostructured wide-band-gap nanodevice shows a new route toward stable and high-power nanoelectronic devices.

  7. Nanoscale patterning of electronic devices at the amorphous LaAlO3/SrTiO3 oxide interface using an electron sensitive polymer mask

    NASA Astrophysics Data System (ADS)

    Bjørlig, Anders V.; von Soosten, Merlin; Erlandsen, Ricci; Dahm, Rasmus Tindal; Zhang, Yu; Gan, Yulin; Chen, Yunzhong; Pryds, Nini; Jespersen, Thomas S.

    2018-04-01

    A simple approach is presented for designing complex oxide mesoscopic electronic devices based on the conducting interfaces of room temperature grown LaAlO3/SrTiO3 heterostructures. The technique is based entirely on methods known from conventional semiconductor processing technology, and we demonstrate a lateral resolution of ˜100 nm. We study the low temperature transport properties of nanoscale wires and demonstrate the feasibility of the technique for defining in-plane gates allowing local control of the electrostatic environment in mesoscopic devices.

  8. Facile fabrication of nanofluidic diode membranes using anodic aluminium oxide.

    PubMed

    Wu, Songmei; Wildhaber, Fabien; Vazquez-Mena, Oscar; Bertsch, Arnaud; Brugger, Juergen; Renaud, Philippe

    2012-09-21

    Active control of ion transport plays important roles in chemical and biological analytical processes. Nanofluidic systems hold the promise for such control through electrostatic interaction between ions and channel surfaces. Most existing experiments rely on planar geometry where the nanochannels are generally very long and shallow with large aspect ratios. Based on this configuration the concepts of nanofluidic gating and rectification have been successfully demonstrated. However, device minimization and throughput scaling remain significant challenges. We report here an innovative and facile realization of hetero-structured Al(2)O(3)/SiO(2) (Si) nanopore array membranes by using pattern transfer of self-organized nanopore structures of anodic aluminum oxide (AAO). Thanks to the opposite surface charge states of Al(2)O(3) (positive) and SiO(2) (negative), the membrane exhibits clear rectification of ion current in electrolyte solutions with very low aspect ratios compared to previous approaches. Our hetero-structured nanopore arrays provide a valuable platform for high throughput applications such as molecular separation, chemical processors and energy conversion.

  9. Tailored Assembly of 2D Heterostructures beyond Graphene

    DTIC Science & Technology

    2017-05-11

    liquid crystal and catalyst application. Another important approach we have explored during this project is the solution phase assembly of two...graphene oxide, and its potential functionalities in liquid crystal and catalyst application. Another important approach we have explored during...exfoliation, liquid phase exfoliation, and chemical vapor deposition, and opened up new opportunities to graphene based platform for novel

  10. Gas Sensing Properties of p-Co₃O₄/n-TiO₂ Nanotube Heterostructures.

    PubMed

    Alev, Onur; Kılıç, Alp; Çakırlar, Çiğdem; Büyükköse, Serkan; Öztürk, Zafer Ziya

    2018-03-23

    In this paper, we fabricated p-Co₃O₄/n-TiO₂ heterostructures and investigated their gas sensing properties. The structural and morphological characterization were performed by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy analysis (XPS). The electrical properties of the heterostructure were studied within the temperature range from 293 K to 423 K. Changes in electrical properties and sensing behavior against reducing and oxidizing gases were attributed to the formation of p-n heterojunctions at the Co₃O₄ and TiO₂ interface. In comparison with sensing performed with pristine TiO₂ nanotubes (NTs), a significant improvement in H₂ sensing at 200 °C was observed, while the sensing response against NO₂ decreased for the heterostructures. Additionally, a response against toluene gas, in contrast to pristine TiO₂ NTs, appeared in the Co₃O₄/TiO₂ heterostructure samples.

  11. Exposing high-energy surfaces by rapid-anneal solid phase epitaxy

    DOE PAGES

    Wang, Y.; Song, Y.; Peng, R.; ...

    2017-08-08

    The functional design of nanoscale transition metal oxide heterostructures depends critically on the growth of atomically flat epitaxial thin films. Much of the time, improved functionality is expected for heterostructures and surfaces with orientations that do not have the lowest surface free energy. For example, crystal faces with a high surface free energy, such as rutile (001) planes, frequently exhibit higher catalytic activities but are correspondingly harder to synthesize due to energy-lowering faceting transitions. We propose a broadly applicable rapid-anneal solid phase epitaxial synthesis approach for the creation of atomically flat, high surface free energy oxide heterostructures. We also demonstratemore » its efficacy via the synthesis of atomically flat, epitaxial RuO 2(001) films with a superior oxygen evolution activity, quantified by their lower onset potential and higher current density, relative to that of more common RuO 2(110) films.« less

  12. CuI as Hole-Transport Channel for Enhancing Photoelectrocatalytic Activity by Constructing CuI/BiOI Heterojunction.

    PubMed

    Sun, Mingjuan; Hu, Jiayue; Zhai, Chunyang; Zhu, Mingshan; Pan, Jianguo

    2017-04-19

    In this paper, CuI, as a typical hole-transport channel, was used to construct a high-performance visible-light-driven CuI/BiOI heterostructure for photoelectrocatalytic applications. The heterostructure combines the broad visible absorption of BiOI and high hole mobility of CuI. Compared to pure BiOI, the CuI/BiOI heterostructure exhibited distinctly enhanced photoelectrocatalytic performance for the oxidation of methanol and organic pollutants under visible-light irradiation. The photogenerated electron-hole pairs of the excited BiOI can be separated efficiently through CuI, in which the CuI acts as a superior hole-transport channel to improve photoelectrocatalytic oxidization of methanol and organic pollutants. The outstanding photoelectrocatalytic activity shows that the p-type CuI works as a promising hole-transport channel to improve the photocatalytic performance of traditional semiconductors.

  13. Growth and Transport Studies of LaTiO3 / KTaO3 Heterostructures

    NASA Astrophysics Data System (ADS)

    Zou, K.; Walker, F. J.; Ahn, C. H.

    2014-03-01

    Perovskite oxide heterostructures provide a rich platform for exploring emergent electronic properties, such as 2D electron gases (2DEGs) at interfaces. In this talk, we present results on the growth of LaTiO3 / KTaO3 heterostructures by molecular beam epitaxy and subsequent measurements of transport properties. Although both oxide materials are insulating in the bulk, metallic conduction is observed from T = 2 - 300 K. We achieve a room temperature carrier mobility of ~ 25 cm2 /Vs at a carrier density of ~ 1014 /cm2. By comparison, 2DEGs in LaTiO3 / SrTiO3 and LaAlO3 / SrTiO3 have lower carrier mobility, but the same carrier density. We attribute some of the increase in mobility to the smaller band effective mass of the Ta 4d electrons compared to the Ti 3d electrons.

  14. Impedance spectroscopy of heterojunction solar cell a-SiC/c-Si with ITO antireflection film investigated at different temperatures

    NASA Astrophysics Data System (ADS)

    Šály, V.; Perný, M.; Janíček, F.; Huran, J.; Mikolášek, M.; Packa, J.

    2017-04-01

    Progressive smart photovoltaic technologies including heterostructures a-SiC/c-Si with ITO antireflection film are one of the prospective replacements of conventional photovoltaic silicon technology. Our paper is focused on the investigation of heterostructures a-SiC/c-Si provided with a layer of ITO (indium oxide/tin oxide 90/10 wt.%) which acts as a passivating and antireflection coating. Prepared photovoltaic cell structure was investigated at various temperatures and the influence of temperature on its operation was searched. The investigation of the dynamic properties of heterojunction PV cells was carried out using impedance spectroscopy. The equivalent AC circuit which approximates the measured impedance data was proposed. Assessment of the influence of the temperature on the operation of prepared heterostructure was carried out by analysis of the temperature dependence of AC equivalent circuit elements.

  15. Heterostructured nanohybrid of zinc oxide-montmorillonite clay.

    PubMed

    Hur, Su Gil; Kim, Tae Woo; Hwang, Seong-Ju; Hwang, Sung-Ho; Yang, Jae Hun; Choy, Jin-Ho

    2006-02-02

    We have synthesized heterostructured zinc oxide-aluminosilicate nanohybrids through a hydrothermal reaction between the colloidal suspension of exfoliated montmorillonite nanosheets and the sol solution of zinc acetate. According to X-ray diffraction, N2 adsorption-desorption isotherm, and field emission-scanning electron microscopic analyses, it was found that the intercalation of zinc oxide nanoparticles expands the basal spacing of the host montmorillonite clay, and the crystallites of the nanohybrids are assembled to form a house-of-cards structure. From UV-vis spectroscopic investigation, it becomes certain that calcined nanohybrid contains two kinds of the zinc oxide species in the interlayer space of host lattice and in mesopores formed by the house-of-cards type stacking of the crystallites. Zn K-edge X-ray absorption near-edge structure/extended X-ray absorption fine structure analyses clearly demonstrate that guest species in the nanohybrids exist as nanocrystalline zinc oxides with wurzite-type structure.

  16. Oxide Interfaces: emergent structure and dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarke, Roy

    This Final Report describes the scientific accomplishments that have been achieved with support from grant DE-FG02-06ER46273 during the period 6/1/2012– 5/31/2016. The overall goals of this program were focused on the behavior of epitaxial oxide heterostructures at atomic length scales (Ångstroms), and correspondingly short time-scales (fs -ns). The results contributed fundamentally to one of the currently most active frontiers in condensed matter physics research, namely to better understand the intricate relationship between charge, lattice, orbital and spin degrees of freedom that are exhibited by complex oxide heterostructures. The findings also contributed towards an important technological goal which was to achievemore » a better basic understanding of structural and electronic correlations so that the unusual properties of complex oxides can be exploited for energy-critical applications. Specific research directions included: probing the microscopic behavior of epitaxial interfaces and buried layers; novel materials structures that emerge from ionic and electronic reconfiguration at epitaxial interfaces; ultrahigh-resolution mapping of the atomic structure of heterointerfaces using synchrotron-based x-ray surface scattering, including direct methods of phase retrieval; using ultrafast lasers to study the effects of transient strain on coherent manipulation of multi-ferroic order parameters; and investigating structural ordering and relaxation processes in real-time.« less

  17. Band Alignment and Charge Transfer in Complex Oxide Interfaces

    NASA Astrophysics Data System (ADS)

    Zhong, Zhicheng; Hansmann, Philipp

    2017-01-01

    The synthesis of transition metal heterostructures is currently one of the most vivid fields in the design of novel functional materials. In this paper, we propose a simple scheme to predict band alignment and charge transfer in complex oxide interfaces. For semiconductor heterostructures, band-alignment rules like the well-known Anderson or Schottky-Mott rule are based on comparison of the work function or electron affinity of the bulk components. This scheme breaks down for oxides because of the invalidity of a single work-function approximation as recently shown in [Phys. Rev. B 93, 235116 (2016), 10.1103/PhysRevB.93.235116; Adv. Funct. Mater. 26, 5471 (2016), 10.1002/adfm.201600243]. Here, we propose a new scheme that is built on a continuity condition of valence states originating in the compounds' shared network of oxygen. It allows for the prediction of sign and relative amplitude of the intrinsic charge transfer, taking as input only information about the bulk properties of the components. We support our claims by numerical density functional theory simulations as well as (where available) experimental evidence. Specific applications include (i) controlled doping of SrTiO3 layers with the use of 4 d and 5 d transition metal oxides and (ii) the control of magnetic ordering in manganites through tuned charge transfer.

  18. Electroreflectance spectra from multiple InGaN/GaN quantum wells in the nonuniform electric field of a p–n junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avakyants, L. P.; Aslanyan, A. E.; Bokov, P. Yu., E-mail: pavel-bokov@physics.msu.ru

    A line at E = 2.77 eV (with a width of Γ = 88 meV) related to interband transitions in the region of multiple quantum wells in the active region is detected in the electroreflectance spectra of the GaN/InGaN/AlGaN heterostructure. As the modulation bias is reduced from 2.9 to 0.4 V, the above line is split into two lines with energies of E{sub 1} = 2.55 eV and E{sub 2} = 2.75 eV and widths of Γ{sub 1} = 66 meV and Γ{sub 2} = 74 meV, respectively. The smaller widths of separate lines indicate that these lines are causedmore » by interband transitions in particular quantum wells within the active region. The difference between the interband transition energies E{sub 1} and E{sub 2} in identical quantum wells in the active region is related to the fact that the quantum wells are in an inhomogeneous electric field of the p–n junction. The magnitudes of the electric-field strengths in particular quantum wells in the active region of the heterostructure are estimated to be 1.6 and 2.2 MV/cm.« less

  19. Trap assisted space charge conduction in p-NiO/n-ZnO heterojunction diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyagi, Manisha; Tomar, Monika; Gupta, Vinay, E-mail: drguptavinay@gmail.com

    2015-06-15

    Highlights: • p-NiO/n-ZnO heterojunction diode with enhanced junction parameters has been prepared. • Temperature dependent I–V throw insight into the involved conduction mechanism. • SCLC with exponential trap distribution was found to be the dominant mechanism. • C–V measurement at different frequencies support the presence of traps. - Abstract: The development of short-wavelength p–n junction is essentially important for the realization of transparent electronics for next-generation optoelectronic devices. In the present work, a p–n heterojunction diode based on p-NiO/n-ZnO has been prepared under the optimised growth conditions exhibiting improved electrical and junction parameters. The fabricated heterojunction gives typical current–voltage (I–V)more » characteristics with good rectifying behaviour (rectification ratio ≈ 10{sup 4} at 2 V). The temperature dependent current–voltage characteristics of heterojunction diode have been studied and origin of conduction mechanism is identified. The space-charge limited conduction with exponential trap distribution having deep level trap is found to be the dominant conduction mechanism in the fabricated p–n heterojunction diode. The conduction and valence band discontinuities for NiO/ZnO heterostructure have been determined from the capacitance–voltage (C–V) measurements.« less

  20. Synchrotron radiation based cross-sectional scanning photoelectron microscopy and spectroscopy of n-ZnO:Al/p-GaN:Mg heterojunction

    NASA Astrophysics Data System (ADS)

    Lee, Kai-Hsuan; Chang, Ping-Chuan; Chen, Tse-Pu; Chang, Sheng-Po; Shiu, Hung-Wei; Chang, Lo-Yueh; Chen, Chia-Hao; Chang, Shoou-Jinn

    2013-02-01

    Al-doped ZnO (AZO) deposited by radio frequency co-sputtering is formed on epitaxial Mg-doped GaN template at room temperature to achieve n-AZO/p-GaN heterojunction. Alignment of AZO and GaN bands is investigated using synchrotron radiation based cross-sectional scanning photoelectron microscopy and spectroscopy on the nonpolar side-facet of a vertically c-axis aligned heterostructure. It shows type-II band configuration with valence band offset of 1.63 ± 0.1 eV and conduction band offset of 1.61 ± 0.1 eV, respectively. Rectification behavior is clearly observed, with a ratio of forward-to-reverse current up to six orders of magnitude when the bias is applied across the p-n junction.

  1. Synchrotron radiation based cross-sectional scanning photoelectron microscopy and spectroscopy of n-ZnO:Al/p-GaN:Mg heterojunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kai-Hsuan; Chen, Chia-Hao; Chang, Ping-Chuan

    2013-02-18

    Al-doped ZnO (AZO) deposited by radio frequency co-sputtering is formed on epitaxial Mg-doped GaN template at room temperature to achieve n-AZO/p-GaN heterojunction. Alignment of AZO and GaN bands is investigated using synchrotron radiation based cross-sectional scanning photoelectron microscopy and spectroscopy on the nonpolar side-facet of a vertically c-axis aligned heterostructure. It shows type-II band configuration with valence band offset of 1.63 {+-} 0.1 eV and conduction band offset of 1.61 {+-} 0.1 eV, respectively. Rectification behavior is clearly observed, with a ratio of forward-to-reverse current up to six orders of magnitude when the bias is applied across the p-n junction.

  2. Quantifying the electronic reconstruction in LaTiO3/LaNiO3/(LaAlO3)3 heterostructures using RIXS

    NASA Astrophysics Data System (ADS)

    Fabbris, Gilberto; Disa, Ankit S.; Ismail-Beigi, Sohab; Walker, Frederick J.; Ahn, Charles H.; Pelliciari, Jonathan; Huang, Yaobo; Schmitt, Thorsten; Xu, Lei; Hozoi, Liviu; van den Brink, Jeroen; Dean, Mark

    A novel approach for manipulating the 3d state in transition metal oxide heterostructures has emerged with the growth of trilayer nickelate LaTiO3/LaNiO3/(LaAlO3)3 (LTNAO). This heterostructure induces a striking reconstruction of the LaNiO3 electronic structure, which is due to a combination of charge transfer from Ti's 3d state and octahedral elongation along the c axis. We use resonant inelastic x-ray scattering (RIXS) experiments at Ni L2,3 and O K edges to spectroscopically resolve the LTNAO electronic structure. Surprisingly, our results show that the octahedral elongation generates minor changes in crystal fields at Ni's 3d state compared to bulk LaNiO3. Instead, heterostructuring creates an anisotropic reconstruction of the Ni 3d - O 2p hybridization. The x2-y2 orbital is significantly more hybridized with O p, leading to a 3z2-r2/x2-y2 hole ratio of ~0.55 and large orbital polarization as measured by x-ray absorption spectroscopy. This work establishes RIXS as an ultra-sensitive probe of complex oxide heterostructures. Work at BNL was supported by the US Department of Energy under Award No DEAC02-98CH10886 and under Early Career Award No 20878.

  3. Josephson junction devices: Model quantum mechanical systems and medical applications

    NASA Astrophysics Data System (ADS)

    Chen, Josephine

    In this dissertation, three experiments using Josephson junction devices are described. In Part I, the effect of dissipation on tunneling between charge states in a superconducting single-electron transistor (sSET) was studied. The sSET was fabricated on top of a semi-conductor heterostructure with a two-dimensional electron gas (2DEG) imbedded beneath the surface. The 2DEG acted as a dissipative ground plane. The sheet resistance of the 2DEG could be varied in situ by applying a large voltage to a gate on the back of the substrate. The zero-bias conductance of the sSET was observed to increase with increasing temperature and 2DEG resistance. Some qualitative but not quantitative agreement was found with theoretical calculations of the functional dependence of the conductance on temperature and 2DEG resistance. Part II describes a series of experiments performed on magnesium diboride point-contact junctions. The pressure between the MgB2 tip and base pieces could be adjusted to form junctions with different characteristics. With light pressure applied between the two pieces, quasiparticle tunneling in superconductor-insulator-superconductor junctions was measured. From these data, a superconducting gap of approximately 2 meV and a critical temperature of 29 K were estimated. Increasing the pressure between the MgB2 pieces formed junctions with superconductor-normal metal-superconductor characteristics. We used these junctions to form MgB2 superconducting quantum interference devices (SQUIDS). Noise levels as low as 35 fT/Hz1/2 and 4 muphi 0/Hz1/2 at 1 kHz were measured. In Part III, we used a SQUID-based instrument to acquire magnetocardiograms (MCG), the magnetic field signal measured from the human heart. We measured 51 healthy volunteers and 11 cardiac patients both at rest and after treadmill exercise. We found age and sex related differences in the MCG of the healthy volunteers that suggest that these factors should be considered when evaluating the MCG for disease. We also defined a spatio-temporal MCG parameter, the repolarization stabilization interval, which successfully discriminated our patients from our healthy controls.

  4. Some device implications of voltage controlled magnetic anisotropy in Co/Gd2O3 thin films through REDOX chemistry

    NASA Astrophysics Data System (ADS)

    Hao, Guanhua; Noviasky, Nicholas; Cao, Shi; Sabirianov, Ildar; Yin, Yuewei; Ilie, Carolina C.; Kirianov, Eugene; Sharma, Nishtha; Sokolov, Andrei; Marshall, Andrew; Xu, Xiaoshan; Dowben, Peter A.

    2018-04-01

    The effect of intermediate interfacial oxidation on the in-plane magnetization of multilayer stack Pt/Co/Gd2O3, on a p-type silicon substrate, has been investigated by magneto-optical Kerr effect (MOKE) measurements, the anomalous Hall effect, and magnetoresistance measurements. While voltage controlled perpendicular magnetic anisotropy of a metal/oxide heterostructure is known, this heterostructure displays an inverse relationship between voltage and coercivity. The anomalous Hall effect demonstrates a significant change in hysteresis, with the applied bias sign. There is a higher perpendicular magnetic anisotropy with positive bias exposure.

  5. Fabrication of Josephson Junction without shadow evaporation

    NASA Astrophysics Data System (ADS)

    Wu, Xian; Ku, Hsiangsheng; Long, Junling; Pappas, David

    We developed a new method of fabricating Josephson Junction (Al/AlOX/Al) without shadow evaporation. Statistics from room temperature junction resistance and measurement of qubits are presented. Unlike the traditional ``Dolan Bridge'' technique, this method requires two individual lithographies and straight evaporations of Al. Argon RF plasma is used to remove native AlOX after the first evaporation, followed by oxidation and second Al evaporation. Junction resistance measured at room temperature shows linear dependence on Pox (oxidation pressure), √{tox} (oxidation time), and inverse proportional to junction area. We have seen 100% yield of qubits made with this method. This method is promising because it eliminates angle dependence during Junction fabrication, facilitates large scale qubits fabrication.

  6. Tunnel junction based memristors as artificial synapses

    PubMed Central

    Thomas, Andy; Niehörster, Stefan; Fabretti, Savio; Shepheard, Norman; Kuschel, Olga; Küpper, Karsten; Wollschläger, Joachim; Krzysteczko, Patryk; Chicca, Elisabetta

    2015-01-01

    We prepared magnesia, tantalum oxide, and barium titanate based tunnel junction structures and investigated their memristive properties. The low amplitudes of the resistance change in these types of junctions are the major obstacle for their use. Here, we increased the amplitude of the resistance change from 10% up to 100%. Utilizing the memristive properties, we looked into the use of the junction structures as artificial synapses. We observed analogs of long-term potentiation, long-term depression and spike-time dependent plasticity in these simple two terminal devices. Finally, we suggest a possible pathway of these devices toward their integration in neuromorphic systems for storing analog synaptic weights and supporting the implementation of biologically plausible learning mechanisms. PMID:26217173

  7. Multifunctional epitaxial systems on silicon substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singamaneni, Srinivasa Rao, E-mail: ssingam@ncsu.edu; Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709; Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968

    2016-09-15

    Multifunctional heterostructures can exhibit a wide range of functional properties, including colossal magneto-resistance, magnetocaloric, and multiferroic behavior, and can display interesting physical phenomena including spin and charge ordering and strong spin-orbit coupling. However, putting this functionality to work remains a challenge. To date, most of the work reported in the literature has dealt with heterostructures deposited onto closely lattice matched insulating substrates such as DyScO{sub 3}, SrTiO{sub 3} (STO), or STO buffered Si(100) using concepts of lattice matching epitaxy (LME). However, strain in heterostructures grown by LME is typically not fully relaxed and the layers contain detrimental defects such asmore » threading dislocations that can significantly degrade the physical properties of the films and adversely affect the device characteristics. In addition, most of the substrates are incompatible with existing CMOS-based technology, where Si (100) substrates dominate. This review discusses recent advances in the integration of multifunctional oxide and non-oxide materials onto silicon substrates. An alternative thin film growth approach, called “domain matching epitaxy,” is presented which identifies approaches for minimizing lattice strain and unwanted defects in large misfit systems (7%–25% and higher). This approach broadly allows for the integration of multifunctional materials onto silicon substrates, such that sensing, computation, and response functions can be combined to produce next generation “smart” devices. In general, pulsed laser deposition has been used to epitaxially grow these materials, although the concepts developed here can be extended to other deposition techniques, as well. It will be shown that TiN and yttria-stabilized zirconia template layers provide promising platforms for the integration of new functionality into silicon-based computer chips. This review paper reports on a number of thin-film heterostructure systems that span a variety of ferroelectric, multiferroic, magnetic, photocatalytic, and smart materials. Their properties have been extensively investigated and their functionality found to be comparable to films grown on single-crystal oxide substrates previously reported by researchers in this field. In addition, this review explores the utility of using laser processing to introduce stable defects in a controlled way and induce magnetism and engineer the optical and electrical properties of nonmagnetic oxides such as BaTiO{sub 3}, VO{sub 2}, NiO, and TiO{sub 2} as an alternative for incorporating additional magnetic and conducting layers into the structure. These significant materials advancements herald a flurry of exciting new advances in CMOS-compatible multifunctional devices.« less

  8. Magnetic Tunnel Junction Based Long-Term Short-Term Stochastic Synapse for a Spiking Neural Network with On-Chip STDP Learning

    NASA Astrophysics Data System (ADS)

    Srinivasan, Gopalakrishnan; Sengupta, Abhronil; Roy, Kaushik

    2016-07-01

    Spiking Neural Networks (SNNs) have emerged as a powerful neuromorphic computing paradigm to carry out classification and recognition tasks. Nevertheless, the general purpose computing platforms and the custom hardware architectures implemented using standard CMOS technology, have been unable to rival the power efficiency of the human brain. Hence, there is a need for novel nanoelectronic devices that can efficiently model the neurons and synapses constituting an SNN. In this work, we propose a heterostructure composed of a Magnetic Tunnel Junction (MTJ) and a heavy metal as a stochastic binary synapse. Synaptic plasticity is achieved by the stochastic switching of the MTJ conductance states, based on the temporal correlation between the spiking activities of the interconnecting neurons. Additionally, we present a significance driven long-term short-term stochastic synapse comprising two unique binary synaptic elements, in order to improve the synaptic learning efficiency. We demonstrate the efficacy of the proposed synaptic configurations and the stochastic learning algorithm on an SNN trained to classify handwritten digits from the MNIST dataset, using a device to system-level simulation framework. The power efficiency of the proposed neuromorphic system stems from the ultra-low programming energy of the spintronic synapses.

  9. Magnetic Tunnel Junction Based Long-Term Short-Term Stochastic Synapse for a Spiking Neural Network with On-Chip STDP Learning.

    PubMed

    Srinivasan, Gopalakrishnan; Sengupta, Abhronil; Roy, Kaushik

    2016-07-13

    Spiking Neural Networks (SNNs) have emerged as a powerful neuromorphic computing paradigm to carry out classification and recognition tasks. Nevertheless, the general purpose computing platforms and the custom hardware architectures implemented using standard CMOS technology, have been unable to rival the power efficiency of the human brain. Hence, there is a need for novel nanoelectronic devices that can efficiently model the neurons and synapses constituting an SNN. In this work, we propose a heterostructure composed of a Magnetic Tunnel Junction (MTJ) and a heavy metal as a stochastic binary synapse. Synaptic plasticity is achieved by the stochastic switching of the MTJ conductance states, based on the temporal correlation between the spiking activities of the interconnecting neurons. Additionally, we present a significance driven long-term short-term stochastic synapse comprising two unique binary synaptic elements, in order to improve the synaptic learning efficiency. We demonstrate the efficacy of the proposed synaptic configurations and the stochastic learning algorithm on an SNN trained to classify handwritten digits from the MNIST dataset, using a device to system-level simulation framework. The power efficiency of the proposed neuromorphic system stems from the ultra-low programming energy of the spintronic synapses.

  10. New type of in-gap states at a spinel/perovskite interface: combined resonant soft x-ray photoemission spectroscopy and first-principles study.

    NASA Astrophysics Data System (ADS)

    Borisov, Vladislav; Schuetz, Philipp; Pfaff, Florian; Scheiderer, Philipp; Dudy, Lenart; Zapf, Michael; Gabel, Judith; Christensen, Dennis Valbjorn; Chen, Yunzhong; Pryds, Nini; Strocov, Vladimir; Rogalev, Victor; Schlueter, Christoph; Lee, Tien-Lin; Jeschke, Harald O.; Valenti, Roser; Sing, Michael; Claessen, Ralph

    Oxygen vacancies in oxide heterostructures create a plethora of electronic phenomena not observed in the stoichiometric systems. In this talk we will discuss the presence of a new type of in-gap states at the spinel/perovskite γ-Al2O3/SrTiO3 interface, as observed in soft x-ray resonant photoemission spectroscopy. Based on ab initio calculations and crystal-field analysis of different atomic environments, we identify the origin of this behavior and we argue on the possible origin of the extraordinarily high electron mobility measured in this heterostructure. This work was financially supported by the Deutsche Forschungsgemeinschaft SFB/TR 49 and SFB 1170.

  11. SnS2 /Sb2 S3 Heterostructures Anchored on Reduced Graphene Oxide Nanosheets with Superior Rate Capability for Sodium-Ion Batteries.

    PubMed

    Wang, Shijian; Liu, Shuaishuai; Li, Xuemei; Li, Cong; Zang, Rui; Man, Zengming; Wu, Yuhan; Li, Pengxin; Wang, Guoxiu

    2018-03-12

    Tin disulfide, as a promising high-capacity anode material for sodium-ion batteries, exhibits high theoretical capacity but poor practical electrochemical properties due to its low electrical conductivity. Constructing heterostructures has been considered to be an effective approach to enhance charge transfer and ion-diffusion kinetics. In this work, composites of SnS 2 /Sb 2 S 3 heterostructures with reduced graphene oxide nanosheets were synthesized by a facile one-pot hydrothermal method. When applied as anode material in sodium-ion batteries, the composite showed a high reversible capacity of 642 mA h g -1 at a current density of 0.2 A g -1 and good cyclic stability without capacity loss in 100 cycles. In particular, SnS 2 /Sb 2 S 3 heterostructures exhibited outstanding rate performance with capacities of 593 and 567 mA h g -1 at high current densities of 2 and 4 A g -1 , respectively, which could be ascribed to the dramatically improved Na + diffusion kinetics and electrical conductivity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures.

    PubMed

    Wan, Zhong; Kazakov, Aleksandr; Manfra, Michael J; Pfeiffer, Loren N; West, Ken W; Rokhinson, Leonid P

    2015-06-11

    Search for Majorana fermions renewed interest in semiconductor-superconductor interfaces, while a quest for higher-order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, such as a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures and development of highly transparent semiconductor-superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.6 μm, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields (>16 T) in NbN contacts enables investigation of an interplay between superconductivity and strongly correlated states in a two-dimensional electron gas at high magnetic fields.

  13. Induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures

    PubMed Central

    Wan, Zhong; Kazakov, Aleksandr; Manfra, Michael J.; Pfeiffer, Loren N.; West, Ken W.; Rokhinson, Leonid P.

    2015-01-01

    Search for Majorana fermions renewed interest in semiconductor–superconductor interfaces, while a quest for higher-order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, such as a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures and development of highly transparent semiconductor–superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.6 μm, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields (>16 T) in NbN contacts enables investigation of an interplay between superconductivity and strongly correlated states in a two-dimensional electron gas at high magnetic fields. PMID:26067452

  14. Modified Oxygen Defect Chemistry at Transition Metal Oxide Heterostructures Probed by Hard X-ray Photoelectron Spectroscopy and X-ray Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yan; Fong, Dillon D.; Herbert, F. William

    Transition metal oxide hetero-structures are interesting due to the distinctly different properties that can arise from their interfaces, such as superconductivity, high catalytic activity and magnetism. Oxygen point defects can play an important role at these interfaces in inducing potentially novel properties. The design of oxide hetero-structures in which the oxygen defects are manipulated to attain specific functionalities requires the ability to resolve the state and concentration of local oxygen defects across buried interfaces. In this work, we utilized a novel combination of hard x-ray photoelectron spectroscopy (HAXPES) and high resolution xray diffraction (HRXRD) to probe the local oxygen defectmore » distribution across the buried interfaces of oxide heterolayers. This approach provides a non-destructive way to qualitatively probe locally the oxygen defects in transition metal oxide hetero-structures. We studied two trilayer structures as model systems - the La 0.8Sr 0.2CoO 3-δ/(La 0.5Sr 0.5) 2CoO 4/La 0.8Sr 0.2CoO 3-δ (LSC 113/LSC 214) and the La 0.8Sr 0.2CoO 3-δ/La 2NiO 4+δ/La 0.8Sr 0.2CoO 3-δ (LSC 113/LNO 214) on SrTiO 3(001) single crystal substrates. We found that the oxygen defect chemistry of these transition metal oxides was strongly impacted by the presence of interfaces and the properties of the adjacent phases. Under reducing conditions, the LSC 113 in the LSC 113/LNO 214 tri-layer had less oxygen vacancies than the LSC 113 in the LSC 113/LSC 214 tri-layer and the LSC 113 single phase film. On the other hand, LSC 214 and LNO 214 were more reduced in the two tri-layer structures when in contact with the LSC 113 layer compared to their single phase counterparts. Furthermore, the results point out a potential way to modify the local oxygen defect states at oxide hetero-interfaces.« less

  15. Modified Oxygen Defect Chemistry at Transition Metal Oxide Heterostructures Probed by Hard X-ray Photoelectron Spectroscopy and X-ray Diffraction

    DOE PAGES

    Chen, Yan; Fong, Dillon D.; Herbert, F. William; ...

    2018-04-17

    Transition metal oxide hetero-structures are interesting due to the distinctly different properties that can arise from their interfaces, such as superconductivity, high catalytic activity and magnetism. Oxygen point defects can play an important role at these interfaces in inducing potentially novel properties. The design of oxide hetero-structures in which the oxygen defects are manipulated to attain specific functionalities requires the ability to resolve the state and concentration of local oxygen defects across buried interfaces. In this work, we utilized a novel combination of hard x-ray photoelectron spectroscopy (HAXPES) and high resolution xray diffraction (HRXRD) to probe the local oxygen defectmore » distribution across the buried interfaces of oxide heterolayers. This approach provides a non-destructive way to qualitatively probe locally the oxygen defects in transition metal oxide hetero-structures. We studied two trilayer structures as model systems - the La 0.8Sr 0.2CoO 3-δ/(La 0.5Sr 0.5) 2CoO 4/La 0.8Sr 0.2CoO 3-δ (LSC 113/LSC 214) and the La 0.8Sr 0.2CoO 3-δ/La 2NiO 4+δ/La 0.8Sr 0.2CoO 3-δ (LSC 113/LNO 214) on SrTiO 3(001) single crystal substrates. We found that the oxygen defect chemistry of these transition metal oxides was strongly impacted by the presence of interfaces and the properties of the adjacent phases. Under reducing conditions, the LSC 113 in the LSC 113/LNO 214 tri-layer had less oxygen vacancies than the LSC 113 in the LSC 113/LSC 214 tri-layer and the LSC 113 single phase film. On the other hand, LSC 214 and LNO 214 were more reduced in the two tri-layer structures when in contact with the LSC 113 layer compared to their single phase counterparts. Furthermore, the results point out a potential way to modify the local oxygen defect states at oxide hetero-interfaces.« less

  16. Facile fabrication of nanofluidic diode membranes using anodic aluminium oxide

    NASA Astrophysics Data System (ADS)

    Wu, Songmei; Wildhaber, Fabien; Vazquez-Mena, Oscar; Bertsch, Arnaud; Brugger, Juergen; Renaud, Philippe

    2012-08-01

    Active control of ion transport plays important roles in chemical and biological analytical processes. Nanofluidic systems hold the promise for such control through electrostatic interaction between ions and channel surfaces. Most existing experiments rely on planar geometry where the nanochannels are generally very long and shallow with large aspect ratios. Based on this configuration the concepts of nanofluidic gating and rectification have been successfully demonstrated. However, device minimization and throughput scaling remain significant challenges. We report here an innovative and facile realization of hetero-structured Al2O3/SiO2 (Si) nanopore array membranes by using pattern transfer of self-organized nanopore structures of anodic aluminum oxide (AAO). Thanks to the opposite surface charge states of Al2O3 (positive) and SiO2 (negative), the membrane exhibits clear rectification of ion current in electrolyte solutions with very low aspect ratios compared to previous approaches. Our hetero-structured nanopore arrays provide a valuable platform for high throughput applications such as molecular separation, chemical processors and energy conversion.Active control of ion transport plays important roles in chemical and biological analytical processes. Nanofluidic systems hold the promise for such control through electrostatic interaction between ions and channel surfaces. Most existing experiments rely on planar geometry where the nanochannels are generally very long and shallow with large aspect ratios. Based on this configuration the concepts of nanofluidic gating and rectification have been successfully demonstrated. However, device minimization and throughput scaling remain significant challenges. We report here an innovative and facile realization of hetero-structured Al2O3/SiO2 (Si) nanopore array membranes by using pattern transfer of self-organized nanopore structures of anodic aluminum oxide (AAO). Thanks to the opposite surface charge states of Al2O3 (positive) and SiO2 (negative), the membrane exhibits clear rectification of ion current in electrolyte solutions with very low aspect ratios compared to previous approaches. Our hetero-structured nanopore arrays provide a valuable platform for high throughput applications such as molecular separation, chemical processors and energy conversion. Electronic supplementary information (ESI) available: Pattern transfer of local AAO mask into Si layers of different thickness; characterization of the Ag/AgCl electrodes and the cell constant; control experiments of mono-charged nanopore membranes; and simulation of ionic transport in nanofluidic diodes. See DOI: 10.1039/c2nr31243c

  17. Fabrication of nanoscale heterostructures comprised of graphene-encapsulated gold nanoparticles and semiconducting quantum dots for photocatalysis.

    PubMed

    Li, Yuan; Chopra, Nitin

    2015-05-21

    Patterned growth of multilayer graphene shell encapsulated gold nanoparticles (GNPs) and their covalent linking with inorganic quantum dots are demonstrated. GNPs were grown using a xylene chemical vapor deposition process, where the surface oxidized gold nanoparticles catalyze the multilayer graphene shell growth in a single step process. The graphene shell encapsulating gold nanoparticles could be further functionalized with carboxylic groups, which were covalently linked to amine-terminated quantum dots resulting in GNP-quantum dot heterostructures. The compositions, morphologies, crystallinity, and surface functionalization of GNPs and their heterostructures with quantum dots were evaluated using microscopic, spectroscopic, and analytical methods. Furthermore, optical properties of the derived architectures were studied using both experimental methods and simulations. Finally, GNP-quantum dot heterostructures were studied for photocatalytic degradation of phenol.

  18. All oxide semiconductor-based bidirectional vertical p-n-p selectors for 3D stackable crossbar-array electronics

    PubMed Central

    Bae, Yoon Cheol; Lee, Ah Rahm; Baek, Gwang Ho; Chung, Je Bock; Kim, Tae Yoon; Park, Jea Gun; Hong, Jin Pyo

    2015-01-01

    Three-dimensional (3D) stackable memory devices including nano-scaled crossbar array are central for the realization of high-density non-volatile memory electronics. However, an essential sneak path issue affecting device performance in crossbar array remains a bottleneck and a grand challenge. Therefore, a suitable bidirectional selector as a two-way switch is required to facilitate a major breakthrough in the 3D crossbar array memory devices. Here, we show the excellent selectivity of all oxide p-/n-type semiconductor-based p-n-p open-based bipolar junction transistors as selectors in crossbar memory array. We report that bidirectional nonlinear characteristics of oxide p-n-p junctions can be highly enhanced by manipulating p-/n-type oxide semiconductor characteristics. We also propose an associated Zener tunneling mechanism that explains the unique features of our p-n-p selector. Our experimental findings are further extended to confirm the profound functionality of oxide p-n-p selectors integrated with several bipolar resistive switching memory elements working as storage nodes. PMID:26289565

  19. Origin of high photoconductive gain in fully transparent heterojunction nanocrystalline oxide image sensors and interconnects.

    PubMed

    Jeon, Sanghun; Song, Ihun; Lee, Sungsik; Ryu, Byungki; Ahn, Seung-Eon; Lee, Eunha; Kim, Young; Nathan, Arokia; Robertson, John; Chung, U-In

    2014-11-05

    A technique for invisible image capture using a photosensor array based on transparent conducting oxide semiconductor thin-film transistors and transparent interconnection technologies is presented. A transparent conducting layer is employed for the sensor electrodes as well as interconnection in the array, providing about 80% transmittance at visible-light wavelengths. The phototransistor is a Hf-In-Zn-O/In-Zn-O heterostructure yielding a high quantum-efficiency in the visible range. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. An anti-photocorrosive photoanode based on a CdS/NixSy@NF heterostructure for visible-light-driven water splitting

    NASA Astrophysics Data System (ADS)

    Zhang, Dantong; Liu, Lulu; Zhang, Lei; Qi, Kun; Zhang, Haiyan; Cui, Xiaoqiang

    2017-10-01

    Photoelectrochemical (PEC) water splitting holds promise for both sustainable energy generation and energy storage. CdS, a sulphide semiconductor possessing a narrow band gap (2.4 eV) and high photocatalytic activity, has been widely used to build photoanodes for PEC water splitting; however, it also suffers from photocorrosion under irradiation. An innovative method is presented here to significantly improve the stability of CdS photoanodes by constructing a p-n junction comprising CdS/NixSy on nickel foam (NF) via a one-pot hydrothermal method. The n-type CdS is surrounded by p-type NixSy serving as a fast and effective hole receiver of excess holes from CdS. More importantly, the CdS/NixSy shows significantly improved PEC stability compared to the pure CdS electrode, with ≈70% of the initial photocurrent retained after 2000 s of irradiation (>420 nm). This work provides a new insight into the fabrication of other p-n junction self-assembled photoanodes to simultaneously enhance charge separation and transport for efficient and stable solar fuel production.

  1. High temperature interface superconductivity

    DOE PAGES

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-T c superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-T c Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed.more » Here, we conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.« less

  2. Emerging Robust Heterostructure of MoS2-rGO for High-Performance Supercapacitors.

    PubMed

    Saraf, Mohit; Natarajan, Kaushik; Mobin, Shaikh M

    2018-05-16

    The intermittent nature of renewable energy resources has led to a continuous mismatch between energy demand and supply. A possible solution to overcome this persistent problem is to design appropriate energy-storage materials. Supercapacitors based on different nanoelectrode materials have emerged as one of the promising storage devices. In this work, we investigate the supercapacitor properties of a molybdenum disulfide-reduced graphene oxide (rGO) heterostructure-based binder-free electrode, which delivered a high specific capacitance (387.6 F g -1 at 1.2 A g -1 ) and impressive cycling stability (virtually no loss up to 1000 cycles). In addition, the possible role of rGO in the composite toward synergistically enhanced supercapacitance has been highlighted. Moreover, an attempt has been made to correlate the electrochemical impedance spectroscopy studies with the voltammetric analyses. The performance exceeds that of the reported state-of-the-art structures.

  3. Polarization-coupled tunable resistive behavior in oxide ferroelectric heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruverman, Alexei; Tsymbal, Evgeny Y.; Eom, Chang-Beom

    2017-05-03

    This research focuses on investigation of the physical mechanism of the electrically and mechanically tunable resistive behavior in oxide ferroelectric heterostructures with engineered interfaces realized via a strong coupling of ferroelectric polarization with tunneling electroresistance and metal-insulator (M-I) transitions. This report describes observation of electrically conductive domain walls in semiconducting ferroelectrics, voltage-free control of resistive switching and demonstration of a new mechanism of electrical control of 2D electron gas (2DEG) at oxide interfaces. The research goals are achieved by creating strong synergy between cutting-edge fabrication of epitaxial single-crystalline complex oxides, nanoscale electrical characterization by scanning probe microscopy and theoretical modelingmore » of the observed phenomena. The concept of the ferroelectric devices with electrically and mechanically tunable nonvolatile resistance represents a new paradigm shift in realization of the next-generation of non-volatile memory devices and low-power logic switches.« less

  4. Perspectives of cross-sectional scanning tunneling microscopy and spectroscopy for complex oxide physics

    NASA Astrophysics Data System (ADS)

    Wang, Aaron; Chien, TeYu

    2018-03-01

    Complex oxide heterostructure interfaces have shown novel physical phenomena which do not exist in bulk materials. These heterostructures can be used in the potential applications in the next generation devices and served as the playgrounds for the fundamental physics research. The direct measurements of the interfaces with excellent spatial resolution and physical property information is rather difficult to achieve with the existing tools. Recently developed cross-sectional scanning tunneling microscopy and spectroscopy (XSTM/S) for complex oxide interfaces have proven to be capable of providing local electronic density of states (LDOS) information at the interface with spatial resolution down to nanometer scale. In this perspective, we will briefly introduce the basic idea and some recent achievements in using XSTM/S to study complex oxide interfaces. We will also discuss the future of this technique and the field of the interfacial physics.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paskiewicz, Deborah M.; Sichel-Tissot, Rebecca; Karapetrova, Evguenia

    The field of oxide electronics has benefited from the wide spectrum of functionalities available to the ABO 3 perovskites, and researchers are now employing defect engineering in single crystalline heterostructures to tailor properties. However, bulk oxide single crystals are not conducive to many types of applications, particularly those requiring mechanical flexibility. Here, we demonstrate the realization of an all-oxide, single-crystalline nanomembrane heterostructure. With a surface-to-volume ratio of 2 × 10 7 , the nanomembranes are fully flexible and can be readily transferred to other materials for handling purposes or for new materials integration schemes. Using in situ synchrotron X-ray scattering,more » we find that the nanomembranes can bond to other host substrates near room temperature and demonstrate coupling between surface reactivity and electromechanical properties in ferroelectric nanomembrane systems. Finally, the synthesis technique described here represents a significant advancement in materials integration and provides a new platform for the development of flexible oxide electronics.« less

  6. Instrumentation for Epitaxial Growth of Complex Oxides

    DTIC Science & Technology

    2015-12-17

    synthesis of complex oxide heterostructures. A RF oxygen plasma source was acquired to increase the oxidizing ability of the growth environment, an...improvement that will prove critical in stabilizing materials with high oxidization states. The plasma source and accompanying electronics were purchased...2014 14-Aug-2015 Approved for Public Release; Distribution Unlimited Final Report: Instrumentation for Epitaxial Growth of Complex Oxides The views

  7. Graphene analogue in (111)-oriented BaBiO3 bilayer heterostructures for topological electronics.

    PubMed

    Kim, Rokyeon; Yu, Jaejun; Jin, Hosub

    2018-01-11

    Topological electronics is a new field that uses topological charges as current-carrying degrees of freedom. For topological electronics applications, systems should host topologically distinct phases to control the topological domain boundary through which the topological charges can flow. Due to their multiple Dirac cones and the π-Berry phase of each Dirac cone, graphene-like electronic structures constitute an ideal platform for topological electronics; graphene can provide various topological phases when incorporated with large spin-orbit coupling and mass-gap tunability via symmetry-breaking. Here, we propose that a (111)-oriented BaBiO 3 bilayer (BBL) sandwiched between large-gap perovskite oxides is a promising candidate for topological electronics by realizing a gap-tunable, and consequently a topology-tunable, graphene analogue. Depending on how neighboring perovskite spacers are chosen, the inversion symmetry of the BBL heterostructure can be either conserved or broken, leading to the quantum spin Hall (QSH) and quantum valley Hall (QVH) phases, respectively. BBL sandwiched by ferroelectric compounds enables switching of the QSH and QVH phases and generates the topological domain boundary. Given the abundant order parameters of the sandwiching oxides, the BBL can serve as versatile topological building blocks in oxide heterostructures.

  8. Tuning on-off current ratio and field-effect mobility in a MoS(2)-graphene heterostructure via Schottky barrier modulation.

    PubMed

    Shih, Chih-Jen; Wang, Qing Hua; Son, Youngwoo; Jin, Zhong; Blankschtein, Daniel; Strano, Michael S

    2014-06-24

    Field-effect transistor (FET) devices composed of a MoS2-graphene heterostructure can combine the advantages of high carrier mobility in graphene with the permanent band gap of MoS2 for digital applications. Herein, we investigate the electron transfer, photoluminescence, and gate-controlled carrier transport in such a heterostructure. We show that the junction is a Schottky barrier, whose height can be artificially controlled by gating or doping graphene. When the applied gate voltage (or the doping level) is zero, the photoexcited electron-hole pairs in monolayer MoS2 can be split by the heterojunction, significantly reducing the photoluminescence. By applying negative gate voltage (or p-doping) in graphene, the interlayer impedance formed between MoS2 and graphene exhibits an 100-fold increase. For the first time, we show that the gate-controlled interlayer Schottky impedance can be utilized to modulate carrier transport in graphene, significantly depleting the hole transport, but preserving the electron transport. Accordingly, we demonstrate a new type of FET device, which enables a controllable transition from NMOS digital to bipolar characteristics. In the NMOS digital regime, we report a very high room temperature on/off current ratio (ION/IOFF ∼ 36) in comparison to graphene-based FET devices without sacrificing the field-effect electron mobilities in graphene. By engineering the source/drain contact area, we further estimate that a higher value of ION/IOFF up to 100 can be obtained in the device architecture considered. The device architecture presented here may enable semiconducting behavior in graphene for digital and analogue electronics.

  9. Comparative study of LaNiO3/LaAlO3 heterostructures grown by pulsed laser deposition and oxide molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wrobel, F.; Mark, A. F.; Christiani, G.; Sigle, W.; Habermeier, H.-U.; van Aken, P. A.; Logvenov, G.; Keimer, B.; Benckiser, E.

    2017-01-01

    Variations in growth conditions associated with different deposition techniques can greatly affect the phase stability and defect structure of complex oxide heterostructures. We synthesized superlattices of the paramagnetic metal LaNiO3 and the large band gap insulator LaAlO3 by atomic layer-by-layer molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) and compared their crystallinity and microstructure as revealed by high-resolution transmission electron microscopy images and resistivity. The MBE samples show a higher density of stacking faults but smoother interfaces and generally higher electrical conductivity. Our study identifies the opportunities and challenges of MBE and PLD growth and serves as a general guide for the choice of the deposition technique for perovskite oxides.

  10. Solution-deposited F:SnO₂/TiO₂ as a base-stable protective layer and antireflective coating for microtextured buried-junction H₂-evolving Si photocathodes.

    PubMed

    Kast, Matthew G; Enman, Lisa J; Gurnon, Nicholas J; Nadarajah, Athavan; Boettcher, Shannon W

    2014-12-24

    Protecting Si photocathodes from corrosion is important for developing tandem water-splitting devices operating in basic media. We show that textured commercial Si-pn(+) photovoltaics protected by solution-processed semiconducting/conducting oxides (plausibly suitable for scalable manufacturing) and coupled to thin layers of Ir yield high-performance H2-evolving photocathodes in base. They also serve as excellent test structures to understand corrosion mechanisms and optimize interfacial electrical contacts between various functional layers. Solution-deposited TiO2 protects Si-pn(+) junctions from corrosion for ∼24 h in base, whereas junctions protected by F:SnO2 fail after only 1 h of electrochemical cycling. Interface layers consisting of Ti metal and/or the highly doped F:SnO2 between the Si and TiO2 reduce Si-emitter/oxide/catalyst contact resistance and thus increase fill factor and efficiency. Controlling the oxide thickness led to record photocurrents near 35 mA cm(-2) at 0 V vs RHE and photocathode efficiencies up to 10.9% in the best cells. Degradation, however, was not completely suppressed. We demonstrate that performance degrades by two mechanisms, (1) deposition of impurities onto the thin catalyst layers, even from high-purity base, and (2) catastrophic failure via pinholes in the oxide layers after several days of operation. These results provide insight into the design of hydrogen-evolving photoelectrodes in basic conditions, and highlight challenges.

  11. Coulomb engineering of the bandgap and excitons in two-dimensional materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raja, Archana; Chaves, Andrey; Yu, Jaeeun

    Here, the ability to control the size of the electronic bandgap is an integral part of solid-state technology. Atomically thin two-dimensional crystals offer a new approach for tuning the energies of the electronic states based on the unusual strength of the Coulomb interaction in these materials and its environmental sensitivity. Here, we show that by engineering the surrounding dielectric environment, one can tune the electronic bandgap and the exciton binding energy in monolayers of WS 2 and WSe 2 by hundreds of meV. We exploit this behaviour to present an in-plane dielectric heterostructure with a spatially dependent bandgap, as anmore » initial step towards the creation of diverse lateral junctions with nanoscale resolution.« less

  12. Coulomb engineering of the bandgap and excitons in two-dimensional materials

    DOE PAGES

    Raja, Archana; Chaves, Andrey; Yu, Jaeeun; ...

    2017-05-04

    Here, the ability to control the size of the electronic bandgap is an integral part of solid-state technology. Atomically thin two-dimensional crystals offer a new approach for tuning the energies of the electronic states based on the unusual strength of the Coulomb interaction in these materials and its environmental sensitivity. Here, we show that by engineering the surrounding dielectric environment, one can tune the electronic bandgap and the exciton binding energy in monolayers of WS 2 and WSe 2 by hundreds of meV. We exploit this behaviour to present an in-plane dielectric heterostructure with a spatially dependent bandgap, as anmore » initial step towards the creation of diverse lateral junctions with nanoscale resolution.« less

  13. Coulomb engineering of the bandgap and excitons in two-dimensional materials

    PubMed Central

    Raja, Archana; Chaves, Andrey; Yu, Jaeeun; Arefe, Ghidewon; Hill, Heather M.; Rigosi, Albert F.; Berkelbach, Timothy C.; Nagler, Philipp; Schüller, Christian; Korn, Tobias; Nuckolls, Colin; Hone, James; Brus, Louis E.; Heinz, Tony F.; Reichman, David R.; Chernikov, Alexey

    2017-01-01

    The ability to control the size of the electronic bandgap is an integral part of solid-state technology. Atomically thin two-dimensional crystals offer a new approach for tuning the energies of the electronic states based on the unusual strength of the Coulomb interaction in these materials and its environmental sensitivity. Here, we show that by engineering the surrounding dielectric environment, one can tune the electronic bandgap and the exciton binding energy in monolayers of WS2 and WSe2 by hundreds of meV. We exploit this behaviour to present an in-plane dielectric heterostructure with a spatially dependent bandgap, as an initial step towards the creation of diverse lateral junctions with nanoscale resolution. PMID:28469178

  14. Reversible electrical-field control of magnetization and anomalous Hall effect in Co/PMN-PT hybrid heterostructures

    NASA Astrophysics Data System (ADS)

    Wang, J.; Huang, Q. K.; Lu, S. Y.; Tian, Y. F.; Chen, Y. X.; Bai, L. H.; Dai, Y.; Yan, S. S.

    2018-04-01

    Room-temperature reversible electrical-field control of the magnetization and the anomalous Hall effect was reported in hybrid multiferroic heterojunctions based on Co/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (PMN-PT). We demonstrate herein that electrical-field-induced strain and oxygen-ion migration in ZnO/Co/PMN-PT junctions exert opposing effects on the magnetic properties of the Co sublayer, and the competition between these effects determines the final magnitude of magnetization. This proof-of-concept investigation opens an alternative way to optimize and enhance the electrical-field effect on magnetism through the combination of multiple electrical manipulation mechanisms in hybrid multiferroic devices.

  15. High current density Esaki tunnel diodes based on GaSb-InAsSb heterostructure nanowires.

    PubMed

    Ganjipour, Bahram; Dey, Anil W; Borg, B Mattias; Ek, Martin; Pistol, Mats-Erik; Dick, Kimberly A; Wernersson, Lars-Erik; Thelander, Claes

    2011-10-12

    We present electrical characterization of broken gap GaSb-InAsSb nanowire heterojunctions. Esaki diode characteristics with maximum reverse current of 1750 kA/cm(2) at 0.50 V, maximum peak current of 67 kA/cm(2) at 0.11 V, and peak-to-valley ratio (PVR) of 2.1 are obtained at room temperature. The reverse current density is comparable to that of state-of-the-art tunnel diodes based on heavily doped p-n junctions. However, the GaSb-InAsSb diodes investigated in this work do not rely on heavy doping, which permits studies of transport mechanisms in simple transistor structures processed with high-κ gate dielectrics and top-gates. Such processing results in devices with improved PVR (3.5) and stability of the electrical properties.

  16. Valence band offset of β-Ga2O3/wurtzite GaN heterostructure measured by X-ray photoelectron spectroscopy.

    PubMed

    Wei, Wei; Qin, Zhixin; Fan, Shunfei; Li, Zhiwei; Shi, Kai; Zhu, Qinsheng; Zhang, Guoyi

    2012-10-10

    A sample of the β-Ga2O3/wurtzite GaN heterostructure has been grown by dry thermal oxidation of GaN on a sapphire substrate. X-ray diffraction measurements show that the β-Ga2O3 layer was formed epitaxially on GaN. The valence band offset of the β-Ga2O3/wurtzite GaN heterostructure is measured by X-ray photoelectron spectroscopy. It is demonstrated that the valence band of the β-Ga2O3/GaN structure is 1.40 ± 0.08 eV.

  17. Valence band offset of β-Ga2O3/wurtzite GaN heterostructure measured by X-ray photoelectron spectroscopy

    PubMed Central

    2012-01-01

    A sample of the β-Ga2O3/wurtzite GaN heterostructure has been grown by dry thermal oxidation of GaN on a sapphire substrate. X-ray diffraction measurements show that the β-Ga2O3 layer was formed epitaxially on GaN. The valence band offset of the β-Ga2O3/wurtzite GaN heterostructure is measured by X-ray photoelectron spectroscopy. It is demonstrated that the valence band of the β-Ga2O3/GaN structure is 1.40 ± 0.08 eV. PMID:23046910

  18. Single-Crystalline SrRuO 3 Nanomembranes: A Platform for Flexible Oxide Electronics

    DOE PAGES

    Paskiewicz, Deborah M.; Sichel-Tissot, Rebecca; Karapetrova, Evguenia; ...

    2016-12-11

    The field of oxide electronics has benefited from the wide spectrum of functionalities available to the ABO 3 perovskites, and researchers are now employing defect engineering in single crystalline heterostructures to tailor properties. However, bulk oxide single crystals are not conducive to many types of applications, particularly those requiring mechanical flexibility. Here, we demonstrate the realization of an all-oxide, single-crystalline nanomembrane heterostructure. With a surface-to-volume ratio of 2 × 10 7 , the nanomembranes are fully flexible and can be readily transferred to other materials for handling purposes or for new materials integration schemes. Using in situ synchrotron X-ray scattering,more » we find that the nanomembranes can bond to other host substrates near room temperature and demonstrate coupling between surface reactivity and electromechanical properties in ferroelectric nanomembrane systems. Finally, the synthesis technique described here represents a significant advancement in materials integration and provides a new platform for the development of flexible oxide electronics.« less

  19. Phase-Engineered Type-II Multimetal-Selenide Heterostructures toward Low-Power Consumption, Flexible, Transparent, and Wide-Spectrum Photoresponse Photodetectors.

    PubMed

    Chen, Yu-Ze; Wang, Sheng-Wen; Su, Teng-Yu; Lee, Shao-Hsin; Chen, Chia-Wei; Yang, Chen-Hua; Wang, Kuangye; Kuo, Hao-Chung; Chueh, Yu-Lun

    2018-05-01

    Phase-engineered type-II metal-selenide heterostructures are demonstrated by directly selenizing indium-tin oxide to form multimetal selenides in a single step. The utilization of a plasma system to assist the selenization facilitates a low-temperature process, which results in large-area films with high uniformity. Compared to single-metal-selenide-based photodetectors, the multimetal-selenide photodetectors exhibit obviously improved performance, which can be attributed to the Schottky contact at the interface for tuning the carrier transport, as well as the type-II heterostructure that is beneficial for the separation of the electron-hole pairs. The multimetal-selenide photodetectors exhibit a response to light over a broad spectrum from UV to visible light with a high responsivity of 0.8 A W -1 and an on/off current ratio of up to 10 2 . Interestingly, all-transparent photodetectors are successfully produced in this work. Moreover, the possibility of fabricating devices on flexible substrates is also demonstrated with sustainable performance, high strain tolerance, and high durability during bending tests. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Tuning interfacial exchange interactions via electronic reconstruction in transition-metal oxide heterostructures

    DOE PAGES

    Li, Binzhi; Chopdekar, Rajesh V.; N'Diaye, Alpha T.; ...

    2016-10-10

    The impact of interfacial electronic reconstruction on the magnetic characteristics of La0.7Sr0.3CoO3 (LSCO)/La0.7Sr0.3MnO3 (LSMO) superlattices was investigated as a function of layer thickness using a combination of soft x-ray magnetic spectroscopy and bulk magnetometry. We found that the magnetic properties of the LSCO layers are impacted by two competing electronic interactions occurring at the LSCO/substrate and LSMO/LSCO interfaces. For thin LSCO layers (< 5 nm), the heterostructures exist in a highly coupled state where the chemically distinct layers behave as a single magnetic compound with magnetically active Co2+ ions. As the LSCO thickness increases, a high coercivity LSCO layer developsmore » which biases a low coercivity layer, which is composed not only of the LSMO layer, but also an interfacial LSCO layer. These results suggest a new route to tune the magnetic properties of transition metal oxide heterostructures through careful control of the interface structure.« less

  1. Fabrication of heterostructured BiOBr/Bi24O31Br10/TiO2 photocatalyst by pyrolysis of MOF composite for dye degradation

    NASA Astrophysics Data System (ADS)

    Zhu, Shuai-Ru; Wu, Meng-Ke; Zhao, Wen-Na; Yi, Fei-Yan; Tao, Kai; Han, Lei

    2017-11-01

    The pyrolysis of metal-organic frameworks has emerged as a promising route to synthesize metal oxides with diverse phase compositions, morphologies, sizes and surface areas. The BiOBr/Bi24O31Br10/TiO2 (BBT) heterostructures have been achieved for the first time by calcining BiOBr/MIL-125(Ti) composite at 500 °C in air. The BBT-2 composite exhibited the highest photocatalytic performance for degradation of RhB under visible light irradiation. The enhanced photocatalytic activity is attributed to narrower band-gaps and synergistic effect originating from the well-aligned straddling band-structures between BiOBr, Bi24O31Br10 and TiO2, also result in an faster interfacial charge transfer during the photocatalytic reaction. This work could be conductive to the design of heterostructured photocatalysts contained metal oxide by pyrolytic conversion of metal-organic frameworks for significantly improved photocatalytic performance.

  2. Thermoelectric Properties of Complex Oxide Heterostructures

    NASA Astrophysics Data System (ADS)

    Cain, Tyler Andrew

    Thermoelectrics are a promising energy conversion technology for power generation and cooling systems. The thermal and electrical properties of the materials at the heart of thermoelectric devices dictate conversion efficiency and technological viability. Studying the fundamental properties of potentially new thermoelectric materials is of great importance for improving device performance and understanding the electronic structure of materials systems. In this dissertation, investigations on the thermoelectric properties of a prototypical complex oxide, SrTiO3, are discussed. Hybrid molecular beam epitaxy (MBE) is used to synthesize La-doped SrTiO3 thin films, which exhibit high electron mobilities and large Seebeck coefficients resulting in large thermoelectric power factors at low temperatures. Large interfacial electron densities have been observed in SrTiO3/RTiO 3 (R=Gd,Sm) heterostructures. The thermoelectric properties of such heterostructures are investigated, including the use of a modulation doping approach to control interfacial electron densities. Low-temperature Seebeck coefficients of extreme electron-density SrTiO3 quantum wells are shown to provide insight into their electronic structure.

  3. Strain-induced magnetization control in an oxide multiferroic heterostructure

    NASA Astrophysics Data System (ADS)

    Motti, Federico; Vinai, Giovanni; Petrov, Aleksandr; Davidson, Bruce A.; Gobaut, Benoit; Filippetti, Alessio; Rossi, Giorgio; Panaccione, Giancarlo; Torelli, Piero

    2018-03-01

    Controlling magnetism by using electric fields is a goal of research towards novel spintronic devices and future nanoelectronics. For this reason, multiferroic heterostructures attract much interest. Here we provide experimental evidence, and supporting density functional theory analysis, of a transition in L a0.65S r0.35Mn O3 thin film to a stable ferromagnetic phase, that is induced by the structural and strain properties of the ferroelectric BaTi O3 (BTO) substrate, which can be modified by applying external electric fields. X-ray magnetic circular dichroism measurements on Mn L edges with a synchrotron radiation show, in fact, two magnetic transitions as a function of temperature that correspond to structural changes of the BTO substrate. We also show that ferromagnetism, absent in the pristine condition at room temperature, can be established by electrically switching the BTO ferroelectric domains in the out-of-plane direction. The present results confirm that electrically induced strain can be exploited to control magnetism in multiferroic oxide heterostructures.

  4. Two-step growth of two-dimensional WSe 2/MoSe 2 heterostructures

    DOE PAGES

    Gong, Yongji; Lei, Sidong; Lou, Jun; ...

    2015-08-03

    Two dimensional (2D) materials have attracted great attention due to their unique properties and atomic thickness. Although various 2D materials have been successfully synthesized with different optical and electrical properties, a strategy for fabricating 2D heterostructures must be developed in order to construct more complicated devices for practical applications. Here we demonstrate for the first time a two-step chemical vapor deposition (CVD) method for growing transition-metal dichalcogenide (TMD) heterostructures, where MoSe 2 was synthesized first and followed by an epitaxial growth of WSe 2 on the edge and on the top surface of MoSe 2. Compared to previously reported one-stepmore » growth methods, this two-step growth has the capability of spatial and size control of each 2D component, leading to much larger (up to 169 μm) heterostructure size, and cross-contamination can be effectively minimized. Furthermore, this two-step growth produces well-defined 2H and 3R stacking in the WSe 2/MoSe 2 bilayer regions and much sharper in-plane interfaces than the previously reported MoSe 2/WSe 2 heterojunctions obtained from one-step growth methods. The resultant heterostructures with WSe 2/MoSe 2 bilayer and the exposed MoSe 2 monolayer display rectification characteristics of a p-n junction, as revealed by optoelectronic tests, and an internal quantum efficiency of 91% when functioning as a photodetector. As a result, a photovoltaic effect without any external gates was observed, showing incident photon to converted electron (IPCE) efficiencies of approximately 0.12%, providing application potential in electronics and energy harvesting.« less

  5. Redox-mediated regulation of connexin proteins; focus on nitric oxide.

    PubMed

    García, Isaac E; Sánchez, Helmuth A; Martínez, Agustín D; Retamal, Mauricio A

    2018-01-01

    Connexins are membrane proteins that form hemichannels and gap junction channels at the plasma membrane. Through these channels connexins participate in autocrine and paracrine intercellular communication. Connexin-based channels are tightly regulated by membrane potential, phosphorylation, pH, redox potential, and divalent cations, among others, and the imbalance of this regulation have been linked to many acquired and genetic diseases. Concerning the redox potential regulation, the nitric oxide (NO) has been described as a modulator of the hemichannels and gap junction channels properties. However, how NO regulates these channels is not well understood. In this mini-review, we summarize the current knowledge about the effects of redox potential focused in NO on the trafficking, formation and functional properties of hemichannels and gap junction channels. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Direct Observation of 2D Electrostatics and Ohmic Contacts in Template-Grown Graphene/WS2 Heterostructures.

    PubMed

    Zheng, Changxi; Zhang, Qianhui; Weber, Bent; Ilatikhameneh, Hesameddin; Chen, Fan; Sahasrabudhe, Harshad; Rahman, Rajib; Li, Shiqiang; Chen, Zhen; Hellerstedt, Jack; Zhang, Yupeng; Duan, Wen Hui; Bao, Qiaoliang; Fuhrer, Michael S

    2017-03-28

    Large-area two-dimensional (2D) heterojunctions are promising building blocks of 2D circuits. Understanding their intriguing electrostatics is pivotal but largely hindered by the lack of direct observations. Here graphene-WS 2 heterojunctions are prepared over large areas using a seedless ambient-pressure chemical vapor deposition technique. Kelvin probe force microscopy, photoluminescence spectroscopy, and scanning tunneling microscopy characterize the doping in graphene-WS 2 heterojunctions as-grown on sapphire and transferred to SiO 2 with and without thermal annealing. Both p-n and n-n junctions are observed, and a flat-band condition (zero Schottky barrier height) is found for lightly n-doped WS 2 , promising low-resistance ohmic contacts. This indicates a more favorable band alignment for graphene-WS 2 than has been predicted, likely explaining the low barriers observed in transport experiments on similar heterojunctions. Electrostatic modeling demonstrates that the large depletion width of the graphene-WS 2 junction reflects the electrostatics of the one-dimensional junction between two-dimensional materials.

  7. Molecular Beam Epitaxy Integration of Magnetic Ferrites with Wide Bandgap Semiconductor 6Hydrogen-Silicon carbide for Next-generation Microwave and Spintronic Devices

    NASA Astrophysics Data System (ADS)

    Cai, Zhuhua

    Ferrite/ferroelectric heterostructures have attracted much attention in recent years because of their unique ability to potentially enable dual magnetic and electric field tunability. The simultaneous magnetic and electric tunability in such structures can be applied in a wide range of microwave planar devices (e.g., tunable phase shifters, resonators, and delay lines) and spintronics (e.g., magnetic tunneling junctions for magnetic sensors and nonvolatile magnetic memories). However, the attempts to engineer ferrite/ferroelectric heterostructures to operate at the frequencies higher than 5 GHz are limited. Barium hexaferrite (BaM, BaFe12O19) is an ideal candidate for high frequency microwave device applications because of its strong uniaxial anisotropy (HA ˜17 kOe) and can be tuned to ferromagnetic resonance (FMR) at frequencies higher than 40 GHz with relatively small applied magnetic fields. Spinel ferrite Fe3O4 has a high Curie temperature of 858 K and is predicted to possess ˜ 100% spin polarization, which can lead to ultrahigh tunneling magnetoresistence even at room temperature. The performance of today's ferrite-based microwave communication and spintronic devices would be enhanced and next-generation monolithic microwave integrated circuit (MMIC) would be possible if ferrite/ferroelectric heterostructures can be integrated with wide band gap semiconductors (e.g., SiC or GaN), which can function in high-temperature, high-power, and high-frequency environments. The goal of this work is to use molecular beam epitaxy (MBE) to understand nucleation and film growth mechanisms needed to integrate magnetic ferrites (BaM and Fe3O4) with SiC, and subsequently understand the material chemistry and structure influences on forming functional interfaces (i.e., interfaces that enable effective ferrite/ferroelectric coupling). The study of chemistry, structure, and magnetic properties of three generations of BaM films grown by pulsed laser deposition shows a MBE-grown single crystalline MgO template promotes the c-axis alignment through formation of an oxygen bridge at the interface and minimizes the interface mixing, which enables the effective heteroepitaxy of device quality BaM on 6H-SiC. Epitaxial single crystalline BaM film with strong c-axis perpendicular alignment, high H A (16.2 kOe) and magnetization (4.1 kG) was also successfully grown by MBE for the first time on 6H-SiC. Through MBE, further study of the chemistry and structure evolution at the BaM//SiC interface suggests the 10 nm MgO template not only functions as a diffusion barrier, but also forms a spinel transition layer that is structurally similar to BaM. The high quality BaM film on SiC is compatible with MMIC and can also function as a magnetic layer in BaM/ferroelectric multiferroic heterostructures for electrostatic FMR tuning. Through MBE, single crystalline, epitaxial Fe3O4 (111) films and Fe 3O4/BaTiO3/Fe3O4 heterostructures were successfully integrated with 6H-SiC. The Fe3O4 film exhibits high strucutrual order with sharp interfaces and an easy axis in-plane magnetization with a coercivity of 200 Oe. In the Fe3O 4/BaTiO3/Fe3O4 heterostructure, the magnetoeletric coupling is demonstrated at room-temperature by an electric field induced magnetic anisotropy field change. The Fe3O4 /BaTiO3/Fe3O4 heterostructure has the potential application in multiferroic tunneling junction used in novel information storage. Understanding the ferrite growth mechanisms and interface functions through this research, is an important contribution toward the realization of a next-generation, multifunctional device.

  8. Intrinsically shunted Josephson junctions for electronics applications

    NASA Astrophysics Data System (ADS)

    Belogolovskii, M.; Zhitlukhina, E.; Lacquaniti, V.; De Leo, N.; Fretto, M.; Sosso, A.

    2017-07-01

    Conventional Josephson metal-insulator-metal devices are inherently underdamped and exhibit hysteretic current-voltage response due to a very high subgap resistance compared to that in the normal state. At the same time, overdamped junctions with single-valued characteristics are needed for most superconducting digital applications. The usual way to overcome the hysteretic behavior is to place an external low-resistance normal-metal shunt in parallel with each junction. Unfortunately, such solution results in a considerable complication of the circuitry design and introduces parasitic inductance through the junction. This paper provides a concise overview of some generic approaches that have been proposed in order to realize internal shunting in Josephson heterostructures with a barrier that itself contains the desired resistive component. The main attention is paid to self-shunted devices with local weak-link transmission probabilities that are so strongly disordered in the interface plane that transmission probabilities are tiny for the main part of the transition region between two super-conducting electrodes, while a small part of the interface is well transparent. We discuss the possibility of realizing a universal bimodal distribution function and emphasize advantages of such junctions that can be considered as a new class of self-shunted Josephson devices promising for practical applications in superconducting electronics operating at 4.2 K.

  9. Electrical transport and structural characterization of epitaxial monolayer MoS2 /n- and p-doped GaN vertical lattice-matched heterojunctions

    NASA Astrophysics Data System (ADS)

    Ruzmetov, D.; O'Regan, T.; Zhang, K.; Herzing, A.; Mazzoni, A.; Chin, M.; Huang, S.; Zhang, Z.; Burke, R.; Neupane, M.; Birdwell, Ag; Shah, P.; Crowne, F.; Kolmakov, A.; Leroy, B.; Robinson, J.; Davydov, A.; Ivanov, T.

    We investigate vertical semiconductor junctions consisting of monolayer MoS2 that is epitaxially grown on n- and p-doped GaN crystals. Such a junction represents a building block for 2D/3D vertical semiconductor heterostructures. Epitaxial, lattice-matched growth of MoS2 on GaN is important to ensure high quality interfaces that are crucial for the efficient vertical transport. The MoS2/GaN junctions were characterized with cross-sectional and planar scanning transmission electron microscopy (STEM), scanning tunneling microscopy, and atomic force microscopy. The MoS2/GaN lattice mismatch is measured to be near 1% using STEM. The electrical transport in the out-of-plane direction across the MoS2/GaN junctions was measured using conductive atomic force microscopy and mechanical nano-probes inside a scanning electron microscope. Nano-disc metal contacts to MoS2 were fabricated by e-beam lithography and evaporation. The current-voltage curves of the vertical MoS2/GaN junctions exhibit rectification with opposite polarities for n-doped and p-doped GaN. The metal contact determines the general features of the current-voltage curves, and the MoS2 monolayer modifies the electrical transport across the contact/GaN interface.

  10. Unclassified Publications of Lincoln Laboratory. Volume 5

    DTIC Science & Technology

    1975-12-15

    10 TN-1974-36 LIGHT - EMITTING DIODES (LED) JA-4295 LIGHT SCATTERING JA-4456 LINCOLN DIGITAL VOICE TERMINAL TN-1975-53, TN-1975-65 LINCOLN...Hinkley J. O. Sample G. Dresselhaus T. C. Harman J. P. McVittie J. Filson p-n Junction PbSi_xSex Photo- J. P. Donnelly diodes Fabricated by Se...Room-Temperature Operation of GalnAsP/lnP Double- Heterostructure Diode Lasers Emitting at 1.1 (im Transparent Heat Mirrors for Solar-Energy

  11. Branch-point energies and the band-structure lineup at Schottky contacts and heterostrucures

    NASA Astrophysics Data System (ADS)

    Mönch, Winfried

    2011-06-01

    Empirical branch-point energies of Si, the group-III nitrides AlN, GaN, and InN, and the group-II and group-III oxides MgO, ZnO, Al2O3 and In2O3 are determined from experimental valance-band offsets of their heterostructures. For Si, GaN, and MgO, these values agree with the branch-point energies obtained from the barrier heights of their Schottky contacts. The empirical branch-point energies of Si and the group-III nitrides are in very good agreement with results of previously published calculations using quite different approaches such as the empirical tight-binding approximation and modern electronic-structure theory. In contrast, the empirical branch-point energies of the group-II and group-III oxides do not confirm the respective theoretical results. As at Schottky contacts, the band-structure lineup at heterostructures is also made up of a zero-charge-transfer term and an intrinsic electric-dipole contribution. Hence, valence-band offsets are not equal to the difference of the branch-point energies of the two semiconductors forming the heterostructure. The electric-dipole term may be described by the electronegativity difference of the two solids in contact. A detailed analysis of experimental Si Schottky barrier heights and heterostructure valence-band offsets explains and proves these conclusions.

  12. High-performance heterostructured cathodes for lithium-ion batteries with a Ni-rich layered oxide core and a Li-rich layered oxide shell

    DOE PAGES

    Oh, Pilgun; Oh, Seung -Min; Li, Wangda; ...

    2016-05-30

    The Ni-rich layered oxides with a Ni content of >0.5 are drawing much attention recently to increase the energy density of lithium-ion batteries. However, the Ni-rich layered oxides suffer from aggressive reaction of the cathode surface with the organic electrolyte at the higher operating voltages, resulting in consequent impedance rise and capacity fade. To overcome this difficulty, we present here a heterostructure composed of a Ni-rich LiNi 0.7Co 0.15Mn 0.15O 2 core and a Li-rich Li 1.2-xNi 0.2Mn 0.6O 2 shell, incorporating the advantageous features of the structural stability of the core and chemical stability of the shell. With amore » unique chemical treatment for the activation of the Li 2MnO 3 phase of the shell, a high capacity is realized with the Li-rich shell material. Aberration-corrected scanning transmission electron microscopy (STEM) provides direct evidence for the formation of surface Li-rich shell layer. Finally, the heterostructure exhibits a high capacity retention of 98% and a discharge- voltage retention of 97% during 100 cycles with a discharge capacity of 190 mA h g -1 (at 2.0–4.5 V under C/3 rate, 1C = 200 mA g -1).« less

  13. Optimising the visibility of graphene and graphene oxide on gold with multilayer heterostructures

    NASA Astrophysics Data System (ADS)

    Velický, Matěj; Hendren, William R.; Donnelly, Gavin E.; Katzen, Joel M.; Bowman, Robert M.; Huang, Fumin

    2018-07-01

    Metals have been increasingly used as substrates in devices based on two-dimensional (2D) materials. However, the high reflectivity of bulk metals results in low optical contrast (<3%) and therefore poor visibility of transparent mono- and few-layer 2D materials on these surfaces. Here we demonstrate that by engineering the complex reflectivity of a purpose-designed multilayer heterostructure composed of thin Au films (2–8 nm) on SiO2/Si substrate, the optical contrast of graphene and graphene oxide (GO) can be significantly enhanced in comparison to bulk Au, up to about 3 and 5 times, respectively. In particular, we achieved ∼17% optical contrast for monolayer GO, which is even 2 times higher than that on bare SiO2/Si substrate. The experimental results are in good agreement with theoretical simulations. This concept is demonstrated for Au, but the methodology is applicable to other metals and can be adopted to design a variety of high-contrast metallic substrates. This will facilitate research and applications of 2D materials in areas such as plasmonics, photonics, catalysis and sensors.

  14. Photoelectrochemical enhancement of ZnO/BiVO4/ZnFe2O4/rare earth oxide hetero-nanostructures

    NASA Astrophysics Data System (ADS)

    She, Xuefeng; Zhang, Zhuo; Baek, Minki; Yong, Kijung

    2018-01-01

    Over the decades, researchers have made great efforts to turn the world into a cleaner place through efficient recycling of industrial waste and developing of green energy. Here we demonstrate a prototype heterostructure photoelectrochemical (PEC) cell fabricated using recycled industrial waste. ZnFe2O4 (ZFO) nanorod (NR) clusters were synthesized on the BiVO4@ZnO hetero-nanostructures using recycled rare earth oxide (REO) slags as Fe source. The NR-based PEC cell exhibited a significantly enhanced photon to hydrogen conversion efficiency over the entire UV and visible spectrum. Further study demonstrates that the photo-carrier separation and migration processes can be facilitated by the cascade band alignment of the heterostructure and the clustered nanostructure network. In addition, the life-time of the photo-carriers can be enhanced by the REO passivation layer, leading to a further increased PEC performance. Our results present a novel approach for high efficiency PEC cells, and offer great promises to the efficient recycling of industrial waste for clean renewable energy applications.

  15. Optimising the visibility of graphene and graphene oxide on gold with multilayer heterostructures.

    PubMed

    Velický, Matěj; Hendren, William R; Donnelly, Gavin E; Katzen, Joel M; Bowman, Robert M; Huang, Fumin

    2018-07-06

    Metals have been increasingly used as substrates in devices based on two-dimensional (2D) materials. However, the high reflectivity of bulk metals results in low optical contrast (<3%) and therefore poor visibility of transparent mono- and few-layer 2D materials on these surfaces. Here we demonstrate that by engineering the complex reflectivity of a purpose-designed multilayer heterostructure composed of thin Au films (2-8 nm) on SiO 2 /Si substrate, the optical contrast of graphene and graphene oxide (GO) can be significantly enhanced in comparison to bulk Au, up to about 3 and 5 times, respectively. In particular, we achieved ∼17% optical contrast for monolayer GO, which is even 2 times higher than that on bare SiO 2 /Si substrate. The experimental results are in good agreement with theoretical simulations. This concept is demonstrated for Au, but the methodology is applicable to other metals and can be adopted to design a variety of high-contrast metallic substrates. This will facilitate research and applications of 2D materials in areas such as plasmonics, photonics, catalysis and sensors.

  16. Antiferroelectric Materials, Applications and Recent Progress on Multiferroic Heterostructures

    NASA Astrophysics Data System (ADS)

    Zhou, Ziyao; Yang, Qu; Liu, Ming; Zhang, Zhiguo; Zhang, Xinyang; Sun, Dazhi; Nan, Tianxiang; Sun, Nianxiang; Chen, Xing

    2015-04-01

    Antiferroelectric (AFE) materials with adjacent dipoles oriented in antiparallel directions have a double polarization hysteresis loops. An electric field (E-field)-induced AFE-ferroelectric (FE) phase transition takes place in such materials, leading to a large lattice strain and energy change. The high dielectric constant and the distinct phase transition in AFE materials provide great opportunities for the realization of energy storage devices like super-capacitors and energy conversion devices such as AFE MEMS applications. Lots of work has been done in this field since 60-70 s. Recently, the strain tuning of the spin, charge and orbital orderings and their interactions in complex oxides and multiferroic heterostructures have received great attention. In these systems, a single control parameter of lattice strain is used to control lattice-spin, lattice-phonon, and lattice-charge interactions and tailor properties or create a transition between distinct magnetic/electronic phases. Due to the large strain/stress arising from the phase transition, AFE materials are great candidates for integrating with ferromagnetic (FM) materials to realize in situ manipulation of magnetism and lattice-ordered parameters by voltage. In this paper, we introduce the AFE material and it's applications shortly and then review the recent progress in AFEs based on multiferroic heterostructures. These new multiferroic materials could pave a new way towards next generation light, compact, fast and energy efficient voltage tunable RF/microwave, spintronic and memory devices promising approaches to in situ manipulation of lattice-coupled order parameters is to grow epitaxial oxide films on FE/ferroelastic substrates.

  17. Coaxial metal-oxide-semiconductor (MOS) Au/Ga2O3/GaN nanowires.

    PubMed

    Hsieh, Chin-Hua; Chang, Mu-Tung; Chien, Yu-Jen; Chou, Li-Jen; Chen, Lih-Juann; Chen, Chii-Dong

    2008-10-01

    Coaxial metal-oxide-semiconductor (MOS) Au-Ga2O3-GaN heterostructure nanowires were successfully fabricated by an in situ two-step process. The Au-Ga2O3 core-shell nanowires were first synthesized by the reaction of Ga powder, a mediated Au thin layer, and a SiO2 substrate at 800 degrees C. Subsequently, these core-shell nanowires were nitridized in ambient ammonia to form a GaN coating layer at 600 degrees C. The GaN shell is a single crystal, an atomic flat interface between the oxide and semiconductor that ensures that the high quality of the MOS device is achieved. These novel 1D nitride-based MOS nanowires may have promise as building blocks to the future nitride-based vertical nanodevices.

  18. Exploring the Electronic Landscape at Interfaces and Junctions in Semiconductor Nanowire Devices with Subsurface Local Probing of Carrier Dynamics

    NASA Astrophysics Data System (ADS)

    McGuckin, Terrence

    The solid state devices that are pervasive in our society, are based on building blocks composed of interfaces between materials and junctions that manipulate how charge carriers behave in a device. As the dimensions of these devices are reduced to the nanoscale, surfaces and interfaces play a larger role in the behavior of carriers in devices and must be thoroughly investigated to understand not only the material properties but how these materials interact. Separating the effects of these different building blocks is a challenge, as most testing methods measure the performance of the whole device. Semiconductor nanowires represent an excellent test system to explore the limits of size and novel device structures. The behavior of charge carriers in semiconductor nanowire devices under operational conditions is investigated using local probing technique electron beam induced current (EBIC). The behavior of locally excited carriers are driven by the forces of drift, from electric fields within a device at junctions, surfaces, contacts and, applied voltage bias, and diffusion. This thesis presents the results of directly measuring these effects spatially with nanometer resolution, using EBIC in Ge, Si, and complex heterostructure GaAs/AlGaAs nanowire devices. Advancements to the EBIC technique, have pushed the resolution from tens of nanometers down to 1 to 2 nanometers. Depth profiling and tuning of the interaction volume allows for the separating the signal originating from the surface and the interior of the nanowire. Radial junctions and variations in bands can now be analyzed including core/shell hetero-structures. This local carrier probing reveals a number of surprising behaviors; Most notably, directly imaging the evolution of surface traps filling with electrons causing bandbending at the surface of Ge nanowires that leads to an enhancement in the charge separation of electrons and holes, and extracting different characteristic lengths from GaAs and AlGaAs in core/shell nanowires. For new and emerging solid state materials, understanding charge carrier dynamics is crucial to designing functional devices. Presented here are examples of the wide application of EBIC, and its variants, through imaging domains in ferroelectric materials, local electric fields and defects in 2D semiconductor material MoS2, and gradients in doping profiles of solar cells. Measuring the local behavior of carrier dynamics, EBIC has the potential to be a key metrology technique in correlative microscopy, enabling a deeper understanding of materials and how they interact within devices.

  19. Conductance and thermopower in molecular nanojunctions

    NASA Astrophysics Data System (ADS)

    Sen, Arijit

    2013-02-01

    Electronic transport through short channels in a molecular junction is an intricate quantum scattering problem [1]. To garner insight on how the structure and the electrical properties of a nanoscale junction are correlated is thus of both fundamental and technological interest [1-3]. As observed experimentally in the last couple of years by several independent research groups [4-5], a two-terminal molecular junction comprising of a simple alkane chain with varying length can exhibit high as well as low conductance. However, what causes the simultaneous unveiling of multiple conductances remained largely obscure. We have recently demonstrated [6] that the binary conductance in these heterostructures is due mainly to two distinct electrode orientations that control the electrode-molecule coupling as well as the tunneling strength through quantum interference following diversity in the electrode band structures. Our detailed analysis on the transmission spectra indicates that even a single-molecule nanojunction can potentially serve as a realistic double-quantum-dot kind of system to yield tunable Fano resonance, as often desired for nanoscale switching. In this talk, I intend to give a brief account of molecular electronics and its future applications along with the challenges and possibilities in the current perspective. A few deliberations may as well include how the inter-dot tunneling strength may affect the non-equilibrium charge transport and thermoelectricity in a myriad of molecular junctions based on different molecular conformations and electrode structures. Finally, I shall try to touch upon the effect of electron-phonon interaction on the nanoscale charge transport, and also, the phonon-mediated thermal transport in molecular nanodevices.

  20. Sensitive electrochemical sensing for polycyclic aromatic amines based on a novel core-shell multiwalled carbon nanotubes@ graphene oxide nanoribbons heterostructure.

    PubMed

    Zhu, Gangbing; Yi, Yinhui; Han, Zhixiang; Wang, Kun; Wu, Xiangyang

    2014-10-03

    Being awfully harmful to the environment and human health, the qualitative and quantitative determinations of polycyclic aromatic amines (PAAs) are of great significance. In this paper, a novel core-shell heterostructure of multiwalled carbon nanotubes (MWCNTs) as the core and graphene oxide nanoribbons (GONRs) as the shell (MWCNTs@GONRs) was produced from longitudinal partially unzipping of MWCNTs side walls using a simple wet chemical strategy and applied for electrochemical determination of three kinds of PAAs (1-aminopyrene (1-AP), 1-aminonaphthalene and 3,3'-diaminobiphenyl). Scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis and electrochemical methods were used to characterize the as-prepared MWCNTs@GONRs. Due to the synergistic effects from MWCNTs and GONRs, the oxidation currents of PAAs at the MWCNTs@GONRs modified glassy carbon (GC) electrode are much higher than that at the MWCNTs/GC, graphene/GC and bare GC electrodes. 1-AP was used as the representative analyte to demonstrate the sensing performance of the MWCNTs@GONRs/GC electrode, and the proposed modified electrode has a linear response range of 8.0-500.0 nM with a detection limit of 1.5 nM towards 1-AP. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Nanoscale electrical and structural modification induced by rapid thermal oxidation of AlGaN/GaN heterostructures.

    PubMed

    Greco, Giuseppe; Fiorenza, Patrick; Giannazzo, Filippo; Alberti, Alessandra; Roccaforte, Fabrizio

    2014-01-17

    In this paper, the structural and electrical modifications induced, in the nanoscale, by a rapid thermal oxidation process on AlGaN/GaN heterostructures, are investigated. A local rapid oxidation (900 ° C in O2, 10 min) localized under the anode region of an AlGaN/GaN diode enabled a reduction of the leakage current with respect to a standard Schottky contact. The insulating properties of the near-surface oxidized layer were probed by a nanoscale electrical characterization using scanning probe microscopy techniques. The structural characterization indicated the formation of a thin uniform oxide layer on the surface, with preferential oxidation paths along V-shaped defects penetrating through the AlGaN/GaN interface. The oxidation process resulted in an expansion of the lattice parameters due to the incorporation of oxygen atoms, accompanied by an increase of the crystal mosaicity. As a consequence, a decrease of the sheet carrier density of the two-dimensional electron gas and a positive shift of the threshold voltage are observed. The results provide useful insights for a possible future integration of rapid oxidation processes during GaN device fabrication.

  2. Probing charge transfer in a novel class of luminescent perovskite-based heterostructures composed of quantum dots bound to RE-activated CaTiO 3 phosphors

    DOE PAGES

    Crystal S. Lewis; Wong, Stanislaus S.; Liu, Haiqing; ...

    2016-01-04

    We report on the synthesis and structural characterization of novel semiconducting heterostructures composed of cadmium selenide (CdSe) quantum dots (QDs) attached onto the surfaces of novel high-surface area, porous rare-earth-ion doped alkaline earth titanate micron-scale spherical motifs, i.e. both Eu-doped and Pr-doped CaTiO 3, composed of constituent, component nanoparticles. These unique metal oxide perovskite building blocks were created by a multi-pronged synthetic strategy involving molten salt and hydrothermal protocols. Subsequently, optical characterization of these heterostructures indicated a clear behavioral dependence of charge transfer in these systems upon a number of parameters such as the nature of the dopant, the reactionmore » temperature, and particle size. Specifically, 2.7 nm diameter ligand-functionalized CdSe QDs were anchored onto sub-micron sized CaTiO 3-based spherical assemblies, prepared by molten salt protocols. We found that both the Pr- and Eu-doped CaTiO 3 displayed pronounced PL emissions, with maximum intensities observed using optimized lanthanide concentrations of 0.2 mol% and 6 mol%, respectively. Analogous experiments were performed on Eu-doped BaTiO 3 and SrTiO 3 motifs, but CaTiO 3 still performed as the most effective host material amongst the three perovskite systems tested. Furthermore, the ligand-capped CdSe QD-doped CaTiO 3 heterostructures exhibited effective charge transfer between the two individual constituent nanoscale components, an assertion corroborated by the corresponding quenching of their measured PL signals.« less

  3. Impact of Dynamic Specimen Shape Evolution on the Atom Probe Tomography Results of Doped Epitaxial Oxide Multilayers: Comparison of Experiment and Simulation

    DOE PAGES

    Madaan, Nitesh; Bao, Jie; Nandasiri, Manjula I.; ...

    2015-08-31

    The experimental atom probe tomography results from two different specimen orientations (top-down and side-ways) of a high oxygen ion conducting Samaria-doped-ceria/Scandia-stabilized-zirconia multilayer thin film solid oxide fuel cell electrolyte was correlated with level-set method based field evaporation simulations for the same specimen orientations. This experiment-theory correlation explains the dynamic specimen shape evolution and ion trajectory aberrations that can induce density artifacts in final reconstruction leading to inaccurate estimation of interfacial intermixing. This study highlights the need and importance of correlating experimental results with field evaporation simulations when using atom probe tomography for studying oxide heterostructure interfaces.

  4. Low Temperature Electrical Spin Injection from Highly Spin Polarized Co₂CrAl Heusler Alloy into p-Si.

    PubMed

    Kar, Uddipta; Panda, J; Nath, T K

    2018-06-01

    The low temperature spin accumulation in p-Si using Co2CrAl/SiO2 tunnel junction has been investigated in detail. The heterojunction has been fabricated using electron beam evaporation (EBE) technique. The 3-terminal contacts in Hanle geometry has been made for spin transport measurements. The electrical transport properties have been investigated at different isothermal conditions in the temperature range of 10-300 K. The current-voltage characteristics of the junction shows excellent rectifying magnetic diode like behaviour in lower temperature range (below 200 K). At higher temperature, the junction shows nonlinear behaviour without rectifying characteristics. We have observed spin accumulation signal in p-Si semiconductor using SiO2/Co2CrAl tunnel junction in the low temperature regime (30-100 K). Hence the highly spin polarized Full Heusler alloys compounds, like Co2CrAl etc., are very attractive and can act as efficient tunnel device for spin injection in the area of spintronics devices in near future. The estimated spin life time is τ = 54 pS and spin diffusion length inside p-Si is LSD = 289 nm at 30 K for this heterostructure.

  5. Orbital Engineering in Symmetry-Breaking Polar Heterostructures

    NASA Astrophysics Data System (ADS)

    Disa, Ankit S.; Kumah, Divine P.; Malashevich, Andrei; Chen, Hanghui; Arena, Dario A.; Specht, Eliot D.; Ismail-Beigi, Sohrab; Walker, F. J.; Ahn, Charles H.

    2015-01-01

    We experimentally demonstrate a novel approach to substantially modify orbital occupations and symmetries in electronically correlated oxides. In contrast to methods using strain or confinement, this orbital tuning is achieved by exploiting charge transfer and inversion symmetry breaking using atomically layered heterostructures. We illustrate the technique in the LaTiO3-LaNiO3-LaAlO3 system; a combination of x-ray absorption spectroscopy and ab initio theory reveals electron transfer and concomitant polar fields, resulting in a ˜50 % change in the occupation of Ni d orbitals. This change is sufficiently large to remove the orbital degeneracy of bulk LaNiO3 and creates an electronic configuration approaching a single-band Fermi surface. Furthermore, we theoretically show that such three-component heterostructuring is robust and tunable by choice of insulator in the heterostructure, providing a general method for engineering orbital configurations and designing novel electronic systems.

  6. Preparation of Sandwich-like NiCo2O4/rGO/NiO Heterostructure on Nickel Foam for High-Performance Supercapacitor Electrodes

    NASA Astrophysics Data System (ADS)

    Li, Delong; Gong, Youning; Wang, Miaosheng; Pan, Chunxu

    2017-04-01

    A kind of sandwich-like NiCo2O4/rGO/NiO heterostructure composite has been successfully anchored on nickel foam substrate via a three-step hydrothermal method with successive annealing treatment. The smart combination of NiCo2O4, reduced graphene oxide (rGO), and NiO nanostructure in the sandwich-like nano architecture shows a promising synergistic effect for supercapacitors with greatly enhanced electrochemical performance. For serving as supercapacitor electrode, the NiCo2O4/rGO/NiO heterostructure materials exhibit remarkable specific capacitance of 2644 mF cm-2 at current density of 1 mA cm-2, and excellent capacitance retentions of 97.5% after 3000 cycles. It is expected that the present heterostructure will be a promising electrode material for high-performance supercapacitors.

  7. Rare-earth nickelates RNiO3: thin films and heterostructures

    NASA Astrophysics Data System (ADS)

    Catalano, S.; Gibert, M.; Fowlie, J.; Íñiguez, J.; Triscone, J.-M.; Kreisel, J.

    2018-04-01

    This review stands in the larger framework of functional materials by focussing on heterostructures of rare-earth nickelates, described by the chemical formula RNiO3 where R is a trivalent rare-earth R  =  La, Pr, Nd, Sm, …, Lu. Nickelates are characterized by a rich phase diagram of structural and physical properties and serve as a benchmark for the physics of phase transitions in correlated oxides where electron–lattice coupling plays a key role. Much of the recent interest in nickelates concerns heterostructures, that is single layers of thin film, multilayers or superlattices, with the general objective of modulating their physical properties through strain control, confinement or interface effects. We will discuss the extensive studies on nickelate heterostructures as well as outline different approaches to tuning and controlling their physical properties and, finally, review application concepts for future devices.

  8. Rare-earth nickelates RNiO3: thin films and heterostructures.

    PubMed

    Catalano, S; Gibert, M; Fowlie, J; Íñiguez, J; Triscone, J-M; Kreisel, J

    2018-04-01

    This review stands in the larger framework of functional materials by focussing on heterostructures of rare-earth nickelates, described by the chemical formula RNiO 3 where R is a trivalent rare-earth R  =  La, Pr, Nd, Sm, …, Lu. Nickelates are characterized by a rich phase diagram of structural and physical properties and serve as a benchmark for the physics of phase transitions in correlated oxides where electron-lattice coupling plays a key role. Much of the recent interest in nickelates concerns heterostructures, that is single layers of thin film, multilayers or superlattices, with the general objective of modulating their physical properties through strain control, confinement or interface effects. We will discuss the extensive studies on nickelate heterostructures as well as outline different approaches to tuning and controlling their physical properties and, finally, review application concepts for future devices.

  9. Magnetotransport and interdiffusion characteristics of magnetic tunnel junctions comprising nano-oxide layers upon exposure to postdeposition annealing

    NASA Astrophysics Data System (ADS)

    Chu, In Chang; Song, Min Sung; Chun, Byong Sun; Lee, Seong Rae; Kim, Young Keun

    2005-08-01

    Magnetic tunnel junction (MTJ) structures based on underlayer (CoNbZr)/bufferlayer (CoFe)/antiferromagnet (IrMn)/pinned layer (CoFe)/tunnel barrier (AlO x)/free layer (CoFe)/capping (CoNbZr) have been prepared to investigate thermal degradation of magnetoresistive responses. Some junctions possess a nano-oxide layer (NOL) inside either in the underlayer or bufferlayer. The main purpose of the NOL inclusion was to control interdiffusion path of Mn from the antiferromagnet so that improved thermal stability could be achieved. The MTJs with NOLs were found to have reduced interfacial roughness, resulting in improved tunneling magnetoresistance (TMR) and reduced interlayer coupling field. We also confirmed that the NOL effectively suppressed the Mn interdiffusion toward the tunnel barrier by dragging Mn atoms toward NOL during annealing.

  10. Process dependency on threshold voltage of GaN MOSFET on AlGaN/GaN heterostructure

    NASA Astrophysics Data System (ADS)

    Wang, Qingpeng; Jiang, Ying; Miyashita, Takahiro; Motoyama, Shin-ichi; Li, Liuan; Wang, Dejun; Ohno, Yasuo; Ao, Jin-Ping

    2014-09-01

    GaN metal-oxide-semiconductor field-effect transistors (MOSFETs) with recessed gate on AlGaN/GaN heterostructure are reported in which the drain and source ohmic contacts were fabricated on the AlGaN/GaN heterostructure and the electron channel was formed on the GaN buffer layer by removing the AlGaN barrier layer. Negative threshold voltages were commonly observed in all devices. To investigate the reasons of the negative threshold voltages, different oxide thickness, etching gas and bias power of inductively-coupled plasma (ICP) system were utilized in the fabrication process of the GaN MOSFETs. It is found that positive charges of around 1 × 1012 q/cm2 exist near the interface at the just threshold condition in both silane- and tetraethylorthosilicate (TEOS)-based devices. It is also found that the threshold voltages do not obviously change with the different etching gas (SiCl4, BCl3 and two-step etching of SiCl4/Cl2) at the same ICP bias power level (20-25 W) and will become deeper when higher bias power is used in the dry recess process which may be related to the much serious ion bombardment damage. Furthermore, X-ray photoelectron spectroscopy (XPS) experiments were done to investigate the surface conditions. It is found that N 1s peaks become lower with higher bias power of the dry etching process. Also, silicon contamination was found and could be removed by HNO3/HF solution. It indicates that the nitrogen vacancies are mainly responsible for the negative threshold voltages rather than the silicon contamination. It demonstrates that optimization of the ICP recess conditions and improvement of the surface condition are still necessary to realize enhancement-mode GaN MOSFETs on AlGaN/GaN heterostructure.

  11. Studies on the InAlN/InGaN/InAlN/InGaN double channel heterostructures with low sheet resistance

    NASA Astrophysics Data System (ADS)

    Zhang, Yachao; Wang, Zhizhe; Xu, Shengrui; Chen, Dazheng; Bao, Weimin; Zhang, Jinfeng; Zhang, Jincheng; Hao, Yue

    2017-11-01

    High quality InAlN/InGaN/InAlN/InGaN double channel heterostructures were proposed and grown by metal organic chemical vapor deposition. Benefiting from the adoption of the pulsed growth method and Two-Step AlN interlayer, the material quality and interface characteristics of the double channel heterostructures are satisfactory. The results of the temperature-dependent Hall effect measurement indicated that the transport properties of the double channel heterostructures were superior to those of the traditional single channel heterostructures in the whole test temperature range. Meanwhile, the sheet resistance of the double channel heterostructures reached 218.5 Ω/□ at 300 K, which is the record of InGaN-based heterostructures. The good transport properties of the InGaN double channel heterostructures are beneficial to improve the performance of the microwave power devices based on nitride semiconductors.

  12. Chemical control of orbital polarization in artificially structured transition-metal oxides: La2NiXO6 (X=B,Al,Ga,In) from first principles

    NASA Astrophysics Data System (ADS)

    Han, M. J.; Marianetti, C. A.; Millis, A. J.

    2010-10-01

    The application of modern layer-by-layer growth techniques to transition-metal oxide materials raises the possibility of creating new classes of materials with rationally designed correlated electron properties. An important step toward this goal is the demonstration that electronic structure can be controlled by atomic composition. In compounds with partially occupied transition-metal d shells, one important aspect of the electronic structure is the relative occupancy of different d orbitals. Previous work has established that strain and quantum confinement can be used to influence orbital occupancy. In this paper we demonstrate a different modality for orbital control in transition-metal oxide heterostructures, using density-functional band calculations supplemented by a tight-binding analysis to show that the choice of nontransition-metal counterion X in transition-metal oxide heterostructures composed of alternating LaNiO3 and LaXO3 units strongly affects orbital occupancy, changing the magnitude and in some cases the sign of the orbital polarization.

  13. R&D issues in scale-up and manufacturing of amorphous silicon tandem modules

    NASA Astrophysics Data System (ADS)

    Arya, R. R.; Carlson, D. E.; Chen, L. F.; Ganguly, G.; He, M.; Lin, G.; Middya, R.; Wood, G.; Newton, J.; Bennett, M.; Jackson, F.; Willing, F.

    1999-03-01

    R & D on amorphous silicon based tandem junction devices has improved the throughtput, the material utilization, and the performance of devices on commercial tin oxide coated glass. The tandem junction technology has been scaled-up to produce 8.6 Ft2 monolithically integrated modules in manufacturing at the TF1 plant. Optimization of performance and stability of these modules is ongoing.

  14. Probing structure-induced optical behavior in a new class of self-activated luminescent 0D/1D CaWO₄ metal oxide – CdSe nanocrystal composite heterostructures

    DOE PAGES

    Han, Jinkyu; McBean, Coray; Wang, Lei; ...

    2015-01-30

    In this report, we synthesize and characterize the structural and optical properties of novel heterostructures composed of (i) semiconducting nanocrystalline CdSe quantum dot (QDs) coupled with (ii) both one and zero-dimensional (1D and 0D) motifs of self-activated luminescence CaWO₄ metal oxides. Specifically, ~4 nm CdSe QDs have been anchored onto (i) high-aspect ratio 1D nanowires, measuring ~230 nm in diameter and ~3 μm in length, as well as onto (ii) crystalline 0D nanoparticles (possessing an average diameter of ~ 80 nm) of CaWO₄ through the mediation of 3-mercaptopropionic acid (MPA) as a connecting linker. Composite formation was confirmed by complementarymore » electron microscopy and spectroscopy (i.e. IR and Raman) data. In terms of luminescent properties, our results show that our 1D and 0D heterostructures evince photoluminescence (PL) quenching and shortened PL lifetimes of CaWO₄ as compared with unbound CaWO₄. We propose that a photo-induced electron transfer process occurs from CaWO₄ to CdSe QDs, a scenario which has been confirmed by NEXAFS measurements and which highlights a decrease in the number of unoccupied orbitals in the conduction bands of CdSe QDs. By contrast, the PL signature and lifetimes of MPA-capped CdSe QDs within these heterostructures do not exhibit noticeable changes as compared with unbound MPA-capped CdSe QDs. The striking difference in optical behavior between CaWO₄ nanostructures and CdSe QDs within our heterostructures can be correlated with the relative positions of their conduction and valence energy band levels. In addition, the PL quenching behaviors for CaWO₄ within the heterostructure configuration were examined by systematically varying (i) the quantities and coverage densities of CdSe QDs as well as (ii) the intrinsic morphology (and by extension, the inherent crystallite size) of CaWO₄ itself.« less

  15. Trilayer TMDC Heterostructures for MOSFETs and Nanobiosensors

    NASA Astrophysics Data System (ADS)

    Datta, Kanak; Shadman, Abir; Rahman, Ehsanur; Khosru, Quazi D. M.

    2017-02-01

    Two dimensional materials such as transition metal dichalcogenides (TMDC) and their bi-layer/tri-layer heterostructures have become the focus of intense research and investigation in recent years due to their promising applications in electronics and optoelectronics. In this work, we have explored device level performance of trilayer TMDC heterostructure (MoS2/MX2/MoS2; M = Mo or, W and X = S or, Se) metal oxide semiconductor field effect transistors (MOSFETs) in the quantum ballistic regime. Our simulation shows that device `on' current can be improved by inserting a WS2 monolayer between two MoS2 monolayers. Application of biaxial tensile strain reveals a reduction in drain current which can be attributed to the lowering of carrier effective mass with increased tensile strain. In addition, it is found that gate underlap geometry improves electrostatic device performance by improving sub-threshold swing. However, increase in channel resistance reduces drain current. Besides exploring the prospect of these materials in device performance, novel trilayer TMDC heterostructure double gate field effect transistors (FETs) are proposed for sensing Nano biomolecules as well as for pH sensing. Bottom gate operation ensures these FETs operating beyond Nernst limit of 59 mV/pH. Simulation results found in this work reveal that scaling of bottom gate oxide results in better sensitivity while top oxide scaling exhibits an opposite trend. It is also found that, for identical operating conditions, proposed TMDC FET pH sensors show super-Nernst sensitivity indicating these materials as potential candidates in implementing such sensor. Besides pH sensing, all these materials show high sensitivity in the sub-threshold region as a channel material in nanobiosensor while MoS2/WS2/MoS2 FET shows the least sensitivity among them.

  16. The precipitation of aluminum, iron and manganese at the junction of Deer Creek with the Snake River in Summit County, Colorado

    USGS Publications Warehouse

    Theobald, P.K.; Lakin, H.W.; Hawkins, D.B.

    1963-01-01

    The oxidation of disseminated pyrite in relatively acid schists and gneisses of the Snake River drainage basin provides abundant iron sulfate and sulfuric acid to ground and surface water. This acid water dissolves large quantities of many elements, particularly aluminum and surprisingly large quantities of elements, such as magnesium and zinc, not expected to be abundant in the drainage basin. The adjoining drainage to the west, Deer Creek, is underlain by basic rocks, from which the water inherits a high pH. Despite the presence of base- and precious- metal veins in the drainage basin of Deer Creek, it carries less metal than the Snake River. The principal precipitate on the bed of the Snake River is hydrated iron oxide with small quantities of the other metals. In Deer Creek manganese oxide is precipitated with iron oxide and large quantities of other metals are carried down with this precipitate. Below the junction of these streams the pH stabilizes at a near-neutral value. Iron is removed from the Snake River water at the junction, and aluminum is precipitated for some distance downstream. The aluminum precipitate carries down other metals in concentrations slightly less than that in the manganese precipitate on Deer Creek. The natural processes observed in this junction if carried to a larger scale could provide the mechanism described by Ansheles (1927) for the formation of bauxite. In the environment described, geochemical exploration by either water or stream sediment techniques is difficult because of (1) the extreme pH differential between the streams above their junction and (2) the difference in the precipitates formed on the streambeds. ?? 1963.

  17. Studies of local polarization in complex oxide multiferroic interfaces by aberration corrected STEM-EELS

    NASA Astrophysics Data System (ADS)

    Sanchez-Santolino, Gabriel; Tornos, Javier; Leon, Carlos; Varela, María; Pennycook, Stephen J.; Santamaría, Jacobo

    2014-03-01

    Interfaces in complex oxide heterostructures are responsible for exciting new physics, which is directly related to the chemical, structural and electronic properties at the atomic scale. Here, we study artificial multiferroic heterostructures combining ferromagnetic La0.7Sr0.3MnO3 with ferroelectric BaTiO3 by atomic resolution aberration-corrected scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy. Measurements of the atomic positions in the STEM images permit calculating relative displacements and hence, local polarization. Polarization gradients can be observed in annular bright field images which seem to be correlated to strain gradients associated with the large lattice mismatch between barriers and electrodes. Spectroscopic measurements suggest the presence of O vacancies through the ferroelectric layers. Understanding the effect of the charge carriers associated with the oxygen vacancies may be the key to control the dynamics of domain walls in these heterostructures. Acknowledgements ORNL: U.S. DOE-BES, Materials Sciences and Engineering Division. UCM: ERC Starting Investigator Award, Spanish MICINN MAT2011-27470-C02 and Consolider Ingenio 2010 - CSD2009-00013 (Imagine), CAM S2009/MAT-1756 (Phama).

  18. H2 gas sensing properties of a ZnO/CuO and ZnO/CuO/Cu2O Heterostructures

    NASA Astrophysics Data System (ADS)

    Ababii, N.; Postica, V.; Hoppe, M.; Adelung, R.; Lupan, O.; Railean, S.; Pauporté, T.; Viana, B.

    2017-03-01

    The most important parameters of gas sensors are sensitivity and especially high selectivity to specific chemical species. To improve these parameters we developed sensor structures based on layered semiconducting oxides, namely CuO/Cu2O, CuO:Zn/Cu2O:Zn, NiO/ZnO. In this work, the ZnO/CuxO (where x = 1, 2) bi-layer heterostructure were grown via a simple synthesis from chemical solution (SCS) at relatively low temperatures (< 95 °C), representing a combination of layered n-type and p-type semiconducting oxides which are widely used as sensing material for gas sensors. The main advantages of the developed device structures are given by simplicity of the synthesis and technological cost-efficiency. Structural investigations showed high crystallinity of synthesized layers confirming the presence of zinc oxide nanostructures on the surface of the copper oxide film deposited on glass substrate. Structural changes in morphology of grown nanostructures induced by post-grown thermal annealing were observed by scanning electron microscopy (SEM) investigations, and were studied in detail. The influence of thermal annealing type on the optical properties was also investigated. As an example of practical applications, the ZnO/CuxO bi-layer heterojunctions and ZnO/CuO/Cu2O three-layered structures were integrated into sensor structures and were tested to different types of reducing gases at different operating temperatures (OPT), showing promising results for fabrication of selective gas sensors.

  19. Graphene-based heterojunction photocatalysts

    NASA Astrophysics Data System (ADS)

    Li, Xin; Shen, Rongchen; Ma, Song; Chen, Xiaobo; Xie, Jun

    2018-02-01

    Due to their unique physicochemical, optical and electrical properties, 2D semimetallic or semiconducting graphene has been extensively utilized to construct highly efficient heterojunction photocatalysts for driving a variety of redox reactions under proper light irradiation. In this review, we carefully addressed the fundamental mechanism of heterogeneous photocatalysis, fundamental properties and advantages of graphene in photocatalysis, and classification and comparison of graphene-based heterojunction photocatalysts. Subsequently, we thoroughly highlighted and discussed various graphene-based heterojunction photocatalysts, including Schottky junctions, Type-II heterojunctions, Z-scheme heterojunctions, Van der Waals heterostructures, in plane heterojunctions and multicomponent heterojunctions. Several important photocatalytic applications, such as photocatalytic water splitting (H2 evolution and overall water splitting), degradation of pollutants, carbon dioxide reduction and bacteria disinfection, are also summarized. Through reviewing the important advances on this topic, it may inspire some new ideas for exploiting highly effective graphene-based heterojunction photocatalysts for a number of applications in photocatlysis and other fields, such as photovoltaic, (photo)electrocatalysis, lithium battery, fuel cell, supercapacitor and adsorption separation.

  20. High-Responsivity Graphene-Boron Nitride Photodetector and Autocorrelator in a Silicon Photonic Integrated Circuit.

    PubMed

    Shiue, Ren-Jye; Gao, Yuanda; Wang, Yifei; Peng, Cheng; Robertson, Alexander D; Efetov, Dmitri K; Assefa, Solomon; Koppens, Frank H L; Hone, James; Englund, Dirk

    2015-11-11

    Graphene and other two-dimensional (2D) materials have emerged as promising materials for broadband and ultrafast photodetection and optical modulation. These optoelectronic capabilities can augment complementary metal-oxide-semiconductor (CMOS) devices for high-speed and low-power optical interconnects. Here, we demonstrate an on-chip ultrafast photodetector based on a two-dimensional heterostructure consisting of high-quality graphene encapsulated in hexagonal boron nitride. Coupled to the optical mode of a silicon waveguide, this 2D heterostructure-based photodetector exhibits a maximum responsivity of 0.36 A/W and high-speed operation with a 3 dB cutoff at 42 GHz. From photocurrent measurements as a function of the top-gate and source-drain voltages, we conclude that the photoresponse is consistent with hot electron mediated effects. At moderate peak powers above 50 mW, we observe a saturating photocurrent consistent with the mechanisms of electron-phonon supercollision cooling. This nonlinear photoresponse enables optical on-chip autocorrelation measurements with picosecond-scale timing resolution and exceptionally low peak powers.

  1. Organic heterostructures deposited by MAPLE on AZO substrate

    NASA Astrophysics Data System (ADS)

    Socol, M.; Preda, N.; Stanculescu, A.; Breazu, C.; Florica, C.; Stanculescu, F.; Iftimie, S.; Girtan, M.; Popescu-Pelin, G.; Socol, G.

    2017-09-01

    Organic heterostructures based on poly(3-hexylthiophene) (P3HT) and fullerene (C60) as blends or multilayer were deposited on Al:ZnO (AZO) by Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique. The AZO layers were obtained by Pulsed Laser Deposition (PLD) on glass substrate, the high quality of the films being reflected by the calculated figure of merit. The organic heterostructures were investigated from morphological, optical and electrical point of view by atomic force microscopy (AFM), UV-vis spectroscopy, photoluminescence (PL) and current-voltage (I-V) measurements, respectively. The increase of the C60 content in the blend heterostructure has as result a high roughness. Compared with the multilayer heterostructure, those based on blends present an improvement in the electrical properties. Under illumination, the highest current value was recorded for the heterostructure based on the blend with the higher C60 amount. The obtained results showed that MAPLE is a useful technique for the deposition of the organic heterostructures on AZO as transparent conductor electrode.

  2. Construction and evaluation of high-quality n-ZnO nanorod/p-diamond heterojunctions.

    PubMed

    Wang, C D; Jha, S K; Chen, Z H; Ng, T W; Liu, Y K; Yuen, M F; Lu, Z Z; Kwok, S Y; Zapien, J A; Bello, I; Lee, C S; Zhang, W J

    2012-06-01

    Vertically-aligned ZnO nanorods (NRs) arrays were synthesized by a low-temperature solution method on boron-doped diamond (BDD) films. The morphology, growth direction, and crystallinity of the ZnO NRs were studied by scanning electron microscopy, X-ray diffraction and cathodoluminescence. Electrical characterization of the ZnO NR/BBD heterostructures revealed characteristic p-n junction properties with an on/off ratio of about 50 at +/- 4 V and a small reverse leakage current approximately 1 microA. Moreover, the junctions showed an ideality factor around 1.0 at a low forward voltage from 0 to 0.3 V and about 2.1 for an increased voltage ranging from 1.2 to 3.0 V, being consistent with that of an ideal diode according to the Sah-Noyce-Shockley theory.

  3. Cu2ZnSnS4/MoS2-Reduced Graphene Oxide Heterostructure: Nanoscale Interfacial Contact and Enhanced Photocatalytic Hydrogen Generation.

    PubMed

    Ha, Enna; Liu, Wei; Wang, Luyang; Man, Ho-Wing; Hu, Liangsheng; Tsang, Shik Chi Edman; Chan, Chris Tsz-Leung; Kwok, Wai-Ming; Lee, Lawrence Yoon Suk; Wong, Kwok-Yin

    2017-01-03

    Hydrogen generation from water using noble metal-free photocatalysts presents a promising platform for renewable and sustainable energy. Copper-based chalcogenides of earth-abundant elements, especially Cu 2 ZnSnS 4 (CZTS), have recently arisen as a low-cost and environment-friendly material for photovoltaics and photocatalysis. Herein, we report a new heterostructure consisting of CZTS nanoparticles anchored onto a MoS 2 -reduced graphene oxide (rGO) hybrid. Using a facile two-step method, CZTS nanoparticles were in situ grown on the surface of MoS 2 -rGO hybrid, which generated high density of nanoscale interfacial contact between CZTS and MoS 2 -rGO hybrid. The photoexcited electrons of CZTS can be readily transported to MoS 2 through rGO backbone, reducing the electron-hole pair recombination. In photocatalytic hydrogen generation under visible light irradiation, the presence of MoS 2 -rGO hybrids enhanced the hydrogen production rate of CZTS by 320%, which can be attributed to the synergetic effect of increased charge separation by rGO and more catalytically active sites from MoS 2 . Furthermore, this CZTS/MoS 2 -rGO heterostructure showed much higher photocatalytic activity than both Au and Pt nanoparticle-decorated CZTS (Au/CZTS and Pt/CZTS) photocatalysts, indicating the MoS 2 -rGO hybrid is a better co-catalyst for photocatalytic hydrogen generation than the precious metal. The CZTS/MoS 2 -rGO system also demonstrated stable photocatalytic activity for a continuous 20 h reaction.

  4. Cu2ZnSnS4/MoS2-Reduced Graphene Oxide Heterostructure: Nanoscale Interfacial Contact and Enhanced Photocatalytic Hydrogen Generation

    NASA Astrophysics Data System (ADS)

    Ha, Enna; Liu, Wei; Wang, Luyang; Man, Ho-Wing; Hu, Liangsheng; Tsang, Shik Chi Edman; Chan, Chris Tsz-Leung; Kwok, Wai-Ming; Lee, Lawrence Yoon Suk; Wong, Kwok-Yin

    2017-01-01

    Hydrogen generation from water using noble metal-free photocatalysts presents a promising platform for renewable and sustainable energy. Copper-based chalcogenides of earth-abundant elements, especially Cu2ZnSnS4 (CZTS), have recently arisen as a low-cost and environment-friendly material for photovoltaics and photocatalysis. Herein, we report a new heterostructure consisting of CZTS nanoparticles anchored onto a MoS2-reduced graphene oxide (rGO) hybrid. Using a facile two-step method, CZTS nanoparticles were in situ grown on the surface of MoS2-rGO hybrid, which generated high density of nanoscale interfacial contact between CZTS and MoS2-rGO hybrid. The photoexcited electrons of CZTS can be readily transported to MoS2 through rGO backbone, reducing the electron-hole pair recombination. In photocatalytic hydrogen generation under visible light irradiation, the presence of MoS2-rGO hybrids enhanced the hydrogen production rate of CZTS by 320%, which can be attributed to the synergetic effect of increased charge separation by rGO and more catalytically active sites from MoS2. Furthermore, this CZTS/MoS2-rGO heterostructure showed much higher photocatalytic activity than both Au and Pt nanoparticle-decorated CZTS (Au/CZTS and Pt/CZTS) photocatalysts, indicating the MoS2-rGO hybrid is a better co-catalyst for photocatalytic hydrogen generation than the precious metal. The CZTS/MoS2-rGO system also demonstrated stable photocatalytic activity for a continuous 20 h reaction.

  5. Cu2ZnSnS4/MoS2-Reduced Graphene Oxide Heterostructure: Nanoscale Interfacial Contact and Enhanced Photocatalytic Hydrogen Generation

    PubMed Central

    Ha, Enna; Liu, Wei; Wang, Luyang; Man, Ho-Wing; Hu, Liangsheng; Tsang, Shik Chi Edman; Chan, Chris Tsz-Leung; Kwok, Wai-Ming; Lee, Lawrence Yoon Suk; Wong, Kwok-Yin

    2017-01-01

    Hydrogen generation from water using noble metal-free photocatalysts presents a promising platform for renewable and sustainable energy. Copper-based chalcogenides of earth-abundant elements, especially Cu2ZnSnS4 (CZTS), have recently arisen as a low-cost and environment-friendly material for photovoltaics and photocatalysis. Herein, we report a new heterostructure consisting of CZTS nanoparticles anchored onto a MoS2-reduced graphene oxide (rGO) hybrid. Using a facile two-step method, CZTS nanoparticles were in situ grown on the surface of MoS2-rGO hybrid, which generated high density of nanoscale interfacial contact between CZTS and MoS2-rGO hybrid. The photoexcited electrons of CZTS can be readily transported to MoS2 through rGO backbone, reducing the electron-hole pair recombination. In photocatalytic hydrogen generation under visible light irradiation, the presence of MoS2-rGO hybrids enhanced the hydrogen production rate of CZTS by 320%, which can be attributed to the synergetic effect of increased charge separation by rGO and more catalytically active sites from MoS2. Furthermore, this CZTS/MoS2-rGO heterostructure showed much higher photocatalytic activity than both Au and Pt nanoparticle-decorated CZTS (Au/CZTS and Pt/CZTS) photocatalysts, indicating the MoS2-rGO hybrid is a better co-catalyst for photocatalytic hydrogen generation than the precious metal. The CZTS/MoS2-rGO system also demonstrated stable photocatalytic activity for a continuous 20 h reaction. PMID:28045066

  6. Tuning the physical properties in strontium iridate heterostructures

    NASA Astrophysics Data System (ADS)

    Nichols, John; Meyer, Tricia; Lee, Ho Nyung

    2015-03-01

    Strontium iridate (Srn+1IrnO3n+1) has received lots of attention recently for its potential to reveal novel physical phenomena due to strong spin-orbital coupling with an interaction energy comparable to that of the on-site Coulomb interaction and crystal field splitting. The coexistence of fundamental interactions has created an exotic Jeff = 1/2 antiferromagnetic insulating ground state in Sr2IrO4. In particular, it is known that this system can be driven into a metallic state with the simultaneous increase in dimensionality (n) and strain. We have investigated the effects of electron confinement by interfacing strontium iridates with other perovskite oxides. We have synthesized thin film heterostructures, SrIrO3/AMO3 (A = Sr, La; B = Ti, Mn, Rh), layer-by-layer with pulsed laser deposition equipped with reflection high-energy electron diffraction. Based on investigations with x-ray diffraction, dc transport, SQUID magnetometry, and various spectroscopic measurements, we will present that the physical properties of the heterostructures are strongly dependent on spatial confinement and epitaxial strain. *This work was supported by the U. S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division.

  7. Complex capacitance spectroscopy as a probe for oxidation process of AlO{sub x}-based magnetic tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, J.C.A.; Hsu, C.Y.; Taiwan SPIN Research Center, National Chung Cheng University, Chiayi, Taiwan

    2004-12-13

    Proper as well as under- and over-oxided CoFe-AlO{sub x}-CoFe magnetic tunnel junctions (MTJs) have been systematically investigated in a frequency range from 10{sup 2} to 10{sup 8} Hz by complex capacitance spectroscopy. The dielectric relaxation behavior of the MTJs remarkably disobeys the typical Cole-Cole arc law probably due to the existence of imperfectly blocked Schottky barrier in the metal-insulator interface. The dielectric relaxation response can be successfully modeled on the basis of Debye relaxation by incorporating an interfacial dielectric contribution. In addition, complex capacitance spectroscopy demonstrates significant sensitivity to the oxidation process of metallic Al layers, i.e., almost a fingerprintmore » of under, proper, and over oxidation. This technique provides a fast and simple method to inspect the AlO{sub x} barrier quality of MTJs.« less

  8. Tunable, ultralow-power switching in memristive devices enabled by a heterogeneous graphene-oxide interface.

    PubMed

    Qian, Min; Pan, Yiming; Liu, Fengyuan; Wang, Miao; Shen, Haoliang; He, Daowei; Wang, Baigeng; Shi, Yi; Miao, Feng; Wang, Xinran

    2014-05-28

    Memristive devices based on vertical heterostructures of graphene and TiOx show a significant power reduction that is up to ∼10(3) times smaller than that of conventional structures. This power reduction arises as a result of a tunneling barrier at the interface. The barrier is tunable, opening up the possibility of engineering several key memory characteristics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Engineering of hydrogenated two-dimensional h-BN/C superlattices as electrostatic substrates.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhun; Zhong, Xiaoliang; Yan, Hui

    2016-01-14

    Hybridized two-dimensional materials incorporating domains from the hexagonal boron nitride (h-BN) and graphene is an interesting branch of materials science due to their highly tunable electronic properties. In the present study, we investigate the hydrogenated two-dimensional (2D) h-BN/C superlattices (SLs) with zigzag edges using first-principles calculations. We found that the domain width, the phase ratio, and the vertical dipole orientation all have significant influence on the stability of SLs. The electronic reconstruction is associated with the lateral polar discontinuities at the zigzag edges and the vertically polarized (B2N2H4)(m) domains, which modifies the electronic structures and the spatial potential of themore » SLs significantly. Furthermore, we demonstrate that the hydrogenated 2D h-BN/C SLs can be applied in engineering the electronic structure of graphene: laterally-varying doping can be achieved by taking advantage of the spatial variation of the surface potential of the SLs. By applying an external vertical electric field on these novel bidirectional heterostructures, graphene doping levels and band offsets can be tuned to a wide range, such that the graphene doping profile can be switched from the bipolar (p-n junction) to unipolar (n(+)-n junction) mode. It is expected that such bidirectional heterostructures provide an effective approach for developing novel nanoscale electronic devices and improving our understanding of the fundamentals of low-dimensional materials.« less

  10. Thermo-electric modular structure and method of making same

    DOEpatents

    Freedman, N.S.; Horsting, C.W.; Lawrence, W.F.; Carrona, J.J.

    1974-01-29

    A method is presented for making a thermoelectric module wtth the aid of an insulating wafer having opposite metallized surfaces, a pair of similar equalizing sheets of metal, a hot-junction strap of metal, a thermoelectric element having hot- and cold-junction surfaces, and a radiator sheet of metal. The method comprises the following steps: brazing said equalizer sheets to said opposite metallized surfaces, respectively, of said insulating wafer with pure copper in a non-oxidizing ambient; brazing one surface of said hot-junction strap to one of the surfaces of said equalizing sheet with a nickel-gold alloy in a non- oxidizing ambient; and diffusion bonding said hot-junction surface of said thermoelectric element to the other surface of said hot-junction strap and said radiator sheet to said cold-junction surface of said thermoelectric element, said diffusion bonding being carried out in a non-oxidizing ambient, under compressive loading, at a temperature of about 550 deg C., and for about one-half hour. (Official Gazette)

  11. Piezoelectric control of magnetoelectric coupling driven non-volatile memory switching and self cooling effects in FE/FSMA multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Singh, Kirandeep; Kaur, Davinder

    2017-02-01

    The manipulation of magnetic states and materials' spin degree-of-freedom via a control of an electric (E-) field has been recently pursued to develop magnetoelectric (ME) coupling-driven electronic data storage devices with high read/write endurance, fast dynamic response, and low energy dissipation. One major hurdle for this approach is to develop reliable materials which should be compatible with prevailing silicon (Si)-based complementary metal-oxide-semiconductor (CMOS) technology, simultaneously allowing small voltage for the tuning of magnetization switching. In this regard, multiferroic heterostructures where ferromagnetic (FM) and ferroelectric (FE) layers are alternatively grown on conventional Si substrates are promising as the piezoelectric control of magnetization switching is anticipated to be possible by an E-field. In this work, we study the ferromagnetic shape memory alloys based PbZr0.52Ti0.48O3/Ni50Mn35In15 (PZT/Ni-Mn-In) multiferroic heterostructures, and investigate their potential for CMOS compatible non-volatile magnetic data storage applications. We demonstrate the voltage-impulse controlled nonvolatile, reversible, and bistable magnetization switching at room temperature in Si-integrated PZT/Ni-Mn-In thin film multiferroic heterostructures. We also thoroughly unveil the various intriguing features in these materials, such as E-field tuned ME coupling and magnetocaloric effect, shape memory induced ferroelectric modulation, improved fatigue endurance as well as Refrigeration Capacity (RC). This comprehensive study suggests that these novel materials have a great potential for the development of unconventional nanoscale memory and refrigeration devices with self-cooling effect and enhanced refrigeration efficiency, thus providing a new venue for their applications.

  12. InxGa1-xSb Channel p-Metal-Oxide-Semiconductor Field Effect Transistors: Effect of Strain and Heterostructure Design

    DTIC Science & Technology

    2011-07-06

    biaxial compressive strain is known to split the light- and heavy-hole bands, reducing the interband scattering and causing the light hole band to move up...and heterostructure design are presented. In Section V, we use temperature- dependent measurements and pulsed I-V measurements to analyze the results...minimal in our devices. The temperature dependence of hole mobility was stud- ied for both the surface and buried channel devices, as plot- ted in Fig

  13. P-n junction diodes with polarization induced p-type graded InxGa1-xN layer

    NASA Astrophysics Data System (ADS)

    Enatsu, Yuuki; Gupta, Chirag; Keller, Stacia; Nakamura, Shuji; Mishra, Umesh K.

    2017-10-01

    In this study, p-n junction diodes with polarization induced p-type layer are demonstrated on Ga polar (0001) bulk GaN substrates. A quasi-p-type region is obtained by linearly grading the indium composition in un-doped InxGa1-xN layers from 0% to 5%, taking advantage of the piezoelectric and spontaneous polarization fields which exist in group III-nitride heterostructures grown in the typical (0001) or c-direction. The un-doped graded InxGa1-xN layers needed to be capped with a thin Mg-doped InxGa1-xN layer to make good ohmic contacts and to reduce the on-resistance of the p-n diodes. The Pol-p-n junction diodes exhibited similar characteristics compared to reference samples with traditional p-GaN:Mg layers. A rise in breakdown voltage from 30 to 110 V was observed when the thickness of the graded InGaN layer was increased from 100 to 600 nm at the same grade composition.

  14. Low-voltage organic electronics based on a gate-tunable injection barrier in vertical graphene-organic semiconductor heterostructures.

    PubMed

    Hlaing, Htay; Kim, Chang-Hyun; Carta, Fabio; Nam, Chang-Yong; Barton, Rob A; Petrone, Nicholas; Hone, James; Kymissis, Ioannis

    2015-01-14

    The vertical integration of graphene with inorganic semiconductors, oxide semiconductors, and newly emerging layered materials has recently been demonstrated as a promising route toward novel electronic and optoelectronic devices. Here, we report organic thin film transistors based on vertical heterojunctions of graphene and organic semiconductors. In these thin heterostructure devices, current modulation is accomplished by tuning of the injection barriers at the semiconductor/graphene interface with the application of a gate voltage. N-channel devices fabricated with a thin layer of C60 show a room temperature on/off ratio >10(4) and current density of up to 44 mAcm(-2). Because of the ultrashort channel intrinsic to the vertical structure, the device is fully operational at a driving voltage of 200 mV. A complementary p-channel device is also investigated, and a logic inverter based on two complementary transistors is demonstrated. The vertical integration of graphene with organic semiconductors via simple, scalable, and low-temperature fabrication processes opens up new opportunities to realize flexible, transparent organic electronic, and optoelectronic devices.

  15. La interstitial defect-induced insulator-metal transition in the oxide heterostructures LaAl O3 /SrTi O3

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Yang, Ming; Feng, Yuan Ping; Rusydi, Andrivo

    2017-11-01

    Perovskite oxide interfaces have attracted tremendous research interest for their fundamental physics and promising all-oxide electronic applications. Here, based on first-principles calculations, we propose a surface La interstitial promoted interface insulator-metal transition in LaAl O3 /SrTi O3 (110). Compared with surface oxygen vacancies, which play a determining role on the insulator-metal transition of LaAl O3 /SrTi O3 (001) interfaces, we find that surface La interstitials can be more experimentally realistic and accessible for manipulation and more stable in an ambient atmospheric environment. Interestingly, these surface La interstitials also induce significant spin-splitting states with a Ti dy z/dx z character at a conducting LaAl O3 /SrTi O3 (110) interface. On the other hand, for insulating LaAl O3 /SrTi O3 (110) (<4 unit cells LaAl O3 thickness), a distortion between La (Al) and O atoms is found at the LaAl O3 side, partially compensating the polarization divergence. Our results reveal the origin of the metal-insulator transition in LaAl O3 /SrTi O3 (110) heterostructures, and also shed light on the manipulation of the superior properties of LaAl O3 /SrTi O3 (110) for different possibilities in electronic and magnetic applications.

  16. Tunable charge transfer properties in metal-phthalocyanine heterojunctions.

    PubMed

    Siles, P F; Hahn, T; Salvan, G; Knupfer, M; Zhu, F; Zahn, D R T; Schmidt, O G

    2016-04-28

    Organic materials such as phthalocyanine-based systems present a great potential for organic device applications due to the possibility of integrating films of different organic materials to create organic heterostructures which combine the electrical capabilities of each material. This opens the possibility to precisely engineer and tune new electrical properties. In particular, similar transition metal phthalocyanines demonstrate hybridization and charge transfer properties which could lead to interesting physical phenomena. Although, when considering device dimensions, a better understanding and control of the tuning of the transport properties still remain in the focus of research. Here, by employing conductive atomic force microscopy techniques, we provide an insight about the nanoscale electrical properties and transport mechanisms of MnPc and fluorinated phthalocyanines such as F16CuPc and F16CoPc. We report a transition from typical diode-like transport mechanisms for pure MnPc thin films to space-charge-limited current transport regime (SCLC) for Pc-based heterostructures. The controlled addition of fluorinated phthalocyanine also provides highly uniform and symmetric-polarized transport characteristics with conductance enhancements up to two orders of magnitude depending on the polarization. We present a method to spatially map the mobility of the MnPc/F16CuPc structures with a nanoscale resolution and provide theoretical calculations to support our experimental findings. This well-controlled nanoscale tuning of the electrical properties for metal transition phthalocyanine junctions stands as key step for future phthalocyanine-based electronic devices, where the low dimension charge transfer, mediated by transition metal atoms could be intrinsically linked to a transfer of magnetic moment or spin.

  17. Electronic and structural reconstruction in titanate heterostructures from first principles

    NASA Astrophysics Data System (ADS)

    Mulder, Andrew T.; Fennie, Craig J.

    2014-03-01

    Recent advances in transition metal oxide heterostructures have opened new routes to create materials with novel functionalities and properties. One direction has been to combine a Mott insulating perovskite with an electronic d1 configuration, such as LaTiO3, with a band insulating d0 perovskite, such as SrTiO3. An exciting recent development is the demonstration of interfacial conductivity in GdTiO3/SrTiO3 heterostructures that display a complex structural motif of octahedral rotations and ferromagnetic properties similar to bulk GdTiO3. In this talk we present our first principles investigation of the interplay of structural, electronic, magnetic, and orbital degrees of freedom for a wide range of d1/d0 titanate heterostructures. We find evidence for both rotation driven ferroelectricity and a symmetry breaking electronic reconstruction with a concomitant structural distortion at the interface. We argue that these materials represent an ideal platform to realize novel functionalities such as the electric field control of electronic and magnetic properties.

  18. Surface Reactivity Enhancement on a Pd/Bi2Te3 Heterostructure through Robust Topological Surface States

    PubMed Central

    He, Qing Lin; Lai, Ying Hoi; Lu, Yao; Law, Kam Tuen; Sou, Iam Keong

    2013-01-01

    We present a study of the surface reactivity of a Pd/Bi2Te3 thin film heterostructure. The topological surface states from Bi2Te3, being delocalized and robust owing to their topological natures, were found to act as an effective electron bath that significantly enhances the surface reactivity of palladium in the presence of two oxidizing agents, oxygen and tellurium respectively, which is consistent with a theoretical calculation. The surface reactivity of the adsorbed tellurium on this heterostructure is also intensified possibly benefitted from the effective transfer of the bath electrons. A partially inserted iron ferromagnetic layer at the interface of this heterostructure was found to play two competing roles arising from the higher-lying d-band center of the Pd/Fe bilayer and the interaction between the ferromagnetism and the surface spin texture of Bi2Te3 on the surface reactivity and their characteristics also demonstrate that the electron bath effect is long-lasting against accumulated thickness of adsorbates. PMID:23970163

  19. Transfer matrix approach to electron transport in monolayer MoS2/MoO x heterostructures

    NASA Astrophysics Data System (ADS)

    Li, Gen

    2018-05-01

    Oxygen plasma treatment can introduce oxidation into monolayer MoS2 to transfer MoS2 into MoO x , causing the formation of MoS2/MoO x heterostructures. We find the MoS2/MoO x heterostructures have the similar geometry compared with GaAs/Ga1‑x Al x As semiconductor superlattice. Thus, We employ the established transfer matrix method to analyse the electron transport in the MoS2/MoO x heterostructures with double-well and step-well geometries. We also considere the coupling between transverse and longitudinal kinetic energy because the electron effective mass changes spatially in the MoS2/MoO x heterostructures. We find the resonant peaks show red shift with the increasing of transverse momentum, which is similar to the previous work studying the transverse-momentum-dependent transmission in GaAs/Ga1‑x Al x As double-barrier structure. We find electric field can enhance the magnitude of peaks and intensify the coupling between longitudinal and transverse momentums. Moreover, higher bias is applied to optimize resonant tunnelling condition to show negative differential effect can be observed in the MoS2/MoO x system.

  20. Unidirectional spin Hall magnetoresistance in topological insulator/ferromagnetic layer heterostructures

    NASA Astrophysics Data System (ADS)

    Kally, James; Lv, Yang; Zhang, Delin; Lee, Joon Sue; Samarth, Nitin; Wang, Jian-Ping; Department of Electrical; Computer Engineering, University of Minnesota, Minneapolis Collaboration; Department of Physics, Pennsylvania State University Collaboration

    The surface states of topological insulators offer a potentially very efficient way to generate spins and spin-orbit torques to magnetic moments in proximity. The switching by spin-orbit torque itself only requires two terminals so that a charge current can be applied. However, a third terminal with additional magnetic tunneling junction structure is needed to sense the magnetization state if such devices are used for memory and logic applications. The recent discovery of unidirectional spin Hall magnetoresistance in heavy metal/ferromagnetic and topological insulator/magnetically doped topological insulator systems offers an alternative way to sense magnetization while still keeping the number of terminals to minimal two. The unidirectional spin Hall magnetoresistance in topological insulator/strong ferromagnetic layer heterostructure system has yet not been reported. In this work, we report our experimental observations of such magnetoresistance. It is found to be present and comparable to the best result of the previous reported Ta/Co systems in terms of magnetoresistance per current density per total resistance.

  1. Quantum transport in new two-dimensional heterostructures: Thin films of topological insulators, phosphorene

    NASA Astrophysics Data System (ADS)

    Majidi, Leyla; Zare, Moslem; Asgari, Reza

    2018-06-01

    The unusual features of the charge and spin transport characteristics are investigated in new two-dimensional heterostructures. Intraband specular Andreev reflection is realized in a topological insulator thin film normal/superconducting junction in the presence of a gate electric field. Perfect specular electron-hole conversion is shown for different excitation energy values in a wide experimentally available range of the electric field and also for all angles of incidence when the excitation energy has a particular value. It is further demonstrated that the transmission probabilities of the incoming electrons from different spin subbands to the monolayer phosphorene ferromagnetic/normal/ferromagnetic (F/N/F) hybrid structure have different behavior with the angle of incidence and perfect transmission occurs at defined angles of incidence to the proposed structure with different length of the N region, and different alignments of magnetization vectors. Moreover, the sign change of the spin-current density is demonstrated by tuning the chemical potential and exchange field of the F region.

  2. Current rectification in a single molecule diode: the role of electrode coupling.

    PubMed

    Sherif, Siya; Rubio-Bollinger, Gabino; Pinilla-Cienfuegos, Elena; Coronado, Eugenio; Cuevas, Juan Carlos; Agraït, Nicolás

    2015-07-24

    We demonstrate large rectification ratios (> 100) in single-molecule junctions based on a metal-oxide cluster (polyoxometalate), using a scanning tunneling microscope (STM) both at ambient conditions and at low temperature. These rectification ratios are the largest ever observed in a single-molecule junction, and in addition these junctions sustain current densities larger than 10(5) A cm(-2). By following the variation of the I-V characteristics with tip-molecule separation we demonstrate unambiguously that rectification is due to asymmetric coupling to the electrodes of a molecule with an asymmetric level structure. This mechanism can be implemented in other type of molecular junctions using both organic and inorganic molecules and provides a simple strategy for the rational design of molecular diodes.

  3. Current rectification in a single molecule diode: the role of electrode coupling

    NASA Astrophysics Data System (ADS)

    Sherif, Siya; Rubio-Bollinger, Gabino; Pinilla-Cienfuegos, Elena; Coronado, Eugenio; Cuevas, Juan Carlos; Agraït, Nicolás

    2015-07-01

    We demonstrate large rectification ratios (\\gt 100) in single-molecule junctions based on a metal-oxide cluster (polyoxometalate), using a scanning tunneling microscope (STM) both at ambient conditions and at low temperature. These rectification ratios are the largest ever observed in a single-molecule junction, and in addition these junctions sustain current densities larger than 105 A cm-2. By following the variation of the I-V characteristics with tip-molecule separation we demonstrate unambiguously that rectification is due to asymmetric coupling to the electrodes of a molecule with an asymmetric level structure. This mechanism can be implemented in other type of molecular junctions using both organic and inorganic molecules and provides a simple strategy for the rational design of molecular diodes.

  4. Cu2O-directed in situ growth of Au nanoparticles inside HKUST-1 nanocages.

    PubMed

    Liu, Yongxin; Liu, Ting; Tian, Long; Zhang, Linlin; Yao, Lili; Tan, Taixing; Xu, Jin; Han, Xiaohui; Liu, Dan; Wang, Cheng

    2016-12-07

    Controllable integration of metal nanoparticles (MNPs) and metal-organic frameworks (MOFs) is attracting considerable attention as the obtained composite materials always show synergistic effects in applications of catalysis, delivery, as well as sensing. Herein, a Cu 2 O-directed in situ growth strategy was developed to integrate Au nanoparticles and HKUST-1. In this strategy, Cu 2 O@HKUST-1 core-shell heterostructures, HKUST-1 nanocages, Cu 2 O@Au@HKUST-1 sandwich core-shell heterostructures and Au@HKUST-1 balls-in-cage heterostructures were successfully synthesized. Cu 2 O@HKUST-1 core-shell heterostructures were synthesized by soaking Cu 2 O nanocrystals in benzene-1,3,5-tricarboxylic acid solution. The well-defined Cu 2 O@HKUST-1 core-shell heterostructures were demonstrated to be dominated by the ratio of Cu 2+ cations to btc 3- ligands in solution during the period of HKUST-1 formation. Cu 2 O@Au@HKUST-1 sandwich core-shell or Au@HKUST-1 balls-in-cage heterostructures were obtained by impregnating HAuCl 4 into Cu 2 O@HKUST-1 core-shell heterostructures. Due to the porosity of HKUST-1 and reducibility of Cu 2 O, HAuCl 4 could pass through the HKUST-1 shell and be reduced by the Cu 2 O core in situ forming Au nanoparticles. Finally, CO oxidation reaction at high temperatures was carried out to assess the catalytic functionality of the obtained composite heterostructures. This strategy can circumvent some drawbacks of the existing approaches for integrating MNPs and MOFs, such as nonselective deposition of MNPs at the outer surface of the MOF matrices, extreme treatment conditions and additional surface modifications.

  5. Surface acoustic waves/silicon monolithic sensor processor

    NASA Technical Reports Server (NTRS)

    Kowel, S. T.; Kornreich, P. G.; Fathimulla, M. A.; Mehter, E. A.

    1981-01-01

    Progress is reported in the creation of a two dimensional Fourier transformer for optical images based on the zinc oxide on silicon technology. The sputtering of zinc oxide films using a micro etch system and the possibility of a spray-on technique based on zinc chloride dissolved in alcohol solution are discussed. Refinements to techniques for making platinum silicide Schottky barrier junctions essential for constructing the ultimate convolver structure are described.

  6. R&D issues in scale-up and manufacturing of amorphous silicon tandem modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arya, R.R.; Carlson, D.E.; Chen, L.F.

    1999-03-01

    R & D on amorphous silicon based tandem junction devices has improved the throughtput, the material utilization, and the performance of devices on commercial tin oxide coated glass. The tandem junction technology has been scaled-up to produce 8.6&hthinsp;Ft{sup 2} monolithically integrated modules in manufacturing at the TF1 plant. Optimization of performance and stability of these modules is ongoing. {copyright} {ital 1999 American Institute of Physics.}

  7. On-stack two-dimensional conversion of MoS2 into MoO3

    NASA Astrophysics Data System (ADS)

    Yeoung Ko, Taeg; Jeong, Areum; Kim, Wontaek; Lee, Jinhwan; Kim, Youngchan; Lee, Jung Eun; Ryu, Gyeong Hee; Park, Kwanghee; Kim, Dogyeong; Lee, Zonghoon; Lee, Min Hyung; Lee, Changgu; Ryu, Sunmin

    2017-03-01

    Chemical transformation of existing two-dimensional (2D) materials can be crucial in further expanding the 2D crystal palette required to realize various functional heterostructures. In this work, we demonstrate a 2D ‘on-stack’ chemical conversion of single-layer crystalline MoS2 into MoO3 with a precise layer control that enables truly 2D MoO3 and MoO3/MoS2 heterostructures. To minimize perturbation of the 2D morphology, a nonthermal oxidation using O2 plasma was employed. The early stage of the reaction was characterized by a defect-induced Raman peak, drastic quenching of photoluminescence (PL) signals and sub-nm protrusions in atomic force microscopy images. As the reaction proceeded from the uppermost layer to the buried layers, PL and optical second harmonic generation signals showed characteristic modulations revealing a layer-by-layer conversion. The plasma-generated 2D oxides, confirmed as MoO3 by x-ray photoelectron spectroscopy, were found to be amorphous but extremely flat with a surface roughness of 0.18 nm, comparable to that of 1L MoS2. The rate of oxidation quantified by Raman spectroscopy decreased very rapidly for buried sulfide layers due to protection by the surface 2D oxides, exhibiting a pseudo-self-limiting behavior. As exemplified in this work, various on-stack chemical transformations can be applied to other 2D materials in forming otherwise unobtainable materials and complex heterostructures, thus expanding the palette of 2D material building blocks.

  8. Nanowires, nanostructures and devices fabricated therefrom

    DOEpatents

    Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong

    2005-04-19

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  9. Growth and interface engineering in thin-film Ba0.6Sr0.4TiO3 /SrMoO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Radetinac, Aldin; Ziegler, Jürgen; Vafaee, Mehran; Alff, Lambert; Komissinskiy, Philipp

    2017-04-01

    Epitaxial heterostructures of ferroelectric Ba0.6Sr0.4TiO3 and highly conducting SrMoO3 were grown by pulsed laser deposition on SrTiO3 (0 0 1) substrates. Surface oxidation of the SrMoO3 film is suppressed using a thin cap interlayer of Ba0.6Sr0.4TiO3-δ grown in reduced atmosphere. As shown by X-ray photoelectron spectroscopy, the Mo4+ valence state of the SrMoO3 films is stable upon annealing of the sample in oxygen up to 600 °C. The described oxygen interface engineering enables utilization of the highly conducting material SrMoO3 in multilayer oxide ferroelectric varactors.

  10. Transition-Metal Oxide (111) Bilayers

    DOE PAGES

    Okamoto, Satoshi; Xiao, Di

    2018-04-15

    Correlated electron systems on a honeycomb lattice have emerged as a fertile playground to explore exotic electronic phenomena. Theoretical and experimental work has appeared to realize novel behavior, including quantum Hall effects and valleytronics, mainly focusing on van der Waals compounds, such as graphene, chalcogenides, and halides. Here in this paper, we review our theoretical study on perovskite transition-metal oxides (TMOs) as an alternative system to realize such exotic phenomena. We demonstrate that novel quantum Hall effects and related phenomena associated with the honeycomb structure could be artificially designed by such TMOs by growing their heterostructures along the [111] crystallographicmore » axis. One of the important predictions is that such TMO heterostructures could support two-dimensional topological insulating states. The strong correlation effects inherent to TM d electrons further enrich the behavior.« less

  11. Transition-Metal Oxide (111) Bilayers

    NASA Astrophysics Data System (ADS)

    Okamoto, Satoshi; Xiao, Di

    2018-04-01

    Correlated electron systems on a honeycomb lattice have emerged as a fertile playground to explore exotic electronic phenomena. Theoretical and experimental work has appeared to realize novel behavior, including quantum Hall effects and valleytronics, mainly focusing on van der Waals compounds, such as graphene, chalcogenides, and halides. In this article, we review our theoretical study on perovskite transition-metal oxides (TMOs) as an alternative system to realize such exotic phenomena. We demonstrate that novel quantum Hall effects and related phenomena associated with the honeycomb structure could be artificially designed by such TMOs by growing their heterostructures along the [111] crystallographic axis. One of the important predictions is that such TMO heterostructures could support two-dimensional topological insulating states. The strong correlation effects inherent to TM d electrons further enrich the behavior.

  12. Strong room temperature electroluminescence from lateral p-SiGe/i-Ge/n-SiGe heterojunction diodes on silicon-on-insulator substrate

    NASA Astrophysics Data System (ADS)

    Lin, Guangyang; Yi, Xiaohui; Li, Cheng; Chen, Ningli; Zhang, Lu; Chen, Songyan; Huang, Wei; Wang, Jianyuan; Xiong, Xihuan; Sun, Jiaming

    2016-10-01

    A lateral p-Si0.05Ge0.95/i-Ge/n-Si0.05Ge0.95 heterojunction light emitting diode on a silicon-on-insulator (SOI) substrate was proposed, which is profitable to achieve higher luminous extraction compared to vertical junctions. Due to the high carrier injection ratio of heterostructures and optical reflection at the SiO2/Si interface of the SOI, strong room temperature electroluminescence (EL) at around 1600 nm from the direct bandgap of i-Ge with 0.30% tensile strain was observed. The EL peak intensity of the lateral heterojunction is enhanced by ˜4 folds with a larger peak energy than that of the vertical Ge p-i-n homojunction, suggesting that the light emitting efficiency of the lateral heterojunction is effectively improved. The EL peak intensity of the lateral heterojunction, which increases quadratically with injection current density, becomes stronger for diodes with a wider i-Ge region. The CMOS compatible fabrication process of the lateral heterojunctions paves the way for the integration of the light source with the Ge metal-oxide-semiconductor field-effect-transistor.

  13. Synaptic plasticity and oscillation at zinc tin oxide/silver oxide interfaces

    NASA Astrophysics Data System (ADS)

    Murdoch, Billy J.; McCulloch, Dougal G.; Partridge, James G.

    2017-02-01

    Short-term plasticity, long-term potentiation, and pulse interval dependent plasticity learning/memory functions have been observed in junctions between amorphous zinc-tin-oxide and silver-oxide. The same junctions exhibited current-controlled negative differential resistance and when connected in an appropriate circuit, they behaved as relaxation oscillators. These oscillators produced voltage pulses suitable for device programming. Transmission electron microscopy, energy dispersive X-ray spectroscopy, and electrical measurements suggest that the characteristics of these junctions arise from Ag+/O- electromigration across a highly resistive interface layer. With memory/learning functions and programming spikes provided in a single device structure, arrays of similar devices could be used to form transistor-free neuromorphic circuits.

  14. Terahertz Radiation Heterodyne Detector Using Two-Dimensional Electron Gas in a GaN Heterostructure

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; Gill, John J.; Mehdi, Imran; Crawford, Timothy J.; Sergeev, Andrei V.; Mitin, Vladimir V.

    2012-01-01

    High-resolution submillimeter/terahertz spectroscopy is important for studying atmospheric and interstellar molecular gaseous species. It typically uses heterodyne receivers where an unknown (weak) signal is mixed with a strong signal from the local oscillator (LO) operating at a slightly different frequency. The non-linear mixer devices for this frequency range are unique and are not off-the-shelf commercial products. Three types of THz mixers are commonly used: Schottky diode, superconducting hot-electron bolometer (HEB), and superconductor-insulation-superconductor (SIS) junction. A HEB mixer based on the two-dimensional electron gas (2DEG) formed at the interface of two slightly dissimilar semiconductors was developed. This mixer can operate at temperatures between 100 and 300 K, and thus can be used with just passive radiative cooling available even on small spacecraft.

  15. Structural, Optical and Electrical Properties of ZnS/Porous Silicon Heterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Cai-Feng; Li, Qing-Shan; Lv, Lei; Zhang, Li-Chun; Qi, Hong-Xia; Chen, Hou

    2007-03-01

    ZnS films are deposited by pulsed laser deposition on porous silicon (PS) substrates formed by electrochemical anodization of p-type (100) silicon wafer. Scanning electron microscope images reveal that the surface of ZnS films is unsmoothed, and there are some cracks in the ZnS films due to the roughness of the PS surface. The x-ray diffraction patterns show that the ZnS films on PS surface are grown in preferring orientation along cubic phase β-ZnS (111) direction. White light emission is obtained by combining the blue-green emission from ZnS films with the orange-red emission from PS layers. Based on the I-V characteristic, the ZnS/PS heterojunction exhibits the rectifying junction behaviour, and an ideality factor n is calculated to be 77 from the I-V plot.

  16. Rectification of Lamb wave propagation in thin plates with piezo-dielectric periodic structures

    NASA Astrophysics Data System (ADS)

    Iwasaki, Yuhei; Tsuruta, Kenji; Ishikawa, Atsushi

    2016-07-01

    Based on a heterostructured plate consisting of piezoelectric-ceramic/epoxy-resin composites with different periodicities, we design a novel acoustic diode for the symmetrical/asymmetrical (S/A) mode of Lamb wave at audible ranges. The acoustic diode is constructed with two parts, i.e., the mode conversion part and the mode selection part, and the mode conversion mechanism at the interface is applied to the mode hybridization from S to S+A and for the mode conversion from A to S. The phonon band structures for each part are calculated and optimized so that the mode selection is realized for a specific mode at the junction. Finite-element simulations prove that the proposed acoustic diode achieves efficient rectification at audio frequency ranges for both S and A mode incidences of the Lamb wave.

  17. All-spinel oxide Josephson junctions for high-efficiency spin filtering.

    PubMed

    Mesoraca, S; Knudde, S; Leitao, D C; Cardoso, S; Blamire, M G

    2018-01-10

    Obtaining high efficiency spin filtering at room temperature using spinel ferromagnetic tunnel barriers has been hampered by the formation of antiphase boundaries due to their difference in lattice parameters between barrier and electrodes. In this work we demonstrate the use of LiTi 2 O 4 thin films as electrodes in an all-spinel oxide CoFe 2 O 4 -based spin filter devices. These structures show nearly perfect epitaxy maintained throughout the structure and so minimise the potential for APBs formation. The LiTi 2 O 4 in these devices is superconducting and so measurements at low temperature have been used to explore details of the tunnelling and Josephson junction behaviour.

  18. Dye-sensitized photoelectrochemical water oxidation through a buried junction.

    PubMed

    Xu, Pengtao; Huang, Tian; Huang, Jianbin; Yan, Yun; Mallouk, Thomas E

    2018-06-18

    Water oxidation has long been a challenge in artificial photosynthetic devices that convert solar energy into fuels. Water-splitting dye-sensitized photoelectrochemical cells (WS-DSPECs) provide a modular approach for integrating light-harvesting molecules with water-oxidation catalysts on metal-oxide electrodes. Despite recent progress in improving the efficiency of these devices by introducing good molecular water-oxidation catalysts, WS-DSPECs have poor stability, owing to the oxidation of molecular components at very positive electrode potentials. Here we demonstrate that a solid-state dye-sensitized solar cell (ss-DSSC) can be used as a buried junction for stable photoelectrochemical water splitting. A thin protecting layer of TiO 2 grown by atomic layer deposition (ALD) stabilizes the operation of the photoanode in aqueous solution, although as a solar cell there is a performance loss due to increased series resistance after the coating. With an electrodeposited iridium oxide layer, a photocurrent density of 1.43 mA cm -2 was observed in 0.1 M pH 6.7 phosphate solution at 1.23 V versus reversible hydrogen electrode, with good stability over 1 h. We measured an incident photon-to-current efficiency of 22% at 540 nm and a Faradaic efficiency of 43% for oxygen evolution. While the potential profile of the catalyst layer suggested otherwise, we confirmed the formation of a buried junction in the as-prepared photoelectrode. The buried junction design of ss-DSSs adds to our understanding of semiconductor-electrocatalyst junction behaviors in the presence of a poor semiconducting material.

  19. Room temperature synthesis and enhanced photocatalytic property of CeO2/ZnO heterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Fan, Huiqing; Ren, Xiaohu; Fang, Jiawen

    2018-02-01

    To achieve better photocatalytic performance, we proposed a facile solid-state reaction method to produce CeO2/ZnO heterostructures. Ceria and zinc oxide were synthesized simultaneously by thoroughly grinding the mixture of zinc acetate dihydrate, cerium nitrate hexahydrate and sodium hydroxide. The morphology of the as-prepared heterostructures varies dramatically as different amount of ceria was introduced in the composition. The photocatalytic performance of CeO2/ZnO heterojunctions was 4.6 times higher than that of pure ZnO. The enhanced photocatalytic activity could be ascribed to that more electrons and holes could transport to the surface of catalysts and react with the pollution due to the extended light-responsive range, accelerated migration, increased specific surface area and suppressed recombination of photogenerated carriers.

  20. Ultrathin Limit of Exchange Bias Coupling at Oxide Multiferroic/Ferromagnetic Interfaces

    DTIC Science & Technology

    2013-07-12

    perfect, lattice-matched hetero- structures of complex perovskite oxides using state-of-the-art thin fi lm growth techniques has generated new physical...investigated for several BFO/LSMO heterostructures by X-ray absorption spectroscopy (XAS) measurements at 17 K of the Fe- L 2,3 edge at the Advanced Light

  1. Snake trajectories in ultraclean graphene p–n junctions

    PubMed Central

    Rickhaus, Peter; Makk, Péter; Liu, Ming-Hao; Tóvári, Endre; Weiss, Markus; Maurand, Romain; Richter, Klaus; Schönenberger, Christian

    2015-01-01

    Snake states are trajectories of charge carriers curving back and forth along an interface. There are two types of snake states, formed by either inverting the magnetic field direction or the charge carrier type at an interface. The former has been demonstrated in GaAs–AlGaAs heterostructures, whereas the latter has become conceivable only with the advance of ballistic graphene where a gap-less p–n interface governed by Klein tunnelling can be formed. Such snake states were hidden in previous experiments due to limited sample quality. Here we report on magneto-conductance oscillations due to snake states in a ballistic suspended graphene p–n junction, which occur already at a very small magnetic field of 20 mT. The visibility of 30% is enabled by Klein collimation. Our finding is firmly supported by quantum transport simulations. We demonstrate the high tunability of the device and operate it in different magnetic field regimes. PMID:25732244

  2. Modulation of Quantum Tunneling via a Vertical Two-Dimensional Black Phosphorus and Molybdenum Disulfide p-n Junction.

    PubMed

    Liu, Xiaochi; Qu, Deshun; Li, Hua-Min; Moon, Inyong; Ahmed, Faisal; Kim, Changsik; Lee, Myeongjin; Choi, Yongsuk; Cho, Jeong Ho; Hone, James C; Yoo, Won Jong

    2017-09-26

    Diverse diode characteristics were observed in two-dimensional (2D) black phosphorus (BP) and molybdenum disulfide (MoS 2 ) heterojunctions. The characteristics of a backward rectifying diode, a Zener diode, and a forward rectifying diode were obtained from the heterojunction through thickness modulation of the BP flake or back gate modulation. Moreover, a tunnel diode with a precursor to negative differential resistance can be realized by applying dual gating with a solid polymer electrolyte layer as a top gate dielectric material. Interestingly, a steep subthreshold swing of 55 mV/dec was achieved in a top-gated 2D BP-MoS 2 junction. Our simple device architecture and chemical doping-free processing guaranteed the device quality. This work helps us understand the fundamentals of tunneling in 2D semiconductor heterostructures and shows great potential in future applications in integrated low-power circuits.

  3. CdS Nanoparticle-Modified α-Fe2O3/TiO2 Nanorod Array Photoanode for Efficient Photoelectrochemical Water Oxidation.

    PubMed

    Yin, Ruiyang; Liu, Mingyang; Tang, Rui; Yin, Longwei

    2017-09-02

    In this work, we demonstrate a facile successive ionic layer adsorption and reaction process accompanied by hydrothermal method to synthesize CdS nanoparticle-modified α-Fe 2 O 3 /TiO 2 nanorod array for efficient photoelectrochemical (PEC) water oxidation. By integrating CdS/α-Fe 2 O 3 /TiO 2 ternary system, light absorption ability of the photoanode can be effectively improved with an obviously broadened optical-response to visible light region, greatly facilitates the separation of photogenerated carriers, giving rise to the enhancement of PEC water oxidation performance. Importantly, for the designed abnormal type-II heterostructure between Fe 2 O 3 /TiO 2 , the conduction band position of Fe 2 O 3 is higher than that of TiO 2 , the photogenerated electrons from Fe 2 O 3 will rapidly recombine with the photogenerated holes from TiO 2 , thus leads to an efficient separation of photogenerated electrons from Fe 2 O 3 /holes from TiO 2 at the Fe 2 O 3 /TiO 2 interface, greatly improving the separation efficiency of photogenerated holes within Fe 2 O 3 and enhances the photogenerated electron injection efficiency in TiO 2 . Working as the photoanodes of PEC water oxidation, CdS/α-Fe 2 O 3 /TiO 2 heterostucture electrode exhibits improved photocurrent density of 0.62 mA cm - 2 at 1.23 V vs. reversible hydrogen electrode (RHE) in alkaline electrolyte, with an obviously negatively shifted onset potential of 80 mV. This work provides promising methods to enhance the PEC water oxidation performance of the TiO 2 -based heterostructure photoanodes.

  4. Programming interfacial energetic offsets and charge transfer in β-Pb 0.33V 2O 5/quantum-dot heterostructures: Tuning valence-band edges to overlap with midgap states

    DOE PAGES

    Pelcher, Kate E.; Milleville, Christopher C.; Wangoh, Linda; ...

    2016-12-06

    Here, semiconductor heterostructures for solar energy conversion interface light-harvesting semiconductor nanoparticles with wide-band-gap semiconductors that serve as charge acceptors. In such heterostructures, the kinetics of charge separation depend on the thermodynamic driving force, which is dictated by energetic offsets across the interface. A recently developed promising platform interfaces semiconductor quantum dots (QDs) with ternary vanadium oxides that have characteristic midgap states situated between the valence and conduction bands. In this work, we have prepared CdS/β-Pb 0.33V 2O 5 heterostructures by both linker-assisted assembly and surface precipitation and contrasted these materials with CdSe/β-Pb 0.33V 2O 5 heterostructures prepared by the samemore » methods. Increased valence-band (VB) edge onsets in X-ray photoelectron spectra for CdS/β-Pb 0.33V 2O 5 heterostructures relative to CdSe/β-Pb 0.33V 2O 5 heterostructures suggest a positive shift in the VB edge potential and, therefore, an increased driving force for the photoinduced transfer of holes to the midgap state of β-Pb 0.33V 2O 5. This approach facilitates a ca. 0.40 eV decrease in the thermodynamic barrier for hole injection from the VB edge of QDs suggesting an important design parameter. Transient absorption spectroscopy experiments provide direct evidence of hole transfer from photoexcited CdS QDs to the midgap states of β-Pb 0.33V 2O 5 NWs, along with electron transfer into the conduction band of the β-Pb 0.33V 2O 5 NWs. Hole transfer is substantially faster and occurs at <1-ps time scales, whereas completion of electron transfer requires 5—30 ps depending on the nature of the interface. The differentiated time scales of electron and hole transfer, which are furthermore tunable as a function of the mode of attachment of QDs to NWs, provide a vital design tool for designing architectures for solar energy conversion. More generally, the approach developed here suggests that interfacing semiconductor QDs with transition-metal oxide NWs exhibiting intercalative midgap states yields a versatile platform wherein the thermodynamics and kinetics of charge transfer can be systematically modulated to improve the efficiency of charge separation across interfaces.« less

  5. Programming interfacial energetic offsets and charge transfer in β-Pb 0.33V 2O 5/quantum-dot heterostructures: Tuning valence-band edges to overlap with midgap states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelcher, Kate E.; Milleville, Christopher C.; Wangoh, Linda

    Here, semiconductor heterostructures for solar energy conversion interface light-harvesting semiconductor nanoparticles with wide-band-gap semiconductors that serve as charge acceptors. In such heterostructures, the kinetics of charge separation depend on the thermodynamic driving force, which is dictated by energetic offsets across the interface. A recently developed promising platform interfaces semiconductor quantum dots (QDs) with ternary vanadium oxides that have characteristic midgap states situated between the valence and conduction bands. In this work, we have prepared CdS/β-Pb 0.33V 2O 5 heterostructures by both linker-assisted assembly and surface precipitation and contrasted these materials with CdSe/β-Pb 0.33V 2O 5 heterostructures prepared by the samemore » methods. Increased valence-band (VB) edge onsets in X-ray photoelectron spectra for CdS/β-Pb 0.33V 2O 5 heterostructures relative to CdSe/β-Pb 0.33V 2O 5 heterostructures suggest a positive shift in the VB edge potential and, therefore, an increased driving force for the photoinduced transfer of holes to the midgap state of β-Pb 0.33V 2O 5. This approach facilitates a ca. 0.40 eV decrease in the thermodynamic barrier for hole injection from the VB edge of QDs suggesting an important design parameter. Transient absorption spectroscopy experiments provide direct evidence of hole transfer from photoexcited CdS QDs to the midgap states of β-Pb 0.33V 2O 5 NWs, along with electron transfer into the conduction band of the β-Pb 0.33V 2O 5 NWs. Hole transfer is substantially faster and occurs at <1-ps time scales, whereas completion of electron transfer requires 5—30 ps depending on the nature of the interface. The differentiated time scales of electron and hole transfer, which are furthermore tunable as a function of the mode of attachment of QDs to NWs, provide a vital design tool for designing architectures for solar energy conversion. More generally, the approach developed here suggests that interfacing semiconductor QDs with transition-metal oxide NWs exhibiting intercalative midgap states yields a versatile platform wherein the thermodynamics and kinetics of charge transfer can be systematically modulated to improve the efficiency of charge separation across interfaces.« less

  6. Molecular Monolayers for Electrical Passivation and Functionalization of Silicon-Based Solar Energy Devices.

    PubMed

    Veerbeek, Janneke; Firet, Nienke J; Vijselaar, Wouter; Elbersen, Rick; Gardeniers, Han; Huskens, Jurriaan

    2017-01-11

    Silicon-based solar fuel devices require passivation for optimal performance yet at the same time need functionalization with (photo)catalysts for efficient solar fuel production. Here, we use molecular monolayers to enable electrical passivation and simultaneous functionalization of silicon-based solar cells. Organic monolayers were coupled to silicon surfaces by hydrosilylation in order to avoid an insulating silicon oxide layer at the surface. Monolayers of 1-tetradecyne were shown to passivate silicon micropillar-based solar cells with radial junctions, by which the efficiency increased from 8.7% to 9.9% for n + /p junctions and from 7.8% to 8.8% for p + /n junctions. This electrical passivation of the surface, most likely by removal of dangling bonds, is reflected in a higher shunt resistance in the J-V measurements. Monolayers of 1,8-nonadiyne were still reactive for click chemistry with a model catalyst, thus enabling simultaneous passivation and future catalyst coupling.

  7. Tunable inversion symmetry in heterostructures of layered oxides

    NASA Astrophysics Data System (ADS)

    Rondinelli, James

    Traditional approaches to create and control functional electronic materials have focused on new phases in previously unknown bulk minerals. More recently, interlayer physics has spawned interest in known materials in unexplored atomic scale geometries, especially in complex transition metal oxides (TMO), where heterostructures can be created on demand. In this talk, I show that although epitaxial strain routinely induces (enhances) electric polarizations, biaxial strain can also induce an unanticipated polar-to-nonpolar (P-NP) structural transition in (001) thin films of naturally layered An + 1Bn O3n+1 (n = 1 - ∞) oxides. Density functional theory calculations and a complete phenomenological model for Ca3Ti2O7 are used to show that the origin of the P-NP transition originates from the interplay of trilinear-related lattice mode interactions active in the layered oxides, and those interactions are directly strain tunable. Moreover these layered oxides exhibit a quasi-two dimensional phonon mode-an acoustic branch with quadratic dispersion, enabling unusual membrane effects such as tunable negative thermal expansion. I conclude by emphasizing that broken inversion symmetric structures offer a plentiful playground for realizing new functionalities in thin films, including new multiferroics from polar metals.

  8. Synthesis of Nb doped TiO2 nanotube/reduced graphene oxide heterostructure photocatalyst with high visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Niu, Xiaoyou; Yan, Weijing; Zhao, Hongli; Yang, Jingkai

    2018-05-01

    Limited by the narrowed photoresponse range and unsatisfactory recombination of photoinduced electron-hole pairs, the photocatalytic efficiency of TiO2 is still far below what is expected. Here, we initially doped TiO2 nanotubes (TNTS) by transition metal ion Nb, then it is coupled with reduced graphene oxide (rGO) to construct a heterostructure photocatalyst. The defect state presented in TiO2 leading to the formation of localized midgap states (MS) in the bandgap, which regulating the band structure of TiO2 and extending the optical absorption to visible light region. The internal charge transport and transfer behavior analyzed by electrochemical impedance spectroscopy (EIS) reveal that the coupling of rGO with TNTS results in the formation of electron transport channel in the heterostructure, which makes a great contribution to the photoinduced charge separation. As expected, the Nb-TNTS/rGO exhibits a stable and remarkably enhanced photocatalytic activity in the visible-light irradiation degradation of methylene blue (MB), up to ∼5 times with respect to TNTS, which is attributed to the effective inhibition of charge recombination, the reduction of bandgap and higher redox potential, as well as the great adsorptivity.

  9. Enhanced photoresponse characteristics of transistors using CVD-grown MoS2/WS2 heterostructures

    NASA Astrophysics Data System (ADS)

    Shan, Junjie; Li, Jinhua; Chu, Xueying; Xu, Mingze; Jin, Fangjun; Fang, Xuan; Wei, Zhipeng; Wang, Xiaohua

    2018-06-01

    Semiconductor heterostructures based on transition metal dichalcogenides provide a broad platform to research two-dimensional nanomaterials and design atomically thin devices for fundamental and applied interests. The MoS2/WS2 heterostructure was prepared on SiO2/Si substrate by chemical vapor deposition (CVD) in our research. And the optical properties of the heterostructure was characterized by Raman and photoluminescence (PL) spectroscopy. The similar 2 orders of magnitude decrease of PL intensity in MoS2/WS2 heterostructures was tested, which is attribute to the electrical and optical modulation effects are connected with the interfacial charge transfer between MoS2 and WS2 films. Using MoS2/WS2 heterostructure as channel material of the phototransistor, we demonstrated over 50 folds enhanced photoresponsivity of multilayer MoS2 field-effect transistor. The results indicate that the MoS2/WS2 films can be a promising heterostructure material to enhance the photoresponse characteristics of MoS2-based phototransistors.

  10. Fabrication of magnetic tunnel junctions with epitaxial and textured ferromagnetic layers

    DOEpatents

    Chang, Y. Austin; Yang, Jianhua Joshua

    2008-11-11

    This invention relates to magnetic tunnel junctions and methods for making the magnetic tunnel junctions. The magnetic tunnel junctions include a tunnel barrier oxide layer sandwiched between two ferromagnetic layers both of which are epitaxial or textured with respect to the underlying substrate upon which the magnetic tunnel junctions are grown. The magnetic tunnel junctions provide improved magnetic properties, sharper interfaces and few defects.

  11. Methods of fabricating nanostructures and nanowires and devices fabricated therefrom

    DOEpatents

    Majumdar, Arun [Orinda, CA; Shakouri, Ali [Santa Cruz, CA; Sands, Timothy D [Moraga, CA; Yang, Peidong [Berkeley, CA; Mao, Samuel S [Berkeley, CA; Russo, Richard E [Walnut Creek, CA; Feick, Henning [Kensington, CA; Weber, Eicke R [Oakland, CA; Kind, Hannes [Schaffhausen, CH; Huang, Michael [Los Angeles, CA; Yan, Haoquan [Albany, CA; Wu, Yiying [Albany, CA; Fan, Rong [El Cerrito, CA

    2009-08-04

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  12. Methods Of Fabricating Nanosturctures And Nanowires And Devices Fabricated Therefrom

    DOEpatents

    Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong

    2006-02-07

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  13. Methods of fabricating nanostructures and nanowires and devices fabricated therefrom

    DOEpatents

    Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong

    2010-11-16

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  14. Methods of fabricating nanostructures and nanowires and devices fabricated therefrom

    DOEpatents

    Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong

    2018-01-30

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  15. Constructing oxide interfaces and heterostructures by atomic layer-by-layer laser molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lei, Qingyu; Golalikhani, Maryam; Davidson, Bruce A.; Liu, Guozhen; Schlom, Darrell G.; Qiao, Qiao; Zhu, Yimei; Chandrasena, Ravini U.; Yang, Weibing; Gray, Alexander X.; Arenholz, Elke; Farrar, Andrew K.; Tenne, Dmitri A.; Hu, Minhui; Guo, Jiandong; Singh, Rakesh K.; Xi, Xiaoxing

    2017-12-01

    Advancements in nanoscale engineering of oxide interfaces and heterostructures have led to discoveries of emergent phenomena and new artificial materials. Combining the strengths of reactive molecular-beam epitaxy and pulsed-laser deposition, we show here, with examples of Sr1+xTi1-xO3+δ, Ruddlesden-Popper phase Lan+1NinO3n+1 (n = 4), and LaAl1+yO3(1+0.5y)/SrTiO3 interfaces, that atomic layer-by-layer laser molecular-beam epitaxy significantly advances the state of the art in constructing oxide materials with atomic layer precision and control over stoichiometry. With atomic layer-by-layer laser molecular-beam epitaxy we have produced conducting LaAlO3/SrTiO3 interfaces at high oxygen pressures that show no evidence of oxygen vacancies, a capability not accessible by existing techniques. The carrier density of the interfacial two-dimensional electron gas thus obtained agrees quantitatively with the electronic reconstruction mechanism.

  16. Surface Conduction in III-V Semiconductor Infrared Detector Materials

    NASA Astrophysics Data System (ADS)

    Sidor, Daniel Evan

    III-V semiconductors are increasingly used to produce high performance infrared photodetectors; however a significant challenge inherent to working with these materials is presented by unintended electrical conduction pathways that form along their surfaces. Resulting leakage currents contribute to system noise and are ineffectively mitigated by device cooling, and therefore limit ultimate performance. When the mechanism of surface conduction is understood, the unipolar barrier device architecture offers a potential solution. III-V bulk unipolar barrier detectors that effectively suppress surface leakage have approached the performance of the best II-VI pn-based structures. This thesis begins with a review of empirically determined Schottky barrier heights and uses this information to present a simple model of semiconductor surface conductivity. The model is validated through measurements of degenerate n-type surface conductivity on InAs pn junctions, and non-degenerate surface conductivity on GaSb pn junctions. It is then extended, along with design principles inspired by the InAs-based nBn detector, to create a flat-band pn-based unipolar barrier detector possessing a conductive surface but free of detrimental surface leakage current. Consideration is then given to the relative success of these and related bulk detectors in suppressing surface leakage when compared to analogous superlattice-based designs, and general limitations of unipolar barriers in suppressing surface leakage are proposed. Finally, refinements to the molecular beam epitaxy crystal growth techniques used to produce InAs-based unipolar barrier heterostructure devices are discussed. Improvements leading to III-V device performance well within an order of magnitude of the state-of-the-art are demonstrated.

  17. Band offset engineering of 2DEG oxide systems on Si

    NASA Astrophysics Data System (ADS)

    Jin, Eric; Kornblum, Lior; Kumah, Divine; Zou, Ke; Broadbridge, Christine; Ngai, Joseph; Ahn, Charles; Walker, Fred

    2015-03-01

    The discovery of 2-dimensional electron gases (2DEGs) at perovskite oxide interfaces has sparked much interest in recent years due to their large carrier densities when compared with semiconductor heterostructures. For device applications, these oxide systems are plagued by low room temperature electrical mobilities. We present an approach to combine the high carrier density of 2DEG oxides with a higher mobility medium in order to realize the combined benefits of higher mobility and carrier density. We grow epitaxial films of the interfacial oxide system LaTiO3/SrTiO3 (LTO/STO) on silicon by molecular beam epitaxy. Magnetotransport measurements show that the sheet carrier densities of the heterostructures scale with the number of LTO/STO interfaces, consistent with the presence of a 2DEG at each interface. Sheet carrier densities of 8.9 x 1014 cm-2 per interface are measured. Band offsets between the STO and Si are obtained, showing that the conduction band edge of the STO is close in energy to that of silicon, but in a direction that hinders carrier transfer to the silicon substrate. Through modification of the STO/Si interface, we suggest an approach to raise the band offset in order to move the 2DEG from the oxide into the silicon.

  18. Single-nanowire, low-bandgap hot carrier solar cells with tunable open-circuit voltage

    NASA Astrophysics Data System (ADS)

    Limpert, Steven; Burke, Adam; Chen, I.-Ju; Anttu, Nicklas; Lehmann, Sebastian; Fahlvik, Sofia; Bremner, Stephen; Conibeer, Gavin; Thelander, Claes; Pistol, Mats-Erik; Linke, Heiner

    2017-10-01

    Compared to traditional pn-junction photovoltaics, hot carrier solar cells offer potentially higher efficiency by extracting work from the kinetic energy of photogenerated ‘hot carriers’ before they cool to the lattice temperature. Hot carrier solar cells have been demonstrated in high-bandgap ferroelectric insulators and GaAs/AlGaAs heterostructures, but so far not in low-bandgap materials, where the potential efficiency gain is highest. Recently, a high open-circuit voltage was demonstrated in an illuminated wurtzite InAs nanowire with a low bandgap of 0.39 eV, and was interpreted in terms of a photothermoelectric effect. Here, we point out that this device is a hot carrier solar cell and discuss its performance in those terms. In the demonstrated devices, InP heterostructures are used as energy filters in order to thermoelectrically harvest the energy of hot electrons photogenerated in InAs absorber segments. The obtained photovoltage depends on the heterostructure design of the energy filter and is therefore tunable. By using a high-resistance, thermionic barrier, an open-circuit voltage is obtained that is in excess of the Shockley-Queisser limit. These results provide generalizable insight into how to realize high voltage hot carrier solar cells in low-bandgap materials, and therefore are a step towards the demonstration of higher efficiency hot carrier solar cells.

  19. InGaAsP/InP laser development for single-mode, high-data-rate communications

    NASA Technical Reports Server (NTRS)

    Ladany, I.; Levin, E. R.; Magee, C. W.; Smith, R. T.

    1981-01-01

    Materials studies as well as general and specific device development were carried out in the InGaAsP system. A comparison was made of three standard methods of evaluating substrate quality by means of dislocation studies. A cause of reduced yield of good wafers, the pullover of melt from one bin to the next, has been analyzed. Difficulties with reproducible zinc acceptor doping have been traced to segregation of zinc in the In/Zn alloy used for the doping source. Using EBIC measurments, the pn junction was shown to drift in location depending on factors not always under control. An analysis of contact structures by SIMS showed that the depth to which the sintered Au/Zn contact penetrates into the structure is typically 0.13 microns, or well within the cap layer and out of the p-type cladding and thus not deleterious to laser prformance. The problem of single-mode laser development was investigated and it was shown to be related to the growth habit over four different possible substrate configurations. The fabrication of constricted double heterojunctions, mesa stripe buried heterostructures, and buried heterostructures was discussed, and measurements were presented on the device properties of single-mode buried heterostructure lasers. Results include single spectral line emission at 3 mW and a threshold current of 60 mA.

  20. Diverse Functionalities of Vertically Stacked Graphene/Single layer n-MoS2/SiO2/p-GaN Heterostructures.

    PubMed

    Perumal, Packiyaraj; Karuppiah, Chelladurai; Liao, Wei-Cheng; Liou, Yi-Rou; Liao, Yu-Ming; Chen, Yang-Fang

    2017-08-30

    Integrating different dimentional materials on vertically stacked p-n hetero-junctions have facinated a considerable scrunity and can open up excellent feasibility with various functionalities in opto-electronic devices. Here, we demonstrate that vertically stacked p-GaN/SiO 2 /n-MoS 2 /Graphene heterostructures enable to exhibit prominent dual opto-electronic characteristics, including efficient photo-detection and light emission, which represents the emergence of a new class of devices. The photoresponsivity was found to achieve as high as ~10.4 AW -1 and the detectivity and external quantum efficiency were estimated to be 1.1 × 10 10 Jones and ~30%, respectively. These values are superier than most reported hererojunction devices. In addition, this device exhibits as a self-powered photodetector, showing a high responsivity and fast response speed. Moreover, the device demonstrates the light emission with low turn-on voltage (~1.0 V) which can be realized by electron injection from graphene electrode and holes from GaN film into monolayer MoS 2 layer. These results indicate that with a suitable choice of band alignment, the vertical stacking of materials with different dimentionalities could be significant potential for integration of highly efficient heterostructures and open up feasible pathways towards integrated nanoscale multi-functional optoelectronic devices for a variety of applications.

  1. A density functional study of the effect of hydrogen on electronic properties and band discontinuity at anatase TiO2/diamond interface

    NASA Astrophysics Data System (ADS)

    Wu, Kongping; Liao, Meiyong; Sang, Liwen; Liu, Jiangwei; Imura, Masataka; Ye, Haitao; Koide, Yasuo

    2018-04-01

    Tailoring the electronic states of the dielectric oxide/diamond interface is critical to the development of next generation semiconductor devices like high-power high-frequency field-effect transistors. In this work, we investigate the electronic states of the TiO2/diamond 2 × 1-(100) interface by using first principles total energy calculations. Based on the calculation of the chemical potentials for the TiO2/diamond interface, it is observed that the hetero-interfaces with the C-OTi configuration or with two O vacancies are the most energetically favorable structures under the O-rich condition and under Ti-rich condition, respectively. The band structure and density of states of both TiO2/diamond and TiO2/H-diamond hetero-structures are calculated. It is revealed that there are considerable interface states at the interface of the anatase TiO2/diamond hetero-structure. By introducing H on the diamond surface, the interface states are significantly suppressed. A type-II alignment band structure is disclosed at the interface of the TiO2/diamond hetero-structure. The valence band offset increases from 0.6 to 1.7 eV when H is introduced at the TiO2/diamond interface.

  2. Electrical spin injection, transport, and detection in graphene-hexagonal boron nitride van der Waals heterostructures: progress and perspectives

    NASA Astrophysics Data System (ADS)

    Gurram, M.; Omar, S.; van Wees, B. J.

    2018-07-01

    The current research in graphene spintronics strives for achieving a long spin lifetime, and efficient spin injection and detection in graphene. In this article, we review how hexagonal boron nitride (hBN) has evolved as a crucial substrate, as an encapsulation layer, and as a tunnel barrier for manipulation and control of spin lifetimes and spin injection/detection polarizations in graphene spin valve devices. First, we give an overview of the challenges due to conventional SiO2/Si substrate for spin transport in graphene followed by the progress made in hBN based graphene heterostructures. Then we discuss in detail the shortcomings and developments in using conventional oxide tunnel barriers for spin injection into graphene followed by introducing the recent advancements in using the crystalline single/bi/tri-layer hBN tunnel barriers for an improved spin injection and detection which also can facilitate two-terminal spin valve and Hanle measurements at room temperature, and are of technological importance. A special case of bias induced spin polarization of contacts with exfoliated and chemical vapour deposition (CVD) grown hBN tunnel barriers is also discussed. Further, we give our perspectives on utilizing graphene-hBN heterostructures for future developments in graphene spintronics.

  3. Interfacial Coupling Effect on Electron Transport in MoS2/SrTiO3 Heterostructure: An Ab-initio Study.

    PubMed

    Bano, Amreen; Gaur, N K

    2018-01-15

    A variety of theoretical and experimental works have reported several potential applications of MoS 2 monolayer based heterostructures (HSs) such as light emitting diodes, photodetectors and field effect transistors etc. In the present work, we have theoretically performed as a model case study, MoS 2 monolayer deposited over insulating SrTiO 3 (001) to study the band alignment at TiO 2 termination. The interfacial characteristics are found to be highly dependent on the interface termination. With an insulating oxide material, a significant band gap (0.85eV) is found in MoS 2 /TiO 2 interface heterostructure (HS). A unique electronic band profile with an indirect band gap (0.67eV) is observed in MoS 2 monolayer when confined in a cubic environment of SrTiO 3 (STO). Adsorption analysis showed the chemisorption of MoS 2 on the surface of STO substrate with TiO 2 termination which is justified by the charge density calculations that shows the existence of covalent bonding at the interface. The fabrication of HS of such materials paves the path for developing the unprecedented 2D materials with exciting properties such as semiconducting devices, thermoelectric and optoelectronic applications.

  4. Gate-Tunable Spin Transport and Giant Electroresistance in Ferromagnetic Graphene Vertical Heterostructures

    PubMed Central

    Myoung, Nojoon; Park, Hee Chul; Lee, Seung Joo

    2016-01-01

    Controlling tunneling properties through graphene vertical heterostructures provides advantages in achieving large conductance modulation which has been known as limitation in lateral graphene device structures. Despite of intensive research on graphene vertical heterosturctures for recent years, the potential of spintronics based on graphene vertical heterostructures remains relatively unexplored. Here, we present an analytical device model for graphene-based spintronics by using ferromagnetic graphene in vertical heterostructures. We consider a normal or ferroelectric insulator as a tunneling layer. The device concept yields a way of controlling spin transport through the vertical heterostructures, resulting in gate-tunable spin-switching phenomena. Also, we revealed that a ‘giant’ resistance emerges through a ferroelectric insulating layer owing to the anti-parallel configuration of ferromagnetic graphene layers by means of electric fields via gate and bias voltages. Our findings discover the prospect of manipulating the spin transport properties in vertical heterostructures without use of magnetic fields. PMID:27126101

  5. Connexin hemichannels mediate glutathione transport and protect lens fiber cells from oxidative stress.

    PubMed

    Shi, Wen; Riquelme, Manuel A; Gu, Sumin; Jiang, Jean X

    2018-03-21

    Elevated oxidized stress contributes to lens cataracts, and gap junctions play important roles in maintaining lens transparency. As well as forming gap junctions, connexin (Cx) proteins also form hemichannels. Here, we report a new mechanism whereby hemichannels mediate transport of reductant glutathione into lens fiber cells and protect cells against oxidative stress. We found that Cx50 (also known as GJA8) hemichannels opened in response to H 2 O 2 in lens fiber cells but that transport through the channels was inhibited by two dominant-negative mutants in Cx50, Cx50P88S, which inhibits transport through both gap junctions and hemichannels, and Cx50H156N, which only inhibits transport through hemichannels and not gap junctions. Treatment with H 2 O 2 increased the number of fiber cells undergoing apoptosis, and this increase was augmented with dominant-negative mutants that disrupted both hemichannels formed from Cx46 (also known as GJA3) and Cx50, while Cx50E48K, which only impairs gap junctions, did not have such an effect. Moreover, hemichannels mediate uptake of glutathione, and this uptake protected lens fiber cells against oxidative stress, while hemichannels with impaired transport had less protective benefit from glutathione. Taken together, these results show that oxidative stress activates connexin hemichannels in the lens fiber cells and that hemichannels likely protect lens cell against oxidative damage through transporting extracellular reductants. © 2018. Published by The Company of Biologists Ltd.

  6. Characterization of Si (sub X)Ge (sub 1-x)/Si Heterostructures for Device Applications Using Spectroscopic Ellipsometry

    NASA Technical Reports Server (NTRS)

    Sieg, R. M.; Alterovitz, S. A.; Croke, E. T.; Harrell, M. J.; Tanner, M.; Wang, K. L.; Mena, R. A.; Young, P. G.

    1993-01-01

    Spectroscopic ellipsometry (SE) characterization of several complex Si (sub X)Ge (sub 1-x)/Si heterostructures prepared for device fabrication, including structures for heterojunction bipolar transistors (HBT), p-type and n-type heterostructure modulation doped field effect transistors, has been performed. We have shown that SE can simultaneously determine all active layer thicknesses, Si (sub X)Ge (sub 1-x) compositions, and the oxide overlayer thickness, with only a general knowledge of the structure topology needed a priori. The characterization of HBT material included the SE analysis of a Si (sub X)Ge (sub 1-x) layer deeply buried (600 nanometers) under the silicon emitter and cap layers. In the SE analysis of n-type heterostructures, we examined for the first time a silicon layer under tensile strain. We found that an excellent fit can be obtained using optical constants of unstrained silicon to represent the strained silicon conduction layer. We also used SE to measure lateral sample homogeneity, providing quantitative identification of the inhomogeneous layer. Surface overlayers resulting from prior sample processing were also detected and measured quantitatively. These results should allow SE to be used extensively as a non-destructive means of characterizing Si (sub X)Ge (sub 1-x)/Si heterostructures prior to device fabrication and testing.

  7. Impact of MoO3 interlayer on the energy level alignment of pentacene-C60 heterostructure.

    PubMed

    Zou, Ye; Mao, Hongying; Meng, Qing; Zhu, Daoben

    2016-02-28

    Using in situ ultraviolet photoelectron spectroscopy, the electronic structure evolutions at the interface between pentacene and fullerene (C60), a classical organic donor-acceptor heterostructure in organic electronic devices, on indium-tin oxide (ITO) and MoO3 modified ITO substrates have been investigated. The insertion of a thin layer MoO3 has a significant impact on the interfacial energy level alignment of pentacene-C60 heterostructure. For the deposition of C60 on pentacene, the energy difference between the highest occupied molecular orbital of donor and the lowest unoccupied molecular orbital of acceptor (HOMO(D)-LUMO(A)) offset of C60/pentacene heterostructure increased from 0.86 eV to 1.54 eV after the insertion of a thin layer MoO3 on ITO. In the inverted heterostructrure where pentacene was deposited on C60, the HOMO(D)-LUMO(A) offset of pentacene/C60 heterostructure increased from 1.32 to 2.20 eV after MoO3 modification on ITO. The significant difference of HOMO(D)-LUMO(A) offset shows the feasibility to optimize organic electronic device performance through interfacial engineering approaches, such as the insertion of a thin layer high work function MoO3 films.

  8. Fluorescent sensing of cocaine based on a structure switching aptamer, gold nanoparticles and graphene oxide.

    PubMed

    Shi, Yan; Dai, Haichao; Sun, Yujing; Hu, Jingting; Ni, Pengjuan; Li, Zhuang

    2013-12-07

    This study demonstrates a cocaine sensing method employing graphene oxide (GO), gold nanoparticles and a structure switching aptamer, which can fold into a three-way junction in the presence of cocaine. On the observation of gold nanoparticles (Au NPs) induced graphene oxide fluorescence quenching, a structure switching aptamer of cocaine was introduced as the linker between the two parts. Firstly, two fragments of a cocaine aptamer were immobilized covalently onto GO and Au NPs, respectively. Then when the three-way junction formed, the Au NPs were drawn near to the GO surface and induced a fluorescence intensity decrease. The limit of detection was 0.1 μM for cocaine in purified water, and well defined results were also obtained in biological fluids and the specificity experiment, which expands the feasibility of the as-prepared sensor for practical applications.

  9. GaN metal-oxide-semiconductor field-effect transistors on AlGaN/GaN heterostructure with recessed gate

    NASA Astrophysics Data System (ADS)

    Wang, Qingpeng; Ao, Jin-Ping; Wang, Pangpang; Jiang, Ying; Li, Liuan; Kawaharada, Kazuya; Liu, Yang

    2015-04-01

    GaN metal-oxide-semiconductor field-effect transistors (MOSFETs) on AlGaN/GaN heterostructure with a recess gate were fabricated and characterized. The device showed good pinch-off characteristics and a maximum field-effect mobility of 145.2 cm2·V-1·s-1. The effects of etching gas of Cl2 and SiCl4 were investigated in the gate recess process. SiCl4-etched devices showed higher channel mobility and lower threshold voltage. Atomic force microscope measurement was done to investigate the etching profile with different etching protection mask. Compared with photoresist, SiO2-masked sample showed lower surface roughness and better profile with stepper sidewall and weaker trenching effect resulting in higher channel mobility in the MOSFET.

  10. Determining oxide trapped charges in Al2O3 insulating films on recessed AlGaN/GaN heterostructures by gate capacitance transients measurements

    NASA Astrophysics Data System (ADS)

    Fiorenza, Patrick; Greco, Giuseppe; Schilirò, Emanuela; Iucolano, Ferdinando; Lo Nigro, Raffaella; Roccaforte, Fabrizio

    2018-05-01

    This letter presents time-dependent gate-capacitance transient measurements (C–t) to determine the oxide trapped charges (N ot) in Al2O3 films deposited on recessed AlGaN/GaN heterostructures. The C–t transients acquired at different temperatures under strong accumulation allowed to accurately monitor the gradual electron trapping, while hindering the re-emission by fast traps that may affect conventional C–V hysteresis measurements. Using this method, an increase of N ot from 2 to 6 × 1012 cm‑2 was estimated between 25 and 150 °C. The electron trapping is ruled by an Arrhenius dependence with an activation energy of 0.12 eV which was associated to points defects present in the Al2O3 films.

  11. Spin electronic magnetic sensor based on functional oxides for medical imaging

    NASA Astrophysics Data System (ADS)

    Solignac, A.; Kurij, G.; Guerrero, R.; Agnus, G.; Maroutian, T.; Fermon, C.; Pannetier-Lecoeur, M.; Lecoeur, Ph.

    2015-09-01

    To detect magnetic signals coming from the body, in particular those produced by the electrical activity of the heart or of the brain, the development of ultrasensitive sensors is required. In this regard, magnetoresistive sensors, stemming from spin electronics, are very promising devices. For example, tunnel magnetoresistance (TMR) junctions based on MgO tunnel barrier have a high sensitivity. Nevertheless, TMR also often have high level of noise. Full spin polarized materials like manganite La0.67Sr0.33MnO3 (LSMO) are attractive alternative candidates to develop such sensors because LSMO exhibits a very low 1/f noise when grown on single crystals, and a TMR response has been observed with values up to 2000%. This kind of tunnel junctions, when combined with a high Tc superconductor loop, opens up possibilities to develop full oxide structures working at liquid nitrogen temperature and suitable for medical imaging. In this work, we investigated on LSMO-based tunnel junctions the parameters controlling the overall system performances, including not only the TMR ratio, but also the pinning of the reference layer and the noise floor. We especially focused on studying the effects of the quality of the barrier, the interface and the electrode, by playing with materials and growth conditions.

  12. Electronic properties and morphology of copper oxide/n-type silicon heterostructures

    NASA Astrophysics Data System (ADS)

    Lindberg, P. F.; Gorantla, S. M.; Gunnæs, A. E.; Svensson, B. G.; Monakhov, E. V.

    2017-08-01

    Silicon-based tandem heterojunction solar cells utilizing cuprous oxide (Cu2O) as the top absorber layer show promise for high-efficiency conversion and low production cost. In the present study, single phase Cu2O films have been realized on n-type Si substrates by reactive magnetron sputtering at 400 °C. The obtained Cu2O/Si heterostructures have subsequently been heat treated at temperatures in the 400-700 °C range in Ar flow and extensively characterized by x-ray diffraction (XRD) measurements, transmission electron microscopy (TEM) imaging and electrical techniques. The Cu2O/Si heterojunction exhibits a current rectification of ~5 orders of magnitude between forward and reverse bias voltages. High resolution cross-sectional TEM-images show the presence of a ~2 nm thick interfacial SiO2 layer between Cu2O and the Si substrate. Heat treatments below 550 °C result in gradual improvement of crystallinity, indicated by XRD. At and above 550 °C, partial phase transition to cupric oxide (CuO) occurs followed by a complete transition at 700 °C. No increase or decrease of the SiO2 layer is observed after the heat treatment at 550 °C. Finally, a thin Cu-silicide layer (Cu3Si) emerges below the SiO2 layer upon annealing at 550 °C. This silicide layer influences the lateral current and voltage distributions, as evidenced by an increasing effective area of the heterojunction diodes.

  13. Morphology induced photo-degradation study of low temperature, chemically derived ZnO/SnO{sub 2} heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, Shreyasi, E-mail: Shreyasi.tua@gamil.com; Maiti, Soumen; Chattopadhyay, Kalyan Kumar, E-mail: kalyan-chattopadhyay@yahoo.com

    2016-05-06

    Rational construction of heterostructure is a key pathway to pursue highly active photocatalysts that also offers prospects to explore the relationship between structural aspect and photocatalytic efficiency. Here, we adopted a two-step wet chemical protocol for decoration of ZnO nanowires with SnO{sub 2} nanoclusters. ZnO nanowires were prepared by one pot ambient conditioned synthesis from commercial zinc powder. In sequence, synthesized ZnO nanowires were engineered with varying quantity SnO{sub 2} nanoclusters via low temperature hydrothermal method. Environmental remediation through catalytic activity of the samples was inspected taking two dyes having different ionic character (Methyl Orange and Rhodamine B) under UVmore » irradiation where the optimized hybrid displayed better performance than mono component oxides. Enhancement in catalytic performance could be enlightened by the heterostructure formation at the ZnO/SnO{sub 2} interface which in turns prolonged photogenerated carrier separation and extend the photo response range. Furthermore, the photocatalysis performance by heterostructure could be recycled for several times without noticeable decrease in their catalytic activity.« less

  14. Symmetry mismatch-driven perpendicular magnetic anisotropy for perovskite/brownmillerite heterostructures.

    PubMed

    Zhang, Jing; Zhong, Zhicheng; Guan, Xiangxiang; Shen, Xi; Zhang, Jine; Han, Furong; Zhang, Hui; Zhang, Hongrui; Yan, Xi; Zhang, Qinghua; Gu, Lin; Hu, Fengxia; Yu, Richeng; Shen, Baogen; Sun, Jirong

    2018-05-15

    Grouping different transition metal oxides together by interface engineering is an important route toward emergent phenomenon. While most of the previous works focused on the interface effects in perovskite/perovskite heterostructures, here we reported on a symmetry mismatch-driven spin reorientation toward perpendicular magnetic anisotropy in perovskite/brownmillerite heterostructures, which is scarcely seen in tensile perovskite/perovskite heterostructures. We show that alternately stacking perovskite La 2/3 Sr 1/3 MnO 3 and brownmillerite LaCoO 2.5 causes a strong interface reconstruction due to symmetry discontinuity at interface: neighboring MnO 6 octahedra and CoO 4 tetrahedra at the perovskite/brownmillerite interface cooperatively relax in a manner that is unavailable for perovskite/perovskite interface, leading to distinct orbital reconstructions and thus the perpendicular magnetic anisotropy. Moreover, the perpendicular magnetic anisotropy is robust, with an anisotropy constant two orders of magnitude greater than the in-plane anisotropy of the perovskite/perovskite interface. The present work demonstrates the great potential of symmetry engineering in designing artificial materials on demand.

  15. Tin monochalcogenide heterostructures as mechanically rigid infrared band gap semiconductors

    NASA Astrophysics Data System (ADS)

    Özçelik, V. Ongun; Fathi, Mohammad; Azadani, Javad G.; Low, Tony

    2018-05-01

    Based on first-principles density functional calculations, we show that SnS and SnSe layers can form mechanically rigid heterostructures with the constituent puckered or buckled monolayers. Due to the strong interlayer coupling, the electronic wave functions of the conduction and valence band edges are delocalized across the heterostructure. The resultant band gaps of the heterostructures reside in the infrared region. With strain engineering, the heterostructure band gap undergoes a transition from indirect to direct in the puckered phase. Our results show that there is a direct correlation between the electronic wave function and the mechanical rigidity of the layered heterostructure.

  16. Visible photoassisted room-temperature oxidizing gas-sensing behavior of Sn2S3 semiconductor sheets through facile thermal annealing.

    PubMed

    Liang, Yuan-Chang; Lung, Tsai-Wen; Wang, Chein-Chung

    2016-12-01

    Well-crystallized Sn 2 S 3 semiconductor thin films with a highly (111)-crystallographic orientation were grown using RF sputtering. The surface morphology of the Sn 2 S 3 thin films exhibited a sheet-like feature. The Sn 2 S 3 crystallites with a sheet-like surface had a sharp periphery with a thickness in a nanoscale size, and the crystallite size ranged from approximately 150 to 300 nm. Postannealing the as-synthesized Sn 2 S 3 thin films further in ambient air at 400 °C engendered roughened and oxidized surfaces on the Sn 2 S 3 thin films. Transmission electron microscopy analysis revealed that the surfaces of the Sn 2 S 3 thin films transformed into a SnO 2 phase, and well-layered Sn 2 S 3 -SnO 2 heterostructure thin films were thus formed. The Sn 2 S 3 -SnO 2 heterostructure thin film exhibited a visible photoassisted room-temperature gas-sensing behavior toward low concentrations of NO 2 gases (0.2-2.5 ppm). By contrast, the pure Sn 2 S 3 thin film exhibited an unapparent room-temperature NO 2 gas-sensing behavior under illumination. The suitable band alignment at the interface of the Sn 2 S 3 -SnO 2 heterostructure thin film and rough surface features might explain the visible photoassisted room-temperature NO 2 gas-sensing responses of the heterostructure thin film on exposure to NO 2 gas at low concentrations in this work.

  17. High-Throughput Design of Two-Dimensional Electron Gas Systems Based on Polar/Nonpolar Perovskite Oxide Heterostructures

    PubMed Central

    Yang, Kesong; Nazir, Safdar; Behtash, Maziar; Cheng, Jianli

    2016-01-01

    The two-dimensional electron gas (2DEG) formed at the interface between two insulating oxides such as LaAlO3 and SrTiO3 (STO) is of fundamental and practical interest because of its novel interfacial conductivity and its promising applications in next-generation nanoelectronic devices. Here we show that a group of combinatorial descriptors that characterize the polar character, lattice mismatch, band gap, and the band alignment between the perovskite-oxide-based band insulators and the STO substrate, can be introduced to realize a high-throughput (HT) design of SrTiO3-based 2DEG systems from perovskite oxide quantum database. Equipped with these combinatorial descriptors, we have carried out a HT screening of all the polar perovskite compounds, uncovering 42 compounds of potential interests. Of these, Al-, Ga-, Sc-, and Ta-based compounds can form a 2DEG with STO, while In-based compounds exhibit a strain-induced strong polarization when deposited on STO substrate. In particular, the Ta-based compounds can form 2DEG with potentially high electron mobility at (TaO2)+/(SrO)0 interface. Our approach, by defining materials descriptors solely based on the bulk materials properties, and by relying on the perovskite-oriented quantum materials repository, opens new avenues for the discovery of perovskite-oxide-based functional interface materials in a HT fashion. PMID:27708415

  18. Effect of lattice mismatch on the magnetic properties of nanometer-thick La0.9Ba0.1MnO3 (LBM) films and LBM/BaTiO3/LBM heterostructures

    NASA Astrophysics Data System (ADS)

    Mirzadeh Vaghefi, P.; Baghizadeh, A.; Willinger, M.; Lourenço, A. A. C. S.; Amaral, V. S.

    2017-12-01

    Oxide multiferroic thin films and heterostructures offer a wide range of properties originated from intrinsic coupling between lattice strain and nanoscale magnetic/electronic ordering. La0.9Ba0.1MnO3 (LBM) thin-films and LBM/BaTiO3/LBM (LBMBT) heterostructures were grown on single crystalline [100] silicon and [0001] Al2O3 using RF magnetron sputtering to study the effect of crystallinity and induced lattice mismatch in the film on magnetic properties of deposited films and heterostructures. The thicknesses of the films on Al2O3 and Si are 70 and 145 nm, respectively, and for heterostructures are 40/30/40 nm on both substrates. The microstructure of the films, state of strain and growth orientations was studied by XRD and microscopy techniques. Interplay of microstructure, strain and magnetic properties is further investigated. It is known that the crystal structure of substrates and imposed tensile strain affect the physical properties; i.e. magnetic behavior of the film. The thin layer grown on Al2O3 substrate shows out-of-plane compressive strain, while Si substrate induces tensile strain on the deposited film. The magnetic transition temperatures (Tc) of the LBM film on the Si and Al2O3 substrates are found to be 195 K and 203 K, respectively, slightly higher than the bulk form, 185 K. The LBMBT heterostructure on Si substrate shows drastic decrease in magnetization due to produced defects created by diffusion of Ti ions into magnetic layer. Meanwhile, the Tc in LBMBTs increases in respect to other studied single layers and heterostructure, because of higher tensile strain induced at the interfaces.

  19. Interface-engineered oxygen octahedral coupling in manganite heterostructures

    NASA Astrophysics Data System (ADS)

    Huijben, M.; Koster, G.; Liao, Z. L.; Rijnders, G.

    2017-12-01

    Control of the oxygen octahedral coupling (OOC) provides a large degree of freedom to manipulate physical phenomena in complex oxide heterostructures. Recently, local tuning of the tilt angle has been found to control the magnetic anisotropy in ultrathin films of manganites and ruthenates, while symmetry control can manipulate the metal insulator transition in nickelate thin films. The required connectivity of the octahedra across the heterostructure interface enforces a geometric constraint to the 3-dimensional octahedral network in epitaxial films. Such geometric constraint will either change the tilt angle to retain the connectivity of the corner shared oxygen octahedral network or guide the formation of a specific symmetry throughout the epitaxial film. Here, we will discuss the control of OOC in manganite heterostructures by interface-engineering. OOC driven magnetic and transport anisotropies have been realized in LSMO/NGO heterostructures. Competition between the interfacial OOC and the strain further away from the interface leads to a thickness driven sharp transition of the anisotropic properties. Furthermore, octahedral relaxation leading to a change of p-d hybridization driven by interfacial OOC appears to be the strongest factor in thickness related variations of magnetic and transport properties in epitaxial LSMO films on NGO substrates. The results unequivocally link the atomic structure near the interfaces to the macroscopic properties. The strong correlation between a controllable oxygen network and the functionalities will have significant impact on both fundamental research and technological application of correlated perovskite heterostructures. By controlling the interfacial OOC, it is possible to pattern in 3 dimensions the magnetization to achieve non-collinear magnetization in both in-plane and out of plane directions, thus making the heterostructures promising for application in orthogonal spin transfer devices, spin oscillators, and low field sensors.

  20. Probing the bulk ionic conductivity by thin film hetero-epitaxial engineering

    NASA Astrophysics Data System (ADS)

    Pergolesi, Daniele; Roddatis, Vladimir; Fabbri, Emiliana; Schneider, Christof W.; Lippert, Thomas; Traversa, Enrico; Kilner, John A.

    2015-02-01

    Highly textured thin films with small grain boundary regions can be used as model systems to directly measure the bulk conductivity of oxygen ion conducting oxides. Ionic conducting thin films and epitaxial heterostructures are also widely used to probe the effect of strain on the oxygen ion migration in oxide materials. For the purpose of these investigations a good lattice matching between the film and the substrate is required to promote the ordered film growth. Moreover, the substrate should be a good electrical insulator at high temperature to allow a reliable electrical characterization of the deposited film. Here we report the fabrication of an epitaxial heterostructure made with a double buffer layer of BaZrO3 and SrTiO3 grown on MgO substrates that fulfills both requirements. Based on such template platform, highly ordered (001) epitaxially oriented thin films of 15% Sm-doped CeO2 and 8 mol% Y2O3 stabilized ZrO2 are grown. Bulk conductivities as well as activation energies are measured for both materials, confirming the success of the approach. The reported insulating template platform promises potential application also for the electrical characterization of other novel electrolyte materials that still need a thorough understanding of their ionic conductivity.

  1. Graphene/h-BN/GaAs sandwich diode as solar cell and photodetector.

    PubMed

    Li, Xiaoqiang; Lin, Shisheng; Lin, Xing; Xu, Zhijuan; Wang, Peng; Zhang, Shengjiao; Zhong, Huikai; Xu, Wenli; Wu, Zhiqian; Fang, Wei

    2016-01-11

    In graphene/semiconductor heterojunction, the statistic charge transfer between graphene and semiconductor leads to decreased junction barrier height and limits the Fermi level tuning effect in graphene, which greatly affects the final performance of the device. In this work, we have designed a sandwich diode for solar cells and photodetectors through inserting 2D hexagonal boron nitride (h-BN) into graphene/GaAs heterostructure to suppress the static charge transfer. The barrier height of graphene/GaAs heterojunction can be increased from 0.88 eV to 1.02 eV by inserting h-BN. Based on the enhanced Fermi level tuning effect with interface h-BN, through adopting photo-induced doping into the device, power conversion efficiency (PCE) of 10.18% has been achieved for graphene/h-BN/GaAs compared with 8.63% of graphene/GaAs structure. The performance of graphene/h-BN/GaAs based photodetector is also improved with on/off ratio increased by one magnitude compared with graphene/GaAs structure.

  2. Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures.

    PubMed

    Lee, Jae Yoon; Shin, Jun-Hwan; Lee, Gwan-Hyoung; Lee, Chul-Ho

    2016-10-27

    Two-dimensional (2D) semiconductors such as transition metal dichalcogenides (TMDCs) and black phosphorous have drawn tremendous attention as an emerging optical material due to their unique and remarkable optical properties. In addition, the ability to create the atomically-controlled van der Waals (vdW) heterostructures enables realizing novel optoelectronic devices that are distinct from conventional bulk counterparts. In this short review, we first present the atomic and electronic structures of 2D semiconducting TMDCs and their exceptional optical properties, and further discuss the fabrication and distinctive features of vdW heterostructures assembled from different kinds of 2D materials with various physical properties. We then focus on reviewing the recent progress on the fabrication of 2D semiconductor optoelectronic devices based on vdW heterostructures including photodetectors, solar cells, and light-emitting devices. Finally, we highlight the perspectives and challenges of optoelectronics based on 2D semiconductor heterostructures.

  3. Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures

    PubMed Central

    Lee, Jae Yoon; Shin, Jun-Hwan; Lee, Gwan-Hyoung; Lee, Chul-Ho

    2016-01-01

    Two-dimensional (2D) semiconductors such as transition metal dichalcogenides (TMDCs) and black phosphorous have drawn tremendous attention as an emerging optical material due to their unique and remarkable optical properties. In addition, the ability to create the atomically-controlled van der Waals (vdW) heterostructures enables realizing novel optoelectronic devices that are distinct from conventional bulk counterparts. In this short review, we first present the atomic and electronic structures of 2D semiconducting TMDCs and their exceptional optical properties, and further discuss the fabrication and distinctive features of vdW heterostructures assembled from different kinds of 2D materials with various physical properties. We then focus on reviewing the recent progress on the fabrication of 2D semiconductor optoelectronic devices based on vdW heterostructures including photodetectors, solar cells, and light-emitting devices. Finally, we highlight the perspectives and challenges of optoelectronics based on 2D semiconductor heterostructures. PMID:28335321

  4. Magneto-Resistance in thin film boron carbides

    NASA Astrophysics Data System (ADS)

    Echeverria, Elena; Luo, Guangfu; Liu, J.; Mei, Wai-Ning; Pasquale, F. L.; Colon Santanta, J.; Dowben, P. A.; Zhang, Le; Kelber, J. A.

    2013-03-01

    Chromium doped semiconducting boron carbide devices were fabricated based on a carborane icosahedra (B10C2H12) precursor via plasma enhanced chemical vapor deposition, and the transition metal atoms found to dope pairwise on adjacent icosahedra site locations. Models spin-polarized electronic structure calculations of the doped semiconducting boron carbides indicate that some transition metal (such as Cr) doped semiconducting boron carbides may act as excellent spin filters when used as the dielectric barrier in a magnetic tunnel junction structure. In the case of chromium doping, there may be considerable enhancements in the magneto-resistance of the heterostructure. To this end, current to voltage curves and magneto-transport measurements were performed in various semiconducting boron carbide both in and out plane. The I-V curves as a function of external magnetic field exhibit strong magnetoresistive effects which are enhanced at liquid Nitrogen temperatures. The mechanism for these effects will be discussed in the context of theoretical calculations.

  5. Scanning transmission X-ray microscopy probe for in situ mechanism study of graphene-oxide-based resistive random access memory.

    PubMed

    Nho, Hyun Woo; Kim, Jong Yun; Wang, Jian; Shin, Hyun-Joon; Choi, Sung-Yool; Yoon, Tae Hyun

    2014-01-01

    Here, an in situ probe for scanning transmission X-ray microscopy (STXM) has been developed and applied to the study of the bipolar resistive switching (BRS) mechanism in an Al/graphene oxide (GO)/Al resistive random access memory (RRAM) device. To perform in situ STXM studies at the C K- and O K-edges, both the RRAM junctions and the I0 junction were fabricated on a single Si3N4 membrane to obtain local XANES spectra at these absorption edges with more delicate I0 normalization. Using this probe combined with the synchrotron-based STXM technique, it was possible to observe unique chemical changes involved in the BRS process of the Al/GO/Al RRAM device. Reversible oxidation and reduction of GO induced by the externally applied bias voltages were observed at the O K-edge XANES feature located at 538.2 eV, which strongly supported the oxygen ion drift model that was recently proposed from ex situ transmission electron microscope studies.

  6. A reversible single-molecule switch based on activated antiaromaticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Xiaodong; Zang, Yaping; Zhu, Liangliang

    Single-molecule electronic devices provide researchers with an unprecedented ability to relate novel physical phenomena to molecular chemical structures. Typically, conjugated aromatic molecular backbones are relied upon to create electronic devices, where the aromaticity of the building blocks is used to enhance conductivity. We capitalize on the classical physical organic chemistry concept of Hückel antiaromaticity by demonstrating a single-molecule switch that exhibits low conductance in the neutral state and, upon electrochemical oxidation, reversibly switches to an antiaromatic high-conducting structure. We form single-molecule devices using the scanning tunneling microscope–based break-junction technique and observe an on/off ratio of ~70 for a thiophenylidene derivativemore » that switches to an antiaromatic state with 6-4-6-p electrons. Through supporting nuclear magnetic resonance measurements, we show that the doubly oxidized core has antiaromatic character and we use density functional theory calculations to rationalize the origin of the high-conductance state for the oxidized single-molecule junction. Together, our work demonstrates how the concept of antiaromaticity can be exploited to create single-molecule devices that are highly conducting.« less

  7. A reversible single-molecule switch based on activated antiaromaticity

    DOE PAGES

    Yin, Xiaodong; Zang, Yaping; Zhu, Liangliang; ...

    2017-10-27

    Single-molecule electronic devices provide researchers with an unprecedented ability to relate novel physical phenomena to molecular chemical structures. Typically, conjugated aromatic molecular backbones are relied upon to create electronic devices, where the aromaticity of the building blocks is used to enhance conductivity. We capitalize on the classical physical organic chemistry concept of Hückel antiaromaticity by demonstrating a single-molecule switch that exhibits low conductance in the neutral state and, upon electrochemical oxidation, reversibly switches to an antiaromatic high-conducting structure. We form single-molecule devices using the scanning tunneling microscope–based break-junction technique and observe an on/off ratio of ~70 for a thiophenylidene derivativemore » that switches to an antiaromatic state with 6-4-6-p electrons. Through supporting nuclear magnetic resonance measurements, we show that the doubly oxidized core has antiaromatic character and we use density functional theory calculations to rationalize the origin of the high-conductance state for the oxidized single-molecule junction. Together, our work demonstrates how the concept of antiaromaticity can be exploited to create single-molecule devices that are highly conducting.« less

  8. In situ formation of a ZnO/ZnSe nanonail array as a photoelectrode for enhanced photoelectrochemical water oxidation performance

    NASA Astrophysics Data System (ADS)

    Wang, Liyang; Tian, Guohui; Chen, Yajie; Xiao, Yuting; Fu, Honggang

    2016-04-01

    In this study, a ZnO/ZnSe nanonail array was prepared via a two-step sequential hydrothermal synthetic route. In this synthetic process, the ZnO nanorod array was first grown on a fluorine-doped tin oxide (FTO) substrate using a seed-mediated growth approach via the hydrothermal process. Then, the ZnO nanonail array was obtained via in situ growth of ZnSe nano caps onto the ZnO nanorod array via a hydrothermal process in the presence of a Se source. The surface morphology and amount of ZnSe grown on the surface of the ZnO nanorods can be regulated by varying the reaction time and reactant concentration. Compared with pure ZnO nanorods, this unique nanonail array heterostructure exhibits enhanced visible light absorption. The transient photocurrent condition, in combination with steady-state and time-resolved photoluminescence spectroscopy, reveals that the ZnO/ZnSe nanonail array electrode has the highest charge separation rate, highest electron injection efficiency, and highest chemical stability. The photocurrent density of the ZnO/ZnSe nanonail array heterostructure reaches 1.01 mA cm-2 at an applied potential of 0.1 V (vs. Ag/AgCl), which is much higher than that of the ZnO/ZnSe nanorod array (0.71 mA cm-2), the pristine ZnO nanorod array (0.39 mA cm-2), and the ZnSe electrode (0.21 mA cm-2), indicating its significant visible light driven activities for photoelectrochemical water oxidation. This unique morphology of nail-capped nanorods might be important for providing better insight into the correlation between heterostructure and photoelectrochemical activity.In this study, a ZnO/ZnSe nanonail array was prepared via a two-step sequential hydrothermal synthetic route. In this synthetic process, the ZnO nanorod array was first grown on a fluorine-doped tin oxide (FTO) substrate using a seed-mediated growth approach via the hydrothermal process. Then, the ZnO nanonail array was obtained via in situ growth of ZnSe nano caps onto the ZnO nanorod array via a hydrothermal process in the presence of a Se source. The surface morphology and amount of ZnSe grown on the surface of the ZnO nanorods can be regulated by varying the reaction time and reactant concentration. Compared with pure ZnO nanorods, this unique nanonail array heterostructure exhibits enhanced visible light absorption. The transient photocurrent condition, in combination with steady-state and time-resolved photoluminescence spectroscopy, reveals that the ZnO/ZnSe nanonail array electrode has the highest charge separation rate, highest electron injection efficiency, and highest chemical stability. The photocurrent density of the ZnO/ZnSe nanonail array heterostructure reaches 1.01 mA cm-2 at an applied potential of 0.1 V (vs. Ag/AgCl), which is much higher than that of the ZnO/ZnSe nanorod array (0.71 mA cm-2), the pristine ZnO nanorod array (0.39 mA cm-2), and the ZnSe electrode (0.21 mA cm-2), indicating its significant visible light driven activities for photoelectrochemical water oxidation. This unique morphology of nail-capped nanorods might be important for providing better insight into the correlation between heterostructure and photoelectrochemical activity. Electronic supplementary information (ESI) available: SEM, EDS, XPS and photocurrent test. See DOI: 10.1039/c6nr01969b

  9. Study of phase-locked diode laser array and DFB/DBR surface emitting laser diode

    NASA Astrophysics Data System (ADS)

    Hsin, Wei

    New types of phased-array and surface-emitting lasers are designed. The importance and approaches (or structures) of different phased array and surface emitting laser diodes are reviewed. The following are described: (1) a large optical cavity channel substrate planar laser array with layer thickness chirping; (2) a vertical cavity surface emitter with distributed feedback (DFB) optical cavity and a transverse junction buried heterostructure; (3) a microcavity distributed Bragg reflector (DBR) surface emitter; and (4) two surface emitting laser structures which utilized lateral current injection schemes to overcome the problems occurring in the vertical injection scheme.

  10. Polarization-induced Zener tunnel junctions in wide-band-gap heterostructures.

    PubMed

    Simon, John; Zhang, Ze; Goodman, Kevin; Xing, Huili; Kosel, Thomas; Fay, Patrick; Jena, Debdeep

    2009-07-10

    The large electronic polarization in III-V nitrides allows for novel physics not possible in other semiconductor families. In this work, interband Zener tunneling in wide-band-gap GaN heterojunctions is demonstrated by using polarization-induced electric fields. The resulting tunnel diodes are more conductive under reverse bias, which has applications for zero-bias rectification and mm-wave imaging. Since interband tunneling is traditionally prohibitive in wide-band-gap semiconductors, these polarization-induced structures and their variants can enable a number of devices such as multijunction solar cells that can operate under elevated temperatures and high fields.

  11. Ab initio Design of Noncentrosymmetric Metals: Crystal Engineering in Oxide Heterostructures

    DTIC Science & Technology

    2015-07-29

    electronic, magnetic, and optical properties of these materials are reported. Where available the experimental studies of these systems through...RevModPhys.86.1189 James M. Rondinelli, Emmanouil Kioupakis. Predicting and Designing Optical Properties of Inorganic Materials , Annual Review of Materials ...Advances in oxide materials : Preparation, properties , performance, at University of California, Santa Barbara California, USA (August 28, 2014

  12. Epitaxial Growth of Intermetallic MnPt Films on Oxides and Large Exchange Bias

    DOE PAGES

    Liu, Zhiqi; Biegalski, Michael D; Hsu, Mr. S. L.; ...

    2015-11-05

    We achieved a high-quality epitaxial growth of inter­metallic MnPt films on oxides, with potential for multiferroic heterostructure applications. Also, antisite-stabilized spin-flipping induces ferromagnetism in MnPt films, although it is robustly antiferromagnetic in bulk. Moreover, highly ordered antiferromagnetic MnPt films exhibit superiorly large exchange coupling with a ferromagnetic layer.

  13. Van der Waals epitaxy of functional MoO{sub 2} film on mica for flexible electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Chun-Hao; Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan; Lin, Jheng-Cyuan

    Flexible electronics have a great potential to impact consumer electronics and with that our daily life. Currently, no direct growth of epitaxial functional oxides on commercially available flexible substrates is possible. In this study, in order to address this challenge, muscovite, a common layered oxide, is used as a flexible substrate that is chemically similar to typical functional oxides. We fabricated epitaxial MoO{sub 2} films on muscovite via pulsed laser deposition technique. A combination of X-ray diffraction and transmission electron microscopy confirms van der Waals epitaxy of the heterostructures. The electrical transport properties of MoO{sub 2} films are similar tomore » those of the bulk. Flexible or free-standing MoO{sub 2} thin film can be obtained and serve as a template to integrate additional functional oxide layers. Our study demonstrates a remarkable concept to create flexible electronics based on functional oxides.« less

  14. Catalytic growth of vertically aligned SnS/SnS2 p-n heterojunctions

    NASA Astrophysics Data System (ADS)

    Degrauw, Aaron; Armstrong, Rebekka; Rahman, Ajara A.; Ogle, Jonathan; Whittaker-Brooks, Luisa

    2017-09-01

    Nanowire arrays of SnS/SnS2 p-n heterojunctions are grown on transparent indium tin oxide (ITO) coated-glass and Si/SiO2 substrates via chemical vapor transport (CVT). The nanowire arrays are comprised of individual SnS/SnS2 heterostructures that are highly oriented with their lengths and morphologies controlled by the CVT conditions (i.e. reaction temperature, flow rate, and reaction time). The growth and optoelectronic characterization of these well-defined SnS/SnS2 p-n heterostructures pave the way for the fabrication of highly efficient solar cell devices.

  15. Optical and electrical properties of colloidal (spherical Au)-(spinel ferrite nanorod) heterostructures

    NASA Astrophysics Data System (ADS)

    George, Chandramohan; Genovese, Alessandro; Qiao, Fen; Korobchevskaya, Kseniya; Comin, Alberto; Falqui, Andrea; Marras, Sergio; Roig, Anna; Zhang, Yang; Krahne, Roman; Manna, Liberato

    2011-11-01

    We report here a simple synthetic route to Au-FexOy heterostructures in which spinel ferrite (FexOy) grows as a nanorod on a spherical gold (Au) seed. The large red shift in the plasmon resonance in the heterostructures could be explained by a dielectric effect (although we could not entirely exclude a contribution due to electron transfer from Au to defect states at the Au-FexOy interface), while the magnetic properties of the Au-FexOy heterostructures were basically the same as those of the corresponding nanocrystals after Au leaching. In films of Au-FexOy heterostructures the electrical conductivity appeared to be mediated by the Au domains.We report here a simple synthetic route to Au-FexOy heterostructures in which spinel ferrite (FexOy) grows as a nanorod on a spherical gold (Au) seed. The large red shift in the plasmon resonance in the heterostructures could be explained by a dielectric effect (although we could not entirely exclude a contribution due to electron transfer from Au to defect states at the Au-FexOy interface), while the magnetic properties of the Au-FexOy heterostructures were basically the same as those of the corresponding nanocrystals after Au leaching. In films of Au-FexOy heterostructures the electrical conductivity appeared to be mediated by the Au domains. Electronic supplementary information (ESI) available: TEM/HRTEM images of (i) aliquots at the earliest stages of the growth of Au-FexOy HSs; (ii) Au-FexOy HSs synthesized at low DDAB concentrations; (iii) spherical iron oxide nanocrystals synthesized under the same conditions as the HSs, but in the absence of Au seeds; (iv) Au-FexOy urchin like nanostructures, also after attempts to leach out Au; (v) Au-FexOy HSs after treatment with hydrazine; (vi) FexOy HSs after Au leaching from Au-FexOy HSs; additional optical absorption spectra; additional I-V curves, also from films made of Au-FexOy dumbbells; and additional SEM images; vii) X-ray diffraction (XRD) pattern of a sample of Au-FexOy HSs. See DOI: 10.1039/c1nr10768b

  16. Significantly enhanced photocatalytic activity of visible light responsive AgBr/Bi2Sn2O7 heterostructured composites

    NASA Astrophysics Data System (ADS)

    Hu, Chaohao; Zhuang, Jing; Zhong, Liansheng; Zhong, Yan; Wang, Dianhui; Zhou, Huaiying

    2017-12-01

    Heterostructured AgBr/Bi2Sn2O7 photocatalysts were synthesized successfully via the ultrasonic-assisted chemical precipitation method. XRD, FT-IR, FE-SEM, TEM, XPS, UV-vis-DRS and PL spectroscopy were used to characterize the phase structure, morphology, chemical composition, oxidation state, and optical properties of AgBr/Bi2Sn2O7 heterojunction. The photocatalytic activity of as-prepared catalysts was evaluated by the degradation of RhB under visible light irradiation. The obtained AgBr/Bi2Sn2O7 composite with the 1:1 molar ratio exhibited significantly enhanced photocatalytic performance. Further first-principles calculations indicated that the hybridization interaction between Ag and O atoms at AgBr/Bi2Sn2O7 interface is expected to be beneficial for enhancing the charge transfer and improving the photocatalytic activity of heterostructured composites.

  17. A comparative study of heterostructured CuO/CuWO4 nanowires and thin films

    NASA Astrophysics Data System (ADS)

    Polyakov, Boris; Kuzmin, Alexei; Vlassov, Sergei; Butanovs, Edgars; Zideluns, Janis; Butikova, Jelena; Kalendarev, Robert; Zubkins, Martins

    2017-12-01

    A comparative study of heterostructured CuO/CuWO4 core/shell nanowires and double-layer thin films was performed through X-ray diffraction, confocal micro-Raman spectroscopy and electron (SEM and TEM) microscopies. The heterostructures were produced using a two-step process, starting from a deposition of amorphous WO3 layer on top of CuO nanowires and thin films by reactive DC magnetron sputtering and followed by annealing at 650 °C in air. The second step induced a solid-state reaction between CuO and WO3 oxides through a thermal diffusion process, revealed by SEM-EDX analysis. Morphology evolution of core/shell nanowires and double-layer thin films upon heating was studied by electron (SEM and TEM) microscopies. A formation of CuWO4 phase was confirmed by X-ray diffraction and confocal micro-Raman spectroscopy.

  18. Tuning metal-insulator behavior in LaTiO3/SrTiO3 heterostructures integrated directly on Si(100) through control of atomic layer thickness

    NASA Astrophysics Data System (ADS)

    Ahmadi-Majlan, Kamyar; Chen, Tongjie; Lim, Zheng Hui; Conlin, Patrick; Hensley, Ricky; Chrysler, Matthew; Su, Dong; Chen, Hanghui; Kumah, Divine P.; Ngai, Joseph H.

    2018-05-01

    We present electrical and structural characterization of epitaxial LaTiO3/SrTiO3 heterostructures integrated directly on Si(100). By reducing the thicknesses of the heterostructures, an enhancement in carrier-carrier scattering is observed in the Fermi liquid behavior, followed by a metal to insulator transition in the electrical transport. The insulating behavior is described by activated transport, and its onset occurs near an occupation of 1 electron per Ti site within the SrTiO3, providing evidence for a Mott driven transition. We also discuss the role that structure and gradients in strain could play in enhancing the carrier density. The manipulation of Mott metal-insulator behavior in oxides grown directly on Si opens the pathway to harnessing strongly correlated phenomena in device technologies.

  19. Tuning metal-insulator behavior in LaTiO 3/SrTiO 3 heterostructures integrated directly on Si(100) through control of atomic layer thickness

    DOE PAGES

    Ahmadi-Majlan, Kamyar; Chen, Tongjie; Lim, Zheng Hui; ...

    2018-05-07

    Here, we present electrical and structural characterization of epitaxial LaTiO 3/SrTiO 3 heterostructures integrated directly on Si(100). By reducing the thicknesses of the heterostructures, an enhancement in carrier-carrier scattering is observed in the Fermi liquid behavior, followed by a metal to insulator transition in the electrical transport. The insulating behavior is described by activated transport, and its onset occurs near 1 electron per Ti occupation within the SrTiO 3 well, providing evidence for a Mott driven transition. We also discuss the role that structure and gradients in strain could play in enhancing the carrier density. The manipulation of Mott metal-insulatormore » behavior in oxides grown directly on Si opens the pathway to harnessing strongly correlated phenomena in device technologies.« less

  20. Tuning metal-insulator behavior in LaTiO 3/SrTiO 3 heterostructures integrated directly on Si(100) through control of atomic layer thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmadi-Majlan, Kamyar; Chen, Tongjie; Lim, Zheng Hui

    Here, we present electrical and structural characterization of epitaxial LaTiO 3/SrTiO 3 heterostructures integrated directly on Si(100). By reducing the thicknesses of the heterostructures, an enhancement in carrier-carrier scattering is observed in the Fermi liquid behavior, followed by a metal to insulator transition in the electrical transport. The insulating behavior is described by activated transport, and its onset occurs near 1 electron per Ti occupation within the SrTiO 3 well, providing evidence for a Mott driven transition. We also discuss the role that structure and gradients in strain could play in enhancing the carrier density. The manipulation of Mott metal-insulatormore » behavior in oxides grown directly on Si opens the pathway to harnessing strongly correlated phenomena in device technologies.« less

  1. Superconductivity and tunneling-junctions in epitaxial Nb2N/AlN/GaN heterojunctions

    NASA Astrophysics Data System (ADS)

    Yan, Rusen; Han, Yimo; Khalsa, Guru; Vishwanath, Suresh; Katzer, Scott; Nepal, Neeraj; Downey, Brian; Muller, David; Meyer, David; Xing, Grace; Jena, Debdeep; ECE Collaboration; AEP Collaboration; MSE Collaboration; NRL Collaboration

    We have discovered that ultrathin highly crystalline Nb2N layers grown epitaxially (by MBE) on SiC and integrated with AlN and GaN heterostructures are high-quality superconductors with transition temperatures from 9-13 K. The out-of-plane critical magnetic fields are found to be 14 Tesla range, and the critical current density is 4*1E5 A/cm2 at 5 K. Preliminary in-plane magnetotransport measurements on 4 nm thin films indicate a significantly high critical magnetic field exceeding 40 T. Since Nb2N superconducting layers can be epitaxially integrated with GaN, AlN, and AlGaN, we also demonstrate Nb2N superconductivity in a layer located beneath an N-polar GaN high-electron-mobility transistor (HEMT) heterostructure that uses a 2DEG channel as a microwave amplifier; such a demonstration illustrates the potential emergence of a new paradigm where an all-epitaxial III-N/Nb2N platform could serve as the basis for microwave qubits to power quantum computation as well as quantum communications.

  2. Nanoscale Electrostructural Characterization of Compositionally Graded Al(x)Ga(1-x)N Heterostructures on GaN/Sapphire (0001) Substrate.

    PubMed

    Kuchuk, Andrian V; Lytvyn, Petro M; Li, Chen; Stanchu, Hryhorii V; Mazur, Yuriy I; Ware, Morgan E; Benamara, Mourad; Ratajczak, Renata; Dorogan, Vitaliy; Kladko, Vasyl P; Belyaev, Alexander E; Salamo, Gregory G

    2015-10-21

    We report on AlxGa1-xN heterostructures resulting from the coherent growth of a positive then a negative gradient of the Al concentration on a [0001]-oriented GaN substrate. These polarization-doped p-n junction structures were characterized at the nanoscale by a combination of averaging as well as depth-resolved experimental techniques including: cross-sectional transmission electron microscopy, high-resolution X-ray diffraction, Rutherford backscattering spectrometry, and scanning probe microscopy. We observed that a small miscut in the substrate orientation along with the accumulated strain during growth led to a change in the mosaic structure of the AlxGa1-xN film, resulting in the formation of macrosteps on the surface. Moreover, we found a lateral modulation of charge carriers on the surface which were directly correlated with these steps. Finally, using nanoscale probes of the charge density in cross sections of the samples, we have directly measured, semiquantitatively, both n- and p-type polarization doping resulting from the gradient concentration of the AlxGa1-xN layers.

  3. Rational growth of branched nanowire heterostructures with synthetically encoded properties and function

    PubMed Central

    Jiang, Xiaocheng; Tian, Bozhi; Xiang, Jie; Qian, Fang; Zheng, Gengfeng; Wang, Hongtao; Mai, Liqiang; Lieber, Charles M.

    2011-01-01

    Branched nanostructures represent unique, 3D building blocks for the “bottom-up” paradigm of nanoscale science and technology. Here, we report a rational, multistep approach toward the general synthesis of 3D branched nanowire (NW) heterostructures. Single-crystalline semiconductor, including groups IV, III–V, and II–VI, and metal branches have been selectively grown on core or core/shell NW backbones, with the composition, morphology, and doping of core (core/shell) NWs and branch NWs well controlled during synthesis. Measurements made on the different composition branched NW structures demonstrate encoding of functional p-type/n-type diodes and light-emitting diodes (LEDs) as well as field effect transistors with device function localized at the branch/backbone NW junctions. In addition, multibranch/backbone NW structures were synthesized and used to demonstrate capability to create addressable nanoscale LED arrays, logic circuits, and biological sensors. Our work demonstrates a previously undescribed level of structural and functional complexity in NW materials, and more generally, highlights the potential of bottom-up synthesis to yield increasingly complex functional systems in the future. PMID:21730174

  4. Electrically Tunable and Negative Schottky Barriers in Multi-layered Graphene/MoS2 Heterostructured Transistors.

    PubMed

    Qiu, Dongri; Kim, Eun Kyu

    2015-09-03

    We fabricated multi-layered graphene/MoS2 heterostructured devices by positioning mechanically exfoliated bulk graphite and single-crystalline 2H-MoS2 onto Au metal pads on a SiO2/Si substrate via a contamination-free dry transfer technique. We also studied the electrical transport properties of Au/MoS2 junction devices for systematic comparison. A previous work has demonstrated the existence of a positive Schottky barrier height (SBH) in the metal/MoS2 system. However, analysis of the SBH indicates that the contacts of the multi-layered graphene/MoS2 have tunable negative barriers in the range of 300 to -46 meV as a function of gate voltage. It is hypothesized that this tunable SBH is responsible for the modulation of the work function of the thick graphene in these devices. Despite the large number of graphene layers, it is possible to form ohmic contacts, which will provide new opportunities for the engineering of highly efficient contacts in flexible electronics and photonics.

  5. Electrically Tunable and Negative Schottky Barriers in Multi-layered Graphene/MoS2 Heterostructured Transistors

    NASA Astrophysics Data System (ADS)

    Qiu, Dongri; Kim, Eun Kyu

    2015-09-01

    We fabricated multi-layered graphene/MoS2 heterostructured devices by positioning mechanically exfoliated bulk graphite and single-crystalline 2H-MoS2 onto Au metal pads on a SiO2/Si substrate via a contamination-free dry transfer technique. We also studied the electrical transport properties of Au/MoS2 junction devices for systematic comparison. A previous work has demonstrated the existence of a positive Schottky barrier height (SBH) in the metal/MoS2 system. However, analysis of the SBH indicates that the contacts of the multi-layered graphene/MoS2 have tunable negative barriers in the range of 300 to -46 meV as a function of gate voltage. It is hypothesized that this tunable SBH is responsible for the modulation of the work function of the thick graphene in these devices. Despite the large number of graphene layers, it is possible to form ohmic contacts, which will provide new opportunities for the engineering of highly efficient contacts in flexible electronics and photonics.

  6. The electrical properties of n-ZnO/p-SnO heterojunction diodes

    NASA Astrophysics Data System (ADS)

    Javaid, K.; Xie, Y. F.; Luo, H.; Wang, M.; Zhang, H. L.; Gao, J. H.; Zhuge, F.; Liang, L. Y.; Cao, H. T.

    2016-09-01

    In the present work, n-type zinc oxide (ZnO) and p-type tin monoxide (SnO) based heterostructure diodes were fabricated on an indium-tin-oxide glass using the radio frequency magnetron sputtering technique. The prepared ZnO/SnO diodes exhibited a typical rectifying behavior, with a forward to reverse current ratio about 500 ± 5 at 2 V and turn on voltage around 1.6 V. The built-in voltage of the diode was extracted to be 0.5 V based on the capacitance-voltage (C-V) measurement. The valence and conduction band offsets were deliberated through the band energy diagram of ZnO/SnO heterojunction, as 1.08 eV and 0.41 eV, respectively. The potential barrier-dependent carrier transportation mechanism across the space charge region was also investigated.

  7. Multilayer heterostructures and their manufacture

    DOEpatents

    Hammond, Scott R; Reese, Matthew; Rupert, Benjamin; Miedaner, Alexander; Curtis, Clavin; Olson, Dana; Ginley, David S

    2015-11-04

    A method of synthesizing multilayer heterostructures including an inorganic oxide layer residing on a solid substrate is described. Exemplary embodiments include producing an inorganic oxide layer on a solid substrate by a liquid coating process under relatively mild conditions. The relatively mild conditions include temperatures below 225.degree. C. and pressures above 9.4 mb. In an exemplary embodiment, a solution of diethyl aluminum ethoxide in anhydrous diglyme is applied to a flexible solid substrate by slot-die coating at ambient atmospheric pressure, and the diglyme removed by evaporation. An AlO.sub.x layer is formed by subjecting material remaining on the solid substrate to a relatively mild oven temperature of approximately 150.degree. C. The resulting AlO.sub.x layer exhibits relatively high light transmittance and relatively low vapor transmission rates for water. An exemplary embodiment of a flexible solid substrate is polyethylene napthalate (PEN). The PEN is not substantially adversely affected by exposure to 150.degree. C

  8. Atomically Precise Interfaces from Non-stoichiometric Deposition

    NASA Astrophysics Data System (ADS)

    Nie, Yuefeng; Zhu, Ye; Lee, Che-Hui; Kourkoutis, Lena; Mundy, Julia; Junquera, Javier; Ghosez, Philippe; Baek, David; Sung, Suk Hyun; Xi, Xiaoxing; Shen, Kyle; Muller, David; Schlom, Darrell

    2015-03-01

    Complex oxide heterostructures display some of the most chemically abrupt, atomically precise interfaces, which is advantageous when constructing new interface phases with emergent properties by juxtaposing incompatible ground states. One might assume that atomically precise interfaces result from stoichiometric growth. Here we show that the most precise control is, however, obtained by using deliberate and specific non-stoichiometric growth conditions. For the precise growth of Srn+1TinO3n+1 Ruddlesden-Popper (RP) phases, stoichiometric deposition leads to the loss of the first RP rock-salt double layer, but growing with a strontium-rich surface layer restores the bulk stoichiometry and ordering of the subsurface RP structure. Our results dramatically expand the materials that can be prepared in epitaxial heterostructures with precise interface control--from just the n = 1 end members (perovskites) to the entire RP homologous series--enabling the exploration of novel quantum phenomena at a richer variety of oxide interfaces.

  9. Atomically precise interfaces from non-stoichiometric deposition

    NASA Astrophysics Data System (ADS)

    Nie, Y. F.; Zhu, Y.; Lee, C.-H.; Kourkoutis, L. F.; Mundy, J. A.; Junquera, J.; Ghosez, Ph.; Baek, D. J.; Sung, S.; Xi, X. X.; Shen, K. M.; Muller, D. A.; Schlom, D. G.

    2014-08-01

    Complex oxide heterostructures display some of the most chemically abrupt, atomically precise interfaces, which is advantageous when constructing new interface phases with emergent properties by juxtaposing incompatible ground states. One might assume that atomically precise interfaces result from stoichiometric growth. Here we show that the most precise control is, however, obtained by using deliberate and specific non-stoichiometric growth conditions. For the precise growth of Srn+1TinOn+1 Ruddlesden-Popper (RP) phases, stoichiometric deposition leads to the loss of the first RP rock-salt double layer, but growing with a strontium-rich surface layer restores the bulk stoichiometry and ordering of the subsurface RP structure. Our results dramatically expand the materials that can be prepared in epitaxial heterostructures with precise interface control—from just the n=∞ end members (perovskites) to the entire RP homologous series—enabling the exploration of novel quantum phenomena at a richer variety of oxide interfaces.

  10. Electromagnetic properties of thin-film transformer-coupled superconducting tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finnegan, T.F.; Lacquaniti, V.; Vaglio, R.

    1981-09-01

    Multisection superconducting microstrip transformers with designed output impedances below 0.1 ..cap omega.. have been fabricated via precise photolithographic techniques to investigate the electromagnetic properties of Nb-Nb oxide-Pb tunnel junctions. The low-impedance transformer sections incorporate a rf sputtered thin-film Ta-oxide dielectric, and the reproducible external coupling achievable with this type of geometry makes possible the systematic investigation of electromagnetic device parameters as a function of tunneling oxide thickness.

  11. Development of High Temperature Superconducting Josephson Junction Device Technology

    DTIC Science & Technology

    1998-07-09

    neodymium gallate , cerium oxide-buffered sapphire, and lanthanum aluminate, are not ideal for an in situ thallium cuprate junction technology. Moreover...determined that the standard HTS substrates, neodymium gallate , cerium oxide-buffered sapphire, and lanthanum aluminate, are not ideal for an in situ...2.2.1. Deposition Uniformity 10 2.2.2. Radiative Element 12 2.3. SUBSTRATES 13 2.3.1. Neodymium gallate 14 2.3.2. Cerium Oxide-Buffered Sapphire 16

  12. Compound Semiconductors for Low-Power p-Channel Field-Effect Transistors

    DTIC Science & Technology

    2009-07-01

    making III–V FETs has been different than for silicon FETs. Growth techniques such as molecular beam epitaxy (MBE) are used to create heterostructures in...lities for III–V compounds. This article reviews the recent work to enhance hole mobilities in antimonide-based quantum wells. Epitaxial heterostructures...article reviews the recent work to enhance hole mobilities in antimonide-based quantum wells. Epitaxial heterostructures have been grown with the channel

  13. Reactive metal-oxide interfaces: A microscopic view

    NASA Astrophysics Data System (ADS)

    Picone, A.; Riva, M.; Brambilla, A.; Calloni, A.; Bussetti, G.; Finazzi, M.; Ciccacci, F.; Duò, L.

    2016-03-01

    Metal-oxide interfaces play a fundamental role in determining the functional properties of artificial layered heterostructures, which are at the root of present and future technological applications. Magnetic exchange and magnetoelectric coupling, spin filtering, metal passivation, catalytic activity of oxide-supported nano-particles are just few examples of physical and chemical processes arising at metal-oxide hybrid systems, readily exploited in working devices. These phenomena are strictly correlated with the chemical and structural characteristics of the metal-oxide interfacial region, making a thorough understanding of the atomistic mechanisms responsible of its formation a prerequisite in order to tailor the device properties. The steep compositional gradient established upon formation of metal-oxide heterostructures drives strong chemical interactions at the interface, making the metal-oxide boundary region a complex system to treat, both from an experimental and a theoretical point of view. However, once properly mastered, interfacial chemical interactions offer a further degree of freedom for tuning the material properties. The goal of the present review is to provide a summary of the latest achievements in the understanding of metal/oxide and oxide/metal layered systems characterized by reactive interfaces. The influence of the interface composition on the structural, electronic and magnetic properties will be highlighted. Particular emphasis will be devoted to the discussion of ultra-thin epitaxial oxides stabilized on highly oxidizable metals, which have been rarely exploited as oxide supports as compared to the much more widespread noble and quasi noble metallic substrates. In this frame, an extensive discussion is devoted to the microscopic characterization of interfaces between epitaxial metal oxides and the Fe(001) substrate, regarded from the one hand as a prototypical ferromagnetic material and from the other hand as a highly oxidizable metal.

  14. Electron trapping in the photo-induced conductivity decay in GaAs/SnO2 heterostructure

    NASA Astrophysics Data System (ADS)

    de Freitas Bueno, Cristina; de Andrade Scalvi, Luis Vicente

    2018-06-01

    The decay of photo-induced conductivity is measured for GaAs/SnO2 heterostructure, after illumination with appropriate wavelength. The top oxide layer is deposited by sol-gel-dip-coating and doped with Eu3+, and the GaAs bottom layer is deposited by resistive evaporation. It shows quite unusual behavior since the decay rate gets slower as the temperature is raised. The trapping by intrabandgap defects in the SnO2 top layer is expected, but a GaAs/SnO2 interface arrest becomes also evident, mainly for temperatures below 100 K. Concerning the SnO2 layer, trapping by different defects is possible, due to the observed distinct capture time range. Besides Eu3+ centers and oxygen vacancies, this sort of heterostructure also leads to Eu3+ agglomerate areas in the SnO2 top layer surface, which may contribute for electron scattering. The electrical behavior reported here aims to contribute for the understanding of the electrical transport mechanisms which, combined with emission from Eu3+ ions from the top layer of the heterostructure, opens new possibilities for optoelectronic devices because samples in the form of films are desirable for circuit integration. The modeling of the photo-induced decay data yields the capture barrier in the range 620-660 meV, and contributes for the defect rules on the electrical properties of this heterostructure.

  15. Molecular-beam epitaxy of 7-8 μm range quantum-cascade laser heterostructures

    NASA Astrophysics Data System (ADS)

    Babichev, A. V.; Denisov, D. V.; Filimonov, A. V.; Nevedomsky, V. N.; Kurochkin, A. S.; Gladyshev, A. G.; Karachinsky, L. Ya; Sokolovskii, G. S.; Novikov, I. I.; Bousseksou, A.; Egorov, A. Yu

    2017-11-01

    The method of molecular beam epitaxy demonstrates the possibility to create high quality heterostructures of quantum cascade lasers in a spectral range of 7-8 μm containing 50 quantum cascades in an active region. Design based on the principle of two-phonon resonant scattering is used. X-ray diffraction and transmission electron microscopy experiments confirm high structural properties of the created heterostructures, e.g. the identity of the composition and thickness of epitaxial layers in all 50 cascades. Edge-emitting lasers based on the grown heterostructure demonstrate lasing with threshold current density of 2.8 kA/cm2 at a temperature of 78 K.

  16. Calcium Channels and Oxidative Stress Mediate a Synergistic Disruption of Tight Junctions by Ethanol and Acetaldehyde in Caco-2 Cell Monolayers.

    PubMed

    Samak, Geetha; Gangwar, Ruchika; Meena, Avtar S; Rao, Roshan G; Shukla, Pradeep K; Manda, Bhargavi; Narayanan, Damodaran; Jaggar, Jonathan H; Rao, RadhaKrishna

    2016-12-13

    Ethanol is metabolized into acetaldehyde in most tissues. In this study, we investigated the synergistic effect of ethanol and acetaldehyde on the tight junction integrity in Caco-2 cell monolayers. Expression of alcohol dehydrogenase sensitized Caco-2 cells to ethanol-induced tight junction disruption and barrier dysfunction, whereas aldehyde dehydrogenase attenuated acetaldehyde-induced tight junction disruption. Ethanol up to 150 mM did not affect tight junction integrity or barrier function, but it dose-dependently increased acetaldehyde-mediated tight junction disruption and barrier dysfunction. Src kinase and MLCK inhibitors blocked this synergistic effect of ethanol and acetaldehyde on tight junction. Ethanol and acetaldehyde caused a rapid and synergistic elevation of intracellular calcium. Calcium depletion by BAPTA or Ca 2+ -free medium blocked ethanol and acetaldehyde-induced barrier dysfunction and tight junction disruption. Diltiazem and selective knockdown of TRPV6 or Ca V 1.3 channels, by shRNA blocked ethanol and acetaldehyde-induced tight junction disruption and barrier dysfunction. Ethanol and acetaldehyde induced a rapid and synergistic increase in reactive oxygen species by a calcium-dependent mechanism. N-acetyl-L-cysteine and cyclosporine A, blocked ethanol and acetaldehyde-induced barrier dysfunction and tight junction disruption. These results demonstrate that ethanol and acetaldehyde synergistically disrupt tight junctions by a mechanism involving calcium, oxidative stress, Src kinase and MLCK.

  17. Quantum engineering of transistors based on 2D materials heterostructures

    NASA Astrophysics Data System (ADS)

    Iannaccone, Giuseppe; Bonaccorso, Francesco; Colombo, Luigi; Fiori, Gianluca

    2018-03-01

    Quantum engineering entails atom-by-atom design and fabrication of electronic devices. This innovative technology that unifies materials science and device engineering has been fostered by the recent progress in the fabrication of vertical and lateral heterostructures of two-dimensional materials and by the assessment of the technology potential via computational nanotechnology. But how close are we to the possibility of the practical realization of next-generation atomically thin transistors? In this Perspective, we analyse the outlook and the challenges of quantum-engineered transistors using heterostructures of two-dimensional materials against the benchmark of silicon technology and its foreseeable evolution in terms of potential performance and manufacturability. Transistors based on lateral heterostructures emerge as the most promising option from a performance point of view, even if heterostructure formation and control are in the initial technology development stage.

  18. Quantum engineering of transistors based on 2D materials heterostructures.

    PubMed

    Iannaccone, Giuseppe; Bonaccorso, Francesco; Colombo, Luigi; Fiori, Gianluca

    2018-03-01

    Quantum engineering entails atom-by-atom design and fabrication of electronic devices. This innovative technology that unifies materials science and device engineering has been fostered by the recent progress in the fabrication of vertical and lateral heterostructures of two-dimensional materials and by the assessment of the technology potential via computational nanotechnology. But how close are we to the possibility of the practical realization of next-generation atomically thin transistors? In this Perspective, we analyse the outlook and the challenges of quantum-engineered transistors using heterostructures of two-dimensional materials against the benchmark of silicon technology and its foreseeable evolution in terms of potential performance and manufacturability. Transistors based on lateral heterostructures emerge as the most promising option from a performance point of view, even if heterostructure formation and control are in the initial technology development stage.

  19. One-dimensional carbon nanotube@barium titanate@polyaniline multiheterostructures for microwave absorbing application

    NASA Astrophysics Data System (ADS)

    Ni, Qing-Qing; Zhu, Yao-Feng; Yu, Lu-Jun; Fu, Ya-Qin

    2015-04-01

    Multiple-phase nanocomposites filled with carbon nanotubes (CNTs) have been developed for their significant potential in microwave attenuation. The introduction of other phases onto the CNTs to achieve CNT-based heterostructures has been proposed to obtain absorbing materials with enhanced microwave absorption properties and broadband frequency due to their different loss mechanisms. The existence of polyaniline (PANI) as a coating with controllable electrical conductivity can lead to well-matched impedance. In this work, a one-dimensional CNT@BaTiO3@PANI heterostructure composite was fabricated. The fabrication processes involved coating of an acid-modified CNT with BaTiO3 (CNT@BaTiO3) through a sol-gel technique followed by combustion and the formation of CNT@BaTiO3@PANI nanohybrids by in situ polymerization of an aniline monomer in the presence of CNT@BaTiO3, using ammonium persulfate as an oxidant and HCl as a dopant. The as-synthesized CNT@BaTiO3@PANI composites with heterostructures were confirmed by various morphological and structural characterization techniques, as well as conductivity and microwave absorption properties. The measured electromagnetic parameters showed that the CNT@BaTiO3@PANI composites exhibited excellent microwave absorption properties. The minimum reflection loss of the CNT@BaTiO3@PANI composites with 20 wt % loadings in paraffin wax reached -28.9 dB (approximately 99.87% absorption) at 10.7 GHz with a thickness of 3 mm, and a frequency bandwidth less than -20 dB was achieved from 10 to 15 GHz. This work demonstrated that the CNT@BaTiO3@PANI heterostructure composite can be potentially useful in electromagnetic stealth materials, sensors, and electronic devices.

  20. One-dimensional carbon nanotube@barium titanate@polyaniline multiheterostructures for microwave absorbing application.

    PubMed

    Ni, Qing-Qing; Zhu, Yao-Feng; Yu, Lu-Jun; Fu, Ya-Qin

    2015-01-01

    Multiple-phase nanocomposites filled with carbon nanotubes (CNTs) have been developed for their significant potential in microwave attenuation. The introduction of other phases onto the CNTs to achieve CNT-based heterostructures has been proposed to obtain absorbing materials with enhanced microwave absorption properties and broadband frequency due to their different loss mechanisms. The existence of polyaniline (PANI) as a coating with controllable electrical conductivity can lead to well-matched impedance. In this work, a one-dimensional CNT@BaTiO3@PANI heterostructure composite was fabricated. The fabrication processes involved coating of an acid-modified CNT with BaTiO3 (CNT@BaTiO3) through a sol-gel technique followed by combustion and the formation of CNT@BaTiO3@PANI nanohybrids by in situ polymerization of an aniline monomer in the presence of CNT@BaTiO3, using ammonium persulfate as an oxidant and HCl as a dopant. The as-synthesized CNT@BaTiO3@PANI composites with heterostructures were confirmed by various morphological and structural characterization techniques, as well as conductivity and microwave absorption properties. The measured electromagnetic parameters showed that the CNT@BaTiO3@PANI composites exhibited excellent microwave absorption properties. The minimum reflection loss of the CNT@BaTiO3@PANI composites with 20 wt % loadings in paraffin wax reached -28.9 dB (approximately 99.87% absorption) at 10.7 GHz with a thickness of 3 mm, and a frequency bandwidth less than -20 dB was achieved from 10 to 15 GHz. This work demonstrated that the CNT@BaTiO3@PANI heterostructure composite can be potentially useful in electromagnetic stealth materials, sensors, and electronic devices.

  1. Calcium-Mediated Oxidative Stress: a Common Mechanism in Tight Junction Disruption by Different Types of Cellular Stress

    PubMed Central

    Gangwar, Ruchika; Meena, Avtar S.; Shukla, Pradeep K.; Nagaraja, Archana S.; Dorniak, Piotr L.; Pallikuth, Sandeep; Waters, Christopher M.; Sood, Anil; Rao, RadhaKrishna

    2017-01-01

    The role of reactive oxygen species (ROS) in osmotic stress, dextran sulfate sodium (DSS) and cyclic stretch-induced tight junction disruption was investigated in Caco-2 cell monolayers in vitro, and restraint stress-induced barrier dysfunction in mouse colon in vivo. Live cell imaging showed that osmotic stress, cyclic stretch and DSS triggered rapid production of ROS in Caco-2 cell monolayers, which was blocked by depletion of intracellular Ca2+ by BAPTA. Knockdown of CaV1.3 or TRPV6 channels blocked osmotic stress and DSS-induced ROS production and attenuated tight junction disruption and barrier dysfunction. N-acetyl L-cysteine (NAC) and L-nitroarginine methyl ester (L-NAME) blocked stress-induced tight junction disruption and barrier dysfunction. NAC and L-NAME also blocked stress-induced activation of JNK and c-Src. ROS was co-localized with the mitochondrial marker in stressed cells. Cyclosporin A blocked osmotic stress and DSS-induced ROS production, barrier dysfunction, tight junction disruption and JNK activation. Mitochondria-targeted Mito-TEMPO blocked osmotic stress and DSS-induced barrier dysfunction and tight junction disruption. Chronic restraint stress in mice resulted in the elevation of intracellular Ca2+, activation of JNK and c-Src, and disruption of tight junction in the colonic epithelium. Furthermore, corticosterone administration induced JNK and c-Src activation, tight junction disruption and protein thiol oxidation in colonic mucosa. This study demonstrates that oxidative stress is a common signal in the mechanism of tight junction disruption in the intestinal epithelium by different types of cellular stress in vitro and bio behavioral stress in vivo. PMID:28057718

  2. Glutamine Supplementation Attenuates Ethanol-Induced Disruption of Apical Junctional Complexes in Colonic Epithelium and Ameliorates Gut Barrier Dysfunction and Fatty Liver in Mice

    PubMed Central

    Chaudhry, Kamaljit K.; Shukla, Pradeep K.; Mir, Hina; Manda, Bhargavi; Gangwar, Ruchika; Yadav, Nikki; McMullen, Megan; Nagy, Laura E.; Rao, RadhaKrishna

    2015-01-01

    Previous in vitro studies showed that glutamine (Gln) prevents acetaldehyde-induced disruption of tight junctions and adherens junctions in Caco-2 cell monolayers and human colonic mucosa. In the present study, we evaluated the effect of Gln supplementation on ethanol-induced gut barrier dysfunction and liver injury in mice in vivo. Ethanol feeding caused a significant increase in inulin permeability in distal colon. Elevated permeability was associated with a redistribution of tight junction and adherens junction proteins and depletion of detergent-insoluble fractions of these proteins, suggesting that ethanol disrupts apical junctional complexes in colonic epithelium and increases paracellular permeability. Ethanol-induced increase in colonic mucosal permeability and disruption of junctional complexes were most severe in mice fed Gln-free diet. Gln supplementation attenuated ethanol-induced mucosal permeability and disruption of tight junctions and adherens junctions in a dose-dependent manner, indicating the potential role of glutamine in nutritional intervention to alcoholic tissue injury. Gln supplementation dose-dependently elevated reduced-protein thiols in colon without affecting the level of oxidized-protein thiols. Ethanol feeding depleted reduced protein thiols and elevated oxidized protein thiols. Ethanol-induced protein thiol oxidation was most severe in mice fed Gln-free diet and absent in mice fed Gln-supplemented diet, suggesting that antioxidant effect is one of the likely mechanisms involved in Gln-mediated amelioration of ethanol-induced gut barrier dysfunction. Ethanol feeding elevated plasma transaminase and liver triglyceride, which was accompanied by histopathologic lesions in the liver; ethanol-induced liver damage was attenuated by Gln supplementation. These results indicate that Gln supplementation ameliorates alcohol-induced gut and liver injury. PMID:26365579

  3. Interface engineering of CsPbBr3/TiO2 heterostructure with enhanced optoelectronic properties for all-inorganic perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Qian, Chong-Xin; Deng, Zun-Yi; Yang, Kang; Feng, Jiangshan; Wang, Ming-Zi; Yang, Zhou; Liu, Shengzhong Frank; Feng, Hong-Jian

    2018-02-01

    Interface engineering has become a vital method in accelerating the development of perovskite solar cells in the past few years. To investigate the effect of different contacted surfaces of a light absorber with an electron transporting layer, TiO2, we synthesize CsPbBr3/TiO2 thin films with two different interfaces (CsBr/TiO2 and PbBr2/TiO2). Both interfacial heterostructures exhibit enhanced visible light absorption, and the CsBr/TiO2 thin film presents higher absorption than the PbBr2/TiO2 interface, which is attributed to the formation of interface states and the decreased interface bandgap. Furthermore, compared with the PbBr2/TiO2 interface, CsBr/TiO2 solar devices present larger output short circuit current and shorter photoluminescence decay time, which indicates that the CsBr contacting layer with TiO2 can better extract and separate the photo-induced carriers. The first-principles calculations confirm that, due to the existence of staggered gap (type II) offset junction and the interface states, the CsBr/TiO2 interface can more effectively separate the photo-induced carriers and thus drive the electron transfer from the CsPbBr3 perovskite layer to the TiO2 layer. These results may be beneficial to exploit the potential application of all-inorganic perovskite CsPbBr3-based solar cells through the interface engineering route.

  4. Long-Term Reliability of SiGe/Si HBTs From Accelerated Lifetime Testing

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Pallab

    2001-01-01

    Accelerated lifetime tests were performed on double-mesa structure Si(0.7)Ge(0.3)/Si npn heterojunction bipolar transistors, grown by molecular beam epitaxy, in the temperature range of 175 C-275 C. The transistors (with 5x20 sq micron emitter area) have DC current gains approx. 40-50 and f(sub T) and f(sub max) of up to 22 GHz and 25 GHz, respectively. It is found that a gradual degradation in these devices is caused by the recombination enhanced impurity diffusion (REID) of boron atoms from the p-type base region and the associated formation of parasitic energy barriers to electron transport from the emitter to collector layers. This REED has been quantitatively modeled and explained, to the first order of approximation, and the agreement with the measured data is good. The mean time to failure (MTTF) of these devices at room temperature under 1.35 x 10(exp 4) A/sq cm current density operation is estimated from the extrapolation of the Arrhenius plots of device lifetime versus reciprocal temperature. The results of the reliability tests offer valuable feedback for SiGe heterostructure design in order to improve the long-term reliability of the devices and circuits made with them. Hot electron induced degradation of the base-emitter junction was also observed during the accelerated lifetime testing. In order to improve the HBT reliability endangered by the hot electrons, deuterium sintered techniques have been proposed. The preliminary results from this study show that a deuterium-sintered HBT is, indeed, more resistant to hot-electron induced base-emitter junction degradation.

  5. The effects of ion gun beam voltage on the electrical characteristics of NbCN/PbBi edge junctions

    NASA Technical Reports Server (NTRS)

    Lichtenberger, A. W.; Feldman, M. J.; Mattauch, R. J.; Cukauskas, E. J.

    1989-01-01

    The authors have succeeded in fabricating high-quality submicron NbCN edge junctions using a technique which is commonly used to make Nb edge junctions. A modified commercial ion gun was used to cut an edge in SiO2/NbCN films partially covered with photoresist. An insulating barrier was then formed on the exposed edge by reactive ion beam oxidation, and a counterelectrode of PbBi was deposited. The electrical quality of the resulting junctions was found to be strongly influenced by the ion beam acceleration voltages used to cut the edge and to oxidize it. For low ion beam voltages, the junction quality parameter was as high as Vm = 55 mV (measured at 3 mV), but higher ion beam voltages yielded strikingly poorer quality junctions. In light of the small coherence length of NbN, the dependence of the electrical characteristics on ion beam voltage is presumably due to mechanical damage of the NbCN surface. In contrast, for similar ion beam voltages, no such dependence was found for Nb edge junctions.

  6. Iron oxide nanoparticle-mediated development of cellular gap junction crosstalk to improve mesenchymal stem cells' therapeutic efficacy for myocardial infarction.

    PubMed

    Han, Jin; Kim, Bokyoung; Shin, Jung-Youn; Ryu, Seungmi; Noh, Myungkyung; Woo, Jongsu; Park, Jin-Sil; Lee, Youjin; Lee, Nohyun; Hyeon, Taeghwan; Choi, Donghoon; Kim, Byung-Soo

    2015-03-24

    Electrophysiological phenotype development and paracrine action of mesenchymal stem cells (MSCs) are the critical factors that determine the therapeutic efficacy of MSCs for myocardial infarction (MI). In such respect, coculture of MSCs with cardiac cells has windowed a platform for cardiac priming of MSCs. Particularly, active gap junctional crosstalk of MSCs with cardiac cells in coculture has been known to play a major role in the MSC modification through coculture. Here, we report that iron oxide nanoparticles (IONPs) significantly augment the expression of connexin 43 (Cx43), a gap junction protein, of cardiomyoblasts (H9C2), which would be critical for gap junctional communication with MSCs in coculture for the generation of therapeutic potential-improved MSCs. MSCs cocultured with IONP-harboring H9C2 (cocultured MSCs: cMSCs) showed active cellular crosstalk with H9C2 and displayed significantly higher levels of electrophysiological cardiac biomarkers and a cardiac repair-favorable paracrine profile, both of which are responsible for MI repair. Accordingly, significantly improved animal survival and heart function were observed upon cMSC injection into rat MI models compared with the injection of unmodified MSCs. The present study highlights an application of IONPs in developing gap junctional crosstalk among the cells and generating cMSCs that exceeds the reparative potentials of conventional MSCs. On the basis of our finding, the potential application of IONPs can be extended in cell biology and stem cell-based therapies.

  7. Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials

    NASA Astrophysics Data System (ADS)

    Wang, Pan; Krasavin, Alexey V.; Nasir, Mazhar E.; Dickson, Wayne; Zayats, Anatoly V.

    2018-02-01

    Non-equilibrium hot carriers formed near the interfaces of semiconductors or metals play a crucial role in chemical catalysis and optoelectronic processes. In addition to optical illumination, an efficient way to generate hot carriers is by excitation with tunnelling electrons. Here, we show that the generation of hot electrons makes the nanoscale tunnel junctions highly reactive and facilitates strongly confined chemical reactions that can, in turn, modulate the tunnelling processes. We designed a device containing an array of electrically driven plasmonic nanorods with up to 1011 tunnel junctions per square centimetre, which demonstrates hot-electron activation of oxidation and reduction reactions in the junctions, induced by the presence of O2 and H2 molecules, respectively. The kinetics of the reactions can be monitored in situ following the radiative decay of tunnelling-induced surface plasmons. This electrically driven plasmonic nanorod metamaterial platform can be useful for the development of nanoscale chemical and optoelectronic devices based on electron tunnelling.

  8. Multimode Silicon Nanowire Transistors

    PubMed Central

    2014-01-01

    The combined capabilities of both a nonplanar design and nonconventional carrier injection mechanisms are subject to recent scientific investigations to overcome the limitations of silicon metal oxide semiconductor field effect transistors. In this Letter, we present a multimode field effect transistors device using silicon nanowires that feature an axial n-type/intrinsic doping junction. A heterostructural device design is achieved by employing a self-aligned nickel-silicide source contact. The polymorph operation of the dual-gate device enabling the configuration of one p- and two n-type transistor modes is demonstrated. Not only the type but also the carrier injection mode can be altered by appropriate biasing of the two gate terminals or by inverting the drain bias. With a combined band-to-band and Schottky tunneling mechanism, in p-type mode a subthreshold swing as low as 143 mV/dec and an ON/OFF ratio of up to 104 is found. As the device operates in forward bias, a nonconventional tunneling transistor is realized, enabling an effective suppression of ambipolarity. Depending on the drain bias, two different n-type modes are distinguishable. The carrier injection is dominated by thermionic emission in forward bias with a maximum ON/OFF ratio of up to 107 whereas in reverse bias a Schottky tunneling mechanism dominates the carrier transport. PMID:25303290

  9. Enhancing the electron mobility of SrTiO3 with strain

    NASA Astrophysics Data System (ADS)

    Jalan, Bharat; Allen, S. James; Beltz, Glenn E.; Moetakef, Pouya; Stemmer, Susanne

    2011-03-01

    We demonstrate, using high-mobility SrTiO3 thin films grown by molecular beam epitaxy, that stress has a pronounced influence on the electron mobility in this prototype complex oxide. Moderate strains result in more than 300% increases in the electron mobilities with values exceeding 120 000 cm2/V s and no apparent saturation in the mobility gains. The results point to a range of opportunities to tailor high-mobility oxide heterostructure properties and open up ways to explore oxide physics.

  10. Enhanced photoemission from glancing angle deposited SiOx-TiO2 axial heterostructure nanowire arrays

    NASA Astrophysics Data System (ADS)

    Dhar, J. C.; Mondal, A.; Singh, N. K.; Chattopadhyay, K. K.

    2013-05-01

    The glancing angle deposition technique has been employed to synthesize SiOx-TiO2 heterostructure nanowire (NW) arrays on indium tin oxide (ITO) coated glass substrate. A field emission gun scanning electron microscopic image shows that the average diameter of the NWs is ˜50 nm. Transmission electron microscopy images show the formation of heterostructure NWs, which consist of ˜180 nm SiOx and ˜210 nm long TiO2. The selected-area electron diffraction shows the amorphous nature of the synthesized NWs, which was also confirmed by X-ray diffraction method. The main band absorption edges at 3.5 eV were found for both the SiOx-TiO2 and TiO2 NW arrays on ITO coated glass plate from optical absorption measurement. Ti3+ defect related sub-band gap transition at 2.5 eV was observed for TiO2 NWs, whereas heterostructure NWs revealed the SiOx optical band gap related transition at ˜2.2 eV. Two fold improved photon absorption as well as five times photoluminescence emission enhancement were observed for the SiOx-TiO2 multilayer NWs compared to TiO2 NWs.

  11. Hierarchical CuInS2-based heterostructure: Application for photocathodic bioanalysis of sarcosine.

    PubMed

    Jiang, Xin-Yuan; Zhang, Ling; Liu, Yi-Li; Yu, Xiao-Dong; Liang, Yan-Yu; Qu, Peng; Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2018-06-01

    In this study, on the basis of hierarchical CuInS 2 -based heterostructure, a novel cathodic photoelectrochemical (PEC) enzymatic bioanalysis of the sarcosine detection was reported. Specifically, heterostructured CuInS 2 /NiO/ITO photocathode was prepared and sarcosine oxidases (SOx) were integrated for the construction of the enzymatic biosensor. In the bioanalysis, the O 2 -dependent suppression of the cathodic photocurrent can be observed due to the competition between the as-fabricated O 2 -sensitive photocathode and the SOx-catalytic event toward O 2 reduction. Based on the sarcosine-controlled O 2 concentration, a novel photocathodic enzymatic biosensor could be realized for the sensitive and specific sarcosine detection. This work manifested the great potential of CuInS 2 -based heterostructure as a novel platform for future PEC bioanalytical development and also a PEC method for sarcosine detection, which could be easily extended to numerous other enzymatic systems and to our knowledge has not been reported. This work is expected to stimulate more interest in the design and implementation of numerous CuInS 2 -based heterostructured photocathodic enzymatic sensing. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Role of gap junctional coupling in astrocytic networks in the determination of global ischaemia-induced oxidative stress and hippocampal damage.

    PubMed

    Perez Velazquez, Jose L; Kokarovtseva, Larisa; Sarbaziha, Raheleh; Jeyapalan, Zina; Leshchenko, Yevgen

    2006-01-01

    While there is evidence that gap junctions play important roles in the determination of cell injuries, there is not much known about mechanisms by which gap junctional communication may exert these functions. Using a global model of transient ischaemia in rats, we found that pretreatment with the gap junctional blockers carbenoxolone, 18alpha-glycyrrhetinic acid and endothelin, applied via cannulae implanted into the hippocampus in one hemisphere, resulted in decreased numbers of TUNEL-positive neurons, as compared with the contralateral hippocampus that received saline injection. Post-treatment with carbenoxolone for up to 30 min after the stroke injury still resulted in decreased cell death, but post-treatment at 90 min after the ischaemic insult did not result in differences in cell death. However, quinine, an inhibitor of Cx36-mediated gap junctional coupling, did not result in appreciable neuroprotection. Searching for a possible mechanism for the observed protective effects, possible actions of the gap junctional blockers in the electrical activity of the hippocampus during the ischaemic insult were assessed using intracerebral recordings, with no differences observed between the saline-injected and the contralateral drug-injected hippocampus. However, a significant reduction in lipid peroxides, a measure of free radical formation, in the hippocampus treated with carbenoxolone, revealed that the actions of gap junctional coupling during injuries may be causally related to oxidative stress. These observations suggest that coupling in glial networks may be functionally important in determining neuronal vulnerability to oxidative injuries.

  13. Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics.

    PubMed

    Wu, Xiaosong; Sprinkle, Mike; Li, Xuebin; Ming, Fan; Berger, Claire; de Heer, Walt A

    2008-07-11

    Graphene-oxide (GO) flakes have been deposited to bridge the gap between two epitaxial-graphene electrodes to produce all-graphene devices. Electrical measurements indicate the presence of Schottky barriers at the graphene/graphene-oxide junctions, as a consequence of the band gap in GO. The barrier height is found to be about 0.7 eV, and is reduced after annealing at 180 degrees C, implying that the gap can be tuned by changing the degree of oxidation. A lower limit of the GO mobility was found to be 850 cm2/V s, rivaling silicon. In situ local oxidation of patterned epitaxial graphene has been achieved.

  14. Enhanced photoelectrocatalytic performance of heterostructured TiO2-based nanoparticles decorated nanotubes

    NASA Astrophysics Data System (ADS)

    Wu, Liangpeng; Yang, Xu; Huang, Yanqin; Li, Xinjun

    2017-06-01

    Titanium oxide nanotubes were prepared by hydrothermal treatment of TiO2 powder in NaOH aqueous solution and subsequently calcined. Titanium oxide nanotubes were further decorated by TiO2 nanoparticles through in situ hydrolysis of titanium isopropoxide containing alcohol and ammonia in an aqueous medium to form the composite catalyst (TNP/TiO2NTs). The morphology and structure of TNP/TiO2NTs were characterized by scanning and transmission electron microscopy, X-ray diffraction, UV-Vis, and Raman spectra. The separation efficiency of photo-excited carriers was investigated by photoluminescence technique and photoelectrochemical behavior. The photocatalytic activity was evaluated by the photocatalytic degradation of methyl orange. Due to the synergy effect caused by the interaction of titanium oxide nanotubes and TiO2 nanoparticles, the TNP/TiO2NTs composite shows efficient photogenerated carriers' separation and the increased light absorption. The photocatalytic activity was enhanced.

  15. Magneto-ionic control of interfacial magnetism

    NASA Astrophysics Data System (ADS)

    Bauer, Uwe; Yao, Lide; Tan, Aik Jun; Agrawal, Parnika; Emori, Satoru; Tuller, Harry L.; van Dijken, Sebastiaan; Beach, Geoffrey S. D.

    2015-02-01

    In metal/oxide heterostructures, rich chemical, electronic, magnetic and mechanical properties can emerge from interfacial chemistry and structure. The possibility to dynamically control interface characteristics with an electric field paves the way towards voltage control of these properties in solid-state devices. Here, we show that electrical switching of the interfacial oxidation state allows for voltage control of magnetic properties to an extent never before achieved through conventional magneto-electric coupling mechanisms. We directly observe in situ voltage-driven O2- migration in a Co/metal-oxide bilayer, which we use to toggle the interfacial magnetic anisotropy energy by >0.75 erg cm-2 at just 2 V. We exploit the thermally activated nature of ion migration to markedly increase the switching efficiency and to demonstrate reversible patterning of magnetic properties through local activation of ionic migration. These results suggest a path towards voltage-programmable materials based on solid-state switching of interface oxygen chemistry.

  16. Ferroelectric-Driven Performance Enhancement of Graphene Field-Effect Transistors Based on Vertical Tunneling Heterostructures.

    PubMed

    Yuan, Shuoguo; Yang, Zhibin; Xie, Chao; Yan, Feng; Dai, Jiyan; Lau, Shu Ping; Chan, Helen L W; Hao, Jianhua

    2016-12-01

    A vertical graphene heterostructure field-effect transistor (VGHFET) using an ultrathin ferroelectric film as a tunnel barrier is developed. The heterostructure is capable of providing new degrees of tunability and functionality via coupling between the ferroelectricity and the tunnel current of the VGHFET, which results in a high-performance device. The results pave the way for developing novel atomic-scale 2D heterostructures and devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fabrication of Josephson Tunnel Junctions by Reactive Ion Milling.

    DTIC Science & Technology

    1980-07-21

    the existence of numerous oxide phases. in addition to Vb2 05 , which is the desired tunneling barrier, NbO2 , NbO, and various suboxides can form, as...interface between Nb and Vb2 0 5 in therally grown oxide films consists of RHO and RHO 2 , and poor Junction quality has been attrib- uted to such...are believed to be important in rf plasma oxidation (3), but they are not extracted by the grids of the ion mill. Beats of formation of posLtive

  18. Barrier inhomogeneities at vertically stacked graphene-based heterostructures.

    PubMed

    Lin, Yen-Fu; Li, Wenwu; Li, Song-Lin; Xu, Yong; Aparecido-Ferreira, Alex; Komatsu, Katsuyoshi; Sun, Huabin; Nakaharai, Shu; Tsukagoshi, Kazuhito

    2014-01-21

    The integration of graphene and other atomically flat, two-dimensional materials has attracted much interest and been materialized very recently. An in-depth understanding of transport mechanisms in such heterostructures is essential. In this study, vertically stacked graphene-based heterostructure transistors were manufactured to elucidate the mechanism of electron injection at the interface. The temperature dependence of the electrical characteristics was investigated from 300 to 90 K. In a careful analysis of current-voltage characteristics, an unusual decrease in the effective Schottky barrier height and increase in the ideality factor were observed with decreasing temperature. A model of thermionic emission with a Gaussian distribution of barriers was able to precisely interpret the conduction mechanism. Furthermore, mapping of the effective Schottky barrier height is unmasked as a function of temperature and gate voltage. The results offer significant insight for the development of future layer-integration technology based on graphene-based heterostructures.

  19. Vertical epitaxial wire-on-wire growth of Ge/Si on Si(100) substrate.

    PubMed

    Shimizu, Tomohiro; Zhang, Zhang; Shingubara, Shoso; Senz, Stephan; Gösele, Ulrich

    2009-04-01

    Vertically aligned epitaxial Ge/Si heterostructure nanowire arrays on Si(100) substrates were prepared by a two-step chemical vapor deposition method in anodic aluminum oxide templates. n-Butylgermane vapor was employed as new safer precursor for Ge nanowire growth instead of germane. First a Si nanowire was grown by the vapor liquid solid growth mechanism using Au as catalyst and silane. The second step was the growth of Ge nanowires on top of the Si nanowires. The method presented will allow preparing epitaxially grown vertical heterostructure nanowires consisting of multiple materials on an arbitrary substrate avoiding undesired lateral growth.

  20. Recent Progress in Photocatalysis Mediated by Colloidal II-VI Nanocrystals

    PubMed Central

    Wilker, Molly B; Schnitzenbaumer, Kyle J; Dukovic, Gordana

    2012-01-01

    The use of photoexcited electrons and holes in semiconductor nanocrystals as reduction and oxidation reagents is an intriguing way of harvesting photon energy to drive chemical reactions. This review focuses on recent research efforts to understand and control the photocatalytic processes mediated by colloidal II-VI nanocrystalline materials, such as cadmium and zinc chalcogenides. First, we highlight how nanocrystal properties govern the rates and efficiencies of charge-transfer processes relevant to photocatalysis. We then describe the use of nanocrystal catalyst heterostructures for fuel-forming reactions, most commonly H2 generation. Finally, we review the use of nanocrystal photocatalysis as a synthetic tool for metal–semiconductor nano-heterostructures. PMID:24115781

  1. Trends on band alignments: Validity of Anderson's rule in SnS2- and SnSe2-based van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Koda, Daniel S.; Bechstedt, Friedhelm; Marques, Marcelo; Teles, Lara K.

    2018-04-01

    Van der Waals (vdW) heterostructures are promising candidates for building blocks in novel electronic and optoelectronic devices with tailored properties, since their electronic action is dominated by the band alignments upon their contact. In this work, we analyze 10 vdW heterobilayers based on tin dichalcogenides by first-principles calculations. Structural studies show that all systems are stable, and that commensurability leads to smaller interlayer distances. Using hybrid functional calculations, we derive electronic properties and band alignments for all the heterosystems and isolated two-dimensional (2D) crystals. Natural band offsets are derived from calculated electron affinities and ionization energies of 11 freestanding 2D crystals. They are compared with band alignments in true heterojunctions, using a quantum mechanical criterion, and available experimental data. For the hBN/SnSe 2 system, we show that hBN suffers an increase in band gap, while leaving almost unchanged the electronic properties of SnSe2. Similarly, MX2 (M = Mo, W; X = S, Se) over SnX2 preserve the natural discontinuities from each side of the heterobilayer. Significant charge transfer occurs in junctions with graphene, which becomes p-doped and forms an Ohmic contact with SnX2. Zirconium and hafnium dichalcogenides display stronger interlayer interactions, leading to larger shifts in band alignments with tin dichalcogenides. Significant orbital overlap is found, which creates zero conduction band offset systems. The validity of the Anderson electron affinity rule is discussed. Failures of this model are traced back to interlayer interaction, band hybridization, and quantum dipoles. The systematic work sheds light on interfacial engineering for future vdW electronic and optoelectronic devices.

  2. Effective theory of exotic superconductivity in LaAlO3/SrTiO3 interfaces

    NASA Astrophysics Data System (ADS)

    Esmailzadeh, Haniyeh; Moghaddam, Ali G.

    2018-05-01

    Motivated by experimental and theoretical works about superconductivity at the oxide interfaces, we provide a simple model for possible unconventional pairings inside the exotic two-dimensional electron gas formed in heterostructures of SrTiO3 and LaAlO3. At the low energy limit, the electron gas at the interfaces is usually modeled with an effective three band model considering of 3d t2g orbitals which are slightly coupled by atomic spin-orbit couplings (SOC). Considering direct superconducting pairing in two higher delocalized bands and by exploiting a perturbative scheme based on canonical transformation, we derive the effective pairing amplitudes with possibly exotic nature inside the localized dxy band as well as various inter-band pairing components. In particular we show that equal-spin triplet pairings are possible between the band dxy and any of other dxz and dyz bands. In addition weaker effective pairings take place inside the localized band itself and between delocalized dxz and dyz bands with singlet and opposite-spin triplet characters. These unconventional effective pairings are indeed mediated by SOC-induced higher order virtual transitions between the bands and particularly into the localized band. Our model suggest that unconventional effective superconductivity is possible at oxide interfaces, simply, due to the special band structure and important role of atomic SOC and perhaps other magnetic effects present at these heterostructures.

  3. Processing of Superconductor-Normal-Superconductor Josephson Edge Junctions

    NASA Technical Reports Server (NTRS)

    Kleinsasser, A. W.; Barner, J. B.

    1997-01-01

    The electrical behavior of epitaxial superconductor-normal-superconductor (SNS) Josephson edge junctions is strongly affected by processing conditions. Ex-situ processes, utilizing photoresist and polyimide/photoresist mask layers, are employed for ion milling edges for junctions with Yttrium-Barium-Copper-Oxide (YBCO) electrodes and primarily Co-doped YBCO interlayers.

  4. Simultaneous fluorescent detection of multiple metal ions based on the DNAzymes and graphene oxide.

    PubMed

    Yun, Wen; Wu, Hong; Liu, Xingyan; Fu, Min; Jiang, Jiaolai; Du, Yunfeng; Yang, Lizhu; Huang, Yu

    2017-09-15

    A novel fluorescent detection strategy for simultaneous detection of Cu 2+ , Pb 2+ and Mg 2+ based on DNAzyme branched junction structure with three kinds of DNAzymes and graphene oxide (GO) was presented. Three fluorophores labeled DNA sequences consisted with enzyme-strand (E-DNA) and substrate strand (S-DNA) were annealed to form DNAzyme branched junction structure. In the presence of target metal ion, the DNAzyme was activated to cleave the fluorophore labeled S-DNA. The S-DNA fragments were released and adsorbed onto GO surface to quench the fluorescent signal. The detection limit was calculated to be 1 nM for Cu 2+ , 200 nM for Mg 2+ , and 0.3 nM for Pb 2+ , respectively. This strategy was successfully used for simultaneous detection of Cu 2+ , Mg 2+ and Pb 2+ in human serum. Moreover, it had potential application for simultaneous detection of multiple metal ions in environmental and biological samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Sol–gel synthesis and enhanced photocatalytic activity of doped bismuth tungsten oxide composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xuetang; Ge, Yuanxing; School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004

    2016-01-15

    Highlights: • Co dopant results in the phase change from Bi{sub 2}WO{sub 6} to Bi{sub 2}WO{sub 6}/Bi{sub 14}W{sub 2}O{sub 27} heterostructure. • Enhanced photocatalytic activity of Bi{sub 2}WO{sub 6}/Bi{sub 14}W{sub 2}O{sub 27} heterostructure. • Synergistic effects coming from the interactions between Bi{sub 14}W{sub 2}O{sub 27} and Bi{sub 2}WO{sub 6} - Abstract: Pristine Bi{sub 2}WO{sub 6} and Bi{sub 2}WO{sub 6}/Bi{sub 14}W{sub 2}O{sub 27} photocatalysts were synthesized by sol–gel method using Co(II) cation as dopant. The influence of Co dopant to the formation of Bi{sub 2}WO{sub 6}/Bi{sub 14}W{sub 2}O{sub 27} heterostructure composite was discussed. The photocatalytic activities of as-prepared samples were evaluatedmore » sufficiently by using rhodamine B as target organic pollutants under visible light. The as-prepared Bi{sub 2}WO{sub 6}/Bi{sub 14}W{sub 2}O{sub 27} heterostructure achieved enhanced optical absorption in the visible-light region, and exhibited much higher photocatalytic activities than that of pristine Bi{sub 2}WO{sub 6}. The optimum Bi/Co molar ratio and calcining temperature were also explored. The enhanced activities were attributed to the formation of heterostructure in suppressing the recombination of photo-generated carriers. The Co dopant species would participate to reduce the charge carrier recombination by acting as trapping sites for photogenerated charges. A possible photocatalytic mechanism over Bi{sub 2}WO{sub 6}/Bi{sub 14}W{sub 2}O{sub 27} heterostructure was proposed.« less

  6. Ratiometric, filter-free optical sensor based on a complementary metal oxide semiconductor buried double junction photodiode.

    PubMed

    Yung, Ka Yi; Zhan, Zhiyong; Titus, Albert H; Baker, Gary A; Bright, Frank V

    2015-07-16

    We report a complementary metal oxide semiconductor integrated circuit (CMOS IC) with a buried double junction (BDJ) photodiode that (i) provides a real-time output signal that is related to the intensity ratio at two emission wavelengths and (ii) simultaneously eliminates the need for an optical filter to block Rayleigh scatter. We demonstrate the BDJ platform performance for gaseous NH3 and aqueous pH detection. We also compare the BDJ performance to parallel results obtained by using a slew scanned fluorimeter (SSF). The BDJ results are functionally equivalent to the SSF results without the need for any wavelength filtering or monochromators and the BDJ platform is not prone to errors associated with source intensity fluctuations or sensor signal drift. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Superior visible light hydrogen evolution of Janus bilayer junctions via atomic-level charge flow steering

    NASA Astrophysics Data System (ADS)

    Li, Jie; Zhan, Guangming; Yu, Ying; Zhang, Lizhi

    2016-05-01

    Although photocatalytic hydrogen evolution (PHE) is ideal for solar-to-fuel conversion, it remains challenging to construct a highly efficient PHE system by steering the charge flow in a precise manner. Here we tackle this challenge by assembling 1T MoS2 monolayers selectively and chemically onto (Bi12O17) end-faces of Bi12O17Cl2 monolayers to craft two-dimensional (2D) Janus (Cl2)-(Bi12O17)-(MoS2) bilayer junctions, a new 2D motif different from van der Waals heterostructure. Electrons and holes from visible light-irradiated Bi12O17Cl2 are directionally separated by the internal electric field to (Bi12O17) and (Cl2) end-faces, respectively. The separated electrons can further migrate to MoS2 via Bi-S bonds formed between (Bi12O17) and MoS2 monolayers. This atomic-level directional charge separation endows the Janus bilayers with ultralong carrier lifetime of 3,446 ns and hence a superior visible-light PHE rate of 33 mmol h-1 g-1. Our delineated Janus bilayer junctions on the basis of the oriented assembly of monolayers presents a new design concept to effectively steer the charge flow for PHE.

  8. Light emitting diodes as a plant lighting source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bula, R.J.; Tennessen, D.J.; Morrow, R.C.

    1994-12-31

    Electroluminescence in solid materials is defined as the generation of light by the passage of an electric current through a body of solid material under an applied electric field. A specific type of electroluminescence, first noted by Lossew in 1923, involves the generation of photons when electrons are passed through a p-n junction of certain solid materials (junction of a n-type semiconductor, an electron donor, and a p-type semiconductor, an electron acceptor). Development efforts to translate these observations into visible light emitting devices, however, was not undertaken until the 1950s. The term, light emitting diode (LEDs), was first used inmore » a report by Wolfe, et al., in 1955. The development of this light emitting semiconductor technology dates back less than 30 years. During this period of time, the LED has evolved from a rare and expensive light generating device to one of the most widely used electronic components. The most popular applications of the LED are as indicators or as optoelectronic switches. However, several recent advances in LED technology have made possible the utilization of LEDs for applications that require a high photon flux, such as for plant lighting in controlled environments. The new generation of LEDs based on a gallium aluminum arsenide (GaAlAS) semiconductor material fabricated as a double heterostructure on a transparent substrate has opened up many new applications for these LEDs.« less

  9. Long-Term Reliability of High Speed SiGe/Si Heterojunction Bipolar Transistors

    NASA Technical Reports Server (NTRS)

    Ponchak, George E. (Technical Monitor); Bhattacharya, Pallab

    2003-01-01

    Accelerated lifetime tests were performed on double-mesa structure Si/Si0.7Ge0.3/Si npn heterojunction bipolar transistors, grown by molecular beam epitaxy, in the temperature range of 175C-275C. Both single- and multiple finger transistors were tested. The single-finger transistors (with 5x20 micron sq m emitter area) have DC current gains approximately 40-50 and f(sub T) and f(sub MAX) of up to 22 GHz and 25 GHz, respectively. The multiple finger transistors (1.4 micron finger width, 9 emitter fingers with total emitter area of 403 micron sq m) have similar DC current gain but f(sub T) of 50 GHz. It is found that a gradual degradation in these devices is caused by the recombination enhanced impurity diffusion (REID) of boron atoms from the p-type base region and the associated formation of parasitic energy barriers to electron transport from the emitter to collector layers. This REID has been quantitatively modeled and explained, to the first order of approximation, and the agreement with the measured data is good. The mean time to failure (MTTF) of the devices at room temperature is estimated from the extrapolation of the Arrhenius plots of device lifetime versus reciprocal temperature. The results of the reliability tests offer valuable feedback for SiGe heterostructure design in order to improve the long-term reliability of the devices and circuits made with them. Hot electron induced degradation of the base-emitter junction was also observed during the accelerated lifetime testing. In order to improve the HBT reliability endangered by the hot electrons, deuterium sintered techniques have been proposed. The preliminary results from this study show that a deuterium-sintered HBT is, indeed, more resistant to hot-electron induced base-emitter junction degradation. SiGe/Si based amplifier circuits were also subjected to lifetime testing and we extrapolate MTTF is approximately 1.1_10(exp 6) hours at 125iC junction temperature from the circuit lifetime data.

  10. Spin-Orbit Torque from a Magnetic Heterostructure of High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Chen, Tian-Yue; Chuang, Tsao-Chi; Huang, Ssu-Yen; Yen, Hung-Wei; Pai, Chi-Feng

    2017-10-01

    High-entropy alloy (HEA) is a family of metallic materials with nearly equal partitions of five or more metals, which might possess mechanical and transport properties that are different from conventional binary or tertiary alloys. In this work, we demonstrate current-induced spin-orbit torque (SOT) magnetization switching in a Ta-Nb-Hf-Zr-Ti HEA-based magnetic heterostructure with perpendicular magnetic anisotropy. The maximum dampinglike SOT efficiency from this particular HEA-based magnetic heterostructure is further determined to be |ζDLHEA | ≈0.033 by hysteresis-loop-shift measurements, while that for the Ta control sample is |ζDLTa | ≈0.04 . Our results indicate that HEA-based magnetic heterostructures can serve as an alternative group of potential candidates for SOT device applications due to the possibility of tuning buffer-layer properties with more than two constituent elements.

  11. Investigation of energy band alignments and interfacial properties of rutile NMO2/TiO2 (NM = Ru, Rh, Os, and Ir) by first-principles calculations.

    PubMed

    Yang, Chen; Zhao, Zong-Yan

    2017-11-08

    In the field of photocatalysis, constructing hetero-structures is an efficient strategy to improve quantum efficiency. However, a lattice mismatch often induces unfavorable interfacial states that can act as recombination centers for photo-generated electron-hole pairs. If the hetero-structure's components have the same crystal structure, this disadvantage can be easily avoided. Conversely, in the process of loading a noble metal co-catalyst onto the TiO 2 surface, a transition layer of noble metal oxides is often formed between the TiO 2 layer and the noble metal layer. In this article, interfacial properties of hetero-structures composed of a noble metal dioxide and TiO 2 with a rutile crystal structure have been systematically investigated using first-principles calculations. In particular, the Schottky barrier height, band bending, and energy band alignments are studied to provide evidence for practical applications. In all cases, no interfacial states exist in the forbidden band of TiO 2 , and the interfacial formation energy is very small. A strong internal electric field generated by interfacial electron transfer leads to an efficient separation of photo-generated carriers and band bending. Because of the differences in the atomic properties of the components, RuO 2 /TiO 2 and OsO 2 /TiO 2 hetero-structures demonstrate band dividing, while RhO 2 /TiO 2 and IrO 2 /TiO 2 hetero-structures have a pseudo-gap near the Fermi energy level. Furthermore, NMO 2 /TiO 2 hetero-structures show upward band bending. Conversely, RuO 2 /TiO 2 and OsO 2 /TiO 2 hetero-structures present a relatively strong infrared light absorption, while RhO 2 /TiO 2 and IrO 2 /TiO 2 hetero-structures show an obvious absorption edge in the visible light region. Overall, considering all aspects of their properties, RuO 2 /TiO 2 and OsO 2 /TiO 2 hetero-structures are more suitable than others for improving the photocatalytic performance of TiO 2 . These findings will provide useful information for understanding the role and effects of a noble metal dioxide as a transition layer between a noble metal co-catalyst and a TiO 2 photocatalyst.

  12. High transmittance hetero junctions based on n-ITO/p-CuO bilayer thin films

    NASA Astrophysics Data System (ADS)

    Jaya, T. P.; Pradyumnan, P. P.

    2016-12-01

    Oxide based bilayered n-ITO/p-CuO crystalline diodes were fabricated by plasma vapor deposition using radio frequency magnetron sputtering. The p-n hetero junction diodes were highly transparent in the visible region and exhibits rectifying I-V characteristics. The substrate temperature during fabrication of p-layer CuO was found to have a profound influence on I-V characteristics. The films deposited at substrate temperature of 150 °C and 230 °C exhibited diode ideality factors of (η value) 1.731 and 1.862 respectively. This high ideality factor, combined with an optical transparency of above 70% suggests the potential use of these bi-layers in optoelectronic applications.

  13. Current-voltage characteristics and increase in the quantum efficiency of three-terminal gate and avalanche-based silicon LEDs.

    PubMed

    Xu, Kaikai

    2013-09-20

    In this paper, the emission of visible light by a monolithically integrated silicon p-n junction under reverse-bias is discussed. The modulation of light intensity is achieved using an insulated-gate terminal on the surface of the p-n junction. By varying the gate voltage, the breakdown voltage of the p-n junction will be adjustable so that the reverse current I(sub) flowing through the p-n junction at a fixed reverse-bias voltage is changed. It is observed that the light, which is emitted from the defects located at the p-n junction, depends closely on the reverse current I(sub). In regard to the phenomenon of electroluminescence, the relationship between the optical emission power and the reverse current I(sub) is linear. On the other hand, it is observed that both the quantum efficiency and the power conversion efficiency are able to have obvious enhancement, although the reverse-bias of the p-n junction is reduced and the corresponding reverse-current is much lower. Moreover, the successful fabrication on monolithic silicon light source on the bulk silicon by means of standard silicon complementary metal-oxide-semiconductor process technology is presented.

  14. Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation

    NASA Astrophysics Data System (ADS)

    Hu, Xue-Rong; Zheng, Ji-Ming; Ren, Zhao-Yu

    2018-04-01

    Based on first-principles calculations within the framework of density functional theory, we study the electronic properties of phosphorene/graphene heterostructures. Band gaps with different sizes are observed in the heterostructure, and charges transfer from graphene to phosphorene, causing the Fermi level of the heterostructure to shift downward with respect to the Dirac point of graphene. Significantly, strong coupling between two layers is discovered in the band spectrum even though it has a van der Waals heterostructure. A tight-binding Hamiltonian model is used to reveal that the resonance of the Bloch states between the phosphorene and graphene layers in certain K points combines with the symmetry matching between band states, which explains the reason for the strong coupling in such heterostructures. This work may enhance the understanding of interlayer interaction and composition mechanisms in van der Waals heterostructures consisting of two-dimensional layered nanomaterials, and may indicate potential reference information for nanoelectronic and optoelectronic applications.

  15. Depth- and momentum- resolved electronic structure at buried oxide interfaces from standing-wave angle-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Fadley, Charles

    2015-03-01

    It is clear that interfaces in complex oxide heterostructures often represent emergent materials that possess surprising properties not associated with the parent oxides, such as two-dimensional electron gases (2DEGs), superconductivity, and magnetism. A detailed knowledge of the composition, atomic structure, and electronic structure through such interfaces is thus critical. Photomission (PES) and angle-resolved photoemission (ARPES) represent techniques of choice for such studies, but have certain limitations in being too surface sensitive and in not being able to focus specifically on buried interfaces or heterostructure layers. In this talk, I will discuss combining two newer elements of PES/ARPES to deal with this challenge: - the use of soft x-rays in the ca. few hundred-to-2000 eV regime, or even into the true hard x-ray regime, to probe more deeply into the structure, and - tailoring of the x-ray intensity profile into a strong standing wave (SW) through reflection from a multilayer heterostructure to provide much enhanced depth resolution. The relative advantages of soft/hard x-ray PES and ARPES and their complementarity to conventional VUV ARPES in the ca. 5-150 eV regime will be considered. As illustrative examples, by combining SW-PES and SW-ARPES, it has been possible to measure for the first time the detailed concentration profiles and momentum-resolved electronic structure at the SrTiO3/La0.67Sr0.33MnO3 interface and to directly measure the depth profile of the 2DEG at SrTiO3/GdTiO3 interfaces. Future directions for such measurements will also be discussed. Supported by US DOE Contract No. DE-AC02-05CH11231, ARO-MURI Grant W911-NF-09-1-0398, and the PALM-APTCOM Project (France).

  16. Parameters Free Computational Characterization of Defects in Transition Metal Oxides with Diffusion Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Santana, Juan A.; Krogel, Jaron T.; Kent, Paul R.; Reboredo, Fernando

    Materials based on transition metal oxides (TMO's) are among the most challenging systems for computational characterization. Reliable and practical computations are possible by directly solving the many-body problem for TMO's with quantum Monte Carlo (QMC) methods. These methods are very computationally intensive, but recent developments in algorithms and computational infrastructures have enabled their application to real materials. We will show our efforts on the application of the diffusion quantum Monte Carlo (DMC) method to study the formation of defects in binary and ternary TMO and heterostructures of TMO. We will also outline current limitations in hardware and algorithms. This work is supported by the Materials Sciences & Engineering Division of the Office of Basic Energy Sciences, U.S. Department of Energy (DOE).

  17. High Fill Factors of Si Solar Cells Achieved by Using an Inverse Connection Between MOS and PN Junctions.

    PubMed

    Wang, Liang-Xing; Zhou, Zhi-Quan; Zhang, Tian-Ning; Chen, Xin; Lu, Ming

    2016-12-01

    Fill factors (FFs) of ~0.87 have been obtained for crystalline Si (c-Si) solar cells based on Ag front contacts after rapid thermal annealing. The usual single PN junction model fails to explain the high FF result. A metal/oxide/semiconductor (MOS) junction at the emitter is found to be inversely connected to the PN one, and when its barrier height/e is close to the open-circuit voltage of the solar cell, very high FF is obtainable. In this work, although the open-circuit voltage (<580 mV) is not high here, the efficiency of c-Si solar cell still reaches the state-of-the-art value (>20 %) due to the high FF achieved.

  18. Reduced junction temperature and enhanced performance of high power light-emitting diodes using reduced graphene oxide pattern

    NASA Astrophysics Data System (ADS)

    Han, Nam; Jung, Eunjin; Han, Min; Deul Ryu, Beo; Bok Ko, Kang; Park, Young Jae; Cuong, TranViet; Cho, Jaehee; Kim, Hyunsoo; Hong, Chang-Hee

    2015-07-01

    Thermal management has become a crucial area for further development of high-power light-emitting didoes (LEDs) due to the high operating current densities that are required and result in additional joule heating. This increased joule heating negatively affects the performance of the LEDs since it greatly decreases both the optical performance and the lifetime. To circumvent this problem, a reduced graphene oxide (rGO) layer can be inserted to act as a heat spreader. In this study, current-voltage and light-output-current measurements are systematically performed at different temperatures from 30 to 190 °C to investigate the effect that the embedded rGO pattern has on the device performance. At a high temperature and high operating current, the junction temperature (Tj) is 23% lower and the external quantum efficiency (EQE) is 24% higher for the rGO embedded LEDs relative to those of conventional LEDs. In addition, the thermal activation energy of the rGO embedded LEDs exhibits a 30% enhancement as a function of the temperature at a bias of  -5 V. This indicates that the rGO pattern plays an essential role in decreasing the junction temperature and results in a favorable performance in terms of the temperature of the high power GaN-based LED junction.

  19. Electrical breakdown and nanogap formation of indium oxide core/shell heterostructure nanowires.

    PubMed

    Jung, Minkyung; Song, Woon; Sung Lee, Joon; Kim, Nam; Kim, Jinhee; Park, Jeunghee; Lee, Hyoyoung; Hirakawa, Kazuhiko

    2008-12-10

    We report the electrical breakdown behavior and subsequent nanogap formation of In(2)O(3)/InO(x) core/shell heterostructure nanowires with substrate-supported and suspended structures. The radial heterostructure nanowires, composed of crystalline In(2)O(3) cores and amorphous In-rich shells, are grown by chemical vapor deposition. As the nanowires broke down, they exhibited two distinct current drops in the current-voltage characteristics. The tips of the broken nanowires were found to have a cone or a volcano shape depending on the width of the nanowire. The shape, the size, and the position of the nanogap depend strongly on the device structure and the nanowire dimensions. The substrate-supported and the suspended devices exhibit distinct breakdown behavior which can be explained by the diffusive thermal transport model. The breakdown temperature of the nanowire is estimated to be about 450 K, close to the melting temperature of indium. We demonstrated the usefulness of this technique by successful fabrication of working pentacene field-effect transistors.

  20. Copper silicide/silicon nanowire heterostructures: in situ TEM observation of growth behaviors and electron transport properties.

    PubMed

    Chiu, Chung-Hua; Huang, Chun-Wei; Chen, Jui-Yuan; Huang, Yu-Ting; Hu, Jung-Chih; Chen, Lien-Tai; Hsin, Cheng-Lun; Wu, Wen-Wei

    2013-06-07

    Copper silicide has been studied in the applications of electronic devices and catalysts. In this study, Cu3Si/Si nanowire heterostructures were fabricated through solid state reaction in an in situ transmission electron microscope (TEM). The dynamic diffusion of the copper atoms in the growth process and the formation mechanism are characterized. We found that two dimensional stacking faults (SF) may retard the growth of Cu3Si. Due to the evidence of the block of edge-nucleation (heterogeneous) by the surface oxide, center-nucleation (homogeneous) is suggested to dominate the silicidation. Furthermore, the electrical transport properties of various silicon channel length with Cu3Si/Si heterostructure interfaces and metallic Cu3Si NWs have been investigated. The observations not only provided an alternative pathway to explore the formation mechanisms and interface properties of Cu3Si/Si, but also suggested the potential application of Cu3Si at nanoscale for future processing in nanotechnology.

Top